

বিদ্যাসাগর বিশ্ববিদ্যালয় VIDYASAGAR UNIVERSITY

Question Paper

B.Sc. Honours Examinations 2022

(Under CBCS Pattern)

Semester - IV

Subject: MATHEMATICS

Paper: GE 4 - T

Full Marks: 40

Time: 2 Hours

Candidates are required to give their answers in their own words as far as practicable.

The figures in the margin indicate full marks.

[NUMERICAL METHODS]

1. Answer any *four* questions :

 $5 \times 4 = 20$

- (a) (i) Deduce Newton-Cotes quadrature formula.
 - (ii) Evaluate: $\left(\frac{\Delta^2}{E}\right) x^3$

3+2

- (b) Given (n + 1) distinct points $x_0, x_1, x_2,, x_n$ and (n + 1) ordinates $y_0, y_1,, y_n$, there is a polynomial p(x) of degree $\le n$ that interpolates to y_i at $x_i, i = 0, 1,, n$. Prove that this polynomial is unique.
- (c) Describe the Regula-Falsi method for finding the root of the equation f(x) = 0. What are the advantages and disadvantages of this method.

- (d) Let f(x) be a function. Describe least square method to approxiate a polynomial.
- (e) Describe Gauss-elimination method for numerical solution of a system of linear equations.
- (f) Evaluate y (1.0) from the differential equation $\frac{dy}{dx} = y + x^2$ with y(0)=1 taking h=0.2, by Euler's method correct upto two decimal places.
- 2. Answer any *two* questions :

 $10 \times 2 = 20$

- (a) (i) Derive the Simpson $\frac{1}{3}$ integration formula in the form $\int_{a}^{b} f(x) dx = \frac{b-a}{3} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right] \frac{b-a}{2^{5} \times 90} f^{(iv)}(g)$ where a < g < b. What is the error if f(x) is a polynomial of degree 3.
 - (ii) Find the value of $\int_0^1 \frac{1}{1+x} dx$ using Simpson's $\frac{1}{3}$ rule and mid-point formula using h = 0.5.
- (b) Derive the convergence criteria for Newton-Raphson method. Also determine the order of convergence of this method. 5+5
- (c) Describe power method to find the largest magnitude eigen value of a square matrix.
- (d) (i) Solve the following system of equations by Gauss-seidal iteration method correct upto three significant figures :

$$3x + y + z = 3$$
; $2x + y + 5z = 5$; $x + 4y + z = 2$

(ii) Compute the percentage error in the time period $T = 2\pi \sqrt{\frac{l}{g}}$ for l = 1m if the error in the measurement of l is 0.01.

OR

[PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS]

Full Marks: 60

Time: 3 Hours

1. Answer any *five* questions:

 $2 \times 5 = 10$

(i) Find the order and degree of the following PDE:

$$\left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2 = 1$$

- (ii) Form a PDE by the elimination of the arbitrary constants a, b from z = ax + by.
- (iii) Determine whether the equation $\frac{\partial^2 u}{\partial x^2} + 2\frac{\partial^2 u}{\partial y^2} = 0$ is hyperbolic, parabolic or elliptic.
- (iv) Write and classify Laplace's equation.
- (v) Give an example of a homogeneous linear second order PDE.
- (vi) State Kepler's second law.
- (vii) Write the Lagrange's auxiliary equations for the PDE zxp + zyq = xy.
- (viii) A particle describes the curve $p^2 = ar$ under a force F to the pole. Find the law of force.
- 2. Answer any *four* questions :

 $5 \times 4 = 20$

- (i) Form a PDE by eliminating the function f from $z = f(x^2 y^2)$.
- (ii) Using Lagrange's method solve the PDE (y+z)p+(z+x)q=x+y.
- (iii) Show that the characteristics equation of the PDE $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = 0$ represents a family of straight lines passing through the origin.

- (iv) Find the complete integral of $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = au + \frac{xy}{z}$.
- (v) A particle describes a curve whose equation is $r = a \sec^2 \frac{\theta}{2}$ under a force to the pole. Find the law of force.
- (vi) A particle describes the path $r = a \tan \theta$ under a force to the origin. Find its acceleration in terms of r.
- 3. Answer any *three* questions :

10×3=30

- (i) Transform the partial differential equation $\frac{\partial^2 u}{\partial x^2} 4 \frac{\partial^2 u}{\partial x \partial y} + 4 \frac{\partial^2 u}{\partial y^2} = 0$ to cannonical form and hence solve it.
- (ii) Apply the method of separation of variables to obtain a formal solution u(x,y) of the problem which consists of the wave equation $\frac{\partial^2 u}{\partial x^2} \frac{\partial^2 u}{\partial y^2} = 0$ with the conditions:

$$u(0,y) = u(\pi,y) = 0, y \ge 0$$
$$u(x,0) = \sin 2x, 0 \le x \le \pi$$
$$\frac{\partial u(x,0)}{\partial y} = 0, 0 \le x \le \pi$$

(iii) Find the solution of the initial boundary value problem:

$$u_{tt} = u_{xx}, 0 < x < 2, t > 0$$

$$u(x,0) = \sin\left(\frac{\pi x}{2}\right), 0 \le x \le 2$$

$$u_{t}(x,0) = 0, 0 \le x \le 2$$

$$u(0,t) = 0, u(2,t) = 0, t \ge 0$$

- (iv) Find the solution of the cauchy problem for the first order PDE $x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = z$ on $D = \{(x, y, z) : x^2 + y^2 \neq 0, z > 0\}$ with the initial condition $x^2 + y^2 = 1$, z = 1.
- (v) Show that the path described under the inverse square law of distance will be an ellipse, a parabola or a hyperbola according as $v^2 < = \text{or} > \frac{2\mu}{r}$.

OR

[RING THEORY AND LINEAR ALGEBRA-I]

Full Marks: 60 Time: 3 Hours

1. Answer any *five* questions:

 $2 \times 5 = 10$

- (a) Let D be an integral domain and $a, b \in D$. If $a^5 = b^5$ and $a^8 = b^8$, prove that a = b.
- (b) Examine whether the mapping $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined by $T(x,y) = (x+2y,2x+y,x+y), (x,y) \in \mathbb{R}^2 \text{ is a linear mapping.}$
- (c) Examine if the set = $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = z^2\}$, is a subspace of \mathbb{R}^3 .
- (d) Prove that in a ring R if a is an idempotent element then 1 a is also idempotent.
- (e) Prove that \mathbb{Z} and $2\mathbb{Z}$ are not isomorphic.
- (f) In a ring R, prove that (i) (-a)(-b) = ab, (ii) a(b-c) = ab ac for all $a,b,c \in R$.
- (g) Show that the set $\left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} : a, b \in \mathbb{Z} \right\}$ of diagonal matrices is a subring of the ring of all 2×2 matrices over \mathbb{Z} .
- (h) Is $W = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 x_2 + 2x_3 = 0\}$ a sub-space of \mathbb{R}^3 ? Justify.

2. Answer any *four* questions :

 $5 \times 4 = 20$

- (a) Prove that the set $Z\sqrt{-5} = \{a + b\sqrt{-5} : a, b \in Z\}$ is an integral domain with usual addition '+' and multiplication '.' of two complex number.
- (b) A linear mapping $T: \mathbb{R}^3 \to \mathbb{R}^2$ is defined by $T(x,y,z) = (3x-2y+z,x-3y-2z), (x,y,z) \in \mathbb{R}^3$. Find the matrix of T relative to the order bases ((0,1,1), (1,0,1), (1,1,0)) of \mathbb{R}^3 and ((1,0), (0,1)) of \mathbb{R}^2 .

- (c) Let R be a commutative ring and suppose $nx = 0 \ \forall x \in R$ where n is a prime number. Then show that the mapping $f: R \to R$ defined by $f(x) = x^n$, $x \in R$ is a homomorphism.
- (d) Suppose $\{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}$ be a basis of a vector space V over a field F and a non zero vector β of V is expressed as $\beta = c_1\alpha_1 + c_2\alpha_2 + c_3\alpha_3 + c_4\alpha_4 : c_i \in F$, i = 1,2,3,4 then if $c_4 \neq 0$, then prove that $\{\alpha_1, \alpha_2, \alpha_3, \beta\}$ is a new basis.
- (e) Show that a ring R is commutative iff $(a+b)^2 = a^2 + b^2 + 2ab$ for all $a,b \in R$. Show that Z_p modulo p is a field if and only if p is a prime. 2+3
- (f) Show that the vectors $v_1 = (0,2,-4), v_2 = (1,-1,1), v_3 = (1,2,1)$ are linearly independent in $\mathbb{R}^3(\mathbb{R})$. If $\alpha,\beta,\gamma\in V(F)$ such that $\alpha+\beta+2\gamma=0$, then show that $\{\alpha,\beta\}$ spans the same subspace as $\{\beta,\gamma\}$ i.e., show that $L(\{\alpha,\beta\}) = L(\{\beta,\gamma\})$.
- 3. Answer any *three* questions:

 $10 \times 3 = 30$

- (a) Determine the linear mapping $T: \mathbb{R}^3 \to \mathbb{R}^3$ that maps the basis vectors (0,1,1), (1,0,1), (1,1,0) of \mathbb{R}^3 to the vectors (2, 1, 1), (1, 2, 1), (1, 1, 2) respectively. Find $Ker\ T$ and $Im\ T$. Verify that $\dim Ker\ T + \dim Im\ T = 3$. 4+2+2+2
- (b) (i) Prove that a commutative ring R with unity is an integral domain if and only if for every non-zero element a in R, $a.u = a.v \Rightarrow u = v$, where $u, v \in R$.
 - (ii) A linear mapping $T: \mathbb{R}^3 \to \mathbb{R}^3$ is defined by $T(x,y,z) = (2x+z,x+y+z,-3x-z), (x,y,z) \in \mathbb{R}^3$. Show that T is an isomorphism.
- (c) (i) Prove that in the ring of integers $(\mathbb{Z}, +\cdot)$ every ideal is a principal ideal.

- (ii) Let X be a non empty set. Show that the P(X), the power set of X forms a commutative ring with unity under \oplus and \odot defined by $A \oplus B = (A \cup B) (A \cap B)$ and $A \odot B = A \cap B$ where $A, B \in P(X)$. 5+5
- (d) Show that in an integral domain R (with unity) the only idempotents are the zero and unity. If A is an ideal of a ring R with unity such that $1 \in A$ then show that A = R. Determine all the ideals of the ring of integers $(Z, +, \cdot)$. Show by an example that it is possible to have a ring R with unity where $\{0\}$ and R are the only ideals of R, but R is not a division ring. 3+2+3+2
- (e) Prove that L(S) is the smallest subspace of V, containing S. If $f: R \to R'$ be an onto homomorphism, then R' is isomorphic to a quotient ring of R. In fact $R' \cong \frac{R}{Ker f}$. Show that $\frac{\mathbb{Z}}{\langle 2 \rangle} = \frac{5\mathbb{Z}}{10\mathbb{Z}}$.

OR

[MULTIVARIATE CALCULUS]

Full Marks: 60 Time: 3 Hours

1. Answer any *five* questions:

 $2 \times 5 = 10$

- (a) If $f(x,y) = \frac{xy}{x^2 + y^2}$, does $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2 + y^2}$ exist?
- (b) Find the extreme values of $f(x, y) = y^2 x^2$.
- (c) Evaluate $\iint_R e^{-(x+y)} dxdy$ where R is the region in the first quadrant in which $x+y \le 1$.
- (d) Find the maximum rate of change of the function $f(x, y) = \sqrt{x^2 + y^4}$ at the point (–2, 3) and the direction in which this maximum rate of change occurs.
- (e) Convert the integral to cylindrical coordinates : $\int_{-2}^{2} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_{x^2+y^2}^{4} x \, dz \, dy \, dx$.
- (f) Find the tangent plane to the elliptic paraboloid $z = 2x^2 + y^2$ at the point (1,1,3).
- (g) Where is the function $f(x,y) = \frac{x^2 y^2}{x^2 + y^2}$ continuous?
- (h) Evaluate $\int_C xy \, dx + x^2 dy$, where C is given by $y = x^3, -1 \le x \le 2$.
- 2. Answer any *four* questions :

 $5 \times 4 = 20$

(a) Define chain rule for functions involving two independent variables. If $g(s,t) = f(s^2 - t^2, t^2 - s^2)$ and f is differentiable, show that g satisfies the equation $t\frac{\partial g}{\partial s} + s\frac{\partial g}{\partial t} = 0$.

- (b) Define the gradient of the function f(x,y). Find the directional derivative of the function $f(x,y) = x^2y^3 4y$ at the point (2,-1) in the direction of the vector $\overline{v} = 2\hat{i} + 5\hat{j}$.
- (c) Show that the line integral $\int_C (y+yz)dx + (x+3z^3+xz)dy + (9yz^2+xy-1)dz$. is independent of the path C between (1,1,1) to (2,1,4).
- (d) State sufficient condition for differentiability. Show that $f(x,y) = x^2y + xy^3$ is differentiable for all (x, y).
- (e) Use a polar double integral to show that a sphere of radius a has volume $\frac{4}{3}\pi a^3$.
- (f) If $\overline{F}(x, y, z)$ be a continuously differentiable vector function, then prove that $\overline{\nabla} \times (\overline{\nabla} \times \overline{F}) = \overline{\nabla} (\overline{\nabla} \cdot \overline{F}) \overline{\nabla}^2 \overline{F}$ 5
- 3. Answer any *three* questions :

 $10 \times 3 = 30$

- (a) (i) State and prove Stoke's theorem for curls.
 - (ii) Define total differential of a function f(x, y, z). Determine the total differential of the function $f(x, y) = x^2 \ln (3y^2 2x)$. 6+(2+2)
- (b) (i) State Young's theorem.
 - (ii) Consider the function f defined by

$$f(x,y) = \begin{cases} xy \frac{x^2 - y^2}{x^2 + y^2}, & where \ x^2 + y^2 \neq 0\\ 0, & where \ x^2 + y^2 = 0 \end{cases}$$

Show that $f_{xy} \neq f_{yx}$ at (0, 0).

- (iii) Let R be the annular region lying between the two circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 5$. Evaluate the integral $\iint_R (x^2 + y) dA$. (1+5)+4
- (c) (i) Changing the order of integration, show that $\int_0^1 dx \int_x^{\frac{1}{x}} \frac{y dy}{(1+xy)^2 (1+y^2)} = \frac{\pi 1}{4}.$
 - (ii) Evaluate $\iiint xyz \, dx \, dy \, dz$ over the region $R: 0 \le x \le 1, 0 \le y \le 1, 0 \le z \le 1$.
- (d) (i) State Green's Theorem in the plane.
 - (ii) Show that $\overline{F}(x, y, z) = (6xy + z^3)\hat{i} + (3x^2 z)\hat{j} + (3xz^2 y)\hat{k}$ is irrotational. Find a scalar function φ such that $\overline{F} = \overline{\nabla}\varphi$.
 - (iii) Find the work done by the force $\overline{F}(x,y) = (-16y + \sin x^2)\hat{i} + (4e^y + 3x^2)\hat{j}$ acting along the simple closed curve $C: x^2 + y^2 = 1, y = x, y = -x$. 2+4+4
- (e) (i) State the Gauss's Divergence theorem. Verify Gauss's divergence theorem for $\overline{F} = 4x\hat{i} 2y^2\hat{j} + z^2\hat{k}$ taken over the region bounded by $x^2 + y^2 = 4, z = 0$ and z = 3.
 - (ii) Show that the area bounded by a simple closed curve C is given by $\frac{1}{2} \oint_C (x \, dy y \, dx). \tag{1+6} + 3$