	বিদ্যাসাগর বিশ্ববিদ্যালয় VIDYASAGAR UNIVERSITY Question Paper
	B.Sc. General Examinations 2022 (Under CBCS Pattern) Semester - IV Subject : MATHEMATICS Paper : DSC 1D/2D/3D - T Algebra
	Full Marks : 60 Time : 3 Hours
	Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks.
1. An (a) (b) (c) (d) (e)	Answer any five questions : a) Find all elements of order 8 in the group $\left(\mathbb{Z}_{24},+\right)$. b) If a be a unit in a ring R, show that its multiplicative inverse is unique. c) Show that a field contains no divisor of zero. d) Determine all distinct left cosets of A_{3} in S_{3}. e) Give an example of a group G of four elements e, a, b, c with e as the identity element, where $c^{-1}=c$ but $a^{-1}=b$. (f) Prove that if n is the order of an element a and P is prime to n, then a^{P} is also of order n.

(g) Show that if every element of a group (G, o) is its own inverse, then G is abelian.
(h) A group G is abelian if for all $a, b \in G,(a b)^{2}=a^{2} b^{2}$.
2. Answer any four questions :
(a) Show that a non trivial finite ring having no divisor of zero is a ring with unity.
(b) If S and T be two subrings of a ring R, then show that $S \cap T$ is a subring of R.
(c) Let M_{n} be the set of all $n \times n$ nonsingular matrix. Show that M_{n} forms a group under matrix multiplication. Is this group is commutative? Justify your answer. $\quad 4+1=5$
(d) State and prove a necessary and sufficient condition of a nonempty subset H of a group $(G \bullet \bullet)$ to be a subgroup of the group $(G \bullet \bullet)$.
$1+4=5$
(e) Let S be the set of 10 th roots of unity. Show that (S, \bullet) is a cyclic group. Find all possible generators. Have these generators any special name?
$4+1=5$
(f) Let H be a subgroup of a group G and $a, b \in G$. Prove that $a H \cap b H=\varphi$ if and only if b not in $a H$.
3. Answer any three questions :
(a) (i) If R be a ring such that $a^{2}=a$, for all $a \in R$, then prove that
(1) $a+a=0$, for all $a \in R$,
(2) $a+b=0 \Rightarrow a=b$
(3) R is a commutative ring.

Show further that the characteristic of R is 2 .
(ii) Prove that every field is an integral domain, but the converse is not true.

$$
6+(3+1)
$$

(b) (i) Prove that the symmetric group S_{3} is non-commutative.
(ii) Define divisors of zero in a ring R. Show that the cancellation law holds in a ring R if and only if R has no divisor of zero.
(c) (i) If $(G \bullet)$ be a group such that $(a \bullet b)^{n}=a^{n} \cdot b^{n}$, for an inger $n=p, p+1, p+2$, for all $a, b \in G$. Then prove that G is commutative.
(ii) Prove that a subgroup H of a group $(G \bullet \bullet)$ is a normal subgroup if and only if $a \in H$ and $b \in G$ imply that $b \cdot a \cdot b^{-1} \in H$.
(d) (i) Define Characteristic of a ring.
(ii) Show that Characteristic of an Integral domain is a either zero or prime number.
(iii) Show that a finite integral domain is a field.
(e) (i) Show that Z / S is a quotient ring, if $S=\{5 n: n \in Z\}$.
(ii) If R be a ring and $f(x), g(x)$ be polynomials in $R[x]$, then $\operatorname{deg}(f(x) g(x)) \leq$ $\operatorname{deg}(f(x))+\operatorname{deg}(g(x))$.

