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1. Answer any five questions : 2×5=10

(a) Find all elements of order 8 in the group  24, .

(b) If a be a unit in a ring R, show that its multiplicative inverse is unique.

(c) Show that a field contains no divisor of zero.

(d) Determine all distinct left cosets of A3 in S3.

(e) Give an example of a group G of four elements e, a, b, c with e as the identity

element, where c–1 = c but a–1 = b.

(f) Prove that if n is the order of an element a and P is prime to n, then aP is also of

order n.
P.T.O.



(g) Show that if every element of a group (G, o) is its own inverse, then G is abelian.

(h) A group G is abelian if for all  2 2 2, ,a b G ab a b  .

2. Answer any four questions : 5×4=20

(a) Show that a non trivial finite ring having no divisor of zero is a ring with unity.

(b) If S and T be two subrings of a ring R, then show that S  T is a subring of R.

(c) Let Mn be the set of all n × n nonsingular matrix. Show that Mn forms a group under

matrix multiplication. Is this group is commutative? Justify your answer. 4+1=5

(d) State and prove a necessary and sufficient condition of a nonempty subset H of a

group (G, •) to be a subgroup of the group (G, •). 1+4=5

(e) Let S be the set of 10th roots of unity. Show that (S, •) is a cyclic group. Find all

possible generators. Have these generators any special name? 4+1=5

(f) Let H be a subgroup of a group G and ,a b G . Prove that aH bH    if and

only if b not in aH.

3. Answer any three questions : 10×3=30

(a) (i) If R be a ring such that 2a a , for all a R , then prove that

(1) a + a = 0, for all a R ,

(2) 0a b a b   

(3) R is a commutative ring.

Show further that the characteristic of R is 2.

(ii) Prove that every field is an integral domain, but the converse is not true.

6+(3+1)

(b) (i) Prove that the symmetric group S3 is non-commutative.

(ii) Define divisors of zero in a ring R. Show that the cancellation law holds in a ring

R if and only if R has no divisor of zero. 4+(1+5)

P.T.O.
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(c) (i) If (G, •) be a group such that (a • b)n = an • bn, for an inger , 1, 2n p p p   ,

for all ,a b G . Then prove that G is commutative.

(ii) Prove that a subgroup H of a group (G, •) is a normal subgroup if and only if

a H  and b G  imply that 1· ·b a b H  . 4+6

(d) (i) Define Characteristic of a ring.

(ii) Show that Characteristic of an Integral domain is a either zero or prime number.

(iii) Show that a finite integral domain is a field. 2+3+5=10

(e) (i) Show that Z/S is a quotient ring, if  5 :S n n Z  .

(ii) If R be a ring and f(x), g(x)  be polynomials in R[x], then deg (f (x) g (x)) 
deg (f (x)) + deg (g (x)). 4+6
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