
www.apress.com

Kalicharan

Learn to Program
 w

ith C

Learn to
Program with C

Learn to Program using the Popular
C Programming Language
—
Noel Kalicharan

Learn to Program with C

B O O K S F O R P R O F E S S I O N A L S B Y P R O F E S S I O N A L S® THE E XPER T ’S VOICE® IN PROGR A MMING

Learn to Program with C teaches computer programming to the complete beginner using the
 native C language. As such, it assumes you have no knowledge whatsoever about programming.
The main goal of this book is to teach fundamental programming principles using C, one of the
most widely used programming languages in the world today.

We discuss only those features and statements in C that are necessary to achieve our goal.
Once you learn the principles well, they can be applied to any language. If you are worried that
you are not good at high-school mathematics, don’t be. It is a myth that you must be good at
mathematics to learn programming.

C is considered a ‘modern’ language even though its roots date back to the 1970s. Originally,
C was designed for writing ‘systems’ programs—things like operating systems, editors,
 compilers, assemblers and input/output utility programs. But, today, C is used for writing all
kinds of applications as well—word processing programs, spreadsheet programs, database
management programs, accounting programs, games, robots, embedded systems/electronics
(i.e., Arduino), educational so� ware—the list is endless.

• How to get started with programming using the C language
• How to use the basics of C
• How to program with sequence, selection and repetition logic
• How to work with characters
• How to work with functions
• How to use arrays

Shelve in:
Programming Languages/ANSI C

User level:
Beginning

SOURCE CODE ONLINE9 781484 213728

ISBN 978-1-4842-1372-8ISBN 978-1-4842-1372-8

www.it-ebooks.info

http://www.it-ebooks.info/

Learn to Program
with C

Noel Kalicharan

www.it-ebooks.info

http://www.it-ebooks.info/

Learn to Program with C

Copyright © 2015 by Noel Kalicharan

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-1372-8

ISBN-13 (electronic): 978-1-4842-1371-1

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Steve Anglin
Technical Reviewer: Rohan Walia
Editorial Board: Steve Anglin, Louise Corrigan, Jonathan Gennick, Robert Hutchinson,

Michelle Lowman, James Markham, Susan McDermott, Matthew Moodie, Jeffrey Pepper,
Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing

Coordinating Editor: Mark Powers
Copy Editor: Karen Jameson
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to
readers at www.apress.com/9781484213728. For detailed information about how to locate your book’s source
code, go to www.apress.com/source-code/. Readers can also access source code at SpringerLink in the
Supplementary Material section for each chapter.

www.it-ebooks.info

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com/9781484213728
www.apress.com/source-code/
http://www.it-ebooks.info/

To my daughters

Anushka Nikita

and

Saskia Anyara

www.it-ebooks.info

http://www.it-ebooks.info/

v

Contents at a Glance

About the Author��xv

About the Technical Reviewer��xvii

Acknowledgments���xix

Preface��xxi

■■Chapter 1: Elementary Programming Concepts��� 1

■■Chapter 2: C – The Basics��� 23

■■Chapter 3: Programs with Sequence Logic�� 47

■■Chapter 4: Programs with Selection Logic��� 65

■■Chapter 5: Programs with Repetition Logic�� 91

■■Chapter 6: Characters��� 141

■■Chapter 7: Functions�� 165

■■Chapter 8: Arrays��� 197

■■Chapter 9: Searching, Sorting, and Merging�� 243

■■Chapter 10: Structures��� 279

Index�� 307

www.it-ebooks.info

http://www.it-ebooks.info/

vii

Contents

About the Author��xv

About the Technical Reviewer��xvii

Acknowledgments���xix

Preface��xxi

■■Chapter 1: Elementary Programming Concepts��� 1

1.1 Programs, Languages, and Compilers��� 1

1.2 How a Computer Solves a Problem��� 3

1.2.1 Define the Problem��� 3

1.2.2 Analyze the Problem��� 4

1.2.3 Develop an Algorithm to Solve the Problem��� 4

1.2.4 Write the Program for the Algorithm��� 6

1.2.5 Test and Debug the Program�� 8

1.2.6 Document the Program�� 9

1.2.7 Maintain the Program��� 9

1.3 How a Computer Executes a Program��� 9

1.4 Data Types��� 10

1.5 Characters��� 11

1.6 Welcome to C Programming�� 12

1.6.1 Run the Program��� 13

1.6.2 A Word on Program Layout��� 14

www.it-ebooks.info

http://www.it-ebooks.info/

viii

■ Contents

1.7 Write Output with printf��� 14
1.7.1 The Newline Character, \n (backslash n)��� 15

1.7.2 Escape Sequences��� 16

1.7.3 Print the Value of a Variable�� 16

1.8 Comments��� 17

1.9 Programming with Variables��� 18

■■Chapter 2: C – The Basics��� 23

2.1 Introduction��� 23

2.2 The C Alphabet�� 24

2.3 C Tokens�� 24

2.3.1 Spacing Within a Program�� 25

2.3.2 Reserved Words�� 27

2.3.3 Identifiers��� 27

2.3.4 Some Naming Conventions�� 28

2.4 Basic Data Types��� 28

2.5 Integer Numbers - int�� 29

2.5.1 Declaring Variables��� 29

2.5.2 Integer Expressions�� 29

2.5.3 Precedence of Operators�� 30

2.5.4 Print an Integer Using a “Field Width”�� 31

2.6 Floating-Point Numbers – float and double��� 33

2.6.1 Print double and float Variables��� 34

2.6.2 Assignment Between double and float�� 36

2.6.3 Floating-Point Expressions��� 36

2.6.4 Expressions with Integer and Floating-Point Values�� 37

2.6.5 Assigning double/float to int��� 38

2.7 Strings��� 38

2.8 The Assignment Statement��� 41

2.9 printf�� 42

www.it-ebooks.info

http://www.it-ebooks.info/

ix

■ Contents

■■Chapter 3: Programs with Sequence Logic�� 47

3.1 Introduction��� 47

3.2 Read Data Supplied by a User��� 47

3.3 scanf�� 50

3.3.1 Read Data Into a f loat Variable�� 52

3.3.2 Read Data Into a double Variable�� 52

3.4 Read Strings�� 54

3.5 Examples��� 55

3.5.1 Problem 1 - Average��� 55

3.5.2 Problem 2 - Square�� 56

3.5.3 Problem 3 - Banking��� 57

3.5.4 Problem 4 – Tickets�� 60

■■Chapter 4: Programs with Selection Logic��� 65

4.1 Introduction��� 65

4.2 Boolean Expressions��� 65

4.2.1 AND, &&��� 66

4.2.2 OR, ||��� 67

4.2.3 NOT, !�� 68

4.3 The if Construct��� 69

4.3.1 Find the Sum of Two Lengths��� 72

4.4 The if...else Construct�� 75

4.4.1 Calculate Pay�� 77

4.5 On Program Testing��� 80

4.6 Symbolic Constants��� 80

4.6.1 The #define Directive��� 81

4.6.2 Example – Symbolic Constants�� 82

4.7 More Examples�� 83

4.7.1 Print a Letter Grade�� 83

4.7.2 Classify a Triangle��� 85

www.it-ebooks.info

http://www.it-ebooks.info/

x

■ Contents

■■Chapter 5: Programs with Repetition Logic�� 91

5.1 Introduction��� 91

5.2 The while Construct��� 91

5.2.1 Highest Common Factor��� 96

5.3 Keep a Count��� 97

5.3.1 Find Average��� 99

5.4 Increment and Decrement Operators�� 100

5.5 Assignment Operators��� 101

5.6 Find Largest�� 102

5.7 Find Smallest�� 105

5.8 Read Data from a File�� 106

5.8.1 fscanf��� 108

5.8.2 Find Average of Numbers in a File�� 108

5.9 Send Output to a File��� 110

5.9.1 fprintf�� 111

5.10 Payroll��� 112

5.11 The for Construct��� 118

5.11.1 The for Statement in C�� 120

5.11.2 A Bit of Aesthetics��� 125

5.12 Multiplication Tables�� 125

5.13 Temperature Conversion Table�� 129

5.14 Expressive Power of for��� 131

5.15 The do...while Statement��� 132

5.15.1 Highest Common Factor��� 133

5.15.2 Interest at the Bank�� 134

■■Chapter 6: Characters��� 141

6.1 Character Sets��� 141

6.2 Character Constants and Values��� 142

6.3 The Type char��� 143

www.it-ebooks.info

http://www.it-ebooks.info/

xi

■ Contents

6.4 Characters in Arithmetic Expressions��� 143

6.4.1 Uppercase To/From Lowercase�� 144

6.5 Read and Print Characters�� 145

6.6 Count Characters��� 152

6.6.1 Count Characters in a Line��� 153

6.7 Count Blanks in a Line of Data�� 153

6.8 Compare Characters�� 155

6.9 Read Characters from a File�� 156

6.10 Write Characters to a File�� 157

6.10.1 Echo Input, Number Lines��� 157

6.11 Convert Digit Characters to Integer��� 161

■■Chapter 7: Functions�� 165

7.1 About Functions��� 165

7.2 skipLines��� 166

7.3 A Program with a Function�� 167

7.3.1 The Function Header��� 168

7.3.2 How a Function Gets Its Data��� 169

7.4 max�� 170

7.5 Print the Day�� 173

7.6 Highest Common Factor�� 175

7.6.1 Using HCF to Find LCM��� 177

7.7 factorial��� 178

7.7.1 Using Factorial�� 181

7.7.2 Combinations�� 182

7.8 Job Charge�� 184

7.9 Calculate Pay��� 185

7.10 Sum of Exact Divisors��� 186

7.10.1 Classify Numbers�� 186

www.it-ebooks.info

http://www.it-ebooks.info/

xii

■ Contents

7.11 Some Character Functions�� 188

7.11.1 Position of a Letter in the Alphabet�� 189

7.12 Fetch the Next Integer��� 191

■■Chapter 8: Arrays��� 197

8.1 Simple vs Array Variable�� 197

8.2 Array Declaration��� 198

8.3 Store Values in an Array�� 199

8.3.1 About Not Using Element 0��� 203

8.4 Average and Differences from Average��� 203

8.5 Letter Frequency Count��� 206

8.6 Making Better Use of fopen��� 209

8.7 Array as Argument to a Function��� 211

8.8 String – Array of Characters�� 213

8.8.1 Reverse the Characters in a String��� 217

8.9 Palindrome�� 220

8.9.1 A Better Palindrome Function��� 223

8.10 Array of Strings – Name of Day Revisited��� 225

8.11 A Flexible getString Function�� 228

8.12 A Geography Quiz Program��� 230

8.13 Find the Largest Number��� 233

8.14 Find the Smallest Number��� 235

8.15 A Voting Problem��� 235

■■Chapter 9: Searching, Sorting, and Merging�� 243

9.1 Sequential Search��� 243

9.2 Selection Sort�� 246

9.2.1 Analysis of Selection Sort��� 252

9.3 Insertion Sort��� 252

9.3.1 Analysis of Insertion Sort�� 258

9.3.2 Insert an Element in Place�� 259

www.it-ebooks.info

http://www.it-ebooks.info/

xiii

■ Contents

9.4 Sort an Array of Strings��� 260

9.4.1 Variable-Length Arrays��� 260

9.5 Sort Parallel Arrays�� 262

9.6 Binary Search�� 264

9.7 Word Frequency Count�� 266

9.8 Merge Sorted Lists�� 271

9.8.1 Implement the Merge��� 273

■■Chapter 10: Structures��� 279

10.1 The Need for Structures�� 279

10.2 How to Declare a Structure��� 280

10.2.1 typedef��� 283

10.3 Array of Structure�� 285

10.4 Search an Array of Structure��� 286

10.5 Sort an Array of Structure��� 287

10.6 Read, Search, and Sort a Structure��� 288

10.7 Nested Structures��� 292

10.8 Work with Fractions�� 293

10.8.1 Manipulate Fractions�� 294

10.9 A Voting Problem��� 295

10.10 Pass Structures to Functions�� 304

Index�� 307

www.it-ebooks.info

http://www.it-ebooks.info/

xv

About the Author

Dr. Noel Kalicharan is a Senior Lecturer in Computer Science
at the University of the West Indies, St. Augustine, Trinidad.
For 40 years, he has taught programming courses to people at all
levels. He has been teaching computer science at the University
since 1976. In 1988, he developed and hosted a 26-programme
television series entitled Computers - Bit by Bit. Among other
things, this series taught programming to the general public.
He is always looking for innovative ways to teach logical thinking
skills which go hand in hand with programming skills. His efforts
resulted in two games - BrainStorm! and Not Just Luck - which
won him the Prime Minister’s Award for Invention and Innovation
in 2000 and 2002, respectively. He is a Computer Science author
for Cambridge University Press which published his international
successes, Introduction to Computer Studies and C By Example.
The C book is ranked among the best in the world for learning the

C programming language. It has received glowing reviews from readers as far away as Australia,
Canada, India and Scotland. This book is written in a more leisurely style. Born in Lengua Village,
Princes Town, Trinidad, he received his primary education at the Lengua Presbyterian School
and his secondary education at Naparima College. He is a graduate of The University of the
West Indies, Jamaica, the University of British Columbia, Canada and The University of the
West Indies, Trinidad.

www.it-ebooks.info

http://www.it-ebooks.info/

xvii

About the Technical Reviewer

Rohan Walia is a Senior Software Consultant with extensive
experience in client-server, web-based, and enterprise application
development. He is an Oracle Certified ADF Implementation
Specialist and a Sun Certified Java Programmer. Rohan is
responsible for designing and developing end-to-end applications
consisting of various cutting-edge frameworks and utilities.
His areas of expertise are Oracle ADF, Oracle WebCenter, Fusion,
Spring, Hibernate, and Java/J2EE. When not working, Rohan loves
to play tennis, hike, and travel. Rohan would like to thank his wife,
Deepika Walia, for using all her experience and expertise to review
this book.

www.it-ebooks.info

http://www.it-ebooks.info/

xix

Acknowledgements

I would like to express my deepest appreciation to Shellyann Sooklal for the time and care she
took in reading the manuscript, oftentimes finding subtle errors that a less critical eye would have
overlooked.

www.it-ebooks.info

http://www.it-ebooks.info/

xxi

Preface

This book attempts to teach computer programming to the complete beginner using the C
language. As such, it assumes you have no knowledge whatsoever about programming. And if
you are worried that you are not good at high-school mathematics, don’t be. It is a myth that you
must be good at mathematics to learn programming. In this book, knowledge of primary school
mathematics is all that is required—basic addition, subtraction, multiplication, division, finding
the percentage of some quantity, finding an average or the larger of two quantities.

Some of our most outstanding students over the last thirty years have been people with
little mathematics background from all walks of life—politicians, civil servants, sports people,
housewives, secretaries, clerical assistants, artists, musicians and teachers. On the other hand,
we’ve had mathematical folks who didn’t do as well as might be expected.

What will be an asset is the ability to think logically or to follow a logical argument. If you are
good at presenting convincing arguments, you will probably be a good programmer. Even if you
aren’t, programming is the perfect vehicle for teaching logical thinking skills. You should learn
programming for these skills even if you never intend to become a serious programmer.

The main goal of this book is to teach fundamental programming principles using C, one
of the most widely used programming languages in the world today. C is considered a ‘modern’
language even though its roots date back to the 1970s. Originally, C was designed for writing
‘systems’ programs—things like operating systems, editors, compilers, assemblers and input/
output utility programs. But, today, C is used for writing all kinds of applications programs as
well—word processing programs, spreadsheet programs, database management programs,
accounting programs, games, educational software—the list is endless.

However, this book is more about teaching programming basics than it is about teaching C.
We discuss only those features and statements in C that are necessary to achieve our goal.
Once you learn the principles well, they can be applied to any language.

Chapter 1 gives an overview of the programming process. Chapter 2 describes the basic
building blocks needed to write programs. Chapter 3 explains how to write programs with the
simplest kind of logic—sequence logic. Chapter 4 shows how to write programs which can make
decisions. Chapter 5 explains the notion of ‘looping’ and how to use this powerful programming
idea to solve more interesting problems. Chapter 6 deals with the oft-neglected, but important,
topic of working with characters. Chapter 7 introduces functions—the key concept needed for
writing large programs. Chapter 8 tackles the nemesis of many would-be programmers—array
processing. Chapter 9 explains how lists of items stored in arrays can be searched, sorted and
merged. And Chapter 10 deals with structures—the collection of one or more items, possibly of
different types, grouped together under a single name for convenient handling.

The first step in becoming a good programmer is learning the syntax rules of the
programming language. This is the easy part and many people mistakenly believe that this
makes them a programmer. They get carried away by the cosmetics—they learn the features of a
language without learning how to use them to solve problems.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1371-1_1
http://dx.doi.org/10.1007/978-1-4842-1371-1_2
http://dx.doi.org/10.1007/978-1-4842-1371-1_3
http://dx.doi.org/10.1007/978-1-4842-1371-1_4
http://dx.doi.org/10.1007/978-1-4842-1371-1_5
http://dx.doi.org/10.1007/978-1-4842-1371-1_6
http://dx.doi.org/10.1007/978-1-4842-1371-1_7
http://dx.doi.org/10.1007/978-1-4842-1371-1_8
http://dx.doi.org/10.1007/978-1-4842-1371-1_9
http://dx.doi.org/10.1007/978-1-4842-1371-1_10
http://www.it-ebooks.info/

xxii

■ Preface

Of course, you must learn some features. But it is far better to learn a few features and be
able to use them to solve many problems rather than learn many features but can’t use them to
solve anything. For this reason, this book introduces a feature (like an if statement, say) and then
discusses many examples to illustrate how the feature can be used to solve different problems.

This book is intended for anyone who is learning programming for the first time, regardless of
age or institution. The material has been taught successfully to students preparing for high-school
examinations in Computer Studies or Information Technology, students at college, university and
other tertiary-level institutions.

The presentation is based on the experience that many people have difficulty in learning
programming. To try and overcome this, we use an approach which provides clear examples,
detailed explanations of very basic concepts and numerous interesting problems (not just
artificial exercises whose only use is to illustrate some language feature).

While computer programming is essentially a mental activity and you can learn a fair amount
of programming from just reading the book, it is important that you “get your hands dirty” by
writing and running programs. One of life’s thrills is to write your first program and get it to run
successfully on a computer. Don’t miss out on it.

But do not stop there. The only way to learn programming well is to write programs to solve
new problems. The end-of-chapter exercises are a very rich source of problems, a result of the
author’s forty-odd years in the teaching of programming.

Thank you for taking the time to read this book. I hope your venture into programming is a
successful and enjoyable one.

—Noel Kalicharan

www.it-ebooks.info

http://www.it-ebooks.info/

1

Chapter 1

Elementary Programming
Concepts

In this chapter, we will explain the following:

•	 How a computer solves a problem

•	 The various stages in the development of a computer program: from
problem definition to finished program

•	 How a computer executes a program

•	 What is a “data type” and its fundamental role in writing a program

•	 The role of characters—the basic building blocks of all programs

•	 The concepts of constants and variables

•	 The distinction between syntax and logic errors

•	 How to produce basic output in C using the printf statement

•	 What is an escape sequence

•	 How descriptive or explanatory comments can be included in your program

•	 What is an assignment statement and how to write one in C

1.1 Programs, Languages, and Compilers
We are all familiar with the computer’s ability to perform a wide variety of tasks. For instance, we
can use it to play games, write a letter or a book, perform accounting functions for a company,
learn a foreign language, listen to music on a CD, send a fax, or search for information on the
Internet. How is this possible, all on the same machine? The answer lies with programming—
the creation of a sequence of instructions that the computer can perform (we say “execute”) to
accomplish each task. This sequence of instructions is called a program. Each task requires a
different program:

•	 To play a game, we need a game-playing program.

•	 To write a letter or a book, we need a word processing program.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Elementary Programming Concepts

2

•	 To do accounts, we need an accounting program.

•	 To learn Spanish, we need a program that teaches Spanish.

•	 To listen to a CD, we need a music-playing program.

•	 To send a fax, we need a fax-sending program.

•	 To use the Internet, we need a program called a “Web browser.”

For every task we want to perform, we need an appropriate program. And in order for the
computer to run a program, the program must be stored (we sometimes say loaded) in the
computer’s memory.

But what is the nature of a program? First, we need to know that computers are built to
execute instructions written in what is called machine language. In machine language, everything
is expressed in terms of the binary number system—1s and 0s. Each computer has its own
machine language and the computer can execute instructions written in that language only.

The instructions themselves are very simple: for example, add or subtract two numbers,
compare one number with another, or copy a number from one place to another. How, then, can
the computer perform such a wide variety of tasks, solving such a wide variety of problems, with
such simple instructions?

The answer is that no matter how complex an activity may seem, it can usually be broken
down into a series of simple steps. It is the ability to analyze a complex problem and express
its solution in terms of simple computer instructions that is one of the hallmarks of a good
programmer.

Machine language is considered a low-level programming language. In the early days of
computing (1940s and ‘50s) programmers had to write programs in machine language, that is,
express all their instructions using 1s and 0s.

To make life a little easier for them, assembly language was developed. This was closely
related to machine language but it allowed the programmer to use mnemonic instruction codes
(such as ADD and names for storage locations (such as sum) rather than strings of binary digits
(bits). For instance, a programmer could refer to a number by sum rather than have to remember
that the number was stored in memory location 1000011101101011.

A program called an assembler is used to convert an assembly language program into
machine language. Still, programming this way had several drawbacks:

•	 It was very tedious and error prone.

•	 It forced the programmer to think in terms of the machine rather than in
terms of his problem.

•	 A program written in the machine language of one computer could not
be run on a computer with a different machine language. Changing your
computer could mean having to rewrite all your programs.

To overcome these problems, high-level or problem-oriented languages were developed in
the late 1950s and ‘60s. The most popular of these were FORTRAN (FORmula TRANslation) and
COBOL (COmmon Business-Oriented Language). FORTRAN was designed for solving scientific
and engineering problems that involved a great deal of numerical computation. COBOL was
designed to solve the data-processing problems of the business community.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Elementary Programming Concepts

3

The idea was to allow the programmer to think about a problem in terms familiar to him
and relevant to the problem rather than have to worry about the machine. So, for instance, if he
wanted to know the larger of two quantities, A and B, he could write

IF A IS GREATER THAN B THEN BIGGER = A ELSE BIGGER = B

rather than have to fiddle with several machine or assembly language instructions to get the same
result. Thus high-level languages enabled the programmer to concentrate on solving the problem
at hand, without the added burden of worrying about the idiosyncrasies of a particular machine.

However, the computer still could only execute instructions written in machine language.
A program called a compiler is used to translate a program written in a high-level language to
machine language.

Thus we speak of a FORTRAN compiler or a COBOL compiler for translating FORTRAN and
COBOL programs, respectively. But that’s not the whole story. Since each computer has its own
machine language, we must have, say, a FORTRAN compiler for a Lenovo ThinkPad computer
and a FORTRAN compiler for a MacBook computer.

1.2 How a Computer Solves a Problem
Solving a problem on a computer involves the following activities:

	 1.	 Define the problem.

	 2.	 Analyze the problem.

	 3.	 Develop an algorithm (a method) for solving the problem.

	 4.	 Write the computer program that implements the algorithm.

	 5.	 Test and debug (find the errors in) the program.

	 6.	 Document the program. (Explain how the program works and
how to use it.)

	 7.	 Maintain the program.

There is normally some overlap of these activities. For example, with a large program, a
portion may be written and tested before another portion is written. Also, documentation should
be done at the same time as all the other activities; each activity produces its own items of
documentation that will be part of the final program documentation.

1.2.1 Define the Problem
Suppose we want to help a child work out the areas of squares. This defines a problem to be
solved. However, a brief analysis reveals that the definition is not complete or specific enough
to proceed with developing a program. Talking with the child might reveal that she needs a
program that requests her to enter the length of a side of the square; the program then prints the
area of the square.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Elementary Programming Concepts

4

1.2.2 Analyze the Problem
We further analyze the problem to

•	 Ensure that we have the clearest possible understanding of it.

•	 Determine general requirements such as the main inputs to the program and
the main outputs from the program. For more complex programs, we would,
for instance, also need to decide on the kinds of files that may be needed.

If there are several ways of solving the problem, we should consider the alternatives and
choose the best or most appropriate one.

In this example, the input to the program is the length of one side of the square and the
output is the area of the square. We only need to know how to calculate the area. If the side is s,
then the area, a, is calculated by this:

 a = s × s

1.2.3 Develop an Algorithm to Solve the Problem
An algorithm is a set of instructions that, if faithfully followed, will produce a solution to a given
problem or perform some specified task. When an instruction is followed, we say it is executed.
We can speak of an algorithm for finding a word in a dictionary, for changing a punctured tire, or
for playing a video game.

For any problem, there will normally be more than one algorithm to solve it. Each algorithm
will have its own advantages and disadvantages. When we are searching for a word in the
dictionary, one method would be to start at the beginning and look at each word in turn. A
second method would be to start at the end and search backwards. Here, an advantage of the first
method is that it would find a word faster if it were at the beginning, while the second method
would be faster if the word were toward the end.

Another method for searching for the word would be one that used the fact that the words in
a dictionary are in alphabetical order—this is the method we all use when looking up a word in
a dictionary. In any situation, a programmer would usually have a choice of algorithms, and it is
one of her more important jobs to decide which algorithm is the best, and why this is so.

In our example, we must write the instructions in our algorithm in such a way that they can
be easily converted into a form that the computer can follow. Computer instructions fall into
three main categories:

	 1.	 Input instructions, used for supplying data from the “outside world” to a
program; this is usually done via the keyboard or a file.

	 2.	 Processing instructions, used for manipulating data inside the computer.
These instructions allow us to add, subtract, multiply, and divide; they
also allow us to compare two values, and act according to the result
of the comparison. Also, we can move data from one location in the
computer’s memory to another location.

	 3.	 Output instructions, used for getting information out of the computer to
the outside world.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Elementary Programming Concepts

5

1.2.3.1 Data and Variables
All computer programs, except the most trivial, are written to operate on data. For example:

•	 The data for an action game might be keys pressed or the position of the
cursor when the mouse is clicked.

•	 The data for a word processing program are the keys pressed while you are
typing a letter.

•	 The data for an accounting program would include, among other things,
expenses and income.

•	 The data for a program that teaches Spanish could be an English word that
you type in response to a question.

Recall that a program must be stored in the computer’s memory for it to be run. When data is
supplied to a program, that data is also stored in memory. Thus we think of memory as a place for
holding programs and data. One of the nice things about programming in a high-level language
(as opposed to machine language) is that you don’t have to worry about which memory locations
are used to store your data. But how do we refer to an item of data, given that there may be many
data items in memory?

Think of memory as a set of boxes (or storage locations). Each box can hold one item of data,
for example, one number. We can give a name to a box, and we will be able to refer to that box by
the given name. In our example, we will need two boxes: one to hold the side of the square and
one to hold the area. We will call these boxes s and a, respectively.

If we wish, we can change the value in a box at any time; since the values can vary, s and a are
called variable names, or simply variables. Thus a variable is a name associated with a particular
memory location or, if you wish, it is a label for the memory location. We can speak of giving a
variable a value, or setting a variable to a specific value such as 1. Important points to remember are:

•	 A box can hold only one value at a time; if we put in a new value, the old one
is lost.

•	 We must not assume that a box contains any value unless we specifically
store a value in the box. In particular, we must not assume that the box
contains zero.

Variables are a common feature of computer programs. It is very difficult to imagine what
programming would be like without them. In everyday life, we often use variables. For example,
we speak of an “address.” Here, “address” is a variable whose value depends on the person under
consideration. Other common variables are telephone number, name of school, subject, size of
population, type of car, television model, etc. (What are some possible values of these variables?)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Elementary Programming Concepts

6

1.2.3.2 Example—Develop the Algorithm
Using the notion of an algorithm and the concept of a variable, we develop the following
algorithm for calculating the area of a square, given one side:

Algorithm for calculating area of square, given one side:

	 1.	 Ask the user for the length of a side.

	 2.	 Store the value in the box s.

	 3.	 Calculate the area of the square (s × s).

	 4.	 Store the area in the box a.

	 5.	 Print the value in box a, appropriately labeled.

	 6.	 Stop.

When an algorithm is developed, it must be checked to make sure that it is doing its intended
job correctly. We can test an algorithm by “playing computer,” that is, we execute the instructions
by hand, using appropriate data values. This process is called dry running or desk checking the
algorithm. It is used to pinpoint any errors in logic before the computer program is actually
written. We should never start to write programming code unless we are confident that the
algorithm is correct.

1.2.4 Write the Program for the Algorithm
We have specified the algorithm using English statements. However, these statements are
sufficiently “computer-oriented” for a computer program to be written directly from them. Before
we do this, let us see how we expect the program to work from the user’s point of view.

First, the program will type the request for the length of a side; we say the program prompts
the user to supply data. The screen display might look like this:

Enter length of side:

The computer will then wait for the user to type the length. Suppose the user types 12. The
display will look like this:

Enter length of side: 12

The program will then accept (we say read) the number typed, calculate the area, and print
the result. The display may look like this:

Enter length of side: 12
 
Area of square is 144

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Elementary Programming Concepts

7

Here we have specified what the output of the program should look like. For instance, there
is a blank line between the prompt line and the line that gives the answer; we have also specified
the exact form of the answer. This is a simple example of output design. This is necessary since the
programmer cannot write the program unless he knows the precise output required.

In order to write the computer program from the algorithm, a suitable programming language
must be chosen. We can think of a program as a set of instructions, written in a programming
language, which, when executed, will produce a solution to a given problem or perform some
specified task.

The major difference between an algorithm and a program is that an algorithm can be written
using informal language without having to follow any special rules (though some conventions are
usually followed) whereas a program is written in a programming language and must follow all
the rules (the syntax rules) of the language. (Similarly, if we wish to write correct English, we must
follow the syntax rules of the English language.)

In this book, we will be showing you how to write programs in C, the programming language
developed by Ken Thompson and Dennis Ritchie of Bell Laboratories, and one of the most
popular and widely used today.

Program P1.1 is a C program that requests the user to enter the length of a side and prints the
area of the square:

Program P1.1

#include <stdio.h>
int main() {
 int a, s;
 printf("Enter length of side: ");
 scanf("%d", &s); //store length in s
 a = s * s; //calculate area; store in a
 printf("\nArea of square is %d\n", a);
}

It is not too important that you understand anything about this program at this time. But you can
observe that a C program has something (a function) called main followed by opening and closing
brackets. Between the left brace { and the right brace } we have what is called the body of the
function. The statement

int a, s;

is called a declaration. The parts after // are comments that help to explain the program but have
no effect when the program is run. And * is used to denote multiplication.

All of these terms will be explained in detail in due course.
Finally, a program written in a high-level language is usually referred to as a source program

or source code.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Elementary Programming Concepts

8

1.2.5 Test and Debug the Program
Having written the program, the next job is to test it to find out whether it is doing its intended job.
Testing a program involves the following steps:

	 1.	 Compile the program: recall that a computer can execute a program written
in machine language only. Before the computer can run our C program,
the latter must be converted to machine language. We say that the
source code must be converted to object code or machine code. The
program that does this job is called a compiler. Appendix D tells you how
you can acquire a C compiler for writing and running your programs.

	 2.	 Among other things, a compiler will check the source code for syntax
errors—errors that arise from breaking the rules for writing statements in
the language. For example, a common syntax error in writing C programs
is to omit a semicolon or to put one where it is not required.

	 3.	 If the program contains syntax errors, these must be corrected before
compiling it again. When the program is free from syntax errors, the compiler
will convert it to machine language and we can go on to the next step.

	 4.	 Run the program: here we request the computer to execute the program
and we supply data to the program for which we know the answer. Such
data is called test data. Some values we can use for the length of a side
are 3, 12, and 20.

	 5.	 If the program does not give us the answers 9, 144, and 400, respectively,
then we know that the program contains at least one logic error. A logic
error is one that causes a program to give incorrect results for valid data.
A logic error may also cause a program to crash (come to an abrupt halt).

	 6.	 If a program contains logic errors, we must debug the program; we must
find and correct any errors that are causing the program to produce
wrong answers.

To illustrate, suppose the statement that calculates the area was written (incorrectly) as:

a = s + s;

and when the program is run, 10 is entered for the length. (Below, 10 is underlined to indicate it is
typed by the user.) Assume we know that the area should be 100. But when the program is run, it
prints this:

Enter length of side: 10
 
Area of square is 20

Since this is not the answer we expect, we know that there is an error (perhaps more than one)
in the program. Since the area is wrong, the logical place to start looking for the error is in the
statement that calculates the area. If we look closely, we should discover that + was typed instead
of *. When this correction is made, the program works fine.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Elementary Programming Concepts

9

1.2.6 Document the Program
The final job is to complete the documentation of the program. So far, our documentation
includes the following:

•	 The statement of the problem.

•	 The algorithm for solving the problem.

•	 The program listing.

•	 Test data and the results produced by the program.

These are some of the items that make up the technical documentation of the program. This is
documentation that is useful to a programmer, perhaps for modifying the program at a later stage.

The other kind of documentation that must be written is user documentation. This enables
a nontechnical person to use the program without needing to know about the internal workings
of the program. Among other things, the user needs to know how to load the program in the
computer and how to use the various features of the program. If appropriate, the user will also
need to know how to handle unusual situations that may arise while the program is being used.

1.2.7 Maintain the Program
Except for things like class assignments, programs are normally meant to be used over a long
period of time. During this time, errors may be discovered that previously went unnoticed. Errors
may also surface because of conditions or data that never arose before. Whatever the reason, such
errors must be corrected.

But a program may need to be modified for other reasons. Perhaps the assumptions made when
the program was written have now changed due to changed company policy or even due to a change
in government regulations (e.g., changes in income tax rates). Perhaps the company is changing its
computer system and the program needs to be “migrated” to the new system. We say the program
must be “maintained.”

Whether or not this is easy to do depends a lot on how the original program was written.
If it was well-designed and properly documented, then the job of the maintenance programmer
would be made so much easier.

1.3 How a Computer Executes a Program
First, recall that a computer can execute a program written in machine language only. For the
computer to execute the instructions of such a program, those instructions must be loaded into
the computer’s memory (also called primary storage), like this:

memory

instruction 1

instruction 2

instruction 3

etc.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Elementary Programming Concepts

10

You can think of memory as a series of storage locations, numbered consecutively starting at 0.
Thus you can speak of memory location 27 or memory location 31548. The number associated
with a memory location is called its address.

A computer runs a program by executing its first instruction, then the second, then the third,
and so on. It is possible that one instruction might say to jump over several instructions to a
particular one and continue executing from there. Another might say to go back to a previous
instruction and execute it again.

No matter what the instructions are, the computer faithfully executes them exactly as
specified. That is why it is so important that programs specify precisely and exactly what must be
done. The computer cannot know what you intend, it can only execute what you actually write.
If you give the computer the wrong instruction, it will blindly execute it just as you specify.

1.4 Data Types
Every day we meet names and numbers—at home, at work, at school, or at play. A person’s name is
a type of data; so is a number. We can thus speak of the two data types called “name” and “number.”
Consider the statement:

Caroline bought 3 dresses for $199.95

Here, we can find:

•	 An example of a name: Caroline.

•	 Two examples of numbers: 3 and 199.95.

Usually, we find it convenient to divide numbers into two kinds:

	 1.	 Whole numbers, or integers.

	 2.	 Numbers with a decimal point, so-called real or floating-point numbers.

In the example, 3 is an integer and 199.95 is a real number.

Exercise: Identify the data types—names, integers,
and real numbers—in the following

1.	 Bill’s batting average was 35.25 with a highest score of 99.

2.	 Abigail, who lives at 41 Third Avenue, worked 36 hours at $11.50 per hour.

3.	I n his 8 subjects, Richard’s average mark was 68.5.

Generally speaking, programs are written to manipulate data of various types. We use the term numeric
to refer to numbers (integer or floating-point). We use the term string to refer to non-numeric data such
as a name, address, job description, title of a song, or vehicle number (which is not really a number as
far as the computer is concerned—it usually contains letters, e.g., PAB6052).

Programming languages in general, and C in particular, precisely define the various types of data that
can be manipulated by programs written in those languages. Integer, real (or floating-point), character
(data consisting of a single character such as 'K' or '%'), and string data types are the most common.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Elementary Programming Concepts

11

Each data type defines constants of that type. For example,

•	 Some integer constants are 3, -52, 0, and 9813.

•	 Some real (or floating-point) constants are 3.142, -5.0, 345.21, and 1.16.

•	 Some character constants are 't', '+', '8' and 'R'.

•	 Some string constants are "Hi there", "Wherefore art thou, Romeo?", and
"C World".

Note that, in C, a character constant is delimited by single quotes and a string constant is delimited by
double quotes.

When we use a variable in a program, we have to say what type of data (the kind of constants) we
intend to store in that variable—we say we must declare the variable. It is usually an error if we declare
a variable to be of one type and then attempt to store a different type of value in it. For example, it
would be an error to attempt to store a string constant in an integer variable. C data types are discussed
in detail in Chapter 2.

1.5 Characters
In computer terminology, we use the term character to refer to any one of the following:

•	 A digit from 0 to 9.

•	 An uppercase letter from A to Z.

•	 A lowercase letter from a to z.

•	 A special symbol such as (,), $, =, <, >, +, -, /, *, etc.

The following are commonly used terms:

•	 letter – one of a to z or A to Z

•	 lowercase letter – one of a to z

•	 uppercase letter – one of A to Z

•	 digit – one of 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

•	 special character – any symbol except a letter or a digit e.g. +, <, $, &, *, /, =

•	 alphabetic – used to refer to a letter

•	 numeric – used to refer to a digit

•	 alphanumeric – used to refer to a letter or a digit

Characters are the basic building blocks used in writing programs.
We put characters together to form variables and constants.
We put variables, constants, and special characters to form expressions such as

(a + 2.5) * (b – c);

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1371-1_2
http://www.it-ebooks.info/

Chapter 1 ■ Elementary Programming Concepts

12

We add special words such as if, else and while to form statements such as

if (a > 0) b = a + 2; else b = a – 2;

And we put statements together to form programs.

1.6 Welcome to C Programming
We take a quick peek at the C programming language by writing a program to print the message

Welcome to Trinidad & Tobago

One solution is Program P1.2.

Program P1.2

#include <stdio.h>
int main() {
 printf("Welcome to Trinidad & Tobago");
}

The statement
#include <stdio.h>

is called a compiler directive. This simply means that it provides information the compiler needs
to compile your program. In C, input/output instructions are provided by means of standard
functions stored in a standard library. These functions use variable (and other) declarations
stored in a special header file called stdio.h. Any program that uses an input/output instruction
(such as printf) must inform the compiler to include the declarations in the file stdio.h with
the program. If this is not done, the compiler will not know how to interpret the input/output
statements used in the program.

A C program consists of one or more functions (or, subprograms), one of which must be
called main. Our solution consists of just one function so it must be called main. The (round)
brackets after main are necessary because, in C, a function name is followed by a list of arguments,
enclosed in brackets. If there are no arguments, the brackets must still be present. Here, main has
no arguments so the brackets alone are present. The word int before main indicate the type of
value returned by main. We will explain this in more detail later.

Every function has a section called the body of the function. The body is where the work of
the function is performed. The left and right braces, { and }, are used to define the start and end,
respectively, of the body. In C, one or more statements enclosed by { and } is called a block or
compound statement.

The body of main contains one statement:

printf("Welcome to Trinidad & Tobago");

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Elementary Programming Concepts

13

printf is a standard output function that, in this example, takes one argument, a string
constant "Welcome to Trinidad & Tobago". Note that, as with all functions, the argument is
enclosed in round brackets. The semicolon is used to indicate the end of the statement. We say
the semicolon terminates the statement. When executed, this statement will print

Welcome to Trinidad & Tobago

on the “standard output.” For now, take this to mean the screen.

■■ Programming Note A s mentioned in the Preface, one of life’s thrills is to write your first program and
get it to run successfully on a computer. Don’t miss out on it. See Appendix D for instructions on how to get a
C compiler.

1.6.1 Run the Program
Having written the program on paper, the next task is to get it running on a real computer. How
this is done varies somewhat from one computer system to the next but, in general, the following
steps must be performed:

	 1.	 Type the program to a file. The file could be named welcome.c; it is good
practice to use .c as the filename extension to those files that contain C
source code.

	 2.	 Invoke your C compiler to compile the program in the file welcome.c.
For instance, you may have to start up your C compiler and open the file
welcome.c from the File menu or you may simply have to double-click
on the file welcome.c to start up the compiler.

	 3.	 Once the file is open, typically there will be a menu command to Compile
or Run the program. (Generally, Run implies Compile and Run). If any
(syntax) errors are detected during the compile phase, you must correct
these errors and try again.

	 4.	 When all errors have been corrected and the program is Run, it will print

Welcome to Trinidad & Tobago

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Elementary Programming Concepts

14

1.6.2 A Word on Program Layout
C does not require the program to be laid out as in the example. An equivalent program is

#include <stdio.h>
int main() { printf("Welcome to Trinidad & Tobago"); }

or

#include <stdio.h>
int main()
{
printf("Welcome to Trinidad & Tobago");
}

For this small program, it probably does not matter which version we use. However, as
program size increases, it becomes imperative that the layout of the program highlights the
logical structure of the program.

This improves its readability, making it easier to understand. Indentation and clearly
indicating which { matches which } can help in this regard. We will see the value of this principle
as our programs become bigger.

1.7 Write Output with printf
Suppose we want to write a program to print the following lines from The Gitanjali by
Rabindranath Tagore:

Where the mind is without fear
And the head is held high

Our initial attempt might be this:

#include <stdio.h>
int main() {
 printf("Where the mind is without fear");
 printf("And the head is held high");
}

However, when run, this program will print:

Where the mind is without fearAnd the head is held high

Note that the two strings are joined together (we say the strings are concatenated). This
happens because printf does not place output on a new line, unless this is specified explicitly.
Put another way, printf does not automatically supply a newline character after printing its
argument(s). A newline character would cause subsequent output to begin at the left margin of
the next line.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Elementary Programming Concepts

15

In the example, a newline character is not supplied after fear is printed so that And the
head... is printed on the same line as fear and immediately after it.

1.7.1 The Newline Character, \n (backslash n)
To get the desired effect, we must tell printf to supply a newline character after printing
...without fear. We do this by using the character sequence \n (backslash n) as in Program P1.3.

Program P1.3

#include <stdio.h>
int main() {
 printf("Where the mind is without fear\n");
 printf("And the head is held high\n");
}

The first \n says to terminate the current output line; subsequent output will start at the left
margin of the next line. Thus, And the... will be printed on a new line. The second \n has the
effect of terminating the second line. If it were not present, the output will still come out right, but
only because this is the last line of output.

A program prints all pending output just before it terminates. (This is also the reason why our
first program worked without \n.)

As an embellishment, suppose we want to put a blank line between our two lines of output,
like this:

Where the mind is without fear
 
And the head is held high

Each of the following sets of statements will accomplish this:

printf("Where the mind is without fear\n\n");
printf("And the head is held high\n");
 
printf("Where the mind is without fear\n");
printf("\nAnd the head is held high\n");
 
printf("Where the mind is without fear\n");
printf("\n");
printf("And the head is held high\n");

We just have to make sure we print two \n's between fear and And. The first \n ends the first
line; the second ends the second line, in effect, printing a blank line. C gives us a lot of flexibility
in how we write statements to produce a desired effect.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Elementary Programming Concepts

16

Exercise: Write a program to print the lyrics of
your favorite song

1.7.2 Escape Sequences
Within the string argument to printf, the backslash (\) signals that a special effect is needed at this
point. The character following the backslash specifies what to do. This combination (\ followed by
another character) is referred to as an escape sequence. The following are some escape sequences you
can use in a string in a printf statement:

\n issue a newline character
\f issue a new page (form feed) character
\t issue a tab character
\" print "
\\ print \

For example, using an escape sequence is the only way to print a double quote as part of your output.
Suppose we want to print the line

Use " to begin and end a string

If we typed

printf("Use " to begin and end a string\n");

then C would assume that the double quote after Use ends the string (causing a subsequent error
when it can’t figure out what to do with to). Using the escape sequence \", we can correctly print
the line with:

printf("Use \" to begin and end a string\n");

Exercise: Write a statement to print the line:
An escape sequence starts with \

1.7.3 Print the Value of a Variable
So far, we have used printf to print the value of a string constant (that is, the characters of the string
excluding the quotes). We now show how we can print the value of a variable ignoring, for the moment,
how the variable gets its value. (We will see how in Chapter 2.) Suppose the integer variable m has the
value 52. The statement:

printf("The number of students = %d\n", m);

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1371-1_2
http://www.it-ebooks.info/

Chapter 1 ■ Elementary Programming Concepts

17

will print this:

The number of students = 52

This printf is a bit different from those we have seen so far. This one has two arguments—a string
and a variable. The string, called the format string, contains a format specification %d. (In our previous
examples, the format string contained no format specifications.) The effect, in this case, is that the
format string is printed as before, except that the %d is replaced by the value of the second argument, m.
Thus, %d is replaced by 52, giving this:

The number of students = 52

We will explain printf and format specifications in more detail in Chapter 2, but, for now, note that we
use the specification %d if we want to print an integer value.
What if we want to print more than one value? This can be done provided that each value has a
corresponding format specification. For example, suppose that a has the value 14 and b has the value 25.
Consider the statement:

printf("The sum of %d and %d is %d\n", a, b, a + b);

This printf has four arguments—the format string and three values to be printed: a, b, and a+b.
The format string must contain three format specifications: the first will correspond to a, the second to
b, and the third to a+b. When the format string is printed, each %d will be replaced by the value of its
corresponding argument, giving this:

The sum of 14 and 25 is 39

Exercise: What is printed by the following statement?

printf(“%d + %d = %d\n”, a, b, a + b);

1.8 Comments
All programming languages let you include comments in your programs. Comments can be used
to remind yourself (and others) of what processing is taking place or what a particular variable
is being used for. They can be used to explain or clarify any aspect of a program that may be
difficult to understand by just reading the programming statements. This is very important since
the easier it is to understand a program, the more confidence you will have that it is correct. It is
worth adding anything which makes a program easier to understand.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1371-1_2
http://www.it-ebooks.info/

Chapter 1 ■ Elementary Programming Concepts

18

Remember that a comment (or lack of it) has absolutely no effect on how the program runs.
If you remove all the comments from a program, it will run exactly the same way as with the
comments.

Each language has its own way of specifying how a comment must be written. In C, we write a
comment by enclosing it within /* and */, for example:

/* This program prints a greeting */

A comment extends from /* to the next */ and may span one or more lines. The following is a
valid comment:

/* This program reads characters one at a time
and counts the number of letters found */

C also lets you use // to write one-line comments. The comment extends from // to the end
of the line, for example:

a = s * s; //calculate area; store in a

In this book, we will use mainly one-line comments.

1.9 Programming with Variables
To reinforce the ideas discussed so far, let us write a program that adds the numbers 14 and 25
and prints the sum.

We would need storage locations for the two numbers and the sum. The values to be stored in
these locations are integer values. To refer to these locations, we make up the names a, b, and sum,
say. (Any other names would do. In C, as in all programming languages, there are rules to follow
for making up variable names, for instance, a name must start with a letter and cannot contain
spaces. We will see the C rules in the next chapter.)

One possible algorithm might look like this:

set a to 14
set b to 25
set sum to a + b
print sum

The algorithm consists of four statements. The following explains the meaning of each statement:

•	 set a to 14: store the number 14 in memory location a; this is an example
of an assignment statement.

•	 set b to 25: store the number 25 in memory location b.

•	 set sum to a + b: add the numbers in memory locations a and b and store
the sum in location sum. The result is that 39 is stored in sum.

•	 print sum : print (on the screen) the value in sum, i.e., 39.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Elementary Programming Concepts

19

Program P1.4 shows how we can write this algorithm as a C program.

Program P1.4

//This program prints the sum of 14 and 25. It shows how
//to declare variables in C and assign values to them.
#include <stdio.h>
int main() {
 int a, b, sum;
 a = 14;
 b = 25;
 sum = a + b;
 printf("%d + %d = %d\n", a, b, sum);
}

When run, this program will print the following:

14 + 25 = 39

In C, variables are declared as integer using the required word int. (In programming
terminology, we say that int is a reserved word.) Thus, the statement

int a, b, sum;

declares that a, b, and sum are integer variables. In C, all variables must be declared before they are
used in a program. Note that the variables are separated by commas, with a semicolon after the
last one. If we need to declare just one variable (a, say), we will write

int a;

The statement

a = 14;

is C’s way of writing the assignment statement

set a to 14

It is sometimes pronounced “a becomes 14.” In C, an assignment statement consists of a
variable (a in the example), followed by an equals sign (=), followed by the value to be assigned to
the variable (14 in the example), followed by a semicolon. In general, the value can be a constant
(like 14), a variable (like b), or an expression (like a + b). Thus,

set b to 25

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Elementary Programming Concepts

20

is written as

b = 25;

and

set sum to a + b

is written as

sum = a + b;

One final point: you may have gathered from a previous exercise that, for this problem, the
variable sum is not really necessary. We could, for instance, have omitted sum from the program
altogether and used this:

int a, b;
a = 14;
b = 25;
printf("%d + %d = %d\n", a, b, a + b);

to give the same result since C lets us use an expression (e.g., a + b) as an argument to
printf. However, if the program were longer and we needed to use the sum in other places, it
would be wise to calculate and store the sum once (in sum, say). Whenever the sum is needed,
we use sum rather than recalculate a + b each time.

Now that we have a general idea of what is involved in writing a program, we are ready to get
down to the nitty-gritty of C programming.

Exercises 1

1.	 What makes it possible to do such a variety of things on a computer?

2.	 Computers can execute instructions written in what language?

3.	 Give two advantages of assembly language over machine language.

4.	 Give two advantages of a high-level language over assembly language.

5.	 Describe two main tasks performed by a compiler.

6.	 Describe the steps required to solve a problem on a computer.

7.	 Distinguish between an algorithm and a program.

8.	 Programming instructions fall into three main categories; what are they?

9.	 Distinguish between a syntax error and a logic error.

10.	 What is meant by “debugging a program”?

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Elementary Programming Concepts

21

11.	 Name five data types commonly used in programming and give examples of
constants of each type.

12.	 What are the different classes into which characters can be divided? Give examples
in each class.

13.	 What is the purpose of comments in a program?

14.	 Write a program to print Welcome to C on the screen.

15.	 Write a program to print the following:

There is a tide in the affairs of men
Which, taken at the flood, leads on to fortune

16.	 Write a program to print any four lines of your favorite song or poem.

17.	 Same as exercise 16, but print a blank line after each line.

18.	 If a is 29 and b is 5, what is printed by each of the following statements?

printf("The product of %d and %d is %d\n", a, b, a * b);
printf("%d + %d = %d\n", a, b, a + b);
printf("%d - %d = %d\n", a, b, a - b);
printf("%d x %d = %d\n", a, b, a * b);

19.	 If a is 29 and b is 14, what is printed by the following statements?

printf("%d + \n", a);
printf("%d\n", b);
printf("--\n");
printf("%d\n", a + b);

20.	 If rate = 15, what is printed by

(a) printf("rate\n")?
(b) printf("%d\n", rate)?

www.it-ebooks.info

http://www.it-ebooks.info/

23

Chapter 2

C – The Basics

In this chapter, we will explain the following:

•	 What is an alphabet, a character set, and a token

•	 What is a syntax rule and a syntax error

•	 What is a reserved word

•	 How to create identifiers in C

•	 What is a symbolic constant

•	 The C data types—int, float, and double

•	 How to write int and double expressions

•	 How to print an integer using a field width

•	 How to print a floating-point number to a required number
of decimal places

•	 What happens when int and double values are mixed in the
same expression

•	 What happens when we assign int to double and double to int

•	 How to declare a variable to hold a string

•	 How to assign a string value to a string variable

•	 Some problems to avoid when using the assignment statement

2.1 Introduction
In this chapter, we discuss some basic concepts you need to know in order to write programs in
the C programming language.

A programming language is similar to speaking languages in many respects. It has an
alphabet (more commonly referred to as a character set) from which everything in the language is
constructed. It has rules for forming words (also called tokens), rules for forming statements, and
rules for forming programs. These are called the syntax rules of the language and must be obeyed

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ C – The Basics

24

when writing programs. If you violate a rule, your program will contain a syntax error. When you
attempt to compile the program, the compiler will inform you of the error. You must correct it and
try again.

The first step to becoming a good programmer is learning the syntax rules of the
programming language. This is the easy part, and many people mistakenly believe that this makes
them a programmer. It is like saying that learning some rules of English grammar and being able
to write some correctly formed sentences makes one a novelist. Novel-writing skills require much
more than learning some rules of grammar. Among other things, it requires insight, creativity, and
a knack for using the right words in a given situation.

In the same vein, a good programmer must be able to creatively use the features of the
language to solve a wide variety of problems in an elegant and efficient manner. This is the
difficult part and can be achieved only by long, hard study of problem-solving algorithms and
writing programs to solve a wide range of problems. But we must start with baby steps.

2.2 The C Alphabet
In Section 1.4 we introduced the idea of a character. We can think of the C alphabet as consisting
of all the characters one could type on a standard English keyboard: for example, the digits;
uppercase and lowercase letters; and special characters such as +, =, <, >, &, and %.

More formally, C uses the ASCII (American Standard Code for Information Interchange,
pronounced ass-key) character set. This is a character standard that includes the letters, digits,
and special characters found on a standard keyboard. It also includes control characters such as
backspace, tab, line feed, form feed, and carriage return. Each character is assigned a numeric
code. The ASCII codes run from 0 to 127.

The programs in this book will be written using the ASCII character set. The characters in the
ASCII character set are shown in Appendix B.

Character handling will be discussed in detail in Chapter 6.

2.3 C Tokens
The tokens of a language are the basic building blocks that can be put together to construct
programs. A token can be a reserved word (such as int or while), an identifier (such as b or sum),
a constant (such as 25 or "Alice in Wonderland"), a delimiter (such as } or ;) or an operator
(such as + or =).

For example, consider the following portion of Program P1.4 given at the end of the last
chapter:

int main() {
 int a, b, sum;
 a = 14;
 b = 25;
 sum = a + b;
 printf("%d + %d = %d\n", a, b, sum);
}

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1371-1_6
http://www.it-ebooks.info/

Chapter 2 ■ C – The Basics

25

Starting from the beginning, we can list the tokens in order:

token type

int reserved word

main identifier

(left bracket, delimiter

) right bracket,
delimiter

{ left brace, delimiter

int reserved word

a identifier

, comma, delimiter

b identifier

, comma, delimiter

sum identifier

; semicolon, delimiter

a identifier

= equals sign, delimiter

14 constant

; semicolon, delimiter

And so on. Therefore we can think of a program as a stream of tokens, which is precisely how
the compiler views it. So that, as far as the compiler is concerned, the above could have been
written like this:

int main() { int a, b, sum;
a = 14; b = 25; sum = a + b;
printf("%d + %d = %d\n", a, b, sum); }

The order of the tokens is exactly the same; to the compiler, it is the same program. To the
computer, only the order of the tokens is important. However, layout and spacing are important to
make the program more readable to human beings.

2.3.1 Spacing Within a Program
Generally speaking, C programs can be written using “free format.” The language does not require
us, for instance, to write one statement on a line. Even a simple statement like

a = 14;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ C – The Basics

26

can be written on four separate lines, like this:

a
=
14
;

Only the order of the tokens is important. However, since 14 is one token, the 1 cannot be
separated from the 4. You are not even allowed to put a space between 1 and 4.

Except within a string or character constant, spaces are not significant in C. However,
judicious use of spaces can dramatically improve the readability of your program. A general rule
of thumb is that wherever you can put one space, you can put any number of spaces without
affecting the meaning of your program. The statement

a = 14;

can be written as

a=14;

or

a = 14 ;

or

a= 14;

The statement

sum = a + b;

can be written as

sum=a+b;

or

sum= a + b ;

or

sum = a+b;

Note, of course, that you cannot have spaces within the variable sum. It would be wrong to
write s um or su m. In general, all the characters of a token must stay together.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ C – The Basics

27

2.3.2 Reserved Words
The C language uses a number of keywords such as int, char, and while. A keyword has
a special meaning in the context of a C program and can be used for that purpose only. For
example, int can be used only in those places where we need to specify that the type of some item
is integer. All keywords are written in lowercase letters only. Thus int is a keyword but Int and INT
are not. Keywords are reserved, that is, you cannot use them as your identifiers. As such, they are
usually called reserved words. A list of C keywords is given in Appendix A.

2.3.3 Identifiers
The C programmer needs to make up names for things such as variables, function names
(Chapter 7), and symbolic constants (see next page). A name that he makes up is called a user
identifier. There are a few simple rules to follow in naming an identifier:

•	 It must start with a letter or underscore.

•	 If other characters are required, they can be any combination of letters,
digits, or underscore.

The length of an identifier cannot exceed 63 characters.
Examples of valid identifiers:

r
R
sumOfRoots1and2
_XYZ
maxThrowsPerTurn
TURNS_PER_GAME
R2D2
root1

Examples of invalid identifiers:

2hotToHandle // does not start with a letter
Net Pay // contains a space
ALPHA;BETA // contains an invalid character ;

Important points to note:

•	 Spaces are not allowed in an identifier. If you need one that consists of two
or more words, use a combination of uppercase and lowercase letters
(as in numThrowsThisTurn) or use the underscore to separate the words
(as in num_throws_this_turn). We prefer the uppercase/lowercase
combination.

•	 In general, C is case-sensitive (an uppercase letter is considered different from
the corresponding lowercase letter). Thus r is a different identifier from R.
And sum is different from Sum is different from SUM is different from SuM.

•	 You cannot use a C reserved word as one of your identifiers.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1371-1_7
http://www.it-ebooks.info/

Chapter 2 ■ C – The Basics

28

2.3.4 Some Naming Conventions
Other than the rules for creating identifiers, C imposes no restriction on what names to use, or
what format (uppercase or lowercase, for instance) to use. However, good programming practice
dictates that some common-sense rules should be followed.

An identifier should be meaningful. For example, if it’s a variable, it should reflect the value
being stored in the variable; netPay is a much better variable than x for storing someone’s net
pay, even though both are valid. If it’s a function (Chapter 7), it should give some indication of
what the function is supposed to do; playGame is a better identifier than plg.

It is a good idea to use upper and lowercase combinations to indicate the kind of item named
by the identifier. In this book, we use the following conventions:

•	 A variable is normally written in lowercase: for example, sum. If we need
a variable consisting of two or more words, we start the second and
subsequent words with an uppercase letter: for example, voteCount or
sumOfSeries.

•	 A symbolic (or named) constant is an identifier that can be used in place of
a constant such as 100. Suppose 100 represents the maximum number of
items we wish to process in some program. We would probably need to use
the number 100 in various places in the program. But suppose we change
our mind and want to cater for 500 items. We would have to change all
occurrences of 100 to 500. However, we would have to make sure that we
do not change an occurrence of 100 used for some purpose other than the
maximum number of items (in a calculation like principal*rate/100).

•	 To make it easy to change our mind, we can set the identifier MaxItems to
100 and use MaxItems whenever we need to refer to the maximum number
of items. If we change our mind, we would only need to set MaxItems to the
new value. We will begin a symbolic constant with an uppercase letter. If it
consists of more than one word, we will begin each word with uppercase, as
in MaxThrowsPerTurn.

•	 We will see how to use symbolic constants in Section 4.6.

2.4 Basic Data Types
In Section 1.4 we briefly touched on the concept of a data type. For most of this book, we will use
the following data types:

int, double, and char

These, among others, are referred to as primitive data types.
Each data type defines constants of that type. When we declare a variable to be of a particular

type, we are really saying what kind of constants (values) can be stored in that variable. For
example, if we declare the variable num to be int, we are saying that the value of num at any time
can be an integer constant such as 25, -369, or 1024.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1371-1_7
http://www.it-ebooks.info/

Chapter 2 ■ C – The Basics

29

2.5 Integer Numbers - int
An int variable is used to store an integer (whole number) value. An integer value is one of 0, ±1,
±2, ±3, ±4, etc. However, on a computer, the largest and smallest integers that can be stored are
determined by the number of bits used to store an integer. Appendix C shows how integers can be
represented on a computer.

Typically, an int variable occupies 16 bits (2 bytes) and can be used to store whole numbers
in the range -32,768 to +32,767. Note, however, that on some machines, an int could occupy 32 bits,
in which case it can store whole numbers from -2,147,483,648 to +2,147,483,647. In general, if n
bits are used to store an int, the range of numbers that can be stored is -2n-1 to +2n-1 - 1.

As an exercise, find out the largest and smallest int values on your computer.

2.5.1 Declaring Variables
In C, a variable is declared by specifying a type name followed by the variable. For example,

int h;

declares h to be a variable of type int. The declaration allocates space for h but does not initialize it
to any value. You must not assume that a variable contains any value unless you explicitly assign
a value to it.

You can declare several variables of the same type in one statement as in:

int a, b, c; // declares 3 variables of type int

The variables are separated by commas, with a semicolon after the last one.
You can declare a variable and give it an initial value in one statement, as in:

int h = 14;

This declares h to be int and gives it a value of 14.

2.5.2 Integer Expressions
An integer constant is written in the manner we are all accustomed to: for example, 354, 639,
-1, 30705, and -4812. Note that you can use only a possible sign followed by digits from 0 to 9.
In particular, you cannot use commas as you might do to separate thousands; thus 32,732 is an
invalid integer constant—you must write it as 32732.

An integer expression can be written using the following arithmetic operators:

+ add

− subtract

* multiply

/ divide

% find remainder

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ C – The Basics

30

For example, suppose we have the following declaration:

int a, b, c;

then the following are all valid expressions:

a + 39
a + b - c * 2
b % 10 //the remainder when b is divided by 10
c + (a * 2 + b * 2) / 2

The operators +, - and * all give the expected results. However, / performs integer division; if
there is any remainder, it is thrown away. We say integer division truncates. Thus 19/5 gives the
value 3; the remainder 4 is discarded.

But what is the value of -19/5? The answer here is –3. The rule is that, in C, integer division
truncates toward zero. Since the exact value of –19 ÷ 5 is –3.8, truncating toward zero gives –3.
(In the next section, we show how to get the precise value for the division of one integer by
another.)

The % operator gives the remainder when one integer is divided by another. For example,

19 % 5 evaluates to 4;
h % 7 gives the remainder when h is divided by 7;

You can use it to test, for instance, if a number h is even or odd. If h % 2 is 0 then h is even;
if h % 2 is 1, h is odd.

2.5.3 Precedence of Operators
C evaluates an expression based on the usual precedence of operators: multiplication and division
are done before addition and subtraction. We say that multiplication and division have higher
precedence than addition and subtraction. For example, the expression

5 + 3 * 4

is evaluated by first multiplying 3 by 4 (giving 12) and then adding 5 to 12, giving 17 as the value of
the expression.

As usual, we can use brackets to force the evaluation of an expression in the order we want.
For example,

(5 + 3) * 4

first adds 5 and 3 (giving 8), and then multiplies 8 by 4, giving 32.
When two operators that have the same precedence appear in an expression, they are

evaluated from left to right, unless specified otherwise by brackets. For example,

24 / 4 * 2

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ C – The Basics

31

is evaluated as

(24 / 4) * 2

(giving 12) and

12 - 7 + 3

is evaluated as

(12 - 7) + 3

giving 8. However,

24 / (4 * 2)

is evaluated as expected, giving 3, and

12 - (7 + 3)

is evaluated as expected, giving 2.
In C, the remainder operator % has the same precedence as multiplication (*) and division

(/).

Exercise: What is printed by the following program?
Verify your answer by typing and running the program

#include <stdio.h>
int main() {
 int a = 15;
 int b = 24;
 printf("%d %d\n", b - a + 7, b - (a + 7));
 printf("%d %d\n", b - a - 4, b - (a - 4));
 printf("%d %d\n", b % a / 2, b % (a / 2));
 printf("%d %d\n", b * a / 2, b * (a / 2));
 printf("%d %d\n", b / 2 * a, b / (2 * a));
}

2.5.4 Print an Integer Using a “Field Width”
We have seen that we can print an integer value by specifying the value (either by a variable or
an expression) in a printf statement. When we do so, C prints the value using as many “print
columns” as needed. For instance, if the value is 782, it is printed using 3 print columns since
782 has 3 digits. If the value is -2345, it is printed using 5 print columns (one for the minus sign).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ C – The Basics

32

While this is usually sufficient for most purposes, there are times when it is useful to be able
to tell C how many print columns to use. For example, if we want to print the value of n in 5 print
columns, we can do this by specifying a field width of 5, as in:

printf("%5d", n);

Instead of the specification %d, we now use %5d. The field width is placed between % and d.
The value of n is printed “in a field width of 5”.

Suppose n is 279; there are 3 digits to print so 3 print columns are needed. Since the field
width is 5, the number 279 is printed with 2 spaces before it, thus: ◊◊279 (◊ denotes a space). We
also say “printed with 2 leading blanks/spaces” and “printed padded on the left with 2 blanks/
spaces.”

A more technical way of saying this is “n is printed right justified in a field width of 5.” “Right
justify” means that the number is placed as far right as possible in the field and spaces added in
front of it to make up the field width. If the number is placed as far left as possible and spaces are
added after it to make up the field width, the number is left justified. For example, 279◊◊ is left
justified in a field width of 5.

The minus sign can be used to specify left justification; %-wd will print a value left justified in a
field width of w. For example, to print an integer value left justified in field width of 5, we use %-5d.

For another example, suppose n is -7 and the field width is 5. Printing n requires two print
columns (one for - and one for 7); since the field width is 5, it is printed with 3 leading spaces,
thus: ◊◊◊-7.

You may ask, what will happen if the field width is too small? Suppose the value to be printed
is 23456 and the field width is 3. Printing this value requires 5 columns, which is greater than the
field width 3. In this case, C ignores the field width and simply prints the value using as many
columns as needed (5, in this example).

In general, suppose the integer value v is printed with the specification %wd where w is an
integer, and suppose n columns are needed to print v. There are two cases to consider:

	 1.	 If n is less than w (the field width is bigger), the value is padded on the left
with (w - n) spaces. For example, if w is 7 and v is -345 so that n is 4, the
number is padded on the left with (7-4) = 3 spaces and printed as ◊◊◊-345.

	 2.	 If n is greater than or equal to w (field width is the same or smaller), the
value is printed using n print columns. In this case, the field width is
ignored.

A field width is useful when we want to line up numbers one below the other. Suppose we
have three int variables a, b, and c with values 9876, -3, and 501, respectively. The statements

printf("%d\n", a);
printf("%d\n", b);
printf("%d\n", c);

will print

9876
-3
501

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ C – The Basics

33

Each number is printed using just the number of columns required. Since this varies from
one number to the next, they do not line up. If we want to, we could get the numbers lined up
using a field width of 5, for example. The statements

printf("%5d\n", a);
printf("%5d\n", b);
printf("%5d\n", c);

will print (◊ denotes a space)

◊9876
◊◊◊-3
◊◊501

that will look like this (without ◊):

9876
 -3
 501

all nicely lined up.
As a matter of interest, we don’t really need three printf statements. We can replace the last

three printf statements with

printf("%5d\n%5d\n%5d\n", a, b, c);

Each \n forces the following output onto a new line.

2.6 Floating-Point Numbers – float and double
A floating-point number is one that may have a fractional part. A floating-point constant can be
written in one of two ways:

•	 The normal way, with an optional sign, and including a decimal point; for
example, -3.75, 0.537, 47.0.

•	 Using scientific notation, with an optional sign, including a decimal point
and including an ‘exponent’ part; for example, -0.375E1, which means
“-0.375 multiplied by 10 to the power 1”, that is, -3.75. Similarly, 0.537 can be
written as 5.37e-1, that is, 5.37 x 10-1. The exponent can be specified using
either e or E.

•	 Note that there are several ways to write the same number. For example, the
following all represent the same number 27.96:

27.96E00 2.796E1 2.796E+1 2.796E+01 0.2796E+02 279.6E-1

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ C – The Basics

34

In C, we can declare a floating-point variable using either float or double. A float value is
normally stored as a 32-bit floating-point number, giving about 6 or 7 significant digits. A double
value is stored as a 64-bit floating-point number, giving about 15 significant digits.

A floating-point constant is of type double unless it is followed by f or F, in which case it is of
type float. Thus 3.75 is of type double but 3.75f or 3.75F is of type float. Most calculations are
done using double precision. The type float is useful if you need to store lots of floating-point
numbers and you wish to use as little storage as possible (and do not mind just 6 or 7 digits of
precision).

In this book, we will mostly use double for working with floating-point numbers.

2.6.1 Print double and float Variables
We have been using the format specification %d in a printf statement to print the value of an
integer variable. If we wish to print the value of a double or float variable, we can use %f. For
example, consider the following:

double d = 987.654321;
printf("%f \n", d);

The value of d will be printed to a predefined number of decimal places (usually six, but
could vary from one compiler to the next). In this case, the value printed will be 987.654321.
However, if d were assigned 987.6543215, the value printed would be 987.654322 (rounded to six
decimal places).

Similarly, if x is of type float, its value could be printed using:

printf("%f \n", x);

We just saw that the specification %f prints the number to a predefined number of decimal
places. Most times, though, we want to say how many decimal places to print and, sometimes,
how many columns to use. For example, if we want to print d, above, to 2 decimal places in a field
width of 6, we can use:

printf("%6.2f \n", d);

Between % and f, we write 6.2, that is, the field width, followed by a . (point), followed by the
number of decimal places. The value is rounded to the stated number of decimal places and then
printed. Here, the value printed will be 987.65, which occupies exactly 6 print columns. If the
field width were bigger, the number will be padded on the left with spaces. If the field width were
smaller, it is ignored, and the number is printed using as many columns as necessary.

As another example, consider

b = 245.75;
printf("%6.1f \n", b);

In the specification %6.1f, 1 says to round the number to 1 decimal place; this gives 245.8,
which requires 5 columns for printing.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ C – The Basics

35

6 says to print 245.8 in 6 columns; since only 5 columns are needed for printing the number,
one space is added at the beginning to make up 6 columns, so the number is printed as ◊245.8 (◊
denotes a space).

Similarly,

printf("%6.0f \n", b);

will print b as ◊◊◊246 (rounded to 0 decimal places and printed in a field width of 6).
If the specification was %3.1f and the value to be printed is 245.8, it would be printed using

5 print columns, even though the field width is 3. Again, when the field width specified is smaller
than the number of print columns required, C ignores the field width and prints the value using
as many columns as needed.

We can sometimes use this to our advantage. If we do not know how big a value might be,
we can deliberately use a small field width to ensure it is printed using the exact number of print
columns required for printing the value.

In general, suppose the float or double value v is to be printed with the specification %w.df
where w and d are integers. Firstly, the value v is rounded to d decimal places. Suppose the
number of print columns required to print v, including a possible point (there will be no point if
d = 0; the value is to be rounded to a whole number) and a possible sign, is n. There are two cases
to consider:

	 1.	 If n is less than w (the field width is bigger), the value is padded on the
left with (w - n) spaces. For example, suppose w is 7 and the value to be
printed is -3.45 so that n is 5. The number is padded on the left with (7-
5) = 2 spaces and printed as ◊◊-3.45.

	 2.	 If n is greater than or equal to w (field width is the same or smaller), the
value is printed using n print columns. In this case, the field width is
ignored.

As with integers, a field width is useful when we want to line up numbers one below the
other. Assume we have three double variables a, b, and c with values 419.563, -8.7, and 3.25,
respectively. Suppose we want to print the values to two decimal places, lined up on the decimal
point, like this:

419.56
 -8.70
 3.25

Since the biggest number requires 6 print columns, we can line them up using a field width of
at least 6. The following statements will line them up as above:

printf("%6.2f \n", a);
printf("%6.2f \n", b);
printf("%6.2f \n", c);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ C – The Basics

36

If we use a field width bigger than 6, the numbers will still line up but with leading spaces.
For example, if we use a field width of 8, we will get (◊ denotes a space)

◊◊419.56
◊◊◊-8.70
◊◊◊◊3.25

Again, we can use one printf instead of three to achieve the same effect:

printf("%6.2f \n%6.2f \n%6.2f \n", a, b, c);

Each \n forces the following output onto a new line.

2.6.2 Assignment Between double and float
As expected, you can store a float value in a float variable and a double value in a double
variable. Since float is smaller than double, C allows you to store a float value in a double
variable without any problems. However, if you assign a double to a float, some precision may
be lost. Consider the following:

double d = 987.654321;
float x = d;
printf("%f \n", x);

Since a float variable allows only about 7 digits of precision, we should expect that the
value of d may not be assigned precisely to x. Indeed, when run using one compiler, the value
987.654297 was printed for x. When d was changed to 987654321.12345, the value printed was
987654336.000000. In both cases, about 6 or 7 digits of precision were retained.

As an exercise, see what values are printed using your compiler.

2.6.3 Floating-Point Expressions
Floating-point expressions can be written using the following operators:

+ addition

− subtraction

* multiplication

/ division

These operate as expected; in particular, division is performed in the usual way so that, for
example, 19.0/5.0 gives the value 3.8.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ C – The Basics

37

If op1 and op2 are the two operands of an operator, the following shows the type of calculation
performed:

op1 op2 type of calculation

float float float

float double double

double float double

double double double

Thus float is performed only if both operands are float; otherwise double is performed.

2.6.4 Expressions with Integer and Floating-Point Values
It is quite common to use expressions involving both integer and floating-point values, for
example,

a / 3 where a is float
n * 0.25 where n is int

In C, the rule for such expressions is this:

If either operand of an arithmetic operator is floating-point, the calculation is done in
floating-point arithmetic. The calculation is done in float unless at least one operand is
double, in which case the calculation is done in double.

In the first example above, the integer 3 is converted to float and the calculation is done in
float. In the second example, n is converted to double (since 0.25 is double) and the calculation
is done in double.

How do we get the exact value of an integer division, 19/5, say? We can force a double
precision calculation by writing one or both constants as double, thus: 19/5.0, 19.0/5, or
19.0/5.0. We can also use a cast, as in

(double) 19 / 5

A cast consists of a type name enclosed in brackets and allows us to force the conversion of
one type to another. Here, 19 is cast to double, forcing 5 to be converted to double and a double
precision division is performed.

However, we must be careful with a construct like

(double) (19 / 5)

This may not do what we think. This does NOT do a floating-point division. Since both
constants are integer, the expression inside the brackets is evaluated as an integer division,
giving 3; this value is converted to double, giving 3.0.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ C – The Basics

38

2.6.5 Assigning double/float to int
Consider:

double d = 987.654321;
int n = d;
printf("%d \n", n);

The value 987 is printed. When we assign a floating-point value to an int, the fractional
part, if any, is dropped (not rounded) and the resulting integer value is assigned. It is up to us
to ensure that the integer obtained is small enough to fit in an int. If not, the resulting value is
unpredictable.

On one compiler, where the largest value of an int was 32767, when d was changed to
987654.321, the value printed was 4614, a far cry from what might be expected, seemingly
unpredictable. (Not quite unpredictable; the value assigned is 987654 % 32768, which is 4614.
In general, if big represents a value that is too big to be stored, the value actually stored is big %
32768 for integers stored in 16 bits.) This is because the truncated value of d is 987654, which is
too big to fit in an int variable. As an exercise, see what value would be printed on your compiler.

If we want the rounded value of d stored in n, we could do this with

n = d + 0.5;

If the first digit after the point in d is 5 or more, adding 0.5 would add 1 to the whole number
part. If the first digit after the point is less than 5, adding 0.5 would not change the whole number
part.

For example, if d is 245.75, adding 0.5 would give 246.25 and 246 would be assigned to n.
But if d were 245.49, adding 0.5 would give 245.99 and 245 would be assigned to n.

2.7 Strings
So far, we have seen several examples of string constants in printf statements.

A string constant is any sequence of characters enclosed in double quotes. Examples are:

"Once upon a time"
"645-2001"
"Are you OK?"
"c:\\data\\castle.in"

The opening and closing quotes must appear on the same line. In other words, C does not
allow a string constant to continue on to another line. However, a long string can be broken up
into pieces, with each piece on one line. When the program is compiled, C will join the pieces,
making one string. For example,

printf("Place part of a long string on one line and "
"place the next part on the next line. The parts are "
"separated by whitespace, not comma or ; \n");

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ C – The Basics

39

The value of a string constant is the sequence of characters without the beginning and ending
quotes. Thus, the value of "Are you OK?" is Are you OK?.

If you want the double quote to be part of a string, you must write it using the escape
sequence \", as in

"\"Don't move!\", he commanded"

The value of this string is

"Don't move!", he commanded

Each \" is replaced by " and the beginning and ending quotes are dropped.
The C language does not have a predefined string type. This presents difficulties for the

beginning programmer since he cannot work with string variables the way he can with numeric
variables.

In C, a string is stored in an “array of characters.” Since we discuss characters in Chapter 6
and arrays in Chapter 8, we could be patient and wait until then to understand what an array
is, how strings are stored, and how we can use them to store a name, for instance. Or, we could
accept a few things on faith and reap the benefit of being able to work with strings, in a limited
way, much sooner than we normally would. We’ll be impatient and choose the latter.

Suppose we wish to store a person’s name in some variable name. We can declare name as
follows:

char name[50];

This declares name to be a “character array” of size 50. As we will explain in Chapter 8, this
allows us to store a maximum of 49 characters in name. If you find this is too much (or too little) for
your purposes, you can use a different number.

If we want to, we can assign a string constant to name in the declaration, thus:

char name[50] = "Alice Wonder";

This stores the characters from A to r, including the space, in name. The quotes are not stored.
Once this is done, we could print the value of name using the specification %s in printf, thus:

printf("Hello, %s\n", name);

This will print

Hello, Alice Wonder

The value of name replaces %s.
Unfortunately, we cannot assign a string constant to name, other than in the declaration of

name. C does not permit us to write an assignment statement such as

name = "Alice in Wonderland"; // this is not valid

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1371-1_6
http://dx.doi.org/10.1007/978-1-4842-1371-1_8
http://dx.doi.org/10.1007/978-1-4842-1371-1_8
http://www.it-ebooks.info/

Chapter 2 ■ C – The Basics

40

to assign a value to name. What we can do is use the standard function strcpy (for string copy),
as in:

strcpy(name, "Alice in Wonderland"); // this is valid

But in order to use strcpy (and other string functions), we must precede our program with
the directive:

#include <string.h>

We summarize all of this in Program P2.1.

Program P2.1

#include <stdio.h> // needed for printf
#include <string.h> // needed for strcpy
int main() {
 char name[50];
 strcpy(name, "Alice in Wonderland");
 printf("Hello, %s\n", name);
}

When run, this program will print

Hello, Alice in Wonderland

In Sections 3.4 and 5.9, we will see how to read a string value into a variable.
Joining two strings is an operation we sometimes want to perform. We say we want to

concatenate the two strings. We can do this with the standard string function strcat (string
concatenation). For example, suppose we have:

char name[30] = "Alice";
char last[15] = "Wonderland";

The statement

strcat(name, last);

will add the string in last to the one in name. It is up to us to ensure that name is big enough to
hold the joined strings. The result is that name will now hold AliceWonderland; the value in last
does not change. The following statements will set name to Alice in Wonderland.

strcat(name, " in "); //one space before and after "in"
strcat(name, last);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ C – The Basics

41

2.8 The Assignment Statement
In Section 1.9, we introduced the assignment statement. Recall that an assignment statement
consists of a variable followed by an equals sign (=) followed by the value to be assigned to the
variable, followed by a semicolon. We could write this as:

<variable> = <value>;

<value> must be compatible with <variable> otherwise we will get an error. For example, if
<variable> is int, we must be able to derive an integer from <value>. And if <variable> is
double, we must be able to derive a floating-point value from <value>. If n is int and x is double,
we cannot, for instance, write

n = "Hi there"; //cannot assign string to int
x = "Be nice"; //cannot assign string to double

It is useful to think of the assignment statement being executed as follows: the value on the
right-hand side of = is evaluated. The value obtained is stored in the variable on the left-hand
side. The old value of the variable, if any, is lost. For example, if score had the value 25, then after
the statement

score = 84;

the value of score would be 84; the old value 25 is lost. We can picture this as:

A variable can take on any of several values, but only one at a time. As another example,
consider this statement:

score = score + 5;

Suppose score has the value 84 before this statement is executed. What is the value after
execution?

First, the right-hand side score + 5 is evaluated using the current value of score, 84. The
calculation gives 89—this value is then stored in the variable on the left-hand side; it happens to
be score. The end result is that the value of score is increased by 5 to 89. The old value 84 is lost.

It is possible that even though an assignment statement is valid, it could produce an error
when the program is run. Consider the following (a, b, c, d, and e are int):

a = 12;
b = 5;
c = (a – b) * 2;
d = c + e;

Each of these is a correctly formed assignment statement. However, when these statements
are executed, an error will result. Can you see how?

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ C – The Basics

42

The first statement assigns 12 to a; the second assigns 5 to b; the third assigns 14 to c; no
problem so far. However, when the computer attempts to execute the fourth statement, it runs
into a problem. There is no value for e, so the expression c + e cannot be evaluated. We say that e
is undefined—it has no value.

Before we can use any variable in an expression, it must have been assigned a value by some
previous statement. If not, we will get an “undefined variable” error and our program will halt.

The moral of the story: a valid program is not necessarily a correct program.

Exercise: What is printed by the following?

a = 13;
b = a + 12;
printf("%d %d\n", a, b);
c = a + b;
a = a + 11;
printf("a = %d b = %d c = %d\n", a, b, c);

2.9 printf
We have seen several examples of the printf statement. We have used it to print string constants,
integer values, and floating-point values. And we have printed values with and without field
widths. We have also seen how to use the escape sequence \n to force output onto a new line.

It is worth emphasizing that the characters in the format string are printed exactly as they
appear except that a format specification is replaced by its corresponding value. For example, if a
is 25 and b is 847, consider the statement

printf("%d%d\n", a, b);

This will print

 25847

The numbers are stuck together and we cannot tell what is a and what is b! This is so because
the specification %d%d says to print the numbers next to each other. If we want them separated by
one space, say, we must put a space between %d and %d, like this:

printf("%d %d\n", a, b);

This will print

25 847

To get more spaces between the numbers, we simply put how many we want between %d and %d.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ C – The Basics

43

Exercise: What is printed by the following?

printf("%d\n %d\n", a, b);

The following are some useful things to know about format specifications.
Suppose num is int and its value is 75:

•	 The specification %d will print 75 using 2 print columns: 75

•	 The specification %5d will print 75 with 3 leading spaces: ◊◊◊75

•	 The specification %-5d will print 75 with 3 trailing spaces: 75◊◊◊

•	 The specification %05d will print 75 with 3 leading zeroes: 00075

For an example in which leading 0s might be useful, consider the statement

printf("Pay this amount: $%04d\n", num);

This will print

 Pay this amount: $0075

This is better than printing

Pay this amount: $ 75

since someone can insert numbers between $ and 7.
In general, the minus sign specifies left justification and a 0 in front of the field width

specifies 0 (zero, rather than a space) as the padding character.

Exercises 2

1.	 In the ASCII character set, what is the range of codes for (a) the digits (b) the
uppercase letters and (c) the lowercase letters?

2.	 What is a token? Give examples.

3.	 Spaces are normally not significant in a program. Give an example showing where
spaces are significant.

4.	 What is a reserved word? Give examples.

5.	 Give the rules for making up an identifier.

6.	 What is a symbolic constant and why is it useful?

7.	 Give examples of integer constants, floating-point constants, and string constants.

8.	 Name five operators that can be used for writing integer expressions and give their
precedence in relation to each other.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ C – The Basics

44

9.	 Give the value of (a) 39 % 7 (b) 88 % 4 (c) 100 % 11 (d) -25 % 9

10.	 Give the value of (a) 39 / 7 (b) 88 / 4 (c) 100 / 11 (d) -25 / 9

11.	 Write a statement that prints the value of the int variable sum, right justified in a
field width of 6.

12.	 You are required to print the values of the int variables b, h, and n. Write a
statement that prints b with its rightmost digit in column 10, h with its rightmost
digit in column 20, and n with its rightmost digit in column 30.

13.	 Write statements that print the values of b, h, and n lined up one below the other
with their rightmost digits in column 8.

14.	 Using scientific notation, write the number 345.72 in four different ways.

15.	 Write a statement that prints the value of the double variable total to 3 decimal
places, right justified in a field width of 9.

16.	 You need to print the values of the float variables a, b, and c to 1 decimal place.
Write a statement that prints a with its rightmost digit in column 12, b with its
rightmost digit in column 20, and c with its rightmost digit in column 32.

17.	 What kind of variable would you use to store a telephone number? Explain.

18.	 Write statements to print the values of 3 double variables a, b, and c, to 2 decimal
places, The values must be printed one below the other, with their rightmost digits
in column 12.

19.	 How can you print the value of a double variable, rounded to the nearest whole
number?

20.	 What happens if you try to print a number (int, float, or double) with a field
width and the field width is too small? What if the field width is too big?

21.	 Name some operators that can be used for writing floating-point expressions.

22.	 Describe what happens when we attempt to assign an int value to a float
variable.

23.	 Describe what happens when we attempt to assign a float value to an int
variable.

24.	 Write a statement to print the following: Use \n to end a line of output.

25.	 Write a statement to increase the value of the int variable quantity by 10.

26.	 Write a statement to decrease the value of the int variable quantity by 5.

27.	 Write a statement to double the value of the int variable quantity.

28.	 Write a statement to set a to 2 times b plus 3 times c.

29.	 The double variable price holds the price of an item. Write a statement to
increase the price by (a) $12.50 (b) 25%.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ C – The Basics

45

30.	 What will happen when the computer attempts to execute the following:

p = 7;
q = 3 + p;
p = p + r;
printf("%d\n", p);

31.	 Suppose rate = 15. What is printed by each of the following?

printf("Maria earns rate dollars an hour\n");
printf("Maria earns %d dollars an hour\n", rate);

32.	 If m is 3770 and n is 123, what is printed by each of the following?

(a) printf("%d%d\n", n, m);
(b) printf("%d\n%d\n", n, m);

www.it-ebooks.info

http://www.it-ebooks.info/

47

Chapter 3

Programs with Sequence Logic

In this chapter, we will explain the following:

•	 The idea of reading data supplied by a user

•	 How the scanf statement works

•	 How to read numeric data using scanf

•	 How to read string data using gets

•	 Important principles of program writing using several examples

3.1 Introduction
In the last chapter, we introduced some of C’s basic data types—int, double, and float—and
used simple statements to illustrate their use. We now go a step further and introduce several
programming concepts by writing programs using these types.

The programs in this chapter will be based on sequence logic—that simply means the
statements in the programs are executed one after the other, from the first to the last. This is the
simplest kind of logic, also called straight-line logic. In the next chapter we will write programs that
use selection logic—the ability of a program to test some condition and take different courses of
action based on whether the condition is true or false.

3.2 Read Data Supplied by a User
Consider, again, Program P1.3.

Program P1.3

// This program prints the sum of 14 and 25. It shows how
// to declare variables in C and assign values to them.
#include <stdio.h>
int main() {
 int a, b, sum;
 a = 14;
 b = 25;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Programs with Sequence Logic

48

 sum = a + b;
 printf("%d + %d = %d\n", a, b, sum);
}

C allows us to declare a variable and give it an initial value in one statement so we could write
the program more concisely (without the comment) as Program P3.1:

Program P3.1

#include <stdio.h>
int main() {
 int a = 14;
 int b = 25;
 int sum = a + b;
 printf("%d + %d = %d\n", a, b, sum);
}

And since, as discussed earlier, we do not really need the variable sum, this program can be
written as Program P3.2.

Program P3.2

#include <stdio.h>
int main() {
 int a = 14;
 int b = 25;
 printf("%d + %d = %d\n", a, b, a + b);
}

This program is very restrictive. If we wish to add two other numbers, we will have to change
the numbers 14 and 25 in the program to the ones required. We would then have to re-compile
the program. And each time we want to add two different numbers, we would have to change the
program. This can become very tedious.

It would be nice if we could write the program in such a way that when we run the program,
we will have the opportunity to tell the program which numbers we wish to add. In this way, the
numbers would not be tied to the program, and the program would be more flexible. When we
“tell” the program the numbers, we say we are supplying data to the program. But how do we get
the program to “ask” us for the numbers and how do we “tell” the program what the numbers are?

We can get the program to prompt us for a number by printing a message such as:

Enter first number:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Programs with Sequence Logic

49

using a printf statement. The program must then wait for us to type the number and, when it is
typed, read it. This can be done with the scanf statement. (Strictly speaking, printf and scanf
are functions, but the distinction is not too important for us.) Before we look at this statement, let
us rewrite the algorithm using these new ideas:

prompt for the first number
read the number
prompt for the second number
read the number
find the sum
print the sum

We can implement this algorithm in C as Program P3.3.

Program P3.3

//prompt for two numbers and find their sum
#include <stdio.h>
int main() {
 int a, b;
 printf("Enter first number: ");
 scanf("%d", &a);
 printf("Enter second number: ");
 scanf("%d", &b);
 printf("%d + %d = %d\n", a, b, a + b);
}

When run, the first printf statement will print:

Enter first number:

The scanf statement, explained shortly, will cause the computer to wait for the user to type a
number.

Suppose she types 23; the screen will look like this:

Enter first number: 23

When she presses the “Enter” or “Return” key on the keyboard, scanf reads the number and
stores it in the variable a.

The next printf statement then prompts:

Enter second number:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Programs with Sequence Logic

50

Again, scanf causes the computer to wait for the user to enter a number. Suppose she
enters 18; scanf reads the number, and stores it in the variable b. At this stage, the number 23 is
stored in a and 18 is stored in b. We can picture this as follows:

The program then executes the last printf statement and prints the following:

23 + 18 = 41

At the end, the screen will look as follows. Underlined items are typed by the user, and
everything else is printed by the computer:

Enter first number: 23
Enter second number: 18
23 + 18 = 41

Since the user is free to enter any numbers, the program will work for whatever numbers are
entered, provided the numbers are small enough to be stored in an int variable. If not, strange
results will be printed.

3.3 scanf
In Program P3.3, the statement

scanf("%d", &a);

causes the computer to wait for the user to type a number. Since a is an integer variable, scanf
expects the next item in the data to be an integer or a value (like 3.8, say) that can be converted
into an integer but dropping the fractional part. If it is not (for example, if it is a letter or a special
character) the program will give an error message such as “Invalid numeric format” and stop.
We say the program will crash. If the data is valid, the number will be stored in the variable a. The
statement

scanf("%d", &b);

works in a similar manner.
The statement consists of:

•	 The word scanf

•	 Left and right brackets

•	 Two items (called arguments) inside the brackets, separated by a comma

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Programs with Sequence Logic

51

As with printf, the first item is a string called the format string. In this example, the string
consists of the format specification %d only. It specifies the type of data to be read. Here, %d is used
to indicate that an integer value is to be read.

The second argument specifies where to store the value read. Even though we want the
value stored in a, scanf requires us to specify this by writing &a. The quick explanation is that we
must tell scanf the address of the memory location where the value is to be stored; &a stands for
“address of a.” You will need to take it on faith that in order to read a value into a variable using
scanf, the variable must be preceded by &, as in &a and &b. Note that this applies to the scanf
statement only. Other than this, the variable is used in its normal form (without &) as in:

printf("%d + %d = %d\n", a, b, a + b);

We can use scanf to read more than one value at a time. For example, suppose we want to
read three integer values for variables a, b, and c. To do so, we would need to write %d three times
in the format specification, thus:

scanf("%d %d %d", &a, &b, &c);

When this statement is executed, it looks for three integers. The first one is stored in a, the
second in b, and the third in c. It is up to the user to ensure that the next three items in the data are
integers. If this is not so, an “Invalid numeric format” message will be printed and the program
will crash.

When entering the data, the numbers must be separated by one or more spaces, like this:

42 -7 18

When using scanf, data can be supplied in flexible ways. The only requirement is that the
data be supplied in the correct order. In this example, the three numbers could be supplied as
above or like this:

42
-7
18

or this:

42 -7
18

or even with a blank line, like this:

42
 
-7 18

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Programs with Sequence Logic

52

Spaces, tabs and blank lines (so-called whitespace) do not matter; scanf will simply keep
reading data, ignoring spaces, tabs and blank lines, until it finds the three integers. However, we
emphasize that if any invalid character is encountered while reading the data, the program will
crash. For instance, if the user types

42 -7 v8

or

42 = 18 24

the program will crash. In the first case, v8 is not a valid integer; and, in the second case, = is not a
valid character for an integer.

3.3.1 Read Data Into a float Variable
If we wish to read a floating-point number into a float variable x, we can use

scanf("%f", &x);

The specification %f is used to read a value into a float (but not double, see next section)
variable. When executed, scanf expects to find a valid floating-point constant in the data. For
example, any of the following will be acceptable:

4.265
-707.96
2.345E+1

In the last case, there must be no spaces, for instance, between the 5 and the E or between
the E and the + or between the + and the 1. The following will all be invalid for reading the
number 23.45:

2.345 E+1
2.345E +1
2.345E+ 1

3.3.2 Read Data Into a double Variable
If we wish to read a floating-point number into a double variable, y, we can use

scanf("%lf", &y);

The specification %lf (percent ell f) is used to read a value into a double variable. Apart from
the specification, data is entered the same way for float and double variables. Be careful—you
cannot use %f for reading data into a double variable. If you do, your variable will contain nonsense,
since the value read will be stored in 32 bits rather than 64 bits, the size of double (see Section 2.6).
However, as you have seen, you can use %f for printing the value of a double variable.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Programs with Sequence Logic

53

When entering data for a float/double variable, an integer is acceptable. If you enter 42,
say, it will be interpreted as 42.0. But, as discussed above, if you enter a floating-point constant
(e.g., 2.35) for an int variable, it will be truncated (to 2, in this example).

If you need to, you can read values into more than one variable using one scanf statement.
If x and y are double variables, you can use

scanf("%lf %lf", &x, &y);

to read values into x and y. When executed, scanf expects to find two valid floating-point
(or integer) constants next in the data. The first is stored in x and the second in y. Any number of
spaces or blank lines can come before, between, or after the numbers.

You can also read values for int, double, or float variables in the same scanf statement.
You just have to ensure that you use the correct specification for each variable. Suppose item and
quantity are int, and price is double. The statement

scanf("%d %lf %d", &item, &price, &quantity);

expects to find three numbers next in the data.

•	 The first must be an int constant that will be stored in item.

•	 The second must be a double (or int) constant that will be stored in price.

•	 The third must be an int constant that will be stored in quantity.

The following are all valid data for this scanf statement:

4000 7.99 8.7 // 8.7 is truncated to 8
3575 10 44 // price will be interpreted as 10.00
5600 25.0 1

As usual, any amount of whitespace may be used to separate the numbers.
The following are all invalid data for this scanf statement:

4000 7.99 x.8 // x.8 is not an integer constant
25cm 10 44 // 25cm is not an integer constant
560 25 amt = 7 // a is not a valid numeric character

When scanf fetches a number, it remains poised just after the number; a subsequent scanf
will continue to read data from that point. To illustrate, suppose some data is typed as

4000 7.99 8

and consider the statements

scanf("%d", &item);
scanf("%lf", &price);
scanf("%d", &quantity);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Programs with Sequence Logic

54

The first scanf will store 4000 in item. On completion, it remains poised at the space after
4000. The next scanf will continue reading from that point and will store 7.99 in price. This
scanf will stop at the space after 7.99. The third scanf will continue reading from that point
and store 8 in quantity. This scanf will stop at the character after 8; this may be a space or the
end-of-line character. Any subsequent scanf will continue reading from that point.

It is useful to imagine a “data pointer” moving through the data as data items are read. At any
time, it marks the position in the data from which the next scanf will start looking for the next
item of data.

3.4 Read Strings
In Section 2.6, we saw how to declare a variable to hold a string value. For example, the
declaration

char item[50];

lets us store a string value (of maximum length 49) in item. We also saw how we can assign a
string value to item using the standard string function, strcpy.

Now we show you how to read a value from the input into item. There are several ways to do
this in C. We will use the gets (usually pronounced get s not gets) statement (more precisely, a
function), as in:

gets(item);

This reads characters and stores them in item starting from the current position of the data
pointer until the end-of-line is reached. The end-of-line character is not stored. The data pointer
is positioned at the beginning of the next line.

For example, if the data line is

Right front headlamp

then the string Right front headlamp is stored in item. The effect is the same as if we had written

strcpy(item, "Right front headlamp");

The alert reader will notice that we did not put an & before item, as we have been doing for
reading numbers with scanf. For now, just note that item is a “character array” and the rule in C
is that we must not put & before an array name when reading data into it. You may understand
this better after we discuss arrays in Chapter 8. The quick explanation is that an array name
denotes the “address of the first element of the array” so there is no need for & to get the address.
For now, just think of it as a rule that you need to follow.

Consider the following statements (assume the declaration char name[50]):

printf("Hi, what's your name? ");
gets(name);
printf("Delighted to meet you, %s\n", name);

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1371-1_8
http://www.it-ebooks.info/

Chapter 3 ■ Programs with Sequence Logic

55

When executed,

•	 The printf statement will ask for your name.

•	 gets will wait for you to type your name. When typed, the name will be
stored in the variable name.

•	 printf will then print a greeting using your name.

Your computer screen will look as follows (assuming Birdie is typed as the name):

Hi, what's your name? Birdie
Delighted to meet you, Birdie

3.5 Examples
We now write programs to solve a few problems. You should try solving the problems before
looking at the solutions. In the sample runs, the underlined items are typed by the user;
everything else is printed by the computer.

3.5.1 Problem 1 - Average
Write a program to request three integers and print their average to one decimal place. The
program should work as follows:

Enter 3 integers: 23 7 10
Their average is 13.3

A solution is shown as Program P3.4.

Program P3.4

//request 3 integers; print their average
#include <stdio.h>
int main() {
 int a, b, c;
 double average;
 printf("Enter 3 integers: ");
 scanf("%d %d %d", &a, &b, &c);
 average = (a + b + c) / 3.0;
 printf("\nTheir average is %3.1f\n", average);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Programs with Sequence Logic

56

Points to note about Program P3.4:

•	 The variable average is declared as double instead of int since the average
may not be a whole number.

•	 If whole numbers are not entered in the data, the program will crash or, at
best, give incorrect results.

•	 We use 3.0 instead of 3 in calculating the average. This forces a floating-
point division to be performed. If we had used 3, an integer division would
be performed, giving 13.0 as the answer for the sample data, above.

•	 In the last printf, the first \n is used to print the blank line in the output.

•	 We could have declared average and assigned to it in one statement,
like this:

double average = (a + b + c) / 3.0;

•	 The variable average is not really necessary in this program. We could
calculate and print the average in the printf statement with

printf("\nTheir average is %3.1f\n", (a + b + c) / 3.0);

3.5.2 Problem 2 - Square
Write a program to request a whole number and print the number and its square. The program
should work as follows:

Enter a whole number: 6
Square of 6 is 36

A solution is shown as Program P3.5.

Program P3.5

//request a whole number; print its square
#include <stdio.h>
int main() {
 int num, numSq;
 printf("Enter a whole number: ");
 scanf("%d", &num);
 numSq = num * num;
 printf("\nSquare of %d is %d\n", num, numSq);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Programs with Sequence Logic

57

Points to note about Program P3.5:

•	 To make the output readable, note the space after f and the spaces
around is. If these spaces are omitted, the sample output will be

Square of6is36

•	 The variable numSq is not really necessary. It can be omitted altogether and
the same output printed with

printf("\nSquare of %d is %d\n", num, num * num);

•	 The program assumes an integer will be entered; if anything other than an
integer is entered, the program will crash or give incorrect results. To cater
for numbers with a point, declare num (and numSq, if used) as double.

3.5.3 Problem 3 - Banking
The following data are given for a customer in a bank: name, account number, average balance,
and number of transactions made during the month. It is required to calculate the interest earned
and service charge.

The interest is calculated as follows:

interest = 6% of average balance

and the service charge is calculated by this:

service charge = 50 cents per transaction

Write a program to read the data for the customer, calculate the interest and service charge,
and print the customer’s name, average balance, interest, and service charge.

The following is a sample run of the program:

Name? Alice Wonder
Account number? 4901119250056048
Average balance? 2500
Number of transactions? 13
Name: Alice Wonder
Average balance: $2500.00
Interest: $150.00
Service charge: $6.50

A solution is shown as Program P3.6.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Programs with Sequence Logic

58

Program P3.6

//calculate interest and service charge for bank customer
#include <stdio.h>
int main() {
 char customer[30], acctNum[30];
 double avgBalance, interest, service;
 int numTrans;
 printf("Name? ");
 gets(customer);
 printf("Account number? ");
 gets(acctNum);
 printf("Average balance? ");
 scanf("%lf", &avgBalance);
 printf("Number of transactions? ");
 scanf("%d", &numTrans);
 interest = avgBalance * 0.06;
 service = numTrans * 0.50;
 printf("\nName: %s\n", customer);
 printf("Average balance: $%3.2f\n", avgBalance);
 printf("Interest: $%3.2f\n", interest);
 printf("Service charge: $%3.2f\n", service);
}

This problem is more complicated than those we have seen so far. It involves more data and
more processing. But we can simplify its solution if we tackle it in small steps.

Firstly, let us outline an algorithm for solving the problem. This can be:

prompt for and read each item of data
calculate interest earned
calculate service charge
print required output

The logic here is fairly straightforward and a little thought should convince us that these are
the steps required to solve the problem.

Next, we must choose variables for the data items we need to store.

•	 For the customer’s name, we need a string variable—we call it customer.

•	 We may be tempted to use an integer variable for the account number but
this is not a good idea for two reasons: an account number may contain
letters (as in CD55887700); or it may be a very long integer, too big to fit in an
int variable. For these reasons, we use a string variable that we call acctNum.

•	 The average balance may contain a decimal point and must be stored in a
double variable; we call it avgBalance.

•	 The number of transactions is a whole number so we use an
int variable, numTrans.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Programs with Sequence Logic

59

Next, we need variables to store the interest and service charge. Since these may contain a
decimal point, we must use double variables—we call them interest and service.

Prompting for and reading the data are fairly straightforward, given what we have covered
so far. We need only emphasize that when numeric data is being entered, it must be a numeric
constant. We cannot, for instance, enter the average balance as $2500 or as 2,500. We must enter
it as 2500 or 2500.0 or 2500.00.

The calculation of the interest and service charge presents the biggest challenge. We must
specify the calculation in a form that the computer can understand and execute.

We cannot, for instance, write

interest = 6% of avgBalance;

or even

interest = 6% * avgBalance;

or

service = 50 cents per transaction;

We must express each right-hand side as a proper arithmetic expression, using appropriate
constants, variables, and operators. Therefore, “6% of average balance” must be expressed as

avgBalance*0.06

or

0.06*avgBalance

and “50 cents per transaction” must be expressed as

0.50*numTrans

or

numTrans*0.5

or something similar, even

numTrans/2.0

Printing the output is fairly straightforward. Even though, for example, we cannot use $ when
entering data for average balance, we can print a dollar sign in front of it when we print its value.
All we need to do is print $ as part of a string. How this is done is shown in the program. Similarly,
we print the interest and service charge labeled with a dollar sign.

We use the specification %3.2f for printing avgBalance. We intentionally use a small field
width of 3 so that avgBalance is printed using only the exact number of print columns needed
for printing its value. This ensures that its value is printed right next to the dollar sign. Similar
remarks apply to interest and service.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Programs with Sequence Logic

60

3.5.4 Problem 4 – Tickets
At a football match, tickets are sold in three categories: reserved, stands, and grounds. For each of
these categories, you are given the ticket price and the number of tickets sold. Write a program to
prompt for these values and print the amount of money collected from each category of tickets.
Also print the total number of tickets sold and the total amount of money collected.

We will write the program to operate as follows when run:

Reserved price and tickets sold? 100 500
Stands price and tickets sold? 75 4000
Grounds price and tickets sold? 40 8000
Reserved sales: $50000.00
Stands sales: $300000.00
Grounds sales: $320000.00
12500 tickets were sold
Total money collected: $670000.00

As shown, we prompt for and read two values at a time, the price and the number of
tickets sold.

For each category, the sales is calculated by multiplying the ticket price by the number of
tickets sold.

The total number of tickets sold is calculated by adding the number of tickets sold for
each category.

The total money collected is calculated by adding the sales for each category.
An outline of the algorithm for solving the problem is as follows:

prompt for and read reserved price and tickets sold
calculate reserved sales
prompt for and read stands price and tickets sold
calculate stands sales
prompt for and read grounds price and tickets sold
calculate grounds sales
calculate total tickets
calculate total sales
print required output

A solution is shown as Program P3.7. The price can be entered as an integer or double
constant; the number of tickets must be entered as an integer constant.

Program P3.7

//calculate ticket sales for football match
#include <stdio.h>
int main() {
 double rPrice, sPrice, gPrice;
 double rSales, sSales, gSales, tSales;
 int rTickets, sTickets, gTickets, tTickets;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Programs with Sequence Logic

61

 printf("Reserved price and tickets sold? ");
 scanf("%lf %d", &rPrice, &rTickets);
 rSales = rPrice * rTickets;
 printf("Stands price and tickets sold? ");
 scanf("%lf %d", &sPrice, &sTickets);
 sSales = sPrice * sTickets;
 printf("Grounds price and tickets sold? ");
 scanf("%lf %d", &gPrice, &gTickets);
 gSales = gPrice * gTickets;
 tTickets = rTickets + sTickets + gTickets;
 tSales = rSales + sSales + gSales;
 printf("\nReserved sales: $%3.2f\n", rSales);
 printf("Stands sales: $%3.2f\n", sSales);
 printf("Grounds sales: $%3.2f\n", gSales);
 printf("\n%d tickets were sold\n", tTickets);
 printf("Total money collected: $%3.2f\n", tSales);
}

Exercises 3

1.	 For each of the following, give examples of data that will be read correctly and
examples of data that will cause the program to crash. Assume the declaration

int i, j; double x, y;);
 
(a) scanf("%d %d", &i, &j);
(b) scanf("%lf %lf", &x, &y);
(c) scanf("%d %lf %d", &i, &x, &j);

2.	 For 1(c), state what will be stored in i, x, and j for each of the following sets
of data:

(a) 14 11 52
(b) -7 2.3 52
(c) 0 6.1 7.0
(d) 1.0 8 -1

3.	 Write a program that requests a user to enter a weight in kilograms, and converts it
to pounds. (1 kilogram = 2.2 pounds.)

4.	 Write a program that requests a length in centimeters and converts it to inches.
(1 inch = 2.54 cm.)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Programs with Sequence Logic

62

5.	 Assuming that 12 and 5 are entered as data, identify the logic error in the following
statements (a, b, c, d, and e are int):

scanf("%d %d", &a, &b);
c = (a - b) * 2;
d = e + a;
e = a / (b + 1);
printf("%d %d %d\n", c, d, e);

	 When the error is corrected, what is printed?

6.	 What is printed by the following (a, b, and c are int)?

a = 13;
b = a + 12;
printf("%d %d\n", a, b);
c = a + b;
a = a + 11;
printf("%d %d %d\n", a, b, c);

7.	 Write a program that requests a price and a discount percent. The program prints
the original price, the discount amount, and the amount the customer must pay.

8.	 Same as 7, but assume that 15% tax must be added to the amount the customer
must pay.

9.	 Write a program to calculate electricity charges for a customer. The program
requests a name, previous meter reading, and current meter reading. The difference
in the two readings gives the number of units of electricity used. The customer pays
a fixed charge of $25 plus 20 cents for each unit used.

	 Print all the data, the number of units used, and the amount the customer must pay,
appropriately labeled.

10.	 Modify 9 so that the program requests the fixed charge and the rate per unit.

11.	 Write a program to request a student’s name and marks in four subjects. The
program must print the name, total marks, and average mark, appropriately
labeled.

12.	 Write a program that requests a person’s gross salary, deductions allowed and rate
of tax (e.g., 25, meaning 25%), and calculates his net pay as follows:

	 Tax is calculated by applying the rate of tax to the gross salary minus the
deductions.

	 Net pay is calculated by gross salary minus tax.

	 Print the gross salary, tax deducted, and net pay, appropriately labeled.

	 Also print the percentage of the gross salary that was paid in tax.

	 Make up appropriate sets of data for testing the program.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Programs with Sequence Logic

63

13.	 Write a program that, when run, works as follows (underlined items are typed by
the user):

Hi, what's your name? Alice
Welcome to our show, Alice
How old are you? 27
Hmm, you don't look a day over 22
Tell me, Alice, where do you live? Princes Town
Oh, I've heard Princes Town is a lovely place

14.	 A ball is thrown vertically upwards with an initial speed of U meters per second.
Its height H after time T seconds is given by

H = UT - 4.9T2

	 Write a program that requests U and T and prints the height of the ball after T
seconds.

15.	 Write a program to calculate the cost of carpeting a rectangular room in a house.
The program must do the following:

•	 Request the length and breadth of the room (assume they are in meters).

•	 Request the cost per square meter of the carpet.

•	 Calculate the area of the room.

•	 Calculate the cost of the carpet for the room.

•	 Print the area and the cost, appropriately labeled.

16.	 Write a program which, given a length in inches, converts it to yards, feet, and
inches. (1 yard = 3 feet, 1 foot = 12 inches). For example, if the length is 100
inches, the program should print 2 yd 2 ft 4 in.

www.it-ebooks.info

http://www.it-ebooks.info/

65

Chapter 4

Programs with Selection Logic

In this chapter, we will explain the following:

•	 What are Boolean expressions

•	 How C represents Boolean values

•	 How to write programs using if

•	 How to write programs using if...else

•	 Where semicolons are required, where they are optional, and where they
must not be put

•	 How a program should be tested

•	 Why symbolic constants are useful and how to use them in a C program

4.1 Introduction
In the last chapter, we showed how to write programs using sequence logic—programs whose
statements are executed “in sequence” from the first to the last.

In this chapter, the programs will use selection logic—they will test some condition and take
different courses of action based on whether the condition is true or false. In C, selection logic is
implemented using the if and the if...else statements.

4.2 Boolean Expressions
A Boolean expression (named after the famous English mathematician George Boole) is one that
is either true or false. The simplest kinds of Boolean expressions are those that compare one value
with another. Some examples are:

k is equal to 999
a is greater than 100
a2 + b2 is equal to c2
b2 is greater than or equal to 4ac
s is not equal to 0

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Programs with Selection Logic

66

Each of these can be either true or false. These are examples of a special kind of Boolean
expression called relational expressions. Such expressions simply check if one value is equal to,
not equal to, greater than, greater than or equal to, less than, and less than or equal to another
value. We write them using relational operators.

The C relational operators (with examples) are:

== equal to k == 999, a*a + b*b == c*c

!= not equal to s != 0, a != b + c

> greater than a > 100

>= greater than or equal to b*b >= 4.0*a*c

< less than n < 0

<= less than or equal to score <= 65

Boolean expressions are normally used to control the flow of program execution. For
example, we may have a variable (h, say) which starts off with a value of 0. We keep increasing it
by 1 and we want to know when its value reaches 100. We say we wish to know when the condition
h == 100 is true. A condition is the common name for a Boolean expression.

The real power of programming lies in the ability of a program to test a condition and decide
whether it is true or false. If it is true, the program can perform one set of actions; and if it is false,
it can perform another set or simply do nothing at all.
For example, suppose the variable score holds the score obtained by a student in a test, and the
student passes if her score is 50 or more and fails if it is less than 50. A program can be written to
test the condition

score >= 50

If it is true, the student passes; if it is false, the student fails. In C, this can be written as:

if (score >= 50) printf("Pass\n");
else printf("Fail\n");

When the computer gets to this statement, it compares the current value of score with 50. If the
value is greater than or equal to 50, we say that the condition score >= 50 is true. In this case the
program prints Pass. If the value of score is less than 50, we say that the condition score >= 50 is
false. In this case, the program prints Fail.

In this chapter, we will see how Boolean expressions are used in if and if...else statements
and, in the next chapter, we will see how they are used in while statements.

4.2.1 AND, &&
With the relational operators, we can create simple conditions. But sometimes, we need to ask if
one thing is true AND another thing is true. We may also need to know if one of two things is true.
For these situations, we need compound conditions. To create compound conditions, we use the
logical operators AND, OR, and NOT.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Programs with Selection Logic

67

For example, suppose we want to know if the value of h lies between 1 and 99, inclusive.
We want to know if h is greater than or equal to 1 AND if h is less than or equal to 99. In C, we
express this as:

(h >= 1) && (h <= 99)

In C, the symbol for AND is &&.
Note the following:

•	 The variable h must be repeated in both conditions. It is tempting, but wrong,
to write

h >= 1 && <= 99 //this is wrong

•	 The brackets around h >= 1 and h <= 99 are not required, but it is not
wrong to put them. This is so since && (and ||, see next) have
lower precedence than the relational operators. Without the brackets,

h >= 1 && h <= 99

would be interpreted by C like this:

(h >= 1) && (h <= 99)

•	 This is the same as with the brackets.

4.2.2 OR, ||
If n is an integer representing a month of the year, we can check if n is invalid by testing if n is less
than 1 OR n is greater than 12. In C, we express this as:

(n < 1) || (n > 12)

In C, the symbol for OR is ||. As discussed above, the brackets are not required and we could write
the expression as

n < 1 || n > 12

This tests if n is invalid. Of course, we can test if n is valid by testing if

n >= 1 && n <= 12

Which test we use depends on how we wish to express our logic. Sometimes it’s convenient to use
the valid test, sometimes the invalid one.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Programs with Selection Logic

68

4.2.3 NOT, !
If p is some Boolean expression, then NOT p reverses the truth value of p. In others words, if p is
true then NOT p is false; if p is false then NOT p is true. In C, the symbol for NOT is the exclamation
mark, !. Using the example above, since

n >= 1 && n <= 12

tests for valid n, the condition NOT (n >=1 && n <= 12) tests for invalid n. This is written in C as

!(n >= 1 && n <= 12)

This is equivalent to n < 1 || n > 12. Those familiar with de Morgan’s laws will know that

not (a and b) = (not a) or (not b)

and

not(a or b) = (not a) and (not b)

In general, if p and q are Boolean expressions, we have the following:

•	 p && q is true when both p and q are true and false, otherwise;

•	 p || q is true when either p or q is true and false only when
both p and q are false;

•	 !p is true when p is false and false when p is true.

This is summarized in the following table (with T for true and F for false):

P q && || !p

T T T T F

T F F T F

F T F T T

F F F F T

Most of the programs in this book will use simple conditions. A few will use compound
conditions.

4.2.3.1 The data type bool in C99
The original C standard and the later ANSI C standard did not define a Boolean data type.
Traditionally, C has used the concept of the value of an expression to denote true/false. A numeric
expression can be used in any context where a true/false value is required. The expression is
considered true if its value is nonzero and false if its value is zero.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Programs with Selection Logic

69

The latest C99 standard defines the type bool. However, in this book, we will use the traditional
approach mainly because many popular C compilers do not support the C99 standard as yet. Also,
as you will see, we can easily live without bool. The vast majority of our Boolean expressions would
be relational expressions used in if and while statements. If we ever need a “Boolean” variable, we
can use an int variable with 1 representing true and 0 representing false.

4.3 The if Construct
Let us write a program for the following problem:

A computer repair shop charges $100 per hour for labor plus the cost of any parts used in the
repair. However, the minimum charge for any job is $150. Prompt for the number of hours worked
and the cost of parts (which could be $0) and print the charge for the job.

We will write the program so that it works as follows:

Hours worked? 2.5
Cost of parts? 20
Charge for the job: $270.00

or

Hours worked? 1
Cost of parts? 25
Charge for the job: $150.00

The following algorithm describes the steps required to solve the problem:

prompt for and read the hours worked
prompt for and read the cost of parts
calculate charge = hours worked * 100 + cost of parts
if charge is less than 150 then set charge to 150
print charge

This is another example of an algorithm written in pseudocode—an informal way of specifying
programming logic.
The algorithm introduces a new statement—the if statement. The expression

charge is less than 150

is an example of a condition. If the condition is true, the statement after then (called the then part)
is executed; if it is false, the statement after then is not executed.

Program P4.1 shows how to express this algorithm as a C program.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Programs with Selection Logic

70

Program P4.1

//print job charge based on hours worked and cost of parts
#include <stdio.h>
int main() {
 double hours, parts, jobCharge;
 printf("Hours worked? ");
 scanf("%lf", &hours);
 printf("Cost of parts? ");
 scanf("%lf", &parts);
 jobCharge = hours * 100 + parts;
 if (jobCharge < 150) jobCharge = 150;
 printf("\nCharge for the job: $%3.2f\n", jobCharge);
}

For this program, we choose to use three variables—hours, parts and jobCharge, all of type
double since we may need to enter floating-point values for hours worked and cost of parts.

It is very important that you make an extra effort to understand the if statement since it is
one of the most important statements in programming. It is the if statement that can make a
program appear to think.
The condition

charge is less than 150

of the pseudocode algorithm is expressed in our program as

jobCharge < 150

When the program is executed, the job charge is calculated in the normal way (hours * 100
+ parts). The if statement then tests if this value, jobCharge, is less than 150; if it is, then
jobCharge is set to 150. If it is not less than 150, jobCharge remains as it is. The statement

if (jobCharge < 150) jobCharge = 150;

is a simple example of the if construct. Observe that the word then is not used in C. In general,
the construct takes the following form in C:

if (<condition>) <statement>

The word if and the brackets around <condition> are required by C. You must supply
<condition> and <statement> where <condition> is a Boolean expression and <statement>
can be either a one-line statement or a block—one or more statements enclosed by { and }.
If <condition> is true, <statement> is executed; if <condition> is false, <statement> is not
executed. In either case, the program continues with the statement, if any, after <statement>.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Programs with Selection Logic

71

In the program, <condition> is

jobCharge < 150
and <statement> is
jobCharge = 150;

To give an example where <statement> is a block, suppose we want to exchange the values of two
variables a and b but only if a is bigger than b. This can be done with the following, assuming, as
an example, that a = 15, b = 8, and c is a temporary variable:

if (a > b)
{
 c = a; //store a in c; c becomes 15
 a = b; //store b in a; a becomes 8
 b = c; //store old value of a, 15,in b
}

Here, <statement> is the part from { to }, a block containing three assignment statements. If a is
greater than b, the block is executed (and the values are exchanged); if a is not greater than b, the
block is not executed (and the values remain as they are). In passing, be aware that exchanging
the values of two variables requires three assignment statements; it cannot be done with two. If
you are not convinced, try it.

In general, if there are several things that we want to do if a condition is true; we must enclose
them within { and } to create a block. This will ensure that we satisfy C’s rule that <statement> is
a single statement or a block.
It is good programming practice to indent the statements in the block. This makes it easy to see at
a glance which statements are in the block. If we had written the above as follows, the structure of
the block would not be so easy to see:

if (a > b)
{
c = a; //store a in c; c becomes 15
a = b; //store b in a; a becomes 8
b = c; //store old value of a, 15,in b
}

When we are writing pseudocode, we normally use the following format:

if <condition> then
 <statement1>
 <statement2>
 etc.
endif

The construct is terminated with endif, a convention used by many programmers. Note, again,
that we indent the statements to be executed if <condition> is true. We emphasize that endif is
not a C word but merely a convenient word used by programmers in writing pseudocode.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Programs with Selection Logic

72

The example illustrates one style of writing a block in an if statement. This style matches { and } as
follows:

if (<condition>)
{
 <statement1>;
 <statement2>;
 etc.
}

Here, { and } line up with if and the statements are indented. This makes it easy to recognize
what’s in the body. For a small program, it probably doesn’t matter, but as program size increases,
it will become more important for the layout of the code to reflect its structure. In this book, we will
use the following style (as you would know by now, the compiler doesn’t care which style is used):

if (<condition>) {
 <statement1>;
 <statement2>;
 etc.
}

We will put { on the first line after the right bracket and let } match up with if; the statements
in the block are indented. We believe this is as clear as the first style and it’s one less line in the
program! Which style you use is a matter of personal preference; choose one and use it consistently.

4.3.1 Find the Sum of Two Lengths
Suppose that a length is given in meters and centimeters, for example, 3m 75cm. You are given
two pairs of integers representing two lengths. Write a program to prompt for two lengths and
print their sum such that the centimeter value is less than 100.

For example, the sum of 3m 25cm and 2m 15cm is 5m 40cm, but the sum of 3m 75cm and
5m 50cm is 9m 25cm.
Assume the program works as follows:

Enter values for m and cm: 3 75
Enter values for m and cm: 5 50
 
Sum is 9m 25cm

Observe that the data must be entered with digits only. If, for instance, we type 3m 75cm we will
get an error since 3m is not a valid integer constant. Our program will assume that the first number
entered is the meter value and the second number is the centimeter value.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Programs with Selection Logic

73

We find the sum by adding the two meter values and adding the two centimeter values. If the
centimeter value is less than 100, there is nothing more to do. But if it is not, we must subtract 100
from it and add 1 to the meter value. This logic is expressed as follows:

m = sum of meter values
cm = sum of centimeter values
if cm >= 100 then
 subtract 100 from cm
 add 1 to m
endif

As a boundary case, we must check that our program works if cm is exactly 100. As an exercise,
verify that it does.

Program P4.2 solves the problem as described.

Program P4.2

//find the sum of two lengths given in meters and cm
#include <stdio.h>
int main() {
 int m1, cm1, m2, cm2, mSum, cmSum;
 printf("Enter values for m and cm: ");
 scanf("%d %d", &m1, &cm1);
 printf("Enter values for m and cm: ");
 scanf("%d %d", &m2, &cm2);
 mSum = m1 + m2; //add the meters
 cmSum = cm1 + cm2; //add the centimeters
 if (cmSum >= 100) {
 cmSum = cmSum - 100;
 mSum = mSum + 1;
 }
 printf("\nSum is %dm %dcm\n", mSum, cmSum);
}

We use the variables m1 and cm1 for the first length, m2 and cm2 for the second length, and mSum
and cmSum for the sum of the two lengths.

The program assumes that the centimeter part of the given lengths is less than 100 and it
works correctly if this is so. But what if the lengths were 3m 150cm and 2m 200cm?

The program will print 6m 250cm. (As an exercise, follow the logic of the program to see why.)
While this is correct, it is not in the correct format since we require the centimeter value to be
less than 100. We can modify our program to work in these cases as well by using integer division
and % (the remainder operator).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Programs with Selection Logic

74

The following pseudocode shows how:

m = sum of meter values
cm = sum of centimeter values
if cm >= 100 then
 add cm / 100 to m
 set cm to cm % 100
endif

Using the above example, m is set to 5 and cm is set to 350. Since cm is greater than 100, we work
out 350 / 100 (this finds how many 100s there are in cm) which is 3, using integer division; this
is added to m, giving 8. The next line sets cm to 350 % 100, which is 50. So the answer we get is 8m
50cm, which is correct and in the correct format.

Note that the statements in the “then part” must be written in the order shown. We must use
the (original) value of cm to work out cm / 100 before changing it in the next statement to cm % 100.
As an exercise, work out what value will be computed for the sum if these statements are reversed.
(The answer will be 5m 50cm, which is wrong. Can you see why?)

These changes are reflected in Program P4.3.

Program P4.3

//find the sum of two lengths given in meters and cm
#include <stdio.h>
int main() {
 int m1, cm1, m2, cm2, mSum, cmSum;
 printf("Enter values for m and cm: ");
 scanf("%d %d", &m1, &cm1);
 printf("Enter values for m and cm: ");
 scanf("%d %d", &m2, &cm2);
 mSum = m1 + m2; //add the meters
 cmSum = cm1 + cm2; //add the centimeters
 if (cmSum >= 100) {
 mSum = mSum + cmSum / 100;
 cmSum = cmSum % 100;
 }
 printf("\nSum is %dm %dcm\n", mSum, cmSum);
}

The following is a sample run of this program:

Enter values for m and cm: 3 150
Enter values for m and cm: 2 200
 
Sum is 8m 50cm

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Programs with Selection Logic

75

The astute reader may recognize that we do not even need the if statement.
Consider this:

mSum = m1 + m2; //add the meters
cmSum = cm1 + cm2; //add the centimeters
mSum = mSum + cmSum / 100;
cmSum = cmSum % 100;

where the last two statements come from the if statement.
We know therefore that this will work if cmSum is greater than or equal to 100 since, when that

is the case, these four statements are executed.
What if cmSum is less than 100? Originally, the last two statements would not have been

executed since the if condition would have been false. Now they are executed. Let us see what
happens. Using the example of 3m 25cm and 2m 15cm, we get mSum as 5 and cmSum as 40.

In the next statement 40 / 100 is 0 so mSum does not change and in the last statement
40 % 100 is 40 so cmSum does not change. So the answer will be printed correctly as

Sum is 5m 40cm

You should begin to realize by now that there is usually more than one way to express the logic of
a program. With experience and study, you will learn which ways are better and why.

4.4 The if...else Construct
Let us write a program for the following problem:

A student is given 3 tests, each marked out of 100. The student passes if his average mark is
greater than or equal to 50 and fails if his average mark is less than 50. Prompt for the 3 marks and
print Pass if the student passes and Fail if he fails.
We will write the program assuming it works as follows:

Enter 3 marks: 60 40 56
 
Average is 52.0 Pass

or

Enter 3 marks: 40 60 36
 
Average is 45.3 Fail

The following algorithm describes the steps required to solve the problem:

prompt for the 3 marks
calculate the average
if average is greater than or equal to 50 then
 print "Pass"
else
 print "Fail"
endif

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Programs with Selection Logic

76

The part from if to endif is an example of the if...else construct.
The condition

average is greater than or equal to 50

is another example of a relational expression. If the condition is true, the statement after then
(the then part) is executed; if it is false, the statement after else (the else part) is executed.

The whole construct is terminated with endif.
When you write pseudocode, what is important is that the logic intended is unmistakably
clear. Note again how indentation can help by making it easy to identify the then part and the
else part.

In the end, though, you must express the code in some programming language for it to be run
on a computer. Program P4.4 shows how to do this for the above algorithm.

Program P4.4

//request 3 marks; print their average and Pass/Fail
#include <stdio.h>
int main() {
 int mark1, mark2, mark3;
 double average ;
 printf("Enter 3 marks: ");
 scanf("%d %d %d", &mark1, &mark2, &mark3);
 average = (mark1 + mark2 + mark3) / 3.0;
 printf("\nAverage is %3.1f", average);
 if (average >= 50) printf(" Pass\n");
 else printf(" Fail\n");
}

Study carefully the if...else construct in the program. It reflects the logic expressed on the
previous page. Note, again, that the word then is omitted in C.
In general, the if...else construct in C takes the form shown below.

if (<condition>) <statement1> else <statement2>

The words if and else, and the brackets, are required by C. You must supply <condition>,
<statement1> and <statement2>. Each of <statement1> and <statement2> can be a one-line
statement or a block. If <condition> is true, <statement1> is executed and <statement2> is
skipped; if <condition> is false, <statement1> is skipped and <statement2> is executed. When
the if construct is executed, either <statement1> or <statement2> is executed, but not both.
If <statement1> and <statement2> are one-line statements, you can use this layout:

if (<condition>) <statement1>
else <statement2>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Programs with Selection Logic

77

If <statement1> and <statement2> are blocks, you can use the following layout:

if (<condition>) {
 ...
}
else {
 ...
}

In describing the various constructs in C, we normally use the phrase “where <statement> can be
a one-line statement or a block.”
It is useful to remember that, in C, for one-line statements, the semicolon is considered
part of the statement. Examples are:

a = 5;
printf("Pass\n");
scanf("%d", &n);

So, in those cases where one-line statements are used, the semicolon, being part of the statement,
must be present. In Program P4.4, in the if...else statement,

<statement1> is
printf("Pass\n");

and <statement2> is

printf("Fail\n");

However, for a block or compound statement, the right brace, }, ends the block. So, in those cases
where a block is used, there is no need for an additional semicolon to end the block.

It is sometimes useful to remember that the entire if...else construct (from if to
<statement2>) is considered by C to be one statement and can be used in any place where one
statement is required.

4.4.1 Calculate Pay
For an example that requires blocks, suppose we have values for hours worked and rate of pay
(the amount paid per hour) and wish to calculate a person’s regular pay, overtime pay, and gross
pay based on the following:
If hours worked is less than or equal to 40, regular pay is calculated by multiplying hours worked
by rate of pay and overtime pay is 0. If hours worked is greater than 40, regular pay is calculated by
multiplying 40 by the rate of pay and overtime pay is calculated by multiplying the hours in excess
of 40 by the rate of pay by 1.5. Gross pay is calculated by adding regular pay and overtime pay.

For example, if hours is 36 and rate is 20 dollars per hour, regular pay is $720 (36 times 20)
and overtime pay is $0. Gross pay is $720.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Programs with Selection Logic

78

And if hours is 50 and rate is 12 dollars per hour, regular pay is $480 (40 times 12) and overtime
pay is $180 (excess hours 10 times 12 times 1.5). Gross pay is $660 (480 + 180).
The above description could be expressed in pseudocode as follows:

if hours is less than or equal to 40 then
 set regular pay to hours x rate
 set overtime pay to 0
else
 set regular pay to 40 x rate
 set overtime pay to (hours – 40) x rate x 1.5
endif
set gross pay to regular pay + overtime pay

We use indentation to highlight the statements to be executed if the condition “hours is less than
or equal to 40” is true and those to be executed if the condition is false. The whole construct is
terminated with endif.

The next step is to convert the pseudocode to C. When we do, we have to make sure that we
stick to C’s rules for writing an if...else statement. In this example, we have to ensure that both
the then and else parts are written as blocks since they both consist of more than one statement.
Using the variables hours (hours worked), rate (rate of pay), regPay (regular pay), ovtPay
(overtime pay), and grossPay (gross pay), we write the C code, thus:

if (hours <= 40) {
 regPay = hours * rate;
 ovtPay = 0;
} //no semicolon here; } ends the block
else {
 regPay = 40 * rate;
 ovtPay = (hours - 40) * rate * 1.5;
} //no semicolon here; } ends the block
grossPay = regPay + ovtPay;

Note the two comments. It would be wrong to put a semicolon after the first } since the if
statement continues with an else part. If we were to put one, it effectively ends the if statement
and C assumes there is no else part. When it finds the word else, there will be no if with which
to match it and the program will give a “misplaced else” error.

There is no need for a semicolon after the last } but putting one would do no harm.
Problem: Write a program to prompt for hours worked and rate of pay. The program then

calculates and prints regular pay, overtime pay, and gross pay, based on the above description.
The following algorithm outlines the overall logic of the solution:

prompt for hours worked and rate of pay
if hours is less than or equal to 40 then
 set regular pay to hours x rate
 set overtime pay to 0

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Programs with Selection Logic

79

else
 set regular pay to 40 x rate
 set overtime pay to (hours – 40) x rate x 1.5
endif
set gross pay to regular pay + overtime pay
print regular pay, overtime pay and gross pay

This algorithm is implemented as Program P4.5. All the variables are declared as double so that
fractional values can be entered for hours worked and rate of pay.

Program P4.5

#include <stdio.h>
int main() {
 double hours, rate, regPay, ovtPay, grossPay;
 printf("Hours worked? ");
 scanf("%lf", &hours);
 printf("Rate of pay? ");
 scanf("%lf", &rate);
 if (hours <= 40) {
 regPay = hours * rate;
 ovtPay = 0;
 }
 else {
 regPay = 40 * rate;
 ovtPay = (hours - 40) * rate * 1.5;
 }
 grossPay = regPay + ovtPay;
 printf("\nRegular pay: $%3.2f\n", regPay);
 printf("Overtime pay: $%3.2f\n", ovtPay);
 printf("gross pay: $%3.2f\n", grossPay);
}

A sample run of this program is shown here:

Hours worked? 50
Rate of pay? 12
 
Regular pay: $480.00
Overtime pay: $180.00
Gross pay: $660.00

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Programs with Selection Logic

80

You should verify that the results are indeed correct.
Note that even though hours and rate are double, data for them can be supplied in any valid

numeric format—here we use the integers 50 and 12. These values would be converted to double
format before being stored in the variables. We could, if we wished, have typed 50.0 and 12.00,
for example.

4.5 On Program Testing
When we write a program we should test it thoroughly to ensure that it is working correctly. As a
minimum, we should test all paths through the program. This means that our test data must be
chosen so that each statement in the program is executed at least once.

For Program P4.5, the sample run tests only when the hours worked is greater than 40. Based
on this test alone, we cannot be sure that our program will work correctly if the hours worked is
less than or equal to 40. To be sure, we must run another test in which the hours worked is less
than or equal to 40. The following is such a sample run:

Hours worked? 36
Rate of pay? 20
 
Regular pay: $720.00
Overtime pay: $0.00
Gross pay: $720.00

These results are correct, which gives us greater assurance that our program is correct. We should
also run a test when the hours is exactly 40; we must always test a program at its “boundaries.” For this
program, 40 is a boundary—it is the value at which overtime begins to be paid.

What if the results are incorrect? For example, suppose overtime pay is wrong. We say the
program contains a bug (an error), and we must debug (remove the error from) the program.
In this case, we can look at the statement(s) that calculate the overtime pay to see if we have
specified the calculation correctly. If this fails to uncover the error, we must painstakingly
“execute” the program by hand using the test data that produced the error. If done properly, this
will usually reveal the cause of the error.

4.6 Symbolic Constants
In Program 4.1, we used two constants—100 and 150—denoting the labor charge per hour and the
minimum job cost, respectively. What if these values change after the program has been written?
We would have to find all occurrences of them in the program and change them to the new values.

This program is fairly short so this would not be too difficult to do. But imagine what the task
would be like if the program contained hundreds or even thousands of lines of code. It would be
difficult, time consuming, and error prone to make all the required changes.

We can make life a little easier by using symbolic constants (also called manifest or named
constants)—identifiers that we set to the required constants in one place. If we need to change
the value of a constant, the change would have to be made in one place only. For example, in
Program P4.1, we could use the symbolic constants ChargePerHour and MinJobCost. We would
set ChargePerHour to 100 and MinJobCost to 150.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Programs with Selection Logic

81

In C, we use the #define directive to define symbolic constants, among other uses. We show
how by rewriting Program P4.1 as Program P4.6.

Program P4.6

//This program illustrates the use of symbolic constants
//Print job charge based on hours worked and cost of parts
#include <stdio.h>
#define ChargePerHour 100
#define MinJobCost 150
int main() {
 double hours, parts, jobCharge;
 printf("Hours worked? ");
 scanf("%lf", &hours);
 printf("Cost of parts? ");
 scanf("%lf", &parts);
 jobCharge = hours * ChargePerHour + parts;
 if (jobCharge < MinJobCost) jobCharge = MinJobCost;
 printf("\nCharge for the job: $%3.2f\n", jobCharge);
}

4.6.1 The #define Directive
Directives in C normally come at the top of the program. For our purposes, the #define directive
takes the following form:

#define identifier followed by the "replacement text"

In the program, we used

#define ChargePerHour 100

Note that this is not a normal C statement and a semicolon is not needed to end it. Here, the
identifier is ChargePerHour and the replacement text is the constant 100. In the body of the
program, we use the identifier instead of the constant.

When the program is compiled, C performs what is called a “pre-processing” step. It
replaces all occurrences of the identifier by its replacement text. In program P4.6, it replaces all
occurrences of ChargePerHour by 100 and all occurrences of MinJobCost by 150 . After this is
done, the program is compiled. It is up to the programmer to ensure that, when the identifier is
replaced, the resulting statement makes sense.

Effectively, the directives say that the identifier ChargePerHour is equivalent to the constant
100 and the identifier MinJobCost is equivalent to 150.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Programs with Selection Logic

82

For example, the pre-processing step changes

if (jobCharge < MinJobCost) jobCharge = MinJobCost;

to

if (jobCharge < 150) jobCharge = 150;

Suppose, for instance, that the minimum job cost changes from 150 to 180. We would just need to
change the value in the #define directive, thus:

#define MinJobCost 180

No other changes would be needed.
In this book, we will use the convention of starting a symbolic constant identifier with an

uppercase letter. Note, however, that C allows you to use any valid identifier.

4.6.2 Example – Symbolic Constants
For a slightly bigger example, consider program P4.5. There, we used two constants—40 and
1.5—denoting the maximum regular hours and the overtime rate factor, respectively. We rewrite
program P4.5 as program P4.7 using the symbolic constants MaxRegularHours (set to 40) and
OvertimeFactor (set to 1.5).

Program P4.7

#include <stdio.h>
#define MaxRegularHours 40
#define OvertimeFactor 1.5
int main() {
 double hours, rate, regPay, ovtPay, grossPay;
 printf("Hours worked? ");
 scanf("%lf", &hours);
 printf("Rate of pay? ");
 scanf("%lf", &rate);
 if (hours <= MaxRegularHours) {
 regPay = hours * rate;
 ovtPay = 0;
 }
 else {
 regPay = MaxRegularHours * rate;
 ovtPay = (hours - MaxRegularHours) * rate * OvertimeFactor;
 }
 grossPay = regPay + ovtPay;
 printf("\nRegular pay: $%3.2f\n", regPay);
 printf("Overtime pay: $%3.2f\n", ovtPay);
 printf("Gross pay: $%3.2f\n", grossPay);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Programs with Selection Logic

83

Suppose, for instance, the maximum regular hours changes from 40 to 35. Program P4.7 would
be easier to change than Program P4.5, since we would need to change the value in the #define
directive only, like this:

#define MaxRegularHours 35

No other changes would be needed.
The numbers 40 and 1.5 used in Program P4.5 are referred to as magic numbers—they appear
in the program for no apparent reason, as if by magic. Magic numbers are a good sign that a
program may be restrictive, tied to those numbers. As far as possible, we must write our programs
without magic numbers. Using symbolic constants can help to make our programs more flexible
and easier to maintain.

4.7 More Examples
We now write programs to solve two more problems. Their solutions will illustrate how to use
if...else statements to determine which of several alternatives to take. In the sample runs, the
underlined items are typed by the user; everything else is printed by the computer.

4.7.1 Print a Letter Grade
Write a program to request a score in a test and print a letter grade based on the following:

score < 50 F

50 <= score < 75 B

score >= 75 A

The program should work as follows:

Enter a score: 70
 
Grade B

A solution is shown as Program P4.8.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Programs with Selection Logic

84

Program P4.8

//request a score; print letter grade
#include <stdio.h>
int main() {
 int score;
 printf("Enter a score: ");
 scanf("%d", &score);
 printf("\nGrade ");
 if (score < 50) printf("F\n");
 else if (score < 75) printf("B\n");
 else printf("A\n");
}

The second printf prints a blank line followed by the word Grade followed by one space but does
not end the line. When the letter grade is determined, it will be printed on this same line.
We saw that the if...else statement takes the form

if (<condition>) <statement1> else <statement2>

where <statement1> and <statement2> can be any statements. In particular, either one
(or both) can be an if...else statement. This allows us to write so-called nested if statements.
This is especially useful when we have several related conditions to test, as in this example. In the
program, we can think of the part:

if (score < 50) printf("F\n");
else if (score < 75) printf("B\n");
else printf("A\n");

as

if (score < 50) printf("F\n");
else <statement>

where <statement> is this if...else statement:

if (score < 75) printf("B\n");
else printf("A\n");

If score is less than 50, the program prints F and ends. If not, it follows that score must be greater
than or equal to 50.

Knowing this, the first else part checks if score is less than 75. If it is, the program prints B
and ends. If not, it follows that score must be greater than or equal to 75.

Knowing this, the second else part (else printf("A\n"); which matches the second if)
prints A and ends.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Programs with Selection Logic

85

To make sure the program is correct, you should run it with at least 3 different scores
(e.g. 70, 45, 83) to verify that each of the 3 grades is printed correctly. You should also test it at the
“boundary” numbers, 50 and 75.
Note the preferred style for writing else if’s. If we had followed our normal indenting style, we
would have written

if (score < 50) printf("F\n");
else
 if (score < 75) printf("B\n");
 else printf("A\n");

This, of course, would still be correct. However, if we had more cases, the indentation would go
too deep and would look awkward. Also, since the different ranges for score are really alternatives
(rather than one being within the other), it is better to keep them at the same indentation level.
The statements here were all one-line printf statements so we chose to write them on the same
line as if and else. However, if they were blocks, it would be better to write it like this:

if (score < 50) {
 ...
}
else if (score < 75) {
 ...
}
 
else {
 ...
}

As an exercise, modify the program to print the correct grade based on the following:

score < 50 F

50 <= score < 65 C

50 <= score < 80 B

score >= 80 A

4.7.2 Classify a Triangle
Given three integer values representing the sides of a triangle, print:

•	 Not a triangle if the values cannot be the sides of any triangle. This is so
if any value is negative or zero, or if the length of any side is greater than or
equal to the sum of the other two;

•	 Scalene if the triangle is scalene (all sides different);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Programs with Selection Logic

86

•	 Isosceles if the triangle is isosceles (two sides equal);

•	 Equilateral if the triangle is equilateral (three sides equal).

The program should work as follows:

Enter 3 sides of a triangle: 7 4 7
 
Isosceles

A solution is shown as Program P4.9.

Program P4.9

//request 3 sides; determine type of triangle
#include <stdio.h>
int main() {
 int a, b, c;
 printf("Enter 3 sides of a triangle: ");
 scanf("%d %d %d", &a, &b, &c);
 if (a <= 0 || b <= 0 || c <= 0) printf("\nNot a triangle\n");
 else if (a >= b + c || b >= c + a || c >= a + b)
 printf("\nNot a triangle\n");
 else if (a == b && b == c) printf("\nEquilateral\n");
 else if (a == b || b == c || c == a) printf("\nIsosceles\n");
 else printf("\nScalene\n");
}

The first task is to establish that we, in fact, have a valid triangle. The first if checks if any of the
sides is negative or zero. If so, Not a triangle is printed. If they are all positive, we go to the else
part that itself consists of an if...else statement.
Here, the if checks if any one side is greater than or equal to the sum of the other two. If so, Not a
triangle is printed. If not, then we have a valid triangle and must determine its type by executing
the else part beginning

if (a == b ...

It is easiest to do this by first checking if it is equilateral. If two different pairs of sides are equal—
if (a == b && b == c)—then all three are equal and we have an equilateral triangle.

If it is not equilateral, then we check if it is isosceles. If any two sides are equal—if (a == b
|| b == c || c == a)—we have an isosceles triangle.

If it is neither equilateral nor isosceles, then it must be scalene.
As an exercise, modify the program to determine if the triangle is right angled. It is right

angled if the sum of the squares of two sides is equal to the square of the third side.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Programs with Selection Logic

87

Exercises 4

1.	 An auto repair shop charges as follows. Inspecting the vehicle costs $75. If no work
needs to be done, there is no further charge. Otherwise, the charge is $75 per hour
for labor plus the cost of parts, with a minimum charge of $120. If any work is
done, there is no charge for inspecting the vehicle.

Write a program to read values for hours worked and cost of parts (either of which
could be 0) and print the charge for the job.

2.	 Write a program that requests two weights in kilograms and grams and prints the
sum of the weights. For example, if the weights are 3kg 500g and 4kg 700g,
your program should print 8kg 200g.

3.	 Write a program that requests two lengths in feet and inches and prints the sum
of the lengths. For example, if the lengths are 5 ft. 4 in. and 8 ft. 11 in.,
your program should print 14 ft. 3 in. (1 ft. = 12 in.)

4.	 A variety store gives a 15% discount on sales totaling $300 or more. Write a
program to request the cost of three items and print the amount the customer
must pay.

5.	 Write a program to read two pairs of integers. Each pair represents a fraction. For
example, the pair 3 5 represents the fraction 3/5. Your program should print the
sum of the given fractions. For example, give the pairs 3 5 and 2 3, your program
should print 19/15, since 3/5 + 2/3 = 19/15.

Modify the program so that it prints the sum with the fraction reduced to a proper
fraction; for this example, your program should print 1 4/15.

6.	 Write a program to read a person’s name, hours worked, hourly rate of pay, and tax
rate (a number representing a percentage, e.g., 25 meaning 25%). The program
must print the name, gross pay, tax deducted, and gross pay.

Gross pay is calculated as described in Section 4.4.1. The tax deducted is calculated by
applying the tax rate to 80% of gross pay. And the net pay is calculated by subtracting
the tax deducted from the gross pay.

For example, if the person works 50 hours at $20/hour and the tax rate is 25%, his
gross pay would be (40 x 20) + (10 20 1.5) = $1100. He pays 25% tax on 80% of
$1100, that is, 25% of $880 = $220. His net pay is 1100 - 220 = $880.

7.	 Write a program to read integer values for month and year and print the number
of days in the month. For example, 4 2005 (April 2005) should print 30, 2 2004
(February 2004) should print 29 and 2 1900 (February 1900) should print 28.

A leap year, n, is divisible by 4; however, if n is divisible by 100 then it is a leap year
only if it is also divisible by 400. So 1900 is not a leap year but 2000 is.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Programs with Selection Logic

88

8.	 In an English class, a student is given three term tests (marked out of 25) and an
end-of-term test (marked out of 100). The end-of-term test counts the same as the
three term tests in determining the final mark (out of 100). Write a program to read
marks for the three term tests followed by the mark for the end-of-term test. The
program then prints the final mark and an indication of whether the student passes
or fails. To pass, the final mark must be 50 or more.

For example, given the data 20 10 15 56, the final mark is calculated by
(20+10+15)/75*50 + 56/100*50 = 58

9.	 Write a program to request two times given in 24-hour clock format and find the
time (in hours and minutes) that has elapsed between the first time and the second
time. You may assume that the second time is later than the first time. Each time is
represented by two numbers: e.g., 16 45 means the time 16:45, that is, 4:45 p.m.

For example, if the two given times are 16 45 and 23 25 your answer should
be 6 hours 40 minutes.

Modify the program so that it works as follows: if the second time is sooner than the
first time, take it to mean a time for the next day. For example, given the times 20:30
and 6:15, take this to mean 8.30 p.m. to 6.15 a.m. of the next day. Your answer should
be 9 hours 45 minutes.

10.	 A bank pays interest based on the amount of money deposited. If the amount is less
than $5,000, the interest is 4% per annum. If the amount is $5,000 or more but
less than $10,000, the interest is 5% per annum. If the amount is $10,000 or more
but less than $20,000, the interest is 6% per annum. If the amount is $20,000 or
more, the interest is 7% per annum.

Write a program to request the amount deposited and print the interest earned for
one year.

11.	 For any year between 1900 and 2099, inclusive, the month and day on which
Easter Sunday falls can be determined by the following algorithm:

set a to year minus 1900
set b to the remainder when a is divided by 19
set c to the integer quotient when 7b + 1 is divided by 19
set d to the remainder when 11b + 4 - c is divided by 29
set e to the integer quotient when a is divided by 4
set f to the remainder when a + e + 31 - d is divided by 7
set g to 25 minus the sum of d and f
if g is less than or equal to 0 then
 set month to 'March'
 set day to 31 + g
else
 set month to 'April'
 set day to g
endif

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Programs with Selection Logic

89

Write a program that requests a year between 1900 and 2099, inclusive, and checks
if the year is valid. If it is, print the day on which Easter Sunday falls in that year. For
example, if the year is 1999, your program should print April 4.

12.	 Write a program to prompt for the name of an item, its previous price, and its
current price. Print the percentage increase or decrease in the price. For example, if
the previous price is $80 and the current price is $100, you should print increase
of 25%; if the previous price is $100 and the current price is $80, you should print
decrease of 20%.

13.	 A country charges income tax as follows based on one’s gross salary. No tax is
charged on the first 20% of salary. The remaining 80% is called taxable income.
Tax is paid as follows:

•• 10% on the first $15,000 of taxable income;

•• 20% on the next $20,000 of taxable income;

•• 25% on all taxable income in excess of $35,000.

Write a program to read a value for a person’s salary and print the amount of tax to be
paid. Also print the average tax rate, that is, the percentage of salary that is paid in tax.
For example, on a salary of $20,000, a person pays $1700 in tax.

The average tax rate is 1700/20000*100 = 8.5%.

www.it-ebooks.info

http://www.it-ebooks.info/

91

Chapter 5

Programs with Repetition Logic

In this chapter, we will explain the following:

•	 How to use the while construct to perform “looping” in a program

•	 How to find the sum and average of an arbitrary set of numbers

•	 How to get a program to “count”

•	 How to find the largest and smallest of an arbitrary set of numbers

•	 How to read data from a file

•	 How to write output to a file

•	 How to use the for construct to perform “looping” in a program

•	 How to produce tables using for

5.1 Introduction
In Chapter 3, we showed you how to write programs using sequence logic—programs whose
statements are executed “in sequence” from the first to the last.

In Chapter 4, we showed you how to write programs for problems that require selection logic.
These programs used the if and the if...else statements.

In this chapter, we discuss problems that require repetition logic. The idea is to write
statements once and get the computer to execute them repeatedly as long as some condition is
true. We will see how to express repetition logic using the while and for statements.

5.2 The while Construct
Consider the problem of writing a program to find the sum of some numbers that the user enters
one at a time. The program will prompt the user to enter numbers as follows:

Enter a number: 13
Enter a number: 8
Enter a number: 16

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1371-1_3
http://dx.doi.org/10.1007/978-1-4842-1371-1_4
http://www.it-ebooks.info/

Chapter 5 ■ Programs with Repetition Logic

92

and so on. We want to let the user enter as many numbers as he wishes. Since we can have no
idea how many that will be, and the amount could vary from one run of the program to the next,
we must let the user “tell” us when he wishes to stop entering numbers.

How does he “tell” us? Well, the only time the user “talks” to the program is when he types
a number in response to the prompt. If he wishes to stop entering numbers, he can enter some
“agreed-upon” value; when the program reads this value, it will know that the user wishes to stop.

In this example, we can use 0 as the value that tells the program that the user wishes to stop.
When a value is used this way, it is referred to as a sentinel or end-of-data value. It is sometimes
called a rogue value—the value is not to be taken as one of the actual data values.

What can we use as a sentinel value? Any value that cannot be confused with an actual data
value would be okay. For example, if the data values are all positive numbers, we can use 0 or −1
as the sentinel value. When we prompt the user, it is a good idea to remind him what value to use
as the sentinel value.

Assume we want the program to run as follows:

Enter a number (0 to end): 24
Enter a number (0 to end): 13
Enter a number (0 to end): 55
Enter a number (0 to end): 32
Enter a number (0 to end): 19
Enter a number (0 to end): 0
 
The sum is 143

How do we get the program to run like that? We want to be able to express the following logic
in a form the computer could understand:

As long as the user does not enter 0, keep prompting him for another number and add it
to the sum

It seems obvious that we must, at least, prompt him for the first number. If this number is 0, we
must print the sum (which, of course, would be 0 at this time). If the number is not 0, we must add it
to the sum and prompt for another number. If this number is 0, we must print the sum. If this number
is not 0, we must add it to the sum and prompt for another number. If this number is 0..., and so on.

The process will come to an end when the user enters 0.
This logic is expressed quite neatly using a while construct (also called a while statement or

while loop):

//Algorithm for finding sum
set sum to 0
get a number, num
while num is not 0 do
 add num to sum
 get another number, num
endwhile
print sum

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Programs with Repetition Logic

93

Note, particularly, that we get a number before we enter the while loop. This is to ensure that
the while condition makes sense the first time. (It would not make sense if num had no value.)

To find the sum, we need to:

•	 Choose a variable to hold the sum; we will use sum.

•	 Initialize sum to 0 (before the while loop).

•	 Add a number to sum (inside the while loop). One number is added each
time through the loop.

On exit from the loop, sum contains the sum of all the numbers entered.
The while construct lets us execute one or more statements repeatedly as long as some

condition is true. Here, the two statements

add num to sum
get another number, num

are executed repeatedly as long as the condition num is not 0 is true.
In pseudocode, the while construct is usually written as follows:

while <condition> do
 statements to be executed repeatedly
endwhile

The statements to be executed repeatedly are called the body of the while construct
(or, simply, the body of the loop). The construct is executed as follows:

	 1.	 <condition> is tested.

	 2.	 If true, the body is executed and we go back to step 1; if false, we
continue with the statement, if any, after endwhile.

We now show how the algorithm is executed using the sample data entered above. For easy
reference, the data was entered in the following order:

24 13 55 32 19 0

Initially, num is undefined and sum is 0. We show this as follows:

sum 0num

24 is entered and stored in num;
num is not 0 so we enter the while loop;
num (24) is added to sum (0), giving:

num 24 sum 24

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Programs with Repetition Logic

94

13 is entered and stored in num;
num is not 0 so we enter the while loop;
num (13) is added to sum (24), giving:

num 13 sum 37

55 is entered and stored in num;
num is not 0 so we enter the while loop;
num (55) is added to sum (37), giving:

num 55 sum 92

32 is entered and stored in num;
num is not 0 so we enter the while loop;
num (32) is added to sum (92), giving:

num 32 sum 124

19 is entered and stored in num;
num is not 0 so we enter the while loop;
num (19) is added to sum (124), giving:

num 19 sum 143

0 is entered and stored in num;
num is 0 so we exit the while loop and go to print sum with

num 0 sum 143

sum is now 143 so the algorithm prints 143.
When a while construct is being executed, we say the program is looping or the while loop is

being executed.
It remains to show how to express this algorithm in C. Program P5.1 shows how.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Programs with Repetition Logic

95

Program P5.1

//print the sum of several numbers entered by a user
#include <stdio.h>
int main() {
 int num, sum = 0;
 printf("Enter a number (0 to end): ");
 scanf("%d", &num);
 while (num != 0) {
 sum = sum + num;
 printf("Enter a number (0 to end): ");
 scanf("%d", &num);
 }
 printf("\nThe sum is %d\n", sum);
}

Of particular interest is the while statement. The pseudocode

while num is not 0 do
 add num to sum
 get another number, num
endwhile

is expressed in C as

while (num != 0) {
 sum = sum + num;
 printf("Enter a number (0 to end): ");
 scanf("%d", &num);
}

When the program is run, what would happen if the very first number entered was 0? Since
num is 0, the while condition is immediately false so we drop out of the while loop and continue
with the printf statement. The program will print the correct answer:

The sum is 0

In general, if the while condition is false the first time it is tested, the body is not executed
at all.

Formally, the while construct in C is defined as follows:

while (<condition>) <statement>

The word while and the brackets are required. You must supply <condition> and
<statement>. <statement> must be a single statement or a block—one or more statements
enclosed by { and }. First, <condition> is tested; if true, <statement> is executed and
<condition> is tested again. This is repeated until <condition> becomes false; when this

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Programs with Repetition Logic

96

happens, execution continues with the statement, if any, after <statement>. If <condition> is
false the first time, <statement> is not executed and execution continues with the following
statement, if any.

In Program P5.1, <condition> is num != 0 and <statement> is the block

{
 sum = sum + num;
 printf("Enter a number (0 to end): ");
 scanf("%d", &num);
}

Whenever we want to execute several statements if <condition> is true, we must enclose the
statements by { and }. Effectively, this makes them into one statement, a compound statement,
satisfying C’s syntax rule that requires one statement as the body.

5.2.1 Highest Common Factor
Let us write a program to find the highest common factor, HCF (also called the greatest common
divisor, GCD), of two numbers. The program will run as follows:

Enter two numbers: 42 24
 
Their HCF is 6

We will use Euclid’s algorithm for finding the HCF of two integers, m and n. The algorithm is as
follows:

1. if n is 0, the HCF is m and stop
2. set r to the remainder when m is divided by n
3. set m to n
4. set n to r
5. go to step 1

Using m as 42 and n as 24, step through the algorithm and verify that it gives the correct
answer, 6.

Steps 2, 3, and 4 are executed as long as n is not 0. Hence, this algorithm can be expressed
using a while loop as follows:

while n is not 0 do
 set r to m % n
 set m to n
 set n to r
endwhile
HCF is m

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Programs with Repetition Logic

97

We can now write Program P5.2, which finds the HCF of two numbers entered.

Program P5.2

//find the HCF of two numbers entered by a user
#include <stdio.h>
int main() {
 int m, n, r;
 printf("Enter two numbers: ");
 scanf("%d %d", &m, &n);
 while (n != 0) {
 r = m % n;
 m = n;
 n = r;
 }
 printf("\nTheir HCF is %d\n", m);
}

Note that the while condition is n != 0 and the while body is the block

{
 r = m % n;
 m = n;
 n = r;
}

The algorithm and, hence, the program, works whether m is bigger than n or not. Using the
example above, if m is 24 and n is 42, when the loop is executed the first time, it will set m to 42 and
n to 24. In general, if m is smaller than n, the first thing the algorithm does is swap their values.

5.3 Keep a Count
Program P5.1 finds the sum of a set of numbers entered. Suppose we want to count how many
numbers were entered, not counting the end-of-data 0. We could use an integer variable n to hold
the count. To get the program to keep a count, we need to do the following:

•	 Choose a variable to hold the count; we choose n.

•	 Initialize n to 0.

•	 Add 1 to n in the appropriate place. Here, we need to add 1 to n each time
the user enters a nonzero number.

•	 Print the count.

Program P5.3 is the modified program for counting the numbers.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Programs with Repetition Logic

98

Program P5.3

//print the sum and count of several numbers entered by a user
#include <stdio.h>
int main() {
 int num, sum = 0, n = 0;
 printf("Enter a number (0 to end): ");
 scanf("%d", &num);
 while (num != 0) {
 n = n + 1;
 sum = sum + num;
 printf("Enter a number (0 to end): ");
 scanf("%d", &num);
 }
 printf("\n%d numbers were entered\n", n);
 printf("The sum is %d\n", sum);
}

The following is a sample run of the program:

Enter a number (0 to end): 24
Enter a number (0 to end): 13
Enter a number (0 to end): 55
Enter a number (0 to end): 32
Enter a number (0 to end): 19
Enter a number (0 to end): 0
 
5 numbers were entered
The sum is 143

Comments on Program P5.3

•	 We declare and initialize n and sum to 0 before the while loop.

•	 The statement

n = n + 1;

adds 1 to n. We say n is incremented by 1. Suppose n has the value 3.

•	 When the right-hand side is evaluated, the value obtained is 3 + 1 = 4.
This value is stored in the variable on the left-hand side, that is, n. The net
result is that 4 is stored in n.

•	 This statement is placed inside the loop so that n is incremented each time
the loop body is executed. Since the loop body is executed when num is not 0,
the value of n is always the amount of numbers entered so far.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Programs with Repetition Logic

99

•	 When we exit the while loop, the value in n will be the amount of numbers
entered, not counting 0. This value is then printed.

•	 Observe that if the first number entered were 0, the while condition
would be immediately false and control will go directly to the first printf
statement after the loop with n and sum both having the value 0. The
program will print, correctly:

0 numbers were entered
The sum is 0

•	 If one number is entered, the program will print "1 numbers were
entered"—not very good English. Use an if statement to fix this.

5.3.1 Find Average
Program P5.3 can be easily modified to find the average of the numbers entered. As we saw above,
on exit from the while loop, we know the sum (sum) and how many numbers were entered (n).
We can add a printf statement to print the average to 2 decimal places, say, like this:

printf("The average is %3.2f\n", (double) sum/n);

For the data in the sample run, the output will be

5 numbers were entered
The sum is 143
The average is 28.60

As explained in Section 2.5.4, note the use of the cast (double) to force a floating-point
calculation. Without it, since sum and n are int, an integer division would be performed, giving 28.

Alternatively, we could declare sum as double, and print the sum and average with this:

printf("The sum is %3.0f\n", sum);
printf("The average is %3.2f\n", sum/n);

However, there is still a problem. If the user enters 0 as the first number, execution will reach the
last printf statement with sum and n both having the value 0. The program will attempt to divide 0
by 0, giving the error “Attempt to divide by 0.” This is an example of a runtime (or execution) error.

To cater to this situation, we could use the following after the while loop:

if (n == 0) printf("\nNo numbers entered\n");
else {
 printf("\n%d numbers were entered\n", n);
 printf("The sum is %d\n", sum);
 printf("The average is %3.2f\n", (double) sum/n);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Programs with Repetition Logic

100

The moral of the story is that, whenever possible, you should try to anticipate the ways in
which your program might fail and cater to them. This is an example of what is called defensive
programming.

5.4 Increment and Decrement Operators
There are a number of operators that originated with C and give C its unique flavor. The best
known of these is the increment operator, ++. In the last program, we used

n = n + 1;

to add 1 to n. The statement

n++;

does the same thing. The operator ++ adds 1 to its argument, which must be a variable. It can be
written as a prefix (++n) or as a suffix (n++).

Even though ++n and n++ both add 1 to n, in certain situations, the side effect of ++n is different
from n++. This is so because ++n increments n before using its value, whereas n++ increments n
after using its value. As an example, suppose n has the value 7. The statement

a = ++n;

first increments n and then assigns the value (8) to a. But the statement

a = n++;

first assigns the value 7 to a and then increments n to 8. In both cases, though, the end result is that
n is assigned the value 8.

As an exercise, what is printed by the following?

n = 5;
printf("Suffix: %d\n", n++);
printf("Prefix: %d\n", ++n);

The decrement operator -- is similar to ++ except that it subtracts 1 from its variable
argument. For example, --n and n-- are both equivalent to

n = n - 1;

As explained above, --n subtracts 1 and then uses the value of n; n-- uses the value of n and
then subtracts 1 from it. It would be useful to do the above exercise with ++ replaced by --.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Programs with Repetition Logic

101

5.5 Assignment Operators
So far, we have used the assignment operator = to assign the value of an expression to a variable,
as in the following:

c = a + b

The entire construct consisting of the variable = and the expression is referred to as an
assignment expression. When the expression is followed by a semicolon, it becomes an assignment
statement. The value of an assignment expression is simply the value assigned to the variable.
For example, if a is 15 and b is 20, then the assignment expression

c = a + b

assigns the value 35 to c. The value of the (entire) assignment expression is also 35.
Multiple assignments are possible, as in

a = b = c = 13

The operator = evaluates from right to left, so the above is equivalent to

a = (b = (c = 13))

The rightmost assignment is done first, followed by the one to the left, and so on.
C provides other assignment operators, of which += is the most widely used. In Program P5.3,

above, we used the statement

sum = sum + num;

to add the value of num to sum. This can be written more neatly using += as:

sum += num; //add num to sum

To add 3 to n, we could write

n += 3

which is the same as

n = n + 3

Other assignment operators include -=, *=, /=, and %=. If op represents any of +, -, *, /, or %, then

variable op= expression

is equivalent to

variable = variable op expression

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Programs with Repetition Logic

102

We point out that we could write all our programs without using increment, decrement,
or the special assignment operators. However, sometimes, they permit us to express certain
operations more concisely, more conveniently, and, possibly, more clearly.

5.6 Find Largest
Suppose we want to write a program that works as follows: the user will type some numbers and
the program will find the largest number typed. The following is a sample run of the program
(underlined items are typed by the user):

Enter a number (0 to end): 36
Enter a number (0 to end): 17
Enter a number (0 to end): 43
Enter a number (0 to end): 52
Enter a number (0 to end): 50
Enter a number (0 to end): 0
 
The largest is 52

The user will be prompted to enter numbers, one at a time. We will assume that the numbers
entered are all positive integers. We will let the user enter as many numbers as she likes. However,
in this case, she will need to tell the program when she wishes to stop entering numbers. To do so,
she will type 0.

Finding the largest number involves the following steps:

•	 Choose a variable to hold the largest number; we choose bigNum.

•	 Initialize bigNum to a very small value. The value chosen should be such that
no matter what number is entered, its value would be greater than this initial
value. Since we are assuming that the numbers entered would be positive,
we can initialize bigNum to 0.

•	 As each number (num, say) is entered, it is compared with bigNum; if num is
greater than bigNum, then we have a bigger number and bigNum is set to this
new number.

•	 When all the numbers have been entered and checked, bigNum will contain
the largest one.

These ideas are expressed in the following algorithm:

set bigNum to 0
get a number, num
while num is not 0 do
 if num is bigger than bigNum, set bigNum to num
 get a number, num
endwhile
print bigNum

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Programs with Repetition Logic

103

Like before, we get the first number before we enter the while loop. This is to ensure that the
while condition makes sense (is defined) the first time. It would not make sense if num had no
value. If it is not 0, we enter the loop. Inside the loop, we process the number (compare it with
bigNum, etc.) after which we get another number. This number is then used in the next test of the
while condition. When the while condition is false (num is 0), the program continues with the
print statement after the loop.

This algorithm is implemented as shown in Program P5.4.

Program P5.4

//find the largest of a set of numbers entered
#include <stdio.h>
int main() {
 int num, bigNum = 0;
 printf("Enter a number (0 to end): ");
 scanf("%d", &num);
 while (num != 0) {
 if (num > bigNum) bigNum = num; //is this number bigger?
 printf("Enter a number (0 to end): ");
 scanf("%d", &num);
 }
 printf("\nThe largest is %d\n", bigNum);
}

Let us “step through” this program using the sample data entered at the beginning of this
section. For easy reference, the data was entered in the following order:

36 17 43 52 50 0

Initially, num is undefined and bigNum is 0. We show this as:

num bignum 0

36 is entered and stored in num;
num is not 0 so we enter the while loop;
num (36) is compared with bigNum (0);
36 is bigger so bigNum is set to 36, giving:

num 36 bignum 36

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Programs with Repetition Logic

104

17 is entered and stored in num;
num is not 0 so we enter the while loop;
num (17) is compared with bigNum (36);
17 is not bigger so bigNum remains at 36, giving:

num 17 bignum 36

43 is entered and stored in num;
num is not 0 so we enter the while loop;
num (43) is compared with bigNum (36);
43 is bigger so bigNum is set to 43, giving:

num 43 bignum 43

52 is entered and stored in num;
num is not 0 so we enter the while loop;
num (52) is compared with bigNum (43);
52 is bigger so bigNum is set to 52, giving:

num 52 bignum 52

50 is entered and stored in num;
num is not 0 so we enter the while loop;
num (50) is compared with bigNum (52);
50 is not bigger so bigNum remains at 52, giving:

num 50 bignum 52

0 is entered and stored in num;
num is 0 so we exit the while loop and go to printf with

num 0 bignum 52

bigNum is now 52 and the printf statement prints

The largest is 52

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Programs with Repetition Logic

105

5.7 Find Smallest
In addition to finding the largest of a set of items, we are sometimes interested in finding the
smallest. We will find the smallest of a set of integers. To do so involves the following steps:

•	 Choose a variable to hold the smallest number; we choose smallNum.

•	 Initialize smallNum to a very big value. The value chosen should be such
that no matter what number is entered, its value would be smaller than this
initial value. If we have an idea of the numbers we will get, we can choose an
appropriate value.

•	 For instance, if we know that the numbers will contain at most 4 digits, we
can use an initial value such as 10000. If we do not know this, we can set
smallNum to the largest integer value defined by the compiler (32767 for
16-bit integers). Similarly, when we are finding the largest, we can initialize
bigNum (say) to a very small number like -32767.

•	 Another possibility is to read the first number and set smallNum (or bigNum)
to it, provided it is not 0. For variety, we will illustrate this method.

•	 As each number (num, say) is entered, it is compared with smallNum; if num
is smaller than smallNum, then we have a smaller number and smallNum is
set to this new number.

•	 When all the numbers have been entered and checked, smallNum will
contain the smallest one.

These ideas are expressed in the following algorithm:

get a number, num
if num is 0 then stop //do nothing and halt the program
set smallNum to num
while num is not 0 do
 if num is smaller than smallNum, set smallNum to num
 get a number, num
endwhile
print smallNum

The first number is read. If it is 0, there is nothing to do and the program halts. If it is not 0,
we set smallNum to it. We could, at this stage, get another number before we execute the while
statement. However, in the interest of brevity, we don't. The penalty for this is that, even though
we know that num is not 0 and it is not smaller than smallNum (it is the same), we still do these tests
before getting the next number.

This algorithm is implemented as shown in Program P5.5.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Programs with Repetition Logic

106

Program P5.5

//find the smallest of a set of numbers entered
#include <stdio.h>
int main() {
 int num;
 printf("Enter a number (0 to end): ");
 scanf("%d", &num);
 if (num == 0) return; //halt the program
 int smallNum = num;
 while (num != 0) {
 if (num < smallNum) smallNum = num;
 printf("Enter a number (0 to end): ");
 scanf("%d", &num);
 }
 printf("\nThe smallest is %d\n", smallNum);
}

In C, the keyword return can be used in main to halt the program by "returning" to the
operating system. We will discuss return in more detail in Chapter 7.

When run, if numbers are entered in the following order:

36 17 43 52 50 0

the program will print

The smallest is 17

and if the numbers entered are

36 -17 43 -52 50 0

the program will print

The smallest is -52

5.8 Read Data from a File
So far, we have written our programs assuming that data to be supplied is typed at the keyboard.
We have fetched the data using scanf for reading numbers and gets for reading strings. Typically,
the program prompts the user for the data and waits for the user to type the data. When the data is
typed, the program reads it, stores it in a variable (or variables), and continues with its execution.
This mode of supplying data is called interactive since the user is interacting with the program.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1371-1_7
http://www.it-ebooks.info/

Chapter 5 ■ Programs with Repetition Logic

107

We say we have been reading data from the “standard input.” C uses the predefined identifier
stdin to refer to the standard input. When your program starts up, C assumes that stdin refers to
the keyboard. Similarly, the predefined identifier stdout refers to the standard output, the screen.
So far, our programs have written output to the screen.

We can also supply data to a program by storing the data in a file. When the program needs
data, it fetches it directly from the file, without user intervention. Of course, we have to ensure
that the appropriate data has been stored in the file in the correct order and format. This mode
of supplying data is normally referred to as batch mode. (The term batch is historical and comes
from the old days when data had to be “batched” before being submitted for processing.)

For example, suppose we need to supply an item number (int) and a price (double) for
several items. If the program is written assuming that the data file contains several pairs of
numbers (an int constant followed by a double constant), then we must ensure that the data in
the file conforms to this.

Suppose we create a file called input.txt and type data in it. This file is a file of characters or
a text file. Depending on the programming environment provided by your C compiler, it may be
possible to assign stdin to input.txt—we say redirect the standard input to input.txt. Once this
is done, your program will read data from the file rather than the keyboard. Similarly, it may be
possible to redirect the standard output to a file, output.txt, say. If done, your printf’s will write
output to the file, rather than the screen.

We will take a slightly different approach, which is a bit more general since it will work with
any C program and does not depend on the particular compiler or operating system you happen
to be using.

Suppose we want to be able to read data from the file input.txt. The first thing we need to do
is declare an identifier called a “file pointer.” This can be done with the statement.

FILE * in; // read as "file pointer in"

The word FILE must be spelt as shown, with all uppercase letters. The spaces before and after
* may be omitted. So you could write FILE* in, FILE *in or even FILE*in. We have used the
identifier in; any other will do, such as inf, infile, inputFile, payData.

The second thing we must do is associate the file pointer in with the file input.txt and tell C
we will be reading data from the file. This is done using the function fopen, as follows:

in = fopen("input.txt", "r");

This tells C to “open the file input.txt for reading”: "r" indicates reading. (We will use "w"
if we want the file to be opened for “writing,” that is, to receive output.) If we wish, we could
accomplish both things with one statement, thus:

FILE * in = fopen("input.txt", "r");

Once this is done, the “data pointer” will be positioned at the beginning of the file. We can
now write statements that will read data from the file. We will see how shortly.

It is up to us to ensure that the file exists and contains the appropriate data. If not, we will get
an error message such as “File not found.” If we need to, we can specify the path to the file.

Suppose the file is located at C:\testdata\input.txt.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Programs with Repetition Logic

108

We can tell C we will be reading data from the file with this:

FILE * in = fopen("C:\\testdata\\input.txt", "r");

Recall that the escape sequence \\ is used to represent \ within a string. If the file is on a flash
drive with assigned letter E, we can use:

FILE * in = fopen("E:\\input.txt", "r");

5.8.1 fscanf
We use the statement (more precisely, the function) fscanf to read data from the file. It is used
in exactly the same way as scanf except that the first argument is the file pointer in. For example,
if num is int, the statement

fscanf(in, "%d", &num);

will read an integer from the file input.txt (the one associated with in) and store it in num. Note
that the first argument is the file pointer and not the name of the file.

When we have finished reading data from the file, we should close it. This is done with
fclose, as follows:

fclose(in);

There is one argument, the file pointer (not the name of the file). This statement breaks the
association of the file pointer in with the file input.txt. If we need to, we could now link the
identifier in with another file (paydata.txt, say) using:

in = fopen("paydata.txt", "r");

Note that we do not repeat the FILE * part of the declaration, since it has already been
declared as FILE *. Subsequent fscanf(in, ...) statements will read data from the file
paydata.txt.

5.8.2 Find Average of Numbers in a File
To illustrate the use of fscanf, let us rewrite Program P5.3 to read several numbers from a file and
find their average. Previously, we discussed how to find the average. We just need to make the
changes to read the numbers from a file. Suppose the file is called input.txt and contains several
positive integers with 0 indicating the end, for example,

24 13 55 32 19 0

Program P5.6 shows how to define the file as the place from which the data will be read and how
to find the average.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Programs with Repetition Logic

109

Program P5.6

//read numbers from a file and find their average; 0 ends the data
#include <stdio.h>
int main() {
 FILE * in = fopen("input.txt", "r");
 int num, sum = 0, n = 0;
 fscanf(in, "%d", &num);
 while (num != 0) {
 n = n + 1;
 sum = sum + num;
 fscanf(in, "%d", &num);
 }
 if (n == 0) printf("\nNo numbers supplied\n");
 else {
 if (n == 1) printf("\n1 number supplied\n");
 else printf("\n%d numbers supplied\n", n);
 printf("The sum is %d\n", sum);
 printf("The average is %3.2f\n", (double) sum/n);
 }
 fclose(in);
}

Comments on Program P5.6

•	 FILE * and fopen are used so that the fscanf statement would fetch data
from the file input.txt.

•	 Since the data is being read directly from the file, the question of prompting
for data does not arise. The printf statements that prompted for data are no
longer necessary.

•	 The program makes sure that n is not 0 before attempting to find the
average.

•	 When run, the program reads the data from the file and prints the results
without any user intervention.

•	 If the data file contains

24 13 55 32 19 0

the output will be

5 numbers were supplied
The sum is 143
The average is 28.60

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Programs with Repetition Logic

110

•	 The numbers in the file could be supplied in “free format”—any amount
could be put on a line. For example, the sample data could have been typed
on one line as above or as follows:

24 13
55 32
19 0

or like this:

24 13
55
32 19
0

	 or like this:

24
13
55
32
19
0

•	 As an exercise, add statements to the program so that it also prints the
largest and smallest numbers in the file.

■■ File cannot be found  when you try to run this program, it may not run properly because it cannot find the
file input.txt. This may be because the compiler is looking for the file in the wrong place. Some compilers
expect to find the file in the same folder/directory as the program file. Others expect to find it in the same
folder/directory as the compiler. Try placing input.txt in each of these folders, in turn, and run the program.
If this does not work, then you will need to specify the complete path to the file in the fopen statement. For
example, if the file is in the folder data that is in the folder CS10E, which is on the C: drive, you will need to use
the following statement:

FILE * in = fopen("C:\\CS10E\\data\\input.txt", "r");

5.9 Send Output to a File
So far, our programs have read data from the standard input (the keyboard) and sent output to the
standard output (the screen). We have just seen how to read data from a file. We now show you
how you can send output to a file.

This is important because when we send output to the screen, it is lost when we exit the
program or when we switch off the computer. If we need to save our output, we must write it to a
file. Then the output is available as long as we wish to keep the file.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Programs with Repetition Logic

111

The process is similar to reading from a file. We must declare a “file pointer” (we use out) and
associate it with the actual file (output.txt, say) using fopen. This can be done with

FILE * out = fopen("output.txt", "w");

This tells C to “open the file output.txt for writing”; "w" indicates writing. When this
statement is executed, the file output.txt is created if it does not already exist. If it exists, its
contents are destroyed. In other words, whatever you write to the file will replace its original
contents. Be careful that you do not open for writing a file whose contents you wish to keep.

5.9.1 fprintf
We use the statement (more precisely, the function) fprintf to send output to the file. It is
used in exactly the same way as printf except that the first argument is the file pointer out. For
example, if sum is int with value 143, the statement

fprintf(out, "The sum is %d\n", sum);

will write

The sum is 143

to the file output.txt.
Note that the first argument is the file pointer and not the name of the file.
When we have finished writing output to the file, we must close it. This is especially

important for output files since, the way some compilers operate, this is the only way to ensure
that all output is sent to the file. (For instance, they send output to a temporary buffer in memory;
only when the buffer is full is it sent to the file. If you do not close the file, some output may be left
in the buffer and never sent to the file.) We close the file with fclose, as follows:

fclose(out);

There is one argument, the file pointer (not the name of the file). This statement breaks the
association of the file pointer out with the file output.txt. If we need to, we could now link the
identifier out with another file (payroll.txt, say) using:

out = fopen("payroll.txt", "w");

Note that we do not repeat the FILE * part of the declaration, since out has already been
declared as FILE *. Subsequent fprintf(out, ...) statements will send output to the file
payroll.txt.

For an example, we rewrite Program P5.6 as Program P5.7 by adding the fopen and fprintf
statements. The only difference is that P5.6 sends its output to the screen while P5.7 sends its
output to the file output.txt.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Programs with Repetition Logic

112

Program P5.7

//read numbers from a file and find their average; 0 ends the data
#include <stdio.h>
int main() {
 FILE * in = fopen("input.txt", "r");
 FILE * out = fopen("output.txt", "w");
 int num, sum = 0, n = 0;
 fscanf(in, "%d", &num);
 while (num != 0) {
 n = n + 1;
 sum = sum + num;
 fscanf(in, "%d", &num);
 }
 if (n == 0) fprintf(out, "No numbers entered\n");
 else {
 fprintf(out, "%d numbers were entered\n", n);
 fprintf(out, "The sum is %d\n", sum);
 fprintf(out, "The average is %3.2f\n", (double) sum/n);
 }
 fclose(in);
 fclose(out);
}

As explained in Section 5.8, you can, if you wish, specify the complete path to your file in
the fopen statement. For instance, if you want to send the output to the folder Results on a flash
drive (with assigned letter F), you can use

FILE * out = fopen("F:\\Results\\output.txt", "w");

When you run Program P5.7, it will appear as if nothing has happened. However, if you check
your file system, using the file path you specified, you will find the file output.txt. Open it to view
your results.

5.10 Payroll
So far, our programs have read data from the standard input (the keyboard) and sent output to the
standard output (the screen). We have just seen how to read data from a file. We now show you
how you can send output to a file.

The data for each employee consists of a first name, a last name, the number of hours
worked, and the rate of pay. The data will be stored in a file paydata.txt and output will be sent
to the file payroll.txt.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Programs with Repetition Logic

113

In order to show you another way to read a string, we will assume that the data is stored in the
file as follows:

Maggie May 50 12.00
Akira Kanda 40 15.00
Richard Singh 48 20.00
Jamie Barath 30 18.00
END

We use the “first name” END as the end-of-data marker.
Regular pay, overtime pay, and net pay will be calculated as described in Section 4.4.1. The

employee name, hours worked, rate of pay, regular pay, overtime pay, and net pay are printed
under a suitable heading. In addition, we will write the program to do the following:

•	 Count how many employees are processed.

•	 Calculate the total wage bill (total net pay for all employees).

•	 Determine which employee earned the highest pay and how much. We will
ignore the possibility of a tie.

For the sample data, the output should look like this:

Name Hours Rate Regular Overtime Net
 
Maggie May 50.0 12.00 480.00 180.00 660.00
Akira Kanda 40.0 15.00 600.00 0.00 600.00
Richard Singh 48.0 20.00 800.00 240.00 1040.00
Jamie Barath 30.0 18.00 540.00 0.00 540.00

Number of employees: 4
Total wage bill: $2840.00
Richard Singh earned the most pay of $1040.00

An outline of the algorithm for reading the data is as follows:

read firstName
while firstName is not "END" do
 read lastName, hours, rate
 do the calculations
 print results for this employee
 read firstName
endwhile

We will use the specification %s in fscanf for reading the names. Suppose we have declared
firstName as

char firstName[20];

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Programs with Repetition Logic

114

We can read a string into firstName with the statement

fscanf(in, "%s", firstName);

The specification %s must be matched with a character array, like firstName. As mentioned
in Section 3.4, when an array name is an argument to scanf (or fscanf), we must not write &
before it.

%s is used for reading a string of characters not containing any whitespace characters.
Beginning with the next non-whitespace character, characters are stored in firstName until the
next whitespace character is encountered. It is up to us to make sure that the array is big enough
to hold the string.

Because a whitespace character ends the reading of a string, %s cannot be used to read a string
containing blanks. For this reason, we will use separate variables for first name (firstName) and
last name (lastName).

For example, suppose the next piece of data contains (◊ denotes a space):

◊◊◊Robin◊◊◊◊Hood◊◊

The statement

fscanf(in, "%s", firstName);

will skip over spaces until it reaches the first non-whitespace character R. Starting with R, it stores
characters in firstName until it reaches the next space, the one after n. Reading stops and Robin is
stored in firstName. The data pointer is positioned at the space after n. If we now execute

fscanf(in, "%s", lastName);

fscanf will skip over spaces until it reaches H. Starting with H, it stores characters in lastName
until it reaches the space after d. Reading stops and Hood is stored in lastName. If d were the last
character on the line, the end-of-line character (which is whitespace) would have stopped the
reading.

Because of the way %s works, we will need to read the first and last names separately.
However, in order to get the output to line up neatly as shown on the previous page, it would be
more convenient to have the entire name stored in one variable (name, say). Suppose Robin is
stored in firstName and Hood is stored in lastName. We will copy firstName to name with

strcpy(name, firstName);

We will then add a space with

strcat(name, " ");

strcat is a predefined string function that allows us to join (concatenate) two strings. It stands
for “string concatenation”. If s1 and s2 are strings, strcat(s1, s2) will add s2 to the end of s1. It
assumes that s1 is big enough to hold the joined strings.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Programs with Repetition Logic

115

We will then add lastName with

strcat(name, lastName);

Using our example, at the end of all this, name will contain Robin Hood.
In our program, we will use the specification %-15s to print name. This will print name left

justified in a field width of 15. In other words, all names will be printed using 15 print columns.
This is necessary for the output to line up neatly. To cater for longer names, you can increase the
field width.

To use the string functions, we must write the directive

#include <string.h>

at the head of our program if we want to use the string functions supplied by C.
Our program will need to check if the value in firstName is the string "END". Ideally, we

would like to say something like

while (firstName != "END") { //cannot write this in C

but we cannot do so since C does not allow us to compare strings using the relational operators.
What we can do is use the predefined string function strcmp (string compare).

If s1 and s2 are strings, the expression strcmp(s1, s2) returns the following values:

•	 0 if s1 is identical to s2

•	 < 0 if s1 is less than s2 (in alphabetical order)

•	 > 0 if s1 is greater than s2 (in alphabetical order)

For example,

strcmp("hello", "hi") is < 0
strcmp("hi","hello") is > 0
strcmp("allo","allo") is 0

Using strcmp, we can write the while condition as

while (strcmp(firstName, "END") != 0)

If strcmp(firstName, "END") is not 0, it means that firstName does not contain the
word END so we have not reached the end of the data; the while loop is entered to process that
employee.

When faced with a program that requires so many things to be done, it is best to start by
working on part of the problem, getting it right, and then tackling the other parts. For this
problem, we can start by getting the program to read and process the data without counting,
finding the total or finding the highest-paid employee.

Program P5.8 is based on program P4.7 (Section 4.6.2).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Programs with Repetition Logic

116

Program P5.8

#include <stdio.h>
#include <string.h>
#define MaxRegularHours 40
#define OvertimeFactor 1.5
int main() {
 FILE * in = fopen("paydata.txt", "r");
 FILE * out = fopen("payroll.txt", "w");
 char firstName[20], lastName[20], name[40];
 double hours, rate, regPay, ovtPay, netPay;

 fprintf(out,"Name Hours Rate Regular Overtime Net\n\n");
 fscanf(in, "%s", firstName);
 while (strcmp(firstName, "END") != 0) {
 fscanf(in, "%s %lf %lf", lastName, &hours, &rate);
 if (hours <= MaxRegularHours) {
 regPay = hours * rate;
 ovtPay = 0;
 }
 else {
 regPay = MaxRegularHours * rate;
 ovtPay = (hours - MaxRegularHours) * rate * OvertimeFactor;
 }
 netPay = regPay + ovtPay;
 
 //make one name out of firstName and lastName
 strcpy(name,firstName); strcat(name," "); strcat(name,lastName);
 fprintf(out, "%-15s %5.1f %6.2f", name, hours, rate);
 fprintf(out, "%9.2f %9.2f %7.2f\n", regPay, ovtPay, netPay);
 fscanf(in, "%s", firstName);
 }
 fclose(in);
 fclose(out);
}

Comments on Program P5.8

•	 We use the “file pointers” in and out for reading data from paydata.txt and
sending output to payroll.txt.

•	 Since data is being read from a file, prompts are not required.

•	 We use fscanf for reading data and fprintf for writing output.

•	 We use fclose to close the files.

•	 We print a heading with the following statement:

fprintf(out,"Name Hours Rate Regular Overtime Net\n\n");

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Programs with Repetition Logic

117

•	 To get the output to line up nicely, you will need to fiddle with the spaces
between the words and the field widths in the statements that print the
results. For example, there are 12 spaces between e and H, 3 spaces between
s and R, 2 between e and R, 2 between r and O, and 5 between e and N.

•	 You should experiment with the field widths in the fprintf statements
(which write one line of output) to see what effect it has on your output.

•	 We use a while loop to process several employees. When the “first name”
END is read, the program knows it has reached the end of the data. It closes
the files and stops.

Now that we’ve got the basic processing right, we can add the statements to perform the other
tasks. Program P5.9 is the complete program that counts the employees, calculates the total wage
bill, and determines the employee who earned the highest salary.

Counting the employees and finding the total wage bill are fairly straightforward. We use the
variables numEmp and wageBill, which are initialized to 0 before the loop. They are incremented
inside the loop and their final values are printed after the loop. If you have difficulty following the
code, you need to reread Sections 5.1 and 5.2. We use numEmp++ to add 1 to numEmp and wageBill
+= netPay to add netPay to wageBill.

The variable mostPay holds the most pay earned by any employee. It is initialized to 0. Each
time we calculate netPay for the current employee, we compare it with mostPay. If it is bigger, we
set mostPay to the new amount and save the name of the employee (name) in bestPaid.

Program P5.9

#include <stdio.h>
#include <string.h>
#define MaxRegularHours 40
#define OvertimeFactor 1.5
int main() {
 FILE * in = fopen("paydata.txt", "r");
 FILE * out = fopen("payroll.txt", "w");
 char firstName[20], lastName[20], name[40], bestPaid[40];
 double hours, rate, regPay, ovtPay, netPay;
 double wageBill = 0, mostPay = 0;
 int numEmp = 0;
  
 fprintf(out,"Name Hours Rate Regular Overtime Net\n\n");
 fscanf(in, "%s", firstName);
 while (strcmp(firstName, "END") != 0) {
 numEmp++;
 fscanf(in, "%s %lf %lf", lastName, &hours, &rate);
  
 if (hours <= MaxRegularHours) {
 regPay = hours * rate;
 ovtPay = 0;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Programs with Repetition Logic

118

 else {
 regPay = MaxRegularHours * rate;
 ovtPay = (hours - MaxRegularHours) * rate * OvertimeFactor;
 }
 netPay = regPay + ovtPay;
 
 //make one name out of firstName and lastName
 strcpy(name,firstName); strcat(name," "); strcat(name,lastName);
 
 fprintf(out, "%-15s %5.1f %6.2f", name, hours, rate);
 fprintf(out, "%9.2f %9.2f %7.2f\n", regPay, ovtPay, netPay);

 if (netPay > mostPay) {
 mostPay = netPay;
 strcpy(bestPaid, name);
 }
 wageBill += netPay;
 fscanf(in, "%s", firstName);
 } //end while
  
 fprintf(out, "\nNumber of employees: %d\n", numEmp);
 fprintf(out, "Total wage bill: $%3.2f\n", wageBill);
 fprintf(out,"%s earned the most pay of $%3.2f\n",bestPaid, mostPay);
 fclose(in); fclose(out);
}

5.11 The for Construct
In Chapters 3, 4, and 5 we showed you three kinds of logic that can be used for writing programs—
sequence, selection, and repetition. Believe it or not, with these three, you have all the logic
control structures you need to express the logic of any program. It has been proven that these
three structures are all you need to formulate the logic to solve any problem that can be solved on
a computer.

It follows that all you need are if and while statements to write the logic of any program.
However, many programming languages provide additional statements because they allow you
to express some kinds of logic more conveniently than using if and while. The for statement is a
good example.

Whereas while lets you repeat statements as long as some condition is true, for lets you
repeat statements a specified number of times (25 times, say). Consider the following pseudocode
example of the for construct (more commonly called the for loop):

for h = 1 to 5 do
 print "I must not sleep in class"
endfor

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1371-1_3
http://www.it-ebooks.info/

Chapter 5 ■ Programs with Repetition Logic

119

This says to execute the print statement 5 times, with h assuming the values 1, 2, 3, 4, and 5,
one value for each of the 5 times. The effect is to print the following:

I must not sleep in class
I must not sleep in class
I must not sleep in class
I must not sleep in class
I must not sleep in class

The construct consists of:

•	 the word for

•	 the loop variable (h, in the example)

•	 =

•	 the initial value (1, in the example)

•	 the word to

•	 the final value (5, in the example)

•	 the word do

•	 one or more statements to be executed each time through the loop; these
statements make up the body of the loop

•	 the word endfor, indicating the end of the construct

We emphasize that endfor is not a C word and does not appear in any C program. It is just a
convenient word used by programmers when writing pseudocode to indicate the end of a for loop.

In order to highlight the structure of the loop and make it more readable, we line up for and
endfor, and indent the statements in the body.

The part of the construct between for and do is called the control part of the loop. This is
what determines how many times the body is executed. In the example, the control part is h = 1
to 5. This works as follows:

•	 h is set to 1 and the body (print) is executed

•	 h is set to 2 and the body (print) is executed

•	 h is set to 3 and the body (print) is executed

•	 h is set to 4 and the body (print) is executed

•	 h is set to 5 and the body (print) is executed

The net effect is that, in this case, the body is executed 5 times.
In general, if the control part is h = first to last, it is executed as follows:

•	 if first > last, the body is not executed at all; execution continues with
the statement, if any, after endfor; otherwise

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Programs with Repetition Logic

120

•	 h is set to first and the body is executed

•	 1 is added to h; if the value of h is less than or equal to last, the body is
executed again

•	 1 is added to h; if the value of h is less than or equal to last, the body is
executed again

•	 and so on

When the value of h reaches last, the body is executed for the last time and control goes to
the statement, if any, after endfor.

The net effect is that the body is executed for each value of h between first and last,
inclusive.

5.11.1 The for Statement in C
The pseudocode construct

for h = 1 to 5 do
 print "I must not sleep in class"
endfor

is implemented in C as follows:

for (h = 1; h <= 5; h++)
 printf("I must not sleep in class\n");

assuming that h is declared as int. However, it is more common to declare h in the for statement
itself, like this:

for (int h = 1; h <= 5; h++)
 printf("I must not sleep in class\n");

In this case, though, note that the scope of h extends only to the body of the for (see next).

■■ Caution T he ability to declare the loop variable in the for statement was not allowed in early versions of C.
If you are using an older compiler, you will get an error. In that case, just declare the loop variable before the for
statement.

In C, the body of the for must be a single statement or a block. In the example, it is the single
printf statement. If it were a block, we would write it in the following form:

for (int h = 1; h <= 5; h++) {
 <statement1>
 <statement2>
 etc.
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Programs with Repetition Logic

121

When we declare the loop variable (h in the example) in the for statement, h is “known” (can
be used) within the block only. If we attempt to use h after the block, we will get an “undeclared
variable” error message.

Program P5.10 illustrates how the for statement is used to print the following five times:

I must not sleep in class

As you could probably figure out, if you want to print 100 lines, say, all you have to do is
change 5 to 100 in the for statement.

Program P5.10

#include
int main() {
 int h;
 for (h = 1; h <= 5; h++)
 printf("I must not sleep in class\n");
}

The general form of the for statement in C is

for (<expr1>; <expr2>; <expr3>)
 <statement>

The word for, the brackets, and the semicolons are required. You must supply <expr1>,
<expr2>, <expr3>, and <statement>.

In detail, the for statement consists of

•	 The word for

•	 A left bracket, (

•	 <expr1>, called the initialization step; this is the first step performed when
the for is executed.

•	 A semicolon, ;

•	 <expr2>, the condition which controls whether or not <statement> is
executed.

•	 A semicolon, ;

•	 <expr3>, called the reinitialization step

•	 A right bracket,)

•	 <statement>, called the body of the loop. This can be a simple statement or
a block.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Programs with Repetition Logic

122

When a for statement is encountered, it is executed as follows:

	 1.	 <expr1> is evaluated.

	 2.	 <expr2> is evaluated. If it is false, execution continues with the
statement, if any, after <statement>. If it is true, <statement> is
executed, followed by <expr3>, and this step (2) is repeated.

This can be expressed more concisely as follows:

<expr1>;
while (<expr2>) {
 <statement>;
 <expr3>;
}

Consider the following:

for (h = 1; h <= 5; h++)
printf("I must not sleep in class\n");

•	 h = 1 is <expr1>

•	 h <= 5 is <expr2>

•	 h++ is <expr3>

•	 <statement> is printf(...);

This code is executed as follows:

	 1.	 h is set to 1

	 2.	 The test h <= 5 is performed. It is true, so the body of the loop is executed
(one line is printed). The reinitialization step h++ is then performed, so h
is now 2.

	 3.	 The test h <= 5 is again performed. It is true, so the body of the loop is
executed (a second line is printed); h++ is performed, so h is now 3.

	 4.	 The test h <= 5 is again performed. It is true, so the body of the loop is
executed (a third line is printed); h++ is performed, so h is now 4.

	 5.	 The test h <= 5 is again performed. It is true, so the body of the loop is
executed (a fourth line is printed); h++ is performed, so h is now 5.

	 6.	 The test h <= 5 is again performed. It is true, so the body of the loop is
executed (a fifth line is printed); h++ is performed, so h is now 6.

	 7.	 The test h <= 5 is again performed. It is now false, so execution of the
for loop ends and the program continues with the statement, if any, after
printf(...).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Programs with Repetition Logic

123

On exit from the for loop, the value of h (6, in this case) is available and may be used by the
programmer, if required. Note, however, that if h was declared in the for statement, it would be
unavailable outside the loop.

If we need a loop to count backwards (from 5 down to 1, say), we can write

for (int h = 5; h >= 1; h--)

The loop body is executed with h taking on the values 5, 4, 3, 2, and 1.
We can also count upwards (or downwards) in steps other than 1. For example, the statement

for (int h = 10; h <= 20; h += 3)

will execute the body with h taking on the values 10, 13, 16 and 19. And the statement

for (int h = 100; h >= 50; h -= 10)

will execute the body with h taking on the values 100, 90, 80, 70, 60, and 50.
In general, we can use whatever expressions we need to get the effect that we want.
In Program P5.10, h takes on the values 1, 2, 3, 4, and 5 inside the loop. We have not used

h in the body but it is available, if needed. We show a simple use in Program P5.11 in which we
number the lines by printing the value of h.

Program P5.11

#include <stdio.h>
int main() {
 for (int h = 1; h <= 5; h++)
 printf("%d. I must not sleep in class\n", h);
}

When run, this program will print the following:

1. I must not sleep in class
2. I must not sleep in class
3. I must not sleep in class
4. I must not sleep in class
5. I must not sleep in class

The initial and final values in the for statement do not have to be constants; they can be
variables or expressions. For example, consider this:

for (h = 1; h <= n; h++) ...

How many times would the body of this loop be executed? We cannot say unless we know
the value of n when this statement is encountered. If n has the value 7, then the body would be
executed 7 times.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Programs with Repetition Logic

124

This means that before the computer gets to the for statement, n must have been assigned
some value and it is this value which determines how many times the loop is executed. If a value
has not been assigned to n, the for statement would not make sense and the program will crash
(or, at best, give some nonsensical output).

To illustrate, we can modify Program P5.11 to ask the user how many lines she wants to print.
The number entered is then used to control how many times the loop is executed and, hence,
how many lines are printed.

The changes are shown in Program P5.12.

Program P5.12

#include <stdio.h>
int main() {
 int n;
 printf("How many lines to print? ");
 scanf("%d", &n);
 printf("\n"); //print a blank line
 for (int h = 1; h <= n; h++)
 printf("%d. I must not sleep in class\n", h);
}

A sample run is shown below. We will show shortly how to neaten the output.

How many lines to print? 12
 
1. I must not sleep in class
2. I must not sleep in class
3. I must not sleep in class
4. I must not sleep in class
5. I must not sleep in class
6. I must not sleep in class
7. I must not sleep in class
8. I must not sleep in class
9. I must not sleep in class
10. I must not sleep in class
11. I must not sleep in class
12. I must not sleep in class

Note that we do not (and cannot) know beforehand what number the user will type. However,
that is not a problem. We simply store the number in a variable (n is used) and use n as the “final
value” in the for statement. Thus, the number the user types will determine how many times the
body is executed.

Now the user can change the number of lines printed simply by entering the desired value
in response to the prompt. No change is needed in the program. Program P5.12 is much more
flexible than P5.11.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Programs with Repetition Logic

125

5.11.2 A Bit of Aesthetics
In the above run, while the output is correct, the numbers do not line up very nicely with the
result that the I’s do not line up properly. We can get things to line up by using a field width when
printing h. For this example, 2 will do. However, if the number could run into the hundreds, we
must use at least 3 and for thousands at least 4, and so on.

In Program P5.12, if we change the printf statement to this:

printf("%2d. I must not sleep in class\n", h);

the following, more neatly looking output, would be printed:

How many lines to print? 12
 
 1. I must not sleep in class
 2. I must not sleep in class
 3. I must not sleep in class
 4. I must not sleep in class
 5. I must not sleep in class
 6. I must not sleep in class
 7. I must not sleep in class
 8. I must not sleep in class
 9. I must not sleep in class
10. I must not sleep in class
11. I must not sleep in4 class
12. I must not sleep in class

5.12 Multiplication Tables
The for statement is quite handy for producing multiplication tables. To illustrate, let us write
a program to produce a “2 times” table from 1 to 12. The following should be printed by the
program:

 1 x 2 = 2
 2 x 2 = 4
 3 x 2 = 6
 4 x 2 = 8
 5 x 2 = 10
 6 x 2 = 12
 7 x 2 = 14
 8 x 2 = 16
 9 x 2 = 18
10 x 2 = 20
11 x 2 = 22
12 x 2 = 24

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Programs with Repetition Logic

126

A look at the output reveals that each line consists of three parts:

	 1.	 A number on the left that increases by 1 for each new line.

	 2.	 A fixed part " x 2 = " (note the spaces) that is the same for each line.

	 3.	 A number on the right; this is derived by multiplying the number on the
left by 2.

We can produce the numbers on the left by using this statement:

for (int m = 1; m <= 12; m++)

We then print m each time through the loop. And we can produce the number on the right by
multiplying m by 2.

Program P5.13 shows how to write it. When run, it will produce the table above.

Program P5.13

#include <stdio.h>
int main() {
 for (int m = 1; m <= 12; m++)
 printf("%2d x 2 = %2d\n", m, m * 2);
}

Note the use of the field width 2 (in %2d) for printing m and m * 2. This is to ensure that the
numbers line up as shown in the output. Without the field width, the table would not look neat—
try it and see.

What if we want to print a “7 times” table? What changes would be needed? We would just
need to change the printf statement to

printf("%2d x 7 = %2d\n", m, m * 7);

Similarly, if we want a “9 times” table, we would have to change the 7s to 9s. And we would
have to keep changing the program for each table that we want.

A better approach is to let the user tell the computer which table he wants. The program will
then use this information to produce the table requested. Now when the program is run, it will
prompt:

Enter type of table:

If the user wants a “7 times” table, he will enter 7. The program will then go ahead and
produce a “7 times” table. Program P5.14 shows how.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Programs with Repetition Logic

127

Program P5.14

#include <stdio.h>
int main() {
 int factor;
 printf("Type of table? ");
 scanf("%d", &factor);
 for (int m = 1; m <= 12; m++)
 printf("%2d x %d = %2d\n", m, factor, m * factor);
}

Since we do not know beforehand what type of table would be requested, we cannot use 7,
say, in the format string, since the user may want a “9 times” table. We must print the variable
factor which holds the type of table.

The following is a sample run:

Type of table? 7
 
 1 x 7 = 7
 2 x 7 = 14
 3 x 7 = 21
 4 x 7 = 28
 5 x 7 = 35
 6 x 7 = 42
 7 x 7 = 49
 8 x 7 = 56
 9 x 7 = 63
10 x 7 = 70
11 x 7 = 77
12 x 7 = 84

We now have a program that can produce any multiplication table from 1 to 12. But there is
nothing sacred about the range 1 to 12 (special, maybe, since that’s what we all learned in school).
How can we generalize the program to produce any table in any range? We must let the user tell
the program what type of table and what range he wants. And in the program, we will need to
replace the numbers 1 and 12 by variables, (start and finish, say).

All these changes are reflected in Program P5.15.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Programs with Repetition Logic

128

Program P5.15

#include <stdio.h>
int main() {
 int factor, start, finish;
 printf("Type of table? ");
 scanf("%d", &factor);
 printf("From? ");
 scanf("%d", &start);
 printf("To? ");
 scanf("%d", &finish);
 printf("\n");
 for (int m = start; m <= finish; m++)
 printf("%2d x %d = %2d\n", m, factor, m * factor);
}

The following sample run shows how to produce a “6 times” table from 10 to 16.

Type of table? 6
From? 10
To? 16
 
10 x 6 = 60
11 x 6 = 66
12 x 6 = 72
13 x 6 = 78
14 x 6 = 84
15 x 6 = 90
16 x 6 = 96

To cater for bigger numbers, we would need to increase the field width of 2 in the printf
statement if we want the numbers to line up neatly.

Comment on Program P5.15

The program assumes that start is less than or equal to finish. What if this is not so? For
example, suppose the user enters 20 for start and 15 for finish. The for statement becomes

for (int m = 20; m <= 15; m++)

m is set to 20; since this value is immediately bigger than the final value 15, the body is not
executed at all, and the program ends with nothing printed.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Programs with Repetition Logic

129

To cater for this possibility, we can let the program validate the values of start and finish
to ensure that the “From” value is less than or equal to the “To” value. One way of doing this is to
write the following:

if (start > finish)
 printf("Invalid data: From value is bigger than To value\n");
else {
 printf("\n");
 for (int m = start; m <= finish; m++)
 printf("%2d x %d = %2d\n", m, factor, m * factor);
}

Validating data entered is yet another example of defensive programming. Also, it is better to
print a message informing the user of the error rather than have the program do nothing. This
makes the program more user friendly.

Another option here is not to treat a bigger start value as an error but simply print the table
in reverse order, going from largest to smallest. Yet another possibility is to swap the values of
start and finish and print the table in the normal way. These variations are left as exercises.

5.13 Temperature Conversion Table
Some countries use the Celsius scale for measuring temperature while others use the Fahrenheit
scale. Suppose we want to print a table of temperature conversions from Celsius to Fahrenheit.
The table runs from 0 degrees C to 100 degrees C in steps of 10, thus:

Celsius Fahrenheit
 
 0 32
 10 50
 20 68
 30 86
 40 104
 50 122
 60 140
 70 158
 80 176
 90 194
 100 212

For a Celsius temperature, C, the Fahrenheit equivalent is 32 + 9C/5.
If we use c to hold the Celsius temperature, we can write a for statement to let c take on the

values 0, 10, 20, ..., up to 100, with

for (c = 0; c <= 100; c += 10)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Programs with Repetition Logic

130

Each time the loop is executed, c is incremented by 10. Using this, we write Program P5.16 to
produce the table.

Program P5.16

#include <stdio.h>
int main() {
 double c, f;
 printf("Celsius Fahrenheit\n\n");
 for (c = 0; c <= 100; c += 10) {
 f = 32 + 9 * c / 5;
 printf("%5.0f %9.0f\n", c, f);
 }
}

An interesting part of the program are the printf statements. In order to get the temperatures
centered under the heading, we need to do some counting. Consider the heading

Celsius Fahrenheit

with the C in column 1 and 2 spaces between s and F.
Assume we want the Celsius temperatures lined up under i and the Fahrenheit temperatures

lined up under n (see output above).
By counting, we find that i is in column 5 and n is in column 15.
From this, we can figure out that the value of c must be printed in a field width of 5 (the first

5 columns) and the value of f must be printed in the next 10 columns. We use a field width of 9 for
f since there is already one space between f and % in printf(...).

We print c and f without a decimal point using 0 as the number of decimal places in the
format specification. If any temperature is not a whole number, the 0 specification will print it
rounded to the nearest whole number, as in the table below.

Celsius Fahrenheit
 
 20 68
 22 72
 24 75
 26 79
 28 82
 30 86
 32 90
 34 93
 36 97
 38 100
 40 104

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Programs with Repetition Logic

131

As an exercise, rewrite Program P5.16 so that it requests threes values for start, finish, and
incr and produces a conversion table with Celsius temperatures going from start to finish in
steps of incr. Follow the ideas of the previous section for producing any multiplication table. For
example, if start is 20, finish is 40 and incr is 2, the program should produce the following table
(with Fahrenheit temperatures rounded to the nearest whole number):

As another exercise, write a program that produces a table from Fahrenheit to Celsius. For a
Fahrenheit temperature, F, the Celsius equivalent is 5(F - 32)/9.

5.14 Expressive Power of for
In C, the for statement can be used for a lot more than just counting the number of times a loop
is executed. This is possible because <expr1>, <expr2>, and <expr3> can be any expressions; they
are not even required to be related in any way. So, for instance, <expr1> can be h = 1, <expr2>
can test if a is equal to b, and <expr3> can be k++ or any other expression the programmer desires.
The following is perfectly valid:

for (h = 1; a == b; k++)

It is also possible to omit any of <expr1>, <expr2>, or <expr3>. However, the semicolons
must be included. Thus, to omit <expr3>, one can write

for (<expr1>; <expr2>;) <statement>

In this case,

	 1.	 <expr1> is evaluated; then

	 2.	 <expr2> is evaluated. If it is false, execution continues after <statement>.
If it is true, <statement> is executed and this step (2) is repeated.

This is equivalent to

<expr1>;
while (<expr2>) <statement>

If, in addition, we omit <expr1>, we will have

for (; expr2 ;) <statement> // note the semicolons

Now, <expr2> is evaluated. If it is false, execution continues after <statement>. If it is true,
<statement> is executed, followed by another evaluation of <expr2>, and so on. The net effect is
that <statement> is executed as long as <expr2> is true—the same effect achieved by

while (<expr2>) <statement>

Most times, <expr1> will initialize some variable, <expr2> will test it, and <expr3> will
change it. But more is possible. For instance, the following is valid:

for (lo = 1, hi = n; lo <= hi; lo++, hi--) <statement>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Programs with Repetition Logic

132

Here, <expr1> consists of two assignment statements separated by a comma; <expr3>
consists of two expressions separated by a comma. This is very useful when two variables are
related and we want to highlight the relationship. In this case, the relationship is captured in one
place, the for statement. We can easily see how the variables are initialized and how they are
changed.

This feature comes in very handy when dealing with arrays. We will see examples in Chapter 8.
For now, we leave you with the example of printing all pairs of integers that add up to a given
integer, n.

The code is:

int lo, hi;
//assume n has been assigned a value
for (lo = 1, hi = n - 1; lo <= hi; lo++, hi--)
 printf("%2d %2d\n", lo, hi);

If n is 10, this code will print the following:

1 9
2 8
3 7
4 6
5 5

The variables lo and hi are initialized to the first pair. After a pair is printed, lo is
incremented by 1 and hi is decremented by 1 to get the next pair. When lo passes hi, all pairs
have been printed.

5.15 The do...while Statement
We have seen that the while statement allows a loop to be executed zero or more times. However,
there are situations in which it is convenient to have a loop executed at least once. For example,
suppose we want to prompt for a number representing a day of the week, with 1 for Sunday, 2
for Monday, and so on. We also want to ensure that the number entered is valid, that it lies in the
range 1 to 7. In this case, at least one number must be entered. If it is valid, we move on; if not, we
must prompt again for another number and must do so as long as the number entered is invalid.
We could express this logic using a while statement as follows:

printf("Enter a day of the week (1-7): ");
scanf("%d", &day); //assume int day
while (day < 1 || day > 7) { //as long as day is invalid
 printf("Enter a day of the week (1-7): ");
 scanf("%d", &day);
}

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1371-1_8
http://www.it-ebooks.info/

Chapter 5 ■ Programs with Repetition Logic

133

While this will work, we can express it a bit neater using a do...while statement.
The general form of the do...while statement in C is

do
 <statement>
while (<expression>);

The words do and while, the brackets, and the semicolon are required. You must supply
<statement> and <expression>.

When a do...while is encountered,

	 1.	 <statement> is executed

	 2.	 <expression> is then evaluated; if it is true (non-zero), repeat from step
1. If it is false (zero), execution continues with the statement, if any, after
the semicolon.

As long as <expression> is true, <statement> is executed. It is important to note that because
of the way the construct is written, <statement> is always executed at least once.

Using do...while, we can express the logic above as follows:

do {
 printf("Enter a day of the week (1-7): ");
 scanf("%d", &day);
} while (day < 1 || day > 7); //as long as day is invalid

Note how much neater this looks. Here, <statement> is the block delimited by { and }, and
<expression> is day < 1 || day > 7.

We illustrate the use of do...while with two more examples.

5.15.1 Highest Common Factor
Previously, we wrote Program P5.2 to find the HCF of two integers using Euclid's algorithm. We
now rewrite the program using do...while to ensure that the two numbers entered are indeed
positive integers. We also re-code the algorithm using do...while instead of while. This is shown
as Program P5.17.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Programs with Repetition Logic

134

Program P5.17

#include <stdio.h>
int main() {
 int m, n, r;
 
 do {
 printf("Enter two positive integers: ");
 scanf("%d %d", &m, &n);
 } while (m <= 0 || n <= 0);
 // At this point, both m and n are positive
 printf("\nThe HCF of %d and %d is ", m, n);
 
 do {
 r = m % n;
 m = n;
 n = r;
 } while (n > 0);
 
 printf("%d\n", m);
}

Program P5.17 requests two positive values. The first do...while keeps asking until two
positive values are entered. When this occurs, the program continues with the calculation of the
HCF. On exit from the second do...while, the value of n is 0 and the value of m is the HCF. The
following is a sample run of program P5.17:

Enter two positive integers: 84 -7
Enter two positive integers: 46 0
Enter two positive integers: 200 16
 
The HCF of 200 and 16 is 8

5.15.2 Interest at the Bank
Consider the following problem:

A man deposits $1000 in a bank at an interest rate of 10% per year. At the end of each year,
the interest earned is added to the amount on deposit and this becomes the new deposit for the
next year. Write a program to determine the year in which the amount accumulated first exceeds
$2000. For each year, print the deposit at the beginning of the year and the interest earned for that
year until the target is reached.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Programs with Repetition Logic

135

A solution to this problem is given in Program P5.18.

Program P5.18

#include <stdio.h>
int main() {
 int year;
 double initialDeposit, interestRate, target, deposit, interest;
 
 printf("Initial deposit? ");
 scanf("%lf", &initialDeposit);
 printf("Rate of interest? ");
 scanf("%lf", &interestRate);
 printf("Target deposit? ");
 scanf("%lf", &target);
 
 printf("\nYear Deposit Interest\n\n");
 deposit = initialDeposit;
 year = 0;
 do {
 year++;
 interest = deposit * interestRate / 100;
 printf("%3d %8.2f %8.2f\n", year, deposit, interest);
 deposit += interest;
 } while (deposit <= target);
 printf("\nDeposit exceeds $%7.2f at the end of year %d\n", target, year);
}

The program uses the following variables:

initialDeposit 1000, in the example

interestRate 10, in the example

target 2000, in the example

deposit the deposit at any given time

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Programs with Repetition Logic

136

As long as the end-of-year deposit has not exceeded the target, we calculate interest for
another year. Program P5.18 does not cater for the case when the initial deposit is greater than the
target. If this is required, a while statement may be used (exercise!). The following is a sample run
of P5.18:

Initial deposit? 1000
Rate of interest? 10
Target deposit? 2000
 
Year Deposit Interest
 
 1 1000.00 100.00
 2 1100.00 110.00
 3 1210.00 121.00
 4 1331.00 133.10
 5 1464.10 146.41
 6 1610.51 161.05
 7 1771.56 177.16
 8 1948.72 194.87
 
Deposit exceeds $2000.00 at the end of year 8

EXERCISES 5

1.	 What is an end-of-data marker? Give the other names for it.

2.	 Write a program to read data for several items from a file. For each item, the
price and a discount percent is given. Choose an appropriate end-of-data marker.
For each item, print the original price, the discount amount, and the amount the
customer must pay. At the end, print the number of items and the total amount the
customer must pay.

3.	 An auto repair shop charges as follows. Inspecting the vehicle costs $75. If no work
needs to be done, there is no further charge. Otherwise, the charge is $75 per hour
for labor plus the cost of parts, with a minimum charge of $120. If any work is
done, there is no charge for inspecting the vehicle.

4.	 Write a program to read several sets of hours worked and cost of parts and, for
each, print the charge for the job. Choose an appropriate end-of-data marker. (You
cannot choose 0 since either hours or parts could be 0.) At the end, print the total
charge for all jobs.

5.	 Write a program to calculate electricity charges for several customers. The data
for each customer consists of a name, the previous meter reading, and the current
meter reading. The difference in the two readings gives the number of units of
electricity used. The customer pays a fixed charge of $25 plus 20 cents for each
unit used. The data is stored in a file.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Programs with Repetition Logic

137

6.	 Assume that the fixed charge and the rate per unit are the same for all customers
and are given on the first line. This is followed by the data for the customers. Each
set of data consists of two lines: a name on the first line and the meter readings
on the second line. The “name” xxxx ends the data. Print the information for the
customers under a suitable heading. Also,

•	 Count how many customers were processed

•	 Print the total due to the electricity company

•	 Find the customer whose bill was the highest

7.	 A file contains data for several persons. The data for each person consists of their
gross salary, deductions allowed and rate of tax (e.g., 25, meaning 25%). Tax is
calculated by applying the rate of tax to (gross salary minus deductions). Net pay is
calculated by gross salary minus tax.

Under an appropriate heading, print the gross salary, tax deducted, net pay, and the percentage
of the gross salary that was paid in tax.

For each person, the data consists of two lines: a name on the first line and gross salary,
deductions allowed and rate of tax on the second line. The “name” xxxx ends the data. Also,

•	 Count how many persons were processed

•	 Print totals for gross salary, tax deducted and net pay

•	 Find the person who earned the highest net pay

8.	 Write a program that reads several lengths in inches and, for each, converts it to
yards, feet and inches. (1 yard = 3 feet, 1 foot = 12 inches). For example, if a length
is 100, the program should print 2 yd 2 ft 4 in. Choose an appropriate end-
of-data marker.

9.	 Each line of data in a file consists of two lengths. Each length is given as two
numbers representing feet and inches. A line consisting of 0 0 only ends the data.
For each pair of lengths, print their sum. For example, if the lengths are 5 ft. 4
in. and 8 ft. 11 in., your program should print 14 ft. 3 in. The line of data for this
example would be given as

5 4 8 11

10.	 You are given a file containing an unknown amount of numbers. Each number
is one of the numbers 1 to 9. A number can appear zero or more times and can
appear anywhere in the file. The number 0 indicates the end of the data. Some
sample data are:

5 3 7 7 7 4 3 3 2 2 2 6 7 4 7 7
2 2 9 6 6 6 6 6 8 5 5 3 7 9 9 9 0

Write a program to read the data once and print the number that appears the most in
consecutive positions and the number of times it appears. Ignore the possibility of a tie.
For the above data, output should be 6 5.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Programs with Repetition Logic

138

11.	 A contest was held for the promotion of SuperMarbles. Each contestant was
required to guess the number of marbles in a jar. Write a program to determine the
Grand Prize winner (ignoring the possibility of a tie) based on the following:

The first line of data contains a single integer (answer, say) representing the actual number of
marbles in the jar. Each subsequent line contains a contestant’s ID number (an integer), and an
integer representing that contestant’s guess. The data is terminated by a line containing 0 only.

The Grand Prize winner is that contestant who guesses closest to answer without exceeding it.
There is no winner if all guesses are too big.

Assume all data are valid. Print the number of contestants and the ID number of the winner,
if any.

12.	 The manager of a hotel wants to calculate the cost of carpeting the rooms in
the hotel. All the rooms are rectangular in shape. He has a file, rooms.in, which
contains data for the rooms. Each line of data consists of the room number, the
length, and breadth of the room (in meters), and the cost per square meter of the
carpet for that room. For example, the data line:

325 3.0 4.5 40.00

means that room 325 is 3.0 meters by 4.5 meters, and the cost of the carpet for that
room is $40.00 per square meter. The last line of the file contains 0 only, indicating the
end of the data.

Write a program to do the following, sending output to the file rooms.out:

•	 Print a suitable heading and under it, for each room, print the room number, the
area of the room, and the cost of the carpet for the room;

•	 Print the number of rooms processed;

•	 Print the total cost of carpeting all the rooms;

•	 Print the number of the room that will cost the most to carpet (ignore ties).

13.	 The price of an item is p dollars. Due to inflation, the price of the item is expected
to increase by r% each year. For example, the price might be $79.50 and inflation
might be 7.5%. Write a program which reads values for p and r, and, starting with
year 1, prints a table consisting of year and year-end price. The table ends when
the year-end price is at least twice the original price.

14.	 A fixed percentage of water is taken from a well each day. Request values for W
and P where

•	 W is the amount (in liters) of water in the well at the start of the first day

•	 P is the percentage of the water in the well taken out each day

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Programs with Repetition Logic

139

Write a program to print the number of the day, the amount taken for that day, and the amount
remaining at the end of the day. The output should be terminated when 30 days have been
printed or the amount remaining is less than 100 liters, whichever comes first. For example, if
W is 1000 and P is 10, the output should start as follows:

Day Amount Amount
 Taken Remaining
 1 100 900
 2 90 810
 3 81 729

15.	 Write a program to print the following 99 times:

When you have nothing to say, it is a time to be silent

16.	 Write a program to print 8 copies of your favorite song.

17.	 Write a program to print a table of squares from 1 to 10. Each line of the table
consists of a number and the square of that number.

18.	 Write a program to request a value for n and print a table of squares from 1 to n.

19.	 Write a program to request values for first and last, and print a table of squares
from first to last.

20.	 Write a program to print 100 mailing labels for

The Computer Store
57 First Avenue
San Fernando

21.	 Write a program to print a conversion table from miles to kilometers. The table
ranges from 5 to 100 miles in steps of 5. (1 mile = 1.61 km).

22.	 Write a program which requests a user to enter an amount of money. The program
prints the interest payable per year for rates of interest from 5% to 12% in steps
of 0.5%.

23.	 Write a program to request a value for n; the user is then asked to enter n numbers,
one at a time. The program calculates and prints the sum of the numbers. The
following is a sample run:

How many numbers? 3
Enter a number? 12
Enter a number? 25
Enter a number? 18
 
The sum of the 3 numbers is 55

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Programs with Repetition Logic

140

24.	 Write a program to request an integer n from 1 to 9 and print a line of output
consisting of ascending digits from 1 to n followed by descending digits from n-1
to 1. For example, if n = 5, print the line

123454321

25.	 Solve problem 10, above, assuming that the first line of data contains the number
of rooms (n, say) to carpet. This is followed by n lines of data, one line for each
room.

26.	 Solve problem 12, above, but this time print the table for exactly 30 days. If
necessary, continue printing the table even if the amount of water falls below
100 liters.

www.it-ebooks.info

http://www.it-ebooks.info/

141

Chapter 6

Characters

In this chapter, we will explain the following:

•	 Some important features of character sets

•	 How to work with character constants and values

•	 How to declare character variables in C

•	 How you can use characters in arithmetic expressions

•	 How to read, manipulate, and print characters

•	 How to test for end-of-line using \n

•	 How to test for end-of-file using EOF

•	 How to compare characters

•	 How to read characters from a file

•	 How to convert a number from character to integer

6.1 Character Sets
Most of us are familiar with a computer or typewriter keyboard (called the standard English
keyboard). On it, we can type the letters of the alphabet (both uppercase and lowercase), the
digits and other ‘special’ characters like +, =, <, >, &, and %—these are the so-called printable
characters.

On a computer, each character is assigned a unique integer value, called its code. This code
may be different from one computer to another depending on the character set being used. For
example, the code for A might be 33 on one computer but 65 on another.

Inside the computer, this integer code is stored as a sequence of bits; for example, the 6-bit
code for 33 is 100001 and the 7-bit code for 65 is 1000001.

Nowadays, most computers use the ASCII (American Standard Code for Information
Interchange) character set for representing characters. This is a 7-bit character standard that
includes the letters, digits, and special characters found on a standard keyboard. It also includes
control characters such as backspace, tab, line feed, form feed, and carriage return.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Characters

142

The ASCII codes run from 0 to 127 (the range of numbers that can be stored using 7 bits).
The ASCII character set is shown in Appendix B. Interesting features to note are the following:

•	 The digits 0 to 9 occupy codes 48 to 57.

•	 The uppercase letters A to Z occupy codes 65 to 90.

•	 The lowercase letters a to z occupy codes 97 to 122.

Note, however, that even though the ASCII set is defined using a 7-bit code, it is stored on
most computers in 8-bit bytes—a 0 is added at the front of the 7-bit code. For example, the 7-bit
ASCII code for A is 1000001; on a computer, it is stored as 01000001, occupying one byte.

In this book, as far as is possible, we will write our programs making no assumptions about
the underlying character set. Where it is unavoidable, we will assume that the ASCII character set
is used. For instance, we may need to assume that the uppercase letters are assigned consecutive
codes, similarly for lowercase letters. This may not necessarily be true for another character set.
Even so, we will not rely on the specific values of the codes, only that they are consecutive.

6.2 Character Constants and Values
A character constant is a single character enclosed in single quotes such as ‘A’, ‘+’ and ‘5’. Some
characters cannot be represented like this because we cannot type them. Others play a special
role in C (e.g. ', \). For these, we use an escape sequence enclosed in single quotes. Some examples
are shown in the following table:

char description Code

'\n' new line 10

'\f' form feed 12

'\t' tab 9

'\'' single quote 39

'\\' backslash 92

The character constant '\0' is special in C; it is the character whose code is 0, normally
referred to as the null character. One of its special uses is to indicate the end of a string in memory
(see Chapter 8).

The character value of a character constant is the character represented, without the single
quotes. Thus, the character value of 'T' is T and the character value of '\\' is \.

A character constant has an integer value associated with it—the numeric code of the character
represented. Thus, the integer value of 'T' is 84 since the ASCII code for T is 84. The integer value of
'\\' is 92 since the ASCII code for \ is 92. And the integer value of '\n' is 10 since the ASCII code
for the newline character is 10.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1371-1_8
http://www.it-ebooks.info/

Chapter 6 ■ Characters

143

We could print the character value using the specification %c in printf, and we could print
the integer value using %d. For example, the statement

printf("Character: %c, Integer: %d\n", 'T', 'T');

will print

Character: T, Integer: 84

6.3 The Type char
In C, we use the keyword char to declare a variable in which we wish to store a character. For
example, the statement

char ch;

declares ch as a character variable. We could, for instance, assign a character constant to ch,
as follows:

ch = 'R'; //assign the letter R to ch
ch = '\n'; //assign the newline character, code 10, to ch

We could print the character value of a character variable using %c in printf. And we could
print the integer value of a character variable using %d. For instance,

ch = 'T';
printf("Mr. %c\n", ch);
printf("Mr. %d\n", ch);

will print

Mr. T
Mr. 84

6.4 Characters in Arithmetic Expressions
C allows us to use variables and constants of type char directly in arithmetic expressions. When
we do, it uses the integer value of the character. For example, the statement

int n = 'A' + 3;

assigns 68 to n since the code for 'A' is 65.
Similarly, we can assign an integer value to a char variable. For example,

char ch = 68;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Characters

144

In this case, “the character whose code is 68” is assigned to ch; this character is 'D'.
For a more useful example, consider the following:

int d = '5' - '0';

The integer 5 is assigned to d since the code for '5' is 53 and the code for '0' is 48.
Note that the code for a digit in character form is not the same as the value of the digit; for

instance, the code for the character '5' is 53 but the value of the digit 5 is 5. Sometimes we know
that a character variable contains a digit and we want to get the (integer) value of the digit.

The above statements show how we can get the value of the digit – we simply subtract the
code for '0' from the code for the digit. It does not matter what the actual codes for the digits are;
it matters only that the codes for 0 to 9 are consecutive. (Exercise: check this for yourself assuming
a different set of code values for the digits.)

In general, if ch contains a digit character ('0' to '9'), we can obtain the integer value of the
digit with the statement

d = ch - '0';

6.4.1 Uppercase To/From Lowercase
Suppose ch contains an uppercase letter and we want to convert it to its equivalent lowercase
letter. For example, assume ch contains 'H' and we want to change it to 'h'. First we observe
that the ASCII codes for 'A' to 'Z' range from 65 to 90 and the codes for 'a' to 'z' range from
97 to 122. We further observe that the difference between the codes for the two cases of a letter is
always 32; for example,

'r' - 'R' = 114 – 82 = 32

Hence we can convert a letter from uppercase to lowercase by adding 32 to the uppercase
code. This can be done with

ch = ch + 32;

If ch contains 'H' (code 72), the above statement adds 32 to 72 giving 104; the “character whose
code is 104” is assigned to ch, that is, 'h'. We have changed the value of ch from 'H' to 'h'. Conversely,
to convert a letter from lowercase to uppercase, we subtract 32 from the lowercase code.

By the way, we do not really need to know the codes for the letters. All we need is the
difference between the uppercase and lowercase codes. We can let C tell us what the difference is
by using 'a' - 'A', like this:

ch = ch + 'a' - 'A';

This works no matter what the actual codes for the letters are. It assumes, of course, that ch
contains an uppercase letter and the difference between the uppercase and lowercase codes is
the same for all letters.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Characters

145

6.5 Read and Print Characters
Many programs revolve around the idea of reading and writing one character at a time, and
developing the skill of writing such programs is a very important aspect of programming. We can
use scanf to read a single character from the standard input (the keyboard) into a char variable
(ch, say) with:

scanf("%c", &ch);

The next character in the data is stored in ch. It is very important to note a big difference
between reading a number and reading a character. When reading a number, scanf will skip
over any amount of whitespace until it finds the number. When reading a character, the very next
character (whatever it is, even if it’s a space) is stored in the variable.

While we can use scanf, reading a character is important enough that C provides a special
function getchar for reading characters from the standard input. (Strictly speaking, getchar is
what’s called a macro, but the distinction is not important for our purposes.) For the most part,
we can think that getchar returns the next character in the data. However, it actually returns the
numeric code of the next character. For this reason, it is usually assigned to an int variable, as in:

int c = getchar(); // the brackets are required

But it can also be assigned to a char variable, as in:

char ch = getchar(); // the brackets are required

To be precise, getchar returns the next byte in the data – to all intents and purposes, this is
the next character. If we call getchar when there is no more data, it returns -1.

To be more precise, it returns the value designated by the symbolic constant EOF (all uppercase)
defined in stdio.h. This value is usually, though not always, -1. The actual value is system dependent,
but EOF will always denote the value returned on the system on which the program is run. We can,
of course, always find out what value is returned by printing EOF, thus:

printf("Value of EOF is %d \n", EOF);

For an example, consider the statement:

char ch = getchar();

Suppose the data typed by the user is this:

Hello

When ch = getchar() is executed, the first character H is read and stored in ch. We can
then use ch in whatever way we like. Suppose we just want to print the first character read. We
could use:

printf("%c \n", ch);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Characters

146

This would print

H

on a line by itself. We could, of course, label our output as in the following statement:

printf("The first character is %c \n", ch);

This would print

The first character is H

Finally, we don’t even need ch. If all we want to do is print the first character in the data,
we could do so with:

printf("The first character is %c \n", getchar());

If we want to print the numeric code of the first character, we could do so by using the
specification %d instead of %c. These ideas are incorporated in Program P6.1.

Program P6.1

//read the first character in the data, print it,
//its code and the value of EOF
#include <stdio.h>
int main() {
 printf("Type some data and press 'Enter' \n");
 char ch = getchar();
 printf("\nThe first character is %c \n", ch);
 printf("Its code is %d \n", ch);
 printf("Value of EOF is %d \n", EOF);
}

The following is a sample run:

Type some data and press 'Enter'
Hello
 
The first character is H
Its code is 72
Value of EOF is -1

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Characters

147

A word of caution: we might be tempted to write the following:

printf("The first character is %c \n", getchar());
printf("Its code is %d \n", getchar()); // wrong

But if we did, and assuming that Hello is typed as input, these statements will print:

The first character is H
Its code is 101

Why? In the first printf, getchar returns H, which is printed. In the second printf, getchar
returns the next character, which is e; it is e’s code (101) that is printed.

In Program P6.1, we could use an int variable (n, say) instead of ch and the program would
work in an identical manner. If an int variable is printed using %c, the last (rightmost) 8 bits of the
variable are interpreted as a character and this character is printed. For example, the code for H is
72 which is 01001000 in binary, using 8 bits. Assuming n is a 16-bit int, when H is read, the value
assigned to n will be

00000000 01001000

If n is now printed with %c, the last 8 bits will be interpreted as a character which, of course, is H.
Similarly, if an int value n is assigned to a char variable (ch, say), the last 8 bits of n will be

assigned to ch.
As mentioned, getchar returns the integer value of the character read. What does it return

when the user presses “Enter” or “Return” on the keyboard? It returns the newline character \n,
whose code is 10. This can be seen using Program P6.1. When the program is waiting for you
to type data, if you press the “Enter” or “Return” key only, the first lines of output would be as
follows (note the blank line):

The first character is
 
Its code is 10

Why the blank line? Since ch contains \n, the statement

printf("\nThe first character is %c \n", ch);

is effectively the same as the following (with %c replaced by the value of ch)

printf("\nThe first character is \n \n");

The \n after is ends the first line and the last \n ends the second line, effectively printing a
blank line. Note, however, that the code for \n is printed correctly.

In Program P6.1, we read just the first character. If we want to read and print the first three
characters, we could do this with Program P6.2.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Characters

148

Program P6.2

//read and print the first 3 characters in the data
#include <stdio.h>
int main() {
 printf("Type some data and press 'Enter' \n");
 for (int h = 1; h <= 3; h++) {
 char ch = getchar();
 
 printf("Character %d is %c \n", h, ch);
 }
}

The following is a sample run of the program:

Type some data and press 'Enter'
Hi, how are you?
Character 1 is H
Character 2 is i
Character 3 is ,

If we want to read and print the first 20 characters, all we have to do is change 3 to 20 in the for
statement.

Suppose the first part of the data line contains an arbitrary number of blanks, including none.
How do we find and print the first non-blank character? Since we do not know how many blanks
to read, we cannot say something like “read 7 blanks, then the next character.”

More likely, we need to say something like “as long as the character read is a blank, keep
reading.” We have the notion of doing something (reading a character) as long as some ‘condition’
is true; the condition here is whether the character is a blank. This can be expressed more
concisely as follows:

read a character
while the character read is a blank
 read the next character

Program P6.3 shows how to read the data and print the first non-blank character. (This code
will be written more concisely later in this section.)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Characters

149

Program P6.3

//read and print the first non-blank character in the data
#include <stdio.h>
int main() {
 printf("Type some data and press 'Enter' \n");
 char ch = getchar(); // get the first character
 while (ch == ' ') // as long as ch is a blank
 ch = getchar(); // get another character
 
 printf("The first non-blank is %c \n", ch);
}

The following is a sample run of the program (◊ denotes a blank):

Type some data and press 'Enter'
◊◊◊Hello
The first non-blank is H

The program will locate the first non-blank character regardless of how many blanks
precede it.

As a reminder of how the while statement works, consider the following portion of code from
Program P6.3 with different comments:

char ch = getchar(); //executed once; gives ch a value
 //to be tested in the while condition
 
while (ch == ' ')
 ch = getchar(); //executed as long as ch is ' '

and suppose the data entered is (◊ denotes a space):

◊◊◊Hello

The code will execute as follows:

	 1.	 The first character is read and stored in ch; it is a blank.

	 2.	 The while condition is tested; it is true.

	 3.	 The while body ch = getchar(); is executed and the second character
is read and stored in ch; it is a blank.

	 4.	 The while condition is tested; it is true.

	 5.	 The while body ch = getchar(); is executed and the third character is
read and stored in ch; it is a blank.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Characters

150

	 6.	 The while condition is tested; it is true.

	 7.	 The while body ch = getchar(); is executed and the fourth character is
read and stored in ch; it is H.

	 8.	 The while condition is tested; it is false.

	 9.	 Control goes to the printf, which prints.

The first non-blank is H

What if H was the very first character in the data? The code will execute as follows:

	 1.	 The first character is read and stored in ch; it is H.

	 2.	 The while condition is tested; it is false.

	 3.	 Control goes to the printf, which prints.

The first non-blank is H

It still works! If the while condition is false the first time it is tested, the body is not executed at
all.
As another example, suppose we want to print all characters up to, but not including, the first
blank. To do this, we could use Program P6.4.

Program P6.4

//print all characters before the first blank in the data
#include <stdio.h>
int main() {
 printf("Type some data and press 'Enter' \n");
 char ch = getchar(); // get the first character
 while (ch != ' ') { // as long as ch is NOT a blank
 printf("%c \n", ch);// print it
 
 ch = getchar(); // and get another character
 }
}

The following is a sample run of P6.4:

Type some data and press 'Enter'
Way to go
W
a
y

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Characters

151

The body of the while consists of two statements. These are enclosed by { and } to satisfy C’s
rule that the while body must be a single statement or a block. Here, the body is executed as long
as the character read is not a blank – we write the condition using != (not equal to).

If the character is not a blank, it is printed and the next character read. If that is not a blank,
it is printed and the next character read. If that is not a blank, it is printed and the next character
read. And so on, until a blank character is read, making the while condition false, causing an exit
from the loop.

We would be amiss if we didn’t enlighten you about some of the expressive power in C. For
instance, in Program P6.3, we could have read the character and tested it in the while condition.
We could have rewritten the following three lines:

ch = getchar(); // get the first character
while (ch == ' ') // as long as ch is a blank
 ch = getchar(); // get another character

as one line

while ((ch = getchar()) == ' '); // get a character and test it

ch = getchar() is an assignment expression whose value is the character assigned to ch,
that is, the character read. This value is then tested to see if it is a blank. The brackets around ch
= getchar() are required since == has higher precedence than =. Without them, the condition
would be interpreted as ch = (getchar() == ' '). This would assign the value of a condition
(which, in C, is 0 for false or 1 for true) to the variable ch; this is not what we want.

Now that we have moved the statement in the body into the condition, the body is empty; this
is permitted in C. The condition would now be executed repeatedly until it becomes false.

To give another example, in Program 6.4, consider the following code:

char ch = getchar(); // get the first character
while (ch != ' ') { // as long as ch is NOT a blank
 printf("%c \n", ch) // print it
 ch = getchar(); // and get another character
}

This could be re-coded as follows (assuming ch is declared before the loop):

while ((ch = getchar()) != ' ') // get a character
 printf("%c \n", ch); // print it if non-blank; repeat

Now that the body consists of just one statement, the braces are no longer required. Five lines
have been reduced to two!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Characters

152

6.6 Count Characters
Program P6.3 prints the first non-blank character. Suppose we want to count how many blanks
there were before the first non-blank. We could use an integer variable numBlanks to hold the
count. Program P6.5 is the modified program for counting the leading blanks.

Program P6.5

//find and print the first non-blank character in the data;
// count the number of blanks before the first non-blank
#include <stdio.h>
int main() {
 char ch;
 int numBlanks = 0;
 printf("Type some data and press 'Enter' \n");
 while ((ch = getchar()) == ' ') // repeat as long as ch is blank
 numBlanks++; // add 1 to numBlanks
 printf("The number of leading blanks is %d \n", numBlanks);
 printf("The first non-blank is %c \n", ch);
}

The following is a sample run of the program (◊ denotes a space):

Type some data and press 'Enter'
◊◊◊◊Hello
The number of leading blanks is 4
The first non-blank is H

Comments on Program P6.5:

•	 numBlanks is initialized to 0 before the while loop.

•	 numBlanks is incremented by 1 inside the loop so that numBlanks is
incremented each time the loop body is executed. Since the loop body is
executed when ch contains a blank, the value of numBlanks is always the
number of blanks read so far.

•	 When we exit the while loop, the value in numBlanks will be the number of
blanks read. This value is then printed.

•	 Observe that if the first character in the data were non-blank, the while
condition would be immediately false and control will go directly to the
first printf statement with numBlanks having the value 0. The program
will print, correctly:

The number of leading blanks is 0

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Characters

153

6.6.1 Count Characters in a Line
Suppose we want to count the number of characters in a line of input. Now we must read
characters until the end of the line. How does our program test for end-of-line? Recall that when
the “Enter” or “Return” key is pressed by the user, the newline character, \n, is returned by
getchar. The following while condition reads a character and tests for \n.

while ((ch = getchar()) != '\n')

Program P6.6 reads a line of input and counts the number of characters in it, not counting the
“end-of-line” character.

Program P6.6

//count the number of characters in the input line
#include <stdio.h>
int main() {
 char ch;
 int numChars = 0;
 printf("Type some data and press 'Enter' \n");
 while ((ch = getchar()) != '\n') // repeat as long as ch is not \n
 numChars++; // add 1 to numChars
 
 printf("The number of characters is %d \n", numChars);
}

The main difference between this and Program P6.5 is that this one reads characters until the end
of the line rather than until the first non-blank. A sample run is:

Type some data and press 'Enter'
One moment in time
 
The number of characters is 18

6.7 Count Blanks in a Line of Data
Suppose we want to count all the blanks in a line of data. We must still read characters until
the end of the line is encountered. But now, for each character read, we must check whether
it is a blank. If it is, the count is incremented. We would need two counters—one to count the

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Characters

154

number of characters in the line and the other to count the number of blanks. The logic could be
expressed as:

set number of characters and number of blanks to 0
while we are not at the end-of-line
 read a character
 add 1 to number of characters
 if character is a blank then add 1 to number of blanks
endwhile

This logic is implemented as shown in Program P6.7.

Program P6.7

//count the number of characters and blanks in the input line
#include <stdio.h>
int main() {
 char ch;
 int numChars = 0;
 int numBlanks = 0;
 printf("Type some data and press 'Enter' \n");
 while ((ch = getchar()) != '\n') { // repeat as long as ch is not \n
 numChars++; // add 1 to numChars 
 if (ch == ' ') numBlanks++; // add 1 if ch is blank
 }
 printf("\nThe number of characters is %d \n", numChars);
 printf("The number of blanks is %d \n", numBlanks);
}

Here is a sample run:

Type some data and press 'Enter'
One moment in time
 
The number of characters is 18
The number of blanks is 3

The if statement tests the condition ch == ' '; if it is true (that is, ch contains a blank),
numBlanks is incremented by 1. If it is false, numBlanks is not incremented; control would
normally go to the next statement within the loop but there is none (the if is the last statement).
Therefore, control goes back to the top of the while loop, where another character is read and
tested for \n.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Characters

155

6.8 Compare Characters
Characters can be compared using the relational operators ==, !=, <, <=, > and >=. We’ve
compared the char variable ch with a blank using ch == ' ' and ch != ' '.

Let us now write a program to read a line of data and print the ‘largest’ character, that is, the
character with the highest code. For instance, if the line consisted of English words, the letter that
comes latest in the alphabet would be printed. (Recall, though, that lowercase letters have higher
codes than uppercase letters so that, for instance, 'g' is greater than 'T'.)

‘Finding the largest character’ involves the following steps:

•	 Choose a variable to hold the largest value; we choose bigChar.

•	 Initialize bigChar to a very small value. The value chosen should be such
that no matter what character is read, its value would be greater than this
initial value. For characters, we normally use '\0'—the null character, the
‘character’ with a code of 0.

•	 As each character (ch, say) is read, it is compared with bigChar; if ch is
greater than bigChar, then we have a ‘larger’ character and bigChar is set to
this new character.

•	 When all the characters have been read and checked, bigChar will contain
the largest one.

These ideas are expressed in Program P6.8.

Program P6.8

//read a line of data and find the 'largest' character
#include <stdio.h>
int main() {
 char ch, bigChar = '\0';
 printf("Type some data and press 'Enter' \n");
 while ((ch = getchar()) != '\n')
 if (ch > bigChar) bigChar = ch; //is this character bigger?
 
 printf("\nThe largest character is %c \n", bigChar);
}

The following is a sample run; u is printed since its code is the highest of all the characters typed.

Type some data and press 'Enter'
Where The Mind Is Without Fear
 
The largest character is u

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Characters

156

6.9 Read Characters from a File
In our examples so far, we have read characters typed at the keyboard. If we want to read
characters from a file (input.txt, say), we must declare a file pointer (in, say) and associate it
with the file using

FILE * in = fopen("input.txt", "r");

Once this is done, we could read the next character from the file into a char variable (ch, say) with
this statement:

fscanf(in, "%c", &ch);

However, C provides the more convenient function getc (get a character) for reading a character
from a file. It is used as follows:

ch = getc(in);

getc takes one argument, the file pointer (not the name of the file). It reads and returns the next
character in the file. If there are no more characters to read, getc returns EOF. Thus, getc works
exactly like getchar except that getchar reads from the keyboard while getc reads from
a file.

To illustrate, let us write a program that reads one line of data from a file, input.txt, and
prints it on the screen. This is shown as Program P6.9.

Program P6.9

#include <stdio.h>
int main() {
 char ch;
 FILE *in = fopen("input.txt", "r");
 while ((ch = getc(in)) != '\n')
 putchar(ch);
 putchar('\n');
 fclose(in);
}

This program uses the standard function putchar to write a single character to the standard
output. (Like getchar, putchar is a macro but the distinction is not important for our purposes.)
It takes a character value as its only argument and writes the character in the next position in
the output. However, if the character is a control character, the effect of the character is produced.
For example,

putchar('\n');

will end the current output line – the same effect as if “Enter” or “Return” is pressed.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Characters

157

The program reads one character at a time from the file and prints it on the screen using
putchar. It does this until \n is read, indicating that the entire line has been read. On exit from the
while loop, it uses putchar('\n') to terminate the line on the screen.

Be careful, though. This program assumes that the line of data is terminated by an end-of-line
character, \n (generated when you press “Enter” or “Return”). However, if the line is not terminated
by \n, the program will ‘hang’—it will be caught in a loop from which it cannot get out (we say it will
be caught in an infinite loop). Why?

Because the while condition ((ch = getc(in)) != '\n') will never become false (this
happens when ch is '\n') since there is no \n to be read. But, as discussed before, when we reach
the end-of-file, the value returned by getchar, and now also by getc, is the symbolic constant EOF
defined in stdio.h. Knowing this, we could easily fix our problem by testing for \n and EOF in the
while condition, thus:

while ((ch = getc(in)) != '\n' && ch != EOF)

Even if \n is not present, getc(in) will return EOF when the end of the file is reached, and the
condition ch != EOF would be false, causing an exit from the loop.

6.10 Write Characters to a File
Suppose we want to write characters to a file (output.txt, say). As always, we must declare a file
pointer (out, say) and associate it with the file using

FILE * out = fopen("output.txt", "w");

If ch is a char variable, we can write the value of ch to the file with

fprintf(out, "%c", ch);

C also provides the function putc (put a character) to do the same job. To write the value of ch to
the file associated with out, we must write:

putc(ch, out);

Note that the file pointer is the second argument to putc.

6.10.1 Echo Input, Number Lines
Let us expand the example on the previous page to read data from a file and write back the same
data (echo the data) to the screen with the lines numbered starting from 1.

The program would read the data from the file and write it to the screen, thus:

1. First line of data
2. Second line of data
 etc.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Characters

158

This problem is a bit more difficult than those we have met so far. When faced with such a
problem, it is best to tackle it a bit at a time, solving easier versions of the problem and working
your way up to solving the complete problem.

For this problem, we can first write a program that simply echoes the input without
numbering the lines. When we get this right, we can tackle the job of numbering the lines.

An outline of the algorithm for this first version is the following:

read a character, ch
while ch is not the end-of-file character
 print ch
 read a character, ch
endwhile

This will maintain the line structure of the data file since, for instance, when \n is read from
the file, it is immediately printed to the screen, forcing the current line to end.

Program P6.10 implements the above algorithm for reading the data from a file and printing
an exact copy on the screen.

Program P6.10

#include <stdio.h>
int main() {
 char ch;
 FILE *in = fopen("input.txt", "r");
 while ((ch = getc(in)) != EOF)
 putchar(ch); 
 fclose(in);
}

Now that we can echo the input, we need only figure out how to print the line numbers.
A simplistic approach is based on the following outline:

set lineNo to 1
print lineNo
read a character, ch
while ch is not the end-of-file character
 print ch
 if ch is \n
 add 1 to lineNo 
 print lineNo 
 endif
 read a character, ch
endwhile

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Characters

159

We have simply added the statements that deal with the line numbers to the algorithm above.
We can easily add the code that deals with the line numbers to Program P6.10 to get Program
P6.11. Note that when we print the line number, we do not terminate the line with \n since the
data must be written on the same line as the line number.

Program P6.11

//This program prints the data from a file numbering the lines
#include <stdio.h>
int main() {
 char ch;
 FILE *in = fopen("input.txt", "r");
 int lineNo = 1;
 printf("%2d. ", lineNo);
 while ((ch = getc(in)) != EOF) {
 putchar(ch); 
 if (ch == '\n') { 
 lineNo++; 
 printf("%2d. ", lineNo);
 }
 }
 fclose(in);
}

Assume the input file contains the following:

There was a little girl
 Who had a little curl
Right in the middle of her forehead

Program P6.11 will print this:

1. There was a little girl
2. Who had a little curl
3. Right in the middle of her forehead
4.

Almost, but not quite, correct! The little glitch is that we print an extra line number at the end.
To see why, look at the if statement. When \n of the third data line is read, 1 would be added to
lineNo, making it 4, which is printed by the next statement. This printing of an extra line number
also holds if the input file is empty, since line number 1 would be printed in this case, but there is
no such line.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Characters

160

To get around this problem, we must delay printing the line number until we are sure that
there is at least one character on the line. We will use an int variable writeLineNo, initially
set to 1. If we have a character to print and writeLineNo is 1, the line number is printed and
writeLineNo is set to 0. When writeLineNo is 0, all that happens is that the character just read is
printed.

When \n is printed to end a line of output, writeLineNo is set to 1. If it turns out that there is
a character to print on the next line, the line number will be printed first since writeLineNo is 1.
If there are no more characters to print, nothing further is printed; in particular, the line number
is not printed.

Program P6.12 contains all the details. When run, it will number the lines without printing an
extra line number.

Program P6.12

//This program prints the data from a file numbering the lines
#include <stdio.h>
int main() {
 char ch;
 FILE *in = fopen("input.txt", "r");
 int lineNo = 0, writeLineNo = 1;
 while ((ch = getc(in)) != EOF) {
 if (writeLineNo) { 
 printf("%2d. ", ++lineNo); 
 writeLineNo = 0; 
 } 
 putchar(ch); 
 if (ch == '\n') writeLineNo = 1; 
 }
 fclose(in);
}

We wrote the if condition as follows:

if (writeLineNo)...

If writeLineNo is 1 the condition evaluates to 1 and is, therefore, true; if it is 0, the condition is
false. We could also have written the condition as

if (writeLineNo == 1)...

In the statement

printf("%d. ", ++lineNo);

the expression ++lineNo means that lineNo is incremented first before being printed. By
comparison, if we had used lineNo++, then lineNo would be printed first and then incremented.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Characters

161

Exercise: Modify Program P6.12 to send the output to a file, linecopy.txt.
Exercise: Write a program to copy the contents of a file, input.txt, to a file, copy.txt.

Hint: you just need to make minor changes to Program P6.10.

6.11 Convert Digit Characters to Integer
Let us consider how we can convert a sequence of digits into an integer. When we type the
number 385, we are actually typing three individual characters – ‘3’ then ‘8’ then ‘5’. Inside the
computer, the integer 385 is completely different from the three characters ‘3’ ‘8’ ‘5’. So when we
type 385 and try to read it into an int variable, the computer has to convert this sequence of three
characters into the integer 385.

To illustrate, the 8-bit ASCII codes for the characters ‘3’, ‘8’, and ‘5’ are 00110011, 00111000,
and 00110101, respectively. When typed to the screen or a file, the digits 385 are represented
by this:

00110011 00111000 00110101

Assuming an integer is stored using 16 bits, the integer 385 is represented by its binary
equivalent

0000000110000001

Observe that the character representation is quite different from the integer representation.
When we ask scanf (or fscanf) to read an integer that we type, it must convert the character
representation to the integer representation. We now show how this is done.

The basic step requires us to convert a digit character into its equivalent integer value.
For example, we must convert the character ‘5’ (represented by 00110101) into the integer 5
(represented by 0000000000000101).

Assuming that the codes for the digits 0 to 9 are consecutive (as they are in ASCII and other
character sets), this can be done as follows:

integer value of digit = code for digit character – code for character ‘0’
For example, in ASCII, the code for ‘5’ is 53 and the code for ‘0’ is 48. Subtracting 48 from 53

gives us the integer value (5) of the character ‘5’. Once we can convert individual digits, we can
construct the value of the number as we read it from left to right, using the following algorithm:

set num to 0
get a character, ch
while ch is a digit character
 convert ch to the digit value, d = ch - '0'
 set num to num*10 + d
 get a character, ch
endwhile
num now contains the integer value

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Characters

162

The sequence of characters 385 is converted as follows:

num = 0
get '3'; convert to 3
num = num*10 + 3 = 0*10 + 3; num is now 3
get '8'; convert to 8
num = num*10 + 8 = 3*10 + 8; num is now 38
get '5'; convert to 5
num = num*10 + 5 = 38*10 + 5; num is now 385

There are no more digits and the final value of num is 385.
Let us use this idea to write a program that reads data character by character until it finds an

integer. It constructs and prints the integer.
The program will have to read characters until it finds a digit, the first of the integer. Having

found the first digit, it must construct the integer by reading characters as long as it keeps getting
a digit. For example, suppose the data was this:

Number of items: 385, all in good condition

The program will read characters until it finds the first digit, 3. It will construct the integer
using the 3 and then reading 8 and 5. When it reads the comma, it knows the integer has ended.

This outline can be expressed in pseudocode as follows:

read a character, ch
while ch is not a digit do
 read a character, ch
endwhile
//at this point, ch contains a digit
while ch is a digit do
 use ch to build the integer
 read a character, ch
endwhile
print the integer

How do we test if the character in ch is a digit? We must test if

ch >= '0' && ch <= '9'

If this is true, we know that the character is between '0' and '9', inclusive. Conversely, to test if
ch is not a digit, we can test if

ch < '0' || ch > '9'

Putting all these ideas together gives us Program P6.13.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Characters

163

Program P6.13

#include <stdio.h>
int main() {
 printf("Type data including a number and press \"Enter\"\n");
 char ch = getchar();
 // as long as the character is not a digit, keep reading
 while (ch < '0' || ch > '9') ch = getchar() ;
 // at this point, ch contains the first digit of the number
 int num = 0;
 while (ch >= '0' && ch <= '9') { // as long as we get a digit
 num = num * 10 + ch - '0'; // update num 
 ch = getchar(); 
 }
 printf("Number is %d\n", num);
}

A sample run is shown below:

Type data including a number and press "Enter"
hide the number &(%%)4719&*(&^ here
Number is 4719

This program will find the number, no matter where it is hidden in the line.

EXERCISES 6

1.	 Give the range of ASCII codes for (a) the digits (b) the uppercase letters (c) the
lowercase letters.

2.	 How is the single quote represented as a character constant?

3.	 What is the character value of a character constant?

4.	 What is the numeric value of a character constant?

5.	 How is the expression 5 + 'T' evaluated? What is its value?

6.	 What value is assigned to n by n = 7 + 't'?

7.	 What character is stored in ch by ch = 4 + 'n'?

8.	 If ch = '8', what value is assigned to d by d = ch - '0'?

9.	 If ch contains any uppercase letter, explain how to change ch to the equivalent
lowercase letter.

10.	 If ch contains any lowercase letter, explain how to change ch to the equivalent
uppercase letter.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Characters

164

11.	 Write a program to request a line of data and print the first digit on the line.

12.	 Write a program to request a line of data and print the first letter on the line.

13.	 Write a program to request a line of data and print the number of digits and letters
on the line.

14.	 Write a program to read a passage from a file and print how many times each
vowel appears.

15.	 Modify Program P6.13 so that it will find negative integers as well.

16.	 Write a program that reads a file containing a C program and outputs the program
to another file with all the // comments removed.

17.	 Write a program to read the data, character by character, and store the next number
(with or without a decimal point) in a double variable (dv, say). For example, given
the following data your program should store 43.75 in dv.

Mary works for $43.75 per hour

18.	 In the programming language Pascal, comments can be enclosed by { and } or by
(* and *). Write a program which reads a data file input.pas containing Pascal
code and writes the code to a file output.pas, replacing each { with (* and each
} with *). For example, the statements

read(ch); {get the first character}
while ch = ' ' do {as long as ch is a blank}
read(ch); {get another character}
writeln('The first non-blank is ', ch);
 
should be converted to

read(ch); (*get the first character*)
while ch = ' ' do (*as long as ch is a blank*)
read(ch); (*get another character*)
writeln('The first non-blank is ', ch);

19.	 You are given the same data as in 17, but now remove the comments altogether.

20.	 Someone has typed a letter in a file letter.txt, but does not always start the
word after a period with a capital letter. Write a program to copy the file to another
file format.txt so that all words after a period now begin with a capital letter.
Also ensure there is exactly one space after each period. For example, the text

Things are fine. we can see you now. let us know
when is a good time. bye for now.

must be rewritten as

Things are fine. We can see you now. Let us know when is a
good time. Bye for now.

www.it-ebooks.info

http://www.it-ebooks.info/

165

Chapter 7

Functions

In this chapter, we will explain the following:

•	 Why functions are important in programming

•	 How to write functions

•	 What happens when a function is called

•	 Where functions are placed in a program

•	 Some important concepts relating to functions using several examples

7.1 About Functions
So far, all our programs have consisted of a single function called main. However, we have made
use of predefined C functions such as printf, scanf, strcpy, and fopen. When we run a program,
it starts executing with the first statement in main and ends when it reaches the last statement.

As we have seen, it is possible to write reasonably useful programs with only main. However,
there are many limitations to this approach. The problem to be solved may be too complex to be
solved with one function. We may need to break it up into subproblems and try to solve each of
these individually. It would be impractical to solve all the subproblems in one function. It might
be better to write a separate function to solve each subproblem.

Also, we may want to reuse the solution to common problems. It would be difficult to reuse
a solution if it is part of the solution to a bigger problem. For example, if we need the highest
common factor (HCF) of two numbers in several places, it would be best to write a routine that
works out the HCF of two given numbers; we call this routine whenever we need to find the HCF
of two numbers.

A well-written function performs some well-defined task; for example, skip a specified
number of lines in the output or arrange some numbers in ascending order. However, quite often,
a function also returns a value; for example, calculate the salary of a person and return the answer
or play one turn of a game and return the score for that turn. The value returned is normally used
at the point from which the function was called.

Previously, we used the string function strcmp, which returns a value that tells us the
result of comparing two strings. And we have used getchar and getc to return the next character
in the input.

We are now ready to learn how to write our own functions (called user-defined functions),
and we will see several examples in the rest of this book.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Functions

166

7.2 skipLines
We have seen that we can use \n in a printf statement to print a blank line. For example,
the statement

printf("%d\n\n%d\n", a, b);

will print a on one line, skip one line and print b on the next line. We can usually skip any number
of lines by writing the appropriate number of \n’s in the printf statement.

Sometimes we may want to skip 3 lines, sometimes 2 lines, sometimes 5 lines, and so on.
It would be nice if there was a statement we could use to skip any number of lines we want.
For instance, to skip 3 lines, we should be able to write

skipLines(3);

and to skip 5 lines, we write

skipLines(5);

What we want is a function called skipLines, which takes an integer argument (n, say) and
skips n lines. In C, we write this function as follows:

void skipLines(int n) {
for (int h = 1; h <= n; h++)
 printf("\n");
}

Observe that the structure of the function is similar to the structure of main. It consists of a
header (the first line, except {) followed by the body enclosed in braces. The word void indicates
that the function does not return a value and (int n) defines n as an integer parameter. When
the function is called, we must supply it with an integer value to match the parameter n.

This is the definition of the function skipLines. We use the function by calling it when we
write, in main, a statement such as:

skipLines(3);

(A function can normally be called from any other function but, to focus our discussion, we
will assume it is called from main.)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Functions

167

We say that we call (or invoke) the function with the argument. (In this book, we use the term
‘parameter’ when referring to the definition of the function and the term ‘argument’ when the
function is called. Others use the terms interchangeably.) The “call” is executed as follows:

•	 The value of the argument is determined. In this case, it is just the constant 3
but, in general, it could be an expression.

•	 The value is copied to a temporary memory location. This location is passed
to the function where it is labeled with the name of the parameter, n. In
effect, the parameter variable n is set to the value of the argument. We can
picture this as follows: 

n 3

•	 The body of the function is executed. In this case, since n is 3, the for loop
becomes

for (int h = 1; h <= 3; h++)

and it prints \n three times.

•	 When the function is finished, the location containing the argument
is discarded and control returns to main to the statement following
skipLines(3).

Note that we can get skipLines to print a different number of blank lines by supplying a
different argument when we call it.

When the value of an argument is passed to a function, we say the argument is passed “by
value.” In C, arguments are passed “by value.”

7.3 A Program with a Function
We write Program P7.1 to show how skipLines fits into a complete program.

Program P7.1

#include <stdio.h>
int main() {
 void skipLines(int);
 printf("Sing a song of sixpence\n");
 skipLines(2);
 printf("A pocket full of rye\n");
} //end main
 
void skipLines(int n) {
 for (int h = 1; h <= n; h++)
 printf("\n");
} //end skipLines

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Functions

168

When we wish to use a variable in main, we must declare the variable in main. Similarly, if we want
to use skipLines in main, we must tell C about it using what is called a function prototype. A function
prototype is a declaration pretty much like the function header. In the program, we use the prototype:

void skipLines(int);

The prototype describes the function by stating the return type of the function (void,
in this case), the name of the function (skipLines) and the type(s) of any argument(s) (int,
in this example). If you wish, you can write a variable after the type, as in:

void skipLines(int a);

This variable will be used by the compiler only if it needs to generate an error message. In this
book, we will write our prototypes using the type only.

Note that the function prototype is followed by a semicolon whereas the function header is
followed by a left brace.

As another example, the prototype

int max(int, int);

says that max is a function that takes two integer arguments and returns an integer value.
A common mistake made by beginners is to forget to write the function prototype. However,

that is not a big problem. If you forget, the compiler will remind you of it. It is like forgetting to
declare a variable – the compiler will tell you about it. You just fix it and move on.

In terms of layout, the functions, including main, which make up a C program can appear in
any order. However, it is customary to place main first where the overall logic of the program can
be easily seen.

We emphasize that this program is for illustrative purposes only since the output could be
produced more easily with this:

printf("Sing a song of sixpence\n\n\n");
printf("A pocket full of rye\n");

7.3.1 The Function Header
In our example, we used the function header

void skipLines(int n)

In general, the function header consists of:

•	 a type (such as void, int, double, char), which specifies the type of value
returned by the function. If no value is returned, we use the word void. The
function skipLines does not return a value so we use void.

•	 the name we make up for the function, skipLines in the example.

•	 zero or more parameters, called the parameter list, enclosed in brackets; one
parameter n of type int is used in the example. If there are no parameters,
the brackets must still be present, as in printHeading().

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Functions

169

The function header is followed by the left brace of the body.
Parameters are specified in the same way variables are declared. In fact, they really are

declarations. The following are all valid examples of headers of void functions:

void sample1(int m, int n) // 2 parameters
void sample2(double a, int n, char c) // 3 parameters
void sample3(double a, double b, int j, int k) // 4 parameters

Each parameter must be declared individually and two consecutive declarations are
separated by a comma. For example, it is invalid to write

void sample1(int m, n) //not valid; must write (int m, int n)

Shortly, we will see examples of functions that return a value.

7.3.2 How a Function Gets Its Data
A function is like a mini program. In the programs we have written, we have stated what data
must be supplied to the program, what processing must take place, and what the output (results)
should be. We must do the same when we write a function.

When we write a function header, we use the parameter list to specify what data must be
supplied to the function when it is called. The list specifies how many data items, the type of the
each item, and the order in which they must be supplied.

For example, we wrote skipLines with an integer parameter n; this says that an integer value
must be supplied to skipLines when it is called. When skipLines is called, the argument supplied
becomes the specific value of n and the function is executed assuming that n has this value. In the
call skipLines(3), the argument 3 is the data that skipLines needs to perform its job.

It is worth emphasizing that main gets its data by using scanf, among other functions, to read
and store the data in variables. On the other hand, a function gets its data when it is called. The
variables in the parameter list are set to the values of the corresponding arguments used in the
call. For example, when we write the header

void sample(int n, char c, double b)

we are saying that, when we call sample, we must do so with three arguments: the first must be an
int value, the second a char value and the third a double value.

Assuming that num is int, ch is char and x is double, the following are all valid calls to sample:

sample(25, 'T', 7.5);
sample(num, 'A', x);
sample(num, ch, 7); //an int argument can match a double parameter
sample(num + 1, ch, x / 2.0);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Functions

170

If, when a function is called, the type of an argument is not the same as the corresponding
parameter, C tries to convert the argument to the required type. For example, in the call

sample(num, 72, 'E');

the value 72 is converted to char and the parameter c is set to 'H' (since the code for H is 72); the
numeric value of 'E' (which is 69) is converted to the double value 69.0 and the parameter b is
set to 69.0.

If it is not possible to convert the argument to the required type, you will get a “type
mismatch” error, as in the call

sample(num, ch, "hi"); // error - cannot convert string to double

You will also get an error if you do not supply the required number of arguments, as in

sample(num, x); // error - must have 3 arguments

7.4 max
Finding the larger of two values is something we need to do sometimes. If a and b are two
numbers, we can set the variable max to the larger of the two with this:

if (a > b) max = a;
else max = b;

If the numbers are equal, max will be set to b (the else part will be executed). We can, of
course, write this statement every time we want to get the larger of two values. But this will
become clumsy and awkward. It will be more convenient and readable if we can simply write
something like

big = max(a, b);

or even

printf("The bigger is %d\n", max(a, b));

We can, if we write the function max as follows:

int max(int a, int b) {
 if (a > b) return a;
 return b;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Functions

171

The first line (except {) is the function header. It consists of

•	 The word int, indicating that the function returns an integer value.

•	 The name we make up for the function, max in the example.

•	 One or more parameters, called the parameter list, enclosed in brackets; two
parameters a and b of type int are used in the example.

The body of the function is the part from { to }. Here, we use the if statement to determine
the larger of a and b. If a is bigger, the function “returns” a; if not, it returns b.

In C, a function “returns a value” by using the return statement. It consists of the word
return followed by the value to be returned. The value is returned to the place at which the
function was called.

To show how max fits into an overall program and how it can be used, we write Program P7.2
that reads pairs of integers and, for each pair, prints the larger of the two. The program ends when
the user types 0 0.

Program P7.2

#include <stdio.h>
int main() {
 int n1, n2;
 int max(int, int);
 printf("Enter two whole numbers: ");
 scanf("%d %d", &n1, &n2);
 while (n1 != 0 || n2 != 0) {
 printf("The bigger is %d\n", max(n1, n2));
 printf("Enter two whole numbers: ");
 scanf("%d %d", &n1, &n2);
 }
} //end main

int max(int a, int b) {
 if (a > b) return a;
 return b;
} //end max

The following is a sample run of P7.2:

Enter two whole numbers: 24 33
The bigger is 33
Enter two whole numbers: 10 -13
The bigger is 10
Enter two whole numbers: -5 -8
The bigger is -5
Enter two whole numbers: 0 7
The bigger is 7
Enter two whole numbers: 0 0

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Functions

172

In order to call max from main, we must “declare” max in main using the function prototype

int max(int, int);

This says that max takes two integer arguments and returns an integer value.
The variables n1 and n2, declared in main, are considered as belonging to main.
When the program is run, suppose n1 is 24 and n2 is 33. When the function is called with

max(n1, n2) from within printf, the following occurs:

•	 The values of the arguments n1 and n2 are determined. These are 24 and 33,
respectively.

•	 Each value is copied to a temporary memory location. These locations are
passed to the function max where 24 is labeled with a, the first parameter; and
33 is labeled with b, the second parameter. We can picture this as follows: 

a 24 b 33

•	  The if statement is executed; since a (24) is not greater than b (33), control
goes to the statement return b; and 33 is returned as the value of the
function. This value is returned to the place from which max was called (the
printf statement).

•	 Just before the function returns, the locations containing the arguments are
thrown away. The value returned by max (33, in our example) replaces the
call to max. Thus, max(n1, n2) is replaced by 33 and printf prints

The bigger is 33

When a function returns a value, it makes sense for this value to be used in a situation where
a value is required. Above, we printed the value. We could also assign the value to a variable, as in

big = max(n1, n2);

or use it as part of an expression, as in

ans = 2 * max(n1, n2);

What does not make sense is to use it in a statement by itself, thus:

max(n1, n2); //a useless statement

Here, the value is not being used in any way, so the statement makes no sense at all. It is the
same as if we had written a number on a line by itself, like this

33; //a useless statement

Think carefully when you call a function that returns a value. Be very clear in your mind what
you intend to use the value for.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Functions

173

As written, max returns the larger of two integers. What if we want to find the larger of two
double numbers? Could we use max? Unfortunately, no. If we called max with double values as
arguments, we may get strange results when a double number is assigned to an int parameter.

On the other hand, if we wrote max with double parameters and double return type, it would
work for both double and int arguments, since we can assign an int value to a double parameter
without losing any information.

Note, however, that if we call max with two character arguments, it would work by returning
the larger of the two codes. For example, max('A', 'C') will return 67, the code for C.

Exercise

Write functions to return the smaller of two integers and two floating-point numbers.

7.5 Print the Day
Let us write a program that requests a number from 1 to 7 and prints the name of the day of the
week. For example, if the user enters 5, the program prints Thursday. Program P7.3 does the job
using a series of if...else statements.

Program P7.3

#include <stdio.h>
int main() {
 int d;
 printf("Enter a day from 1 to 7: ");
 scanf("%d", &d);
 if (d == 1) printf("Sunday\n");
 else if (d == 2) printf("Monday\n");
 else if (d == 3) printf("Tuesday\n");
 else if (d == 4) printf("Wednesday\n");
 else if (d == 5) printf("Thursday\n");
 else if (d == 6) printf("Friday\n");
 else if (d == 7) printf("Saturday\n");
 else printf("Invalid day\n");
}

Now suppose that printing the name of a day of the week was a small part of a much larger
program. We wouldn’t want to clutter up main with this code nor would we want to rewrite this
code every time we needed to print the name of a day. It would be much nicer if we could write
printDay(n) and get the appropriate name printed. We would be able to do this if we write a
function printDay to do the job.

The first thing to ask is what information does printDay need to do its job. The answer is
that it needs the number of the day. This immediately suggests that printDay must be written
with the number of the day as a parameter. Apart from this, the body of the function will contain

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Functions

174

essentially the same code as Program P7.3. Also, printDay does not return a value so its “return
type” is void.

void printDay(int d) {
 if (d == 1) printf("Sunday\n");
 else if (d == 2) printf("Monday\n");
 else if (d == 3) printf("Tuesday\n");
 else if (d == 4) printf("Wednesday\n");
 else if (d == 5) printf("Thursday\n");
 else if (d == 6) printf("Friday\n");
 else if (d == 7) printf("Saturday\n");
 else printf(“Invalid day\n”);
}

■■ Tip  When we write the function, we can use any variable name we want for the parameter. We never have
to worry about how the function will be called. Many beginners mistakenly believe that if the function is called
with printDay(n), the parameter in the header must be n. But that cannot be true since it could be called
with printDay(4) or printDay(n) or printDay(j) or even printDay(n + 1). The choice is up to the
calling function.

All we need to know is that whatever the value of the argument, that value will be assigned
to d (or whatever variable we happen to use as the parameter), and the function will be executed
assuming the parameter (d, in our case) has that value.

We now rewrite Program P7.3 as P7.4 to illustrate how the function fits into an overall
program and how it can be used.

Program P7.4

#include <stdio.h>
int main() {
 int n;
 void printDay(int);
 printf("Enter a day from 1 to 7: ");
 scanf("%d", &n);
 printDay(n);
} //end main
  
void printDay(int d) {
 if (d == 1) printf("Sunday\n");
 else if (d == 2) printf("Monday\n");
 else if (d == 3) printf("Tuesday\n");
 else if (d == 4) printf("Wednesday\n");
 else if (d == 5) printf("Thursday\n");
 else if (d == 6) printf("Friday\n");

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Functions

175

 else if (d == 7) printf("Saturday\n");
 else printf("Invalid day\n");
} //end printDay

Now that we have delegated the printing to a function, notice how main is much less
cluttered. However, we do have to write the function prototype for printDay in main so that
printDay can be called from main. Here is the prototype:

void printDay(int);

As with all C programs, execution begins with the first statement in main. This prompts the user
for a number, and the program goes on to print the name of the day by calling the function printDay.

A sample run is:

Enter a day from 1 to 7: 4
Wednesday

In main, suppose n has the value 4. The call printDay(n) is executed as follows:

•	 The value of the argument n is determined. It is 4.

•	 The value 4 is copied to a temporary memory location. This location is
passed to the function printDay where it is labeled with the name of the
parameter, d. In effect, d is set to the value of the argument.

•	 The body of the function is executed. In this case, since d is 4, the statement
printf("Wednesday\n") will be executed.

•	 After printing Wednesday, the function is finished. The location containing
the argument is discarded and control returns to main to the statement
following the call printDay(n). In this case, there are no more statements so
the program ends.

7.6 Highest Common Factor
In Chapter 5, we wrote Program P5.2, which read two numbers and found their highest common
factor (HCF). You should refresh your memory by taking a look at the program.

It would be nice if whenever we want to find the HCF of two numbers (m and n, say), we could
make a function call hcf(m, n) to get the answer. For instance, the call hcf(42, 24) would return
the answer 6. To be able to do this, we write the function as follows:

//returns the hcf of m and n
int hcf(int m, int n) {
 while (n != 0) {
 int r = m % n;
 m = n;
 n = r;
 }
 return m;
} //end hcf

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1371-1_5
http://www.it-ebooks.info/

Chapter 7 ■ Functions

176

The logic for finding the HCF is the same as that used in program P5.2. The difference here is
that values for m and n will be passed to the function when it is called. In P5.2, we prompted the
user to enter values for m and n and fetched them using scanf.

Suppose the function is called with hcf(42, 24). The following occurs:

•	 Each of the arguments is copied to a temporary memory location.
These locations are passed to the function hcf where 42 is labeled with m,
the first parameter, and 24 is labeled with n, the second parameter. We can
picture this as: 

 m 42 n 24

•	 The while loop is executed, working out the HCF. On exit from the loop,
the HCF is stored in m, which will contain 6 at this time. This is the value
returned by the function to the place from where it was called.

•	 Just before the function returns, the locations containing the arguments are
thrown away; control then returns to the place from where the call was made.

Program P7.5 tests the function by reading pairs of numbers and printing the HCF of each
pair. The call to hcf is made in the printf statement. The program stops if either number is less
than or equal to 0.

Program P7.5

#include <stdio.h>
int main() {
 int a, b;
 int hcf(int, int);
 printf("Enter two positive numbers: ");
 scanf("%d %d", &a, &b);
 while (a > 0 && b > 0) {
 printf("The HCF is %d\n", hcf(a, b));
 printf("Enter two positive numbers: ");
 scanf("%d %d", &a, &b);
 }
} //end main
 
//returns the hcf of m and n
int hcf(int m, int n) {
 while (n != 0) {
 int r = m % n;
 m = n;
 n = r;
 }
 return m;
} //end hcf

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Functions

177

The following is a sample run of P7.5:

Enter two positive numbers: 42 24
The HCF is 6
Enter two positive numbers: 32 512
The HCF is 32
Enter two positive numbers: 100 31
The HCF is 1
Enter two positive numbers: 84 36
The HCF is 12
Enter two positive numbers: 0 0

We emphasize again that even though the function is written with parameters m and n, it can
be called with any two integer values – constants, variables, or expressions. In particular, it does
not have to be called with variables named m and n. In our program, we called it with a and b.

We remind you that in order to use hcf in main, we must “declare” it using the function prototype

int hcf(int, int);

If you wish, you could write the two int declarations in main as one:

int a, b, hcf(int, int);

7.6.1 Using HCF to Find LCM
A common task in arithmetic is to find the lowest common multiple (LCM) of two numbers.
For example, the LCM of 8 and 6 is 24 since 24 is the smallest number that can divide both 8
and 6 exactly.

If we know the HCF of the two numbers, we can find the LCM by multiplying the numbers
and dividing by their HCF. Given that the HCF of 8 and 6 is 2, we can find their LCM by working out

8 6

2

´

which is 24. In general,

LCM(m, n) = (m x n) / HCF(m, n)

Knowing this, we can easily write a function lcm which, given two arguments m and n, returns
the LCM of m and n.

//returns the lcm of m and n
int lcm(int m, int n) {
 int hcf(int, int);
 return (m * n) / hcf(m, n);
} //end lcm

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Functions

178

Since lcm uses hcf, we must declare hcf by writing its prototype. We leave it as an exercise for
you to write a program to test lcm. Remember to include the function hcf in your program. You
may place hcf before or after lcm.

7.7 factorial
So far, we have written several functions that illustrate various concepts you need to know in
writing and using functions. We now write another one and discuss it in detail, reinforcing some
of the concepts we have met thus far and introducing new ones.

Before we write the function, let us first write a program which reads an integer n and prints
n! (n factorial) where

0! = 1
n! = n(n - 1)(n - 2)...1 for n > 0

For example, 5! = 5.4.3.2.1 = 120.
The program will be based on the following algorithm:

set nfac to 1
read a number, n
for h = 2 to n do
 nfac = nfac * h
endfor
print nfac

Dry run the algorithm with a value of 3 for n and convince yourself that it will print 6, the
value of 3!. Check also that it produces the correct answer when n is 0 or 1. (Hint: the for loop is
not executed when n is 0 or 1.)

The algorithm does not validate the value of n. For instance, n should not be negative since
factorial is not defined for negative numbers. As a matter of interest, what would the algorithm
print if n is negative? (Hint: the for loop is not executed.) To keep matters simple, our Program
P7.6 does not validate n.

Program P7.6

#include <stdio.h>
int main() {
 int nfac = 1, n;
 printf("Enter a positive whole number: ");
 scanf("%d", &n);
 for (int h = 2; h <= n; h++)
 nfac = nfac * h;
 printf("%d! = %d\n", n, nfac);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Functions

179

A sample run of this program is shown here:

Enter a positive whole number: 4
4! = 24

We now consider the problem of writing a function (which we will call factorial) that, given
an integer n, calculates and returns the value of n!. Since n! is an integer, the “return type” of the
function is int.

We first write the function header. It is

int factorial(int n)

It is interesting to note that the function header is all the information we need in order to use
the function correctly. Ignoring for the moment what the rest of factorial might look like, we can
use it like this:

printf("5! = %d\n", factorial(5));

or like this:

scanf("%d", &num);
printf("%d! = %d\n", num,factorial(num));

In the latter case, if num is 4, printf prints:

4! = 24

The call factorial(num) returns the value 24 directly to the printf statement.
Following the logic of Program P7.6, we write the function factorial as follows:

int factorial(int n) {
 int nfac = 1;
 for (int h = 2; h <= n; h++)
 nfac = nfac * h;
 return nfac;
} //end factorial

It is worthwhile comparing Program P7.6 and the function:

•	 The program prompts for and reads a value for n; the function gets a value
for n when the function is called, as in factorial(4). It is wrong to attempt
to read a value for n in this function.

•	 In addition to n, both the program and the function need the variables nfac
and h to express their logic.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Functions

180

•	 The logic for calculating the factorial is the same for both program and function.

•	 The program prints the answer (in nfac); the function returns the answer (in
nfac) to the calling function. The answer is returned to the point at which
factorial was called.

Other comments on factorial

•	 Variables declared within a function are said to be local to the function.
Thus, nfac is a local variable, used to hold the factorial. As a matter of
interest, h is local to the for statement. When factorial is called, storage is
allocated to nfac and h. These variables are used to work out the factorial.
Just before the function returns, nfac and h are discarded.

•	 You should verify that the function works properly if n is 0 or 1 (that is, it
returns 1).

We now take a detailed look at what happens when factorial is called (from main, say).
Consider the statements (m and fac are int):

m = 3;
fac = factorial(m);

The second statement is executed as follows:

•	 The value of the argument m is determined; it is 3.

•	 This value is copied to a temporary memory location and this location is passed
to the function. The function labels it with the name of the parameter, n. The
net effect is as if execution of the function began with the statement

n = 3;

•	 In programming terminology, we say that the argument m is passed “by
value.” The value of the argument is copied to a temporary location, and it is
this temporary location that is passed to the function. The function has no
access whatsoever to the original argument. In this example, factorial has
no access to m and, hence, cannot affect it in any way.

•	 After n is assigned the value 3, execution of factorial proceeds as described
above. Just before the function returns, the storage location occupied by n
is discarded. In effect, the parameter n is treated like a local variable except
that it is initialized to the value of the argument supplied.

•	 The value returned by the function is the last value stored in nfac. In this
example, the last value assigned to nfac is 6. Therefore, the value 6 is
returned to the place from which the call factorial(3) was made.

•	 The value 6 returned by factorial is assigned to fac.

•	 Execution continues with the next statement, if any.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Functions

181

7.7.1 Using Factorial
We illustrate how factorial can be used by writing a complete Program P7.7, which prints n!
for n = 0, 1, 2, 3, 4, 5, 6 and 7.

Program P7.7

#include <stdio.h>
int main() {
 int factorial(int);
 printf(" n n!\n\n");
  
 for (int n = 0; n <= 7; n++)
 printf("%2d %5d\n", n, factorial(n));
} //end main
 
int factorial(int n) {
 int nfac = 1;
 for (int h = 2; h <= n; h++)
 nfac = nfac * h;
 return nfac;
} //end factorial

When run, this program prints the following:

 n n!
 
 0 1
 1 1
 2 2
 3 6
 4 24
 5 120
 6 720
 7 5040

As you can see, the value of factorial increases very quickly. Even 8! = 40320, which is too big
to fit in a 16-bit integer (largest value that can be stored is 32767). As an exercise, write the loop
from 0 to 8 and see what happens.

Let us take a closer look at main. The first statement is the function prototype for factorial.
This is needed since factorial will be called from main.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Functions

182

When main is executed,

•	 printf prints a heading

•	 The for loop is executed with n assuming the values 0, 1, 2, 3, 4, 5, 6, 7. For
each value of n, factorial is called with n as its argument. The factorial is
calculated and returned to the place in printf from where it was called.

We have deliberately used a variable called n in main to illustrate that this n does not (and
cannot) conflict with the parameter n of factorial. Suppose n in main is stored in memory
location 865 and has the value 3. The call factorial(n) stores the value of n, i.e. 3, in a temporary
location (472, say) and this temporary location is passed to factorial where it is known as n. This
is illustrated as follows:

865 3 472 3

n in main n in factorial

We now have two locations called n. When in factorial, n refers to location 472; when in
main, n refers to location 865; factorial has no access whatsoever to location 865.

It does not happen here, but if factorial were to change the value of n, it is the value in
location 472 that would be changed; the value in location 865 would not be affected. When
factorial finishes, location 472 is discarded – that n no longer exists.

From another point of view, factorial is oblivious to the actual argument that was used to
call it since it sees only the argument’s value, not how it was derived.

We used n in main as a loop variable to illustrate the point above. However, we could have
used any variable. In particular, we could have used h and there would be no conflict with the
local variable h of the function factorial. When in factorial, h refers to the local variable; when
in main, h refers to the h declared in main.

7.7.2 Combinations
Suppose there are 7 people on a committee. How many subcommittees of 3 people can be
formed? The answer is denoted by 7C

3
 and calculated as follows:

7!
4! 3!

This gives us a value of 35. We say there are 35 combinations of 7 objects taken 3 at a time.
In general, nC

r
 denotes the number of combinations of n objects taken r at a time and is

calculated by the formula:

n

n r r

!

! !-()

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Functions

183

Using factorial, we can write a function, combinations, which, given n and r, returns the
number of combinations of n objects taken r at a time. Here it is:

int combinations(int n, int r) {
 int factorial(int);
 return factorial(n) / (factorial(n-r) * factorial(r));
} //end combinations

The body consists of the function prototype for factorial and one return statement with 3
calls to factorial.

We note, in passing, that this is perhaps the easiest, but not the most efficient, way to evaluate
nC

r
. For instance, if we were calculating 7C

3
 by hand, we would use:

7 6 5

3 2 1

. .

. .

rather than

7 6 5 4 3 2 1

4 3 2 1 3 2 1

.

.

that the function uses. As an exercise, write an efficient function for evaluating combinations.
To show the functions factorial and combinations in a complete program and to show

how they may be used, we write a program to read values for n and r and print the number of
combinations we can get from n objects taken r at a time.

Program P7.8 shows how it’s done.

Program P7.8

#include <stdio.h>
int main() {
 int n, r, nCr, factorial(int), combinations(int, int);
 printf("Enter values for n and r: ");
 scanf("%d %d", &n, &r);
 while (n != 0) {
 nCr = combinations(n, r);
 if (nCr == 1)
 printf("There is 1 combination of %d objects taken "
 "%d at a time\n\n", n, r);
 else
 printf("There are %d combinations of %d objects taken "
 "%d at a time\n\n", nCr, n, r);
 printf("Enter values for n and r: ");
 scanf("%d %d", &n, &r);
 }
} //end main
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Functions

184

int factorial(int n) {
 int nfac = 1;
 for (int h = 2; h <= n; h++)
 nfac = nfac * h;
 return nfac;
} //end factorial
 
int combinations(int n, int r) {
 int factorial(int);
 return factorial(n) / (factorial(n-r) * factorial(r));
} //end combinations

The program reads values for n and r and prints the number of combinations. This is done
until a value of 0 is entered for n. The following is a sample run:

Enter values for n and r: 7 3
There are 35 combinations of 7 objects taken 3 at a time
 
Enter values for n and r: 5 2
There are 10 combinations of 5 objects taken 2 at a time
 
Enter values for n and r: 6 6
There is 1 combination of 6 objects taken 6 at a time
 
Enter values for n and r: 3 5
There are 0 combinations of 3 objects taken 5 at a time
 
Enter values for n and r: 0 0

Observe the use of if...else to get the program to “speak” correct English. In the statement,
also note how a long string is broken into two pieces and each piece is put on one line. Recall
that, in C, the opening and closing quotes of a string constant must be on the same line. When the
program is compiled, the pieces will be joined together and stored in memory as one string.

7.8 Job Charge
In Program 4.6 we read the number of hours worked and the cost of parts and calculated the cost
for a job. Let us write a function that, given the hours worked and cost of parts, returns the cost for
the job. Here it is:

#define ChargePerHour 100
#define MinJobCost 150
double calcJobCost(double hours, double parts) {
 double jobCharge;
 jobCharge = hours * ChargePerHour + parts;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Functions

185

 if (jobCharge < MinJobCost) return MinJobCost;
 return jobCharge;
} //end calcJobCost

When we say that a function is given some data, this immediately implies that such data
should be defined as parameters of the function. The logic of the function is the same as that of
the program. Here, the parameter list indicates what data would be given to the function when it
is called. Also, we must specify the return type of the function; it is double since the job cost is a
double value.

When the function is called, as in

jobCost = calcJobCost(1.5, 87.50);

the parameter hours is set to 1.5 and parts is set to 87.50; the body of the function is then
executed using these values for hours and parts.

As an exercise, write a complete program to read several values for hours worked and cost of
parts and, for each pair, print the cost of the job.

7.9 Calculate Pay
In Program P4.7 we read values for hours and rate and calculated net pay. All the code was
written in main. We now write a function that, given values for hours and rate, returns the value
of net pay calculated as described in Section 4.3.1. The function is shown below.

#define MaxRegularHours 40
#define OvertimeFactor 1.5
double calcNetPay(double hours, double rate) {
 if (hours <= MaxRegularHours) return hours * rate;
 return MaxRegularHours * rate +
 (hours - MaxRegularHours) * rate * OvertimeFactor;
} //end CalcNetPay

If hours is less than or equal to MaxRegularHours, the first return is executed; if it is false, the
second return is executed. Note that there is no need for else. If the first return is taken, we exit
the function and the second return cannot be executed.

If we want to find out the net pay of someone who worked for 50 hours at $12.00 per hour, all
we have to do is call calcNetPay(50, 12.00).

As an exercise, write a complete program to read several values for a name, hours worked,
and rate of pay; and, for each person, print the net pay received. Hint: study Program P5.8.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Functions

186

7.10 Sum of Exact Divisors
Let us write a function to return the sum of the exact divisors of a given integer. We assume the
divisors include 1 but not the given number. For example, the exact divisors of 50 are 1, 2, 5, 10
and 25. Their sum is 43. The function is shown below.

//returns the sum of the exact divisors of n
int sumDivisors(int n) {
 int sumDiv = 1;
 for (int h = 2; h <= n / 2; h++)
 if (n % h == 0) sumDiv += h;
 return sumDiv;
} //end sumDivisors

•	 sumDiv is used to hold the sum of the exact divisors; it is set to 1 since 1 is
always an exact divisor.

•	 Other possible divisors are 2, 3, 4, and so on up to n/2. The for loop checks
each of these in turn.

•	 If h is an exact divisor of n then the remainder when n is divided by h is 0,
that is, n % h is 0. If this is so, h is added to sumDiv.

•	 The last statement returns the value of sumDiv to the place from which
sumDivisors is called.

In the next example, we will see how sumDivisors may be used.

7.10.1 Classify Numbers
Positive integers can be classified based on the sum of their exact divisors. If n is an integer and s
is the sum of its exact divisors (including 1 but not including n) then:

•	 if s < n, n is deficient; e.g., 15 (divisors 1, 3, 5; sum 9)

•	 if s = n, n is perfect; e.g., 28 (divisors 1, 2, 4, 7, 14; sum 28)

•	 if s > n, n is abundant; e.g., 12 (divisors 1, 2, 3, 4, 6; sum 16)

Let us write Program P7.9 to read several numbers and, for each, print whether it is deficient,
perfect, or abundant.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Functions

187

Program P7.9

#include <stdio.h>
int main() {
 int num, sumDivisors(int);
 printf("Enter a number: ");
 scanf("%d", &num);
 while (num != 0) {
 int sum = sumDivisors(num);
 if (sum < num) printf("Deficient\n\n");
 else if (sum == num) printf("Perfect\n\n");
 else printf("Abundant\n\n");
 printf("Enter a number: ");
 scanf("%d", &num);
 }
} //end main
 
//returns the sum of the exact divisors of n
int sumDivisors(int n) {
 int sumDiv = 1;
 for (int h = 2; h <= n / 2; h++)
 if (n % h == 0) sumDiv += h;
 return sumDiv;
} //end sumDivisors

Note that we call sumDivisors once (for each number) and store the result in sum. We use sum
when we need the “sum of divisors” rather than recalculating it each time.

The following is a sample run of Program P7.9:

Enter a number: 15
Deficient
 
Enter a number: 12
Abundant
 
Enter a number: 28
Perfect
 
Enter a number: 0

As an exercise, write a program to find all the perfect numbers less than 10,000.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Functions

188

7.11 Some Character Functions
In this section, we write several functions relating to characters.

Perhaps the simplest is a function that takes a character as argument; it returns 1 if the
character is a digit and 0, if it is not. (Recall that, in C, a zero value is interpreted as false and a
nonzero value is interpreted as true.) This description suggests that we must write a function that
takes a char argument and returns an int value. We will call it isDigit. Here it is:

int isDigit(char ch) {
 return ch >= '0' && ch <= '9';
} //end isDigit

The Boolean expression (ch >= '0' && ch <= '9') is true if ch lies between '0' and '9',
inclusive; that is, if ch contains a digit. Hence, if ch contains a digit, the function returns 1 (for true);
if ch does not contain a digit, it returns 0 (for false).

We could have written the body of the function as

if (ch >= '0' && ch <= '9') return 1;
return 0;

but the single return statement used above is the preferred way.
Similarly, we can write the function isUpperCase, which returns 1 if its argument is an

uppercase letter and 0 if it’s not, thus:

int isUpperCase(char ch) {
 return ch >= 'A' && ch <= 'Z';
} //end isUpperCase

Next we have the function isLowerCase, which returns 1 if its argument is a lowercase letter
and 0 if it’s not.

int isLowerCase(char ch) {
 return ch >= 'a' && ch <= 'z';
} //end isLowerCase

If we wish to know if the character is a letter (either uppercase or lowercase), we can write
isLetter, which uses isUpperCase and isLowerCase.

int isLetter(char ch) {
 int isUpperCase(char), isLowerCase(char);
 return isUpperCase(ch) || isLowerCase(ch);
} //end isLetter

Note that we need to include the function prototypes for isUpperCase and isLowerCase.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Functions

189

7.11.1 Position of a Letter in the Alphabet
Let us write a function that, given a character, returns 0 if it is not a letter of the English alphabet;
otherwise, it returns the position – an integer value – of the letter in the alphabet. The function
should work if the character is either an uppercase or a lowercase letter. For example, given 'T' or
't', the function should return 20.

The function takes a char argument and returns an int value. Using the functions
isUpperCase and isLowerCase, we write the function (which we call position) as follows:

int position(char ch) {
 int isUpperCase(char), isLowerCase(char);
 if (isUpperCase(ch)) return ch - 'A' + 1;
 if (isLowerCase(ch)) return ch - 'a' + 1;
 return 0;
} //end position

We use isUpperCase and isLowerCase to establish what kind of character we have. If it is
neither, control goes to the last statement and we return 0.

If we have an uppercase letter, we find the distance between the letter and A by subtracting
the code for A from the code for the letter. For example, the distance between A and A is 0 and
the distance between A and F is 5. Adding 1 gives the position of the letter in the alphabet. Here,
adding 1 gives us 1 for A and 6 for F.

If we have a lowercase letter, we find the distance between the letter and a by subtracting
the code for a from the code for the letter. For example, the distance between a and b is 1 and the
distance between a and z is 25. Adding 1 gives the position of the letter in the alphabet. Here,
adding 1 gives us 2 for b and 26 for z.

To illustrate how the function may be used, we write Program P7.10, which reads a line of
input; for each character on the line, it prints 0 if it is not a letter and its position in the alphabet if
it is a letter.

Program P7.10

#include <stdio.h>
int main() {
 char c;
 int position(char);
 printf("Type some letters and non-letters and press 'Enter'\n");
 while ((c = getchar()) != '\n')
 printf("%c%2d\n", c, position(c));
} //end main
 
int isUpperCase(char ch) {
 return ch >= 'A' && ch <= 'Z';
} //end isUpperCase
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Functions

190

int isLowerCase(char ch) {
 return ch >= 'a' && ch <= 'z';
} //end isLowerCase
 
int position(char ch) {
 int isUpperCase(char), isLowerCase(char);
 if (isUpperCase(ch)) return ch - 'A' + 1;
 if (isLowerCase(ch)) return ch - 'a' + 1;
 return 0;
} //end isPosition

Here is a sample run of P7.10:

Type some letters and non-letters and press "Enter"
FaT($hY&n
F 6
a 1
T 20
(0
$ 0
h 8
Y 25
& 0
n 14

We have written the functions isDigit, isUpperCase, isLowerCase, and isLetter to
illustrate basic concepts about character functions. However, C provides a number of predefined
functions (actually, macros, but the distinction is not important for us) for working with
characters. Among these are isdigit (test for a digit), isupper (test for an uppercase letter),
islower (test for a lowercase letter), and isalpha (test for a letter). To use these functions, you
need to place the directive

#include <ctype.h>

at the head of your program. As an exercise, rewrite P7.10 using isupper and islower. Without
isUpperCase, isLowerCase and their prototypes, your program would be much shorter.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Functions

191

7.12 Fetch the Next Integer
Previously, we wrote Program P6.13, which read the data character by character, constructed and
stored the next integer found in a variable, and finally printed the integer.

Let us now write a function, getInt, which reads the data character by character and returns
the next integer found. The function does not take any arguments but the brackets must still
be written after the name. The code is essentially the same as in P6.13, except that we use the
predefined function isdigit. Here is getInt:

int getInt() {
 char ch = getchar();
 // as long as the character is not a digit, keep reading
 while (!isdigit(ch)) ch = getchar() ;
 // at this point, ch contains the first digit of the number
 int num = 0;
 while (isdigit(ch)) { // as long as we get a digit
 num = num * 10 + ch - '0'; // update num
 ch = getchar();
 }
 return num;
} //end getInt

Note that

while (ch < '0' || ch > '9')

of program P6.13 is replaced by

while (!isdigit(ch))

and

while (ch >= '0' && ch <= '9')

is replaced by

while (isdigit(ch))

We believe this makes the program a little more readable.
The function needs the variables ch and num to do its job; ch holds the next character in the

data and num holds the number constructed so far. We declare them within the function, making
them local variables. This way, they will not conflict with any variables with the same names
declared anywhere else in the program. This makes the function self-contained – it does not
depend on variables declared elsewhere.

The function can be used as in

id = getInt();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Functions

192

This fetches the next positive integer from the input, regardless of how many and what kind of
characters come before it, and stores it in id. Recall that scanf("%d", &id) works only if the next
integer is preceded by zero or more whitespace characters. Our getInt is more general.

We test it by rewriting Program P4.2, which requests two lengths given in meters and
centimeters and finds the sum. We observed then that the data must be entered with digits only.
If, for instance, we had typed 3m 75cm we would have gotten an error since 3m is not a valid integer
constant. With getInt, we will be able to enter the data in the form 3m 75cm. The new program is
shown as Program P7.11.

Program P7.11

//find the sum of two lengths given in meters and centimeters
#include <stdio.h>
#include <ctype.h>
int main() {
 int m1, cm1, m2, cm2, mSum, cmSum, getInt();
 printf("Enter first length: ");
 m1 = getInt();
 cm1 = getInt();
 printf("Enter second length: ");
 m2 = getInt();
 cm2 = getInt();

 mSum = m1 + m2; //add the meters
 cmSum = cm1 + cm2; //add the centimeters
 if (cmSum >= 100) {
 cmSum = cmSum - 100;
 mSum = mSum + 1;
 }
 printf("\nSum is %dm %dcm\n", mSum, cmSum);
} //end main
 
int getInt() {
 char ch = getchar();
 // as long as the character is not a digit, keep reading
 while (!isdigit(ch)) ch = getchar() ;
 // at this point, ch contains the first digit of the number
 int num = 0;
 while (isdigit(ch)) { // as long as we get a digit
 num = num * 10 + ch - '0'; // update num
 ch = getchar();
 }
 return num;
} //end getInt

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Functions

193

A sample run is as follows:

Enter first length: 3m 75cm
Enter second length: 5m 50cm
 
Sum is 9m 25cm

You are encouraged to do the following:

•	 Modify getInt so that it works for negative integers.

•	 Write a function getDouble, which returns the next floating-point number
in the input. It should work even if the next number does not contain a
decimal point. 

EXERCISES 7

1.	 Explain why functions are important in writing a program.

2.	 Given the function header

void test(int n)

explain carefully what happens when the call test(5) is made.

3.	 Given the function header

double fun(int n)

explain carefully what happens when the following statement is executed:

printf("The answer is %f\n", fun(9));

4.	 Given the function header

void test(int m, int n, double x)

say whether each of the following calls is valid or invalid. If invalid, state why.

test(1, 2, 3);
test(-1, 0.0, 3.5);
test(7, 2);
test(14, '7', 3.14);

5.	 Write a function sqr, which given an integer n, returns n2.

6.	 Write a function isEven, which given an integer n, returns 1 if n is even and 0 if n
is odd.

7.	 Write a function isOdd, which given an integer n, returns 1 if n is odd and 0 if
n is even.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Functions

194

8.	 Write a function isPerfectSquare, which given an integer n, returns 1 if n is
a perfect square (e.g., 25, 81) and 0 if it is not. Use only elementary arithmetic
operations. Hint: Try numbers starting at 1. Compare the number times itself with n.

9.	 Write a function isVowel, which given a character c, returns 1 if c is a vowel and
0 if it is not.

10.	 Write a function, which given an integer n, returns the sum

1 + 2 +...+ n

11.	 Write a function, which given an integer n, returns the sum

12 + 22 +...+ n2

12.	 Write a function, which given three integer values representing the sides of a
triangle, returns:

•	 0 if the values cannot be the sides of any triangle. This is so if any value is
negative or zero, or if the length of any side is greater than or equal to the sum of
the other two.

•	 1 if the triangle is scalene (all sides different).

•	 2 if the triangle is isosceles (two sides equal).

•	 3 if the triangle is equilateral (three sides equal).

13.	 Write a function, which given three integer values representing the sides of a
triangle, returns 1 if the triangle is right angled and 0 if it is not.

14.	 Write a function power, which given a double value x and an integer n, returns xn.

15.	 Using the algorithm of problem 10, Exercises 4, write a function, which given a
year between 1900 and 2099, returns an integer value indicating the day on which
Easter Sunday falls in that year. If d is the day of the month, return d if the month is
March and -d if the month is April. For example, if the year is 1999, return -4 since
Easter Sunday fell on April 4 in 1999. Assume that the given year is valid.

Write a program, which reads two years, y1 and y2, and, using the function above,
prints the day on which Easter Sunday falls for each year between y1 and y2.

16.	 Given values for month and year, write a function to return the number of days in
the month.

17.	 Write a function numLength, which given an integer n, returns the number of
digits in the integer. For example, given 309, the function returns 3.

18.	 Write a function max3, which given 3 integers, returns the biggest.

19.	 Write a function isPrime, which given an integer n, returns 1 if n is a prime
number and 0 if it is not. A prime number is an integer > 1, which is divisible only
by 1 and itself.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Functions

195

20.	 Using isPrime, write a program to prompt for an even number n greater than 4
and print all pairs of prime numbers that add up to n. Print an appropriate message
if n is not valid. For example, if n is 22, your program should print

 3 19
 5 17
11 11

21.	 You are required to generate a sequence of integers from a given positive integer n,
as follows. If n is even, divide it by 2. If n is odd, multiply it by 3 and add 1. Repeat
this process with the new value of n, stopping when n = 1. For example, if n is 13,
the following sequence will be generated:

13 40 20 10 5 16 8 4 2 1

Write a function, which given n, returns the length of the sequence generated,
including n and 1. For n = 13, your function should return 10.

Using the function, write a program to read two integers m and n (m < n), and print
the maximum sequence length for the numbers between m and n, inclusive. Also
print the number that gives the maximum length. For example, if m = 1 and n = 10,
your program should print

9 generates the longest sequence of length 20

22.	 We can code the 52 playing cards using the numbers 1 to 52. We can assign 1
to the Ace of Spades, 2 to the Two of Spades, and so on, up to 13 to the King of
Spades. We can then assign 14 to the Ace of Hearts, 15 to the Two of Hearts, and so
on, up to 26 to the King of Hearts. Similarly, we can assign the numbers 27–39 to
Diamonds and 40–52 to Clubs.

Write a function, which given integers rank and suit, returns the code for that
card. Assume rank is a number from 1 to 13 with 1 meaning Ace and 13 meaning
King; suit is 1, 2, 3, or 4 representing Spades, Hearts, Diamonds, and Clubs,
respectively.

www.it-ebooks.info

http://www.it-ebooks.info/

197

Chapter 8

Arrays

In this chapter, we will explain the following:

•	 What is an array and how to declare one

•	 How to store values in an array

•	 How to read a known number of values into an array using a for loop

•	 How to process elements of an array using a for loop

•	 How to read an unknown number of values into an array using a while loop

•	 How to extract a required element from an array with a subscript

•	 How to find the sum of numbers stored in an array

•	 How to find the average of numbers stored in an array

•	 How to use an array to keep several counts

•	 How to work with a string as an array of characters

•	 How to reverse the elements in an array

•	 How to write a function to tell if a phrase is a palindrome

•	 How to pass an array as an argument to a function

•	 How to find the largest and smallest values in an array

8.1 Simple vs Array Variable
The variables we have been using so far (such as ch, n, sum) are normally called simple variables.
At any given time, a simple variable can be used to store one item of data: for instance, one
number or one character. Of course, the value stored in the variable can be changed, if we wish.
However, there are many situations in which we wish to store a group of related items and to be
able to refer to them by a common name. The array variable allows us to do this.

For example, suppose we wish to store a list of 60 scores made by students in a test. We can
do this by inventing 60 different int variables and storing one score in one variable. But it would
be quite tedious, cumbersome, unwieldy, and timeconsuming to write code to manipulate these
60 variables. (Think of how you would assign values to these 60 variables.) And what if we needed
to deal with 200 scores?

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Arrays

198

A better way is to use an array to store the 60 scores. We can think of this array as having
60 ‘locations’– we use one location to store one element, in this case, one score. To refer to a
particular score, we use a subscript. For example, if score is the name of the array, then score[5]
refers to the score in position 5 – here 5 is used as a subscript. It is written inside the square
brackets, [and].

In general, an array can be used to store a list of values of the same type; for instance, we
speak of an array of integers, an array of characters, an array of strings, or an array of floating-
point numbers. As you will see, using an array allows us to work with a list in a simple, systematic
way, regardless of its size. We can process all or some items using a simple loop. We can also do
things like search for an item in the list or sort the list in ascending or descending order.

8.2 Array Declaration
Before an array is used, it must be declared. For example, consider the statement:

int score[60];

This declares that score is an ‘integer array’ or an ‘array of ints’ with subscripts ranging from
0 to 59. An array declaration consists of

•	 The type (int, in this example)

•	 The name of the array (score, in this example)

•	 A left square bracket, [

•	 The size of the array (60, in this example)

•	 A right square bracket,]

In C, array subscripts start at 0 and go up to n-1, if n is the size of the array.
We can think of the declaration as creating 60 int variables that can be referred to collectively

by the array variable score. To refer to a specific one of these scores, we use a subscript written in
square brackets after the array name. In this example,

score[0] refers to the 1st score
score[1] refers to the 2nd score
score[2] refers to the 3rd score
.
.
score[58] refers to the 59th score
score[59] refers to the 60th score
As you can see, array subscripting is a bit awkward in C; it would be much nicer (and logical)

if score[i] were to refer to the ith score. We will see how to get around this shortly.
It is an error to try to refer to an element that is outside the range of subscripts allowed. If you

do, you will get an “array subscript” error. For example, you cannot refer to score[60], score[-1]
and score[99] since they do not exist.

A subscript can be written using a constant (like 25), a variable (like n), or an expression
(like i+1). The value of the subscript determines which element is being referred to.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Arrays

199

In our example, each element of the array is an int and can be used in any way that an
ordinary int variable can. In particular, a value can be stored in it, its value can be printed, and it
can be compared with another int.

We could picture score as in Figure 8-1.

Figure 8-1.  Declaration of int score[60]

Like a simple variable, when an array is declared, the values of its elements remain undefined
until we execute statements that store values in them. This is discussed in Section 8.3, next.

To give another example, suppose we need to store the item numbers (integers) and prices
(floating-point numbers) of 100 items. We can use one array (item, say) to hold the item numbers
and another array (price, say) to hold the prices. These can be declared with this:

int item[100];
double price[100];

The elements of item range from item[0] to item[99] and the elements of price range from
price[0] to price[99]. When we store values in these arrays (see next), we will ensure that

price[0] holds the price of item[0];
price[1] holds the price of item[1];

and, in general,

price[i] holds the price of item[i].

8.3 Store Values in an Array
Consider the array score. If we wish, we could set selected elements to specific values, as follows:

score[3] = 56;
score[7] = 81;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Arrays

200

But what if we wish to set the 60 locations to 60 scores? Would we have to write 60 statements
as in the following?

score[0] = 45;
score[1] = 63;
score[2] = 39;
.
.
score[59] = 78;

This is certainly one way of doing the job, but it is very tedious, timeconsuming, and
inflexible. A neater way is to let the subscript be a variable rather than a constant. For example,
score[h] can be used to refer to the score in location h; which score is meant depends on the
value of h. If the value of h is 47, then score[h] refers to score[47], the score in location 47.

Note that score[h] can be used to refer to another score simply by changing the value of h,
but, at any one time, score[h] refers to one specific score, determined by the current value of h.

Suppose the 60 scores are stored in a file scores.txt. The following code will read the 60
scores and store them in the array score:

FILE * in = fopen("scores.txt", "r");
for (int h = 0; h < 60; h++)
 fscanf(in, "%d", &score[h]);

Suppose the file scores.txt begins with the following data:

45 63 39 ...

The for loop is executed with the value of h ranging from 0 to 59:

•	 When h is 0, the first score, 45, is read and stored in score[0];

•	 When h is 1, the second score, 63, is read and stored in score[1];

•	 When h is 2, the third score, 39, is read and stored in score[2];

and so on, up to

•	 When h is 59, the 60th score is read and stored in score[59].

Note that this method is much more concise than writing 60 assignment statements. We are
using one statement

fscanf(in, "%d", &score[h]);

to store the scores in 60 different locations. This is achieved by varying the value of the subscript, h.
This method is also more flexible. If we had to deal with 200 scores, say, we only need to change
60 to 200 in the declaration of score and in the for statement (and supply the 200 scores in the
data file). The previous method would require us to write 200 assignment statements.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Arrays

201

If we wish to print the scores as they are read, we could write the for loop like this:

for (int h = 0; h < 60; h++) {
 fscanf(in, "%d", &score[h]);
 printf("%d\n", score[h]);
}

On the other hand, if we wish to print the scores after they are read and stored in the array,
we could write another for loop:

for (h = 0; h < 60; h++)
 printf("%d\n", score[h]);

We have used the same loop variable h that was used to read the scores. But it is not
required that we do so. Any other loop variable would have the same effect. For instance, we
could have written:

for (int x = 0; x < 60; x++)
 printf("%d\n", score[x]);

What is important is the value of the subscript, not the variable that is used as the subscript.
We often need to set all elements of a numeric array to 0. This may be necessary, for instance,

if we are going to use them to hold totals, or as counters. For example, to set the 60 elements of
score to 0, we could write:

for (int h = 0; h < 60; h++)
 score[h] = 0;

The for loop is executed 60 times, with h taking on the values 0 to 59:

•	 The first time through the loop, h is 0, so score[0] is set to 0.

•	 The second time through the loop, h is 1, so score[1] is set to 0.

and so on, until

•	 The 60th time through the loop, h is 59, so score[59] is set to 0.

If we want to set the elements to a different value (-1, say), we could write:

for (int h = 0; h < 60; h++)
 score[h] = -1;

It should be noted that even though we have declared score to be of size 60, it is not required
that we use all the elements. For example, suppose we want to set just the first 20 elements of
score to 0, we could do this with the following:

for (int h = 0; h < 20; h++)
 score[h] = 0;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Arrays

202

This sets elements score[0], score[1], score[2], up to score[19] to 0. Elements score[20]
to score[59] remain undefined.

C provides another way of initializing an array – in its declaration. Consider this:

int score[5] = {75, 43, 81, 52, 68};

This declares score to be an array of size 5 and sets score[0] to 75, score[1] to 43, score[2]
to 81, score[3] to 52 and score[4] to 68.

The initial values are enclosed in braces and separated by commas. No comma is necessary
after the last value, but it is not an error to put one.

If fewer than5 values are supplied, then 0s would be used to fill out the array. For example,
the declaration

int score[5] = {75, 43};

sets score[0] to 75, score[1] to 43, score[2] to 0, score[3] to 0 and score[4] to 0.
If more than 5 values are supplied, you would get a warning or an error, depending on

your compiler setting. For example, the following will generate a warning or error since there are
8 values:

int score[5] = {75, 43, 81, 52, 68, 49, 66, 37};

It is possible to omit the size of the array and write, for example, this:

int score[] = {75, 43, 81, 52, 68, 49, 66, 37};

In this case, the compiler counts the number of values to determine the size of the array.
Here, the number of values is 8, so it is the same as if we had written this declaration:

int score[8] = {75, 43, 81, 52, 68, 49, 66, 37};

As another example, suppose we wanted to store the number of days in a month in a leap
year. We could use this:

int month[] = {31,29,31,30,31,30,31,31,30,31,30,31};

This would set month[0] to 31, month[2] to 29, etc., and we would have to remember that
month[0] refers to January, month[1] refers to February, and so on. We can get around this by
using the following:

int month[] = {0,31,29,31,30,31,30,31,31,30,31,30,31};

Now, month[1] is 31and refers to January, month[2] is 29, and refers to February, and so on—this
is more natural than the previous declaration. The element month[0] is 0 but we ignore it (see next).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Arrays

203

8.3.1 About Not Using Element 0
As we have seen, starting from element 0 can be a bit awkward and unnatural when we have to
say things like “the third element is stored in location 2”; the subscript is “out of sync” with the
position of the element. It would be much more sensible and logical to say “the first element is
stored in location 1” or “the fifth element is stored in location 5.”

For situations like these, it is better to ignore element 0 and pretend that the subscripts start
from 1. However, you will have to declare the size of your array to be one more than you actually
need. For instance, if we want to cater for 60 scores, we will have to declare score as

int score[61];

This creates elements score[0] to score[60]. We can ignore score[0] and use only
score[1] to score[60]. Having to declare an extra element is a small price to pay for being able to
work with our problem in a more natural and logical manner.

There are times when it is better to work with an array from position 0. But, for those times
when it is not, we will declare our array size to be one more than required and ignore the element
in position 0. It is better programming practice to use the language to suit your purpose rather
than constrain yourself to the idiosyncrasies of the language.

Suppose we want to cater for 60 scores. A good way to do this is as follows:

#define MaxScores 60
...
int score[MaxScores + 1];

We can now work with elements score[1] to score[MaxScores].

8.4 Average and Differences from Average
Consider the problem of finding the average of a set of numbers (integers) and the amount by
which each number differs from the average. In order to find the average, we need to know all the
numbers. In Section 5.3.1, we saw how to find the average by reading and storing one number
at a time. Each new number read replaced the previous one. At the end, we could calculate the
average but we’ve lost all the numbers.

Now, if we also want to know how much each number differs from the average, we would
need to store the original numbers so that they are available after the average is calculated. We
will store them in an array. The program will be based on the following assumptions:

•	 No more than 100 numbers will be supplied; this information is needed to
declare the size of the array;

•	 The numbers will be terminated by 0; it is assumed that 0 is not one of the
numbers.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Arrays

204

The following shows how we want the program to work:

Enter up to 100 numbers (end with 0)
2 7 5 3 0
 
Numbers entered: 4
Sum of numbers: 17
 
The average is 4.25
 
Numbers and differences from average
 2 -2.25
 7 2.75
 5 0.75
 3 -1.25

Program P8.1 shows how to write the program to work like this.

Program P8.1

//find average and difference from average
#include <stdio.h>
#define MaxNum 100
int main() {
 int a, num[MaxNum];
 int n = 0;
 double sum = 0;
 printf("Enter up to %d numbers (end with 0)\n", MaxNum);
 scanf("%d", &a);
 
 while (a != 0) {
 sum += a;
 num[n++] = a; //store in location n, then add 1 to n
 scanf("%d", &a);
 }
 
 if (n == 0) printf("No numbers entered\n");
 else {
 printf("\nNumbers entered: %d\n", n);
 printf("Sum of numbers: %1.0f\n\n", sum);
 double average = sum / n;
 printf("The average is %3.2f\n", average);
 printf("\nNumbers and differences from average\n");
 for (int h = 0; h < n; h++)
 printf("%4d %6.2f\n", num[h], num[h] - average);
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Arrays

205

Points to note about Program P8.1:

•	 Using #define, we set the symbolic constant MaxNum to 100; we use it to
declare the array and in the prompt for numbers. This makes the program
easy to modify if we change our mind and wish to cater for a different
amount of numbers.

•	 We enter the while loop when the number read is not 0. Inside the loop, we
add it to the sum, store it in the array, and count it. Each time we reach the
end of the loop, the value of n is the amount of numbers stored in the array
so far.

•	 On exit from the while loop, we test n. If it is still 0, then no numbers were
supplied and there’s nothing else to do. The program does not make the
mistake of trying to divide by n if it is 0. If n is positive, we confidently divide
the sum by it to find the average.

•	 The for loop ‘steps through’ the array, printing the numbers and their
differences from the average. Here, n is the number of elements of the array
that were actually used, not necessarily the entire array. The elements used
are num[0] to num[n-1].

•	 The program works out the sum of the numbers as they are read. If we need
to find the sum of the first n elements after they have been stored in the
array, we can do this with the following:

sum = 0;
for(int h = 0; h < n; h++) sum += num[h];

Program P8.1 does the basics. But what if the user entered more than 100 numbers? Recall
that, as declared, the elements of num range from num[0] to num[99].

Now suppose that n is 100, meaning that 100 numbers have already been stored in the array.
If another one is entered, and it is not 0, the program will enter the while loop and attempt to
execute the statement

num[n++] = a;

Since n is 100, this is now the same as

num[100] = a;

But there is no element num[100] – you will get an “array subscript” error. When you start
working with arrays, you must be very careful that your program logic does not take you outside
the range of subscripts. If it does, your program will crash.

To cater for this possibility, we could write the while condition as

while (a != 0 && n < MaxNum) { ...

If n is equal to MaxNum (100), it means we have already stored 100 values in the array and
there is no room for any more. In this case, the loop condition will be false, the loop will not be
entered, and the program will not try to store another value in the array.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Arrays

206

This is another example of defensive programming: of trying to make our programs immune to
outside forces. Now, there is no way for a user action to cause our program to crash by exceeding
the bounds of the array.

8.5 Letter Frequency Count
Let us write a program that counts the frequency of each letter in the input. The program will
treat an uppercase letter and its lowercase equivalent as the same letter; for example, E and e
increment the same counter.

In Program P7.10, we wrote a function, position, which, given a character, returns 0 if the
character is not a letter; if it is a letter, it returns its position in the alphabet. We will use position
to solve this problem. However, we will rewrite it using the predefined character functions
isupper and islower.

To solve this problem, we need to keep 26 counters, one for each letter of the alphabet. We
need a counter for a’s and A’s, one for b’s and B’s, one for c’s and C’s, and so on. We could declare
26 variables called a, b, c, ..., up to z; a holds the count for a’s and A’s, b holds the count for
b’s and B’s, and so on. And, in our program, we could write statements of the following form
(assuming ch contains the next character):

if (ch == 'a' || ch == 'A') a++;
else if (ch == 'b' || ch == 'B') b++;
else if (ch == 'c' || ch == 'C') c++;
else if ...

This gets tiresome very quickly. And we will have similar problems when we have to print
the results. Having to work with 26 variables for such a small problem is neither suitable nor
convenient. As we will see, an array lets us solve this problem much more easily.

We will need an int array with 26 elements to hold the count for each letter of the alphabet.
Since it is more natural to use element 1 (rather than element 0) to hold the count for a’s and A’s,
element 2 (rather than element 1) to hold the count for b’s and B’s, and so on, we will declare the
array letterCount as

int letterCount[27];

We will ignore letterCount[0] and use the following:

•	 letterCount[1] to hold the count for a’s and A’s

•	 letterCount[2] to hold the count for b’s and B’s

•	 letterCount[3] to hold the count for c’s and C’s

•	 etc.

•	 letterCount[26] to hold the count for z’s and Z’s

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Arrays

207

The complete program is shown as Program P8.2. It reads data from the file passage.txt and
sends output to the file output.txt.

Program P8.2

#include <stdio.h>
#include <ctype.h>
int main() {
 char ch;
 int n, letterCount[27], position(char);
 FILE * in = fopen("passage.txt", "r");
 FILE * out = fopen("output.txt", "w");
 
 for (n = 1; n <= 26; n++) letterCount[n] = 0; //set counts to 0
 
 while ((ch = getc(in)) != EOF) {
 n = position(ch);
 if (n > 0) ++letterCount[n];
 }

 //print the results
 fprintf(out, "Letter Frequency\n\n");
 for (n = 1; n <= 26; n++)
 fprintf(out, "%4c %8d\n", 'a' + n - 1, letterCount[n]);
 fclose(in);
 fclose(out);
} //end main
 
int position(char ch) {
 if (isupper(ch)) return ch - 'A' + 1;
 if (islower(ch)) return ch - 'a' + 1;
 return 0;
} //end position

Suppose passage.txt contains the following:

The quick brown fox jumps over the lazy dog.
If the quick brown fox jumped over the lazy dog then
Why did the quick brown fox jump over the lazy dog?

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Arrays

208

Program P8.2 sends the following output to the file output.txt:

Letter Frequency
 
 a 3
 b 3
 c 3
 d 6
 e 11
 f 4
 g 3
 h 8
 i 5
 j 3
 k 3
 l 3
 m 3
 n 4
 o 12
 p 3
 q 3
 r 6
 s 1
 t 7
 u 6
 v 3
 w 4
 x 3
 y 4
 z 3

When a character ch is read, we call the function position, like this:

n = position(ch);

If n is greater than 0, we know that ch contains a letter and n is the position in the alphabet of
that letter. For example, if ch contains Y, then n is 25, since Y is the 25th letter of the alphabet. If we
add 1 to letterCount[n], we are adding 1 to the count for the letter that ch contains. Here, if we add
1 to letterCount[25], we are adding 1 to the count for Y. The following statement does the job:

if (n > 0) ++letterCount[n];

Take a look at the fprintf statement that prints one line of the output:

fprintf(out, "%4c %8d\n", 'a' + n - 1, letterCount[n]);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Arrays

209

This prints a letter (in lowercase) followed by its count. Let us see how. The code for 'a' is 97.
When n is 1,

'a' + n - 1

is evaluated as 97+1-1, which is 97; when 97 is printed with %c, it is interpreted as a character,
so the letter a is printed. When n is 2,

'a' + n - 1

is evaluated as 97+2-1, which is 98; when 98 is printed with %c, it is interpreted as a character,
so b is printed. When n is 3,

'a' + n - 1

is evaluated as 97+3-1, which is 99; when 99 is printed with %c, it is interpreted as a character,
so c is printed. And so on. As n takes on the values from 1 to 26,

'a' + n - 1

will take on the codes for the letters from 'a' to 'z'.
As a matter of interest, we could have used the following special form of the for statement

described earlier to achieve the same result. Here it is:

for (ch = 'a', n = 1; n <= 26; ch++, n++)
 fprintf(out, "%4c %8d\n", ch, letterCount[n]);

The loop is still executed with n going from 1 to 26. But, in sync with n, it is also executed with
ch going from 'a' to 'z'. Note the use of ch++ to move on to the next character.

8.6 Making Better Use of fopen
Consider the statement:

FILE * in = fopen("passage.txt", "r");

This says to “open the file passage.txt for reading.” It assumes that the file has been created
and the appropriate data stored in it. But what if the user forgot to create the file or has put it in
the wrong place (the wrong folder, for instance)? We can use fopen to check for this. If fopen
cannot find the file, it returns the predefined value NULL (defined in stdio.h). We can test for this
as follows:

FILE * in = fopen("passage.txt", "r");
if (in == NULL) {
 printf("File cannot be found\n");
 exit(1);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Arrays

210

If in is NULL, the program prints a message and stops. If in is not NULL, the program proceeds
as before.

The predefined function exit is used to terminate execution of a program and return control
to the operating system. It is conventional to use exit(0) to indicate normal termination; other
arguments are used to indicate some sort of error.

To use exit, we must write the directive

#include <stdlib.h>

at the head of our program, since exit is defined in the “standard library,” stdlib.h. Among other
things, this library contains functions for working with random numbers, functions for searching,
and functions for sorting.

As usual, we can assign a value to in and test it for NULL, using the following:

FILE * in;
if ((in = fopen("passage.txt", "r")) == NULL) {
 printf("File cannot be found\n");
 exit(1);
}

Note that we cannot use FILE * in in the if condition, since a declaration is not
permitted there.

Similarly, when we write

FILE * out = fopen("output.txt", "w");

we are assuming that the file output.txt exists or can be created. If it does not exist and cannot
be created (the disk may be write protected or full, for instance), fopen will return NULL. We can
test for this as follows:

FILE * out;
if ((out = fopen("output.txt", "w")) == NULL) {
 printf("File cannot be found or created\n");
 exit(1);
}

So far, we have written the name of our file in the fopen statement. To use a different file,
we would have to change the name in the statement, and we would have to re-compile the
program. Our program would be more flexible if we let the user tell us the name of the file when
the program is run.

We can declare dataFile (say) to hold the name of the file with

char dataFile[40];

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Arrays

211

You can change 40 to any size you wish. If in has been declared as FILE *, we can prompt the
user for the file name and test if everything is okay with this:

printf("Enter name of file: ");
scanf("%s", dataFile);
if ((in = fopen(dataFile, "r")) == NULL) {
 printf("File cannot be found\n");
 exit(1);
}

Since we are using %s to read the name of the file, the name may not contain a space. If your
file name may contain a space, you can use gets.

8.7 Array as Argument to a Function
In Chapter 7, we saw how arguments are passed to functions. In C, arguments are passed
“by value.” When an argument is passed “by value,” a temporary location is created with the value
of the argument, and this temporary location is passed to the function. The function never has
access to the original argument.

We also saw that when, for instance, we use gets(item) to read a string into the character
array item, the function is able to put the string into the argument item. This implies that the
function has access to the actual argument – no copy is involved.

In C, an array name denotes the address of its first element. When we use an array name as an
argument to a function, the address of the first element is passed to the function that, therefore,
has access to the array.

We now take a closer look at some issues involved in writing functions with array arguments.
We will write a function, sumList, which returns the sum of the integers in an array passed to

the function. For example, if the array contains the following:

the function should return 24.
We could write the function header like this:

int sumList(int num[])

The array argument is written just like an array declaration but with no size specified.
However, the square brackets must be present to distinguish it from a simple argument. For
instance, if we had written int num, this would mean that num is an ordinary int variable.

You can specify a size, if you wish, using a constant, a symbolic constant, or any integer
expression that can be evaluated at the time the program is compiled. (C99 and later versions of
C allow variable-length arrays in which an array subscript can be specified at runtime. We will see
an example in Section 9.4.1.) However, your program will be more flexible if you do not.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1371-1_7
http://www.it-ebooks.info/

Chapter 8 ■ Arrays

212

Now, suppose score is declared in main as

int score[10];

and we make the call

sumList(score);

We can simply think that, in the function, score is known by the name num; any reference to
num is a reference to the original argument score.

The more precise explanation is this: since the name score denotes the address of score[0],
this address is passed to the function where it becomes the address of the first element of num,
num[0]. In fact, any address can be passed to the function where it will be taken to be the address
of num[0].

The function is free to assume any size it wishes for num. Obviously, this could land us in
trouble if we attempt to process array elements that do not exist. For this reason, it is good
programming practice to ‘tell’ the function how many elements to process. We do this using
another argument, as in:

int sumList(int num[], int n)

Now the calling function can tell sumList how many elements to process by supplying a value
for n. Using the declaration of score, above, the call

sumList(score, 10);

tells the function to process the first 10 elements of score (the whole array). But, and herein lies
the advantage of this approach: we could also make a call such as

sumList(score, 5);

to get the function to process the first 5 elements of score.
Using this function header, we write sumList as follows:

int sumList(int num[], int n) {
 int sum = 0;
 for (int h = 0; h < n; h++) sum += num[h];
 return sum;
}

The function ‘steps through’ the array, from num[0] to num[n-1], using a for loop. Each time
through the loop, it adds one element to sum. On exit from the loop, the value of sum is returned as
the value of the function.

The construct

for (h = 0; h < n; h++)

is typical for processing the first n elements of an array.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Arrays

213

To use the function, consider the following code in main:

int sumList(int[], int), score[10];
for (int h = 0; h < 5; h++) scanf("%d", &score[h]);
printf("Sum of scores is %d\n", sumList(score, 5));

As usual, any function that wants to use sumList must declare it using a function prototype.
Note the use of int[] to indicate that the first argument is an integer array. If we wish, we could
use an identifier in declaring the prototype, as in:

int sumList(int list[], int);

The actual identifier used is not important. We could replace list by any valid identifier.
The for loop reads 5 values into the array. Note that since an array element is just like an

ordinary variable, we must write &score[h] in scanf to read a value into score[h].
Suppose the values read into score are as follows:

In printf, the call

sumList(score, 5)

will get the function to return the sum of the first 5 elements of score: that is, 24. You should
gather by now that, to find the sum of the first 3 elements, say, we can write

sumList(score, 3)

8.8 String – Array of Characters
In Section 2.7 we showed you how to store a string in a “character array.” Now that we know a bit
about arrays, we can explain how strings are actually stored.

In C, a string is stored in an array of characters. Each character in the string is stored in one
position in the array, starting at position 0. The null character,\ 0, is put after the last character. This
is done so that programs can tell when the end of a string has been reached. For example, the string

"Enter rate:"

is stored as follows (◊ denotes a space):

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Arrays

214

(Of course, inside the computer, each character is represented by its numeric code, in binary.)
The null string, a string with no characters, is written as "" (two consecutive double quotes)

and stored like this:

The string constant "a" is stored as follows:

This should not be confused with the character constant 'a', which has a numeric value
(its integer code value) associated with it and can be used in arithmetic expressions. There is no
numeric value associated with the string "a."

We can compare two characters using the relational operators ==, !=, <, <=, > and >=, but we
cannot compare two strings, even single-character strings like "a" and "h," this way. To compare
two strings, we can use the standard string function strcmp.

Suppose we intend to store a name in the variable name declared as

char name[25];

If we read a string into name using

gets(name);

or

scanf("%s", name);

C will put \0 after the last character stored. (This is called properly terminating the string
with \0.) We must ensure that there is enough room in the array to store \0. So if we declare an
array of size 25, we can store a string of at most 24 characters in it since we must reserve one
location for \0.

For example, suppose Alice Wonder is typed in response to gets(name). The array name will
look like this (only the used positions are shown):

Since name is an array, we can work with individual characters, if we so desire. For instance,
name[0] refers to the first character, name[1] refers to the second, and so on. In general, we can
use name[i] to refer to the character in position i. And, as we have seen, we can use name, by
itself, to refer to the string stored in the array.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Arrays

215

The length of a string is defined as the number of characters in it, not counting \0. The
predefined string function strlen takes an array of characters as its argument and returns the
length of the string stored in it. In this example, strlen(name) would return 12, the number of
characters in "Alice Wonder." As a matter of interest, strlen starts counting characters from the
beginning of the array until it finds \0; \0 is not counted.

In fact, all the standard string functions (like strlen, strcpy, strcat, and strcmp) assume
that the strings we give them are properly terminated with \0. If they are not, unpredictable
results will occur. Imagine what will happen, for instance, if we give strlen an array of characters
but there was no \0 to indicate the end of the string. It will go on forever looking for \0.

When we write statements like the following:

char name[25] = "Alice Wonder";

or

strcpy(name, "Alice Wonder");

C will store \0 after the last character so we do not have to worry about it.
However, if we store characters in an array ourselves, we must be careful and add \0 at the

end. This is very important if we intend to use any of the standard string functions with the string
or if we intend to print it with %s. For example, consider this code:

char word[10];
int n = 0;
char ch = getchar();
while (!isalpha(ch)) ch = getchar(); //read and ignore non-letters
while (isalpha(ch)) {
 word[n++] = ch;
 ch = getchar();
}
word[n] = '\0';

The code reads characters from the input and stores the first word found in the array word.
Here, a word is defined as any consecutive string of alphabetic characters. The first while loop
reads over any nonalphabetic characters. It exits when it finds the first alphabetic character. The
second while loop is executed as long as the character read is alphabetic. It uses n to step through
the positions in the array, starting at position 0. On exit from this loop, \0 is stored in position n,
since, at this time, nindicates the position after which the last letter was stored.

To illustrate, suppose the data was:

123$#%&First Caribbean7890

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Arrays

216

The first while loop will read characters until it reaches F, since F is the first alphabetic
character in the data. The second loop will store

F in word[0]
i in word[1]
r in word[2]
s in word[3]
t in word[4]

Since n is incremented after each character is stored, the value of n at this stage is 5. When
the space after t is read, the while loop exits and \0 is stored in word[5], properly terminating the
string. The array word will look like this:

We can now use word with any of the standard string functions and can print it using %s, as in:

printf("%s", word);

%s will stop printing characters when it reaches \0.
The above code is not perfect – we used it mainly for illustrative purposes. Since word is of

size 10, we can store a maximum of 9 letters (plus \0) in it. If the next word is longer than 9 letters
(for example, serendipity), the code will attempt to access word[10], which does not exist,
giving an “array subscript” error.

As an exercise, consider how you would handle words that are longer than what you have
catered for. (Hint: check that n is valid before storing anything in word[n].)

To illustrate how we can work with individual characters in a string, we write a function,
numSpaces, to count and return the number of spaces in a string str:

int numSpaces(char str[]) {
 int h = 0, spaces = 0;
 while (str[h] != '\0') {
 if (str[h] == ' ') spaces++;
 h++;
 }
 return spaces;
} //end numSpaces

Consider the code:

char phrase[] = "How we live and how we die";
printf("Number of spaces is %d\n", numSpaces(phrase));

The first statement creates an array of just the right size to hold the characters of the string
plus \0. Since the phrase contains 26 characters (letters and spaces), the array phrase will be of
size 27, with phrase[0] containing H, phrase[25] containing e and phrase[26] containing \0.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Arrays

217

In printf, the call numSpaces(phrase) will transfer control to the function, where phrase will
be known as str. In the function, the while loop will step through the array until it reaches \0. For
each character, it will check if it is a space. If it is, 1 is added to spaces. On exit from the loop, the
value of spaces is returned as the value of the function. For the sample phrase, the value returned
will be 6.

As a matter of interest, the body of the while loop could be written as:

if (str[h++] == ' ') spaces++;

Here, h is incremented after we test if str[h] contains a space.

Exercises

	 1.	 Write a function to return the number of digits in a string str.

	 2.	 Write a function to return how many vowels there are in a string str. Hint: it
would be useful to write a function isVowel that, given a character ch, returns 1
if ch is a vowel and 0 if it is not.

8.8.1 Reverse the Characters in a String
As another example, we write code to reverse the characters in a string str. For example, if str contains
lived, we must change it to devil. To illustrate how the code will work, we picture str as follows:

We will first exchange str[0], l, and str[4], d, giving this:

Next, we will exchange str[1], i, and str[3], e, giving this:

str[2] is already in place (the middle letter does not move), so there is nothing more to do
and the method ends with str reversed.

It appears that we will need two variables: one will take on subscript values starting from 0
and increasing, while the other will take on subscript values starting from length(str)-1 and
decreasing. We will call them lo and hi. Initially, we will set lo to 0 and hi to length(str)-1.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Arrays

218

The basic idea of the algorithm is as follows:

1. set lo to 0
2. set hi to length(str)-1
3. exchange the characters in positions lo and hi
4. add 1 to lo
5. subtract 1 from hi
6. repeat from step 3

When do we stop? Well, we can stop when there are no more characters to exchange. This
will happen when lo becomes greater than or equal to hi. Or, put another way, we must keep
exchanging characters as long as lo is less than hi. We can now write the algorithm as follows:

set lo to 0
set hi to length(str) - 1
while lo < hi do
 exchange the characters in positions lo and hi
 add 1 to lo
 subtract 1 from hi
endwhile

In this form, it is easily converted to C as follows (assume c is char):

lo = 0;
hi = strlen(str) - 1;
while (lo < hi) {
 c = str[lo];
 str[lo] = str[hi];
 str[hi] = c;
 lo++; hi--;
}

However, we can use the expressive power of the for statement to write this more concisely
and, perhaps, more readable, as follows:

for (lo = 0, hi = strlen(str) - 1; lo < hi; lo++, hi--) {
 c = str[lo];
 str[lo] = str[hi];
 str[hi] = c;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Arrays

219

Swapping two characters in a string is something we may want to do from time to time.
It would be convenient to write a function (swap, say) to do this task. When we call swap, we will
give it the string and the subscripts of the characters we want to exchange. For example, if word is
a char array, the call

swap(word, i, j);

will exchange characters word[i] and word[j]. Since word is an array, the original array (not
a copy) is passed to swap. When the function swaps two characters, it is swapping them in the
actual argument, word.

The function can be written as follows:

void swap(char str[], int i, int j) {
 char c = str[i];
 str[i] = str[j];
 str[j] = c;
} //end swap

In the function, the actual argument (word, say) is known by the name str.
Using swap, we can reverse the characters with another function, reverse, written as follows:

void reverse(char str[]) {
 void swap(char [], int, int);
 int lo, hi;
 for (lo = 0, hi = strlen(str) - 1; lo < hi; lo++, hi--)
 swap(str, lo, hi);
 } //end reverse

Since reverse uses swap, we must declare the prototype for swap in reverse. Note, again, that
the prototype is similar to the function header, except that we omit the variable names. However,
if you wish, you may include the names – any names will do.

Using these functions, we write Program P8.3, which reads a string, reverses it, and prints it.

Program P8.3

#include <stdio.h>
#include <string.h>
int main() {
 char sample[100];
 void reverse(char s[]);
 printf("Type some data and I will reverse it\n");
 gets(sample);
 reverse(sample);
 printf("%s\n", sample);
} //end main
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Arrays

220

void reverse(char str[]) {
 void swap(char [], int, int);
 int lo, hi;
 for (lo = 0, hi = strlen(str) - 1; lo < hi; lo++, hi--)
 swap(str, lo, hi);
} //end reverse
 
void swap(char str[], int i, int j) {
 char c = str[i];
 str[i] = str[j];
 str[j] = c;
} //end swap

The following is a sample run of P8.3:

Type some data and I will reverse it
Once upon a time
emit a nopu ecnO

Reversing a string may not seem too important in its own right, but there are times when we
need to reverse the elements of an array. For example, we may have a list of student marks stored
in an array and sorted in ascending order, like this:

If we want the marks in descending order, all we have to do is reverse the array, like this:

8.9 Palindrome
Consider the problem of determining if a given string is a palindrome (the same when spelt
forwards or backwards). Examples of palindromes (ignoring case, punctuation and spaces) are:

civic
Race car
Madam, I'm Adam.
A man, a plan, a canal, Panama.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Arrays

221

If all the letters were of the same case (upper or lower) and the string (word, say) contained no
spaces or punctuation marks, we could solve the problem as follows:

assign word to another string, temp
reverse the letters in temp
if temp = word then word is a palindrome
else word is not a palindrome

In other words, if the reverse of a word is the same as the word, it is a palindrome. Sounds
logical and correct. However, it is not efficient. Let us see why.

Suppose the word was thermostat. This method would reverse thermostat to get
tatsomreht. Comparing the two tells us that thermostat is not a palindrome. But we can get the
answer more quickly as follows:

compare the first and last letters, t and t
they are the same, so
compare the second and second to last letters, h and a
these are different so the word is not a palindrome

We will write a function called palindrome, which, given a string word, returns 1 if word
is a palindrome and 0 if it is not. For the moment, we will assume that word is all uppercase or
all lowercase and does not contain spaces or punctuation. The function will be based on the
following idea:

compare the first and last letters
if they are different, the string is not a palindrome
if they are the same, compare the second and second to last letters
if they are different, the string is not a palindrome
if they are the same, compare the third and third to last letters

and so on; we continue until we find a non-matching pair (and it’s not a palindrome) or
there are no more pairs to compare (and it is a palindrome). We can express this logic in
pseudocode as follows:

set lo to 0
set hi to length(word) - 1
while lo < hi do //while there are more pairs to compare
 if word[lo] != word[hi] then return 0 // not a palindrome
 //the letters match, move on to the next pair
 lo = lo + 1
 hi = hi - 1
endwhile
return 1 // all pairs match, it is a palindrome

The while loop compares pairs of letters; if it finds a non-matching pair, it immediately
returns 0. If all pairs match, it will exit in the normal way when lo is no longer less than hi. In this
case, it returns 1.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Arrays

222

The function palindrome is shown in Program P8.4, which tests it by reading several words
and printing whether or not each is a palindrome.

Program P8.4

#include <stdio.h>
#include <string.h>
int main() {
 char aWord[100];
 int palindrome(char str[]);
 printf("Type a word. (To stop, press 'Enter' only): ");
 gets(aWord);
 while (strcmp(aWord, "") != 0) {
 if (palindrome(aWord)) printf("is a palindrome\n");
 else printf("is not a palindrome\n");
 printf("Type a word. (To stop, press 'Enter' only): ");
 gets(aWord);
 }
} //end main

int palindrome(char word[]) {
 int lo = 0;
 int hi = strlen(word) - 1;
 while (lo < hi)
 if (word[lo++] != word[hi--]) return 0;
 return 1;
} //end palindrome

In the function, we use the single statement

if (word[lo++] != word[hi--]) return 0;

to express all the logic of the body of the while loop in the above algorithm. Since we use ++ and
-- as suffixes, lo and hi are changed after word[lo] is compared with word[hi].

We could, of course, have expressed it as:

if (word[lo] != word[hi]) return 0;
lo++;
hi--;

The program prompts the user to type a word and tells her if it is a palindrome. It then
prompts for another word. To stop, the user must press the “Enter” or “Return” key only. When

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Arrays

223

she does this, the empty string is stored in aWord. The while condition checks for this by
comparing aWord with "" (two consecutive double quotes denote the empty string). The following
is a sample run of Program P8.4:

Type a word. (To stop, press "Enter" only): racecar
is a palindrome
Type a word. (To stop, press "Enter" only): race car
is not a palindrome
Type a word. (To stop, press "Enter" only): Racecar
is not a palindrome
Type a word. (To stop, press "Enter" only): DEIFIED
is a palindrome
Type a word. (To stop, press "Enter" only):

Note that race car is not a palindrome because 'e' is not the same as ' ' and Racecar is not
a palindrome because 'R' is not the same as 'r'. We will fix this shortly.

8.9.1 A Better Palindrome Function
The function we wrote works for one-word palindromes with all uppercase or all lowercase
letters. We now tackle the more difficult problem of checking words or phrases that may contain
uppercase letters, lowercase letters, spaces, and punctuation marks. To illustrate our approach,
consider the phrase:

Madam, I'm Adam

We will convert all the letters to one case (lower, say) and remove all spaces and non-letters, giving

madamimadam

We can now use the function we wrote in Program P8.4 to test if this is a palindrome.
Let us write a function lettersOnlyLower that, given a string phrase, converts all letters to

lowercase and removes all spaces and non-letters. The function stores the converted string in the
second argument. Here it is:

void lettersOnlyLower(char phrase[], char word[]) {
 int i = 0, n = 0;
 char c;
 while ((c = phrase[i++]) != '\0')
 if (isalpha(c)) word[n++] = tolower(c);
 word[n] = '\0';
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Arrays

224

Comments on the functionlettersOnlyLower

•	 i is used to index the given phrase, stored in phrase.

•	 n is used to index the converted phrase, stored in word.

•	 The while loop looks at each character of phrase, in turn. If it is a letter, it is
converted to lowercase using the predefined function tolower and stored in
the next position in word; to use tolower, your program must be preceded
by the directive

#include <ctype.h>

•	 On exit from the while, word is properly terminated with \0.

Putting everything together, we get Program P8.5, which tests our new function,
letterOnlyLower.

Program P8.5

#include <stdio.h>
#include <string.h>
#include <ctype.h>
int main() {
 char aPhrase[100], aWord[100];
 void lettersOnlyLower(char p[], char w[]);
 int palindrome(char str[]);
 printf("Type a phrase. (To stop, press 'Enter' only): ");
 gets(aPhrase);
 
 while (strcmp(aPhrase, "") != 0) {
 lettersOnlyLower(aPhrase, aWord);
 printf("Converted to: %s\n", aWord);
 if (palindrome(aWord)) printf("is a palindrome\n");
 else printf("is not a palindrome\n");
 printf("Type a word. (To stop, press 'Enter' only): ");
 gets(aPhrase);
 } //end while
} //end main
 
void lettersOnlyLower(char phrase[], char word[]) {
 int j = 0, n = 0;
 char c;
 while ((c = phrase[j++]) != '\0')
 if (isalpha(c)) word[n++] = tolower(c);
 word[n] = '\0';

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Arrays

225

} //end lettersOnlyLower
 
int palindrome(char word[]) {
 int lo = 0;
 int hi = strlen(word) - 1;
 while (lo < hi)
 if (word[lo++] != word[hi--]) return 0;
 return 1;
} //end palindrome

The program prompts the user for a phrase and tells her whether or not it is a palindrome. We
also print the converted phrase to show you how the function works.

A sample run is shown here:

Type a phrase. (To stop, press "Enter" only): Madam I'm Adam
Converted to: madamimadam
is a palindrome
Type a phrase. (To stop, press "Enter" only): Flo, gin is a sin. I golf.
Converted to: floginisasinigolf
is a palindrome
Type a phrase. (To stop, press "Enter" only): Never odd or even.
Converted to: neveroddoreven
is a palindrome
Type a phrase. (To stop, press "Enter" only): Thermostat
Converted to: thermostat
is not a palindrome
Type a phrase. (To stop, press "Enter" only): Pull up if I pull up.
Converted to: pullupifipullup
is a palindrome
Type a phrase. (To stop, press "Enter" only):

8.10 Array of Strings – Name of Day Revisited
In Program P7.4, we wrote a function printDay, which printed the name of a day, given the
number of the day. We will now write a function nameOfDay that will be given two arguments:
the first is the number of a day and the second is a character array. The function will store, in the
array, the name of the day corresponding to the number of the day. For example, the call

nameOfDay(6, dayName);

will store Friday in dayName, assuming dayName is a character array.
We show how to write nameOfDay using an array to store the names of the days. Suppose we

have an array day as shown in Figure 8-2 (day[0] is not used and is not shown).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Arrays

226

If d contains a value from 1 to 7, then day[d] contains the name of the day corresponding to
d. For instance, if d is 3, day[d] contains Tuesday. But how can we store the names of the days in
an array? What kind of array would we need?

We will need an array where each element can hold a string – an array of strings. But a string
itself is stored in an array of characters. So we need an array of “array of characters” – we need a
two-dimensional array. Consider the declaration

char day[8][10];

We can think of day as having 8 rows and 10 columns. If we store the name of a day in each
row, then we can store 8 names. Each name is stored in an array of 10 characters. The rows are
numbered from 0 to 7 and the columns are numbered from 0 to 9. As hinted in the above diagram,
we will not use row 0. We will store the names in rows 1 to 7. If we store the names of the days in
this array, it will look like this (we put the null string "" in day[0]):

C lets us to refer to the ith row with day[i]. If we need to, we can use day[i][k] to refer to
the character in row i and column k. For example, day[3][2] is e and day[7][4] is r.

We can declare the array day and initialize it with the names of the days using this:

char day[8][10] = {"", "Sunday", "Monday", "Tuesday",
 "Wednesday", "Thursday", "Friday", "Saturday"};

This declaration will create the array shown in Figure 8-3. The strings to be placed in the array
are enclosed by { and } and separated by commas with no comma after the last one. The first
string, the null string, is placed in day[0], the second in day[1], the third in day[2], and so on.

Figure 8-2.  The array day

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Arrays

227

The complete function, nameOfDay, is shown in Program P8.6 in which main is used just to test
the function.

Program P8.6

#include <stdio.h>
#include <string.h>
int main() {
 void nameOfDay(int, char[]);
 int n;
 char dayName[12];
 printf("Enter a day from 1 to 7: ");
 scanf("%d", &n);
 nameOfDay(n, dayName);
 printf("%s\n", dayName);
} //end main
 
void nameOfDay(int n, char name[]) {
 char day[8][10] = {"", "Sunday", "Monday", "Tuesday", "Wednesday",
 "Thursday", "Friday", "Saturday"};
 if (n < 1 || n > 7) strcpy(name, "Invalid day");
 else strcpy(name, day[n]);
} //end nameOfDay

In the function, the following statement checks the value of n.

if (n < 1 || n > 7) strcpy(name, "Invalid day");
else strcpy(name, day[n]);

Figure 8-3.  The 2-dimensional array day

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Arrays

228

If n is not a value from 1 to 7, the function stores Invalid day in name. If it is a valid day
number, it stores the value of day[n] in name. For example, if n is 6, the function stores day[6],
that is, Friday, in name.

In main, dayName is declared to be of size 12 since it needs to hold the string "Invalid day" if
the day number is invalid.

8.11 A Flexible getString Function
So far, we have used the format specification %s to read a string containing no whitespace
characters and the function gets to read a string up to the end-of-line. However, neither of these
allows us to read a string delimited by double quotes, for instance. Suppose we had data as in the
following format:

"Margaret Dwarika" "Clerical Assistant"

We would not be able to use %s or gets to read this data easily.
We will write a function, getString, which lets us read a string enclosed within ‘delimiter’

characters. For example, we could specify a string as $John Smith$ or "John Smith." This is a very
flexible way of specifying a string. Each string can be specified with its own delimiters which could
be different for the next string. It is particularly useful for specifying strings which may include
special characters such as the double quotes without having to use an escape sequence like\".

For instance, in order to specify the following string in C:

"Don't move!" he commanded.

we must write:

"\"Don't move!\" he commanded."

With getString, this string could be supplied as

$"Don't move!" he commanded.$

or

%"Don't move!" he commanded.%

or using any other character as a delimiter, provided it is not one of the characters in the string.
We could even use something like this:

7"Don't move!" he commanded."7

but would normally use special characters like ", $, % or # as delimiters.
We will write getString with two parameters: a file designated by in and a character

array str. The function will read the next string from in and store it in str.
The function assumes that the first non-whitespace character met (delim, say) is the

delimiter. Characters are read and stored until delim is met again, indicating the end of the string.
The delimiter characters are not stored since they are not part of the string.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Arrays

229

Suppose we have the following declarations in main:

FILE * input = fopen("quizdata.txt", "r");
char country[50];

and the file quizdata.txt contains strings delimited as described above. We would be able to
read the next string from the file and store it in country with this:

getString(input, country);

It is up to us to ensure that country is big enough to hold the next string. If not, the program
may crash or nonsense results will occur.

Here is getString:

void getString(FILE * in, char str[]) {
//stores, in str, the next string within delimiters
// the first non-whitespace character is the delimiter
// the string is read from the file 'in'
 
 char ch, delim;
 int n = 0;
 str[0] = '\0';
 // read over white space
 while (isspace(ch = getc(in))) ; //empty while body
 if (ch == EOF) return;
 
 delim = ch;
 while (((ch = getc(in)) != delim) && (ch != EOF))
 str[n++] = ch;
 str[n] = '\0';
} // end getString

Comments on getString

•	 The predefined function isspace returns 1 (true) if its char argument is a
space, tab, or newline character and 0 (false), otherwise.

•	 If getString encounters end-of-file before finding a non-whitespace
character (the delimiter), the empty string is returned in str. Otherwise, it
builds the string by reading one character at a time; the string is terminated
by the next occurrence of the delimiter, or end-of-file, whichever comes first.

•	 We can read a string from the standard input (the keyboard) by calling
getString with stdin as the first argument.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Arrays

230

8.12 A Geography Quiz Program
Let us write a program that quizzes a user on countries and their capitals. The program will
illustrate some useful programming concepts such as reading from the keyboard and a file and
being very flexible in terms of user input. The following is a sample run of the program, indicating
how we want the finished program to work. The user is given two tries at a question. If she gets it
wrong both times, the program tells her the correct answer.

What is the capital of Trinidad? Tobago
Wrong. Try again.
What is the capital of Trinidad? Port of Spain
Correct!
What is the capital of Jamaica? Kingston
Correct!
What is the capital of Grenada? Georgetown
Wrong. Try again.
What is the capital of Grenada? Castries
Wrong. Answer is St. George's

We will store the names of the countries and their capitals in a file (quizdata.txt, say). For
each country, we will store its name, its capital, and a special string consisting only of the letters
in the capital, all converted to uppercase. This last string will be used to enable users to type their
answers with a lot of flexibility, and it will enable us to write a more efficient program. It is not
absolutely necessary to provide this last string since we can get the program to create it for us
(see note after Program P8.7). The string "*" is used to indicate the end of the data. The following
shows some sample data:

"Trinidad" "Port of Spain" "PORTOFSPAIN"
"Jamaica" "Kingston" "KINGSTON"
"Grenada" "St. George's" "STGEORGES"
"*"

We show 3 strings per line but this is not necessary. The only requirement is that they are
supplied in the right order. If you wish, you can have 1 string per line or 6 strings per line or
different numbers of strings per line. Also, you can use any character to delimit a string, provided
it is not a character in the string. And you can use different delimiters for different strings. It is
perfectly okay to supply the above data as follows:

"Trinidad" $Port of Spain$ *PORTOFSPAIN*
%Jamaica% "Kingston" &KINGSTON&
$Grenada$ %St. George's% ^STGEORGES^
#*#

We can do this because of the flexibility of getString. We will use getString to read strings
from the file and gets to get the user’s answers typed at the keyboard.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Arrays

231

Suppose a country’s data are read into the variables country, capital and CAPITAL,
respectively. (Remember that, in C, capital is a different variable from CAPITAL.) When the user
types an answer (answer, say), it must be compared with capital. If we use a straightforward
comparison like

if (strcmp(answer, capital) == 0) ...

to check if answer is the same as capital, then answers such as "Portof Spain,""port of
spain,"" Port ofSpain," and "st georges" would all be considered wrong. If we want these
answers to be correct (and we probably should) we must convert all user answers to a common
format before comparing.

We take the view that as long as all the letters are there, in the correct order, regardless of
case, the answer is considered correct. When the user types an answer, we ignore spaces and
punctuation and convert the letters only to uppercase. This is then compared with CAPITAL. For
example, the answers above would be converted to "PORTOFSPAIN" and "STGEORGES" and would
elicit a "Correct!" response.

In the palindrome program (P8.5), we wrote a function lettersOnlyLower that kept the
letters only from a string and converted them to lowercase. Here, we want the same function but
we convert to uppercase instead. We name the function lettersOnlyUpper. The code is identical
to lettersOnlyLower except that tolower is replaced by toupper. Our test for correctness now
becomes this:

lettersOnlyUpper(answer, ANSWER);
if (strcmp(ANSWER, CAPITAL) == 0) printf("Correct!\n");

All the details are captured in Program P8.7.

Program P8.7

#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include <stdlib.h>
#define MaxLength 50
 
int main() {
 void getString(FILE *, char[]);
 void askOneQuestion(char[], char[], char[]);
 char EndOfData[] = "*", country[MaxLength+1] ;
 char capital[MaxLength+1], CAPITAL[MaxLength+1];
 FILE * in = fopen("quizdata.txt", "r");
 if (in == NULL){
 printf("Cannot find file\n");
 exit(1);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Arrays

232

 getString(in, country);
 while (strcmp(country, EndOfData) != 0) {
 getString(in, capital);
 getString(in, CAPITAL);
 askOneQuestion(country, capital, CAPITAL);
 getString(in, country);
 }
} // end main
 
void askOneQuestion(char country[], char capital[], char CAPITAL[]) {
 void lettersOnlyUpper(char [], char[]);
 char answer[MaxLength+1], ANSWER[MaxLength+1];
 
 printf("\nWhat is the capital of %s?", country);
 gets(answer);
 lettersOnlyUpper(answer, ANSWER);
 if (strcmp(ANSWER, CAPITAL) == 0) printf("Correct!\n");
 else {
 printf("Wrong. Try again\n");
 printf("\nWhat is the capital of %s?", country);
 gets(answer);
 lettersOnlyUpper(answer, ANSWER);
 if (strcmp(ANSWER, CAPITAL) == 0) printf("Correct!\n");
 else printf("Wrong. Answer is %s\n", capital);
 }
} // end askOneQuestion
 
void lettersOnlyUpper(char word[], char WORD[]) {
 // stores the letters in word (converted to uppercase) in WORD
 int i = 0, n = 0;
 char c;
 
 while ((c = word[i++]) != '\0')
 if (isalpha(c)) WORD[n++] = toupper(c);
 WORD[n] = '\0';
} // end lettersOnlyUpper
 
void getString(FILE * in, char str[]) {
//stores, in str, the next string within delimiters
// the first non-whitespace character is the delimiter
// the string is read from the file 'in'
 char ch, delim;
 int n = 0;
 str[0] = '\0';
 // read over white space
 while (isspace(ch = getc(in))) ; //empty while body
 if (ch == EOF) return;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Arrays

233

 delim = ch;
 while (((ch = getc(in)) != delim) && (ch != EOF))
 str[n++] = ch;
 str[n] = '\0';
} // end getString

As mentioned earlier, it is not absolutely necessary to store CAPITAL in the file. We can store
country and capital only, and when these are read, convert capital with

lettersOnlyUpper(capital, CAPITAL);

You can use the idea of this program to write many similar ones. On the Geography theme,
you can ask about mountains and heights, rivers and lengths, countries and population, countries
and prime ministers, and so on. For a different application, you can use it to drill a user in
English-Spanish (or any other combination of languages) vocabulary. Your questions could take
the form:

What is the Spanish word for water?

or, if you prefer,

What is the English word for agua?

Better yet, let the user choose whether she is given English or Spanish words.
You can ask about books and authors, songs and singers, movies and stars. As an exercise,

think of five other areas in which the idea of this program can be used to quiz a user.

8.13 Find the Largest Number
Let us consider the problem of finding the largest of a set of values stored in an array. The
principle of finding the largest is the same as we discussed in Section 5.6. Suppose the integer
array num contains the following values:

We can easily see that the largest number is 84 and that it is in location 4. But how does a
program determine this? One approach is as follows:

•	 Assume that the first element (the one in position 0) is the largest; we do this
by setting big to 0. As we step through the array, we will use big to hold the
position of the largest number encountered so far; num[big] will refer to the
actual number.

•	 Next, starting at position 1, we look at the number in each successive
position, up to 6, and compare the number with the one in position big.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Arrays

234

•	 The first time, we compare num[1] with num[0]; since num[1], 72, is larger
than num[0], 25, we update big to 1. This means that the largest number so
far is in position 1.

•	 Next, we compare num[2], 17, with num[big] (that is, num[1]), 72; since
num[2] is smaller than num[1], we go on to the next number, leaving big at 1.

•	 Next, we compare num[3], 43, with num[big] (that is, num[1]), 72; since
num[3] is smaller than num[1], we go on to the next number, leaving big at 1.

•	 Next, we compare num[4], 84, with num[big] (that is, num[1]), 72; since
num[4] is larger than num[1], we update big to 4. This means that the largest
number so far is in position 4.

•	 Next, we compare num[5], 14, with num[big] (that is, num[4]), 84; since
num[5] is smaller than num[4], we go on to the next number, leaving big at 4.

•	 Next, we compare num[6], 61, with num[big] (that is, num[4]), 84; since
num[6] is smaller than num[4], we go on to the next number, leaving big at 4.

•	 Since there is no next number, the process ends with the value of big being
4, the position of the largest number. The actual number is denoted by
num[big]; since big is 4, this is num[4], which is 84.

We can express the process just described by the following pseudocode:

big = 0
for h = 1 to 6
 if num[h] > num[big] then big = h
endfor
print "Largest is ", num[big], " in position ", big

We will now write a function, getLargest, to find the largest value in an array. To be general,
we will specify which portion of the array to search for the value. This is important since, most
times, we declare an array to be of some maximum size (100, say) but do not always put 100
values in the array.

When we declare the array to be of size 100, we are catering for 100 values. But, at any time,
the array may have less than this amount. We use another variable (n, say) to tell us how many
values are currently stored in the array. For example, if n is 36, it means that values are stored in
elements 0 to 35 of the array.

So when we are finding the largest, we must specify which elements of the array to search. We
will write the function such that it takes three arguments – the array num, and two integers lo and
hi—and returns the position of the largest number from num[lo] to num[hi], inclusive. It is up
to the caller to ensure that lo and hi are within the range of subscripts declared for the array. For
instance, the call

•	 getLargest(score, 0, 6) will return the position of the largest number
from score[0] to score[6]; and the call

•	 getLargest(mark, 10, 20) will return the position of the largest number
from mark[10] to mark[20].

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Arrays

235

Here is the function, getLargest:

int getLargest(int num[], int lo, int hi) {
 int big = lo;
 for (int h = lo + 1; h <= hi; h++)
 if (num[h] > num[big]) big = h;
 return big;
} //end getLargest

The function assumes the largest number is in position lo, the first one, by setting big to
lo. In turn, it compares the numbers in locations lo+1 up to hi with the one in location big. If a
bigger one is found, big is updated to the location of the bigger number.

8.14 Find the Smallest Number
The function, getLargest, could be easily modified to find the smallest value in an array. Simply
change big to small, say, and replace > by <, giving this:

int getSmallest(int num[], int lo, int hi) {
 int small = lo;
 for (int h = lo + 1; h <= hi; h++)
 if (num[h] < num[small]) small = h;
 return small;
} //end getSmallest

This function returns the location of the smallest element from num[lo] to num[hi], inclusive.
Later, we will show you how to use this function to arrange a set of numbers in ascending order.

We have shown how to find the largest and smallest values in an integer array. The procedure
is exactly the same for arrays of other types such as double, char, or float. The only change
that has to be made is in the declaration of the arrays. Keep in mind that when we compare two
characters, the ‘larger’ one is the one with the higher numeric code.

8.15 A Voting Problem
We now illustrate how to use some of the ideas just discussed to solve the following problem.

In an election, there are seven candidates. Each voter is allowed one vote
for the candidate of his/her choice. The vote is recorded as a number
from 1 to 7. The number of voters is unknown beforehand but the votes
are terminated by a vote of 0. Any vote that is not a number from 1 to 7 is
an invalid (spoilt) vote.

A file, votes.txt, contains the names of the candidates. The first name
is considered as candidate 1, the second as candidate 2, and so on. The
names are followed by the votes. Write a program to read the data and
evaluate the results of the election. Print all output to the file, results.txt.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Arrays

236

Your output should specify the total number of votes, the number of
valid votes, and the number of spoilt votes. This is followed by the votes
obtained by each candidate and the winner(s) of the election.

Suppose you are given the following data in the file, votes.txt:

Victor Taylor
Denise Duncan
Kamal Ramdhan
Michael Ali
Anisa Sawh
Carol Khan
Gary Olliverie
3 1 2 5 4 3 5 3 5 3 2 8 1 6 7 7 3 5
6 9 3 4 7 1 2 4 5 5 1 4 0

Your program should send the following output to the file, results.txt:

Invalid vote: 8
Invalid vote: 9

Number of voters: 30
Number of valid votes: 28
Number of spoilt votes: 2
 
Candidate Score
 
Victor Taylor 4
Denise Duncan 3
Kamal Ramdhan 6
Michael Ali 4
Anisa Sawh 6
Carol Khan 2
Gary Olliverie 3
 
The winner(s):
Kamal Ramdhan
Anisa Sawh

We need to store the names of the 7 candidates and the votes obtained by each. We will use
an int array for the votes. In order to work naturally with candidates 1 to 7, we will write the
declaration

int vote[8];

and use vote[1] to vote[7] for counting the votes for the candidates; vote[c] will hold the count
for candidate c. We will not use vote[0].

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Arrays

237

But what kind of array can we use for the names, since a name itself is stored in a char array?
We will need an “array of arrays” – a two-dimensional array. Consider the declaration

char name[8][15];

We can think of name as having 8 rows and 15 columns. If we store one name in each row,
then we can store 8 names. Each name is stored in an array of 15 characters. The rows are
numbered from 0 to 7 and the columns are numbered from 0 to 14. In our program, we will not
use row 0. We will store the names in rows 1 to 7. If we store the sample names in this array, it will
look like this:

To cater for longer names, we will use the following declaration to store the names of the
candidates:

char name[8][31];

We will store the name of candidate c in name[c]; name[0] will not be used.
To make the program flexible, we will define the following symbolic constants:

#define MaxCandidates 7
#define MaxNameLength 30

and, in main, use these declarations:

char name[MaxCandidates + 1][MaxNameLength + 1];
int vote[MaxCandidates + 1];

The #define directives will be placed at the top of the program, before main. When we do this,
the symbolic constants will be available to any function that needs to use them.

In general, variables and identifiers declared outside of any function are said to be external
and are available to any function that comes after it in the same file. (The rules are a bit more
complicated than this, but this will suffice for our purposes.) So if the declarations are placed
at the top of the program, the variables and identifiers would be available to all functions in the
program, assuming the entire program is stored in one file (as is the case with our programs).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Arrays

238

One of the first things the program must do is read the names and set the vote counts to 0.
We will write a function initialize to do this. This will also let us show you how to pass a
2-dimensional array to a function.

As explained previously, we will read a candidate’s name in two parts (first name and last
name) and then join them together to create a single name that we will store in name[c]. Here is
the function:

void initialize(char name[][MaxNameLength + 1], int vote[]) {
 char lastName[MaxNameLength];
 for (int c = 1; c <= MaxCandidates; c++) {
 fscanf(in, "%s %s", name[c], lastName);
 strcat(name[c], " ");
 strcat(name[c], lastName);
 vote[c] = 0;
 }
} //end initialize

As we see in the case of the parameter vote, we just need the square brackets to signify that
vote is a one-dimensional array. However, in the case of the two-dimensional array name, we
must specify the size of the second dimension and we must use a constant or an expression whose
value can be determined when the program is compiled. (C99 and later versions of C allow
variable-length arrays in which an array subscript can be specified at runtime. We will see an
example in Section 9.4.1.) The size of the first dimension may remain unspecified as indicated by
empty square brackets. This holds for any two-dimensional array used as a parameter.

Next, we must read and process the votes. Processing vote v involves checking that it is valid.
If it is, we want to add 1 to the score for candidate v. We will read and process the votes with
the following:

fscanf(in, "%d", &v);
while (v != 0) {
 if (v < 1 || v > MaxCandidates) {
 fprintf(out, "Invalid vote: %d\n", v);
 ++spoiltVotes;
 }
 else {
 ++vote[v];
 ++validVotes;
 }
 fscanf(in, "%d", &v);
}

The key statement here is

++vote[v];

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Arrays

239

This is a clever way of using the vote v as a subscript to add 1 for the right candidate. For
example, if v is 3, we have a vote for candidate 3, Kamal Ramdhan. We wish to add 1 to the vote
count for candidate 3. This count is stored in vote[3]. When v is 3, the statement becomes

++vote[3];

This adds 1 to vote[3]. The beauty is that the same statement will add 1 for any of the
candidates, depending on the value of v. This illustrates some of the power of using arrays. It does
not matter whether there are 7 candidates or 700; the one statement will work for all.

Now that we know how to read and process the votes, it remains only to determine the
winner(s) and print the results. We will delegate this task to the function printResults.

Using the sample data, the array vote will contain the following values after all the votes have
been tallied (remember we are not using vote[0]).

To find the winner, we must first find the largest value in the array. To do this, we will call
getLargest (Section 8.13) with

int win = getLargest(vote, 1, MaxCandidates);

This will set win to the subscript of the largest value from vote[1] to vote[7] (since
MaxCandidates is 7). In our example, win will be set to 3 since the largest value, 6, is in position 3.
(6 is also in position 5 but the way the code is written, it will return the first position that contains
the largest, if there is more than one.)

Now that we know the largest value is in vote[win], we can ‘step through’ the array, looking
for those candidates with that value. This way, we will find all the candidates (one or more) with
the highest vote and declare them as winners.

The details are given in the function printResults shown as part of Program P8.8, our
solution to the voting problem posed at the beginning of this section.

Program P8.8

#include <stdio.h>
#include <string.h>
#define MaxCandidates 7
#define MaxNameLength 30
FILE *in, *out;
 
int main() {
 char name[MaxCandidates + 1][MaxNameLength + 1];
 int vote[MaxCandidates + 1];
 int v, validVotes = 0, spoiltVotes = 0;
 void initialize(char [][MaxNameLength + 1], int []);
 void printResults(char [][MaxNameLength + 1], int [], int, int);
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Arrays

240

 in = fopen("votes.txt", "r");
 out = fopen("results.txt", "w");
 initialize(name, vote);
 
 fscanf(in, "%d", &v);
 while (v != 0) {
 if (v < 1 || v > MaxCandidates) {
 fprintf(out, "Invalid vote: %d\n", v);
 ++spoiltVotes;
 }
 else {
 ++vote[v];
 ++validVotes;
 }
 fscanf(in, "%d", &v);
 }
 printResults(name, vote, validVotes, spoiltVotes);
 fclose(in);
 fclose(out);
} // end main
 
void initialize(char name[][MaxNameLength + 1], int vote[]) {
 char lastName[MaxNameLength];
 for (int c = 1; c <= MaxCandidates; c++) {
 fscanf(in, "%s %s", name[c], lastName);
 strcat(name[c], " ");
 strcat(name[c], lastName);
 vote[c] = 0;
 }
} // end initialize
 
int getLargest(int num[], int lo, int hi) {
 int big = lo;
 for (int h = lo + 1; h <= hi; h++)
 if (num[h] > num[big]) big = h;
 return big;
} //end getLargest
 
void printResults(char name[][MaxNameLength + 1], int vote[],
 int valid, int spoilt) {
 int getLargest(int v[], int, int);
 fprintf(out, "\nNumber of voters: %d\n", valid + spoilt);
 fprintf(out, "Number of valid votes: %d\n", valid);
 fprintf(out, "Number of spoilt votes: %d\n", spoilt);
 fprintf(out, "\nCandidate Score\n\n");
 
 for (int c = 1; c <= MaxCandidates; c++)
 fprintf(out, "%-15s %3d\n", name[c], vote[c]);
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Arrays

241

 fprintf(out, "\nThe winner(s)\n");
 int win = getLargest(vote, 1, MaxCandidates);
 int winningVote = vote[win];
 for (int c = 1; c <= MaxCandidates; c++)
 if (vote[c] == winningVote) fprintf(out, "%s\n", name[c]);
} //end printResults

EXERCISES 8

1.	 Explain the difference between a simple variable and an array variable.

2.	 Write array declarations for each of the following: (a) a floating-point array of size 25
(b) an integer array of size 50 (c) a character array of size 32.

3.	 What is a subscript? Name three ways in which we can write a subscript.

4.	 What values are stored in an array when it is first declared?

5.	 Name two ways in which we can store a value in an array element.

6.	 Write a function which, given a number from 1 to 12 and a character array, stores
the name of the month in the array. For example, given 8, it stores August in the
array. Store the empty string if the number given is not valid.

7.	 You declare an array of size 500. Must you store values in all elements of the array?

8.	 Write code to read 200 names from a file and store them in an array.

9.	 An array num is of size 100. You are given two values i and k, with
0 £ i < k £ 99. Write code to find the average of the numbers from num[i] to
num[k], inclusive.

10.	 Write a function, which, given a string of arbitrary characters, returns the number of
consonants in the string.

11.	 Modify the letter frequency count program (Program P8.2) to count the number of
non-letters as well. Make sure you do not count the end-of-line characters.

12.	 Write a function that, given an array of integers and an integer n, reverses the first n
elements of the array.

13.	 Write a program to read names and phone numbers into two arrays. Request a
name and print the person’s phone number. Use at least one function.

14.	 Write a function indexOfthat, given a string s and a character c, returns the
position of the first occurrence of c in s. If c is not in s, return -1. For example,
indexOf("brother",'h') returns 4 but indexOf("brother", 'a') returns -1.

15.	 Write a function substringthat, given two strings s1 and s2, returns the
starting position of the first occurrence of s1 in s2. If s1 is not in s2, return -1.
For example, substring("mom","thermometer") returns 4 but
substring("dad","thermometer") returns -1.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Arrays

242

16.	 Write a function removethat, given a string str and a character c,
removes all occurrences of c from str. For example, if str contains
"brother,"remove(str,'r') should change str to "bothe."

17.	 Write a program to read English words and their equivalent Spanish words into
two arrays. Request the user to type several English words. For each, print the
equivalent Spanish word. Choose a suitable end-of-data marker. Modify the
program so that the user types Spanish words instead.

18.	 The number 27472 is said to be palindromic since it reads the same forwards or
backwards. Write a function that, given an integer n, returns 1 if n is palindromic
and 0 if it is not.

19.	 Write a program to find out, for a class of students, the number of families with
1, 2, 3, ... up to 8 or more children. The data consists of the number of children in
each pupil’s family, terminated by 0. (Why is 0 a good value to use?)

20.	 A survey of 10 pop artists is made. Each person votes for an artist by specifying
the number of the artist (a value from 1 to 10). Write a program to read the names
of the artists, followed by the votes, and find out which artist is the most popular.
Choose a suitable end-of-data marker.

21.	 The children’s game of ‘count-out’ is played as follows. n children (numbered 1 to n)
are arranged in a circle. A sentence consisting of m words is used to eliminate one
child at a time until one child is left. Starting at child 1, the children are counted
from 1 to m and the m th child is eliminated. Starting with the child after the one
just eliminated, the children are again counted from 1 to m and the m th child
eliminated. This is repeated until one child is left. Counting is done circularly and
eliminated children are not counted. Write a program to read values for n (assumed
<= 100) and m (> 0) and print the number of the last remaining child.

22.	 The prime numbers from 1 to 2500 can be obtained as follows. From a list of the
numbers 1 to 2500, cross out all multiples of 2 (but not 2 itself). Then, find the next
number (n, say) that is not crossed out and cross out all multiples of n (but not n).
Repeat this last step provided that n has not exceeded 50 (the square root of 2500).
The numbers remaining in the list (except 1) are prime. Write a program that uses
this method to print all primes from 1 to 2500. Store your output in a file called
primes.out. This method is called the Sieve of Eratosthenes, named after the
Greek mathematician, geographer, and philosopher.

23.	 There are 500 light bulbs (numbered 1 to 500) arranged in a row. Initially, they are
all OFF. Starting with bulb 2, all even numbered bulbs are turned ON. Next, starting
with bulb 3, and visiting every third bulb, it is turned ON if it is OFF, and it is turned
OFF if it is ON. This procedure is repeated for every 4th bulb, then every 5h bulb,
and so on up to the 500th bulb. Write a program to determine which bulbs are OFF
at the end of the above exercise.

There is something special about the bulbs that are OFF. What is it? Can you explain
why it is so?

www.it-ebooks.info

http://www.it-ebooks.info/

243

Chapter 9

Searching, Sorting, and Merging

In this chapter, we will explain the following:

•	 How to search a list using sequential search

•	 How to sort a list using selection sort

•	 How to sort a list using insertion sort

•	 How to sort a list of strings

•	 How to sort parallel arrays

•	 How to search a sorted list using binary search

•	 How to merge two sorted lists

9.1 Sequential Search
In many cases, an array is used for storing a list of information. Having stored the information, it
may be required to find a given item in the list. For example, an array may be used to store a list
of the names of 50 people. It may then be required to find the position in the list at which a given
name (Indira, say) is stored.

We need to develop a technique for searching the elements of an array for a given specific
one. Since it is possible that the given item is not in the array, our technique must also be able
to determine this. The technique for searching for an item is the same regardless of the type
of elements in the array. However, the implementation of the technique may be different for
different types of elements.
We will use an integer array to illustrate the technique called sequential search. Consider the array
num of seven integers:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Searching, Sorting, and Merging

244

We wish to determine if the number 61 is stored. In search terminology, 61 is called the search key
or, simply, the key. The search proceeds as follows:

•	 Compare 61 with the 1st number, num[0], which is 35; they do not match so
we move on to the next number.

•	 Compare 61 with the 2nd number, num[1], which is 17; they do not match so
we move on to the next number.

•	 Compare 61 with the 3rd number, num[2], which is 48; they do not match so
we move on to the next number.

•	 Compare 61 with the 4th number, num[3], which is 25; they do not match so
we move on to the next number.

•	 Compare 61 with the 5th number, num[4], which is 61; they match, so the
search stops and we conclude that the key is in position 4.

But what if we were looking for 32? In this case, we will compare 32 with all the numbers in the
array and none of them will match. We conclude that 32 is not in the array.
Assuming the array contains n numbers, we can express the above logic as follows:

for h = 0 to n - 1
 if (key == num[h]) then key found, exit the loop
endfor
if h < n then key found in position h
else key not found

This is a situation where we may want to exit the loop before we have looked at all elements in the
array. On the other hand, we may have to look at all the elements before we can conclude that the
key is not there.

If we find the key, we exit the loop and h will be less than n. If we exit the loop because h
becomes n, then the key is not in the array.
Let us express this technique in a function search that, given an int array num, an integer key, and
two integers lo and hi, searches for key from num[lo] to num[hi]. If found, the function returns
the position in the array. If not found, it returns -1. For example, consider the statement:

n = search(num, 61, 0, 6);

This will search num[0] to num[6] for 61. It will find it in position 4 and return 4, which is then
stored in n. The call

search(num, 32, 0, 6)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Searching, Sorting, and Merging

245

will return -1 since 32 is not stored in the array. Here is the function, search:

int search(int num[], int key, int lo, int hi) {
//search for key from num[lo] to num[hi]
 for (int h = lo; h <= hi; h++)
 if (key == num[h]) return h;
 return -1;
} //end search

We first set h to lo to start the search from that position. The for loop ‘steps through’ the
elements of the array until it finds the key or h passes hi.
To give an example of how a search may be used, consider the voting problem of the last chapter.
After the votes have been tallied, our arrays name and vote look like this (remember we did not
use name[0] and vote[0]):

1 Victor Taylor 4

2 Denise Duncan 3

3 Kamal Ramdhan 6

4 Michael Ali 4

5 Anisa Sawh 6

6 Carol Khan 2

7 Gary Olliverie 3

Suppose we want to know how many votes Carol Khan received. We would have to search for her
name in the name array. When we find it (in position 6), we can retrieve her votes from vote[6]. In
general, if a name is in position n, the number of votes received will be vote[n].
We modify our search function to look for a name in the name array:

//search for key from name[lo] to name[hi]
int search(char name[][MaxNameLength+1], char key[], int lo, int hi) {
 for (int h = lo; h <= hi; h++)
 if (strcmp(key, name[h]) == 0) return h;
 return -1;
}

Recall that we compare two strings using strcmp. And in order to use any predefined string
function, we must use the directive

#include <string.h>

at the head of our program.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Searching, Sorting, and Merging

246

We can use this function as follows:

n = search(name, "Carol Khan", 1, 7);
if (n > 0) printf("%s received %d vote(s)\n", name[n], vote[n]);
else printf("Name not found\n");

Using our sample data, search will return 6, which will be stored in n. Since 6 > 0, the code
will print

Carol Khan received 2 vote(s)

9.2 Selection Sort
Consider the voting program of Section 8.15. In Program P8.8, we printed the results in the order
in which the names were given. But suppose we want to print the results in alphabetical order
by name or in order by votes received, with the winner(s) first. We would have to rearrange the
names or the votes in the order we want. We say we would have to sort the names in ascending
order or sort the votes in descending order.

Sorting is the process by which a set of values are arranged in ascending or descending order.
There are many reasons to sort. Sometimes we sort in order to produce more readable output (for
example, to produce an alphabetical listing). A teacher may need to sort her students in order by
name or by average score. If we have a large set of values and we want to identify duplicates, we
can do so by sorting; the repeated values will come together in the sorted list. There are many
ways to sort. We will discuss a method known as selection sort.

Consider the following array:

Sorting num in ascending order using selection sort proceeds as follows:
1st pass

•	 Find the smallest number in positions 0 to 6; the smallest is 15, found in
position 4.

•	 Interchange the numbers in positions 0 and 4. We get this:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Searching, Sorting, and Merging

247

2nd pass

•	 Find the smallest number in positions 1 to 6; the smallest is 33, found
in position 5.

•	 Interchange the numbers in positions 1 and 5. We get this:

3rd pass

•	 Find the smallest number in positions 2 to 6; the smallest is 48, found in
position 5.

•	 Interchange the numbers in positions 2 and 5. We get this:

4th pass

•	 Find the smallest number in positions 3 to 6; the smallest is 52, found in
position 6.

•	 Interchange the numbers in positions 3 and 6. We get this:

5th pass

•	 Find the smallest number in positions 4 to 6; the smallest is 57, found in
position 4.

•	 Interchange the numbers in positions 4 and 4. We get this:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Searching, Sorting, and Merging

248

6th pass

•	 Find the smallest number in positions 5 to 6; the smallest is 65, found in
position 6.

•	 Interchange the numbers in positions 5 and 6. We get this:

and the array is now completely sorted.
If we let h go from 0 to 5, on each pass:

•	 We find the smallest number from positions h to 6.

•	 If the smallest number is in position s, we interchange the numbers in
positions h and s.

•	 For an array of size n, we make n-1 passes. In our example, we sorted seven
numbers in six passes.

The following is an outline of the algorithm:

for h = 0 to n - 2
 s = position of smallest number from num[h] to num[n-1]
 swap num[h] and num[s]
endfor

In Section 8.14, we wrote a function to return the position of the smallest number in an integer
array. Here it is for easy reference:

//find position of smallest from num[lo] to num[hi]
int getSmallest(int num[], int lo, int hi) {
 int small = lo;
 for (int h = lo + 1; h <= hi; h++)
 if (num[h] < num[small]) small = h;
 return small;
} //end getSmallest

We also wrote a function swap that swapped two elements in a character array. We now rewrite
swap to swap two elements in an integer array:

//swap elements num[i] and num[j]
void swap(int num[], int i, int j) {
 int hold = num[i];
 num[i] = num[j];
 num[j] = hold;
} //end swap

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Searching, Sorting, and Merging

249

With getSmallest and swap, we can code the algorithm, above, as a function selectionSort. To
emphasize that we can use any names for our parameters, we write the function to sort an integer
array called list. To make it general, we also tell the function which portion of the array to sort by
specifying subscripts lo and hi. Instead of the loop going from 0 to n-2 as in the algorithm, it now
goes from lo to hi-1 – just a minor change for greater flexibility.

//sort list[lo] to list[hi] in ascending order
void selectionSort(int list[], int lo, int hi) {
 int getSmallest(int [], int, int);
 void swap(int [], int, int);
 for (int h = lo; h < hi; h++) {
 int s = getSmallest(list, h, hi);
 swap(list, h, s);
 }
} //end selectionSort

We now write Program P9.1 to test whether selectionSort works properly. The program
requests up to 10 numbers (since the array is declared to be of size 10), stores them in the array
num, calls selectionSort, then prints the sorted list.

Program P9.1

#include <stdio.h>
int main() {
 void selectionSort(int [], int, int);
 int v, num[10];
 printf("Type up to 10 numbers followed by 0\n");
 int n = 0;
 scanf("%d", &v);
 while (v != 0) {
 num[n++] = v;
 scanf("%d", &v);
 }
 //n numbers are stored from num[0] to num[n-1]
 selectionSort(num, 0, n-1);
 printf("\nThe sorted numbers are\n");
 for (int h = 0; h < n; h++) printf("%d ", num[h]);
 printf("\n");
} //end main
 
void selectionSort(int list[], int lo, int hi) {
//sort list[lo] to list[hi] in ascending order
 int getSmallest(int [], int, int);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Searching, Sorting, and Merging

250

 void swap(int [], int, int);
 for (int h = lo; h < hi; h++) {
 int s = getSmallest(list, h, hi);
 swap(list, h, s);
 }
} //end selectionSort
 
int getSmallest(int num[], int lo, int hi) {
//find position of smallest from num[lo] to num[hi]
 int small = lo;
 for (int h = lo + 1; h <= hi; h++)
 if (num[h] < num[small]) small = h;
 return small;
} //end getSmallest
 
void swap(int num[], int i, int j) {
//swap elements num[i] and num[j]
 int hold = num[i];
 num[i] = num[j];
 num[j] = hold;
} //end swap

The following is a sample run of the program:

Type up to 10 numbers followed by 0
57 48 79 65 15 33 52 0
 
The sorted numbers are
15 33 48 52 57 65 79

Comments on Program P9.1
The program illustrates how to read and store an unknown amount of values in an array. The
program caters for up to 10 numbers but must work if fewer numbers are supplied. We use n
to subscript the array and to count the numbers. Initially, n is 0. The following describes what
happens with the sample data:

•	 The 1st number, 57, is read; it is not 0 so we enter the while loop. We store 57
in num[0] then add 1 to n, making it 1; one number has been read and n is 1.

•	 The 2nd number, 48, is read; it is not 0 so we enter the while loop. We store 48
in num[1] then add 1 to n, making it 2; two numbers have been read and n is 2.

•	 The 3rd number, 79, is read; it is not 0 so we enter the while loop. We store
79 in num[2] then add 1 to n, making it 3; three numbers have been read and
n is 3.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Searching, Sorting, and Merging

251

•	 The 4th number, 65, is read; it is not 0 so we enter the while loop. We store
65 in num[3] then add 1 to n, making it 4; four numbers have been read and
n is 4.

•	 The 5th number, 15, is read; it is not 0 so we enter the while loop. We store 15
in num[4] then add 1 to n, making it 5; five numbers have been read and n is 5.

•	 The 6th number, 33, is read; it is not 0 so we enter the while loop. We store 33
in num[5] then add 1 to n, making it 6; six numbers have been read and n is 6.

•	 The 7th number, 52, is read; it is not 0 so we enter the while loop. We store 52 in
num[6] then add 1 to n, making it 7; seven numbers have been read and n is 7.

•	 The 8th number, 0, is read; it is 0 so we exit the while loop and the array looks
like this:

At any stage, the value of n indicates how many numbers have been stored up to that point. At the
end, n is 7 and seven numbers have been stored in the array. The rest of the program can assume
that n gives the number of values actually stored in the array; the values are stored from num[0] to
num[n-1].

For example, the call

selectionSort(num, 0, n-1);

is a request to sort num[0] to num[n-1] but, since n is 7, it is a request to sort num[0] to num[6].
As written, the program will crash if the user enters more than 10 numbers before typing 0.

When the 11th number is read, an attempt will be made to store it in num[10], which does not
exist, giving an “array subscript” error.
We can handle this by changing the while condition to this:

while (v != 0 && n < 10)

Now, if n reaches 10, the loop is not entered (since 10 is not less than 10) and no attempt will
be made to store the 11th number. Indeed, all numbers after the 10th one will be ignored.

As usual, it is best to use a symbolic constant (MaxNum, say) set to 10, and use MaxNum, rather
than the constant 10, throughout the program.
We have sorted an array in ascending order. We can sort num[0] to num[n-1] in descending order
with the following algorithm:

for h = 0 to n - 2
 b = position of biggest number from num[h] to num[n-1]
 swap num[h] and num[b]
endfor

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Searching, Sorting, and Merging

252

We urge you to try Exercises 1 and 2 to print the results of the voting problem in ascending
order by name and descending order by votes received.

9.2.1 Analysis of Selection Sort
To find the smallest of k items, we make k-1 comparisons. On the first pass, we make n-1
comparisons to find the smallest of n items. On the second pass, we make n-2 comparisons to
find the smallest of n-1 items. And so on, until the last pass where we make one comparison to
find the smaller of two items. In general, on the ith pass, we make n-i comparisons to find the
smallest of n-i+1 items. Hence:

Total number of comparisons = 1 + 2 + ...+ n-1 = ½ n(n-1) » ½ n2

We say selection sort is of order O(n2) (“big O n squared”). The constant ½ is not important in
“big O” notation since, as n gets very big, the constant becomes insignificant.

On each pass, we swap two items using three assignments. We make n-1 passes so we make
3(n-1) assignments in all. Using “big O” notation, we say that the number of assignments is O(n).
The constants 3 and 1 are not important as n gets large.

Does selection sort perform any better if there is order in the data? No. One way to find out
is to give it a sorted list and see what it does. If you work through the algorithm, you will see that
the method is oblivious to order in the data. It will make the same number of comparisons every
time, regardless of the data.

As an exercise, modify the programming code so that it counts the number of comparisons
and assignments made in sorting a list using selection sort.

9.3 Insertion Sort
Consider the same array as before:

Think of the numbers as cards on a table and picked up one at a time in the order in which they
appear in the array. Thus, we first pick up 57, then 48, then 79, and so on, until we pick up 52.
However, as we pick up each new number, we add it to our hand in such a way that the numbers
in our hand are all sorted.

When we pick up 57, we have just one number in our hand. We consider one number to be sorted.
When we pick up 48, we add it in front of 57 so our hand contains

48 57

When we pick up 79, we place it after 57 so our hand contains

48 57 79

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Searching, Sorting, and Merging

253

When we pick up 65, we place it after 57 so our hand contains

48 57 65 79

At this stage, four numbers have been picked up and our hand contains them in sorted order.
When we pick up 15, we place it before 48 so our hand contains

15 48 57 65 79

When we pick up 33, we place it after 15 so our hand contains

15 33 48 57 65 79

Finally, when we pick up 52, we place it after 48 so our hand contains

15 33 48 52 57 65 79

The numbers have been sorted in ascending order.
The method described illustrates the idea behind insertion sort. The numbers in the array will be
processed one at a time, from left to right. This is equivalent to picking up the numbers from the
table, one at a time. Since the first number, by itself, is sorted, we will process the numbers in the
array starting from the second.

When we come to process num[h], we can assume that num[0] to num[h-1] are sorted. We
then attempt to insert num[h] among num[0] to num[h-1] so that num[0] to num[h] are sorted.
We will then go on to process num[h+1]. When we do so, our assumption that elements num[0] to
num[h] are sorted will be true.
Sorting num in ascending order using insertion sort proceeds as follows:
1st pass

•	 Process num[1], that is, 48. This involves placing 48 so that the first two
numbers are sorted; num[0] and num[1] now contain the following:

The rest of the array remains unchanged.
2nd pass

•	 Process num[2], that is, 79. This involves placing 79 so that the first three
numbers are sorted; num[0] to num[2] now contain the following:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Searching, Sorting, and Merging

254

The rest of the array remains unchanged.
3rd pass

•	 Process num[3], that is, 65. This involves placing 65 so that the first four
numbers are sorted; num[0] to num[3] now contain the following:

The rest of the array remains unchanged.
4th pass

•	 Process num[4], that is, 15. This involves placing 15 so that the first five
numbers are sorted. To simplify the explanation, think of 15 as being taken
out and stored in a simple variable (key, say) leaving a “hole” in num[4]. We
can picture this as follows:

The insertion of 15 in its correct position proceeds as follows:

•	 Compare 15 with 79; it is smaller, so move 79 to location 4, leaving location 3
free. This gives the following:

•	 Compare 15 with 65; it is smaller, so move 65 to location 3, leaving location 2
free. This gives the following:

•	 Compare 15 with 57; it is smaller, so move 57 to location 2, leaving location 1
free. This gives the following:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Searching, Sorting, and Merging

255

•	 Compare 15 with 48; it is smaller, so move 48 to location 1, leaving location 0
free. This gives the following:

•	 There are no more numbers to compare with 15, so it is inserted in location
0, giving the following:

•	 We can express the logic of placing 15 (key) by comparing it with the
numbers to its left, starting with the nearest one. As long as key is less than
num[k], for some k, we move num[k] to position num[k+1] and move on to
consider num[k-1], providing it exists. It won’t exist when k is actually 0. In
this case, the process stops, and key is inserted in position 0.

5th pass

•	 Process num[5], that is, 33. This involves placing 33 so that the first six
numbers are sorted. This is done as follows:

•	 Store 33 in key, leaving location 5 free.

•	 Compare 33 with 79; it is smaller, so move 79 to location 5, leaving
location 4 free.

•	 Compare 33 with 65; it is smaller, so move 65 to location 4, leaving
location 3 free.

•	 Compare 33 with 57; it is smaller, so move 57 to location 3, leaving
location 2 free.

•	 Compare 33 with 48; it is smaller, so move 48 to location 2, leaving
location 1 free.

•	 Compare 33 with 15; it is bigger, so insert 33 in location 1. This gives the
following:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Searching, Sorting, and Merging

256

•	 We can express the logic of placing 33 by comparing it with the numbers
to its left, starting with the nearest one. As long as key is less than num[k],
for some k, we move num[k] to position num[k+1] and move on to consider
num[k-1], providing it exists. If key is greater than or equal to num[k] for
some k, then key is inserted in position k+1. Here, 33 is greater than num[0]
and so is inserted into num[1].

6th pass

•	 Process num[6], that is, 52. This involves placing 52 so that the first seven
(all) numbers are sorted. This is done as follows:

•	 Store 52 in key, leaving location 6 free.

•	 Compare 52 with 79; it is smaller, so move 79 to location 6, leaving
location 5 free.

•	 Compare 52 with 65; it is smaller, so move 65 to location 5, leaving
location 4 free.

•	 Compare 52 with 57; it is smaller, so move 57 to location 4, leaving
location 3 free.

•	 Compare 52 with 48; it is bigger, so insert 52 in location 3. This gives the
following:

The array is now completely sorted.
The following is an outline to sort the first n elements of an array, num, using insertion sort:

for h = 1 to n - 1 do
 insert num[h] among num[0] to num[h-1] so that
 num[0] to num[h] are sorted
endfor

Using this outline, we write the function insertionSort using the parameter list.

void insertionSort(int list[], int n) {
//sort list[0] to list[n-1] in ascending order
 for (int h = 1; h < n; h++) {
 int key = list[h];
 int k = h - 1; //start comparing with previous item
 while (k >= 0 && key < list[k]) {
 list[k + 1] = list[k];
 --k;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Searching, Sorting, and Merging

257

 list[k + 1] = key;
 } //end for
} //end insertionSort

The while statement is at the heart of the sort. It states that as long as we are within the array
(k >= 0) and the current number (key) is less than the one in the array (key < list[k]), we move
list[k] to the right (list[k+1] = list[k]) and move on to the next number on the left (--k).

We exit the while loop if k is equal to -1 or if key is greater than or equal to list[k], for some
k. In either case, key is inserted into list[k+1]. If k is -1, it means that the current number is
smaller than all the previous numbers in the list and must be inserted in list[0]. But list[k+1]
is list[0] when k is -1, so key is inserted correctly in this case.
The function sorts in ascending order. To sort in descending order, all we have to do is change
< to > in the while condition, thus:

while (k >= 0 && key > list[k])

Now, a key moves to the left if it is bigger.
We write Program P9.2 to test whether insertionSort works correctly.

Program P9.2

#include <stdio.h>
int main() {
 void insertionSort(int [], int);
 int v, num[10];
 printf("Type up to 10 numbers followed by 0\n");
 int n = 0;
 scanf("%d", &v);
 while (v != 0) {
 num[n++] = v;
 scanf("%d", &v);
 }
 //n numbers are stored from num[0] to num[n-1]
 insertionSort(num, n);
 printf("\nThe sorted numbers are\n");
 for (int h = 0; h < n; h++) printf("%d ", num[h]);
 printf("\n");
} //end main
 
void insertionSort(int list[], int n) {
//sort list[0] to list[n-1] in ascending order
 for (int h = 1; h < n; h++) {
 int key = list[h];
 int k = h - 1; //start comparing with previous item

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Searching, Sorting, and Merging

258

 while (k >= 0 && key < list[k]) {
 list[k + 1] = list[k];
 --k;
 }
 list[k + 1] = key;
 } //end for
} //end insertionSort

The program requests up to 10 numbers (since the array is declared to be of size 10), stores
them in the array num, calls insertionSort, then prints the sorted list. The following is a sample
run of P9.2:

Type up to 10 numbers followed by 0
57 48 79 65 15 33 52 0
 
The sorted numbers are
15 33 48 52 57 65 79

9.3.1 Analysis of Insertion Sort
In processing item j, we can make as few as one comparison (if num[j] is bigger than num[j-1]) or
as many as j-1 comparisons (if num[j] is smaller than all the previous items). For random data, it
is expected that we would make ½(j-1) comparisons, on average. Hence, the average total number
of comparisons to sort n items is as follows:

 j

n

j n n n n
=
å -() = + + + -{ }= -()»

2

21
2 1 1

2 1 2 1 1
4 1 1

4

We say insertion sort is of order O(n2) (“big O n squared”). The constant ¼ is not important as n
gets large.

Each time we make a comparison, we also make an assignment. Hence, the total number of
assignments is also ¼ n(n-1) » ¼ n2.

We emphasize that this is an average for random data. Unlike selection sort, the actual
performance of insertion sort depends on the data supplied. If the given array is already sorted,
insertion sort will quickly determine this by making n-1 comparisons. In this case, it runs in O(n)
time. One would expect that insertion sort will perform better the more order there is in the data.

If the given data is in descending order, insertion sort performs at its worst since each
new number has to travel all the way to the beginning of the list. In this case, the number of
comparisons is ½ n(n-1) » ½ n2. The number of assignments is also ½ n(n-1) » ½ n2.

Thus, the number of comparisons made by insertion sort ranges from n-1 (best) to ¼ n2
(average) to ½ n2 (worst). The number of assignments is always the same as the number of
comparisons.

As an exercise, modify the programming code so that it counts the number of comparisons
and assignments made in sorting a list using insertion sort.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Searching, Sorting, and Merging

259

9.3.2 Insert an Element in Place
Insertion sort uses the idea of adding a new element to an already sorted list so that the list
remains sorted. We can treat this as a problem in its own right (nothing to do with insertion sort).
Specifically, given a sorted list of items from list[m] to list[n], we want to add a new item
(newItem, say) to the list so that list[m] to list[n+1] are sorted.
Adding a new item increases the size of the list by 1. We assume that the array has room to hold
the new item. We write the function insertInPlace to solve this problem.

void insertInPlace(int newItem, int list[], int m, int n) {
//list[m] to list[n] are sorted
//insert newItem so that list[m] to list[n+1] are sorted
 int k = n;
 while (k >= m && newItem < list[k]) {
 list[k + 1] = list[k];
 --k;
 }
 list[k + 1] = newItem;
} //end insertInPlace

Now that we have insertInPlace, we can rewrite insertionSort (calling it insertionSort2)
as follows:

void insertionSort2(int list[], int lo, int hi) {
//sort list[lo] to list[hi] in ascending order
 void insertInPlace(int, int [], int, int);
 for (int h = lo + 1; h <= hi; h++)
 insertInPlace(list[h], list, lo, h - 1);
} //end insertionSort2

Note that the prototype for insertionSort2 is now this:

void insertionSort2(int [], int, int);

and to sort an array num of n items, we must call it like this:

insertionSort2(num, 0, n-1);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Searching, Sorting, and Merging

260

9.4 Sort an Array of Strings
Consider the problem of sorting a list of names in alphabetical order. We have seen that, in C,
each name is stored in a character array. To store several names, we need a two-dimensional
character array. For example, consider the following list of names.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 S a m l a l , R a w l E \0

1 W i l l i a m s , M a r k \0

2 D e l w i n , M a c \0

3 T a y l o r , V i c t o r \0

4 M o h a m e d , A b u \0

5 S i n g h , K R i s h n a \0

6 T a w a r i , T a u \0

7 A b d o o l , Z a i d \0

To store this list, we will require a declaration such as the following:

char list[8][15];

To cater for longer names, we can increase 15, and to cater for more names, we can increase 8.
The process of sorting list is essentially the same as sorting an array of integers. The major
difference is that whereas we use < to compare two numbers, we must use strcmp to compare two
names. In the function insertionSort shown earlier, the while condition changes from this:

while (k >= lo && key < list[k])

to the following, where key is now declared as char key[15]:

while (k >= lo && strcmp(key, list[k]) < 0)

Also, we must now use strcpy (since we can’t use = for strings) to assign a name to another
location. We will see the complete function in the next section.

9.4.1 Variable-Length Arrays
We will use this example to show how variable-length arrays (VLAs) may be used in C. This
feature is available only in C versions from C99 and later. The idea is that the size of an array may
be specified at runtime as opposed to compile time.

In the function below, note the declaration of list (char list[][max]) in the parameter
list. The size of the first dimension is left unspecified, as for one-dimensional arrays. The size
of the second dimension is specified using the parameter max; the value of max will be specified
when the function is called. This gives us a bit more flexibility since we can specify the size of the
second dimension at runtime.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Searching, Sorting, and Merging

261

void insertionSort3(int lo, int hi, int max, char list[][max]) {
//Sort the strings in list[lo] to list[hi] in alphabetical order.
//The maximum string size is max - 1 (one char taken up by \0).
 char key[max];
 for (int h = lo + 1; h <= hi; h++) {
 strcpy(key, list[h]);
 int k = h - 1; //start comparing with previous item
 while (k >= lo && strcmp(key, list[k]) < 0) {
 strcpy(list[k + 1], list[k]);
 --k;
 }
 strcpy(list[k + 1], key);
 } //end for
} // end insertionSort3

We write a simple main routine to test insertionSort3 as shown in Program P9.3.

Program P9.3

#include <stdio.h>
#include <string.h>
#define MaxNameSize 14
#define MaxNameBuffer MaxNameSize+1
#define MaxNames 8
 
int main() {
 void insertionSort3(int, int, int max, char [][max]);
 char name[MaxNames][MaxNameBuffer] =
 {"Samlal, Rawle", "Williams, Mark","Delwin, Mac",
 "Taylor, Victor", "Mohamed, Abu","Singh, Krishna",
 "Tawari, Tau", "Abdool, Zaid" };
 
 insertionSort3(0, MaxNames-1, MaxNameBuffer, name);
 printf("\nThe sorted names are\n\n");
 for (int h = 0; h < MaxNames; h++) printf("%s\n", name[h]);
} //end main
 
void insertionSort3(int lo, int hi, int max, char list[][max]) {
//Sort the strings in list[lo] to list[hi] in alphabetical order.
//The maximum string size is max - 1 (one char taken up by \0).
 char key[max];
 for (int h = lo + 1; h <= hi; h++) {
 strcpy(key, list[h]);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Searching, Sorting, and Merging

262

 int k = h - 1; //start comparing with previous item
 while (k >= lo && strcmp(key, list[k]) < 0) {
 strcpy(list[k + 1], list[k]);
 --k;
 }
 strcpy(list[k + 1], key);
 } //end for
} // end insertionSort3

The declaration of name initializes it with the eight names shown earlier. When run, the program
produces the following output:

The sorted names are
 
Abdool, Zaid
Delwin, Mac
Mohamed, Abu
Samlal, Rawle
Singh, Krishna
Tawari, Tau
Taylor, Victor
Williams, Mark

9.5 Sort Parallel Arrays
It is quite common to have related information in different arrays. For example, suppose,
in addition to name, we have an integer array id such that id[h] is an identification number
associated with name[h], as shown here.

It is quite common to have related information in different arrays. For example, suppose,
in addition to name, we have an integer array id such that id[h] is an identification number
associated with name[h], as shown here.

Name id

0 Samlal, Rawle 8742

1 Williams, Mark 5418

2 Delwin, Mac 4833

3 Taylor, Victor 4230

4 Mohamed, Abu 8583

5 Singh, Krishna 2458

6 Tawari, Tau 5768

7 Abdool, Zaid 7746

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Searching, Sorting, and Merging

263

Consider the problem of sorting the names in alphabetical order. At the end, we would want each
name to have its correct ID number. So, for example, after the sorting is done, name[0] should
contain Abdool, Zaid and id[0] should contain 7746.

To achieve this, each time a name is moved during the sorting process, the corresponding ID
number must also be moved. Since the name and ID number must be moved “in parallel,” we say
we are doing a parallel sort or we are sorting parallel arrays.
We rewrite insertionSort3 to illustrate how to sort parallel arrays. We simply add the code to
move an ID whenever a name is moved. We call it parallelSort.

void parallelSort(int lo, int hi, int max, char list[][max], int id[]) {
//Sort the names in list[lo] to list[hi] in alphabetical order, ensuring
//that each name remains with its original id number.
//The maximum string size is max - 1 (one char taken up by \0).
 char key[max];
 for (int h = lo + 1; h <= hi; h++) {
 strcpy(key, list[h]);
 int m = id[h]; // extract the id number
 int k = h - 1; //start comparing with previous item
 while (k >= lo && strcmp(key, list[k]) < 0) {
 strcpy(list[k + 1], list[k]);
 id[k+ 1] = id[k]; // move up id when we move a name
 --k;
 }
 strcpy(list[k + 1], key);
 id[k + 1] = m; // store id in the same position as the name
 } //end for
} //end parallelSort

We test parallelSort by writing the following main routine:

#include <stdio.h>
#include <string.h>
#define MaxNameSize 14
#define MaxNameBuffer MaxNameSize+1
#define MaxNames 8
int main() {
 void parallelSort(int, int, int max, char [][max], int[]);
 char name[MaxNames][MaxNameBuffer] =
 {"Samlal, Rawle", "Williams, Mark","Delwin, Mac",
 "Taylor, Victor", "Mohamed, Abu","Singh, Krishna",
 "Tawari, Tau", "Abdool, Zaid" };
 int id[MaxNames] = {8742,5418,4833,4230,8583,2458,5768,3313};
 
 parallelSort(0, MaxNames-1, MaxNameBuffer, name, id);
 printf("\nThe sorted names and IDs are\n\n");

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Searching, Sorting, and Merging

264

 for (int h = 0; h < MaxNames; h++)
 printf("%-18s %d\n", name[h], id[h]);
} //end main

When run, it produces the following output:

The sorted names and IDs are
 
Abdool, Zaid 3313
Delwin, Mac 4833
Mohamed, Abu 8583
Samlal, Rawle 8742
Singh, Krishna 2458
Tawari, Tau 5768
Taylor, Victor 4230
Williams, Mark 5418

We note, in passing, that "parallel arrays" can be more conveniently stored using C structures. We
will discuss an example in Section 10.9 after we've learned a bit about structures.

9.6 Binary Search
Binary search is a very fast method for searching a list of items for a given one, providing the list is
sorted (either ascending or descending). If the list is not in order, it can be sorted using any of the
methods described earlier.
To illustrate the method, consider a list of 11 numbers, sorted in ascending order.

Suppose we wish to search for 56. The search proceeds as follows:

•	 First, we find the middle item in the list. This is 49 in position 5. We compare
56 with 49. Since 56 is bigger, we know that if 56 is in the list, it must be after
position 5, since the numbers are in ascending order. In our next step, we
confine our search to locations 6 to 10.

•	 Next, we find the middle item from locations 6 to 10. This is the item in
location 8, that is, 72.

•	 We compare 56 with 72. Since 56 is smaller, we know that if 56 is in the list, it
must be before position 8, since the numbers are in ascending order. In our
next step, we confine our search to locations 6 to 7.

•	 Next, we find the middle item from locations 6 to 7. In this case, we can choose
either item 6 or item 7. The algorithm we will write will choose item 6, that is, 56.

•	 We compare 56 with 56. Since they are the same, our search ends
successfully, finding the required item in position 6.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Searching, Sorting, and Merging

265

Suppose we were searching for 60. The search will proceed as above until we compare 60 with 56
(in location 6).

•	 Since 60 is bigger, we know that if 60 is in the list, it must be after position 6,
since the numbers are in ascending order. In our next step, we confine our
search to locations 7 to 7. This is just one location.

•	 We compare 60 with item 7, that is, 66. Since 60 is smaller, we know that if 60
is in the list, it must be before position 7. Since it can’t be after position 6 and
before position 7, we conclude that it is not in the list.

At each stage of the search, we confine our search to some portion of the list. Let us use the
variables lo and hi as the subscripts that define this portion. In other words, our search will be
confined to the numbers from num[lo] to num[hi], inclusive.

Initially, we want to search the entire list so that we will set lo to 0 and hi to 10, in this example.
How do we find the subscript of the middle item? We will use the calculation

mid = (lo + hi) / 2;

Since integer division will be performed, the fraction, if any, is discarded. For example when
lo is 0 and hi is 10, mid becomes 5; when lo is 6 and hi is 10, mid becomes 8; and when lo is 6 and
hi is 7, mid becomes 6.

As long as lo is less than or equal to hi, they define a nonempty portion of the list to be
searched. When lo is equal to hi, they define a single item to be searched. If lo ever gets bigger
than hi, it means we have searched the entire list and the item was not found.

Based on these ideas, we can now write a function binarySearch. To be more general, we will
write it so that the calling routine can specify which portion of the array it wants the search to look
for the item.
Thus, the function must be given the item to be searched for (key), the array (list), the start
position of the search (lo), and the end position of the search (hi). For example, to search for the
number 56 in the array num, above, we can issue the following call:

binarySearch(56, num, 0, 10)

The function must tell us the result of the search. If the item is found, the function will return its
location. If not found, it will return -1.

int binarySearch(int key, int list[], int lo, int hi) {
//search for key from list[lo] to list[hi]
//if found, return its location; otherwise, return -1
 int mid;
 while (lo <= hi) {
 mid = (lo + hi) / 2;
 if (key == list[mid]) return mid; // found
 if (key < list[mid]) hi = mid - 1;
 else lo = mid + 1;
 }
 return -1; //lo and hi have crossed; key not found
} //end binarySearch

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Searching, Sorting, and Merging

266

If item contains a number to be searched for, we can write the following code to call
binarySearch and check the result of the search:

int ans = binarySearch(item, num, 0, 12);
if (ans == -1) printf(“%d not found\n”, item);
else printf(“%d found in location %d\n”, item, ans);

If we wish to search for item from locations i to j, we can write this:

int ans = binarySearch(item, num, i, j);

9.7 Word Frequency Count
Let’s write a program to read an English passage and count the number of times each word
appears. The output consists of an alphabetical listing of the words and their frequencies.
We can use the following outline to develop our program:

while there is input
 get a word
 search for word
 if word is in the table
 add 1 to its count
 else
 add word to the table
 set its count to 1
 endif
endwhile
print table

This is a typical “search and insert” situation. We search for the next word among the words
stored so far. If the search succeeds, we need only to increment its count. If the search fails, the
word is put in the table, and its count set to 1.
A major design decision here is how to search the table, which, in turn, will depend on where and
how a new word is inserted in the table. The following are two possibilities:

	 1.	 A new word is inserted in the next free position in the table. This implies
that a sequential search must be used to look for an incoming word since
the words would not be in any particular order. This method has the
advantages of simplicity and easy insertion, but searching takes longer as
more words are put in the table.

	 2.	 A new word is inserted in the table in such a way that the words are
always in alphabetical order. This may entail moving words that have
already been stored so that the new word may be slotted in the right
place. However, since the table is in order, a binary search can be used to
search for an incoming word.

For this method, searching is faster, but insertion is slower than in (1). Since, in general,
searching is done more frequently than inserting, (2) might be preferable.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Searching, Sorting, and Merging

267

Another advantage of (2) is that, at the end, the words will already be in alphabetical order
and no sorting will be required. If (1) is used, the words will need to be sorted to obtain the
alphabetical order.

We will write our program using the approach in (2). The complete program is shown as
Program P9.4.

Program P9.4

#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include <stdlib.h>
 
#define MaxWords 50
#define MaxLength 10
#define MaxWordBuffer MaxLength+1
 
int main() {
 int getWord(FILE *, char[]);
 int binarySearch(int, int, char [], int max, char [][max]);
 void addToList(char[], int max, char [][max], int[], int, int);
 void printResults(FILE *, int max, char [][max], int[], int);
 char wordList[MaxWords][MaxWordBuffer], word[MaxWordBuffer];
 int frequency[MaxWords], numWords = 0;
 FILE * in = fopen("passage.txt", "r");
 if (in == NULL){
 printf("Cannot find file\n");
 exit(1);
 }
 FILE * out = fopen("output.txt", "w");
 if (out == NULL){
 printf("Cannot create output file\n");
 exit(2);
 }
 
 for (int h = 1; h <= MaxWords ; h++) frequency[h] = 0;
 
 while (getWord(in, word) != 0) {
 int loc = binarySearch (0, numWords-1, word, MaxWordBuffer,
 wordList);
 if (strcmp(word, wordList[loc]) == 0)
 ++frequency[loc]; //word found
 else //this is a new word
 if (numWords < MaxWords) { //if table is not full
 addToList(word, MaxWordBuffer, wordList, frequency, loc,
 numWords-1);
 ++numWords;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Searching, Sorting, and Merging

268

 else fprintf(out, "'%s' not added to table\n", word);
 }
 printResults(out, MaxWordBuffer, wordList, frequency, numWords);
} // end main
 
int getWord(FILE * in, char str[]) {
// store the next word, if any, in str; convert word to lowercase
// return 1 if a word is found; 0, otherwise
 char ch;
 int n = 0;
 // read over white space
 while (!isalpha(ch = getc(in)) && ch != EOF) ; //empty while body
 if (ch == EOF) return 0;
 str[n++] = tolower(ch);
 while (isalpha(ch = getc(in)) && ch != EOF)
 if (n < MaxLength) str[n++] = tolower(ch);
 str[n] = '\0';
 return 1;
} // end getWord
 
int binarySearch(int lo, int hi, char key[], int max, char list[][max]) {
//search for key from list[lo] to list[hi]
//if found, return its location;
//if not found, return the location in which it should be inserted
//the calling program will check the location to determine if found
 while (lo <= hi) {
 int mid = (lo + hi) / 2;
 int cmp = strcmp(key, list[mid]);
 if (cmp == 0) return mid; // found
 if (cmp < 0) hi = mid - 1;
 else lo = mid + 1;
 }
 return lo; //not found; should be inserted in location lo
} //end binarySearch
 
void addToList(char item[], int max, char list[][max],
 int freq[], int p, int n) {
//adds item in position list[p]; sets freq[p] to 1
//shifts list[n] down to list[p] to the right
 for (int h = n; h >= p; h--) {
 strcpy(list[h+1], list[h]);
 freq[h+1] = freq[h];
 }
 
 strcpy(list[p], item);
 freq[p] = 1;
} //end addToList
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Searching, Sorting, and Merging

269

void printResults(FILE *out, int max, char list[][max],
 int freq[], int n) {
 fprintf(out, "\nWords Frequency\n\n");
 for (int h = 0; h < n; h++)
 fprintf(out, "%-15s %2d\n", list[h], freq[h]);
} //end printResults

Suppose the file passage.txt contains the following data (from If by Rudyard Kipling):

If you can dream—and not make dreams your master;
 If you can think—and not make thoughts your aim;
If you can meet with Triumph and Disaster
 And treat those two impostors just the same...
If you can fill the unforgiving minute
 With sixty seconds’ worth of distance run,
Yours is the Earth...

When Program P9.4 was run with this data, it produced the following output:

Words Frequency
 
aim 1
and 4
can 4
disaster 1
distance 1
dream 1
dreams 1
earth 1
fill 1
if 4
impostors 1
is 1
just 1
make 2
master 1
meet 1
minute 1
not 2
of 1
run 1
same 1
seconds 1
sixty 1
the 3
think 1

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Searching, Sorting, and Merging

270

those 1
thoughts 1
treat 1
triumph 1
two 1
unforgivin 1
with 2
worth 1
you 4
your 2
yours 1

Comments on Program P9.4

•	 For our purposes, we assume that a word begins with a letter and consists
of letters only. If you want to include other characters (such as a hyphen or
apostrophe), you need change only the getWord function.

•	 MaxWords denotes the maximum number of distinct words catered for. For
testing the program, we have used 50 for this value. If the number of distinct
words in the passage exceeds MaxWords (50, say), any words after the 50th
will be read but not stored, and a message to that effect will be printed.
However, the count for a word already stored will be incremented if it is
encountered again.

•	 MaxLength (we use 10 for testing) denotes the maximum length of a word.
Strings are declared using MaxLength+1 (defined as MaxWordBuffer) to cater
for \0, which must be added at the end of each string.

•	 main checks that the input file exists and that the output file can be created.
Next, it initializes the frequency counts to 0. It then processes the words in
the passage based on the outline shown at the beginning of this Section.

•	 getWord reads the input file and stores the next word found in its string
argument. It returns 1 if a word is found and 0, otherwise. If a word is longer
than MaxLength, only the first MaxLength letters are stored; the rest are read
and discarded. For example, unforgiving is truncated to unforgivin using
a word size of 10.

•	 All words are converted to lowercase so that, for instance, The and the are
counted as the same word.

•	 We wrote binarySearch so that if the word is found, its location (loc, say) is
returned. If not found, the location in which the word should be inserted is
returned. The test

•	 if (strcmp(word, wordList[loc]) == 0)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Searching, Sorting, and Merging

271

•	 determines whether it was found. addToList is given the location in which
to insert a new word. Words to the right of, and including, this location are
shifted to make room for the new word.

•	 In declaring a function prototype, some compilers allow a two-dimensional
array parameter to be declared as in char [][], with no size specified for
either dimension. Others require that the size of the second dimension must
be specified. Specifying the size of the second dimension should work on
all compilers. In our program, we specify the second dimension using the
parameter max, whose value will be supplied when the function is called.

9.8 Merge Sorted Lists
Merging is the process by which two or more ordered lists are combined into one ordered list. For
example, given two lists of numbers, A and B, as follows:

A: 21 28 35 40 61 75
B: 16 25 47 54

They can be combined into one ordered list, C, as follows:

C: 16 21 25 28 35 40 47 54 61 75

The list C contains all the numbers from lists A and B. How can the merge be performed?
One way to think about it is to imagine that the numbers in the given lists are stored on cards,

one per card, and the cards are placed face up on a table, with the smallest at the top. We can
imagine the lists A and B as follows:

21 16
28 25
35 47
40 54
61
75

We look at the top two cards, 21 and 16. The smaller, 16, is removed and placed in C. This exposes
the number 25. We have this:

21 25
28 47
35 54
40
61
75

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Searching, Sorting, and Merging

272

The top two cards are now 21 and 25. The smaller, 21, is removed and added to C, which now
contains 16 21. This exposes the number 28. We have this:

28 25
35 47
40 54
61
75

The top two cards are now 28 and 25. The smaller, 25, is removed and added to C, which now
contains 16 21 25. This exposes the number 47. We have this:

28 47
35 54
40
61
75

The top two cards are now 28 and 47. The smaller, 28, is removed and added to C, which now
contains 16 21 25 28. This exposes the number 35. We have this:

35 47
40 54
61
75

The top two cards are now 35 and 47. The smaller, 35, is removed and added to C, which now
contains 16 21 25 28 35. This exposes the number 40. We have this:

40 47
61 54
75

The top two cards are now 40 and 47. The smaller, 40, is removed and added to C, which now
contains 16 21 25 28 35 40. This exposes the number 61. We have this:

61 47
75 54

The top two cards are now 61 and 47. The smaller, 47, is removed and added to C, which now
contains 16 21 25 28 35 40 47. This exposes the number 54. We have this:

61 54
75

The top two cards are now 61 and 54. The smaller, 54, is removed and added to C, which now
contains 16 21 25 28 35 40 47 54. The list B has no more numbers.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Searching, Sorting, and Merging

273

We copy the remaining elements (61 75) of A to C, which now contains the following:

16 21 25 28 35 40 47 54 61 75

The merge is now completed.
At each step of the merge, we compare the smallest remaining number of A with the smallest

remaining number of B. The smaller of these is added to C. If the smaller comes from A, we move
on to the next number in A; if the smaller comes from B, we move on to the next number in B.

This is repeated until all the numbers in either A or B have been used. If all the numbers in
A have been used, we add the remaining numbers from B to C. If all the numbers in B have been
used, we add the remaining numbers from A to C.
We can express the logic of the merge as follows:

while (at least one number remains in both A and B) {
 if (smallest in A < smallest in B)
 add smallest in A to C
 move on to next number in A
 else
 add smallest in B to C
 move on to next number in B
 endif
}
if (A has ended) add remaining numbers in B to C
else add remaining numbers in A to C

9.8.1 Implement the Merge
Assume that an array A contains m numbers stored in A[0] to A[m-1], and an array B contains n
numbers stored in B[0] to B[n-1]. Assume that the numbers are stored in ascending order.
We want to merge the numbers in A and B into another array C such that C[0] to C[m+n-1]
contains all the numbers in A and B sorted in ascending order.
We will use integer variables i, j, and k to subscript the arrays A, B, and C, respectively. “Moving
on to the next position” in an array can be done by adding 1 to the subscript variable.
We can implement the merge with the following code:

i = 0; //i points to the first (smallest) number in A
j = 0; //j points to the first (smallest) number in B
k = -1; //k will be incremented before storing a number in C[k]
while (i < m && j < n) {
 if (A[i] < B[j]) C[++k] = A[i++];
 else C[++k] = B[j++];
}
if (i == m) //copy B[j] to B[n-1] to C
 for (; j < n; j++) C[++k] = B[j];
else // j == n, copy A[i] to A[m-1] to C
 for (; i < m; i++) C[++k] = A[i];

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Searching, Sorting, and Merging

274

Program P9.5 shows a simple main function that tests the logic of our method. We write the
merge as a function that, given the arguments A, m, B, n, and C, performs the merge and returns the
number of elements, m+n, in C. When run, the program prints the contents of C, like this:

16 21 25 28 35 40 47 54 61 75

Program P9.5

#include <stdio.h>
int main () {
 int merge(int[], int, int[], int, int[]);
 int A[] = {21, 28, 35, 40, 61, 75};
 int B[] = {16, 25, 47, 54};
 int C[20];
 int n = merge(A, 6 , B, 4, C);
 for (int h = 0; h < n; h++) printf("%d ", C[h]);
 printf("\n\n");
} //end main
 
int merge(int A[], int m, int B[], int n, int C[]) {
 int i = 0; //i points to the first (smallest) number in A
 int j = 0; //j points to the first (smallest) number in B
 int k = -1; //k will be incremented before storing a number in C[k]
 while (i < m && j < n) {
 if (A[i] < B[j]) C[++k] = A[i++];
 else C[++k] = B[j++];
 }
 if (i == m) ///copy B[j] to B[n-1] to C
 for (; j < n; j++) C[++k] = B[j];
 else // j == n, copy A[i] to A[m-1] to C
 for (; i < m; i++) C[++k] = A[i];
 return m + n;
} //end merge

As a matter of interest, we can also implement merge as follows:

int merge(int A[], int m, int B[], int n, int C[]) {
 int i = 0; //i points to the first (smallest) number in A
 int j = 0; //j points to the first (smallest) number in B
 int k = -1; //k will be incremented before storing a number in C[k]
 while (i < m || j < n) {
 if (i == m) C[++k] = B[j++];
 else if (j == n) C[++k] = A[i++];

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Searching, Sorting, and Merging

275

 else if (A[i] < B[j]) C[++k] = A[i++];
 else C[++k] = B[j++];
 }
 return m + n;
} //end merge

The while loop expresses the following logic: as long as there is at least one element to process in
either A or B, we enter the loop. If we are finished with A (i == m), copy an element from B to C. If
we are finished with B (j == n), copy an element from A to C. Otherwise, copy the smaller of A[i]
and B[j] to C. Each time we copy an element from an array, we add 1 to the subscript for that array.

While the previous version implements the merge in a straightforward way, it seems
reasonable to say that this version is a bit neater.

EXERCISES 9

1.	 In the voting problem of Section 8.15, print the results in alphabetical order by
candidate name. Hint: in sorting the name array, when you move a name, make
sure and move the corresponding item in the vote array.

2.	 In the voting problem of Section 8.15, print the results in descending order by
candidate score.

3.	 Write a function to sort a double array in ascending order using selection sort. Do
the sort by finding the largest number on each pass.

4.	 Write a program to find out, for a class of students, the number of families with
1, 2, 3, ... up to 8 or more children. The data consists of the number of children
in each pupil’s family, terminated by 0. Print the results in decreasing order by
family-size popularity. That is, print the most popular family-size first and the least
popular family-size last.

5.	 A survey of 10 pop artists is made. Each person votes for an artist by specifying
the number of the artist (a value from 1 to 10). Write a program to read the names
of the artists, followed by the votes, and find out which artist is the most popular.
Choose a suitable end-of-data marker.

Print a table of the results with the most popular artist first and the least popular last.

6.	 The median of a set of n numbers (not necessarily distinct) is obtained by arranging
the numbers in order and taking the number in the middle. If n is odd, there is a
unique middle number. If n is even, then the average of the two middle values is the
median. Write a program to read a set of n positive integers (assume n < 100) and
print their median; n is not given but 0 indicates the end of the data.

7.	 The mode of a set of n numbers is the number that appears most frequently. For
example, the mode of 7 3 8 5 7 3 1 3 4 8 9 is 3.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Searching, Sorting, and Merging

276

Write a program to read a set of n arbitrary positive integers (assume n < 100) and
print their mode; n is not given but 0 indicates the end of the data.

Write an efficient program to find the mode if it is known that the numbers all
lie between 1 and 999, inclusive, with no restriction on the amount of numbers
supplied; 0 ends the data.

8.	 An array num contains k numbers in num[0] to num[k-1], sorted in descending
order. Write a function insertInPlace which, given num, k and another number
x, inserts x in its proper position such that num[0] to num[k] are sorted in
descending order. Assume the array has room for x.

9.	 A multiple-choice examination consists of 20 questions. Each question has 5
choices, labeled A, B, C, D, and E. The first line of data contains the correct answers
to the 20 questions in the first 20 consecutive character positions, for example:

BECDCBAADEBACBAEDDBE

Each subsequent line contains the answers for a candidate. Data on a line consists
of a candidate number (an integer), followed by 1 or more spaces, followed by the
20 answers given by the candidate in the next 20 consecutive character positions.
An X is used if a candidate did not answer a particular question. You may assume
all data are valid and stored in a file exam.dat. A sample line is:

4325 BECDCBAXDEBACCAEDXBE

There are at most 100 candidates. A line containing a “candidate number” 0 only
indicates the end of the data.

Points for a question are awarded as follows:– correct answer: 4 points; wrong
answer: -1 point; no answer: 0 points.

Write a program to process the data and print a report consisting of candidate
number and the total points obtained by the candidate, in ascending order by
candidate number. At the end, print the average number of points gained by the
candidates.

10.	 An array A contains integers that first increase in value and then decrease in value,
for example:

 

It is unknown at which point the numbers start to decrease. Write efficient code to
copy the numbers from A to another array B so that B is sorted in ascending order.
Your code must take advantage of the way the numbers are arranged in A. (Hint:
perform a merge starting at both ends.)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Searching, Sorting, and Merging

277

11.	 You are given two integer arrays A and B each of maximum size 500. If A[0]
contains m, say, then m numbers are stored in arbitrary order from A[1] to A[m].
If B[0] contains n, say, then n numbers are stored in arbitrary order from B[1] to
B[n].

Write code to merge the elements of A and B into another array C such that C[0]
contains m+n and C[1] to C[m+n] contain the numbers in ascending order.

12.	 An anagram is a word or phrase formed by rearranging the letters of another word
or phrase. Examples of one-word anagrams are: sister/resist and senator/treason.
We can get more interesting anagrams if we ignore letter case and punctuation
marks. Examples are: Time-table/Bet I'm Late, Clint Eastwood/Old West Action, and
Astronomers/No More Stars.

a.	 Write a function that, given two strings, returns 1 if the strings are anagrams
of each other and 0 if they are not.

b.	A n input file contains one word or phrase per line. Write a program to read
the file and output all words/phrases (from the file) that are anagrams of each
other. Print a blank line between each group of anagrams.

  

www.it-ebooks.info

http://www.it-ebooks.info/

279

Chapter 10

Structures

In this chapter, we will explain the following:

•	 What a structure is

•	 How to declare a structure

•	 How to use typedef to work with structures more conveniently

•	 How to work with an array of structures

•	 How to search an array of structures

•	 How to sort an array of structures

•	 How to declare nested structures

•	 How to use structures to manipulate fractions

•	 How to use structures to store parallel arrays

•	 How structures can be passed to a function

10.1 The Need for Structures
In C, a structure is a collection of one or more variables, possibly of different types, grouped
together under a single name for convenient handling.

There are many situations in which we want to process data about a certain entity or object
but the data consists of items of various types. For example, the data for a student (the student
record) may consist of several fields such as a name, address, and telephone number (all of
type string); number of courses taken (integer); fees payable (floating-point); names of courses
(string); grades obtained (character); and so on.

The data for a car may consist of manufacturer, model, and registration number (string);
seating capacity and fuel capacity (integer); and mileage and price (floating-point). For a book,
we may want to store author and title (string); price (floating-point); number of pages (integer);
type of binding: hardcover, paperback, spiral (string); and number of copies in stock (integer).

Suppose we want to store data for 100 students in a program. One approach is to have
a separate array for each field and use subscripts to link the fields together. Thus, name[i],
address[i], fees[i], and so on, refer to the data for the ith student.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Structures

280

The problem with this approach is that if there are many fields, the handling of several
parallel arrays becomes clumsy and unwieldy. For example, suppose we want to pass a student’s
data to a function via the parameter list. This will involve the passing of several arrays. Also, if we
are sorting the students by name, say, each time two names are interchanged, we have to write
statements to interchange the data in the other arrays as well. In such situations, C structures are
convenient to use.

10.2 How to Declare a Structure
Consider the problem of storing a date in a program. A date consists of three parts: the day, the
month, and the year. Each of these parts can be represented by an integer. For example, the date
“September 14, 2006” can be represented by the day, 14; the month, 9; and the year, 2006. We say
that a date consists of three fields, each of which is an integer.

If we want, we can also represent a date by using the name of the month, rather than its
number. In this case, a date consists of three fields, one of which is a string and the other two are
integers.

In C, we can declare a date type as a structure using the keyword struct. Consider this
declaration:

struct date {int day, month, year;};

It consists of the keyword struct followed by some name we choose to give to the structure
(date, in the example); this is followed by the declarations of the fields enclosed in left and right
braces. Note the semicolon at the end of the declaration just before the right brace – this is the
usual case of a semicolon ending a declaration. The right brace is followed by a semicolon,
ending the struct declaration.

We could also have written the declaration as follows, where each field is declared individually:

struct date {
 int day;
 int month;
 int year;
};

This could be written as follows, but the style above is preferred for its readability:

struct date {int day; int month; int year;};

Given the struct declaration, we can declare variables of type struct date, as follows:

struct date dob; //to hold a "date of birth"

This declares dob as a “structure variable” of type date. It has three fields called day, month,
and year. This can be pictured as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Structures

281

We refer to the day field as dob.day, the month field as dob.month, and the year field as
dob.year. In C, the period (.), as used here, is referred to as the structure member operator.

In general, a field is specified by the structure variable name, followed by a period, followed by the
field name.

We could declare more than one variable at a time, as follows:

struct date borrowed, returned; //for a book in a library, say

Each of these variables has three fields: day, month, and year. The fields of borrowed are
referred to by borrowed.day, borrowed.month, and borrowed.year. The fields of returned are
referred to by returned.day, returned.month, and returned.year.

In this example, each field is an int and can be used in any context in which an int variable
can be used. For example, to assign the date “November 14, 2015” to dob, we can use this:

dob.day = 14;
dob.month = 11;
dob.year = 2015;

This can be pictured as follows:

We can also read values for day, month, and year with the following:

scanf("%d %d %d", &dob.day, &dob.month, &dob.year);

Suppose today was declared as follows:

struct date today;

Assuming we had stored a value in today, we could then assign all the fields of today to dob
with the following:

dob = today;

This one statement is equivalent to the following:

dob.day = today.day;
dob.month = today.month;
dob.year = today.year;

We can print the “value” of dob with this:

printf("The party is on %d/%d/%d\n", dob.day, dob.month, dob.year);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Structures

282

For this example, the following will be printed:

The party is on 14/11/2015

Note that each field has to be printed individually. We could also write a function printDate,
say, which prints a date given as an argument. The following program shows how printDate can
be written and used.

#include <stdio.h>
 
struct date {
 int day;
 int month;
 int year;
};
 
int main() {
 struct date dob;
 void printDate(struct date);
 
 dob.day = 14 ;
 dob.month = 11;
 dob.year = 2015;
 
 printDate(dob);
}
 
void printDate(struct date d) {
 printf("%d/%d/%d \n", d.day, d.month, d.year);
}

When run, the program prints

14/11/2015

We note, in passing, that C provides a date and time structure, tm, in the standard library.
In addition to the date, it provides, among other things, the time to the nearest second. To use it,
your program must be preceded by the following:

#include <time.h>

The construct struct date is a bit cumbersome to use, compared to single word types such
int or double. Fortunately, C provides us with typedef to make working with structures a little
more convenient.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Structures

283

10.2.1 typedef
We can use typedef to give a name to some existing type, and this name can then be used to
declare variables of that type. We can also use typedef to construct shorter or more meaningful
names for predefined C types or for user-declared types, such as structures. For example, the
following statement declares a new type-name Whole, which is synonymous with the predefined
type int:

typedef int Whole;

Note that Whole appears in the same position as a variable would, not right after the word
typedef. We can then declare variables of type Whole, as follows:

Whole amount, numCopies;

This is exactly equivalent to

int amount, numCopies;

For those accustomed to the term real of languages like Pascal or FORTRAN, the following
statement allows them to declare variables of type Real:

typedef float Real;

In this book, we use at least one uppercase letter to distinguish type names declared using
typedef.

We could give a short, meaningful name, Date, to the date structure shown earlier with the
following declaration:

typedef struct date {
 int day;
 int month;
 int year;
} Date;

Recall that C distinguishes between uppercase and lowercase letters so that date is different
from Date. We could, if we wanted, have used any other identifier, such as DateType, instead
of Date.

We could now declare “structure variables” of type Date, such as the following:

Date dob, borrowed, returned;

Notice how much shorter and neater this is compared to the following:

struct date dob, borrowed, returned;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Structures

284

Since there is hardly any reason to use this second form, we could omit date from the
declaration above and write this:

typedef struct {
 int day;
 int month;
 int year;
} Date;

Thereafter, we can use Date whenever the struct is required. For example, we can rewrite
printDate
as follows:

void printDate(Date d) {
 printf("%d/%d/%d \n", d.day, d.month, d.year);
}

To pursue the date example, suppose we want to store the “short” name – the first three
letters, for example Aug – of the month. We will need to use a declaration such as this:

typedef struct {
 int day;
 char month[4]; //one position for \0 to end string
 int year;
} Date;

We can represent the date “November 14, 2015” in a Date variable dob with the following:

dob.day = 14;
strcpy(dob.month, "Nov");//remember to #include <string.h> to use strcpy
dob.year = 2015;

And we can write printDate as follows:

void printDate(Date d) {
 printf("%s %d, %d \n", d.month, d.day, d.year);
}

The call

printDate(dob);

will print this:

Nov 14, 2015

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Structures

285

Suppose we want to store information about students. For each student, we want to store
their name, age, and gender (male or female). Assuming that a name is no longer than 30
characters, we could use the following declaration:

typedef struct {
 char name[31];
 int age;
 char gender;
} Student;

We can now declare variables of type Student, as follows:

Student stud1, stud2;

Each of stud1 and stud2 will have its own fields – name, age, and gender. We can refer to these
fields
as follows:

stud1.name stud1.age stud1.gender
stud2.name stud2.age stud2.gender

As usual, we can assign values to these fields or read values into them. And, if we want, we
can assign all the fields of stud1 to stud2 with one statement:

stud2 = stud1;

10.3 Array of Structure
Suppose we want to store data on 100 students. We will need an array of size 100, and each
element of the array will hold the data for one student. Thus, each element will have to be a
structure – we need an “array of structures.”

We can declare the array with the following, similar to how we say “int pupil[100]” to
declare an integer array of size 100:

Student pupil[100];

This allocates storage for pupil[0], pupil[1], pupil[2], …, up to pupil[99]. Each element
pupil[i] consists of three fields that can be referred to as follows:

pupil[i].name pupil[i].age pupil[i].gender

First we will need to store some data in the array. Assume we have data in the following
format (name, age, gender):

"Jones, John" 24 M
"Mohammed, Lisa" 33 F
"Singh, Sandy" 29 F
"Layne, Dennis" 49 M
"END"

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Structures

286

Suppose the data are stored in a file input.txt and in is declared as follows:

FILE * in = fopen("input.txt", "r");

If str is a character array, assume we can call the function

getString(in, str)

to store the next data string in quotes in str without the quotes. Also assume that readChar(in)
will read the data and return the next non-whitespace character.

Exercise: Write the functions getString and readChar.
We can read the data into the array pupil with the following code:

int n = 0;
char temp[31];
getString(in, temp);
while (strcmp(temp, "END") != 0) {
 strcpy(pupil[n].name, temp);
 fscanf(in, "%d", &pupil[n].age);
 pupil[n].gender = readChar(in);
 n++;
 getString(in, temp);
}

At the end, n contains the number of students stored, and pupil[0] to pupil[n-1] contain
the data for those students.

To ensure that we do not attempt to store more data than we have room for in the array, we
should check that n is within the bounds of the array. Assuming that MaxItems has the value 100,
this can be done by changing the while condition to the following:

while (n < MaxItems && strcmp(temp, "END") != 0)

or by inserting the following just after the statement n++; inside the loop:

if (n == MaxItems) break;

10.4 Search an Array of Structure
With the data stored in the array, we can manipulate it in various ways. For instance, we can write
a function to search for a given name. Assuming the data is stored in no particular order, we can
use a sequential search as follows:

int search(char key[], Student list[], int n) {
//search for key in list[0] to list[n-1]
//if found, return the location; if not found, return -1
 for (int h = 0; h < n; h++)
 if (strcmp(key, list[h].name) == 0) return h;
 return -1;
} //end search

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Structures

287

Given the previous data, the call

search("Singh, Sandy", pupil, 4)

will return 2, and the following call will return -1:

search("Layne, Sandy", pupil, 4)

10.5 Sort an Array of Structure
Suppose we want the list of students in alphabetical order by name. It will be required to sort the
array pupil. The following function uses an insertion sort to do the job. The process is identical to
sorting an int array, say, except that the name field is used to govern the sorting.

void sort(Student list[], int n) {
//sort list[0] to list[n-1] by name using an insertion sort
 Student temp;
 int k;
 for (int h = 1; h < n; h++) {
 Student temp = list[h];
 k = h - 1;
 while (k >= 0 && strcmp(temp.name, list[k].name) < 0) {
 list[k + 1] = list[k];
 k = k - 1;
 }
 }
 list[k + 1] = temp;
} //end sort

Observe this statement:

list[k + 1] = list[k];

This assigns all the fields of list[k] to list[k+1].
If we want to sort the students in order by age, all we need to change is the while condition.

To sort in ascending order, we write this:

while (k >= 0 && temp.age < list[k].age)
//move smaller numbers to the left

To sort in descending order, we write this:

while (k >= 0 && temp.age > list[k].age)
//move bigger numbers to the left

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Structures

288

We could even separate the list into male and female students by sorting on the gender field.
Since F comes before M in alphabetical order, we can put the females first by writing this:

while (k >= 0 && temp.gender < list[k].gender)
//move Fs to the left

And we can put the males first by writing this:

while (k >= 0 && temp.gender > list[k].gender)
//move Ms to the left

10.6 Read, Search, and Sort a Structure
We illustrate the ideas discussed earlier by writing Program P10.1. The program performs the
following:

•	 Reads data for students from a file, input.txt, and stores them in an array of
structures.

•	 Prints the data in the order stored in the array.

•	 Tests search by reading several names and looking for them in the array.

•	 Sorts the data in alphabetical order by name.

•	 Prints the sorted data.

The program also illustrates how the functions getString and readChar may be written.
getString lets us read a string enclosed within any “delimiter” characters. For example, we could
specify a string as $John Smith$ or "John Smith." This is a very flexible way of specifying a
string. Each string can be specified with its own delimiters, which could be different for the next
string. It is particularly useful for specifying strings that may include special characters such as
the double quotes without having to use an escape sequence such as \".

Program P10.1

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#define MaxStudents 100
#define MaxNameLength 30
#define MaxNameBuffer MaxNameLength+1
typedef struct {
 char name[MaxNameBuffer];
 int age;
 char gender;
} Student;
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Structures

289

int main() {
 Student pupil[MaxStudents];
 char aName[MaxNameBuffer];
 void getString(FILE *, char[]);
 int getData(FILE *, Student[]);
 int search(char[], Student[], int);
 void sort(Student[], int);
 void printStudent(Student);
 void getString(FILE *, char[]);

 FILE * in = fopen("input.txt", "r");
 if (in == NULL) {
 printf("Error opening input file.\n");
 exit(1);
 }
 
 int numStudents = getData(in, pupil);
 if (numStudents == 0) {
 printf("No data supplied for students");
 exit(1);
 }
 
 printf("\n");
 for (int h = 0; h < numStudents; h++) printStudent(pupil[h]);
 printf("\n");
 
 getString(in, aName);
 while (strcmp(aName, "END") != 0) {
 int ans = search(aName, pupil, numStudents);
 if (ans == -1) printf("%s not found\n", aName);
 else printf("%s found at location %d\n", aName, ans);
 getString(in, aName);
 }
 
 sort(pupil, numStudents);
 printf("\n");
 for (int h = 0; h < numStudents; h++) printStudent(pupil[h]);
} //end main
 
void printStudent(Student t) {
 printf("Name: %s Age: %d Gender: %c\n", t.name, t.age, t.gender);
} //end printStudent
 
int getData(FILE *in, Student list[]) {
 char temp[MaxNameBuffer];
 void getString(FILE *, char[]);
 char readChar(FILE *);
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Structures

290

 int n = 0;
 getString(in, temp);
 while (n < MaxStudents && strcmp(temp, "END") != 0) {
 strcpy(list[n].name, temp);
 fscanf(in, "%d", &list[n].age);
 list[n].gender = readChar(in);
 n++;
 getString(in, temp);
 }
 return n;
} //end getData
 
int search(char key[], Student list[], int n) {
//search for key in list[0] to list[n-1]
//if found, return the location; if not found, return -1
 for (int h = 0; h < n; h++)
 if (strcmp(key, list[h].name) == 0) return h;
 return -1;
} //end search
 
void sort(Student list[], int n) {
//sort list[0] to list[n-1] by name using an insertion sort
 Student temp;
 int k;
 for (int h = 1; h < n; h++) {
 temp = list[h];
 k = h - 1;
 while (k >= 0 && strcmp(temp.name, list[k].name) < 0) {
 list[k + 1] = list[k];
 k = k - 1;
 }
 list[k + 1] = temp;
 } //end for
} //end sort
 
void getString(FILE * in, char str[]) {
// stores, in str, the next string within delimiters
// the first non-whitespace character is the delimiter
// the string is read from the file 'in'
 char ch, delim;
 int n = 0;
 str[0] = '\0';
 // read over white space
 while (isspace(ch = getc(in))) ; //empty while body
 if (ch == EOF) return;
 
 delim = ch;
 while (((ch = getc(in)) != delim) && (ch != EOF))
 str[n++] = ch;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Structures

291

 str[n] = '\0';
} // end getString
char readChar(FILE * in) {
 char ch;
 while (isspace(ch = getc(in))) ; //empty while body
 return ch;
} //end readChar

Suppose the file input.txt contains the following data:

"Jones, John" 24 M
"Mohammed, Lisa" 33 F
"Singh, Sandy" 29 F
"Layne, Dennis" 49 M
"Singh, Cindy" 16 F
"Ali, Imran" 39 M
"Kelly, Trudy" 30 F
"Cox, Kerry" 25 M
"END"
"Kelly, Trudy"
"Layne, Dennis"
"Layne, Cindy"
"END"

The program prints this:

Name: Jones, John Age: 24 Gender: M
Name: Mohammed, Lisa Age: 33 Gender: F
Name: Singh, Sandy Age: 29 Gender: F
Name: Layne, Dennis Age: 49 Gender: M
Name: Singh, Cindy Age: 16 Gender: F
Name: Ali, Imran Age: 39 Gender: M
Name: Kelly, Trudy Age: 30 Gender: F
Name: Cox, Kerry Age: 25 Gender: M
 
Kelly, Trudy found at location 6
Layne, Dennis found at location 3
Layne, Cindy not found
 
Name: Ali, Imran Age: 39 Gender: M
Name: Cox, Kerry Age: 25 Gender: M
Name: Jones, John Age: 24 Gender: M
Name: Kelly, Trudy Age: 30 Gender: F
Name: Layne, Dennis Age: 49 Gender: M
Name: Mohammed, Lisa Age: 33 Gender: F
Name: Singh, Cindy Age: 16 Gender: F
Name: Singh, Sandy Age: 29 Gender: F

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Structures

292

10.7 Nested Structures
C allows us to use a structure as part of the definition of another structure – a structure within a
structure, called a nested structure. Consider the Student structure. Suppose that, instead of age,
we want to store the student’s date of birth. This might be a better choice since a student’s date of
birth is fixed, whereas his age changes, and the field would have to be updated every year.

We could use the following declaration:

typedef struct {
 char name[31];
 Date dob;
 char gender;
} Student;

If mary is a variable of type Student, then mary.dob refers to her date of birth. But mary.dob is
itself a Date structure. If necessary, we can refer to its fields with mary.dob.day, mary.dob.month,
and mary.dob.year.

If we want to store a name in a more flexible way – for example, first name, middle initial, and
last name, we could use a structure like this:

typedef struct {
 char first[21];
 char middle;
 char last[21];
} Name;

The Student structure now becomes the following, which contains two structures, Name
and Date:

typedef struct {
 Name name; //assumes Name has already been declared
 Date dob; //assumes Date has already been declared
 char gender;
} Student;

If st is a variable of type Student,

st.name refers to a structure of the type Name;
st.name.first refers to the student’s first name; and
st.name.last[0] refers to the first letter of her last name.

Now, if we want to sort the array pupil by last name, the while condition in the function sort
becomes this:

while (k >= 0 && strcmp(temp.name.last, pupil[k].name.last) < 0)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Structures

293

A structure may be nested as deeply as you want. The dot (.) operator associates from left to
right. If a, b, and c are structures, the construct

a.b.c.d

is interpreted as

((a.b).c).d

10.8 Work with Fractions
Consider the problem of working with fractions, where a fraction is represented by two integer
values: one for the numerator and the other for the denominator. For example, 5/9 is represented by
the two numbers 5 and 9.

We will use the following structure to represent a fraction:

typedef struct {
 int num;
 int den;
} Fraction;

If f is variable of type Fraction, we can store 5/9 in f with this:

f.num = 5;
f.den = 9;

This can be pictured as follows:

We can also read two values representing a fraction and store them in f with a statement
such as this:

scanf("%d %d", &f.num, &f.den);

We can write a function, printFraction, to print a fraction. It is shown in the following program.

#include <stdio.h>
 
typedef struct {
 int num;
 int den;
} Fraction;
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Structures

294

int main() {
 void printFraction(Fraction);
 Fraction f;
 
 f.num = 5;
 f.den = 9;
 printFraction(f);
}
 
void printFraction(Fraction f) {
 printf("%d/%d", f.num, f.den);
}

When run, the program will print

5/9

10.8.1 Manipulate Fractions
We can write functions to perform various operations on fractions. For instance, since

a

b

c

d

ad bc

bd
+ =

+

we can write a function to add two fractions as follows:

Fraction addFraction(Fraction a, Fraction b) {
 Fraction c;
 c.num = a.num * b.den + a.den * b.num;
 c.den = a.den * b.den;
 return c;
} //end addFraction

Similarly, we can write functions to subtract, multiply, and divide fractions.

Fraction subFraction(Fraction a, Fraction b) {
 Fraction c;
 c.num = a.num * b.den - a.den * b.num;
 c.den = a.den * b.den;
 return c;
} //end subFraction
 
Fraction mulFraction(Fraction a, Fraction b) {
 Fraction c;
 c.num = a.num * b.num;
 c.den = a.den * b.den;
 return c;
} //end mulFraction
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Structures

295

Fraction divFraction(Fraction a, Fraction b) {
 Fraction c;
 c.num = a.num * b.den;
 c.den = a.den * b.num;
 return c;
} //end divFraction

To illustrate their use, suppose we want to find 2⁄
5
 of {3⁄

7
 + 5⁄

8
}

We can do this with the following statements:

Fraction a, b, c, sum, ans;
a.num = 2; a.den = 5;
b.num = 3; b.den = 7;
c.num = 5; c.den = 8;
sum = addFraction(b, c);
ans = mulFraction(a, sum);
printFraction(ans);

Strictly speaking, the variables sum and ans are not necessary, but we’ve used them to
simplify the explanation. Since an argument to a function can be an expression, we could get the
same result with this:

printFraction(mulFraction(a, addFraction(b, c)));

When run, this code will print the following, which is the correct answer:

118/280

However, if you want, you can write a function to reduce a fraction to its lowest terms. This
can be done by finding the highest common factor (HCF) of the numerator and denominator. You
then divide the numerator and denominator by their HCF. For example, the HCF of 118 and 280 is
2 so 118/280 reduces to 59/140. Writing this function is left as an exercise.

10.9 A Voting Problem
This example will be used to illustrate several points concerning the passing of arguments to
functions. It further highlights the differences between array arguments and simple-variable
arguments. We will show how a function can return more than one value to a calling function
by using a structure. To do so, we will write a program to solve the voting problem we met in
Section 8.15. Here it is again:

Problem: In an election, there are seven candidates. Each voter is
allowed one vote for the candidate of their choice. The vote is recorded
as a number from 1 to 7. The number of voters is unknown beforehand,
but the votes are terminated by a vote of 0. Any vote that is not a number
from 1 to 7 is an invalid (spoiled) vote.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Structures

296

A file, votes.txt, contains the names of the candidates. The first name
is considered as candidate 1, the second as candidate 2, and so on. The
names are followed by the votes. Write a program to read the data and
evaluate the results of the election. Print all output to the file, results.txt.

Your output should specify the total number of votes, the number of
valid votes, and the number of spoiled votes. This is followed by the votes
obtained by each candidate and the winner(s) of the election.

Suppose the file votes.txt contains the following data:

Victor Taylor
Denise Duncan
Kamal Ramdhan
Michael Ali
Anisa Sawh
Carol Khan
Gary Olliverie
 
3 1 2 5 4 3 5 3 5 3 2 8 1 6 7 7 3 5
6 9 3 4 7 1 2 4 5 5 1 4 0

Your program should send the following output to results.txt:

Invalid vote: 8
Invalid vote: 9
 
Number of voters: 30
Number of valid votes: 28
Number of spoilt votes: 2
 
Candidate Score
Victor Taylor 4
Denise Duncan 3
Kamal Ramdhan 6
Michael Ali 4
Anisa Sawh 6
Carol Khan 2
Gary Olliverie 3
 
The winner(s):
 Kamal Ramdhan
 Anisa Sawh

We now explain how we can solve this problem using C structures. Consider these declarations:

typedef struct {
 char name[31];
 int numVotes;
} PersonData;
PersonData candidate[8];

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Structures

297

Here, candidate is an array of structures. We will use candidate[1] to candidate[7] for the
seven candidates; we will not use candidate[0]. This will allow us to work more naturally with
the votes. For a vote (v, say), candidate[v] will be updated. If we use candidate[0], we would
have the awkward situation where for a vote v, candidate[v-1] would have to be updated.

An element candidate[h] is not just a single data item but a structure consisting of two fields.
These fields can be referred to as follows:

candidate[h].name and candidate[h].numVotes

To make the program flexible, we will define the following symbolic constants:

#define MaxCandidates 7
#define MaxNameLength 30
#define MaxNameBuffer MaxNameLength+1

We also change the earlier declarations to the following:

typedef struct {
 char name[MaxNameBuffer];
 int numVotes;
} PersonData;
PersonData candidate[MaxCandidates+1];

The solution is based on the following outline:

initialize
process the votes
print the results

The function initialize will read the names from the file in and set the vote counts to 0.
The file is passed as an argument to the function. We will read a candidate’s name in two parts
(first name and last name) and then join them together to create a single name that we will store
in person[h].name. Data will be read for max persons. Here is the function:

void initialize(PersonData person[], int max, FILE *in) {
 char lastName[MaxNameBuffer];
 for (int h = 1; h <= max; h++) {
 fscanf(in, "%s %s", person[h].name, lastName);
 strcat(person[h].name, " ");
 strcat(person[h].name, lastName);
 person[h].numVotes = 0;
 }
} //end initialize

Processing the votes will be based on the following outline:

get a vote
while the vote is not 0
 if the vote is valid
 add 1 to validVotes
 add 1 to the score of the appropriate candidate

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Structures

298

 else
 print invalid vote
 add 1 to spoiltVotes
 endif
 get a vote
endwhile

After all the votes are processed, this function will need to return the number of valid and
spoiled votes. But how can a function return more than one value? It can, if the values are stored
in a structure and the structure returned as the “value” of the function.

We will use the following declaration:

typedef struct {
 int valid, spoilt;
} VoteCount;

And we will write processVotes as follows:

VoteCount processVotes(PersonData person[], int max, FILE *in, FILE *out) {
 VoteCount temp;
 temp.valid = temp.spoilt = 0;
 
 int v;
 fscanf(in, "%d", &v);
 while (v != 0) {
 if (v < 1 || v > max) {
 fprintf(out, "Invalid vote: %d\n", v);
 ++temp.spoilt;
 }
 else {
 ++person[v].numVotes;
 ++temp.valid;
 }
 fscanf(in, "%d", &v);
 } //end while
 return temp;
} //end processVotes

Next, we write main, preceded by the compiler directives and the structure declarations.

#include <stdio.h>
#include <string.h>
#define MaxCandidates 7
#define MaxNameLength 30
#define MaxNameBuffer MaxNameLength+1
 
typedef struct {
 char name[MaxNameBuffer];
 int numVotes;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Structures

299

 } PersonData;
PersonData candidate[MaxCandidates];
 
typedef struct {
 int valid, spoilt;
} VoteCount;
 
int main() {
 void initialize(PersonData[], int, FILE *);
 VoteCount processVotes(PersonData[], int, FILE *, FILE *);
 void printResults(PersonData[], int, VoteCount, FILE *);
 
 PersonData candidate[MaxCandidates+1];
 VoteCount count;
 FILE *in = fopen("votes.txt", "r");
 FILE *out = fopen("results.txt", "w");
 
 initialize(candidate, MaxCandidates, in);
 count = processVotes(candidate, MaxCandidates, in, out);
 printResults(candidate, MaxCandidates, count, out);

 fclose(in);
 fclose(out);
} //end main

The declarations of PersonData and VoteCount come before main. This is done so that other
functions can refer to them, without having to repeat the entire declarations. If they were declared
in main, then the names PersonData and VoteCount would be known only in main, and other
functions would have no access to them.

Now that we know how to read and process the votes, it remains only to determine the
winner(s) and print the results. We will delegate this task to the function printResults.

Using the sample data, the array candidate will contain the values shown below after all the
votes have been tallied (remember, we are not using candidate[0]).

name numVotes

1 Victor Taylor 4

2 Denise Duncan 3

3 Kamal Ramdhan 6

4 Michael Ali 4

5 Anisa Sawh 6

6 Carol Khan 2

7 Gary Olliverie 3

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Structures

300

To find the winner, we must first find the largest value in the array. To do this, we will call a
function getLargest as follows:

int win = getLargest(candidate, 1, MaxCandidates);

This will set win to the subscript of the largest value in the numVotes field from candidate[1]
to candidate[7] (since MaxCandidates is 7):

In our example, win will be set to 3 since the largest value, 6, is in position 3. (6 is also in
position 5, but we just need the largest value, which we can get from either position.)

Here is getLargest:

int getLargest(PersonData person[], int lo, int hi) {
//returns the index of the highest vote from person[lo] to person[hi]
 int big = lo;
 for (int h = lo + 1; h <= hi; h++)
 if (person[h].numVotes > person[big].numVotes) big = h;
 return big;
} //end getLargest

Now that we know the largest value is in candidate[win].numVotes, we can “step through”
the array, looking for those candidates with that value. This way, we will find all the candidates, if
there is more than one, with the highest vote and declare them as winners.

An outline of printResults is as follows:

printResults
 print the number of voters, valid votes and spoilt votes
 print the score of each candidate
 determine and print the winner(s)

The details are given in the function printResults:

void printResults(PersonData person[], int max, VoteCount c, FILE*out) {
 int getLargest(PersonData[], int, int);
 fprintf(out, "\nNumber of voters: %d\n", c.valid + c.spoilt);
 fprintf(out, "Number of valid votes: %d\n", c.valid);
 fprintf(out, "Number of spoilt votes: %d\n", c.spoilt);
 fprintf(out, "\nCandidate Score\n\n");
 
 for (int h = 1; h <= max; h++)
 fprintf(out, "%-15s %3d\n", person[h].name,
 person[h].numVotes);
 
 fprintf(out, "\nThe winner(s)\n");
 int win = getLargest(person, 1, max);
 int winningVote = person[win].numVotes;
 for (int h = 1; h <= max; h++)
 if (person[h].numVotes == winningVote) fprintf(out, "%s\n",
 person[h].name);
} //end printResults

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Structures

301

Putting all the pieces together, we get Program P10.2, the program to solve the voting problem.

Program P10.2

#include <stdio.h>
#include <string.h>
#define MaxCandidates 7
#define MaxNameLength 30
#define MaxNameBuffer MaxNameLength+1
 
typedef struct {
 char name[MaxNameBuffer];
 int numVotes;
} PersonData;
PersonData candidate[MaxCandidates];
 
typedef struct {
 int valid, spoilt;
} VoteCount;
 
int main() {
 void initialize(PersonData[], int, FILE *);
 VoteCount processVotes(PersonData[], int, FILE *, FILE *);
 void printResults(PersonData[], int, VoteCount, FILE *);
 
 PersonData candidate[MaxCandidates+1];
 VoteCount count;
 FILE *in = fopen("votes.txt", "r");
 FILE *out = fopen("results.txt", "w");
 
 initialize(candidate, MaxCandidates, in);
 count = processVotes(candidate, MaxCandidates, in, out);
 printResults(candidate, MaxCandidates, count, out);
 
 fclose(in);
 fclose(out);
} //end main
 
void initialize(PersonData person[], int max, FILE *in) {
 char lastName[MaxNameBuffer];
 for (int h = 1; h <= max; h++) {
 fscanf(in, "%s %s", person[h].name, lastName);
 strcat(person[h].name, " ");
 strcat(person[h].name, lastName);
 person[h].numVotes = 0;
 }
} //end initialize
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Structures

302

VoteCount processVotes(PersonData person[], int max, FILE *in, FILE *out) {
 VoteCount temp;
 temp.valid = temp.spoilt = 0;
 
 int v;
 fscanf(in, "%d", &v);
 while (v != 0) {
 if (v < 1 || v > max) {
 fprintf(out, "Invalid vote: %d\n", v);
 ++temp.spoilt;
 }
 else {
 ++person[v].numVotes;
 ++temp.valid;
 }
 fscanf(in, "%d", &v);
 } //end while
 return temp;
} //end processVotes
 
int getLargest(PersonData person[], int lo, int hi) {
//returns the index of the highest vote from person[lo] to person[hi]
 int big = lo;
 for (int h = lo + 1; h <= hi; h++)
 if (person[h].numVotes > person[big].numVotes) big = h;
 return big;
} //end getLargest
 
void printResults(PersonData person[], int max, VoteCount c, FILE *out) {
 int getLargest(PersonData[], int, int);
 fprintf(out, "\nNumber of voters: %d\n", c.valid + c.spoilt);
 fprintf(out, "Number of valid votes: %d\n", c.valid);
 fprintf(out, "Number of spoilt votes: %d\n", c.spoilt);
 fprintf(out, "\nCandidate Score\n\n");
 
 for (int h = 1; h <= max; h++)
 fprintf(out, "%-15s %3d\n", person[h].name, person[h].numVotes);
 
 fprintf(out, "\nThe winner(s)\n");
 int win = getLargest(person, 1, max);
 int winningVote = person[win].numVotes;
 for (int h = 1; h <= max; h++)
 if (person[h].numVotes == winningVote)
 fprintf(out, "%s\n", person[h].name);
} //end printResults

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Structures

303

Suppose it was required to print the names of the candidates in descending order by
numVotes. To do this, the structure array candidate must be sorted in descending order using the
numVotes field to control the sorting. This could be done by the following function call:

sortByVote(candidate, 1, MaxCandidates);

sortByVote uses an insertion sort and is written using the formal parameter person (any
name will do), as shown here:

void sortByVote(PersonData person[], int lo, int hi) {
//sort person[lo..hi] in descending order by numVotes
 PersonData insertItem;
 // process person[lo+1] to person[hi]
 for (int h = lo + 1; h <= hi; h++) {
 // insert person h in its proper position
 insertItem = person[h];
 int k = h -1;
 while (k >= lo && insertItem.numVotes > person[k].numVotes) {
 person[k + 1] = person[k];
 --k;
 }
 person[k + 1] = insertItem;
 }
} //end sortByVote

Observe that the structure of the function is pretty much the same as if we were sorting a
simple integer array. The major difference is in the while condition where we must specify which
field is used to determine the sorting order. (In this example, we also use >, rather than <, since
we are sorting in descending order rather than ascending order.) When we are about to process
person[h], we copy it to the temporary structure, insertItem. This frees person[h] so that
person[h-1] may be shifted into position h, if necessary. To shift an array element to the right, we
use the following simple assignment:

person[k + 1] = person[k];

This moves the entire structure (two fields, in this example).
If we need to sort the candidates in alphabetical order, we could use the function sortByName:

void sortByName(PersonData person[], int lo, int hi) {
//sort person[lo..hi] in alphabetical order by name
 PersonData insertItem;
 // process person[lo+1] to person[hi]
 for (int h = lo + 1; h <= hi; h++) {
 // insert person j in its proper position
 insertItem = person[h];
 int k = h -1;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Structures

304

 while (k > 0 && strcmp(insertItem.name, person[k].name) < 0) {
 person[k + 1] = person[k];
 --k;
 }
 person[k + 1] = insertItem;
 }
} //end sortByName

The function sortByName is identical with sortByVote except for the while condition, which
specifies which field is used in comparisons and the use of < for sorting in ascending order. Note
the use of the standard string function, strcmp, for comparing two names. If strcmp(s1, s2) is
negative, it means that the string s1 comes before the string s2 in alphabetical order.

As an exercise, rewrite the program for solving the voting problem so that it prints the results
in descending order by votes and in alphabetical order.

10.10 Pass Structures to Functions
In the voting problem, we saw examples where candidate, an array of structures, was passed
to various functions. We now discuss some other issues that arise in passing a structure to a
function.

Consider a structure for a “book type” with the following fields:

typedef struct {
 char author[31];
 char title[51];
 char binding; //paperback, hardcover, spiral, etc.
 double price;
 int quantity; //quantity in stock
} Book;
Book text;

This declares a new type called Book, and text is declared as a variable of type Book.
We could pass individual fields to functions in the usual way; for a simple variable, its value is

passed, but, for an array variable, its address is passed. Thus:

fun1(text.quantity); // value of text.quantity is passed
fun2(text.binding); // value of text.binding is passed
fun3(text.price); // value of text.price is passed

but,

fun4(text.title); // address of array text.title is passed

We could even pass the first letter of the title, as follows:

fun5(text.title[0]); // value of first letter of title is passed

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Structures

305

To pass the entire structure, we use this:

fun6(text);

Of course, the header for each of these functions must be written with the appropriate
parameter type.

In the last example, the fields of text are copied to a temporary place (called the run-time
heap), and the copy is passed to fun6; that is, the structure is passed “by value.” If a structure is
complicated or contains arrays, the copying operation could be time consuming. In addition,
when the function returns, the values of the structure elements must be removed from the heap;
this adds to the overhead – the extra processing required to perform a function call.

To avoid this overhead, the address of the structure could be passed. This can be done with
the following statement:

fun6(&text);

However, further discussion involves a deeper knowledge of pointers that is beyond the scope
of this book.

EXERCISES 10

1.	 Write a program to read names and phone numbers into a structure array.
Request a name and print the person’s phone number. Use binary search to look up
the name.

2.	 Write a function that, given two date structures, d1 and d2, returns -1 if d1 comes
before d2, 0 if d1 is the same as d2, and 1 if d1 comes after d2.

3.	 Write a function that, given two date structures, d1 and d2, returns the number of
days that d2 is ahead of d1. If d2 comes before d1, return a negative value.

4.	 A time in 24-hour clock format is represented by two numbers; for example, 16 45
means the time 16:45: that is, 4:45 p.m.

a.	 Using a structure to represent a time, write a function that, given two time
structures, t1 and t2, returns the number of minutes from t1 to t2. For
example, if the two given times are 16 45 and 23 25, your function should
return 400.

b.	 Modify the function so that it works as follows: if t2 is less than t1, take it to
mean a time for the next day. For example, given the times 20:30 and 6:15,
take this to mean 8.30 p.m. to 6.15 a.m. of the next day. Your function should
return 585.

5.	 A length, specified in meters and centimeters, is represented by two integers.
For example, the length 3m 75cm is represented by 3 75. Using a structure to
represent a length, write functions to compare, add, and subtract two lengths.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Structures

306

6.	 A file contains the names and distances jumped by athletes in a long-jump
competition. Using a structure to hold a name and distance (which is itself a
structure as in Exercise 5), write a program to read the data and print a list of
names and distance jumped in order of merit (best jumper first).

7.	 A data file contains registration information for six courses – CS20A, CS21A,
CS29A, CS30A, CS35A, and CS36A. Each line of data consists of a seven-digit
student registration number followed by six (ordered) values, each of which is 0
or 1. A value of 1 indicates that the student is registered for the corresponding
course; 0 means the student is not. Thus, 1 0 1 0 1 1 means that the student is
registered for CS20A, CS29A, CS35A, and CS36A, but not for CS21A and CS30A.

You may assume that there are no more than 100 students and a registration
number 0 ends the data.

Write a program to read the data and produce a class list for each course. Each list
consists of the registration numbers of those students taking the course.

8.	 At a school’s bazaar, activities were divided into stalls. At the close of the bazaar, the
manager of each stall submitted information to the principal consisting of the name
of the stall, the income earned, and its expenses. Here are some sample data:

Games 2300.00 1000.00
Sweets 900.00 1000.00

a.	 Create a structure to hold a stall’s data

b.	 Write a program to read the data and print a report consisting of the stall
name and net income (income – expenses), in order of decreasing net income
(that is, with the most profitable stall first and the least profitable stall last). In
addition, print the number of stalls, the total profit or loss of the bazaar, and
the stall(s) that made the most profit. Assume that a line containing xxxxxx
only ends the data.

www.it-ebooks.info

http://www.it-ebooks.info/

307

�       � A
Algorithm

computer instructions, 4
data and variables, 5
develop algorithm, 6

American Standard Code for
Information Interchange (ASCII)

codes, 141
definition, 142
features, 142

Arithmetic expressions
char variable, 143
integer value, 143
uppercase to/from lowercase, 144

Array of strings
sort parallel arrays, 262–264
two-dimensional character, 260
variable-length arrays, 260–262
while condition, 260

Array(s)
average and differences

assumptions, 203
defensive programming, 206
program and comments, 204–205
while condition, 205

character array (see Strings)
declaration, 198–199
fopen, 209, 211
function and arguments passing, 211–213
geography quiz program, 230–233
largest number, 233–235
letter frequency count, 206–209
palindrome

ignoring case,
punctuation and spaces, 220–223

lettersOnlyLowerthat function, 223, 225
thermostat, 221

uppercase/lowercase letters, 223
while condition, 223

simple vs. array variables, 197
smallest value, 235
store values

constant and variable, 200
declaration, 202
element 0, 203
elements, 199
for loop, 201
initial values, 202
scores.txt file, 200

structure
declaration, 285
getString and readChar, 286
integer, 285
sequential search, 286–287
sorting, 287–288

voting problem, 235–240
Assignment operator, 101–102
Assignment statement, 41

�       � B
Binary search

ascending order, 264
binarySearch, 266
function, 265
proceeds, 264–265

Boolean expressions
AND (&&), 66–67
bool data type, 68
compound conditions, 66
condition, 66
C relational operators, 66
NOT (!), 68
OR (||), 67
value type, 65

Index

www.it-ebooks.info

http://www.it-ebooks.info/

■ index

308

�       � C
Characters

arithmetic expressions, 143–144
ASCII codes, 141–142
char keyword, 143
compare, 155
computer/typewriter

keyboard, 141
constants and values, 142–143
count, 152–154
digit to integer

conversion, 161–163
escape sequence, 142
file reading, 156
printable characters, 141
read and print, 145–151
sets, 141
standard English keyboard, 141
variable, 143
write, 157–158, 160

Compare characters, 155
Constants and values, 142–143
Count characters

blanks, 153
comments, 152
end-of-line, 153
if statement, 154
line of input, 153
non-blank, 152
program running, 152

C programming language
assignment statement, 41
block/compound statement, 12
compiler directive, 12
data type, 28
functions, 12
integer value, 29

field width, 32
integer constant, 29
precedence of operators, 30
variable declaration, 29

naming conventions, 28
printf statement, 42
program layout, 14
reserved words, 27
run program, 13
strings, 38
tokens, 24
use of spaces, 26
user identifier, 27

�       � D
Defensive programming, 100
#define directive, 81–82
Digit to integer characters, 161–163
do…while statement

bank interest, 134–135
format of, 133
highest common factor, 133–134
syntax expression, 133
while statement, 132

Dry running/desk checking algorithm, 6

�       � E
Euclid’s algorithm, 133

�       � F
Factorial function, 181

algorithm, 178
argument’s value, 182
combinations, 182–184
execution, 182
factorial(num) returns, 179
prints and integer, 178
program, 179
program illustration, 181
return type, 179
statements, 180
temporary location, 182
variables declaration, 180

Floating-point number
assign double/float to int, 38
assign value double and float, 36
expressions, 37
floating-point expressions, 36
print double and float variable, 34

for statement
bit of aesthetics, 125
code execution, 122–123
print statement, 123
program (loop execution), 124
pseudocode construct, 120
construct, 119
control part, 119
declaration, 120
description, 118
endfor, 119
execution method, 122
expressive power, 131–132
print statement, 119

www.it-ebooks.info

http://www.it-ebooks.info/

■ Index

309

fprintf function, 111–112
Fractions

integer values, 293
manipulation, 294
printFraction, 293
write functions, 294–295

fscanf function, 108
Functions, 165, 304

classification number, 186–187
data processing, 169
double value, 185
factorial (see Factorial function)
getchar and getc, 165
header, 168–169
highest common factor, 165
highest common factor (HCF), 175–178
if…else statements, 173–175
main statement, 165
max variable, 170–172
net pay calculation, 185
program, 167–168
prototype, 168
skipLines, 166
sum of exact divisors, 186

�       � G
getLargest function, 300
getString and readChar function, 286
getString function, 228–229

�       � H
Highest common factor (HCF)

do…while statement, 133–134
function, 175
lowest common multiple (LCM), 177–178
printf statement, 176
prototype, 177
repetition logic program, 96–97
scanf, 176

�       � I, J, K
if statement

assignment statements, 71
boundary case, 73
condition, 69
construct, 70
C program, 69–70
indent, 71
integer, 73

program, 69, 74–75
pseudocode, 69, 71
style matches, 72
sum of, 72
temporary variable, 71

if…else statement
calculate pay, 77–79
selection logic programs, 75–77

Increment and decrement operators, 100
Infinite loop, 157
initialize function, 297
Insertion sort

analysis of, 258
array, 252
ascending order, 253
element, 259
insertionSort function, 257–258
method description, 253
proceeds, 253–256
while statement, 256

Integer value, 142
Interactive, 106

�       � L
Logical operators

AND (&&), 66–67
NOT (!), 68
OR (||), 67

Lowest common multiple (LCM), 177–178

�       � M
Manifest constants. See Symbolic constants
max function

header, 171
printf statement, 172
return statement, 171
returns values, 172
user types, 171
variables, 170

Merging process
implementation, 273–275
logic expression, 273
ordered lists, 271–273

Multiplication tables
defensive programming, 129
output results, 125
printf statement, 126, 128
program running, 127
validation, 129

www.it-ebooks.info

http://www.it-ebooks.info/

■ index

310

�       � N, O
Named constants. See Symbolic constants
Nested structure

declaration, 292
Student structure, 292
while condition, 292

Null character, 142

�       � P, Q
Parallel arrays, 262

C structure, 264
integer array, 262
parallelSort, 263
sorting process, 263

PersonData and VoteCount function, 299
printDate statement, 282
printf statement, 42
printFraction function, 293
printResults function, 299–302
processVotes function, 298
Programming concepts

algorithm (see Algorithm)
analyze problem, 4
assembly language, 2
characters, 11
comments, 17
compiler, 3
computer memory, 9
data types, 10
declare variables, 19
define problem, 3
document program, 9
final point, 20
high-level or problem-oriented

languages, 2
low-level programming

language, 2
machine language, 2
maintenance programmer, 9
output

escape sequence, 16
format string, 17
newline character, 15
printf statement, 14
string constant, 16

program, 1
test and debug program, 8
using algorithm, 6

putc function, 157

�       � R
Read and print characters

ch statement, 145
code execute, 149–150
EOF, 145
getchar keyword, 145
int variable, 145
non-blank character, 148
printf and getchar returns, 147
program running, 149
scanf keyword, 145
single character, 145
while condition, 150–151
while statement, 149

Read characters, 156–157
Read, search and sort structures

escape sequence, 288–290
getString, 288
input.txt, 291
program, 288
readChar, 288

Relational operators, 66
Repetition logic program

assignment operator, 101–102
count

find average, 99
integer variable, 97
program modification, 97
sequences, 98

description, 91
do…while statement, 132–135
for construct (see for statement)
increment and decrement operators, 100
largest number type

algorithm, 102–103
data entering, 103–104
program running, 102
steps, 102
while loop, 103

largest number typed, 102
multiplication tables, 125–128
payroll system

non-whitespace character, 114
payroll.txt file, 112
program and comments, 115–117
sample data, 113
scanf/fscanf, 114
string concatenation, 114
strcat, 114
strcmp, 115

www.it-ebooks.info

http://www.it-ebooks.info/

■ Index

311

variables adding, 117–118
whitespace character, 114

read data file
data pointer, 107
file pointer, 107
find average numbers, 108, 110
fopen function, 107
fscanf, 108
input.txt, 107
interactive, 106
standard input, 107

send output file
file pointer, 110
fprintf, 111–112

smallest number type
algorithm, 105–106
steps, 105

temperature conversion
table, 129, 131

while construct
algorithm, 93–94
highest common factor, 96–97
printf statement, 95–96
program, 91
program looping, 94
pseudocode, 93
sentinel value, 92
sum of, 93
while loop, 92

�       � S
Selection logic programs

boolean expressions, 65
if construct, 69–72, 74–75
if…else construct, 75, 77–80
print letter grade, 83–84
program testing, 80
sequence logic program, 65
symbolic constants, 80–82
triangle, 85, 87

Selection sort. See Sorting process
Sentinel value, 92
Sequence logic

average program, 55
banking problem, 57
grounds tickets, 60
printf and scanf statement, 49
reserved tickets, 60
scanf statement

double variable, 52
float variable, 52
format string, 51
whitespace, 52

square program, 56
stand tickets, 60
string value, 54
sum, 48
variable declaration, 47

Sequential search
arrays, 244
integer array, 243
keys, 244
name array, 245
string function, 245
technique, 243
voting problem, 245

Simple vs. array variables, 197
skipLines function, 166

call arguments, 167
data processing, 169
declarations, 169
definition, 166
function prototype, 168
header, 168
header and parameter, 166
integer argument, 166
integer value, 168
printf statement, 166
program, 167

sortByName function, 303
Sorting process

algorithm, 248
analysis of, 252
array (see Array of strings)
ascending/descending order, 246, 251
character and integer array, 248
insertion sort (see Insertion sort)
meaning, 246
observation, 250
portion, 249
proceeds, 246, 248
program requests, 249–250
while condition, 251

Straight-line logic. See Sequence logic
strcmp function, 115, 165
Strings, 38

character array
argument, 219
code project, 215

www.it-ebooks.info

http://www.it-ebooks.info/

■ index

312

for statement, 218
numSpaces, 216
properly terminating, 214
relational operators, 214
reverse function, 219–220
str, 217
while loop, 216

getString function, 228–229
length of, 215
name of day

nameOfDay, 225
printDay, 225
two-dimensional array, 226–227
values, 227

null string, 214
printf, 216
stored format, 213
strcmp function, 214
strlen function, 215
while loop, 217

struct keyword, 280
Structures

approaches, 279
array of, 285–287
declaration, 280–282
fractions, 293–295
functions, 304
member operator, 281
need for, 279
nested structure, 292–293
process data, 279
read, search and sort, 288–291
typedef, 283–284
voting problem, 295–302, 304

Symbolic constants
#define directive, 81–82
definition, 80–81
MaxRegularHours, 82
OvertimeFactor, 82
program illustration, 81

�       � T, U
Temperature conversion table, 129, 131
Triangle classification, 85–86
typedef

Date structure, 283
declare variables, 285
dob structure, 284
int type, 283
printDate keyword, 284
structure variables, 283
Whole keyword, 283

�       � V
Value, 142
Variable-length

arrays (VLAs), 260–262
Voting problem of structures

array and simple-variable
arguments, 295

C structures, 296
descending order, 303
getLargest, 300
initialize function, 297
numVotes function, 303
PersonData and VoteCount

function, 299
printResults, 299–302
processVotes, 298
results.txt, 296
sortByName function, 303
structure declarations, 298
symbolic constants, 297
votes.txt, 296

�       � W, X, Y, Z
while condition, 150–151
while statement, 149
Word frequency count

advantage, 267
approach, 267–270
outline development, 266
possibilities, 266
search and insert, 266
sequences, 270–271

Write characters
declaration, 157
echo input and

number lines, 157–161
putc function, 157

Strings (cont.)

www.it-ebooks.info

http://www.it-ebooks.info/

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgements
	Preface
	Chapter 1: Elementary Programming Concepts
	 1.1 Programs, Languages, and Compilers
	 1.2 How a Computer Solves a Problem
	 1.2.1 Define the Problem
	 1.2.2 Analyze the Problem
	 1.2.3 Develop an Algorithm to Solve the Problem
	1.2.3.1 Data and Variables
	1.2.3.2 Example—Develop the Algorithm

	 1.2.4 Write the Program for the Algorithm
	 1.2.5 Test and Debug the Program
	 1.2.6 Document the Program
	 1.2.7 Maintain the Program

	 1.3 How a Computer Executes a Program
	 1.4 Data Types
	 1.5 Characters
	 1.6 Welcome to C Programming
	 1.6.1 Run the Program
	 1.6.2 A Word on Program Layout

	 1.7 Write Output with printf
	 1.7.1 The Newline Character, \n (backslash n)
	 1.7.2 Escape Sequences
	 1.7.3 Print the Value of a Variable

	 1.8 Comments
	 1.9 Programming with Variables

	Chapter 2: C – The Basics
	 2.1 Introduction
	 2.2 The C Alphabet
	 2.3 C Tokens
	 2.3.1 Spacing Within a Program
	 2.3.2 Reserved Words
	 2.3.3 Identifiers
	 2.3.4 Some Naming Conventions

	 2.4 Basic Data Types
	 2.5 Integer Numbers - int
	 2.5.1 Declaring Variables
	 2.5.2 Integer Expressions
	 2.5.3 Precedence of Operators
	 2.5.4 Print an Integer Using a “Field Width”

	 2.6 Floating-Point Numbers – float and double
	 2.6.1 Print double and float Variables
	 2.6.2 Assignment Between double and float
	 2.6.3 Floating-Point Expressions
	 2.6.4 Expressions with Integer and Floating-Point Values
	 2.6.5 Assigning double/float to int

	 2.7 Strings
	 2.8 The Assignment Statement
	 2.9 printf

	Chapter 3: Programs with Sequence Logic
	 3.1 Introduction
	 3.2 Read Data Supplied by a User
	 3.3 scanf
	 3.3.1 Read Data Into a float Variable
	 3.3.2 Read Data Into a double Variable

	 3.4 Read Strings
	 3.5 Examples
	 3.5.1 Problem 1 - Average
	 3.5.2 Problem 2 - Square
	 3.5.3 Problem 3 - Banking
	 3.5.4 Problem 4 – Tickets

	Chapter 4: Programs with Selection Logic
	 4.1 Introduction
	 4.2 Boolean Expressions
	 4.2.1 AND, &&
	 4.2.2 OR, ||
	 4.2.3 NOT, !
	4.2.3.1 The data type bool in C99

	 4.3 The if Construct
	
	Program P4.1

	 4.3.1 Find the Sum of Two Lengths
	Program P4.2
	Program P4.3

	 4.4 The if...else Construct
	Program P4.4
	 4.4.1 Calculate Pay
	Program P4. 5

	 4.5 On Program Testing
	 4.6 Symbolic Constants
	Program P4. 6
	 4.6.1 The #define Directive
	 4.6.2 Example – Symbolic Constants
	Program P4.7

	 4.7 More Examples
	 4.7.1 Print a Letter Grade
	Program P4.8

	 4.7.2 Classify a Triangle
	Program P4.9

	Chapter 5: Programs with Repetition Logic
	 5.1 Introduction
	 5.2 The while Construct
	 5.2.1 Highest Common Factor

	 5.3 Keep a Count
	 5.3.1 Find Average

	 5.4 Increment and Decrement Operators
	 5.5 Assignment Operators
	 5.6 Find Largest
	 5.7 Find Smallest
	 5.8 Read Data from a File
	 5.8.1 fscanf
	 5.8.2 Find Average of Numbers in a File

	 5.9 Send Output to a File
	 5.9.1 fprintf

	 5.10 Payroll
	 5.11 The for Construct
	 5.11.1 The for Statement in C
	 5.11.2 A Bit of Aesthetics

	 5.12 Multiplication Tables
	 5.13 Temperature Conversion Table
	 5.14 Expressive Power of for
	 5.15 The do...while Statement
	 5.15.1 Highest Common Factor
	 5.15.2 Interest at the Bank

	Chapter 6: Characters
	 6.1 Character Sets
	 6.2 Character Constants and Values
	 6.3 The Type char
	 6.4 Characters in Arithmetic Expressions
	 6.4.1 Uppercase To/From Lowercase

	 6.5 Read and Print Characters
	 6.6 Count Characters
	 6.6.1 Count Characters in a Line

	 6.7 Count Blanks in a Line of Data
	 6.8 Compare Characters
	 6.9 Read Characters from a File
	 6.10 Write Characters to a File
	 6.10.1 Echo Input, Number Lines

	 6.11 Convert Digit Characters to Integer

	Chapter 7: Functions
	 7.1 About Functions
	 7.2 skipLines
	 7.3 A Program with a Function
	 7.3.1 The Function Header
	 7.3.2 How a Function Gets Its Data

	 7.4 max
	 7.5 Print the Day
	 7.6 Highest Common Factor
	 7.6.1 Using HCF to Find LCM

	 7.7 factorial
	 7.7.1 Using Factorial
	 7.7.2 Combinations

	 7.8 Job Charge
	 7.9 Calculate Pay
	 7.10 Sum of Exact Divisors
	 7.10.1 Classify Numbers

	 7.11 Some Character Functions
	 7.11.1 Position of a Letter in the Alphabet

	 7.12 Fetch the Next Integer

	Chapter 8: Arrays
	 8.1 Simple vs Array Variable
	 8.2 Array Declaration
	 8.3 Store Values in an Array
	 8.3.1 About Not Using Element 0

	 8.4 Average and Differences from Average
	 8.5 Letter Frequency Count
	 8.6 Making Better Use of fopen
	 8.7 Array as Argument to a Function
	 8.8 String – Array of Characters
	 8.8.1 Reverse the Characters in a String

	 8.9 Palindrome
	 8.9.1 A Better Palindrome Function

	 8.10 Array of Strings – Name of Day Revisited
	 8.11 A Flexible getString Function
	 8.12 A Geography Quiz Program
	 8.13 Find the Largest Number
	 8.14 Find the Smallest Number
	 8.15 A Voting Problem

	Chapter 9: Searching, Sorting, and Merging
	 9.1 Sequential Search
	 9.2 Selection Sort
	 9.2.1 Analysis of Selection Sort

	 9.3 Insertion Sort
	 9.3.1 Analysis of Insertion Sort
	 9.3.2 Insert an Element in Place

	 9.4 Sort an Array of Strings
	 9.4.1 Variable-Length Arrays

	 9.5 Sort Parallel Arrays
	 9.6 Binary Search
	 9.7 Word Frequency Count
	 9.8 Merge Sorted Lists
	 They can be combined into one ordered list, C, as follows:
	 9.8.1 Implement the Merge

	Chapter 10: Structures
	 10.1 The Need for Structures
	 10.2 How to Declare a Structure
	 10.2.1 typedef

	 10.3 Array of Structure
	 10.4 Search an Array of Structure
	 10.5 Sort an Array of Structure
	 10.6 Read, Search, and Sort a Structure
	 10.7 Nested Structures
	 10.8 Work with Fractions
	 10.8.1 Manipulate Fractions

	 10.9 A Voting Problem
	 10.10 Pass Structures to Functions

	Index

