

বিদ্যাসাগর বিশ্ববিদ্যালয়

VIDYASAGAR UNIVERSITY

B.Sc. Honours Examination 2021

(CBCS)

1st Semester

MATHEMATICS

PAPER—C2T

ALGEBRA

Full Marks: 60

Time: 3 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer any four questions.

 4×12

1. (a) If a_1 , a_2 , ... a_n be all positive real numbers and

$$S = a_1 + a_2 + \dots + a_n;$$

Prove that
$$\left(\frac{s-a_1}{n-1}\right)\left(\frac{s-a_2}{n-1}\right)...\left(\frac{s-a_n}{n-1}\right)$$

$$> a_1 a_2 ... a_n$$
 unless $a_1 = a_2 = ... = a_n$

- (b) If α , β , γ , δ are the roots of the equation $t^4 + t^2 + 1 = 0$ and n is a positive integer, prove that $\alpha^{2n+1} + \beta^{2n+1} + \gamma^{2n+1} + \delta^{2n+1} = 0$.
- (c) Find the relation among the coefficients of the equation $ax^3 + 3bx^2 + 3cx + d = 0$ if its roots be in arithmetic progression. 4+5+3
- **2.** (a) Let C[0, 1] be the set of all real continuous functions on the closed interval [0, 1] and T be a mapping from c[0,1] to R defined by $T(f) = \int_0^1 f(x) dx, f \in c[0,1].$ Show that T is a linear transformation.
 - (b) Let v be a real vector space with a basis $\{\vec{\alpha}_1,\vec{\alpha}_2,..,\vec{\alpha}_n\}$,

Examine if $\{\vec{\alpha}_1 + \vec{\alpha}_2, \vec{\alpha}_2 + \vec{\alpha}_3, ..., \vec{\alpha}_n + \vec{\alpha}_1\}$ is also a basis of V.

- (c) Find $K \in \mathbb{R}$ so that the set S = {(1, 2, 1), (k, 3, 1), (2, k, 0)} is linearly dependent in $1\mathbb{R}^3$.
- **3.** (a) Prove that $6 | n(n + 1) (n + 2), n \in \mathbb{Z}$.
 - (b) Use the theory of congruence to find the remainder when the sum $1^5 + 2^5 + 3^5 + ... + 100^5$ is divided by 5. 5+5+2
 - (c) Find the values of a for which the equation $ax^3 6x^2 + 9x 4 = 0$ may have multiple roots. 5+5+2
- **4.** (a) Find x if the rank of the matrix $\begin{pmatrix} 1 & 3 & -3 & x \\ 2 & 2 & x & -4 \\ 1 & 1-x & 2x+1 & -8-3x \end{pmatrix}$ be 2.

- (b) Find the value of λ for which the system of equations $2x_1 x_2 + x_3 + x_4 = 1, \ x_1 + 2x_2 x_3 + 4x_4 = 2, \ x_1 + 7x_2 4x_3 + 11x_4 = \lambda \text{ is solvable.}$
- (c) If $\alpha + \beta + \gamma = 0$, Prove that $\frac{\alpha^5 + \beta^5 + \gamma^5}{5} = \frac{\alpha^3 + \beta^3 + \gamma^3}{3} \cdot \frac{\alpha^2 + \beta^2 + \gamma^2}{2}$
- **5.** (a) If α , β , γ be the roots of the equation $x^3 2x^2 + 3x 1 = 0$,

 $\text{find the equation whose roots are } \frac{\beta\gamma-\alpha^2}{\beta+\gamma-2\alpha}, \frac{\gamma\alpha-\beta^2}{\gamma+\alpha-2\beta}, \ \frac{\gamma\beta-\gamma^2}{\alpha+\beta-2\gamma}$

- (b) Solve : $(1+x)^{2n} + (1-x)^{2n} = 0$
- (c) If $S_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$, prove that $S_n > \frac{2n}{n+1}$ if n > 1.
- **6.** (a) Show that $(2n + 1)^2 \equiv 1 \pmod{8}$ for any natural number n.
 - (b) Use Cayley Hamiltan theorem, to find A^{50} where $A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$.
 - (c) Find the dimension of the subspace $S \cap T$ of \mathbb{R}^4 where

$$S = \{(x, y, z, w) \in \mathbb{R}^4 : x + y + z + w = 0\}.$$

$$T = \{(x, y, z, w) \in \mathbb{R}^4 : 2x + y - z + w = 0\}.$$

$$3+4+5$$

- **7.** (a) If the roots of the equation $x^3 + px^2 + qx + r = 0$ are in A. P where p,q,r are real numbers, prove that $p^2 \ge 3q$.
 - (b) Find all values of $i^{1/7}$.
 - (c) Prove that for any two integers U and V > 0, there exist two unique integers m and n such that

$$U = mV + n, \quad o \le n < V$$
.

- **8.** (a) If $a \equiv b \pmod{m}$ and $a \equiv c \pmod{n}$, prove that $b \equiv c \pmod{d}$ where $d = \gcd(m, n)$.
 - (b) Find the basis for the column space of the matrix

$$\begin{pmatrix} 1 & 2 & -1 \\ 2 & 3 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

(c) Determine the conditions for which the system of equations

$$x + 2y + z = 1$$
$$2x + y + 3z = b$$

$$x + ay + 3z = b + 1$$

has unique solution, many solutions and no solution.

Answer any six questions.

 6×2

- **9.** Find the general values of the equation $(\cos\theta + i\sin\theta) (\cos 2\theta + i\sin 2\theta) \dots (\cos n\theta + i\sin n\theta) = -i, \text{ where } \theta \text{ is real.}$
- **10.** If the equation $x^4 + px^2 + qx + r = 0$ has three equal roots then show that $8p^3 + 27q^2 = 0$.
- **11.** Solve the equations $x + py + p^2z = p^3$, $x + qy + q^2z = q^3$, $x + ry + r^2z = r^3$.
- **12.** Find the equation whose roots are cubes of the roots of the cubic $x^3 + 3x^2 + 2 = 0$.
- **13.** Prove that $n^2 + 2$ is not divisible by 4 for any integer n.
- **14.** Show that the set of all points on the line y = mx forms a sub space of the vector space \mathbb{R}^2 .
- 15. Find the number of divisors and their sum of 10800.
- **16.** Find the greatest value of xyz where x, y and z are positive real numbers satisfying xy + yz + zx = 27.
- **17.** If A and B be two square invertible matrices, then prove that AB and BA have the same eigen values.
- **18.** Show that eigen values of the matrix $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{pmatrix}$ are all real.