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PREFACE

This book is intended for a one-year undergraduate course in abstract algebra.
Its design is such that the book can also be used for a one-semester course.
The book contains more material than normally would be taught in a one-year
course. This should give the teacher flexibility with respect to the selection of
the content and the level at which the book is to be used. We give a rigorous
treatment of the fundamentals of abstract algebra with numerous examples
to illustrate the concepts. It usually takes students some time to become
comfortable with the seeming abstractness of modern algebra. Hence we begin
at a leisurely pace paying great attention to the clarity of our proofs. The only
real prerequisite for the course is the appropriate mathematical maturity of
the students. Although the material found in calculus is independent of that
of abstract algebra, a year of calculus is typically given as a prerequisite. Since
many of the examples in algebra comes from matrices, we assume that the
reader has some basic knowledge of matrix theory. The book should prepare
the student for higher level mathematics courses and computer science courses.
We have many problems of varying difficulty appearing after each section. We
occasionally leave as an exercise the verification of a certain point in a proof.
However, we do not rely on exercises to introduce concepts which will be needed
later on in the text.

Topics are introduced that have never appeared in this type of textbook.
They include Grobner basis, rings of matrices, and Noetherian and Artinian
rings. Another distinguishing feature of the book is the Worked-Out Exercises
which appear after every section. These Worked-Out Exercises provide not
only techniques of problem solving, but also supply additional information to
enhance the level of knowledge of the reader. For example, in Chapter 7, we
illustrate several techniques that are very eflective in determining the Sylow
subgroups of a group, whether the group is simple or not, and in determining
the structure of a group. In Chapter 9, we give numerous examples and show
how to determine different Abelian groups of a given order. We also show how
to find the elementary divisors, the torsion coefficients, and the betti number
of a finitely generated Abelian group. In Chapter 15, we give an algorithmic
procedure to find the greatest common divisor and illustrate it in full detail.
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We also illustrate how to show whether an element is prime and/or irreducible.
In Chapter 24, we give numerous examples to show how to determine the Galois
group and the intermediate fields of a Galois field extension. Of course, each
section is followed by problems of varying difficulty for the reader to further
master the subject. The reader should study the Worked-Out Exercises that
are marked with { along with the chapter. Those not marked with ¢ may be
skipped during the first reading. Sprinkled throughout the book are comments
dealing with the historical development of abstract algebra.

This book has been class-tested at Creighton University and at the Univer-
sity of Calcutta. During preparation of the manuscript, we used an approach
which would help students who need a text to pass different types of aptitude
tests in algebra.

In Chapter 1, the necessary ideas of sets, relations, functions, and binary
operations are presented. We recommend that the chapter be gone through
quickly in order to provide enough time to cover essential topics from abstract
algebra. The students can refer back to material omitted on the first pass, as
needed. For example, Zorn’s lemma may be omitted on the first reading. It is
not needed until Chapter 17.

Chapters 2 through 6 contain basic results on group theory. Most of the
material in these chapters should be covered in the first semester. Chapters 10
through 14 contain basic results on ring theory. Most of the results in these
chapters should also be covered in the first semester.

The second semester should cover Chapters 15 through 17. These chapters
deal with Euclidean domains, unique factorization domains, and prime and
maximal ideals. Students should now be well prepared to study field theory in
the remaining part of the semester. Those who have not had a course on linear
algebra should spend some time on vector spaces in Chapter 20. The students
should finish the semester with Chapter 21 and as much of Chapter 22 through
24 as possible. There is plenty of material remaining from which special topics
may be chosen.

We have included chapters on coding theory and Grobner bases so that
the student can gain some appreciation of the applications of abstract algebra.
The chapter on coding theory contains enough material to allow the student
to see applications of groups, ideals, and fields. We present a chapter on
Grobner bases because of its currency. It can be a first step into the area of
computational algebra. The chapter also provides important applications of
commutative algebra.

We would like to thank Professor James K. Deveney of Virginia Common-
wealth University and his abstract algebra class for their valuable suggestions.
We express our sincere gratitude to Fr. Michael Proterra, Dean, Creighton Col-
lege of Arts and Sciences, for making possible Dr. Sen’s visit during 1992-1993.
We would like to thank Dr. Mark J. Wierman for showing us many important
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features of LaTex which were very helpful in preparing this manuscript in its
present form and also for drawing all diagrams in the book. In addition, we
express our sincere thanks to Dr. T.K. Mukherjee, Dr. S. Ganguly, and Dr.
S.R. Lopéz-Permouth for their critical comments. We are very thankful to our
families for their constant support and encouragement throughout this project.
We would like to give special thanks to Shelly Malik, who constantly inquired
about the manuscript and counted each chapter every time the manuscript
was printed. Finally we would like to thank Karen Minette of McGraw-Hill for
making this project a success.

We welcome any comments concerning the text. The comments may be
forwarded to the following e-mail addresses: malik@bluejay.creighton.edu or
mordes@bluejay.creighton.edu

D. S. Malik
John N. Mordeson
M. K. Sen
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Qlnl={e+b/nla,becQ},nisa

fixed positive integer

Q] ={a+bi|abeQ}
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end of proof



Chapter 1

Sets, Relations, and Integers

The purpose of this introductory chapter is mainly to review briefly some famil-
iar properties of sets, functions, and number theory. Although most of these
properties are familiar to the reader, there are certain concepts and results
which are basic to the understanding of the body of the text.

This chapter is also used to set down the conventions and notations to be
used throughout the book. Sets will always be denoted by capital letters. For
example, we use the notation N for the set of positive integers, Z for the set of
integers, Z# for the set of nonnegative integers, E for the set of even integers,
Q for the set of rational numbers, Q% for the set of positive rational numbers,
Q* for the set of nonzero rational numbers, R for the set of real numbers, R+
for the set of positive real numbers, R* for the set of nonzero real numbers, C
for the set of complex numbers, and C* for the set of nonzero complex numbers.

1.1 Sets

We will not attempt to give an axiomatic treatment of set theory. Rather we
use an intuitive approach to the subject. Consequently, we think of a set as
some given collection of objects. A set S with only a finite number of elements
is called a finite set; otherwise S is called an infinite set. We let |S| denote
the number of elements of 5. We quite often denote a finite set by a listing of
its elements within braces. For example, {1,2,3} is the set consisting of the
objects 1,2, 3. This technique is sometimes used for infinite sets. ¥or instance,
the set of positive integers N may be denoted by {1,2,3,...}.

Given a set S, we use the notation z € S and z ¢ S to mean z is a member
of S and z is not a member of 5, respectively. For the set § = {1,2,3}, we
have 1 € S and 4 ¢ S.

A set A is said to be a subset of a set S if every element of A is an element
of S. In this case, we write 4 C S and say that A is containedin §. If AC §,
but A # S, then we write A C S and say that A is properly contained in S or
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that A is a proper subset of S. As an example, we have {1,2,3} C {1,2,3}
and {1,2} C {1,2,3].

Let A and B be sets. If every member of A is a member of B and every
member of B is a member of A, then we say that A and B are the same or
equal. In this case, we write A = B. It is immediate that A = B if and only
if AC B and B C A. Thus, we have the following theorem.

Theorem 1.1.1 Lel A and B be sets. Then A= B if and only if AC B and
BCA N

The null set or empty set is the set with no elements. We usually denote
the empty set by ¢. For any set A, we have ¢ C A. The later inclusion follows
vacuously. That is, every element of ¢ is an element of A since ¢ has no
elements.

We also describe sets in the following manner. Given a set S, the notation

A={z |z €S, P(z)}

or

A={zeS|P&)

means that A is the set of all elements z of § such that z satisfies the property
P. For example, N = {z | z € Z,z > 0}.
We can combine sets in several ways.

Definition 1.1.2 The union of two sets A and B, written AU B, is defined
to be the set
AUB={z|z€ Aorze€ B}.

In the above definition, we mean z is a member of A or z is a member of
B or z is a member of both A and B.

Definition 1.1.3 The intersection of two sets A and B, written AN B, 1is
defined to be the set

ANB={r|z € A and z € B}.

Here z is an element of AN B if and only if x is a member of A and at the
same time z is a member of B.

Let A and B be sets. By the definition of the union of sets, every element
of A is an element of AU B. That is, A C AU B. Similarly, every element of
B is also an element of AU B and so B C AU B. Also, by the definition of
the intersection of sets, every element of AN B is an element of A and also an
element of B. Hence, AN B C A and AN B C B. We record these results in
the following theorem.



1.1. SETS 3

Theorem 1.1.4 Let A and B be sets. Then the following statements hold:
(i) ACAUB and BC AU B,
(1)) ANBC Aand ANBC B. B

The union and intersection of two sets A and B is described pictorially in
the following diagrams. The shaded area represents the set in question.

N\

AUB ANB
Two sets A and B are said to be disjoint if AN B = ¢.

Example 1.1.5 Let A be the set {1,2,3,4} and B be the set {3,4,5,6}. Then
AUB ={1,2,3,4,5,6}

and AN B = {3,4}. If C is the set {5,6}, then
AUC = {1,2,3,4,5,6)

while ANC = ¢.

Now that the union and intersection have been defined for two sets, these
operations can be similarly defined for any finite number of sets. That is,
suppose that Aj, Ay, ..., A, are n sets. The union of A;, Ay, ..., A,, denoted
by Ul A; or Aj U AU ---U A,, is the set of all elements z such that z is
an element of some A;, where 1 < i < n. The intersection of Ay, As, ..., An,
denoted by N?_;A; or AN A2N-.-N Ay, is the set of all elements z such that
zeA;foralli, 1<i<n.

We say that a set I is an index set for a collection of sets A if for any
a € I, there exists aset Ay, € Aand A = {A, | @ € I'}. I can be any nonempty
set, finite or infinite.

The union of the sets A,, a € I, is defined to be the set {z | z € A, for
at least one o € I'} and is denoted by UgaerAas. The intersection of the sets
Ay, a € 1, is defined to be the set {z | z € A, for all @ € I} and is denoted
by maean.

Definition 1.1.6 Given two sets A and B, the relative complement of B
in A, denoted by the set difference A\B, is the set

A\B={z|zcA, butz ¢ B}.
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The following diagram describes the set difference of two sets.

Example 1.1.7 Let A ={1,2,3,4} and B = {3,4,5,6}. Then A\B = {1,2}.

We now define a concept which is a building block for all of mathematics,
namely, the concept of an ordered pair.

Definition 1.1.8 Let A and B be nonempty sets and z € A, y € B.

(i) The ordered pair (z,y) is defined to be the set {{z}, {z,y}}

(it) The Cartesian cross product (Cartesian product) of A aend B,
written A X B, is defined to be the set

AxB={(z,y) |z € Ay B}.

Let (x,y), (z,w) € A x B. We claim that (z,y) = (z,w) if and only if
z = z and y = w. First suppose that 2 = z and y = w. Then {{z}, {z,y}} =
{{z}, {z,w}} and so (z,y) = (2,w). Now suppose that (z,y) = (2, w). Then

Hz} {2,y = {{z} {2z, w}}.

Since {z} € {{z}, {z,y}}, it follows that {z} € {{2}, {2, w}}. This implies that
{z} = {2z} or {2} = {z,w}. If {z} = {z}, then we must have {z,y} = {z,w}.
From this, it follows that z = z and y = w. If {z} = {z,w}, then we must have
{z,y} = {z}. This implies that £ = z = w and z = y = 2. Thus, in this case,
x = y = z = w. This establishes our claim.

It now follows that if A has m elements and B has n elements, then 4 x B
has mn elements.

Example 1.1.9 Let A = {1,2,3} and B = {3,4}. Then
Ax B ={(1,3),(1,4),(2,3),(2,4),(3,3), (3,4)}.

For the set R of real numbers, the Cartesion product R X R is merely the
Fuclidean plane.

Definition 1.1.10 ‘For any set X, the power set of X, written P(X), is de-
fined to be the set {A | A is a subset of X}.
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Example 1.1.11 Let X = {1,2,3}. Then

P(X) = {#,{1},{2}, {3}, {1,2}, {1,3},{2,3},{1,2,3}}.
Here P(X) has 2° elements.

Remark 1.1.12 Let P and Q be statements. Throughout the tezt we will
encounter questions in which we will be asked to show that P if and only if
Q; that is, show that statement P is true if and only if statement Q 1is true.
In situations like this, we first assume that statement P is true and show that
staternent ) 1s true. Then we assume that statement Q is true and show that
statement P is true. The statement P if and only if Q is also equivalent to
the statement: if P, then Q, and if QQ, then P. For example, see Worked-Out
Ezercise 1, below.

1.1.1 Worked-Out Exercises
¢ Exercise 1 Prove for sets A and B that A C B if and only if AU B = B.

Solution: First suppose A C B. We now show that AU B = B. Let z be
any element of A U B. Then either x € A or x € B. This implies that z € B
since A C B. Thus, we find that every element of AU B is an element of B and
so AU B C B. Also, BC AU B by Theorem 1.1.4(¢). Hence, AU B = B.

Conversely, suppose AU B = B. Now by Theorem 1.1.4(i), A C AU B.
Since AU B = B, it now follows that A C B.

O Exercise 2 For a subset A of a set 5, let A" denote the subset S\A. A’ is
called the complement of A in S. Let A and B be subsets of S. Prove
that (AN B)Y = A’U B/, DeMorgan’s law.

Solution: First we show that (A N B)’ C A’ U B’. Then we show that
A'U B’ C (AN B)'. The result then follows by Theorem 1.1.1.

Let « be any element of (AN B). Now (ANB) = S\(ANB)andsoz & S
and z € AN B. Also, z ¢ AN B implies that eitherz ¢ Aorc ¢ B.Ifz € S
and r ¢ A, thenz € A, and if z € S and z ¢ B, then z € B’. Thus, either
r€A orze B, ie,zc AAUB' . Hence,  ANB) C A/UB.

Let us now show that A’U B’ C (AN B). Suppose z is any element of
A"UB’. Then either z € A’ or z € B’. Suppose z € A’, then z € S and z ¢ A.
Since ANB C Aand ¢ ¢ A, we must have z ¢ AN B. This implies that
r € (AN B). Similarly, we can show that if z € B/, then z ¢ AN B, ie,
z € (AN BY. Hence, A UB’ C (AN B)'. Consequently, (AN B) = A UB".

{ Exercise 3 Let A, B, and C be sets. Prove that
ANn(BuC)=(ANnBYU(AnCQO).
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Solution: As in the previous exercise, we first show that AN (BUC) C
(ANB)U(ANC) and then (AN B)U{ANC) C AN(BUC). The result then
follows by Theorem 1.1.1.

Let z be any element of AN (B UC). Then ¢z € A and x € BU C. Thus,
zt€eAandz € Borze C.Ifz e Aand z € B, then ¢ € AN B, and if
z€ Aand z € C, then x € ANC. Therefore, z € ANB or x € ANC. Hence,
t € (ANB)U(ANC). This shows that AN (BUC) C (ANB)YU(ANC).

Let us now show that (ANB)U(ANC)C AN (BUC). Suppose z is any
element of (ANB)U(ANC). Then z € ANB or z € ANC. Suppose = € AN B,
then z € Aand z € B. Since BC BUC,wehavez € BUC. Thus, z € A
and z € BUC and so ¢ € AN{BUC). Similarly, if z € A and « € C, then
z € AN(BUC). Hence, (AN B)U (ANC) € An (B UC). Consequently,
AN(BUC)=(ANB)U(ANCQC).

1.1.2 Exercises

1. Let A = {z,y,2} and B = {y,w}. Determine each of the following sets:
AUB, ANB, A\B, B\A, Ax B, and P(A).

2. Prove for sets A and B that A C B if and only if AN B = A.

3. Prove for sets A, B, and C that
(i) AUB=BUAand ANB=BNA,
i) AUB)UC=AU(BUC)and (ANB)NC=ANn(BnNC),
(iii) AU(BNC)=(AUuB)N(AUC),
(iv) AU(AN B) = A,
(v An(AUB) =A.

4. If a set S has 12 elements, how many elements does P(S) have? How
many of these are properly contained in S7

5. For subsets A and B of a set S, prove DeMorgan’s law:
(AUBY =A'nB.

6. The symmetric difference of two sets A and B is the set
AAB=(AUB)\(ANB).

(i) If A= {a,b,c} and B = {b,¢,d,e}, find A A B.
(ii) Show that A A B = (4\B) U (B\A).
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7. Let A and B be finite subsets of a set S. Show that
(i) if AN B = ¢, then |AU B] = |4| + |B],
(i) |4\B| = |4] - AN B,
(i) [AUB| = |A]+ |B| - |ANB]|.

8. In each of the following exercises, write the proof if the statement is true;
otherwise give a counterexample. The sets A, B, and C are subsets of a
set U.

(i) AN (B\C) =(AnBN\(ANCQC).

(ii) AA\(BUC) = (A\B)UC.

(iif) (A\B)' = (B\4)".

iv) Ax (BUC)=(Ax B)U(4Ax ().
(v AAC =B A C implies A = B.

1.2 Integers

Throughout abstract algebra, the set of integers provides a source of examples.
In fact, many algebraic abstractions come from the integers. An axiomatic
development of the integers is not given in this text. Instead, certain basic
properties of integers are taken for granted. For example, if n and m are
integers with n < m, then there exists a positive integer ¢ € Z such that
m = n + t. In this section, we review and prove some important properties of
the integers.

The proofs of many results of algebra depend on the following basic principle
of the integers.

Principle of Well-Ordering: Every nonempty subset of Z# has a smallest
(least) element, i.e., if ¢ # S C Z#, then there exists = € § such that
r<yforallyes.

Let S be a subset of Z#. Suppose that S has the following properties:
(i) ng € S, i.e., there exists an element ng € S.
(ii) Foralln > ng,n € Z¥ ifne€ S, then n+1€ S.
We show that the set of all integers greater than or equal to ng is a subset
of §, ie.,
{nEZ#|n2no}(_IS.

Let T’ denote the set {n € Z¥ | n > ng}. We wish to show that T C S. On
the contrary, suppose 7' € S. Then there exists a € T such that a ¢ S. Let T}
be the set of all elements of T" that are not in S, i.e.,, T} = T\S. Since a € T
and a ¢ S, we have a € T3. Thus, T} is a nonempty subset of Z#. Hence, by the
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principle of well-ordering, 77 has a smallest element m, say. Then m € T and
m ¢ S. Since m € T, m > ng. If m = ny, then m € §, a contradiction. Thus,
m > ng. This implies that m —1 > ngand so m—1 € T. Now m — 1 € T since
m is the smallest element of 77. Since m—1 € T and m — 1 ¢ T, we must have
m — 1€ 5. But then by (i), m = (m — 1) + 1 € S, which is a contradiction.
Hence, T C S.

Thus, from the principle of well-ordering, we deduce another important
property of integers. This property is known as the principle of mathematical
induction. We thus have the following theorem.

Theorem 1.2.1 (Principle of Mathematical Induction) LetS C Z%. Let
ng € S. Suppose S satisfies either of the following conditions.
(i) For alln >ng, n € Z¥, ifn€ S, thenn+ 1€ 8.
(1) For allm <n,n € Z#, if me S, thenn € §.
Then
(neZ¥ |n>n}CS M

We proved, above, Theorem 1.2.1, when § satisfies (i). We leave it for the
reader to prove Theorem 1.2.1 if S satisfies (ii).

We have seen the following mathematical statement in a college algebra or
in a calculus course.

_nnt+l)

1+2+4+---+mn
+2+---+n 5 >

We now show how this statement can be proved using the principle of
mathematical induction. Let S(n) denote the above mathematical statement,
ie.,

n(n + 1)

2 b
This statement will be true if the left-hand side of the statement is equal to
the right-hand side. Let

Sn): 1+2+---+n= n> 1.

S ={n € Z* | §(n) is true}.

That is, S is the set of all nonnegative integers n for which the statement S(n)
is true. We will show that S is the set of all positive integers. Now

_1-(141)

= 5 ,

ie., S(1) is true. Hence, 1 € S. Let n be an integer such that n > 1 and
suppose S{(n) is true, i.e., n € S. We now show that S(n + 1) is true. Now

1

(e )(n+2)

Sn+1): 1+24+---+n+(n+1) 5
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Consider the left-hand side.

M + (n+ 1) (since S{n) is true)
(n+1)(n+2)

2

1+2+-+n+(n+1)

Hence, the left-hand side is equal to the right-hand side and so S(n + 1) is
true. Thus, n + 1 € S. Hence, by the principle of mathematical induction,
S = {n € Z# | n > 1}. This proves our claim, which in turn shows that

_ n(n +1)

1+2+--.
+24+---+n 5

is true for all positive integers n.

Sometimes we use the word induction for the principle of mathematical in-
duction.

A proof by the principle of mathematical induction consists of three steps.

Step 1: Show that ng € S, i.e., the statement S(ngy) is true for some
noEEZ#ﬂ

Step 2: Write the induction hypothesis: n is an integer such that n > ng
and n € S, i.e., S(n) is true for some integer n such that n > ng (or k is an
integer such that ng < k < n and S(k) is true).

Step 3: Show that n+1 € §, i.e.,, S(n+1) is true.

Example 1.2.2 In this ezample, we show that 2n+1 < 2" for all n > 3.
Let S(n) be the statement:

S(n): 2n+1<2", n>3.

Since we want to show that S(n) is true for alln > 3, as the first step of our
induction, we must verify that S(3) is true. Letn =3. Now2n+1=2-3+1=7
and 2" = 23 = 8. Thus, forn =3, 2n+ 1 < 2™, This shows that S(3) is true.
Suppose that 2n +1 < 2* for some n 2 3, i.e., S(n) is true for some n > 3.
Consider S(n + 1),

S(n+1): 2(n+1)+1<2"L
Let us evaluate the left-hand side of S(n +1). We have

2n+1)+1 2n+2+1

(2n+1)+2

2" +2 since S(n) is true

2" + 2" (sincen > 3, 2 < 2™)
on+1

fi

HIAIA

Thus, S(n + 1) is true. Hence, by the principle of mathematical induction,
2n+ 1< 2% for alln > 3.
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The principle of mathematical induction is a very useful tool in mathemat-
ics. We will make use of this result throughout the text.

We now prove the following important properties of integers with the help
of the principle of well-ordering.

Theorem 1.2.3 (Division Algorithm) Let z, y € Z with y # 0. Then there
erist unique integers ¢ and r such thatz =qy+ 7, 0 <r < |y|.

Proof. Let us first assume y > 0. Then y > 1. Consider the set
S={z—uy|uvecZz—uy >0}

Since y > 1, we have z — (— |z|)y = =z + |z]y = 0 so that z — (— [z])y € S.
Thus, S is a nonempty set of nonnegative integers. Hence, by the principle
of well-ordering, S must have a smallest element, say, r. Since r € S, we have
r > 0 and r = z — gy for some ¢ € Z. Then ¢ = gy + r. We must show that
r < |y|. Suppose on the contrary that » > |y| = y. Then

z—(g+l)y=(—qy)—y=r—y>0

so that r — y € 5, a contradiction since r is the smallest nonnegative integer
in § and 7 —y < r. Hence, it must be the case that » < |y|. This proves the
theorem in case ¢ > 0.

Suppose now that y < 0. Then |y| > 0. Thus, there exist integers ¢/, r such
that z = ¢'ly| + 7, 0 < 7 < |y| by the above argument. Since y < 0, |y| = —y.
Hence, z = —¢'y+ 7. Let g = —q'. Thenz = qy+ 7, 0 < r < |y|, the desired
conclusion.

‘The uniqueness of ¢ and r remains to be shown. Suppose there are integers
q, r’ such that

c=qy+r=qy+r,
0<7<|y|,0<r <|y|l. Then

r—r=(q-q)y.
Thus,
Ir' —rl=lg—4lyl.

Now —Jy| < —r <0 and 0 < v’ < |y|. Therefore, if we add these inequalities,
we obtain

—lyl <r' —r<|yl,

or [’ —r| < |y|. Hence, we have

0<|g—4| <1
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Since ¢ — ¢’ is an integer, we must have 0 = [¢ — ¢'| . It now also follows that
|r — /| = 0. Thus, ¢—¢ =0and r —r' = 0 or ¢ = ¢’ and » = 7/. Consequently,
g and r are unique. @

In Theorem 1.2.3, the integer g is called the quotient of z and y on dividing
z by y and the integer r is called the remainder of = and y on dividing z by
Y.

The following corollary is a special case of Theorem 1.2.3.

Corollary 1.2.4 For any two integers x and y with y > 0, there exist unique
integers q and r such that x = qy +r, where 0 < r < y.

Proof. By Theorem 1.2.3, there exist unique integers ¢ and r such that
z =qy+r, where 0 <7 < |y|. Since y > 0, |y| = y. Hence, z = gy + 7, where
0<r<y.

Definition 1.2.5 Let z, y € Z with x # 0. Then x is said to divide y or x 1s
a divisor (or factor) of y, written x|y, provided there exists ¢ € Z such that
y = qz. When z does not divide y, we sometimes write x [ y.

Let z,y, z be integers with  # (0. Suppose z|y and z|z. Then for all integers
s and t, z|(sy+tz). We ask the reader to prove this fact in Exercise 5(iii) (page
19).

Definition 1.2.6 Let z, y € Z. A nonzero integer c is called a common
divisor of z and y if c|z and cly.

Definition 1.2.7 A nonzero integer d is called a greatest common divisor
(ged) of the integers x and y if

(i) d|z and d|y,

(i) for all c € Z if c|z and c|y, then c|d.

Let d and d’ be two greatest common divisors of integers x and y. Then d|d’
and d'|d. Hence, there exist integers « and v such that d = du and d = d'v.
Therefore, d = duwv, which implies that uv = 1 since d # 0. Thus, either
u=v=1o0ru=v= -1 Hence, d = =d. It now follows that two different
ged’s of z and y differ in their sign. Of the two ged’s of z and y, the positive
one is denoted by gcd(z,y). For example, 2 and —2 are the greatest common
divisors of 4 and 6. Hence, 2 = gcd(4, 6). |

In the next theorem, we show that the ged always exists for any two nonzero
integers.

Theorem 1.2.8 Let z, y € Z with either x #0 or y # 0. Then x and y have
a positive greatest common divisor d. Moreover, there ezist elements s, t € Z
such that d = sz + ty.
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Proof. Let
S ={mz+ny|m,n e Z mr+ny >0}

Suppose & # 0. Then

o] = T fz>0
o —z ifz <0
1z + Oy ifz>0

(—L)z + Oy if x < 0.

Hence, |z| € S and so S # ¢. By the well-ordering principle, S contains a
smallest positive integer, say, d. We now show that d is the greatest common
divisor of r and v.

Since d € S, there exist s, t € Z such that d = sz + ty. First we show that
d|z and d|y. Since d # 0, by the division algorithm (Theorem 1.2.3), there exist
integers ¢ and r such that

z=dqg+r,

where 0 < r < |d| = d. Thus,

r = x—dg
x— (sz+1ty)g  (substituting for d)
= (1—gs)z+(—gt)y.

Suppose r > 0. Then 7 € S, which is a contradiction since d is the smallest
element of § and r < d. Thus, » = 0. This implies that z = dg and so d|z.
Similarly, d|y. Hence, d satisfies (i) of Definition 1.2.7. Suppose c|z and c|y for
some integer ¢. Then c|(sz + ty) by Exercise 5(iii) (page 19), i.e., ¢|d. Thus, d
satisfies (ii) of Definition 1.2.7. Consequently, d = ged(z,y). B

Let z and y be nonzero integers. By Theorem 1.2.8, ged(z,y) exists and
if d = ged(z,y), then there exist integers s and ¢ such that d = sz + ty. The
integers s and ¢ in the representation d = sz + ty are not unique. For example,
let z = 45 and y = 126. Then ged(z,y) = 9, and 9 = 3-45+ (—1) - 126 =
129 - 45 + (—46) - 126.

The proof of Theorem 1.2.8 does not indicate how to find ged(z, y) or the
integers s, ¢t. In the following, we indicate how these integers can be found.

Let x, y € Z with y # 0. By the division algorithm, there exist ¢;,7, € Z
such that
T=qy+r, 0<r <yl

If r1 # 0, then by the division algorithm, there exist ¢, 72 € Z such that

Y = qam + T2, 0<r<n.
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If ro # 0, then again by the division algorithm, there exist g3, r3 € Z such
that

71 = q3T2 + T3, 0 <ryg <re.

Since r1 > rg > r3 > 0, we must in a finite number of steps find integers
Gn, Gn+1, and 7, > 0 such that

Th=2 = gnTn-1-+Tn, 0<rp, <rp-1
Tn-1, = Qn+17'n+0-

We assert that r, (the last nonzero remainder) is the greatest common
divisor of z and y. Now 7,,)r,—1. Since r|rn, Tn|Tn_1, and rn_3 = guTrn_1 + Tn,
we have r,|r,_» by Exercise 5(iii) (page 19). Working our way back in this
fashion, we have r,|r1 and rn|re. Thus, r,|y since y = gory + 72. Since 7,)y,
Tn|r1, and & = g1y + 1, we have r,|x. Hence, r,, is a common divisor of z and
y- Now if ¢ is any common divisor of z and y, then we see that ¢|r;. Since cly
and c|ry, ¢Jry. Continuing, we finally obtain c|r,. Thus, r, = ged(z, ).

We now find s, t € Z such that ged(z, y) = sz + ty as follows:

Tn = Tp—2+Tn-1(—¢n)
Tn-2 + [‘rn—S + 'f'n—2(_q'n—1)](_q?1)
= 7'7:,--3(—‘-}7:) + Tn-—?(l + qn—-l‘?n) (simplifying).

We now substitute rn.q4 + 7n-3(—¢n-2) for rn_o. We repeat this “back” substi-
tution process until we reach r, = sz + ty for some integers s and t.

We illustrate the above procedure for finding the ged and integers s and ¢
with the help of the following example.

Example 1.2.9 Consider the integers 45 and 126. Now
126 = 2-45+ 36

45 = 1-36+9
36 = 4.9+0
Thus, 9 = ged(45,126). Also,
9 = 45-1-36

45 —1 (126 ~ 2 - 45]
= 3-45+(-1)-126.

Here s =3 and t = —1.
We now define prime integers and study their basic properties.

Definition 1.2.10 (i) An integer p > 1 is called prime if the only divisors of
p are £1 and tp.
(%) Two integers ¢ and y are called relatively prime if ged(z,y) = 1.
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The following theorem gives a necessary and sufficient condition for two
nonzero integers to be relatively prime.

Theorem 1.2.11 Let z and y be nonzero integers. Then x and y are relatively
prime if and only if there exist s,t € Z such that 1 = sz + ty.

Proof. Let z and y be relatively prime. Then ged(z,y) = 1. By Theorem
1.2.8, there exist integers s and ¢ such that 1 = sx + ty.

Conversely, suppose 1 = sz + ty for some pair of integers s, t. Let d =
ged(z, ). Then d|z and d|y and so d|(sz + ty) (by Exercise 5(iii) (page 19)) or
d|1. Since d is a positive integer and d|1, d = 1. Thus, ged{z,y) = 1 and so z
and y are relatively prime. B

Theorem 1.2.12 Let z, y, z € Z with ¢ # 0. If z|yz and z, y are relatively
prime, then z|z.

Proof. Since = and y are relatively prime, there exist s5,¢ € Z such that
1 = sz+ty by Theorem 1.2.11. Thus, z = szz+tyz. Now z|z and by hypothesis
x|yz. Thus, z|(szz + tyz) by Exercise 5(ii1) (page 19) and so z|z. B

Corollary 1.2.13 Let z,y,p € Z with p o prime. If play, then either p|z or
Ply.

Proof. If p|z, then we have the desired result. Suppose that p does not
divide z. Since the only positive divisors of p are 1 and p, we must have that
p and z are relatively prime. Thus, ply by Theorem 1.2.12. R

The following corollary is a generalization of Corollary 1.2.13.
Corollary 1.2.14 Let x1,22,...,%n,p € Z with p a prime. If
plzizy - Zn,
then p|x; for some i, 1 <i< n.
Proof. The proof follows by Corollary 1.2.13 and induction. B
Consider the integer 24. We can write 24 = 23 . 3. That is, 24 can be
written as product of prime powers. Similarly, 49500 = 22.32.53.11. In the

next theorem, called the fundamental theorem of arithmetic, we prove that any
positive integer can be written as product of prime powers.
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Theorem 1.2.15 (Fundamental Theorem of Arithmetic) Any integer n
> 1 has o unique factorization (up to order)

n=prey By, (1.1)
where p1,pg, ..., ps are distinct primes and ey, es, ..., €5 are positive integers.
Proof.  First we show that any integer n > 1 has a factorization like Eq.

(1.1) and then we show the uniqueness of the factorization.

We show the existence of the factorization by induction. If n = 2, then
clearly » has the above factorization as a product of prime powers. Make the
induction hypothesis that any integer k such that 2 < k < n has a factorization
like Eq. (1.1). If n is prime, then n already has the above factorization as a
product of prime powers, namely = itself. If n is not prime, then n = zy for
integers z,y, with 1 < z < n and 1 < y < n. By the induction hypothesis,

there exist primes ¢, g2,..., gk, 4}, 95, - - -, q; and positive integers ey, ey, . ..,
e, €], €5, ..., €, such that ¢1,¢0,..., g are distinct primes, ¢}, ¢5, ..., ¢, are
distinct primes and

— €] &2 €k

= 4149y g

re} 1el, re
= 4y 92"
Thus,
€1 €2 er €1 fes ey

N=4q179" -4, 91 927 -G

l.e., 7 can be factored as a product of prime powers. If g; = q; for some 7 and

. Y e;+e’
§, then we replace qf‘q;’ by g, ’.It now follows that n = p*p5? - - - p%*, where
P1,D2,---, Ps are distinct primes and e, ey, ..., es are positive integers. Hence,

by induction, any integer n > 1 has a factorization like (1.1).

We now prove the uniqueness property by induction also. If n = 2, then
clearly » has a unique factorization as a product of prime powers. Suppose the
uniqueness property holds for all integers k& such that 2 < k < n. Let

n=p'py P =a'ey’ g (1.2)

be two factorizations of n into a product of prime powers. Suppose = is prime.
Then in Eq. (1.2), we must have s =t = 1 and e¢; = 1 = ¢, since the only
positive divisors of » are 1 and n itself. This implies that n = p; = ¢ and so
the factorization is unique.

Suppose n is not a prime. Now p1|n and

L e1—1,_es

— =P P2

- pes
m *

is an integer. If s = 1, then n = p}' and since n is not a prime, we have e; > 1.
Hence, 2> = p;i Tt > 2.1f s > 1, then = PP pg2 - - pf > 2. Thus, in either
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case, pﬂl is an integer > 2. Now pi|n implies that p1]|gT*q5® - - ¢f* and so by

Corollary 1.2.14, p;|¢f* for some 3. By reordering the ¢; if necessary, we can
assume that ¢ = 1. Thus, p;|q;* and so by Corollary 1.2.14, p1lq;. Since p; and
g1 are primes, p; = ¢;. Thus,

n -1 s ~1
p—l=p§‘ Py P =P g (1.3)

Now e;—1 = 0 if and only if ¢; —1 = 0. For suppose e;—1 = 0 and ¢; —1 > 0.
Then - = p3? -+ -p* implies that p; f > and > = pP g5 - - gf* implies that
pﬂf’;, which is of course impossible. We can get a similar contradiction if we
assume e; — 1 >0 and ¢; — 1 =0.

Now 2 is an integer and 2 < 2> < n. Hence, by the induction hypothesis,
we obtain from Eq. (1.3) that s = ¢, and py = q1,..., ps = ¢s (without
worrying about the order), and e; — 1 =¢; — 1, e3 = ¢a,..., €; = ¢;. Hence,
by induction, we have the desired uniqueness property. B

Corollary 1.2.16 Anyinteger n < —1 has o unique factorization {(up to order)
n=(-1)pf'p3* - P,

where p1, D2, ..., Ps are distinct primes and ey, es,..., e, are positive integers.

Proof. Since n < —1, —n > 1. Hence, by Theorem 1.2.15, —n has a unique
factorization (up to order)
—1n = p:ellpg2 - .p§3,

where py,pa,...,ps are distinct primes and e, es,...,es are positive integers.
Thus,
n=(-Lpips B

where pi,...,ps are distinct primes and e, ..., e; are positive integers. Bl

Theorem 1.2.15 says that any positive integer greater than 1 can be written
as a product of prime powers. Now we pose the obvious question: How many

prime numbers are there? This is answered by the following theorem due to
Euclid.

Theorem 1.2.17 (Euclid) There are an infinite number of primes.
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Proof. Let p1,p3,.-.,pn be a finite number of distinct primes. Set z =
P1p2 - Pn + 1. Since p; does not divide 1, p; does not divide z,2=1,2,...,n.
By the fundamental theorem of arithmetic, it follows that there is some prime
p such that p|z. Thus, p is distinct from py,p2,...,p, so that we have n + 1
distinct primes. That is, for any finite set of primes we can always find one
more. Thus, there must be an infinite number of primes. B

We close this section with the following definition. There are a few places
in the text where we will be making use of it.

Definition 1.2.18 Let n be a positive integer. Let ¢p(n) denote the number of
positive integers m such that m < n and ged(m,n) =1, i.e.,

p(n) ={{m e N | m <n and ged(m,n) = 1}|.
@(n) is called the Fuler ¢-function.

Clearly ¢(2) =1, ¢(3) = 2, ¢{(4) = 2. Since 1, 5, 7, 11 are the only positive
integers less than 12 and relatively prime to 12, ¢(12) = 4.

Let {a1,...,an} € Z. We use the notation > 7 ; a; to denote the sum of
Q1.+, 0n, le.,

n
Ea£=a1+---+an.
i=1

If S is any finite subset of Z, then },cga denotes the sum of all elements of
S. For example, if S = {2,4,7}, then > .ga=2+44+7=13.

1.2.1 Worked-Out Exercises

{ Exercise 1 By the principle of mathematical induction, prove that

327+l 4 (—1)"2 = 0(mod 5)

for all positive integers n. (For integers a and b, a = b(mod 5) means 5
divides a — b.)

Solution: Let S(n) be the statement
Stny: 3 L (~1)"2=0(moed 5), n>1.

We wish to show that S{n) is true for all positive integers. We first must verify
that S(1) is true as the first step of our induction. Let n = 1. Then

320+l 4 (—1)"2 = 3% 4 (—1)2 =27 — 2 =25 = 0(mod 5).
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Thus, S(1) is true. Now suppose that S(n) is true for some positive integer n,
ie., 31 4 (~1)"2 = 0(mod 5) for some integer n > 1. We now show that

S(n+1):  3H+U+L 4 (_1)»+H12 = O(mod 5)

18 true. Now

32(n+1)+1 + (_1)n+12 — 32n+l 32 _ (—-1)"2
0(327+! 4 (—1)"2) — (—1)"18 — (=1)"2
9(3%*+! + (-1)"2) — (-1)™20.

Il

Since 32"t 4(—1)"2 = 0(mod 5) and 20 = 0(mod 5), it follows that 3%»+1+14
(~1)**12 = 0(mod 5). This shows that S(n+1) is true. Hence, by the principle
of mathematical induction, 327! 4 (—1)"2 = 0(mod 5) for all positive integers
n.

¢ Exercise 2 Let a and b be integers such that ged(a,4) = 2 and ged(b,4) =
2. Prove that ged{a + b,4) = 4.

Solution: Since ged(e,4) = 2, 2|a, but 4 does not divide a. Therefore,
a = 2z for some integer z such that ged(2,z) = 1. Similarly, b = 2y for some
integer y such that ged(2,%) = 1. Thus, £ and y are both odd integers. This
implies that z 4+ ¥ is an even integer and so z + y = 2n for some integer n. Now
a+b=2(x+y) = 4n. Hence, gcd{a + b,4) = ged(4n,4) = 4.

¢ Exercise 3 Let a,b, and ¢ be integers such that ged(a,c) = ged(b,c) = 1.
Prove that ged(ab,c) = 1.

Solution: If ¢ = 0, then ged(a,0) = gcd(b,0) = 1 implies that a = +1 and
b = 1. Thus, ged(ab,c) = ged(£1,0) = 1. Suppose now ¢ # 0. By Theorem
1.2.8, ged(ab, c) exists. Let d = ged(ab, ¢). Also, by Theorem 1.2.8, there exist
integers x1, 1, T2, Y2 such that 1 = az; +cy;, 1 = bzg+cyyp. Thus, (az)(bxe) =
(I—cy1)(1—cyo) = 1—cy1 —cyz+cyrcye. Hence, 1 = (ab)zizo+c(yy +y2—cy1y2).
Thus, any common divisor of ab and c is also a divisor of 1. Hence, d|1. Since

d>0,d=1.

Exercise 4 Let a,b € Z with either a # 0 or b # 0. Prove that for any integer
C)
ged(a, b) = ged(a, —b) = ged(a, b+ ac).

Solution: Suppose a # 0. Then ged(a,b), ged(a, ~b) and ged(a, b + ac)
exist. Let d = gecd(a,b). Then there exist integers ¢ and y such that d =
az + by = azx + (—b)(—y). Thus, any common divisor of @ and —b is also a
divisor of d. Hence, gcd(a, —b)|d. Similarly, d| ged{a, —b). Since ged(a,b) and
ged(a, —b) are positive, ged(a, b) = ged(a, —b).
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Let e = gcd(a,b + ac). Then there exist integers p and g such that e =
ap + (b+ ac)g = ap + bg + acqg = a(p + cg) + bg. Since dla and dib, d|e. Also,
d=azr+by =az+ (b+ac)y — acy = a{z — ¢cy) + (b + ac)y. Since e|a and

elb + ac, e|d. Hence, e = d.
¢ Exercise 5 Find integers 2 and y such that 512z + 320y = 64.

Solution:
512 = 320-1+4+192

320 1921+ 128
192 = 128-1+64
128 = 64-2+0.

Thus, 64 = 192 — 128 = 192 ~ (320 — 192) = 192-2+320- (~1) = (512 — 320) -

2+320-(~1)=512-2+320- (—3). Hence, z =2 and y = —3.

1.2.2 Exercises

1. Determine ged(90,252). Find integers s and ¢ such that

ged(90,252) = 5- 90 + ¢ - 252.

2. Find integers s and ¢ such that ged(963,652) = s - 963 + ¢ - 652.
3. Find integers s and ¢ such that 657s + 963t = 9.

4. Use the principle of mathematical induction to prove the following.

(1) 12422482 ... 2 = 2oxlCHD 1y g 9
(ii) 7* — 1 is divisible by 6 for all n € Z#.

(iii) 6 - 7* — 2 - 3™ is divisible by 4 for all n € Z¥.

(iv) 52" 4+ 3 is divisible by 4 for all n € Z#.

(v) n < 2" for all n € Z#.

(vi) 2" > n?, n=4,5,....

(vi)n! 23", n="1,8,....

5. Let a,b, and ¢ be three integers such that a # 0. Prove the following:

(i) If a|b, then albc for all ¢ € Z.

(i) If b # 0, a|b and b|c, then alc.

(iii) If a|b and a|c, then a|(bz + cy) for all z,y € Z.

(iv) If a,b are positive integers such that a|b, then a < b.
(v) If b# 0, al|b, and ble, then a = £b.
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Let a,b, and c be integers. Prove that if ac # 0 and aclbc, then alb.

Let a,b, ¢, and d be integers such that a % 0 and b # 0. Prove that if afc
and b|d, then ab|cd.

Let p be a prime integer, m,n integers and 7 a positive integer. Suppose
p"|mn and p fm. Show that p”|n.

Let a and b be integers and gecd(a,b) = d. If @ = dm and b = dn, prove
that ged(m,n) = 1.

Let a,b, and c be positive integers. Prove that ged(ab, ac) = aged(b, c).

Prove that if gcd(z,y) = ged(z, 2} = 1, then ged(x,yz) = 1forallz,y,z €
N.

Prove that if ged(z,y) = 1, z|2, and y|z, then zy|z for all z,y,z € N.
Let a,b € N. Show that gcd(a,bd) = ged(a,a + b).

Prove that ged(a,b) = 1 for any two positive consecutive integers a and
b.

Let = and y be nonzero integers. The least common multiple of z and
y, written lcm(x, y), is defined to be a positive integer m such that

(i) z|m and y|m and

(ii) if z|c and y|c, then m|c.

Prove that lem(z,y) exists and is unique.
Let x and y be nonzero integers. Prove that lem(z,y) - ged(z, y) = |zy|.

Let z and y be nonzero integers. Show that lem(z,y) = |zy| if and only
if ged(z,y) = 1.

Show that there are infinitely many prime integers of the form 6n —'1,
n>1.

Let S be a set with n elements, n > 1. Show by mathematical induction
that |P(S)| = 2.

Determine whether the following assertions are true or false. If true, then
prove it, and if false give a counterexample.
(i) If p is a prime such that p|a®, then p|a, where a is an integer.

(i) If p is a prime such that p|(a® + b%) and p|a, then p|b, where a and b
are integers.
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(iii) For any integer a, gcd(a,ea +3) =1 or 3.
(iv) If ged(a,6) = 3 and ged(b,6) = 3, then ged{e + b, 6) = 6, where a
and b are integers.

(v) If ged(b,c) = 1 and alb, then ged(a,c¢) = 1.

1.3 Relations

Some describe or define mathematics as the study of relations. Since a relation
is a set of ordered pairs, we get our first glimpse of the fundamental importance
of the concept of an ordered pair.

Definition 1.3.1 A binary relation or simply a relation R from a set A
into a set B is a subset of A x B.

Let R be a relation from a set A into a set B. If (z,y) € R, we write TRy
or R(x) = y. If xRy, then sometimes we say that z is related to y (or y is in
relation with r) with respect to R or simply z is related to y. If A = B, then
we speak of a binary relation on A.

Example 1.3.2 Let A denote the names of all states in the USA and B = Z.
With each state a in A associate an integer n which denotes the number of
people in that state in the year 1996. Then R = {(a,n) | a € A and n is the
number of people in state a in 1996} is a subset of A x Z. Thus, R defines a
relation from A into Z.

Example 1.3.3 Consider the set of integers Z. Let R be the set of all ordered
pairs (m,n) of integers such that m < n, i.e.,

R={(m,n) €ZXZ | m <n}.
Then R is o binary relation on 2.

Let R be a relation from a set A into a set B. By looking at the elements
of R, we can find out which elements of A are related to elements of B with
respect to R. The elements of A that are related to elements of B form a subset
of A, called the domain of R, and the elements of B that are in relation with
elements of A form a subset of B, called the range of R. More formally, we
have the following definition.

Definition 1.3.4 Let R be a relation from a set A into a set B. Then the
domain of R, denoted by D(R), is defined to be the set

{z | £ € A and there exzists y € B such that (z,y) € R}.
The range or image of R, denoted by I(R), s defined to be the set
{y | y € B and there exists ¢ € A such that (x,y) € R}.
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Example 1.3.5 Let A = {4,5,7,8,9} and B = {16,18,20,22}. Define R C
Ax B by
R = {(4,16), (4, 20), (5,20}, (8,16}, (9,18)}.

Then R is a relation from A into B. Here (a,b) € R if and only if a
divides b, where a € A and b € B. Note thot for the domain of R, we have
D(R) = {4,5,8,9} and for the range of R, we have T(R) = {16, 18,20}.

Example 1.8.6 Let S = {(z,y) | z,y € R, 22 + y* = 1,5 > 0}. Then S is.a
binary relation on R. S is the set of points in the Fuclidean plane constituting
the semicircle lying above the z-azis with center (0,0) and radius 1.

Definition 1.3.7 Let R be a binary relation on a set A. Then R is called
(i) reflexive if for all x € A, zRx,
(i) symmetric if for oll z,y € A, zRy implies yRz,
(iti) transitive if for all z,y,z € A, xRy and yRz imply zRz.

Definition 1.3.8 A binary relotion E on a set A is called an equivalence
relation on A if E is reflexive, symmetric, and transitive.

The important concept of an equivalence relation is due to Gauss. We will
use this concept repeatedly throughout the text.

Example 1.3.9 Let A = {1,2,3,4,5,6} and E = {(1,1), (2,2), (3,3), (4,4),
(5,5), (6,6), (2,3), (3,2)}. Then E is an equivalence relation on A.

Example 1.3.10 (i) Let L denote the set of all straight lines in the Euclidean
plane and E be the relation on L defined by for all ly,lo € L, (I1,10) € E if and
only if ly and ly are parallel. Then E is an equivalence relation on L.

(i1) Let L be defined as in (i) and P be the relation defined on L by for all
l,lo € L, (I1,13) € P if and only iflyand ly are perpendicular. Let ! be a line in
L. Since l cannot be perpendicular to itself, (I,1) ¢ P. Hence, P is not reflevive
and so P is not an equivalence relation on L. Also, P is not transitive.

Example 1.3.11 Let n be a fized positive integer in Z. Define the relation =«
on Z by for all z,y € Z, x =, y if and only if n|(z — y), t.e., T —y = nk for
some k € Z. We now show that =, is an equivalence relation on Z.

(i) For allz € Z, z — z = 0 = On. Hence, for allz € Z, x =, z. Thus, =,
18 reflezive.

(ii) Let z,y € Z. Suppose v =, y. Then there exists ¢ € Z such that
gn =z —y. Thus, (—q)n =y — = and so n|(y — z), i.e., y =, . Hence, =, 1s
symmetric.

(iii) Let z,y,z € Z. Suppose © =, y and y =, z. Then there exist q, r € Z
suchthatqn =z —y andm =y —z. Thus, (q+r)n=2—2z andg+7r € Z.
This tmplies that © =, z. Hence, =, is transitive.

Conseguently, =,, is an equivalence relation on Z.
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The equivalence relation, =,, as defined in Example 1.3.11 is called congru-
ence modulo n. (Another commonly used notation for z =, y is ¢ = y(mod

n).)

Definition 1.3.12 Let E be an equivalence relation on a set A. For all x € A,
let [z] denote the set
[z] ={y € A| yEz}.

The set [z] is called the equivalence class (with respect to E) determined
by z.

In the following theorem, we prove some basic properties of equivalence
classes.

Theorem 1.3.13 Let E be an equivalence relation on the set A. Then

(i) for all z € A, [z] # ¢,

(i) if y € [z], then [z] = [y], where z,y € A,

(iii) for all z,y € A, either [z] = [y] or [z] N [y] = ¢,

(tv) A = Upecalz], i.e., A 13 the union of all equivalence classes with respect
to F.

Proof. (i) Let z € A. Since E is reflexive, zEz. Hence, z € [z] and so
(2] # 6

(i) Let y € [z]. Then yEz and by the symmetric property of E, zEy. In
order to show that [z] = [y], we will show that {z] C [y] and [y] C [z]. The
result then will follow by Theorem 1.1.1. Let u € [y]. Then uFy. Since uEy and
yEz, the transitivity of E implies that uEz. Hence, u € [z]. Thus, [y] C [z].
Now let w € [z]. Then uEz. Since uEz and zEy, uEy by transitivity and so
u € [y]. Hence, [z] C [y]. Consequently, [z] = [y].

(iii) Let z,y € A. Suppose [z] N [y] # ¢. Then there exists u € [z] N [y].
Thus, u € [z] and u € [y], i.e., wEz and uEy. Since F is symmetric and uFEy,
we have yEu. Now yFu and uEz and so by the transitivity of E, yEz. This

* implies that y € [z]. Hence, by (ii), [y] = lz].

(iv) Let ¢ € A. Then z € [2] C Uzealz]. Thus, A C Uzecalz]. Also,

Ugealz] C A. Hence, A = Uzcq(z]. B

One of the main objectives of this section is to study the relationship be-
tween an equivalence relation and a partition of a set. We now focus our
attention to partitions. We begin with the following definition.

Definition 1.3.14 Let A be a set and P be a collection of nonempty subsets of
A. Then P is colled a partition of A if the following properties are satisfied:
(i) for oll B, C € P, either B=C or BNC=¢.
(i1) A =UpepB.
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In other words, if P is a partition of A, then (i) B C A for all B € P, i.e.,
every element of P is a subset of 4, (ii) distinct elements of P are either equal
or disjoint, and (iii) the union of the members of P is A.

Example 1.3.15 (i) Let A = {1,2,3,4,5,6}. Let A; = {1}, 42 = {2,4,6},
and Az = {3,5} Now A = AjUAUA3, AyNAy = ¢, A1 N Az = ¢, and
As N As = ¢. Hence, P = {A1, A2, A3} is a partition of A.

(i1) Consider Z. Let A be the set of all even integers and B be the set of all
odd integers. Then ANB = ¢ and AU B = Z. Thus, {A, B} is a partition of
Z.

The following theorem is immediate from Theorem 1.3.13.

Theorem 1.3.16 Let F be an equivalence relation on the set A. Then
P={[z] | v € A}
is a partition of A. B

Example 1.3.17 Consider the equivalence relation =, on Z as defined in Fx-
ample 1.3.11. Let Z,, = {[z] | = € Z}. By Theorem 1.3.16, Z, is a partition of
Z. Suppose n = 6. We claim that

Zs = {[0]: [1]1 [219 [3]? [4]: [5]}

and
] ={0+4,£6+4,£12+4,...} ={6g+1i | g€ Z} for alli € Z.

Let 0 < n < m < 6. Suppose [n] = [m]. Then m € [n] and so 6|(m — n).
This is a contradiction since 0 < m —n < 6. Hence, the equivalence classes
[0], [1], [2], [3], [4], [5] are distinct. We now show that these are the only distinct
equivalence classes.

Let k be any integer. By the division algorithm, k = 6g+r for some integers
q and r such that 0 < r < 6. Thus, k—r = 6q and so 6|(k—r). This implies that
k =¢ r and so [k] = [r]. Since 0 < r < 6 we have [r] € {[0],[1],(2],[3], [4], [5]}
and so [k] € {[0], [1], 2], [3], [4], [5]}. This proves our first claim.

Leti € Z. Then z € [{] if and only if 6{(x — 1) if and only if 6g=x — 1 for
some q € Z if and only if x = 6g + ¢ for some q € Z. This proves our second
claim. It now follows that for all i = 0,1,...,5, [i] = [6¢ + 4] for all ¢ € Z.
Hence,

fori=0, [0 =[6] = [12] = - = [~6] = [~12] = - ;
fori=1, [1] =7 = 18] = = [-8] = [~11] = - ;
fori=2, 2= (8] = (4] = = [~4] = [~10] = - ;
fori=3, [3)=(0] = 18] =--- = [-3] = [-9] = - -}
fori=4, [4 = [10] = [16] = - = [~2] = [-8] = - ;
fori=5, [8)=[11]=[17=-- = [-1]=[-7] =
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By Theorem 1.3.16, given an equivalence relation F on a set A, the set of
all equivalence classes forms a partition of A. We now prove that corresponding
to any partition, we can associate an equivalence relation.

Theorem 1.3.18 Let P be a partition of the set A. Define a relation E on A
by for all x,y € A, zEy if there ezists B € P such that z,y € B. Then E is an
equivalence relation on A and the equivalence classes are precisely the elements

of P.

Proof. Note that if two elements z and y of A are related, i.e., zFy, then
z and y must belong to the same member of P. Also, if B € P, then any two
elements of B are related, i.e., zEy for all z,y € B. We now prove the result.

Since P is a partition of A, A = UgepB. First we show that F is reflexive.
Let = be any element of A. Then there exists B € P such that z € B.
Since ¢,z € B, we have zEz. Hence, E is reflexive. We now show that E is
symmetric. Let x&y. Then z,y € B for some B € P. Thus, y, z € B and
so yEx. Hence, E is symmetric. We now establish the transitivity of E. Let
x,y,z € A. Suppose xEy and yEz. Then z, ¥y € B and y,z € C for some B,
C eP.Sincey € BNC, BNC # ¢. Also, since P is a partition and BNC # ¢,
we have B = (' so that z, z € B. Hence, zFz. This shows that E is transitive.
Consequently, F is an equivalence relation.

We now show that the equivalence classes determined by E are precisely
the elements of P. Let ¢ € A. Consider the equivalence class [z]. Since A =
UpgepB, there exists B € P such that x € B. We claim that [z] = B. Let
v € [z]. Then uEz and so u € B since z € B. Thus, [z] C B. Also, since
T € B, we have yEx for all y € B and so y € [z] for all y € B. This implies
that B C [z]. Hence, [z] = B. Finally, note that if C € P, then C = [u] for all
u € C. Thus, the equivalence classes are precisely the elements of P. B

The relation E in Theorem 1.3.18 is called the equivalence relation on
A induced by the partition P.

New relations can be constructed from existing relations. For example,
given relations R and S from a set A into a set B, we can form relations RN S,
RUS, R\S, (A x B)\R in a natural way. In all these relations, the domain and
range of the relations under consideration are subsets of A and B, respectively.
Now given a relation R from a set A into a set B and a relation $ from B
into a set C, there is a relation from A into C that arises in a natural way as
follows: Let us denote the new relation by T'. Suppose (a,b) € R and (b,c) € S.
Then we make (a,c) € T. Every element of T is constructed in this way. That
is, (a,c) € T for some a € A and ¢ € C if and only if there exists b € B such
that (a,b) € R and (b,c) € S. This relation T is called the composition of R
and S and is denoted by S o R. Note that to form the composition of R and S,
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we must have the domain of S and the range of R to be subsets of the same
set. More formally we have the following definition.

Definition 1.3.19 Let R be e relation from a set A into a set B and S be a
relation from B into a set C. The composition of R and S, denoted by So R,
s the relation from A into C defined by

z(S o R)y if there exists z € B such that zRz and zSy
forallz € A,y e C.

Let R be a relation on a set A. Recursively, we define a relation R"*, n € N,
as follows:

R = R
R* = RoR"lifn> 1

Definition 1.3.20 Let R be a relation from a set A into a set B. The inverse
of R, denoted by R™!, is the relation from B into A defined by

Ry if yRz
forallz € B,y € A.

The following theorem gives a necessary and sufficient condition for a binary
relation to be an equivalence relation.

Theorem 1.3.21 Let R be a relation on a set A. Then R is an equivaelence
relation on A if and only if

(i) A C R, where A = {(z,z) | © € A},

(ii) R= R, and

(#i) Ro R C R.

Proof. Suppose R is an equivalence relation. Let (z,z) € A, where z € A.
Since R is reflexive, (x,z) € R. Hence, A C R, i.e., (i) holds. Let (z,y) € R.
Since R is symmetric, (y, z) € R. Thus, by the definition of R71, (x,y) € R
Hence, R € R'. On the other hand, let (z,3) € R7!. Then (y,z) € R.
Therefore, by the symmetric property, (z,y) € R. Hence, R~ C R. Thus,
R = Rl ie., (ii) holds. We now prove (iii). Let (z,y) € R o R. Then
there exists z € A such that (z,2) € R and (2,y) € R. Since R is transitive,
(z,y) € R. Thus, Ro R C R, i.e., (iii) holds.

Conversely, suppose that (i), (i), and (iii) hold for R. For all z € A, (z,z) €
A C R. Thus, R is reflexive. Next, we show that R is symmetric. Let (z,y) €
R. Then by (ii), (z,y) € R~'. This implies that {y,z) € R. Hence, R is
symmetric. For the transitivity of R, let (z,z) € R and (z,%) € R. Then
(z,y) € Ro R by the definition of composition of relations. Since Ro R C R,
(z,y) € R. Hence, R is transitive. Consequently, R is an equivalence relation. B
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1.3.1 Worked-Out Exercises

¢ Exercise 1 In Z;q, which of the following equivalence classes are equal: [2],
[—5]: [5]: [_8]: [12]: [15]7 [_3]1 [7]? [22]?

Solution: We note that [2] = [2+10] = [12], [-8] = [-8+10] = [2], [12] =
[12+10] = [22], [-5] = [-5+10] = [5] = [5+10] = [15] and [—3] = [-3+10] =
[7]. Also, [2] # [5], [2] # [7] and [5] # [7]. Hence, it now follows that [2] = [12] =
8] = [22], (5] = (5] = [15] and [-3] = [7].

Exercise 2 Let R be a reflexive and transitive relation on a set S. Prove that
RN R~! is an equivalence relation.

Solution: Since (z,z) € Rforallz € §, (z,z) € R forall z € §.
Thus, (z,z) € RN R for all z € S. Hence, RN R7! is reflexive. Let (z,y) €
RNR™!. Then (z,y) € Rand (z,y) € R~'. Thus, (y,z) € R~ and (y,z) € R.
Therefore, (y,z) € RN R™. Hence, RN R~ is symmetric. Now suppose that
(z,9), (¥,2) € RO R™Y. Then (z,¥), (3,2) € R and (z,3), (y,z) € R™'. Since
R is transitive, (z,z) € R. Now since (z,%),(y,2) € R}, (y,%2),(2,¥) € R.
Since R is transitive, (z,z) € R and so (z,2z) € R~!. Thus, (z,z) € RN R~ L
Hence, RN R™! is transitive. We have thus proved that RN R~! is reflexive,
symmetric, and transitive and hence RN R~! is an equivalence relation.

$ Exercise 3 Give an example of an equivalence relation on the set § = {1,
2, 3, 4,5,6,7,8} such that R has exactly four equivalence classes.

Solution: R = {(1,1), (2,2), (3,3), (4,4), (5,5), (6,6), (7,7), (8,8), (1,2),
(2,1), (3,4), (4,3), (5,6), (6,5), (7,8), (8,7)}. The equivalence classes are [1] =
2], [3] = [4), [5] = [6], and [7] = [8].

Exercise 4 Let Ry and Ry be two symmetric relations on a set S. Prove that
R; o Rg is symmetric if and only if Ry o Ry = Ro o R;.

Solution: Suppose R; o R is symmetric. Let {z,y) be any element of
R1 0 Ry. Then (y,z) € Ry o Ry since Ry o Ry is symmetric. Thus, there exists
z € S such that (y,z) € Ry and {z,2) € R; by the definition of composition of
relations. Since R; and Ry are symmetric, (z,y) € Ry and (z, z) € R;. Hence,
(z,y) € Reo R;. Thus, R; o Ry C Ryo R;. Similarly, Ry o Ry C R; o Rg. Hence,
RioRy = RyoR;.

Conversely, suppose that Rj o Ry = Ry o R). Let (z,y) € Ry o Ry. Then
(z,y) € Ryo Ry. Thus, there exists z € § such that (z,2) € R; and (z,y) € Ra.
Since R; and R, are symmetric, (z,z) € R; and (y,z) € Ry. Hence, (y,2) €
Roo Ry = Ry o Ry. Thus, E; o Ry is symmetric.
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{ Exercise 5 Let A= {1,2,3,4,5} and R = {(1,1), (2,2), (3,3), (4,4), (5,5),
(1,2), (2,1), (4,5), (5,4)}. Show that R is an equivalence relation.

Solution: Let B = {1,2}, C = {3}, and D = {4,5}. Let P = {B, C, D}.
Then P is a partition of A. Also, note that if z,y € A, then (z,y) € R if and
only if z,y € X for some X € P, i.e., the relation R is induced by the partition
P. Hence, R is an equivalence relation on A by Theorem 1.3.18.

$ Exercise 6 Let X = {1,2,3,4,5,6,7}. Then

P = {{1,8,5}, 2,6}, {4,7)}

is a partition of X. List the elements of the corresponding equivalence
relation R on X induced by P.

Solution: R = {(e,b) € X x X | a and b both belong to the same element

of P} ThenR = {(13 1)5 (212)a'(3$3)a (414)3 (5’5)a (636): (737)! (1:3)1 (3! 1):
(115)1 (531): (33 5): (5>3)> (2a6): (6? 2)3 (417)? (71 4)}

Exercise 7 Let R be a relation on a set 5. Prove that the following conditions
are equivalent.

(i} R is an equivalence relation on S.

(ii) R is reflexive and for all a,b,c € S, if aRb and bRc, then cRa.

Solution: (i)=(ii): Suppose R is an equivalence relation on S. Then R is
reflexive. Let a,b,c € S. Suppose aRb and bRc. The transitive property of R
implies that aRc. Hence, cRa since R is symmetric.

(ii)=(i): Since R is given to be reflexive, to show that R is an equivalence
relation, we only need to check that R is symmetric and transitive. For sym-
metry, suppose aRb. Since R is reflexive, we have aRa. Now since we have aRa
and aRb, bRa by hypothesis. This shows that R is symmetric. To show that
R is transitive, suppose aRb and bRc. Then by the hypothesis, cRa. Since we
have shown that R is symmetric, cRa implies that e Rc. Hence, R is transitive.
Consequently, R is an equivalence relation on S.

1.3.2 Exercises

1. Let R be a relation on the set A = {1,2,3,4,5,6,7} defined by R =
{(a,b) € A x A | 4 divides a — b}.

(ij List the elements of R.
(ii) Find the domain of R.
(iii) Find the range of R.
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(iv) Find the elements of R~!.
(v) Find the domain of R™1.
(vi) Find the range of R~1.
2. Let R be arelation on theset A = {1,2,3,4,5,6} defined by R = {(a,d) €
AxAl|la+b<9}
(1) List the elements of R.
(i) Is A C R, where A = {(z,z) | z € A}?
(iii) Is R = R™1?
(iv)Is RoRC R?
3. Which of the following relations E are equivalence relations on the set of
integers Z?
(i) zEy if and only if 2 — y is an even integer.
(ii) zEy if and only if £ — y is an odd integer.
(iii) zEy if and only if z < y.
(iv) zFy if and only if = divides y.
(v) zEy if and only if 22 = 32
(vi) zEy if and only if |z} = y|.
(vii) z By if and only if |z — y| < 2.

4. Let R = {(a, b) | a,b € Q and a — b € Z}. Prove that R is an equivalence
relation on Q.

5. Let A={1,2,3,4,5,6,7,8}. Define a relation R on A by
aRb if and only if 3 divides a — b

for all a,b € A. Show that R i5 an equivalence relation on A. Find the
equivalence classes [1], [2], [3], and [4].

6. Let R be an equivalence relation on a set A. Find the domain and range
of K.

7. Find all equivalence relations on the set § = {a, b, c}.

8. In Zg, which of the following equivalence classes are equal: [—1], [2], 8],
[5]s ["211 []-]-]a [23]?

9. Let z, y € Z be such that ¢ =, y, where n € N. Show that for all z € Z,
)z+z=.y+z,

(i) zz =, yz
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10

11.

12.

13.

14.

15.

16.

17.

18.

19.

Let z,y,z,w € Z and n be a positive integer. Suppose that z =, y and
z =, w. Show that z+ z =, vy +w and zz =, yw.

Let n be a positive integer and [z], [y] € Z,. Show that the following
conditions are equivalent.

(@) [=] = [].

(i1) = — y = nr for some integer 7.

(i) (= — ).

(Chinese Remairider Theorem} Let m and n be positive integers such
that gcd(m,n) = 1. Prove that for any integers a and b, the congruences

I =, a and r =, b have a common solution in Z. Furthermore, if 4 and
v are two solutions of these congruences, prove that v =, v.

Define relations Rj, Rg, R3 such that R; is reflexive and symmetric but
not transitive, Ry is reflexive and transitive but not symmetric, and Rj3
is symmetric and transitive but not reflexive.

Prove that the intersection of two equivalence relations on a set S is an
equivalence relation on 5.

Let R be a relation on a set A. Define T(R) = RUR™'U{(z,z) | z € A}.
Show that 7 (R) is reflexive and symmetric.

Let R be a relation on a set S. Set R° = RUR?UR3U ---. Prove the
following:

(1) R is a transitive relation on S.

(ii) If T is a transitive relation on A such that R C T, then R* C 7.
(R* is called the transitive closure of R.)

Let R; and Ry be symmetric relations on a set S such that Ry o Ry C
Ry 0 Ry. Prove that Ry o R; is symmetric and R; o Ry = Ry o Ry.

Let R; and R» be equivalence relations on a set S such that Ry o Ry =
Ry o Ry. Prove that R1 o Rs is an equivalence relation.

Let Ry and Ry be relations on a set $. Determine whether each statement
is true or false. If the statement is false, give a counterexample.

(1) If Ry and Ry are reflexive, then Ryjo Ry is reflexive.

(i) If Ry and Ry are transitive, then Ryo R» is transitive.

(iii) If R, and Ry are symmetric, then R0 Ry is symmetric.

(iv) If Ry is transitive, then Ry ' is transitive.

(v} If R is reflexive and transitive, then R; o R; is transitive.
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1.4 Partially Ordered Sets

In the previous section, we defined binary relations and studied their basic
properties. More specifically, we looked at equivalence relations and showed
that equivalence relations and partitions are closely related. In this section, we
will consider binary relations which are reflexive, are transitive, and satisfy a
new property, called antisymmetric. We begin with the following definition.

Definition 1.4.1 A relation R on a set § is called a partial order on § if it
satisfies the following conditions:

(i) (a,a) € R for alla € S (i.e., R is reflexive).

(i) For all a,b € § if (a,b) € R and (b,a) € R, thena = b (i.e., R 1s
antisymmetric).

(iit) For all a,b,c € 8, if (a,b) € R and (b,c) € R, then (a,c) € R (i.e., R

is transitive).

In other words, a reflexive, antisymmetric, and transitive relation on a set
S is called a partial order on S.

Example 1.4.2 Let R be the relation on Z defined by R = {(a,b) € Zx Z |
a—b <0}. We show that R is a partial order on Z.

First note thata —a =0 <0 for alla € Z. Thus, (a,a) € R for alla € Z
and so R is reflezive. For antisymmeiry, let (a,b), (b,a) € R. Thena —b <0,
e, a<bandb—a <0, te,, b < a. This implies that a = b. Thus, R is
antisymmetric. Finally, we show that R is transitive. Let (a,b),(b,c) € R.
Thena—b<0andb—c<0. Thus, a < b and b < ¢. This implies that a < ¢
and so a — ¢ < 0. Hence, (a,c) € R. Thus, R is transitive. Consequently, R is
a partial order on Z.

Example 1.4.3 Let R be the relation on N defined by R = {{a,b) € N x N |
a divides b in N}. Then R is a partial order on N.

As in the previous example, we show that R is reflerive, antisymmetric,
and transitive.

Reflexive: Let a € N. Since a = la, we have a|a and so (a,a) € R. Thus,
R is reflexive.

Antisymmetric: Let (a,b), (b,a) € R. Then alb and bla. Thus, b = ad and
a = bc for some positive integers ¢ and d. Therefore, a = be = adc and so
1 = cd. Since ¢ and d are positive integers and cd = 1, it follows thatc =d = 1.
Hence, a = b. Thus, R is antisymmeiric.

Transitive: Let (a,b), (b,c) € R. Then alb and blc in N. Thus, b = an and
c = bm for some positive integers m and n. This implies that ¢ = bm = anm
and since m and n are positive integers, nm is a positive integer. Thus, alc in
N and so (a,c) € R. Hence, R is transitive.

Consequently, R is a partial order on N.
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Example 1.4.4 Consider the relation R = {(a,b) € Z X Z | a divides b in
Z} on Z. As in the previous example, we can show that R is reflezive and
transitive. Since 6 = (—1)(—6) and —6 = (-1)6, (6, —6) € R and (—6,6) € R,
but 6 # —6. Thus, R is not antisymmetric, proving that R is not a partial order
on Z.

Example 1.4.5 Let S be a set and P(S) the power set of S. Let R be a relation
on P(S) given by R = {(A,B) € P(S)xP(S) | AC B}. We show that R is a
partial order on P(S). Since A C A for all A € P(S), we find that (A, A) €
R for oll A € P(S). This shows that R is reflezive. For antisymmetry, let
(A, B), (B, A) € R. Then by the definition of R, AC Band BC Aand so A=
B. Thus, R is antisymmetric. To show that R is transitive, let (A, B), (B,C) €
R. Then AC B and B C C and so A C C. Thus, (A,C) € R. Hence, R s
transitive. Consequently, R is a partial order on P(S).

A partial order on a set S is usually denoted by < . Instead of writing
(a,b) € <, from now on we shall write a < b.

Definition 1.4.6 A set S together with a partial order is called o partially
ordered set (poset).

If S is a partially ordered set with partial order <, then we write (S, <).

In Example 1.4.2, R is a partial order. This relation is the usual “less
than or equal to” relation on Z. In Example 1.4.3, R is a partial order. We
call this relation the divisibility relation on N. Hence, N together with the
divisibility relation is a poset. From Example 1.4.4, we find that Z together
with the divisibility relation is not a poset. The partial order in Example 1.4.5
is known as set inclusion relation. P(S) together with set inclusion relation
is a poset.

Let S be a poset and a,b € S. If either ¢ < b or b < @, then we say that a
and b are comparable.

Definition 1.4.7 A partially ordered set (S, <) is called a linearly ordered
set or a chain if for allx,y € S eitherz <y ory < z.

Thus, a linearly ordered set or a chain is a poset in which any two elements
are comparable.

Example 1.4.8 (i) Z together with the usual “less than or equal to” (Ezample
1.4.2) relation is a chain.

(1) N with the divisibility relation (Ezample 1.4.3) is not a chain because
neither 3 divides 5 nor 5 divides 3, i.e., 3 and 5 are not comparable.

(1ii) Let S be a set with more than one element. Then P(S) together with
the set inclusion relation (Ezample 1.4.5) is not a chain since if a and b are
distinct elements of S, then neither {a} is a subset of {b} nor {b} is a subset
of {a}, i.e., {a} and {b} are not comparable.
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Definition 1.4.9 Let (S, <) be a poset and {a,b} be a subset of S. An element
c €5 is called an upper bound of {a,b} ifa<candb<c.

An element d € S is called a least upper bound (lub) of {a,b} #f

(i) d is an upper bound of {a,b} end

(ii) if c € § is an upper bound of {a,b}, then d < c.

Example 1.4.10 (i) Consider the set N together with the divisibility relation
(Ezample 1.4.3). For alla,b € N, a <b if and only 1f a divides b. Now for the
subset {4,6}, 12,24, 36 are all upper bounds of {4,6}. However, 12 is the least
upper bound of {4,6}.

(ii) Consider the set Z together with the usual “less than or equal to”
relation (Fxample 1.4.2). For the subset {4,6}, 6,7,8, ... are all upper bounds
of {4,6}. However, 6 is the least upper bound of {4, 6}.

(#ii) Let S = {1,2,3,4}. Let < denote the set inclusion relation (Example
1.4.5). Then (P(S),<) is a poset. Let A = {1,2} and B = {1,4}. Then
AU B = {1,2,4} s the least upper bound of {A, B},

Remark 1.4.11 (i) In a poset (S, <), a subset {a,b} of S may not have an
upper bound.

(11) In a poset (S, <), a subset {a,b} of S may have more than one upper
bound.

(ii1) In a poset (S, <), a subset {a,b} of § may not have a lub.

(v) In a poset (S, <), if o subset {a,b} of S has a lub, then this lub is

UNIGUE.

We leave the verification of (i), (ii), and (iii) as an exercise and verify (iv).
Let ¢,d € S be two lubs of {a,b}. Then ¢ and d are upper bounds of {a,b}.
Since ¢ is a lub of {a,b} and d is an upper bound of {a,d}, ¢ < d. Similarly,
d < c. Hence, ¢ = d.

Notation: The lub of {a,b} in (S, <)}, if it exists, is denoted by a Vv b.

Definition 1.4.12 Lei (S, <) be o poset and {a,b} be a subset of S. An element
c € S is called a lower bound of {a,b} ifc < a and c < b. An elementd € S
is called a greatest lower bound (glb) of {a,b} if

(i) d is a lower bound of {a,b} and

(i) if c € S is a lower bound of {a,b}, thenc < d.

Remark 1.4.13 (i) In a poset (S, <), a subset {a,b} of S may not have o
lower bound.

(i) In a poset (9,<), a subset {a,b} of S may have more than one lower
bound. |

(iii) In a poset (S, <), a subset {a,b} of S may not have a glb.

(iv) In a poset (S,<), if a subset {a,b} of S has a glb, then this glb is
unique.
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Notation: The gib of {a,b} in (5, <), if it exists, is denoted by a A b.

A useful device in the study of posets is the poset diagram. Let (5, <) be
a poset and z,y € S. We say that y covers r, denoted by y > z, if ¢ < y,
z # vy, and there are no elements z € S such that z <z <y, z # 2, z # y. We
represent the elements of S by the elements themselves in the plane such that
if z < y, then y occurs above z, and we connect = with y by a line segment
if and only if y covers z. The resulting diagram is called the poset diagram of

(8, <).
Example 1.4.14 Let § = {1,2,3}. Then

P(S) = {¢, {1}, {2}, {38}, {1,2},{2,3},{1,3}, 5}.

Now (P(8), <) is a poset, where < denotes the set inclusion relation. The
poset diagram of (P(S), <) is given below.

S
N
{1,2} {1, 3} {2,3}

| X

) \{T/S

Definition 1.4.15 Let (S, <) be a poset. An element u € § is called o maz-
tmal (minimal) element of S if there is no element v € § such that u < v
(v € u) and u #v.

Example 1.4.16 Let S = {1,2,3} and T be the set of all proper nonempty
subsets of S. Now (T, <) is a poset, where < is the set inclusion relation. In
this poset {1},{2}, and {3} are minimal elements and {1,2},{1,3},{2,3} are

mazximal elements.

Next, we state the following fundamental axiom of set theory. There are
several places in this text, where we will use it very effectively. &

Zorn’s Lemma: If every chain in a poset (S, <) has an upper bound in S,
then S contains a maximal element.

We have seen several examples of posets in which lub (glb) need not exist.
Next, we study those posets for which lub {(glb) exists.
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Definition 1.4.17 A poset (L, <) is called a lattice ifa Ab and aV b ezist in
L for ella,b e L.

Example 1.4.18 Let L =[0,1] = {x € R| 0 < z < 1}. Then (L, <) is a poset,
where < denotes the usual “less than or equal to” relation. Leta,b € [0,1]. Now
max{a,b} € L and min{a,b} € L. It is easy to see that max{a,b} s the lub of
{a;b} and min{a,b} is the glb of {a,b}. For ezample, max{.2,.3} = .3=.2Vv.3
ond min{.2,.3} = .2 = .2 A .3. Hence, (L, <) is a lattice.

Example 1.4.19 Let S be a set. Then (P(S), <) is a poset, where < is the
set inclusion relation. For A, B € P(S5), we can show that AV B =AU B and
AAB=AnNB. Hence, {(P(S), <) is a lattice.

In the following theorem, we collect several useful properties of a lattice.

Theorem 1.4.20 Let (L, <) be a lattice and a,b,c € L. Then
(L1)avb=>bVa, aAb=bAa (commutative laws),
(L2) av (bvc)=(aVb) Ve, an(bAe)={(aAb)Ac (associative laws),
(L8) aVa=a, aAa=a (idempotent laws),
(L4)aVv (a Ab) =a, aA(aVhb)=a (absorption laws).

Proof. (L1) aVb =lub of {a,b} = lub of {b,a} = bV a. Note that the proof
follows from the fact that the set {a,b} is the same as the set {b, a}.

We leave the remainder of the proof to the exercises except for L4.

(L4) Now a < a and aAb < a. Hence, a i8 an upper bound of {a, aAb}. Thus,
by the definition of least upper bound, a V (a A b) < a. Since a V (a A b) is the
lub of {a,aAb}, @ < aV{aAb). Hence, a = aV{aAb) since < is antisymmetric.

The proof of the following result is left as an exercise.

Theorem 1.4.21 Let (S, <) be a poset and a,b € 5. Then the following con-
ditions are equivalent.

(i) a <b.
(i) aVb=b.
(i) a A b = a.

Definition 1.4.22 A lattice (L, <) is called a modular lattice if for alla, b, c €
L, a < ¢ implies
aVbArc)=(aVb)Ac.

The lattices defined in Examples 1.4.18 and 1.4.19 are modular lattices.
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Example 1.4.23 Consider the lattice given by the following diagram

Herea < c, butaV{(bAc)=aV0=a#c=(aVb)Ac Hence, this lattice
is not modular.

Definition 1.4.24 A lattice (L, <) is called distributive if it satisfies

(D1) an(bVvc)=(aAb)V(aAc)

for all a,b,c € L.

The lattices defined in Examples 1.4.18 and 1.4.19 are distributive lattices.
Theorem 1.4.25 A lattice (L, <) is distributive if and only if

(D2) aV(bAc)=(aVb)A(aVec)
for all a,b,c € L.

Proof. Suppose (L, <) is distributive. Let a,b,¢ € L. Then

i

(avb)A(aVe) ((evb)Aa)V{(aVvb)Ac) byDl

(an{avd)V{avb)Ac) byLl

= aV((aVb)Ac) by L4
= aV(cA(aVh) by L1
= aV{{cAha)V(cAb)) by D1
= (aV(cAa))V(cADb) by L2
= (aV(cAha))V(bAc) by L1
= aV(bAc) by L4.

Hence, aV (bA¢c) = (aVd)A(aVc). Similarly, D2=D1. R

Theorem 1.4.26 Fuvery distributive lattice is a modular lattice.

Proof. Let (L, <) be a distributive lattice and a,b,c € L besuch thata <c.
Then aV(bAc) = (aVb)A(aVe) = (aVb)Ac. Hence, (L, <) is a modular lattice. B

Theorem 1.4.26 says that every distributive lattice is a modular lattice.
However, the converse of this result is not true, as shown by the following
example.
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Example 1.4.27 Consider the lattice given by the following poset

I
7

This is o modular lattice, but not a distributive lattice since aV (bAc) =
aVl=a#1l=(avb)A(aVe).

Theorem 1.4.28 In a distributive lattice (L, <),
aAb=aAcandaVb=aVcimply thatb=c

for alla,b,c€ L.

Proof. Nowb=>bA(aVb)=bA(aVc)= (bAa)V(bAc)= (aAc)V(bAc)=
(cAa)V(cnb)=cA(aVvbd)=cA(aVc)=c. R

1.4.1 Worked-Out Exercises

¢ Exercise 1 Suppose that in a poset (P, <), aAb, bAc, and a A (bA¢) exist,
where a,b,c € P. Show that (a Ab) Acexistsand aA{(bAc) = (aAb) Ac.

Solution: Now a A{(bAc¢) <a,aA(bAc) <bAc, bAc<b and bAc
< c. Hence, a A (b A ¢) is a lower bound of a, b. Since a A b exists, we find that
aAN(bAc) <aAb. Also,aA{(bAc)<c. Hence, a A (bAc) is a lower bound of
{aAb, c}. Let d be a lower bound of {aAb, ¢}. Then d < aAb and d < c. Thus,
d<a,d<b and d < c. Since b A c exists, d < bAc. Also, a A (b A c) exists.
Hence, d < a A (bAc). Thus, a A (bAc) is the glb of {a A b, c}. Consequently,
(anb)Acexistsand aA(bAc)=(aAb)Ac.

Exercise 2 Show that every chain is a distributive lattice.

Solution: Let (L, <) be a chain and a,b,c € L. Since L is a chain, either
a<borb<a lfa<bthenavb=bandaAnb=a Ifb<a,thenavVb=a
and a A b =b. Hence, for any two elements a,b € L, aAband a Vb exist in L.
Suppose a < b.

Case 1: b <e.

NowaA(bVc)=aAc=aand (aAb)V(aAc)=aVa=a. Hence, we
have e A (bVc)=(aAb)V (aAc).

Case 2: ¢ <b.

Subcase 2a: a < c.
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In this case, we have a < ¢ < b. Now a A( bV e¢) = aAb = a and
(@aAb)V(aAc)=aVa=a. Hence,a A{(bVec)=(aAb)V(aAc).

Subcase 2b: ¢ < a.

In this case, we have ¢ < a < b. Now aA(bVe) = aAb
{anb)Vv{aAc)=aVc=a. Hence,aA{bVc)=(aAb)V(anc).

Similarly, if 5 < a, thenaA(bVe) = (aAb)V(aAc).

a and

I

Exercise 3 In a lattice (L, <), prove that (a Ad) V(e Ac) <aA(bV (aAc))
for all a,b,c € L.

Solution: aAb < a,aAc<a. Hence, (anb)V(aAc) <a.AgainaAb<b
implies (a Ab) V (a Ac) £bV (aAc). Thus, we find that (a Ab) V{aAc)is a
lower bound of {a,bV (aAc)}. But aA{(bV (aAc)) is the glb of {a,bV (aAc)}.
Hence, (a Ab)V(aAec)<aA(bV{aAc)).

Exercise 4 Prove that a lattice (L, <) is modular if and only if (aAb)V(aAc) =
aA(dV{anc)) forall a,b,c€ L.

Solution: Suppose (L, <) is modular. Then

(anbyvianc) = (anc)Vianb)
alc

(
= ((aAc)Vvb)Aa (by modularity since a A ¢ < a)
= aA(V(eAc)).

Conversely, suppose that (aAb)V(eAc) =an(bV(aAc)) forall a,b,c € L. Let
a,b,c € Lbesuch that a < c. Then aAc = a. Now (cAb}V(cAa) = cA(bV(aAc)).
Hence, (cAb)Va=cA(bVa),ie,aV{(bAc)=(aVb)Ac.

1.4.2 Exercises

1. Draw the poset diagram for each of the following posets.

(i) ({a | @ is a positive divisor of 20}, <), where < denotes the divisibility
relation.

(ii) (N, <), where < denotes the natural order relation.

(iii) (P(S5), <), S ={1,2,3,4}, where < denotes the set inclusion relation.
(iv) (P(S)\{¢},<), § = {1,2,3}, where < denotes the set inclusion re-
lation.

2. Give an example of a relation K which is antisymmetric, but not reflexive.

3. Give an example of a poset (P, <) such that P has two elements a and b
for which a A b does not exist.
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Show that (R, <) is not a poset, where a < b means that b = ad for some
d e R.

Let <; and <3 be two partial orders on a set S. Is <; N <3 a partial
order on S7

Let (A, <1) and (B, <3) be two posets. Prove that (A x B, <) is a poset,
where (a,b) < (c,d) if and only if a <; c and b <y d.
Let (P, <) be a poset and a,b,c € P.

i) favb bVe and aV ( bV ) exist, show that (aV b) V c exists and
aV({bve)=(aVb)Ve.

(ii) If e V b exists, prove that a V (a Vb) existsand aVb=aV (a V).

. Which of the following posets are lattices?

Q (4 b
N,/ | / \
i ; \ e
d
(i) (i4) (iis)

. Let D{40) denote the set of all positive divisors of 40. Consider the lattice

(D(40), <),

where < denotes the divisibility relation. Find 4 A ( 8 v10) and (2V (2A
8)) v 20.

In a lattice (L, <), prove the following.

avbAac)<(avd)AlaVe),

(i) (aAb)ViaAc)Lan{bve),

(i) (@ AD)V(bAc)V{(cAa)<(aVb A(bVc)A{cVa),

(iv)ifa<c, thenaV(bAc) <{aVb)Ac,

for all a,b,c € L.
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11. In a modular lattice (L, <), prove that for alla,b,c € L, a < ¢, aAb = cAb,
and a Vb= cVbimply that a = c.

12. Prove that a lattice (L, <) is distributive if and only if for alt e, b,c € L,

(aAb)v(dAac)vicna)=(avbd)AbVe)A{cVa).

13. Determine whether the following assertions are true or false. If true prove
the result; and if false give a counterexample.

(i) The relation R = {{a,b) € Z xZ | |a — b] < 1} is a partial order on
Z.

(i) The relation R = {(a,b) € Z x Z | |a| < {b|} is a partial order on Z.

(iii) The relation R = {(a,b) € Sx§ | a divides b in N} is a partial order
on S =1{1,2,3,4,6,12}.

1.5 Functions

Like sets, functions play a central role in mathematics. Readers may already
be familiar with the notion of a function either through a college algebra or a
calculus course. In these courses, functions were usually real valued. Throug-
hout the text we will encounter functions which do not have to be real valued.
Functions help us study the relationship between various algebraic structures.
In this section, we review some of their basic properties. Roughly speaking, a
function is a special type of correspondence between elements of one set and
those of another set. More precisely, a function is a particular set of ordered
pairs.

Definition 1.5.1 Let A and B be nonempty sets. A relation f from A into B
is called o function (or mapping) from A into B if

(i) D(f) = A and

(i) for all (z,y),(z',y') € f, z = 2/ impliesy =y

When (1) is satisfied by a relation f, we say thot f is well defined or
single-valued.

We use the notation f: A — B to denote a function f from a set A into a
set B. For (z, y) € f, we usually write f(z) = y and say that y is the image
of x under f and z is a preimage of y under f.

Leibniz seems to be the first to have used the word “function” to stand for
any quantity related to a curve. Clairant (1734) originated the notation f(z)
and Euler made extensive use of it. Dirichlet is responsible for the current
definition of a function.
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Let us now explain the above definition. Suppose f : A — B. Then f is
a subset of A x B such that for all z € A, there exists a unique y € B such
that (z,y) € f. Hence, we like to think of a function as a rule which associates
to each element = of A exactly one element y of B. In order to show that a
relation f from A into B is a function, we first show that the domain of f is A
and next we show that f well defined or single-valued, i.e., if z = v in A, then
f(z) = f(y) in B for all z,y € A.

We now consider some examples of relations, some of which are functions
and some of which are not.

Example 1.5.2 Let f be the subset of Z X Z defined by
f={n,2n+3) | n € Z}.

Then D(f) = {n | n € Z} =Z. We now show that f is well defined. Let
n,m € Z. Suppose n = m. Then 2n+3 = 2m+3, i.e., f(n) = f(m). Therefore,
f is well defined. Hence, f satisfies (i) and (i) of Definition 1.5.1 and so f is
a function.

Example 1.5.3 Let A = {1,2,3,4} and B = {a,b,c}. Let f be the subset of
A x B defined by

f= {(13 a’): (236): (31 C)a (41 b)}
First note that D(f) = {1,2,3,4} = A and so f satisfies (i) of Definition
1.5.1. From the definition of f, it is immediate that for all x € A, there exists
a unique y € B such that (z,y) € f. Therefore, f is well defined and so f
satisfies (ii) of Definition 1.5.1. Hence, f is a function.

Example 1.5.4 Let f be the subset of Q x Z defined by
f={(§,p) | p.q €2, g#0}.

First we note that D(f) = {E | p,g € Z, ¢ # 0} = Q. Thus, f satisfies (i) of
Definition 1.5.1. Now (3,2) € f, (3,4) € fand 2 =4 But f(3)=2+#4=
f(%) Thus, f is not well defined. Hence, f is not a function from Q ¢nto 2.

Example 1.5.5 Let f be the subset of Z x Z defined by
f={(mn,m+n) | mmncZ}

First we show that f satisfies (i) of Definition 1.5.1. Let z be any element of
Z. Then we can write x = z - 1. Hence, (x,z +1) = (z-1,z+ 1) € f. This
implies that z € D(f). Thus, Z C D(f). However, D(f) C Z and so D(f) = Z.
Thus, [ satisfies (i) of Definition 1.5.1. Nowd € Z and4=4-1=2-2, Thus,
(4-1,4+1) € fand (2:-2,2+2) € f. Hence, we find that4-1 =2-2 and
f(4-1)=5#4= f(2-2). This implies that f is not well defined, i.e., f does
not satisfy (it) of Definition 1.5.1. Hence, f is not a function from Z into Z.



1.5. FUNCTIONS 42

We now explore the meaning of equality of two functions.

Let f: A— Bandg: A— B betwo functions. Then f and g are subsets of
A x B. Suppose f = g. Let « be any element of A. Then (z, f(z)) € f = g. Also,
(z,g(z)) € g. Since g is a function and (z, f(z)), (z,g(z)) € g, we must have
g(z) = f(z). Conversely, assume that g(z) = f(z) for all z € A. Let (z,y) € f.
Then y = f(z) = g(z). Thus, (z,y) € g. This implies that f C g. Similarly, we
can show that g C f. It now follows that f = g. Thus, two functions f: A - B
and g : A — B are equal if and only if f(z) = g(z) for all 2 € A.

Example 1.5.6 Let f : Z — Z¥ and g : Z — Z¥ be defined by f = {(n,n?) |
neZ} and g={(n,n|*) | n € Z}. Now for alln € Z,

f(n) =n* = n* = g(n).
Hence, f = g.

Definition 1.5.7 Let f be a function from a set A into a set B. Then
(i) f is called one-one if for all z, 2’ € A, f(z) = f(&') implies z = 2'.
(i1) f is called onto B (or f maps A onto B) if I(f) = B.

We note that if f : A — B, then Z(f) = B if and only if for all y € B,
there exists z € A such that f(z) = y. In other words, Z(f) = B if and only if
every element of B has a preimage. We also note that f is one-one if and only
if every element of B has at most one preimage.

Let A be a nonempty set. The function 74 : A — A defined by i4(z) =z
for all £ € A is a one-one function of A onto A. i4 is called the identity map
on A.

Example 1.5.8 Consider the relotion f from Z into Z defined by
f(n) = n*

for alln € Z. Now D(f) = Z. Also, if n = n/, then n? = ()%, i.e., f(n) =
f(n'). Hence, f is well defined. Thus, f s a function. Now f(1) =1 = f(-1)
and 1 # —1. This implies that f is not one-one. Now for alln € Z, f(n)
is a nonnegative integer. This shows thot a negative integer has no preimage.
Hence, f is not onto Z. Note that f is onto {0,1,4,9,...}.

Example 1.5.9 Consider the relation f from Z into Z defined by for alln € Z,
f(n) = 2n. As in the previous examples, we can show that f is a function. Let
n,n’ € Z and suppose that f(n) = f(n'). Then 2n = 2n/, i.e., n = n’. Hence,
[ is a one-one function. Since for alln € Z, f(n) is an even integer, we see

that an odd integer has no preimage. Thus, f is not onto Z. However, we note
that f is onto E.
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Definition 1.5.10 Let A, B, and C be nonempty sets and f : A — B and
g: B — C. The composition o of f and g, written g o f, is the relation from
A into C defined as follows:

gof = {(z,2) |z € A,z€C, there emists y € B
such that f(z) =y and g(y) = z}.

Let f: A—> Bandg: B — C and (z,2) € go f, ie, (go f)(z) = =
Then by the definition of composition of functions, there exists y € B such
that f(z) =y and g{y) = z. Now

z = g(y) = g(f(z)).
Hence, (g o f)(z) = g(f(z)).

In the following, we describe some properties of composition of functions.

Theorem 1.5.11 Suppose that f: A — B andg: B — C. Then
(i)gof:A— C, de, gofisa function from A into C.
(7i) If f and g are one-one, then go f is one-one.
(7it) If f is onto B and g is onto C, then go f is onto C.

Proof. (i) Let z € A. Since f is a function and z € A, there exists y € B
such that f(z) = y. Now since g is a function and y € B, there exists z € C
such that g(y) = z. Thus, (go f)(z) = g(f(z)) = g(y) = 2z, ie, (z,2) €go f.
Hence, z € D(g o f). This shows that A C D(go f). But D{(go f) C A and so
D(go f) = A. Next, we show that go f is well defined.

Suppose that (z,2) € go f, (x1,21) € go f and z = x;, where z,1) € A and
z,z1 € C. By the definition of composition of functions, there exist y,y1 € B
such that f(z) =y, g(y) = 2, f(x1) = y1 and g{y1) = z;. Since f is a function
and £ = z1, we have y = y;. Similarly, since g is a function and y = y1, we
have z = z;. Thus, g o f is well defined. Hence, go f is a function from A into
C.

(ii) Let z, 2’ € A. Suppose (go f)(z) = (go f)(«'). Then g(f(z)) = ¢(f(z)).
Since g is one-one, f(x) = f(z'). Since f is one-one, z = z'. Thus, go f is one-
one.

(iii) Let z € C. Then there exists y € B such that g(y) = z since g is
onto C. Since f is onto B, there exists x € A such that f(z) = y. Thus,

(go f(z) = g(f(z)) = g(y) = z. Hence, go f isonto C. B

Example 1.5.12 Consider the function f : Z — Z and g : Z — E, where
f(n) =n? and g(n) = 2n for alin € Z. Then go f: Z — E and (go f)(n) =

g(f(n)) = g(n*) = 2n®.
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Theorem 1.5.13 Let f: A— B,g: B—C,and h:C — D. Then
ho(gof)=(hog)of.

That is, composition of functions is associative.

Proof.  First note that ho{go f): A —> D and (hog)o f: A — D. Let
z € A. Then

[ho(go fl(z) =h((go f)z)) = hg(#(z)}) = (R0 g)(f(z)) = [(h o g) o fl(z).
Thus, by the equality of two functions, ho(go f) = (hog)o f. B

Let A be aset and f: A — A. Recursively, we define

fH=) f(z)
@) = (fofm)a)

forallze A, n e N.

Let A and B be sets. A and B are said to be equipollent, written A ~ B,
if there exists a one-one function from A onto B, i.e., the elements of A and B
are in one-one correspondence.

From Theorem 1.5.11, it follows that ~ is an equivalence relation. If 4 ~ B,
then sometimes we write |A| = |B|. It is immediate that if A and B are finite
sets, then |A| = |B| if and only if A and B have the same number of elements.

The following lemma, which follows from Theorem 1.5.11(ii), is of indepen-
dent interest. ' We give a direct proof of this result. |

Lemma 1.5.14 Let A be a set and f : A — A be a one-one function. Then
f*: A— A is a one-one function for all integers n > 1.

Proof. Suppose there exists n > 1 such that f” is not one-one. Let m > 1
be the smallest positive integer such that f™ is not one-one. Then there ex-
ist , y € A such that z # y and f™(z) = f™(y). But then f(f™ z)) =
f(f™ Yy)) and hence f™~1(z) = f™!(y) since f is one-one. Now since m
is the smallest positive integer such that f™ is not one-one, f™~! is one-one.
Hence, z = y, which is a contradiction. Thus, f* is one-one for alln > 1. R

That one-one functions on a finite set are onto is proved next.

Theorem 1.5.15 Let A be a finite set. If f . A — A is one-one, then f is
onto A. .
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Proof. Lety e A Now f*(y) € A for all n > 1. Hence,
{v,f(v), F*(v),.. .} C A.

Since A is finite, all elements of the set {y, f(v), f2(y),...} cannot be distinct.
Thus, there exist positive integers s and ¢ such that s > ¢t and f%(y) = f¥(y).
Then f'(f**(y)) = fi(y). Hence, f**(y) = y since by Lemma 1.5.14, f* is
one-one. Let z = f5~*~1(y) € A. Then f(z) = y. Hence, f is onto A. B

Definition 1.5.16 Let A and B be sets and f: A — B.
(i) f is called left invertible if there exists g : B — A such that

gof=ia.
(i1) f is called right invertible if there exists h : B — A such that
foh=1ig.

A function f : A — B is called invertible if f is both left and right
invertible.

Example 1.5.17 Let f: Z — Z and g: Z — Z be as defined below.
fn) = 3n

o(n) = %’ 3fn ?]5 a multiple .of3
0 if n is not a multiple of 3

for alln € Z. Now
(Fog)n) = f(g(n))

n if n is a multiple of 3
0 if n is not a multiple of 3.

Hence, fog # iz. But (g o f)(n) = g(f(n)) = g(3n) =n for alln € Z. Thus,
go f =1iz. Hence, g is a left inverse of f.

Often we are required to find a left (right) inverse of a function. However,
not every function has a left (right) inverse. Thus, before we attempt to find
a left (right) inverse of a function, it would be helpful to know if a given
function has a left (right) inverse or not. The following theorem is very useful
in determining whether a function is left (right) invertible or invertible.

Theorem 1.5.18 Let A and B be sets and f : A — B. Then the following
assertions hold. |

(i) [ is one-one if and only if f is left invertible.

(1t) f is onto B if end only if f is right invertible.

(i) f is one-one and onto B if and only if f is invertible,
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Proof. (i) Suppose f is left invertible. Then there exists g : B — A such

that gof = i4. Let x, y € A be such that f(x) = f(y). Then g(f(z)) = ¢(f(y))
or (go f)(z) = (go f)(y). Hence, i4(z) = i4(y), i.e.,, z = y. Thus, f is one-one,

Conversely, suppose f 1s one-one. Then for yy € B, either ¥ has no preimage
or there exists a unique z, € A such that f(z,) = y. Fix ¢ € A. Define
g:B— Aby

(y) = z  if y has no preimage under f
W)=Y z, ify hasa preimage under f and f(z,) =y

for all y € B. By the definition of g, D(g9) = B. To show g is well defined,
suppose ¥,y € B and y = ¢'. Then either both y and %’ have no preimages or
there exist unique zy,z,s € A such that f(z,) = y and f(z,) = 3. Suppose
both y and ¥’ have no preimages. Then g(y) = z = g(¥'). Now suppose there
exist unique zy, y € A such that f(z,) =y and f(z,) =¥ Thus, g(y) =z,
and g{y') = z,. Since y = ¢/, we have f(zy) = f(zy). Since f is one-one,
&y = T, and so g(y) = g(y'). We have thus shown that g is well defined and so
g is a function. We now show that go f =i4. Let u € A and suppose f(u) =v
for some v € B. Then by the definition of g, g(v) = u. Thus,

(go f)(w) =g(f(u)) =g(v) =u=1is(u).
Hence, go f =14.
(ii) Suppose f is right invertible. Then there exists g : B — A such that
fog=1ig. Lety € B. Let x = gly) € A. Now y = ig(y) = (fog)(y) =

f{g{y)) = f(z). Hence, f is onto B.
Conversely, suppose f is onto B. Let ¥ € B. Since f is onto, there exists

x € Asuch that f(z) =y. Let A, ={z € A| f(z) = y}. Then A, # ¢. Choose
z, € A, for all y € B. Define h : B — A such that h(y) = z, for all y € B.
Then h is a function. Let y € B. Then (foh)(y) = f(h(y)) = f(zy) =y =
ip(y). Hence, f o h = ig and so f is right invertible.

(iii) The result here follows from (i) and (ii). B

Let f: A — B be invertible. Let g be a left inverse of f and h be a right
inverse of f. Then go f =i4 and foh =ip. Now g =goip =go(foh) =
(9o f)oh =14 0h = h, Thus, if f is invertible, then left and right inverses of
f are the same. This also proves that the inverse of a function, if it exists, is
unique.

If f is an invertible function, then the inverse of f is denoted by f~!.

Let f: A— B and A’ C A. Then f induces a function from A’ into B in a
natural way as defined next.

Definition 1.5.19 Let f : A — B and A’ be a nonempty subset of A. The
restriction of f to A', written f|a, is defined to be

fla ={(a, f(z')) | =’ € A'}.
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We see that f|4s is really the function f except that we are considering f
on a smaller domain.

Definition 1.5.20 Let f : A’ —» B and A be a set containing A’. A function
g: A — B is called an extension of f to A if gla = f.

Example 1.5.21 Consider the function f : E — Z and g : Z — Z, where
f(2n) =2n+1 and g(n) = n+1 for alln € Z. Then g is an extension of f to
Z and f is the restriction of g to E. Let the function h : Z — Z be defined by
forallm € Z, h(m) =m+1ifm € E and h(m) =m ¢f m ¢ E. Then h is
an extension of f to Z. However, h # g. Thus, a function may have more than
one extension.

In Section 1.1, we defined the Cartesian cross product, A x B, of two sets A
and B. We now extend this notion to a family of sets {A, | @ € I'}, where I isan
index set. First let us make the following observation: Suppose I = {1,2}. Let
S be the set of all functions f: I — AU B such that f(1) € A and f(2) € B.
Then every function f € § defines an ordered pair (f(1), f(2)) € A x B.
Conversely, given z € A and y € B, define f € § by f(1) = z and f(2) = v.
Then the ordered pair (z,y) defines a function f € S. Hence, there is a one-
one correspondence between the elements of S and A x B. We now define the
Cartesian product of {A, | @ € I}.

Let {As | @ € I} be a family of sets. The Cartesian (cross) product
of {As | « € I'}, denoted by [],cs Aa, is defined to be the set

{f1f:1I—>UserAa and f(a) € A, for all o € I},

Let f € [l,er Aa. Then f(a) € A, for all o € I. Let us write f(a} = z4 for
all @ € I. We usually write (zq)aecr for f, ie., a typical member of [],¢; Aa i8
denoted by (z4)acs, where zo € A, for all a € 1.

Suppose I = {1,2,...,n} is a finite set. Then the Cartesian product
[lic; Ac, is denoted by A; X Az X -+ X An. A typical member of A X As X
.-+ X A, is denoted by (z1,z2,...,2,), z; € A; for all ¢ = 1,2,...,n. The
elements of A x Ay x --- x A, are called ordered n-tuples. For two ele-
ments (Z1,%2,...,%n), (¥1,¥2,--+,Yn) € A1 X A2 X -+ X Ay, (21,22,...,2Zp) =
(y1,92,--.,yn) if and only if z; = y; for all <.

1.5.1 Worked-Out Exercises

¢ Exercise 1 Determine which of the following mappings f : R — R are
one-one and which are onto R :

(i) flz) =z +4,
(i) f(z) =2
for all z € R.



1.5. FUNCTIONS 48

Solution: (i) Let z,y € R. Suppose f(z) = f(y). Thenz+4 =y +4 or
z = y. Hence, f is one-one. Now f is onto R if and only if for all 4 € R there
exists z € R such that f(z) =y.Let y e R. If f(x) =y, thenz +4 =y or
z=1y—4. Also, y — 4 € R. Thus, we can take z to be 3y — 4. Now f(y —4) =
y—4+4=y. Hence, f is onto R.

(ii) We note that f(z) is a nonnegative real number for all z € R. This
means that negative real numbers have no preimages. In particular, for all
z € R, f(z) = z® # ~1. Hence, f is not onto R. Also, f(~1) = 1= f(1) and
—1 # 1. Thus, f is not one-one. Thus, f is neither one-one nor onto R.

¢ Exercise 2 (i) Let f : Z — Z be a mapping defined by

fz) = z if z is even
] 2z 4+ 1if z is odd
for all z € Z. Find a left inverse of f if one exists.

(ii) Let f : Z — Z be the mapping defined by f(z) = |z|+z for all x € Z.
Find a right inverse of f if one exists.

Solution: (i) By Theorem 1.5.18, f has a left inverse if and only if f is
one-one. Before we attempt to find a left inverse of f, let us first check whether
f is one-one or not. Let z,y € R and f(z) = f(y). By the definition of f, f(z)
is even if z is even and f(z) is odd if x is odd. Thus, since f(z) = f(y), we have
both z and y are either even or odd. If £ and y are both even then f(z) =z
and f(y) = y and so ¢ = y. Suppose z and y are odd. Then f(z) =2z +1 and
f(y) =2y+1. Then 2z +1 = 2y+1 or z = y. Hence, f is one-one and so f has
a left inverse. Thus, there exists a function g : Z — Z such that go f = iz. Let
& € Z. Suppose z is even. Now x = iz(z) = (go f)(z) = g(f(z)) = g(z). This
means ¢g(z) = & when ¢ is even. Now suppose z is odd. Then z = iz(z) =
(9o f)(z) = g(f(z)) = g(2z + 1). Put ¢ = 2z + 1. Then = = 5}. This shows
that g(z) = %3! if z is odd. Thus, our choice of g is

(:z:) )z if £ 1s even
g\r) = ET"l if z is odd.

(ii) Note that f(x) = |z{+ z > 0 for all z € Z. This shows that negative
integers do not belong to Z(f). In particular, f(z) # —1 for all z € Z. Thus,
f 18 not onto Z and so f does not have a right inverse.

{ Exercise 3 Let X and Y be nonempty setsand f: X = Y. If T'C X, then
f(T) denotes the set {f(z) | z € T}. f(T') is called the image of T under
f. Prove that f is one-one if and only if

f(AnB) = f(A)N f(B)
for all nonempty subsets 4 and B of X.
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Solution: Suppose that f is one-one. Let A and B be nonempty subsets of
X. Lety € f(ANB). Then y = f(z) for some x € ANB. Hence, y € f(A)Nf(B).
Thus, f(ANB) C f(A)N f(B). Now let y € f(A) N f(B). Then y € f(A) and
y € f(B). Thus, y = f(a) for some a € A and y = f(b) for some b € B. Since
f is one-one and f(e) = f(b), we find that a = b. Thus, y € f(AN B). Hence,
flAYN f(B) C f(An B). Consequently, f(AN B) = f(A) N f(B).

‘Conversely, suppose that f(ANB) = f(A)N f(B) for all subsets A and B of
X. Suppose f is not one-one. Then there exist z,y € X such that f(z) = f(y)
and z # y. Let A = {2z} and B = {y}. Since ANB = ¢, f(ANB) = ¢. However,
f(A)N f(B) = {f(z)} # ¢. Thus, f(AN B) # f(A)N f(B), a contradiction.

Hence, f is one-one.

{ Exercise 4 Let A be a nonempty set and £ be an equivalence relation on
A. Let B = {[z] | z € A}, i.e.,, B is the set of all equivalence classes with
respect to . Prove that there exists a function f from A onto B. The
set B is usually denoted by A/E and is called the quotient set of A
determined by F.

Solution: Define f: A — B by f(z) = [x] for all z € A. By the definition
of £, D(f) = A.Let 2,y € A. Suppose £ = y. Then [z] = [y] and so f(z) = f(y).
Thus, f is well defined. Let [a] € B. Then a € A and f(a) = [a]. Hence, f is
onto B.

Exercise 5 Let S={z € R | -1 <z < 1}. Show that R~ S.
Solution: Define f : R — S by
x

@) =1

for all z € R. Let z € R. Then —|z| < z < |z|, =1 — |z| < —|z|, and
|z <1+ |z|. Hence, -1 — |z| < = < 1+ |a|. Thus, -1 < %77 < 1 and so
—1 < f(x) < 1. This shows that f(z) € S. Let z,y € R and f(z) = f(y). Then
e = - Thus, lfllwl = 1-||?||y|' This implies that |z| + |z |y| = |y| + |z| |y|
and so |z| = |y|. Now 5 = l-flyl
Therefore, since |z| = |y|, £ = y. Thus, f is one-one.

Nowlet zeRand -1 <2z<1.If0< 2z <1, then

implies that z > 0 if and only if y > 0.

Z F4

z 11—z 1—z
f( ) = = = z.
If -1 <2z<«<0,then
z = 2
f( — 14z — 1+z_ 2.
1+2 1+ I-T-z ™ 1":2’

Hence, f is onto R. Consequently, R ~ §.
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1.5.2 Exercises

1. Determine which of the following mappings f : R — R are one-one and
which are onto R :

(i) flzg) =z +1,
(ii) f(z) = ?,

(i) flz) =|z| + =
for all z € R.

2. Consider the function f = {{z,2?) | z € §} of § = {-3,-2,-1,0, 1, 2,
3} into Z. Is f one-one? Is f onto Z?

3. Let f: RY - R* and g : Rt — R™* be functions defined by f(z) = /=
and g(z) = 3z + 1 for all z € R™, where R¥ is the set of all positive real
numbers. Find fogand go f.Is fog=go f?

4. Let f : Q* - Rand g : R — R be defined by f(z) = 1+ 1 for all
r € QF and g(z) = z + 1 for all z € R, where Q% is the set of all
positive rational numbers. Find g o f.

5. For each of the mappings f : Z — Z given below, find a left inverse of f
whenever one exists.

(i) f(z) =z +2,
(il) f(z) = 2z,

_ % if z is even
(itf) f(z) { 5 if z is odd
for all z € Z.

6. For each of the mappings f : Z — Z given below, find a right inverse of
f whenever one exists.

() f(z) =z -3,
(i) £(@) = 2,

x if £ is even

(iii) f(z) = { -+ 11if z is odd
forall z ¢ Z.

7. Let A= {1,2,3}. List all one-one functions from A onto A.

8. Let A = {1,2,...,n}. Show that the number of one-one functions of 4
onto A is n!
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10.

11.

12.

13.
14.

15.

16.
17.

18.
19.
20.

Let f : A — B be a function. Define a relation R on A by for all a,b € A,
aRb if and only if f(a) = f(b). Show that R is an equivalence relation.

Given f: X — Y and A, B C X, prove that
() f(AUB) = f(A) U £(B),

(i) f(AN B) C F(4) N £(B),

(i) f(A\B) C f(A)\f(B) if f is one-one.

Given f: X — Y. Let S CY. Define f~1(S) = {z € X | f(z) € S}. Let
A, B CY. Prove that

(i) 71 (AuB) = f~H (AU f~H(B),

(i) 1 ANB) = fHA)nf 1B,

(iii) f1(A\B) = fHANFH(B).

Let f: A — B. Let f* be the inverse relation, i.e.,

fT={(y,z) e BxA| f(z) =y}

(i) Show by an example that f* need not be a function.
(i) Show that f* is a function from Z( f) into A if and only if f is one-one.

(iti) Show that f* is a function from B into A if and only if f is one-one
and onto B.

(iv) Show that if f* is a function from B into A, then f~1 = f*.
Show that Z ~ E, where E is the set of all even integers.

Let A={z c R|0<z<1}and B={z€R|5 <z <8} Show that
f: A — B defined by f(z) =5+ (8 - 5)z is a one-one function from A
onto B.

(i) Show that Z and 3Z are equipollent.
(i) Show that 5Z and 7Z are equipollent.

Let S={z € R |0 < z < 1}. Show that R* ~ §.

(Schrider-Bernstein) Let A and B be sets. If A ~ Y for some subset
Y of B and B ~ X for some subset X of A, prove that A ~ B,

Find a one-one mapping from R onto Rt.
IsZ~ Q7

let A={z€eR|0<z<1l}and B={z ¢ R |0 <z < 1}. Is it true
that A ~ B?
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21. For each of the following statements, write the proof if the statement is
true, otherwise give a counterexample.

(i) A function f : A — B is one-one if and only if go f = ho f for all
functions g, h : B — A.

(ii} A function f: A — B is one-one if and only if for all subsets C of A,
F(A\C) 2 B\f(C).

1.6 Binary Operations

The concept of a binary operation is very important in abstract algebra. Thro-
ughout the text we will be concerned with sets together with one or more
binary operations. In this section, we define binary operations and examine
their basic properties.

Definition 1.6.1 Let S be a nonempty set. A binary operation on S is a
function from S x § into S.

For any ordered pair (z,%) of elements z,y € S, a binary operation assigns
a third member of S. For example, + is a binary operation on Z which assigns
3 to the pair (2,1).

If * is a binary operation on S, we write z * y for *(z,y), where z,y € S.
Since the image of * is a subset of S, we say S is closed under x.

Z is closed under + since if we add two integers we obtain an integer. Since
2,5 € Nand 2 -5 = -3 ¢ N, we see that — (subtraction) is not a binary
operation of N and we say that N is not closed under —.

Definition 1.6.2 A mathematical system is an ordered (n + 1)-tuple (S,
*1,...,%,), where S is a nonempty set and *; is a binary operation on S,
i=1,2,...,n. S is called the underlying set of the system.

Definition 1.6.3 Let (S, x) be a mathematical system. Then
(i) * is called associative if for all z,y,z € S,z x(yx2) = (x ¥ y) * 2.
(i) * is called commutative if for allz,y € S,z*xy =y *z.

-

Example 1.6.4 Consider the mathematical system (Z,+). Since addition of
integers 18 both associative and commutative, + ts both associative and com-
mutative.

Example 1.6.5 Let A be a nonempty set. Let S be the set of all functions on
A, t.e.,
S={f|f:A— A}

Stnce composition of functions is a function (Theorem 1.5.11), (S, o) is a math-
ematical system. By Theorem 1.5.13, o s associotive.
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Example 1.6.6 Let Ms(R) be the set of all 2 x 2 matrices over R, i.e.,

MQ(R)—{[i fz ] [a,b,c,deR}.

Let + denote the usual addition of matrices and - denote the usual multiplica-
tion of matrices. Since addition (multiplication) of 2 x 2 matrices over R is a
2 x 2 matriz over R, it follows that + ( - } is a binary operation on Ms(R).
Hence, (M2(R),+, ) is a mathematical system. Note that + is both associative
and commutative and - is associative, but not commutative.

The following is an example of a mathematical system for which the binary
operation is neither associative nor commutative.

Example 1.6.7 Consider the mathematical system (Z,—), where — denotes
the binary operation of subtraction on Z. Then3—(2-1)=2#0=(3-2)~1
and so — is not associative. Also, since 3 — 2 # 2 — 3, — 15 not commultative.

A convenient way to define a binary operation on a finite set S is by means
of an operation or multiplication table. For example, let S = {a,b, c}. Define
x on S by the following operation table.

G O Q| *
(=l I o T [~
o oo
[l o T o I (1

To determine the element of S assigned to a * b, we look at the intersection
of the row labeled by a and the column headed by 6. We see that a x b = b.
Note that b* a = a.

Definition 1.6.8 Let (S,*) be a mathematical system. An elemente € § is
called an identity of (S,*) if for all x € §,

CEXxT =T =T *¢€,

Example 1.6.9 Let S = {e,a,b}. Define x on S by the following multiplication
table

o ¥
(s o o B o T e
8 6 /|8
& B oo

We note thatexa=a=axe,exb=b=bxe andexe=e=exe. Thus e
is an identity of (S, ).
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Example 1.6.10 (i) In Ezample 1.6.5, i4 is an identity element of (S, 0).

(1) In. Ezample 1.6.6, l g 8 } is an tdentity element for the mathematical

system (Mz(R), +) and é 2 ] 28 an identity element for the mathematicol
system (M2(R),-).

Theorem 1.6.11 An identity element (if it exists) of a mathematical system
(8, %) is unique.

Proof. Let e, f be identities of (S, *). Since e is identity, e x ¢ = e for all
a € S. Substituting f for a, we get

ex f=e. (1.4)
Now f is identity and so a * f = f for all a € S. Substituting e for a we get

exf=f. (1.5)

From Egs. (1.4) and {1.5), we get e = f. Hence, an identity element (if it
exists) is unique. I

1.6.1 Worked-Out Exercises

¢ Exercise 1 Which of the following are associative binary operations?
(i) (Z,*), wherezxy=(z+y) —(z-y) for all z,y € Z.
(ii) (R, %), where ¢ * y = max(z,y) for all z,y € R.
(iii) (R, *), where x xy = |z + y| for all z,y € R.

Solution: (i) (zxy)*xz=((z+y) - (z-y)*xz=(z+y) - (z-y) +z
—((e+y)—(z-y) z=z+y+z—2z-y—x-2 —y-z+ -y 2z Similarly,
zx(y*z)=c+y+z—z-y—2z-z—y-2+ x-y-2. Thus, (z*y)*xz =z *(y*2).
Hence, * is associative.

(i) (x*y)* 2z = max(z,y) * z = max({max(z, y)}, z) = max{(z, y, z) = max(z,
max(y, z)) = ¢ *max(y, 2} = « * (y * z). Thus, * is associative.

(i) (2% (=3))*6 =24+ (=3)|*6=1%6=|146| =7 and 2% ((-3) *x6) =
2% (|(=3)+6|]) =2+3=|2+3|=5. Hence, (2% (—3)) %6 # 2% ((—3) x6) and

50 % 18 not associative.



1.6. BINARY OPERATIONS 55

1.6.2 Exercises
1. Which of the following are associative binary operations?

(1) (N, %), where z xy = z¥ for all z,yy € N.

(i) (Z,*), where zxy =z +y+ 1 for all z,y € Z.

(iii) (N, %), where z * y = gcd(z,y) for all z,y € N.

(iv) (N, *), where z x y = lem(z, y) for all z,y € N.

(v) (R, *), where £ *y = min(z,y) for all z,y € R.

(vi) (R, *), where z xy = |z| + |y| for all z,y € R.

2. In Exercise 1, which of the operations are commutative?

3. In Exercise 1, which mathematical systems have an identity?
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Carl Friedrich Gauss (1777-1855)
was born on April 30, 1777, in Brunswick,
Germany. Gauss is considered to be one of
the last mathematicians to know everything
in his subject.

(Gauss’s genius was revealed at a very
early age. He was able to do long calcula-
tions in his head. He rediscovered the law
of quadratic reciprocity, related the arithm-
etic-geometric mean to infinite series expan-
sion, and conjectured the prime number the-
orem. Before the age of twenty, he showed
that a regular polygon of seventeen sides was
constructible with ruler and compass—an un-
solved problem since Greek times. At the
age of twenty, he published the first proof of the fundamental theorem of algebra. He
completed his Ph.D. at the University of Helmstedt, under the supervision of Pfaff,
when he was twenty-two .

In 1801, Gauss published his monumental book on number theory, Disquisitiones
Arithmeticae. In his Disquisitiones, Gauss summarized previous work in a systematic
way and solved some of the most difficult outstanding questions. He introduced the
notion of congruence of integers modulo an integer (¢ = b mod{c)) and extensively
studied Z,, and obtained many of its important properties. He is credited for coining
the term complex number and the notation i for +/—1. He showed that Z[i] is a
unique factorization domain. In his honor, Z[7] is called the ring of Gaussian integers.
Disquisitiones laid the foundations of algebraic number theory. Leopold Kronecker
said, “It is really astonishing to think a single man of such young years was able to
bring to light such a wealth of results, and above all, to present such a profound and
well-organized treatment of an entirely new discipline.”

Besides being a mathematician he was also a physicist and an astronomer. In
January 1801, a new planet was briefly observed, which the astronomers were unable
to locate later. Gauss calculated the position of the planet by using a more accurate
orbit theory than the usual circular approximation. Gauss used a theory based on the
ellipse. At the end of the year the planet was discovered at the precise location he
predicted. The methods he developed are still in use. They include the theory of least
squares. -

He was appointed director of the observatory at Gittingen and remained there for
forty years. Gauss disliked teaching and preferred his job at the observatory. He usu-
ally rejected students who sought his guidance. However, he did accept students such
as Dedekind, Dirichlet, Eisenstein, Riemann, and Kummer, who themselves became
famous mathematicians. Gauss died on February 23, 1855. As E.T. Bell has said, “He
lives everywhere in mathematics.”




Chapter 2

Introduction to Groups

There are four major sources from which group theory evolved, namely, classical
algebra, number theory, geometry, and analysis. Classical algebra originated in
1770 with J.L. Lagrange's work on polynomial equations. His work appeared
in a memoir entitled, “Réflexions sur la résolution algébrique des équations.”
C.F. Gauss is considered the originator of number theory with his work, “Dis-
quistiones Arithmeticae,” which was published in 1801. F. Klein’s lecture in
1872, “A Comparative Review of Recent Researches in Geometry,” dealt with
the classification of geometry as the study of invariants under groups of trans-
formations. The impact of his lecture was so strong as to allow Klein to be
considered as the originator of this source of group theory. The originators of
the analysis source are S. Lie (1874) and H. Poincaré and F. Klein (1876).

2.1 Elementary Properties of Groups

In this chapter, and in fact in the remainder of the text, we will be concerned
with mathematical systems. These systems are composed of a nonempty set
together with binary operations defined on this set so that certain properties
hold. From these properties, results concerning these systems are derived. This
axiomatic approach to abstract algebra unifies diverse examples and also strips
away nonessential ideas.

Although noted for his geometry, Euclid inspired the use of the axiomatic
method, which has proved so indispensable in mathematics. His axiomatic
approach also affected philosophy, where in the 17th century Baruch Spinoza
laid down (in The Ethics) an axiomatic system from which he was able to
prove the existence of God. His proof, of course, depended on his axioms. His
proof lost its conviction with the emergence of noneuclidean geometries whose
axioms were as logical and practical as Euclid’s.

We will be primarily concerned with mathematical systems called groups
in this chapter. The theory of groups is one of the oldest branches of abstract
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algebra. The first effective use of groups was in the early nineteenth century
by A. Cauchy and E. Galois. They used groups to describe the effect of permu-
tations of roots of a polynomial equation. Their use of groups was not based
on an axiomatic approach. In 1854, A. Cayley gave the first postulates for a
group. However, his definition was lost sight of. Kronecker again set down the
axioms for an Abelian group in 1870. H. Weber gave the definition for finite
groups (in 1882) and the definition for infinite groups in 1883.

As previously mentioned, the notion of a group arose from the study of
one-one functions on the set of roots of a polynomial equation. We have seen
that the set S of all one-one functions from a set X onto itself satisfies the
following properties:

(1) Composition of functions, o, is a binary operation on S.

(i1)) For all f,g,h € S, fo(goh)=(fog)oh.

(ili) There exists i € S such that foi= f=1i0 fforall f€S.
(iv) For all f € S there exists an element f~! € S such that fo f~! =i=
flof.

These properties lead us to the definition of an abstract group.

Definition 2.1.1 A group is an ordered pair (G, %), where G s a nonempty
set and * 15 a binary operation on G such that the following properties hold:

(G1) For alla,b,c € G, ax(bxc) = {ax*b)*c (associative law).

(G2) There ezists e € G such that for alla € G, axe = a = exa (existence
of an identity).

(G3) For alla € G, there exists b € G such that axb = e = bxa (existence
of an inverse).

Thus, a group is a mathematical system (G, #) satisfying axioms G1 to G3.

In what follows, we will see several examples of groups. However, let us
first observe the following important properties of groups.

Theorem 2.1.2 Let (G, *) be a group.
(i) There ezists a unique element e € G such that exa =a = axe for all

a€q.
(#) For all a € G, there ezists a unique b € G such that axb=e=b=+a.

Proof. (i) By G2, there exists e € G such that exa = a = a * e for all
a € G. Since (G, *) is a mathematical system, ¢ is unique by Theorem 1.6.11.

(ii) Let @ € G. By G3, there exists b € G such that axb = ¢ = bxa. Suppose
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there exists ¢ € G such that a xc = ¢ = ¢ *a. We show that b = ¢. Now

b = bxe
= bx(ax*xc) (substituting e = a * ¢)
= (bxa)xc (using the associativity of x)
= exc (since b* a = e)
= c

Thus, b is unique. B

The unique element e € G that satisfies G2 is called the identity element
of the group (G, *). Let a € G. Then the unique element b € G that satisfies
G3 is called the inverse of a and is denoted by a~1.

If a group (G, *) has the property that axb = bxa for all a,b € G, then
(G, %) is called a commutative or Abelian group. A group (G, *) is called

noncommutative if it is not commutative.

Example 2.1.3 Consider Z, the set of integers, together with the binary op-
eration +, where + is the usual addition. We know that + 1s associative. Now
0€eZ and foralla€eZ,a+0=a= 0+ a and so 0 is the identity. Also, for
adla€Z, —acZanda+ (—a) =0=(—a)+a. That s, —a is the inverse
of a. Hence, it now follows that (Z,+) is a group. Since a+b=b+a for all
a,b € 4, + is commutative. Thus, (Z,+) is a commutative group.

Similarly, we can show that (Q, +), (R, +), (C,+), (Q\{0},-), (R\{0},-),
(C\{0},-) are all examples of commutative groups, where + is the usual ad-
dition and - is the usual multiplication. Noie that for each of the groups

(Q\{0},), (R\{0}, ), (C\{0}, ") the identity element is 1.

Example 2.1.4 Let a be any fized integer. Let G = {na | n € Z}. Then (G, +)
is a commutative group, where + is the usual addition of integers. Note that
0=0-a and —(na) = {(—n)a are members of G.

Gauss’s work yielded many new directions of research in Abelian groups.
The next two examples are due to Gauss.

Example 2.1.5 Consider Z,, (Ezamples 1.3.11 and 1.3.17). Define +, on Z,

by |
[a] +x [b] = [a + B]

for all [a], [b] € Z,,. We show that (Zp,+,) s a commutative group.

We first prove that +5, s a binary operation. Let [a}, [b], [c], [d] € Zn. Sup-
pose [a] = [c] and [b] = [d]. Then n|(a-c) and n|(b—-d), i.e., there exist integers
s and t such that ns = a—c and nt = b—d. Hence, n(s+t) = ((a+b) —(c+4d))
and so n{((a + b) — (¢ + d)). This implies that a + b =, ¢ + d. Therefore,
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[a+b] = [c+d]. As a result +, is well defined and so +,, is a binary operation.
For ail [a], [} ] € Zn, ([a] + 1) +n [c] = [a + 8] +n [d] = [(a + ) + o] =
[a+(b+c)] = [a] +n [b+c] = [a] +n ([b] +r [c]). Hence, +, is associative. Now
[0] € Z, and for oll [a] € Zy,

[a] +n [0} = [a + 0] = [a] = [0+ a] = (0] +x [a].
This shows that [0] is the identity element. Also, for all {a) € Z,, [—d] € Z,
and
@] +n [~a] =[a —a] = (0] = [~a +a] = [~-a] +. [d].
Thus, [—a] is the inverse of [a]. Finally, for all [a],[b] € Z,
o] 4n 6= 2+ = b+ a] = ] 4o

and so +n, is commutative. Hence, (Ln,+n) is a commutative group.

Example 2.1.6 Consider Z, (Ezamples 1.3.11 and 1.3.17). Define -, on Z,
by

[a] -n {b] = {ab]
for all [a], [b] € Zn. With the help of a little calculation as in Ezample 2.1.5,
we can show that -, is a binary operation on Z, and -, is assoctative. Now

(1] € Z,, and for all [a] € Z,,
o] n (1] =la-1]=la] =[1-a] = [1] -2 [a]

This implies that [1] is the identity element. We now show that if [a] € Z,, and
la] # [0], then [a] has an inverse if and only if ged(a,n) = 1.

Let |a] € Z,, and [a] # [0]. Suppose ged(a,n) = 1. Then there exist b,r € Z
such that ab+ nr = 1 by Theorem 1.2.11, i.e., ab — 1 = nr. This implies that
[ab] = [1] or {a] -n [b] = [1]. Since ab = ba, we also have [b] - [a] = [ba] = [ab] =
[1]. Thus, there ezists [b] € Z, such that [a][b] = [1] = [b][a] and so [a] has an
inverse. Conversely, suppose [a] € Zn, (a] # (0] and [a] hes an inverse. Then
there exists [b] € Zn such that [a][b] = [1]. This implies that n|(ab — 1) (by
Ezercise 11, page 30) and so ab — 1 = nr for some r € Z. Thus, ab+nr = 1
and hence by Theorem 1.2.11, ged(a,n) = 1. This proves our claim.

Thus, we see that in general, not every element of Z,\{[0]} has an inverse.
For example if n = 6, then the only elements of Zg that have inverses are (1],
3] and [5]. Hence, in general (Z,\{[0}, n) %s not a group.

Let U, be the set of all elements of Z,\{[0]} that have an inverse in

(Zn\{[o]}a "n)a ?:'e'?
Un = {la] € Zn\{[0]}| ged(a,n) = 1}.

We ask the reader to verify in Ezercise 10 (page 78) that (Un,n) is a group.
Note that for n = 8, Us = {[1],[3],[5], [7]} and forn =7,

Uz ={(1], (2], (3], 4], (5], [6]} = Z7\{[0]}-
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Example 2.1.7 Let
Q[vV2 ={a+bvV2 | ¢,b € Q}.

Then (Q[v2], +) and (Q[v2]\{0},") are commutative groups, where + is the
usual addition and - is the usual multiplication. The identity of (Q[v?2],+)
is 0 + 0v/2 and the inverse of a + /2 is —a + (—b)V2. The identity of
(Q[v2]\{0},-) 45 1 = 14 0+/2 and the inverse of a + b\/2 # 0 s ol —
T2 V2.

Example 2.1.8 Let P(X) be the power set of a set X. Consider the operation
A (symmetric difference, Ezercise 6, page 6) on P(X). Then for all A, B
€ P(X),

AAB = (A\B) U (B\A).

(P(X), A) is a commutative group. The empty set ¢ is the identity of (P(X), A)
and every element of P(X) is its own inverse. We warn the reader that veri-
fication of the associative law is tedious.

Example 2.1.9 Let X be a set and Sy the set of all one-one functions of X
onto X. Since ix, the identity function on X, is one-one and onto X, ix € Sx.
Thus, Sx # ¢. Let f,g € Sx. Then fog is a one-one function of X onto X by
Theorem 1.5.11. Hence, fog € Sx. By Theorem 1.5.13, o is associative. Also,
for all f € Sx, f71 € Sx and fo f~! =ix = f~t o f. Consequently, (Sx,o)
is a group. However, (Sx,o) is not necessarily commutative. For erample,
let X = {a,b,c}. Let f,g € Sx be defined by f(a) = b, f(b) = a, f(c) = ¢,
gla) = b, g(b) = ¢, glc) = a. Then (f o g)(b) = f(g(b)) = f(c) = ¢ and
(go f)(b) = g(f(b)) = gla) = b. Hence, fog # go f. Thus, (Sx,0) is not
commutative.

Example 2.1.10 Let GL(2,R) = < 3 z, ] | a,b,c,d € R, ad — bc # O}.
Define a binary operation x on GL(2,R) by

a b N
c d w s |
a b U v : g o
for all [ . d ] , |i w s } € GL(2,R). This binary operation is the usual
matriz multiplication. Since matriz multiplication is assoctative, we have * s

0 ] € GL(2,R) and is the identity element of

au+ bw av +bs
cu+dw cv+ds

associative. The element [ 0 1
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a b

GL(2,R). Let [ e d ] € GL(2,R). Then ad — be # 0. Consider the matriz

d =5
ad-be ad—bc | Gince

ad=—bc ad—be
d a —b - _ 1 £0

ad—be ad-—bec ad—bc ad—bec ad-—be ’

we have .
d —b
{ ad__—cbc ad;bc ] € GL(2,R).
ad—be ad—be
Now -y ,
[ab]*{ad_—c& ad;bc]_lilo]
c d ad—l;c ad—bc 0 1

ond

d =b [
{ad_-cbc ad;bc]*[a b]: 10].
ad—bec ad—be ¢ d | 01

d —b T

Thus, | ot=be ad-be | i5 the inverse of a b . Hence, (GL(2,R),*) i3 a
ad—-be ad-—-bc c d ]
group. Now
1 1 1 0
[0 1},[1 1]EGL(Z,R)
and

1] [re]_fza] [r1]_[1o],[11
01 11| |11 1 2|11 0 1]
Hence, (GL(2,R), *) is a noncommautative group.

The group in Example 2.1.10 is known as the general linear group of
degree 2.

We now prove some elementary properties of a group in the following the-
orerm.

Theorem 2.1.11 Let (G,*) be a group.

(i) ()"t =a for alla € G.

() (a* )" =b"lxa"! for all a,b € G.

(113) (Cancellation Law) For oll a,b,c € G, if either axc = b*c or
cxa=cxb, thena=>b.

(tv) For all a,b € G, the equations a*z = b and y * a = b have unique
solutions in G for z and y.
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Proof. (i)Leta€ G.Thena'+a=e=a*a ! and so ais an inverse of
a~1. Since the inverse of an element is unique in a group (Theorem 2.1.2) and
since {(a~1)! denotes the inverse of a™1, it follows that a = (a™1)~!.

(ii) Let a,b € G. Then

(a*b)x (7 txal) = ((axb)xbxa!
(@a*x(bxb 1)) xa!
(a * e_)l* a~!

I

Similarly, (b= *a=!) * (a % b) = e. Hence, b~ +a~! is an inverse of a * b. Since

the inverse of an element is unique in a group and since (a * b)~! denotes the

inverse of a * b, it follows that (a xb)" ! =b"lxa 1,

(iii) Let a,b,¢c € G. Suppose axc=bxc. Now (axc)*c™! = (b*c) xc~!
implies that a* (c*c¢™!) = b* (cxc™!). Hence, a xe = b+ e or @ = b. Similarly, -
ifcxa=cx*b, thena =b.

(iv) Let a,b € G. First we consider the equation a*x = b. Now a~ 1 xb € G.
Substituting a~! % b for z in the equation a * z = b, we obtain

ax(a ' *xb)=(a*xa")xb=exb=>.
Thus, a=! % b is a solution of the equation a * £ = b. We now establish the

uniqueness of the solution. Suppose ¢ is any solution of a ¥ z = b. Then
a * ¢ = b. Hence,

c = e*c
= (alxa)*xc (sincea lxa=¢)
= al'x(axc) (since x is associative)
= a7 lxb (since @ * c = b).

This yields the uniqueness of the solution. Similar arguments hold for the
equation yxa=>5. B

Corollary 2.1.12 Let (G, *) be a group anda € G. Ifaxa=a, thena=¢. B

Proof. Since a = ax*a, we have a*xa = a*e. By the cancellation law, a = e.

Corollary 2.1.13 In a multiplication table for a group (G,*), each element
appears exactly once in each row and exactly once in each column.



2.1. ELEMENTARY PROPERTIES OF GROUPS 64

Proof. Let b € G be such that & occurs twice in the row marked by a € G.
Then there exists u,v € G with u # v such that axu = b and a xv = b.
Thus, the equation e x £ = b has two distinct solutions, u» and v. This is a
contradiction to Theorem 2.1.11(iv) since the equation a * £ = b has a unique
solution for . A similar argument for columns can be used. B

Let (G, *) be a group and a, b,c € G. Then by the associative law, ax(bxc) =
(a*b) xc. Hence, we can define axb*c = ax(bxc) = (axb)*c. Let a,b,¢,d € G.
Then (a*b*xc)xd = (ax(bxc))xd=oax*x((bxc)xd)) =ax(bx(cxd)) =
(axb) x (cxd) = ({a *b) * c) *d. Thus, there is more than one way of inserting
parentheses in the expression a x b * ¢ * d to produce a “meaningful product”
of a,b,c,d (in this order). We now extend this notion to any finite number of
elements.

Definition 2.1.14 Let (G, *) be a group and ay,ay,...,a, € G be n elements
of G (not necessarily distinct). The meaningful product of a1,as,...,a, (in
this order) is defined as follows: If n = 1, then the meaningful product is ay. If
n > 1, then the meaningful product of a1, a9, ...,a, is any product of the form

(@1 % % Q) * (A1 * - *xap),

where 1 < m < n and (a1% -+ * Q) and (Qpy1% - -- * a,) are meaningful
products of m and n — m elements, respectively.

Definition 2.1.15 Let (G, *) be a group and ay,as,...,a, € G, n > 1. The
standard product of ay,as,...,a, denoted by ayx agx --- xa, 1s defined re-
cursively as

a; = a
arxaox---xa, = (ar*ag*---xap_1)*a, ifn>1.

In the next theorem, we establish the equality between any meaningful
product and standard product.

Theorem 2.1.16 Let (G,*) be a group and ay,as,...,a, € G, n > 1. Then
all possible meaningful products of a1, a9, ...,a, (in this order) are equal to the
standard product of ay,ay, ...,an (in this order).

Proof. We prove the result by induction. If n = 1, then a; is the only mean-
ingful product of a;, which is equal to the standard product a; of a;. Thus, the
result is true if n = 1. Suppose that the theorem is true for all integers m such
that 1 <m < n. Let ay,as, ...,a, € G. Let (a1% ---*a;) *(ag 1% ---*an) be a
meaningful product of ay, ay, ..., a, (in this order). Now ¢ < nand n—t < n. If
t =n—1, then (a1 *ag* - -*ay)*az41 = ay*az*---*ay*appe1. Suppose t < n—1.
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Then (a1 % - -k a¢) * (Qrgp1% - - *an) = (1% - --*ay) * ((@pa1* - - *An_1)*ap) =
((01* Ttk at) * (@gqpr* - *an—l)) ¥ Ap = (01 * Qo Ktk Q1) ¥ Gy = Q1¥
«-+ % @, since by the induction hypothesis (a1* --- % ay) * (agr1% -+ * ap_1) =
ai * ag * -+ % a,_1. Hence, the result is true for n. The result now follows by
induction. W

We have seen several examples of groups. In order to show that a given
set with a given binary operation is a group, we need to verify G1 to G3 of
Definition 2.1.1. However, it would be helpful if we had some criteria that
could be used to show whether a given set with a binary operation is a group
or not instead of verifying all the properties G1-G3 explicitly. Partly for this
reason we define what a semigroup is. Following the examples, we develop some
results that can be used to test whether a given set with a binary operation is
a group or not.

Definition 2.1.17 A semigroup is an ordered pair (S, x), where S is a nonem-
pty set and * is an associative binary operation on S.

Thus, a semigroup is a mathematical system with one binary operation
such that the binary operation is associative. We note that every group (G, *)
is a semigroup.

A semigroup (S, *) is commutative if * is commutative, i.e., axb=bx*a
for all a,b € §. A semigroup (5, *) which is not commutative is called non-
commutative.

Let (S, *) be a semigroup. We say that (S, *) is with identity if the mathe-
matical system (S, ) has an identity. An element a € § is called idempotent
if axa=a.

Example 2.1.18 Consider N, the set of positive integers. We know that ad-
dition of positive integers is again a positive integer. Thus, + s a binary
operation on N. We also know that + is associative and commutative. Thus,
(N, +) is a commutative semigroup.

Example 2.1.19 Let X be a nonempty set and S the set of all functions f :
X — X. If o denotes the composition of functions, then (S,0) is a semigroup
with identity. The associativity of o follows from Theorem 1.5.13. When X has
two or more elements, the semigroup (S, 0) is noncommutative. For example,
let X = {a,b}. Let g,k € S be defined by g(a) =b, g(b) = b, h{a) = b, h(b) = a.
Then (goh)(a) = b # a = (hog)(a). Therefore, goh # hog. Let f € S be defined
by £(a) = a and £(b) = a. Now (fog)(z) = F(g(z)) = a = f(h(x)) = (foh)(x)
for all x € G. Hence, fog= foh. But g # h. This shows that the cancellation
laws do not hold in S. Thus, (S,0) is not a group.
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Example 2.1.20 Let X be a set with two or more elements and 8’ the set of all
functions f : X — X which are not one-one. Then (S’,0) is a noncommutative
semigroup without identity.

Example 2.1.21 Let X be a set and P(X) the power set of X. Then (P(X),U)
and (P(X),N) are commutative semigroups with identity. The identity of
(P(X),U) is ¢ and the identity of (P(X},N) is X.

The following three theorems give necessary and sufficient conditions for a
semigroup to be a group.

Theorem 2.1.22 A semigroup (S, *) is a group if and only if
(1) there exists e € S such thatexa =a for alla € 5 and
(1) for all a € S there erisis b € S such that bxa = e.

Proof. Suppose (S, *) is a semigroup that satisfies (i) and (ii). Let a be any
element of 5. Then there exists b € § such that b*a = e by (ii). For & € §,
there exists ¢ € § such that c* b = e by (ii). Now

a=exa={cxb)xa=c*(b*xa)=cx*e

and
axb={(cxe)xb=cx(exb)=cxb=c.

Hence, axb=e =bx*a. Also,
axe=ax(bxa)=(a*xb)xa=exa=a,

Thus, a x e = a = e * a. This shows that e is the identity element of S. Now
since a * b = e = b xa, we have b = a~!. Therefore, (5,*) is a group. The
converse follows from the definition of a group. B

Theorem 2.1.23 A semigroup (S, *) is a group if and only if for alla,b € S
the eguations a *xx = b and y x a = b have solutions in S for z and y.

Proof. Suppose the given equations have solutions in S. Let a € S. Consider
the equation y *a = a. By our assumption, y * @ = a has a solution u € S, say.
Then u * @ = a. Let b be any element of S. Consider the equation a x x = b.
Again by our assumption, a *z = b has a solution in S. Let ¢ € S be a solution
of a xx =b. Then a*c=b. Now

ukb = ux(ax*c) (since b =a * ¢)
= (u*a)*c  (since x is asociative)
= a*c (since ux a = a)

= b
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Since b was an arbitrary element of S, we find that u b = b for all b € S.

Thus, (S, *) satisfies (i) of Theorem 2.1.22. Consider the equation y * a = u.

Let d € S be a solution of y * @ = u. Then d x @ = w. This shows that (S, *)

satisfies (i) of Theorem 2.1.22: Hence, (S, *} is a group by Theorem 2.1.22.
The converse follows by Theorem 2.1.11{iv). B

Theorem 2.1.24 A finite semigroup (S,*) is a group if and only if (S, *)
satisfies the cancellation lows (i.e., axc=bxc impliecsa=b andcxa =cxb
implies a = b for all a,b,c € 5).

Proof. Let (S, *) be a finite semigroup satisfying the cancellation laws. Let
a,b € S. Consider the equation a * r = b. We show that this equation has a
solution in S. Let us write § = {a1, a2, ..., an}, where the a;’s are all distinct
elements of S. Since S is a semigroup, @ *a; € S for all ¢ = 1,2,...,n. Thus,
{axa1,a*ay, ..., axa,} C 5. Suppose axa; = ax*a; for some i # j. Then by the
cancellation law we have a; = a;, which is a contradiction since a; # a;. Hence,
all elements in {a*aj,axay, ..., a*xa,} are distinct. Thus, S = {a*a;,ax*as,
...,axan}. Let b € S. Then b = axay for some a; € S. Therefore, the equation
a*x = b has a solution in $. Similarly, we can show that the equation y*xa = b

has a solution in S. Hence, by Theorem 2.1.23, (S, ) is a group. The converse
follows by Theorem 2.1.11(iii). B

Let (G,*) be a group, a € G, and n € Z. We now define the integral
power a” of a as follows:

0

a’ = e
a® = axa™lifn>0
a* = (a ) ™"ifn <0,

Note that a® = (a™")~! if n < 0. In the exercises at the end of this section,
we ask the reader to verify certain basic properties of integral powers. It should
be pointed out that when we use additive notation for the binary operation *,
we speak of multiples of an element a of the group (G, +), which are defined
as follows:

0a = 0, where the 0 on the right-hand side denotes the identity of the
group (G, +) and the 0 on the left-hand side denotes the integer 0.
a+(n—1e ifn>0

(—n)(—a) ifn<0.

na
na

For example, in (Zg,+3), 2[3] = [3] +¢ (3] = [6] = [0]. By the notation na,
we do not mean n and a multiplied together since no multiplicative operation
between elements of Z and G has been defined.
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Definition 2.1.25 A group (G, *) is called a finite group if G has only a
finite number of elements. The order, written |G|, of a group (G, *) is the
number of elements of G.

Example 2.1.5 shows that for every positive integer n, there is a commuta-
tive group of order n.

The groups in Examples 2.1.5 and 2.1.6 are finite groups.

A group with an infinite number of elements is referred to as an infinite
group. Klein and Lie’s use of groups in geometry influenced the turn from
finite groups to infinite groups.

The groups in Examples 2.1.3, 2.1.4, and 2.1.7 are infinite groups.

Let G be a finite group and @ € G. Now a? = a *a € G and by induction,
we can show that a™ € G for all m > 1. Thus, {e,a?,...,a™,...} C G. Since
G is finite, all elements of the set {a,a?,...,a™,...} cannot be distinct. Hence,
a*® = a! for some positive integers k,{, k > I. This implies that a*~! = e. Let
us write n = k — [. Therefore, a™ = e for some positive integer n. Also, if G is
an infinite group and a € G, then it may still be possible that a™ = e for some
positive integer n. This leads us to the following definition.

Definition 2.1.26 Let (G,*) be a group and a € G. If there ezists a positive
integer n such that a™ = e, then the smallest such positive integer is called the
order of a. If no such positive integer n exists, then we say that a is of infinite
order.

We denote the order of an element a of a group (G, *) by o(a).

The concept of the order of an element is very important in group theory.
We shall see in later chapters how effectively information about the order of
an element of a group reveals the nature of the group and in several instances
leads us to determine the structure of the group itself:

Example 2.1.27 Consider the group (Zg,+¢). Zgs has order 6. The elements
[0], (1], [2],{3], [4], [5] have orders 1, 6, 3, 2, 3, 6, respectively. For example
2[3] = [3] +6 [3] = [6] = (0] and 2 is the smallest positive integer n such that
n[3] = {0].

Let G be a group and a € G. If o(a) is infinite, then by the definition of
the order of an element it follows that o(a*) is also infinite for all k > 1, i.e.,
the order of every positive power of a is also infinite. If o(a) is finite, then the
next theorem tells us how to compute the order of various powers of a.

Theorem 2.1.28 Let (G,*) be a group and a be an element of G such that
o{a) = n.
(7) If a™ = e for some positive integer m, then n divides m.
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(i2) For every positive integer t,

¢ n

ol@) = ged(t,n)’

.Proof. (i) By the division algorithm, there exist p, g € Z such that m = ng+
r,where 0 <r < n.Nowa” =a™ ™ =agMxa ™ =aMx(a") T =ex(e) ! =e.
Since n is the smallest positive integer such that a” = e and a” = e, it follows
that r = 0. Thus, m = ng. This implies that n divides m.

(ii) Let o(a‘) = k. Then a** = e. By (i), n divides kt. Thus, there exists
r € Z such that kt = nr. Let gcd(t,n) = d. Then there exist integers v and
v such that £ = du and n = dv and ged(u,v) = 1 by Exercise 9 (page 20).
Now kt = nr implies that kdu = dvr. Hence, ku = rv. Thus, v divides ku.
Since ged(u,v) = 1, v divides k. Thus, 3 divides k. Now (at)d = a¥ =o' =
a™ = (a™)* = e* = e. Since o(a’) = k, k divides Z. Since k and 2 are positive
integers, k = 5. Hence, o(a’) = k=2 = ity ™

A group (G, *) is called a torsion group if every element of G is of finite
order. If every nonidentity element of G is of infinite order, then G is called a
torsion-free group.

The group of Example 2.1.27 is a torsion group. The groups (R, +), (RT, ),
(QT, ) are torsion-free groups. The group (R\{0}, -) is neither a torsion group
nor a torsion-free group, since —1 is of order 2 and all other nonidentity ele-
ments are of infinite order.

We close this chapter with the following example. The ideas set forth in
this example are due to Klein.

Example 2.1.29 Imagine a square having its sides parallel to the azes of a
coordinate system and its center at the origin.

o .

1 2
g h

4 3
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We label the vertices as in the figure and we allow the following rigid mo-
tions of the square: clockwise rotations of the square about the center and
through angles of 90°, 180°, 270°, 360°, say, roq, T180, 7270, 7’360, respectively;
reflections h and v about the horizontal and vertical azes; reflections d), dg
about the diagonals. The following figures should prove helpful.

1 2 1 2 1 2 1 |
7360 d;
BRSNS R
4 3 4 3 4 3 2 3
1 2 4 1 1 2 3 2
790 ' dy
——— L
4 3 3 2 4 3 4 1
1 2 , 3 4 1 2 4 3
180 h
4 3 2 1 4 3 1 2
1 2 - 2 3 1 2 2 1
270 | v
4 3 1 4 4 3 3 4

A multiplication * on two rigid motions con be defined by performing fwo
such motions in succession. For example, rooxh is determined by first perform-
ing motion h and then the motion rog. We see that rog x h = dy. The complete
multiplication table for the operation x follows.

* T360 Too Tign T2r0 A v d dp

T360 | 360 Too 180 T270 N v d dg

Too | T90 Tigo T2r0 Tiaso di d2 W h

T180 | T180 T270 7360 T90 U h do dy

To70 | T270 T30 Teo Tigo d2  di A v (2.1)
h h dy v di T30 T80 T270 T90

v v d b d2 T80 T360 790  T270

d |d h d v T90  T270 T360 7180

dy |do v dh Ta70  T90  T180 7360

We leave it for the reader to verify that the set of rigid motions is a group
under the operation x. This group is known as the group of symmetries of
the square. Let us denote this group by Sym. Then

Sym = {r3s0, 790, 180, Y270, 1, ¥, d1, d2}.
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Since h x ro70 = dy # do = ro70 * h, we see that the Sym is noncommutative.
We also note that ragg is the identity element.

Let us now determine the order of the elements. Consider rgg. Now 13, =
T9Q * 790 = T180, "'"go = ""30 * Tog = Ta270, and ”"30 = frgo * Tog = T380. 1 hus,
o(reg) = 4. Similarly, o(r1g0) = o(rdy) = ﬁd%,?) (by Theorem 2.1.28) = 3 = 2,
O(Tg'm) = 4, O(h) = 2, O(’U) = 2, O(dl) = 2, and O(dg) = 2.

Let us write o = 90 and ,6 = dg. Then ce2 = T180, 053 = 7270, C!4 = T380,
Brxa=uv, Bxa? =di, and B+ = h. Also, note that fxa=a"1+8 =a’+4.

Thus, we see that
Sym = {e,a,a®,03, 8,8, Bxa?, B« o},

Finally, we make the follounng observations. Consider rgp. We can think of
rop as a one-one function of {1,2,3,4} onto {1,2,3,4} by defining roo(1) = 2,
r90(2) = 3, r90(3) = 4, rgo(4) = 1. In a similar manner, we can consider other
rigid motions of the square as one-one functions of {1,2,3,4} onto {1,2, 3,4}.

A fundamental phenomenon of nature is that of symmetry. A figure or an
object is said to have a symmetry if a rotation, a translation, an inversion,
a minor reflection, or a combination of these operations leaves the figure or
object indistinguishable from its original position. The 1890s saw the first
application of group theory to the natural and physical sciences. An important
application of group theory was to crystallography. Groups were used to give
a theoretical classification of the different kinds of symmetry arrangements
possible within crystalline matter 20 years before experimental means were
available for analyzing the crystals themselves.

Group theory is used in quantum mechanics. It is used to study the atom’s
internal structure. In the 1950s, a new generation of particle accelerators pro-
duced a variety of subatomic particles. Group theory was used to predict the
existence of a tenth nucleon in a tenfold symmetry scheme of nucleons of which
nine particles had already been detected. In 1964, the tracks of Omega-Minus,
the tenth nucleon, were identified.

2.1.1 Worked-Out Exercises

¢ Exercise 1 Let G = {a € R | —1 < a < 1}. Define a binary operation * on

G by
a+b

1+ab
for all a,b € G. Show that (G, %) is a group.

axb=

Solution: Note that —1 < = < 1 if and only if 22 < 1 for all z € R.
Let a,b € G. First we show that a xb € G. Now a? < 1 and ¥ < 1. Thus,
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(1 —a?)(1 - b%) > 0. This implies that 1 —a? — b2 + a?h? > 0. Now (1 +ab)? —
(a+8)2=14+0a%*+2ab—a? -4 —-2ab=1—-a?—b>+a%? > 0 and so

la_:—abb)z < 1. Therefore, a * b € G. Hence, G is closed under *. We now show
that * is well defined. Let a,b,¢,d € G and (a,b) = (¢,d). Then @ = ¢ and

b = d. Thus,

axb= atb c+d _ d
“1+ab 1+4cd
and so * is well defined. To show that * is associative, let a,b,¢c € G. Now
atb
irab T
(a*b)xc= ath wo— et TC a+b+c+abc.
L+ab 1+(Hg)e 1+ab+tac+be
Similarly,
a+b+c+abe
ax{bxc) =

1 +ab+ac+ be’

Therefore, (a*b) *c = a*(b+*c¢) and so * is associative. Hence, we have shown
that (G, *) is a semigroup. Now 0 € G and

= Ota =a forallaed.
1+ 0a

This shows that (G, *) satisfies (i) of Theorem 2.1.22. Leta € G. Then —a € G
and

O0xa

—a+a
(—a)*xa = T+ (a)a 0.
Thus, (G, *) satisfies (ii) of Theorem 2.1.22. Consequently, by Theorem 2.1.22,
(G, ) is a group.

¢ Exercise 2 Let G = {(a,b) | a,b € R, a # 0} = R\{0} x R. Define a
binary operation * on G by

(a,b) * (¢,d) = (ac,b+ d)

for all (a,b), (¢,d) € G. Show that
(i} (G, *) is a group,
(ii) G has exactly one element of order 2,

(ili) G has no elements of order 3.

Solution: (i) As in Worked-Out Exercise 1, we show that (G, *) satisfies
the conditions of Theorem 2.1.22. Let (a,d), {c,d) € G. Thena # 0 and ¢ # 0
and so ac # 0. Thus, (a,b) * {¢,d} = {(ac,b+ d) € G. Hence, G is closed under
*. [t 1s a direct computation to verify that * is well defined and associative, so
we ask the reader to do the verification. Now (1,0) € G and

(1,0} * (a,b) = (1la,0+ b) = (a,b) forall {(a,b) € G
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and so (G, *) satisfies (i) of Theorem 2.1.22. Let (a,b) € G. Then a # 0 and so
1 c¢Rand 1l +#0. Thus, (i,-b) € G and

(5,—b) (a,b) = (38, ~b+b) = (1,0).

Therefore, (G, *) satisfies (ii) of Theorem 2.1.22. Hence, (G, *) is a group by
Theorem 2.1.22.

(ii) First note that {(—1,0) € G and (-1,0) % (—1,0) = (1, 0). Thus, {(—1,0)
is of order 2. We now show that this is the only element of order 2 by showing
that if (a,b) is any other element of G of order 2, then (a,b) = (—1,0).

Let (a,b) € G be an element of order 2. Then (a,b) * (a,b) = (1,0) implies
that (a2,b+b) = (1,0). Therefore, a® = 1 and b = 0. Now a? = 1 implies that
a = +1. If a = 1, then (a,b) = (1,0), which is a contradiction since (1,0) is
of order 1. Hence, a = —1 and so (a,b) = (—1,0). Thus, (—1,0) is the only
element of order 2.

(iii) Suppose that (a,b) is an element of order 3. Then (a,b) *(a,b) *x(a,b) =
(1,0). This implies that (a3,3b) = (1,0). Thus, > =1and b=0. Now a3 =1
implies that a = 1. Hence, (a,b) = (1,0). But (1, 0) is of order 1. Consequently,
G has no element of order 3.

¢ Exercise 3 Let G be the set of all rational numbers except —1. Show that
(G, *) is a group where

axb=a+b+ab
for all a,b € G.

Solution: As in Worked-Out Exercise 1, we show that (G, *) satisfies
the conditions of Theorem 2.1.22. Our first step is to show that * is well
defined. Let a,b,¢,d € G and (a,b) = (¢,d). Then a = ¢ and b = d. Thus,
axb=a+b+ab=c+d+cd =cx+d and so x is well defined. Let a,b € G.
Then a # —1 and b # —1. We now show that a * b € G by showing that

axb # —1 and axb is a rational number. Suppose axb =a+b+ab= —1. Then
(a+1)(b+1) = 0. Hence, either (a+1) =0 or (b+1) = 0 and so either a = ~1
or b = —1, which is a contradiction. Therefore, a * b # —1. Since addition and

multiplication of rational numbers is a rational number, it follows that a * b is
a rational number. Hence, a xb € G. Thus, * is a binary operation on G. Let
a,b,c € (G. Then

(@xb)xc (a+b+ab)*c
a+b+ab+c+ac+ bc+ abc
a+ (b+c+be)+a(b+ c+ be)
a+bxc+a(bxc)

a* (bxc).
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This shows that * is associative. Thus, (G, *) is a semigroup. Now 0 € G and
O%xa = 0+a+0-a = afor all a € G. Hence, (G, *) satisfies (i) of Theorem 2.1.22.
Now for all @ € G, a+1 # 0. Note that — %7 # —1. Therefore, —235 € G and

a a a —a+a+a®—a®
*aq = — a+{(— a= =0
a+1 a+1+ +( a+l) a+1

This implies that (G, x) satisfies (ii) of Theorem 2.1.22. Hence, by Theorem
2.1.22, (G, %) is a group.

{ Exercise 4 Let G be a group and = € G. Suppose o(z) = mn, where m
and n are relatively prime. Show that there exist ¥, z € G such that
z=y*z=2z%y and o(y) = m and o(z) = n.

Solution: Since ged(m, n) = 1 there exist s,t € Z such that 1 = ms + nt.
Now z = 2™+ = g™ 5 z™, Let y = 2™ and z = 2™°. Then z = y*z = 2 *¥.
Now y™ = (z™)™ = ™" = e. Hence, o(y) divides m. Similarly, o(z) divides n.
Suppose o{y) = m; and o(z) = ny. It is an easy exercise to verify that (y*z)! =
' * 2! for all positive integers I. Thus, 2™™ = (y * z)™™M = y™in 4 MM —
e * ¢ = e. Hence, mn|myn;. But since m;|m and n;|n, we must have m = m;

and n = nq.

{ Exercise 5 Let (G,*) be a group of even order. Show that there exists
a € Gsuchthat a #£e, a? =e.

Solution: Let A={9g€G|g#9 '} CG. Thened¢ A. If g € A, then
¢! € A, i.e., elements of A occurs in pairs. Therefore, the number of elements
in A is even. This implies that the number of elements in {e} U A is odd. Since
the number of elements in G is even and {e} U A C G, there exists a € G such
that a ¢ {e} U A. But then a # e and a ¢ A. Hence, there exists a € G such
thatc£eand a =a~! ora® =e.

¢ Exercise 6 Let (G, *) be a group and a,b € G. Suppose that axb = bxa~!
and bxa=axb"!. Show that a* =% = e.

Solution: Since axb=bxa~ !, a = bxa"l+b L. Similarly, b=a*b lxa L.
Thus, bxa = axb™! = (bxa 1 xb71)xb~! = bxa~! xb~2, Multiply both sides of
the equation bxa = bxa~! xb~2 by b~! to get @ = a~! xb~2. This implies that
a2 =b72 Hence, a* = a’?+xa? = a?xb 2 = a*{a*xb")*xb7 ! = ax(bxa)xb"! =
(axb)raxb ! =(bxa ) xaxb ! =bx(a  *xa)xb ! =brexb ! =e. Also,
bt=a"1=e

Exercise 7 Let (G, *) be a group and e,b € G. Suppose that a *b” = b" "1 xq
and b * o™ = o™t % b for some n € N. Show that a = b=e.
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Solution: Multiply both sides of the equation a * b = b"*! x q by b7
to get @ = V"l xaxb™ Thus, a®? = a*xa = a*x b" L xaxb™ = (ax
)*bxaxb ™ = (0" xa)xbrxaxb™ = b x(axb)%axb". Now
ad=arxa?=ax (M x(axb)xaxb™) = (a*xb)xbx(axb)xaxdb™ =
(Pl xa)xbx(axb)xaxb™™ = b1 % (axb)? *a*b ™. Hence, we see that we
could use induction to obtain

A =" (axb)" Lragxb" (2.2)
for all n € N. Also,
bxa®™ = a*tlxb
= a*xa"xb

ax (" x(axb)" L xaxb ) xb
axb™ 1l x (axb)" 1 xaxbl "
(@axb™)*bx(axb)* Lxaxbl™™
(Bl xa)xbx(a*xb)" Lxaxbl™
Lk (@ b)? x ax b1,

It

which implies that
A" =b" % (axb)"xaxb"" (2.3)

From Egs. {2.2) and (2.3),
P s (@xb)" traxb =% (axb)" xaxbl ",
which implies that
b * (a*b)"_l xa=(axb)"*axb=(axb)"tl

Thus,
(@*xd)™! = bx(axb)" lxa
= bk ((axb)*---x(axb)) *xa

o

' n—szimes
= (bxa)x---x(bxa) (2.4)

n times

= (bxa)™

Interchange the role of a and b to get

(bxa)"*! = (a*b)™. (2.5)

Hence, (a ¥ b)" = (bxa)"™! = (bxa)" x (bxa) = (@ *b)"*! x (bxa) and so
e = (a * b) * (b* a), which implies that

a’=b"2 (2.6)



2.1. ELEMENTARY PROPERTIES OF GROUPS 76

Now
bra® =bxa?xa" 2 =bxb2xa" 2 =b"1xqa" 2 (2.7)

and
" lab=a"Txalxb=a"1xbZxb=a 1 x bl (2.8)

Thus, from Egs. (2.7) and (2.8) it follows that b1 ¥ a™ 2 = a™ ! x5! and so
@ P =blxa"2xb=(b"lxaxb) 2 (2.9)

Now b*a™ = a™*! b implies that
o = (b xaxb)"tL. (2.10)

Hence, a® = (b7 xa*b)"t = (b7 L4a*b)"2x (b~ xa*b)® = a™ 1% (b7  xaxb)3,
which implies that a = (b7 *a*b)% = b~1xa3*b. Thus, a®*b = bxa. Therefore,
brxa=adxb=axa?xb=a*xb"?xb=ax*b"! by Eq. (2.6). That is, we have

bsxa=axbl. (2.11)

Similarly,
axb=bxal (2.12)

Now a*xb=>bxa"! impliesthat a*bxa=05. Thus,b=a*xbxa=a*axb"!
[by Eq. (2.11)]. Hence,
a? = b2,

Suppose © is even. Then ¢? = 4% implies that a® = b”. Hence, a*b* = 6"l xa
implies that a®*! = a™ xb* a and so b = e. Similarly, a = e. Suppose n is odd.
Let n = 2k + 1. Then a?* = b%. Now a % " = "l xa = a # b2F+1 = p2kt2 4 ¢
= a* a?* % b = a%*2 x g. Thus, b = a? = b%. Hence, b = e. Similarly, a = e.

Exercise 8 (Hays) Let (5, *) be a semigroup. Show that § is a group if and
only if for all a € § there exists a unique b € S such that a *xb*a = a.

Solution: Suppose for all a € S, there exists a unique b € S such that
a*xbxa=a.Let a € S. Then there exists b € S such that a * b * a. = a. Thus,
a*bxaxb=axbandso (axb)? =axb. Hence, S has an idempotent element.
If (S,%) is to be a group, then it can have only one idempotent (Corollary
2.1.12), namely, the identity element. Therefore, first we show that § has only
one idempotent.

Suppose e and f are two idempotents in S. Since e % f € S, there exists a
unique g such that (e f) xg*(ex f) =e* f. Now (ex f) * (gxe) * (ex* f) =
(exflxgx(exe)xf=(exflsgse?xf=(exf)xg*(e*xf)=ex f. Since
¢ is unique such that (e* f)xg=* (ex f) = (e * f), it follows that g+xe = g.
Similarly, since (e * f) x(f*xg)x(ex f} = (ex fl*xg*x(ex f) = ex f, the



2.1. ELEMENTARY PROPERTIES OF GROUPS 77

uniqueness of g implies that f*xg = g. Also, (ex f)*(gx(ex f)*xg)*(ex* f) =
((ex f)xgx(exf))xgx(exf) = (ex f)xg*(exf) Again, the uniqueness
of g implies that g (e * f) g = g. Hence, g> = g+xg = (g*e)* (f*g) =
g*(exf)xg = g. Thus, ¢ is an idempotent. Now g = gxg*g and gx(exf)*g = g.
Hence, by the uniqueness of the middle element g = e * f. Therefore, e f is an
idempotent. Now (e f)* fx(ex f) ={(ex(f*xf))x(exf)=(exf)*x(exf) =
e* f and similarly (e * f) *x e x (e * f) = e x f. By the uniqueness of the middle
element, it follows that e = f. Hence, S has a unique idempotent element.

Let e be the idempotent element of S. Let @ € S. Then there exists b € S
such that a * b * ¢ = a, which implies that (a * )2 = a * b. Hence, a + b = e.
Also, a*b*a = o implies that bxa*b+a = bxa. Thus, b*xa is an idempotent.
Hence, b*a = e. Also, a xb xa = a together with a xb = ¢ = bx e implies that
e*a = a = a * e. Therefore, e is the identity element. Sinceaxb=e=bxa, b
is an inverse of a. Consequently, {S, *) is a group.

Conversely, suppose (S, *) is a group. Let a € S. Note that axa~l*a = a.
This shows the existence of an element b € § such that a*bxa = a, namely, b =
a~!. To show the uniqueness, suppose there exist b, c € S such that axb*a =a
and a*c*a =a. Then a*b*a = a *xc+*a and by the cancellation laws, b = c.
Thus, b is unique such that axb*xa = a.

2.1.2 Exercises

1. Which of the following mathematical systems are semigroups? Which are
groups?

(i) (N, *), where a xb =a for all a,b € N.

(ii) (Z, %), where a xb=a — b for all a,b € Z.

(iii) (R, *), where a * b = |a|b for all a,b € R.

(iv) (R,*), wherea*b=a+b+1 for all a,b € R.
(v) (R,*), whereaxb=a+b—abforalle,bec R
(vi) (Q,*), where a xb= 2 for all a,b € Q.

(vii) (G, *), where

o[ [ s 2] )

and * is the usual matrix multiplication.

(viii) (G, %), where G is the set of all matrices of the following form over

Z

oo
o = R
_ 0 o
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and * is the usual matrix multiplication.

. Let G = {(a,b) | a,b € R, b # 0}. Define a binary operation * on G by

{(a,b) * (c,d) = (a + be, bd) for all (g,b), (¢, d) € G. Show that (G, *) is a
noncomrnutative group.

le,b,c,d € R, ad —bc =1 ;. Show that G is a group

under usual matrix multiplication. (This group is usually denoted by
SL(2,R) and is called the special linear group of degree 2.)

. Let G= { [ Lo ] | n € Z} . Show that (G, *) is a commutative group,

0 1

where * denotes the usual matrix multiplication. Also, show that (G, *)
is torsion-free.

In Z14, find the smallest positive integer n such that n[6] = [0].

Find an element [b] € Zg such that [8] -9 [8] = [1]. Does [b] € Us?

In Uy, find the smallest positive integer n such that [7]* = [1].
Describe Uy, Uy, Uy, Upy of Example 2.1.6.

Let p be a prime. Show that U, = Z,\{[0]}.

Let Up = {[a] € Z,\{[0]}| gcd(a,n) = 1}. Show that (U,,-,) is a group,

where -, is multiplication modulo 7.
Show that U, = {[a] € Z,\{[0]} | additive order of [a] = n }.

Let (G,*) be a group and a,b € G. Suppose that a? = e and axb*sa = b".
Show that 533 = e.

Let (G, *) be a group and a,b € G. Suppose that a™1 * b2 x a :gfb'3";nd
b lxa?xb=a’ Showthata=b=e.

Let (G, *) be a group. If a,b € G are such that a* = e and a® b = bx*a,
show that a = e.

Let (G,*) beagroupand z,a,b € G. Let ¢ = z*a+z~ ! and d = z+bxz™!.
Show that axb=bxaifand only if cxd =d *c.

Let (G,*) be a group such that a* = e for all a € G. Show that G is
commutative. .

Prove that a group (G, *) is commutative if and only if (a*b)~! = a=1xb~!
forall a,b € G.
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Let (G, *) be a group. Prove that if (a*b)? = a’xb? for all a,b € G, then
(G, ) is commutative.

Prove that a group (G, %) is commutative if and only if for all a,b € G,
(a*b)" = a™ x " for any three consecutive integers n.

Let (G,*) be a group. If G has only two elements, prove that G is
commutative.

Let (G, ) be a group and a,b,c € G. Find an element z € G such that
a*zxb=c. Is z unique?

Let (G, *) be a group and a,b € G. Show that (a*bxa™1)* = a*b" xa~}
for all integers n.

Let (G, *) be a finite group and a € G. Show that there exists n € N
such that ¢" =e.

If (G,x) is a group and @y, ..., a, € G, prove that (@) * --- ¥ a,)”! =
-1 -1
agtH-oxall

Let (G, *) and (H, ) be groups. Define the operation x on Gx H = {{a, b)
| e € G, b€ H} by (a,b) x(¢,d) = (a*¢,b-d). Prove that (G x H, ) is
a group. If (G, *) and (H,-) are commutative, prove that (G x H,*) is
commutative. The group (G x H, ) is called the direct product of G
and H.

Let (G, *) be a finite group and a € G. Show that o(a) < |G|.

Let (G, *) be a group and a,b € G.
(i) Show that a and a™! have the same order.
(ii) Show that @ and b* a * =1 have the same order.

(iii) Show that a * b and b * a have the same order.

Let (G,*) be a group and a,b € G.

(i) Suppose that axb = b°xa3. Show that o(bxa™!) = o(b°*a) = o(b3*a?).
(i) Generalize (i) to arbitrary powers of a and b.

Let (G, *) be a group, a € G and o(a) =n. Let 1 < p < n be such that p
and n are relatively prime. Show that o(aP) = n.

Let (G, ) be a group, a € G, and o(a) = p, where p is a prime.

(i) Show that o(a*) =pforall 1 <k < p.

(i1} Show that for all m € N, either a™ = e or o(a™) = p.
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Let (G,*) be a group and a € G. Suppose that o(a) = n and n = mk for
some m, k € Z. What is o(a*)?

(i) Let (G, *) be a group, a,b € G, o(a) = n, o(b) = m, ged(m,n) = 1,
and a * b = b x a. Show that o(a * b) = mn.

(i) Let (G,*) be a group, a; € G, o(a;) = n;, 1 < i < m. Suppose
ged(ni, ;) =1 and asa; = aja; forall i and 5. Let x = a1+ a2 * - * ap,.
Show that o(z) = niny - - - 1.

Let (G,*) be a group and z € G. Suppose o(z) = n = ning - ng,
where for all ¢ # j, n; and n; are relatively prime. Show that there exists
z; € G such that o(z;) =n; foralli =1,2,... )k, zc =21 *xy % % 2%
and z; * £; = z; * z; for all ¢ and j.

Let G = {(a,b) | a,b € R, a # 0}. Then G is a group under the binary
operation (a, b) * (¢, d) = (ac¢, be+d) for all (a,b), (¢, d) € G. Show that G
has infinitely many elements of order 2, but G has no element of order 3.

Let a,b € Sym. As remarked in Example 2.1.29, every rigid motion of
the square can be considered a one-one function of {1, 2, 3,4} onto itself.
Consider a*b as a function. Show that a*xb = gob, where x represents the
binary operation of rigid motions of the square and o is the composition
of functions.

Let (S, *) be a finite semigroup. Prove that there exists a € § such that
2
a® = a.

Let (G, *) be a finite semigroup with identity. Prove that (G, ) is a group
if and only if G has only one element a such that a2 = a.

Prove that a semigroup (S, *)} is a group if and only if a xS = S and
Sxa=Sforalacs whereaxS={axs|s€S}and Sxa={s*a|
s €S}

Prove that a semigroup (5, %) is a group if and only if

(i) there exists e € S such that axe =a for all @ € §, and

(ii) for all a € S there exists b € .S such that a xb =e.

Rewrite the statements and proofs of the theorems in this chapter using
additive notation.

Let (G, *) be a group, a,b € G and m,n € Z. Prove that

(i) a**a™ = a"*t™ = a™ x a",

(i) (@)™ = a™™,
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(iii) e~ = (a™) 71,
(iv) e™ = ¢,
(v) (a*b)" =a™ xb™, if (G, %) is commutative.

42. Write the proof if the following statements are true; otherwise, give a
counterexample.

(i) Let T(S) be the set of all functions on S = {1,2,3}. T(S) is a group
under composition of functions.

(1) Mz(R) = {[ g Z } la,b,c,d € R} is a group under usual matrix

multiplication.

(iii) Every group of four elements is commutative.

(iv) A group has only one idempotent element.

(v) A semigroup with only one idempotent is a group.

(vi) If a semigroup S satisfies the cancellation laws, then S is a group.



2.1. ELEMENTARY PROPERTIES OF GROUPS 82

Niels Henrik Abel (1802-1829) was
born on August 5, 1802, in Finndy, Nor-
way. He was the second of six children. Abel
and his brothers received their first educa-
tion from their father.

At the age of 13, Abel along with his
older brother, was sent to the Cathedral sch-
ool in Christiania (Oslo). In 1817, his math-
ematics teacher was Bernt Michael Holmbg,
who was seven years older that Abel. Holmbé
recognized Abel's talent and started giving
him special problems and recommended spe-
cial books outside the curriculum. Abel and
Holmbé read the calculus text of Euler and
the work of Lagrange and Laplace. Soon
Abel became familiar with most of the im-

portant mathematical literature.

Abel’s father died when he was 18 years old and the responsibility of supporting
the family fell on his shoulders. He gave private lessons and did odd jobs. However,
he continued to carry out his mathematical research.

Abel, in his last year of school, attacked the problem of the solvability of the quintic
equation, a problem that had been unsettled since the sixteenth century. Abel thought
that he had solved the problem and submitted his work for publication. Unable to
find an error and understand his arguments, he was asked by the editor to illustrate
his method. In 1824, during the process of illustration he discovered an error. This
discovery led Abel to a proof that no such solution exists. He also worked on elliptic
functions and in essence revolutionized the theory of elliptic functions.

He traveled to Paris and Berlin in order to find a teaching position. Then poverty
took its toll, and Abel died from tuberculosis on April 6, 1829. Two days later a
letter from Crelle reached his address, conveying the news of his appointment to the
professorship of mathematics at the University of Berlin.

Abel is honored by such terms as Abelian group and Abelian function.



Chapter 3

Permutation Groups

Permutation groups is one of the specialized theories of groups which arose
from the source, classical algebra, in the evolution of group theory.

3.1 Permutation Groups

As stated earlier, there are four major sources from which abstract group the-
ory evolved. Mathematicians’ interest in finding formulas to solve polynomial
equations by means of radicals led some mathematicians to the study of permu-
tations of the roots of rational functions. Lagrange, Rufini, and Cauchy were
among the earlier mathematicians to work with permutation groups. However,
it was Cauchy whose systematic study of permutation groups (between 1815
and 1845) is believed, by some, to be the origin of abstract group theory. Many
of the concepts and major results in this chapter are due to Cauchy.

We begin our study of permutation groups by defining what a permutation
is.

Definition 3.1.1 Let X be a nonempty set. A permutation m of X is a
one-one function from X onto X.

Definition 3.1.2 A group (G, x) is called a permutation group on a nonem-
pty set X if the elements of G are permutations of X ond the operation x is
the composition of two functions.

Example 3.1.3 Let X be any nonempty set and Sx be the set of all one-one
functions from X onto X, as defined in Example 2.1.9. Then (Sx, o) is a group
as we have shown in Example 2.1.9, where o is the composition of functions.
Hence, (Sx,0) s a permutation group.

In this chapter, and in fact in this text, our study of permutation groups
will focus on permutation groups on finite sets, i.e., X is a finite set.
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Before we consider more examples of permutation groups, let us fix some
notation which will be useful when working with permutations.
Let I, ={1,2,...,n}, n > 1. Let w be a permutation on I,. Then

m={(1,7(1)),(2,7(2)),...,(n,7(n))}.

(Recall that a function f : A — A is a subset of A x A.) It is sometimes
convenient to describe a permutation by means of the following notational
device:

ﬂ_( 1 2 3 n)
A1) w(2) 7@ - w(n) )

This notation is due to Cauchy and is called the two-row notation. In the
upper row, we list all the elements of I, and in the lower row under each
element ¢ € I,, we write the image of the element, i.e., 7(%).

Example 3.1.4 Letn = 4 and w be the permutation on Iy defined by w(1) = 2,
w(2) = 4, m(3) = 3, and 7(4) = 1. Then using the two-row notation we can

write
= 1 2 3 4
S0 2 43 1)

As we shall see, the two-row notation of permutations is quite convenient
while doing computations such as determining the composition of permuta-
tions.

Let n =7 and 7 and ¢ be two permutations on I7 defined by
(1234567
"“\{13486725
> 1 2345 67
V253176 4/

Let us compute 7 o 0. Now by definition, (7 o 0)(¢) = m(o(¢)) for all i € I7.
Thus,

and

(ro)(1) = (o(1) = n(2) = 3,
(m00)(2) = 7(0(2) = 7(5) = 7

and so on. From this, it is clear that when determining, say, (7 o 0)(1), we
start with o and finish with m and read as follows: 1 goes to 2 (under ¢) and
2 goes to 3 (under 7) and so 1 goes to 3 (under 7 o o). We can exhibit this in
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the following form:

Toa

15253 153
25557 27 7
35354 37 4
15151 4771
55755 55 5
6%622 6= 2
75456 7™ 6.

85

Thus,
oo = 1 234567
V37415 26/

Example 3.1.5 Let n =6 and a and 3 be permutations on I defined by

B
L_f{12345¢
1314652

8= 123456
- 354 26/}
Let us first determine ao 8. Now 1 LA 3, ie, 1 p 3. Similarly, 2 i 4,
2fs 42Cg 591 629 Thus,
6
K

1 2 3 4
‘”°ﬁ_(3456

Similarly, for oa; 1 53 2 5, te., 1 fog 5 and so on. In this case, we start
with « and finish with 8. Note that

Goa— (123456
“=ls5 1486 2 3]/

We note that ao 3 # Boc.

and

— O

Let S, denote the set of all permutations on I,, n > 1.

Example 3.1.6 In this ezample, we describe Ss, t.e., the set of all permuta-
tions on I3 = {1,2,3}. From Exercise 8 (page 50), we know that the number
of one-one functions of I3 onto I3 is 3! = 6. Thus, |S3| = 6. Let e denote the
1 2 3
1 2 3

permutation on I3. Let us see some of the choices for a;. Suppose a1(1) = 1.

identity permutation on I3, i.e., e = . Let ay be a nonidentity
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If a1(2) = 2, then we must have a1(3) = 3 since ay is a permutation. In this

case, we see that a; = e, a contradiction. Thus, we must have @;(2) = 3 and
. 1 2 3 -

a1(3) = 2, te, = ( L 3 9 ) . In a similar manner, we cen show that

the other four permutations on I3 are ag = ( é i g ) , a3 = ( 1 23 ) :

3 21
1 2 3 1 2 3
a4-—(2 3 1),andas—(3 1 2).Thu3,

33 = {6, o1, O, (3, 0y, CI5}.

Let us denote ag by o end oy by 8. We ask the reader to check that 3% = as,
aofl=o, ond ao B3 = a3. Hence, we can write

S3 = {e,,0% a,a0B,ac %}

Since (S3,0) s also a group, we ask the reader to show that o(a) = 2 and
o(B) = 3 by showing that a® = e and B° # e, but 33 =e.

In the previous example, the permutation group (S3,0) consisted of all
permutations on the set I3. Next, we give an example of a permutation group
that does not contain all permutations on a given set.

Example 3.1.7 Let n = 4 and consider Iy = {1,2,3,4}. Recall that in Ez-
ample 2.1.29, we remarked that rigid motions of the square can be viewed as
permutations on Iy. Let S be the set of all permutations that corresponds to
the rigid motions of the square. We will use the same notation for the per-
1 2 3 4
2 3 41
permutation, etc. By Ezercise 35 (page 80), it follows that the multiplication
table of (S, o) is the same as the multiplication table of the group (Sym, *). Now
composition of functions is associative and from the multiplication table, it fol-
lows that S is closed under o, r3gp is the identity of (S,0), and every element
of S has an inverse. Thus, (S o) is a group. Hence, the group of symmetmes
of a square can be thought of as a permutation group on Iy.

mutations, t.e., rop 8 the permutation , T3g0 S the identity

The following theorem describes some basic properties of S,.

Theorem 3.1.8 (i) (S,,0) is a group for any positive integer n > 1.
(1) If n > 3, then (S,,0) is noncommutative.

(iii) || = n!
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Proof. (i) We have already noted that the set of all one-one functions of
any nonempty set onto itself forms a group under composition of functions in
Example 2.1.9. Thus, (S,,0) is a group for any positive integer n > 1,

(ii) Let n > 3. Let a, 8 € S, be defined by

o 1 2 3 4 n and § = 1 2 3 4 n
V1 3 2 4 n V3 21 4 n /)
Now
g1 234 n
TP 2 31 4 n
and
Goa |1 234 n
131 2 4 7
Thus, (o 8} 1) =2 # 3 = (Boa)(l). Hence, o 8 # Bo e and so S, is

noncommutative.
(iii) This follows from Exercise 8 (page 50).

Definition 3.1.9 The group (Sn, o) s called the symmetric group on I,.

1 2 n
(1) w(2) -+ w(n

S

Consider the permutation w = (

). If n(i) = %,

o Q2
S

then we drop the column i

2 4
by(4 2).

Definition 3.1.10 Let 7 be an element of S,. Then © is called a k-cycle,
written (41 42 -~ - i), of

_ ( i1 12 e Gkl Tk )
'ﬂ- _ - - . 0 3
i 13 w4

ie, (i) = dj41, 5 = L,2,...,k = 1, n(ix) = 41, and 7(a) = a for any other
gfement of I,.

. For example, o = ( } ) is denoted

7 (1)

Note that if # = (4122 - - - 4%), then

(2182 -+ 2x)
(i273 -+ ki)

[

T

= (&58501 - ihi1 - 15o1).
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A k-cycle is called a transposition when k = 2.
We know that in Example 3.1.7, the permutation rgg is a 4-cycle and ds is
a 2-cycle. We write
re0 = (1 2 3 4)
and
dy = (1 3).
The identity of .S, is sometimes denoted by (1) or e.

Example 3.1.11 Using the cycle notation, we can write
S = {e,(12),(19),(23),(123),(1 32)}.

We now note some of the properties of the group (Ss3,0).

(2) (83,0) is a noncommutative group of order 6 by Theorem 3.1.8.

(12) Sy contains two elements of order 3; for (123)o0(123)=(132)#e
and (12 3)0(123)o(1l 23)=e. Hence, the order of (1 2 3) is 3. Similarly,
the order of (1 3 2) is 3. The order of (1 2),(1 3), and (2 3) is 2 since (1 2)o(1
2)=¢,(13)o(13)=e,and(23}0(23) =e.

(i1} In 53, the product of distinct elements of order 2 is an element of order
3.(120(23)=(123),(13)o(12)=(123),(12)0o(13)=(132), (2
3o(12)=(132),(13)0(23)=(132), and (23)0(13)=(L23).

Definition 3.1.12 Let o, € S,. Then o and 3 are called conjugate if there
exists v € S, such that

yoaoy Tl =4.
The following theorem shows how to compute the conjugate of a cycle.

Theorem 3.1.13 Let 7 = (i1i2---4;) € Sp, be a cycle. Then for all a € Sy,

aomoa ! = (a(i) alis) - - ali)).

Proof. Since a € §,, « is a one-one mapping of I, onto I,. Thus, the ele-
ments «(1),..., a{n) € I,, are all distinct and so I, = {a(1),a(2),...,a{n)}.
Let r be any integer such that 1 <r < I. Then

(@omoa)(a(iy)) = afr(a™alir))))
= a(r(i))
= a(ir+1).
Also, (aomoa™ N (a(h)) = a(@ (e Hal(d)))) = a(n (i) = afi;). Nowlet a € I,
be such that a # a(i,) forall r, 1 <r < I. Then a !(a) € I, and o (a) # i,
for all 7, 1 <r <, and so 7{a"*(a)) = a~!(a). Thus,
(@omoa)(a) = a(r(a(a)))

= ofa”}(a))

= a.
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It now follows that aomoa™! = (a(i;) afiz) --- afi)). A

Definition 3.1.14 Let my,mo,..., 7 € S,. Then my,ma, ..., 7 are called dis-
joint if for all i, 1 <i < k and for all a € I, 7;(a) # a implies 7;(a) = a for
all£1,1<j<k.

In other words, m,m,...,m € S, are disjoint if for all 1 < 7 < k and
for all a € I, if m; moves a, then all other permutations 7; must fix a, i.e.,
mi(a) =aforall j #i,1<j<k. ’

Let m and X be disjoint permutations on I,,. Let @ € § be such that 7(a) # a.
Then A{a) = a. Let w{a) = b. Then {7 o A)(a) = 7w(A(e)) = 7(a) = b. Also
(Aom)(a) = A(m(a)) = A(b). If w(b) = b, then w(b) = b = 7(a) and so a = b.
Thus, 7(a) = b = a, a contradiction. Hence, 7(b) # b and so A(b) = b. Thus,
(Aom)(a) = A(m(a)) = A(b) = b. Hence, (mo X)(a) = (Ao m)(a). Suppose
m(a) = a. If A(a) = a, then (7 o A\){e) = a = (Aox)(a). Suppose A(a) # a. By
a similar argument as before, (m o A){a) = (A o 7)(a). Therefore, ro A = Ao .
Consequently, if 7 and A are disjoint permutations, then they commute.

Consider 7 = 1234567 8) € S,. Thenm =(1253)0(4

2518376 4 n-

8) o (6 7) can be written as a product of disjoint cycles. This leads us to the
following theorem.

Theorem 3.1.15 Any nonidentity permutationn of Sp (n > 2) can be uniquely
expressed (up to the order of the factors) as a product of disjoint cycles, where
each cycle is of length at least 2.

Proof. We prove the result by induction on n. Suppose n = 2. Now |Sy| = 2
1 2
21
cycle. Thus, the theorem is true for n = 2. Suppose n > 2 and the theorem is
true for all S such that 2 < k < n. Let 7 be a nonidentity element of S,. Now
7(1) € I, for all integers 4, ¢ > 1. Therefore, {7 (1), #%(1), ..., 7%(1),...} C I,..
Since I, is a finite set, we must have 7'(1) = #™(1) for some integers ! and m
such that [ > m > 1. This implies that 7#/~™(1) = 1. Let us write j = [ — m
Then j > 0 and 77(1) = 1. Let ¢ be the smallest positive integer such that
7i(1) = 1. Let

and the nonidentity element of S is @ = . Nowa=(12),ie,axisa

A= {1,7(1),7%(1),...,#" 1 (1)}.

Then all elements of the set A are distinct. Let 7 € S,, be the permutation
defined by _
7= (1a(1) 7*(1) - 7)),

i.e., 7is a cycle. Let B = I,\A. If B = ¢, then 7 is a cycle. Suppose B # ¢.
Let o0 = w|p. If o is the identity, then 7 is a cycle. Suppose that ¢ is not the
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identity. Now by the induction hypothesis, ¢ is a product of disjoint cycles on
B, say,0c =c10090---00,. Now for 1 <i < r, define n; by

] oi{a)ifae B
m(a)--{ aifa ¢ B.

Then ny, 72, ..., ® and 7 are disjoint cycles in S5,,. It is easy to see that m =
L 0 Mg 0+ -0 Te0 7. Thus, 7 is a product of disjoint cycles.

To prove the uniqueness, let 1 = momo.c-om = ol 0---0 ls, a
product of r disjoint cycles and also a product of s disjoint cycles, respectively.
We show that every m; is equal to some yu; and every uy is equal to some 7y,
Consider 7;, 1 < ¢ < 7. Suppose 7; = (4142...%). Then (1) # ¢1. This implies
that #; is moved by some y;. By the disjointness of the cycles, there exists
unique p;, 1 < 7 < 8, such that iy appears as an element in y;. By reordering,
if necessary, we may write u; = (i) ¢2 ... ¢m). Now

2 = m(E) = w6) = wE) = o
i3 = wiz) = w(ia) = wler) = ple) = c3
i = m(i-1) = 7o) = wlaga) = pila-) = e

If | < m, then 41 = mi(4) = n(it) = n(a) = p;{a) = a+1, a contradiction.
Thus, ! = m. Hence, m; = p; for some 7, 1 < j < s. Similarly, every u; = m;
forsomet, 1<t<r. B

Corollary 3.1.16 Let n > 2. Any permutation ™ of S, can be expressed as a
product of transpositions.

Proof. In view of the preceding theorem, it suffices to show that every k-
cycle can be expressed as a product of transpositions. This fact is immediate
from the following equations:

e=(1)=(12)o(12)
and for k > 2
(‘2:1 ?:2 ?:k) = (?:1 ik) Q (3‘1 ik—l) Q---0 (il ig),

where {i1,i2 Caay ik} Q In. H

Let m € S,. Since S, is a finite group, we know that o(w) is finite. Thus, in

order to find the order of 7, we need to compute m, a2, w3, . .., until we find the
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first positive integer k such that 7% = e. Finding such a positive integer could
be a tedious task. However, we can effectively make use of the decomposition
of 7 as a product of disjoint cycles, compute the order of each cycle, which is
nothing but the length of the cycle (Exercise 17, page 97) and from the order
of the cycles deduce the order of 7. We ask the reader to consider this problem
in Exercise 18 (page 97).

Theorem 3.1.15 tells us that any permutation o € S,, n > 2, can be written
as a product of disjoint cycles. However, the theorem does not tell us how to
find the disjoint cycles in the decomposition of a. Next, we illustrate how to
find these cycles.

Let m be a permutation on I,, n > 2. In order to express 7 as a product
of disjoint cycles, first consider 1, w(1), w2(1), #3(1), ... and find the smallest
positive integer 7 such that #"(1) = 1. Let

o1 = (1 (1) #2(1) --- =""1(1)).

Then o, is a cycle of length ». Let ¢ be the first element of I, not appearing in

o1. Now consider 4, m(3), m2(i), w3(i), ... and find the smallest positive integer
s such that w571(i) = 4. Let
o2 = (¢ w{i) ©2(3) --- #57H(%)).

Then o5 is a cycle of length s. Now

{L,w(1), 7)., " O} 0 {7 (@), 72 (0), ., T T E)) = ¢,

for if § € {1, w(1), #2(1), ..., 7”1 (1)} N {5, w(0), 72(5), ..., 7*71(3)}, then
j = 7P(@i) for some p, 1 < p < r, and j = «*(1) for some k, 1 < k < s.
Thus, {1, (1), 7>(1), ..., ="~} (1)} = {3, n(3), #2(3), ..., #°1()}, which is
a contradiction. Hence, oy and o9 are disjoint cycles. If {1, #(1), #2(1), ...,
a YD)} u{i, 7(@), w2(5), ..., #°"1{s)} # I, then consider the first element of
I, not appearing in {1, w(1), 72(1), ..., * Y (1)}uU{s, 7(3), 72(3), ..., #*~1(i)}
and continue the above process to construct the cycle o3. Since I, is finite, the
above process must stop with some cycle o,,. Then m = 010030+ 0 0.
We illustrate the above procedure with the help of the following example.

Example 3.1.17 Consider the permutation

(1234567
T™l6 352471

on Iy. Here n(1) = 6, 7%(1) = #(6) = 7, and 73(1) = w(7) = 1. That is,
156575 1. Hence, o1 = (16 7) is a 3-cycle. Now 2 is the first element of
I; not appearing in (16 7). Also, 7(2) = 3, 7%(2) = w(3) = 5, m3(2) = n(5) = 4,
and m#(2) = w(4) = 2. Thatis, 2 5355545 2. Hence, 00 = (235 4) is

a cycle of length 4. Now o1 and o9 are disjoint and m = oy 0 09.



3.1. PERMUTATION GROUPS 92

While writing a permutation as a product of disjoint cycles, it is customary
not to write cycles of length one in the product. Thus, if some element of
I, does not appear in any of the cycles, then it is assumed to be fixed. For
example, if 7 = (1 2 5) o (4 6) € Sy, then since 3 and 7 neither appear in (1 2
5) nor in (4 6), they are fixed, i.e., 7(3) = 3 and #(7) = 7.

Given a permutation T € S,, n > 2, we can write 7 as a product of disjoint
cycles. We can also write m as a product of transpositions. However, the
representation of m as a product of transposition need not be unique. For
example, (123)=(13)o(12)=(21)0(23). Also, (13)=(12)0(13)o(2
3). That is, (1 3) can be written as a product of one transposition or as a
product of three transpositions. However, we will show that the number of
transpositions in any representation of a permutation is either even or odd,
but not both. We now proceed to prove this result.

Consider the formal product

X = [licici<nl@i—a;) = (a1 —a3)(a1 —a3)--- (a1 —ay)
(az —a3) -+ (a2 — an)
(%—1 - an):

If n =4, then X = (a1 — az)(a1 — a3)(a1 — aq)(az — a3)(az — aq)(as — aq).
For any permutation w € §,, let

(&)= ] (an@) — an):

1<i<j<n

Let us first examine ¢ (X') for any transposition o € Sy,.

Lemma 3.1.18 Letn > 2. Let o = (i ) %Sn, i < j, be a transposition. Then
o(X)=-X.

Proof.  First consider the factor (a; —a;) in the product X'. The correspond-
ing factor in o(X) is a,(;) — ay(;- Now

(i) — Go(j) = @ — @i = —(ai — a;).

Next, consider the factor ay — a;, where both &£ and { are neither equal to 7 nor
equal to j. The corresponding factor in o(X) is a, ) — a,() and

Qs(k) — Cr(l) = Gk — Q4.

Thus, the factor az — @; remains unaltéred. Now consider the factor a; — ay,
where either k or ! (but not both) is equal to ¢ or j. Let 1 < ¢ < n. Suppose
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t < i < j. We have the pair of factors (a; — a;) and (a; — a;) in the product X.
The corresponding factors in o(X) are a,(;) — a,¢;) and ag(y) — ag(;) and

(@) — Go@)@o() — 20(s)) = (@t — aj)(a: — ai) = (a: —a;)(as — a;).
Therefore, the product (a; — a;)(a: — a;) remains unchanged. Now suppose
¢ < t < j. Then we have the pair of factors (a; — a¢) and (a; — a;) in the
product X The corresponding factors in o (X') are a,(;) —a, () and a, () — a,(;)
and

(@5() — o)) (o) — Bo(3)) = (a5 — ae)(ar — @) = (a; — ar)(a: — ay).

Hence, the product (a; — a;)(a¢ — @;) remains unaltered. Finally, let i < j < 2.
Then we have the pair of factors (a; — a;) and (a; — a;) in the product X. The
corresponding factors in o(X) are a,(;) — a,() and a,(;) — a,qy and

(@o(i) — Co@))(@o(sy — Go(r) = (a5 — at)(ai — ar) = (a; — ar)(a; — ar).

Therefore, the product (a; — a;)(a; — a;) remains unaltered. Thus, all factors
other than a; — a; and a; — a;, where both k& and [ are neither equal to ¢
nor equal to 7, can be paired so that the product of factors under ¢ remains
unaltered. Hence, it now follows that o(X) = —X. R

Theorem 3.1.19 Letn > 2. Let w# € S,,. Suppose
W=610020‘°'00r=T10T20...07-s’

A

where o3, T; € Sp are transpositions, 1 = 1,2, ..., r,and j = 1,2, ..., 5. Then
both r and s are either even or odd.

Proof. By Lemma 3.1.18, 0;(X) = —& and 7;(&) = —& for all ¢ = 1,2,

...,myand 7=1,2, ..., s. First we compute (07 030 ---00,)(X). Now
(G10090:--00.)(X) = o1(oa( - (0r(X))))
= (-1)X.

Similarly, (memo---o7)(X) = (—1)*X. Hence, {(—1)" = (—1)*. Thus, both
r and s are either even of odd. B

By the above theorem, if # € §,, then 7 can be written as a product of
either an even or an odd number of transpositions, but not both. This leads
us to the following definition.

Definition 3.1.20 Let v € S,. If w is a product of an even number of trans-
positions, then m is called an even permutation; otherwise m is called an odd
permutation.

Corollary 3.1.21 Let w € S, be a k-cycle. Then w is an even permutation if
and only if k is odd.
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Proof. Letm={12---k). Thenm=(1k)o{lk—1)o---0o(l2),ie,n
is a product of k — 1 transposition. If 7 is an even permutation then k — 1 is
even and so & is odd. On the other hand, if & is odd, then & — 1 is even and so
7 is an even permutation. This completes the proof. B

Let A, denote the subset of S, consisting of all even permutations, n > 2.

Theorem 3.1.22 For n > 2, the pair (A,,0) is e group, called the alternat-
ing group on I,.

Proof. Since e =(12)0o(12), e € A,. Thus, A, # ¢. A product m oo
is even if and only if m; and 7, are bath even or both odd by Theorem 3.1.19.
Therefore, A, is closed under o. I_f 7 € A,, then mTom~! = ¢ is even and hence
7~1 € A,. Hence, (An,0) is a group. B

Cauchy recognized many important properties of 4,. Among others, he
proved the following theorem.

Theorem 3.1.23 FEvery elefﬁent in An, is a product of 3-cycles, n > 3.

Proof. Letm€ A,. Thent =0 0020--+0 or, where o; is a transposition,
1 <i <7 and 7 is even. Now for any transposition (a b),

(@ab)=(1a)o(1b)o(la).
Thus,
m=(ld1)o(lig)o-- o(Lin)

where m is even. Since (1 3;) o (1 4p) = (1 43 41), it follows that « is a product
of 3-cycles. B

3.1.1 Worked-Out Exercises

¢ Exercise 1 Prove that two cycles in S, are conjugate if and only if they
have the same length.

Solution: Let a = (41i2---4,) and 8 = (j1j2-- - Js) be two cycles in S,.
First suppose that « and g ate conjugate. Then 3 = 07! 0o 0 ¢ for some
o € S,. Since o is onto and ¢ € I, there exists k; such that o(k;) = 4; for all
[=1,2,...,7 . Now

(ige---Js) = (67 (@)o~ (ig) - - 07 (4r)) ( by Theorem 3.1.13)
= (kika-- k).

Hence, s = 7 and so a and 3 are of the same length.
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Conversely, let o = (133 3,) and 8 = (j1jo-- - Jr) be two cycles in S,
i1 o2 i
J1 J2 o Jr
1,2,...,r,and o(a) = a for all a € I,\{é1,%2,...,ir}. Then o € S,,. Now

of the same length. Let ¢ = , e, o(i) = gy forall I =

o tofloo= (07 (j)o (o) e T (Gr)) = (Bad2 ) =

{> Exercise 2 Express the permutation

on I3 as a product of disjoint cycles and then as a product of transposition.
Is ¢ an even permutation?

Solution: We have o(1) = 2, 02(1) = o(2) = 3, ¢3(1) = 0(3) = 8, and
0%(1) = ¢(8) = 1. Thus, (1 2 3 8) is a cycle. Now 4 is the first element of
I not appearing in (1 2 3 8). We have 0(4) = 5, 0%(4) = ¢(5) = 6, and
03(4) = o(6) = 4. Hence, (4 5 6) is also a cycle in 0. Next, 7 is the first element
of I3 not appearing in (1 2 3 8) and (4 5 6). Now o(7) = 7. Since all the
elements of Iy appear in one of the cycles (1 2 3 8), (4 5 6), and (7), we have
0=(1238)0(456). Now (1238)=(18)0o{(13)0(12)and (456)=(4
6)o0(45). Thus,o =(18)0o(13)o(12)0(46)o(45). Since o is a product of
five transpositions, o is not an even permutation.

$ Exercise 3 Write all elements of S4. Show that 54 has no elements of order
> 3.

Solution: Let o € Sy and ¢ = ;0030 - 00y, a product of disjoint cycles.
Since Sy is a permutation group on Iy, k < 2. If £ = 1, then o is a 2-cycle,
3-cycle, or 4-cycle. If k = 2, then ¢ is a product of two disjoint transpositions.
The number of distinct cycles of length 2 is 6, the number of distinct cycles of
length 3 is 8, and the number of distinct cycles of length 4 is 6. Hence, Sy = {e,
(12), (13), (14), (23), (24), (34), (123), (132), (234), (243), (13 4),
(143),(124),(142),(1234),(1324),(1423),(1243),(1342), (14
32),(12)0(34),(14)0(32),(13)0(24)}.

Since each 2-cycle is of order 2, each 3-cycle is of order 3, each 4-cycle is of
order 4, and the order of the product of two disjoint 2-cycles is 2, 54 has no
element of order > 5.

{ Exercise 4 Find the order of (123 4)0(56 7) in S5.

Solution: o(1 234) =4,0(567) =3. Now (1234) and (56 7) are
disjoint. Hence, (1234)o(567) = (56 7)o (12 3 4). If a and b are two
elements of a group G such that o(a) = m, o(b) = n, and gcd(m,n) = 1, then
o{ab) = mn. Using this result, we find that the order of (123 4)0(56 7) is 12.
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{ Exercise 5 Find the order of (1 2 3 4) o (5 6) in S;.

Solution: o(1 2 34) =4, o5 6)"‘= 2. Now (1 2 3 4) and (5 6) are disjoint
and so they commute. Thus, ((1234)o(56)) = e Now ((1234)0(5
6)! #e (1234 0(56)2=(1234)20(56)2=(1234)2#e If((123
4) o (5 6))® = ¢, then the order of (12 3 4) o (5 6) will be 3 and 3 divides 4, a
contradiction. Hence, the order of (123 4)o (5 6) is 4.

3.1.2 Exercises

1. BExpress the following permutations as (i) a product of disjoint cycles and
(ii) a product of transpositions:

1 3 4 5 6 1
3 4 1 6 2/)'\3
Let a=(1357)and =(248)0(136)¢c Ss. Find aoFoaL.

2 I
[ I o)
—
(VL =N
B O
o D

Let a=(1257)and §=(246) € S7. Find aoBoa™ !,

Let o= (13)o(58) and S =(2367) € Ss. Findaofoal.
Let a=(259)0(136)and 3= (157)0(2469) € So. Find aoBoa~.

A

Let (1 357) and (2 3 6 8) € Sg. Find @ € Sg such that ao (1 3 5
TYoa ! = (236 8).

7. Ifa=(123456),showthat a=(16)o(15)0(14)o(13)o(12).
8. Find the order of (1 2 3) o (4 5) in Ss.
9. Provethat (12---n~1n)"'=(nn-1---21).
10. Prove that every transposition is its own inverse.
11. Prove that the symmetric group on two symbols (S3, o) is commutative.

12. Let oo = (a1 a2 --- a) € S, be a k-cycle. Show that

9 (a1 a3 -+ agm-1)0(az a4 ag -+ agm) if k = 2m, ie., k is even
af = . : )
(a1 a3 --- agmy1 G2 Q4 ---a2m) if k=2m+ 1, te., kis odd.

13. Determine Aj4.
14. Let o, € S,.. Showthat a o loao S € A,.
15. Prove that |A,| = %'-
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16

17.

18.

19.

20.

21.
22.

Show that the number of distinct cycles of length 7 in S, is 1,2

T (n—r})l”

Let n > 2 and ¢ € 5, be a cycle. Show that o is a k-cycle if and only if
o(o) = k.

Let o € S,, and 0 = gy0030- - 00}, be a product of disjoint cycles. Suppose
o(o;) = ni, 1 =1,2,...,n. Show that o{c) = lem(ni,ng,..., 7).

Let a € S, and p be a prime.

(i) Show that o{a) = p if and only if either « is a p-cycle or « is a product
of disjoint cycles, where each cycle is either of length 1 or length p and
at least one cycle is of length p.

(ii) If « is a p-cycle, prove that either o™ = e or ™ is a p-cycle for all
m € N.

Let cand € 85,. Leta=ajoao---oaqrand f=F1 o000,
be a product of disjoint cycles. Let length(a;) = d; and length(8;) = m;
forall i =1,2,...,kand 7 = 1,2,...,5and d] < dp < .- < di and
m; < mg < --- < m,. We say that ¢ and 3 have the same cyelic
structure if k = s and d; = m; for all 2 = 1,2, ..., k. Prove that o« and
B have the same cyclic structure if and only if & and 3 are conjugate.

Prove that for 7 € Sy, 7 is an even permutation if and only if 7(&X) = X.

(i) Let o - (k 1}, B € Sn be two distinct transpositions, n > 3. Show that
there exist transpositions u, v € S, such that foa = vopu, u(k) = k and
v moves k.

(ii) Prove that if the identity permutation e € 5, can be written as a
product of r (> 3) transpositions, then e can be written as a product of
r — 2 transpositions. '

(iii) Prove that if e = o1 0020---00, € 5, as a product of transpositions,
then 7 is even.

(iv)} Use (i), (ii), and (iii) to prove that if 7 € S, then m can be written
as a product of either an even or an odd number of transpositions, but
not both.
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Augustin-Louis Cauchy (1789-
1857) was born on August 21, 1789, in
Paris, France. He received his first educa-
tion from his father. He was a neighbor of
Laplace and Berthollet. Cauchy became ac-
quainted with famous scientists at a young
age. Lagrange is said to have warned his fa-
ther not to show Cauchy any mathematics
book before the age of seventeen.

At the age of fifteen, he completed his
classic studies with distinction. He became
an engineer in 1810, in the Napoleon army.
In 1813, he returned to Paris.

In 1811, Cauchy started his mathemati-
cal career by solving a problem sent to him
by Lagrange on convex polygons. In 1812, he solved Fermat’s famous classical problem
on polygon numbers. His treatise on the definite integral, which he submitted in 1814
to the French Academy, later became a basis of the theory of complex functions.

In 1816, he was appointed full professor at the Ecole Polytechnique. More theorems
and concepts have been named for Cauchy than for any other mathematician. There
are sixteen concepts and theorems named for Cauchy in elasticity alone.

He worked on mathematics, mathematical physics, and celestial mechanics. In
mathematics, he worked on several areas, such as calculus, complex functions, algebra,
differential equations, geometry, and analysis. The notion of continuity used today was
invented by Cauchy. He also proved that a continuous function has a zero between
two points where the function changes its signs, a result also proved by Bolzano. The
first adequate definitions of indefinite integral and definite improper integral are due
to Cauchy

In algebra, the notion of the order of an element, a subgroup, and conjugates are
found in his papers. He proved the famous Cauchy’s theorem for finite groups, that is,
if the order of a finite group is divisible by a prime p, then the group has a subgroup
of order p. Cauchy’s role in shaping the theory of permutation groups is central. He is
regarded by some to be the founder of finite group theory. The two-row notation for
permutations was introduced by Cauchy. He also defined the product of permutations,
inverse permutations, transpositions, and the cyclic notation. He wrote his first paper
on this subject in 1815, but did not return to it for nearly thirty years. In 1844, he
proved that every permutation is a product of disjoint cycles.

He also did work of fundamental importance in the theory of determinants. His
treatise on determinants, published in 1812, contains important results concerning
product theorems and the inverse of a matrix.

Cauchy enjoyed teaching. He published more than 800 papers and eight books.
He died on May 22, 1857.




Chapter 4

Subgroups and Normal
Subgroups

In Chapter 2, we began a discussion of the evolution of group theory. This
chapter seems a good place to renew the discussion. It took more than 100
years for the abstract concept of a group to evolve. The evolution followed
lines similar to the evolution of other theories. First came the discovery of
isolated phenomena, followed by the recognition of features common to all.
Then came the search and classification of other instances. Next, general prin-
ciples emerged. Last, the abstract postulates which define the system were
uncovered. A deeper account can be found in Bell.

4.1 Subgroups

In the previous chapter, we saw that for the groups (A,,0) and (Sn, o), 4, is
a subset of 5,. One can think of many examples, where the underlying set of
one group is a subset of the underlying set of another group. This leads us to
the concept of a subgroup.

Let (G, ) be a group and H be a nonempty subset of G. Then H is said
to be closed under the binary operation x if a xb € H for all a,b € H.

Suppose H is closed under the binary operation *. Then the restriction of
* to H X H is a mapping from H x H into H. Thus, the binary operation *
defined on G induces a binary operation on H. We denote this induced binary
operation on H by #* also. Thus, (H, *) is a mathematical system. It also follows
that * is associative as a binary operation on H, i.e., a* (b*c) = (a*b) *c
for all a,b,c € H. If (H,*) is a group, then we call H a subgroup of G. More
formally, we have the following definition.

Definition 4.1.1 Let (G,*) be a group and H be a nonempty subset of G.
Then (H,*) is called a subgroup of (G,x) if (H,*) is a group.
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Let (H,*) be a subgroup of a group (G, x). Let ey denote the identity of
H and e denote the identity of G. Now ey x ey = ey = ey * e. Hence, by the
cancellation property, ey = e. Thus, the identity elements of G and H are the
same. Now let h € H. Let k' denote the inverse of & in H and h~! denote the
inverse of hin G. Then K = W' xe = A x (hxh™ 1) = (R *h)xh 1 =exh™l =
h~1. Thus, the inverse of h in H and the inverse of h in G are the same.

Of course, if (G,*) is a group, then ({e},*) and (G, *) are subgroups of
(G, *). These subgroups are called trivial.

Example 4.1.2 Consider the following list of groups.

(@) ({0}, +), (Z,+), (Q +), (R,+), (C, +),

(i) ({1}, ), (QW0}, ), (R\{0}, ), (C\{0},"),
where + s the usual addition operation and - is the usual multiplication oper-
ation. Each group is a subgroup of the group listed to its right. For example,
(Z,+) is a subgroup of (Q,+), (R, +), and (C,+), and (R\{0}, -) i3 a subgroup
of (C\{0}, ).

In the remainder of the text, we shall generally use the notation & instead
of (G, *) for a group and we write ab for a+b. We shall refer to ab as the product
of a and b. This notation is usually called multiplicative notation. _

Readers with some knowledge of linear algebra should notice the sumla.nty
with respect to the type of results and order of presentation of those which
immediately follow. First comes a result which gives an easy method of deter-
mining if a nonempty subset is a substructure. This is followed by the result
that the intersection of any collection of substructures is a substructure. Next,
comes the definition of a substructure “generated” by a subset. Finally, a the-
orem describing the substructure generated by a given subset. These ideas
appear throughout algebra. We will encounter them again, for example, when
we examine ideals of a ring.

Theorem 4.1.3 Let G be a group and H be a nonempty subset of G. Then H
is a subgroup of G if and only if for alla,b € H, ab~! € H.

Proof.  Suppose H is a subgroup of G. Let a, b € H. Since H is a sub-
group, it is a group and so b~ € H. Thus, ab~! € H since H is closed under
the binary operation. Conversely, suppose H is a nonempty subset of G such
that a, b € H implies ab~! € H. Since H # ¢, there exists a € H. Therefore,
e =aa”! € H,ie., H contains the identity. Now forallb € H, b~ = eb™1 € H,
i.e., every element of H has an inverse in H. Thus, foralla,be H,a, b ¢ H
and so ab = a(b"!)~! € H, i.e., H is closed under the binary operation. From
the statements preceding Definition 4.1.1, associativity holds for H. Hence, H
is a group and so H is subgroup of G. B
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In order to see whether a certain nonempty subset of a given group is a
subgroup or not, we can use Theorem 4.1.3.

Corollary 4.1.4 Let G be a group and H be a finite nonempty subset of G.
Then H s a subgroup of G if and only if for alla,b € H, ab € H.

Proof. If H is a subgroup, then for all a,b € H, ab € H. Conversely, suppose
that for all a,b € H, ab € H. Let h € H. Then h,h?,... k", ... € H and so
{h,h%,...,h™,...} C H. Since H is finite, all elements of {h,R%,...,A",...}
cannot be distinct. Thus, there exist integers r» and s such that 0 < r < s and
h™ = h®. Hence, e = h*" € H. Now 5 —r > 1. Thus, e = hh* 7! implies that
h™1 = h*~""1 € H. Let a,b € H. Then a,b™! € H and so ab™! € H by the
hypothesis. Thus, by Theorem 4.1.3, H is a subgroup. B

Theorem 4.1.5 Let G be a group and Z(G) = {b € G | ab = ba for alla € G}.
Then Z(G) is a commutative subgroup of G. Z(G) is called the center of G.

Proof. Sinceace=a =eaforall a € G, e € Z(G) and so Z(G) # ¢. Let
a,b € Z(@). Then bc = cb for all ¢ € G. From this, it follows that cb! = b~c
for allc € G and so b ! € Z(G). Now (ab~1)c = a(b71c) = a(ch™!) = (ac)b™? =
(ca)b™1 = ¢(ab~!) for all ¢ € G and so eb! € Z(G). Hence by Theorem 4.1.3,
Z(G) is a subgroup of G. That Z(G) is commutative follows by the definition
of Z(G). B

In the remainder of this section, we will see how new subgroups arise from
existing subgroups of a group.

Theorem 4.1.6 Let G be a group and {Hy | o € I} be any nonempty collection
of subgroups of G. Then NycrHy 48 a subgroup of G.

Proof.  Since each H, is a subgroup, e € H, for all @« € I. Hence, ¢ €
NeefHa and so NgerHy # ¢. Let a, b € NgerHy. Then a,b € H, for all
a € I. Thus, ab~! € H, for all o € I since each Hy is a subgroup and so
ab™! € NgerHe,. Consequently, NacrHe is a subgroup of G by Theorem 4.1.3.
a

Definition 4.1.7 Let G be a group and § be a subset of G. Let
S={H | H s a subgroup oflG and § C H}.
Define
= ﬂHGSH)

i.e., {S) is the intersection of all subgroups H of G such that S C H. Then the
subgroup (S of G is called the subgroup generated by S. If G = (S) , then §
1s called a set of generators for G.
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If either § = ¢ or S = {e}, then (S) = {e}. Also, (G) = G.

We now proceed to obtain a characterization of a subgroup generated by a
nonempty subset in terms of the elements of the group.

Let S = {H | H is a subgroup of G and § C H}, where S # ¢. Then
(S, <) is a partially ordered set, where < denotes the set inclusion relation.
In this poset, (S} is the least element. Hence, {S) is the smallest subgroup
of G which contains S. Since {S) is a subgroup of G, we must have for any
81,..., Sn € 5, the product sf* - -- s¢» € (S), where e; = =1 fori=1,2,.
Thus, if A denotes the set {s7*---sér | 3; € §)e; =x1,i=1,2,...,n;n = 1,2,

..}, then A C {8). Note that if s € 3, then e = ss7! € A. In the following
theorem, we show that A = (S) . Therefore, S does “generate” (S} in the sense
of multiplying elements of S or their inverses together to build up the smallest
subgroup containing S.

Theorem 4.1.8 Let S be a nonempty subset of a group G. Then
(S) = {sil ...sf{‘ l 3, €8, e, =421, i = 1,2,...,7‘&; n = 1,2,...}.

Proof. Let
A={s7'- 52 |5, € 8,e,=41,i=1,2,...,n; n=1,2,...}.

We have already noted that A C (S). We show that (S} C A by showing that
A is a subgroup of G containing &. (Recall that {S) is the smallest subgroup
of G containing 5.) Let s € S. Then s = s! € Aand so § C A. Let s{l oo gfm,
t9' - -t3° € A. Then

(s oo sl e ) = sl st 7 € A
Thus, A is a subgroup of G by Theorem 4.1.3. Hence, {(S) C A. W
For a € G, we use the notation {a) rather than {{a}) to denote the subgroup
of G generated by {a}.
Corollary 4.1.9 Let G be a group and a € G. Then {a) = {a"™ | n € Z}.
Proof. By Theorem 4.1.8, we have (a) = {a®1 --.a°" | ¢; = £1, i = 1,2,

comym=12 ...} ={a1TVem | g, =F1,i=1 2 m,m—1,2,...}—
{c" |necZ}. B

In additive notation, we would have {a) = {na | n € Z}.

Let n > 3. In Chapter 3, we proved that every element of A, is a product
of 3-cycles (Theorem 3.1.23). In the following theorem, we conclude that A,
is generated by the set of all 3-cycles.

Theorem 4.1.10 Let n > 3. Then A, is generated by the set of all 3-cycles.
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Proof. Since a 3-cycle is an even permutation, every 3-cycle is in A,. By
Theorem 3.1.23, every element of A, is a product of 3-cycles. Hence, A, is
generated by the set of all 3-cycles. B

We now turn our attention to the product of subgroups.

Definition 4.1.11 Let H and K be nonempty subsets of a group G. The prod-
uct of H and K is defined to be the set

HK ={hk | he H,k € K}.

Let Hy, H», ..., H, be nonempty subsets of a group G. We define the
product, H1Hs --- H,, of Hy, Ho, ..., H, to be the set

H1H2'-'Hn:{h1h2---hn | hiGHfg, i=1,2,...,n}.

Example 4.1.12 Consider the group of symmetries of the square. Let H =
{rse0,d1} and K = {rse0,h}. Then H and K are subgroups of G. Now

HEK = {r3807360, 360", d17360, d1h} = {r3e0, h,d1, 790}

Since hdy = rog ¢ HK, HK s not closed under the binary operation.
Hence, HK 1is not a subgroup of the symmetries of the square. Also, note that

K H = {r3sor3eo, 736041, hr3eo, hd1} = {r3eo0, d1, h, 270},

and
(HUK) = {T3601T901T180: 7‘2703hav:d1:d2}-

Example 4.1.12 shows that in general the product of subgroups need not
be a subgroup. In the following theorem, we give a necessary and sufficient
condition for the product of subgroups to be a subgroup.

Theorem 4.1.13 Let H and K be subgroups of a group G. Then HK is o
subgroup of G if and only if HK = KH.

Proof. Suppose HK is a subgroup of G. Let kh € K H, where h € H and
ke K. Now h.= he € HK and k = ek € HK. Since HK is a subgroup, it
follows that kh € HK. Hence, KH C HK. On the other hand, let hk € HK.
Then (hk)™! € HK and so (hk)™! = hyk; for some h; € H and k; € K.
Thus, hk = (hlkl)‘l = kl_lhl“l € K H. This implies that HK C KH. Hence,
HK =KH.
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Conversely, suppose HK = KH. Let hik1, hoke € HK. Now k{lhg'l €
KH = HK. This implies that ky1h;! = hgks for some hy € H and k3 € K.
Similarly, ky1hg = hgky for some hy € H and ky € K. Thus,

(hik1)(hok2)™! = hikiks'h!
= hikihsks
= hihaksks € HK.

Hence, HK is a subgroup of G by Theorem 4.1.3. &

Corollary 4.1.14 If H and K are subgroups of a commutative group G, then
HK is a subgroup of G.

Proof. Since G is commutative, HK = K H. The result now follows by
Theorem 4.1.13 W

The following theorem gives another necessary and sufficient condition for
a product of subgroups to be a subgroup.

Theorem 4.1.15 Let H and K be subgroups of a group G. Then HK is a
subgroup of G if and only if HK = (HUK) .

Proof. First suppose that HK is a subgroup of G. Let h € H. Then
h = he € HK. Thus, H C HK. Similarly, K C HK. Hence, H UK C HK.
Since {H U K) is the smallest subgroup of G containing H U K, it follows that
(HUK) C HK. Let hk ¢ HK, where h € H and k € K. Since H C (HU K)
and K C (HUK), we have h,k € (HUK). Thus, hk € {HUK). This im-
plies that HK C (H U K) . Hence, HK = (H U K) . The converse is immediate
since {H U K} is a subgroup and HK = {(HUK). N

Let G be a group. We denote by S{G) the set of all subgroups of G.

Theorem 4.1.16 Let G be o group. Then (S(G), <) is a lattice, where < is
set inclusion relation.

Proof. Proceeding as in Example 1.4.5, we can show that the set inclusion
relation is a partial order on S{G). We now show that for all A, B € S(G),
AV B, AnNB € S(G). Let A,B € S(G). By Theorem 4.1.6, An B € S(G)
and by the definition of S(G), (AU B} € S(G). Now A,B C (AU B) and so
(AU B) is an upper bound of A and B. Let C € S(G) be such that A C C
and B C C. Then AUB C C and so (AU B) C C. Thus, (AU B) is the least
upper bound of A and B, i.e., AV B =(AUB). Hence, AV B € S(G). Next,
we show that AAB = AN B, i.e.,, AN B is the greatest lower of A and B.
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Now ANB C Aand ANB C B and so AN B is a lower bound of 4 and B.
Let D € S(G), D C A,and D C B. Then D C AN B and so AN B is the
greatest lower bound of A and B, i.e., AAB = ANB. Therefore, AAB € S5(G).
Consequently, (S(G), <) is a lattice. B

The lattice (S(G), <) in Theorem 4.1.16 is called the subgroup lattice of
the group G. Let (7, <) be a sublattice of (S(G}, <), i.e., T C S(G) and (7,
<) is a lattice. The poset diagram of (7, <) is called the lattice diagram.
This lattice diagram will be useful in studying the interrelations among the
subgroups of a group. Consider the following example.

Example 4.1.17 (i) Let G = {1, 1,1, —i}. Then (G,*) is a group, where %
is the uwsual multiplication of complex numbers. Let

S = {{1}, {1,-1}, G}.

The lattice diagram of S is:

G

{]-s_]-}
{1}
(ir) Let G = {(1,1), (1,-1), (-1,1), (-1,—1)}. Then (G,x*) is a group,
where * is defined by (a,b) * (¢,d) = (ac,bd) for all (a,b), (¢c,d) € G, where
the multiplication ac and bd take place in the integers. Let E = {(1,1)},

H, = {(1,1), (1,-1)}, H» = {(1,1), (—1,1}}, end Hz = {(1,1), (-1,-1)}.
Let S = {E, Hy, Hy, H3, G}. The lattice diagram of § is:

G
RN
Hy, Hy Hj

N

We see from these examples that a lattice diagram gives a visual picture of
how subgroups of a given group are related.

Next, we consider an example of a group generated by two elements. We list
several properties of the group. We ask the reader to verify these properties.
We will study these types of groups in more detail in later chapters.
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Example 4.1.18 Let G = {a,b), where a® = ¢, b = e, and (ab)? = e. Then
(i) ab=ba"1, ba = a~1b, and a®b = ba.
(1t) G is not commutative since ab # ba.
(ii1) ba® = a~*®b for all positive integers s.
(iv) By (i) and (i)

r1i spd atoy ifi=0

a’ba’t? = { aTSHF i = 1.

(v) Since a3 = e = b2, every element of G is of the form a"b', 0 < r < 3,
i=0,1 by ().

(vi) G = {e,a,b,ab,a?, a%b}. Thus, |G| =6.

(vii) o(a) = 3 = o(a?), o(b) = o{ab) = o(a%h) = 2.

(viii) The only subgroups of G are {e}, (a) = (a®), (b), {(ab}, (a?b), and
G.

G is called a dihedral group of degree 3 and is denoted by D3. In general,
a dihedral group' of degree n is D, = {a,b), where (ab)? = ¢, o(a) = n, and
o(b) = 2. In Chapter 5, we consider a dihedral group of degree 4, Dy, and study
this group in detail.

4.1.1 Worked-Out Exercises

¢$ Exercise 1 Let H be a subgroup of a group G. Let g € G. Prove that
(i) gHg™! = {ghg~! | h € H} is a subgroup of G,
(ii) [gHg™ | = |H].

Solution: (i) We first show that gHg™! # ¢ and then use Theorem 4.1.3.
Since e = geg~! € gHg™!, gHg™ ! # ¢. Let ghig~ !, ghog™! € gHg™ 1. Then

(ghig™ ) (ghog )™ = ghag 'ghy g™t = ghihytg € gHg L.

Hence, gHg ! is a subgroup of G.

(ii) Let g € G. To prove that |gHg !| = |H|, we show that there exists a
one-one onto function of H onto gHg !. Define f : H — gHg ! by f(h) =
ghg™! forall h € H. Let h,h' € H. If h = I/, then ghg™! = gh'g™!, ie., fis
well defined. Also, ghg™! € gHg !. Thus, f is a function of H into gHg!.
Suppose f(h) = f(h'). Then ghg~! = gh/g~!. From this it follows that h = A'.
This shows that f is one-one. To show f is onto gHg™ 1, let a € gHg *. Then
a = gbg~! = f(b) for some b € H, namely, b = g~lag. Thus, f is onto gHg™*.

{ Exercise 2 Prove that 5, is generated by {(1 2),(1 3),(1 4),...,(1 n)}.

1We show the existence of such groups in Chapter 7.
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Solution: Let 7 be any permutation in §,. Then 7 is a product of trans-
positions. Thus, it is sufficient to show that if (¢ 5} is any transposition in Sy,
1 < 3, then

(24)€((12),(13),(14),...,(1n)).

This follows from the fact that (¢ 7} = (14)o(1 7)o (1 %). Hence, S, is generated
by {(12),(13),(14),...,(An)}.

$ Exercise 3 Find all subgroups of (Z, +).

Solution: Let H be a subgroup of Z. Suppose H # {0}. Let a be a
nonzero element of H. Then —a € H. Since either a or —a is a positive integer,
H contains a positive integer. With the help of the principle of well-ordering,
we can show that H contains a smallest positive integer. Let a be the smallest
positive integer in H. We claim that H = {na | n € Z}.

Now na € H for all n € Z and so {na | n € Z} CH. On the other hand, let
b € H. By the division algorithm, there exist ¢ and = in Z such that b = ca+,
where 0 < r < a. Suppose » # 0. Then r = b — ca € H. Thus, H contains a
positive integer smaller than a, a contradiction. Hence, r =0 &_ind sob=rcac€
{na | n € Z}. This implies that H C {na | n € Z}. Thus, H = {na | n € Z} for
some a € Z. Also, for all n € Z, the set T' = {nm | m € Z} = nZ is a subgroup
of Z. Hence, nZ,n =0,1,2,... are the subgroups of Z.

4.1.2 Exercises

1. Prove that H is a subgroup of the group G, where
(i) H = {[0}, (2], [4], [6], (8], [10]}, G = Z12,
(if) H = {[0], [3]1 [6]: [9]}? G =12y
and where the group operation under consideration is 2.

2. Let GL(2,R) denote the group of all nonsingular 2 x 2 matrices over R.
Show that each of the following sets is a subgroup of GL(2,R).

(i)S={[2 3 } ]ad—bc:l}.

(i) S = [g 2 ] |a7é0}.

(i11) § = { _ab Z } | either a or b is nonzero} :

L

[ a b
_0 i ] |ad#0}.
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N>

10.

11.

@)S:H‘; ;b } |a,b€Randa2+b27é0}.

Show that the set H = {a + bi € C* | a® +b? = 1} is a subgroup of
(C*, -}, where - is the multiplication operation of complex numbers.

Let G = {(a,b) | a,b € R, b # 0}. Prove that (G, %) is a noncommuta-
tive group under the binary operation (a,b) * (¢,d) = (a + bc, bd) for all
(@,b), (c,d) € C.

(i) Let H = {{(a,b) € G | a = 0}. Show that H is a subgroup of G.
(ii) Let K = {(a,b) € G | b > 0}. Show that K is a subgroup of G.
(iii) Let T = {(a,bd) € G | b =1}. Show that T is a subgroup of G.
: .

iv) Find all elements of order 2 in G.
In S3, determine the set T = {z € S3 | ° = e}. Is T a subgroup of S3?
Determine the subgroup (4, 6) in (Z,+).
In (Z, +), determine the subgroup generated by {4,5}.
List the elements of the following subgroups.

/{1234 1 2 3 41\,
(‘)<(4 3 2 1)*(2 1 4 3)>m5“'

(ii) (h;v) ih the symmetries of the square.

.Leta=(1234)and b=(24) € 5,.

(i) Find o(a) and o(b).

(ii) Show that ba = a3b = a~1b.

(iii) Find H = (a,b) in 4.

(iv) Find |H]|.

Let G be a group generated by a,b such that o(b) = 2, o(a) = 6, and
(ab)? = e. Show that )
(i) aba = b,

(ii) (a®b)2 = e,

(iii) ba%b = at,

(iv) ba3b = ad.

Let G be a group. Prove that a nonempty subset H of G is a subgroup
if and only if for all a,b€ H,ab€ H and a™! € H.
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12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Let G be a commutative group. Show that the set H of all elements of
finite order is a subgroup of G.

Let GG be a group and a € . Show that if a is the only element of order
n in G, then a € Z(G).

Show that Z(5,) = {e} for all n > 3.

Let G be a group and a € G. Let C(a) = {b € G | ba = ab}. Prove that
C(a) is a subgroup of G and that Z(G) = NgegC(a). C{a) is called the
centralizer of ¢ in G.

Prove that a group G cannot be written as the union of two proper
subgroups.

Let G be a group and H be a nonempty subset of G.

(1) Show that if H is a subgroup of G, then HH = H.

(ii) If H is finite and HH C H, prove that H is a subgroup of G.

(iii) Give an example of a group GG and a nonempty subset H of G such
that HH C H, but H is not a subgroup of G.

Let H be a subgroup of a group GG. Prove that (H) = H.

If A and B are subgroups of a group G, prove that AU B is a subgroup
of G if and only if A C B or B C A. If C is also a subgroup of (G, does
a similar necessary and sufficient condition hold for AU B U C to be a
subgroup of G?

Let G be a commutative group. If ¢ and b are two distinct elements of
G such that o(a) = 2 = o(b), show that |{a, b)| = 4.

(i) Prove that S, is generated by {(1 2),(1 23 --- n)}.
(ii) Prove that S, is generated by {(1 2),(2 3),(834},...,(n -1 n)}.

Show that (Q, +) is not finitely generated.

Let G be a group. Prove that if G is finite, then G has finitely many
subgroups.

Does there exist an infinite group with only a finite number of subgroups?

For the following statements, write the proof if the statement is true;
otherwise, give a counterexample.

(i) All nontrivial subgroups of (Z, +) are infinite groups.
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(ii) If A, B, and C are subgroups of a group G such that AUB C C, then
ABC C C.

(iii) If G is a noncommutative group, then Z(G) = {e}.

(iv) Let G be a group. If H is a nonempty subset of G such that a™* € H
for all a € H, then H is a subgroup of G.

(v) There exists a proper subgroup A of (Z, +) such that A contains both
2Z and 3Z.

(vi) If H is a subgroup of (Q,+) such that Z C H, then H = Q.
(vii) If H is a subgroup of (Q*,-) such that Z\{0} C H, then H = Q*,

4.2 Cyclic Groups

In the previous section, we introduced the notion of a subgroup generated by
a set. Groups that are generated by a single element, called cyclic groups, are
of special importance. As we shall see throughout the text, these groups play
an important role in studying the structure of a group. In fact, all of Chapter
9 revolves around these groups. Cyclic groups are easier to study than any
other group. They have special properties, some of which we will discover in
this section.

Definition 4.2.1 A group G is called a cyeclic group if there exists a € G
such that

G = (a).

We recall that {a) in Definition 4.2.1 is the set {a" | n € Z} (Corollary
4.1.9).

Let G = (a) be a cyclic group and b,c € GG. Then b = a™ and ¢ = o™ for
some n,m € Z. Now bc = a™a™ = a"™ = @™ = a™a"™ = cb. This shows
that G is commutative. Hence, every cyclic group is commutative.

Example 4.2.2 (i) (Z,+) is a cyclic group since Z = (1) .
(22) ({na | n € Z},+) (Ezample 2.1.4) is a cyclic group, where a is any
fixed element of Z.

{#11) (Zn, +n) 1s 6 cyclic group since Zn = {[1]) .
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Example 4.2.3 Let a be a symbol and n a positive integer. Define ¥ by means
of the following operation table.

« a0 ol a2 a2 gn-l

aO aO al a2 an—2 an—l

(11 (11 (12 a3 an—l- CLO

(12 t12 0.3 a“—l GO G,l

a‘n—-Q an—2 an—l aO an—4 an—S

an—] anrl aO al an—3 an-—2
Then ({a%al,...,a" 1}, %) is a cyclic group generated by a'.

Example 4.2.4 Consider the set G = {e,a,b,c}. Define * on G by means of
the following operation table.

B O oo
o g o0

O oR O
O o Q O ®
= ol o TR I w I [ =

From the multiplication table, it follows that (G, *) is a commutative group.
However, G is not a cyclic group since

(e} = {e}: (a) = {esa}a <b> = {8, b]’: and <C) = {es C}

and each of these subgroups is properly contained in G. G is known as the
Klein j-group.

The next theorem gives the exact description of a finite cyclic group.

Theorem 4.2.5 Let (a) be a finite cyclic group of order n. Then {(a) =
{e,a,a?,...,a" 1}

Proof. By Corollary 4.1.9, {a) = {a* | i € Z}. Since (a) is finite, there exist
i, 7 € Z (j > 1) such that o’ = a’/. Thus, a’~* = e and j — i is positive. Let m
be the smallest positive integer such that a™ = e. Then for all integers ¢, 7 such
that 0 <1 < § < m, a* # a otherwise a’* = ¢ for some 0 < i < j < m, which
contradicts the minimality of m. Hence, the elements of the set § = {e, a, a?,

.., @™} are distinct. Clearly S C (a). Let a* € (a). By the division al-
gorithm, there exist integers g, r such that k = gm + r, 0 < r < m. Thus,
a* = a¥*" = (a™)9a" = ea” = a” € . Therefore, {a) C S. Thus, S = {a).
Since the elements of S are distinct and (a) has order n, it must be the case
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that m=n. R

The following corollaries are immediate from the proof of Theorem 4.2.5.
We omit the proofs.

Corollary 4.2.68 Let {a) be a finite cyclic group. Then o(a) = |{a})|. W

Corollary 4.2.7 A finite group G is a cyclic group if and only if there erists
an element a € G such that o(a) = |G|. B

As stated in the beginning of this section, cyclic groups have special prop-
erties. We now proceed to discover some of these properties. Subgroups of a
cyclic group are themselves cyclic; this is proved in the next theorem.

Theorem 4.2.8 Every subgroup of a cyclic group is cyclic.

Proof. Let H be a subgroup of a cyclic group G = (a). If H = {e}, then
H = (e) and so H is cyclic. Suppose {e} C H. Then there exists b6 € H such
that b # e. Since b € GG, we have b = a™ for some integer m. Thus, m # 0
since b # e. Since H is a group, a™™ = b~! € H. Now either m or —m is
positive. Therefore, H contains at least one element which is a positive power
of a. Let n be the smallest positive integer such that a® € H. We now show
that H = {(a™) .

Since a® € H, we must have (a") C H. Let h € H. Then h = a* for some
integer k. By the division algorithm, there exist integers g, r such that k =
ng+r7, 0 <7 < n. Since a® and a* € H, we have a” = a*~™ = a*(a")~7 € H.
However, if r > 0, we contradict the minimality of n. Therefore, » = 0 so that
a* = (a™)? € {(a") . Hence, H C (a") and so H = (a"}. Thus, H is cyclic. B

Corollary 4.2.9 Let G = (a} be a cyclic group of order m, m > 1, and H be
a proper subgroup of G. Then H = <ak> for some integer k such that k divides
m and k > 1. Furthermore, |H| divides m.

Proof. If H = {e}, then H = (a™). Suppose that H # {e}. Let k be the
smallest positive integer such that a* € H. Then H = <ak> . Now there exist
integers ¢ and 7 such that m = gk + r, where 0 < r < k, and

a" = a™ % = oM = g~ = ((ak)"l)q € H.

The minimality of k£ implies that » = 0. Hence, m = gk and so k divides m.
Since H # G, k > 1. Next, we show that |H| divides m. By Theorem 2.1.28(ii),
o(a*) = m = T = q. As a result Corollary 4.2.6 implies that

H| = o(a*) = ¢.
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Since m = gk, we have g|m, i.e., |H| divides m. i

By Corollary 4.2.9, if GG is a finite cyclic group and H is a subgroup of G,
then |H| divides |G|. This is a special case of a more general result, called
Lagrange’s theorem, which we will prove in the next section.

Let G = {a) be an infinite cyclic group. Then o{a) is infinite and this
implies that o(ak) is infinite for any nonzero integer k. Thus, the order of any
nonidentity element of G is infinite. Let H be a nontrivial subgroup of G. Then
H is cyclic. Let H = (b). Then b # e and b € G and so o(b) is infinite. This in
turn shows that |H| is infinite. Thus, every nontrivial subgroup of an infinite
cyclic group is infinite.

Now let G = {(a) be a finite cyclic group of order n and H be a proper
subgroup of G. Then by Corollary 4.2.9, |H| divides |G|. If H = {e}, then
|H| =1 and if H = G, then |H| = |G] and so |H| divides |G|. Thus, the order
of every subgroup of G divides the order of G. The following theorem shows
that the converse of this result is also true for finite cyclic groups.

Theorem 4.2.10 Let G be a finite cyclic group of order m. Then for every
positive divisor d of m, there exists a unique subgroup of G of order d.

Proof. Let G = {a) and d be a positive divisor of m. Since d|m, there exists
k € Z such that m = kd. Now a* € G and by Theorem 2.1.28(ii),

o) _m _
°a®) = ged(k,m)  k d.

Let H = <ak>. Then |[H| = o(a*) = d. Thus, G has a subgroup of order d.
Next, we establish that H is unique.

Let K be a subgroup of order d. Let ¢ be the smallest positive integer such
that a* € K. Then K = (a*). Since K is of order d, o(a’} = d by Corollary
4.2.6. But o(al) = gcd(t m by Theorem 2.1.28(iz). Hence, d = gcd?:m)’ which

implies that gcd(t,m) = 7 = k. This shows that kft. Let ¢t = ki for some ! € Z.
Now af = a*! = (a*)! € H. Hence, K C H. Since |[K| = |H| and H and K are
finite, we have H = K. Thus, there exists a unique subgroup of order d. B

4.2.1 Worked-Out Exercises

$ Exercise 1 (Q,+) is not cyclic.

Solution: Suppose Q is cyclic. Then Q = < > for some E € Q, where
p and ¢ are relatively prime. Since % € Q, there exists n € Z n # 0 such
that % = ng by Corollary 4.1.9. This implies that % = n € Z, which is a
contradiction. Thus, Q is not cyclic.
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Exercise 2 Let GG be a group such that |G| = mn, m > 1, n > 1. Show that
G has a nontrivial subgroup.

Solution: First suppose that G is cyclic. Let G = (a). Then o(a) = mn.
Clearly o(a™) = n. Let H = {a™). Then H is a nontrivial subgroup of G. Now
suppose that G is not cyclic. Then for all a € G, o(a) < mn by Exercise 26
(page 79). Let e # a € G and let H = (a). Then H is a nontrivial subgroup of
G.

.‘ ¢ Exercise 3 Let G be an infinite cyclic group generated by a. Show that
(i} a” = a* if and only if r = ¢, where r,t € Z,

(ii) G has exactly two generators.

Solution: (i) Suppose " = a' and r # ¢. Let » > ¢. Then a"~% = e. Thus,
o(a) is finite, say, o(a) = n. Then G = {e, a, ...,a” '}, which is a contradiction
since GG is an infinite group. The converse is straightforward.

(i) Let G = (b) for some b€ G. Sincea € G= (b)) andbe G={(a),a="b"
and b = a for some r,t € Z. Thus, a = V" = (a*)” = a™. Hence, by (i), 7t = 1.
This implies that either r =1 =t orr = —1 =t. Thus, eitherb=aorb=a1.
Now from (i), @ # @~ 1. Therefore, G has exactly two generators.

& Exercise 4 (i) Let G = {a) be a finite cyclic group of order n. Show that
a® is a generator of G if and only if ged(k,n) = 1, where k is a positive
integer.

(ii) Find all generators of Zjp.

Solution: (i) Suppose o is a generator of G. Since |G| = n, o(a*) = n.

But o(a*) = m. Hence, % = n. Thus, ged(k,n) = 1. Conversely,
suppose that ged(k,n) = 1. Then o(a*) = = n. Hence, ’(ak>! = n.
Since <a"°> CGand |G|=n,G= <ak> :

(i) Now Zyg = ([1]) and |Z;9| = 10. By (i), k[1] is a generator if and only if
ged(k,10) =1, where 1 <k <10. Now if k =1,3,7, or 9, then ged(k, 10) = 1.
Thus, the generators of Zygp are 1[1] = [1], 3[1] = [3], 7[1] = [7] and 9[1] = [9].

n
ged(k,n)

4.2.2 Exercises

1. Let G = {a) be a cyclic group of order 30. Determine the following sub-
groups.

(i) (a®).
(ii) {a?).
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Let G be a cyclic group of order 30. Find the number of elements of order
6 in G and also find the number of elements of order 5 in G.

Prove that 1 and —1 are the only generators of Z.

(i) Show that (R, +) is not cyclic.
(i) Show that (Q*, ") is not cyclic.
(iii) Show that (R*,-) is not cyclic.

If G is a cyclic group of order n, show that the number of generators of
G is ¢{n), where ¢ is the Euler ¢-function.

. Show that every proper subgroup of 53 is cyclic.

Give an example of a.noncyclic Abelian group all of whose proper sub-

groups are cyclic. ) .
o Toe o g 0b R

PR PR T S oo
-~ ]

. Let G be a group. Suppose that G has at most two nontrivial subgroups. '

Show that G is cyclic.

Let G be a finite group. Show that if G has exactly one nontrivial sub-
group, then order of G is p? for some prime p.

Let G be a noncommutative group. Show that G has a nontrivial sub-
group.

Give an example of an infinite group which contains a nontrivial finite
cyclic group.

Show that there are cyclic subgroups of order 1,2, 3, and 4 in Sy, but 54
does not contain any cyclic subgroup of order > 5.

For the following statements, write the proof if the statement is true;
otherwise, give a counterexample.

(1) For every positive integer 7, there exists a cyclic group of order n.
(ii) Every proper subgroup of A4 is cyclic.

(iii) Ag is a cyclic group.

(iv) A4 is a cyclic group.

(v) All proper subgroups of (R, +) are cyclic.
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4.3 Lagrange’s Theorem

In the last section, we noted that the order of a subgroup of a finite cyclic group
divides the order of the group (Corollary 4.2.9). We also remarked that this is
a special case of a general result, called Lagrange’s theorem, i.e., the order of a
subgroup of a finite group divides the order of the group. Lagrange proved this
result in 1770, long before the creation of group theory, while working on the
permutations of the roots of a polynomial equation. Lagrange'’s theorem is a
basic theorem of finite group theory and is considered by some to be the most
important result in finite group theory. In this section, we prove this result.
We begin with the following definition.

Definition 4.3.1 Let H be a subgroup of a group G- and a € G. The sets
aH = {ah | h € H} and Ha = {ha | h € H} are called the left and right
cosets of H in G, respectively. The element a is called o representative of aH
and Ha.

If G is commutative, then of course aHH = Ha. Observe that eH = H = He
and that a = ae € aH and a = ea € Ha.

Example 4.3.2 Consider the symmetric group S3 (Ezample 3.1.6). Then

wefe(330)(312))
{133}

are subgroups of 53. We now compute the left and right cosets of H in S3. The
left cosets of H in S3 are

1 2 3 1 2 3 1 2 3
(1 23)H_(2 31)H“(3 12)H_H

1 2 3 1 2 3
(ISQ)H_(321)
3
3

(120) (s

and the right cosets of H in S5 are

1 2 3 1 2 3 1 2 3
H(123)—H(231)=H(312)=H

and

and
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and

Thus, for alla € S5, aH = Ha.
Nezxt, we compute the left and right cosets of H in S3. The left cosets of

H' in S5 are
1 1 2 3 ) '
(135)x=(153)e-n

a( (11 (210)
(31|

2
2

3
1
and
1 2 3 3 1 2 3 1 2 3
2 1 3 1 2 3/'\V2 31

and the right cosets of H in S3 are
0(133)-n(12)-w
w(128)ew(328)-{(328). (12 5))
and
r(2)r(ir)-e (o)

We see that
1 2 3 ' {1 2 3
(3 1 Q)H%H(3 1 2)'
Thus, the left and right cosets of H' in S3 are not the same.

There are some interesting phenomena happening in the above example.
We see that all left and right cosets of H in S3 have the same number of
elements, namely, 3; that there are the same number of distinct left cosets of
H in S3 as of right cosets, namely, 2; that the set of all left cosets and the set
of all right cosets form partitions of S3; and, finally, that 3 -2 equals the order
of S3. Similar statements hold for the subgroup H’'. We show, in the results to
follow, that these phenomena hold in general.
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In the next few theorems, we prove some properties of left and right cosets
of a subgroup which will eventually lead us to the proof of Lagrange’s theorem.
The following theorem tells us when two left (right) cosets are equal. It is a
result that is used often in the study of groups. |

Theorem 4.3.3 Let H be a subgroup of a group G and a,b € G. Then
(i) aH = bH if and only if b~'a € H.
(i1) Ha = Hb if and only if ab~! € H.

Proof. (i) Suppose aH = bH. Since a € aH and aH = bH, there exists
k' € H such that a = bh’. This implies that b~la = k' € H.
Conversely, suppose b~!a € H. Then there exists A’ € H such that b~la =
k', ie., a = bh'. Let ah € aH. Then ah = bh'h € bH. This implies that e H
C bH. Next, we show that bH C aH. Now b~la = &’ implies that b’ = b. Let
bh € bH. Then bh = ah/ 'h € aH. Hence, bH C aH. Consequently, aH = bH.
(ii) The proof is similar to (i). We leave it as an exercise. B

Theorem 4.3.4 Let H be a subgroup of a group G. Then for all a, b € G,
either aH = bH or aH NbH = ¢ (i.e., two left cosets are either equal or they
are disjoint).

Proof. Let a,b € G. Suppose that aH NbH # ¢. We wish to show that
aH = bH. Since o H NbH # ¢, there exists ¢ € aH NbH. Hence, ¢ € a{ and
¢ € bH and so there exist hy, ho € H such that ¢ = ah; and ¢ = bhy. Thus,
ah, = bhy and from this, it follows that b~'a = hyhT!. Therefore, b ta € H.
By Theorem 4.3.3(i), cH =bH. R

Corollary 4.3.5 Let H be a subgroup of a group G. Then {aH | a € G} forms
a partition of G.

Proof. LetP = {aH | a € G}, i.e., P is the set of all left cosets of H in G.
By Theorem 4.3.4, for all aH,bH € P, either aH = bH or aH NbH = ¢. Thus,
P satisfies (i) of Definition 1.3.14. SinceaH C G for all a € G, UgyepaH C G.
If a € G, then a € aH C U,gyecpaH. Therefore, G C U,gepaH. Hence, G =
UsgepaH. This shows that P satisfies (ii) of Definition 1.3.14. Consequently,
P is a partition of G. B

Theorem 4.3.6 Let H be a subgroup of a group G. Then the elemenis of H
are in one-one correspondence with the elements of any left (right) coset of H

n G.
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Proof. Let a be any element of G and aH be a left coset of H in G. To
show that the elements of H are in one-one correspondence with the elements
of aH, we show that there exists a one-one function of H onto aH. Define
f:H —aH by f(h) =ah forall h € H. Let hyhy € H. If h = hq, then
ah = ahy, i.e., f(h) = f(h1). Hence, f is well defined. Suppose f(h) = f(h1).
Then ah = ah; and this implies that h = h;. Thus, f is a one-one function.
To show f is onto aH, let ah € aH, where h € H. Then ah = f(h). Hence, f
maps H onto aH. Similarly, we can show that the elements of H are in one-one
correspondence with the elements of Ha.

The following corollary is immediate from Theorem 4.3.6.

Corollary 4.3.7 Let H be a subgroup of a group G. Then for all a € G,
|H| = |aH| = |Ha|. R

The next theorem says that there are the same number of left cosets as
right cosets.

Theorem 4.3.8 Let H be a subgroup of a group G. Then there is a one-one
correspondence of the set of all left cosets of H in G onto the set of all right
cosets of H in G.

Proof. Let £ = {aH | e € G} be the set of all left cosets of H in G and
R = {Ha | a € G} be the set of all right cosets of H in G. To establish a
one-one correspondence between the elements of £ and R, we need to show
the existence of a one-one function of £ onto R.
Define f: L — R by
flaH) = Ha™!

for all aH € L. First note that Ho™! € R for all @ € G. Let aH,bH € L.
Suppose aH = bH. Then by Theorem 4.3.3(i), b 'a € H. This implies that
b"1(a=1)~! = b-la € H and so by Theorem 4.3.3(ii), Hb~! = Ha~!. Thus,
f(6H) = f(aH). Hence, f is well defined. To show f is one-one, suppose
f(aH) = f(bH). Then Ha™! = Hb~! and so a~!(b~1)~! ¢ H by Theorem
4.3.3(ii), i.e., a"'b € H. Therefore, b~ la = (a7!b)"! € H and so aH = bH.
Hence, f is one-one. Since for all Ha €¢ R, Ha = H(a 1)™! = f(a™1H) and
a"1H € L, it follows that f is onto R. Thus, f is a one-one function from £
onto R. H

Definition 4.3.9 Let H be a subgroup of a group G. Then the number of
distinct left (or right) cosets, written [G : H), of H in G is called the indezx of
H inG.
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By Theorem 4.3.8, the number of left cosets and the number of right cosets
of a subgroup H of a group G are the same. Thus, [G : H] is well defined.

If G is finite, then of course [G : H] is finite. The following example is one,
where G is infinite and [G : H] is finite.

Example 4.3.10 Letn be a fized positive integer. Consider the cyclic subgroup
((n), +) of (Z,+). Let k + (n) be a left coset of (n) in Z. By the division
algorithm, there exist integers g and r such that Kk = gn + r, where 0 < r < n.
Thenk —r =qn € {n) and so k + {n) = r + {n) by Theorem 4.3.3. Suppose
i+{n) =7+ (n), where 0 <i,5 <n. Theni—j € {n) by Theorem 4.3.3. This
implies that n|(i — j) and so we must havei —j =0 ori=j since 0 < 4,5 < n.
Thus, the distinct left cosets of (n}) inZ are 0+ {n),14+{n}),...,n—-1+(n).

We are now ready to prove Lagrange’s theorem. It is interesting to note
that Lagrange proved the result for the symmetric group 5,. Some credit Galois
for proving the result in general.

Theorem 4.3.11 (Lagrange) Let H be a subgroup of a finite group G. Then
the order of H divides the order of G. In particular,

G| =G : H||H|.

Proof. Since G is a finite group, the number of left cosets of H in G is
finite. Let {a1H, agH, ..., a,H} be the set of all distinct left cosets of H in
G. Then by Corollary 4.3.5, G = Ul_,a;H and a,HNa; H = ¢ for all © # j,
1<14,j5 <r. Hence, (G: H =7 and

|G| = |la1H| + |agH| + - - - + |a-H| .

By Corollary 4.3.7, |H| = ja;H| for all 7, 1 < < r. Therefore,

IG| = |H|+|H|+--+|H|
rt;;nes ‘
= r|H|
= [G: H||H]|.

Thus, the order of H divides the order of G. Ik

Corollary 4.3.12 Let G be a group of finite order n. Then the order of any
element a of G divides n and a™ = e.
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Proof. Let a € G and o(a) = k. Let H = (a). Then by Corollary 4.2.6,
|H| = |{a})} = o(a) = k. Hence, by Theorem 4.3.11, k divides n. Thus, there
exists ¢ € Z such that n = kq. Hence, a® = a*7 = (a*¥)7=e? =¢c.

Let G be a finite group of order n and @« € G. Then o(a) divides n by
Corollary 4.3.12. Thus, to find o(a), we only need to check a*, where & is a
positive divisor of n. For example, consider Zyp and [6] € Zyg. Now |Zgp| = 20
and 1, 2, 4, 5, 10, and 20 are the only positive divisors of 20. Now 1[6] = [6] # [0],
2[6] = [12] # [0], 4[6] = [24] = [4] # [0], 5[6] = [30] = [10] # [0], and
10[6] = [60] = [0]. Thus, o([6]) = 10. Hence, the above corollary can be used to
find the order of an element in a finite group.

Corollary 4.3.13 Let G be a group of prime order. Then G s cyclic.

Proof.  Since |G| > 2, there exists a € G such that a # e. Let H = (a)}.
Then {e} C H and |H| divides |G|. But |G| is prime and so |H| = |G| . Since
H C G and |H| = |G|, it follows that G = H. Therefore, G is cyclic. B

G.H. Hardy (1877-1947) believed that no result of number theory would
have a practical application. However, number theoretic results have recently
been applied to cryptography, the study of secret codes. The following is such
a result. It is known as Fermat’s little theorem.

Theorem 4.3.14 (Fermat) Let p be a prime integer and a be an integer such
that p does not divide a. Then p divides aP~1 — 1, i.e.,

af~l =, 1.
Proof. Let U, = Z,\{0}. Then by Exercise 10 (page 78), U is a group.
Also, by Exercise 9 (page 78), |Up| = p—1. Let a be an integer such that p does
not divide a. Then [a] is a nonzero element of Z, and so [a] € U,. Thus, by
Corollary 4.3.12, [¢]P~! = [1], i.e., [@®}] = [1]. Hence, a?~! =, 1 by Exercise
11 (page 30). B

Let H and K be subgroups of a group G. If either H or K is infinite, then,
of course, HK is infinite. Suppose H and K are both finite. We know that HK
need not be a subgroup of G. Thus, |H K| need not divide |G|. However, with
the help of Lagrange’s theorem, we can determine |HK|. This is a very useful
result and we will use it very effectively in this text. In the next theorem, we

determine |HK| when H and K are both finite.
Theorem 4.3.15 Let H and K be finite subgroups of a group G. Then

H| K|

HE| = AR
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Proof. Let us write A = HN K. Since H and K are subgroups of G, A is
a subgroup of G and since A C H, A is also a subgroup of H. By Lagrange’s
theorem, |A| divides |H|. Let n = J|%|l. Then [H : A) = n and so A has n
distinct left cosets in H. Let {14, z9A,...,2,A} be the set of all distinct left
cosets of A in H. Then H = U ;z;A. Since A C K, it follows that

We now show that z; K Nz;K = ¢ if 1 # j. Suppose 2, K Nz; K # ¢ for some
i # j. Then z;K = z;K. Thus, z;'z; € K. Since z;'z; € H, z]'z; € A
and so x;A = z;A. This contradicts the assumption that z;A4,...,z,A are all
distinct left cosets. Hence, 1 K,...,r, K are distinct left cosets of K. Also,
|K| = |z; K| by Coroliary 4.3.7 for all « = 1,2, ..., n. Thus,

|HK| = |o1K|+---+ |z, K]
= |K|+---+|K|
£ times
= n|K|
_ |HYK
Mk
|HnK°.

The following corollary is an immediate consequence of the above theorem.

Corollary 4.3.16 Let H and K be finite subgroups of a group G such that
HNK ={e}. Then
|HK|=|H||K|. ®

4.3.1 Worked-Out Exercises

O Exercise 1 Let H be a subgroup of a group G. Show that for all a € G,
aH = H ifand only if a € H.

Solution: Let ¢ € G. Suppose alf = H. Then a = ae € aH = H.
Conversely, suppose that a € H. Now for any h € H, ah € H. Hence, aH C H.
Let h € H. Then a 'h € H. Thus, h = a{a'h) € aH. Therefore, H C aH,
proving that aH = H.

$ Exercise 2 Let G be a noncyclic group of order p?, p a prime integer. Show
that the order of each nonidentity element is p.

Solution: Let ¢ € G and g # e. Now o(g) divides |G| = p®. Hence,
o{g) = 1,por p°. Since g # e, o(g) # 1. If o(g) = p?, then G contains an element
g such that o(g) = |G| and this implies that G is cyclic, which contradicts the
hypothesis. Hence, o(g) = p.
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Exercise 3 Let G = {a,b,¢,d} be a group. Complete the following Cayley
table for this group.

B O o8
<o

Solution: From the table, ¢2 = b and db = b. Now db = b implies that
d = e, the identity element of G. Since ¢® = b # d, o(c) # 2. Hence, o(c) = 4.
Thus, G is a cyclic group generated by c. Then G = {e ,¢, ¢2, ¢’}. Sinced = ¢
and ¢ = b, it follows that ¢® = a. Hence, the Cayley table is

a b ¢ d
alb ¢ d a
blc d a b
cl|ld a b c
dla b ¢ d

Exercise 4 Let G be a finite nontrivial group. Suppose for all z € G, there
exists y € G such that x = y%. Prove that the order of G is odd and
conversely.

Solution: Suppose G is of odd order. Then |G| = 2n+ 1 for some positive
integer n and for all z € G, vt = e. Now £?"*t! = ¢ implies ¢ = 272" =
(z7™)2 = 2, where y = z~™. Conversely, suppose |G| is not odd. Let |G| = 2n
and z € G. Then there exists ¥ € G such that z = y2. Hence, z" = y*" = e.
Thus, for all £ € G, 2™ = e. Suppose n is odd, say, n = 2m + 1. Then
2™+l = ¢ for all z € G. By Worked-Out Exercise 5 {page 74), there exists
z € G such that z # e and 22 = e since |G| is even. Hence, e = z2™+1 =
z2?™ = 2(22)™ = ze = z, which is a contradiction. So n is even, say, n = 2m.
Then z?™ = e for all z € G. As before, we can show that z™ =e forallz € G
and m is even. Continuing in this way, we can conclude that z? = e for all
z € G. Let z € G. Then there exists y € G such that z = y2. Therefore, T = e.
Thus, |G| = 1, which is a contradiction. Consequently, G is of odd order.

{ Exercise 5 Let G be a group such that |G| > 1. Prove that G has only the
trivial subgroups if and only if |G| is prime.

Solution: Let |G| = p, p a prime. Let H be a subgroup of G. Then
|H| divides |G|. This implies that |H| = 1 or p. Thus, H = {e} or H = G.
Conversely, suppose that G has only the trivial subgroups. Let a € G be such
that a # e. Now {a) = {a" | a € Z} is a cyclic subgroup of G and {a) # {e}.
Therefore, G = {a) . If G is infinite, then a” # a° for all v, s € Z, r # s. Hence,
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{a?" | n € Z} is a nontrivial subgroup of G, which is a contradiction. Thus,
|G| is a finite cyclic group of order, say, m > 1. Suppose m is not prime. Then
m = rs for some r,s € Z, 1 < r,s < m. Since r| |G| and G is cyclic, G has a
cyclic subgroup H of order r. This contradicts the assumption that G has only
the trivial subgroups. Hence, |G| is prime.

¢ Exercise 6 Let GG be a group of order p™, p a prime. Show that G contains
an element of order p.

Solution: Let ¢ € G, a # e. Then H = (a) is a cyclic subgroup of G. Now
|H| divides |G| = p™. Thus, |H| = p™ for some m € Z, 0 < m < n. Now H
is a cyclic | group of order p™. Hence, for every divisor d of p™, there exists a
subgroup of order d. So for p, there exists a subgroup T of H such that |T| = p.
By Corollary 4.3.13, there exists b € T such that T = {b) and b is of order p.
Hence, G contains an element of order p.

Exercise 7 Let G be a finite commutative group such that G contains two
distinct elements of order 2. Show that |G| is a multiple of 4. Also, show
that this result need not be true if G is not commutative.

Solution: Let @ and b be two distinct elements of order 2. Let H = {e,a}
and K = {e,b}. Now H and K are subgroups of G. Since G is commutative,
HK = {e,a,b,ab} is a subgroup of G of order 4. Now |[HK| = 4 divides |G]|.
Thus, |G| is a multiple of 4.

The symmetric group S3 is noncommutative, (1 2) and (1 3) are elements
of S3, and each is of order 2. But 4 does not divide |S3| = 6.

Exercise 8 Find all subgroups of S3 and draw the lattice diagram of the
subgroup lattice of Ss.

Solution: S3 = {e, (12}, (1 3), (2 3), (1 23), (132)}.0(12)=2,0(1
3)=2,0(23)=2,0(123)=3,and o(1 32)=3. Now {e}, {e, (12)}, {e, (1
3)}, {e, (2 3)}, {e, (1 23), (1 32)}, and S3 are subgroups of S3. Let H be a
subgroup of S3. Now |H| divides |G|. Thus, |H| =1,2,3, or 6. If |H| = 1, then
H ={e}.If |H| = 6, then H = S3. If |H| = 2, then H is a cyclic group of order
2. Hence, H is one of {¢, (1 2)}, {e, (1 3)}, {e, (2 3)}. Suppose |H| = 3. Then by
Lagrange’s theorem, H has no subgroup of order 2. Thus, (1 2}),(13),(23) ¢ H.
Therefore, e, (1 2 3), (1 3 2) € H. Also, {e, (12 3), (1 32)} is a subgroup and
so H=1{e, (123),(132)}. Hence, Hy = {e}, H1 = {e, (12)}, Ho = {e, (13)},
Hy ={e, (23)}, Hy = {e, (123), (132)}, and S3 are the only subgroups of Sj.
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4.3.2 Exercises

1.

10.

In 53,
(i) find all right cosets of H = {e, (2 3)},
(ii) find a subgroup B of G such that H(1 2 3) is a left coset of B.

. Find all right cosets of the subgroup 6Z in the group (Z, +).
. Let

— 2

o 1 2 3 4 1 2 3 4 1 2 3 4
1 V232 1) V21 43/°V3 41 2 ’

where e is the identity permutation. Show that H is a subgroup of 54.
List all the left and right cosets of H in 5.

Let H denote the subgroup {rsgg, h} of the group of symmetries of the
square. List all the left and right cosets of H in G.

. Find all subgroups of the Klein 4-group.

Find all subgroups of order 4 in Sj.

Let G = {a,b,¢,d} be a group. Complete the following Cayley table for
this group.

O o8 R
o
A,

Let G be a group and H and K be subgroups of G. Show that (HNK)z =
HzxnN Kz for all z € G.

Let G be a group and H and K be subgroups of G. Let a,b € G. Show
that either HaN Kb = ¢ or HaN Kb = (H N K)c for some ¢ € G.

(Poincaré) Let G be a group and H and K be subgroups of G of finite
indices. Show that H N K is of finite index.



4.3. LAGRANGE'S THEOREM 126

11.

12.

13.

14,

15.

16.

17.

18.

19.

20.

21.

22.

Give an example of a group G and a subgroup H of G such that aHf = bH,
but Ha # Hb for some a,b € G.

Let G be a group of order pg, where p and ¢ are prime integers. Show
that every proper subgroup of GG is cyclic.

Let H be a subgroup of a group G. Define a relation ~ on G by for all
a,b € G, o~ bif and only if b7'a € H (i.e., if and only if aH = bH).
Show that ~ is an equivalence relation on G and the equivalence classes
of ~ are the cosets aH, a € G.

Let n > 1. Show that there exists a proper subgroup H of S, such that
(S : H] < n.

Let H and K be subgroups of a finite group G such that |H| > /|G| and
|K| > +/|G|. Show that |[H N K| > 1.

Let |G| = pq, (p > ¢q), where p and q are distinct primes. Show that G
has at most one subgroup of order p.

Let G be a group. If a subset A is a left coset of some subgroup of G,
show that A is a right coset of some subgroup of G.

Let G be a finite group and A and B be subgroups of G such that A C
B C (. Prove that

[G: Al =[G: B][B: A

Let G be a group such that |G| < 200. Suppose G has subgroups of order
25 and 35. Find the order of G.

Let G be a group of order 35 and A and B be subgroups of G of order 5
and 7, respectively. Show that G = AB. ‘v 4.

1 e
! E

. a .

Let A and B be subgroups of a group G. If |A| = p, a prime integer, show
that either AN B = {e} or A C B.

Let H and K be subgroups of a group (. Define a relation ~ on G by
for all a,b € G, a ~ b if and only if b = hak for some h € H and k € K.

(1) Show that ~ is an equivalence relation on G.

(ii) Let a € G and [a] denote the equivalence class of a in G. Show that
[g] = {hak | h € H, k € K} = HaK.

The set HaK is called a double coset of H and K in G.
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(iii} If G is a finite group, prove that

H||K]
|HNaKa™1

|HoK| =

for all a € (5.

23. For the following, if the statement is true, then write the proof. Otherwise
justify why the statement is false.

(i) Every left coset of a subgroup of a group is also a right coset.

(ii) The product of two left cosets of a subgroup of a group is also a left

coset.
6

(iii) There may exist a subgroup of order 12 in a group of order 40.
(iv) Let G = {(a) be a cyclic group of order 30. Then [G : (a®)| =5. ®
(v) Every proper subgroup of a group of order p? (p a prime) is cyclic.

(vi) Let G be a group. If H is a subgroup of order p and K is a subgroup
of order g, where p and ¢ are distinct primes, then |[HK| = pgq.

4.4 Normal Subgroups and Quotient Groups

In the previous section, we saw that a subgroup H of a group &G induced two
decompositions of G, one by left cosets and another by right cosets. In other
words, if H is a subgroup of a group G, then G can be written as a disjoint
union of distinct left (right) cosets of H in G. These two decompositions were
first recognized by Galois in 1831 in the context of permutation groups. Galois
called the decomposition “proper” if the two decompositions coincide, i.e., if
left cosets are the same as right cosets. We call such a subgroup normal in
our present-day terminology. Normal subgroups are the subject of this section.
Galois showed how the solvability of a polynomial equation by means of radicals
is related to the concept of a normal subgroup of the group of permutations
of the roots and the group, called the quotient group, created by the normal
subgroup.

Perhaps the notion of a normal subgroup is one of the most innovative ideas
in group theory. L.N. Herstein (1923-1988) remarked about normal subgroups
that “It is a tribute to the genius of Galois that he recognized that those
subgroups for which the left and right cosets coincide are distinguished ones.
“Very often in mathematics the crucial problem is to recognize and to discover
what are the relevant concepts; once this is accomplished the job may be more
than half done.”

Later C. Jordan defined normal subgroups without using the term normal
as we define it in our present-day terminology.



4.4. NORMAL SUBGROUPFPS AND QUOTIENT GROUPS 128

We shall see in this text that normal subgroups play a crucial role in ob-
taining structural results of groups. Let us now begin our study of normal
subgroups.

Definition 4.4.1 Let G be a group. A subgroup H of G is said to be a normal
(or invariant) subgroup of G if aH = Ha for alla € G.

From the definition of a normal subgroup, it follows that for any group G,
G and {e} are normal subgroups of G.

If H is a normal subgroup of G, this does not always mean that ah = ha
for all h € H and for all a € G as shown by the following example.

Example 4.4.2 Recall Example 4.3.2. H is a normal subgroup of S3. Consider

1 2 3
h-—(z 3 1)EH.Then

1 2 3 oh — 1 2 3
1 3 2 V3 21
and
ho 1 2 3} (123
1 32/ {213
Hence,

even though
1 2 3 1 2 3
(1 3 Q)H_H(l 3 2)'

The following theorem gives a necessary and sufficient condition for a sub-
group to be a normal subgroup. For a € G, ¢ # H C G, let aHa™! = {aha™!
| h € H}.

Theorem 4.4.3 Let H be a subgroup of a group G. Then H is a normal
subgroup of G if and only if for alla € G, aHa™! C H.

Proof.  First suppose that H is a normal subgroup of G. Let a € G. We
now show that aHa™! C H. Let aha™! € aHa™!, where h € H. Since H is a
normal subgroup of G, e H = Ha. Also, since ah € aH, we have ah € Ha and
so ah = Wa for some k' € H. Thus, aha™! = k' € H. Hence, aHa™! C H.
Conversely, suppose aHa"1 C H for all a € G. Let a € G. We show that
aH = Ha. Let ah € aH, where h € H. Now aha™! € aHa ' andsoaha™! € H.
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Thus, aha™! = R’ for some k' € H. This implies that ah = h'a € Ha. There-
fore, aH C Ha. Similarly, we can show that Ha C aH. Hence, aHH = Ha.
Consequently, H is a normal subgroup of G. B

There are several other criteria that can be used to test the normality of
a subgroup. We consider some of these criteria in exercises at the end of this
section.

The following theorem describes some important properties of normal sub-
groups.

Theorem 4.4.4 Let H and K be normal subgroups of a group G. Then
(t) HN K is a normal subgroup of G,
(it) HK = KH is a normal subgroup of G,
(i) (HUK) = HK.

Proof. (i) Since the intersection of subgroups is a subgroup, H N K is a
subgroup of G. Let g € G. Consider g(H N K)g~!. Let gag™! be any element
of g(HNK)g™ ', wherea € HNK. Sincea € HNK,wehavea € H anda € K.
Hence, gag™! € H and gag™! € K. Thus, gag~! € H N K. This shows that
g(HNK)g~! C HN K.Hence, HN K is a normal subgroup by Theorem 4.4.3.

(11) First we show that HK = KH. Let hk € HK, where h € H and k € K.
Since K is a normal subgroup of G and h € G, we have hK = Kh. Thus,
hk € hK = Kh. Since Kh C KH, we have hk €¢ KH. Hence, HK C KH.
Similarly, KH C HK and so HK = KH. Since H and K are subgroups and
HK = KH, HK is a subgroup of G by Theorem 4.1.13. To show that HK is
a normal subgroup, let ¢ € G. Then gHg™! C H and gKg~! C K since H and
K are normal subgroups. Now

I

g(HEK)g™! g(Hg lgK)g™!
(gHg "V (gKg™")

HK.

N

Therefore, HK is a normal subgroup of G by Theorem 4.4.3.
(iii) By (ii), HK is a subgroup of G. Hence, by Theorem 4.1.15,

HK=(HUK). 1

We know that if H# and K are subgroups of a group G, then HK need
not be a subgroup of G (Example 4.1.12). By the above theorem, if H and K
are normal subgroups, then HK is a normal subgroup and hence a subgroup.
However, in order to show that HK is a subgroup, we only need either H or
K to be a normal subgroup. We consider one of these situations in Exercise

13 (page 137).
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In Theorem 4.1.16, we proved that the set of all subgroups of a group G is
a lattice. In the next theorem, we prove that the set of all normal subgroups
of a group G is a modular lattice.

Corollary 4.4.5 Let N(G) denote the set of all normal subgroups of a group
G. Then (N(G), <) is a modular lattice, where < is the set inclusion relation.

Proof.  Proceeding as in Theorem 4.1.16, we can show that (N(G), <) is
a lattice, where HAK = HNK and HV K = (HUK) = HK for all
H K € N(G). Let H,K,L € N(G) be such that H < L. We now show that
H(KNL)=HKNL. Since H C HK and H C L, we find that H C HK N L.
Also, KNLC K CHK and KNL C L. Asaresult KNL C HKNL, showing
that H{KNLY)C HKNL Letae HKNL. Thena € HK and a € L. Thus,
a = hk for some h € H and k € K. This implies that ¥ = h~la € L and so
k € KNL. Hence, a € H{(KNL), which implies that HKNL C H(KNL). Con-
sequently, we must have H{(KNL) = HKNL,ie, HV(KAL)=(HVK)AL.
Hence, (M{G), <) is a modular lattice. W

We now focus our attention on the study of quotient groups. First, let us
consider the following example.

Example 4.4.6 Consider the subgroup H' of Example 4.3.2. Now H’ is not a
normal subgroup of Ss. Let Ss/H' be the set of all left cosets of H' in S3. Now
let us try to define a binary operation * on Ss/H'. The natural way would be

to define (w1 H') x (moH') to be (my oma)H'. Now

(112)r-(112)r
and
(373)m=(25d)r
However,
(GEs)r) (5 at)m)-(313)
and
(33)m) (1)) (2 3)
Since
(B13)me(13d)m
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* 18 not well defined. That x is not well defined 1s due to the fact that H' is
not a normal subgroup of S3.

Theorem 4.4.7 Let H be a normal subgroup of a group G. Denote the set
of all left cosets {aH | a € G} by G/H and define ¥ on G/H by for all aH,
bH € G/H,

(aH) * (bH) = abH.

Then (G/H, %) is a group.

Proof. First we show that = is well defined. Let aH, bH, o'H, ¥H € G/H
and suppose (aH, bH) = (d’H, ¥ H). Then aH = a'H and bH = ¥ H. We
need to show that aH *bH = a’'H « ¥’ H or abH = o/’ H. Now aH = o'H and
bH = b H imply that a = a’hy and b = b'hy for some Ay, hy € H. Thus,
(@'¥)"Hab) = b~lalad
= b"_la"la’hlb’hg
= b"_lhlb"'hg.

Since H is a normal subgroup and hy € H, we have b~ h b hy = (W7 1hib ko €
H and so (a't/)~!(ab) € H. Hence, abH = o't/ H by Theorem 4.3.3(i). Thus, *
is well defined and so (G/H, %) is a mathematical system.

Next, we show that * is associative. Let aH, bH, cH € G/H. Now (aH) *
[(BH) * (cH)] = (aH) * (beH) = a(bc)H = (ab)cH = (abH) * (cH) = [(aH) *
(bH)] * (cH). Hence, * is associative. Now eH € G/H and

(aH) % (eH) = aeH = aH = eaH = (eH) * (aH)

for all aH € G/H. Therefore, eH is the identity of G/H. Also, for all eH €
G/H,a 'H € G/H and

(aH)* (e 'H) =ao 'H=eH =a"'aH = (a7 H) * (aH).

Thus, for all alf € G/H, a ' H is the inverse of aH. Consequently, (G/H, *) is
a group. W

Definition 4.4.8 Lei G be a group and H be a normal subgroup of G. The
group G/H 1is called the quotient group of G by H.

Example 4.4.9 Consider the subgroup ((n),+) of the group (Z,+), where n
is a fized positive integer. Since Z is commutative, (n) is a normal subgroup
of Z (Ezxercise 15, page 137). Hence, (Z/ (n),+) is a group, where

(a+ {n))+ (b+ (n)) =(a+b)+ (n)

for alla+(n), b+ (n) € Z/ {n) . In Ezample 4.3.10, we determined the distinct
left cosets of (n) in Z. We found that

Z/(ny={0+{(n),14+(n),2+{n),..., n—1+{n)}.
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Example 4.4.10 Consider the normal subgroup H of S3 of Ezxample 4.4.2.
Since |S3| = 6 and |H| = 3, [S3 : H| = 2 by Lagrange’s theorem. Now |S3/H| =
(S3: Hl =2 and for allh € H, hH = H. Thus, e = H, (1 2 3)H = H and
(1 32)H = H. We have shown in Example 4.3.2 that (2 3)H = (1 3)H = (1
2)VH. Thus,

S3/H={H, (23)H}.

We also note that S/ H 4s cyclic and (2 3)H is a generator for S3/H.
Example 4.4.11 Consider Zg and let H = {[0],[4]}. Then H is a normal
subgroup of Zs. Now |H| = 2 and |Zs| = 8. Thus, |Zs/H| = ll%ﬁll — 4. Hence,
Zg/H has four elements. Now
0]+ H=H=[4]+H,

[+ H = {{1], [5]} =[5] + H,

2]+ H = {[2], [6]} = [6] + H,
and

Bl+H=A{[3, [M}=["+H
Hence, Zg/H = {[0]+ H, [1) + H, [2] + H, [3] + H}.

Example 4.4.12 Consider Z4 x Zg, the direct product of Z4 and Zg. Let

H = (([0], {1])) = {([0], 0]}, ([0], (1)), ([0], (2]}, ({0], 3]}, (0}, (4]}, ([0], [5])}-

Then H is a subgroup of Zg X Ze and since Zy X Zg 18 commutative, H is a
normal subgroup of Zy x Zg. Now |Zy4 X Zg| = 24 and |H| = 6. Hence,

|24 % Zs| _
H]
Thus, (Z4 % Zs)/H has four elements. Since for all [n] € Zs, ([0],[n]) € H,
we have for all [n] € Zg, ([0],[n]) + H = H. Let ([m],[n]) € Z4 x Zg. Then
(fm], [n])) = ([m],[0]) + ([0],[n]) and from this, it follows that ([m],[n]) + H =

([m], [0])+H. Let us now compute ([m], [0])+H form = 0,1,2,3. Now ([0], [0])+
H=4H,

([1], [0]) + H = {((1], (0}, ([1], (1]}, ([1]; [21), ([1], [3]). C[1], 14D), ([2). [5])}
([2), (o) + # = {([2], [0]), ([2], [1]), (21, [2]), ([2], [31), ([2]; [4]), (21, [5])},

|(Z4 x Zg)/H| = 4.

and

(131, [0) + H = {([3], [0, ([3], {1]), (13}, [21), ([3], [31). ([3], [4]), (3], [5]) }-

From. above, we see that (0], [0])+H, ([1], [0])+H, ([2], [0)+H, and ([3],[0))+H
are all distinct. Hence,

(Z4 > Zs)/H = {([0],[0]) + H, (1], [0]) + H, ([2], [0)) + H, (3], [0]) + H}.
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Groups of the type given in the next definition are building blocks for all
groups. They are important because they help to determine the structure of
groups. We will discuss this in more detail when we introduce the concept of
a composition series of a group (Chapter 8).

Definition 4.4.13 Let G be a group. Then G is called simple if G # {e} and
the only normal subgroups of G are {e} and G.

The only simple commutative groups are given in the next example. We
will determine the simple groups of order < 60 (in Section 7.4).

Example 4.4.14 Let G be a cyclic group of order p, p a prime. Since the only
subgroups of G are {e} and G, G is simple.

We now proceed to establish the simplicity of A,, n > 5. Thus, there is a
large class of simple groups.

Lemma 4.4.15 Let H be a normal subgroup of An, n > 5. If H contains a
3-cycle, then H = A,.

Proof. Suppose H contains a 3-cycle, say, (a b ¢} € H. Let (v v w) € A,
and let m € S, be such that 7n(a) = u, 7(b) = v, and 7(c) = w. Nowmro(a b
clom™ ! = (v v w). If m € Ay, then (u v w) € H. Suppose 7w ¢ A,. Then 7 is
an odd permutation. Since n > 5, there exist d, f € I, such that d and f are
distinct from a,b and ¢. Then 7o (d f) € A,. Now (vv w) =nwo(abclor! =
mof{abclo(d flo{d fy lont=mo(d flo{abc)o(d f) lorm = (no(d
fNo(@abc)o(mro(d f))"! € H. Thus, H contains all 3-cycles. Since A, is
generated by the set of all 3-cycles, H = A,,. R

Theorem 4.4.16 Let H be a normal subgroup of A,, n > 5. If H contains a
product of twe disjoint transpositions, then H = A,,.

Proof. Suppose (a b) o (c d) € H, where (a b) and (¢ d) are disjoint trans-
positions. Let w € I,, be such that w ¢ {a,b,c,d}. Let 7 = (¢ d w). Since = is
a 3-cycle, T € A,. Since H is a normal subgroup of A,, we have mro(a b)o( ¢

d)on~! € H. But
mo(ab)o(cd)or™! = (dw)o(ab)
and so (d w) o (a b) € H. Since H is a subgroup,
(cdw)={ablo(cd)o(dw)o(ab)e H.
Hence, H contains a 3-cycle and so by Lemma 4.4.15, H=A4,. W

Theorem 4.4.17 A, is simple if n > 5.
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Proof. Let H be a normal subgroup of A, and H # {e}. Let 7 € H, w # ¢
be a permutation that moves the smallest number of elements, say, m. Then
m > 3. We claim that m = 3, in which case the result follows by Lemma 4.4.15.
Suppose m > 3. Write # = 11 omp 0 - - - 0 7}, as a product of disjoint cycles.

Suppose that ; is a transposition for all i = 1,2, ..., k. Then k > 2. Let

= (a b) and mp = (¢ d). Let f € I, be such that f ¢ {a,b,¢,d} and let ¢ = (c
d f). Since 0 € A, and H is a normal subgroup of A,, 7’ = n~logomoc~! € H.
Clearly 7'(a) = a and 7'(b) = b. If w € I, and « ¢ {a,b,¢,d, f} is such that
w(u) = u, then 7'(u) = u. Since #'(f) = ¢, 7’ # e. Thus, 7’ € H, 7’ # e,
and 7’ moves fewer elements than m, which is a contradiction. Hence, for some
t, 1 <<k, m; is a cycle of length > 3. Since disjoint cycles commute, by
renumbering if necessary, we may assume that ¢ = 1. Thenm ={a bec --.).
If m = 4, then 7 is a cycle of length of 4 and hence an odd permutation,
a contradiction. Thus, m > 5. Hence, m moves at least five elements. Let d,
fel,andd, f ¢ {a,b,c}. Let 0 = (cd f). As before, 7 = n~locomoo™! € H.
Since 7'(b) = #~1(d) # b, ©’ # e. Now for any u ¢ {a, b, ¢, d, f}, if 7(u) = u,
then 7'(u) = u. Clearly n'(a) = a. Hence, 7’ moves fewer elements than =,
which is again a contradiction. Hence, m =3. R

4.4.1 Worked-Out Exercises

O Exercise 1 Let H be a subgroup of a group G. Then W = NgecgH 9 is
a normal subgroup of G.

Solution: By Worked-Out Exercise 1 (page 106}, gHg ! is a subgroup
of GG for all g € GG. Since the intersection of subgroups is a subgroup, W is a
subgroup of G. Let £ € G, w € W. Then w € gHg™! for all g € G. We show
that rwx~! € gHg ! for all g € G, which in turn will yield that zwz~! € W.
Let g € G.

Let us work our way backward and suppose zwz~! € gHg™!. Then zwz™! =
ghg~! for some h € H. Thus, g~ lxw £~ 1g = h € H. This implies that

(9™ ')w(g'z)~" € H.
Set y = 27 1g. Then g = zy. Hence, in order to show that zwz~! € gHg ™! for
a given g € G, first we need to find y € G such that g = zy. Since g = z(z71g),
we can choose y =z g.

So there exists ¥ € G such that ¢ = zy. Since y € G, we have w € yHy ™!
and so w = yhy~! for some h € H. Therefore, zwz™! = z(yhy Dz~ ! =
zyhy e~ = (zy)h(cy)™ = ghg™! € gHg™'. Since g € G was arbitrary,

wr~! € gH g_l for all g € G. Consequently, W is a normal subgroup of G.

¢ Exercise 2 Let H be a subgroup of G.
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(i) If z? € H for all z € G, prove that H is a normal subgroup of G and
G/H is commutative.

(ii) If [G : H] = 2, prove that H is a normal subgroup of G.

Solution: (i) Let g € G and h € H. Consider ghg~! and note that
ghg ' = (gh)’R g%,

Now h~! € H and by our hypothesis (gh)?, g~2 € H. This implies that ghg~! €
H, which in turn shows that gHg™! C H. Hence, H is a normal subgroup of
G. To show that G/H is commutative, let ¢ H,yH € G/H. We wish to show
that tHyH = yHzH or zyH = yz H or (yz) " (zy) € H. Consider (yz) (zy).
Now

(ye) " (zy) = (™' (=) = (797 (yay )

Since a? € H for all a € G, it follows that (z™1y~1)2(yzy~1)?y* € H and so
(yz)~*(xy) € H. Thus, G/H is commutative.

(i) We prove that H is a normal subgroup of G first by showing that
z? € H for all z € G and then by using (i). Suppose there exists z € G such
that z2 ¢ H. Then = ¢ H and so H and =H are distinct left cosets of H in
G. Since (G : H} = 2, it follows that G/H = {H,zH}. Hence, G = HUzH.
This implies that 22 € HUzH. Since z? ¢ H, we must have z2 € xH . Hence,
z? = zh for some h € H. But then z = h € H, which is a contradiction. Hence,
r? € H for all z € G. By (i), H is a normal subgroup of G.

Exercise 3 Let G be a group such that every cyclic subgroup of G is a normal

subgroup of GG. Prove that every subgroup of G is a normal subgroup of
G.

Solution: Let H be a subgroup of G. Let ¢ € G and ¢ € H. Then
¢ lag € (a) C H. Hence, H is normal in G.

Exercise 4 Let H be a proper subgroup of G such that for all z,y € G\H,
xzy € H. Prove that H is a normal subgroup of G.

Solution: Let z € G\H. Then z~! € G\H. Let y € H. Then zy € G\H.
Thus, zy, z7* € G\H. Hence, zyz~! € H. Therefore, H is a normal subgroup
of G.

{ Exercise 5 Let G be a group and {N; | 7 € 2} be a family of proper normal
subgroups of G. Suppose G = U;N; and N; N N; = {e} for ¢ # j. Prove
that G is commutative.
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Solution: Let z,y € G. Then there exist ¢ and j such that x € N; and
y € N;. If i # j, then since N;NN; = {e}, zy = yz (Exercise 12, page 137). Let
i = 7. Now there exists z € G such that z ¢ N;. Then 22 ¢ N;. Hence, zx € N
for some I # i and so (za)y = y(zz). Thus, z(zy) = (zz)y = y(zz) = (y2)z =
(zy)z = z(yz). This implies that 2y = yz. Consequently, G is commutative.

Exercise 6 Let H be a subgroup of a group G. Suppose that the product of
two left cosets of H in (7 is again a left coset of H in G: Prove that H is
a normal subgroup of G.

Solution: Let g € G. Then gHg *H = tH for some t € G. Thus, e =
geg~le € tH. Hence, e = th for some h € H. Thus, t = h™! € H so that
tH = H. Now gHg™! C gHg~'H = H. Therefore, H is a normal subgroup of
G.

{ Exercise 7 Let G be a group. Show that if G/Z(G) is cyclic, then G is

commutative.

Solution: Write Z = Z(G). Let G/Z = {(9Z) . Let a,b € G. Then aZ,bZ €
G/Z. Hence, aZ = ¢g"Z and bZ = g™ Z for some n,m € Z. Then a € ¢g"Z and
be gnZ. Thus, a = ¢g"d and b = g™h for some d,h € Z. Now ab = g"dg™h =
g"g™dh (since d € Z) = ¢g"t™hd (since h € Z) = g"¢g"hd = g™hg"d = ba.
Hence, G is commutative.

4.4.2 Exercises

1. Let

H=le 1 2 3 4 1 2 3 4 1 2 3 4
17 \V4 32 1) 12 143)°\3 41 2 ’

where e is the identity permutation. Determine whether or not H is a
normal subgroup of Sy.

2. Let H denote the subgroup {rsep, A} of the group of symmetries of the
square. Determine whether or not H is a normal subgroup of G.

3. Let G be a group and H be a subgroup of G. Show that H is normal if
and only if ghg' €e Hforallge G, h € H.

4. Let G be a group and H be a subgroup of G. If for all ¢, b € G, ab &€ H
implies ba € H, prove that H is a normal subgroup of G.

5. Let H be a proper subgroup of a group G and o € G, a ¢ H. Suppose
that for all b € G, either b € H or Ha = Hb. Show that H is a normal
subgroup of G.
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10.

11.

12

13.

14.

13.
16.

17.

18.
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Let G be a group. Prove that Z(G) is a normal subgroup of G.

Let G be a group. Let H be a subgroup of G such that # C Z(G). Show
that if G/H is cyclic, then G = Z(QG), i.e., G is commutative.

Let H and K be subgroups of a group G such that H is a normal subgroup
of GG. Prove that H N K is a normal subgroup of K.

Determine the quotient groups of
(1) (B, +) in (Z,+),

(i) (Z,+) in (Q, +),

(ili) ({[4]}, +12) in (Z12, +12).

Let H be a normal subgroup of a group G. Prove that if G is commuta-
tive, then so is the quotient group G/ H.

Let H be a nonempty subset of a group G. The set N(H) = {a € G |
aHa ! = H} is called the normalizer of H in G.

(i) Prove that N(H) is a subgroup of G.

Suppose H is a subgroup of G.

(i) Prove that H is normal in @ if and only if N(H) = G.

(iii) Prove that H is normal in N(H).

(iv) Prove that N(H) is the largest subgroup of G in which H is normal,
i.e., if H is normal in a subgroup K of G, then K C N(H).

Let H and K be normal subgroups of a group G. If H N K = {e}, prove
that hk = kh for all h € H and k € K.

Let G be a group. Let H be a subgroup of G and K be a normal subgroup
of G. Prove that HK is a subgroup of G.

Give an example of a noncommutative group in which every subgroup is
normal.

Show that every subgroup of a commutative group is normal.

Let H be a normal subgroup of a group G such that |[H| = 2. Show that
H C Z(G).

Show that if H is the only subgroup of order n in a group &, then H is
a normal subgroup of G.

Let K={e, (12)0(34),(14)0(32),(13)0(24)}.
(i) Show that K is the only subgroup of order 4 in A4.
(ii) Show that K is a normal subgroup of Ay.
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19.
20.

21.

22.

23.

24.

23.

Show that 44 has no subgroup of order 6.

Find all subgroups of A4. Draw the subgroup lattice diagram. Is this

. lattice a modular lattice?

Let G be a commutative group. Show that & is simple if and only if G
is of prime order.

Let G be a group. An equivalence relation p on G is called a congruence
relation if

for all a,b, ¢ € G, apb implies that capch and acpbe.
Let H be a normal subgroup of G. Define the relation pg on G by
for all a,b € G,apgb if and only if a~'b € H.

Prove that

(i) py is a congruence relation on G,

(ii) the py class apy = {b € G | apyb} is the left coset aH,
(i) H = epy.

Let H be a subgroup of a group G. Define a relation py on G by pg =

{(a,b) € G x G| a~'b € H}. Show that if py is a congruence relation,

then H is a normal subgroup of G.

Let p be a congruence relation on a group (. Show that there exists a
normal subgroup H of G such that p = {(a,b) e G x G | a~'b e H}.

For the following statements, write the proof if the statement is true;
otherwise, give a counterexample.

(i) A subgroup H of a group G is a normal subgroup if and only if every
right coset of H is also a left coset.

(ii) If A, B and C are normal subgroups of a group G, then A(BNC) is
a normal subgroup of G.

(iii) If A is a normal subgroup of a finite group G, then [G : A] = 2.

(iv) Every commutative subgroup of a group G is a normal subgroup of

G.

(v} If G is a group of order 2p, p an odd prime, then either G is commu-
tative or G contains a normal subgroup of order p.
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Joseph Louis Lagrange (1736-1813)
was born on January 25, 1736, in Turin,
Italy. He spent the early part of his life in
Turin. While there he was involved in car-
rying out research work in calculus of varia-
tions and mechanics.

In 1766, Lagrange was invited by the
Prussian king, Frederick II, to fill the po-
sition vacated by Euler in Berlin. Freder-
ick the Great proclaimed in his appointment
that “the greatest king in Europe” ought
to have “the greatest mathematician in Eu-
rope.” In 1787, after the death of Frederick
I, he went to Paris, accepting an invitation
from Louis XVI. In 1797, he accepted a po- -
sition at the newly formed Ecole Polytechnique in Paris. He was made a count by
Napoleon and remained at the Ecole Polytechnique till his death. He died on April
10, 1813.

Throughout his life, Lagrange did work of fundamental importance. He made
numerous contributions to many branches of mathematics, including number theory,
the theory of equations, differential equations, celestial mechanics, and fluid mechanics.
In 1770, he proved the famous Lagrange's theorem in group theory.

He is responsible for the work leading to Galois theory. In his paper, “Réflexion sur
la théorie algébriques des équations,” Lagrange carefully analyzed the various known
methods to solve a polynomial equation of degree < 4 by means of radicals. He was
interested in finding a general method of solution for polynomials of higher degree.
He was unable to find a general solution, but in his paper he introduced several key
ideas on the permutations of roots which finally led Abel and Galois to develop the
necessary theory to answer the question. Lagrange’s work on the solution of polynomial
equations is one of the sources from which modern group theory evolved.




Chapter 5

Homomorphisms and
Isomorphisms of Groups

One of the main uses of the concept of an isomorphism is the classification
of algebraic structures—in particular, groups. Readers with some knowledge
of linear algebra may recall that the concept of an isomorphism is used to
completely characterize vector spaces with the same field of scalars in terms
of a single integer, the dimension of the vector space. Another important use
of an isomorphism is the representation of one algebraic structure by means
of another. This is done in linear algebra, where it is shown that the vector
space of all linear transformations from one finite dimensional vector space into
another is isomorphic to a certain vector space of matrices.

5.1 Homomorphisms of Groups

In this section, we consider certain mappings between groups. These mappings
will be defined in such a way as to preserve the algebraic structure of the groups
involved. More precisely, suppose we are given a function f from a group G into
a group (G1, where *; denotes the operation of G;. Let o,b € G. Then under
f, a corresponds to f(a), b to f(b), and a xb to f(a *b). If f is to preserve
the operations of G and G, @ * b must correspond to f(a) %, f(b). Since f is a
function, this forces the requirement that f(a *b) = f(a) *; f(b).

Definition 5.1.1 Let (G, %) and (G1,*1) be groups and f a function from G
into G1. Then f is called a homomorphism of G into Gy if for all a,b € G,

flaxb) = f(a)* f(b).

Let the identity element of the group G; be denoted by e;.
Define f : G — G by f(a) = e; for all @ € G. Since f(a *b) = e; =
e1*1e1 = f(a)*1 f(b) for all a,b € G, we find that f is a homomorphism from
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G into (G1. This shows that there always exists a homomorphism from a group
G into a group G1. This homomorphism is called the trivial homomorphism.
The identity map from G onto G is also a homomorphism.
Before we consider more examples of hormmomorphisms, let us prove some
basic properties of homomorphisms.

Theorem 5.1.2 Let f be a homomorphism of a group G into a group Gi.
Then

(i) fle) =e1.

(ii) f(a™!) = f(a)™! for alla € G.

(15i) If H is a subgroup of G, then f{H) = {f(h) | h € H} is a subgroup of
G.
(iv) If Hy is a subgroup of G1, then f~1(H1) = {9 € G | f(g) € H1} is
a subgroup of G, and if Hy is a normal subgroup, then f~1(Hi) is o normal
subgroup of G.

(v) If G is commutative, then f(G) is commutative.

(vi) If a € G is such that o(a) = n, then o f(a)) divides n.

Proof. (i) Since f is a homomorphism, f(e)f(e) = f(ee) = f(e) = f(e)es.
This implies that f(e) = e; by the cancellation law.

(ii) Let @ € G. Then f(a)f(a™!) = f(aa™!) = f(e) = e;. Similarly,
f(a 1) f(a) = e1. Since f(a) has a unique inverse, f(a™!) = f(a)~!.

(iii) Let H be a subgroup of G. Then e € H and by (i), f(e) = e;. Thus,
e1 = f(e) € f(H) and so f(H) # ¢. Let f(a), f(b) € f(H), where a,b € H.
Since H is a subgroup, ab~! € H. Thus, f(a)f(b)™' = f(a)f(b~") = f(ab™!) €
f(H). Hence, by Theorem 4.1.3, f(H) is a subgroup of G1.

(iv) By (i), e € f~(H;) and so f~1(H) # ¢. Let a,b € f~1(H;). Then f(a),
f(b) € Hj. Hence, f(ab™?) = f(a)f(671) = f(a)f(b)~! € H; and so ab~! €
f~Y(H;). Thus, by Theorem 4.1.3, f~}(H;) is a subgroup of G. Suppose H,
is a normal subgroup of G;. Let g € G.We now show that gf 1(H;)g* C
f~1(H;). Let @ € gf~'(Hy)g™!. Then a = gbg~! for some b € f~1(H,). Now
fla) = f(gbg™") = fl@)f®)f(g™") = fg)f(b)f(g)~" € Hy since H, is a
normal subgroup of G, and f(b) € Hy. Hence, a € f~!(H;) and this shows
that gf~1(H1)g~! C f~1(H1). Thus, f~1(H;) is a normal subgroup of G.

(v) Suppose G is commutative. Let f(a), f(b) € f(G). Then f(a)f(b) =
f(ab) = f(ba) = f(b)f(a). Hence, f(G) is commutative.

(vi) Since (f(a))® = f(a™) = f(e) = ey, we have o(f(a)) divides n by
Theorem 2.1.28. B

Definition 5.1.3 Let f be a homomorphism of a group G into a group G.
The kernel of f, written Ker f, is defined to be the set

Ker f={a e G| f(a) =e}.
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By Theorem 5.1.2, ¢ € Ker f.

Example 5.1.4 Define the function f from (Z,+) into (Zn,, +,) by f(a) = [q]
for all a € Z. From the definition of f, it follows that f maps Z onto Z,,. Let
a,beZ. Then

fla+b) =la+b = o] +n [b] = f(a) +n F(b).
Thus, f is a homomorphism of Z onto Z,,. Now

Ker f = {a€Z| f(a)=[0]}
= {a€Z|[a =10}
{a € Z | a is divisible by n}
= {a€Z|a=qn for some q € Z}
= {¢qn | q € Z}.

The above example shows that a nontrivial finite group may be an image
of an infinite group under a homomorphism. By Theorem 5.1.2(v), a noncom-
mutative group cannot be an image under a homomorphism of a commutative
group. In the next example, we show that two finite groups G and G having
same number of elements need not have a homomorphism from G onto G.

Example 5.1.5 The groups Z4 x Z4 and Zg X Zy are commutative and each is
of order 16. Suppose there exists a homomorphism f of Zy x Z4 onto Zg x Zs.
Now a = ([7],[0]) € Zg x Zy and o(a) = 8. Since f is onto Zg X Zy, there exists
b € Zy x Zy such that f(b) = a. By Theorem 5.1.2(vt), o( f(b)) divides o(b).
Since o(f(b)) = 8 and Z4 X Z4 has elements of order 1,2, and 4 only, o{ f(b))
cannot divide o(b). This is a contradiction. Hence, there does not ezist any
homomorphism from Zy x Z4 onto Zg x Zs.

Definition 5.1.6 Let G and G; be groups. A homomorphism [ : G — Gq 1is
called an epimorphism if f is onto G1 and f is called a monomorphism if
f 1s one-one. If there is an epimorphism f from G onto Gy, then Gq is called
a homomorphic image of G.

The homomorphism in Example 5.1.4 is an epimorphism, but not a monomor-
phism.

Example 5.1.7 Let R* be the group of all nonzero real numbers under mul-
tiplication. Define f : R* — R* by f(a) = |a|. Now f(ab) = |ab| = |a| |[b] =
f(a) f(b), which implies that f is a homomorphism. Since f(1) = 1 = f(-1)
and 1 # =1, f is not one-one. Also, from the definition of f, it follows that f
is not onto R*. Hence, f 1s neither an epimorphism nor a monomorphism.

The following theorem gives a necessary and sufficient condition for a ho-
momorphism to be a one-one mapping in terms of its kernel.

Theorem 5.1.8 Let f be a homomorphism of a group G into a group G1.
Then f is one-one if and only if Ker f = {e}.
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Proof.  Suppose f is one-one. Let a € Ker f. Then f(a) = e; = f(e) by
Theorem 5.1.2(i). Since f is one-one, we must have a = e. Hence, Ker f = {e}.
Conversely, suppose that Ker f = {e}. Let a,b € G. Suppose f(a) = f(b).
‘Then

Fab™) = f(@)f(b™1) = fl@) f(B) ™ =

Thus, ab~! € Ker f = {e} and so ab™! = ¢, i.e., a = b. This proves that f is
one-one. A

Theorem 5.1.9 Let f be a homomorphism of a group G into a group G,.
Then Ker f is a normal subgroup of G.

Proof. Since e € Ker f, Ker f # ¢. Let a, b € Ker f. Then f(eb™!) =
fla)f1) = fla)f(b)™! = ei(e1)”! = eje; = e;. Thus, ab~! € Ker f and
hence Ker f is a subgroup of G by Theorem 4.1.3. Let a € G and h € Ker
f. Then faha™l) = f(a)f(h)f(@™) = f(@)f(R)f(a)™ = f(@)erf(a)™! = er.
Therefore, acha™! € Ker f. This proves that aKer fa=! C Ker f. Hence, Ker f
is & normal subgroup of G by Theorem 4.4.3. &

a b

Example 5.1.10 Let GL(2,R) = | a,b,c,d € R, ad — bc # 0} be

the noncommutative group of Example 2.1.10. Let R* be the group of all nonzero
real numbers under multiplication. Define f : GL{2,R) — R* by

(2] s

a b a b U v
forall[c d:‘eGL(2R) Let|: d]’{w S]EGL(Q,R).Now

a b u v auv +bw av -+ bs
f([c d:|{w s]) f([cu+dw cv+ds})
(auw + bw){cv + ds) — (av + bs)(cu + dw)
= (ad — bc)(us — vw) )

- (e a))e (e

This proves that f is a homomorphism. To show that f is onto R*, let a € R".
0 a O

a
Then 1 1€ GL(2,R) and f 01

B th

= a. Hence, f is onto R*. Since
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The previous example shows that there may exist a homomorphism of a
noncommutative group onto a commutative group.

Example 5.1.11 Consider S3 and the normal subgroup

a_f(1 23 1 2 3 1 2 3
- 1 2 3/'v2 31 )'\3 1 2 ]
Define f : S3 — S3/H by for allm € S3, f(n) =wH. Then

fron') = (ron')H = (rH) o (x'H) = f(r) o (')

for all =,w' € S5. Hence, f is a homomorphism. Also, Ker f = {a € S3 |
cH=H}={a€S3|acH} =H.

In Theorem 5.1.9, we showed that if f is a homomorphism of a group into a
group Gy, then Ker f is a normal subgroup of GG. In the following theorem, we
show that every normal subgroup A of a group induces a homomorphism g of
(G onto the quotient group G/ H such that Ker g = H. We note that in Example
5.1.11, the conclusion did not depend on the nature of S3. The conclusion was
made by use of general arguments. This also leads us to the following theorem.

Theorem 5.1.12 Let H be a normal subgroup of a group G. Define the func-
tion g from G onto the quotient group G/H by g(a) = aH for alla € G. Then
g is a homomorphism of G onto G/H and Ker g = H. (The homomorphism g
is called the natural homomorphism of G onto G/H.)

Proof. From the definition of g, it follows that g is a function from G onto
G/H. To show g is a homomorphism, let a, b € G. Then g(ab) = (ab)H =
(aH)(bH) = g(a)g(b). Hence, g is a homomorphism of G onto G/H. Finally,
we show that Ker g = H. Now a € Ker ¢ if and only if g(a) = eH if and only
if aH = eH if and only if e~!a € H if and only if a € H. Thus, Ker g = H. B

We now define a particular type of homomorphism between groups in order
to introduce the important idea of groups being algebraically indistinguishable.

Definition 5.1.13 A homomorphism f of a group G into a group G is called
an tsomorphism of G onto Gy if f is one-one and onto Gy. In this case, we
write G ~ G, and say that G and G, are tsomorphic. An isomorphism of a
group G onto G is called an automorphism.

For a group G, Aut(G), denotes the set of all automorphisms of G.
In the following theorem, we collect some properties of isomorphisms, which
will be useful in determining whether given groups are isomorphic or not.
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Theorem 5.1.14 Let f be an isomorphism of a group G onto a group G.
Then

(i) f~1: Gy — G is an isomorphism.

(12) G is commutative if and only if G1 is commutative.

(it1) For all a € G, o(a) = o(f(a)).

(v) G is a torsion group if and only if G is a torsion group.

(v) G is cyclic if and only +f Gy is cyclic.

Proof. (i) Since f is one-one and onto Gy, f~! is one-one and onto G. Now

we only need to verify that f~! is a homomorphism. Let u,v € G;. Then there
exist a,b € G such that f(a) =« and f(b) = v. This implies that a = f~1(u),
b= f~1(v), and wv = f(a)f(b) = f(ab). Thus, f~Huv) = ab = f1(u)f (v)
and so f~! is a homomorphism. Hence, f~! is an isomorphism.

(ii) Suppose G is commutative. Let u,v € G,. Since f is onto G, there
exist a,b € G such that f(a) =« and f(b) = v. Now uwv = f(a)f(b) = f(ab) =
f(ba) = f(b)f(a) = vu. Thus, G; is commutative. Conversely, suppose G is
commutative. Let a,b € G. Now f(ab) = f(a)f(b) = f(b)f(a) = f(ba). Since
f is one-one, we have ab = ba. This proves that G is commutative.

(i) Let @ € G. By induction, it follows that for all positive integers n,
f(@™) = (f(a))™. Since f is one-one, for all b6 € G, f(b) = e7 if and only if
b = e. Hence, a™ = e if and only if (f(a))™ = e;. Thus, a is of finite order if and
only if f(a) is of finite order. Suppose o(a) = m and o(f(a)) = n. Since a™ = e,
(f(a))™ = e;. By Theorem 2.1.28, n divides m. Also, (f(a))™ = e; implies that
a™ = e. Hence, m divides n. Since m and n are both positive integers and m
divides n and n divides m, it follows that m = n.

(iv) This follows immediately by (iii).

(v) Suppose G is cyclic. Then G = {(a) for some a € G. Since f(a) € G,
(f(a)) € Gy. Let b € G;. Since f is onto G, there exists ¢ € G such
that f(c) = b. Now ¢ = a” for some n € Z. Thus, b = f(c) = f(a™) =
(f{a))™ € {f(a)). Hence, G1 = {f(a)} and so G is cyclic. The converse follows
since f~! is an isomorphism. M

In order to develop a feel for two groups being algebraically indistinguish-
able, let us consider two sets S and S’ such that there is a one-one function f of
S onto 8. Then in a set-theoretic sense, S and S’ are the same sets “under f”.
For instance, let A and B be subsets of S. Then f(A) and f(B) are correspond-
ing subsets of §'. Now f(ANB) = f(A)N f(B) and f(AUB) = f(A)U f(B);
that is, union and intersection are preserved under f. Other purely set-theoretic
operations can be seen to be preserved under f also. Now suppose binary oper-
ations * and *’ are defined on S and 5, respectively, so that (S, *) and (5, «)
are groups. Now even though S and 5’ are the same sets “under f,” they need
not be the same as groups, i.e., f may not preserve operations. We have seen
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that the requirement for f to preserve operations is that f{a*b) = f(a)+ f(b)
foralla,be S.

We now consider examples of groups that are isomorphic and examples of
groups that are not isomorphic.

Example 5.1.15 Let n be a positive integer. Define f from Z, into Z/ (n)
by for all [a] € Zn, f(la]) = a+ (n). Then [a] = [b] if and only if n{(a — b)
if and only if a — b = nq for some q € Z if and only if a — b € (n) if and
only if a + (n) = b+ (n} if and only if f([a]) = FiIb]). Therefore, we find
that f is a one-one function. From the definition of 7, it follows that f maps
Zn onto Z/ (n). Now f([a] +n [B]) = f(lae +b)) = (a+ b) + {n) = (a + (n))+
(b+ (n)) = f([a]) + f([b]). Thus, f is an isomorphism of Z,, onto Z/ (n}.

Example 5.1.16 Consider the sets G = {e,a,b,c} and G; = {1, —1, ¢, —i}.
Define x and - on G and Gy, respectively, by means of the following operation
tables.

* e a b c
ele a b ¢
ala e ¢ b
bbb ¢ e a
clc b a e

: 1 -1 1 —1

1 1 -1 T —1

-1 -1 1 —2 1
( T —i -1

-1 | -1 () 1 -1

Now G 18 a cyclic group generated by i. G s also a group. However, since
aa = ¢, bb = ¢, and cc = e, no element of G has order 4 and so G is not cyclic.
Thus, G and G1 are not isomorphic.

Example 5.1.17 Let (R, +) be the group of real numbers under addition and
(R™T,.) be the group of positive real numbers under multiplication. Define f :
R — R" by f(a) = €® for all a € R. Clearly f is well defined. Let a,b € R.
Then f{a+b) = e = e%® = f(a)f(b). Hence, f is a homomorphism. Suppose
f(a) = f(b). Then e* = e® and so log, e® = log, e®. This implies that a = b,
whence f is one-one. Letb € RY. Then log, b € R and f(log, b) = e!°8:® = b,
Thus, f is onto RY. Consequently, f is an isomorphism of (R, +) onto (R, ).

Example 5.1.18 Consider the groups (Z,+) and (Q, +). By Worked-Out Ex-
ercise 1 (page 113), (Q,+) is not cyclic. Since (Z,+) is cyclic and (Q,+) is
not cyclic, (Z,+) 1s not isomorphic to (Q,+) by Theorem 5.1.14(v).
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Example 5.1.19 The group (Q,+) is not isomorphic to (QF,-) since every
nonidentity element of (Q,+) is of infinite order while —1 is a nonidentity
element of (Q*,-) which is of finite order.

Let us now characterize finite and infinite cyclic groups.

Theorem 5.1.20 Ewvery finite cyclic group of order n is isomorphic to (Z,,, +,)
and every infinite cyclic group is isomorphic to (Z,+).

Proof. Let ({a},*) be a cyclic group of order n. Let G = {a). Define
the function f : G — Z, by for all a* € G, f{a*) = [i]. Now a* = o’ if and
only if a’~* = e if and only if n|(j — ) if and only if {¢] = [j] (Exercise 11,
page 30) if and only if f(e') = f(a?). Thus, f is a one-one function. Now
f(a‘a?) = f(at) = [i + j] = [i] +» [J] = f(@*) +n f(a’). Since f is one-one
and G and Z, are finite with same number of elements, f is onto Z,. Hence,
G~ 7,

Now let G = {(a) be an infinite cyclic group. Define the function f: G — Z
by f(al) =i for all i € Z. Since o* = o’ if and only if ¢*~7 = e if and only
if i —j = 0 (since a is of infinite order) if and only if ¢+ = j, we have that f
is a one-one function of G into Z. From the definition of f, f is onto Z. Now

fla*a?) = f(@™) =i+ 7= f(a*) + f(a’). Hence, G~Z. M
Corollary 5.1.21 Any two cyclic groups of the same order are isomorphic. B

From the above corollary, it follows that there is only one (up to isomor-
phism) cyclic group having a prescribed order.

In Example 5.1.16, we saw that there are at least two nonisomorphic groups
of order 4. We now show that these are exactly two nonisomorphic groups of
order 4.

Let G be a group of order 4 which is not cyclic. (Example 5.1.16 shows
that such a group exists.) Then no element of G can have order 4, for if a € G
has order 4, then e, a,a?, ¢® would be distinct elements of G and thus G would
be cyclic, i.e., G = {a) . This is contrary to the assumption that G is not cyclic.
Let G = {e,a,b,c}. Since the order of every element of G divides the order
of G, a, b, and ¢ have order 2. If ab = q, then b = ¢, a contradiction. Thus,
ab # a. Similarly, ab # b. Suppose ab = e, then a(ab) = ae. Therefore, b = a
since a® = e, a contradiction. Thus, ab = ¢. Similarly, ba = c. Hence, ab = ba.
By similar arguments, we have ac = b = ca and bc = a = ¢b. Thus, we find
that GG is a commutative group and its operation table is given by the table in
Example 5.1.16. Consequently, there is essentially one group of order 4 which
is not cyclic. This is the Klein 4-group. Since all cyclic groups of the same
orders are isomorphic, we thus have exactly two nonisomorphic groups of order
4, namely, the Klein 4-group and the cyclic group of order 4. We have thus
proved the following result.
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Theorem 5.1.22 There are only two groups of order 4 (up to isomorphism),
a cyclic group of order 4 and Ky (Klein 4-group).

Since every cyclic group is commutative and every group of prime order is
cyclic, it follows that that if a group is noncommutative, then it must have order
at least 6. Indeed, the symmetric group S3 is noncommutative and of order 6.
Since all cyclic groups of the same order are isomorphic and since every group
of prime order is cyclic, there is exactly one group of order 1, 2, 3, 5 (up to
isomorphism), respectively. We have seen that there are two nonisomorphic
groups of order 4. In the next theorem, we show that there are only two (up
to isomorphism) nonisomorphic groups of order 6.

Theorem 5.1.23 There are only two {(up to isomorphism) groups of order 6.

Proof. The group Zg is a cyclic group of order 6 and 53 is a noncommutative
group of order 6. Note that Zg is not isomorphic to S3. To show that there are
only two (up to isomorphism) nonisomorphic groups of order 6, we will show
that any group of order 6 is isomorphic to either Zg or Ss.

Let G be a group of order 6. Since |G| is even, there exists a € G, a # €
such that a? = e. If z? = e for all z € G, then G is commutative and for any
two distinct nonidentity elements a and b, {e, a, b, ab} is a subgroup of G. Since
|G| = 6, G has no subgroups of order 4. Hence, there exists b € G such that
b? £ e, ie., b# e and o(b) # 2. Since o(b)|6, o(b) = 6 or 3. If o(b) = 6, then
G = (b) is a cyclic group of order 6 and G =~ Zg. Suppose G is not cyclic. Then
o(b) = 3. Let H = {e, b,b?}. Then H is a subgroup of G of index 2. Thus, H
is a normal subgroup of G. Clearly a ¢ H. Now G = HUaH and HNaH = ¢.
Hence, G = {e, b,b%, a,ab,ab?}. Now aba~! € H since H is normal and b € H.
Therefore, aba™ = e or aba™! = b or aba™! = b%. If aba™! = e, then b = e,
which is a contradiction. If aba=! = b, then ab = ba. Since o(a) and o(b) are
relatively prime and ab = ba, o(ab) = o(a) - o(b) = 6. Thus, G is cyclic, a
contradiction. Hence, aba~! = b2. Thus, G = {a, b) , where o(a) = 2, o(b) = 3,
and aba~! = b%. It is now easy to see that G ~ S;. B

We conclude this section by proving Cayley’s theorem, which says that any
group can be realized as a permutation group.

Let a be an element of a group G. Define the function f, : G — G by
for all b € G, fo(b) = ab. Then b = ¢ if and only if ab = ac if and only if
fao(b) = fa(c). Thus, f, is a one-one function of G into G. For any b € G,
f2{a™1b) = a{a!b) = b. So we find that f, maps G onto G. Hence, f, is &
permutation of G. Let F(G) = {f, | a € G}. Then F(G) is a subset of the set
S(G) of all permutations on G. Recall that {S(G), ) is a group.

As previously mentioned,i.g\arly mathematicians worked only with groups
of permutations. The following theorem says that every group is isomorphic
to a group of permutations of its own elements. In fact, we will show that



5.1. HOMOMORPHISMS OF GROUPS 149

(F(G),0) is a group which is isomorphic to G. First let us note that for all
b€ G, f,-1(b) = a7 b, and f,(a='b) = b implies (f,)"1(b) = a~1b. Thus,
(fa')_l = fa-1.

Theorem 5.1.24 (Cayley) For any group G, (F(G),0) is a group and G =~
F(G).

Proof.  We first show that (F(G), o) is a group. It suffices to show that
F(G) is a subgroup of (S(G),o). Let fa,fo € F(G). Then (f, o f; )(c) =
(fa © fy-)(0) = falfima(0)) = falb™1e) = a(b™1e) = (ab e = fypoa(c) Tor all
¢ € G andso f,of; ! = f,,-1 € F(G). Hence, F(G) is a subgroup by Theorem
4.1.3. Define g : G — F(G) by for all a € G, g(a) = f,. Then a = b if and
only if ac = be for all ¢ € G if and only if f,(c) = fo(c) for all ¢ € G if and
only if f, = f, if and only if g(a) = ¢g(b). This proves that g is a one-one
function of G into F(G). Clearly g maps G onto F(G). Now g(ab) = fu and
g(a) o g(b) = fao fo. Also, for all ¢ € G, far(c) = (ab)e = a(be) = fo(be) =
Fa(Fu(e)) = (fi 0 2)(©). Thus, fup = fu o fy. Hence, g(ab) = g(a) o g(b) and so

¢ is an isomorphism. H

Cayley’s theorem is another example of a representation theorem. However,
Cayley realized that the best way of studying general problems in group theory
was not necessarily by the use of permutations.

5.1.1 Worked-Out Exercises

$ Exercise 1 Let f: G — (1 be an epimorphism of groups. If H is a normal
subgroup of G, then show that f(H) is a normal subgroup of G.

Solution: By Theorem 5.1.2, we find that f(H) is a subgroup of G;. Let
g1 € G1. Since f is onto Gy, there exists ¢ € G such that f(g) = g1. Let
a € g1 f(H)gr' = f(9)f(H)F(g)~". Then a = f(9)f(h)f(g)~" = f(ghg™?) for
some h € H. Since H is a normal subgroup of G, ghg' € H and so a € f(H).
Thus, g1 f(H)gy' € f(H). Hence, f(H) is a normal subgroup of Gj.

& Exercise 2 Let G and H be finite groups such that ged(|G|, |H|) = L. Show
that the trivial homomorphism is the only homomorphism from G into
H.

Solution: Let f : G — H be a homomorphism and let a € (G. We show that
every element of G is mapped onto the identity element of H, i.e., f(a) = ey
for all & € G, where ey denotes the identity element of H. Now o(a)| |G| and
o{ f(a))||H|. Also, by Theorem 5.1.2, o(f(a))| o(a). Hence, o(f(a))||G|. Since
|G| and |H| are relatively prime, o{f(a)) = 1, proving f(a) = eg. Thus, f is
the trivial homomorphism.
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{ Exercise 3 Show that the group (Q, +) is not isomorphic to (Q/%,+).

Solution: In (Q,+), every nonzero element is of infinite order. Let g +
Z € Q/Z, where p,q € Z and g # 0. Then q(g + Z) = p+ Z = Z. This shows
that every element of Q/Z is of finite order. Hence, (Q, +) is not isomorphic

to (Q/Z,+).

Exercise 4 Show that R*, the group of all nonzero real numbers under mul-
tiplication, is not isomorphic to C*, the group of all nonzero complex
numbers under multiplication.

Solution: In the group C*, i is an element of order 4. But R* does ne*

contain any element of order 4. Hence, by Theorem 5.1.14, R* is not isomorphic
to C*.

¢$ Exercise 5 Find all homomorphisms from Zg into Zy.

Solution: Zs = ([1]). Let f : Zg — Z4 be a homomorphism. For any [a] €
Zs, f([a]) = af([1}) shows that f is completely known if f([1]) is known. Now
o( f([1])) divides o{[1]) and 4, i.e., o(f([1])) divides 6 and 4. Hence, o f([1])) =1
or 2. Thus, f([1]) = [0] or [2]. If f([1]) = [0], then f is the trivial homomorphism
which maps every element to [0]. On the other hand, f([1]} = [2] implies that
#(la]) = [2a] for all [q] € Zs. Thus, f((a] + ) = F{la+b) = [2(a + )] =
[2a + 2b] = [2a] + [2b) = f({a]) + F([b]), proving that the mapping f: Zg — Z4
defined by f([a]) = [2a] for all [a] € Zs is a homomorphism. Hence, there are
two homomorphisms from Zg into Zj4.

Exercise 6 Let G be a finite commutative group. Let n € Z be such that n
and |G| are relatively prime. Show that the function ¢ : G — G defined
by ¢{a) = a™ for all a € G is an isomorphism of G onto G.

Solution: Let a,b € G. Now

plab) = (ab)"

a™b" (since G is commutative)

$(a)p(b).

This implies that ¢ is a homomorphism. Let ¢(a) = ¢(b). Then a™ = b™ and so
(ab~!)" = e. Therefore, o(ab™!) divides n. Since o(ab!) divides |G| and n and
|G| are relatively prime, o(ab~!) = 1. This implies that ab™! = ¢, ie., @ = b,
proving that ¢ is one-one. Since G is a finite group and ¢ is one-one, ¢ is onto
G. Hence, ¢ is an isomorphism of GG onto G.

it

i
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Exercise 7 (i) Let G be a group and f : G — G be defined by f(a) = a™ for

all a € G, where n is a positive integer. Suppose f is an isomorphism.
Prove that ¢a® ! € Z(G) for all a € G.

(ii) Let G be a group and f: G — G defined by for all a € G, f(a) = a®
be an isomorphism. Prove that G is commutative.

Solution: (i) Let a,b € G. Then f(a~!ba) = (a~'ba)” = a~'b"a. Thus,

a~ b = fla™) f(B) f(a) = f(a™'ba) = a1 b a.

Hence, a= =1 p7 ¢»~1 = " or (@~ (*~ Ve~ 1)? = b7, Thus, fa~ " Vba~1) =
F(b). Since f is one-one, a~{"~Dpa™~1 = b. Hence, a® b = ba™ !, proving that
e Z(G).
(ii) By (i), a® € Z(G) for all a € G. Let a,b € G. Then f(ab) = (ab)® =
ab(ab)? = a(ab)?b = aababb = a’bab® = ba’b?a = bb*a’a = b%a3 = f(b)f(a) =
f(ba). Hence, ab = ba since f is one-one. Thus, G is commutative.

5.1.2 Exercises

1.

Determine whether the indicated function f is a homomorphism from the
first group into the second group. If f is a homomorphism, determine its
kernel.

() f(a) =a% (R*,.), (R*, ) foralla € R*.

(ii) f(a) =2% (R,+), (R*,.) foralla € R.

(iii} f(a) = |a}; (R\{0},-), (R*,") for all e € R\{0}.
(iv) fla) =a+1;(Z,+), (Z,+) for all a € Z.

(v) fla) =2a; (Z,+), (Z,+) for all a € Z.

. Find all homomorphisms from Z into Z. How many homomorphisms are

onto?

. Find all homomorphisms from Z onto Zg.
. Find all homomorphisms from Zg into Z12 and from Zsg into Zjg.

. Show that Q*, the group of all nonzero rational numbers under multipli-

cation, is not isomorphic to R*, the group of all nonzero real numbers
under multiplication.

Show that (Q,+) is not isomorphic to (R, +).

Show that (Z,+) is not isomorphic to (R, +).

. Let G be a group. Define the function f: G —» G by foralla € G, f(a) =

a~Ll. Prove that f is a homomorphism if and only if G is commutative.
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10.

11.

12.
13.

14.

15.

16.

17.

18.

19.
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. Let G = {(a,b) | a,b € R, b # 0}. Then (G, %) is a noncommutative group

under the binary operation (a, b)*(c,d) = (a+be, bd) for all (a,d), (¢,d) €
G.Let H={(a,b) € G| a =0} and K = {{a,b) € G | b > 0}. Show that
HN K ~(R*,), where (R¥, ") is the group of all positive real numbers
under multiplication.

Let G = {a € R| -1 < a < 1}. Show that (G, *) ~ (R,+), where the
binary operation * on G is defined by

a+b

b=
@ ¥ 1+ ab

for all a,b € G.

(i) Let f be a homomorphism from a cyclic group of order 8 onto a cyclic
group of order 4. Determine Ker f.

(i1} Let f be a homomorphism from a cyclic group of order 8 onto a cyclic
group of order 2. Determine Ker f.

Prove that a homomorphic image of a cyclic group is cyclic.

Show that S3 and Zg are not isomorphic groups, but for every proper
subgroup A of S; there exists a proper subgroup B of Zg such that
A~ B.

Let G, H, and K be groups. Suppose that the functions f : G — H and
g : H — K are homomorphisms. Prove that go f : G — K is also a
homomorphism.

Let G and H be groups. Define the function f : G x H — G by for
all (a,b) € G x H, f((a,b)) = a. Prove that f is a homomorphism from
G x H onto G. Determine Ker f.

Let f : G —» H be an isomorphism of groups. Prove that f ' : H - G
is also an isomorphism of groups.

Let G, H, and K be groups. Prove that

() GxH~HXG.

(i) f G~ H and H ~ K, then G~ K.

(i) GXx(HxK)~(Gx H) x K,

Let G and H be groups. Let f : G — H be a homomorphism of G onto
H. Show that if G = (5) for some subset S of G, then H = (f(S5)).

Let f : G — H be an isomorphism of groups. Show that for any integer
k and for any g € G, thesets A={a € G|a* =g} and B={be H |
b* = f(g)} have the same number of elements.
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20. Let G be a simple group and ¢ : §,, — G be an epimorphism for some
positive integer n. Prove that G ~ S} for some k < n.

21. Which of the following statements are true? Justify.

(i) A cyclic group with more than one element may be a homomorphic
image of a noncyclic group.

(i1) There does not exist a nontrivial homomorphism from a group G of
order 5 into a group H of order 4.

(iii) The group {Z,+) is isomorphic to (Q,+).

(iv} There exists a monomorphism from a group of order 20 into a group
of order 70.

(v) There exists an epimorphism of (R,+) onto (Z,+).

(vi) There does not exist any epimorphism of (Q,+) onto (Z,+).

(vil) If f and g are two epimorphisms of a group G onto a group H such
that Ker f = Ker g, then f =g.

5.2 Isomorphism and Correspondence Theorems

In this section, we continue our study of isomorphisms. Our objective is to
prove the fundamental theorem of hornomorphisms, the isomorphism theorems,
and the correspondence theorem. These theorems show us the relationship
between homomorphisms and quotient groups.

Theorem 5.2.1 Let f be a homomorphism of a group G onto a group G, H
be a normal subgroup of G such that H C Ker f, and g be the natural homo-
morphism of G onto G/H. Then there exists a unique homomorphism h of
G/H onto G, such that f = hog. Furthermore, h is one-one if and only if
H = Ker f.

c—71 .q a——>f(a)
h
g / g
G/H GH

.Proof. Define h: G/H — G by

h(aH) = f(a)
for all aH € G/H.
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Now aH = bH implies b~la € H C Ker f and so f(b~'a) = e; or f(a) =
f(b). Hence, h(aH) = h(bH) and so h is well defined. Let a € G. Then
(h o g)(a) = h{g(a)) = h(aH) = f(a). Therefore, h o g = f. Since f maps
G onto G1, h must map G/H onto Gy. Now h{(aH)(bH)) = h({ab)H) =
flab) = fla)f(b) = h{aH)h(bH). Hence, h is a homomorphism of G/H onto
(G satisfying f = hog. To prove the uniqueness part, let us assume f = h'og for
some homomorphism k' from G/H onto G1. Then h(aH) = f(a) = (A og){a) =
h'(g(a)) = h'(aH) for all aH € G/H and so h = h’. Hence, h is the only
homomorphism of G/H onto G such that f =hog.

Suppose h is one-one. Let a € Ker f. Then f(a) = e; and so h(aH) = e;.
Since h(eH) = e) and h is one-one, aH = eH. Thus, a € H andso Ker f C H.
By hypothesis, H C Ker f and so H = Ker f. Conversely, assume H = Ker
f- Suppose h(aH) = h(bH). Then f(a) = f(b) or f(b~ta) =e;. Thus, b~la c
Ker f = H and so aH = bH, proving that A is one-one. B

From Theorem 5.2.1, it follows that if H = Ker f, then & is an isomorphism
and hence G/Ker f is isomorphic to Gq, i.e., every homomorphism of a group
G onto a group G; induces an isomorphism of G/Ker f onto G;. This result
plays a fundamental role in group theory. It is known as the fundamental
theorem of homomorphisms for groups. This result is also called the first
isormorphism theorem for groups. Considering the importance of this theorem,
we state it in its general form and also give a direct proof of it.

Theorem 5.2.2 (First Isomorphism Theorem) Let f be a hormomorphism
of a group GG into a group G1. Then f(G) is a subgroup of G and

G/Ker f ~ f(G).

Proof. By Theorem 5.1.2, f(G) is a subgroup of G;. Let H = Ker f. Define
h:G/H — f(G) by
h{aH) = f(a)

for all aH € G/H. Now aH = bH if and only if ~la € H = Ker f if and only
if f(b~la) =e; if and only if f(b71)f(a) = e if and only if f(a) = f(b). Thus,
h is a one-one function. Let z € f(G). Then z = f(b) for some b € G. There-
fore, h(bH) = f(b) = z. This shows that h is onto f(G). Finally, h(e HbH) =
h(abH) = f(ab) = f(a)f(b) = h(aH)h(bH) for all aH,bH € G/H, proving
that h is a homomorphism. Consequently, G/Ker f ~ f(G). B

In the following example we illustrate the first isomorphism theorem.

Example 5.2.3 Let f be the homomorphism of (Z,+) onto (Z3,+3) defined
by f(n) = [n] for alln € Z. Let g be the natural homomorphism of Z onto
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Z/ (6) . Now (6) is a normal subgroup of Z and (6) C (3) = Ker f. Thus, there
exists a homomorphism h of Z/ (6) onto Zs such that f = hog. The homo-
morphism h is defined by h(n + (6)) = [n].

7— 31 7.

%

e

p

Z/(6)
o— >0 — Sp )
| 77
0 + (6) 14 (6) 2+ (6)
s—J >3 i—I Sy s— I >[5
77
3+ (6} 4 + (6) 5+ (6)

Recall that a group G is called a homomorphic image of a group G if
there exists a homomorphism of G onto Gj.

From Theorem 5.2.1 and Corollary 5.2.2, we find that for each normal
subgroup N of a group G, G/N is a homomorphic image of G, and for each
homomorphic image Gj, there exists a normal subgroup N of G such that
G / N ~ G].

Example 5.2.4 The group S3 has (up to isomorphism) only three homomor-
phic images. This follows from the fact that 53 has only three normal subgroups.
The homomorphic images are Ss, Z1, and Zy since {e}, S3, and {e,(1 2 3),(1
3 2)} are the only normal subgroups of S3 and S3 =~ S3/{e}, Z1 ~ S3/S3, and
Zy ~ 53/{63 (12 3),(13 2)}

Theorem 5.2.5 Let G; be a homomorphic image of a group G. Then the
following assertions hold.

(1) If G is cyclic, then G is cyclic.

(ii) If G is commutative, then G is commutative.

(111) If Gy contains an element of order n and |G| is finite, then G contains
an element of order n.
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Proof. (i) Follows by Exercise 12 (page 152).

(ii) Follows by Theorem 5.1.2(v).

(iii) Let f : G — Gy be an epimnorphism and let o’ be an element of Gy
of order n. If n = 1, then e is the required element of G of order 1. Suppose
n > 1. Since f is onto G, there exists a € G such that f(a) = a'. Now o(a)
is finite and by Theorem 5.1.2(v), o(d’) divides o{a), i.e., n divides o{a). Let
t € Z* be such that o(a) = nt. Then t < o(a). Hence, a® # e. Now a™ = e. Let
b = a. Then b = e and by Theorem 2.1.28,

o) _nt
ged(t,o(a)) ¢
Note that the result in Theorem 5.2.5(1ii) does not hold if |G| is not finite.

For example, Zg is a homomorphic image of Z; Zg contains an element of order
3, but Z has no element of order 3.

o(at) = =n.10

Theorem 5.2.6 (Second Isomorphism Theorem) Let H and K be sub-
groups of a group G with K normal in G. Then

H/(HNK)~ (HK)/K.

Proof. Define f : H — (HK)/K by f(h) = hK for all h € H. Now
flhihe) = hihoK = hiKhoK = f(h1)f(ho) for all hy, ke € H, proving that f
is a homomorphism. Let 2K € (HK)/K. Then & = hk for some h € H and
k € K. Thus, zK = (hk)K = (hK)(kK) = hK = f(h). This proves that f
is onto (HK)/K and so f(H) = (HK)/K. Hence, by the first isomorphism
theorem, it follows that |

H/Ker f ~(HK)/K.

To complete the proof, we show that Ker f = H N K. Now

Ker f = {he€ H| f(h)= identity element of HK/K}
= {he H|hK = K}

{heH|heK}

= HNK.

Consequently, H/HNK ~ (HK)/K. &

We illustrate the second isomorphism theorem with the"help of the following
example.

Example 5.2.7 Consider the group (Z,+) and its subgroups H = {2) and
K=(3). Then H+ K= {2+ (3) =Z and HNK = (6). Theorem 5.2.6 says
that

H/(HNK)~ (H + K)/K,
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ne.,

(2)/(6) =2/ (3).
This isomorphism is evident if we notice that (2) / (6) = {0 + (6), 2 + {6},
44 (6)} while Z/ (3) = {0+ (3}, 1+ (3), 2+ (3)}. The mapping

h:(2)/(6) =2/ (3)
defined by h : 0+ (6) — 0+ (3), 2+ (6) — 2+ (6), 4+ (6) —> 1+ (3) is the

desired isomorphism.

Theorem 5.2.8 Let f be a homomorphism of a group G onto a group G, H
be a normal subgroup of G such that H O Ker f, and g, ¢’ be the natural ho-
momorphisms of G onto G/H and Gy onto Gy/f(H), respectively. Then there
ezists a unique isomorphism h of G/H onto G1/f(H) such thatgd o f = hog.

G f ol Gl
. g g!
G/H—" o Gi/fH)

Proof. If we show Ker ¢’ o f = H, then there exists a unique isomorphism
h of G/H onto G1/f(H) by Theorem 5.2.1. Let a € H. Then (¢’ o f)(a) =
g’ (f(a)) = the identity of G/ f(H) since f(a) € f(H) = Ker ¢’. Thus, a € Ker
g’ o f and hence H C Ker g'o f. Let a € Ker g’c f. Then ¢'(f(a)) = the identity
of G1/f(H) and so f(a) € Ker ¢’ = f(H). Therefore, there exists b € H such
that f(b) = f(a) or f(ab™!) = e;. This implies that ab~! € Ker f C H and so
a = (ab~1)b € H. Thus, Ker ¢'o f C H. Hence, Ker ¢ o f = H. B

Corollary 5.2.9 (Third Isomorphism Theorem) Let H;, Hy be normal
subgroups of a group G such that Hy C Hy. Then

(G/H4)/(Hz/Hy) ~ G/H>.

Proof. Make the following substitutions in Theorem 5.2.8: G/H; for G1, H
for H, and (G/Hy)/(H2/H1) for G1/f{H), where in this case f is the natural
homomorphism of G onto G/H,. Note that f(H>) = Hs/H,.

G / > G/ Hy

|

G/Hs~ (G/H\)/(Hy/Hy) W
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We illustrate the third isomorphism theorem with the help of the following
example.

Example 5.2.10 Consider the group (Z,+) and the subgroups (6) and (3) of
Z. Then
Z/(3)={0+(3),1+(3),2+ (3)}.

Z/{6) = {0+(6),1+(6),2+(6),3+(6),4+(6),5+(6)}.
(3)/(6) = {0+ (6),3+(6)}.

Now,
(Z/(6))/((3) / (6)) = {0,1,2},
where
0. = 0+ (6)+((3)/(6))
1 = 1+(6)+((3)/(6))
2 = 2+(6)+((3)/(6))

It is now clear that |
Z/(3) = (Z/(6))/({3) / (6))

since both are cyclic groups of order 3 and of course, by Corollary 5.2.9.

We can at times determine the subgroups of a group G, from a group G
whose subgroups are known if there is a homomorphism f of G onto G,. For
if such an f exists, the following result says that the subgroups of G; can be
determined from the subgroups of G which contain Ker f.

Theorem 5.2.11 (Correspondence Theorem) Let f be a homomorphism
of a group G onto a group G1. Then f induces a one-one inclusion preserving
correspondence between the subgroups of G containing Ker f and the subgroups
of G1. In fact, if H and K are corresponding subgroups of G and G, respec-
tively, then H is a normal subgroup of G if and only if K is a normal subgroup

OfG1.

Proof. Let
H = {H | H is a subgroup of G such that Ker f C H}

and
K ={K | K is a subgroup of G;}.

Define f* : H — K by for all H € H, f*(H) = {f(h) | h € H}. Then
f*(H) € K by Theorem 5.1.2. Hence, f* is a function since f is a function.
Let K € K. Denote the preimage, f~1(K), of K in G by H. Let a € Ker f.
Then f(a) = e1 € K and so a € f~Y(K) = H. Thus, Ker f C H. Let a,
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b€ H. Then f(e), f(b) € K and so f(ab~!) = f(a)f(b7!) = f(a)f(b)"! € K.
Therefore, ab=! € H and so H is a subgroup of G containing Ker f, i.e., H € H.
Hence, f* maps H onto K. Let Hy, Hy € H. Suppose f*(H,) = f*(Hs). Let
hi1 € Hy. Then there exists ho € Hy such that f(h;) = f(hs). This implies
that f(h1h3') = e; and so hyh; ' € Ker f C Hy. Hence, hy = (hihy )ho € Ho.
Therefore, H; C Hs. Similarly, Hy C H,. Thus, Hy = Hs and so f* is one-one.
Clearly Hy C Hj if and only if f*(H) C f*(Ha). In fact, since f* is one-one,
Hy, C Hy if and only if F*(H1) C f*(Ha).

Suppose H is a normal subgroup of G such that Ker f C H. Let K = f*(H).
We show that K is a normal subgroup of G. Let f(a) € G; and f(h) € K.
Now aha™! € H since H is a normal subgroup of G and so f(a)f(h)f(a)"! =
f(aha™') € K. Hence, K is a normal subgroup of G;. Let J be a normal
subgroup of G; and L € H be such that f*(L) = J. Let a € G and h € L.
Then f(aha™!) = f(a)f(h)f(a)~! € J and so aha™! € L. This proves that L
is a normal subgroup of G. R

Corollary 5.2.12 Let N be a normal subgroup of a group G. Then every sub-
group of G/N is of the form K/N, where K is a subgroup of G that contains N.
Also, K/N is a normal subgroup of G/N if and only if K is a normal subgroup
of G.

Proof. Let ¢ : G — G/N be the natural homomorphism. If a € GG, then
g(a) = aN. From Theorem 5.2.11, we find that this homomorphism induces
a one-one mapping g between the subgroups of G which contain Ker g = N
and the subgroups of G/N. Let H be a subgroup of G/N. Then there exists a
subgroup K of G such that N C K and H = g*(K) = {g(a) | a € K} = K/N.
The last part follows from Theorem 5.2.11. W

The following example illustrates the correspondence theorem.

Example 5.2.13 Let f be a homomorphism of (Z,+) onto (Z12,+12) defined
by f(n) = [n] for alln € Z. Then for H and K of Theorem 5.2.11,

H= {(12> ) (6) ’ (4) ’ (3> ) (2) ? Z}

and

K= {((0]), (6]}, {[4]) , (3]}, {[2]} , Zn2}-
fr {12y — ([0]}, I3y = (3)),
fr(2) - (2], fr:(6) — ([6])
f*:(4)—>([4), f*:Z—>Zlg.
The following diagram indicates the one-one inclusion preserving the cor-
respondence property of f*.
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Z VAT
(2>/ \<3> <[21>/ \<[31>
(4) ® () ()

(12) (o)

Now ([9]) = {n[9] | n € Z} C {n[3] | n € Z} = ([3]). Also, [3] = [27] =
3[9] € ([9]). Therefore, {[3]) C {[9]). Hence, {[3]) = ([9]). Thus, the subgroup
(9) of Z gets mapped to the subgroup ([3]) of Zia by f. However, this does not
contradict Theorem 5.2.11 since (9) 2 {12).

In the remainder of this section, we consider all isomorphisms of a group G
onto itself. Recall that Aut(G) is the set of all automorphisms of G.

Theorem 5.2.14 Let G be a group. Then (Aut(G),o) is a group, where o
denotes the composition of functions.

Proof. Since ig € Aut(G), Aut(G) # ¢. Let f,g € Aut(G). Then fogisan
automorphism by Exercise 14 (page 152) and Theorem 1.5.11. Hence, fog €
Aut(G). Clearly i¢ is the identity of Aut(G) and f~! is the inverse of f. Also,
o is associative by Theorem 1.5.13. Consequently, (Aut(G), o) is a group. B

Theorem 5.2.15 Let G be a group and a € G. Define 8, : G — G by 8,(b) =
aba™! for allb e G. Then

(i) 8, € Aut(G),

(1) 8 0 6y = By for all a,b € G,

(m) (gﬂ)_l = 90—1,

() for all @ € Aul(G), aof,0a™ ! = a(a)-

Proof. (i) Let c,d € G. Suppose ¢ = d. Then aca™! = ada™! or 8,(c) =
8,(d). Therefore, 8, is well defined. Now 8,(cd) = aled)a™! = (aca™1)(ada~?) =
0,(c)8,(d). This shows that 6, is a homomorphism. Also, ¢ = 8,(a"lca), prov-
ing that 0, is onto G. Suppose 0,(c) = 6,(d). Then aca™! = ada~! and so
¢ = d. Thus, 8, is one-one. Consequently, 8, € Aut{G).

(ii) Let a,b € G. Then (8, 085)(c) = 8.(8s(c)) = 8,(bcdb™1) = a(bcb™Y)a"t =
(ab)c(ab)™! = B4(c) for all c € G. Hence, 8, 0, = 6.

(iii) Note that 8,00,-1 =8,,~1 =8, =ig and 8,100, = 0,1, = 0. = ig.
Thus, (6,)~! = 8,-1.

(iv) Let a € Aut(G). Now (aobf,0a~1){b) = a(b.(a (b)) = alaa™1(b)a™?!)
= a(a)a(at(D))ala™t) = ala)b(ala))™ = b, (b) for all b € G. Hence,
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aofyoat = afe)- W

The automorphism 8, of Theorem 5.2.15 is called an inner automorphism
of G. We denote by Inn(G) the set of all inner automorphisms of G.

Theorem 5.2.16 Let G be a group. Then Inn(G) is a normal subgroup of
Aut(G).

Proof. Since i = f#. € Inn(G), Inn(G) # ¢. By Theorem 5.2.15(i),
Inn(G) C Aut(G). Let 6,,0, € Inn(G). Then §, o Qb_l =0y 08,1 = 0y-1 €
Inn(G). Hence, Inn(G) is a subgroup of Aut(G) by Theorem 4.1.3. Let o €
Aut(G). Then by Theorem 5.2.15(iv), a0 8, 0 a™! = 41, € Inn(G). Hence,
Inn(G) is a normal subgroup of Aut(G). B

Theorem 5.2.17 Let G be a group and H be a subgroup of G. Then

—Ig% ~ g subgroup of Aut(H),
where N(H) = {z € G | zHx* = H} is the normalizer of H and C(H) =
{z € G| zhz™! =h for all h € H} is the centralizer of H. |

Proof. Define f: N(H) —Aut(H) by for all a € N(H),

fla) = 0Oqly.

Then f is well defined. Let aj,a2 € N(H). Then f(ai1a2) = 8s,00|tr = 0oy |1 ©
0o, |rr = f(a1) o f{az). Thus, f is a homomorphism. Now

Ker f = {a€G|f(a) =in)
{aeG |0, =iy}

{a € G| 0.(b) =in(b) for all b e H}
{ac G|aba~! =bforall be H}
{a€ G |ab=baforall be H}
C(H).

Thus, by the first isomorphism theorem, we have the desired result. B

Corollary 5.2.18 Let G be a group. Then

G
m iy Inn(G) .

Proof. Let H = G in Theorem 5.2.17. Then we have N(G) = G and
C(G)=2Z(G).n
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5.2.1 Worked-Out Exercises

¢{ Exercise 1 Find all homomorphic images of the additive group Z.

Solution: Let H be a homomorphic image of (Z, +). There exists a ho-
momorphism f of Z onto H. By the first isomorphism theorem, Z/Ker f ~ H.
Since Ker f is a subgroup of Z, Ker f = nZ for some integer n > 0. Hence,
H ~ Z,/nZ for some integer n > 0. On the other hand, for any n > 0, nZ is a
subgroup of Z and since Z is commutative, nZ is a normal subgroup of Z. There
exists a natural homomorphism f from Z onto Z/nZ given by f(m) = m+nZ
for all m € Z. This shows that Z/nZ is a homomorphic image of Z for all
n > 0. Consequently, the homomorphic images of Z are the groups (up to iso-
morphism) Z/nZ, n > 0. Now forn =0, Z/nZ ~Z and forn > 0, Z/nZ ~ Z,
(Exercise 2, page 164). Therefore, we conclude that the homomorphic images
of Z are the cyclic groups Z and Z,, n > 0.

> Exercise 2 If there exists an epimorphism of a finite group G onto the
group Zg, show that G has normal subgroups of index 4 and 2.

Solution: Let f: G — Zg be an epimorphism. Then by the first isomor-
phism theorem, G/Ker f >~ Zg. Hence, G/Ker f is a cyclic group of order 8.
Thus, G/Ker f has a normal subgroup H; of order 4 and a normal subgrodp
Hj of order 2. By the correspondence theorem, there exist normal subgroups
N; and N3 of G such that Ker f C Ny, Ker f € Ny, Ni/Ker f = Hy, and
Ng/Ker f = Hz. Thus,

8 = |G/Ker f| =[G : Ker f] = [G: M][N1 : Ker f] =[G : N4
This implies that [G : N;] = 2. Similarly, [G : No| = 4.
{ Exercise 3 Show that 4Z/12Z ~ Zj.

Solution: Define f : 4Z — Z3 by f(4n) = [n] for all 4n € 4Z. One can show
that f is an epimorphism. Then from the first isomorphism theorem, 4Z/Ker
f~2Z3. NowKer f={4n € 4Z | f(4n) = [0]} = {4n € 4Z | [n] = [0]} = 12Z.

Exercise 4 Let G be a finite group and f be an automorphism of G such that
for all @ € G, f(a) = a if and only if a = e. Show that for all g € G, there
exists @ € G such that g = a1 f(a).

Solution: Let G = {a1,as,...,8,}. Let § = {a7*f(a1),...,a; f(an)}.
Then S C G. Next, we show that all elements of S are distinct. Now a; ! f(a;) =
a;-'lf(aj) if and only if f(a:)f(a;)™! = aéaj_l if and only if f[aiaj*l) = 1:11-4:1}-'1
if and only if a.;-aj_l = e if and only if a; = a;. This shows that all elements of
S are distinct and so S| = n. Thus, S = G. Let ¢ € G. Then g € S. Hence,

g =a"'f(a) for some a € G.
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Exercise 5 Let G be a finite group and f be an automorphism of G such that
for all a € G, f(a) = a if and only if a = e. Suppose that {2 =iz, where
i; denotes the identity map. Prove that G is commutative.

Solution: Let g € G. By Worked-Out Exercise 4, ¢ = a~! f(a) for some
a € G. Then g =ig(g) = f*(a™'f(a)) = f(f(a™ f(a))) = f(f(a™")f*(a)) =
f(f(a)"ta) = f(g~'). This implies that f(g) =g ' forallge G. Let a,b € G.
Then (ab)~! = f(ab) = f(a)f(b) = a~1b7! = (ba)~! and so ab = ba. Hence, G
is commutative.

{ Exercise 6 Let H be a subgroup of index 2 in a finite group G. If the order
of H is odd and every element of G\H is of order 2, prove that H is
commutative.

Solution: Since [G : H] = 2, H is a normal subgroup of G. Now G =
HU Hg, where g ¢ H. Then o(g) = 2. Define f : G — G by for all a € G,
f(a) = gag™!. Then f is an automorphism of G. Now f2(a) = f(f(a)) =
flgag™) = g(gag™)g™! = g®ag~? = a since g° = e. Hence, f? = ig. Since H
is a normal subgroup of G, f(h) = aha™ € H for all h € H. Thus, f is also
an automorphism of H. Let h € H. Suppose f(h) = h. Then ghg™! = h or
gh = hg. Since gh ¢ H, o(gh) = 2. Therefore, h? = g?h? = (gh)? = e. Since
the order of H is odd, h? = e implies that h = e. Hence, f (h) = h if and only
h = e. Thus, f is an autom .rphism of H such that f? = i¢ and f(h) = h if
and only if h = e. By Worked-Out Exercise 5, H is commutative.

{ Exercise 7 Show that Aut(Z,) ~ U,.

Solution: Define o :Aut(Z,,) — U, by «(f) = f([1]) for all f € Aut(Z,,).
Now mf([1]) = f([m]). Hence, f([m]) = [0] if and only if m is divisible by =.
Thus, o(f([1])) = n. This implies that f({1]) € U, and so « is well defined. Let
f,9 € Aut(Zy,). Then a(f o g) = (f 0 g)([1]) = F(g([1])). Suppose g([1]) = [k}.
Then off o g) = f([k]) = kf([1]) = EQIF(1) = [KIA(QD = A{1Dg(1]) =

af)a(g). Hence, o is a homomorphism. Now

Kera = {f€Aut(Z.) |a(f)=[1]}

= {f €Aut(Z,) | f([1]) = [1]}
= {f € Aut(Z,) | f is the identity map}.

Hence, o is a monomorphism. Finally, we show that a is onto U,. Let {t] € U,.
Then t and n are relatively prime. Define f : Z, — Z, by f([m]) = [mt] for all
[m] € Z,. Let [r],{s] € Z.. Suppose [r] = [s|. Then r — s = ng for some q € Z.
Thus, rt — st = ngt. Hence, [rt] = [st], proving that f is well defined. Clearly f
is a homomorphism. Suppose f([r]) = f([s]). Then [rf] = [st] and so n divides
7t — st = (r — 8)t. Since ¢ and n are relatively prime, n divides 7 —s. Therefore,



5.2. ISOMORPHISM AND CORRESPONDENCE THEOREMS 164

)=

[s]. This implies that f is one-one. Now let [r] € Z,. Since ged(n,t) =1,

there exist p,g € Z such that 1 = tp + ng. Hence, r = ptr + gnr. This implies

(1] =

[ptr]. Now [pr] € Z,. Thus, f([pt] = [ptr] = [r]. We therefore find that f

is onto. Hence, f € Aut(Z,). Now a{f) = f([1]) = [t] shows that « is onto U,,.
(

Thus, « is an isomorphism. Consequently, Aut

Z,) ~U,.

5.2.2 Exercises

1.

10.
11.

12.

Let R* be the multiplicative group of all nonzero real numbers and T =
{1, —1}. Then T is a subgroup of R*. Prove that the quotient group R*/T
is isomorphic to the multiplicative group R¥ of positive real numbers.

. For any positive integer n, prove that Z/nZ ~ Z,.

Show that 8Z/56Z ~ Z5.

. Let G be a group and A and B be normal subgroups of G such that

A ~ B. Show by an example that G/A % G/B.

. For any two positive integers m,n such that ged(m,n) = 1, prove that

mZ/mnZ = Z,.

Let G be the group of symmetries of the square and K the Klein 4-group.

Show that the mapping f : G — K4 defines a homomorphism of GG onto
K4, where f(r1s0) = f(raeo) = e, f(re0) = f(r2r0) = a, f(h) = f(v) =b,
fld) = f(d2) = c.

In Exercise 6, exhibit the one-one inclusion preserving correspondence
between the subgroups of G containing Z(G) and the subgroups of Kj.

Let G and K4 be as in Exercise 6. Let g be the natural homomorphism of
G onto G/Z(G), where Z(G) is the center of G. Prove that Z(G) = Ker
f and exhibit the isomorphism A of G/Z(G) onto K4 such that f = hog.

Show that Zg is not a homomorphic image of Zis.
Show that Zg is not a homomorphic image of Z3y x Z3.

Show that if there exists an epimorphism from a finite group G onto the
group Z,5, then G has normal subgroups of indices 5 and 3, respectively.

Partition the following collection of groups into subcollections of groups
such that any two groups in the same subcollection are isomorphic.

(1) (Z,+), (ii) (Ze, 1), (iti) (Z2,+), (iv) Sz, (v) S, (vi) (172, +), (vii)
(3Z,+), (vi) (Q,+), (ix) (R,+), (x)(R",-), (xi) (RF,"), (xii) (Q7,"),

(xiii) (C*,-}, (xiv) ({(m),-), where R* denotes the set of nonzero real
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13.

14.

15.

16.

17.

18.

19.

20.

21.

numbers, Q* denotes the set of nonzero rational numbers, C* denotes
the set of nonzero real numbers, R* denotes the set of positive real
numbers, and ({7} ,-) is the cyclic subgroup of (R™,-) generated by .
Show that

(i) Aut(Z5) ~Zy4.

(i) Aut(Zg) ~ Klein 4-group.

Find all automorphisms of the group Zg.

Show that |Aut{(Z,)| = p— 1, where p is a prime.
Prove that Inn(S3) ~ S3 ~ Aut(S3).

Determine Aut({Sy).

Let G be a cyclic group of order n and ¢ be the Euler ¢-function. Prove
that [Aut(G)| = ¢(n).

Let G be a group such that Z(G) = {e}. Prove that Z(Aut(G)) = {e}.

Let G be a group and H be a subgroup of G. H is called a characteristic
subgroup of G if f(H) C H for all f € Aut(G).

(i} Show that every characteristic subgroup of G is a normal subgroup of
G.

(ii) Give an example of a group G and a subgroup H such that H is a
normal subgroup of GG, but H is not a characteristic subgroup of G.

(iii) Show that Z(G) is a characteristic subgroup of G.

(iv) Let H and K be characteristic subgroups of G. Show that HK and
H N K are characteristic subgroups of G.

(v) Let H and K be subgroups of G such that H C K. Show that if K
is a normal subgroup of G and H is a characteristic subgroup of GG, then
H is a normal subgroup of G.

(vi) Let H and K be subgroups of G such that H C K. Show that if A
is a characteristic subgroup of K and K is a characteristic subgroup of
G, then H is a characteristic subgroup of G.

(vii) Suppose G is cyclic. Show that every subgroup of G is a character-
istic subgroup of G.

Show that the only characteristic subgroups of (Q, +) are {0} and Q.
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22. Which of the following statements are true? Justify.
(1) Any epimorphism of Z onto Z is an isomorphism.
(ii) Any epimorphism of a group G onto G is an isomorphism.
(iii) The quotient group 4Z/64Z has five subgroups.
(iv) Z5 has five homomorphic images.
(v) 2Z/6Z is a subgroup of Z/6Z.
(vi) There exist four subgroups of Z which contain 10Z as a subgroup.

(vii) Let G and H be two groups, A be a normal subgroup of G, and B
be a normal subgroup of H. If G ~ H and A ~ B, then G/A ~ H/B.

5.3 The Groups D4 and Qg

In Section 5.1, we saw that there are two types of groups of order 4 and two
types of groups of order 6. In this section, we wish to classify all noncommuta-
tive groups of order 8. We will consider finite commutative groups in Chapter
9. First we introduce two groups Dy and (g and study these groups in de-
tail. The study of these groups will eventually lead us to the classification of
noncommutative groups of order 8.

Definition 5.3.1 A group G is called o dihedral group of degree 4 if G is
generated by two elements a and b satisfying the relations

o(a) =4, o(b) =2, and ba = a’b.

Example 5.3.2 Let T' be the group of all 2 x 2 invertible matrices over R
under usual matriz multiplication. Let G be the subgroup of T generated by the

matrices
0 1 0 1
A-{_l O]tmdB—[l 0].

Then o{A) = 4 and o(B) = 2. Now

=10 o ][5 s =[]
#o=[0 Y0150

Thus, BA = A®B. Hence, G is a dihedral group of degree 4.

and
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Example 5.3.3 Consider S4. Let G be the subgroup of Sy such that G is gen-
erated by the permutations

a={1234) andb=1(24).

Thena® =(13)0(24),a®=(1432),a*=¢, b =¢, andboa=(14)0(2
3) = ad ob. Hence, o(a) =4, o(b) =2, and boa = a3 ob. Thus, G is a dihedral
group of degree 4.

The following theorem reveals some interesting properties of D4. These
properties are similar to the properties listed in Example 4.1.18 for Djs.

Theorem 5.3.4 Let G be a dihedral group of degree 4 generated by the ele-
ments a and b such that

o(a) =4, o(b) =2, and ba = a®b.

Then the following assertions hold.

(i) Every element of G is of the form a*t/, 0<i < 4,0<j < 2.
(ii) G has exactly eight elements, 1.e., |G| = 8.

(#i) G is ¢ noncommutative group.

Proof. (i) Since G = (a,b),
G = {a"ba™2b2 ... | 44,5, € Z,1 <t < n,neN}.

Since ba = a®b, it follows that every element of G is of the form a®b™, where
n,m€Z. Now a =e, b = ¢, a7 ! = 43, and b~ = b. This implies that every
element of ( is of the form a*%7, 0 < i< 4,0< 5 < 2.

(ii) By (i), every element of G is of the form a*¥’, 0 < i < 4,0<j < 2.
Thus, |G| < 8. Since o(a) = 4, it follows that e,a,a?,a® are distinct elements
of G. Then b, ab, a’b, a®b are also distinct elements of G. Also, since a~! = a3,
b-l=b anda #b#e,

{e,a,a® a%} N {b,ab, a®b, aab} = ¢.

Thus, G = {e, a,a?,a®,b,ab, a?h,a’b}. Hence, G has eight elements.
(iii) Suppose ab = ba. Then ab = a®b. This implies that a? = e, which is a
contradiction. Hence, ab # ba, proving that G is noncommutative. B

It is easy to see that any two dihedral groups of degree 4 are isomorphic.
Hence, there exists only. one dihedral group (up to isomorphism) of degree 4.
We denote a dihedral group of degree 4 by Dy.

We now describe all subgroups of Dy and draw the lattice diagram of sub-
groups of Dy.
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In D4,
o(a) = 4,0(a?) = 2,0(a®) = 4,0(b) = 2,

(ab)? = abab = aa’bb = e,
(a?b)? = a®ba’b = a*(a®b)ab = abab = e,
(a®b)? = a*ba®b = a3(a®b)a®b = a®ba®b = e.

From this, it follows that H; = {e,a?}, Hy = {e,b}, Hs = {e,ab}, Hy =
{e,a?b}, and Hy = {e,ab} are subgroups of order 2. By Lagrange’s theorem,
D4 has no subgroups of order 3, 5, 6, or 7. Now

1= {e,a,az,aa}

Ty = {e,a?,b,a%b}
Ty = {e,ab,a?,a’b}

are subgroups of order 4. We ask the reader to verify that {e}, H;, Hs, Hs,
Hy, Hs, T\, T3, T5, and D4 are the only subgroups of D4. Hence, the lattice
diagram of the subgroup lattice of D, is the following:

It is interesting to note in Dy that Hs is a normal subgroup of 73 and T3
is a normal subgroup of D4, but Hs is not a normal subgroup of D4. We also
note that every nontrivial subgroup of Dy is of order 2 or 4. Therefore, every
nontrivial subgroup of D, is commutative. However, since 75 is a nontrivial
subgroup of Dy and T3 is not cyclic, it follows that not every nontrivial subgroup
of Dy is cyclic. Finally, we also note that D, is isomorphic to Sym, the group
of symmetries of a square (page 69). This follows from Theorem 5.3.4 and the
group table of the group of symmetries of the square given on page 70.

Next, we consider (Js.

Definition 5.3.5 A group G is called a quaternion group if G is generated
by two elements a,b satisfying the relation

o(a) =4, a* = b%, and ba = a’b.
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Example 5.3.6 Let T' be the group of all 2 x 2 invertible matrices over C
under usual matriz multiplication. Let G be the subgroup of T generated by the

matrices
0 1 0 ¢
A—[_l UlandB—-|:i 0}.

Then o(A) =4 and

2___—1 0 | _ .2
Now i - ] ]
0 i 0 1] —i 0
BA = i 0 '[—10 —l o
and ) ) _ -
3, | 0 -1 . 0 ¢ | —¢ O
A'B = 0][@0 1o |

Thus, BA = A3B. Hence, G is a quaternion group.

We leave the proof of the following theorem, which is similar to the proof
of Theorem 5.3.4, as an exercise.

Theorem 5.3.7 Let G be a quaternion group generated by the elements a and
b such that

o(a) =4, a® = b?, and ba = a’b.

Then the following assertions hold.

(i) Every element of G is of the form a*’t’, 0<i < 4,0< 5 < 2.
(11) G has ezactly eight elements, i.e., |G| = 8.

(#11) G is a noncommutative group. W

It is easy to see that any two guaternion groups are isomorphic. Hence,
there exists only one quaternion group (up to isomorphism) and we denote it

by Qs.
Next, we determine all subgroups of Qs.

Let Qs = {a,b), where o(a) = 4, a® = b, and ba = a®b. Then
Qs = {e,a,a?,a%,b, ab,a®b, ab}.

In Qs,
o(a) = 4, o(a?) = 2,0(a®) = 4, o(b) = 4.

Now
(ab)? = abab = aa’bb = b* = a?.
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Thus, o(ab) = 4. Also,
(a?b)% = a*ba®b = a?(a’b)ab = a®bab = abab

and
(a®b)? = a®ba®b = a®(a®b)a’b = aba’b.

Hence, o(a?b) = 4 and o(a3bh) = 4. It now follows that Hy = {e}, H1 = {e, a?},
H; = {e,a,a?,a®}, Hy = {e,ab,a?,a’b}, and Hy = {e,b,a?, a®b} are subgroups
of Qg. We ask the reader to verify that Hy, Hy, Hs, Hs, H4, and Qg are the
only subgroups of Qs. Thus, the lattice diagram of the subgroup lattice of Qg
is the following:

Since {Qs : Ha| = [Qs : H3] = [Qs : Hy4] = 2, Ho, H3, and Hy are normal
subgroups of Qg. Now ba?b™1 = baab™ = a®bab™! = a%abb? = o? € H;.
Since Qg = {(a,b), H is a normal subgroup of Qg. Thus, every subgroup of
Qs is a normal subgroup of G. It is also interesting to observe that all proper
subgroups of (Js are cyclic.

Theorem 5.3.8 Dy % Q.

Proof. We note from the above discussion that (Jg contains six elements of
order 4 while D, contains only two elements of order 4. Hence, D4 % Q:. R

The next theorem classifies all noncommutative groups of order 8.

Theorem 5.3.9 There exist (up to isomorphism) only two noncommutative
nonisomorphic groups of order 8.

Proof. Let G be a noncommutative group of order 8. Since |G| is even,
there exists an element « € G, u # e, such that u? =e. If 22 = e for all 2 € G,
then G is commutative, a contradiction. Thus, there exists ¢ € G such that
a? # e. Since o(a)|8, o(a) = 4 or 8. If o(a) = 8, then G is cyclic and hence
commutative, a contradiction. Thus, o(a) = 4. Let H = {e,a,a? a®}. Then H
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is a subgroup of G of index 2 and so H is a normal subgroup of G. Let b € G
be such that b ¢ H. Then G = H U Hb and H N Hb = ¢. This implies that

G = {e,a,a?, a3, b,ab,a%b, a®b} = (a,b).

Now bab~! € H. If bab=! = ¢, then a = e, a contradiction. Thus, bab™1 # e.
If bab~! = @, then ab = ba and hence G is commutative, a contradiction. If
bab~! = a? then ba?b~! = (badb!)%2 = a? = e and so a? = e, a contradiction.
Therefore, bab™! = a® and so ba = ab. Since |G/H| =2 and b ¢ H, o Hb) = 2.
Hence, b> € H. If b = a or a®, then o(b) = 8 and so G is commutative, a
contradiction. Therefore, either % = e or b2 = a2. It now follows that if G is a
noncommutative group of order 8, then either

G = (a,b) such that o(a) =4, o(b) =2 ,and ba = a®b

or
G = (a,b) such that o (a) =4, b* =a?, and ba = o’b.

In the first case, G = D4 and in the second case, G ~ (Jg. B

5.3.1 Worked-Out Exercises
& Exercise 1 Find Z(Dy).

Solution: It is known that Z(D,) is a normal subgroup of D4. Now
Dy has five normal subgroups: Dy, {e}, H1 = {e,a?}, T1 = {e,a,a?a?},
Ty = {e, a? b,a®b}, T3 = {e,ab,a?, a’b}. Since ab # ba, Dy, T}, and T can-
not be Z(D4). If (ab}b = b(ab), then a = (ba)b = a?b? = a3 and so a® = e,
a contradiction. Hence, T3 # Z(D4). Now a?b = a8 = a3(a®h) = a3(ba) =
(ba)a = ba?. Hence, o € Z(D,). Thus, Z(D,) = {e,a’} = H,.

¢ Exercise 2 Find Inn(Dy).

Solution: By Corollary 5.2.18, Inn(Dy) ~ D,/Z(Dy). Now Dy/Z(Dy) is a.
group of order 4 and

D4/Z(Dy) = {eZ(Dy), aZ(Dy), bZ(Dy), abZ(Dy)}.
Since a? € Z(Dy), b* = e, and (ab)? = e, we find that each nonidentity element
of Dy/Z(Dy) is of order 2. Hence, Dy/Z(D,) ~ K4, the Klein 4-group.
5.3.2 Exercises

1. In Dy, find subgroups H and K such that K is a normal subgroup of H

and H is a normal subgroup of Dy, but K is not a normal subgroup of
Dy.
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2. Show that (Jg is the union of three subgroups each of index 2,
3. Find all homomorphic images of Djy.

4. Find all homomorphic images of (3.

5.4 Group Actions

As previously mentioned, the theory of groups first dealt with permutation
groups. Later the notion of an abstract group was introduced in order to ex-
amine properties of permutation groups which did not refer to the set on which
the permutations acted. However, one is primarily interested in permutation
groups in geometry. Also, permutation groups are used in counting techniques
that are important in finite group theory. An example of this can be seen in
the proof of Lagrange’s theorem. We extend the notion of a permutation on a
set to a group action on a set. We use the notion of a.group action on a set to
determine, via couuting techniques, important properties of finite groups.

Let GG be a group and S a nonempty set. A (left) action of G on S is a
function - : G x S — S (usually denoted by (g,z) — g - =) such that

(i) (9192) 'z =01 (92 7), and

(i) e - ¢ = x, where e is the identity of G

forallz €S, g1,92 € G.

Note: If no confusion arises, we write gz for g - =.

If there is a left action of G on S, we say that G acts on S on the left and
S is a G-set.

Example 5.4.1 Let G be a permutation group on a set S. Define a left action
of G on § by

ozr = o(x)

forallo € G,z € S. Letz € S. Now ex = e(z) = z, where e is the identity
permutation on S. Let 01,09 € G. Then (01003)-xz = (01002)(x) = o1{02(z)) =
o1 - (02(z)) = 01 - {09 - ). Hence, S is a G-set.

Example 5.4.2 Let G be a group and H be o normal subgroup of G. Define a
left action of G on H by

(g,h) — ghg™*

for all g € G, h € H. We denote this by g - h o= ghg™!. Let h € H. Now
e-h =ehe ' =ehe=h. Let g1,92 € G. Then (q192) - h = (g192)h(g192) 7" =

(rg2)h(g: 191 ") = g1(g2hg5 9T = 91(g2 - R)g7" = g1+ (g2 k). Hence, H is a
G-set.
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Theorem 5.4.3 Let S be a G-set, where G is a group and S is a nonempty
set. Define a relation ~ on S by for alla,b € S,

a ~ b if and only if ga = b for some g € G.

Then ~ is an equivalence relation on S.

Proof. Sinceforalla& S, ea=a,a~ afor all a € §. Thus, ~ is reflexive.
Let a,b,c € S. Suppose a ~ b. Then ga = b for some g € G, which implies that
g6 = g7 (ga) = (g7 'g)a = ea = a. Hence, b ~ a and so ~ is symmetric.
Now suppose ¢ ~ b and b ~ ¢. Then there exist g1, go € G such that g1a = b
and gob = c. Thus, (g2¢1)a = ¢g2(g1a) = ¢2b = c and s0 a ~ c. Hence, ~ is
transitive. Consequently, ~ is an equivalence relation. B

Definition 5.4.4 Let S be a G-set, where G is a group and S is a nonempty
set. The equivalence classes determined by the equivalence relation of Theorem
5.4.3 are called the orbits of G on S.

For a € S, the orbit containing a is denoted by [a].
Lemma 5.4.5 Let G be a group and S be a G-set. For all a € S, the subset
Go={9€G | ga=a}

s a subgroup of G.

Proof. Leta € 5. Since ea =a, e € G, and so G, # ¢. Let g,h € G,. Then
ga = a and ha = a. This implies that (gh)a = g(ha) = ga = a and so gh € G,.
Now h~la = h™1(ha) = (h"'h)a = ea = a. Thus, h~! € G,. Hence, G, is a
subgroup of G. B

The subgroup G, of Lemma 5.4.5 is called the stabilizer of a or the
isotropy group of a.

Lemma 5.4.6 Let G be a group and S be a G-set. For alla € §,
[G : Ga] = |[a]|.
Proof. Let ac S. Let £ be the set of all left cosets of G, in G. Now
o) ={b€S|a~b}={b€S|ga=D>for somege G} ={ga|ge€CG}

We now show that there exists a one-one function from £ onto [a]. Define

fiL—|a]
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by

f(9Ga) = ga
for all gG, € L. Let g1, g2 € G. Then g1G. = g2G, if and only if g5 'g1 € G,
if and only if g5 (g1a) = (95 g1)a = a if and only if g1a = goa. Thus, f is a
one-one function from £ into [a]. Let b € [a]. Then there exists g € G such that

ga = b. Thus, f(¢gG,) = ga = b. This implies that f is onto [a]. Consequently,
G : Gl = L] = |[a]| . W

Theorem 5.4.7 Let G be a group and S be a G-set. If S is finite, then

1] =[G Gal,

acA

where A is a subset of S containing exactly one element from each orbit [a].

Proof. By Theorem 5.4.3, S can be partitioned as the union of orbits.

Therefore,
S = Ugea [a] .

Hence,
S| = Z |[a]| = Z[G : G| by Lemma 5.4.6. &
a€A acA
Theorem 5.4.8 Let G be a group and S be a G-set. Then the left action of
G on S induces a homomorphism from G onto A(S), where A(S) is the group
of all permutations of S.

Proof. Letg € G.Definer,: 5 — Sbyr,(a)=gaforalla € S Leta,beS.
Then 74(a) = 14(b) if and only if ga = gb if and only if a = b. Therefore, 7,
is a one-one function. Now b = g(g~1b) = 7,(g7'b) and g~'b € S. This shows
that 7, is onto 8. Thus, 7, € A(S). Let g1, g2 € G. Then 7y, 4,(a) = (g192)a =
91(g2a) = T4, (g2a) = 74, (14,(a)) = (74, 074, )(a) for all @ € S. This implies that
Tgige = Tqy © Tgp. Define

P: G — A(S)
by

Y(g) =7

for all g € G. Then ¢ is a function. Now ©¥(giga) = Tggy, = Ty, O Tge =
(1) o ¥(g2) for all g1, g2 € G. This proves that 3 is a homomorphism. B

The following corollary, which is known as the extended Cayley’s theorem,
follows from the above theorem.

Corollary 5.4.9 Let G be a group and H be a subgroup of G. Let S = {aH |
a € G}. Then there exists a homomorphism ¢ from G into A(S) (the group of
all permutations on S) such that Ker ¢ C H.
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Proof. First we note that S is a G-set, where the left action of G on
S is defined by g(aH) = (ga)H for all g € G. This left action induces the
homomorphism ) of Theorem 5.4.8. Now

Kery = {ge€G|v¥(g9)=7,= theidentity mapping on S}
= {9€G|T1({aH)=0aH for all aH € S}
= {9€G|g(aH)=aH for all aH € S}.

Let g € Ker v. Then g(aH) = aH for all aH € S. In particular, gH = H.
Thus, g € H. Hence, Ker ¥y C H. W

Corollary 5.4.10 Let G be a finite group and H be a proper subgroup of G of
indez n such that |G| does not divide n! Then G contains a nontrivial normal
subgroup.

Proof. From Corollary 5.4.9, Ker v C H and G/Ker v is isomorphic to a
subgroup of S,,, where 1 is as defined in Corollary 5.4.9. Therefore, |G/Ker 1|
divides n! But |G| does not divide n! Hence, |Ker 9| # 1, proving that Ker
is a nontrivial normal subgroup of G.

Definition 5.4.11 Let G be a group and S be a G-set. Leta € §, g € G.
Then o is called fized by g if ga = a. If ga = a for all g € G, then a is called
fized by G. |

Theorem 5.4.12 (Burnside) Let S be a finite nonempty set and G be a finite
group. If S is o G-set, then the number of orbits of G is

I—Cl-;-IZF(g),

geG

where F(g) is the number of elements of S fized by g.

Proof. LetT = {(g,a) € G x S| ga = a}. Since F(g) is the number of
elements a € S such that (g,a) € T, it follows that |7'| = 3 . F(g)- Also, |G,
is the number of elements g € G such that (g,a) € T. Hence, |T| =3 ,c5|Gal .

Let S = [a1] U[as] U --- U [ag], where {[a1], |a2], ..., [ak]} is the set of all
distinct orbits of G on S. Then

Y Flg)= Y (Gal+ > 1Gal+--4+ > |Gdl.

geG ‘a€lai] a€[az] a€lay]

Suppose a,b are in the same orbit. Then [a] = [b] and [G : G| = |[a]| = |[b]| =
|G : Gy|. This implies

6l _ I¢]

Gal |Gl
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and so |Gq| = |Gs]. Thus,

YeecFlg) = l[al]l 1Ga, | + I[azli Gy +--- + I[ak]l |G,
= |G ||Ga1|+|G ||G02\—|— |G |IGGk[
= k 1G|

where k is the number of distinct orbits. Consequently,
) F(g).m
IGI hey

5.4.1 Worked-Out Exercises

¢ Exercise 1 Let § be a,' finite G-set, where G is a group of order p™ (p a
prime). Let Sy = {a € S | ga = a for all g € G}. Show that

15| =p |S0] -
Solution: By Lemma 5.4.7,
15| = (G : Gal,
acA

where A is a subset of S containing exactly one element from each orbit [a] of
G. Now a € Sy if and only if ga = a for all g € G, i.e., if and only if [a] = {a}.

Hence,
G
S =1so}+ 3
a€ A\ So G

Since |G| # |G| for all a € A\So, IJC% is some power of p for all a € A\Sp.
Thus, H%'I is divisible by p, proving that |S| =, |So|.
{ Exercise 2 Let S be a finite G-set, where G is a group of order p” (p a

prime) such that p does not divide |S|. Show that there exists @ € S such
that a is fixed.

Solution: Let Sy = {a € S | ga = a for all g € G}. By Worked-Out
Exercise 1, |S| =, |Sp|. Since p does not divide |S}, p does not divide |Sp].
Thus, |Sp| # 0. This shows that there exists a € Sy. Thus, a is fixed by G.

{ Exercise 3 Let G be a finite group and H be a subgroup of G such that
|H| = p*, where p is a prime and k is a nonnegative integer.

(i) Show that
' |G : H} =, [N(H) : H],

where N(H) = {ge G | gHg™! = H}.
(i) If p|[G : H], show that N(H) # H.
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Solution: (i) Let S = {xH | £ € G}. Define a left action of H on S by
h(zH) = (hz)H forall h € H,xH € S. Then Sisan H-set. Let Sy = {rH € S
| h(zH) = zH for all h € H}. By Worked-Out Exercise 1, |S| =, [So|. Now
zH € Sy if and only if h(zH) = zH for all h € H if and only if z lhe € H
for all h € H if and only if s ~!Hz C H. Now [z~ Hz| = |H|. Hence, zH € Sy
if and only if z71Hz C H if and only if z7!Hz = H (since H is finite and
|e~'Hz| = |H|) if and only if z € N(H). This shows that Sy is the set of all
left cosets of H in N(H). Thus, {So| = [N(H) : H]. Also, |S| =[G : H]. Hence,
G:H)=,[N(H): H].

(ii) By (i), |G : H| = [N(H) : H]. Now p divides [G : H]. Thus, p divides
IN(H) : H). Since [N(H) : H] > 1, it follows that N(H) # H.

Exercise 4 Let G be a finite group. Let H be a subgroup of G of index p,
where p is the smallest prime dividing the order of G. Show that H is a
normal subgroup of G.

Solution: Let § = {aH | a € G}. Since [G : H] = p, |S| = p. Thus,
|A(S)| = p!, where A(S) is the group of all permutations on S. Define a left
action of G on S by g(aH) = (ga)H for all g € G, aH € S. Now e(aH) = aH
and (g1g2)aH = ((g192)a)H = gi1(g2aH). Hence, S is a G-set. Now the left
action induces a homomorphism % : G — A(S) defined by ¥(g) = 7,, where
To(aH) = (ga)H for allg € G,aH € S.Let g € Ker 4. Then g(aH) = eH for all
aH € S, in particular, gH = H. Hence, g € H. Thus, Ker ¢y C H. Now G/Ker ¢
is isomorphic to a subgroup of A(S). Therefore, |G/Ker | divides |A(S)| = p!
Let |G/Ker ¥y| = n. Then n = [G : H|[H : Ker ¢] > p. Let n = p1p2 - - - pg,
where p; are prime integers, ¢ = 1,2,...,k. Since p; divides |G| and p is the
smallest prime dividing the order of G, p; > pfor all ¢ = 1,2,..., k. Since n
divides p!, we have each p; divides p!. Since each p; is a prime and p; > p, we
must have ¢ = 1 and p;'= p. Thus, n = p. This implies that [H : Ker ¢] = 1.
Hence, H = Ker % and so H is a normal subgroup of G.

¢$ Exercise 5 Let G be a group of order pn, p a prime, and p>n. If His a
subgroup of order p in G, prove that H is a normal subgroup of G.

Solution: Let S = {aH |a € G}. Now |5| =[G : H] = JHI = =n
Define a left action of G on 8 by g(aH) = (ga)H forall g€ G, aH € S Then
S is a G-set. Now the left action induces a homomorphism 9 : G — A(S)
defined by (g) = 75, where 1o(aH) = (ga)H for all g € G, aHH € 5. As in
Worked-Out Exercise 4, Ker ¢ C H. Since |H| = p, either Ker ¢ = {e} or
Ker v = H. If Ker ¢ = {e}, then G is isomorphic to a subgroup of A(S). This
implies that |G| divides |A(S)|, i.e., pn|n! Therefore, p|(n — 1)! Since p > n, p
does not divide (n — 1)! Thus, Ker ¢ = H. Hence, H is a normal subgroup of

G.
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Exercise 6 Let G be a group. Show that G is isomorphic to a subgroup of
A(G). (This is Cayley’s theorem. Here we want to prove this result by
the group action method.)

Solution: G is a G-set, where the left action of G on G is defined by the
group operation. This left action induces a homomorphism % : G — A(G)
defined by ¥(g) = 74, where 1,(a) = gaforalla,gc G. Now Ker vy = {g € G
| 7, = identity permutation on G} = {9 € G | ga =a for all a € G} = {e}.
Hence, 9 is a monomorphism.

¢ Exercise 7 Let G be a group of order 2m, where m is an odd integer. Show
that G has a normal subgroup of order m.

Solution: By Cayley’s theorem, G is isomorphic to a subgroup H of A(G),
where the isomorphism ¢ : G — A(G) is given by ¢¥(g) = 74, 74(a) = ga for all
a, g € G. Since G is of even order, there exists g € G such that o(g) = 2. Now
1,(e) = ga and 1,{ga) = g?a = a. Hence, 7, is the product of transpositions
of the form (a ga). Since |G| = 2m, the number of transpositions appearing
in the factorization of 75 is m. Thus, 7, is an odd permutation. Therefore, H
contains an odd permutation. Define

f:H— {11_1}
by for all ¢ € H,

(o) = 1 if ¢ is an even permutation
B 1 if ¢ is a odd permutation

where {1, —1} is a group under multiplication. Then f is an epimorphism of
H onto {1,—1}. Hence,
H/Ker f~{-1,1}.
Thus,
|H 2m
[Ker f| = |Ker f|’
Hence, |Ker f| = m. Consequently, H contains a normal subgroup of order m
and so (G contains a normal subgroup of order m.

2=|{-11}} = |H/Ker f| =

5.4.2 Exercises

1. Show that I3 = {1,2,3} is a S3-set, where the left action is defined by
oca = o(a) for all ¢ € 83, a € I5. Find all distinct orbits of Ss. Find Gy,
G9, and Gj.

2. Let H be a subgroup of order 11 and index 4 of a group G. Prove that
H is a normal subgroup of G.
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Let H be a subgroup of a group G of index n. If H does not contain
any nontrivial normal subgroups of G, prove that H is isomorphic to a
subgroup of Sy,.

. Let G = GL(2,R) and § = R?. Show that S is a G-set under the left

action defined by
a b
ER| [T

b

a
for all { . d

] € G, (z,y) € R

. Let G be a group of order 77 acting on a set S of 20 elements. Show that

GG must have a fixed point.

. Let G be a group. The left action of G on the set G is defined by

conjugation, i.e., (g,z) — gzg~! for all g,z € GG. Show that the kernel of
the homomorphism % : G — A(G) induced by this action is Z(G).

Let G be a group of order 80 such that G has a subgroup of order 16.
Show that G is not a simple group.

. Show that a group of order 22 is not a simple group.

Show that there are no simple groups of orders 6, 10, 14, 26, 34, and 58.
Show that a group of order 8 cannot be a simple group.

Show that a simple group of order 63 cannot contain a subgroup of order
21. |

Let G be a group of order 70 such that G has a subgroup of order 14.
Show that G has a nontrivial normal subgroup.
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Arthur Cayley(1821-1895) was born
on August 16, 1821, in Cambridge, England.
He was the second son. He entered Trin-
ity College at the age of 17, as a pensioner.
In 1842, he graduated as senior wrangler.
Later he went to a law school and in 1849
he became a lawyer. As a lawyer, he made
a comfortable living and in fourteen years,
during which he practiced his law profession,
he wrote approximately 300 mathematical
papers.

In 1863, Cayley was elected to the new
Sadlerian chair of pure mathematics at Cam-
bridge, where he remained until his death.
He died on January 26, 1895.

For most of his life, Cayley worked on mathematics, theoretical dynamics, and
mathematical astronomy. In 1876, he published his only book, Treatise on Elliptic
Functions. Cayley wrote 966 papers; there are thirteen volumes of his collected papers.

Cayley’s mathematical style was terse. He usually wrote out his results and pub-
lished them without delay. He, along with J. J. Sylvester, his lifelong friend, is con-
sidered to be the founder of invariant theory. He is also responsible for matrix theory.
The square notatibn used for determinants is due to Cayley. He proved many impor-
tant theorems of matrix theory, such as the Cayley-Hamilton theorem. He is one of
the first mathematicians to consider geometry of more than three dimensions.

In 1854, Cayley published, “On the theory of groups depending on the symbolic
equation 8* = 1.” In this paper, he considered a group as a set of symbols, 1,0, 8, ...,
all of them different and such that the product of any two of them (no matter in what
order), or the product of any one of them into itself, belongs to the set. This formula-
tion of a group as a set of symbols and multiplications is different from the formulation
considered by the earlier mathematicians. The paper is generally regarded as the ear-
liest work on abstract group theory and Cayley is regarded as the founder of abstract
group theory. He is best known for the theorem that every finite group is isomorphic
to a suitable permutation group. In his article of 1854, he introduced a procedure
for defining a finite group by listing its elements in the form of a multiplication table,
known as a Cayley table. Cayley also proved a number of important theorems.




Chapter 6

Direct Product of Groups

6.1 External and Internal Direct Product

In Section 2.1, Exercise 25, we defined the direct product G x H of two groups
G and H. In this section, we extend this concept to any finite family of groups
and obtain their basic properties.

The notion of a direct product is used to factor a group into a product
of smaller groups. This factorization gives structural properties of a group.
In some cases, it allows for the complete characterization of a certain type of
group. In Chapter 9, the concept of direct product is used to give a complete
system of invariants for a finitely generated Abelian group, i.e., a finite set of
positive integers which implies the isomorphism of any two finitely generated
Abelian groups that have this set of integers.

Recall that I, = {1,2,...,n}.

Let {G; | ¢ € I,} be a family of groups. Let

G=G1 xG2x- - xGp={(a1,a2,...,0:) | a; € Gj,i € I}
Define * on G as follows: for all (ay1,a9,...,a,), (b1,b2,...,b,) € G

(ﬂ.]_, a2,... :a"n) * (b].) b2) s :bn) = (albla 32621 e :anbn)-

In the following theorem, we show that % is a binary operation on G and
that the set G together with the binary operation * is a group. We also obtain
several important properties of G.

Theorem 6.1.1 Let {G; | i € I,} be a family of groups and G = G1 x G4 X
- X Gp. Let e; be the identity of G; for alli € I,. Then (G, *), where % is
defined above, is a group with e = (e1,ea,...,en) the identity element, and for
all (a1,a3,...,a,) € G,

(a1,as,... ,an)“l = (al_l, az_l, . ,a;l).
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Furthermore, let

H; = {(e1,e2,...,€i-1,0i,€i11,...,en) | a; € Gy}

for all i € I,. Then the following assertions hold.

(i) H; is a normal subgroup of G for all i € I,.

(11) For all a € G, a can be uniquely expressed as a = hyhy - - - h,, where
h; € Hy, 1 € I,.

(’522) H; N (H]Hg - Hi  Hipy - Hn) = {e} for alli e I,.

(iv) G =HiH,y - Hpy.

Proof. First we note that * is single-valued and if (a1,...,a,), (b1,...,b,)
€ G, then (a1,...,a,) * (b1,...,b,) = (a1by,...,anb,) € G since a;b; € G; for
all i. Thus, * is a binary operation on G. We ask the reader to verify that x is

associative. Now e = (e1,€2,...,e,) € G and for all ¢ = (a1,a9,...,a,) € G,
ae = (a1,a2,...,an)(ei,es,...,en)
((1181,&282,.. -:anen)
= (alaa‘Za"'aan)
= aq.

Similarly, ea = a. Hence, e is the identity of (G. To show that every element of
G has an inverse in G, let (a1,a2,...,a,) € G. Then (a7',a5),...,a7") € G
since a;” 1l e @G; for all i and

(a1,a3,-.-,a5)(e7 a5, . ;a0Y) = (a1a7t,azazl,. .., ana;t)
= (eI:GQa”')eﬂ)
= e.
Similarly, (a7',a5%,...,a: ) (a1, a2, ..., a,) = e. Thus, every element of G has

an inverse. Consequently, (G, *) is a group. We also note that by the uniqueness
of the inverse of an element

1 1 =1 -1

(a1,a2,:..,a,)7 = (a7 ,a5",...,a,").

(i) Leti € I,. Since (e1, ep,...,e,) € Hi, H; # ¢. Leta = (e1,...,ai,..-,€n),
b=(e1,...,bi...,€,) € H;. Then

@bl = (e1y. @iy ey en)(Ense s bir. o en)
(61,...,0‘;,..1.,671)(61,...,b;l,...,en)
= f(e1,...,a:b; " ,...,e,) € H;.

Thus, H; is a subgroup of G by Theorem 4.1.3. Let g = (¢1,99,...,9) € G.
Then

gag™" = (91,92,--,9n)(e1,-- -, i, -, €n)(91,92,- -, 9n)

(91392:“‘391'0'?"')gn)(gj[‘lng_l)"'ag;z_l)
= (e1,...,0i0ig] ", ... en) € H; since gia;g; ' € G;.
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Hence, H; is a normal subgroup of G.

(1) Let @ = (a1,a2,...,an) € G. Let h; = (e1,...,a4,...,e,) forall ¢ € I,,.
Then a = hyhy---h,. To show that the representation of a is unique, let
a = kiky - - - k, be another representation of a, where k; € H; for all 7 € I,,. Let.
ki=(e1,...,bi,...,eq) € Hfor all { € I;,. Then

(al,ag,...,an) =hlhg-'-hn=a=klkg---kn:(bl,bg,...,bn).

This implies that a; = b; for all © € I,, and so h; = k; for all 7 € I,. Hence, the
representation of a is unique.
(iii) Suppose @ € H;N (Hy--- H;—1H;y1 -+« Hy). Then a € H; and

a€ H - -H_1Hiy1--- Hp.
Since a € H;, a = (e1,...,ai,...,e,) € H; for some a; € G; and since
a€ Hy---Hy (Hiyy - Hpy,

we have @ = hjhy---hj_1h;y1 - hy,, where hj = (81, SRRN TR ,en) € Hj for
some a; € G;. Thus, '

(e1,.. 44y . ..ven) =a=hy---hi_rhiy1---hnp = (a1,...,8i-1,€,ai41,...,an).
This implies that a; = e; for all 4 € I,,. Hence,
H,Nn(H\Hy---H;_1H;y--- Hy,) = {e}.
(iv) The desired result follows from (ii). B

Definition 6.1.2 The group GG of Theorem 6.1.1 is called the external direct
product of the groups G;, 1 =1,2,...,n.

Theorem 6.1.1 motivates the following definition.

Definition 6.1.3 Let G be a group and {N; | i € I,,} be a family of normal sub-
groups of G. Then G is called the internal direct product of N1, No,..., N,
if every a € G can be uniquely expressed as a = ajas - -+ a,, where a; € N; for
allt € I,.

Let G = Gy x Gg x -+ + x Gy, be the external direct product of the groups G;.
Let H; be defined as in Theorem 6.1.1. Then G is the internal direct product
of Hy,Hs,...,H, by Theorem 6.1.1(ii}.

Theorem 6.1.4 Let G be a group and {N, | i € I,} be a family of normal
subgroups of G. Then G is an internal direct product of {N; | i € I} if and
only ’LfG = N1N2 s Nn and Niﬂ (Nl s Ne’—lei+1 e Nn) = {B} fOT' all 1 € I‘n-
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Proof. Let G be an internal direct product of {IV; | 7 € I,}. Let a € G.
Then e = a1as -« - a, for some a; € N;, 1 € I,. Thus, a € NyNy--- N, and this
implies that G = N Ny - - - N,. We now show that N;N{Ny --- N;_1N;1y - -+ Ny
= {6} foralli € I,. Let ¢ € I,, and a € N;N (N]_ - N;_1N; 1 Nn) Then
a € NV;and a € Ny-+-N;_1N;y1- -+ N. This implies that we can write a =
Q1az - - - G;i_1@i4+1 - - - Gy, for some a; € N;, j € I,\{i}. Hence,

€€ Q- €E=Q=Q1Q2 " "Q;_1€Q741 - -Qn

are two representations of a, where ¢; € N;, j € L,\{¢}. Since the representa-
tion of a is unique, @ = e. Hence, N;N (N} -+ N;_1Nj1 -+ Np) = {e}.

Conversely, suppose G = N1Ng--- N, and N;N (N7 --- Ni_1Nig1---Np) =
{e} for all ¢ € I,,. Then N; N N; = {e} for all ¢ # j and hence uv = vu for all
u € N; and for all v € N; by Exercise 12 (page 137). Let a = a1a2---a, =
b1bg - - - b, be two representations of a, where a;, b; € N;, 1 € I,,. Then

1

e = a "a
= (a102--an) " (biby - - by)
= az'a;l; - caylbibe-- by

= a'biag'by---a; b,
since for all ¢ # j if v € N; and v € N;, then uv = vu. This implies that
b;la,; = al_lbl v a;_llbg‘_1a1—__|_11bz'+1 tee a;lbn € N{ M NlNz - N‘i—-lNz'+1 v Nn

for all i € I,. Since N; N NiNy---N;_1N;11--- N, = {e}, we must have
b%-_laz- = eora; = b; for allz € I,. Thus, a can be written uniquely as ajas - - - @y,
where a; € N;, i € I,. Hence, G is an internal direct product of {N; |7 € I,}. B

In the following theorem, we show that if a group & is an internal direct
product of a family of normal subgroups {N; | ¢ € I,,}, then G can be viewed
as an external direct product of the groups N;’s.

Theorem 6.1.5 Let G be an internal direct product of a family of normal
subgroups {N; | i € I,}. Then

G~ Ny xNoyx-xN,.

Proof. Let a € G. Then a can be expressed uniquely as a = ai1as - - - ayp,
where a; € N;, 1 € I,. Define

f:G— Ny xNyx---x N,

by
f(ﬂ.) = (alaa'Qa' .- )a'n)
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for all @ € G. From the definition of f, it follows that f is well defined and onto
Ny xNyXx-+-xN,. And from the uniqueness of the representation of a, it follows
that f is one-one. We now show that f is a homomorphism. Let a = ajag --- a,
and b = byby---b, be two elements of G, where a;, b; € N;,i € I,,. Now
N; N N; = {e} for all i # j and so uv = vu for all u € N;, v € N;. This implies
that

ab=ajas - -apbiby---bp = arbiaghs---anb,.

Thus,
f(ab) = (albla aQan sy anbn)
= (a1,02,...,08)(b1,b2,...,b,)

= f(a)f(b)

and so f is a homomorphism. Consequently, G >~ N1 X No x -+ X N,. B

Considering Theorem 6.1.5, let us agree to write G = N} x Ny x - x N,
when G is an internal direct product of a family of normal subgroups {N; |
i€ L.}

6.1.1 Worked-Out Exercises

{ Exercise 1 Let G and G be groups and f : G — G be a homomorphism.
Let H be a normal subgroup of G. Suppose that flg : H — G; is an
isomorphism of H onto G;. Prove that G = Hx Ker f. Give an example
to show that this result need not be true if H is not a normal subgroup.

Solution: Let a € G. Then f(a) € G1 = f(H). Thus, there exists h € H
such that f(a) = f(k). Now f(a) = f(h) implies that f(h~'a) = e; and
hence h~la € Ker f. Therefore, there exists & € Ker f such that b = h~1a
or a = hb. Hence, G = HKer f. Suppose a € HNKer f. Then a € H and
f(a) = e1 = f(e). Since f|y is one-one, f(a) = f(e) implies that a = e.
Therefore, HNKer f = {e}. Thus, H and Ker f are normal subgroups of G
such that G = HKer f and HNKer f = {e}. Consequently, G = Hx Ker f.

This result need not be true if A is not a normal subgroup of G: For let
G = 83 and Gy = {¢’) be such that o{g’) = 2, i.e., G; is a cyclic group of order
2. Let H = {(1 2)). Define f : G — Gy by f(e) = e, f(x) = e if z is an element
of order 3, and f(z) = ¢’ if z is an element of order 2. Then f|y : H — G is
an isomorphism of H onto G;. Now Ker f ={e, (123), (13 2)} =((123)).
But G # Hx Ker f (see Exercise 14, page 188.)

Exercise 2 Let G be a group and H and K be subgroups of G such that
G = H x K. Let N be a normal subgroup of G such that NN H = {e}
and N N K = {e}. Prove that N is commutative.
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Solution: Since G = H x K, H and K are normal subgroups of G. Now
for all n € Nh € Hk € K,nh = hn, and nk = kn by Exercise 12 (page
137). Let a,b € N. Then there exist h € H, k € K such that b = hk. Now
eb = a(hk) = (eh)k = (ha)k = h(ak) = h(ka) = (hk)a = ba. Hence, N is
commutative.

{ Exercise 3 Let GG be a group and A and B be subgroups of G. If
(i) G = AB,
(ii) ab="ba for all e € A, b € B, and
(iii) AN B = {e},
prove that G is an internal direct product of A and B.

Solution: Let us first show that A and B are normal subgroups of ;. For
this, let a € A, g € G. There exist ¢ € A and b € B such that g = ¢b by
(i). Now gag™! = (cb)a{ch)™! = cbab~lc™! = cabb™lc™! = cac™! € A. Hence,
A is a normal subgroup of G. Similarly, B is a normal subgroup of G. Let
g € G. Then g = ab for some a € A, b € B. Suppose ¢ = a1b;, where a; € A,
b, € B. Then ab = a1b;, which implies that aT'a = bib7! € AN B = {e}.
Thus, @ = a; and b = b;. Therefore, we find that every element ¢ of G can be
expressed uniquely as ¢ = ab, a € A, b € B. Consequently, G is an internal
direct product of A, B.

{ Exercise 4 Let G be a cyclic group of order mn, where m, n are positive
integers such that ged{m,n) = 1. Show that G ~ Z,, X Z,.

Solution: Since m divides |G| and G is cyclic, there exists a unique cyclic
subgroup A of G of order m by Theorem 4.2.10. Similarly, there exists a unique
cyclic subgroup B of G of order n. Now |A N B| divides |A] = m and |[AN B|
divides |B| = n. Since ged(m,n) =1, |AN B| = 1. Thus, by Theorem 4.3.15,

|A||B] _ mn
|AnB| 1

|AB| = =mn = |G|.

Since AB C G, |AB| = |G|, and G 1s finite, we must have G = AB. Hence,
G = AB, An B = {e}, and A and B are normal subgroups of G. Thus,
G=AxB~Z, xZ,.

¢ Exercise 5 Let A and B be two cyclic groups of order m and n, respectively.
Show that A x B is a cyclic group if and only if ged(m,n) = 1.

Solution: Let A = (a) for some a € A and B = (b) for some b € B. Suppose
ged(m,n) = 1. Let g = (a,b). Then ¢™" = (a,b)™ = (a™", b™") = (e4,eB),
where e denotes the identity of A and eg denotes the identity of B. Suppose
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o(g) = t. Then (a,b)! = (ea,ep). This implies that a* = e4 and b* = ep. Thus,
m|t and n|t. Since ged(m,n) = 1, mn|t. Hence, mn is the smallest positive
integer such that g™" = e. Thus, o{g) = mn. Now |[A x B| = mn and A x B
contains an element g of order mn. As a result, A x B is cyclic. Conversely,
assume that A x B is cyclic and ged(m,n) = d # 1. Let (a,b) € A x B. Then
o(a}lm and o(b)|n. Now ™ = Zn = m7 is an integer and "3* < mn. Also,

(q::r,,b)mdE = (am%,b”%) = (ea,€B).

Hence, A x B does not contain any element of order mn. This implies that
A x B is not cyclic, a contradiction. Therefore, gcd(m,n) = 1.

Exercise 6 Show that |Aut(Zs x Zs)| = 6.

Solution: First note that Zs x Zy has four elements, e = ([0],[0}), a =
(1, [0]), & = ([0],[1]), ¢ = ({1],[1)), and o(a) = o(b) = o(c) = 2. Let [ €
Aut(Zz x Z2). Then o f(z)) = o(x) for all z € Zy x Zy. Hence, f maps {a,b,c}
onto {a,b,c}. Thus, f is a permutation of {a,b,c}. Since there are only six
permutations of {a,b,c}, it follows that |Aut(Zy x Zy)| < 6. Now @ + b = ¢,
a+c=bb+c=a,and a+a=e=>b+ b= c+c. Thus, any permutation of
{a,b,c} gives rise to an automorphism of Zy x Zy. For example, let & :a — b,
b—c¢c—a,ande — e Now a(e+b) = alc) =aand ala)+a(b) =b+c=a.
Therefore, a(a+b) = a(a) + a(b). Similarly, a(a+c) = afa) + a(c), a(b+c) =
a(b) + alc), ala+ a) = afa) + afa), a(b+ b) = a(b) + a(b), and ac +¢) =
a(c) + ac). Hence, « is an automorphism. Thus, |Aut(Z, x Z2)| = 6.

6.1.2 Exercises

1. Prove that the direct product of two groups A and B is commutative if
and only if both groups A and B are commutative.

2. Let A, B,C, and D be four groups such that A ~ C and B ~ D. Show
that Ax B~ (C x D.

3. Let G be a group such that G = Hy; x Hy X +-- X Hp, where H; is a
subgroup of G. Let K; be a normal subgroup of G such that K; C H;,
1<i<n.Let K = K; x Ko x--- x K,,. Show that

G H

$ L
K K, K, K,

4. Let G; be a group, 1 <1t < n. Show that

Z(G1 xGa %+ X Gr)y=Z(G1) x Z(Ge) x --- x Z(G,).
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. Let G be a group and H and K be subgroups of G such that G = H x K.

Show that G/K ~ H and G/H ~ K.

. Let G be a finite cyclic group of order mn, where m and n are relatively

prime. Let H and K be subgroups of G such that |H| = m and |K| = n.
Show that G = H x K.

. Prove that Aut(Zg X Zg) ~ Ss.

. Let G be a group and H and K be normal subgroups of G such that

G =HK. Let HN K = N. Show that

G/N ~ H/N x K/N.

. Prove that a finite Abelian group G is the internal direct product of

subgroups H and K if and only if (i) H N K = {e} and (ii) |G| = |H||K]-

Show that the Klein 4-group is isomorphic to the direct product of a
cyclic group of order 2 with itself.

Show that a cyclic group of order 4 cannot be expressed as an internal
direct product of two subgroups of order 2.

Show that a cyclic group of order 8 cannot be expressed as an internal
direct product of two subgroups of order 4 and 2, respectively.

Can the cyclic group Zjo be expressed as an internal direct product of
two proper subgroups?

Show that S3 cannot be written as a direct product of proper subgroups.

Show that D, cannot be expressed as an internal ditect product of two
proper subgroups.

Consider the groups Zs x Sz, Zy x Zg, and Zq5. Are any two of these

. groups isomorphic? Is any one noncommutative?

Show that the additive group (Z, +) cannot be expressed as an internal
direct product of two nontrivial subgroups.

Show that the additive group (Q, +) cannot be expressed as an internal
direct product of two nontrivial subgroups.
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Heinrich Weber (1842-1913) was born on May 5, 1892, in Heidelberg, Ger-
many. In 1860, he studied mathematics and physics at the University of Heidelberg,.
He received his Ph.D. in 1863. He was appointed as extraordinary professor at the
University of Heidelberg in 1869 and also taught at Edgendssische Polytechnikum in
Zurich, the University of Konigsberg, the Technische Hochschule in Charlottenburg,
and the universities of Marburg, Géttingen, and Strasbourg.

Weber was a friend of Richard Dedekind and they often collaborated. Together
they edited the work of Riemann in 1876. Herman Minkowski and David Hilbert were
among Weber’s students.

Weber’s main research interests were in analysis and its applications to mathemat-
ical physics and number theory. He was encouraged by von Neumann to investigate
physical problems and by Richelot to study algebraic functions. Along the lines of
Jacobi, he worked on the theory of differential equations. He proved Abel’s theorem in
its most general form. He also worked on physical problems concerning heat, static and
current electricity, the motion of rigid bodies in liquids, and electrolytic displacement.

‘Weber’s most profound and penetrating work is in algebra and number theory. He,
jointly with Dedekind, did work of fundamental importance on algebraic functions.

In 1891, Weber gave the “modern” definition of an abstract finite group. One of
his outstanding accomplishments was the proof of Kronecker’s theorem, which states
that absolute Abelian fields are cyclotomic.

Weber was an enthusiastic and inspiring teacher who took great interest in educa-
tional questions. He died on May 17, 1913.



Chapter 7

Sylow Theorems

In general, the converse of Lagrange’s theorem does not hold (Exercise 19, page
138). In this chapter, we prove the Sylow theorems, which are very helpful
in determining whether a given finite group has subgroups of specific orders.
There are several known proofs of the Sylow theorems. In this text, we give two
different proofs of the Sylow theorems, one based on the notion of group action
(Section 5.4) and another based on the notion of conjugacy classes (Section
7.1). In Section 7.4, we will apply the Sylow theorems to determine certain
simple groups.

7.1 Conjugacy Classes

In this section, we define an equivalence relation commonly known as a con-
jugacy relation on a group. This relation partitions the group into disjoint
equivalence classes, which helps us to obtain a decomposition of the order of
a finite group. This particular decomposition of the order of a finite group is
known as the class equation. The class equation is very useful in determining
the nature and structure of finite groups. The results obtained in this section
will be used throughout this chapter.

Definition 7.1.1 Let G be a group and a be an element of G. Then the cen-
tralizer or normalizer of a in G, denoted by C(a), is the set of all elements
of G which commute with a, i.e.,

Cla) = {be G| ba = ab}.

We note that C{a) = G if and only if a is in the center of G.

Let G be a group and a € G. An element b € G is said to be a conjugate
of a in G if there exists ¢ € G such that b = cac™!.

In the following theorem, we prove some basic properties of the centralizer
of an element.
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Theorem 7.1.2 Let a be an element of a group G. Then
(i) C(a) ts a subgroup of G.
(ii) The relation p on G defined by

p=1{(a,b) € GxG|bis a conjugate of a}

25 an equivalence relation, known as conjugacy, on G; the equivalence cless
[a] of the relation p is called a conjugacy class of a in G. We denote the
conjugacy class {a] by Ci(a).

(1ii) The number of conjugates of a is equal to the indez of C(a) in G, i.e.,

ICi(a)| = [G : Cla)).

Proof. (i) Since ea = a = ae, ¢ € C(a) and so C(a) # ¢. Let b, c € C(a).
Then ab = ba and ac = ca. Also, ac = ca implies that ac™! = ¢ la. Now
a(bc™1) = (ab)c™! = (ba)c™! = blac™) = b(c™'a) = (bc~1)a. Therefore, be™! €
C(a). Hence, C(a) is a subgroup of G by Theorem 4.1.3.

(ii) Note that for all a € G, a = eae™!. Thus, for all a € G, a is a conjugate
of a. Hence, p is reflexive. For symmetry, let (a,b) € p. Then there exists
¢ € G such that & = cac™!. This implies that @ = ¢ 'bc and so (b,a) € p.
Hence, p is symmetric. To show that p is transitive, let {a,d), (b,¢) € p. Then
there exist u,v € G such that b = uau~! and ¢ = vbv~!. This implies that
¢ = (vu)a{vu)~! and so (a,c¢) € p. Thus, p is transitive. Consequently, p is an
equivalence relation.

(iii) Let @ € G. Let H denote the set of all distinct left cosets of C(a) in G.
Then |H| = [G : C(a)]. Now bab~* € Cj(a) for all b € G. Define f : H — C{a)
by f(bC(a)) = bab~!. Let b,c € G. Now bC(a) = ¢C(a) if and only if ¢c71b €
C{a), which in turn is equivalent to (¢™1b)a = a(c™1b). Now (c™1b)a = a(c™'d)
if and only if bab~! = cac™!. Therefore, f is a one-one function. From the
definition of f, it follows that f maps H onto Ci{e). Hence, f is a one-one
function of H onto Cj(a). Consequently, |Ci(e)| = |H| =[G : C(a)]. M

Corollary 7.1.3 Let G be a finite group. Then

Gl =)_[G: C(a)],

where the summation is over a complete set of distinct conjugacy class repre-
sentatives.

Proof. By Theorem 7.1.2(ii), G = U,C;(a), where the union runs over a
complete set of distinct conjugacy class representatives. The corollary follows
since the distinct conjugacy classes are mutually disjoint and |Ci{e)] = [G :
C(a)] for all a € G by Theorem 7.1.2(iii). R
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Corollary 7.1.4 Let G be a finite group. Then

Gl =12(G)|+ }_ [G:Cla)], (7.1)
aéZ(G)

where Z(G) denotes the center of G and the summation runs over a complete

set (possibly empty) of distinct conjugacy class representatives, which do not
belong to Z(G).

Proof. First observe that @ € Z(G) if and only if C(a) = G if and only if
[G : C(a)] = 1. By Corollary 7.1.3

Gl =[G : Cla)),

a

where the summation is over a complete set of distinct conjugacy class repre-
sentatives. This implies that

IGil= Y [G:Cl)+ Y. [G:C(a).

0€Z(G) a¢ Z(G)

Since a € Z(G) if and only if [G : C(a)] = 1, it follows that 3} ,cz()IG :
C(a)] =1Z(G)| . Hence,

Gl =12(G)|+ ) [G:Cla)],
e Z(G)

where the summation runs over a complete set (possibly empty) of distinct
conjugacy class representatives which do not belong to Z(G). B

Eq. (7.1) in Corollary 7.1.4 is called the (conjugacy) class equation.

Example 7.1.5 Consider S3. By Worked-Out Exercise 1 (page 94), it follows
that S3 has three conjugacy classes, namely,

((1335))
((31)(513)) o
(Gra)(rza)(iz)

The class equation reads

1S3t = 12(G)] + [5'3:0((
6 = 1 +
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Example 7.1.6 Consider the group of symmetries of the square. The distinct
congugacy classes are {rigo}, {rseo}, {roo. 270}, {d1,ds}, {h,v}. The class equa-
tion reads

Gl = [2(G)] + [G:C(ren)] + [G:C(d1)] + [G:C(h)]
8 = (1+1) + 2 + 2 + 2.

Until now our discussion focused on the conjugacy class of an element of a
group. We now extend our discussion to the conjugate subgroup of a group.
We will be mainly interested in determining the number of distinct conjugates
of a subgroup induced by the elements of another subgroup. We begin with
the following theorem.

Theorem 7.1.7 Let H be a subgroup of a group G and a € G. Then aHa™*
i5 a subgroup of G, called a conjugate of H. Furthermore, H ~ aHa 1.

Proof. By Worked-Out Exercise 1(i) (page 106), aHa™! is a subgroup of G.
Now define f : H — aHa™! by f(h) = aha™! for all h € H. As in Worked-Out
Exercise 1(ii) (page 106), f is a one-one function from H onto aHa!. To show
that f is a homomorphism, let h1, ko € H. Then f(hihs) = alhihs)a™! =
(ahia=Y)(ahaa™t) = f(hy)f(h2). Hence, H ~aHa 1. &

Definition 7.1.8 Let H be a subgroup of a group G anda € G. IfaHa ! = H,
then H is called tnvariant under a.

Definition 7.1.9 Let H and K be subgroups of a group G. Let N (H) denote
the set

Ng(H)={ke€ K | kHk™ = H}.
Nk (H) s called the normalizer of H in K.

It follows that Ng(H) = Nag(H)N K.

Theorem 7.1.10 Let H and K be subgroups of a group G. Then Ng(H) is a
subgroup of K.

Proof. Sincee € K and eHe ! = H, e € Ng(H) and so Ng(H) # ¢. Let
ki, ky € Ng(H). Then kiHk[* = H = kyHk;'. Now H = ko Hk;! implies
that H = k; ! Hky. Thus,

H = kHk!
ki(ky ' Hko)k]!
(kikg ') H (kiky ')
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Hence, k1k; ' € N (H). Thus, Ng(H) is a subgroup of G. B

When K = G, we write N(H) for Ng(H) and refer to the subgroup N(H)
simply as the normalizer of H. By Exercise 11 (page 137), N{H) is the largest -
subgroup of G in which H is normal. Of course N(H) = G when H is a normal
subgroup of G or when G is commutative.

Example 7.1.11 Consider the symmetric group Ss. In Ezample 4.3.2, the sub-

group
- 1 23 1 2 3
w-{(125)(153))
is not a normal subgroup of S3. We note that N(H') = H'.

Theorem 7.1.12 Let H and K be subgroups of a group G. The number of
distinct congugates of H induced by the elements of K is equal to [K : Ni(H)),
the indez of Ng(H) in K.

Proof. Let T be the set of distinct conjugates of H induced by the elements
of K,ie, T = {kHk™ | k € K} and let S be the set of distinct left cosets
of Ny(H) in K, ie., § = {aNg(H) | ¢ € K}. To show that the number of
distinct conjugates of H induced by the elements of K is equal to [K : N (H)],
the index of Ng(H) in K, we need to show that there exists a one-one function
of 7 onto &.

Define f : 7 — S by f(aHa™!) = aNg(H) for all aHa™! € 7. Let ki,
ke € K. Then k1 Hk; ' = ko Hk, ! if and only if H = (k ko) H(k{ ko)~ L. Now
H = (k7'ko)H (k7 ko)™t if and only if k7 'ke € Nx(H) and the latter is true
if and only if ky N (H) = ko Nk (H). Thus, we have shown that f is a one-one
function. From the definition of f, it is immediate that f is onto S. Hence, the
number of distinct conjugate subgroups of H by the elements of K is equal to
the number of distinct cosets of Ng(H) in K. R

Corollary 7.1.13 Let H and K be finite subgroups of a group G. If H is
invariant under n elements of K, then H has |K| /n conjugates by elements of

K.

Proof. By hypothesis, |Nx(H)| = n. Hence, |K| = [K : Ng(H)| - |Ng (H)|
by Lagrange’s theorem. The corollary is now immediate by Theorem 7.1.12. W

7.1.1 Worked-Out Exercises

¢ Exercise 1 Let GG be a finite group and a € G be such that a has only two
conjugates. Prove that C(a) is a normal subgroup of G.
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Solution: By Theorem 7.1.2, [G : C(a)] = |Ci(a)]. Now |Ci(a)| = 2.
Hence, [G : C(e)] = 2, proving that C{a) is a normal subgroup of G.

{ Exercise 2 Let G be a finite group that has only two conjugate classes.
Show that |G| = 2.

Solution: Let |G| = n. Let @ € G and a # e. Then G = Ci(e) U Ci{a).
Since |Ci(e)| = 1, |Ci(a)] = n — 1. Hence, n — 1 = |Cj(a)] = [G : C(a)] divides
|G| = n. This is possible only if n = 2.

Exercise 3 Prove that there exists no finite nontrivial group every nonidentity
element of which commutes with exactly half the elements of the group.

Solution: Let G be a group of order n > 1 such that every nonidentity
element of G commutes with exactly half the elements of G. Let a € G and
a # e. Then |C(a)] = n/2. Hence, |Ci(a)| = |G : C(a)] = 2. Now |G| =
|Ci(e)|+ X aze |Ci{a)], where the summation runs over a complete set of distinct
conjugacy class representatives. Since |Ci{(e}| = 1 and |Ci{a)| = 2 for all

e # a € G, we find that |G| is odd. But [C(a)| = § = %l shows that |G| is
even. This contradiction shows that there cannot exist any group of this type.

7.1.2 Exercises

1. Let G be a group and a € G. Prove that a € Z(G) if and only if Cj(a) =

{a}. |

2. Let G be a finite group. Prove that if there exists an element a € G with
exactly two conjugates, then G contains a nontrivial normal subgroup.

3. Prove that a subgroup H of a group G is a normal subgroup if and only
if H is the union of conjugacy classes of G.

4. Let G be a group, H a subgroup of G, and a € G. Prove that N(aHa™?!) =
aN(H)a 1.

5. Let H and K be subgroups of a group G. Prove that H is normal in K
if and only if H C K C Ng(H).

6. Let G be a group and H and K be subgroups of G. Prove that if H and
K are conjugates, then Ng(H) and Ng(K) are conjugates.

7. Find the class equation for Ss.
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7.2 Cauchy’s Theorem and p-groups

In this section, we prove an important theorem which gives a partial converse of
Lagrange’s theorem. This interesting theorem is due to Cauchy. First we will
prove this theorem for finite Abelian groups and then with the help of the class
equation extend it to any finite group. The proof of Cauchy’s theorem given in
this book is intended to show the reader the use of the ideas of quotient groups
and the class equation. With the help of Cauchy’s theorem, we also prove that
the converse of Lagrange’s theorem holds for finite Abelian groups.

Lemma 7.2.1 If G is a finite commutative group of order n such that n is di-
vistble by a prime p, then G contains an element of order p (whence a subgroup
of order p).

Proof. The proof is by induction on the order of G. If |G| = p, a prime, then
every element of G, other than the identity, has order p. Thus, in particular,
the lemma is true when |G| = 2. Now make the induction hypothesis that the
lemma is true for all groups of order r, where 2 < r < n. Suppose G is a group
of order n. Let a € G with a # e and let m denote the order of a. Then either
p|lm or pfm. If plm, then m = pk for some positive integer k. In this case,
(a¥)P = a™ = e, from which it follows that a* # e and a* is an element of order
p. Now suppose p fm. Since G is commutative, the cyclic subgroup H = {a} of
G is of course a normal subgroup of G. Now |G| = m - [G : H]. Since p does
not divide m, we have p|[G : H|. Hence, p divides |G/H|. Since |G/H| < n,
we have by the induction hypothesis that there exists bH € G/H such that
o(bH) = p. Now bPH = (bH)? = H. Hence, b? € H. Thus, (™)P = (P)™ =,
so that either ™ = e or ™ has order p. But b™ # e else (bH)™ = H yielding
p|m, a contradiction. Thus, ¥™ has order p and so b™ is the desired element of

G.n

Theorem 7.2.2 (Cauchy) Let G be a finite group of order n such that n is
divisible by a prime p. Then G contains an element of order p and hence a
subgroup of order p.

Proof.  The proof is by induction on n. If n = 2, then G is commutative
and the result follows by Lemma 7.2.1. Make the induction hypothesis that
the result is true for all groups of order m such that 2 < m <« n. Consider the
class equation
Gl =12(G)|+ ) [G:C(a)]
a¢Z(G)

for G. If G = Z(G), then G is commutative and the result follows by Lemma,
7.2.1. If G # Z(G), then there exists ¢ € G such that a ¢ Z(G). For such an
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element a, G # C(a) and so [G : C(a)] > 1, whence by Lagrange’s theorem
G| =[G : Cla)] - |Cla)] > |Ca)].

If p divides |C(a)|, then by the induction hypothesis, C(a) and thus G has
an element of order p. If p does not divide |C{a)| for all a ¢ Z(G), then p must
divide [G : C{a)] for all a ¢ Z(G). But in the class equation, p divides each term
of the summation and also divides |G|. Thus, p divides |Z(G)|. Since Z(G) is
cotnmutative, we have again by Lemma 7.2.1 that there exists a € Z(G) and
hence a € G of order p. R

Next, we apply Cauchy’s theorem to prove that the converse of Lagrange's
theorem holds for finite commutative groups.

Theorem 7.2.3 Let G be a finite commutative group of order n. If m is a
positive integer such that m|n, then G has a subgroup of order m.

Proof. Ifm =1, then {e} is the required subgroup of order m. If n = 1,
then m = n = 1 and the result follows easily. We now assume that m > 1,
n > 1 and prove the result by induction on n. If n = 2, then m = 2 = n and
G is the required subgroup of order m. Suppose the theorem is true for all
finite commutative groups of order k such that 2 < k < n. Let p be a prime
integer such that plm. Then there exists an integer m; such that m = pm4. By
Cauchy’s theorem, G has a subgroup H of order p. Since G is commutative, H
is normal and hence G/H is a group. Now

1G]

1<I6/H| = {7

< |G|

and |G/H| = 2. Now n = mma for some positive integer mo. Thus, |G/H| =
U = mlmg shows that mi divides |G/H|. Hence, from the induction hy-

pothe31s G/H has a subgroup K/H such that [K/H| = m;, where K is a

subgroup of G. Now |K| = |K/H||H| = m1p = m. Hence, K is a subgroup of

G of order m. B

We now apply Cauchy’s theorem to obtain some interesting properties of
p-groups.

Definition 7.2.4 Let p be a prime. A group G is said to be a p-group if the
order of each element of G is a power of p. A subgroup H of a group GG 1s called
a p-subgroup if H is a p-group.

Example 7.2.5 The group of symmetries of a square and the Klein 4-group
are p-groups, where p = 2. In fact, any group of order p" (p a prime) is a
p-group since the order of each element must divide the order of the group.
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The following theorem. gives a necessary and sufficient condition for a finite
group to be a p-group.

Theorem 7.2.6 Let G be a nontrivial group. Then G is a finite p-group if
and only if |G| = p* for some positive integer k.

Proof. Suppose G is a finite p-group. If g divides |G| for some prime ¢ # p,
then by Cauchy’s theorem G has an element of order ¢, contradicting the fact
that G is a p-group. Thus, p is the only prime divisor of |G|. Hence, |G| = p*
for some positive integer k. Conversely, suppose |G| = p*. Then by Lagrange’s
theorem, the order of each element of GG is a power of p. B

In the next theorem, we prove that the center of a p-group is nontrivial.

Theorem 7.2.7 If G is a finite p-group with |G| > 1, then Z(G), the center
of G, has more than one element, i.e., if |G| = p* with k > 1, then |Z(G)| > 1.

Proof. Consider the class equation

Gl =1Z2(G)+ )  [G:C(a)l.
eg Z(G)

If G = Z(G), then the theorem is immediate. Suppose G D Z(G) and
consider a € G such that a ¢ Z(G). Then C(a) is a proper subgroup of G so
that by Theorem 7.2.6 and by the fact that C(a) is a subgroup of a p-group,
pl[G : C(a)] for all @ ¢ Z(G). This implies that p divides 3 ¢ 5 [G : C(a)]-
Since p also divides |G|, p divides |Z(G)|. Hence, |Z(G)| > 1. R

Corollary 7.2.8 Let G be a group of order p?, where p is a prime. Then G is
commutative. '

Proof. By Theorem 7.2.7, |Z(G)| > 1. By Lagrange’s theorem, |Z(G)|
divides p?. Hence, |Z(G)| = p or p?. Suppose |Z(G)| = p. Then Z(G) # G
and so there exists a € G such that e ¢ Z(G). Now C(a) is a subgroup of
G and a € C(a). Hence, Z(G) C C{a). This implies that |C(a)| = p? and so
G = C(a). However, this shows that a € Z(G), a contradiction. Therefore,
|Z(G)| = p? and so G = Z(G). Thus, G is commutative. B

7.2.1 Worked-Out Exercises

{ Exercise 1 Show that every group of order pq, where p and ¢ are primes,
is not simple.
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Solution: If p = g, then G is a group of order p?. Hence, G is commutative.
Also, Cauchy’s theorem implies that G has a subgroup of order p, which must
be normal. Therefore, G is not simple. Suppose now p # gq. We may assume
that p > ¢. By Exercise 8 (page 200), G has a normal subgroup of order p.
Thus, G is not simple.

Exercise 2 Let H and K be subgroups of a commutative group G. Suppose
|H| = m and |K| = n. Let d = lem(m,n). Show that G has a subgroup
of order d.

Solution: Since G is commutative, HK is a subgroup of GG, and since
H and K are finite, HK is finite. Now H and K are subgroups of HK.
Hence, m||HK| and n| |HK|. This implies that d| |HK|. Since HK is a finite
commutative group and d| |H K|, HK has a subgroup of order d and so G has
a subgroup of order d.

{ Exercise 3 Let G be a noncommutative group of order p3, p a prime. Prove
that |Z(G)| = p.

Solution: Write Z = Z(G). Since |G| = p?, |Z| > 1 by Theorem 7.2.7.
Thus, |Z| = p, p? or p°. If |Z| = p%, then G = Z and so G is commutative,
which is a contradiction. If |Z| = p?, then |G/Z| = p. Hence, G/Z is cyclic.
But then G is commutative, again a contradiction. Thus, |Z| = p.

Exercise 4 Let G be a finite commutative group. Prove that the number of -
solutions of 2z = e in G, where n > 0 and n divides |G|, is a multiple of
n.

Solution: Let H = {z |z € G, 2" = e}. Then H is a subgroup of G. Since
n divides |G| and G is commutative, there exists a subgroup K of G such that
|K| = n. Let @ € K. Then a™ = e. Hence, K C H. By Lagrange’s theorem, |K|
divides |H|. Thus, |H| = nm. Consequently, the number of solutions of z" = e
is a multiple of n.

¢ Exercise 5 Let G be a group of order p*, p a prime, and n € Z, n > 1.
o L group r,pap
Prove that any subgroup of G of order p»~! is normal in G.

Solution: We will prove the result by induction on n. If n = 1, then
G is a cyclic group of prime order and hence every subgroup of G is normal
in G. Thus, the result 1s -true if n = 1. Suppose the result is true for all
groups of order p™, where 1 < m < n. Let H be a subgroup of order p"~ 1,
Consider N{H). If H # N(H), then |[N(H)| > p"~!. Thus, |N(H)| = p" and
so N(H) = G. Hence, in this case H is normal in G. Suppose H = N(H).
Then Z(G), the center of G, is a subset of H and Z(G) # {e}. By Cauchy’s
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theorem and Theorem 7.2.7, there exists ¢ € Z(G) such that o(a) = p. Let
K = {(a). Then K is a normal subgroup of G of order p. Now |H/K| = p" 2
and |G/K| = p*~'. Thus, by the induction hypothesis, H/K is a normal
subgroup of G/K. Hence, H is a normal subgroup of G.

7.2.2 Exercises

1.

10.

11.

12.

13.

Show that every group of order 14 contains only one normal subgroup of
order 7.

How many elements of order 7 are there in a group of order 287
Show that a group of order 15 is commutative.

Let G be a group of order p®, where p is a prime and n is a positive
integer. Show that G contains a subgroup of order p*, 0 <7 < n.

Find all 2-subgroups and 3-subgroups of (Z12, +12).

. Find all 2-subgroups of A4.

. Show that every commutative group of order 36 contains an element of

order 6.

. Let G be a group of order pn, where p is a prime and p > n. Show that

G contains a normal subgroup of order p.

. Let G be a commutative group of order pq, where p and ¢ are distinct

primes. Show that (5 is cyclic. Is this result true when p = ¢?

For any prime p, prove that any group of order p? is either cyclic or a
direct product of cyclic groups.

Show that every group of order 28 with a unique subgroup of order 4 is
commutative.

Show that a group of order 81 contains a nontrivial normal subgroup with
more than three elements.

Let G be a group of order 99. Prove the following.

(i) G has a unique normal subgroup H of order 11.

(i) H C Z(G).

(iii)) G has an element of order 33.
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7.3 Sylow Theorems

M.L. Sylow did work of fundamental importance in determining the structure
of finite groups. We can use his results to answer the problem now posed.

If G is a finite group of order n and if H is a subgroup of G, then we know
by Lagrange’s theorem that the order of H divides n. In this section, we give
some answers to the question, “If m is a positive integer, which divides n, does
G contain a subgroup of order m?”

It is interesting to note that Sylow’s theorem was proved by Sylow for
permutation groups. George Frobenius established the theorem in the general
setting. He was influenced to do so by Cayley’s theorem.

Theorem 7.3.1 (Sylow’s First Theorem) Let G be a finite group of order
p'm, where p is a prime, T and m are posilive integers, and p and m are
relatively prime. Then G has a subgroup of order p* for allk, 0 < k < r.

Proof. First Proof of Sylow’s First Theorem: Let |G| = n = p"m.
We prove the result by induction on n. If n = 1, then » = 0 and {e} is the
required subgroup of order p". Suppose the result is true for all groups T of
order less than |G|. If » = 0, then {e} is the required subgroup of order p".
We now assume that » > 1. First suppose p divides |Z(G)|, where Z(G) is the
center of G. Since p divides |Z(G)|, there exists a € Z(G) such that o{a) = p
by Cauchy’s theorem. Let H = (a). Then H is a normal subgroup of G since
a € Z(G). Now |G/H| = p"~'m. Hence, by the induction hypothesis, G/H has
subgroups K;/H of order p? for all i = 0,2,...,r—1. Then {e}, H, K1, ..., Kr_1
are the subgroups of G of the required order.
Now suppose p [ |Z(G)|. Consider the class equation,

Gl =12(G)|+ >_ [G:Cla)),
ag Z(G)

where the summation runs over a complete set (possibly empty) of distinct
conjugacy class representatives which do not belong to Z(G). From the hy-
pothesis, p divides |G|. If p|[G : C(a)] for all ¢ ¢ Z((), then from the class
equation, it follows that p divides |Z(G)|, a contradiction to our assumption.
Hence, there exists a ¢ Z(G) such that p does not divide [G : C(a)]. Now

G| =[G : Cla)] - |C(a)]-

This implies that p” divides |C(a)|. Since a € C(a), |C(a)} > 1. Also, C(a)
# G since a ¢ Z(G). Hence, |C{a)| < |G|. Thus, by the induction hypothesis,
C(a) has a subgroup of order p* for all 4, 0 < ¢ < r. Hence, G has a subgroup
of order p* forall 4,0 < i <~ M
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Second Proof of Sylow’s First Theorem: If r = 0, then {e} is the
required subgroup of order p". Suppose r > 1. Since p] |G|, G has a subgroup
of order p by Cauchy’s theorem. We now show that if G has a subgroup
of order p*, then G has a subgroup order p**!, where 1 < i < r. Suppose
G has a subgroup H of order p*, 1 < ¢ < r. Then H is a proper subgroup
of G. By Worked-Out Exercise 3 (page 176), [N(H) : H] =, [G : H] and
H # N(H). Since p|[G : H], it follows that p|[N(H) : H|, i.e., p| |[N(H)/H]|.
Thus, N(H)/H has a subgroup K/H of order p by Cauchy’s theorem. Now
|K| = |K/H||H| = pp* = p**1. Therefore, K is a subgroup of G of order p**!.
The result now follows by induction. I

The following corollary is immediate from Theorem 7.3.1

Corollary 7.3.2 Let G be a finite group and p o prime. If p* divides |G|,
then G has a subgroup of order p".

Definition 7.3.3 Let G be a finite group and p a prime. A subgroup P of G
is called a Sylow p-subgroup of G, if P is a p-subgroup and is not properly

contained in any other p-subgroup of G, i.e., P is a maximal p-subgroup of G.

Example 7.3.4 The symmetric group S3 has three Sylow 2-subgroups, namely

S(GHIGH)
S(HIEH]

and

1 2 3 1 2 3
HS—{(I 2 3)’(1 3 2)}
Thus, a Sylow p-subgroup of a given group need not be unique.

The following theorem shows the existence of Sylow p-subgroups in a finite
group.

Theorem 7.3.5 For each prime p, a finite group G has a Sylow p-subgroup.

Proof. If |G| =1 or p does not divide |G|, then {e} is the required Sylow
p-subgroup of G. If p divides |G|, then by Cauchy’s theorem, there is at le:st
one subgroup H of G of order p. Since G is finite, there are a finite number
of subgroups of &G, which contain H. Hence, one of these subgroups is a Sylow
p-subgroup of G. B
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From Sylow’s first theorem, every group of order p"m (p a prime, ged(p, m) =
1) contains a subgroup of order p”. We now show that every subgroup of order
p" is a Sylow p-subgroup in G and every Sylow p-subgroup of G is of order p”.

Theorem 7.3.6 Let G be a finite group of order p"m, where p is a prime, r
and m are positive integers, and p and m are relatively prime.

(1) Let H be a subgroup of G of order p*, 1 < i < r. Then there exists a
subgroup K of G such that |K| = p"*! and H is a normal subgroup of K.

(i3) Let H be a subgroup of G. Then H is a Sylow p-subgroup of G if and
only if |H| =p".

Proof. (i) By Worked-Out Exercise 3 (page 176), [N(H) : H) =, [G : H].
Since p|[G : H], p|IN(H)/H|. Thus, N(H)/H has a subgroup K/H of order
p by Cauchy’s theorem. Now |K| = |H||K/H| = p**'. Since H is normal in
N(H)and K C N(H), H is normalin K. Hence, K is the desired subgroup of
G.

(ii) Suppose H is a Sylow p-subgroup. Then H is a p-subgroup of G and
so |H| = p* for some positive integer k. Suppose k # r. By (i), there exists a
subgroup K of G such that H C K and |K| = p**'. This implies that H is not
a maximal p-subgroup of G, a contradiction. Thus, k& = r. Conversely, suppose
that |H| = p”. Since |G| = p"m and p and m are relatively prime, it follows
that H 1s a maximal p-subgroup of G. Hence, H is a Sylow p-subgroup of G. R

Theorem 7.3.7 Let G be a finite group of order p"m, where p is a prime,
r and m are positive integers, and p and m are relatively prime, and P be a
subgroup of G.

(1) If P is a p-group, then any conjugate of P is a p-group.

(i2) If P is a Sylow p-subgroup, then any conjugate of P is a Sylow p-
subgroup.

(1ii) If P is the only Sylow p-subgroup of G, then P is a normal subgroup
of G.

Proof. (i) Since |P| = |aPa~!| and aPa™! is a subgroup of G, the desired
result follows from Theorem 7.2.6.

(i) Let P bé a Sylow p-subgroup. Then |P} = p". This implies that
|aPa=!| = p" and so by Theorem 7.3.6(ii), aPa~"! is a Sylow p-subgroup.

(iii) Let a € G. Then aPa™! is a Sylow p-subgroup of G by (ii). Since P is
the only Sylow p-subgroup of G, aPa~! = P. Hence, P is a normal subgroup
of G.

Lemma 7.3.8 Let H be a normal subgroup of a group G. If H and G/H are
both p-groups, then GG is a p-group.
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Proof. Leta € G. Then aH € G/H and so aH has order some power of p,
say, p*. Thus, (aH )1",c = H and so a?" € H. Now every element of H has order
a power of p. Let us say a?" has order p™. Thus, (c:-}’k)pﬂ'l =eor o =e.
This implies that o(a) has order some power of p. Since a was arbitrary in G,
G is a p-group. A

Lemma 7.3.9 Let G be a ﬁnit‘e group. Let P be a Sylow p-subgroup of G and
a € G be such that the order of a is a power of p. If aPa™! = P, then a € P.

Proof.  Since aPa™! = P, a ¢ N(P). Now N(P) 2 P, so if we show that
no element of N(P)\P has order a power of p, then a € P. Suppose there
exists b € N(P)\ P such that the order of b is a power of p. Now P is a normal
subgroup of N(P) so that we may consider the quotient group N(P)/P and
the coset bP. The order of bP as an element of N(P)/P divides the order of b.
Hence, bP has order a power of p in N(P}/P. Thus, the cyclic subgroup (bP)
of N((P)/P has order a power of p and thus is a p-group. By Corollary 5.2.12,
there is a subgroup K of N(P) such that X O P and K/P = {(bP). Since
b¢ P, K O P. By Lemma 7.3.8, K is a p-group since both P and (bP) are
p-groups. However, this contradicts the fact that P is a maximal p-subgroup
of G. Hence, no element of N{P)\P can have order a power of p.

We now prove two more theorems due to Sylow.

Theorem 7.3.10 (Sylow’s Second Theorem) Let G be a finite group of
order p"m, where p is a prime, r and m are positive inlegers, and p and m
are relatively prime. Then any two Sylow p-subgroups of G are conjugate, and
therefore isomorphic.

Proof. First Proof of Sylow’s Second Theorem: By Theorem 7.3.5,
G has a Sylow p-subgroup, say, P. Let S be the set of all conjugates of P. We
'show that S contains all Sylow p-subgroups. Let H be a Sylow p-subgroup
of G such that H ¢ § and let Q € §. Now @ is a Sylow p-subgroup of G
and |Q| = p”. Since Q # H, it follows that @ € H. Thus, there exists h € H
such that A ¢ Q. Now o(h) = p* for some positive integer k. By Lemma 7.3.9,
hQh~! # Q. Thus, the number of conjugates of @ induced by the elements
of H is more than 1. Hence, by Theorem 7.1.12, [H : Ng(Q)] > 1. Now
P = |H|=[H : Ng(Q)]|Ng(Q)| and so [H : Ng(Q)] is a positive multiple of
* Let us now define a relation pon S by p = {(A,B) e xS | A = hBh™}
for some h € H}. Then p is an equivalence relation on & and for all A € S, the
equivalence class, [A], consists of all conjugates of A induced by the elements
of H. Thus, as shown before, |[A]| is a nonnegative multiple of p. Since S is
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a disjoint union of such equivalence classes, it follows that |S| is a positive
multiple of p and so p||S|. By Theorem 7.1.12, |§| = [G : N{P)]. Thus,

m =[G :P]=[G: NP)[NP): P = |S|[N(P) : P).

From this, it follows that p|m, a contradiction. Hence, S is the set of all Sylow
p-subgroups of G. W

Second Proof of Sylow’s Second Theorem: Let H and K be Sylow p-
subgroups of G and S be the set of all left cosets of H in G. Ther |S| = [G : H].
Let K acton S by forall k€ K, aH € S,

k(aH) = (ka)H.

Then S is a K-set. Let S = {el{ € § | k(aH) = aH for all k£ € K}. By
Worked-Out Exercise 1 (page 176),

50| =p IS .

Since H is a Sylow p-subgroup of G, |S§| = [G : H] is not divisible by p. Thus,
|So| # 0. Let aH € Sy. Then k(aH) = oH for all k € K. From this, it follows
that a 'keH = H for all k € K and so a~'ka € H for all k € K. Therefore,
a~'Ka C H. Since |a~'Ka| = |K| = |H|, a™'Ka = H. Hence, H and K are
conjugate. W

The following corollary is an immediate consequence of Sylow’s second the-
OTer.

Corollary 7.3.11 Let G be a finite group and H be a Sylow p-subgroup of
G. Then H is a unique Sylow p-subgroup of G if and only if H is a normal
subgroup of G. W

Theorem 7.3.12 (Sylow’s Third Theorem) Let G be a finite group of or-
der p"m, where p is a prime, r and m are positive integers, and p and m are
relatively prime. Then the number n, of Sylow p-subgroups of G is 1+ kp for
some nonnegative integer k and ny|[p"m.

Proof. First Proof of Sylow’s Third Theorem: Let & be the set
of all Sylow p-subgroups of G and P € S§. Define a relation p on & by
p={(4,B) € §xS| A= aBa! for some a € P}. Then as in the first
proof of Sylow’s second theorem, p is an equivalence relation on & and for
all A € S, A # P, the number of elements in the equivalence class, [A], is a
multiple of p. Now [P] = {A € S | A= zPz™! for some r € P} = {P}. Thus,
|[P]| = 1. Consequently, |S| = 1 + kp for some nonnegative integer k. Now by
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Theorem 7.1.12, np, = |§| = [G : N(P)]. This implies that n, divides |G|. H

Second Proof of Sylow’s Third Theorem: Let & be the set of all Sylow
p-subgroups of G and P € §. Let P act on S by conjugation, i.e., for all a € P,
QeS,a-Q=aQa ' LletS={QeS|a-Q=Qforallac P} ={Q eS|
a@Qa~! = Q for all a € P}. By Worked-Out Exercise 1 (page 176),

51 =p |Sol -

Since P € 8y, Sg # ¢. Let Q@ € Sy. Then @ = aQa™?! for all a € P. Hence,
P C N(Q) and so P and @ are Sylow p-subgroups of N(Q) since P and @
are Sylow p-subgroups of G. Thus, by Sylow’s second theorem, a@a—* = P for
some a € N(Q). But then P = Q. Thus, So = {P} and so |Sp| = 1. Hence,
|S| =p 1 and so |S] = 1 + kp for some integer k.

Let G act on & by conjugation. By Sylow’s second theorem, any two Sylow
p-subgroups are conjugate. Therefore, there is only one orbit of & under G.
Let PS8 ThenGp={geG|g-P=P}={geG|gPg!=P}=N(P).
Thus, by Lemma 5.4.6,

|S| = number of elements in the orbit of P = [G : Gp].

But [G : Gp] divides
G divides |G|. 1

G|. Consequently, the number of Sylow p-subgroups of

7.3.1 Worked-Out Exercises

¢ Exercise 1 Show that every group of order 45 has a normal subgroup of
order 9.

Solution: Let G be a group of order 45 = 3% -5 and n3 denote the number
of Sylow 3-subgroups of G. Then n3 = 3k +1 for some integer k£ > 0 and n3|45.
If £ = 0, then n3 = 1, which divides 45. But for any k& > 1, n3 does not divide
45. Hence, G contains a unique Sylow 3-subgroup H of order 9. Consequently,
G has a normal subgroup of order 9.

¢ Exercise 2 Let G be a finite group of order p™gq, where p and g are relatively
prime, and P be a subgroup of order p™, where p is a prime. Show that
P is the only Sylow p-subgroup of order p™ lying in N(P).

Solution: Clearly |N(P)| = p™r for some r < ¢ and p and r are relatively
prime. Let P’ be any other Sylow p-subgroup of G such that P’ C N(P). Then
P and P’ are Sylow p-subgroups of N(P). Thus, there exists z € N(P) such
that P' = zPz 1. Since P is normal in N(P), P = 2Pz~!. Hence, P’ = P,
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¢ Exercise 3 Let G be a finite group and p a prime such that p divides |G| .

(i) Let K be a normal subgroup of G. Show that for any Sylow p-subgroup
P of G, PNK is a Sylow p-subgroup of K. Conversely, if B is any Sylow
p-subgroup of K, show that there exists a Sylow p-subgroup P of G such
that B=PNK.

(ii) Let H be a normal subgroup of G. If P is a Sylow p-subgroup of G,
show that PH/H is a Sylow p-subgroup of G/H. Conversely, show that
any Sylow p-subgroup of G/H is of the form PH/H, where P is a Sylow
p-subgroup of G.

‘Solution: (i) Let |G| = p™q, where p and ¢ are relatively prime. Let Pbea
Sylow p-subgroup of G. Then |P| = p™. Since |P N K| divides |P|,|PN K| = p*
for some ¢ < m. Hence, PN K is a p-group. Let |K| = p*t, where p and t are

_ IPIIK| _ pmp’t _
IPOK] —  p

pmpit = p™*t!, j = s — i > 1, which is impossible since|G| = p™¢ and PK is
a subgroup of G. Thus, s = ¢. Hence, |[PN K| = p°, i.e., PN K is a Sylow
p-subgroup of K. Conversely, let B be a Sylow p-subgroup of K. Let |K| =
where p and t are relatively prime. Then |B| = p*. Now PN K is a Sylow
p-subgroup of K for any Sylow p-subgroup P of G. Then there exists ¢ € K
such that B =a !(PNK)a=a"'Pana'Ka = QNK, where Q = a~!Pa.
Clearly @ is a Sylow p-subgroup of G.

(ii)) Let |G| = p™q, where p and ¢ are relatively prime. Let P be a Sylow
p-subgroup of G. Then |P| = p™. Let |H| = p°t, where p and ¢ are relatively
prime. Now P N H is a Sylow p-subgroup of H. Hence, |PNH| = p°. Now

PH Pl|H P
|PH/H| = ||H|| = |H|'||4‘F|'m£‘{| = ]}‘:’ﬂlHl = B = p™. Also, |G/H| = | =

P—‘I = p™~*r. Hence, PH/H is a Sylow p—subgroup of G/H. Conversely, let
B/ H be a Sylow p-subgroup of G/H. Now PH/H is a Sylow p-subgroup of
G/H for any Sylow p-subgroup P of G. Therefore, there exists aH € G/H
such that B/H = a *H(PH/H)aH. Now for all b € PH, o "'HbHaH € B/H,
and hence for all b € PH,a ba € B. Thus, a"'(PH)a C B. Let Q = a7 ! Pa.
Then Q is a Sylow p-subgroup of G. Also, a"'Ha = H since H is normal. Now

H = (a7'Pa)(a 'Ha) = e '(PH)e C B. Let c € B. Then cH € B/H =
o VH(PH/H)aH. Therefore, cH = a 'HbHaH = a~'baH for some b € PH.
Let b = uv for some v € P,v € H. Then a 'ba = a luva = (e 'ua)(a"lva)
€ (a”'Pa)H = QH. Now cH = a~'baH implies c~!(a"'ba) € H C QH.
Hence, c™! € QH or c € QH. Thus, B = QH.

relatively prime and s > ¢. Suppose s > 1. Now |PK|

¢ Exercise 4 Let H be a normal subgroup of a finite group G and p be a
prime dividing the order of G. If {G : H| and p are relatively prime, prove
that H contains all Sylow p-subgroups of G. Show by an example that
the result need not be true if H is not normal in G.
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Solution: Let |G| = p*m, where p and m are relatively prime. Let
|G/H| = |G : H] = q. Then it follows that glm. Thus, p* divides |H| since
|G| = q|H|. Hence, |H| = p*r, where p and r are relatively prime. Let P be
a Sylow p-subgroup of H. Then |P| = p*. Hence, P is a Sylow p-subgroup of
G. If @ is any other Sylow p-subgroup of G, then there exists £ € GG such that
Q=z"1Pz. Hence, Q = z~'Pzx C z7'Hz = H.

Consider G = S3 and let H = {e, (1 2)}. Then H is a subgroup of G, which
is not normal. Now [G : H] = 3, p = 2 divides |G|. But H does not contain all
Sylow 2-subgroups of G. The Sylow 2-subgroups of G are {e, (1 2)},{e, (1 3)},
and {e, (2 3)}.

{ Exercise 5 Show that a group of order 96 has a normal subgroup of order
16 or 32.

Solution: Let G be a group of order 96 = 25.3. Let ny denote the number of
Sylow 2-subgroups of G. Now no = 2k+1 for some integer k > 0 and no divides
96. Then ny = 1 or 3. If ng = 1, then G contains a unique Sylow 2-subgroup of
order 32. This subgroup of order 32 must be a normal subgroup by Theorem
7.3.7. Suppose ny = 3. Then & has three Sylow 2-subgroups A4, B, and C,
each of order 32. Let us now show that {AN B| = 16. Since A # B and |[AN B|
divides |A|, |ANB| =1,2,4,8, or 16. If |[AN B| <8, then |AB| = 4LZ] shows
that |AB| > LB?’Z = 128 > 96 = |G}, a contradiction. Hence, |A N B| = 16.
Since [A: ANB]=2and [B: ANB] =2, AN B is a normal subgroup of
A and B. Thus, A,B C N(A N B). Therefore, AB C N(A N B). This implies
that [IN(ANB)| > |AB| = f-ﬂ{% = 92492 — 64. Since N(AN B) is a subgroup
of G, it follows that |[N(AN B)| = 96. Thus, N(ANB)=G andso ANBisa
normal subgroup of G of order 16.

{ Exercise 6 If a group G of order 52 contains a normal subgroup of order
4, show that G is a commutative group.

Solution: Suppose G contains a normal subgroup H of order 4. Then H is
a commutative group. Now |G| = 13-4. Let n3 denote the number of Sylow 13-
subgroups of G. Then n13 = 13k+ 1 for some integer £ > 0 and n3 divides 52.
Thus, n13 = 1 and so G contains a unique Sylow 13-subgroup, say, A. Then A
is a normal subgroup of order 13 and ANH = {e}. Since |AH| = {%y\%ll' = 52, we
find that G = A X H. Since A and H are both commutative, G is commutative.

Exercise 7 Let G be a finite group. Suppose that every Sylow subgroup of G
is normal in G. Prove that (& is the internal direct product of its Sylow
subgroups.

Solution: Let |G| = pi'pg?---pr*, where p; are distinct primes. -Since
every Sylow p-subgroup of GG is normal, there exists a unique Sylow p-subgroup
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forp =p; (i =1,2,...,k). Let S(p;} be the Sylow p;-subgroup of G for all
i. Then S(p;) is a normal subgroup of G and S(p;) N S(p;) = {e} for all
i # j. Hence, a;a; = a;a; for all o; € S(p;) and a; € S(p;). Now consider,
S(pa) N (S (p1) - - S(Pi-1)S(pi+1) - - S(pe)). Suppose

a € S(p:) N {S(p1) -+ S(Pi-1)S(Piv1) - - S(pr))-
Then a € S(pz) and a € S(pl) <. S(p-_.;_l)S(le) ce S@k) Hence,
Q=0a1 - Q-1Qi41 - " - A,

where a; € S(p;). Now

Ti—1, T}l

o(a)lp'p2® - pi Iy Py PR
and o(a)|p}*. Consequently, o(e) =1, i.e., a = e. Thus,
S(p) N (Sp1) - S(pi-1)S(pitr) - S(px)) = {e}.
This implies that [S(p1) -+ - S(px)] = p1'p3? - - - p* = |G| and hence
G =5(p1)- - S(pe)-
Thus, G = S(p1) x S(p2) x -+ % S(py).

7.3.2 Exercises

1. Find the Sylow 3-subgroups of Sy.

2. Prove that if G is a group of order p™, p a prime, then G contains a
normal subgroup of order p* for every nonnegative integer ¢ < n.

3. Prove that a group G has only one proper subgroup if and only if G is a
cyclic group of order p? for some prime p.

4. Prove that for any group G, |G/Z(G)| # 91.

5. Let G be a finite group and P be a Sylow p-subgroup of G. Let H be a
subgroup of G such that Ng(P) C H. Prove that Ng(H) = H.

6. Let G be a finite group, P and H be subgroups of G such that P is a
normal subgroup of H, and H is a normal subgroup of G. Show that if
P is a Sylow p-subgroup of G, then P is a normal subgroup of G.

7. Let G be a group of order 143. Show that Sylow 11l-subgroup of G is
unique. Also, show that G is cyclic.
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8. Let GG be a finite group, H be a normal subgroup of G, and P be a Sylow
p-subgroup of H. Show that G = HNg(P).

9. Let G be a finite commutative group. Show that G is the internal direct
product of its Sylow subgroups.

10. Let G be a finite group and K be a normal subgroup of G. If K is a
p-subgroup, prove that K is contained in every Sylow p-subgroup of G.

11. Let G be a finite group and suppose |G| = p*n, where p is a prime and p
and 7 are relatively prime. Prove that every p-subgroup of & is contained
in some Sylow p-subgroup of G.

12. Let G be a group such that |G| = p™, where p is a prime. Let H be a
proper subgroup of G. Prove that there exists a € GG, a ¢ H such that
aHa ' = H.

7.4 Some Applications of the Sylow Theorems

We recall that a group G # {e} is called simple if it has no nontrivial normal
subgroups. If G is commutative, then it follows from Lagrange’s theorem that
(G is simple if and only if G is of prime order. In Galois’s mathematical legacy
to us, he wrote in a letter to a friend on the eve of his death stating that the
alternating group Ajs is the smallest noncommutative simple group. William
Burnside conjectured in 1911 that no noncommutative simple group of odd
order exists. The mathematicians John Thompson and Walter Feit proved in
1963 that Burnside’s conjecture was true. John Thompson received the Fields
Medal for his work on this and other problems.

In this section, we apply the Sylow theorems to determine some finite groups
which are not simple.

Example 7.4.1 Let G be a group of order 10. Now 10 = 5 - 2. Let ng denote
the number of Sylow 5-subgroups of G. From Sylow Theorem 7.3.12, ns = 5k+1
for some integer k > 0 and ns divides |G| = 10. Thus, ns = 1 and so there
ezists only one Sylow 5-subgroup, say, H in G. Since H is a unique Sylow
5-subgroup, H is a normal subgroup of G by Corollary 7.3.11, proving that G
18 not simple. Thus, no group of order 10 is simple.

Example 7.4.2 Let G be a group of order 9. Then G is a p-group, where
p = 3. From Theorem 7.2.7, we find that Z(G) # {e}. If G = Z(G), then G 1s
a commautative group. But commutative simple groups are precisely groups of
prime order. Hence, in this case G is not simple. Suppose Z(G) # G. Then
Z(G) is a nontrivial normal subgroup of G. Thus, we find that a group of order
9 i3 not a simple group.
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In Example 7.4.2, we showed that a group of order 9 = 3% is not simple.
In the next theorem, we prove that, in general, if G is a p-group of order p”,
n > 1, then GG is not simple.

Theorem 7.4.3 Let p be a prime integer and n > 1 be any integer. Then no
group of order p™ is stmple.

Proof. Let G be a group of order p™. Consider the center Z(G) of G.
From Theorem 7.2.7, it follows that Z(G) # {e}. If G = Z(G), then G is a
commutative group. If G is simple, then |G| is prime, which is a contradiction.
Thus, in this case G is not simple. Suppose Z(G) # G. Then Z(G) is a
nontrivial normal subgroup of G, proving that G is not a simple group. B

Theorem 7.4.4 Let p and ¢ be two prime integers. Then no group of order
pg is simple.

Proof. Let G be a group of order pq. If p = ¢, then |G| = p? and so by
Theorem 7.4.3, G is not simple. Suppose now p s q. Let p > q. Let n, denote
the number of Sylow p-subgroups of G. Then n, = pk + 1 for some integer
k > 0 and n, divides pg. Since ged(1 + kp, p) = 1, n, does not divide p. Hence,
np divides q. Thus, 1 + kp < q. But p > q. Therefore, 1 + kp < ¢ holds only if
k = 0. This implies that n, = 1 and so G contains a unique Sylow p-subgroup
of order p, which must be normal by Corollary 7.3.11. Hence, G is not simple. R

At this point let us recall the following result established in Worked-Out
Exercise 5 (page 177).

In a group G of order pn, where p is a prime and p > n, if H is a subgroup
of order p, then H is a normal subgroup. Now from Cauchy’s theorem, any
group of order pn, p prime, contains a subgroup of order p. Consequently, G
contains a normal subgroup of order p.

Let G be a group of order n < 60. Applying the above result, we find that
ifn=6(=3-2),10(=5-2),14(=7-2),15(=5-3),20(=5-4),21 (=7-3),
22(=11-2),26(=13-2),28(=7:4),33(=11-3),34(=17-2),35(=7-5),
38(=19-2),39(=13-3),42 (=7-6),44 (=11-4),46 (= 23-2), 51 (= 17-3),
52 (= 13-4), 55 (= 11-5), 57 (= 19-3), or 58 (=29 2), then G is not simple.

In Worked-Out Exercise 7 (page 178), we have established that any group
of order 2n, where n is an odd integer, contains a normal subgroup of order n.
Using this result, we find that no groups of order 6 (=2-3), 18 (=2-9), 50
(=2.25), 54 (= 2-27), are simple.

Next, let us recall the following result established in Corollary 5.4.10. Let
G be a finite group and H a proper subgroup of G of index n such that |G|
does not divide n! Then G contains a nontrivial normal subgroup.
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Now suppose G is a group of order 12 = 22 . 3. From Theorem 7.3.6, we
find that G contains a Sylow 2-subgroup H of order 4. Thus, the index of H is
3. Now |G| = 12 does not divide 3! Therefore, G contains a nontrivial normal
subgroup, proving that G is not simple. Proceeding this way with the help of
the above result, we can show that no group of order 24 (= 23.3), 36 (= 32 .4),
45 (=32 . 5), or 48 (= 2% - 3) is a simple group.

Example 7.4.5 In this example, we show that no group of order 40 is simple.
Let G be a group of order 40 = 5 - 8. Let ns denote the number of Sylow 5-
subgroups of G. By Sylow Theorem 7.3.12, ns = 5k + 1 for some integer k > 0
and ng divides 40. Hence, ng = 1. Thus, G has a unique Sylow 5-subgroup
which must be normal by Corollary 7.3.11. Hence, G is not simple.

Example 7.4.6 In this example, we show that no group of order 56 is simple.
Let G be a group of order 56 = 7 - 23. Let ny denote the number of Sylow
7-subgroups and no denote the number of Sylow 2-subgroups of G. By Sylow’s
third theorem (Theorem 7.3.12), n7 = Tm + 1 and ng = 2k + 1 for some
integers m, k > 0. Now n; divides 56. Thus, n; =1 or 8. Ifny =1, then G
has a unique Sylow 7-subgroup which must be normal. Hence, G is not simple.
Suppose ny7 = 8. Then G has eight Sylow T7-subgroups Ay, Aa,...,As. Now
|Ai| =7,i=1,2,...,8. Also, AiNA; = {e} fori# j and for alla # e, a € A;,
o(a) = 7. Thus, G contains 48 elements of order 7. Nowna =1 or7. Ifng =1,
then G has a unique Sylow 2-subgroup which must be normal. Hence, G is not
simple. Suppose no = 7. Then G has seven Sylow 2-subgroups By, Ba, ..., B7.
Each B; contains eight elements. Since By # By, |B1 N Ba| < 4. This implies
that By U By contains at least 12 elements, none of which is of order 7. Hence,
|G| > 48+12 = 60, a contradiction. Thus, we find that eitherny =1 orng =1,
showing that G has either a normal subgroup of order 7 or a normal subgroup
of order 8. Consequently, G is not simple.

In Worked-Out Exercise 1 (page 216), we show that a group of order 30
is not simple. By Theorem 7.4.3, no group of order 4 = 2% 8 = 23, 9 = 3%
16 = 24,25 = 52 27 = 33, 32 = 25, or 49 = 72 is simple. We now summarize
the above results.

Theorem 7.4.7 Let n be an integer such that 1 < n < 60 and n is not prime.
Then no group of order n is simple. B

Let us now concentrate our discussion on n = 60. Since 60 is not prime, no
commutative group of order 60 is simple. Now what is the answer if (¢ is a
noncommutative group of order 60? Recall that As is a simple group of order
60. Hence, we find that there exists a noncommutative simple group of order
60. Next, let us ask the following question. Is Ag the only (up to isomorphism)
noncommutative simple group of order 60?7 To answer this question, we first
prove the following result.
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Lemma 7.4.8 Let G be a simple group of order 60. Then G contains a sub-
group of order 12.

Proof. Suppose G has no subgroup of order 12. Now |G] =60 =53 - 22,
Let ng denote the number of Sylow 5-subgroups and ng denote the number
of Sylow 2-subgroups of G. By Sylow Theorem 7.3.12, ns = 5m + 1 for some
integer m > 0 and ns divides 60. Thus, ns = 1 or 6. Since G is simple,
ns # 1. Hence, ns = 6. Then G has six Sylow 5-subgroups A;, Ag, ..., Ag. Now
|[4:| =5,1i=1,2,...,6. Also, A; N A; = {e} for i # j and for all e # a € A,
o(a) = 5. Thus, G contains 24 elements of order 5. Now n2 = 1, 3, 5, or 15.
Since G is simple, ny # 1. Suppose no = 15. Let B;, 1 = 1, 2, ..., 15, be the
15 Sylow 2-subgroups of G. If B; N B; = {e} for 1 <i # j < 15, then U}2, B;
contains 46 elements of order not equal to 5. Hence, 60 = |G| > 24 + 46 = 70,
a contradiction. Therefore, there exist ¢,7 such that B; N B; # {e}. Then
|Bi N Bj} = 2. This implies that B; N B; is a normal subgroup of B; and B;.
Thus, B;, Bj - N(Bi N Bj) and so B.gBj - N(B,; M Bj). Hence, |N(Bi M Bj)| >
|B;B;| = 8. Since N(B; N Bj) is a subgroup of G and |N(B; N Bj)| > 8, it
follows that |N(B; N B;)| = 12, 20, 30, or 60. Now |N(B; N B;)| # 30 for then
N(B; N B;) is normal in G. Also, from our assumption, |N(B; N B;)| # 12. If
|N(B; N By)| = 20, then from Corollary 5.4.10, G contains a nontrivial normal
subgroup, which is.a contradiction. Hence, |N(B; N B;)| = 60, proving that
B; N B; is a normal subgroup of &, which is also a contradiction. Suppose
ny = 3 or 5. Let B be a Sylow 2-subgroup of G. Then 1+ 2k = ny = [G :
N(B)]. Thus, N(B) # B and so |N(B)| # 4. But 4 divides |N(B)| and |N(B)]
divides 60. Hence, |N(B)| = 12, 20, or 60. Proceeding as above, we again get a
contradiction. Consequently, G must contain a subgroup of order 12. B

Theorem 7.4.9 Any simple group of order 60 is tsomorphic to As.

Proof. Let G be a simple group of order 60. By Lemma 7.4.8, G contains
a subgroup H of order 12. Since [G : H] = 5, it follows that there exists a
nontrivial homomorphism f : G — S5 such that Ker f C H by Corollary 5.4.9.
Since G is simple, Ker f = {e}. Hence, G is isomorphic to a subgroup, say, T,
of S5. We show that T = As. This will follow if we can show that T does not
contain any odd permutation. Suppose T contains an odd permutation. Then
the set of all even permutations is a normal subgroup of T of index 2. This im-
plies that the group G|, which is isomorphic to T, contains a nontrivial normal
subgroup, a contradiction. Therefore, T' C As. But 60 = |G| = |T| = |A45].
Consequently, T' = As and so G ~ A;. R

From Theorem 7.4.9, it follows that As is the smallest noncommutative
simple group.
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The complete classification of simple groups was given in 1981. Hundreds of
mathematicians contributed to this outstanding accomplishment. Two major
contributors other than Thompson and Feit were M. Aschbacher and R.L.
Griess. Certain troublesome groups appeared in the classification of simple
groups. The largest of these sporadic groups was constructed by Griess. This
group, known as the monster, has order approximately 8 x 10%3. Other names
associated with the determination of simple groups are Emil Mathieu (1838-
1890), F.N. Cole (1861-1927}, G.A. Miller, Leonard Eugene Dickson (1874-
1954), Jean Dieudonné, Claud Chevalley, Richard Brauer, F.A. Fowler, Daniel
Gorenstein, and John H. Conway.

Let us now apply the Sylow theorems to classify some groups of small order.

Example 7.4.10 Let G be a group of order 15 = 5-3. By Sylow’s third theorem
(Theorem 7.3.12), G has a Sylow 5-subgroup A and a Sylow 3-subgroup B. It
is easy to check that A is a unique Sylow 5-subgroup and B is a unique Sylow
3-subgroup of G. Hence, A is a normal subgroup of order 5 and B is a normal
subgroup of order 3. Now AN B = {e}. Thus, |AB| = ||2||’|Wg|| = 15. Hence,
G = AB, AN B = {e}, and A and B are normal subgroups of G. Thus,

G=AXB ~125 x 23~ 275 since ged(3,5) = 1. Hence, G is a cyclic group.

In the next theorem, we classify all groups of order pg, where p and q are
distinct primes-

Theorem 7.4.11 Let G be a group and p, q be primes with p > ¢. If |G| = pq,
then G is either cyclic or generated by two elements a and b satisfying the
following properties: ¥ = e, a9 = e, and o~ ba = b, where p does not divide
(r — 1), but p|(r9 — 1). The second possibility can occur only +f gl(p — 1).

Proof. By Cauchy’s theorem, G contains an element b of order p. Set
P = (b). Since P is a Sylow p-subgroup of G, it has 1 + mp conjugates for
some nonnegative integer m. Now 1+mp = [G : N(P)|, which divides |G| = pg.
Since 1 + mp and p are relatively prime, (1 4+ mp)|q. However, ¢ < p so that
m = 0. Hence, P is a normal subgroup of G.

Now G contains an element a of order q. Set § = {a). Then § is a Sylow
g-subgroup of G. Hence, [G : N(S)] = 1 + kq for some nonnegative integer k.
As above, 1 + kq divides p. Thus, either k =0 or g|/(p —1). If k = 0, then S is
a normal subgroup of G so that G ~ P x §. That is, G ~ Z, X Zy ~ Z,,.

Suppose ¢|(p — 1). Then S is not a normal subgroup of G. However, since
P is a normal subgroup of G, a~!ba = b for some integer . We may assume
p f(r —1) else we return to the commutative case. By induction on j, it follows
that e 7ba’ = b™ . In particular, if § = g, we have b = b™* so that p|(v7 —1). &

Corollary 7.4.12 Let G be a group of order pg, p and q be primes with p > q.
If g does not divide p — 1, then G s cyclic. B
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In Chapter 5, we defined and studied Dy, the dihedral group of degree 4.
Let us now define the dihedral group D,, of degree n. > 3.

Definition 7.4.13 A group G is colled o dihedral group of degree n > 3 if
G is generated by two elements a, b such that

(i) o(a) =n, b* = e, and

(i) ba = a~1b.

We denote a dihedral group of degree n > 3 by D,.

Example 7.4.14 Consider the symmetric group Sn (n > 3). The subgroup G
generated by

a=(123 --- n),
- 1 2 3 2 n—1 n
i1l »n n-1 n+2—1 3 2
is an example of a dihedral group of degree n.

We leave the proof of the following theorem as an exercise.

Theorem 7.4.15 Let G be a dihedral group of degree n > 3. Then G has 2n
elements. B

Theorem 7.4.16 Let G be a group and p be an odd prime. If |G| = 2p, then
G is either cyclic or dihedral.

Proof. By Cauchy’s theorem, G contains an element a of order p and an
element b of order 2. Let H = {(a). Then H is a normal subgroup of G since
|G : H] = 2. Now bab = bab~! € H. Hence, there exists a° € H such that
bab = af, where 0 < i < p. Now a” = (ai)' = (bab)i = (bab~!)! = ba'b.
Again from bab = o*, we find that a = ba’h. Hence, a = ai’. This implies that
a* =1 = e. Since o(a) = p, it follows that p|(:* — 1). Therefore, p|(i — 1) or
pl(i + 1) since p is prime. Suppose p|(¢ — 1). Then i — 1 =0, i.e., i = 1. Thus,
bab = a, which implies ba = ab. So in this case, we find that G contains an
element of order 2p and so G is a cyclic group. If p|(z + 1), then bab = a™!.
Hence, G is generated by a,b such that o(a) = p, o(b) = 2, and ba = a~?b. In
this case, G is the dihedral group D,. R

Let us now classify groups of order n < 10.

Let G be a group of order n < 10. If n = 1, then G = {e} and thus is
cvclic. If n =2,3,5, or 7, then G is of prime order and hence cyclic. For n = 4,
we know that G is isomorphic to either Z4 or Zo X Zs. If n = 6, then G s
isomorphic to either Zg or §3 ~ D3. For n = §, if G is noncommutative, then
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G is isomorphic to either Dy or @g. If G is commutative, then in Chapter 9 we
will show that G is isomorphic to either Zg, Zg X Zo, or Zs X Zo X Zy.

Let us now consider the case n = 9. Then G has order 32. Since 3 is prime,
G is commutative. Let e # a € G. Then o(a) = 3 or 9. If o(a) = 9, then
G ~ Zy. Suppose G has no elements of order 9. Then o(a) = 3. Let H = {e, q,
a®}. Then H is a subgroup of G and |H| = 3. Let b € G be such that b ¢ H. Let
K = {e, b, b*}. Now H and K are normal subgroups of G, H N K = {e}, and
G = HK. Hence, G = H x K =~ Z3 x Z3. Thus, either G ~ Zg or G ~ Z3 x Z3.

Suppose now n = 10. Then from Theorem 7.4.16, it follows that either
G ~ Zyp or G =~ Ds. Hence, there are (up to isomorphism) two distinct groups
of order 10.

We summarize the above discussion in the following table:

Order of the group Number of Groups Groups
1 1 {e} =2

Zg,Z4 X Zo,Zo X Zoy X Zy, D4, Qs
Zg,Z3 x Z3
Z19, D5

W0 NG WD
DN UT N N
N
h
&

—
o

In the Worked-Out Exercises below, we illustrate several techniques that
can be effectively used to find the Sylow subgroups of a group.

7.4.1 Worked-Out Exercises
> Exercise 1 Let G be a group of order 30. Show that G is not simple.

Solution: Since |G} =30=2-3-5, G has a Sylow 2-subgroup, a Sylow 3-
subgroup, and a Sylow 5-subgroup. Consider Sylow 5-subgroups. The number
of Sylow 5-subgroups is 1+ 5k, where 14 5k|6. Thus, k =0 or 1. If £ = 0, then
G has only one Sylow 5-subgroup, and hence this unique Sylow 5-subgroup
must be normal in G. Therefore, in this case, G is not simple. Suppose k = 1.
Then G has six distinct Sylow 5-subgroups, say, Hy, Ho, ..., Hg. Now for 7 # j,
|H;NH;| = 1since H;NH; is a subgroup of H;. Thus, the six Sylow 5-subgroups
contain 24 distinct elements of order 5. Now consider Sylow 3-subgroups. The
number of Sylow 3-subgroups is 1+ 3k;, where 1+ 3k;|10. Thus, k; =0 or 3. If
k; = 0, then G has a unique Sylow 3-subgroup, which must be normal in G, and
hence, in this case, G is not simple. Suppose k; = 3. Then G has 10 distinct
Sylow 3-subgroups. As in the case of Sylow 5-subgroups, we conclude that if
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k1 = 3, then G has 20 distinct elements of order 3. Thus, |G| > 24 + 20 = 44,
a contradiction since G has only 30 elements. Hence, if k¥ = 1, then &; = 0.
Thus, G either has a Sylow 5-subgroup normal in G or a Sylow 3-subgroup
normal in G.

¢ Exercise 2 Let G be a group of order 36. Prove that G is not simple.

Solution: (We have already established that a group of order 36 is not
simple on page 212. Our objective here is to show some different techniques that
can be used in other cases.) Since |G] = 36 = 2%-3%, (7 has a Sylow 3-subgroup
of order 9. The number of Sylow 3-subgroups is 1+ 3k, where (1 + 3k)|4. Thus,
k=0or 1. If Kk = 0, then G has only one Sylow 3-subgroup which must be
normal in G. Suppose £k = 1. Then G has four distinct Sylow 3-subgroups,
say, Hy, He, H3, Hy. Consider H; and Hy. Now H) N Hy is a subgroup of Hy
(and also of Hy). Since |Hi| = 9 and the order of Hy N Hy divides the order
of Hy, |[HHNH| = 1,3, or 9. If |Hy N Hy| = 9, then H, = H,, which is a
contradiction. Suppose |H; N Hy| = 1. Then |H; Ho| || fa] 29 =81, ie,

— [HinHz
HiH; has 81 elements, which is a contradiction since G has only 36 elements.

Hence, |Hy N Hy| = 3. By Worked-Out Exercise 5 (page 199), H1 N H; is a
normal subgroup of Hy and Hy. Therefore, Hy, Ho C N(Hy N H»). As before,
Hy Hy has 27 elements since H; N Hy has three elements. Thus, N(H; N Ha)
has at least 27 elements. Since N(H; N Hs) is a subgroup of G, the order of
N(Hy N H») divides the order of G. Therefore, |N{H, N Hy)| = 36 and so
N(Hy; N Hy) = G. Hence, Hy N H» is a normal subgroup of G and so G is not
simple.

{$ Exercise 3 Let G be a group of order 231 =3-7-11.
(i) Show that a Sylow 11-subgroup of G is normal in G.
(ii) Show that a Sylow 7-subgroup of G is normal in G.
(iii) Show that G has a cyclic subgroup of order 77.

(iv) Let H be a Sylow 11-subgroup of G, K be a Sylow 7-subgroup of G,
and L be a Sylow 3-subgroup of . Show that G = HKL.

(v) Show that H C Z(G).

Solution: By Theorem 7.3.5, G has a Sylow 1ll-subgroup, a Sylow 7-
subgroup, and a Sylow 3-subgroup.

(i) The number of Sylow 11-subgroups is 1 + 11k, where (1 + 11k)|3 - 7.
Hence, & = 0 and so the number of Sylow 11-subgroups is 1. Let H be the
Sylow 11-subgroup of G. Since H is a unique Sylow 11-subgroup of G, H is
normal in G.
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(i1) The number of Sylow 7-subgroups is 1+ 7k, where (1+7k)|3-11. Hence,
k = 0 and so the number of Sylow 7-subgroups is 1. Let K be the Sylow 7-
subgroup of G. Since K is a unique Sylow 7-subgroup of G, K is normal in
G.

(iii) Since H and K are normal subgroups of G, HK is a normal subgroup
of G. Now HN K = {e}. Thus, |[HK| = 7-11 = 77. Since H and K are
subgroups of order 11 and 7, respectively, H and K are cyclic groups. Note
that ged(7,11) = 1. Hence, HK is a cyclic group of order 77.

(iv) Let L be a Sylow 3-subgroup of G. Then L N (HK) = {e} since non-
identity elements in L are of order 3 and nonidentity elements in HK are of
order 7,11, or 77. Now

_|HK|-|L| 173 .
|HKL|—|LH(HK)|_ — =231=|a].

Hence, G = HKL.

(v) Since H and K are normal subgroups of G and HNK = {e}, hk = kh
forall h € H, k € K. Now |G/K| = 3-11. Thus, G/K is a cyclic group and
hence G/K is commutative. Let a € L and & € H be nonidentity elements.
Then a,b ¢ K. Since G/K is commutative, (aK){(bK) = (bK)(aK) or (ab}K =
(ba)K. Hence, (ab)!(ba) € K and so b~la~'ba € K. Since H is a normal
subgroup of G and b € H, b~'a 'ba € H. This implies that b~ 'a lba € H N
K = {e}. Hence, b='a"'ba = ¢ and so ba = ab. Let x € G and h € H.
Now G = HKL and so £ = abc for some a € H, b € K, and ¢c € L. Now
xh = (abc)h = ab(ch) = ab(hc) = a(bh)c = a(hb)e = (ah)bec = (ha)bc = hz.
Therefore, h € Z(G). Hence, H C Z{G).

{ Exercise 4 Let G be a group of order 255. Show that G is cyclic.

Solution: Now |G| =255 =3.5-17. Let H be a Sylow 17-subgroup of G.
The number of Sylow 17-subgroups is 1+ 17m, where 1+ 17m/|15. Hence, m =0
and so G has a unique Sylow 17-subgroup. Thus, H is a normal subgroup of
G. Let K be a Sylow 5-subgroup of G and L be a Sylow 3-subgroup of G. The
number of Sylow 5-subgroups is 1 + 5k, where 1 + 5k|51. Hence, k = 0 or 10.
The number of Sylow 3-subgroups is 1 + 3/, where 1 4 3!|85. Therefore, [ =0
or 28. Suppose k£ = 10 and [ = 28. Then G has 51 Sylow 5-subgroups and 85
Sylow 3-subgroups. Hence, in this case G would have 51 - 4 = 204 elements of
order 5 and 85 -2 = 170 elements of order 3. This is absurd since G has only
255 elements. Thus, either k =0 or I = 0.

Case 1. £k = 0. Then K is the unique Sylow 5-subgroup of G and so K is
normal in G. Now H N K = {e}. Hence, zy = yz for all z € H and y € K.
Now |G/K| = 3-17. Since 3 does not divide (17 — 1), G/K is eyclic and hence
commutative. Let a € H and b € L. Since G/K is commutative, aba~ 17! € K.
Since H is normal and @ € H, aba~'6~! € H. Hence, aba~ 167! € HNK = {e}.
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Thus, ab = ba for all e € H and b € L. Clearly G = HK L. Since H is cyclic,
H is commutative. Therefore, we have (i) H is commutative, (ii) 2y = yz for
all z € H and y € K, and (iii) ab = ba for all a € H and b € L. This implies
that H C Z(G). Hence, |Z(G)| = 17, 51, 85, or 255 and so |G/Z(G)| = 15, 5,
3, or 1. In either case, G/Z(G) is cyclic and hence G is commutative. Thus, G
has a unique Sylow 3-subgroup. Since G = HK L and H, K, and L are normal
subgroups of G, G is a direct product of cyclic groups such that the order of
any two factors is relatively prime and hence G is cyclic.
Case 2. [ = 0. This case is similar to Case 1.

¢ Exercise 5 Let G be a group of order 455. Show that G is cyclic.

Solution: Now |G| =455 =5-7-13. Let H be a Sylow 13-subgroup of G.
The number of Sylow 13-subgroups is 1 + 13k, where 1+ 13%|35. Hence, £ = 0
and so G has a unique Sylow 13-subgroup. Thus, H is a normal subgroup of G.
Hence, N(H) = G. Now |Aut(H)| = 12. Since N(H)/C(H) ~ to a subgroup
of Aut(H), |[N(H)/C(H)| divides 12. Also, |N(H)/C(H)| divides 455. Hence,
IN(H)/C(H)| =1and so G = N(H) = C(H). Thus, H C Z(G). This implies
that |Z(G)| = 13, 65, 91, or 455. Hence, |G/Z(G)| = 35, 7, 5, or 1. In either
case, G/Z(G) is cyclic and hence G is commutative. It now follows that G has
a unique Sylow b-subgroup, say, K, and a unique Sylow 7-subgroup, say, L.
Clearly G = H x K x L. Since H, K, and L are cyclic groups of prime order
and their orders are relatively prime to each other, G is cyclic.

7.4.2 Exercises

1. Show that every group of order 20, 28, 36, 48, or 56 contains a nontrivial
normal subgroup.

Show that no group of order 125 is simple.

Show that no group of order 65 is simple.

Show that a group of order 130 contains a nontrivial normal subgroup.
Show that no group of order 75 is simple.

Show that a group of order 96, 150, or 200 is not simple.

N e o s

Let G be a group of order 35. Show that G is cyclic.

oo

Let G be a group of order 133. Show that G is cyclic.

9. Let G be a group of order 5-7-19.
(i) Show that G has a unique subgroup of order 5.
(i1} Show that G is cyclic.
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14.
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18.

19.

20.

21.
22.
23.

24.
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Let G be a group of order 100. Suppose that G has a unique Sylow
2-subgroup. Show that GG is commutative.

Let G be a group of order 70.

(1) Show that G has a unique Sylow 7-subgroup.
(ii) Show that & has a unique Sylow 5-subgroup.
(iii) Show that G has a cyclic subgroup of order 35.

Let G be a group of order 385. Show that a Sylow 7-subgroup of G is in
the center of G.

Let G be a group of order 5-11-19. Show that a Sylow 19-subgroup of G
is in the center of G and a Sylow 11-subgroup of G is a normal subgroup

of G.

Let G be a group of order 3-11-19. Show that a Sylow 11-subgroup of G

is in the center of G and a Sylow 19-subgroup of G is a normal subgroup
of G.

Let G be a simple group of order 168.

(i) Show that G has eight Sylow 7-subgroups.

(ii) Let H be a Sylow 7-subgroup. Show that |Ng(H)| = 21.
(ii1) Show that G has no subgroup of order 14.

Show that there exists (up to isomorphism) only one group of order 77.

Let G be a group of order 123. Show that for every positive divisor n of
123, there exists a unique subgroup of order n in G.

Determine up to isomorphism all groups of order 70.

Let G be a group of order p™m, p prime, p > m, n > 1. Show that G is
not simple.

Let G be a group of order p?q, p and q are distinct primes. Show that G
is not simple.

Classify all groups of order 14.
Prove that [, is a noncommutative group of order 2n.
Find Z(D,).

Find the conjugacy classes in Dy, and Da, 1.



7.4.

25.

26.

27.

28.
29.
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Let G be a group of order p?¢?, where p and g are prime integers such
that p > ¢. Prove the following.

(i) The number of Sylow p-groups cannot be g.
(ii) If the number of Sylow p-subgroups is ¢2, then p = 3 and ¢ = 2.

Show that no group of order p?q?, where p and ¢ are prime integers, is

-simple.

Show that Zg, Z4 X Zy,Zy X Z3 X Zy, and D4 are nonisomorphic groups
of order 8. Prove that Qg is not isomorphic to the above groups.

Show that Z1o, Zq x Zg, Z3 x S3, and A4 are nonisomorphic groups.

Write the proof if the statement is true; otherwise, give a counterexample.

(i) If a prime p divides the order of a group G, then G contains a normal
subgroup of order p.

(ii) Let G and H be groups of order 39 and 21, respectively. These two
groups are not isomorphic, but their Sylow 3-subgroups are isomorphic.

(iii) There exists only one (up to isomorphism) group of order 65.

(iv)} Every group of order 76 contains a unique element of order 19.
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Peter Ludvig Mejdell Sylow (1832
~1918) was born on December 12, 1832, in
Christiania (now Oslo), Norway. In 1850,
he graduated from the Christiania Cathe-
dral School. In 1853, he wori a mathematics
prize contest. In 1861, he traveled to Berlin
and Paris after being awarded a traveling
grant. He, jointly with Sophus Lie, prepared
a new edition of Abel’s work from 1873 to
1881. In 1902, he and Elling Holst published
Abel’s correspondence.

Sylow is best known for his work in fi-
nite group theory. In 1845, Cauchy proved
that every finite group has a subgroup of any
prime order dividing the order of the group.
In 1872, Sylow published a ten-page paper extending Cauchy’s result. The theorems
proved in that paper are known as Sylow’s theorems, which we discussed in Chapter
7. These theorems are fundamental for structural results in finite group theory. Sylow
died on September 7, 1918.




Chapter 8

Solvable and Nilpotent
Groups

8.1 Solvable Groups

The purpose of this chapter is to present the Jordan-Holder theorem and the
notion of solvable groups. The results chosen here lay groundwork for the
determination of the solvability “by radicals” of a polynomial equation f{x) =
0. In this regard, we show that the symmetric group 5,, on n symbols is not
solvable for n > 5.

Definition 8.1.1 Let G be a group and
G=Hy2H 2 Hy2---2 Hy={e}

be a chain of subgroups of G. The chain is called a subnormal series (chain)
if each H; is normal in H;_y. The chain is called a normal series (chain) if
each H; is normal in G. The chain is called o composition series if each H;
s a mazimal normal subgroup of H; 1, t.e., H; # H,_1, and if H; C HC H;_;
and H is normal in H;_y, then H = H;_1, 1 = 1,2,...,n. The number of
proper inclusions O in the chain is called the length of the chain. The groups
H;_1/H; are called the factors of the chain.

In Definition 8.1.1, if H;_; = H,, then the group H;_;/H; consists of a
single element and is called a trivial factor of the chain. Hence the length of
the chain is the number of nontrivial factors H; 1/ H; of the chain.

Every group G has a normal chain, namely, G 2 {e}, since {e} is a normal
subgroup of G. Furthermore, it can be shown by induction on |G| that every
finite group G has a composition series. The reader is asked to verify this in
the exercises.
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We see in a composition series G = Hy D Hy D Hy D --- D H, = {e}
for a group G that the factors H;_1/H; are simple groups. In some sense, the
examination of G has been reduced to its composition factors.

Example 8.1.2 Consider the symmetric group Ss. Set

ond

Now Sy = Hy D Hy D Hy D Hy = {e} is a subnormal chain which is not a
normal chain since Hy is not normal in S4 even though Hs is normal in Hy.

Example 8.1.3 Consider the group (Z12,+12). Since Zy2 is commutative, all
subgroups are normal. Hence, the following chains are normal:

Z12 D ([6]) 2 ([0]),

Zy2 D {[3]) > ([6]) > ([0}},
Zy2 D ([2]) > (4]} > (0],
Z12 D ([2]) D ([6]) D ([0)) .

All chains except Zq1a D {[6]) D {[0]) are composition series.

Definition 8.1.4 Let G be a group and
G=Hy2H D2Hy D -2 Hn 1D Hy={e} (8.1)

be a subnormal series in G. A one-step refinement of this series is any
series of the form

G=HyD2H 2 - -2H_12HDH;D..-D2H, ;2 H,={e},

where H is a normal subgroup of Hi—1 and H; is a normal subgroup of H,
i=12,...,n. A refinement of (8.1) is a subnormal series which is obtained
from (8.1) by a finite sequence of one-step refinements. A refinement

G=Ko 2K 2Ky 2 -2 Kpe1 2 K = {e} (8.2)

of (8.1) 4s called a proper refinement if there erists a subgroup K; in (8.2)
which is different from each H,; of (8.1).
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Thus, a chain of subgroups
G=Ky2KiDKy2 - 2Kp 12 Kn ={e}
of G is called a refinement of a chain of subgroups
G=Ho2H D2Hy;2---2H, 12 H,={e}

of G if
{Ho, H1,H, ..., H,} C{Kp,K1,Ko,...,Kmn}

and is called a proper refinement if
{Hy,Hi,Hs,...,Hy} C {Ko, K1,Ko,...,Kn}.
Example 8.1.5 (i) Consider the subnormal series
Z D6Z D127 D 48Z D {0}. (8.3)
The subnormal series
Z D27 D 6Z D127 D 48Z D {0} (8.4)
is a one-step refinement of (8.3). Again the subnormal series
Z D27 D 6Z D12Z D 24Z D 48Z D {0} (8.5)

is a one-step refinement of (8.4). From the definition, it follows that both (8.4)
and. (8.5) are proper refinements of (8.3).

(1) In Example 8.1.3, Z13 D {[3]) 2 ([6]) D ([0]) is a refinement of
Zy2 > ([6]) > {[o])
while Z12 O ([2]) D {[4]) D ([0]) is not.

Example 8.1.6 Consider the group (Z,+). Then Z does not have a compo-
sition series since every subgroup of Z is cyclic and every subgroup {n) of Z
contains an infinite chain, namely,

(n) D {(2n) D (4n) D (8n) D - -.

Theorem 8.1.7 A subnormal series in a group G is a composition series if
and only if it has no proper refinement.
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Proof. Let
G=Hy2H 2Hy,2---2Hp1 D H,={e} (8.6)
be a composition series. Let
G=Hy2H 2---2H_12HDH;2---D2H,12H,={e} (8.7)

be a one-step refinement of (8.6). Since (8.6) is a composition series, H; is a
maximal normal subgroup of H;_ ;. Thus, either H = H; 1 or H = H,. Hence,
it follows that (8.6) has no proper refinement.

Conversely, suppose that

G=Ho2H D2H;D---2Hp 12 H, ={e} (8.8)

is a subnormal series, which has no proper refinement. Suppose (8.8) is not a
composition series. Then there exists a subgroup H; in (8.8) such that H; is
not a maximal normal subgroup in H;_;. Thus, there exists a subgroup H such
that H;, # H # H;, H is a normal subgroup of H;_;, and H; is a normal
subgroup of H. This produces a proper refinement of (8.8), a contradiction.
Hence, (8.8) is a composition series. I

Definition 8.1.8 Two subnormal chains for a group G
G=Hy2H 2H; 2 ---2H, ;2 Hy,={e} (8.9)
G=Ky2Ki12KD..0Kp,-12K,,= {6} (8.10)

are called equivalent f there is a one-one correspondence between the nontriv-
ial factors of (8.9) aend (8.10) such that corresponding factors are isomorphic.

If the subnormal chains (8.9) and (8.10) are equivalent, then the length of
(8.9) equals the length of (8.10).

Example 8.1.9 Consider the subnormol series
Z DAZ D 12Z D 24Z O 1207 D {0} (8.11)

Z D27 > 8Z D247 > 120Z > {0}. (8.12)
The factors of (8.11) are

Z/AZ ~ Ty, 47.)12Z = Zs, 12Z/24Z =~ Zo,
24Z/120Z ~ Z5, and 120Z/{0}~ Z

and the factors of (8.12) are

Z./9Z ~ Ty, 22/87 ~ Zy, SZ/24Z ~ Zs,
247,/120Z ~ Zs, and 120Z/{0}~ Z.

Hence, there exists a one-one correspondence between. the factors of (8.11) and
(8.12). Consequently, (8.11) and (8.12) are equivalent.
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Theorem 8.1.10 (Zassenhaus Lemma) Let H', H, K’, and K be subgroups
of a group G such that H' is a normal subgroup of H and K’ is a normal
subgroup of K. Then H'({H N K') is a normal subgroup of H'(H N K) and
K'(H' N K) is a normal subgroup of K'(H N K). Furthermore,

H'(HNK) K(HNK)
H'(HNK') ~ K'{HNK)

Proof. From the hypothesis, it follows that H N K’ and H' N K are normal
subgroups of H N K. Thus, (HNK')(H' N K) is a normal subgroup of AN K.
Set J=(HNK)H NK).

Define the function f: H'(HNK) = (HNK)/J as follows: If a € H'(HN
K), then a = Rh'b, where ¥ € H and b € HN K. Set f(a) = Jb. Let a;,
as € H'(HN K). Then a1 = hyby, ay = hoby for some ky, hy € H' and by, by €
H N K. Suppose a1 = as. Then h’lbl = h;bg. Thus, h;‘lh1 = bzbl_l e H'N
(HNK) € HHNK C J Hence, Jby = Jby and so f(a1) = f(az). Thus,
f is well defined. Since H’ is a normal subgroup of H, bihybT! € H'. Now
a1ag = hybihoby = hib1hob  1b1bo = h'biby, where b = hibihoby ! € H'. Hence,
flaiag) = Jbiby = Jb1Jby = f(a1)f(as). Therefore, f is a homomorphism.
From the definition of f, it follows that f maps H'(H N K) onto (HN K)/J.
Also, it is easy to verify that Ker f = H'(H N K’). Hence, by Theorem 5.2.2,

H(HNK) (HNK)

\
HHMNK) ~  J

By symmetry,

K'HNnK) (HNK)
K'HNnK) ™ J

Finally, the desired isomorphism follows from these two isomorphisms. il

Theorem 8.1.11 (Schreier) Any two subnormal series

GZHD:_)HIQHQQ"':_)HR—I:_)Hn={e} (813)

G=Ki2Ki DKy2 - 2 Kp 12 Kny={e} (8.14)

of a group G have refinements which are equivalent.

Proof. Between each H; and H,y,, insert the group H;\«(H; N K;), j =
0.1,2. ..., m. From the normality assertions of the Zassenhaus lemma, this
refinement of (8.13) is a subnormal chain with mn (not necessarily strict) in-
clusions. Between each K; and K4, insert the group K;1(K; N H;), ¢ =0,
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1,2,...,n. This refinement of (8.14) is also a subnormal chain with mn inclu-
sions. The final refinements are

v 2 Hypt(HiNKG) D Hip(HiNKjq) 2+

and
o DK (KGN H) D K (KGN Hp ) 2.

From the Zassenhaus lemma,
H,(1(H;N Kj)/H¢'+1(H.,; N Kj+1) o~ Kj+1(Kj N Hi)/Kj_H(Kj N Hit1).
Hence, we have the desired result. ll

Theorem 8.1.12 (Jordan-Hélder) Any two composition series of a group
are equivalent.

Proof. Since composition series are subnormal series, any two composition
series of G have equivalent refinements. Now a composition series has no proper
refinements. Thus, a composition series is equivalent to every refinement of it-
self. Hence, any two composition series of a group are equivalent. Bl

By the Jordan-Hélder theorem, we find that if a group G has a composition
series of length n, then the length of any composition series of G must be n.
This n is called the composition length of the group G.

We now show that the fundamental theorem of arithmetic can be estab-
lished from the Jordan-Holder theorem. Let n be a positive integer greater than
1 and consider the group (Z,,+5). Since Z, is finite, Z, has a composition
series. Let

Zn=HyD Hi 2 Hy2D- D Hyp_1 2 H = {[0]}

be a composition series. The factors H;_1/H; are simple Abelian groups. Hence
each factor is of prime order. Let |H;_,/H;| = p;. Now

n= |Zﬂl = IHO/HII ) ‘HI/H2| P |Hk—l/Hk| =mp2- - Dk-

This proves that every integer n > 1 can be expressed as a product of prime
integers. The uniqueness of this factorization follows from the equivalence of
the composition series.

Example 8.1.13 Consider the group (Z3q, +30). Then Zag has the following
two composition series.

Zso O {[3]) > ([10]) > {[0])
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and
Z3o > ([2]) > ([6]) > {[0]).
Now
Z3o/ {[5)) # Z3o/ {(2]),
but we have the following isomorphisms:
Zo/ ([5]) ~ ([6]) / {[0])

Zo/ (12]) == ([5]) / {[10])
{[21) / {[6]) = {[20]) / {[o]) -

Definition 8.1.14 A group G is called solvable if it has a subnormal series
G =Hy 2 H, :_)H2:_)"':_)Hn—1:_)Hn={e}

such that H;/H;41 15 commutative, 1 = 0,1,...,n— 1. Such a subnormal series
is called a solvable series for G.

Every commutative group is solvable since G = Hy 2 H; = {e} satisfies
the above definition.

Example 8.1.15 Consider the symmetric group S3. Then

s fo(111)(11 1))

is a solvable series for S3. Hence, S3 is solvable.

Example 8.1.16 Consider the symmetric group Sy. Then
1 2 3 4 1 2 3 4 1 2 3 4
543‘443{6’(2 1 4 3)’(3 41 2)’(4 3 2 1)}3
1 2 3 4
{e’(z 1 4 3)}3{"’}

18 a solvable series for S4. Thus, S4 and A4 are solvable.

Since. the symmetric groups 5; and 52 are commutative, they are solvable.
Thus, 5, is solvable for n < 4. In Theorem 8.1.27 below, we show that S,, is
not solvable for n > 4. The order of the alternating group Az is 3. Hence, Az
is commutative and thus solvable. By Example 8.1.16, A4 is solvable. Thus,
A, is solvable for n < 4.

In the next few theorems, we show how the solvability of a group is associ-
ated with the solvability of a normal subgroup and the quotient group created
by the normal subgroup.

Theorem 8.1.17 If G is a solvable group, then every subgroup of G is solvable
and every homomorphic tmage of GG is solvable.
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Proof. Let
GzHOQ-Hl2H2;)_“‘;)Hn—12Hn={e}

be a solvable series of G. Let K be any subgroup of G. Set K; = K N H,,
1=10,1, ..., n. We shall show that the chain

K=KD;)K1:_)KQQ"‘QKn—IQKn:{e}

is a solvable series for K. It follows that H;, 1N K is a normal subgroup of the
group H; N K. That is, K, is a normal subgroup of K;. Now

Kin=KNHn=KNHNH4u =K;NH.

Thus, K;/K;y1 = K;/(K; N H;;1). Hence, by the second isomorphism theorem
(Theorem 5.2.6), we have the isomorphism

Ki/Kipn ~ (KiHi1)/Hipa.

The quotient group (K;H;y1)/Hi+1 18 commutative since it is a subgroup of
the commutative group H;/H;41. Thus, K;/K; ;1 is commutative and so K is
solvable.

Let f be a homomorphism of G onto a group G. Set H; = f(H:), i =
0,1,...,n. Since f is an epimorphism, f(H;+)) is a normal subgroup of f{H;).
AISO, Hr_;, >, H€+1 1mpl1es that f(H;) 2 f(HH_l) Hence,

G=Hy2H12H;2-- 2 H,1 2 Hy = {e} (8.15)

is & subnormal series of G. We now show that f(H;)/f(Hi+1) = H;/H;y is
commutative. Define g : H; — H;/H;+1 by g(h;}) = f(h;)Hi41. Since f is an
epimorphism, it follows that g is an epimorphism of H; onto H,;/H;.,. Note
that for any hit1 € Hiy1 C Hy, glhiy1) = fhiv1))Hizr = flhip)f(Hiq1) =
f(H;y1). Hence, Hiy1 C Ker g. Thus, g induces an epimorphism of H;/H;
onto H, /ﬁé_‘_l. Since H; /Hj1 is commutative, it follows that H, /-H.H_l is com-
mutative. Consequently, the subnormal series (8.15) is a solvable series, proving
that G is a solvable group. B

The following corollary is immediate from Theorem 8.1.17.

Corollary 8.1.18 If G is solvable and H is a normal subgroup of G, then H
and G/H are solvable. B

Theorem 8.1.19 Let H be a normal subgroup of a group G. If both H and
G/H are solvable, then G is solvable.
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Proof. Let

be a solvable series for G/H. By Corollary 5.2.12, there are subgroups K; of
G,1=0,1,...,m, such that K;;; is a normal subgroup of K;, K; = K;/H,
1 = 0,1,...,m - ]., G = KO, and H = Km A].SO, K,;/Ki+1 ~ _Xi/fi+1 by
the third isomorphism theorem (Corollary 5.2.9). Since H is solvable, H has a,
solvable series, say,

H=Hy2H 2H; 2 -2 H, 12 H,={e}.
Thus,
G=Kog2K12-2Kpn12H2H 2:---2H, 12 H,={e}
is a solvable series for G. That is, G is solvable. I

Theorem 8.1.20 Let G # {e} be a finite solvable group. Then the factor
groups of any composition series of G are cyclic groups of prime order.

Proof. The proof is by induction on |G|. If |G| is a prime, then the theorem
is valid since G D {e} is the only composition series for G. Hence, the theorem
is valid for |G| = 2. Suppose the theorem is true for all groups of order < |G},
where |G| > 2. If |G| is not a prime, then G has a nontrivial normal subgroup
H. (If G does not have a nontrivial normal subgroup, then G D {e} is a
composition series for GG so that G ~ G/ {e) is commutative. Thus, G has no
proper subgroups. Hence, |G| is a prime, a contradiction.}) By the induction
hypothesis and Corollary 8.1.18, G/H and H have the composition series

G/H=K¢DK1DKy2 - DKm12Km=/{e}

and
H=HyD>H DHyD -2 Hp_1DH, ={e},

respectively, such that each K;/K;;1 and each H;/H; 1 are cyclic groups of
prime order. If we choose subgroups K; of G corresponding to K/ as in Theorem
8.1.19, then it follows by similar arguments that

G=KyDK,D---DK, _1DHDH13'-'DHR_1DHR={6}

is a composition series of (G satisfying the conditions of the theorem. Thus, by
the Jordan-Holder theorem, every composition series of GG satisfies the condi-
tions of the theorem. W -
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We now proceed to establish the unsolvability of S, n > 5. We first intro-
duce the notion of the commutator subgroup of a group and cbtain its basic
properties. ‘We also give a necessary and sufficient condition for the solvability
of a group in terms of the commutator subgroup. We then apply these results
to show that S,, n > 5, is not solvable.

Definition 8.1.21 Let G be a group and a, b € G. The commutator of a
and b is the element aba='b~1. Set A = {aba~'b1 | a,b € G} and let G’ be
the subgroup of G generated by A. G’ s called the derived or commmutator
subgroup of G.

If G is commutative, then A = {e} and so G' = {e}. Conversely, if A = G =

{e}, then aba='b~! = e for all a, b € G. Therefore, ab = ba for all a,b € G,
i.e., G is commutative. Thus, G is commutative if and only if G’ = {e}.

Theorem 8.1.22 The derived subgroup G' of a group G is a normal subgroup
of G and G/G’ is commutative.

Proof. Leta,b, g € G. Now o

g(aba™"b7")g™" = (gag™")(gbg ™" )(gaT g™ ) (b7 gT") = cde™Nd ™,

where ¢ = gag™! and d = gbg~!. This implies that for any commutator

aba~'b~1 and for any g € G, glaba='b"1)g~?! is a commutator. From this,
it follows that gG’¢g~! C G’ for all g € G. Hence, G’ is a normal subgroup of
G. Next, we show that G/G’ is commutative. Let a,b € G. Then (ba)"lab =
a~lb7lab € G’ and so abG’ = baF, i.e., aG'bG’ = bG'aG’. Hence, G/G' is

commutative. B

Theorem 8.1.23 Let G’ be the derived subgroup of a group G and H be a
subgroup of G. Then H O G’ if and only if H is a normal subgroup of G and
G/H is commutative.

Proof. Suppose H 2G'. Let h€ H and @ € G. Then aha~*h~l € ¢ C H.
Thus, aha™! = (aha™*h 1)k € H. Hence, H is a normal subgroup of G.
Let us now show that G/H is commutative. To do this, let us consider
two arbitrary elements aH, bH in G/H. Then (aH)(bH)(aH) '(bH)™ ! =
aHbHa YHb 'H = aba~ 16" H. Since aba~1b~! € G' C H, it follows that
(aH)(bH)(aH) Y (bH)™! = H. Therefore, aHbH = bHoH, proving that G/H
is commutative. Conversely, suppose H is normal in G and G/H is com-
mutative. Let a, b € G. Then (aH)(bH) = (bH)(aH). This implies that
a b labc H. Hence, G’ C H. B
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Definition 8.1.24 Let G’ be the commutator subgroup of a group G. Set
GO = @' and define inductively

G(k+l) — G(k)f,

the commutator subgroup of G®), k > 0. For any positive integer k, G®) 4s
called the kth commutator subgroup of G.

The following theorem gives a necessary and sufficient condition for a group
to be solvable in terms of a commutator subgroup.

Theorem 8.1.25 Let G be a group. Then G is solvable if and only if there is
a positive integer m such that G™ = {e}.

Proof. Suppose G{™ = {e}. Then by Theorem 8.1.22, the chain
Go2GW o...oamb o Ggm = fe)

is a solvable series. Thus, (G is solvable. Conversely, suppose G is solvable.
Then G has a solvable series, say,

G:HO:_)HI:_)H2:_)"'2Hn—1:_)Hn:{e}-

Since H;y1 is normal in H; and H;/H,; ., is commutative, we have by Theorem
8.1.23 that the commutator subgroup H] of H; is contained in H;4;. Thus,

Ho2H,=GY, Hb D H, DG? .. . {ey=H, 2 H._, 26",
Hence, G = {e}. B
Lemma 8.1.26 Let S, be the symmeltric group on n symbols. If n > 5, then
S«,(;k) contains every 3-cycle of S, fork =1,2,....

Proof. Letw = (abc) beany 3-cyclein S,. Since n > 5, there exist symbols
d, f such that a, b, ¢, d, f are distinct. Set a = (e bd) and 8 = (a ¢ f). Let H
be any subgroup of S, with the property that H contains every 3-cycle of 5.
Then 7, a,3 € H. Hence,

(abe)=(abd)o(ac flo(adb)o(a fc)=afa"t" c H,

where H' is the derived subgroup of H. From this, it follows that S,,(,,l) contains
every 3-cycle of S,,. We can employ induction to obtain the desired result.

In the next theorem, we show that .5, is not solvable for n > 5.

Theorem 8.1.27 The symmetric group S, on n symbols is not solvable for
n > 5.
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Proof. Since S«,(;k) contains every 3-cycle of §, for k = 1,2,..., there does

not exist a positive integer m such that S,(,,m) = {e}. Thus, by Theorem 8.1.25,
S, 15 not solvable. B

8.1.1 Worked-Out Exercises

¢ Exercise 1 Let G be a group of order pgr, where p,q,r are primes and
p > q > r. Show that GG is solvable.

Solution: The number of Sylow p-subgroups is 1+ kp, where 1+ &kp divides
gr. Suppose k # 0. Since p > g > 7, 1 + kp = gr. The number of Sylow g¢-
subgroups is 1 + k'g, where 1 + k'q divides pr. Suppose k' # 0. Since ¢ > r,
either 1 + k'q = p or pr. In either case, 1 + k'g > p. The number of Sylow
r-subgroups is 1 + k£"r, where 1 + k”r divides pg. Suppose k” # 0. Then either
1+ k"r = g or p or pg. Hence, in either case, 1+ k”r > g. Thus, G has gr(p—1)
elements of order p, at least p(qg — 1) elements of order g, and at least g(r — 1)
elements of order r. Since G has pgr elements, pgr > gr(p — 1)+ plg — 1)+
g(r — 1) + 1. This implies that 0 > pg~p—g+1o0or 0 > (p — 1)(g — 1).
Therefore, (p — 1)(¢ — 1) = 0, which implies that either p = 1 or ¢ = 1, a
contradiction. Thus, either ¥ = 0 or ¥’ = 0 or ¥” = 0. Suppose k = 0. Then G
has a unique Sylow p-subgroup, say, H. Now H is a normal subgroup of G and
G/H is of order gr. By Exercise 11 {page 238), we find that G/H is solvable,
Since H is of order p, H is solvable. Hence, by Theorem 8.1.19, & is solvable.
Similarly, if either ¥ = 0 or ¥’ = 0, then G is solvable.

¢{ Exercise 2 Let H # {e} be a subgroup of a solvable group G. Prove that
H' £ H.

Solution: Suppose H' = H. Then H? = (H'Y = H' = H # {e}. Now
by induction, we can show that H(" = H # {e} for any positive integer n.
On the other hand, H is a subgroup of a solvable group and so H is solvable.
This implies that there exists a positive integer n such that H(™ = {e}, a
contradiction. Hence, H' # H.

Exercise 3 Let G be the group of all n X n invertible matrices over R, n > 3.
Show that G is not solvable.

Solution: Let E;; be the n x n matrix whose (%, j) entry is 1 and all other
entries are zero. Then

E, if j=
E"J'E”:{ Otisf_ljjéfr.r
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Now for the identity matrix I and for i # j, I + E;; € G and (I + E;;)~! =
I — E;;. Let T be the subgroup generated by {1+ E;; | 1 # j}. Since n > 3, we
can find an integer k such that 1 <1 # k # j < n. Now

I+ Ep)I+ Eg)I+ Eyg) "I+ E)™' = (I+Eg)I + Eyy)
(1 — Ba(1 ~ Fiy
= (I + Ekj + Eix + E{j)
(I — Ekj - Eg+ E{j)
= I+ Ey).

Therefore, (I + E;;) € T', proving that T C T'. As aresult T'=T". Thus, T is
not solvable and so G is not solvable.

{ Exercise 4 Let GL(2,R) be the group of Example 2.1.10. Prove that the
derived subgroup of GL(2,R) is the subgroup

S‘L(2,R)={[i ﬂ € GL(2,R) adbc=1}.

Solution: Let R* be the multiplicative group of nonzero real numbers.
Define f : GL(2,R) — R” by

b
d

Hence, SL(2,R) is a normal subgroup of GL(2,R) and

for all i € GL(2,R). Now f is an epimorphism with Ker f = SL(2,R).
GL(2,R)/SL(2,R) ~R".

This implies that GL(2,R)/SL(2,R) is a commutative group and (GL(2, R))’
b

C SL(2,R). Let us now show that SL(2, R) C (GL(2,R))’. For this, let [ g d

€ SL(2,R). Then ad —bc=1.If ¢ # 0, then

el T

Now for any r € R,

1 r _ (1 —r |1 0 1 r|[1 0
o1 ~ |0 1 0 3 |([0 1]]0 2
d ‘17 4 1-1 -1
1 —r 1 0 1 —r 1 0 ;
= o 1 {0 Lo 1 {0 %] € (CLER))
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Le)-[ag]L s

Hence, { i 3 € (GL(2,R)).
Suppose ¢ = 0. Then ad = 1. Thus, a # 0 and

dal-lai]ls

and

— 8o

|

L 2
BRI XA

b
d

=&

1
0
Consequently, SL(2, R) =(GL(2,R))".

Also, from above, [ ] € (GL(2,R)). As aresult, { (cl ] € (GL(2,R)Y.

Exercise 5 Prove that in a group G, any refinement of a solvable series is a
solvable series.

Solution: Let
G=Hy2H I 2H; 2 -2 Hy1 2 Hy, = {e} (8.16)
be a solvable series in G and let
G=HyD --2Hi-12HDH; D - -2 Hp 12 H,={e} (8.17)

be a one-step refinement of (8.16). From (8.16) H;_1/H; is commutative, Now
the group H/H, is a subgroup of H;_,/H;. Hence, H/ H; is commutative. Again

(Hima/Hy)/(H/H;) ~ H; 1 /H

implies that H;_1/H is commutative. Thus, (8.17) is a solvable series. Hence,
any one-step refinement of (8.16) is a solvable series. By induction, any refine-
ment of (8.16) is a solvable series.

¢ Exercise 6 Find all composition series of the group Z/ (42). Verify that
they are equivalent.

Solution: Now the subgroups of Z/ (42) are Z/ (42); 2Z/ (42), 3Z/ (42),
6Z/ (42), TZ/ (42) , 14Z/ (42) , 21Z/ (42) , and {(42)}. Hence, the composition

series are

Z/(42) D 2Z/ (42) D 6Z/ (42) D {(42)}
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7/ (42) D 2Z/ (42) D 14Z/ (42) D {({42)}
7./ (42) © 3Z/ (42) D 6Z/ (42) > {(42)}
7./ (42) D 37/ (42) > 212/ (42) D {{42)}
7/ (42) D TZ/ {(42) D 14Z/ (42) D {(42)}
7/ (42) D TZ/ (42) D 21Z/ (42) D {(42)}.

Each of the above six composition series has three factors. These factors are
nothing but the groups Zo, Zs, and Z7. Hence, all these composition series are
equivalent.

8.1.2 Exercises

1.

oroe W

10.

. Let G be a group. Show that G' = {a1a2---aray

Let G be the group of symmetries of the square. Prove that the following
series are composition series for G :

G D {r180, 7360, h, v} D {7360, h} D {7360}
and
G D {r180, 7360, d1,d2} D {r3e0,d1} D {rsso}-
Establish the equivalence of these composition series. Verify that {rssg, d1}

is normal in {7180, ras0, d1,d2}, but not normal in G.

Find all composition series of the group Z/ (66). Verify that they are
equivalent.

Find all composition series of Zsag.

Write all composition series of S3, 54, A4, D4, and Zs X Z5.

Prove that every finite group has a composition series.

Let G be a commutative group. Show that G has a composition series if

and only if G is finite.

1 -1

as'---a;l | a; €

G,n > 2}.

. Show that a group G is commutative if and only if G’ = {e}.
. Let H be a subgroup of G. Show that H' C G'.

Let N be a normal subgroup of a group G such that NN G’ = {e}. Show
that ]

(i) N C Z(G),
(i) Z(G/N) = Z(G)/N.
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11

12,

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Let G be a group of order pq (p, g primes). Show that G is solvable.
Let G be a group of order p%q (p, ¢ primes). Show that G is solvable.
Let G be a group of order p%q® (p,q primes). Show that G is solvable.
Write a solvable series of S3 x 3.

Let G be a simple and solvable group. Show that & is commutative.

Prove that a finite direct product of solvable groups is solvable. Hence,
show that S3 x Z is an infinite noncommutative solvable group.

Let H be a normal subgroup of a group G. Prove that G has a composition
series if and only if both H and G/H have composition series. Also, show
that G has a composition series containing H.

Prove that a finite group G is solvable if and only if H' # H for any
subgroup H # {e} of G.

Let G be a solvable group with a composition series. Show that G is
finite.

Prove that a group G is solvable if and only if G/Z(G) is solvable.

Let A and B be subgroups of a group G. If A and B are solvable and A
is normal in G, prove that AB is a solvable subgroup of G.

For the following statement, write the proof if the statement is true;
otherwise, give a counterexample.

(i) If G # {e} is a solvable group, then Z(G) # {e}.

(ii) Let G be a solvable group of order m. Then for every positive divisor
n of m, G has a subgroup of order n.

(iii) Every group of order 15 is solvable.

(iv) Every solvable group has a composition series.
(v) Every solvable series is a composition series.
(vi) Every composition series is a solvable series.

(vii) If two groups have equivalent composition series, then the groups
are isomorphic.
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8.2 Nilpotent Groups

In this section, we study another class of groups called nilpotent groups. We
show that the converse of Lagrange’s theorem also holds for such groups.

Definition 8.2.1 A chain Gg C G € Gy C -+ C G, of normal subgroups
of a group G 1is called o central series if Gi41/Gi C Z(G/G;) for all i =
0,1,...,n—1.

Definition 8.2.2 A group G is celled nilpotent if G has a central series
GoCG1CG2C--C Gy
such that Go = {e} and G, = G.

From the definition of a nilpotent group and from the commutative property
of Z(G/G;), it follows that every nilpotent group is solvable and also that every
commutative group is nilpotent.

Example 8.2.3 The symmetric group Sz has only two normal series,

{e} C 83

ofe(11(111))es

For the first series, S3/{e} ~ S3 € Z(S3/{e}) = {e}. For the second series,

let
1 2 3 1 2 3
H‘{e’(z 3 1)’(3 1 2)}

Now H/{e} € Z(S3/{e}). Hence, S3 is not a nilpotent group. However, S3 is
solvable.

and

Finite p-groups are the most important examples of nilpotent groups.

Theorem 8.2.4 FEvery finite p-group is nilpotent.

Proof. Let G be a finite p-group. If |G| = 1, then G is nilpotent. Suppose
|G| > 1. Then Z; = Z(G) # {e} by Theorem 7.2.7. If G # Zi, then |G/Z;| >
1 and hence by Theorem 7.2.7, |Z(G/Z;)| > 1. Now there exists a normal
subgroup Z, of G such that Z; C Z3 and Z2/Z, = Z(G/Z,). Thus, we have
{e} € Zy C Zy. If G # Z3, we repeat the above process and obtain a normal
subgroup Z3 of G such that Z3/Z; = Z(G/Z5) and {e} € Z, C Z» C Zs.
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Since G is finite, this process must terminate after a finite number of steps.
We obtain the normal series

fe}CcZi1CZC---CZ, =G

such that Z,1/Z; = Z(G/Z;). Hence, G is nilpotent. B

For a group G, let us define Z;(G) as follows:
Zo(G) = {e}, Z1(G) = Z(G).

Now Z1(QG) is a normal subgroup of G and Z(G/Z1(G)) is a normal subgroup
of G/Z1(G). Hence, there exists a unique normal subgroup Z2(G) of G such
that Z1(G) C Z2(Q) and Z2(G)/Z1(G) = Z(G/Z1(G)). Suppose Z;(G), i > 1,
has been defined, i.e., Z;(G) is the normal subgroup of G such that

Zi-1(G) € Zi(G) and Z,(G)/Z;-1(G) = Z(G/Z;-1(G)).
There exists a unique normal subgroup Z;11(G) of G such that
Zi(G) € Zi+1(G) and Z11(G)/Z:(G) = Z(G/Z:(G)).
Thus, we have the chain of normal subgroups
{e}=20(G)CZ1(G) S Z2(G) S - C Zp(G) & -+

and Z;+1(G)/Z;(G) = Z(G/Z;(G)), ¢ = 0. This chain of normal subgroups is
called the ascending central series of G.

Theorem 8.2.5 Let G be a group such that Z,(G) = G for some nonnegative
integer n. Then G is nilpotent.

Proof. We have the normal series
{e} = Zo(G) C Z1(G) C Z2(G) C--- C Z,(G) =G

such that Z,41(G)/Z:,(G) = Z(G/Z,(G)), i = 0,1, ..., n — 1. Hence, G is
nilpotent. W

Let G be a group and a,b € G. We denote by [a,b] the commutator -
aba~1b~1. Let A and B be subgroups of G. We denote the subgroup gener-
ated by elements [a,b], for all a € 4, b € B, by [4, B.

Lemma 8.2.6 Let A and B be subgroups of a group G and A be normal in G.
Then [B,G| C A if and only if ABJA C Z(G/A).
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Proof.  Suppose [B,G] C A. Then for all b € B, g € G, bgb~'g~! € A.
This implies that AbAg = AgAb. Thus, Ab € Z(G/A). Let a € A and b €
B. Then Aab = AaAb = AAb = Ab € Z{G/A). Hence, AB/A C Z(G/A).
Conversely, suppose AB/A C Z(G/A). Let b € B, g € G. Then Abgh~1g~! =
AbAgAb~1Ag™! = A since Ab € Z(G/A). This implies that {b,g] € A. Thus,
[B,G]C 4@

Theorem 8.2.7 Let G be a nilpotent group. Then there exists a nonnegative
integer n such that G = Z,(QG).

Proof. Since G is nilpotent, there exists a normal series
{e}=GoeCGICGC---CGr=G

such that G;/G;—1 C Z(G/G;-1), i = 1,2,...,n, for some n. We now prove
by induction on ¢ that G; € Z;(G) for all : = 0,1,...,n. If ¢ = 0, then Gg =
{e} = Zy(G). Suppose that G; C Z;(G) for some ¢ > 0. Since G;G;11/G; =
Gi+1/G: € Z(G/G;), we have by Lemma 8.2.6 that [G;4+1,G] C G; C Z:i(G).
Thus, by Lemma 8.2.6,

Zi(G)Gi11/Z:(G) € Z2(G/Z:(G)) = Zi11(G)/ Zi(G).
This implies that Giy1 C Zi(G)Gi+1 C Zit1(G). Hence, by induction, G; C
Zi(@) foralli=0,1,...,n. Since G, =G, Z,(G)=G. B

Let G be a group. Define the subgroups Gl of @ inductively as follows:
Gl = g, GlA =[G, @), ..., Gl = [GF-1 @], ¢ > 1. Tt can be easily seen
that

G=GWloglloghl >...

is a central series. This series is called the descending central series of .

Theorem 8.2.8 A group G is nilpotent if and only if there exists a nonnegative
integer n such that G+l = {e}.

Proof. If GI**U = {e} for some nonnegative integer n, then G has a central
SeTies

{e}=ctlicglc...cglll=g.

Hence, G is nilpotent. Conversely, suppose that G is nilpotent. Then there
exists a central series

{e}=GoC G CGC - CG.,=G

of G. We now show that G C G,_;jy1 foralli =1,2, ..., n+1. Clearly, Glll =
G = G,. Suppose G} C G,_;41 for some 3, 1 < i < n+ 1. Now Git1/G; C
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Z(G/G:), i = 0,1,...,n — 1. Therefore, by Lemma 8.2.6, [Gi4+1,G] C G;,
i=0,1,...,n — 1. This implies that G+ = [GW,G] C [Cpr_iz1,G] € Gns
Thus, by induction, G C G,,_;4; for all s = 1,2, ..., n + 1. Consequently,
Gl C Gy = {e}. W

Theorem 8.2.9 Let G be o nilpotent group. Then every subgroup of G is
nilpotent.

Proof. Let H be a subgroup of G. There exists a positive integer n such
that GI"+1l = {e}. Now Hl = H € G = Gl!. Suppose HH C Gl for 1 <4 <
n 4 1. Then H*U = [H, H] C [GH,G] = GU+1, Therefore, by induction,
HHU c Gl for all i = 1,2, ..., n + 1. Hence, H™*1 C Gl*+1] = {e}, proving
that H is nilpotent. l

Lemma 8.2.10 Let G, H, and K be groups such that G = H x K. Then
Z{G)=Z{(H)x Z(K) foralli=1,2,....

Proof. Fori=1 Z1(G)=2Z(G)=Z(H xK)=Z(H) x Z(K) = Z;(H) x
Z7(K). Thus, the lemina is true for 7 = 1. Suppose Z;(G) = Z;(H) x Z;(K) for
somei > 1. Now Z;1(G) is the unique normal subgroup of G such that Z;(G) C
Z;+1(G) and Z;11(G)/Z:(G) = Z(G/Z:(G)). Consider the isomorphism % :
H/Z(H) x K/Z:(K) — (H x K)/Z:(H x K). Now

2GIZ(G) = Z((H x K)/Z:(H x K)
= Z((H x K)/Z;(H) x Z:(K)) (by the

induction hypothesis)
Z(Y((H/Z:(H)) x (K/Zi(K))})
Y(Z((H/Z:(H)) x (K/Z(K))))
Y(Z(H/Zi(H)) x Z(K/Z;(K)))
Y((Zir1(H)/Z:(H)) x (Zir1(K)/Zi(K)))
(Zitr(H) X Zia (K))/(Z:(H) % Z;(K))
(Zir1(H) x Zipa(K))/Z:(H x K)
(Zi1(H) x Zipa(K))/ Zi(G).

Hence, Z;41(G) = Ziy1(H) x Z;11(K). B

Ii

Lemma 8.2.11 The direct product of two nilpotent groups is a nilpotent group.

Proof. Let H and K be two nilpotent groups. Then there exists a positive
integer n such that Z,(H) = H and Z,(K) = K. Hence, Z,(H x K) =
Zn(H) X Zp(K) = H x K by Lemma 8.2.10. Thus, H x K is nilpotent. H

Theorem 8.2.12 Let G;, 1 =1,2,...,n, be a nilpotent group. Then G1 x G X
-+ X Gy, 18 nilpotent.
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Proof. The desired result follows by Lemma 8.2.11 and induction. B

The following theorem gives several equivalent conditions of a finite group
to be a nilpotent group. In particular, the following theorem describes all
finite nilpotent groups in terms of p-groups. It is an analogue of the primary
decomposition theorem for finite Abelian groups.

Theorem 8.2.13 Let G be a finite group. Then the following conditions are
equivalent.

(i) G is nilpotent.

(#1) If H 43 a proper subgroup of G, then H C Ng(H).

(iti) Every mazimal subgroup of G is a normal subgroup of G.

(tv) Every Sylow subgroup of G is a normal subgroup of G.

(v) G s isomorphic to a direct product of p-groups.

Proof. (i)=(ii) Since G is nilpotent, G has a central series
{e}=GoCG1CG2C---CGr=G.

Now Gy € H C G = (G,. Hence, we can find an integer m > 0 such that
Gm C H, but Gy1 € H. Thus, there exists a € G,,41 such that a ¢ H. Now
aGm € Z(G/Gr). Therefore, for all b € H, (eGn)(hGr) = (hGm)(aGm).
This implies A~'a"ha = (ah)"'ha € G, C H. Hence, a'hae € H, and so
a"'Ha C H. Similarly, aHe™ ! € H. Thus, H =a Y{(aHa Ve Ca'Ha C H
and so a“'Ha = H. Hence a € N(H). Consequently, H # N(H).

(i1)=>(iii) Let H be a maximal subgroup of G. Then H C N(H) C G. Since
H is maximal, N(H) = G. Thus, H is normal.

(iii)=(iv) Let P be a Sylow p-subgroup of G such that P is not normal.
Since G is finite, there exists a maximal subgroup H of G such that N(P) C H.
By (iii), H is a normal subgroup of G. Let a € G. Then aPa~! C aN(P)a™! C
aHa~! = H. Hence, P and aPa~! are Sylow p-subgroups of H. Thus, there
exists b € H such that h(aPa~1)h~! = P. Therefore, ha € N(P) C H. This
implies that @ = A~ 1(ha) € H. Hence, G = H, a contradiction. Thus, P is a
normal subgroup of G.

(iv)=(v) By Worked-Out Exercise 7 (page 208), GG is a direct product of its
Sylow p-subgroups. Since everv Svlow p-subgroup is a p-group, G is a direct
product of p-groups.

(v)=(i) The result here {ollows by Theorems 8.2.4 and 8.2.12. W

We conclude this section by showing that the converse of Lagrange’s theo-
rem holds for finite nilpotent groups. :

Theorem 8.2.14 Let G be a nilpotent group of order m. If n > 0 and n|m,
then G contains a subgroup of order ni.
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Proof. If m = 1, then the result is trivially true. Suppose m > 1. There
exist distinct prime integers py, pg, ..., px such that m = pi! pi? -- - pi*, where
r; are positive integers. Let H; be the Sylow p-subgroup for p = p; (1 =
1,2,...,k) in G. Thus, by Theorem 8.2.13 and Worked-Out Exercise 7 (page
208), G = Hy X Ho x + -+ x Hy. Since n|m, there exist integers #1,%9, ..., %, such
that n = pﬁl pgz e pif. Now |H;| = p]* and so by Theorem 7.3.1, H; contains
a subgroup A; of order pﬁ" fori=1,2,...,k Thus, B=A4; x Ag X - X Ag is
a subgroup of G of order n. B

8.2.1 Worked-Out Exercises

¢{ Exercise 1 Find a central series Go C G; C --- C G, in D4 such that
Go = {e} and G,, = Ds.

Solution: D4 = (a,b) such that o(a) = 4, o(b) = 2, and ba = ab. Now
{e} =Go C G1 ={e,a’} C Gy = {e,a,0%,0’} CGn =Dy

is a normal series in Dy. Since |Dy/G1| = 4 and |D4/Ga| = 2, it follows
that Dy/G; and D4/G5 are commutative groups. Thus, G2/G; C Dy/Gy =
Z(D4/G,) and Dy/Gg C Z(D4/G2) = Dy/Gs. Since Z(Dy) = {e,a?} = Gy, it
follows that G1/Go C Z(D4/Gy). Hence, {e} C {e,a?} C {e,a,a%,a3} C D4 is
a central series.

¢ Exercise 2 Give an example of a group  such that G is not nilpotent, but
G contains a normal subgroup H such that H and G/H are nilpotent.

Solution: The symmetric group S3 is not nilpotent. Now Aj is a normal
subgroup. Since |A3] = 3, A3 is commutative and hence nilpotent. Also,
|S3/As| = 2. Thus, S3/A3 is commutative and so is nilpotent.

8.2.2 Exercises

1. Prove that a homomorphic image of a nilpotent group is nilpotent.
2. Prove that a group of order 65 is nilpotent.

3. Show that Dy, is nilpotent if and only if n = 2™ for some positive integer
m.

4. Find ascending central series for S3 and Ss x Zs.

5. Is §3 x S3 nilpotent?
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Camille Jordan (1838-1921) was
born on January 5, 1838 in Lyons, France,
into a well-to-do family. At the age of seven-
teen he entered the Ecole Polytechnique to
become an engineer. During his time as an
engineer, he had ample opportunity to carry
out his mathematical research and to write
most of his 120 papers. He retired as an
engineer in 1885. From 1873 until 1912 he
taught at the Ecole Polytechnique and the
Collége de France.

Jordan was a universal mathematician.
He published papers in all branches of math-
ematics of his time. In analysis, he orig-
inated the concept of a bounded function.
In topology, he showed that a plane can be decomposed into two regions by a simple
closed curve.

Primarily, Jordan was an algebraist. He became famous at the age of 30 and for
the next 40 years he was considered the master of group theory. He was the first to
develop the theory of finite groups and its applications in the direction of Galois. He
originated the concept of composition series and proved the first half of the famous
Jordan-Holder theorem. He studied solvable groups in a very general sense. In 1870, he
collected all his results on permutation groups for the previous ten years in Traité des
substitutions. His Traité des substitutions became a bible in all areas of group theory.
Jordan’s deepest results in algebra were his finiteness theorems. He was joined by
Felix Klein and Sophus Lie in the study of groups of movements in three-dimensional
space.

His Course d’analyse, published in the early 1880s, had a great influence on math-
ematics and set the standard for rigor. In this book, he showed how multiple integrals
can be evaluated by successive integrations.

In his study of solvable groups, he made extensive use of concepts such as normal
subgroup, homomorphic images of a group, and quotient groups. He was the first one
to use the term “simple group.”

He died on January 22, 1921.
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Otto Ludwig Holder (1859-1937)
was born on December 22, 1859, in Stutt-
gart, Germany. His father was a professor of
French. He received his early education in
Stuttgart. On a colleague’s suggestion, his
father sent him to Berlin in 1877. At that
time, Weierstrass, Kronecker and Kummer
were teaching there.

In his dissertation, presented in 1882,
Holder developed the continuity condition
for volume density that bears his name. He
gave the first complete general proof of Weier-
strass’s theorem and also examined the con-
vergence of the Fourier series of a function, which was not assumed to be either con-
tinuous or bounded.

After receiving his doctorate, Holder attended Kronecker’s and Klein’s seminar and
became interested in group theory. He completed the proof of the so-called Jordan-
Holder theorem on composition series by showing the uniqueness of the factor group,
which is now a fundamental concept in group theory. He also studied simple groups.
Other than the known simple groups of order 60 and 168, he showed that there is no
other simple group of composite order less that 200. He also investigated the structure
of groups of orders p?, pqg?, pgr, p?, and n, where p, ¢, are primes and n is a square

free integer. He also worked on geometry and number theory. Holder died on August
29, 1937.




Chapter 9

Finitely Generated Abelian
Groups

The second source in the evolution of group theory, namely, number theory,
led to the specialized theory of Abelian groups.

In this chapter, we determine the structural properties of finite Abelian
groups and finitely generated Abelian groups. In Section 4.2, it was shown
that every cyclic group is Abelian. In Section 5.1, it was proved that any two
finite cyclic groups of the same order are isomorphic and thus for any positive
integer n, Z, is the only cyclic group of order n (up to isomorphism). That
an infinite cyclic group is isomorphic to Z was shown in Section 5.1. Hence,
all cyclic groups have been determined. In this chapter, it is proved that
any finitely generated (and hence any finite) Abelian group can be expressed
as a direct sum of cyclic groups. Thus, the structural properties of a finitely
generated (finite) Abelian group can be determined from those of cyclic groups.

In this chapter, we use additive notation for the group operation. 0 will
denote the identity element and —a will denote the inverse of an element a.
The direct product (internal or external) G x H of groups (subgroups) will be
written as G @ H and called the direct sum of G and H.

Let G be an Abelian group. By Theorem 6.1.4, GG is the direct sum of
subgroups G1,Gs, ...,G, if and only if

()G=G1+Go+ -+ G, (ie,forallge G, g=g1+ g2+ -+ gn for
some ¢; € G;, i =1,2,...,n) and

(11) Gilﬁl(Gl—f—'“‘f‘Gi_] + Gyl +"'+Gn) = {0} foralli=1,2,...,n.

If G is a direct sum of subgroups G1,Go,...,Gp, then we write

G=G18Gr®-- @G

HG=GiDG:®-- &G and G; ~ H;, where H, is a group, : = 1,2,...,n,
then
G HIOHy®--- O Hr.
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9.1 Finite Abelian Groups

Given a positive integer n, the cyclic groups of order n have been completely
determined. We can determine the subgroups, homomorphic images, and gen-
erators of such groups. Now every cyclic group is Abelian, but not conversely.
Given any positive integer n, what can we say about an Abelian group of order
n? How many different Abelian groups of a given order are there? What can
we say about the subgroups of such groups? In this section, we attempt to
answer such questions. The main theorem of this section is that every finite
Abelian group is a finite direct sum of a finite number of cyclic p-groups. We
will use this theorem to answer some of the above questions. We begin with
the following definition.

Let G be an Abelian group and A be a subgroup of G. Then A is called a
direct summand of G if there exists a subgroup B of G such that

G=A&B.
We leave the proof of the following theorem as an exercise.

Theorem 9.1.1 Let G be an Abelian group. Let r € Z and p be a prime.

(i) Let G[r] = {g € G | rg = 0}. Then Gir] is a subgroup of G.

(ii) Let rG = {rg | g € G}. Then rG is a subgroup of G.

(111) Let G(p) = {g € G | g is of order p* for some s > 0}. Then G(p) is a
subgroup of G.

(iv) G/G[r] ~rG. B

Definition 9.1.2 The subgroup G(p) of Theorem 9.1.1 is called a p-primary
component of G.

Let G be a finite Abelian group of order p' for some [ € N. Since the order

of each element of G divides the order of GG, the order of each element is p” for
some 7, 0 < 7 < I. Therefore, there exists a € G such that o(a) > o(b) for all
b € G. Hence, the corresponding cyclic subgroup {a) is of maximal order in G.
In the next theorem, we show that {a) is a direct summand of G.
Theorem 9.1.3 Let G be o finite Abelian group of order p* for some l € N,
p a prime. Let a € G be such that o(a) = p* is the largest in G. Then (a)
is a direct summand of G, i.e., there ezists a subgroup B of G such that G =
(a) & B.

Proof. Let 0# z € G. Since |G| = p!, o(z) = p* for some positive integer ¢.
Also, o(a) > o(z) and so t < k. Therefore, pfz = 0 for all z € G. Let

C = {B | B is a subgroup of G and {a) N B = {0}}.
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Since {0} € C, C # ¢. Also, C contains only a finite number of subgroups.
Hence, C has a maximal element, say, B. We show that G = {a) ® B. Suppose
there exists ¢ € G such that g ¢ (a) ® B. Since p*g = 0 € (a) @ B, there exists
a positive integer s such that p°g € {(a) @ B. Let n be the smallest positive
integer such that p"g € (a) ® B, i.e., p"g € {(a) & B, but p"~lg ¢ (a) ® B.
Write d = p"!g. Then d ¢ (a) ® B and pd € (a) ® B. Now pd = ta + b
for some ¢t € Z and b € B. Therefore, 0 = p*~1pd = p*~lta 4+ p*~1b. Thus,
pF~ta = —p*~1b € {a) N B and so p*~ta = 0. Then o(a) = p* must divide
p* 't and so p|t. Let t = pr and @’ = ra € {a). Then pd = pa’ +bor p(d—a') =
b € B. erte:r = d—a Then £ = d—a/ = d —ra ¢ B and this shows
that {(a) N (B, z) # {0} Hence, there exist m,s € Z and b, € B such that
D%Zma— b1 + sz. Ifgcd(p, s) # 1, then s = pq for some ¢ € Z. Since pz € B,
ma = by + ¢(pz) € B, which contradicts the fact that {a) N B = {0}. Therefore,
ged(p, s) = 1, which implies that there exist u,v € Z such that 1 = us + vp.
Thus, z = u(sz)+v(pz) = u(ma—>by)+v(pz) = uma+{(—uby+v(pz)) € (a)®B,
ie,d—a' =z € (a)® B. But thend = d—a +a’ € {a) ® B, which is a
contradiction since d ¢ (a) ® B. Hence, G = (a) ® B. R

Example 9.1.4 Let G be a noncyclic group of order p?. Since |G| = p?, G is
Abelian. By Cauchy’s theorem, there exists a € G such that o(a) = p. Since G
is not cyclic, G does not contain any element of order p?. Therefore, o(a) is
the largest in G. Thus, there exists a subgroup B of G such that

G = (a) & B.

Since |G| = |{a)| - |B|, it follows that |B| = p. This shows thet B is a cyclic
group of order p and {(a} =~ Zp, = B. Hence,

G~Z,®ZL,.

In the next theorem, we prove that any nontrivial Abelian p-group can be
expressed uniquely as a direct sum of nontrivial cyclic p-groups.

Theorem 9.1.5 Let G be a finite Abelian p-group, p a prime. Then G is
a direct sum of cyclic p-groups. Furthermore, if G = G ® G2 & --- & G,
= H & H®--- & H,, where G; and H; are cyclic p-groups, |G1| 2 |G| 2

-2 |Gyl > 1, and |Hy| 2 [Ho| 2 --- 2 |Hs| > 1, thenm = s and G; ~ H;,
1< <

Proof. Let |G| = p". We prove the result by induction on n. If n = 1, then
G is a cyclic group of order p and so in this case the result is trivially true.
Suppose the result is true for all p-groups of order less than the order of G.
Let a € G be such that o{a) is the largest in G. Then by Theorem 9.1.3, there
exists a subgroup B of G such that G = {a} & B. Now B is a p-group and
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|B| < |G| . Therefore, by the induction hypothesis, B is a direct sum of cyclic
p-groups and therefore G is a direct sum of cyclic p-groups. We now prove the
uniqueness part.

We first note that G[p] and G;[p] are subgroups of G and Gj, respectively.
Let @ € G[p|. Then a = a3 +az + - - + a, for some a; € Gi, 1 <1 < r. Now
pai + pas + - --+ par = pa = 0. Hence, pa; =0 for all 1 <7 < r. Thus, a; €
G;[p] for all 1 <4 < r. Therefore, Glp] = Gi[p]® G2[p]®-- - & Gr[p]. Since G;[p]
is a cyclic group such that every nonidentity element is of order p, |G;[pl| = p
for all 1 <14 <. Thus,

IGlpll = |G1[P |Galp]| - - - 1Grlp]| = P

By a similar argument, |G[p]| = p° since G = Hi @ Ho®- - - & H,. Thus, p" = p°
and so r = s. Now since cyclic groups of the same order are isomorphic, in order
to show that G; ~ H;, 1 <1 < r, it suffices to show that |G| = |H;|,1 <i <7
We prove this by induction on n. If n = 1, then the result is trivially true.
Suppose that the result is true for all p-groups of order less than p”, where
n > 1. By Theorem 9.1.1(iv), G;/G;lp] = pG;. Since G; is cyclic, G;[p] is cyclic.
Also, since every nonidentity element of G;[p] is of order p, |G;[p]| = p. Thus,
|pGi| = %] < |G;|. This implies that pG, = {0} if and only if |G;| = p. Now
if pG; = fO}, then pG; = {0} for all : <! < r. Thus, pG = pG1® + -+ ® pGom,
where m < 7, pG; # {0}, 1 <i < m, and pG; = {0}, m +1 < < 7. Similarly,
pG =pH, ® - ® pH;, where t <7, pH, # {0},1 <! <t and pH; = {0} for
allt+1 <! <7 Since [pG| < |G|, m =t and |pG;| = |pH| for all 1 <i<m,
by the induction hypothesis, and therefore |G;| = |H;| for all 1 < ¢ < m.
Also, |G;| = p = |H;| for all m + 1 < ¢ < r. Consequently, |G;| = |H;| for all
1<:<r. B

Example 9.1.6 Let G be an Abelian group of order 8. Since 8 =23, G is a
2-group. There exists a € G such that o(a) is the largest in G. By Cauchy’s
theorem, G has an element of order 2. Thus, o{a) > 2 and so o{a) =2, 4 or
8. If o(a) = 8, then G ~ Zg. If o(a) = 4, then G ~ Z4 ® Z3. Now suppose that
o(a) = 2. By Theorem 9.1.3, there exists a subgroup B of G such that

G = {a) ® B.

Then |B| = 4 = 22, proving that B is a 2-group. Since o(a) is the largest in G,
B has no element of order 4. Thus, B ~ Zy ® Zy. Hence,

GZo®Zo® 7o,

Now Zg has an element of order 8, Z4 ® Zq has no element of order 8, but has
an element of order 4 and Zio ® Zo ® Zo has no element of order 4 or 8. Thus,
Zg, Zy ® Zo and Zy & Zo & Zo are nonisomorphic groups. Hence, there are
exactly three (up to isomorphism) Abelian groups of order 8.
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The next theorem is called the fundamental theorem of finite Abelian
groups.

Theorem 9.1.7 Let G be a finite Abelian group. Then G is a direct sum of
cyclic p-groups. Furthermore, any two decompositions of G as a direct sum
of nontrivial cyclic p-groups are the same except for the order in which the
summands are arranged.

Proof.  If |G| = 1, then the result follows easily. We now assume that
|G| > 1. Let |G| = p{*p32 - p[", where the p;’s are distinct primes and the
n;'s are positive integers. By Theorem 7.3.5, G has a Sylow p;-subgroup, say,
G; foralli=1,2,...,l. Since G is Abelian, G; is a normal subgroup of G and
hence G; is unique for all ¢ = 1,2,...,l. From Worked-Out Exercise 7 (page
208), it follows that G is the internal direct sum of G, ¢ = 1,2,...,. However,
since we are using additive notation, we give details of the proof for the sake
of completeness.

Now |G| = p for all i = 1,2, ..., . Hence, G; N G; = {0} for all ¢ # j.
We now show that

GiN(Gi+ - +Gis1+ G+ +G) = {0}

forallz =1,2,..., L. Suppose a € G; N (G1 + -+ + Gic1 + Gi1 + -+ + Gy).
Thena€ G;anda € G1+ -+ Gi_1 + Giy1 + - -+ + G;. Hence,

a=ay+--+a-1+a41+-+a

where the a; € G;. Now for all j # %, o(a;) = p'9 for some 7;, 0 <75 < n;. Let

— T il Titl |, T
T=P1 Pic1 P B -

Then ra = 0. Thus, o(a) divides r. Since a € G;, o{a) divides p}*. But r and
pr are relatively prime. Therefore, o(a) = 1. This implies that a = 0. Hence,

GiN(Gr+- -+ Gi1+ G +---+G) ={0}.
From this, it follows that
|G1+ -+ Gil =G |Gl = pi"P2" 7" = |Gl

Thus,
G=G12Gsd--- DG

Now each G; is an Abelian p-group. Hence, by Theorem 9.1.5, G; is a direct
sum of cyclic p-groups, whence G is a direct sum of cyclic p-groups.

We now prove the uniqueness of the direct summands. We prove the result
by induction on I, the number of distinct primes in the factorization of |G|. Ii
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! =1, then G is a p-group and the result is true by Theorem 9.1.5. Suppose
the result is true for all nonzero finite Abelian groups H such that the number
of distinct primes in the factorization of |H| is less than .
Let
G=G10G2®&--08G,=HioH®--- O H;

be two decompositions of G as a direct sum of nontrivial cyclic p-groups. Since
for groups A® B ~ B@ A, we may assume by rearranging if necessary that the
summands G1,Gs,...,Gm and Hy, Ho, ..., H; (m < r, s < t)are the cyclic p-
groups for the prime pj, the groups Gp+1,...,Gr and Hy, ..., Hy are cyclic
p-groups for the primes p different from py, |Gi| > |G| > --- > |G|, and
|Hy| > |Ha| > 2 |Hs| . Let A= G19G2®---®Gp, B=H o H,&---® H,,
C=Gm1® -G, a.ndD=H3+1®---€BHt. Then

G=ApC=BoD.

We now show that A = B. First note that the order of a nonzero element of
A and the order of a nonzero element of C are relatively prime. Similarly, the
order of a nonzero element of B and the order of a nonzero element of D are
relatively prime. Let a € A, a # 0. Then e € G = B® D. Thus, a = b+d for
some b € Band d € D. If a — b # 0, then the order of a — b is some positive
multiple of p; whereas the order of d is different from any positive multiple of
p1. Therefore, we have a contradiction and soa —b =0 or a = b € B. This
implies that A C B. Similarly, B C A and so A = B. A similar argument
shows that ¢ = D. Now A = B is a p-group and hence by Theorem 9.1.5,
m=sand G; ~ H;,1 = 1,2,...,m. Now C = D is an Abelian group of
order p5?---p;*. Hence, by the induction hypothesis, it follows that the two
decompositions Gpme1 € --- D G, and Hyyq @ - - - @ H; of the group C are the
same except for the order in which the summands are arranged. Consequently,
the above two decompositions of G are also the same except for the order in
which the summands are arranged. B

From Theorem 9.1.7, it follows that for any finite Abelian group G # {0}

there is a list of positive integers pi*,p3?,...,pp*, which are unique except
for their order, where p1,p2,..., Pk are primes (not necessarily distinct) and
ni,Na,...,NE are positive integers such that

G=Zyr ®Z,m @---Eézp:k-
The numbers p7'!, p3?, ..., pp* are called the elementary divisors of G.
Example 9.1.8 Let G be the group Zy D Zg & Zg. Now
CGoZyp ®LsDZy D22 >ZoBZo2 D Z3D Zao.

Hence, the elementary divisors of G are 2,22,3,32.
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In Section 7.2, we proved by using Cauchy’s theorem that the converse of
Lagrange’s theorem holds for finite Abelian groups. Next, we prove the same
result by using the results developed in this chapter.

Corollary 9.1.9 If G is a finite Abelian group of order n and m is a positive
divisor of n, then G has a subgroup of order m.

Proof. Ifn =1, thenm =1 and {e} is the subgroup of order m. Suppose
n > 1. By Theorem 9.1.7, there exist prime integers p;, ps, ..., pr and positive
ntegers ny,ns,. .., " such that G ~ prlu & Zp;zz D Zp:k. This implies
“hat no= p}'p5? - p*. Since m|n, there exist integers 0 < m; < n;, ¢ = 1,2,

. k such that m = p’i”l P32 ---py*. Since p; " |pl* for all i, by Theorem 4.2.10,
“ne cychc group Z »; has a unique subgroup G; of order p 7% for all 7. Thus,

G- +Got-- +G’k—G1EBG2€B @kaasubgrouponmEBan@ EBZ'%

of order pi™p52---p* = m. From this, it follows that G has a subgroup of
order m. W

Let G be a finite Abelian group of order n = p*pl?---pp*, where the
p;'s are distinct primes and the n;’s are nonnegative integers. Consider the
subgroup G; (as defined in the proof of Theorem 9.1.7). Now |G;| = p*. From
this, it follows that G; C G(p;). Thus, |G(p;)| = pI*. Since G(p;) is a pt group,
‘G(p;)| = pt for some integer ¢. Hence, t > n;. Suppose t > n;. By Lagrange’s
theorem, |G(p;)| divides |G| . This implies that p}| p7*p3? - - - pp*, which in turn
implies that pi~™{ p}* - P P! -+ - pr*, a contradiction, since the p;’s are
distinct primes. Hence, ¢ = n; and so G; = G(p;). From this, we conclude that
G is a direct sum of its p-primary components.

Consider the cyclic group Z,,. There exist distinct primes py,p2, ..., pr and

ni, ng

positive integers nj,ngy,...,nx such that n = pl'ps?---pr*. For p = p;, the
p-primary component of Zn is Z . Hence, it follows that

Zn pld Zp?l @ Z,p;-g @ e @ Zp:k-

Example 9.1.10 (i) Let G = Z1. Now 12 = 22 .3 and so by the previous
paragraph, G ~ Zyx & Z3g = Z4 2 Z3. Now G(2) ~ Z4 and G(3) ~ Z3. Hence,
the primary components are Zs and Zs.

(1) Let G = Z1o ®Z13 D Zgo. Now 12 =22-3,18 = 2-32%, and 60 = 2%-3-5,
Thus,

G Zio @ 213 @ Zeo
(Z4023)® (229 Zo) B (2,0 Z3 © Zs)

(Zs®Z,0Z3) B (Zo®Z3DZ3) B Zs.

This implies that G(2) 2 Z, B Zy S Zy, G(3) = Zg & Z3 & Z3, and G(5) ~ Zs.
Hence, the primary components are Z4 ® L4 ® Z2, Zo $ 23 P Z3, and Zs.

12 12
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Definition 9.1.11 Let G be a finite Abelian p-group of order p™ (n > 0).
IfG =G Gy @ - ® Gy, where each G; is a cyclic group of order p™
with ny > ng > -+ > ng > 0, then the integers ny,ng,...,n, are colled the
tnvariants of G and the k-tuple (n1,n2, ...,nx) is called the type of G.

We know that any two cyclic groups of the same order are isomorphic.
However, this result does not hold for Abelian groups. For example, Zg and
Z.4DZ4 are nonisomorphic Abelian groups of order 8 = 23. In the next theorem,
we obtain a necessary and sufficient condition for two finite Abelian p-groups
of the same order to be isomorphic.

Theorem 9.1.12 Two Abelian p-groups of order p™ (n > 0) are isomorphic if
and only if they have the same tnvariants.

Proof. Let G and H be two Abelian p-groups of order p™ (n > 0). Suppose G
and H have the same invariants ni,ns, ...,nk, where ny > ng > --- > ng > 0.
Then G = G1 @ Go2 @ -+ ® Gy, where each G; is a cyclic group of order
p*, 1 <1 <k, and H = H & Hy & --- & Hy, where each H; is a cyclic
group of order p™, 1 < ¢ < k. Since cyclic groups of the same order are
isomorphic, G; ~ H;, 1 <1t < k. Hence, G ~ H. Conversely, suppose G ~ H.
Let G = G1® G @ --- ® Gg, where each G; is a cyclic group of order p™,
1<i<kn >2n>--2>n.>0and H=H & HyD--- D H;, where
each H; is a cyclic group of order p™, 1 < j <¢t,r > rp 2> -+ > 1y > 0. Let
f : G — H be an isomorphism of groups. Then f!(H;) is a cyclic subgroup
of G of order p™ and also G = f~(H1)® f~1(H2) ®--- & f~1(H;). Hence, by
Theorem 9.1.5, it follows that t = k and p"™ = |f~1(H;)| =p™,1<i<k. B

Example 9.1.13 Z,® Zy and Zo D Z> ® Zo are 2-groups of order 23. Now the
invariants of Zg @ Zy are 2, 1 and the invariants of Zo @ Zo & Z2 are 1, 1, 1.
Hence, Z4 ® 2o and Zs ® Zy ® Zo are nontsomorphic groups.

Let n be a positive integer. A partition of n is an s-tuple (n1,ns,...,n;)
of positive integers such that n=n1+n2+---+nsand ny > ng > --- > n,.

We find that any finite Abelian p-group G of order p™ (n > 0) can be
decomposed uniquely as G = G; & G2 & - -- ® G, where each G; is a cyclic
group of order p™, 1 < ¢ < k,and n; > ny > --- > ng > 0. It is also true
that n = ny + ng + -+ - + ng. Therefore, ny,n9,...,n determine a partition of
n. Next, let n = ny +ny + -+ + ng, where each n; is a positive integer and
n1 > ng > - Zng Then G =Zpny Zpra @+ @ Zyne is an Abelian p-group
of order p™ttn2t+nk — p™ guch that the invariants of G are nj, na,...,ny.
It now follows that the number of nonisomorphic Abelian p-groups of order p*
(n > 0) is equal to the number of partitions of n.
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Example 9.1.14 Let p = 2 and n = 4. In this example, we want to describe
all Abelian groups of order 2. Now 1+1+1+1,2+1+1, 3+ 1, 2+ 2, and
4 are all the partitions of 4. Thus, there are five nonisomorphic Abelian groups
of order 2*. They are

VAT

Zs D Zo

Zs DLy

ZsDZy D Zo

Zy®Z; D7y @ Zo.

9.1.1 Worked-Out Exercises

¢ Exercise 1 Describe all Abelian groups of order 25,

Solution: 5=14+14+14+14+1=2+4+14141=3+1+1=4+41=
3+2 =242+ 1. Thus, there are seven partitions of 5 and so there exist seven
nonisomorphic 2-groups of order 2°. They are

VAY

Zis ®Zo

Zs ®Zy

Zs ® 2y ®Zy

Z, DLy D7y

Zy, D72y Ly ®Zy

2o PLoBZo DLy D75

¢ Exercise 2 Find all Abelian groups of order 20.

Solution: Let G be an Abelian group of order 20. Now 20 = 22.5, By
Theorem 7.3.5, G has a Sylow 5-subgroup, say, G(5) and a Sylow 2-subgroup,
say, G(2). Since G is Abelian, G(2) and G(5) are normal subgroups of G and
hence are unique. Now G(2) N G(5) = {0}. This implies that |G(2) + G(5)| =
|G(2)] - |G(5)| =4-5=20. Thus, @ = G(2) + G(5). Hence, G = G(2) ® G(5).
Now G(5) ~ Zs. Since |G(2)| = 4 = 22, either G(2) =~ Z4 or G(2) ~ Zy & Zs.
Therefore, either G ~ Zs & Z4 or G ~ Z5 ® Zo & Zs. Thus, there are two
Abelian groups of order 20 (up to isomorphism).

¢ Exercise 3 Find all Abelian groups of order 63, which contain an element
of order 21.

Solution: Let G be an Abelian group of order 63 = 32 - 7. Then G =
G(3)® G(T), where G(3) is a 3-group of order 32 and G(7) is a 7-group of order
7. Now 2 = 1 + 1 shows that either G(3) =~ Z3» or G(3) =~ Z3 ® Z3. Hence,
Zo ® Z; and Z3 @ Z3 @ Z+ are the only two nonisomorphic Abelian groups of
order 63. Now in Zg@®Z~, ([3], [1]) is an element of order 21 and in Z3;® Z3 B Z+,
([0], [1], [1]) is an element of order 21.



9.1. FINITE ABELIAN GROUPS 256

¢ Exercise 4 Find all Abelian groups of order 360.

Solution: Let G be an Abelian group of order 360 = 23.32-5. Now G has
a unique Sylow 2-subgroup, say, G(2), a unique Sylow 3-subgroup, say, G(3),
and a unique Sylow 5-subgroup, say, G(5). Thus, G = G(2) ® G(3) ® G(5) and
IG(2)| = 23, |G(3)] = 3%, and |G(5)| =5. Now 3 =1+14+1=2+1and so
there are three partitions of 3. This implies that there are three nonisomorphic
Abelian groups of order 23. Hence,

G(g) ~ Zsg or G(2) ~ 2y B Zn or G(?) ~ Zio © Zio @ Zo.
Similarly, since 2 = 1 + 1, there are two partitions of 2. Therefore,
either G(3) ~Zg or G(3) ~Z3 ® Z3.

Since |G(5)| = 5,
G(5) ~ Zs.

Hence, G is isomorphic to one of the following groups

Zs & Zy & Zs

Ly DLy Zo® Ds

2y RZo®ZrDZo®Zs

Zs B L3 DL B Zs

Z4BZy DZ3DZ3DZs
Zg@ZQEBZQEBZ;;@Zg@Zs.

None of these groups is isomorphic to each other. Consequently, there are six
Abelian groups of order 360 (up to isomorphism).

¢ Exercise 5 Find the elementary divisors of the group Zsy @ Zg & Zsg.

Solution: Let G = Zyg @ Zs © Z5p. Then

G Zoo B Zg ® Zso
(Zs D Zy) B Zs B (Zos B Zo)
Zs @ Zo>» @ Zos @ Zs2 D 2o

Zo @D Zy> DZos @ Zs ® Zg2.

1Rl

Hence, the elementary divisors are 2,22 23 5 52,

> Exercise 6 Let G and H be finite Abelian groups.

(i) Let f : G — H be a homomorphism. Show that f(G(p)) C H(p) for
all primes p.

(ii) Prove that G ~ H if and only if G(p) ~ H(p) for all primes p.



9.1. FINITE ABELIAN GROUPS 257

Solution: (i) Let a € G(p). Then p*a = 0 for some k > 0. Thus, 0 =
f(p*a) = p* f(a). Hence, f(a) € H(p). Thus, f(G(p)) C H(p).

(ii) Suppose G ~ H and let f : G — H be the isomorphism of & onto
H. Let p be a prime and o = f|g(p), i-e., a is the restriction of f to G(p).
By (i), @ : G(p) — H(p). Clearly a is a monomorphism. Let A € H(p).
There exists a € G such that f(a) = h. Also, p*h = 0 for some k > 0.
This implies that f(p¥a) = p*f(a) = p*h = 0, which in turn implies that
p*a = 0 since f is one-one. Hence, a € G(p) and so h = f(a) = afa). Thus, o
is an isomorphism of G(p) onto H(p), proving that G(p) ~ H(p). Conversely,
suppose that G(p) ~ H(p) for all primes p. Let G = G(p1)®G(p2)®- - - BG(pr)
and H = H(p1) @ H(pz2) ® --- ® H(pg). Then G(p;) =~ H(p;) for all ¢. Let
fi : G(p;) — H(p;) be an isomorphism of G{p;) onto H(p;). Define f : G — H
by f(g1+ga+-+gx) = fi{g1)+ fa(g2)+- - -+ fe(gx). Then f is an isomorphism
of G onto H. Hence, G >~ H.

9.1.2 Exercises

1. Let G be an Abelian group of order pg, where p and g are distinct primes.
Show that G ~ Z, ® Z,.

2. Find all Abelian groups of orders 9, 16, 27, and 32.

3. Find all Abelian groups of orders 15 and 21.

4. Find all Abelian groups of orders 60, 80, 240, and 540.

5. Prove that if G is an Abelian group of order 3-7- 11, then G is cyclic.

6. Find the elementary divisors of the following groups.
(1) Z12 ® Z144 D Zs.
(ii) Z10 @ Zs3o & Z120-

7. Let A, B, and C be finite Abelian groups such that A B ~ A @ C.
Prove that B ~ C.

8. Let G be an Abelian group such that G = G; & G2, where G1 and G»
are subgroups of G. Suppose that G = H; & H», where H; is a subgroup
of G;, 2 =1,2. Prove that H;, = G;,1=1,2.

9. Determine all Abelian groups of order p?, where p is a prime.
10. Find all Abelian groups of order p®q?, where p and ¢ are distinct primes.

11. Find all Abelian groups of order 72 which contain exactly three subgroups
of order 2.
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12. Prove that an Abelian group of order 8 is cyclic if and only if it has only
one subgroup of order 2.

13. Prove that a finite Abelian group is cyclic if and only if all of its Sylow
subgroups are cyclic.

14. Prove that a finite Abelian group of order n is cyclic if n is not divisible
by p? for any prime p.

15. Find the number of elements of order 3 in a finite Abelian group of order
120.

16. Show that every Abelian group of order 28 has an elernent of order 14.
17. Find all Abelian groups of order 81 that have an element of order 27.

18. Which of the following statements are true? Justify your answer.
(i) There is only one (up to isomorphism) Abelian group of order 35.
(i) The groups Zs @ Z3 & Zs @ Z3 and Zs & Zs @ Zg are isomorphic.

(iii) The number of nonisomorphic Abelian groups of order 34 is the same
as the number of nonisomorphic Abelian groups of order 74.

9.2 Finitely Generated Abelian Groups

A finite direct sum of cyclic groups need not be a cyclic group. For example,
Zo ® Zg B Z is not a cyclic group. This group has elements of finite as well as
of infinite orders. However, it is an Abelian group. Now

([1],[0],0), ([0}, (1], 0), ([0, [0}, 1) €« Zo ® Zs ® Z

and any element of this group can be expressed as
nl([l]n [Ola 0) + RQ([O]? [1] ’ 0) + n3([0]? [OL 1)

for some integers ny, no, n3. A group of this kind is called a finitely generated
Abelian group and is the subject of this section. Since a finite Abelian group
has only finitely many elements. a finite Abelian group is obviously a finitely
generated Abelian group. The main objective of this section is to give a com-
plete description (up to isomorphism) of all possible types of finitely generated
Abelian groups.

Definition 9.2.1 A group G is called finitely generated if there exists o
finite nonempty set X C G such that G = (X). In this case, we call X a
generating set for G.
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Let G be a finitely generated Abelian group generated by X, where X =
{ai,az,..., ar}. Then G = {nia1 +nopas + -+ ngax | s €4, 1 <i <k},

Definition 9.2.2 Let G be an Abelian group. Let X = {a1,a9,...,ar} be a
finite nonempty subset of G. X is called a basis for G if G = (X) and for all
n €Z,1<i<k, ma+nsas+---+nrar =0 itmplies thatn; =0,1 < <k
(i.e., X is linearly independent).

An Abelian group G is called a finitely generated free Abelian group
if G has a finite basis.

Theorem 9.2.3 Let G be an Abelian group. Then the following conditions are
equivalent.

(i) G has a finite basis.

(ii) G tis the finite (internal) direct sum of a family of infinite cyclic sub-
groups.

(i1i) G is isomorphic to a finite direct sum of finite copies of Z.

Proof. (i)=(ii): Let X = {@1,a2,...,ar} be a basis of G. Let na; = 0 for
some n € Z. Then Oa; + -+ + na; + - - - 4+ 0ax, = 0. Hence, n = 0. This implies
that a; is of infinite order and {a;) is an infinite cyclic group, 1 <: < k. It is
easy to verify that G = (a1} & --- & (ax) .

(ii)=(iii): Let G = G1 & -- - ® Gk, where G; is an infinite cyclic subgroup
of G,1 <4<k . ThenG; ~Z,1<i<k Hence, G2ZH---DZ.

(iii)=(i): Suppose G ~ Z @ --- § Z is a finite direct sum of k copies of
7. Let Z*) denote Z® - D Z and f : G — Z* be an isomorphism. Let
u; = (0,...,0,1,0,...,0) € Z*) with the ith component 1, 1 <4 < k. Then
since f is onto Z*), there exists a; € G such that f(a;) = u;, 1 <¢ < k. Now
it is easy to verify that X = {a1,as,...,ar} is a basis of G. B

From the above theorem, it follows that in a finitely generated free Abelian
group every nonzero element is of infinite order and that a finite Abelian group,
though finitely generated, cannot be a finitely generated free Abelian group.
Also, from the above theorem, we can draw an interesting conclusion that for
every positive integer n, there exists a finitely generated free Abelian group
with a basis consisting of n elements.

Consider the finitely generated free Abelian group Z&Z. Now {(1,0),(0,1)}
and {(—1,0), (0, —1)} are two different bases of Z&Z. Thus, a finitely generated
free Abelian group may have more than one basis. However, the number of
elements in each basis is the same as proved in the next theorem.

Theorem 9.2.4 Let F be a finitely generated free Abelian group. Then any
two bases of F have the same number of elements.
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Proof. Let X = {ay,a9,...,0,} and Y = {b1,b3,...,b.} be two bases of
F. Then F~Z&---®Z is a finite direct sum of k copies of Z. Now 2F is a
subgroup of F' and 2F ~ 2Z & - - - ¢ 2Z. Hence,

F % % _Z
OF ~2Z ~ 2Z 297

k summands

This implies that |F/2F| = 2%, Similarly, since Y is a basis of F, |F/2F| =2".
Thus, 2* =2" andsok=7. 1

Let F be a finitely generated free Abelian group. The number of elements
in a basis of F, which is unique by Theorem 9.2.4, is called the rank of F.

Theorem 9.2.5 FEuvery finitely generated Abelian group is a homomorphic im-
age of a finitely generated free Abelian group.

Proof. Let G be a finitely generated Abelian group generated by X =
{01,a2,...,a;}. Let F be a finitely generated free Abelian group of rank k and
let {z1,22,...,2x} be a basis for F. Define

f:F-@G

by
flnizy +noza + -+ + k) = nyag + noag + - - - + ngay

foralln; € 2,1 <i<k.Let n;,m; € Z, 1 <4 <k be such that nyzy +nozo +
s gz = mMuxy + Mmoo + - + mexk. Then (ng — my)z1 + (ne — mo)ze +
---+(nk—mk):rk = 0. Hence,n, —m; =0forall 1 <i <k and so n; = m; for
all 1 <7 < k. Thus, f is well defined. Also, f is an epimorphism and hence G
is a homomorphic image of F. H

Lemma 9.2.6 Let F = (z), ¢ € F, be a free Abelian group. Then for all
medd,m>0,

F/{mz) ~Z,,.
Proof. Define
f:F—2Z,
by
f(nz) = [n]
for all n € Z. Let nyx = noz. Then (n; — ng)z = 0 and so n; = ny. Hence,
[n1] = [ne]. Therefore, f is well defined. It is easy to verify that f is an epi-

morphism. Now nz € Ker f if and only if f(nz) = [0] if and only if [n] = [0] if
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and only if m|n if and only if n = ms for some s € Z if and only if nz = msz
for some s € Z if and only if nz € (mz). This implies that Ker f = (mz) |
Thus, F/ {mz) ~Z,,. R

The proof of the following lemma is straightforward and we leave it as an
exercise.

Lemma 9.2.7 Let F be o free Abelian group of rank k. Let {z1,20,..., 2} be
a basis of F andn € Z. Then for alli # 5,1 < i, < k, {z1,22,...,25_1,
T; + T4, Tipl,. .., Tk} 18 also a basis of F. A

Consider the group Z. Now Z is a free Abelian group of rank 1 and {1} isa
basis of Z. Every nonzero subgroup of Z is finitely generated and is generated
by n for some positive integer n. Hence, every nonzero subgroup of Z is also
free. We extend this result to any finitely generated free Abelian group in the
next theorem.

Theorem 9.2.8 Let F be a free Abelian group of rank k and H be a nonzero

subgroup of F. Then there exists o basis {z1,22,...,21} of F, an integer r
(1 £ r < k), and positive integers my, mo, ..., m, such that mi_1|ms, 2 <1< r
such that {miz1,maxs,...,m,z,} is o basis of H.

Proof. The proof is by induction on k. If k = 1, then F = (1) and since a
subgroup of a cyclic group is cyclic, H is cyclic. Clearly H = (miz1) for some
my > 0. Suppose now that the theorem is true for all free Abelian groups of
rank < k. Let

S = {me€Z|m>0 and there exists a basis {y1,...,yx} of F
such that myy + noys + -+ + ngyx € H, for some ny,...,n; € Z}.

Since H # {0}, § # ¢. Thus, S contains a smallest positive integer, say, m;.
This implies that there exists a basis {y;,y2, ...,¥x} of F such that miy +

naya+ - ++ngyi € H for some ng, ..., ny € Z. Also, for any basis {z1,22,..., 2}
of F, if 8121 + s220 + - + sz, € H for some sy, ...,5, € Z, 51 > 0, then
m1 < 81. Let A = myy +noys +- - -+ ngyx € H. Now by the division algorithm,

there exist g;,m; € Z such that
=g+, 0<r; <my, 1=2,3,...,k.

From this, it follows that A = my(y1 +goyo+- - +qey) +rays +- - 4+ 7,yk. Since
(y1+Qyo+- -+ @i, ¥2, - .., Yk} is a basis of F, we find that r, = 0,2<i<k,
oy the choice of m;. Hence, miz; = h € H, where 1 =y, + qoyp + -+ - QrYk-
wet K = (y2,...,4%). Then K is a free Abelian group of rank k& — 1 and
F'= (z1) ® K. We now claim that H = (m1z1) ® (HN K). Let @ € H. Then
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a =t1x1+toyn+- - -+try, for some t; € Z, 1 < ¢ < k. By the division algorithm,
there exist g1,71 € Z such that ¢} = ¢y + 71, 0 < r; < my. This implies that
Tz +toys + -+ tryr = a — qymyxy € H and so r; = 0 by the minimality of
my. Thus, toys + - -+ + tgyx € H. Therefore,

a = q(miz1) + toya + - - + treyx € (muz) + (H N K).
It now follows from F' = (z;) @ K that
H={mz1)® (HNK).

If HNn K = {0}, then H = (miz;} and the theorem is true. Suppose that
HnN K # {0}. Then H N K is a nonzero subgroup of the finitely gener-
ated free Abelian group K. Hence, by the induction hypothesis, there ex-
ists a basis {zg,...,zr} of K and positive integers r,mg,...,my such that
{moxs,...,myz,} is a basis of H N K and m;_)|m;, 3 < @ < r. Clearly
{z1,...,z¢} 18 a basis of F and {miz1,mez, ..., m,z,} is a basis of H.
It only remains to be shown that mi|m2. By the division algorithm, there exist
q,7 € Z such that ma = gm; +r, 0 <r < my. Now {x2,x1 +qgx2, 23,...,2%} i8
a basis of F' and rxo4mi{x] +qz9) = miz) +mezs +0mgzz+-- - +0myzy € H.
Thus, by the minimality of my, » = 0, proving that m|my. K.

The next theorem is called the fundamental theorem of finitely gen-
erated Abelian groups.

Theorem 9.2.9 Let G be a finitely generated nonzero Abelian group. Then G
s isomorphic to a finite direct sum of cyclic groups, where the finite summands
(if any) are of orders mi, ma, ..., my, m1 > 1, and m; divides mi41, 1 <1<
r—1.

Proof. Let G be generated by k elements. By Theorem 9.2.5, G is a
homomorphic image of a free Abelian group F of rank k. Let f : FF — G be a
homomorphism of F onto G. Then F/Ker f ~ G. If Ker f = {0}, then

GeFoZ® 7.
N,

k copies

Suppose now that Ker f # {0}. By Theorem 9.2.8, there exists a basis {z1, 72,
.,xx} of F, an integer (1 < r < k), and positive integers my, ma, ..., m,
such that m;_1|m;, 2 <i < r, and {myz1,..., m,z,} is a basis of Ker f. Now
F=(z1)® - ®{zx) and Ker f = (miz1}) ® - & (m,z,) . Hence,
G ~ F/Ker f il g - @ (2) @ - D (ak)

{mi1z1) {m,z,r

~ Dy D --EB‘Zm,,EBZEB--»GBZ.I

12

Recall that a group G is torsion free if and only if every nonidentity element
of (G is of infinite order.
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Theorem 9.2.10 A finitely generated Abelian group G # {0} is torsion free
if and only if G is a finitely generated free Abelian group.

Proof. Suppose that 7 is a finitely generated free Abelian group. Then
there exists a positive integer r such that

Gr20Ze --07Z.

T copies

Now every nonidentity element of Z&Z & - - - ®Z is of infinite order. Hence, G
is torsion free. Conversely, suppose that G is a finitely generated torsion free
Abelian group. Then by Theorem 9.2.9,

CroZm @ Oy ®ZD - BZL
S ——

& copies

for some positive integers mi,ms, ..., m, and a nonnegative integer s. If » # 0,
then Zy, @ - - ®Zm, D Z® - @ Z and so G contains a nonzero element of finite
N ——

s copies

order, which contradicts the hypothesis. Hence, r = 0. Thus, G ~Z & --- © Z,
\_\,—-—/

s copies

proving that G is a finitely generated free Abelian group. B
Theorem 9.2.11 Let G be an Abelian group. Let
T(G)={a € G| o(a) is finite}.

Then T(G) is a subgroup of G. Suppose G is finitely generated. If G/T(G) #
{0}, then G/T(G) is a finitely generated free Abelian group.

Proof. Clearly T(G) is a subgroup of G. It is also a simple exercise to show
that G/T(G) is finitely generated. Suppose G/T(G) # {0}. Let a + T(G) €
G/T(G). Now n(a + T(G)) = 0+ T(G) if and only if na € T(G) if and only
if m(na) = 0 for some positive integer m if and only if a € T(G) if and only
if @ + T(G) = 0+ T(G). Hence, G/T(G) is torsion free. By Theorem 9.2.10,
G/T(G) is a finitely generated free Abelian group. B

Definition 9.2.12 Let G be an Abelian group. The subgroup T'(G) in Theorem
9.2.11 is called the torsion subgroup of G.

Theorem 9.2.13 Let G be a finttely generated nonzero Abelian group. Let

CZm @ DLy ®ZD - BZ

r copies
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and
Gzzn1®"'®znq®z®"'®zg
T
$ copies
where m1 > 1, m; divides my11, 1 < i< k—1,n > 1, and n; divides n;4q,
1<i<qg—1 Thenk=gq,vr=3s, andm; =n;, 1 <z < k.

Proof. Let
G1=Zpn, @ PZLy PLD---DZ
\_—_-.v.._/
T Coples
and

Go=2p,® - L, DZD---DZ.
s copies
We first show that the torsion subgroup T'(G1) is isomorphic to Zp,, ®- - - D Zy,
and the torsion subgroup T(G3) of Gy is isomorphic to Zp, & -+ @ Zy,. Let
a € G1. There exists z; € Zm,;, i =1,2,...,kand y; € Z,j=1,2,...,7, such
that a can be written uniquely as

a= (xlaw%“‘1$ksylay2:“-syf)'

Let m’ € N. Then m/a = (m'z1,m'zs,...,m'zy, m'y1, m'y2, ..., m'y.). Since
y; € Z, we find that m'y; = 0 if and only if y; = 0. Again for m =
mimg -k, mx; = 0,1 = 1,2,...,k. Thus, it follows that o(a) is finite if
and only if y3 = y2 = - = y, = 0 and so T(G;) is the set of all elements
a=(z1,22,...,2,0,0,...,0) € G;. Consequently, T(G1) 2 Zp,, & - D Zny, .
Similarly, T(Gy) ~ Zn, ® -+ - ® Zp,,.

Next, let us show that k = gand m; = n;, 1 =1,2,..., k. Since for groups
Aand B,ApB~BpA, wefindthat Z,,,, &-- - ®Z,,, ¥Z1,, & BZy,,. For

convenience, let us write £y = my, ...ty =my, and set Gz =Z;, & --- D Z,,
where #; are positive integers, tx > 1 and t;11{t;, 2 = 1,2,...,k — 1. Similarly,
Zp, D DLy, ~ 2, @ --DZy,. For convenience, let us write ry =ny,...,7, =

n1 and set G4 = Zp, ® - ® Zyr,. For ¢ € G there exist z; € Z;; such that
z = (z1,...,zk). Now |Z¢| = #; and #|t1, ¢ = 1,2,..., k. Also, note that
tiz; =0,¢=1,2,...,k. Hence, tja = 0 for all a € G3. Again in Z; , there
exists an element z, of order ¢;, which implies that ¢ = {2,,0,...,0) is an
element of order #; in (G3. Similarly, we can show that G4 contains an element
b such that o(b) = r; and 71y = 0 for all y € G4. Since G3 ~ G4, there exists an
isomorphism, say, f : G3 — G4. Now o(f(a)) = #; and also r1 f(a) = 0. Thus,
t; < 7. A similar argument shows that r; < t; and so r; = ;. Suppose now
that ro = t9,...,75-1 = t;—1, but 7; # ¢;, where 1 < ¢ < min(k,q). Let #; < r;
and let K = {t;x | z € G3}. It can be shown that K is a subgroup of G3 and
if Zy, = (a;),i=1,2,...,k, then

K = (tia1) @ (tiaz) @ - -+ @ (tiax)



9.2. FINITELY GENERATED ABELIAN GROUPS 265

and hence
K| = ofa;) o(e2) ofay)
gcd(O(al) t:) gcd(O(az) ti) gcd(O(ak) t:)
= £gcctl(zl tg)tgcd(ig,tz) Eftid(tklt Q) (9.1)
= k... Zlf:f:_l i (since t;pqlt;,1=1,2,...,k—1)
triz | L
ti ¢ t;

Now f(K) ={t:f(z) | z € G3}. f Z,, = (b;), 7 =1,2,...,q, then

SOK) = (t:ib1) ® (tib2) & - -- D (L:by)

Hence,
o o(b1) o(b o(bg)
|f(K)| = gcd(o(bll) gcd(o((zfg)) 0 gcd(o((bq) ;)
Z gcd(rl D) gchm t?fz 1 ng(Tq.t ) ro (9.2)

gcd(t1 )  ged(tioi1,t:) g;cd(r2 ;j " ged(rq,t)
itz k-1 LA ..
t; ti t;  ged(rit;) gcd(rq,t )’

Since |K| = [f(K)}, it follows from Egs. (9.1) and (9.2) that
s o Tq _
ged(ry,t)  ged(rg,t;)

(9.3)

Since t; < 73, ged(ry, t;) < r; and hence —d(i——) > 1. Thus, we find that the
left-hand side of Eq. (9.3) is greater than 1, whereas the right-hand side of
Eq. (9.3) is 1. This is a contradiction. This contradiction implies that #; £ r;.
Similarly, r; £ ¢;. Hence, t; = r;. But G3 ~ G4 implies that |G3| = |G4| and so
fitg-- -t = 7172 - - - 7. Note that ¢; and =, are positive integers greater than 1.
Ifk <g,thent; =7;,i=1,2,...,kand hence 1 = iy - - - 74, which is not true.
So k «£ q. Similarly, g £ k. Consequently, k =qand t; =7, i=1,2,...,k.

Finally, let us show that r = s. From the assumption and from the above
proof, it follows that

| G~HoF~H®F,

where H is a finite direct sum of finite cyclic groups and F and F’ are finitely
generated free Abelian groups of rank 7 and s, respectively. The restriction
of the isomorphism G ~ H @& F maps T(G) onto H. Hence, G/T(G) ~ F,
which shows that G/T(G) is a finitely generated free Abelian group of rank
r. Similarly, G/T(G) ~ F' implies that G/T(G) is a finitely generated free
Abelian group of rank s. Thus, r = s. B

Corollary 9.2.14 Let G be o nonzero finite Abelian group. Then there exists
a unique list of positive integers (not necessarily distinct) mi, mo, ..., my such
thatmy > 1, myjmig1, 1= 1,2,...,k—1, and G~ Zp,, @ -+ D Zpy,.



9.2. FINITELY GENERATED ABELIAN GROUPS 266

Theorems 9.2.9 and 9.2.13 give a complete system of invariants for finitely
generated Abelian groups. That is, the number r of Theorem 9.2.13 together
with the integers mq,mg, ..., m; are invariants for finitely generated Abelian
groups in the sense that any two finitely generated Abelian groups with these
numbers must be isomorphic.

Let G be a finitely generated Abelian group. Then the unique number r of
Theorem 9.2.13 is called the betti number of G and the integers mq, ma, ...,
my, which are uniquely determined for the group (, are called the torsion
coefficients of G.

9.2.1 Worked-Out Exercises
{ Exercise 1 Show that (Q,+) is not finitely generated.

Solution: Suppose (Q, +) is finitely generated. Then there exists a finite

set
{al a2 an, }
bl, b21"‘3 bn
of rational numbers such that Q = <%11, %2?;, ey %n> . Now we can find a prime

p such that p does not divide by,b2,...,b,. Let £ € Q. There exist integers
r1,72,...,Tn such that

ai + as by Qn c
T=7r1— o — a2 aa P — ————
Yo T by "bn  biby---by
for some integer c. Since p does not divide by, be, ..., b,, we find that p does
not divide b1 - - - b,. Hence, p does not divide the denominator of any rational
number (expressed in lowest terms) of <%11, '?5%’ ey %:) This implies that ;1) ¢

<%11, %g, RN %:) , a contradiction. Thus, (Q, +) is not finitely generated.

¢ Exercise 2 Let G be a nonzero finitely generated Abelian group such that
every nonzero element of GG is of order p, where p is a prime. Show that
|G| = p* for some positive integer p.

Solution: By Theorem 9.29, G ~¥ Z,,, ® .- ®Z,, @ Z&®---®Z . II
——

_ T copies
r # 0, then G contains elements of infinite order. Hence, » = 0 and so G ~
Zpy, @ ® Zm,. Since each nonzero element of G is of order p, we find tha-

my=---=mg=p. Thus, G~Z, & - ®Z, and so |G| = pF.

{ Exercise 3 Show that the torsion subgroup, 7(G), of G = 24P ZBZs 8 Z-
is a cyclic group. Find |T(G)].
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Solution: Recall that Z., = Z, ® Z,, if and only if gecd(m,n) = 1. Now

G Z\DLZDPZs DZs
2 DZsDZ3DZ
ZoPZydZ

Zeo ® Z.
Hence, T{G) ~ Zgo and so T(G) is a cyclic group. Also, |T(G)| = |Zss| = 60.

(€ ¢ 12 1l

¢ Exercise 4 Show that there are integers dy, .. ., d;, such that d; > 1,d;|diqq,
1=12,...,k-1,and Zo2 ®Z3s §Z3s B Zs2 B Zo ~ Zy, @Zd2®---@zdk.

Solution: Let G = Zy2 © Z3a & Z3 @ Zg2 @ Zs. Then
GﬁZQ@ZQQ @Z3@Z34@Z52.

Thus, the elementary divisors of G are 2,22, 3, 3%, and 52, We form the following

table:
2 3

22 3¢ 52
From this table, we arrange the summands in the following way:

G ~ (Z:9o Z3) & (Zoz B Ziga ® Zs2)
>~ Zg ® Zs100-

Hence, d; = 6 and dy = 8100.

9.2.2 Exercises

1. Show that the group Z @ Zg is finitely generated, but has no basis.

2. Let G be a finitely generated nonzero Abelian group in which every non-
identity element is of order 2. Show that |G| = 2* for some positive integer
k.

3. Show that the torsion subgroup, T(G), of G =Z, ®Z: D ZDZ O Zg is
a cyclic group. Find |T(G)|.

4. Find the torsion coefficients and the betti number of the group Zeo® Z @
Z®Z59Zs.

- 5. Find the elementary divisors of the group G = Zyo®Z15®Z4g and find the
positive integers dy, da, . .., dy such that dy > 1,d;|d; 1,1 =1,2,. .. k-1,
and G ~Zg ®Zg4, & - D Zy,.

6. Find all Abelian groups of order 540. Express them as a direct sum of
Abelian groups of the form Zy, @ Zg, ® - -- & Z;, such that dy, ds, ..., d
are positive integers and dy > 1, d;|d; 1,1 =1,2,... ,k — 1.
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10.

11.

12.

13.

Are the following pairs of groups isomorphic?
(1) Zoo ® Z75 © Zgy and Zyg0 © Zgs D Zys.
(1) Z15@Z12PZ3PZPZ and Z10s B Zso P Z D Z.

. Show that the group Zogg © Z30 D Z3s is isomorphic to Z120 D Z1s D Z1go.

Let G be a finitely generated Abelian group generated by n elements.
Let H be a subgroup of GG. Prove that H is also finitely generated and H
may be generated by m elements, where m < n.

Let H be a subgroup of an Abelian group G. If H is finitely generated
and G/H is finitely generated, prove that G is finitely generated.

Prove that every homomorphic image of a finitely generated Abelian
group is finitely generated.

Prove that two finitely generated free Abelian groups are isomorphic if
and ouly if they have the same rank.
Prove or disprove:

(i) In a finitely generated free Abelian group G of rank n, any linearly
independent subset of n elements is a basis of G.

(ii) In a finitely generated free Abelian group G of rank n, any linearly

independent subset of m elements, m < n, can be extended to a basis of
G.

(iii) Every finite Abelian group is a finitely generated free Abelian group.



Chapter 10

Introduction to Rings

In the previous chapters, we investigated mathematical systems with one binary
operation. There are many mathematical systerns, called rings, with two binary
operations. The notion of a ring is an outgrowth of such mathematical systems
as the integers, rational numbers, real numbers, and complex numbers.
Although David Hilbert coined the term “ring,” it was E. Noether who,
under the influence of Hilbert, set down the axioms for rings. In 1914, Fraenkel
gave the first definition of a ring. However, it is no longer commonly used.
As we shall see, a ring is a particular combination of a group and a semi-
group. Hence, our previous work will prove helpful in our examination of rings.
However, it is not enough to examine a set with two independent binary oper-
ations. In order to obtain the full power of the axiomatic approach, we need a
dependency between the two operations—in particular, the distributive laws.

10.1 Elementary Properties

This section parallels Chapter 2. First we give a definition of a ring, followed
by examples and elementary properties. We introduce several notations and
definitions which will be used throughout the text.

The two binary operations that we consider on a nonempty set are usually
denoted by + (addition) and - (multiplication).

A ring is a mathematical system (R, +, -) such that (R, +) is a commutative
group, (R, -) is a semigroup, and the distributive laws hold, i.e., for all a, b,
c€ R,

a-(b+c)={(a-b)+(a-c),

(b+c)-a=(b-a)+(c-a).

We denote the identity of (R, +) by the symbol 0. The additive inverse of
an element a € R is denoted by —a.
We now give a complete definition of a ring.
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Definition 10.1.1 A ring is an ordered triple (R, +, ) such that R is a nonem-
pty set and + and - are two binary operations on R satisfying the following
aTIoMmS.

(R1) (e+b)+c=a+ (b+e¢) for all a,b,c € R.

(R2)a+b=0b+a for alla,bc R.

(R3) There erists an element 0 in R such thata+0=a for alla € R.

(R4) For all a € R, there exists an element —a € R such that

a+(—a)=0.

(R5) (a-b)-c=a-(b-c) for all a,b,c € R.
(R6)a-(b+c)=(a-b)+(ac) foralla,b,c € R.
(R7) (b+c¢)-a=(b-a)+ (c-a) for all a,b,c € R.

We call 0, the zero element of the ring (R, +, ).
During the development of the theory of rings, we will use the following
conventions.

1. Multiplication is assumed to be performed before addition.
2. We write ab for a - b.
3. We write a — b for a + (=b).

4. We refer to a ring (R, +, -) as a ring R.

Accordingly, ab + ¢ stands for (a - b) + ¢, ab+ ac stands for (a-d) + (a - ¢),
ab — ac stands for (a-b) + (—(a - ¢)), where a,b,c € R.

Example 10.1.2 Consider Z, the set of integers, together with the usual ad-
dition, +, and multiplication, -. By Frample 2.1.3, (Z,+) is a group. Now
multiplication of two integers is an integer and associativity holds for -. Fi-
nally, we know that the distributive laws hold for the integers. Thus, (Z,+, ")
18 a 7Ing.

The ring of Example 10.1.2 is called the ring of integers. This ring plays
an important role in the study of ring theory. One of the basic problems in
ring theory is to determine rings, which satisfy the same type of properties as
the ring of integers.

Definition 10.1.3 A ring R is called cormmutative if ab = ba for alla,b € R.
A ring R which is not commutative 1s called a noncommutative ring.
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From the above definition, it follows that a ring R is commutative if and only
if the semigroup (R,-) is commutative. The ring of integers is a commutative
ring.

For a ring R, the set C(R) = {a € R | ab = ba for all b € R} is called the
center of R. It follows that R is commutative if and only if R = C(R).

Example 10.1.4 Let M2(Z) denote the set of all 2 x 2 matrices over the ring
of integers. Let + and - denote the usual matriz addition and multiplication,
respectively. Since addition (multiplication) of 2 x 2 matrices over Z is a 2 x 2
matriz over 4, it follows that + and - are binary operations on My(Z). It s now
easy to show that (Mo(Z),+,-) is a ring. Now [ ; i ] , [ ? é } € My(Z)
and

1 2 5 6 |19 22 2 23 34| |5 6 1 2
3 4 7 81 |43 50 31 46 | |7 8 3 4 |°
Therefore, Mo(Z) is not a commulative ring.

In a ring R, an element e € R is called an identity element if ea = a = ae
for all @ € R. An identity element of a ring R (if it exists) is an identity
element of the semigroup (R, -). Therefore, a ring cannot contain more than
one identity element (Theorem 1.6.11). The identity element of a ring (if it
exists) is denoted by 1.

Definition 10.1.5 A ring R is called a ring with identity if it has an iden-
ity

Example 10.1.6 The ring Z of integers is a ring with identity. The integer 1
is the identity element of Z.

Example 10.1.7 The ring My(Z) of Ezample 10.1.4 is a ring with identity.
1 0

The identity element of M2(Z) 1is [ 01|

Example 10.1.8 Let R denote the set of all functions f : R — R. Define +.
-on R by forall f, g € R and for all a € R,

(f +9)(a) = f(a) + g(a),

(f - 9)(a) = f(a)g(a).

From the definition of + and -, it follows that + and - are binary operations
on R. Let f,g,h € R. Then for all a € R, we have by using the associativity of
R that ((f + @) + h)(a) = (f + g)a) + h(a) = (f(a) + g(a)) + h(a) = fla)+
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(9(a)+h(a)) = f(a)+(g+h)(a) = (f+(g+h))(a). Thus, (f+g)+h = f+(g+h).
This shows that + 1s associative. In a similar way, we can show that the other
properties of a ming hold for R by using the fact that they hold for R. Thus,
(R,+,) is a ring. We note that the function ip : R — R, where ig(a) = 0 for
all a € R, is the additive identity of R and the element i1 € R, where i1(a) =1
for all a € R, is the identity of R. Also, for all f,g € R and for all a € R,
(f-9)(a) = fla)g(a) = g(a)f(a) = (g-f)(a). Thus, forall f,g€ R, f-g=g-f.

Consequently, (R, +, ) is a commautative ring with identity.

The addition and multiplication on R in Example 10.1.8 are the same as
those encountered by the student in calculus.

Example 10.1.9 Let (G, *) be a commutative group and Hom(G, G) be the
set of all homomorphisms of G into iself. Now the composition of two homo-
morphisms of G is again a homomorphism of G and so o is a binary operation
on Hom(G,G). Also, o is associative by Theorem 1.5.13 and i € Hom{G, Q)
is the identity. Thus, (Hom(G,G), o) is a semigroup with identity. We now
define a suitable + on Hom{G, G) so that (Hom(G, G),+, o) becomes a ring
with identity. Define + on Hom(G, G) by for all f, g € Hom(G, G),

(f+9)(a) = fla) * g(a) for alla € G.

Let f,g € Hom(G,G). From the definition of +, it follows that f + g is a
mapping from GG into G. Let a, b € G. Then

(f +g)(ab) = f(ab)x g(ab)
= (fla) = (b)) * (g(a) * g(b))
= f(a) * g(a) » f(b) * g(b)
= (f+g)(a) x(f+g)().

This shows that f + ¢ is @ homomorphism from G into G. We omit the rou-
tine verification that + 43 associative. The identity of (Hom(G, G}, +). is the
homomorphism that maps every element of G onto the identity of G. For any
f € Hom(G,G), the mapping —f defined by (—f)(a) = f(a)™! for alla € G
is the additive inverse of f. Thus, (Hom(G,G), +) is a group. We now show
that the left distributive law holds. For any a € G and any elements f, g, h €
Hom(G, G), [f olg+h)](a) = F((g+h)(a)) = f(g(a) *h(a)) = f(g(a)) F(h(a))
= (fog)(a)*(foh)(a) =(fog+ foh)(a). Hence, fo(g+h)=(fog)+(foh).
The right distributive low holds similarly. Consequently, (Hom(G, G),+, o) is
a ring.

We now prove some elementary properties of rings.

Theorem 10.1.10 Let R be a ring and a,b,c € R. Then



10.1. ELEMENTARY PROPERTIES 273

(i) a0 = 0a =0,

(#) a(=b) = (—a)b = —(ab),

(ii) (—a)(—b) = ab,

(1) a(b — ¢) = ab— ac and (b — ¢)a = ba — ca.

Proof. (i) Observe that a0+ a0 = a{0+0) = a0. Thus, (a0+a0)+(—(a0)) =
a0 + (—(a0)) and so a0 + (a0 + (—(a0))) = 0. Hence, a0 +0 = 0 or a0 = 0.
Similarly, 0a = 0.

(i) ab+ a{—b) = a(b+ (-b)) = a0 =0 = a0 = a(-b+ b) = a(-b) + ab.
Since the additive inverse of an element is unique, a(—b) = —(ab). Similarly,
—a) b= —(abd).

(iii) Using (ii), we have (—a)(—b) = —(a(—bd)) = —(—ab) = ab.

(iv) Since b—c = b+(—c¢), a(b—c) = a(b+(—¢)) = ab+a(—c) = ab+(—(ac))
by (ii)) = ab — ac. Similarly, (b—c)a=ba —ca. B

Corollary 10.1.11 Let R be a ring with 1. Then R # {0} if and only if the
elements 0 and 1 are distinct.

Proof. Suppose R # {0}. Let a € R be such that a # 0. Suppose 1 = 0.
Then a = al = a0 = 0, a contradiction. Thus, 1 # 0. The converse follows
since R has at least two distinct elements 0 and 1. B

Convention: From now on, we assume that the identity element 1 (if it
exists) is different from the zero element of the ring.

From this convention, it follows that if R is a ring with 1, then R has at
least two elements.

Let R be a ring with 1. An element u € R is called a unit (or an invertible
element) if there exists v € R such that uv = 1 = vu. We note the following
properties of invertible elements.

Theorem 10.1.12 Let R be a ring with 1 and T be the setl of all units of R.
Then

(1) T # ¢,

(1) 0 ¢ T, and

(i) ab €T for alla,beT.

Proof. (i) Sincel:-1=1=1-1,1€T. Hence, T # ¢.

(ii} Suppose that 0 € T. Then there exists v € R such that v = 1 = 0.
However, 0v = 0 and so 0 = 1, which is a contradiction. Thus, 0 ¢ T'.

(iii) Let a,b € T. There exist ¢,d € Rsuch that ac=1=ca and bd =1 =
db. Now (ab)(dc) = a(bd)c = alc = ac = 1 and (dc¢)(ab) = d(ca)b=dlb=db =
1. Hence, (ab)(de) =1 = (dc)(ab). Thus, ab is a unit and so ab € T. W
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Definition 10.1.13 (3} A ring R with 1 is called o division ring (skew-
field) if every nonzero element of R is a unit.
(i1) A commutative division ring R is called a field.

Note that a ring R is a division ring (or skew-field) if and only if (R\{0}, )
is a group. Therefore, if R is a division ring, then for all @ € R, a = 0, there
exists a unique element denoted by 2~ € R such that aa™? =1 = a~la. We
call ¢~} the multiplicative inverse of a. Similarly, a ring R is a field if and only
if (R\{0},) is a commutative group.

Example 10.1.14 (i) The ring Z of integers is not a field. In Z, the only
invertible elements are 1 and 1.

(1) From FEzample 2.1.3, (Q, +,") is e field, where + and - are the usual
addition and multiplication, respectively. Q is colled the field of rational
numbers.

(i41) From Ezample 2.1.3, (R,+,-) is o field, where + and - are the usual
addition and multiplication, respectively. R is called the field. of real num-
bers.

(iv) From Ezample 2.1.3, (C, +,-) is a field, where + and - are the usual
addition and multiplication, respectively. C is called the field of complex
numbers.

The following example is due to William Rowan Hamilton. Due to physical
considerations, Hamilton constructed a consistent algebra in which the com-
mutative law of multiplication fails to hold. At the time, such a construction
seemed inconceijvable. His work and H.G. Grossman's work on hypercomplex
number systems began the liberation of algebra. Their work encouraged other
mathematicians to create algebras, which broke with tradition, e.g., algebras
in which ab = 0 with a # 0, b # 0 and algebras with a® = 0, where a # 0 and
n 18 a positive integer.

Example 10.1.15 Let Qr = {(a1,a2,a3,a4) | a; € R, i = 1,2,3,4}. Define
+ and - on Qg as follows:

(a1,82,83,a4) + (b1,b2,b3,b4) = (a1 + by, a3 + by, a3 + b3, aq + by)

(a1,a2,a3,aq) - (b1, b2,b3,b4) = (a1by — agby — azbz — agbs, a1by + azby
+azbs — aqbs, a1bs + azby + agbo — asby, a1by + agbs — azbsy + a4b1).

From the definition of + and -, it follows that + and - are binary opera-
tions on Qr. Now + is associative and commutative since addition s asso-
ciative and commutative in R. We also note that (0,0,0,0) € @Qr is the ad-
ditive identity and if (a1,a2,a3,04) € Qr, then (—ay, —ay, —a3, —a4) € Qr
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and —(a1,a2,a3,a4) = (—a1,—az,—a3, —aq). Hence, (Qmr,+) is ¢ commu-
tative group. Similarly, - 4s associotive and (1,0,0,0) € Qm is the mul-
tiplicative identity. Let (a1,as,a3,a4) € Qr be a nonzero element. Then
N =a}+ a3 +aj+a%#0 and N € R. Thus, (a1/N, —ay/N, —a3/N, —as/N)
€ Qr. We ask the reader to verify that (a1/N, —aa/N, —a3/N, —a4/N) is the
multiplicative inverse of (a1,a2,a3,a4). Thus, Qr s o division ring and is
called the ring of real quaternions. However, Qg is not commutative since
(0,1,0,0)(0,0,1,0) = (0,0,0,1) # (0,0,0,—1) = (0,0,1,0)(0,1,0,0). There-
fore, Qr is not a fleld.

A nonzero element e in aring R is called a zero divisor if there exists b € R
such that b # 0 and either ab = 0 or ba = 0. We do not call 0 a zero divisor.
An element cannot be a unit and zero divisor at the same time (Worked-Out
Exercise 1, page 279). Thus, a field has no zero divisors.

Definition 10.1.16 Let R be a commutative ring with 1. Then R s called an
integral domain if R has no zero divisors.

The ring of integers Z is an integral domain. The ring M3(Z) is not an
integral domain since it is noncommutative. Also, My(Z) has zero divisors. For

1 0 0 1 0 1 1 0 0 0
exa.mple,[o 0],[0 O}EMQ(Z)andlo 0] 0 0]_[0 0}.We

also note that every field F is an integral domain since every nonzero element
of F'is a unit.

Example 10.1.17 Z[V3] = {a+bv3 | a, b € Z} is an integral domain, where
the operations + and - are the usual operations of addition and multiplication.
0 + 0v/3 is the additive identity of Z{v/3] and 1 + 0v/3 is the multiplicative
identity of Z[v/3). Suppose /3 is a unit in Z[v/3]. Then (v/3)"! = a + bv/3 for
somea,beZ. Ifa=0, then (\/5)“1 — by/3 or 1 = 3b, which is a contradiction
since this equation has no solution in Z. Therefore, a # 0 and so 1 = av/3+3b
or /3 = I_Tg’b € Q, a contradiction. Hence, /3 is not a unit, proving that

Z[v/3] s not a field.

By arguments similar to the ones used in Example 10.1.17, we can show
that the following sets are integral domains under the usual addition and mul-

tiplication.
YANED {a+by/n|abeZ}
Z[i\/n] {a +biy/n | a,b € Z}
Zl1] {a+bi|abeZ}
Qlv/7] {a+by/n|a,beqQ}
Qlive] = {a+bivn|abe Q)
Q] {a+bifa,beQ}

I
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where n is a fixed positive integer and i2 = —1. In fact, it can be shown that

Q[v/7], Q[iv/n], and Q[ are fields.

Example 10.1.18 The ring of even integers E s a commutative ring, without
identity, and without zero divisors.

The ring appearing in the following example is sometimes useful in the
construction of counterexamples.

Example 10.1.19 Let (R,+) be a commutative group. Define multiplication
on R by ab = 0 for all a,b € R, where 0 denotes the identity element of the
group (R, +). Then (R, +,") is a ring called the zero ring. If R contains more
than one element, then R is a commutative ring without 1 and every nonzero
element of R is a zero divisor.

The following theorem establishes a relation between zero divisors and the
cancellation property of a ring.

Theorem 10.1.20 Let R be a ring. If R has no zero divisors, then the can-
cellation laws hold, i.e., for all a,b,c € R, a # 0, ab = ac implies b = ¢ (left
cancellation law) and ba = ca implies b = ¢ (right cancellation low). If
either cancellation law holds, then R has no zero divisors.

Proof. Suppose R has no zero divisors. Let a, b, ¢ € R be such that
ab = ac and a # 0. Then ab — ac = 0 or a(b — ¢). = 0. Since R has no zero
divisors and a # 0, we have b — ¢ = 0 or b = ¢. Hence, the left cancellation law
holds. Similarly, the right cancellation law holds. Conversely, suppose one of
the cancellation laws hold, say, the left, i.e., if ¢, b, c € R, a # 0, then ab = ac
implies b = ¢. Let a be a nonzero element of R and & € R. Suppose ab = 0.
Then ab = a0, from which & = 0 by canceling a. Suppose ba = 0 and b # 0.
Then ba = b0 and by canceling b, we obtain e = 0, a contradiction. Therefore,
b = 0. Hence, R has no zero divisors. Similarly, the right cancellation law
implies that R has no zero divisors. B

Definition 10.1.21 A 7ing R is called a finite ring if R has only a finite
number of elements; otherwise R is called an infinite ring.

The rings Z and M>(Z) are infinite.

Example 10.1.22 Consider Z,, together with the binary operations +n,and -,
as defined in Ezamples 2.1.5 and 2.1.6. By Ezample 2.1.5, (Zy,, +5) is a com-
mutative group end by Ezample 2.1.6, -, s associative end commutative, and
[1] is the multiplicative identity of (Zn, +n,n). Now for all [a],[b],[c] € Zn,
@] n (1] +n [e]) = [a] n b+ ] = [a(b+c)] = [ab+ac] = [ab] +n [ad] =
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[a] -n [8] +n [@]) n [c]- Similarly, ([b] +nlc]) na] = [b] n[a] +n[c] n|a]. Hence, both
distributive laws hold. Thus, (Zn, +n, 'n) %8 a commutative ring with 1, called
the ring of integers mod n. From Ezample 2.1.6, not every nonzero element
of Z., has an inverse. For ezample, suppose n is not prime, say, n = 6. Then
[4] has no mulitiplicative inverse in Zg. Also, Zg has zero divisors. We have
(3] # [0] # [2]. Since [3] 6 [2] = [6] = [0], it follows that [3] and [2] are zero
divisors. Thus, Zg is not an integral domain and thus not a field. We can also
conclude that (2] and [3] do not have multiplicative inverses since they are zero
divisors.

The above example shows that for every positive integer n, there exists a
commutative ring R with 1 such that the number of elements in R is n.

In the following result, we assume that the ring R is commutative. This
assumption can be removed and the conclusion that R is a field remains valid.
However, we have not developed the appropriate results to remove this as-

sumption. We will prove the theorem in its most general form in Chapter
24.

Theorem 10.1.23 A finite commutative ring R with more than one element
and without zero divisors is a field.

Proof. We must show that R has an identity and that every nonzero element
of R is a unit. Let ay,as,...,a, be the distinct elements of R. Let a € R,

a # 0. Now aq; € R for all ¢ and so {aai, aas,..., aa,} C R. If aa; = aaq;,
then by Theorem 10.1.20, a; = a;. Therefore, the elements aay, aas, ..., aan
must be distinct and so R = {aa1,aas,...,aa,}. This implies that one of the

products must be equal to a, say, aa; = a. Since R is commutative, we also
have a;a = aa; = a. Let b be any element of R. Then there exists a; € R such
that b = aa;. Thus,

ba; = aib (since R is commutative)
= a;(aa;) (substituting for b)
= (a;a)a;
= ady
= b

This implies that a; is the identity of R. We denote the identity of R by 1. Now
1 € R = {aay,aay,...,aa,} and so one of the products, say, aa;, must equal
1. By commutativity, aja = aa; = 1. Hence, every nonzero element is a unit.
Consequently, R is a field. B

The following corollary is immediate frorn above theorem.

Corollary 10.1.24 Every finite integral domain is a field. W
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In Example 2.1.6, we showed that a nonzero element [a] of Z,, has an inverse
if and only if ged(a,n) = 1. Thus, the following corollary is an immediate
consequence of this fact. We leave the details as an exercise.

Corollary 10.1.25 Let n be a positive integer. Then Z,, is o field if and only
if n is prime. A

Let R be a ring and a € R. Then for any integer n, define na as follows:

0Oa = 0O
ne = a+(n—1)a ifn>0
na = (—n)(—a) if n < 0.

We emphasize that na is not a multiplication of elements of & since R may
not contain Z. We have the following properties holding for any a,b € R and
any m,n € & :

(m+n)a = ma+na,
m(a+b) = ma+mb,
(mn)e = m(ha),
m(ab) = (ma)b=a(mb),
(ma)(nb) = mn(ab).

The proofs of the above properties can be obtained by induction and the
defining conditions of a ring.

Definition 10.1.26 If there exists a positive integer n such that for alla € R,
na = 0, then the smallest such positive integer is called the characteristic of R.
If no such positive integer exists, then R is said to be of characteristic zero.

Example 10.1.27 The rings Z, Q, R, C have characteristic 0. The ring Z,,
(n = 1,2,3,...) has characteristic n. Note that in Zg, 3[2] = [6] = [0] and
2[3] = [6] = [0]. However, 6 is the smallest positive integer such that 6la] = [0]
for all [a] € Zg. In particular, [1] has additive order 6.

Example 10.1.28 Let X be o nonempty set and P(X) the power set of X.
Then (P(X), A, N) 1s a commutative ring with 1, where A is the operation
“symmetric difference.” In this example, A acts as + and N acts as -. Now for
all A € P(X), 24 = AAA = (A\A)U (A\A) = ¢. Thus, P(X) has character-

sstic 2.

Theorem 10.1.29 Let R be o ring with 1. Then R has characteristic n > 0 if
and only if n is the least positive integer such that nl = 0.
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Proof. Suppose R has characteristic » > 0. Then na = Q0 for alla € R
and so, in particular, nl = 0. If m1 = 0 for 0 < m < n, then ma = m(la) =
(ml)a = 0a = 0 for all ¢ € R. However, this contradicts the minimality of
n. Hence, n is the smallest positive integer such that nl = 0. Conversely,
suppose n is the smallest positive integer such that nl = 0. Then for all a € R,
na = n(la) = (nl)a = 0a = 0. By the minimality of n for 1, n must be the
characteristic of R.

Theorem 10.1.30 The characteristic of an integral domain R is either zero
oT G pTIMe.

Proof. If there does not exist a positive integer n such that na = 0 for
all a € R, then R is of characteristic zero. Suppose there exists a positive
integer n such that na = 0 for all @ € K. Let m be the smallest positive integer
such that ma = 0 for all a € R. Then m1 = 0. If m is not prime, then there
exist integers mj, mg such that 0 < m;,my < m and m = myms. Hence,
0 = (mim2)1 = (m11)(mzl). Since R has no zero divisors, either m11 = 0 or
ma1 = 0. This contradicts the minimality of m. Thus, m is a prime. B

10.1.1 Worked-QOut Exercises

{ Exercise 1 Let R be a ring. An element a € R is called idempotent if

a? = a and nilpotent if o™ = 0 for some positive integer n.

(i) Let a € R be a nonzero idempotent. Show that a is not nilpotent.

(ii) Let R be with 1. Let a € R be such that ¢ has an inverse. Show that
a cannot be a zero divisor.

(iii) Let R be with 1 and suppose R has no zero divisors. Show that the
only idempotents in K are 0 and 1.

Solution: (i) From the hypothesis, a> = a. By induction, ¢" = a for
all positive integers n. Suppose a is nilpotent. Then o™ = 0 for some positive
integer m and so @ = a™ = 0. which is a contradiction and so a is not nilpotent.

(i1)) There exists b € R such that ab = 1 = ba. Suppose that a is a zero
divisor. Then there exists ¢ € R, ¢ # 0, such that ac = 0. Thus, 0 = 0 =
b(ac) = (ba)c = ¢, which is a contradiction. Hence, a is not a zero divisor.

(iii) Clearly 0 and 1 are idempotent elements. Let e € R be an idempotent.
Then e? = e and so e(e — 1) = 0. Since R has no zero divisors, either ¢ = 0 or
e —1 =0, i.e., either e =0 or e = 1. Therefore, the only idempotents of R are
0 and 1.

{ Exercise 2 Determine positive integers n such that Z, has no nonzero
nilpotent elements.



10.1. ELEMENTARY PROPERTIES 280

Solution: We claim that n is a square free integer, i.e., n = p1ps - - pi,
where the p;’s are distinct primes.

Suppose that n = pipy---pg, p’s are distinct primes. Let [a] € Z, be
nilpotent. Then [a]™ = [0] for some integer m. Hence, n divides a™ and so
D1p2 - - Pr divides ™. Then p;la™ forallt = 1,2,. .., k. Since the p;’s are prime,
pi|le for alli =1,2,...,k. Since p1,pa,...,pr are distinct primes, we must have
p1p2 - - - Prla, i.e., nla and so [a] = [0]. This implies that Z, has no nonzero
nilpotent elements. Conversely, suppose that Z, has no nonzero nilpotent
elements. Let n = p™py?---pr*, where the p;’s are distinct primes and
m; > 1. Let m = max{my,my,...,mg}. Now [p1p2-- - pe]™ = [;1™05 - - 07| =
0] since n|(pTp5 ---pi). Also, since Z,, has no nonzero nilpotent elements,
[p1p2 - - - px] = [0]- Hence, n|(p1 - - - px) and so (p7"' 052 « - - p *)|(p1 -+ - p). Thus,
m; <lforalli=1,2,...,k. Hence, m; =1 foralli=1,2,...,kand son is a
square free integer.

$ Exercise 3 Show that the number of idempotent elements in Z,,,, where
m > 1, n>1, and m and n are relatively prime, is at least 4.

Solution: Clearly, [0] and [1} are idempotent elements. Since m and n
are relatively prime, there exist integers a and b such that am + bn = 1. We
now show that n does not divide a and m does not divide b. Suppose that n/|a.
Then a = nr for some integer 7. Thus, n(rm +b) = nrm + nb=am +nb=1.
This implies that n = 1, which is a contradiction. Therefore, n does not divide
a and similarly m does not divide b. Now m2a = m(1 — nb). This implies
that [m2a] = [m]. Hence, [ma]? = [ma]. If [ma] = [0], then mn|ma and so
n|a, which is a contradiction. Consequently, [ma] # [0]. If [ma] = [1], then
mn|(ma — 1). Hence, ma + mnt = 1 for some integer t. Thus, m{a + nt) = 1.
This implies m = 1, which is a contradiction. Hence, [ma] # [1]. Thus, [ma)]
is an idempotent such that [mea] # [0] and [ma] # [1]. Similarly, [nb] is an
idempotent such that [nb] # [0] and [nb] # [1]. Clearly [ma] # [nb|. Thus, we

find that [0, [1], [ma], and [nd] are idempotent elements of Z,,.

¢ Exercise 4 Determine the positive integers n such that Z, has no idempo-
tent elements other than [0] and [1].

Solution: We show that n = p” for some prime p and some integer r > 0.

First assume that n = p” for some prime p and some positive integer r and
[z] € Z,, be an idempotent. Then [z]? = [z]. Thus, p"|(z? — z) or p"|z(z — 1).
Since z and z — 1 are relatively prime, p" [z or p"|(z — 1). If p"|z, then [z] = [0]
and if p"|(z — 1), then [z] = [1]. Thus, [0] and [1] are the only two idempotent
elements. Conversely, suppose that [0] and [1] are the only two idempotent
elements. Let n = p]"'pg?---p'*, where the p;’s are distinct primes, m; > 1,
and k > 1. Let t = p]™* and s = py?.--p,*. Then t and s are relatively
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prime and n = ts. By Worked-Out Exercise 3, Z, = Z;; must have at least
four idempotents, which is a contradiction. Therefore, & = 1. Thus, n = p" for
some prime p and some positive integer .

Exercise 5 Let R be a ring. Show that the following conditions are equivalent.
(i) R has no nonzero nilpotent elements.

(ii) For all a € R, if a®* = 0, then a = 0.

Solution: (i)=-(ii) Let ¢ € R and a® = 0. If a # 0, then a is a nonzero
nilpotent element of R, a contradiction. Thus, a = 0.

(ii)=-(i) Let a € R be such that a™ = 0 for some positive integer n. Suppose
a # 0. Let n be the smallest positive integer such that ¢® = (. Suppose n is
even, say, n = 2m for some positive integer m. Then (a™)? = a®*™ = 0 and
so a™ = 0, contradicting the minimality of n. Suppose n is odd. If n = 1,
then @ = 0, a contradiction. Therefore, n > 1. Suppose n = 2m + 1. Then
m + 1 < n. Thus, a?™12? = a?™+1lg = ¢"a = 0. This implies that a™*! = 0,
which is a contradiction of the minimality of n. Hence, R has no nonzero
nilpotent elements.

¢ Exercise 6 An element e of a ring R is called a left (right) identity, if
ea = a (ae = a) for all a € R. Show that if a ring R has a unique left
identity e, then e is also the right identity of R and hence the identity of
R.

Solution: Let e be the unique left identity of B. Thenex = z for all z € R.
Let ¢ € R. Now (ze —z+e)z = rex —xx +ex = xx — xz + « = z. This implies
that ze —xz+e is a left identity. Since e is the unique left identity, ze—z+e=¢
and so xe = z. Thus, e is a right identity.

Exercise 7 Let R be a commutative ring with 1 and a,b € R. Suppose that a
is invertible and & is nilpotent. Show that a + b is invertible. Also, show
that if R is not commutative, then the result may not be true.

Solution: There exists ¢ € R such that ac = 1 = ca and there exists a
positive integer n such that " = 0. Let d = c—c?b+ 362+ - -+ (1)L,
Now (a+b)d = ac—ac®b+ ac®?+- - -+ (=1)"Hacb” +-bc—bc?b+ bedb?+- - - +
(=) bemb™ ! = 1—chb+c?b?+- - -+ (=1)* TP b1t be—c2b% 4 b3+ - - +
(—1)"*1c™p™ = 1. Similarly, d(a + b) = 1. Hence, a + b is invertible.

. . 0 -1 01
Consider the ring My(Z). Let a = [ 1 0 and b = [ 0 0

} . Then

0 0
-1 0

nonzero nilpotent element. Hence, a + b is not invertible.

a is invertible and b is nilpotent. Now a +b = ] . Clearly a+bis a
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10.1.2 Exercises

1.

10.

11.

12.

In the rings Zg and Zg, find the following elements:

(1) the units, (ii) the nilpotent elements, and (iii) the zero divisors.

Let R be the set of all 2 x 2 matrices over the field of complex numbers

of the form z; _;2 , where Zz denotes the complex conjugate of the
=<2 1
complex number z. Show that (R, +,) is a division ring, where + and -

are the usual matrix addition and matrix multiplication, respectively. Is

R a field?

Let R be a ring with 1. Prove that
(i) (-1)a = —a =a(-1) and (-1)(-1) =1,
(ii) if @ is a unit in R, then —a is a unit in R and (—a)~! = —(a™!).

Prove that a ring R is commutative if and only if (@ +5)% = a2 + 2ab + b?
for all a,b € R.

. Prove that a ring R is commutative if and only if a? — % = (a + b)(a — b)

for all a,b € R.

. Let R be a ring. If a® = a for all a € R, prove that R is commutative.

Let R be a commutative ring and a,b € R. Prove that for all n € N,

(a+b)n — o™+ (T)an_1b+"'+ (:‘)an—rbr+_-_+ (nn l)abn_l'l'bn-

. If a and b are elements of a ring and m and n are integers, prove that

) (na)(mb) = (m)(ab),
(ii) n(ab) = (na)b = a(nb),
(iii) n(—a) = (—n)a.

If R is an integral domain of prime characteristic p, prove that (a +b)P =
aP + bP for all a, b € R.

Let R be a ring with 1 and without zero divisors. Prove that for all
a,b € R, ab= 1 implies ba = 1.

Let R be a ring with 1. If a is a nilpotent element of R, prove that 1 —a
and 1 + a are units.

Let R be a division ring and a,b € R. Show that if ab = 0, then either
a=0o0orb=0.
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14.

15.

16.

17.

18.

19.
20.

21.

22,
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Let @ € R be an idempotent element. Show that (1 — a}ba is nilpotent
for all b€ R. |

Find all idempotent elements of the ring M»(R).

Let R be aring with 1. Let 0 # a € R. If there exist two distinct elements
b and ¢ in R such that ab = ac = 1, show that there are infinitely many

elements z in R such that az = 1. (American Mathematical Monthly
70(1961) 315).

Let R be an integral domain and a,b € R. Let m,n € Z be such that m
and n are relatively prime. Prove that a™ = b™ and a™ = 0™ imply that
a=b.

Let R and R’ be rings. Define + and - on R x R’ by for all (a,b),(c,d) €
R x R

(a,b) + (¢,d) = (a +¢,b+d) and (a,b)- (¢c,d) =(a-¢c,b-d).

(i) Prove that (R x R', +, -) is a ring. This ring is called the direct sum
of R and R’ and is denoted by R & R'.

(i) If R and R’ are commutative with identity, prove that R ® R’ is
commutative with identity.

Extend the notion of direct sum in Exercise 17 to any finite number of
rings.

Prove that the characteristic of a finite ring R divides |R|.

Let R be a ring with 1. Prove that the characteristic of the matrix ring
M>(R) is the same as that of R.

If p is a prime integer, prove that (p — 1)! =, —1.
In the following exercises, write the proof if the statement is true; other-

wise, give a counterexample,

(i) In a ring R, if a and b are idempotent elements, then a + b is an
idempotent element.

(ii) In a ring R, if a and b are nilpotent elements, then a +b is a nilpotent
element.

(iii) Every finite ring with 1 is an integral domain.
(iv) There exists a field with seven elements.

(v) The characteristic of an infinite ring is always 0.
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(vi) An element of a ring R which is idempotent, but not a zero divisor,
18 the identity element of R.

(vii) If @ and b are two zero divisors, then a + b is also a zero divisor in

a ring R.

(viii) In a finite field F, a® + b*> = 0 implies ¢ = 0 and b = 0 for all
a,beF.

(ix) In a field F, (a +b)"! = a~! + b~ for all nonzero elements a, b such
that a + b # 0.

(x) There exists a field with six elements.

10.2 Some Important Rings

In this section, we introduce two important rings and study some of their basic
properties.

10.2.1 Boolean Rings

We recall that in Worked-Out Exercise 1 {page 279), an element z of a ring
R is called an idempotent element if 2 = z. The zero element and identity
element of a ring are idempotent elements. In the ring Z, the only idempotent
elements are 0 and 1. There exist rings, which contain idempotent elements

1

different from 0 and 1. For example, in M2(Z), 9 0

] is an idempotent

element.

Definition 10.2.1 A ring R with 1 is called a Boolean ring if every element
of R is an idempotent.

Example 10.2.2 (i) Zy is o Boolean ring.
(ii) The ming P(X) of Ezample 10.1.28 is a Boolean ring since for all A €
P(X), AnA=A.

Theorem 10.2.3 Let R be a Boolean ring. Then the characteristic of R is 2
end R is commutative.

Proof. First we show that R is of characteristic 2. Let z € R. Now z +z =
(z4+2)% = (z+2)(z+z) = z(z+1z)+z(z+2) = ?+22+2% 2% = s+t 42
This implies that 2z = 4z and so 0 = 2z. Hence, 2-1 = 0 since x was arbitrary.
It follows that the characteristic of R is 2 by Theorem 10.1.29. To show R
is commutative, let 2,y € R. Thenz +y = (z +9)? = (z + )z +9) =
2 + oy + yz + y° = = + xy + yx + y. This implies that 0 = 2y + yz. Hence,
xy =xy+ 0 =czy+ 2y +yr or zy = 2zy + yr = yz since 22y = 0. Thus, R is
commutative. ll
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10.2.2 Regular Rings

An element z of a ring R is called a regular element if there exists y € R
such that z = zyz.

Definition 10.2.4 A ring R 15 called a regular ring if every element of R is
reqular.

In the ring Z, the only regular elements are 0,1, and —1. Thus, Z is not a
regular ring.

Example 10.2.5 Let R be a division ring andx € R. If x = 0, then z = zzx.
Suppose z #£ 0. Then zz~! =1 and so x = zx " x. Thus, R is a regular ring.

From the definition of a Boolean ring, it follows that every Boolean ring is
a regular ring. The field R is a regular ring, but not a Boolean ring.

Example 10.2.6 Consider R, the field of real numbers and
RxR={(z,y) | z,y € R}.
Define + and - on R x R by

(z,9) + (z,w) = (z+z,y+w)
(:zz,y)-(z,'w) = (iBZ,y'bU)

for all z,y,z,w € R. Then R X R s a commutative ring with identity. Now
(1,0),(0,1) € R xR and (1,0)(0,1) = (0,0). This shows that R x R con-
tains zero divisors and so R x R is not a field. We claim that R X R is
reqular. Let (z,y) € RxR. If 2 = 0 = y, then (z,y)(z,y)(z,y) = (z,¥).
Ifz # 0 and y # 0, then (z,9)(z" Yy V(z,y) = (z,9). If z = 0, but y #
0, then (z,y)(z, v Yz,¥) = (z,y). Similarly, if x # 0 and y = 0, then
(z,y)(z7 Y y)(z,y) = (z,y). Thus, in any case, (x,y) is a regular element.
Hence, R x R is a regular ring.

Example 10.2.7 Let M>(R) be the set of all 2 x 2 matrices over R. Now
M>(R) is a noncommutative ring with 1, where + and - are the usual matriz
addition and multiplication, respectively. We show that M2(R) 1s a regular

ring. Let A = [ j g} ] € Ms(R).

w -y

Case 1: xw— 2y # 0. Then B = [ Ty sy ] € M3(R) and A =

Tw—zYy TW—2zyY
ABA.
Case 2: zw — zy = 0.
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0 0
0 0

Subcase 2a: z,y,z,w are all zero. In this case, A = [

any B € My(R), ABA = A.

Subcase 2b: z,y,z,w are not all zero. Suppose = # 0 and let B =

5 0] men
1
|-[: 2]

since zw —zy =0 and z # 0 impliesw = ZL If y # 0, then let B = {
Then

] and so for

ABA =

N OB HN = N R

e @O Ew

e

2= O
o o
| I |

[ 170 0
| 4d LY
_ 1 0 T Yy
_%D“_zw
|l v | _ |z ¥
- %w__ z w |’

Similarly, if z # 0 or w # 0, then we can find B such that ABA = A. Thus,
Ms(R) is a regular ring.

Since M2(R) is not a division ring, it follows that a regular ring need not be
a division ring. However, a division ring is a regular ring as shown in Example
10.2.5. In the next theorem, we show that a regular ring under a suitable
condition becomes a division ring.

Theorem 10.2.8 Let R be a reqgular ring with more than one element. Suppose
for all x € R, there ezists a unique y € R such thot x = zyz. Then

(i) R has no zero divisors,

(i1) if x # 0 and = zyx, then y = yxy for all z,y € R,

(#it) R has an identity, '

(1v) R is a division ring.

Proof. (i) Let = be a nonzero element of R and zz = 0 for some z € R.
Now by hypothesis, there exists a unique y € R such that zyz = z. Thus,
z(y — z)z = zyc — zzx = cyz. Hence, by the uniqueness of 4, ¥ — z = ¥ and so
z = 0. This proves that R has no zero divisors.
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(ii) Let = # 0 and zyz = z. Then z(y — yzy) = zy — zyzy = zy — 2y = 0.
Since R has no zero divisors and =z # 0, y — yzy = 0 and so yzy = v.

(iii) Let 0 # z € R. Then there exists a unique y € R such that zyz = z.
Let e = yx. If e = 0, then z = zyz = 0, which is a contradiction. Therefore,
e # 0. Also, e* = yzyr = y(zyz) = yz = e. Let z € R. Then (ze — z)e =
ze? — ze = ze — ze = 0. Thus, by (i), either ze — z = 0 or ze = z. Similarly,
e(ez — z) = 0 implies that ez = z. Hence, e is the identity of R.

(iv) By (iii), R contains an identity element e. To show R is a division ring,
it remains to be shown that every nonzero element of R has an inverse in R.
Let z be a nonzero element in R. Then there exists a unique ¥ € R such that
ryx = z. Thus, zyzr = ze, i.e., z(yz — e) = 0. Since R has no zero divisors and
z # 0, yz—e = 0 and so yz = e. Similarly, zyz = ez implies zy = e. Therefore,
ry = e = yz. Hence, R is a division ring.

10.2.3 Exercises

1. Prove that a Boolean ring R is a field if and only if R contains only 0
and 1.

2. Prove that a ring R with 1 is a Boolean ring if and only if for all ¢, b € R,
(a+ b)ab = 0.

3. Let R be a Boolean ring with more than two elements. Find all zero
divisors of K.

4. Let T = {f | f : R — Zs}. Define + and - on T by for all f,g € T,

(f + 9)(z) = f(z) + g(z) and (fg)(z) = f(z)g(z) for all z € R. Show
that (T, +,) is a Boolean ring.

5. Prove that a nonzero element of a regular ring with 1 is either a unit or
a zero divisor.

6. Prove that the center of a regular ring is regular.

7. Let R be a ring in which each element is idempotent. Let B = R x Z,.
Define + and - on R by (a,[n]) + (b,[m]) = (a + b, [n + m]) and (a, [n]) -
(b, [m]) = (na + mb + ab, [nm]) for all (a,[n]), (b, [m]) € R. Show that +
and - are well defined on R and R is a Boolean ring.

8. Let R be a regular ring with 1.

(i) Prove that for any a € R, there exists an idempotent e € R such that
Ra = Re.

(ii) Prove that for any two idempotents e, f € R, there exists an idem-
potent g € R such that Re + Rf = Ryg.
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William Rowan Hamilton (1805-

1865) was born on August 4, 1805, in Dublin,
Ireland. He was the fourth of nine children.
His early education from the age of three
was provided by his uncle. By the age of
five, he was proficient in Latin, Greek, and
Hebrew.

Hamilton started reading Newton’s Prin-
c¢ipia when he was about 15 and became in-
terested in astronomy. In 1822, he discov-
ered an error in Laplace’s Mécanique céleste,
which was conveyed to John Brinkley thro-

. ugh a friend. Brinkley later helped Hamil-
ton in getting appointed as his successor at Dunsink Observatory.

On April 23, 1827, while still an undergraduate at Trinity College, Hamilton pre-
sented his paper, “Theory of Systems of Rays,” to the Royal Irish Academy. This paper
is responsible for creating the field of mathematical optics. Hamilton introduced the
characteristic function, his first discovery. On June 10, 1827, he was appointed as-
tronomer royal at Dunsink Observatory and professor of astronomy at Trinity College,
even though he did not have a degree.

Hamilton’s major contributions were in the algebra of quaternions, optics, and
dynamics. He gave few examples to illustrate his concepts and so his papers were hard
to read. He spent most of his life on the study of quaternions.

Hamilton was interested in three-dimensional complex numbers, which he called
“triplets.” He had little success in this area, as he was able to add, but could not find
a suitable multiplication rule. He then considered the so-called quaternions. While he
was walking along the Royal Canal on October 16, 1843, the discovery of the quater-
nions flashed in his mind. He immediately scratched the multiplication formula for the
quaternions on the stone of a bridge over the canal. Hamilton discovered that he could
give up the commutative law of multiplication and still have a meaningful algebraic
system. The geometric significance of the quaternions was realized when Hamilton and
Cayley independently showed that the quaternion operators rotated vectors about a
given axis. In 1837, Hamilton corrected Abel’s proof of the impossibility of solving the
general quintic equations.

Hamilton's name is associated with concepts such as Hamiltonian functions, Hamil-
tonian-Jacobi differential equations, Hamiltonian path in graph theory, and the Cayley-
Hamilton theorem in linear algebra. He coined the terms “vector,” “scalar,” and
“tensor.” Hamilton died on September 2, 1865.




Chapter 11

Subrings, Ideals, and
Homomorphisms

The most important substructure of a ring is a particular subset called an
“ideal.” The term ideal was coined by Dedekind in honor of Kummer’s work
on ideal numbers. This notion of Kummer and Dedekind was used to ob-
tain unique factorization properties. Kummer introduced the idea of an ideal
number in his work on Fermat’s last theorem. Noether followed with some
important results on the theory of ideals. Some of her ideas were inspired by
the work not only of Dedekind, but also of Kronecker and Lasker.

11.1 Subrings and Subfields

In this section, we introduce the idea of a subring of a ring. This concept is
analogous to the concept of a subgroup of a group.

Definition 11.1.1 Let (R, +, -) be a ring. Let R’ be a subset of R. Then (R,
+, -} 48 called o subring of (R, +, -) if (R, +) is a subgroup of (R, +) and
forallz,ye R,z-ye R.

Let (R, +, -) be a subring of the ring (R, +, -). Since R’ C R and since the
associativity for - and the distributive laws are inherited, (R’, +, -) is itself a
ring. We will usually suppress the operations + and - and call R’ a subring of
R. When R’ and R are fields, R’ is called a subfield of R.

The following theorem gives a necessary and sufficient condition for a subset
to be a subring. With these conditions it is easy to verify whether a nonempty
subset of a ring is a subring or not.

Theorem 11.1.2 Let R be a ring. A nonempty subset R’ of R is a subring of
Rifand onlyifzr —y e R anday € R for allz,y € R'.
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Proof. First suppose that R’ is a subring of R. Then R’ is a ring and so for
all z,y € R, z —y, zy € R'. Conversely, suppose z —y € R’ and zy € R’ for
all z,y € R'. Since z —y € R forall z,y € R, {R',+) is a subgroup of (R, +)
by Theorem 4.1.3. By the hypothesis, zy € R’ for all z,y € R'. Hence, R’ is a
subring of . l

Example 11.1.3 (i) The ring E of even integers is a subring of Z. E is without
1.

(1) Consider the subset Eg = {[0],[2],[4],[6]} of Zs. Then Eg is a subring
of Zg. Hence, Eg 1s commutative. However, Eg has no identity and Eg does
have zero divisors, namely, (2], [4], and [6].

Example 11.1.4 Let Qz = {(a1,a2,a3,a4) | a; € Z, 1 = 1,2,3,4}. Define +
and - on Qg as in Example 10.1.15. Since the difference and product of integers
is an integer, we have

(ala az,as, 0’4) - (b].: bza b3) b4) = QZ

and
(0170'2: as, (1.4) : (bls b2) b31 b4) € QZ

for all (a1,a2,a3,a4), (b1,b2,b3,b4) € Qz. Hence, Qz is a subring of Qun. We
note that Qg is noncommautative, has an identity, and is without zero divisors.
Now (01 2,0, 0) € {Jz and (0: 2,0, 0)_1 = (01 _'1_1 0, D) ¢ Qz. Thus, Yz is not a

division ring.

Example 11.1.5 Set Qg = {(a1,a2,a3,a4) | a; € E, i = 1,2,3,4}. Define +
and - on Qg as in Exemple 10.1.15. Since the difference and product of even
integers 1s an even integer, we find that Qg is a subring of Qz. In fact, Qg is
a noncommautative ring without identity and without zero divisors.

Example 11.1.6 Consider the ring M>(Z) of Example 10.1.4. Let M>(E) de-
note the set of all 2 x 2 matrices with entries from E. Since the sum, difference.
and product of even integers is an even integer, it follows that Ms(E) is a sub-
ring of My(Z). Also, Ma(E) is a noncommulative ring without identity and
with zero divisors.

Following along the lines of Theorem 11.1.2, we can prove the next theorem.
We leave its proof as an exercise.

Theorem 11.1.7 Lel F' be a field. A nonempty subset S of F' is a subfield oF
F if and only if

(i) S contains more than one element,

(i) z —y,zy € § for allz,y € S, and

(i) x™ € S forallz €S, z#0. A
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Example 11.1.8 Q and Q[v2] = {a+bv2 | a,b € Q} ore subfields of R (see
Worked-Out Exercise 4 below).

Theorem 11.1.9 Let R be a ring (field) and {R; | ¢ € A} be a nonempty
family of subrings (subfields) of R. Then NicaAR; is a subring (subfield) of R.

Proof. Since 0 € R; for all i € A, 0 € NieaR; and so Miep Ry # ¢. Let
z,y € NieaR;. Then z,y € R, for all 7 € A. Since each R; is a subring,
z—y,2y € R; for all 2 € A. Hence, z — y,zy € NicaR;. Thus, Nicall; is a
subring of R.

Similarly, if each R; is a subfield of the field R, then M;ca R; is a subfield of
R N

It is interesting to note that the intersection of all subfields of R is Q.

11.1.1 Worked-0Out Exercises

{ Exercise 1 Let X be an infinite set. Then (P(X),A,N) is a ring with 1.
Let

R={AeP(X)| Ais finite}.

Prove the following assertions.

(i} R is a subring of P(X).

(i1) R is without identity.

(iii) For all A € R, A # ¢, A is a zero divisor in R.

(iv) For all A € P(X), A# X, A# ¢, Ais a zero divisor in P(X).

Solution: (i) Since ¢ is finite, ¢ € R and so R is nonempty. Let A, B € R.
Then A and B are finite and so ANB is finite. Now AAB = (AUB)\(ANB)
and so AAB is finite. Therefore, AAB, AN B € R. Thus, R is closed under
the operations A and N. Now it is easy to verify that (R, A,N) is a subring.

(ii) Suppose R has an identity, say, . Then E is finite. Since X is infinite,
there exists a € X such that a € E. Now {a} € R. Thus, {e} = En{a} = ¢,
which is a contradiction. Hence, R has no identity.

(iii) Let A € R and A # ¢. Since A is finite and X is infinite, there exists
z € X such that z ¢ A. Now {z} € R. Since AN {z} = ¢, A is a zero divisor.

(iv) Let A € P(X) be such that A # X and A # ¢. Then there exists
r € X such that z ¢ A. Hence, AN {2} = ¢ and so A is a zero divisor.

Exercise 2 Let R be a ring such that a®-a is in the center of R for all @ € R.
Show that R is commutative.
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Solution: Let z,y € R. Then (z+y)? +z +y € C(R), i.e., z°+ zy+ yz+
y? +z+y € C(R). Since 2z +z, y* +y € C(R) and C(R) is a subring (Exercise
14, page 294), zy + yz € C(R). Therefore, z(zy + yz) = (zy + yz)z and
so z2y + zyr = zyz + yz’. Thus, 22y = yz?. Now 2% + r € C(R) and so
y(z? 4 x) = (2 + z)y. Hence, yz? + yz = 2%y + 2y and so zy = yzx, proving
that R is commutative.

¢ Exercise 3 Find all subrings of the ring Z of integers. Find those subrings
which do not contain the identity element.

Solution: Let n be a nonnegative integer and T, = nZ = {nt | t € Z}.
Since 0 € T, T, # ¢. Let a = nt, b = ns be two elements in 7,,. Then
a—~b=nt—ns=n(t —s) €T, and ab = (nt)(ns) = n(t(ns)) € T,,. Hence, T,
is a subring of Z. We now show that if A is any subring of Z, then A =T, for
some nonnegative integer n.

Let A be a subring of Z. If A = {0}, then A = 0Z. Suppose A # {0}.
Then there exists m € A such that m # 0. Now —m € A and so A contains a
positive integer. By the well-ordering principle, A contains a smallest positive
integer. Let n be the smallest positive integer in A, Then nZ CA. Let m € A.
By the division algorithm, there exist integers ¢ and r such that m = ng +r,
0<r<n. Sincen € A, ng € A. Hence, r = m — ng € A. The minimality of
n implies that 7 = 0 and so m = nq € nZ. Thus, A = nZ. If n # 1, then nZ
does not contain identity.

{ Exercise 4 Show that Q[v2] = {a+bv2 € R | ab e Q} is a subfield of
the field R. )

Solution: Since 0 = 0+ 0v/2 € Q[v2], Q[vV2] # ¢. Let a + bv/2, ¢ + dv/2
€ Q[+/2]. Then

(@ +bV2) = (c+dv2) = (a—c) + (b — d)v2 € QV2]

and

(@ 4+ bv?2) (c+ dv2) = (ac+ 2bd) + (ad + bc)v/2 € Q[V2).

Now 0+ 0v/2 and 1+ 0v/2 are distinct elements of Q[+/2]. Therefore, Q[v/2]
contains more than one element. Let a + b+/2 be a nonzero element of Q{v/2).
Then a and b cannot both be zero simultaneously. We now show that a—bv/2 #
0. Suppose a — by/2 = 0. Then a = by/2. If b = 0, then a = 0. Therefore, both
a and b are zero, a contradiction. If b # 0, then v/2 = 2 € Q, a contradiction.
Hence, a — bv/2 # 0. Similarly, a 4+ /2 # 0. Thus, a® — 2b® = (a + bv/2)(a —
bv/2) # 0. Now

1 (e=b/2) a b .
a+bv/2 a2 —2b2 —-02_%2—&2_%2\/56(:![\/5].
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Since (a + bv/2)(
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a+!17\/§) =1, (a + bv/2) 7! exists in Q[+v/2]. Thus, we find that

Q[v/2] is a subfield of R by Theorem 11.1.7.

11.1.2 Exercises

L.

10.

. Show that F = {[

Prove the following the statements.

() Th = {{ g i 1 | a,b,ec € Z} is a subring of M>(Z).

a

(i1) Tp = {[ —ab b ] | a,b € Z} is a subring of M»(Z).

(iii) T3 = { g 2 | a € Z} is a subring of M»(Z).
(iv) Ty = { g Z |a,b€Z} is a subring of T7.

. In the ring Z of integers, find which of the following subsets of Z are

subrings.

(i) The set of integers of the form 4k + 2, k € Z.
(ii) The set of integers of the form 4k + 1, k € Z.
(iii) The set of integers of the form 4k, k € Z.

. Show that T = {[0], [5]} is a subring of the ring Z1g¢.

Let R be a ring with 1. Show that the subset T = {nl | n € Z} is a
subring of K.

. Let R be a ring and n be a positive integer. Show that the subset T' =

{a € R | na = 0} is a subring of R.

a b3 : . .
Show that T' = { { 53 a ] | a,b € R} is a subring of M»>(R).

Show that Q[v/3] and Q[v/5] are subfields of the field R, but Z[v/2] =
{a+5v2 | a,b € Z} is not a subfield of R.

Show that Q(i) = {a + bi | a,b € Q} is a subfield of C, where i = —1.

a —b
b

| a,b € Zs} is a subring of M>(Z;). Is F' a
field?

Let w be a root of z2 + 2+ 1 =0. Prove that T = {a + bw | a,b € Q} is
a subfield of the field of complex numbers.
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Let F be a field of characteristic p > 0. Show that T ={a € F | aP = a}
is a subfield of F.

Prove that T' = {

T -I;y z ] | z,y € Z} is a subring of My(Z). Also,
-y

show that every nonzero element of T is a unit in M2(R).
Let R be a commutative ring. Show that the set

T ={r € R|r" =0 for some integer n}
is a subring of R.
Prove that C(R) is a subring of R and that C(R) is commutative.
Let e be an idempotent of a ring R. Prove that the set

eRe = {ere | r € R}

is a subring of R with e as the identity element.

Find the center of the ring Mo (R).

Prove that the characteristic of a subfield is the same as the characteristic
of the field.

Find all subrings with identity of the ring Zis.
Find all subfields of the field Zp, p a prime integer.

Let R be a ring without any nonzero nilpotent elements. Show that
(ara — ra)? = 0 for all 7 € R and for all idempotent elements a € R.
Hence, show that C{R) contains all idempotent elements.

Let C={ f: R — R | f is continuous on R}. Define + and - on C by
(f+9)=) = flz)+g(x),
(f-9)z) = f(z)g(z)
for all f,g € C and for all z € R.
(i) Show that C is a ring.

(ii) Let D = {f € C| f is differentiable on R}. Show that D is a subring
of C.

Let R be a ring and f : R — [0, 1] be such that

fla—b) 2> min{f(a), f(b)},
f(ab) > min{f(a), f(b)}

for all a,b € R. Prove that for all t € Z(f), Ry ={z € R | f(z) > t} is a
subring of R.
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23. In the following exercises, write the proof if the statement is true; other-
wise, give a counterexample.

(1) The union of two subrings of a ring is a subring.

(ii) The identity element of a subring is always the identity element of
the ring.

(iii) Q is the only subfield of the field R.

(iv) Q[v3] = {a +bv3 | a,b € Q} is the intersection of all subfields of R
which contain v/3.

(v) The set Z of integers is a subring of the field of real numbers.
(vi) Every additive subgroup of Z is a subring of Z.

11.2 Ideals and Quotient Rings

In this section, we introduce the notions of ideals and quotient rings. These
concepts are analogous to normal subgroups and quotient groups.

The very famous problem called “Fermat’s last theorem” led to the inven-
tion of ideals. Fermat (1601-1665) jotted many of his results in the margin
of Diophantus’ Arithmetica. For this particular “theorem,” Fermat wrote that
he discovered a remarkable theorem whose proof was too long to put in the
margin. The theorem is stated as follows: If n is an integer greater than 2,
then there exist no positive integers z,y, z such that ™ + ™ = z". However, no
one was able to prove this result until recently; in 1994, Andrew Wiles found
a proof after many years of work.

In 1843, Kummer (1810-1893) thought that he had found a proof of Fer-
mat's last theorem. However, Kummer had incorrectly assumed uniqueness of
the factorization of complex numbers of the form ¢ + Ay, where A =1 for p
an odd prime. Dirichlet (1805-1859) had made an incorrect assumption about
factorization of numbers. Kummer continued his efforts to solve Fermat’s last
theorem. He was partially successful by introducing the concept of “ideal num-
ber.” Dedekind (1831-1916) used Kummer’s ideas to invent the notion of an
ideal. Kronecker (1823-1891) also played an important part in the development
of ring theory.

Definition 11.2.1 Let R be a ring. A nonempty subset I of R is colled a left
(right) ideal of R if for alla, b € I and forallr € R,a-be I, ra €l
(a—bel,arel).

A nonempty subset I of a ring R is called a (two-sided) ideal of R if [ is
both a left and a right ideal of R.

From the definition of a left (right) ideal, it follows that if I is a left (right)
ideal of R, then [ is a subring of R. Also, if R is a commutative ring, then
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every left ideal is also a right ideal and every right ideal is a left ideal. Thus,
for commutative rings every left or right ideal is an ideal.

By Theorem 11.1.2, it is clear that a nonempty subset I of a ring R is an
ideal if and only if (I,+) is a subgroup of (R, +) and for all a € I and for all
re R, ar and ra € 1.

Example 11.2.2 Let R be a ring. The subsets {0} and R of R are (left, right)
ideals. These ideals are called trivial ideals. All other (left, right) ideals are
called nontrivial.

An ideal I of a ring R is called a proper ideal if I # R.
Example 11.2.3 Letn € Z andI = {nk | k € Z}. As in Worked-Out Ezercise
3 (page 292), I is a subring. Also, for allr € Z, (nk)r = n(kr) € I andr(nk) =
n(rk) € 1. Hence, I is an ideal of Z.

Next, we give an example of a ring in which there exists a left ideal which
18 not a right ideal, a right ideal which is not a left ideal, and a subring which

is not a left (right) ideal.

Example 11.2.4 Consider the ring My(Z). Let

Il={ Ia,bEZ},
Ig={ la,bEZ},

I3 = { [ @ < ] | a,b,c and d are even z'ntege‘rs} .

o R
o O

o O
oo

b d

r4={[3 g];aez}.

Sz'nce[g g] eIl,Ilaéqb,Let{‘; g][; g] el and|:j z}e
My(Z). Then |

a 0O c 0 a—c 0

[b 0}‘[d o]:[b—d o]eh

R

and.

and
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proving that I 1is a left ideal of Mo(Z). Now [ 1 g ] € I, and [ 0 1 ji €

0 0
MQ(Z), but
1olf[o 1 01
[1 0][0 0]=[0 1]¢h'

Hence, I is not a right ideal of My(Z). Similarly, I is a right ideal of M»(Z),
but not a left ideal, I3 is an ideal of My(Z), and I 1s a subring, but not an
ideal of M2(Z).

We remind the reader to notice the similarity of the next few results with
corresponding results in linear algebra and group theory.

Theorem 11.2.5 Let R be a ring and {I, | a € A} be a nonempty collection
of left (right) ideals of R. Then Naealy i3 a left (right) ideal of R.

Proof. Suppose {I, | & € A} is nonempty a collection of left ideals of R.
Since 0 € I, for all o, 0 € NgI, and s0 Ngly # ¢. Let a, b € Ngls. Then
a, b € I, for all a. Since each I, is a left ideal, a — b € I, for all «. Hence,
a—b € Naly. Let » € R. Since each I, is a left ideal of R, ra € I, for all «
and so ra € Naly. Thus, Naly is a left ideal of R. Similarly, if {I, | « € A} is
a nonempty collection of right ideals of R, then N,/ is a right ideal of 2. &

Let ay,as,...,an, € R. Then by the notation } ;- a;, we mean the sum
a1 +az+ -+ an.

Definition 11.2.6 Let S be a nonempty subset of a ring R. Define (S), to be
the intersection of all left ideals of R which contain S. Then the left ideal (S},
is called the left ideal generated by S. Similarly, we can define (S),, the
right ideal generated by S, and (S}, the ideal generated by S.

Note that (5), is the smallest left ideal of R which contains S.

Theorem 11.2.7 Let R be a ring and S be a nonempty subset of R. Then

(i)
(S), = {Z:-":l 7;8; + ij:l nisi | ri € Ryn; € Z, 84,85 € S,
1<i<k1<j<LkleN}
(i)
($), = {Zhasri+Xjoinys; | 7 € Ronj € Z,s4,55 €5,

1<i<k1<j<lkleN}
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Proof. (i) Let

A = {F s +Z§=1 n;s; | v € Rynj € Z, 5,85 € S,
1<i<k1<j<lkleN}

Since (9); is the intersection of all left ideals of R which contain S, we have
(8), 2 S. Also, since (S}, is closed under addition and closed from the left
under multiplication by elements of R, we have A C (S}),. We now show that
A is a left ideal of R such that A 2 S. Then A D (S), since (S}, is the

smallest left ideal of R containing S. Let s € S. Then s =0-s+ 1s € A and
so S C A. Let Z.{-“:l 78 + 2§=1 'an; and Eﬁzlﬁ- 5+ E;—P;l n_s.._‘s; € A. Then
(i masit Xgmy 1 85) — (Tim T i+ 2 597) = (L msect Lo (-75) 5i)+
(Choinish + S50 (-7;5)s,) € A. Let r € R. Then r(35) 7esi + L5y 1555) =
Sk (rri)s; + Zé‘=1(nj7’)5; € A. Hence, A is a left ideal of R.

(ii) The proof is similar to (i). H

Corollary 11.2.8 Let R be a ring and S be a nonempty subset of R. If R 1s
with 1, then

() .
(S, ={ZT‘53‘5 | i€ R,s: € 5,1<i<k, neN}L

i=1
(i)
k
(S),={) siri |mi€R,s; €81<i<k, neN}

i=1

Proof. (i) Clearly (S), D {F 75 | 7 € R, s, € S}. Let Y8 s +
;=1 n;s; € (S); . Since R has an identity 1, n;s; = (n;1)s; and n;1 € R. Thus,

S Tisi+ Y n;sh = Yi T¢3¢+E§=1(nj1)3; e {5 rsi|ri€eRys;i €8,
1 <% <k, n € N} Hence, (S), C (Sk msi|meER, s, €8 1<i<k,
n € N}

(i1) The proof is similar to (i). B

If § = {a1,az2,...,a,}, then the left ideal {S), generated by S is denoted
by (a1,a2,...,axs),. In this case, we call (5}, a finitely generated left ideal.
Similar terminology is used for (5), and (S). If S = {a}, then (a), is called the
principal left ideal generated by a, (a). is called the principal right ideal
generated by a, and (a) is called the principal ideal generated by a.

"Corollary 11.2.9 Let R be a ring and a € R.
(1) Then
(@), ={ra+na|reR,neZj.
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(41} If R is with 1, then

{a); = {re | r € R}.

Proof. (i) This assertion follows from the equality

k m k m
Z'r,»a + Z n;a = (Z r;)a + (Z n;ja.
i=1 j=1 i=1 i=1
(i1} This follows from (i) and Corollary 11.2.8. &

Similarly, we can prove that {a), = {er+na | 7 € R,n € Z} and {(a) =
{ra+as+na+ Ei-;lr.,-as,- | 7,s,m5,8: € R, n e Z,1 <t <k, k€ N},

Consider the subsets Ra = {ra | r € R} andeR={ar |{r € R} of R.If R
is without identity, then Ra (aR) is still a left (right) ideal of R (Exercise 4,
page 306). It is not necessarily the case that a € Ra (a € aR) as illustrated by
the next example.

Example 11.2.10 Consider the ring E of even integers. E does not have an
identity. (2) = {r2+n2|r € E, n € Z} = {0, £2, +4,...} and 2 € (2).
However, {r2 | r € E} = {0,£4, 48, ...}, which does not contain 2.

In the next theorem, we obtain a necessary and sufficient condition for a
ring with 1 to be a division ring.

Theorem 11.2.11 Let R be a ring with 1. Then R is a division ring if and
only if R has no nontrivial left ideals.

Proof. Suppose R is a division ring. Let I be a left ideal of R such that
I D {0}. Then there exists a € I such that a # 0 and since I is a left ideal,
l=a"la€ . Hence, forallr € R,r =r1 €I, whence R=1.

Conversely, suppose R has no nontrivial left ideals. Let a € R and a # 0.
Then (a); = R and s0 1 € (a),. Now (a); = {ra | 7 € R}, whence there ex-
ists r € R such that 1 = ra. This implies that r # 0. Proceeding as in the
case of the nonzero element a, we find that tr = 1 for some ¢ € R. Therefore,
t = tl = t(ra) = (tr)a = la = a. Thus, ra = 1 = ar and so a is a unit.
Consequently, every nonzero element of R is a unit. Hence, R is a division
ring. B

Following along the lines of the above theorem, we can prove that a ring R
with 1 is a division ring if and only if R has no nontrivial right ideals.
The following corollary is immediate from the above theorem.
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Corollary 11.2.12 Let R be a commutative ring with 1. Then R is a field if
and only if R has no nontrivial ideals. B

Definition 11.2.13 A ring R is called a simple ring if R # {0} and {0}
and R are the only ideals of R.

Example 11.2.14 Fuvery division ring is o simple ring.

Example 11.2.15 In this ezample, we show that M>(R) is a simple Ting.
Let A be a monzero ideal of Ma(R). Then there exists a nonzero element

[ 2 Z ] € A. Now at least one of a,b,c,d is nonzero. Since A is an ideal

and[o 0},[0 1]€M2(R),weha've

10’0 0
(o b]{0o 0] [5 0]
¢ d}[l 0|=|d oD

[0 1 a b [ ¢ d-eA
_00 cd_ 0 0 ’
01 a b 0 0| |40 cA
0 0 c d 10| |0 0 '

Therefore, we find that A contains a matriz { t:; 2 :l such that a # 0. Now

and

a~lecR and
1 0f|la ||t O) |10 1L 0 _ |10},
0 0 c d 0 0| |0 0 ecal 0|10 O '
Thus, ) ) _ ] _
1 0l[o 1 0 1
oolloo|=|o0 o4
Finally, ) ) ] )
00l[o 1 00
1o|[o0]T |01 € 4.
Hence,
1 0 1 0 0 0
[0 1]_[0 olT]o 1]€A

This implies that A = Ma(R).
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The above example shows that there are simple rings, which are not division
Tings.

For a € R, aRa denotes the set {ara | 7 € R}.

We now consider the sum and product of left (right) ideals.

Let A and B be two nonempty subsets of a ring R. Define the sum and
product of A and B as follows:

A+B={a+b|lac A be B}

AB ={aibi+agba+ - +apbp|a; €A, bj€B,i=1,2,...,n, ne N}

Thus, AB denotes the set of all finite sums of the form > a;b;, a; € A,
b; € B.
Let n € N. Inductively, we define

Al = A,
A" = AA™D ifn> L

We now list some interesting properties of these two operations.

Theorem 11.2.16 Let A, B, and C be left (right) ideals of a ring R. Then the
following assertions hold.

(i) A+ B =B+ A is a left (right) ideal of R.

(i1) A+ A= A.

(iii) (A+ By+ C=A+ (B+C).

(iv) AB is a left (right) ideal of R.

(v) (AB)C = A(BC).

(vi) If A,B and C are ideals, then A(B+ C) = AB+ AC, (B+(C)A =
BA+ CA.

(vit) If A is a right ideal and B is a left ideal, then AB C AN B.

(viit) R is a regular ring if and only if for any right ideal A and for any
left ideal B, AB = AN B.

(iz) The set I(R) of all ideals of R forms a modular lattice with respect to
set inclusion as a partial ordering.

Proof. We only prove (viii) and (ix) and leave the other properties as
exercises.

(viil) Suppose R is a regular ring. Let a € AN B. There exists b € R such
that a = aba. Since B is a left ideal and a € B, ba € B. Thus, a = a(ba) € AB,
whence AN B C AB. By (vii), AB C An B. Consequently, AB = AN B.
Conversely, assume that AB = AN B for any right ideal A and left ideal B of
R. Let a € R and consider (a),, the right ideal generated by a. Since (a), is a
right ideal, {a). R C {a), . Also, by our assumption (a), N R = (a}, R. Hence,

a€{a),NR=a), R
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Therefore, a = 3 ;-1 a;b; for some a; € (a),, b € R, 1 =1,2,...,n. From the
statements following Corollary 11.2.9, a, = af; + n;a for some t; € R, n; € Z,
i=1,2,...,n.Thus,a =3 7 a;b; = >y (at;+na)b, = e300 (t.,;b¢;+mb¢')) =
aR. This implies that {(a), = aR. Since aR C {(a),, {(a), = aR. Similarly,
(a), = Ra. It now follows that a € aRN Ra = (aR)(Ra) C aRa. Hence, there
exists b € R such that ¢ = abaq, i.e., a is regular. Consequently, R is regular.

(ix) By using arguments similar to the proof of Theorem 4.1.16, we can show
that (I(R), C) is a poset. To show (I(R),C) is a lattice, let A, B € I(R). Now
ANB,A+B € I(R). Also, A, BC A+ B. Let C € I(R) be such that A) B C C.
Since C is an ideal, A+ B C C. Hence, A + B = AV B, the lub of {A, B}.
Similarly, AN B = A A B, the glb of {4, B}. Thus, I(R) is a lattice. To show
(I(R), €) is a modular lattice, let A, B, C be three elements in I{R) such that
ACC. Notethat AV(BAC)=A+(BNC)and (AVB)AC=(A+B)NnC.
Now A+ (BNC)C (A+B)NnCandso AV{(BAC)C (AV B)AC. Let
t € (A+B)NC. Thenz € C and x € A+ B. Thus, z = a + b for some
a € AC C and b € B. This implies that b=z —a € Candsobe BNC,
which shows that x € A+ (BN C). Hence, (A+ B)NC C A+ (BNCQC), ie,
(AVBYAC CAV(BAC). Thus, AV (BAC) = (AV B) A C. Consequently,
I(R) is a modular lattice. W

We now give the analogue of quotient groups for rings. Let R be a ring
and I an ideal of R. Then (I, +) is a normal subgroup of (R,+) since the
latter group is commutative. Hence, if R/I denotes the set of all cosets r+ 1 =
{r+a|a€l}forallr € R, then (R/I, +) is a commutative group, where

(r+D+ (' +D=(C+r)Y+1

for all r+1, 7' +1 € R/I. Now define multiplication on B/I by (r+1)-(r'+1) =
rr/+Iforallr+ 1,7 +1¢€ R/I. Then (R/I,+,-) forms a ring. We leave the
details as an exercise.

Definition 11.2.17 If R is a ring end I is an ideal of R, then the ring
(R/1,+,") is called the quotient ring of R by I.

Theorem 11.2.18 Let n € Z be a fized positive integer. Then the following
conditions are equivalent.

(1) n is prime.

(11) Z/ (n) is an iniegral domain.

(i5i) Z/ (n) is a field,

Proof. (i) =(ii): Let a + (n),b+ (n) € Z/ (n) . Suppose

(a+ (n)(b+ (n)) =04+ (n).
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Then ab+ (n) = 0 + (n) and so ab € (n). Thus, there exists » € Z such that
ab = rn. This implies that n|ab. Since n is prime, either n|a or n|b, i.e., either
a € (n) or b € (n) and hence either a + (n) =0+ (n) or b+ (n) =0+ (n).
This implies that Z/ {n) has no zero divisors, proving that Z/ {n}) is an integral
domain.

(ii)=(iii): Since Z/ (n} is a finite integral domain, the result follows from
Theorem 10.1.23.

(iii}=>(i): Suppose n is not prime. Then n = nns for some 1 < n; < n and
1 < ny < n. Now n) + (n) and ny + (n) are nonzero elements of Z/ {n) and

(1 + (n))(n2 + (n)) =nino + (n) =n+(n) =0+ {n).

Since Z/ (n) is a field, Z/ (n) has no zero divisors. Thus, either n; + {n) =
04 (n) or ny + (n) = 0+ (n), a contradiction. Therefore, n is prime. W

Definition 11.2.19 Let I be an ideal of a ring R.
(i) I is called a nil ideal if each element of I is a nilpotent element.
(1) I is called o nilpotent ideal if I™ = {0} for some positive integer n.

Example 11.2.20 In the ring Zs, the ideal I = {[0], (4]} is a nil ideal and
also a nilpotent ideal. I? = {5 [as][bs] | [as), [bs]) € I, & € N} = {0} since
lﬁlaib,-.

From the definition, it follows that every nilpotent ideal is a nil ideal.
The following example shows that the converse is not true. In this exam-
ple, we construct a ring R from the rings Z,», n =1,2,..., i.e,, from the rings
ZpyZp2,Zp3,. .., where p is a fixed prime.

Example 11.2.21 Let p be a fized prime. Let R be the collection of all se-
quences {an} such that ap, € Zypn (n > 1) and there emists a positive integer
m (dependent on {ar}) such that a, = [0] for all n > m. Define addition and
multiplication on R by

{an} +{ba} = {an+0ba},
{an}{bn} = {anbn}

for all {a,},{b.} € R. We ask the reader to verify that R is a commutative
ring under these two operations, where the zero element is the sequence {an}
such that a, = [0] for alln and the additive inverse of the sequence {an} is the
sequence {—~an}. Now in Zyn, [p] is a nilpotent element since [p|™ = [p"] = [0].
Thus, for any [r] € Zpn, [p][r] = [pr] is a nilpotent element. Therefore, we find
that each element of [p|Zyn is a nilpotent element.

Let

I= {{[p]al,[p]ag,...,@]an, [0},[0],} €ER | neN, a; € thi = 1,...,?1}.
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Then I is an ideal of R. Also, every element of I is nilpotent. Let us now show
that I is not nilpotent. Suppose I is nilpotent. Then there exists a positive
integer m such that I™ = {0}. Now the sequence {an} such that an, = [p] for
n=12...,m+1anda, =0 for alln > m + 2 is an element of I. Then
{ax}™ = {[0],[0], -..,[0], [p™],[0),0],...}, where the (m + 1)th term of this
sequence s [p™] and all other terms are 0. Since [p™] is not zero in Zymi1, we
find that {a,}™ # 0 and {a,}™ € I = {0}, a contradiction. This implies that
I is not nilpotent. i

Theorem 11.2.22 Let R be a commutative ring with 1 and I denote the set
of all nilpotent elements of R. Then

(1) I is a nil ideal of R,

(%) the quotient ring R/I has no nonzero nilpotent elements.

Proof. (i) Since 0 € I, I # ¢. Let a,b € I. There exist positive integers m
and n such that a™ = 0 and ™ = (. Since R is commutative, we can write

(a _ b)n-l-m — a'n+m 4.+ (__1)-;- (TL —: m) an+m—rb7‘ e (__1)‘n+'rnbn+m.

The general term of the above expression is (—1)"(*7™)a™*™ 75", where 0 <
r<m+n. Ifr <m,then n+m—7r > n and hence a7 = ag"a™ " = 0.
Again, if r > m, then b = y™+—™) = pmp"—™ = (. Therefore, we find that
(1) ("™ et = 0,7 =0,1,2,...,n+m. This implies that (a—b)"+™ =
0,i.e., a—bis nilpotent and so a—b € I. Let r € R. Then (ra)* = r*a™ = r"0'=
0. Since R is commutative, (ar)™ = (ra)™ = 0. Thus, ar,ra € I. Consequently,
I is an ideal of R. Since every element of I is nilpotent, I is nil.

(ii) Let @ + I be a nilpotent element of B/I. Then (a + I)” = I for some
positive integer n. But a™ + I = (a+ I)™. Thus, a™ + I = I, which implies that
a™ € I. Since every element of [ is nilpotent, there exists a positive integer
m such that (™)™ = 0, i.e., a® = 0, which shows that a is nilpotent and so
a € I. This implies a + 1 = I. Hence, R/I has no nonzero nilpotent elements. W

Theorem 11.2.23 Let A and B be two nil ideals of o commutative ring R
with 1. Then A+ B is a nil ideal.

Proof. By Theorem 11.2.16, we know that A + B is an ideal of R. Let [
be the set of all nilpotent elements of R. Then A C I, B C I.and by Theorem
11.2.22, I is an ideal. Hence, A+ B C I. Since [ is nil, A + B is nil. B
11.2.1 Worked-Out Exercises

{ Exercise 1 Find all ideals of Z.
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Solution: From Worked-Out Exercise 3 (page 292), we know that the
subrings of Z are the subsets nZ, n = 0,1,2,.... Let us now show that these
subrings are precisely the ideals of Z. If I is an ideal of Z, then [ is a subring
of Z and so I = nZ for some nonnegative integer n. Now, let I = nZ (n is a
nonnegative integer). Then [ is a subring. If 7 € Z, then rI = r(nZ) =n(rZ) C
nZ = I. Similarly, Ir C I. Hence, [ is an ideal of Z.

Exercise 2 Let R be a ring such that R has no zero divisors. Show that if
every subring of R is an ideal of R, then R is commutative.

Solution: Let 0 # a € R. Then C(a) = {z € R | za = az} is a subring
of R and hence an ideal of R. Thus, ra € C{a) for all r € R. Let r € R. Now
ara =ra? implies that (ar — ra)a = 0. Since R has no zero divisors and a # 0,
ar —ra = 0 and so ar = ra. Hence, a is in the center of R. Since a is arbitrary,
R is commutative. |

¢ Exercise 3 Give an example of a ring R and ideals A;, ¢+ € I, such that
A; ﬂAj = {0} if ¢ # 7, but A; N (Ej#i AJ) =+ {0}

Solution: Let K = {0,0,,.6, c}. Define + and - on R by

20 =2b=2¢=0, zy =0, for all z,y € R and
atb=bt+a=c,a+c=c+a=0b andb+c=c+b=oua.

Then (R, +,-) is a ring. Let A; = {0,a}, A2 = {0,b}, and A3 = {0,c}. Then
A1+ Ay =A1+A3=A+A3=Rand AiNAy=A1NA3= Ay NA3 = {0}.

{ Exercise 4 Give an example of a ring R and ideals A and B such that
ABC AnB.

Solution: Let R be the ring of Worked-Out Exercise 3. Let A = B = {0,a}.
Then AB = {0} C {0,a} =ANB.

{$ Exercise 5 Characterize all commutative rings R such that R has only two
ideals R and {0}.

Solution: Let R be a commutative ring such that the only ideals of R are
R and {0}. Now R? is an ideal of R. Thus, R? = {0} or R? = R.

Case 1. R? = {0}. Then ab = 0 for all a, b € R. In this case, every subgroup
of (R, +) is an ideal. Hence, (R, +) has no proper subgroups and so (R, +) is
a cyclic group of prime order by Exercise 21 (page 138).

Case 2. R? = R. Let 0 # a € R. Then aR is an ideal of R. Hence, either
aR = {0} or aR = R. Suppose aR = {0}. Let T = {(a). Then T is an ideal
of R and a € T. Thus, T = R. Now aR = {0} implies that TR = {0} and
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hence R? = {0}, which is a contradiction. Therefore, aR = R. Thus, for all
0 # a € R, aR = R. We now show that R has no zero divisors. Let a,b be
two nonzero elements of R such that ab = 0. Let T = {¢c € R | ac = 0}.
It is easy to see that T is a nonzero ideal of R. Hence, by the hypothesis,
T = R. This implies that R = aR = oT = {0}, a contradiction to the fact that
R = R? # {0}. Consequently, R has no zero divisors. Next, for 0 # a € R,
‘aR = R and so we find that ae = a for some ¢ € R. Since a # 0, we must have
e # 0. Also, since R has no zero divisors, a(e? —e) = 0 implies that e? = e. Now
for any b € R, eb = b implies that e(b — eb) = 0 and hence b = eb = be. This
shows that eis the identity element of R. Also, aR = R implies that ¢ = ab for
some b € R. Hence, a™! exists in R. Consequently, R is a field.

So from the above two cases we conclude that either R is the zero ring with
a prime number of elements or R is a field.

11.2.2 Exercises

1. Let To(Z) = { [ g i } | @,b,c € Z} be the ring of all upper triangular

matrices over 4.

0 b

(i) Prove that I = 0 o ] | b,c€ Z} is an ideal of T5(Z). Find the

quotient ring T2(Z)/1.
(ii) Prove that 7 = g

| lae z} is an ideal of T5(Z). Find the

quotient ring T5(Z)/1.

2. In the ring Zy4, show that I = {[0],[8], [16]} is an ideal. Find all elements
of the quotient ring Zo4/I.

3. Show that the set 7 = {a -+ biv/5 | a,b € Z and a — b is even} is an ideal
of the ring Z[iv/5]. '

4. Let R be aring and a € R. Show that aR is a right ideal of R and Ra is
a left ideal of R.

5. Let R be a ring. Let A be a left ideal of R and B be a right ideal of R.
Show that AB is an ideal of R and BA C AN B.

6. Let R be a ring such that R? # {0}. Prove that R is a division ring if
and only if R has no nontrivial left ideals.

7. Let R be a ring with 1. Prove that R has no nontrivial left ideals if and
only if R has no nontrivial right ideals.
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10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

Let I, I be ideals of a ring R. Prove that I} U I is an ideal of R if and
only if either [; C Iy or I C I,

Let 7 and J be ideals of a ring R. Prove that I + J is an ideal of R and
that I +J = (I U J), the ideal of R generated by 7 U J.

Let I be an ideal of a commutative ring R and ¢ € R. Prove that
(IU{aV )y ={i+ra+na|tel,re R, neZ}
Let m and n be positive integers in Z. Prove that

(i) {m,n) = (m) + (n) = {d), where d is the greatest common divisor of
m and n;

(ii) {(m) N (n) = (q) , where q is the least common multiple of m and n.
Find all ideals of the Cartesian product Fj x F» of two fields F} and F5.

Consider the Cartesian product ring R, x Rs of the rings R; and Rs.

(1) If [; is an ideal of R; and I3 is an ideal of Ry, prove that I; x Iz is an
ideal of R, x Rs.

(ii) Suppose R; and K are with 1 and I is an ideal of Ry x Ry. Does
there exist ideals I; of By and Iy of Ry such that I = I;7 x 137

Let R be an ideal of a ring R. Prove that the quotient ring R/I is a
commutative ring if and only if b —ba € I for all a,b € R.

Let T = {% | £ € Q, a and b are relatively prime and 5 does not divide b}.
Show that T is a ring under the usual addition and multiplication. Also,
prove that [ = {§ € T'| 5 divides a} is an ideal of T and the quotient
ring T'/I is a field.

Let I be an ideal of a ring R. Prove that if R is a commutative ring with
identity, then R/I is a commutative ring with identity. If R has no zero
divisors, is the same necessarily true for R/I7

Let I be an ideal of a commutative ring R. Define the annihilator of [
to be the set

annl ={r e R|ra=0foralla € I'}.

Prove that ann/ is an ideal of R.
In the ring Zog, prove that I = {[n] | n is even} is an ideal. Find ann/.

In the ring Z[é], show that I = {a + b | a,b € Z and a,b are even} is an
ideal. Find annl.
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20

21

22

23.

24.

25.

26.

27.
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In a commutative regular ring R with 1, prove that every principal ideal
I is generated by an idempotent and for every principal ideal I, there
exists a principal ideal J such that R=I+ J and I NJ = {0}.

Prove that every ideal of a regular ring is regular.

Prove that a ring R is regular if and only if every principal left ideal of
R is generated by an idempotent.

Prove that in a commutative regular ring with 1 every finitely generated
ideal is a principal ideal.

In a ring R, prove that {0} is the only nilpotent ideal if and only if for
all ideals A and B of R, AB = {0} implies AN B = {0}.

Let R be a ring and f : R — [0, 1] be such that

fle=b) > min{f(a), f(b)},
frb) = f(b)

for all a,b,7 € R. Prove the following:

(i) £(0) > f(a) for all a € R;

(ii) f(e) = f(—a) for all a € R;

(iii) for all t € Z(f), Re = {z € R | f(x) > t} is a left ideal of R;

(iv) Rp = {a € R| f(a) = f(0)} is a left ideal of R.

Let R be a ring. A relation p on R is called a congruence relation on

the ring R if p is an equivalence relation on R and for all a,b,c € R, apb

implies that acpbe, capeh, and (a + ¢)p(b + c). Let I be an ideal of R and

p be the relation on R defined by apb if and only if a — b € I. Show that
p is a congruence relation on R.

In each of the following exercises, write the proof if the statement is true;
otherwise, give a counterexample.

(i) If {I; | ¢ € N} is a collection of ideals of R, then U;en/; is an ideal of
R.

(ii) Z is a subring of R, but not an ideal of R.

(ii) If I is a nontrivial ideal of an integral domain R, then the quotient
ring R/I is an integral domain.
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11.3 Homomorphisms and Isomorphisins

In this section, we introduce the ideas of homomorphisms and isomorphisms
of rings. These concepts are the analogs of homomorphisms and isomorphisms
for groups.

Definition 11.3.1 Let (R,+,-) and (R',+',') be rings and f a function from
R into R'. Then f is called a homomorphism of R into R’ if

fla+b) = f(a)} +' f(b),

fla-b) = f(a) ' f(b)
for all a,b € R.

A homomorphism f of a ring R into a ring R’ is called

(i} a monomorphism if f is one-one,

(ii) an epimorphism if f is onto R/, and

(iii) an isomorphism if f is one-one and maps R onto R'.

If f is an isomorphism of a ring R onto a ring R', then f~! is an isomorphism
of R/ onto R.
An isomorphism of a ring R onto R is called an automorphism.

Definition 11.3.2 Two rings R and R are said to be isomorphic if there
exists an isomorphism of R onto R/.

We write R ~ R’ when R and R’ are isomorphic.

When speaking of two rings R and R/, from now on we usually use the
operations + and - for both rings. Let f : R — R’ be a homomorphism of
rings. Since f preserves +, f is a also a homomorphism of the groups (R, +)
and (I?',+). Hence, we can immediately apply Theorem 5.1.2 to conclude that
f maps 0 to 0/, i.e., f(0) = (', and for all « € R, —f(a) = f(—a). We list
some properties of homomorphisms in the following theorem. The proofs are
similar to the proof of Theorem 5.1.2 and so we leave them as an exercise for
the reader.

Theorem 11.3.3 Let f be a homomorphism of a ring R into a ring R'. Then
the following assertions hold.

(i) F(0) =0, where O/ is the zero of R

(ii) f(—a) = —f(a) for all a € R.

(iii) f(R) = {f(a) | @ € R} is a subring of R'.

(iv) If R s commutative, then f(R) is commutative.

Suppose R has an identity and f(R) = R/. Then
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(v) R’ has an identity, namely, f(1).
(vi) If a € R is a unit, then f(a) is a unit in R and

fl@yt=fl).m

We point out that in (v) of Theorem 11.3.3, if f is not onto, then R’ may or
may not have an identity. Even if R’ has an identity, the identity of R need not
map onto the identity of R’. We illustrate this point later in Example 11.3.7.

Definition 11.3.4 Let f be a homomorphism of a ring R into a ring R'. Then
the kernel of f, writien Ker f, is defined to be the set

Ker f={a€R| f(a) =07}.
From Theorem 11.3.3, we know that 0 € Ker f.

Example 11.3.5 The identity map of a ring R is a homomorphism (in fact,
an isomorphism). Its kernel is {0}. Let R and R be rings and f: R — R’ be
defined by f(a) = O for all a € R. Then f is a homomorphism of R into R’
and Ker f = R,

Example 11.3.6 Let f be the mapping from Z onto Z, defined by f(a) = [a]
for all a € Z. From Ezample 5.1.4, f(a +b) = f(a) +, f(b) for all a,b € Z.
Also, f(a-b) = [ab] = [a] ‘»n [b] = f(a) -nf(b) for all a,b € Z. Thus, f is a
homomorphism of Z onto Z,. As in Example 5.1.4, Ker f = {gn | q € Z}.

In the following example, we show that if f is a homomorphism from a ring
R with 1 into a ring R’ with 1 and f is not onto, then the identity of R need
not map onto the identity of R'.

Example 11.3.7 Consider the direct sum Z®Z of Z with itself (see Exercise
17, page 283). Define f: Z - Z® Z by f(a) = (a,0) for all a € Z. From the
definition of f, f is well defined. Now for all a,b € Z, fla+b) = (a+b,0) =
(a,0) + (b,0) = f(a) + f(b) and f(adb) = (ab,0) = (a,0)(b,0) = f(a)(b). Thus,
[ is a homomorphism. Also, Ker f = {0}. Now f(1) = (1,0), but (1,1) is the
identity of Z ® Z. Therefore, the identity of Z does not map onto the identity
of ZBZ.

Consider the rings Z and Q. Suppose Z =~ Q. Then the groups (Z,+) and
(Q,+) are isomorphic. However, this is not possible since {(Z,+) is a cyclic
group and (Q,+) is not a cyclic group. In the following example, we give
another argument to show that Z is not isomorphic to Q.



11.3. HOMOMORPHISMS AND ISOMORPHISMS 311

Example 11.3.8 Suppose Z ~ Q. Let f : Z — Q be an tsomorphism. Then
f(1) =1 and f(0) = 0. Let n be a positive integer. Then f(n) = f(1+.--+1)
w

n fimes

= f()+ f()+---+ f(1) = nf(l) = nl = n. Now suppose that n is a
negative integer. Let n = —m, where m is positive. Then f(n) = f(—m) =
f(=1-1----=1) = =f(1) = f(1) —--- = f(1) = m(=f(1)) = —mf(1) =

—ml = —m =n. Hence, f(n) =n for alln € Z. Let 0 # § € Q\Z. Since f is
onto Q, there exists n € Z such that § = f(n) = n, which is a contradiction.
Hence, Q is not isomorphic to Z.

In the following example, we consider two rings which look similar, but
which are not isomorphic.

Example 11.3.9 In this ezample, we show that the ring Z[v/3] = {a + /3 |
a,b € Z} and the ring Z[v/5] = {a+bV5 | a,b € Z} are not isomorphic. Suppose
there exzists an isomorphism f : Z|\/3] — Z[VE]. Now 3 = (0 + +/3)2. Thus,
f3) = F((V3)?) = (Ff(V3)? Since f is an isomorphism, we have f(1) =
1. This implies that f(3) = 3. Hence, 3 = (f(V/3))%. Since f(v/3) € Z[VF),
F(V3) = a+by5 for some a+ by/5 € Z[v/5]. Therefore, 3 = {a+b\/5)? and so
3 = a?+5b%+2abV5. Ifab = 0, then 3 = a®+5b%. But there do not exist integers
a and b such that ab =0 and 3 = a? +5b2. If ab # 0, then /5 = 3’ _5b? Q,

2ab
which is a contradiction. Hence, Z[v/3] and Z[\/5] are not isomorphic.

The next example shows that the ring Z,, and the ring Z/ (n} are isomor-
phic.

Example 11.3.10 Consider the ideal (n) generated by o fixed positive integer
n € Z. By Corollary 11.2.9, (n) = {qn | g € Z}. The cosets of (n) in Z are
a+(n)={a+qn|qeZ} Now

Z/{n)={a+ (n)| a € Z}.

Define f : Zn — Z/{n) by f([a]) = a + {n) for all [a] € Z,. We recall that
f is an isomorphism of ( Zn, +n) onto (Z/ {n),+) (Ezample 5.1.15). Now
f([a] = [o]) = f([ab]) = ab+ (n) = (a+ (n))(b+ (n)) = f(la])f([b]). Thus, [ is

a ring isomorphism of Z,, onto Z/ (n).

Theorem 11.8.11 Let f be a homomorphism of a ring R into a ring R'. Then
Ker f is an ideal of R.

Proof. Since 0 € Ker f, Ker f # ¢. Let a, b € Ker f. Then f(a ~b) =
fl@) — f(b) =0 -0 =0 and so a — b € Ker f. Let r € R. Then f(ra) =
f(r)- fla) = f(r) -0/ =0/ and so ra € R. Similarly, ar € Ker f. Hence, Ker f
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is an ideal of R. A

In the remainder of the section, we consider isomorphism theorems which
are parallel to those for groups (Section 5.2).

Theorem 11.3.12 Let R be a ring and I be an ideal of R. Define the mapping
g:R—> R/I bygla) =a+1I foralla € R. Then g is a homomorphism, called
the natural hommomorphism, of R onto R/I. Furthermore, Ker g = I.

Proof. Nowforalla,be R, gla+b) =(a+b)+I=(c+D+{b+1I) =
g(a) + g(b) and g(ab) = ab+ 1 = {(a+ I){(b+ I) = g(a)g(b). That Ker g = I
follows from Theorem 5.1.12 in group theory. B

Theorem 11.3.13 Let f be a homomorphism of a ring R onto a ring R and
I be an ideal of R contained in Ker f. Let g be the natural homomorphism of
R onto R/I. Then there exists a unique homomorphism h of R/I onto R’ such
that f = ho g. Furthermore, h is one-one if and only if I = Ker f.

Proof. Once again, we use the work already done for groups. Define
h: R/I — R by h(a+I) = f(a) for all a € R. We have the desired re-
sults by Theorem 5.2.1, once we verify that h preserves multiplication. Now

h(a+ Db +1) = hab+I) = flab) = f(a)f(b) = h(a + Dh(b+I). W

The proof of the following theorem is similar to that of the first isomorphism
theorem for groups. We omit the proof. This theorem is also known as the
fundamental theorem of homomorphisms for rings.

Theorem 11.3.14 (First Isomorphism Theorem) Let f be a homomor-
phism of a ring R into a ring R'. Then f(R) is an ideal of R’ and

R/Ker f ~ f(R). 1

We state the following theorem without proof. Its proof is a direct transla-
tion of the proof of the corresponding theorem for groups.

Theorem 11.3.15 (Correspondence Theorem) Let f be a homomorphism
of a ring R onto a ring R'. Then f induces a one-one inclusion preserving cor-
respondence between the ideals of R containing Ker f and the ideals of R’ in
such a way that if I is an ideal of R containing Ker f, then f(I) is the corre-
sponding ideal of R', and if I' is an ideal of R', then f~1(I') is the corresponding
ideal of R. A
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An example similar to Example 5.2.13 can be developed to illustrate The-
orem 11.3.15

The next two isomorphism theorems for rings correspond to Theorems 5.2.8
and 5.2.6, respectively.

Theorem 11.3.16 Let f be a homomorphism of a ring R onto a ring R', I
be an ideal of R such that I D Ker f, g, and g’ be the natural homomorphisms
of R onto R/I and R’ onto R'/f(I), respectively. Then there ezists a unique
isomorphism h of R/I onto R'/f(I) such thatg'o f=hog. B

Corollary 11.3.17 Let 11, I be ideals of a ming R such that I C Iy. Then
(R/I)/(Is/1)) ~ R/I,. &

Theorem 11.3.18 If I and J are ideals of the ring R, then I/(I N J) =~
I+J)/J B

11.3.1 Worked-Out Exercises

{ Exercise 1 Show that the function f : Zg — Z;g defined by f([a]) = 5[d]
for all [a] € Zg is a ring homomorphism of Zg into Zp.

Solution: We first show that f is well defined. Let [a] = [b] in Zg. Then
a—b is divisible by 6. Thus, a = 6k+b for some k € Z. Now 5a = 30+ 5b shows
that 5[a| = [5a] = [30k+5b] = [30k]+10[5b] = [0]+105[b] = 5[b] in Z1¢. Therefore,
f([a]) = F([b]). Thus, we find that f is well defined. Let [a],[b] € Z¢. Then
f(lal +¢(8]) = f(la+b]) = 5[a+b] = 5([a] +10(b]) = 5[a] +105(b] = f(a)+10f(b)
and f([al -¢ [b]) = f([ab]) = 5|ab] = 25[ab] (since Z1q is of characteristic 10) =
(5(a]) 10 (5[8]) = f(a) ‘10 f(b). Hence, f is a homomorphism.

$ Exercise 2 Let R be the field of real numbers. Let a be an automorphism
of R. Show that a(z) = z for all z € R.

Solution: Since « is an automorphism of R, a(0) = 0, and a(1) = L.
lLet n € N. Then a(n) = a(l+1+---+1) =all)+a(l)+---+ (1) =
1+41+4+---+1=n.Nowlet m € Zand m < 0. Let n = —m > 0. Then
a(m) = a(—n) = —a(n) = —n = m. This shows that o(z) = z for all x € Z.
Let 2 € Q. Then a(2) = a(pg™) = a(p)al¢™') = palg)™" = pg~ = &. This
shows that a(z) = z for all z € Q. Let = € R be such that z > 0. Then z = y?
for some ¥ € R. Thus, a(z) = a(¥?) = a(yy) = aly)a(y) = a(y)? > 0. Now
let a,b € R be such that a > b. Then a — b > 0. Hence, a(a — b) > 0 and so
ala) — afb) > 0, i.e., a(e) > a(b). Therefore, « is order preserving. We now
show that « is continuous. Let € € R and € > 0. Since « is onto R, there exists
6 > 0 such that o(6) = €. Now let =,y € R be such that |z — y| < §. Thus,

<z —y<6.
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Since « is order preserving,
a(—6) < alr —y) < afb).

Therefore,
—e<aflr—y) <e

and so
—e < alz) — aly) <e.

This implies that

afz) —afy)| < e
Hence, « is continuous. Now let z € R.. Since Q is dense in R, there exists a
sequence {a,} of rational numbers such that

lim e, = 2.
n—od

Since « is continuous,

a(z) = a(nlirgo an) = nan;o alan) = nango Gn = I,

proving the result.

¢ Exercise 3 Let R be a ring with 1. If the characteristic of K is 0, show that
R contains a subring isomorphic to Z.

Solution: Let T = {nl | n € Z}. Since 0 =01 € T, T # ¢. Let a = nl and
b = ml be two elements of T. Then a —b =nl —ml = (n —m)l and ab =
(n1){m1l) = (nm)1. Hence, a — b,ab € T. Thus, T is a subring of R. Suppose
n,m are two integers such that nl = ml. If n > m, then (n —m)1 = 0. This
contradicts the assumption that R is of characteristic 0. Similarly, m > n also
leads to a contradiction. Hence, n = m. Thus, we find that for each a € T,
there exists a unique integer n such that ¢ = nl. Hence, the mapping f : Z — T
defined by f(n) = nl is an isomorphism.

Exercise 4 Let p be a prime integer. Show that there are only two noniso-
morphic rings of p elements.

Solution: It is known that (Z,,+p) is the only group of order p (up to
isomorphism). Define ®; and @2 on Z, by [a] ®; [b] = [0] and [a] ©2 [b] = [ab)]
for all [a],[8] € Zp. Now ®1 and ©@; are well defined and (Zp, +,,®1) and
(Zp, +p, ®2) are rings. Let R be a ring with p elements. Then (R,+) ~~
(Zp, +p). If R % (Z;,+p,®1), then the multiplication of R is not ®;. Let [q]
be a generator of (Z,, +,). Now [a]? = n[a] for some nonzero integer n. There
exists an integer m such that mn =, 1. Let [b] = m[a]. Then [b]? = m?[a)? =
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m?nfa] = mla] = [b]. Let g be an isomorphism from (Z,, +,)} onto (R, +). Define
f1Z, = Rby f([u]) = ug([b]) for all [u] € Z,.Then f([u]+,[v]) = f([u+v]) =
(1w 0)g((8]) = ug([8)) +vg((b]) = £([ul) + F([o]) and £([u] @ o)) = £ (fue]) =
(w)g((B]) = wog(B?) = wg([B)o((8]) = ug((Byug(l)) = F({u])([o]). Hence,
f is a ring homomorphism. Let ¢ € K. Then there exists [u] € Z, such that
9([u]) = ¢. Now [u] = t[a] for some ¢ € Z. Thus, f([tn]) = tng([t]) = tn
g(mla]) = tg{mn[a]) = tg([a]) = g(t[a]) = g([u]) = c. Hence, f is onto R. Since
|Zp| = |R], it follows that f is one-one. Thus, f is an isomorphism.

11.3.2 Exercises

b

1. Let R denote the set of all 2 x 2 matrices of the form , where a

a
—b
and b are real numbers. Prove that R is a ring and the function a + bt —

a b

-b a

2. Define the binary operations @ and @ on Z by a®b =0a-+5—1 and

a®b=a+b—abforall a,bc Z. Show that (Z,H, ®) is a r'ng isomorphic
to the ring (Z,+, ).

is an isomorphism of C onto R.

3. (i) Show that the rings R and Q are not isomorphic.
(ii) Show that the rings R and C are not isomorphic.

(iii) Are the rings Zs and Z3 x Zz isomorphic?

4. Let T5(Z) = { ( g’ 2 ) | a,b,¢ € Z} be the ring of all upper ¢riangular

a b

matrices over Z. Define f : T2(Z) — Z by for all 0 o ) € Th(Z),

f((g ﬁ))=a.

(i) Show that f is a homomorphism.
(i1} Is f an epimorphism?
(iii) Is f an isomorphism?

(iv) Find Ker f.
5. Does there exist an epimorphism from the ring Zo4 onto the ring Z7?

6. Show that there does not exist a monomorphism from the ring Zg into
the ring Z;.
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10.
11.

12,

13.
14.

15.

16.

Show that the ring 27 is not isomorphic to the ring 3Z.

Let R be a Boolean ring. If {0} and R are the only ideals of R, prove
that R ~ Z».

Show that the ring Z is not isomorphic to any proper subring of Z.
Is the ring Q[+/2] isomorphic to the ring Q[+/3]?

Let f: R — S be a nontrivial homomorphism from a field R onto a ring
S. Prove that S is a field.

Let R be a ring with 1. If R is of characteristic n > 0, show that R
contains a subring isomorphic to the ring Z,,.

Show that there exist only two homomorphisms from R into R.

Prove that every ring R is isomorphic to a subring of M, (R), the ring of
n X n matrices over K.

Let f be a homomorphism of a ring R onto a ring R’. Prove that

(i) if I is an ideal of R, then f(I) is an ideal of R’;

(ii) if I’ is an ideal of R, then f~*(I’) is an ideal of R and f~1(I’) D Ker
f;

(iii) if R is commutative and I and J are two ideals of R, then f(I+J) =
f(I) + f(J) and f(1J) = f(I)f(J).

In each of the following exercises, write the proof if the statement is true;

otherwise, give a counterexample.

(i) There exist only two homomorphisms from the ring of integers into
itself.

(ii) The mapping f : Z — Z defined by f(n) = 3n is a group homomor-
phism, but not a ring homomorphism.

(iii) The only isomorphism of a ring R onto itself is the identity mapping
of R.

(iv) Let R be a ring with 1. Let f : R — § be a ring homomorphism.
Then f(1) is the identity element of S.

(v) A nonzero homomorphism from a field into a ring with more than
one element is a monomorphism.

(vi) Every nontrivial homomorphic image of an integral domain is an
integral domain.
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Richard Dedekind (1831-1916) was
born on October 6, 1831, in Brunswick, Ger-
many, the birthplace of Gauss. He was the
youngest of four children.

In 1848, Dedekind went to Collegium
Carolinum, an institution attended by Gauss,
where he became a master in analytic ge-
ometry, algebraic analysis, differential and
integral calculus, and higher mechanics. In
1849-1850, he gave private lessons in math-
ematics. He matriculated, in 1850, at the
University of Gottingen.

After four semesters, in 1852 Dedekind
completed his Ph.D. work under Gauss. His thesis was on the elements of the theory
of Eulerian integrals. Later he determined that his knowledge in some areas of math-
ematics was lacking for advanced study at Gottingen. He then spent the next two
vears, following his graduation, filling the gaps in his education.

Dedekind started his teaching career in 1854. In 1855, Dirichlet succeeded Gauss in
Gottingen. Dedekind attended his lectures on various areas of mathematics, including
the theory of numbers, and became a close friend of Dirichlet. In 1855-1856, he also
attended Riemann’s lectures on Abelian and elliptic functions. Thus, along with being
an instructor, he was also a student.

Dedekind was the first university teacher to lecture on Galois theory. He introduced
the concept of a field, replaced the concept of a permutation group by the abstract
group concept, and, in 1858, introduced a purely arithmetic definition of continuity.

Dedekind is most remembered for his concept of “Dedekind cut,” which he intro-
duced in 1872. He was criticized on this theory by mathematicians such as Kronecker,
Weiestrass, and Russell.

Dedekind edited the works of Gauss, Dirichlet, and Riemann. In 1871, he sup-
plemented Dirichlet’s lectures, introducing the notion of an “ideal,” a term he coined.
Later he developed the theory of ideals. He is also credited for such fundamental
concepts as ring and unit. His treatises on number fields stimulated further develop-
ment of ideal theory. Dedekind also extended Kummer’s work on unique factorization
domains. His work on abstract algebra influenced Emmy Noether’s work on algebra.

Dedekind died on February 12, 1916.




Chapter 12

Ring Embeddings

12.1 Embedding of Rings

Sometimes it is worthwhile to study the properties of a ring by considering it
as a subring of some ring with more ring properties than itself. A ring without
identity lacks important arithmetic properties, in particular, a fundamental
theorem of arithmetic. As another example, in the ring E of even integers, we
cannot say that 2 divides 2 since 1 ¢ E. Now E isa subringof Zand 1 € Z. In
Z, it is true that 2 divides 2. The main aim of this section is to embed a ring
into a suitable ring with additional properties. The main feature of this section
is that any integral domain can be embedded in a field. The proof of this result
yields a rigorous construction of the rational numbers from the integers.

Definition 12.1.1 A ring R is said to be embedded in a ring S if there exists
a monomorphism of R into S.

From the above definition, it follows that a ring B can be embedded in a
ring S if there exists a subring 7" of § such that R ~T.

In the next theorem, we show that any ring R can be embedded in a ring
with identity.

Theorem 12.1.2 Any ring R can be embedded in a ring § with 1 such that R
s an ideal of S. If R is commutative, then S is commutative.

Proof. Set S = R x Z. Define addition and multiplication as follows:

(@m)+(Bn) = (atbm+n),
(a,m)-(b,n) = (ab+na+ mb,mn)

for all a,b € R and m,n € Z. (Here na means ¢ adds to itself n times if n is
positive, —a adds to itself |n| times if n is negative, and Oa = 0.) Then S forms
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a ring under these definitions of addition and multiplication, a fact we ask the
reader to prove in the exercises. We do note that (0,0) is the additive identity
and that (0,1) is the multiplicative identity of S.

Consider the subset R x {0} of S. Since (0,0) € R x {0}, R x {0} # ¢.
Also, for all (a,0),(b,0) € R x {0}, (a,0) — (b,0) = (a — b,0) € R x {0}, and
(a,0) - (b,0) = (ab,0) € R x {0}. Thus, R x {0} is a subring of S. Now for all
(a,0) € R x {0} and (¢,n) € S, (a,0) - (c,n) = {ac + ne,0) € R x {0} and
e,n) - (a,0) = (ca +na,0) € R x {0}. This proves that R x {0} is an ideal of
S.

Now define f : R — R x {0} by f(a) = (a,0) for all a € R. Then
f is an isomorphism of R onto R x {0} and so R ~ R x {0}. Therefore,
R can be embedded in S. By identifying @ € R with (a,0) € R x {0},
we can regard R to be an ideal of S. To show that the commutativity of
R implies that of S, let (a,m),(b,n) € S and R be commutative. Then
(a,m) - (b,n) = (ab+ na + mb,mn) = (ba + mb + na,nm) (since R is commu-
tative, ab = ba) = (b,n) - (a,m). Thus, § is commutative. H

Our main objective in this section is to embed a ring in a field. By Theorem
12.1.2, every ring can be embedded in a ring with identity. If S were a field,
then S is commutative and has no zero divisors. This in turn implies that R
is commutative and has no zero divisors. Thus, if we were to embed a ring
R in a field S, then R must have at least these two properties, i.e., R must
be commutative and have no zero divisors. In the next theorem, we embed a
commutative ring with no zero divisors into an integral domain and then we
will embed an integral domain in a field.

Theorem 12.1.3 Let R be a commutative ring with no zero divisors. Then R
can be embedded in an integral domain.

Proof. Let S be the ring as defined in Theorem 12.1.2. Let A be the an-
nihilator of R in S. Then A is an ideal of § by Exercise 17 (page 307). If
RN A = {0}, then the natural homomorphism of R onto the quotient ring
S/A must map R one-one into S/A, i.e., R can be embedded in S/A. We now
show that RN A = {0} and that S/A is an integral domain. Let a € RN A.
Then ar = 0 for all » € R. Since R has no zero divisors, a = 0. Therefore,
RNA={0}.Letb+ A, c+AecS/AIf(b+A)(c+A) =0+ A, then bc € A.
Thus, (bc)r.= 0 for all € R. Suppose ¢+ A #0+ A, i.e, ¢ ¢ A. Then there
exists r € R such that ¢r # 0. Since R is an ideal of §, ¢r € R, and for all
s € R, bs € R. Now (cr)(bs) = (ber)s = 0s = 0. Also, R has no zero divisors
and cr # 0. Therefore, we must have bs = 0. This implies that b € A and so
b+ A=0+ A. Hence, S/A is an integral domain. W
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Suppose we are given the ring of integers Z and we are asked to construct
the rational numbers from Z. We can think of any integer as n/1, i.e., n divided
by 1. However, we must somehow pick up the fractions which cannot be reduced
to having a 1 for a denominator. One idea that suggests itself is to consider
the Cartesian product Z x Z and consider the first component of the elements
of Z x Z as the numerator and the second component as the denominator.
However, the ordered pairs (3,2) and (6,4) are distinct. A common technique
used in mathematics suggests putting these elements in the same equivalence
class so that they become “equal.” This is precisely what we shall do. Let’s
also remember not to have 0 in the denominator.

Theorem 12.1.4 Any integral domain R can be embedded in a field.

Proof. Let § = R x (R\{0}). Define the relation ~ on § by for all
(a,b),(c,d) € S, (a,b) ~ (¢,d) if and only if ad = be. Then ~ is an equivalence
relation. The reflexive and symmetric properties are immediate. Suppose that
(a,b) ~ (¢, d) and (¢,d) ~ (e, f). Then ad = bec and cf = de. This implies that
adf = bef and bef = bde and so adf = bde. Canceling d, we obtain o f = be,
ie., (a,b) ~ (e, f). Hence, ~ is transitive. Now ~ partitions S into equivalence
classes. Denote the equivalence class {(c,d) € S| (¢,d) ~ (a,b)} by a/b. Set

F={a/b| (a,b) € S}.
Define + and - on F' as follows:

a/b+cfd = (ad+ bec)/bd,
a/b-c/d = ac/bd

for all a/b,c/d € F. We show that + is well defined. Let a/b,c/d,a’/V/,c/d' €
F.Suppose a/b = a'/b and ¢/d = ¢/ /d’. Then al/ = ba’ and cd’ = d¢. Therefore,
ab/dd’ = ba'dd’ and cd’bb’ = dc'bb’. Hence,

ab'dd + cd'bb’ = ba'dd’ + d'bY, |

and so

(ad + bc)b’d’ = I:n'j(c:,"d‘r + b ).
Thus,

(ad + be,bd) ~ (@'d + b'¢,b'd)
and so

(ad + be)/bd = (d'd’ + ¥ )V d.

A similar proof shows that - is well defined.
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The reader is asked to verify the associative, commutative, and distributive
laws for F. The additive identity of F' is 0/b and the multiplicative identity of
F is b/b, where b # 0. For a/b € F, the additive inverse is

(~a)/b = a/(~b)

and the multiplicative inverse is b/a (when a # 0). Thus, F is a field.
We now show that R can be embedded in F. Let

R ={a/l1|ac R} CF

Then R is a subring of F. Define f : R — R’ by f(a) = a/1 for all a € R.
Then a = bif and only if a- 1 = 1-b if and only if a/1 = b/1 if and only if
f(a) = f(b). Hence, f is a one-one function. Now

fla+b) =(a+b)/l=(a-1+1-8)/1-1=a/1+b/1= f(a)+ f(b)

and
f(ab) =ab/l =ab/1-1=a/1l-b/1= f(a)- f(b).

From the definition of f, f is onto R’. Thus, f is an isomorphism of R onto
RCF. N

The above theorem gives another instance of the power of the concept of
an equivalence relation. We have once again used the notion of an ordered pair
in a fundamental manner.

Definition 12.1.5 Let R be an integral domain. A field F' is called a quotient
field of R or a field of quotients of R if there exists a subring R1 of F such
that

(i) R~ Ry and

(ii) for all x € F, there exists a,b € Ry with b # 0 such that z = ab™ L.

Let us now show that for the given integral domain R, the field constructed
in Theorem 12.1.4 is a quotient field of R. Let z € F. Then ¢ = a/b, where
(a,b) € S. Now (a,1) € S and (b,1) € S. Thus, a/1, b/1 € R and a/b =
a/l-1/b = (a/1) - (b/1)7). Hence, F is a quotient field of R. We call F' the
quotient field or the field of quotients or R.

Theorem 12.1.6 Let R be an integral domain and F its field of quotients. Let
R’ be an integral domain contained in a field K' and set

F'={d ()7 | d,b € R, ¥ #0).

Then F' is the smallest subfield of K' which contains R’ and any isomorphism
of R onto R' has a unique eztension to an isomorphism of F' onto F'.
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Proof.” By Exercise 2 (page 323), F’ is the smallest subfield of K’ which
contains R. Let f be an isomorphism of R onto R'. Let a/b € F. If fla) =@’
and f(b) =¥, define g: FF — F’ by

g(a/b) = d'(¥)™} = f(a)F(0)".

Identifying the ring R with the set {a/1 | a € R}, it is clear that f = g|g.
Now a/b = ¢/d if and only if ad = bc if and only if f(ad) = f(be) if and only
if fla)f(d) = f(b)f(c) if and only if f(a)f(b)~! = f(c)}f(d)~! if and only if
g(a/b) = g(c/d). Therefore, ¢ is a one-one function. From the definition of g,
it follows that g is onto F'. Now

gla/b+ c/d) g((ad + bc) /bd)
flad + be)(f(bd)) ™
[f(@)f(d) + F®)F ()£ (b) " f(d)~]
F@)f(O)™' + fle)f(d)~
= g(a/b) + g(c/d)

and

glafb-c/d) = glac/bd)
flac)(f(ba))
F@fNF B ()]
fl@)f(B) " f(e)f(@)!
= g(a/b)g(c/d)

for all a/b,c/d € F.Thus, g is an isomorphism of F onto F”.
Let ¢’ be any other isomorphism of F onto F' such that f = ¢’|g. Then

I

g'(a/1-(b/1)7%)
g'(a/1)g'((6/1)7H)
g'(a/1)g'(b/1)~"
fla)f ()~

g(a/b)

g'(a/b)

I

for all a/b € F and so g’ = g. Thus, there is a unique extension of f. H

We can conclude from this result that the field of quotients 7’ of an integral
domain R is “the” smallest field containing R in the sense that there does not
exist a field K such that R C K C F.

The field F' in Theorem 12.1.6 is called the quotient field of R in K. In
view of Theorem 12.1.6 and the comments preceding it, we do not differentiate
between the notation a/b and ab~! for the elements of F.
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12.1.1 Worked-Out Exercises

O Exercise 1 Let D = {¢ € Q| 5 does not divide b}. Show that D is a
subring of Q with 1. Find the quotient field of D.

Solution: Let a/b,c/d € D. Since 5 does not divide b and 5 does not divide
d, 5 does not divide bd. Thus, (ad — bc)/bd € D and ac/bd € D. Hence, D is a
subring of Q. Also,1=1/1 € D. Since Z C D C Q and Q is the quotient field
of Z, Q is the quotient field of D.

Exercise 2 Let S be a ring and f a one-one func* on of S onto a set T. Show
that suitable addition and multiplication can be defined on T so that T
becomes a ring isomorphic to S under f.

Solution: Define binary operations + and - on T as follows: Let #,%5 € T.
Since f maps S onto T, there exist s;, 82 € S such that f(s;) =1¢; and f(s2) =
t9. Define

t1+tz = f(s1+s2)and
tirty = f(slsg).

First we show that both these binary operations are well defined. Let t1,12, £3, {4
€ T be such that ¢t; = #3 and ¢y = t4. Since f maps S onto T, there exist
S1, 82, 83,84 € S such that f(s1) = t1, f(s2) = t2, f(s3) = t3, and f(s4) = t4.
Therefore, f(s1) = f(s3) and f(s2) = f(s4)- Since f is one-one, s; = s3 and
8y = s4. Hence, t; +t2 = f(s; +82)_ = f(sz+s4) =tz+tgand t;-ty = f(s152) =
f(s384) = t3-t4. Thus, + and - are well defined. It is now a routine verification
to show that (T, +, -) is a ring. We verify some of the properties and leave others
as an exercise. First we show that + is associative. Now #; + 3 = f(s2 + s3)
and 1 +1t; = f(Sl +32). Thus, t1+(t2+t3) = f(81+(32+33)) = f((81 +82)+S3)
(since + is associative for S) = (t; + to) + t3. Hence, + is associative for 7.
Also, f(0)+t1 = f(0+ s1) = f(s1) = f(s1 + 0) = &1 + f(0). This implies that
f(0) is the additive identity. Similarly, we can verify the other properties of a
ring. It is immediate that f is a homomorphism and since f is one-one and f
maps S onto T, S is isomorphic to 7.

12.1.2 Exercises

1. Prove the associative, commutative, and distributive laws in Theorem
12.1.4.

2. Let R be an integral domain, which is a subring of a field F. Let F' =
{ab™! | a,b € R, b 5 0}. Show that F’ is a subfield of F. Furthermore,
show that F’ is the smallest subfield of F' which contains R.
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. Let R and R’ be integral domains contained in fields. Set F = {ab~! |

a, b€ R, b# 0} and F/ = {a'V"} &/, ¥ € R, ¥ # (0'}. Suppose f is
an isomorphism of R onto R'. Prove that f has a unique extension to an
jsomorphism of F' onto F’,

Prove that any field R is equal to its field of quotients F in the sense that
f(R) = F, where f is the isomorphism defined in Theorem 12.1.4.

. Prove that isomorphic integral domains have isomorphic fields of quo-

tients.
Find the field of quotients of the integral domains Z[i] and Z[+/2].

Let R be a ring of characteristic n > 0 and
RxZn,={(r,[m])|r € Rand [m] € Z,}.
Define + and - on R x Z,, by

(a,[m]) + (B, [F]) = (a+b[m+1]),
(a,[m]) - (b, [t]) = (ab,[mt])
for all a,b € R, [m], [t] € Z,. Prove that
(1) the above two operations are well defined,
(ii) (R X Zn, +,-) is a ring with 1,
(iii} (R X Zp,+,-) is of characteristic n,

(iv) there exists a monomorphism from R into (R x Zn, +, ).

. Let S and R’ be disjoint rings with the property that S contains a subring

S’ such that there is an isomorphism f’ of S’ onto R'. Prove that there
is a ring R containing R’ and an isomorphism f of S onto R such that

f'=fls
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David Hilbert (1862-1943) was born
on January 23, 1862, in Konigsberg, Ger-
many. Hilbert's inclination toward mathe-
matics is believed to be due to his mother.
He attended the University of Konigsberg
from 1880 to 1884, a.nd received his Ph.D.
in 1885.

Heinrich Weber, R.lcha.rd Dedekind’s col-
laborator on the theory of algebraic func-
tions, was a professor at the University of
Konigsberg while Hilbert was a student. In
1883, after Weber left, Lindeman was ap-
pointed as his successor. Lindeman’s influ-
ence caused Hilbert to become interested in
the theory of invariants. ' '

Hilbert proved the famous Hilbert basis theorem—that is, 1f every ideal in a ring R
has a finite basis, then so does every ideal in the polynomial ring R[z). Hilbert’s results
connected the theory of invariants to the fields of algebraic functions and algebraic
varieties. He also proved the Hilbert irreducibility theorem.

Hilbert also worked on algebraic number theory. This work centers on the reci-
procity law, developed from Gauss’s law of quadratic residues.

In 1893, Hilbert, along with Minkowski, was assigned to prepare a report on num-
ber theory. Minkowsky soon withdrew from this project. Hilbert summarized the
known results in Zahlbericht. For half a century, it was a bible for anyone interested
in learning algebraic number theory. In 1899, Hilbert published Grundlagen der ge-
ometrie, which went into its ninth edition in 1962. After 63 years, the book was still
being read, although it was slowly modernized.

In 1900, while addressing the International Congress of Mathematicians on mathe-
matical problems, Hilbert introduced 23 problems. These have since stimulated math-
ematical investigations.

Dirichlet’s principle, which was used in boundary value problems, had been dis-
credited by Weierstrass’s criticism. Hilbert salvaged Dirichlet’s principle by proving it
in 1904.

Hilbert worked on algebraic forms, algebraic number theory, foundations of geom-
etry, analysis, and theoretical physics. Many of his students became famous mathe-
maticians, including Herman Weyl. Hilbert died on February 14, 1943.




Chapter 13

Direct Sum of Rings

In this chapter, we construct some new rings from a given family {R; | ¢ € I'} of
rings. For this purpose, we introduce the complete direct sum, the direct sum,
and the subdirect sum of this family. The results developed in this chapter
also help us to obtain structure results of rings.

13.1 Complete Direct Sum and Direct Sum

Let {R; | 7 € I} be a family of rings indexed by a nonempty set I. The Cartesian
product IH{ R; | ¢ € I} of the sets R; is the set of all functions f: I — U{R; |
i € I'} such that f(i) € R; foralli € I. Let f,g € II{R; | i € I'}. Define f + g,
fg by
(f+9)@) = () +9@)
(fo)@) = f(1)g(3)

for all : € I. Then f+ g, fg € II{R; | ¢ € I}. It can be easily verified that
II{R; | i € I} together with the above two operations is a ring. This ring is
called the complete direct sam of the family of rings {R; | 7 € I} and is
denoted by IL;crR;. The zero element of Il;c; R; is the function 0 : I — U{R;
| i € I't defined by 0(¢) = 0;, the zero element of R;, for all i € I. The additive
inverse of f € Il;¢rR; is the function —f : I — U{R; | ¢ € I} defined by
(—f)@) = —f(i) € Ry for all i € I. Let f € Il,¢crR; and let f(i) = a; € R;
for all 7 € 1. Usually f is identified with the image set {a; | ¢ € I'}. Using this
notation, the above two operations can be defined by

{a; |ie€l}+{b;|iel} = {a;+b;|iel}
{a; |tel} - {bi]iel} = {ab;|icl}

for all a;,b; € R; forall i € 1.

Suppose now that I is a finite set, say, I = {1,2,...,n}. In this case, the
complete direct sum is denoted by @;c; R = R B RoB - - - B R, and an element
{a; | i € I'} is usually written as an n-tuple (aj,az,...,a,) .



13.1. COMPLETE DIRECT SUM AND DIRECT SUM 327

Definition 13.1.1 The direct sum of a family of rings {R; | i € I}, denoted
by Dicr F;, is the set

@it = {{ai| i€} €llictR; | ai # 0 for at most finitely many i € I}.

Theorem 13.1.2 Let {R; | i € I} be a family of rings. Then
(1) ®ict1 R; is a subring of the complete direct sum of rings ;e R;;
(ii) for all k € I, the function iy : Ry — @icrR; defined by

h(a) ={{a; [i €1} | ai =0 for alli # k and a; = a}

for all a € Ry, is a monomorphism of rings;
(132) for all k € I, 13(Ry) is an ideal of @icr R;.

Proof. (i) Let {a; | i € I} and {b; | 7 € I} be two elements of @;c;R;. Since
a; # 0 for at most finitely many ¢ € I and b; # 0 for at most finitely many
1 € I, it follows that a; — b; # 0 for at most finitely many ¢ € I and a;b; # 0
for at most finitely many 7 € I. Hence, {a; |1 € I} —{b; | 1 € I} € ®;c1R; and
{a; |i € IM{b; | i € I} € ®yecrR;i. Thus, @i R; is a subring.

(ii) Let a,b € Rx. Then ig{a +b) ={{a; |1 €I} | a; =0 for all i # k and
ag =a+bt={{a;|t€l}|a,=0foralli#kanda, =a}+ {{t)|i€I}|
b, = 0 for all ¢ # &k and b, = b} = ix(a) + ix(b). Similarly, ix(abd) = ir(a)ik(d).
Thus, iz is a homomorphism. By the definition of i, we find that 7. is one-one.
Hence, i; is a monomorphism.

(iii) Since iy is a monomorphism, ix(Ry) is a subring of @;crR;. Let {b; |
t €1} € ®yerRiand {a; | i € I} € 4, (Ry). Since a; =0 for all ¢ # k, bia; = 0
for all i # k. Also, for i = k, bg,ar € Ry. Therefore, brar € Ry. Thus, {b; |
it € I'M{a; | i € I} € ir(Ry), proving that ix(Ry) is a left ideal. Similarly, {a; |
1€ IHb; |1 €I} € 44 (Ry). Hence, ix(Ry) is an ideal. B

By Theorem 13.1.2, we find that Ry is isomorphic to the subring 2;(Rx) of
@ic1 R;. Identifying Ry with ¢ (Rx), we can say that @;crR; contains Ry as an
ideal.

Let I ={1,2,...,n} and {R; | i € I'} be a finite family of rings. From the
definition of direct sum, it follows that the complete direct sum and the direct
sum of this family is the same. Hence, by Theorem 13.1.2, we can say that the
direct sum, R; @ Ry @ - - @ R,, contains each of Ry, Ry, ..., R, as an ideal.

We now investigate the conditions under which a ring R is isomorphic to a
direct sum of a family of ideals {considering each ideal as a ring) of R.

Definition 13.1.3 Let I be ¢ finite nonempty set, say, {1,2, ..., n}, and {4;
| 2 € I} be a family of 1deals of o Ting R. Then the sum of this finite family,
denoted by ) ;1 Ai, 15 the set

ZA,,;={al+a,2+---—!—cr,ﬂ |ai € A, i=1,2, ..., n}.
el
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If I is empty, then let us take Y,y A; = {0}.

If I ={1,2,..., n}, then we also use the notation A; + A + .-+ A, to
denote the sum ;. ; A;.
We leave the proof of the following theorem as an exercise.

Theorem 13.1.4 Let {A; | i € I'} be a finite family of ideals of a ring R. Then
(3) 3 icr A is an ideol of R,
(i) A; C Yjeq Aj for allie I,
(i) if A is an ideal of R such that A; C A foralli € I, then) ./ AiC A W

Definition 13.1.5 Let {A; | ¢ € I'} be a family of ideals of a ring R, where I
is finste or infinite. Then the sum of this family, denoted by 3 ,c; Az, 15 the set

ZA" ={a€R|ac Z A; for some finite subset Iy of I}.

iel i€lp
Theorem 13.1.6 Let {A; | ¢ € I} be a family of ideals of a ring R. Then
>icr Ai is an ideal of R,

Proof. Since 0 € Y ey Ai, Dierdi # dLet a,b € 3 ;A and r € R
Then a € } iy, A and b € 3 ¢y, A, for some finite subsets I7 and I, of I. Let
I3 = I UIy. Then a,b € Yy, Ai. By Theorem 13.1.4, 3 ..y A; is an ideal
of R. Hence, a — b, ar, ra € 3,1, A;. Thus, a — b, ar, ra € 3,7 A; and so
Y icrAi is an ideal of R. B

Definition 13.1.7 Let {A; | ¢ € I} be a finite family of ideals of a ring R. A
sum Y ,cr Ai of {A; | ¢ € I} is called a direct sum if for allk € I,
AL N Z A= {0}
i€l, ik

Lemma 13.1.8 Let {A; | ¢ € I} be a finite family of ideals of a ring R. If
Yier Ai is a direct sum, then for alla € A, b€ A, k#1, ab=0.

Proof. Letac A, b€ A;, and k # 1. Since Ay, and A; are ideals, ab € Ay
and ab € A;. Since A C Y icy izk Air @b € Y icp sk As. Therefore, ab €
Ap N Yier igr Ai. Since Yoy A; is a direct sum, Ax N F,er, iz 4i = {0}
Hence, ab=0. B

Theorem 13.1.9 Let {A; | ¢ € I} be a family of ideals of a ring R, I =
{1,2,...,n}. Then the following conditions are equivalent.
(1) 3 icr Ai is o direct sum.
(it)ay +as+ - -+an=0,a;, € A;, i €1, implies that a; =0 for alli € 1.
(iii) Each element a € Y, A;i is uniquely expressible in the form
a=ay+ax+-- + Qn,

where a; € A;, 1 € 1.
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Proof. (i)=(ii) Leta;+as+--+a,=0,a; € A;,i €. Let k€ I. Now

—ar=a;+ay+---+ag_1+ar1+---+a, € AN Z A; = {0}.
iel, itk

Hence, a; = 0.
(ii)=>(iii) Let e = a1 + a2 + -+ + @, = by + by + -+ - + b, where a;,b; € A;
for all ¢ € I. Then (a1 — b1) + (a2 — b2) + -+ + (an — by) = 0. Hence, by (ii),
a;—b;,=0foralliel, ie,aq; =b;foralliel.
(iii)=(i) Let @ € AgNY;es ;24 Ai- Then there exist a; € 4;,¢=1,2,...,n,
such that
a=ar=ay1+az+- -+ a1+ 041+ -+ an.

This implies
aj+ay+- - +ag—y+(—ag) + agp1+---+an =0.

Also, 04+ 0+ --- + 0 = 0. Therefore, by (iii), a; = 0 for all ¢ € [ since 0 is
uniquely expressible as a sum of elements of A;. Thus, Ax N3 ,cr ;4p A: = {0}
and so ) .- A; is a direct sum. W

Definition 13.1.10 A ring R s said to be an internal direct sum of a finite
family of ideals {Ay, As, ..., A} if

(i) R=A1+A+---+ A, and

() Ay + Ag + - - + An is a direct sum.

Theorem 13.1.11 Let R be a ring and {A; | i € I} be a finite family of ideals
of R. If R is an internal direct sum of {A; | 1 € I}, then

R~ @éeIA@.

Proof. LetI=1{1,2,...,n}. Suppose R is an internal direct sum of ideals
Ay, Ao, ..., A, Let @ € R. Then a is uniquely expressible in the form a =
a1 +az + +- - + an, where a; € A;, ¢ € I. Now (ay,as,...,a,) € ®;crA;. Define
f:R— ®icrA; by

f((?.) = (0'1:(12: - :an)-

Let a,b € R. Then there exist a;,b; € A;, 2 € I suchthata =a;4+as+---+a,
andb=0b;+by+---+b,. Nowa=>bifandonly if a; +as+---+an = b1 +b3+
-»++b, if and only if a; = b; for all ¢ € I if and only if (a1,ay, ..., ay) = (b1, bo,

.., bp) if and only if f(a) = f(b). This shows that f is a one-one function.
Let (a1,a2, ..., an) € ®ierAi. Thena=a;+a2+ - +ap €Y ;. Ai = Rand
f(a) =(ay,aq, ..., a,). Hence, f is onto @;crA4;. Finally, we show that f is a
homomorphism. Since a + b= (a1 + b1) + (ag + b2) + -+ - + (an + byn), we have
f(a+b) = (((11 +b1),((12 +b2)1 R (an+bﬂ)) = (0‘110'2: Ty a‘n) + (blst: R
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bn) = fa)+ f(b). By Lemma 13.1.8, for all 4,5 € I, ¢ # 34, a;b; = 0. From this,
it follows that ab = a1b; + azby + - -+ + apbs. Thus, f(ab) = (a1b1,a2bs, ...,
anbn) = (a1,az, ..., an)(b1,ba, ..., by} = f(a) f(b). Hence, f is an isomorphism
of R onto @, A;, proving that R ~ @;c;A;. 1

If R is an internal direct sum of ideals A1, Ag,..., A,, then we identify R
with @;erA; and we usually write

R=A410Ad - & A,.

Let us now characterize the direct sum of ideals of a ring & with 1 with the
help of idempotent elements.

Theorem 13.1.12 Let R be a ring with 1 and {A1, Ag, ..., An} be a finite
family of ideals of R. Then R = A1 @ A2® --- B A, if and only if there exist
idempotents e; € A;, 1 = 1,2, ..., n, such that

(i)l=e +ex+- - +enp,

(i) Re; = A; foralli=1,2, ..., n, and

(i) e;e; = eje; =0 for i # j.

Proof. Let R=A1 @8 A2 -8 An. Now 1 € R. Thus, there exist e; € A;,

t=1,2,...,n,suchthat 1 =e; +ey+---+e,. Then e; = eje; +ege; +--- +
e? + .-+ ene;. By Lemma 13.1.8, eje; = 0 for all j # 4. Hence, e; = €2, i.e.,
e; is an idempotent for all ¢ = 1,2, ..., n. Since ¢; € A; and A; is an ideal,

Re; C A;. Let a € A;. Then
a=al =ae; +aey+---+ae, = ae; € Re;

since by Lemma 13.1.8, ae; = 0 for all § # <. Thus, A; C Re;. Therefore, we
find that Re; = A;.

Conversely, assume that there exist idempotents ¢; € 4;, 1 = 1,2, ..., n.
satisfying the given conditions. Let a € R. Thena =al = a(e;+ez+: - +e,) =
ae; +aes + --- +ae, € Reg + Reg + ---+ Ren, C A1 + Ag + -+ + A,
Hence, R = A; + A3 + --- + A,. Let us now show that this sum is direct.
Let a € A;N(A1+ A+ ---+ A1 + Aig1 + --- + An). Then there exist
a1,as,...,an, € R such that a;e; = a = a1e1 + -+ a;_1€i_1 + 1641+
-+- + apen. Thus, a = a.e; implies that ae; = a,—et2 = ag;e; = a and a =
aje1+ - +a;_18;—1 + a;r1€41 + - - + anen, implies that ae; = a1e1e; +-- -+
Q- 1€i-1€i+ Qir1€i416i+ -+ Qnene; = al+---+al =10 (since by (iii), €i€5 = 0
for 7 :# j). Hence, a = 0, proving that R=A, d A - -0 A,. 1

Let us now consider another type of subring of the complete direct sum
Ilicr R; of a family of rings {R; | © € I'}. For this, let us note that the mapping
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7 : [lje R; — Ry defined by
mr({a; |1 €T}) =i

is an epimorphism of the ring Il;ie;R; onto the ring Ry. my is called the kth
canonical projection.

Definition 13.1.13 A subring T of Il;crR; is called a subdirect sum of the
family of rings {R; | i € I} if m;|7 (the restriction of m; to T) is an epimorphism
of T onto R;. We denote T by @i R;.

Theorem 13.1.14 A ring S is isomorphic to a subdirect sum of o family {R;
| i € I} of rings if and only if S contains a family of ideals {A; | t € I} such
that N;erA; = {D}

Proof.  Suppose § is isomorphic to a subdirect sum of a family {R; | i €
It of rings. Then there exists a subring T of ;1 R; such that S ~ T and
T = ®ic R Let o be the isomorphism of S onto 7. Then ma : S — R; is
an epimorphism. Let A; = Ker m;c. Then A; is an ideal of 5. Let a € N1 A;.
Then (ma)(a) = 0 for all ¢ € I. Thus, mi(afa)) = 0, i.e., the ith component of
a(a) is 0 for all 4 € I. Hence, a(a) = 0. Since « is one-one, a = 0. This proves
that M;crA; = {0}

Conversely, suppose S contains a family of ideals {A; | ¢ € I'} such that
NierA; = {0}. Consider the family {S/4; | ¢ € I} of quotient rings. Let
R =11,;5/A;. Define 3 : S -— R by

Bla) ={a+A; |iel}

for all @ € S. Then J is a homomorphism. Let a € S. Now a € Ker 8 if and
only if 8(a) =0 if and only if a + A; =0 for all « € I if and only if a € A; for
all 1 € I if and only if a € N;crA; if and only if @ = 0. Therefore, Ker 8 = {0}.
Thus, § is a monomorphism. Let 3(S) = T. Then T is a subring of R and also
mi|7 is an epimorphism. W

13.1.1 Worked-Out Exercises

$ Exercise 1 An idempotent e of a ring R is called a central idempotent
if e € C(R).
Let R be a ring with 1 and e be a central idempotent in B. Show that
(i) 1 — e is a central idempotent in R;
(ii) eR and (1 — e)R are ideals of R;

(iii) R=eR&® (1 - e)R.
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Solution: (i) {1 —e)(l—-e)=1—-e—e+e*?=1—-ec—e+e=1—ec. Also,
foralla€ R,a(l ~e) =a—-ae=a—ea= (1—e)a. Hence, 1 — ¢ is a central
idempotent.

(i) Now eR is a right ideal of R. Let a € R. Then a¢(eR) = (ae)R = (ea)R
(since e € C(R)) = e(aR) C eR. Hence, eR is also a left ideal. Thus, eR is an
ideal of R. Similarly, (1 — e)R is an ideal of R.

(iii) Let a € R. Thena =ea+a—ea =ea+ {1l —eja € eR+ (1 —¢€)R.
Hence, R = eR+(1 —e)R. Suppose b € eRMN(1—e)R. Then there exist ¢,d € R
such that b = ec = (1 — e)d. Hence, eb = e?c = ec = b and eb = e(l — e)d =
(e —e?)d = (e —e)d = 0. Thus, 5=0. As aresult, R=eR® (1 — e)R.

¢ Exercise 2 Let A and B be two ideals of a ring R such that R= A& B.
Show that R/A~ B and R/B ~ A.

Solution: Let x € R. Then z can be uniquely expressed as z = a+b, where
a € Aand b€ B. Define f: R — B by f(x) =b. Clearly f is well defined. Let
b€ B.Thenb=0+b€ A+ B. Hence, f(b) = b, which shows that f is onto B.
Let =,y € R. Then there exist a;,as € A and b;,b9 € B such that £ = a; + &
and y =as+by. Now z+y=a;+ by +as+by= (a3 —i—a2)+ (bij+b)c A+ B
and zy = (a1 +b1)(as+b2) = ai1a9+ a1bo+ bias+ bibe. Since a1bs, bias € ANB
and AN B = {0}, a1b2 = 0 and byas = 0. Therefore, zy = ajaz+ bi1bp € A+ B.
Hence, f(z =) = by + by = f(z) + () and f(zy) = biby = £(z)f(y). Thus,
f is an epimorphism. Therefore, by the first isomorphism theorem (Theorem
11.3.14), R/Kerf ~ B. Let € Ker f. Then f(z) = 0. Since z € Ker f C R,
there exist a € A and b € B such that = a+b. Now f(z) = b and this implies
that & = 0. Therefore, z = o € A and so Ker f C A. On the other hand, let
a € A. Then a =a+ 0 € A+ B. Therefore, f(a) =0 and so a € Ker f. Thus,
A C Ker f. Hence, A = Ker f and so R/A ~ B. Similarly, R/B ~ A.

Exercise 3 Let R = Ri@®Rx®- - DR, be the direct of sum of rings R;, Rs, ...,
R, and 1 € R. Show that an element a = (e1,a3, ...,a,) € R is a unit if
and only if @; is a unit in R; forallz=1,2,...,n.

Solution: Since 1€ R=R1® Ry @ --- D Rp, 1 =(ey,e3,...,e,), where e;
is the identity of R; for all ¢ = 1,2,...,n. Suppose a = (a1,a2, ..., a,) € R is
a unit. Then there exists b= (b, b3, ..., b,) € R such that ab =1 = ba. Thus,
(31:‘12: <o aa’n)(blab% K )b’n) = (61162: s e‘h‘-) = (bhb?: AR bn)(a'lra% R
an). From this, it follows that a.b; = e; = bia; for all i = 1,2,...,n. Hence, q;
is a unit in R; for all: = 1,2,...,n. Conversely, assume that a; is a unit in R;
for all i =1,2,...,n. Thus, there exists b; € R; such that a;b; = e; = b,a; for
alli=1,2, ..., n. Let b= (by,bo,...,b,). Then ab =1 = ba, proving that a is
a unit.
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{ Exercise 4 Let R be a direct of sum of rings Ry, Ro,..., R, with iden-
tity. Let A be an ideal of R. Show that there exist ideals A; in R;,
1=1,2,...,n,suchthat A=A DA, & --- B A,.

Solution: For all &, 1 < k < n, define ay : ®R; — R; by

ar((e1,az,...,8,)) = a

for all (a1,a2, ...,an) € ®R;. It can be easily verified that oy is an epi-
morphism. Let cx(A) = Ai. Then Ay is an ideal of Ry. We now show that
A=A419A&---® A, Let a= (a1,as, ...,a,) € A. Now ar(a) = ax € Ag.
Therefore, a € AP A2 @ --- DA, and so A C AL D A @ -+ D An. Sup-
pose now that b = (b1,ba,...,bn) € A1 @ A2 @ --- @ An. Then b € Ar =
a(A). Therefore, there exists an element a = (a1,a2,...,ak-1,b%,Ck+1,- .-,
an) € A. Now (0,0,...,0,b,0,...,0) = (0,0,...,1,...,0)(a1,@2,-..,ak_1, Dk,
Qkyl,--., @n) € A for all k = 1,2,...,n. Hence, (b1,by,...,b,) = (b1,0,...,
0)+ (0,b2,...,0)+ --- + (0,0,...,b,) € Ashowing that A;®A:®---® A, C A.
Thus, A= A1 DA B --- D A,.

{ Exercise 5 Let R be a ring with 1. Suppose that A and B are ideals of R
such that R = A + B. Show that

R/(ANB)~ R/A® R/B.
(This result is known as the Chinese remainder theorem for rings.)
Solution: Define f : R — R/A&® R/B by
flz)=(z+A,z+ B)
for all x € R. Let z,y € R. Then

flz+y) = (z+y)+ A (z+y)+ B)
((z+A)+(y+ A),(z+ B)+(y+ B))
= (z+A,z+B)+(y+ A,y+ B)

= f(z)+ f(y).

Similarly, f(zy) = f(z)f(y). Hence, f is a homomorphism. Now R = A+ B
implies that 1 =a + b forsomea € Aand b € B. Thus,a+B=(1-b)+B=
(14+B)+(—b+ B) =1+ B since —b € B. Similarly, b+ A =1+ A. Let (z + A,
y+ B) € R/A® R/B. Now zb + ya € R. Therefore,

flzb+ya) = ((zb+ya)+ A, (xb+ya)+ B)
= ((b+A)+ (ya+ A),(xb+ B) + (ya+ B))
((zb+ A)+(0+ A), (0 + B)-+(ya+ B)) (sincea € A, b€ B)
(cb+ A) , (ya + B))
((z + A)(b+ A), (y + B)(a + B))
(2 + A)(1+ A), (v + B)(1 + B))
(z+A, y+B).

i
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Hence, f is an epimorphism. By the first isomorphism theorem (Theorem
11.3.14),
R/Ker f~R/A® R/B.

We now show that Ker f = AN B.

Ker f = {ze€R| f(z)=0}
{zeR|(z+A,z+ B)=(4,B)}
{zteR|z+A=Aandz+ B =B}
{reR|zcA andze B}
{reR|zecANB}

= ANB.

I

Consequently, R/(ANB) ~ R/A® R/B.

13.1.2 Exercises

l. Let R=R;®R2P--- D R, be a direct sum of rings. If 4; is an ideal of
R;, (1 <i<mn), provethat A=A ® Ay D - ® Ay is an ideal of R.

2. Let R be a direct of sum of rings R, Rs, ..., R, with 1. Let A be an
ideal of R. Show that there exist ideals A; of R;,1=1,2,...,n, such that
A=A DA P ---® A, and

R/A ~ R1/A1 5] R2/A2 B---D Rn/An.
3. Show that the ring Z cannot be expressed as a direct sum of a finite
family of proper ideals of Z.

4. If m and n are two positive integers such that gcd(m,n} = 1, prove that
Zon 2o, ® Y.



Chapter 14

Polynomial Rings

The study of polynomials dates back to 1650 B.C., when Egyptians were solving
certain linear polynomial equations. In 600 B.C., Hindus had learned how to
solve quadratic equations. However, polynomials, as we know them today, i.e.,
polynomials written in our notation, did not exist until approximately 1700
A.D.

About 400 A.D., the use of symbolic algebra began to appear in India and
Arabia. Some mark the use of symbols in algebra as the first level of abstraction
in mathematics.

14.1 Polynomial Rings

An important class of rings is the so-called class of polynomial rings. We are all
familiar with polynomials. We may be used to thinking of a polynomial as an
expression of the form ag+a;z+--- +a,a", where z is a symbol and the a; are
possibly real numbers, or as a function f(z) = ag+ a1 +-- - + a,z™. However,
does one really know what a polynomial is?7 What really is the symbol 7 Why
are two polynomials ag + a1z + --- +a,z" and by + byz+ - - - + bT™ equal if
and onlyifn =mand a; = b;,1=1,2, ..., n? In this section, we answer these
questions and give some basic properties of polynomials.

Definition 14.1.1 For any mng R, let R[z]| denote the set of all infinite se-
quences (ap,a1,az, ...), where a; € R, 1 = 0,1,2, ..., and where there is a
nonnegative integer n (dependent on (ag,ay,as, ...)) such that for all integers
k > n, ap = 0. The elements of R[x] are called polynomials over R.

We now define addition and multiplication on R[z] as follows:

(ap,a1,a2,...) + (bo,b1,b2,...) = (ao+bp,a1+b1,a2+bo,...)
(ag,a1,az,...) - (bo,b1,b2,...) = (co,c1,¢€2,...),
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where

J
Cy = Za.,;bj_i for ] = 0,1,2,.. .
=0

We leave it to the reader to verify that (R[z],+,) is a ring. We do note
that (0,0,...) is the additive identity of R[z] and that the additive inverse of
(ao,a1,-..) i8 (—ap, —a1,...). The ring R[z] is called a ring of polynomials
or a polynomial ring over R. It is clear that R[z| is commutative when R is
commutative. Also, if R has an identity 1, then R[z] has an identity, namely,
(1,0,0,0,...).

The mapping a — (a,0,0, ...) is a monomorphism of R into R[z|. Thus, R
is embedded in R[z]. Therefore, we can consider R as a subring of R[z] and we
no longer distinguish between a and (e,0,0,...).

We now convert our notation of polynomials into a notation which is more
familiar to the reader.

Let
a = az? denote (q,0,0,...)
az = az'denote (0,q,0,...)
az? denote (0,0,a,...)
Then

(ag,a1,az,...,as,0,...) = (ap,0,0,...) + (0,2,,0,0,...) +---+ (0, ..., 0,
an, 0, ...) = ap + a1z + azx® + - - - + apz™.

The symbol z is called an indeterminate over R and the elements ag, a1,
..., ap of R are called the coefficients of ag + a1z + asz? + - - - + a,,z".

The reason two polynomials ag+ai1z+- -+ +a,z™ and by +biz+ -+« +byz™
are equal if and only if n = m and a; = b;, ¢ = 1,2, ..., n, is that the two
sequences (ag, a1, -..) and (b, b1, ...) are equal if and only if a; = b;, i = 1,2,
.... (One must recall that an infinite sequence of elements of R is a function
from the set of nonnegative integers into K. Consequently, the concept of an
ordered pair is again being used to give a rigorous definition of a mathematical
concept.)

If R has an identity 1, then we can consider x an element of R[x]. We do
this by identifying 1z with z, i.e., (0,1,0, ...) is called z.

The reader can check that the definitions of addition and multiplication of
two polynomials are the familiar ones. Thus, when R has an identity, az =

(2,0,0,...)(0,1,0,...) = (0, a,0,...) = (0,1,0, ...)(a,0,0, ...) = za.

Theorem 14.1.2 (%) If R is a commulative ring with 1, then R[z] is a com-
mutative ring with 1.
(1) If R is an integral domain, then R[x] is also an integral domain.
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Proof. (i) Let f(z) =ap+aiz+ - +apz” and g(z) = b+ b1z +- - - +bpz™
be two elements in R{z]. Let f(z)g(z) = co + a1z + -+~ + ¢ and g(z) f(z) =

do+diz+ - +dsz°. Now ¢; = Y7_pa:bj_; and d; = Y 7_gba;_;. Since R is
commutative, ¢; = agb; + a1b;_1 + -+ +a;bp = boa; + braj-1 + -+ bjag = d;
forall  =0,1,2,.... Thus, R[z| is a comrnutative ring. Since 1 € R, 1 € R|z]

and 1f(z) = f(z)1 = f(z) for all f(z) € R[z]. Hence, R[z] is a commutative
ring with 1.

(i1} Let R be an integral domain. Then by (i), R(z] is a commmutative ring
with 1. Let f(z) = ag + a1z + + -+ +anz™ and g(z) = by + brz+ -+ +bpz™
be two nonzero polynomials in R[z]. Then there exist a; and b; such that
a; # 0, b; #0, agyy =0, and b;4; = 0 for all £ > 1. Consider the polynomial
flx)g(z) = co + a1z + - - + CngmZ™™. Now ¢;4; = agbiy; + a1bipj1+ -+ +
aibj + - - -+ a;4;b0 = a;b; # 0 since R is an integral domain. This implies that
f(x)g{z) # 0. Thus, R[z] is an integral domain. B

Definition 14.1.3 Let R be a ming. If f(z) = ag+ajz+ ---+apz™, a, #0, is
a polynomial in R[x], then n is called the degree of f(x), written deg f(x), and
an, 18 called the leading coefficient of f(x). If R has an identity and a, = 1,
then f(x) is called a monic polynomial.

The polynomials of degree 0 in R[x] are exactly those elements from R\{0}.
0 € R[z] has no degree. We call the elements of R scalar or constant poly-
nomials.

Theorem 14.1.4 Let Riz] be a polynomial ring and f(x), g(x) be two nonzero
polynomials in R|z].

(1) If f(z)g(z) # 0, then deg f(x)g(z) < deg f(z) + deg g(z).

(i) If f(z) + g(x) # 0, then

deg(f(z) + g(z)) < max{deg f(z),deg g(z)}.

Proof. (i) If f(z) =ap+ai1z+ - - +a,z" and g(z) = bp+biz+ - - -+ bz™,
then f(x)g(z) = agbo + (aobr +a1bo)z+ - - - +azbrz™ ™. If f(z)g(z) # 0, then
at least one of the coefficients of f(xz)g(z) is nonzero. Suppose a,b,, # 0, then
deg(f(z)g(z)) = n+m = deg f(x) + deg g(x). If a,b,, = 0 (which can hold if
R has zero divisors), then deg(f(z)g(z)) < deg f(z)+ deg g(x).

(i) If deg f(x) > deg g(x), then deg(f(z)+g(z)) = max{deg f(z), deg g(z}}.
If deg f(z) = deg g(z), then it is possible that f(z) + g(z) = 0 or deg(f(z) +
g(z)) < max{deg f(z), deg g(z)}. We leave the details as an exercise. B

From the proof of Theorem 14.1.4(i), it is immediate that if R is an integral
domain, then equality holds in (i).
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Example 14.1.5 Consider the polynomial ring Zﬁ[a:] Let f(z) = [1] + [2]2?
and g(z) = [1)+[3])z. Then f(z)g(z) = [1)+[3]z+[2)z?. Hence, deg (f{z)g(z)) =
2 < 3 = deg f(z) + degg(z). Let h(x) = [5] + [4]z*. Then f(z) + h(z) =
6] + [6]z* = [0] and so deg(f(z) + h(z)) is not defined.

Theorem 14.1.6 (Division Algorithm) Let R be o commutative ring with
1 and f(z), g(z) be polynomials in Rlx| with the leading coefficient of g(z) a
unit in R. Then there erist unique polynomials q(z), r(z) € R[z] such that

f(z) = g(z)g(e) +r(z),
where either r(z) = 0 or degr(z) < deg g(x).

Proof. If f(z) = 0 or deg f(z) < degg(z), then we take g(z) = 0 and
r(z) = f(z). We now assume that deg f(z) > deg g(z) and prove the result by
induction on deg f(z) = n. If deg f{z) = degg(z) = 0, then we have ¢(z) =
f(z)g(z)™! and r{z) = 0. Make the induction hypothesis that the theorem is
true for all polynomials of degree less than n. Let f(z) = ap +a12+ - -« +a,z™
have degree n and g(z) = by + b1z + - - - + b,x™ have degree m, where n > m.
The polynomial

fi(z) = f(z) = (anby' )" ""g(2) (14.1)

has degree less than n since the coefficient of 2™ is ap, — (@b, )b, = 0. Hence,
by the induction hypothesis, there exist polynomials ¢;{z), r1(z) € Rlx] such
that

fA(z) = q(x)g(z) + (), (14.2)

where 71(z) = 0 or degri(z) < degg(x). Substituting the representation of
fi{z) in Eq. (14.2) into Eq. (14.1) and solving for f(z), we obtain

f(2) = (q1(2) + anbi' 2" ™g(x) + r1(z) = a(e)g(z) +r(2),

where ¢(z) = ¢1 () + a,b,'2"™ and r(z) = r1(z), the desired representation
when f(z) has degree n.

The uniqueness of ¢g(z) and r(x) remains to be shown. Suppose there are
polynomials ¢'(z) and r'(z) € R[z] such that

f(z) = q(z)g(z) + r(z) = ¢'(z)g(z) + (),
where r(z) = 0 or degr(z) < deg g(z), r’(z) = 0 or degr'(z) < deg g(z). Then

r(z) — ' (z) = (¢ (z) — q(z))g(=).
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Suppose 7(z) — r'(z) # 0. Since the leading coefficient of g(z) is a unit,

deg((¢'(z) — q(<))g(2)) = deg(q'(z) — q(z)) + degg(z) = degg(z).

This implies that s

deg(r(z) ~ r'(z)) = deg g(z),
which is impossible since degr(z), deg 7’'(z) < deg g(z). Thus,
r(z) —r'(z) = 0 or r(x) = r'(z).

Therefore,

0= (q'(z) — g(z))g(=)- (14.3)

Since by, is a unit, deg(((¢'(z) — ¢(z))g(z)) > 0 unless ¢’'(z) — q(z) = 0. Thus,
from Eq. (14.3), we see that ¢'(z) — g{z) = 0 must be the case. B

The polynomials g(z) and 7(z) in Theorem 14.1.6 are called the quotient
and remainder, respectively, on division of f(z) by g(z).

Definition 14.1.7 Let R be a commutative ring with 1 and f(z) = ag+ a1z +
-+ ap,z™ € Rlz]. For all r € R, define

f(ry=ap+air+---+apr".
When f(r) =0, we call 7 a Toot or zero of f(z).

In Definition 14.1.7, we think of substituting = for z in f(z). The student
is used to doing this freely. However, certain difficulties arise when R is not
commutative. For instance, let f(z) = a—z, g{z) = b—=z. Set h(z) = f(z)g(x).
Then h(z) = (a — z)(b —z) = ab— (a + b}z + 2. For ¢ € R, h(c) = ab
—(a+b)c+c? = ab—ac—be+c? while f(c)g(c) = (a—c)(b~c) = ab—cb—ac+c?.
Hence, we cannot draw the conclusion that h(c) = f(c)g(c). However, if R
is commutative (with identity), then we can conclude that h{c) = f{c)g(c).

Clearly if k(z) = f(z) + g(x), then k(c) = f(c) + g(e).

Definition 14.1.8 Let R be a commutative ring with 1 and f(z), g(z) € R[z]
be such that g(x) # 0. We say that g(z) divides f(z) or that g(z) is a factor of
f(z), and write g(z)|f(x) if there exists g(z) € R[x] such that f(z) = g(z)g(z).

Theorem 14.1.9 (Remainder Theorem) Let R be a commutative ring with
identity. For f(z) € R[z] and a € R, there exists q(z) € R[z] such that

f(z) = (z — a)g(z) + f(a).
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Proof. By applying the division algorithm with ¢ — @ = ¢g(x), there exist
unique g(z), 7(z) € R[z| such that f(z) = (z — a)g(z) + r(z), where r(z) =0
or degr(z) < 1. Hence, r(x) is a constant polynomial, say, 7(z) = d. By
substituting a for z, we obtain f(a) = (a ~ a)g{a) + d = d, which yields the
desired result. @

Corollary 14.1.10 (Factorization Theorem) Let R be a commutative ring
with identity. For f(z) € R[z] and a € R, x — a divides f(z) if and only if a
is a root of f(x).

Proof. Suppose (z — a)|f(z). Then there exists g(z) € R[z] such that
f(z) = (z — a)g(z). Hence, f(a) = (e — a)g(a) = 0 and so a is a root of
f(z). Conversely, suppose a is a root of f(z). Then by the remainder theorem
(Theorem 14.1.9) and the fact that f(a) = 0, we have f(z) = (z — a)q(z).
Consequently, (z —a)|f(z). R

Theorem 14.1.11 Let R be an integral domain and f{z) be a nonzero poly-
nomial in R[z] of degree n. Then f(z) has at most n roots in R.

Proof. If deg f(z) =0, then f(z) is a constant polynomial, say, f(z) = ¢ #
0. Clearly ¢ has no roots in R. Assume that the theorem is true for all polyno-
mials of degree less than n, where » > 0 (the induction hypothesis). Suppose
deg f(z) = n. If f(z) has no roots in R, then the theorem is true. Sup-
pose r € R is a root of f(z). Then by Corollary 14.1.10, f(z) = (z — r)q(z),
where degg(z) = n — 1. If there exists any other root 7 € R of f(z), then
0= f(+') = (v — r)q(r’). Since 7" # r and R is an integral domain, ¢(r') = 0
and so r' is a root of g(z). Therefore, any other root of f(x) is also a root
of g(z). Since f(z) = (z — r)g(z), any root of ¢(z) is also a root of f(z).
By the induction hypothesis and the fact that degg¢{z) = n — 1, there are at
most n—1 of these other roots 7. Hence, in all, f(x) has at most n roots in R. W

We now extend the definition of a polynomial ring from one indeterminate
to several indeterminates.

Definition 14.1.12 For any ring R, we define recursively
R[ﬂ?l, L2y e ,:Bn] = R[l'l, L2y« ,l'n_]][&"n},
where 1 is an indeterminate over R and z, is an indeterminate over R[z,

T3, ..., Zn—1]- RlZ1,Z2,...,2,) is called o polynomial ring in n indetermi-
nates.
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Before describing the ring R[zy,3,...,Zs], we introduce some notation.
N [ £ T kn Stk R R
We write 3, ; Ti.i,Zy & for 3007 i1=0 Ti1..in LY * Ty, Where
each 74, .. € Rand ky,..., &, are nonnegative integers.
The ring

R[$1, T2y vy mﬂ] = { Z T‘il---inxil o ‘T:.zn | Tiy..in € R}

Tny---4tl

We have for n = 2 that

R[z1,22] = Rlz1)[ze] = {55,277 | 81, € Rlz1]}.

19

Now each s;, has the form }; T in L.
Thus,

Rlzy,z0) = {3,,(3 riain21)2s | 7i4; € R}
{3, Zi, riyinzi’ @ | Tinsy € R}
{Xisiy Ta2T1' 85 | Tirip € R}

Definition 14.1.13 Let R be a subring of the ring S. Let c1,¢3,...,¢, be ele-
ments of S. Define Rle1) = {3 ;7 ¢} | r: € R} and

R[C]_,C2,- --:cn.] = R[Cl,Cz, . '1C’n—1][cn]-

We say that ¢y, ¢, ...,cn are algebraically independent over R if
Z Tt'L--%'nCil . C::‘ =
=

can occur only when each ry,. i, =0, where v, i, € R.

Rlci,¢2,...,cn] is a subring of 5 and equals the set of all finite sums of the
form
Z Til---incil st citna
in,..,'!:]_

where 7;,. ;. € R.

Theorem 14.1.14 Let R be a subring of a commutative ring S such that R and
S have the same identity. Let ¢ € 8. Then there exists a unique homomorphism
a of R[z] onto R|c] such that a(z) = ¢ and afa) = a for alla € R.



14.1. POLYNOMIAL RINGS 342

Proof. Define « : R[z] — R[] by a(} a;x?) = Y a;c® for all 3" a;z* € Rz].
Now ag + a1z + -+ - + apz™ = bg + b1z + - - - + b,,™ 1mplies that n = m and
a; =b; fori =1,2,...,n. Thus, ag +a1c+ -+ -+ ac™ =by + b1c+ -+ + by
and so a is well defined. By Definition 14.1.13, o clearly maps R[z| onto
Rjc]. Since for any two polynomials f(z), g(z) € R[z], k(z) = f(z) + 9(z)
implies k(c) = f(¢) + g(c) and h(z) = f(z)g(z) implies h{c) = f(c)g{c), it
follows that o preserves + and -. Therefore, « is a homomorphism of R[z] onto
Rlc]. Clearly a(z) = ¢ and afa) = a for all a € R. Let 8 be a homomor-
phism of R[z] onto R|[c| such that 8(z) = ¢ and S(a) = a for all a € R. Then

B(X a;x?) = Y B(a;)B(z) = Y a;c® = (Y a;zt). Thus, 8 = « so v is unique. W

We emphasize that « is well defined in Theorem 14:1.14 because z is alge-
braically independent over R. We illustrate this in the following example.

Example 14.1.15 Define o : Q[v2| — Q[z] by a(3S aiv2) = Y a;z*. Then «
is not o function since o(2) = 2 and (2) = a({(v/2)?) = 22, but 2 # 2.

14.1.1 Worked-Out Exercises
{ Exercise 1 Let R be a ring with 1. Show that

R[z]/ (z) ~ R.

Solution: Define f: R[z] — R by
flap+ a1z +asz® + - + a,z™) = ag

for all ag + a1z + asz? + - -+ + a,z™ € R[z]. Suppose that ag + a1z + ayz? +
oot apz™ = bg + b1z + bz + - - - + bpz™. Then ag = by and so flag+ a1z +
asx? + -+ anz™) = f(bo + biz + boz? + - - - + b z™). Thus, f is well defined.
Clearly f is an epimorphism. Now ag -+ @12 +axz> + -+ - + apz™ € Ker f if and
only if f(ag + a1z + agz® + - - + apx™) = 0 if and only if ap = 0 if and only if
ag + a1z + agz? + -+ + apz™ € (z) . Therefore, Ker f = {z) . Thus,

Rfz]/ {(z) ~ R.

Exercise 2 Let F be a field and o : F[z] — F[z] be an automorphism such
that a(a) = a for all a € F. Show that a(z) = az + b for some a,b € F.

Solution: By the division algorithm, a(z) = g(z)z+b for some g(z) € Fz]
and b € F. Since o is onto F[z], there exist h(z),p(z) € F[x] such that g(z) =
a(h(z)) and ¢ = ap(z)). Therefore, a(z) = g(z)z + b = a(h(z))a(p(z)) +
a(d) = al(h(z)p(z) + b). Thus, z = h(z)p(z) + b since « is one-one. Now
deg(x) = deg(h(z)p(x) + b) implies that deg(h(x)p(z)) = 1. Hence, either
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degh(z) = 1 and degp(z) = 0 or degh(z) = 0 and degp(z) = 1. Suppose
deg p(x) = 0. Then p(z) = ¢ for some ¢ € F. This implies that z = a(p(z)) =
a(c) = ¢, which is a contradiction. Therefore, deg h(z) = 0 and degp(z) = 1.
Let h(z) = a for some a € F. Thus, o(z) = a(h(z))z+b = ala)z+b=az+b.

¢{ Exercise 3 Let R be a commutative ring with 1 and f(z) = ap + @12 +
agz? + +++ + apz™ € R|z]. If ag is 2 unit and @y, a9, ...,a, are nilpotent
elements, prove that f(z) is invertible.

Solution: We prove this result by induction on n = deg f(z). If n = 0,
then f(z) = ap. Hence, f(z) is invertible. Assume that the result is true
for all polynomials of the above form and degree < m. Suppose now f(z) =
ap + a1z + azx® + -- - + a,z™ € R[z] such that ag is a unit and ay,az,...,a,
are nilpotent elements and deg f(z) = n. Let g(z) = ap + a1z + agz® + --- +
an-12"" 1. Note that deg g(x) < n. Hence, by the induction hypothesis, g(z)
is invertible. Since a, is nilpotent there exists a positive integer m such
that a7 = 0. Then (g(z) + anz™)(g(z) ™! — ang(z) 22"+ alg(z) 32%* — .- - +
(~1)mlam—1g(z)~(m=Lglm=1n) — 1 It now follows that f(z) is invertible.

14.1.2 Exercises

1. If I is an ideal of a ring R, prove that [[z] is an ideal of the polynomial
ring R[z].

2. Let R be an integral domain. Prove that R and R[z] have the same
characteristic.

3. Let R be a commutative ring with 1. Describe, (z}, the ideal of R[x]
generated by z.

4. (i) Let f(z) = 2* + 323 + 222+ 2 and g(z) = 22+ 22+ 1 € Q[z]. Find the
unique polynomials ¢(z), (z) € Q[z| such that f(z) = q(z)g(z) + (=),
where either r(z) = 0 or 0 < degr(z) < degg(z).

(i) Let f(z) = z* + [3)z® + [2)z? + [2] and g(z) = 22 + [2)z + [1] € Zs[z].
Find ¢(z), r(z) € Zs[z] such that f(z) = ¢{z)g(z) + r(x), where either
r(z) = 0or 0 < degr(z) < deg g(x).

5 Let f(z) =2° + 2%+ 2% + z + (3], g(z) = z* + 2% + [2]2? + 2]z € Zs[z).
Find g(z),7(z) € Zs[z] such that f(z) = g(z)g(z) + r(z), where either
r{x) =0 or 0 < deg r(z) < deg g(z).

6. Let R = Z & Z. Show that the polynomial (1,0)z in R[z] has infinitely
many roots in R.

7. Show that the polynomial ring Z[z] over the ring Z, is infinite, but Z4[z]
is of finite characteristic.
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In the ring Zg|z], show that [1] + [2]z is a unit.

Let R be a commutative ring with 1 and f(z) = ag+ a1z + - +apa™ €
R[z]. If f{x) is a unit in R[z]|, prove that ap is a unit in R and a; is
nilpotent for allz = 1,2,...,n.

Use the result of Exercise 9 to show that 1+ 5z is not a unit, in Z[x].
Find all units of Z[z].
Find all units of Zg[z].

Let R be an integral domain. Prove that the units of R[z] are contained
in R.

In Zg|z], prove the following.

(i) [4)z® + [2)z + [4] is a zero divisor.

(ii) [2]x is nilpotent.

(iii) [4]z + [1] and [4]z + [3] are units.

Let R be a subring of a commutative ring § such that R has an identity.

(i) In the polynomial ring R[z1,zs,...,Z,], prove that 1, xe,...,z, are
algebraically independent over R.

(i1) Prove that the mapping

o Rlxy,xo,...,2,] — Rlecy, e, ..., Cn
defined by o 37; i Ti.inZ] -o- TH) = 3 i Tinin € --- Cp IS a
homomorphism of R[z1,..., z,;] onto Rle1,..., ¢,], where e1,...,¢, € S.

(iii) Prove that the homomorphism « in (ii) is an isomorphism if and only
if ¢1, €9, ..., ¢, are algebraically independent over R.

Let f(z) be a polynomial of degree n > 0 in a polynomial ring K[z] over
a field K. Prove that any element of the quotient ring K|[z|/ (f(z)) is of
the form g(z) + (f(z)), where g(z) is a polynomial of degree at most
n - 1.

For the following statements, write the proof if the statement is true;
otherwise, give a counterexample.

(i) If a polynomial ring R[z] has zero divisors, so does R.

(i) If R is a field, then R[z] is a field.

(iii) In Z7[z], (z + [1])7 = =" + [1].



Chapter 15

Euclidean Domains

We have seen that both rings Z and F[z], F a field, have a Euclidean or
division algorithm. Because of the significance of these rings and the power of
this common property, the concept of a division algorithm is worth abstracting.

15.1 Euclidean Domains

Definition 15.1.1 A Euclidean domain (E,+, -, v) is an integral domain
(E,+, -) together with a function v : E\{0} — Z# such that

(i) for all a, b € E with b # 0, there exist q, r € E such that a = gb + 7,
where either r = 0 or v(r) < v(b) and

(i) for all a, b € E\{0}, v(a) < v(abd).

v s called ¢ FEuclidean valuation.

The next two results show that the ring Z and the polynomial ring F[z],
F a field, are Euclidean domains.

Example 15.1.2 The ring Z of integers can be considered a Fuclidean domain
with v(a) = |a|, a # 0.

Theorem 15.1.3 If F is a field, then the polynomial ring F(z] 15 o Euclidean
domain.

Proof. By Theorem 14.1.2(ii), F[z] is an integral domain. Define

v : Flz]\{0} — Z#

v(f(x)) = deg f(z)
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for all f(z) € F[z]\{0}. Since deg f(z

)
Fz]\{0}. Let f(z),9(z) € Flz], g(z) #
g(z),r(z) € F[z] such that -

> 0 (f(m)) € Z¥ for all f(z) €
0. By Theorem 14.1.6, there exist

f(z) = q(z)g(z) + r(z), where either r(z) =0 or deg r(z) < deg g(z).

f(z) = gq(z)g(z)+ r(z), where either r(z) = 0 or v(r(z)) < v(g(z)).

Let f(z) = ap+a1z+- - -+a,z™, a, # 0 and g{x) = bog+brz+- - -+, 2™, by, # 0.
Then f(z)g(z) = apbo + (agh1 + a160)T + -+ - + @rbpz™ ™. Since F is a field
and a, # 0, by, # 0, we find that anbp, # 0. This implies that deg(f(z)g(x)) =
n+m. Thus, v(f(z)) = deg(f(z)) = n < nt+m = deg(f(z)9(z)) = v(f(z)g(z)).
Hence, Flz] is a Euclidean domain. B

Example 15.1.4 Any field can be considered as a Euclidean domain with
via) =1 for alla#0. (a=(ab~})b+0.)

Definition 15.1.5 The subset Z[i| = {a+bi | a, b € Z} of the complex numbers
is called the set of Gaussian integers.

In the next theorem, we show that Z[i] is a subring of C and determine the
units of Z[z]. Gauss was the first to study Z[{] and hence in his honor Z[] is
called the ring of Gaussian integers.

Theorem 15.1.6 The set Z[i] of Gaussian integers is a subring of C. The
units of Z[i] are £1 and +i.

Proof. It is easily verified that Z[{] is a subring of C. Since C is a field,
Z[7] is of course an integral domain. Suppose a + & is a unit of Z[{]. Then
there exists ¢ + di € Z[3] such that (a + bi)(c+ di) = 1. This implies that 1 =
1= (a+bi)(c+di) =(a+ &) (c+di) = (a—bi)(c—di), where the bar denotes
complex conjugate. Thus, 1 = (a? + b?)(c? + d?) and therefore 1 = a? + b2.
Hence, a = 0,b = x1, or a = £1,b = 0, proving that the only units of Z[i] are
+1, +:.

Theorem 15.1.7 The ring Z[i] of Gaussian integers becomes a Euclidean do-
main when we let the function,

Zli\{0} — Z#

defined by N(a + bi) = (a + bi)(a — bi) = a® + b* for all a,b € Z, serve as the
function v.
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Proof. Clearly N{a+b) is a positive integer for any nonzero element a+b: €
Z[¢]. Let a+bi, c+di € Z[i]. Now N{({a+bt)(c+di)) = N(ac—bd+ (bet+ad)i) =
(ac — bd)% + (be + ad)? = (a? + b?)(c? + d?) = N(a + bi)N(c + di). From this,
it follows that N(a + &) < N((a + bi)(c + dz)).

It remains to be shown that for a + b7 and ¢+ di # 0 in Z[z], there exist
qo + q1%, 70 + 71t € Z[7] such that

a+bi = (g0 +qi)(c+di) + (rg + r11),

where ry + 718 = 0 or N(rg + ri) < N(c+ di). We work backward in order to
see how to choose gg + g;2. If such an element go + g% exists, then in C

ro+7r1t = (a+b)—(c+di)(go + qii)
= (c+di)[(a+b)(c+di)™ — (g0 + q13)].

Let (@ + bi)(c + di)™! = u + vi, where v and v are rational numbers. Then

ro+7r1e = (c+di)[(u+vi) — (g0 + q1%)]
= (c+di)[(v—qo0)+ (v — q1)1]
= [c(u —qo) —d(v —q1)] + [¢(v — q1) + d(u — qo)]i.
Now
N(ro+m1) = [c(u—qo) —d(v—q1)]> + [c(v — q1) + d(u — go))?

= (+d)(u—q0)?+@w—q)?

Hence, N(rg +7r17) < N(c+di) if (u — )2 + (v — q1)® < 1. We now find an
element go + ¢1¢ € Z[i] so that the latter inequality holds. Take integers gg and
q1 such that (u —qo)? < ; and (v —q1)? < . Then (v — go)® + (v —q1)? < 1.
Let

ro + 71t = (a + bi) — (¢ + di)(q0 + q17)-

Then a+ & = (¢+di)(go+ q1t) + (ro + 1), where 7o +7r1i = 0 or N(rg+7mi) <
N(c+di). m

We now consider the ideals of a Euclidean domain.
Recall that an ideal I of a ring R is called a principal ideal if I = {a) for
some a € I.

Definition 15.1.8 Let R be a commutative ring with 1. If every ideal of R is
a principal ideal, then R is called a principal ideal ring. An integral domain

which is also a principal ideal ring is called a principal ideal domain (PID).

Theorem 15.1.9 FEvery Fuclidean domain is a principal ideal domain.
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Proof. Let £ be a Euclidean domain with Euclidean valuation v. We want
to show that every ideal of F is a principal ideal. Let I be an ideal of E. Since
FE is a commutative ring with 1, it is enough to show that I = Ea for some
a € E. If I is the zero ideal, then I = E0. Suppose now I # {0}. Then I con-
tains some nonzero element. Let P = {v(z) | 0 # z € I}. This is a nonempty
subset of the nonnegative integers. By the well-ordering principle, we find that
P contains a least element. Therefore, there exists an element a € I, a # 0
such that v(a) > 0 and v(a) < v(b) for all b € I, b # 0. We now show that
I = Ea. Since I is an ideal and a € I, it follows that Fa C I. Let b € I. Since
E is a Euclidean domain, there exist ¢, € E such that b = aq + r, where
r=0orv(r)<vie) Nowr=b—qgqaec I Ifr+#0,thenv(r) € P. Thisis a
contradiction of the minimality of v(a) since v(r) < v(a). Therefore, »r = 0 and
so b = ga € Ea. This proves that I C Fa. Hence, I = Ea.

By Theorem 15.1.9, Z, F[z] (F a field), and Z{z] are principal ideal domains.

Theorem 15.1.10 Let R be a commutative ring with 1. The following condi-
tions are equivalent.

(i) R is a field.

(1t) R|z] is a Euclidean domain.

(i1i) R[z| is a PID.

Proof. (i)=(ii) Follows from Theorem 15.1.3.

(i1)=-(ii1) Follows from Theorem 15.1.9.

(iii)=(i) Let ¢ € R and a # 0. Consider I = (a,z), the ideal of R[z]
generated by a and z. Since R[z] is a PID, there exists f(z) € R[z] such that
I = {f(z)). Now a,z € {f(x)). Therefore, there exist g(z) and h(z) in R[z]
such that f(z)g(z) = a and f(z)h(z) = z. Since f(z)g(z) = a, we must have
deg f(z) = 0 and so f(z) € R. Let f(z) = b. Now bh(z) = z implies that
be = 1 for some ¢ € R. Thus, b is a unit and so I = (b)) = R[z]|. From this,
we have 1 € I. Therefore, 1 = afi(z) + zfo(z) for some fi(x), fo(z) € Rlz].
This implies that 1 = da for some d € R. Hence, @ is a unit in R and so Ris a
field. B

Corollary 15.1.11 Z[z] s not a PID.

Proof. Now Z is a commutative ring with 1. Since Z is not a field, Z[z] is
not a PID by Theorem 15.1.10. B

We conclude this section with the following remark.

Remark 15.1