

বিদ্যাসাগর বিশ্ববিদ্যানয়

VIDYASAGAR UNIVERSITY

B.Sc. General Examination 2021

(CBCS)

1st Semester

MATHEMATICS

PAPER—DSC1AT / DSC2AT / DSC3AT DIFFERENTIAL CALCULUS

Full Marks: 60
Time : 3 Hours
The figures in the right-hand margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

THEORY : DSC1AT

Answer any four questions. 4×12

1. (a) Using Rolle's Theorem, find a point on the curve
$y=\sin x+\cos x-1, x \in\left[0, \frac{\pi}{2}\right]$, where the tangent is parallel to the x -axis.
(b) Find the $\mathrm{n}^{\text {th }}$ derivative of $\tan ^{-1} \mathrm{t}$.
2. (a) Let $f: R \rightarrow R$ be such that $f(x+y)=f(x)+f(y)$ for all x, y in R. Show that $f(x)=a x$, where x is an integer and $f(1)=a$.
(b) If $y=a \cos (\log x)+b \sin (\log x), x>0$ then prove that (i) $x^{2} y_{2}+x y_{1}$ $+\mathrm{y}=0$ and (ii) $\mathrm{x}^{2} \mathrm{y}_{\mathrm{n}+2}+(2 \mathrm{n}+1) \mathrm{xy}_{\mathrm{n}+1}+\left(\mathrm{n}^{2}+1\right) \mathrm{y}_{\mathrm{n}}=0 . \quad 5+7$
3. (a) Determine whether the following function from R to R is differentiable and if differentiable find the derivative : $f(x)=1-|x-1|$.
(b) Give an example of a function where it can be shown that the conditions of the Rolle's theorem are sufficient but not necessary.
(c) Find the Maclaurin's series for the function $f(x)=\sin x . \quad 4+4+4$
4. (a) State and proof the Taylor's theorem with Lagrange form of remainder.
(b) If a and b are distinct real numbers show that there exists a real number c between a and b such that $\mathrm{a}^{2}+\mathrm{ab}+\mathrm{b}^{2}=3 \mathrm{c}^{2}$.
(c) Determine the stationary point of $x^{\frac{1}{x}}$.
5. (a) Evaluate : $\lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)^{\frac{4}{5 x}}$
(b) If $u=\cos ^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$ then show that

$$
x^{2} \frac{\partial^{2} u}{\partial x^{2}}+2 x y \frac{\partial^{2} u}{\partial x d y}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}=\frac{\left(1-\frac{1}{2} \sin ^{2} u\right) \cos u}{\sin u} .
$$

6. (a) If $V=a x^{2}+2 h x y+b y^{2}$ then show that

$$
\left(\frac{\partial V}{d x}\right)^{2} \frac{\partial^{2} V}{\partial y^{2}}-2 \frac{\partial V}{\partial x} \frac{\partial^{2} V}{\partial x \partial y}+\frac{\partial V}{\partial y} \frac{\partial^{2} V}{\partial x^{2}}=6\left(a b-h^{2}\right) V .
$$

(b) If ρ_{1} and ρ_{2} be the radii of curvature at the end point P and D of conjugate diameters of the ellipse, prove that $\rho_{1}^{2 / 3}+\rho_{2}^{2 / 3}=\frac{\left(a^{2}+b^{2}\right)}{(a b)^{2 / 3}}$. 6+6
7. (a) Verify Euler's Theorem when $u(x, y)=\frac{x\left(x^{3}-y^{3}\right)}{x^{3}+y^{3}}$.
(b) Find the points on the parabola $y^{2}=8 x$ at which the radius of curvature is $\frac{125}{16}$.
$6+6$
8. (a) If $x \cos \alpha+y \sin \alpha=p$ be the tangent of the curve $x^{m} y^{n}=\alpha^{m+n}$, then prove that $\mathrm{p}^{\mathrm{m}+\mathrm{n}} \mathrm{m}^{\mathrm{n}} \mathrm{n}^{\mathrm{m}}=(\mathrm{m}+\mathrm{n})^{\mathrm{m}+\mathrm{n}} \alpha^{\mathrm{m}+\mathrm{n}} \cos ^{\mathrm{m}} \alpha \sin ^{\mathrm{n}} \alpha$.
(b) Prove, $x-\frac{x^{3}}{6}<\sin x<x-\frac{x^{3}}{6}+\frac{x^{5}}{120}$, for all $\mathrm{x}>0$.

Answer any six questions.
9. Evaluate : $\lim _{x \rightarrow \infty} \frac{1}{1+n \sin ^{2} n x}$.
10. If $\mathrm{f}(\mathrm{x})=2|\mathrm{x}|+|\mathrm{x}+2|$, examine the existence of $f^{\prime}(x)$ at $\mathrm{x}=2$.
11. If $f(x)$ be differentiable at $x=a$, show that

$$
\lim _{x \rightarrow a} \frac{(x+a) f(x)-2 a f(a)}{x-a}=f(a)+2 a f^{\prime}(a)
$$

12. Find y_{n} where $y=e^{t} \sin ^{2} t$.
13. Prove that $\sin \mathrm{x}<\mathrm{x}<\tan \mathrm{x}$ when $\mathrm{x} \in\left(0, \frac{\pi}{2}\right)$.
14. Define essenetial discontinuity with an illustrated example.
15. If $u=f(y-z, z-x, x-y)$ then prove that $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=0$.
16. Find the radius of curvature of the parabola $y^{2}=4 a x$ at the vertex.
17. Find the equation of the line that is tangent to the graph of $\mathrm{y}=\sqrt{x}-\frac{1}{\sqrt{x}}$ at $x=1$.
18. If $|\mathrm{x}|<1$, what is the coefficient of x^{2} in the expression $\frac{\log _{e}(1+x)}{(1-x)^{2}}$.
