
ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Front Matter
Blind Folio FM:i

Oracle9i:
The Complete
Reference

Kevin Loney
George Koch
And the Experts at TUSC

McGraw-Hill/Osborne

New York Chicago San Francisco
Lisbon London Madrid Mexico City Milan
New Delhi San Juan Seoul Singapore Sydney Toronto

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Front Matter
Blind Folio FM:ii

McGraw-Hill/Osborne
2600 Tenth Street
Berkeley, California 94710
U.S.A.

To arrange bulk purchase discounts for sales promotions, premiums, or fund-raisers, please contact
McGraw-Hill/Osborne at the above address. For information on translations or book distributors
outside the U.S.A., please see the International Contact Information page immediately following the
index of this book.

Oracle 9i: The Complete Reference

Copyright © 2002 by The McGraw-Hill Companies, Inc. (Publisher). All rights reserved. Printed in
the United States of America. Except as permitted under the Copyright Act of 1976, no part of this
publication may be reproduced or distributed in any form or by any means, or stored in a database
or retrieval system, without the prior written permission of Publisher.

Oracle is a registered trademark and Oracle9i is a trademark or registered trademark of Oracle
Corporation.

1234567890 DOC DOC 0198765432
Book p/n 0-07-222707-9 and CD p/n 0-07-222708-7
parts of
ISBN 0-07-222521-1

Publisher
Brandon A. Nordin

Vice President & Associate Publisher
Scott Rogers

Acquisitions Editor
Lisa McClain

Project Editor
LeeAnn Pickrell

Acquisitions Coordinator
Athena Honore

Technical Editor
Bob Bryla

Copy Editor
Margaret Berson

Proofreader
Cheryl Abel

Indexer
James Minkin

Computer Designers
Tabitha M. Cagan, Lucie Ericksen

Illustrators
Michael Mueller, Lyssa Wald

Cover Series Design
Damore Johann Design, Inc.

This book was composed with Corel VENTURA™ Publisher.

Information has been obtained by Publisher from sources believed to be reliable. However, because of the possibility of human or
mechanical error by our sources, Publisher, or others, Publisher does not guarantee to the accuracy, adequacy, or completeness of
any information included in this work and is not responsible for any errors or omissions or the results obtained from the use of such
information.

Oracle Corporation does not make any representations or warranties as to the accuracy, adequacy or completeness of any information
contained in this Work, and is not responsible for any errors or omissions.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

To my parents, and to Sue, Emily, Rachel, and Jane
—K.L.

To Elwood Brant, Jr. (Woody), 1949–1990
—G.K.

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Front Matter
Blind Folio FM:iii

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Front Matter
Blind Folio FM:iv

About the Authors
Kevin Loney is a senior management technical consultant with
TUSC (http://www.tusc.com), an Oracle-focused consultancy
headquartered in Chicago. He is an expert in the administration,
tuning, security, recovery, design, and development of Oracle
databases and applications. An Oracle DBA and developer since
1987, he is the primary author of numerous books, including
Oracle9i DBA Handbook, Oracle9i Instant Scripts, and Oracle8
Advanced Tuning and Administration, all published by Oracle
Press. He is a frequent presenter at local and international Oracle
user groups.

George Koch is a leading authority on relational database
applications. A popular speaker and widely published author, he is
also the creator of THESIS, the securities trading, accounting, and
portfolio management system that was the first major commercial
applications product in the world to employ a relational database
(Oracle) and provide English language querying to its users. He is a
former senior vice president of Oracle Corporation.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 55
Blind Folio 55:v

v

Contents At a Glance

PART I
Critical Database Concepts

1 Sharing Knowledge and Success . 3

2 The Dangers in a Relational Database . 15

3 The Basic Parts of Speech in SQL . 41

4 The Basics of Object-Relational Databases . 69

5 Introduction to Web-Enabled Databases . 83

PART II
SQL and SQL*PLUS

6 Basic SQL*PLUS Reports and Commands . 91

7 Getting Text Information and Changing It . 113

8 Playing the Numbers . 141

9 Dates: Then, Now, and the Difference . 165

10 Conversion and Transformation Functions . 193

11 Grouping Things Together . 205

12 When One Query Depends upon Another . 219

13 Some Complex Possibilities . 237

14 Building a Report in SQL*PLUS . 255

15 Changing Data: insert, update, merge, and delete . 279

16 Advanced Use of Functions and Variables . 297

17 DECODE and CASE: if, then, and else in SQL . 311

18 Creating, Dropping, and Altering Tables and Views . 325

19 By What Authority? . 355

20 Changing the Oracle Surroundings . 379

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

vi Oracle9i: The Complete Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Front Matter
Blind Folio FM:vi

21 Using SQL*Loader to Load Data . 393

22 Accessing Remote Data . 409

23 Using Materialized Views . 423

24 Using Oracle Text for Text Searches . 447

25 Using External Tables . 465

26 Using Flashback Queries . 479

PART III
PL/SQL

27 An Introduction to PL/SQL . 489

28 Triggers . 509

29 Procedures, Functions, and Packages . 529

PART IV
Object-Relational Databases

30 Implementing Types, Object Views, and Methods . 551

31 Collectors (Nested Tables and Varying Arrays) . 567

32 Using Large Objects . 581

33 Advanced Object-Oriented Concepts . 607

PART V
Java in Oracle

34 An Introduction to Java . 627

35 JDBC and SQLJ Programming . 645

36 Java Stored Procedures . 663

PART VI
Hitchhiker’s Guides

37 The Hitchhiker’s Guide to the Oracle9i Data Dictionary . 673

38 The Hitchhiker’s Guide to the Oracle Optimizer . 721

39 The Hitchhiker’s Guide to Oracle9iAS . 769

40 The Hitchhiker’s Guide to Database Administration . 791

41 The Hitchhiker’s Guide to XML in Oracle . 827

PART VII
Alphabetical Reference

Alphabetical Reference . 843

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Front Matter
Blind Folio FM:vii

Acknowledgments

T
his book is dedicated to my family, who have allowed me the time to write it.
Thank you for your patience and support and love.

Beyond that, this book is dedicated to the memory of two people: Stephen Jay
Gould and Matthew Horning. Stephen Jay Gould inspired me to be a technical
writer—his steady growth as a writer and his clarity of thought and expression

made me believe this kind of writing was a possibility. He passed away as this book was being
finished, and the world is poorer for his passing.

Matthew Horning was an Oracle DBA I worked with for several weeks during the summer
of 2001 on the upper floors of #1 World Trade Center in New York City. He had the misfortune of
being in the office early on 9/11. His coworkers were inspiring to work with during the recovery
efforts that followed. In his obituary, Matt’s family asked that donations in his memory be given
to Heifer International (http://www.heifer.org). If an act of compassion can come out of such
destruction, then there may always be hope. As Gould noted, “Ordinary kindness trumps
paroxysmal evil by at least a million events to one.”

This book is the product of many hands, and countless hours from many people. My thanks
go out to all those who helped, whether through their comments, feedback, edits, or suggestions.
For additional information about the book, see the publisher’s site (http://www.osborne.com) and
my site (http://www.kevinloney.com). Additional articles and presentations can be found on the
company site at http://www.tusc.com.

Thanks to all of my colleagues at TUSC:

■ To the contributors and reviewers there, including Brad Brown, Jay Urban, and Mike Holder.

■ To the exemplary management, including Jake Van der Vort, Rich Niemiec, Joe Trezzo,
Brad Brown, and others. It’s a delight to work with an executive team who understands
the requirements of this kind of undertaking and who shares a commitment to professional
altruism. Thanks to the rest of the management team there who actively pursue the
professional traits TUSC values.

■ To my peers at TUSC, including Mike Ault, Bill Callahan, Patrick Callahan, Holly Clawson,
Judy Corley, Mark Greenhalgh, Andy Hamilton, Mike Killough, Allen Peterson, Randy
Swanson, Bob Taylor, Bob Yingst, and many others for their insights and contributions.

vii

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Special thanks to Bob Bryla, who served as technical editor for this edition. His thoroughness,
corrections, and suggestions were greatly appreciated. Imagine being a technical editor on a
1400 page book covering such a range of content and you can begin to appreciate Bob’s task—
then do it while working on my schedule!

Thanks to my colleagues and friends, including Eyal Aronoff, John Beresniewicz, Steve
Bobrowski, Rachel Carmichael, Steven Feuerstein, Mike McDonnell, Marlene Theriault, Mike
Janesch, Craig Warman, and Vinny Smith. This book has benefited from the knowledge they
have shared, and I have benefited from their friendship and guidance.

Thanks to the folks at McGraw-Hill/Osborne who guided this product through its stages:
Scott Rogers, LeeAnn Pickrell, Athena Honore, Lisa McClain, and Jeremy Judson, and the others
at Osborne with whom I never directly worked. Thanks also to the Oracle component of Oracle
Press. This book would not have been possible without the earlier excellent work of George Koch
and Robert Muller.

Thanks to the writers and friends along the way: Jerry Gross; Jan Riess; Robert Meissner;
Marie Paretti; Br. Declan Kane, CFX; Br. William Griffin, CFX; Chris O’Neill; Cheryl Bittner;
Bill Fleming; and Mike Restuccia.

Thanks to the First State Oracle User Group board (Pete Silva, Phil Stewart, Earl Shaffer, and
Lori Kaupas) for its support (http://www.fsoug.org).

Special thanks to Sue, Emily, Rachel, Jane, and the rest of the home team. As always, this has
been a joint effort.

—Kevin Loney

viii Oracle9i: The Complete Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Front Matter
Blind Folio FM:viii

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Front Matter
Blind Folio FM:ix

Preface

The Intriguing History of This Book

I
first encountered Oracle in 1982, in the process of evaluating database management
systems for a major commercial application that my company was preparing to design
and build. At its conclusion, our evaluation was characterized by ComputerWorld as
the single-most “grueling” study of DBMSs that had ever been conducted. The study
was so tough on the vendors whose products we examined that word of it made the

press as far away as New Zealand and publications as far afield as the Christian Science Monitor.
We began the study with 108 candidate companies, then narrowed the field to sixteen

finalists, including most of the major database vendors of the time, and all types of databases:
network, hierarchical, relational, and others. After the rigorous final round of questions, two
of the major vendors participating asked that the results of the study of their products never be
published. A salesman from a third vendor quit his job at the end of one of the sessions. We
knew how to ask tough questions.

Oracle, known then as Relational Software, Inc., had fewer than 25 employees at the time,
and only a few major accounts. Nevertheless, when the study was completed, we announced
Oracle as the winner. We declared that Oracle was technically the best product on the market,
and that the management team at RSI looked capable enough to carry the company forward
successfully. Our radical proclamation was made at a time when few people even knew what
the term relational meant, and those who did had very few positive things to say about it. Many
IS executives loudly criticized our conclusions and predicted that Oracle and the relational
database would go nowhere.

Oracle today is the largest database company, and the second largest software company in
the world. The relational database is now the world standard.

Koch Systems Corporation, the company I owned and ran at the time, became Oracle’s first
Valued Added Reseller. We developed the world’s first major commercial relational application,
a securities trading and accounting system called THESIS. This product was used by major banks
and corporations to manage their investment portfolios. Even IBM bought THESIS, and it allowed
Oracle to be installed at IBM headquarters in spite of vigorous internal opposition. After all, IBM
was the leading database company at the time, with IMS and DB2 as their flagship products.

Oracle was continuing to refine its young product, to understand the kinds of features and
functionality that would make it productive and useful in the business world, and our development
efforts at Koch Systems contributed to that refinement. Some of Oracle’s features were the direct

ix

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

results of requests that we made of Oracle’s developers, and our outspoken advocacy of an
end-user bias in application design and naming conventions has influenced a generation of
programmers who learned Oracle in our shop or read articles which we published.

All of this intimate involvement with the development and use of Oracle led us to an early
and unmatched expertise with the product and its capabilities. Since I have always loved sharing
discoveries and knowledge—to help shorten the learning time necessary with new technologies
and ideas, and save others the cost of making the same mistakes I did—I decided to turn what
we’d learned into a book.

Oracle: The Complete Reference was conceived in 1988 to pull together all of the fundamental
commands and techniques used across the Oracle product line, as well as give solid guidance
in how to develop applications using Oracle and SQL. Part I of the book was aimed both at
developers and end-users, so that they could share a common language and understanding during
the application development process: developers and end users working side by side—a wild
concept when the book was first conceived.

Linda Allen, a respected literary agent in San Francisco, introduced me to Liz Fisher, then the
editor at McGraw-Hill/Osborne. Liz liked the idea very much. Contracts were drawn, and the first
edition was scheduled to be released in 1989. But a now-departed senior executive at McGraw-Hill
heard of the project and instantly canceled its development, pronouncing that Oracle is a flash in
the pan. It is going nowhere. A year later, when Oracle Corporation had again doubled in size and
the senior executive was gone, the effort was restarted, and the first edition finally arrived in 1990.

Almost immediately, it became the No. 1 book in its category, a position it has maintained
for over a decade.

In July of 1990, I was hired by Oracle to run its Applications Division. I became senior vice
president of the company and guided the division (with a lot of talented help) to worldwide success.
While at Oracle, I also introduced McGraw-Hill/Osborne to Oracle senior management, and
after opposition from an Oracle vice president who didn’t see any value in the idea (he’s no
longer with Oracle), Oracle Press was born.

Oracle Press is now the leading publisher of Oracle-based reference manuals in the world.
In 1992, Bob Muller, a former developer at both Koch Systems and Oracle, took over

responsibilities for technical updates to the book, as my duties at Oracle precluded any more
than editorial review of changes. This produced Oracle7: The Complete Reference. This was
Bob’s first published book, and he has since gone on to write several other popular books on
development and database design.

In 1994, I left Oracle to fulfill a long-held desire—full time ministry—and today I’m the pastor
of Church of the Resurrection (http://www.resurrection.org) in West Chicago, Illinois. I continue
to write in publications as diverse as the Wall Street Journal and Christianity Today, and I’ve
recently published a book in England, The Country Parson’s Advice to His Parishioner, from
Monarch Books. I also sit on the board of directors of Apropos, a leading call center applications
company, but I no longer work in Oracle application development.

Also in 1994, Kevin Loney, a highly respected independent Oracle consultant and author
(http://www.kevinloney.com), took over the updating and rewriting responsibilities for the third
edition of the book, and has continued ever since. He has contributed major new sections (such
as the Hitchhiker’s Guides, the PL/SQL, Java, and ORDBMS sections, among others), and fully
integrated new Oracle product features into all sections of the book. He has also integrated many
readers’ comments into the structure and content of the book, making its current form the product
of both its readers and its authors. Those efforts have allowed Oracle: The Complete Reference to

x Oracle9i: The Complete Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Front Matter
Blind Folio FM:x

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Preface xi

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Front Matter
Blind Folio FM:xi

stay at the top of its field and continue to be the single-most comprehensive guide to Oracle, still
unmatched in range, content, and authority. I am a real fan of Kevin’s and am most impressed by
his knowledge and thoroughness.

Oracle: The Complete Reference is now available in eight languages, and is found on the
desks of developers and Oracle product users all over the world. Not only has it been No. 1 in
its category (with two editions out, it was once both No. 1 and No. 4), it has also been regularly
in the top 100 of all books sold through Amazon.com. At one point it was the No. 7 best-selling
book of all books sold in Brazil! Its reputation and enduring success are unparalleled in its
marketplace.

Like Oracle itself, the book has survived and prospered in spite of the recurring predictions of
failure from many quarters. Perhaps this brief history can be an encouragement to others who
face opposition but have a clear vision of what is needed in the years ahead.

As Winston Churchill said, “Never give in, never give in, never give in—in nothing great or
small, large or petty—never give in except to convictions of honor and good sense.”

George Byron Koch
GeorgeKoch@GeorgeKoch.com

Wheaton, Illinois

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Front Matter
Blind Folio FM:xiii

Introduction

O
racle is the most widely used database in the world. It runs on virtually every
kind of computer. It functions virtually identically on all these machines,
so when you learn it on one, you can use it on any other. This fact makes
knowledgeable Oracle users and developers very much in demand, and
makes your Oracle knowledge and skills very portable.

Oracle documentation is thoroughgoing and voluminous, currently spanning multiple
CDs. Oracle9i: The Complete Reference is the first entity that has gathered all of the major Oracle
definitions, commands, functions, features, and products together in a single, massive core
reference—one volume that every Oracle user and developer can keep handy on his or her desk.

The audience for this book will usually fall into one of three categories:

■ An Oracle end user Oracle can easily be used for simple operations such as entering
data and running standard reports. But such an approach would ignore its great power;
it would be like buying a high-performance racing car, and then pulling it around with
a horse. With the introduction provided in the first two sections of this book, even an
end user with little or no data processing background can become a proficient Oracle
user—generating ad hoc, English-language reports; guiding developers in the creation
of new features and functions; and improving the speed and accuracy of the real work
done in a business. The language of the book is simple, clear English without data processing
jargon, and with few assumptions about previous knowledge of computers or databases.
It will help beginners to become experts with an easy-to-follow format and numerous
real examples.

■ A developer who is new to Oracle With as many volumes of documentation as Oracle
provides, finding a key command or concept can be a time-consuming effort. This book
attempts to provide a more organized and efficient manner of learning the essentials of
the product. The format coaches a developer new to Oracle quickly through the basic
concepts, covers areas of common difficulty, examines misunderstanding of the product
and relational development, and sets clear guidelines for effective application building.

xiii

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

xiv Oracle9i: The Complete Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Front Matter
Blind Folio FM:xiv

■ An experienced Oracle developer As with any product of great breadth and sophistication,
there are important issues about which little, if anything, has been published. Knowledge
comes through long experience, but is often not transferred to others. This book delves
deeply into many such subject areas (such as precedence in UNION, INTERSECTION,
and MINUS operators; inheritance and CONNECT BY; eliminating NOT IN with an
outer join; using external tables; implementing the object-relational and Java options;
and many others). The text also reveals many common misconceptions and suggests
rigorous guidelines for naming conventions, application development techniques, and
design and performance issues.

How This Book Is Organized
There are seven major parts to this book and a CD-ROM.

Part I is an introduction to “Critical Database Concepts.” These chapters are essential reading
for any Oracle user, new or veteran, from key-entry clerk to database administrator. They establish
the common vocabulary that both end users and developers can use to coherently and intelligently
share concepts and assure the success of any development effort. This introductory section is
intended for both developers and end users of Oracle. It explores the basic ideas and vocabulary
of relational databases and points out the dangers, classical errors, and profound opportunities in
relational database applications.

Part II, “SQL and SQL*Plus,” teaches the theory and techniques of relational database systems
and applications, including SQL (Structured Query Language) and SQLPLUS. The section begins
with relatively few assumptions about data processing knowledge on the part of the reader, and
then advances step by step, through some very deep issues and complex techniques. The method
very consciously uses clear, conversational English, with unique and interesting examples, and
strictly avoids the use of undefined terms or jargon. This section is aimed primarily at developers
and end users who are new to Oracle, or need a quick review of certain Oracle features. It moves
step by step through the basic capabilities of SQL and Oracle’s interactive query facility, SQLPLUS.
When you’ve completed this section you should have a thorough understanding of all SQL key
words, functions, and operators. You should be able to produce complex reports, create tables,
and insert, update, and delete data from an Oracle database.

The later chapters of Part II provide some very advanced methods in SQLPLUS, Oracle’s
simple, command-line interface, and in-depth descriptions of the new and very powerful features
of Oracle. This is intended for developers who are already familiar with Oracle, and especially
those familiar with previous versions of Oracle, but who have discovered needs they couldn’t
readily fill. Some of these techniques are previously unpublished and, in some cases, have been
thought impossible. The tips and advanced techniques covered here demonstrate how to use
Oracle in powerful and creative ways. These include taking advantage of distributed database
capabilities, loading data files, and performing advanced text-based searches. They also include
the latest features, such as external tables, flashback queries, and new datatypes and functions.

Part III, “PL/SQL,” provides coverage of PL/SQL. The topics include a review of PL/SQL
structures, plus triggers, stored procedures, and packages.

Part IV, “Object-Relational Databases,” provides extensive coverage of object-oriented
features such as abstract datatypes, methods, object views, object tables, nested tables, varying
arrays, and large objects.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Introduction xv

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Front Matter
Blind Folio FM:xv

Part V, “Java in Oracle,” provides coverage of the Java features in the Oracle database. This
section includes an overview of Java syntax as well as chapters on JDBC and SQLJ and Java
stored procedures.

Part VI contains several “hitchhiker” guides: to the data dictionary, database optimizer,
Oracle9i Application Server, database administration, and Oracle’s XML implementation. These
guides provide an overview of areas that developers may need to use in their application
development and administration.

Part VII, the “Alphabetical Reference,” is the complete reference for the Oracle server—a
book unto itself. Reading the introductory pages to this reference will make its use much more
effective and understandable. This section contains references for most major Oracle commands,
keywords, products, features and functions, with extensive cross-referencing of topics. The
reference is intended for use by both developers and users of Oracle but assumes some familiarity
with the products. To make the most productive use of any of the entries, it would be worthwhile
to read the first four pages of the reference. These explain in greater detail what is and is not
included and how to read the entries.

The CD that accompanies this book contains a special electronic edition of Oracle9i: The
Complete Reference. Now, with this electronic version, you can easily store all of the valuable
information contained in the book on your PC while the print version of the book remains in your
office or home. The CD also contains the table creation statements and row insertions for all of
the tables used in this book. For anyone learning Oracle, having these tables available on your
own Oracle ID, or on a practice ID, will make trying or expanding on the examples very easy.

Style Conventions Used in This Book
Except when testing for an equality (such as, City = 'CHICAGO'), Oracle ignores upper- and
lowercase. In the formal listing of commands, functions, and their format (syntax) in the Alphabetical
Reference, this book will follow Oracle’s documentation style of putting all SQL in UPPERCASE,
and all variables in lowercase italic.

Most users and developers of Oracle, however, never key all their SQL in uppercase. It’s
too much trouble, and Oracle doesn’t care anyway. This book, therefore, will follow somewhat
different style conventions in its examples (as opposed to its formal command and function
formats, mentioned earlier), primarily for readability. They are as follows:

■ Italic and boldface will not be used in example listings.

■ select, from, where, order by, having, and group by will be in lowercase.

■ SQLPLUS commands will be in lowercase: column, set, save, ttitle, and so on.

■ SQL operators and functions will be in uppercase, such as IN, BETWEEN, UPPER,
SOUNDEX, and so on.

■ Columns will use upper- and lowercase, as in Feature, EastWest, Longitude, and so on.

■ Tables will be in uppercase, such as in NEWSPAPER, WEATHER, LOCATION, and so on.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1

PART
I

Critical Database
Concepts

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:2

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:3

CHAPTER
1

Sharing Knowledge
and Success

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

4 Part I: Critical Database Concepts

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:4

F
or an Oracle9i application to be built and used rapidly and effectively, users and
developers must share a common language and a deep and common understanding
of both the business application and the Oracle tools.

This is a new approach to development. Historically, the systems analyst
studied the business requirements and built an application to meet those needs. The

user was involved only in describing the business and, perhaps, in reviewing the functionality
of the application after it was completed.

With the new tools and approaches available, and especially with Oracle, applications
can be built that more closely match the needs and work habits of the business—but only if a
common understanding exists.

This book is aimed specifically at fostering this understanding, and at providing the means for
both user and developer to exploit Oracle’s full potential. The end user will know details about the
business that the developer will not comprehend. The developer will understand internal functions
and features of Oracle and the computer environment that will be too technically complex for the
end user. But these areas of exclusive expertise will be minor compared with what both end users
and developers can share in using Oracle. There is a remarkable opportunity here.

It is no secret that “business” people and “systems” people have been in conflict for decades.
Reasons for this include differences in knowledge, culture, professional interests and goals, and the
alienation that simple physical separation between groups can often produce. To be fair, this
syndrome is not peculiar to data processing. The same thing occurs between people in accounting,
personnel, or senior management, as members of each group gather apart from other groups on a
separate floor or in a separate building or city. Relations between the individuals from one group
and another become formalized, strained, and abnormal. Artificial barriers and procedures that
stem from this isolationism become established, and these also contribute to the syndrome.

This is all very well, you say, and may be interesting to sociologists, but what does it have to
do with Oracle?

Because Oracle isn’t cloaked in arcane language that only systems professionals can
comprehend, it fundamentally changes the nature of the relationship between business and
systems people. Anybody can understand it. Anybody can use it. Information that previously was
trapped in computer systems until someone in systems created a new report and released it now
is accessible, instantly, to a business person, simply by typing an English query. This changes the
rules of the game.

Where Oracle is used, it has radically improved the understanding between the two camps,
has increased their knowledge of one another, and has even begun to normalize relations
between them. This has also produced superior applications and end results.

Since its first release, Oracle has been based on the easily understood relational model
(explained shortly), so nonprogrammers can readily understand what Oracle does and how it
does it. This makes it approachable and unimposing.

Furthermore, Oracle was created to run identically on virtually any kind of computer. Thus, it
doesn’t matter which manufacturer sold you your equipment; Oracle works on it. These features
all contributed directly to the profound success of the product and the company.

In a marketplace populated by computer companies with “proprietary” hardware,
“proprietary” operating systems, “proprietary” databases, and “proprietary” applications, Oracle
gives business users and systems departments new control over their lives and futures. They are
no longer bound to the database product of a single hardware vendor. Oracle runs on nearly
every kind of computer. This is a basic revolution in the workplace and in application
development, with consequences that will extend far into the future.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 1: Sharing Knowledge and Success 5

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:5

Some individuals neither accept nor understand this yet, nor do they realize just how vital it
is that the dated and artificial barriers between “users” and “systems” continue to fall. But the
advent of cooperative development will profoundly affect applications and their usefulness.

However, many application developers have fallen into an easy trap with Oracle: carrying
forward unhelpful methods from previous-generation system designs. There is a lot to unlearn.
Many of the techniques (and limitations) that were indispensable to a previous generation of
systems are not only unnecessary in designing with Oracle; they are positively counterproductive.
In the process of explaining Oracle, the burden of these old habits and approaches must be lifted.
Refreshing new possibilities are available.

Throughout this book, the intent will be to explain Oracle in a way that is clear and simple,
in terms that both users and developers can understand and share. Outdated or inappropriate
design and management techniques will be exposed and replaced.

The Cooperative Approach
Oracle is an object-relational database. A relational database is an extremely simple way of
thinking about and managing the data used in a business. It is nothing more than a collection of
tables of data. We all encounter tables every day: weather reports, stock charts, sports scores.
These are all tables, with column headings and rows of information simply presented. Even so,
the relational approach can be sophisticated and powerful enough for even the most complex of
businesses. An object-relational database supports all of the features of a relational database
while also supporting object-oriented concepts and features.

Unfortunately, the very people who can benefit most from a relational database—the
business users—usually understand it the least. Application developers, who must build systems
that these users need to do their jobs, often find relational concepts difficult to explain in simple
terms. A common language is needed to make this cooperative approach work.

The first two parts of this book explain, in readily understandable terms, just what a relational
database is and how to use it effectively in business. It may seem that this discussion is for the
benefit of “users” only. An experienced relational application designer may be inclined to skip
these early chapters and simply use the book as a primary source Oracle reference. Resist that
temptation! Although much of this material may seem like elementary review, it is an opportunity
for an application designer to acquire a clear, consistent, and workable terminology with which
to talk to users about their needs and how these needs might be quickly met. If you are an
application designer, this discussion may also help you unlearn some unnecessary and probably
unconscious design habits. Many of these habits will be uncovered in the course of introducing
the relational approach. It is important to realize that even Oracle’s power can be diminished
considerably by design methods appropriate only to nonrelational development.

If you are an end user, understanding the basic ideas behind object-relational databases will
help you express your needs cogently to application developers and comprehend how those
needs can be met. An average person working in a business role can go from beginner to expert
in short order. With Oracle, you’ll have the power to get and use information, have hands-on
control over reports and data, and possess a clear-eyed understanding of what the application
does and how it does it. Oracle gives you, the user, the ability to control an application or query
facility expertly and know whether you are getting all the available flexibility and power.

You also will be able to unburden programmers of their least favorite task: writing new
reports. In large organizations, as much as 95 percent of all programming backlog is composed

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

6 Part I: Critical Database Concepts

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:6

of new report requests. Because you can write your own reports, in minutes instead of months,
you will be delighted to have the responsibility.

Everyone Has “Data”
A library keeps lists of members, books, and fines. The owner of a baseball card collection keeps
track of players’ names, dates, averages, and card values. In any business, certain pieces of
information about customers, products, prices, financial status, and so on must be saved. These
pieces of information are called data.

Information philosophers like to say that data is just data until it is organized in a meaningful
way, at which point it becomes “information.” If this is true, then Oracle is also a means of easily
turning data into information. Oracle will sort through and manipulate data to reveal pieces of
knowledge hidden there—such as totals, buying trends, or other relationships—which are as yet
undiscovered. You will learn how to make these discoveries. The main point here is that you
have data, and you do three basic things with it: acquire it, store it, and retrieve it.

Once you’ve achieved the basics, you can make computations with data, move it from one
place to another, or modify it. This is called processing, and, fundamentally, it involves the same
three steps that affect how information is organized.

You could do all of this with a cigar box, pencil, and paper, but as the volume of data
increases, your tools tend to change. You may use a file cabinet, calculators, pencils, and paper.
While at some point it makes sense to make the leap to computers, your tasks remain the same.

A relational database management system (often called an RDBMS for short) such as Oracle
gives you a way of doing these tasks in an understandable and reasonably uncomplicated way.
Oracle basically does three things:

■ Lets you put data into it

■ Keeps the data

■ Lets you get the data out and work with it

Figure 1-1 shows how simple this process is.
Oracle supports this in-keep-out approach and provides clever tools that allow you

considerable sophistication in how the data is captured, edited, modified, and put in; how
you keep it securely; and how you get it out to manipulate and report on it.

An object-relational database management system (ORDBMS) extends the capabilities
of the RDBMS to support object-oriented concepts. You can use Oracle as an RDBMS or take
advantage of its object-oriented features.

The Familiar Language of Oracle
The information stored in Oracle is kept in tables—much like the weather table from a daily
newspaper shown in Figure 1-2.

This table has four columns: City, Temperature, Humidity, and Condition. It also has a row
for each city from Athens to Sydney. Last, it has a table name: WEATHER.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

These are the three major characteristics of most tables you’ll see in print: columns, rows,
and a name. The same is true in a relational database. Anyone can understand the words and the
ideas they represent, because the words used to describe the parts of a table in an Oracle
database are the same words used in everyday conversation. The words have no special,
unusual, or esoteric meanings. What you see is what you get.

Tables of Information
Oracle stores information in tables, an example of which is shown in Figure 1-3. Each of these
tables has one or more columns. The column headings, such as City, Temperature, Humidity,
and Condition shown in Figure 1-3, describe the kind of information kept in the column. The

Chapter 1: Sharing Knowledge and Success 7

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:7

WEATHER

City Temperature Humidity Condition
Athens....... 97 89 Sunny
Chicago...... 66 88 Rain
Lima......... 45 79 Rain
Manchester... 66 98 Fog
Paris........ 81 62 Cloudy
Sparta....... 74 63 Cloudy
Sydney....... 29 12 Snow

FIGURE 1-2. A weather table from a newspaper

FIGURE 1-1. What Oracle does with data

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

information is stored row after row (city after city). Each unique set of data, such as the
temperature, humidity, and condition for the city of Manchester, gets its own row.

Oracle avoids specialized, academic terminology in order to make the product more
approachable. In research papers on relational theory, a column may be called an “attribute,” a
row may be called a “tuple” (rhymes with “couple”), and a table may be called an “entity.” For
an end user, however, these terms are confusing. More than anything, they are an unnecessary
renaming of things for which there are already commonly understood names in our shared
everyday language. Oracle takes advantage of this shared language, and developers can too. It is
imperative to recognize the wall of mistrust and misunderstanding that the use of unnecessary
technical jargon produces. Like Oracle, this book will stick with “tables,” “columns,” and “rows.”

Structured Query Language
Oracle was the first company to release a product that used the English-based Structured Query
Language, or SQL. This language allows end users to extract information themselves, without
using a systems group for every little report.

Oracle’s query language has structure, just as English or any other language has structure. It
has rules of grammar and syntax, but they are basically the normal rules of careful English speech
and can be readily understood.

SQL, pronounced either “sequel” or “S.Q.L.,” is an astonishingly capable tool, as you will
see. Using it does not require any programming experience.

Here’s an example of how you might use SQL. If someone asked you to select from the
preceding WEATHER table the city where the humidity is 89, you would quickly respond
“Athens.” If you were asked to select cities where the temperature is 66, you would respond
“Chicago and Manchester.”

Oracle is able to answer these same questions, nearly as easily as you are, and in response to
simple queries very much like the ones you were just asked. The keywords used in a query to
Oracle are select, from, where, and order by. They are clues to Oracle to help it understand your
request and respond with the correct answer.

8 Part I: Critical Database Concepts

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:8

WEATHER

City Temperature Humidity Condition
---------- ----------- -------- ---------
ATHENS 97 89 SUNNY
CHICAGO 66 88 RAIN
LIMA 45 79 RAIN
MANCHESTER 66 98 FOG
PARIS 81 62 CLOUDY
SPARTA 74 63 CLOUDY
SYDNEY 29 12 SNOW

FIGURE 1-3. A WEATHER table from Oracle

A row

Table name
A column

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

A Simple Oracle Query
If Oracle had the example WEATHER table in its database, your first query (with a semicolon to
tell Oracle to execute the command) would be simply this:

select City from WEATHER where Humidity = 89 ;

Oracle would respond:

City

ATHENS

Your second query would be this:

select City from WEATHER where Temperature = 66 ;

For this query, Oracle would respond:

City

MANCHESTER
CHICAGO

As you can see, each of these queries uses the keywords select, from, and where. What
about order by? Suppose you wanted to see all the cities listed in order by temperature. You’d
simply type this:

select City, Temperature from WEATHER
order by Temperature ;

and Oracle would instantly respond with this:

City Temperature
----------- -----------
SYDNEY 29
LIMA 45
MANCHESTER 66
CHICAGO 66
SPARTA 74
PARIS 81
ATHENS 97

Oracle has quickly reordered your table by temperature. (This table lists lowest temperatures
first; in a later chapter, you’ll learn how to specify whether you want low numbers or high
numbers first.)

There are many other questions you can ask with Oracle’s query facility, but these examples
show how easy it is to obtain the information you need from an Oracle database in the form that
will be most useful to you. You can build complicated requests from simple pieces of information,

Chapter 1: Sharing Knowledge and Success 9

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:9

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

but the method used to do this will always be understandable. For instance, you can combine the
where and order by keywords, both simple by themselves, to tell Oracle to select those cities
where the temperature is greater than 80, and show them in order by increasing temperature.
You would type this:

select City, Temperature from WEATHER
where Temperature > 80
order by Temperature ;

and Oracle would instantly respond with this:

City Temperature
----------- -----------
PARIS 81
ATHENS 97

Or, to be even more specific, request cities where the temperature is greater than 80 and the
humidity is less than 70:

select City, Temperature, Humidity from WEATHER
where Temperature > 80
and Humidity < 70

order by Temperature ;

and Oracle would respond with this:

City Temperature Humidity
----------- ----------- --------
PARIS 81 62

Why It Is Called “Relational”
Notice that the WEATHER table lists cities from several countries, and some countries have more
than one city listed. Suppose you need to know in which country a particular city is located. You
could create a separate LOCATION table of cities and their countries, as shown in Figure 1-4.

For any city in the WEATHER table, you can simply look at the LOCATION table, find the
name in the City column, look over to the Country column in the same row, and see the
country’s name.

These are two completely separate and independent tables. Each contains its own information
in columns and rows. They have one significant thing in common: the City column. For each city
name in the WEATHER table, there is an identical city name in the LOCATION table.

For instance, what is the current temperature, humidity, and condition in an Australian city?
Look at the two tables, figure it out, and then resume reading this.

How did you solve it? You found just one AUSTRALIA entry, under the Country column, in
the LOCATION table. Next to it, in the City column of the same row, was the name of the city,
SYDNEY. You took this name, SYDNEY, and then looked for it in the City column of the
WEATHER table. When you found it, you moved across the row and found the Temperature,
Humidity, and Condition: 29, 12, and SNOW.

10 Part I: Critical Database Concepts

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:10

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Even though the tables are independent, you can easily see that they are related. The city
name in one table is related to the city name in the other (see Figure 1-5). This relationship is the
basis for the name relational database.

This is the basic idea of a relational database (sometimes called a relational model). Data is
stored in tables. Tables have columns, rows, and names. Tables can be related to each other if
each has a column with a common type of information.

That’s it. It’s as simple as it seems.

Chapter 1: Sharing Knowledge and Success 11

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:11

LOCATION

City Country
WEATHER ----------- --------

ATHENS GREECE
CHICAGO UNITED STATES

City Temperature Humidity Condition CONAKRY GUINEA
---------- ----------- -------- --------- LIMA PERU
ATHENS 97 89 SUNNY MADRAS INDIA
CHICAGO 66 88 RAIN MADRID SPAIN
LIMA 45 79 RAIN MANCHESTER ENGLAND
MANCHESTER 66 98 FOG MOSCOW RUSSIA
PARIS 81 62 CLOUDY PARIS FRANCE
SPARTA 74 63 CLOUDY ROME ITALY
SYDNEY 29 12 SNOW SHENYANG CHINA

SPARTA GREECE
SYDNEY AUSTRALIA
TOKYO JAPAN

FIGURE 1-4. WEATHER and LOCATION tables

LOCATION

City Country
WEATHER ---------- -------

ATHENS GREECE
CHICAGO UNITED STATES

City Temperature Humidity Condition CONAKRY GUINEA
---------- ----------- -------- --------- LIMA PERU
ATHENS 97 89 SUNNY MADRAS INDIA
CHICAGO 66 88 RAIN MADRID SPAIN
LIMA 45 79 RAIN MANCHESTER ENGLAND
MANCHESTER 66 98 FOG MOSCOW RUSSIA
PARIS 81 62 CLOUDY PARIS FRANCE
SPARTA 74 63 CLOUDY ROME ITALY
SYDNEY 29 12 SNOW SHENYANG CHINA

SPARTA GREECE
SYDNEY AUSTRALIA
TOKYO JAPAN

FIGURE 1-5. The relationship between the WEATHER and LOCATION tables

Relationship

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Some Common, Everyday Examples
Once you understand the basic idea of relational databases, you’ll begin to see tables, rows, and
columns everywhere. Not that you didn’t see them before, but you probably didn’t think about
them in quite the same way. Many of the tables that you are accustomed to seeing could be
stored in Oracle. They could be used to quickly answer questions that would take you quite
some time to answer using nearly any other method.

A typical stock market report in the paper might look like the one in Figure 1-6. This is a
small portion of a dense, alphabetical listing that fills several narrow columns on several pages in
a newspaper. Which stock traded the most shares? Which had the biggest percentage change in
its price, either positively or negatively? The answers to these questions can be obtained through
simple English queries in Oracle, which can find the answers much faster than you could by
searching the columns on the newspaper page.

Figure 1-7 is an index to a newspaper. What’s in section F? If you read the paper from front to
back, in what order would you read the articles? The answers to these questions are obtainable
via simple English queries in Oracle. You will learn how to do all of these queries, and even
build the tables to store the information, in the course of using this reference.

12 Part I: Critical Database Concepts

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:12

Close Close Shares
Company Yesterday Today Traded
Ad Specialty 31.75 31.75 18,333,876
Apple Cannery 33.75 36.50 25,787,229
AT Space 46.75 48.00 11,398,323
August Enterprises 15.00 15.00 12,221,711
Brandon Ellipsis 32.75 33.50 25,789,769
General Entropy 64.25 66.00 7,598,562
Geneva Rocketry 22.75 27.25 22,533,944
Hayward Antiseptic 104.25 106.00 3,358,561
IDK 95.00 95.25 9,443,523
India Cosmetics 30.75 30.75 8,134,878
Isaiah James Storage 13.25 13.75 22,112,171
KDK Airlines 80.00 85.25 7,481,566
Kentgen Biophysics 18.25 19.50 6,636,863
LaVay Cosmetics 21.50 22.00 3,341,542
Local Development 26.75 27.25 2,596,934
Maxtide 8.25 8.00 2,836,893
MBK Communications 43.25 41.00 10,022,980
Memory Graphics 15.50 14.25 4,557,992
Micro Token 77.00 76.50 25,205,667
Nancy Lee Features 13.50 14.25 14,222,692
Northern Boreal 26.75 28.00 1,348,323
Ockham Systems 21.50 22.00 7,052,990
Oscar Coal Drayage 87.00 88.50 25,798,992
Robert James Apparel 23.25 24.00 19,032,481
Soup Sensations 16.25 16.75 22,574,879
Wonder Labs 5.00 5.00 2,553,712

FIGURE 1-6. A stock market table

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Throughout this book, the examples use data and objects encountered frequently in business
and everyday life. Similar data to use for your exercises should be as easy to find as your nearest
bookshelf. You will learn how to enter and retrieve data in the pages ahead, using examples
based on these everyday data sources.

Chapter 1: Sharing Knowledge and Success 13

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:13

Feature Section Page
Births F 7
Bridge B 2
Business E 1
Classified F 8
Comics C 4
Doctor's In F 6
Editorials A 12
Modern Life B 1
Movies B 4
National News A 1
Obituaries F 6
Sports D 1
Television B 7
Weather C 2

FIGURE 1-7. A table based on sections of a newspaper

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:14

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 2
Blind Folio 2:15

CHAPTER
2

The Dangers in a
Relational Database

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

A
s with any new technology or new venture, it’s sensible to think through not
only the benefits and opportunities that are presented, but also the costs
and risks. Combine a relational database with a series of powerful and easy-to-use
tools, as Oracle does, and the possibility of being seduced into disaster by its
simplicity becomes real. Add in object-oriented and web capabilities, and the

dangers increase. This chapter discusses some of the dangers that both developers and users
need to consider.

Is It Really as Easy as They Say?
According to the database vendors—the industry evangelists—developing an application using a
relational database and the associated “fourth-generation” tools will be as much as 20 times
faster than traditional system development. And it will be very easy: ultimately, programmers and
systems analysts will be used less, and end users will control their own destinies.

Critics of the relational approach warn that relational systems are inherently slower than others,
that users who are given control of query and report writing will overwhelm computers, and that a
company will lose face and fortune if a more traditional approach is not taken. The press cites
stories of huge applications that simply failed to run when they were put into production.

So, what’s the truth? The truth is that the rules of the game have changed. Fourth-generation
development efforts make very different demands upon companies and management than do
more traditional methods. There are issues and risks that are brand new and not obvious. Once
these are identified and understood, the risk is no greater, and probably much smaller, than in
traditional development.

What Are the Risks?
The primary risk is that developing relational database applications is as easy as they say.
Understanding tables, columns, and rows isn’t difficult. The relationship between two tables is
conceptually simple. Even normalization, the process of analyzing the inherent or “normal”
relationships between the various elements of a company’s data, is fairly easy to learn.

Unfortunately, this often produces instant “experts,” full of confidence but with little
experience in building real, production-quality applications. For a tiny marketing database, or a
home inventory application, this doesn’t matter very much. The mistakes made will reveal
themselves in time, the lessons will be learned, and the errors will be avoided the next time
around. In an important application, however, this is a sure formula for disaster. This lack of
experience is usually behind the press’s stories of major project failures.

Older development methods are generally slower, primarily because the tasks of the older
methods—coding, submitting a job for compilation, linking, and testing—result in a slower pace.
The cycle, particularly on a mainframe, is often so tedious that programmers spend a good deal
of time “desk-checking” in order to avoid going through the delay of another full cycle because
of an error in the code.

Fourth-generation tools seduce developers into rushing into production. Changes can be
made and implemented so quickly that testing is given short shrift. The elimination of virtually
all desk-checking compounds the problem. When the negative incentive (the long cycle) that
encouraged desk-checking disappeared, desk-checking went with it. The attitude of many seems
to be, “If the application isn’t quite right, we can fix it quickly. If the data gets corrupted, we can

16 Part I: Critical Database Concepts

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 2
Blind Folio 2:16

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

patch it with a quick update. If it’s not fast enough, we can tune it on the fly. Let’s get it in ahead
of schedule and show the stuff we’re made of.”

This problem is made worse by an interesting sociological phenomenon: Many of the
developers of relational applications are recent college graduates. They’ve learned relational or
object-oriented theory and design in school and are ready to make their mark. More seasoned
developers, as a class, haven’t learned the new technology. They’re busy supporting and
enhancing the technologies they know, which support their companies’ current information
systems. The result is that inexperienced developers tend to end up on the relational projects, are
sometimes less inclined to test, and are less sensitive to the consequences of failure than those
who have already lived through several complete application development cycles.

The testing cycle in an important Oracle project should be longer and more thorough than in
a traditional project. This is true even if proper project controls are in place, and even if seasoned
project managers are guiding the project, because there will be less desk-checking and an
inherent overconfidence. This testing must check the correctness of data entry screens and
reports, of data loads and updates, of data integrity and concurrence, and particularly of
transaction and storage volumes during peak loads.

Because it really is as easy as they say, application development with Oracle’s tools can be
breathtakingly rapid. But this automatically reduces the amount of testing done as a normal part
of development, and the planned testing and quality assurance must be consciously lengthened
to compensate. This is not usually foreseen by those new to either Oracle or fourth-generation
tools, but you must budget for it in your project plan.

The Importance of the New Vision
Many of us look forward to the day when we can simply type a “natural” language query in
English, and have the answer back, on our screen, in seconds.

We are closer to this goal than most of us realize. The limiting factor is no longer technology,
but rather the rigor of thought in our application designs. Oracle can straightforwardly build
English-based systems that are easily understood and exploited by unsophisticated users. The
potential is there, already available in Oracle’s database and tools, but only a few have
understood and used it.

Clarity and understandability should be the hallmarks of any Oracle application. Applications
can operate in English, be understood readily by end users who have no programming background,
and provide information based on a simple English query.

How? First of all, a major goal of the design effort must be to make the application easy to
understand and simple to use. If you err, it must always be in this direction, even if it means
consuming more CPU or disk space. The limitation of this approach is that you could make an
application exceptionally easy to use by creating overly complex programs that are nearly
impossible to maintain or enhance. This would be an equally bad mistake. However, all things
being equal, an end-user orientation should never be sacrificed for clever coding.

Changing Environments
Consider that the cost to run a computer, expressed as the cost per million instructions per
second (MIPS), has historically declined at the rate of 20 percent per year. Labor costs, on the
other hand, have risen steadily, not just because of the general trend, but also because salaries of
individual employees increase the longer they stay with a company and the better they become

Chapter 2: The Dangers in a Relational Database 17

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 2
Blind Folio 2:17

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

18 Part I: Critical Database Concepts

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 2
Blind Folio 2:18

at their jobs. This means that any work that can be shifted from human laborers to machines is a
good investment.

Have we factored this incredible shift into our application designs? The answer is
“somewhat,” but terribly unevenly. The real progress has been in environments, such as the
visionary work first done at Xerox Palo Alto Research Center (PARC), and then on the Macintosh,
and now in MS-Windows, web-based browsers, and other graphical, icon-based systems.
These environments are much easier to learn and understand than the older, character-based
environments, and people who use them can produce in minutes what previously took days.
The improvement in some cases has been so huge that we’ve entirely lost sight of how hard some
tasks used to be.

Unfortunately, this concept of an accommodating and friendly environment hasn’t been
grasped by many application developers. Even when they work in these environments, they
continue old habits that are just no longer appropriate.

Codes, Abbreviations, and Naming Standards
The problem of old programming habits is most pronounced in codes, abbreviations, and naming
standards, which are almost completely ignored when the needs of end users are considered.
When these three issues are thought about at all, usually only the needs and conventions of the
systems groups are considered. This may seem like a dry and uninteresting problem to be forced
to think through, but it can make the difference between great success and grudging acceptance,
between an order-of-magnitude leap in productivity and a marginal gain, between interested,
effective users and bored, harried users who make continual demands on the developers.

Here’s what happened. Business records used to be kept in ledgers and journals. Each event
or transaction was written down, line by line, in English. As we developed applications, codes
were added to replace data values (such as “01” for “Accounts Receivable,” “02” for “Accounts
Payable,” and so on). Key-entry clerks would actually have to know or look up most of these
codes and type them in at the appropriately labeled fields on their screens. This is an extreme
example, but literally thousands of applications take exactly this approach and are every bit as
difficult to learn or understand.

This problem has been most pronounced in large, conventional mainframe systems
development. As relational databases are introduced into these groups, they are used simply as
replacements for older input/output methods such as Virtual Storage Access Method (VSAM) and
Information Management System (IMS). The power and features of the relational database are
virtually wasted when used in such a fashion.

Why Are Codes Used Instead of English?
Why use codes at all? Two primary justifications are usually offered:

■ A category has so many items in it that all of them can’t reasonably be represented or
remembered in English.

■ To save space in the computer.

The second point is an anachronism. Memory and permanent storage were once so
expensive and CPUs so slow (with less power than a modern hand-held calculator) that

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

programmers had to cram every piece of information into the smallest possible space. Numbers,
character for character, take half of the computer storage space of letters, and codes reduce the
demands on the machine even more.

Because machines were expensive, developers had to use codes for everything to make
anything work at all. It was a technical solution to an economic problem. For users, who had to
learn all sorts of meaningless codes, the demands were terrible. Machines were too slow and too
expensive to accommodate the humans, so the humans were trained to accommodate the
machines. It was a necessary evil.

This economic justification for codes vanished years ago. Computers are now fast enough
and cheap enough to accommodate the way people work, and use words that people understand.
It’s high time that they did so. Yet, without really thinking through the justifications, developers
and designers continue to use codes.

The first point—that of too many items per category—is more substantive, but much less so
than it first appears. One idea is that it takes less effort (and is therefore less expensive) for
someone to key in the numeric codes than actual text string values like book titles. This
justification is untrue in Oracle. Not only is it more costly to train people to know the correct
customer, product, transaction, and other codes, and more expensive because of the cost of
mistakes (which are high with code-based systems), but using codes also means not using Oracle
fully; Oracle is able to take the first few characters of a title and fill in the rest of the name itself.
It can do the same thing with product names, transactions (a “b” will automatically fill in with
“buy,” an “s” with “sell”), and so on, throughout an application. It does this with very robust
pattern-matching abilities.

The Benefit of User Feedback
There is an immediate additional benefit: Key-entry errors drop almost to zero because the users
get immediate feedback, in English, of the business information they’re entering. Digits don’t get
transposed; codes don’t get remembered incorrectly; and, in financial applications, money rarely
is lost in accounts due to entry errors, with significant savings.

Applications also become much more comprehensible. Screens and reports are transformed
from arcane arrays of numbers and codes into a readable and understandable format. The change
of application design from code-oriented to English-oriented has a profound and invigorating
effect on a company and its employees. For users who have been burdened by code manuals, an
English-based application produces a tremendous psychological release.

How to Reduce the Confusion
Another version of the “too many items per category” justification is that the number of products,
customers, or transaction types is just too great to differentiate each by name, or there are too
many items in a category that are identical or very similar (customers named “John Smith,” for
instance). A category can contain too many entries to make the options easy to remember or
differentiate, but more often this is evidence of an incomplete job of categorizing information:
Too many dissimilar things are crammed into too broad a category. Developing an application
with a strong English-based (or French, German, Spanish, and so on) orientation, as opposed to
code-based, requires time spent with users and developers—taking apart the information about
the business, understanding its natural relationships and categories, and then carefully constructing
a database and naming scheme that simply and accurately reflects these discoveries.

Chapter 2: The Dangers in a Relational Database 19

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 2
Blind Folio 2:19

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

20 Part I: Critical Database Concepts

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 2
Blind Folio 2:20

There are three basic steps to doing this:

1. Normalize the data.

2. Choose English names for the tables and columns.

3. Choose English words for the data.

Each of these steps will be explained in order. The goal is to design an application in which
the data is sensibly organized, is stored in tables and columns whose names are familiar to the
user, and is described in familiar terms, not codes.

Normalization
Relations between countries, or between departments in a company, or between users and
developers, are usually the product of particular historical circumstances, which may define
current relations even though the circumstances have long since passed. The result of this can be
abnormal relations, or, in current parlance, dysfunctional relations. History and circumstance
often have the same effect on data—on how it is collected, organized, and reported. And data,
too, can become abnormal and dysfunctional.

Normalization is the process of putting things right, making them normal. The origin of the
term is the Latin word norma, which was a carpenter’s square that was used for ensuring a right
angle. In geometry, when a line is at a right angle to another line, it is said to be “normal” to
it. In a relational database, the term also has a specific mathematical meaning having to do with
separating elements of data (such as names, addresses, or skills) into affinity groups, and defining
the normal, or “right,” relationships between them.

The basic concepts of normalization are being introduced here so that users can contribute to
the design of an application they will be using, or better understand one that’s already been built.
It would be a mistake, however, to think that this process is really only applicable to designing a
database or a computer application. Normalization results in deep insights into the information
used in a business and how the various elements of that information are related to each other.
This will prove educational in areas apart from databases and computers.

The Logical Model
An early step in the analysis process is the building of a logical model, which is simply a
normalized diagram of the data used by the business. Knowing why and how the data gets
broken apart and segregated is essential to understanding the model, and the model is essential
to building an application that will support the business for a long time, without requiring
extraordinary support.

Normalization is usually discussed in terms of form: First, Second, and Third Normal Form
are the most common, with Third representing the most highly normalized state. There are Fourth
and Fifth normalization levels defined as well, but they are beyond the scope of this discussion.

Consider a bookshelf; for each book, you can store information about it—the title, publisher,
authors, and multiple categories or descriptive terms for the book. Assume that this book-level
data became the table design in Oracle. The table might be called BOOKSHELF, and the columns
might be Title, Publisher, Author1, Author2, Author3, and Category1, Category2, and Category3.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The users of this table already have a problem: in the BOOKSHELF table, users are limited to
listing just three authors or categories for a single book.

What happens when the list of acceptable categories changes? Someone has to go through
every row in the BOOKSHELF table and correct all the old values. And what if one of the authors
changes his or her name? Again, all of the related records must be changed. What will you do
when a fourth author contributes to a book?

These are not really computer or technical issues, even though they became apparent because
you were designing a database. They are much more basic issues of how to sensibly and logically
organize the information of a business. They are the issues that normalization addresses. This is
done with a step-by-step reorganization of the elements of the data into affinity groups, by
eliminating dysfunctional relationships, and by ensuring normal relationships.

Normalizing the Data Step one of the reorganization is to put the data into First Normal
Form. This is done by moving data into separate tables, where the data in each table is of a
similar type, and giving each table a primary key—a unique label or identifier. This eliminates
repeating groups of data, such as the authors on the bookshelf.

Instead of having only three authors allowed per book, each author’s data is placed in a
separate table, with a row per name and description. This eliminates the need for a variable
number of authors in the BOOKSHELF table and is a better design than limiting the BOOKSHELF
table to just three authors.

Next, you define the primary key to each table: What will uniquely identify and allow you to
extract one row of information? For simplicity’s sake, assume the titles and authors’ names are
unique, so AuthorName is the primary key to the AUTHOR table.

You now have split BOOKSHELF into two tables: AUTHOR, with columns AuthorName (the
primary key) and Comments, and BOOKSHELF, with a primary key of Title, and with columns
Publisher, and Category1, Category2, and Category3, Rating, and RatingDescription. A third
table, BOOKSHELF_AUTHOR, provides the associations: Multiple authors can be listed for a
single book and an author can write multiple books—known as a many-to-many relationship.
Figure 2-1 shows these relationships and primary keys.

Chapter 2: The Dangers in a Relational Database 21

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 2
Blind Folio 2:21

FIGURE 2-1. The BOOKSHELF, AUTHOR, and BOOKSHELF_AUTHOR tables

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The next step in the normalization process, Second Normal Form, entails taking out data
that’s only dependent on a part of the key. If there are attributes that do not depend on the entire
key, then those attributes should be moved to a new table. In this case, RatingDescription is not
really dependent on Title—it’s based on the Rating column value, so it should be moved to a
separate table.

The final step, Third Normal Form, means getting rid of anything in the tables that doesn’t
depend solely on the primary key. In this example, the categories are interrelated; you would not
list a title as both “Fiction” and “Nonfiction,” and you would have different subcategories under
the “Adult” category than you would have under the “Children” category. Category information
is therefore moved to a separate table. Figure 2-2 shows the tables in Third Normal Form.

Any time the data is in Third Normal Form, it is already automatically in Second and First
Normal Form. The whole process can therefore actually be accomplished less tediously than by
going from form to form. Simply arrange the data so that the columns in each table, other than
the primary key, are dependent only on the whole primary key. Third Normal Form is sometimes
described as “the key, the whole key, and nothing but the key.”

Navigating Through the Data
The bookshelf database is now in Third Normal Form. Figure 2-3 shows a sample of what these
tables might contain. It’s easy to see how these tables are related. You navigate from one to the
other to pull out information on a particular author, based on the keys to each table. The primary
key in each table is able to uniquely identify a single row. Choose Stephen Jay Gould, for
instance, and you can readily discover his record in the AUTHOR table, because AuthorName is
the primary key.

22 Part I: Critical Database Concepts

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 2
Blind Folio 2:22

FIGURE 2-2. BOOKSHELF and related tables

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 2: The Dangers in a Relational Database 23

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 2
Blind Folio 2:23

AUTHOR
AuthorName Comments
--------------------- ---
DIETRICH BONHOEFFER GERMAN THEOLOGIAN, KILLED IN A WAR CAMP
ROBERT BRETALL KIERKEGAARD ANTHOLOGIST
ALEXANDRA DAY AUTHOR OF PICTURE BOOKS FOR CHILDREN
STEPHEN JAY GOULD SCIENCE COLUMNIST, HARVARD PROFESSOR
SOREN KIERKEGAARD DANISH PHILOSOPHER AND THEOLOGIAN
HARPER LEE AMERICAN NOVELIST, PUBLISHED ONLY ONE NOVEL
LUCY MAUD MONTGOMERY CANADIAN NOVELIST
JOHN ALLEN PAULOS MATHEMATICS PROFESSOR
J. RODALE ORGANIC GARDENING EXPERT

RATING
Rating RatingDescription
---------- -----------------
1 ENTERTAINMENT
2 BACKGROUND INFORMATION
3 RECOMMENDED
4 STRONGLY RECOMMENDED
5 REQUIRED READING

CATEGORY
CategoryName ParentCategory SubCategory
-------------- --------------- ------------
ADULTREF ADULT REFERENCE
ADULTFIC ADULT FICTION
ADULTNF ADULT NONFICTION
CHILDRENPIC CHILDREN PICTURE BOOK
CHILDRENFIC CHILDREN FICTION
CHILDRENNF CHILDREN NONFICTION

BOOKSHELF_AUTHOR
Title AuthorName
------------------------------ ---------------------
TO KILL A MOCKINGBIRD HARPER LEE
WONDERFUL LIFE STEPHEN JAY GOULD
INNUMERACY JOHN ALLEN PAULOS
KIERKEGAARD ANTHOLOGY ROBERT BRETALL
KIERKEGAARD ANTHOLOGY SOREN KIERKEGAARD
ANNE OF GREEN GABLES LUCY MAUD MONTGOMERY
GOOD DOG, CARL ALEXANDRA DAY
LETTERS AND PAPERS FROM PRISON DIETRICH BONHOEFFER

FIGURE 2-3. Sample data from the BOOKSHELF tables

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

24 Part I: Critical Database Concepts

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 2
Blind Folio 2:24

Look up Harper Lee in the AuthorName column of the BOOKSHELF_AUTHOR table and
you’ll see that she has published one novel, whose title is “To Kill A Mockingbird.” You can then
check the publisher, category, and rating for that book in the BOOKSHELF table. You can check
the RATING table for a description of the rating.

When you looked up “To Kill A Mockingbird” in the BOOKSHELF table, you were searching
by the primary key for the table. To find the author of that book, you could reverse your earlier
search path, looking through BOOKSHELF_AUTHOR for the records that have that value in the
Title column—the column ‘Title’ is a foreign key in the BOOKSHELF_AUTHOR table. When the
primary key for BOOKSHELF appears in another table, as it does in the BOOKSHELF_AUTHOR
table, it is called a foreign key to that table.

These tables also show real-world characteristics: There are ratings and categories that are not
yet used by books on the bookshelf. Because the data is organized logically, you can keep a record
of potential categories, ratings, and authors even if none of the current books use those values.

This is a sensible and logical way to organize information, even if the “tables” are written in a
ledger book or on scraps of paper in cigar boxes. Of course, there is still some work to do to turn
this into a real database. For instance, AuthorName probably ought to be broken into FirstName
and LastName, and you might want to find a way to show which author is the primary author, or
if one is an editor rather than an author.

This whole process is called normalization. It really isn’t any trickier than this. There are some
other issues involved in a good design, but the basics of analyzing the “normal” relationships
among the various elements of data are just as simple and straightforward as they’ve just been
explained. It makes sense regardless of whether or not a relational database or a computer is
involved at all.

One caution needs to be raised, however. Normalization is a part of the process of analysis.
It is not design. Design of a database application includes many other considerations, and it is a
fundamental mistake to believe that the normalized tables of the logical model are the “design”
for the actual database. This fundamental confusion of analysis and design contributes to the
stories in the press about the failure of major relational applications. These issues are addressed
for developers more fully later in this chapter.

BOOKSHELF
Title Publisher CategoryName Rating
------------------------------ --------------------- ------------ ------
TO KILL A MOCKINGBIRD HARPERCOLLINS ADULTFIC 5
WONDERFUL LIFE W.W.NORTON & CO. ADULTNF 5
INNUMERACY VINTAGE BOOKS ADULTNF 4
KIERKEGAARD ANTHOLOGY PRINCETON UNIV PR ADULTREF 3
ANNE OF GREEN GABLES GRAMMERCY CHILDRENFIC 3
GOOD DOG, CARL LITTLE SIMON CHILDRENPIC 1
LETTERS AND PAPERS FROM PRISON SCRIBNER ADULTNF 4

FIGURE 2-3. Sample data from the BOOKSHELF tables (continued)

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

English Names for Tables and Columns
Once the relationships between the various elements of the data in an application are understood
and the data elements are segregated appropriately, considerable thought must be devoted to
choosing names for the tables and columns into which the data will be placed. This is an area
given too little attention, even by those who should know better. Table and column names are
often developed without consulting end users and without rigorous review. Both of these failings
have serious consequences when it comes to actually using an application.

For example, consider the tables shown in Figure 2-3. The table and column names are
virtually all self-evident. An end user, even one new to relational ideas and SQL, would have
little difficulty understanding or even replicating a query such as this:

select Title, Publisher
from BOOKSHELF
order by Publisher;

Users understand this because the words are all familiar. There are no obscure or ill-defined
terms. When tables with many more columns in them must be defined, naming the columns can
be more difficult, but a few consistently enforced rules will help immensely. Consider some of
the difficulties commonly caused by lack of naming conventions. What if you had chosen these
names instead?

BOOKSHELF B_A AUTHS CATEGORIES
------------- -------- ------------ --------------
title title anam cat
pub anam comms p_cat
cat s_cat
rat

The naming techniques in this table, as bizarre as they look, are unfortunately very common.
They represent tables and columns named by following the conventions (and lack of
conventions) used by several well-known vendors and developers.

Here are a few of the more obvious difficulties in the list of names:

■ Abbreviations are used without good reason. This makes remembering the “spelling” of
a table or column name virtually impossible. The names may as well be codes, because
the users will have to look them up.

■ Abbreviations are inconsistent.

■ The purpose or meaning of a column or table is not apparent from the name. In addition
to abbreviations making the spelling of names difficult to remember, they obscure the
nature of the data the column or table contains. What is P_cat? Comms?

■ Underlines are used inconsistently. Sometimes they are used to separate words in a
name, but other times they are not. How will anyone remember which name does or
doesn’t have an underline?

■ Use of plurals is inconsistent. Is it CATEGORY or CATEGORIES? Comm or Comms?

Chapter 2: The Dangers in a Relational Database 25

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 2
Blind Folio 2:25

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ Rules apparently used have immediate limitations. If the first letter of the table name is
to be used for a name column, as in Anam for a table whose table name starts with ‘A’,
what happens when a second table beginning with the letter ‘A’ becomes necessary?
Does the name column in that table also get called ANam? If so, why isn’t the column in
both simply called Name?

These are only a few of the most obvious difficulties. Users subjected to poor naming of
tables and columns will not be able to simply type English queries. The queries won’t have the
intuitive and familiar “feel” that the BOOKSHELF table query has, and this will harm the
acceptance and usefulness of the application significantly.

Programmers used to be required to create names that were a maximum of six to eight
characters in length. As a result, names unavoidably were confused mixes of letters, numbers,
and cryptic abbreviations. Like so many other restrictions forced on users by older technology,
this one is just no longer applicable. Oracle allows table and column names up to 30 characters
long. This gives designers plenty of room to create full, unambiguous, and descriptive names.

The difficulties outlined here imply solutions, such as avoiding abbreviations and plurals, and
either eliminating underlines or using them consistently. These quick rules of thumb will go a
long way in solving the naming confusion so prevalent today. At the same time, naming
conventions need to be simple, easily understood, and easily remembered. In a sense, what is
called for is a normalization of names. In much the same way that data is analyzed logically,
segregated by purpose, and thereby normalized, the same sort of logical attention needs to be
given to naming standards. The job of building an application is improperly done without it.

English Words for the Data
Having raised the important issue of naming conventions for tables and columns, the next step is
to look at the data itself. After all, when the data from the tables is printed on a report, how
self-evident the data is will determine how understandable the report is. In the BOOKSHELF
example, Rating is a code value, and Category is a concatenation of multiple values. Is this an
improvement? If you asked another person about a book, would you want to hear that it was a
rated a 4 in AdultNF? Why should a machine be permitted to be less clear?

Additionally, keeping the information in English makes writing and understanding queries
much simpler. The query should be as English-like as possible:

select Title, AuthorName
from BOOKSHELF_AUTHOR;

Title AuthorName
------------------------------ ---------------------
TO KILL A MOCKINGBIRD HARPER LEE
WONDERFUL LIFE STEPHEN JAY GOULD
INNUMERACY JOHN ALLEN PAULOS
KIERKEGAARD ANTHOLOGY ROBERT BRETALL
KIERKEGAARD ANTHOLOGY SOREN KIERKEGAARD
ANNE OF GREEN GABLES LUCY MAUD MONTGOMERY
GOOD DOG, CARL ALEXANDRA DAY
LETTERS AND PAPERS FROM PRISON DIETRICH BONHOEFFER

26 Part I: Critical Database Concepts

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 2
Blind Folio 2:26

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Capitalization in Names and Data
Oracle makes it slightly easier to remember table and column names by ignoring whether you
type in capital letters, small letters, or a mixture of the two. It stores table and column names in
its internal data dictionary in uppercase. When you type a query, it instantly converts the table
and column names to uppercase, and then checks for them in the dictionary. Some other
relational systems are case-sensitive. If users type a column name as “Ability,” but the database
thinks it is “ability” or “ABILITY” (depending on what it was told when the table was created), it
will not understand the query.

NOTE
You can force Oracle to create tables and columns with mixed-case
names, but doing so will make querying and working with the data
difficult. Use the default uppercase behavior.

The ability to create case-sensitive table names is promoted as a benefit because it allows
programmers to create many tables with, for instance, similar names. They can make a worker
table, a Worker table, a wORker table, and so on. These will all be separate tables. How is
anyone, including the programmer, supposed to remember the differences? This is a drawback,
not a benefit, and Oracle was wise not to fall into this trap.

A similar case can be made for data stored in a database. There are ways to find information
from the database regardless of whether the data is in uppercase or lowercase, but these methods
impose an unnecessary burden. With few exceptions, such as legal text or form-letter paragraphs,
it is much easier to store data in the database in uppercase. It makes queries easier and provides
a more consistent appearance on reports. When and if some of this data needs to be put into
lowercase, or mixed uppercase and lowercase (such as the name and address on a letter), then
the Oracle functions that perform the conversion can be invoked. It will be less trouble overall,
and less confusing, to store and report data in uppercase.

Looking back over this chapter, you’ll see that this practice was not followed. Rather, it
was delayed until the subject could be introduced and put in its proper context. From here on,
with the exception of one or two tables and a few isolated instances, data in the database will
be in uppercase.

Normalizing Names
Several query tools have come on the market whose purpose is to let you make queries using
common English words instead of odd conglomerations. These products work by building a
logical map between the common English words and the hard-to-remember, non-English column
names, table names, and codes. The mapping takes careful thought, but once completed, it
makes the user’s interaction with the application easy. Why not put the care in at the beginning?
Why create a need for yet another layer, another product, and more work, when much of the
confusion can be avoided simply by naming things better the first time around?

For performance reasons, it may be that some of an application’s data must still be stored in a
coded fashion within the computer’s database. These codes should not be exposed to users,
either during data entry or retrieval, and Oracle allows them to be easily hidden.

Chapter 2: The Dangers in a Relational Database 27

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 2
Blind Folio 2:27

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The instant that data entry requires codes, key-entry errors increase. When reports contain
codes instead of English, errors of interpretation begin. And when users need to create new or ad
hoc reports, their ability to do so quickly and accurately is severely impaired both by codes and
by not being able to remember strange column and table names.

Oracle gives users the power to see and work with English throughout the entire application.
It is a waste of Oracle’s power to ignore this opportunity, and it will without question produce a
less understandable and less productive application. Developers should seize the opportunity.
Users should demand it. Both will benefit immeasurably.

Good Design Has a Human Touch
At this point, if you are new to Oracle you may want to go right into working with Oracle and
the SQL language. That is covered in the next chapter; the remainder of this chapter focuses on
performance, naming, and design considerations. You can refer back to this section later when
you are ready to design and implement an application.

This section of this chapter looks at a method of approaching a development project that
takes into account the real business tasks your end users have to accomplish. This distinguishes it
from the more common data orientation of many developers and development methodologies.
Data normalization and CASE (Computer Aided Software Engineering) technologies have become
so much the center of attention with relational application development that a focus on the data
and the issues of referential integrity, keys, normalization, and table diagrams has become almost
an obsession. They are so often confused with design—and even believed to be design—that the
reminder that they are analysis is often met with surprise.

Normalization is analysis, not design. And it is only a part of the analysis necessary to
understand a business and build a useful application. The goal of application development, after
all, is to help the business run more successfully by improving the speed and efficiency with
which business tasks are done and by making the environment in which people work as
meaningful and supportive as possible. Give people control over their information, and intuitive,
straightforward access to it, and they will respond gratefully and productively. Assign the control
to a remote group, cloud the information in codes and user-hostile interfaces, and they will be
unhappy and unproductive.

The methods outlined in this section are not intended to be a rigorous elucidation of the
process, and the tools you use and are familiar with for data structures or flows are probably
sufficient for the task. The purpose here is to disclose an approach that is effective in creating
responsive, appropriate, and accommodating applications.

Understanding the Application Tasks
One of the often-neglected steps in building software is understanding the end user’s job—the
tasks that computer automation is intended to support. Occasionally, this is because the
application itself is quite specialized; more often, it is because the approach to design tends to
be data-oriented. Frequently, these are the major questions asked in the analysis:

■ What data should be captured?

■ How should the data be processed?

■ How should the data be reported?

28 Part I: Critical Database Concepts

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 2
Blind Folio 2:28

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

These questions expand into a series of subquestions, and include issues such as input forms,
codes, screen layouts, computations, postings, corrections, audit trails, retention, storage volumes,
processing cycles, report formatting, distribution, and maintenance. These are all vitally
important areas. One difficulty, however, is that they all focus solely on data.

People use data, but they do tasks. One might argue that while this may be true of professional
workers, key-entry clerks really only transfer data from an input form to a keyboard; their tasks are
very data-oriented. This is a fair portrayal of these jobs today. But is this a consequence of the real
job that needs to get done, or is it a symptom of the design of the computer application? Using
humans as input devices, particularly for data that is voluminous, consistent in format (as on forms),
and in a limited range of variability, is an expensive and antiquated, not to mention dehumanizing,
method of capturing data. Like the use of codes to accommodate machine limitations, it’s an idea
whose time has passed.

This may sound like so much philosophy, but it has practical import in the way application
design is done. People use data, but they do tasks. And they don’t do tasks through to completion
one at a time. They do several tasks that are subsets of or in intersection with each other, and
they do them all at once, in parallel.

When designers allow this idea to direct the analysis and creation of an application, rather
than focusing on the data orientation that has been historically dominant, the very nature of the
effort changes significantly. Why have windowing environments been so successful? Because
they allow a user to jump quickly between small tasks, keeping them all active without having to
shut down and exit one in order to begin another. The windowing environment comes closer to
mapping the way people really think and work than the old “one thing at a time” approach ever
did. This lesson should not be lost. It should be built upon.

Understanding the application tasks means going far beyond identifying the data elements,
normalizing them, and creating screens, processing programs, and reports. It means really
understanding what the users do and what their tasks are, and designing the application to be
responsive to those tasks, not just to capture the data associated with them. In fact, when the
orientation is toward the data, the resulting design will inevitably distort the users’ tasks rather
than support them.

How do you design an application that is responsive to tasks rather than data? The biggest
hurdle is simply understanding that focusing on tasks is necessary. This allows you to approach
the analysis of the business from a fresh perspective.

The first step in the analysis process is to understand the tasks. For which tasks do the
members of this group really need to use computers? What is the real service or product
produced? This seems like a fundamental and even simplistic first question, but you’ll find that a
surprising number of businesspeople are quite unclear about the answer. An amazing number of
businesses, from healthcare to banking, from shipping to manufacturing, used to think they were
in the data processing business. After all, they input data, process it, and report it, don’t they?
This delusion is yet another symptom of the data orientation our systems designs have had that
has led dozens of companies to attempt to market their imagined “real” product, data processing,
with disastrous consequences for most of them.

Hence the importance of learning about a business application: You have to keep an open
mind, and may often have to challenge pet notions about what the business is in order to learn
what it really is. This is a healthy, if sometimes difficult, process.

And, just as it is essential that businesspeople become literate users of SQL and understand
the basics of the relational model, so it is important that application designers really understand
the service or product being delivered, and the tasks necessary to make that happen. A project

Chapter 2: The Dangers in a Relational Database 29

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 2
Blind Folio 2:29

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

30 Part I: Critical Database Concepts

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 2
Blind Folio 2:30

team that includes end users who have been introduced to the essentials of SQL and the
relational approach, such as by reading this book, and designers who are sensitive to end users’
needs and understand the value of a task-oriented, readable application environment, will turn
out extraordinarily good systems. The members of such a project team check, support, and
enhance each other’s efforts.

One approach to this process is to develop two converging documents: a task document and
a data document. It is in the process of preparing the task document that the deep understanding
of the application comes about. The data document will help implement the vision and ensure
that the details and rules are all accounted for, but the task document defines the vision of what
the business is.

Outline of Tasks
The task document is a joint effort of the business users and the application designers. It lists the
tasks associated with the business from the top down. It begins with a basic description of the
business. This should be a simple declarative sentence of three to ten words, in the active voice,
without commas and with a minimum of adjectives:

We sell insurance.

It should not be:

Amalgamated Diversified is a leading international supplier of financial resources, training,
information processing, transaction capture and distribution, communications, customer
support, and industry direction in the field of shared risk funding for health care maintenance,
property preservation, and automobile liability.

There is a tremendous temptation to cram every little detail about a business and its dreams
about itself into this first sentence. Don’t do it. The effort of trimming the descriptive excesses
down to a simple sentence focuses the mind wonderfully. If you can’t get the business down to
ten words, you haven’t understood it yet.

But, as an application designer, creating this sentence isn’t your task alone; it is a joint effort
with the business user, and it initiates the task documentation process. It provides you with the
opportunity to begin serious questioning about what the business does and how it does it. This is a
valuable process for the business itself, quite independent of the fact that an application is being
built. You will encounter numerous tasks and subtasks, procedures, and rules that will prove to be
meaningless or of marginal use. Typically, these are artifacts of either a previous problem, long
since solved, or of information or reporting requests from managers long since departed.

Some wags have suggested that the way to deal with too many reports being created, whether
manually or by computer, is to simply stop producing them and see if anyone notices. This is a
humorous notion, but the seed of truth it contains needs to be a part of the task documentation
process. In fact, it proved quite useful in Y2K remediation efforts—many programs and reports
didn’t have to be fixed, simply because they were no longer used!

Your approach to the joint effort of documenting tasks allows you to ask skeptical questions
and look at (and reevaluate the usefulness of) what may be mere artifacts. Be aware, however,
that you need to proceed with the frank acknowledgment that you, as a designer, cannot

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

understand the business as thoroughly as the user does. There is an important line between
seizing the opportunity of an application development to rationalize what tasks are done and
why, and possibly offending the users by presuming to understand the “real” business better than
they do.

Ask the user to describe a task in detail and explain to you the reason for each step. If the
reason is a weak one, such as “We’ve always done it this way,” or “I think they use this upstairs
for something,” red flags should go up. Say that you don’t understand, and ask again for an
explanation. If the response is still unsatisfactory, put the task and your question on a separate list
for resolution. Some of these will be answered simply by someone who knows the subject better,
others will require talking to senior management, and many tasks will end up eliminated because
they are no longer needed. One of the evidences of a good analysis process is the improvement
of existing procedures, independent of, and generally long before, the implementation of a new
computer application.

General Format of the Task Document
This is the general format for the task document:

■ Summary sentence describing the business (three to ten words)

■ Summary sentences describing and numbering the major tasks of the business (short
sentences, short words)

■ Additional levels of task detail, as needed, within each of the major tasks

By all means, follow the summary sentence for every level with a short, descriptive paragraph,
if you want, but don’t use this as an excuse to avoid the effort of making the summary sentence
clear and crisp. Major tasks are typically numbered 1.0, 2.0, 3.0, and so on, and are sometimes
referred to as zero-level tasks. The levels below each of these are numbered using additional
dots, as in 3.1 and 3.1.14. Each major task is taken down to the level where it is a collection of
atomic tasks—tasks for which no subtask is meaningful in itself and that, once started, is either
taken to completion or dropped entirely. Atomic tasks are never left half-finished.

Writing a check is an atomic task; filling in the dollar amount is not. Answering the telephone
as a customer service representative is not an atomic task; answering the phone and fulfilling the
customer’s request is atomic. Atomic tasks must be meaningful and must complete an action.

The level at which a task is atomic will vary by task. The task represented by 3.1.14 may be
atomic yet still have several additional sublevels. The task 3.2 may be atomic, or 3.1.16.4 may
be. What is important is not the numbering scheme (which is nothing more than a method for
outlining a hierarchy of tasks) but the decomposition to the atomic level. The atomic tasks are the
fundamental building blocks of the business. Two tasks can still be atomic if one occasionally
depends upon the other, but only if each can and does get completed independently. If two tasks
always depend upon each other, they are not atomic. The real atomic task includes them both.

In most businesses, you will quickly discover that many tasks do not fit neatly into just one of
the major (zero-level) tasks, but seem to span two or more, and work in a network or “dotted
line” fashion. This is nearly always evidence of improper definition of the major tasks or
incomplete atomization of the lower tasks. The goal is to turn each task into a conceptual
“object,” with a well-defined idea of what it does (its goal in life) and what resources (data,
computation, thinking, paper, pencil, and so on) it uses to accomplish its goal.

Chapter 2: The Dangers in a Relational Database 31

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 2
Blind Folio 2:31

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Insights Resulting from the Task Document
Several insights come out of the task document. First, because the task document is task-oriented
rather than data-oriented, it is likely to substantially change the way user screens are designed. It
will affect what data is captured, how it is presented, how help is implemented, and how users
switch from one task to another. The task orientation will help ensure that the most common
kinds of jumping between tasks will not require inordinate effort from the user.

Second, the categorization of major tasks will change as conflicts are discovered; this will
affect how both the designers and the business users understand the business.

Third, even the summary sentence itself will probably change. Rationalizing a business
into atomic task “objects” forces a clearing out of artifacts, misconceptions, and unneeded
dependencies that have long weighed down the business unnecessarily.

This is not a painless process, but the benefits in terms of the business’s self-understanding,
the cleanup of procedures, and the automation of the tasks will usually far exceed the emotional
costs and time spent. It helps immensely if there is general understanding going into the project
that uncomfortable questions will be asked, incorrect assumptions corrected, and step-by-step
adjustments made to the task document until it is completed.

Understanding the Data
In conjunction with the decomposition and description of the tasks, the resources required at
each step are described in the task document, especially in terms of the data required. This is
done on a task-by-task basis, and the data requirements are then included in the data document.
This is a conceptually different approach from the classical view of the data. You will not simply
take the forms and screens currently used by each task and record the elements they contain.
The flaw in this “piece of paper in a cigar box” approach lies in our tendency (even though we
don’t like to admit it) to accept anything printed on paper as necessary or true.

In looking at each task, you should determine what data is necessary to do the task, rather
than what data elements are on the form you use to do the task. By requiring that the definition of
the data needed come from the task rather than from any existing forms or screens, you force an
examination of the true purpose of the task and the real data requirements. If the person doing
the task doesn’t know the use to which data is put, the element goes on the list for resolution.
An amazing amount of garbage is eliminated by this process.

Once the current data elements have been identified, they must be carefully scrutinized.
Numeric and letter codes are always suspect. They disguise real information behind
counterintuitive, meaningless symbols. There are times and tasks for which codes are handy,
easily remembered, or made necessary by sheer volume. But, in your final design, these cases
should be rare and obvious. If they are not, you’ve lost your way.

In the scrutiny of existing data elements, codes should be set aside for special attention. In
each case, ask yourself whether the element should be a code. Its continued use as a code should
be viewed suspiciously. There must be good arguments and compelling reasons for perpetuating
the disguise. The process for converting codes back into English is fairly simple, but is a joint
effort. The codes are first listed, by data element, along with their meanings. These are then
examined by users and designers, and short English versions of the meanings are proposed,
discussed, and tentatively approved.

In this same discussion, designers and end users should decide on names for the data
elements. These will become column names in the database, and will be regularly used in
English queries, so the names should be descriptive (avoiding abbreviations, other than those

32 Part I: Critical Database Concepts

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 2
Blind Folio 2:32

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

common to the business) and singular. Because of the intimate relationship between the column
name and the data it contains, the two should be specified simultaneously. A thoughtful choice
of a column name will vastly simplify determining its new English contents.

Data elements that are not codes also must be rigorously examined. By this point, you have
good reason to believe that all of the data elements you’ve identified are necessary to the
business tasks, but they are not necessarily well-organized. What appears to be one data element
in the existing task may in fact be several elements mixed together that require separation.
Names, addresses, and phone numbers are very common examples of this, but every application
has a wealth of others.

First and last names were mixed together, for example, in the AUTHOR table. The
AuthorName column held both first and last names, even though the tables were in Third Normal
Form. This would be an extremely burdensome way to actually implement an application, in
spite of the fact that the normalization rules were technically met. To make the application
practical and prepare it for English queries, the AuthorName column needs to be decomposed
into at least two new columns, LastName and FirstName. This same categorization process is
regularly needed in rationalizing other data elements, and is often quite independent of
normalization.

The degree of decomposition depends on how the particular data elements are likely to
be used. It is possible to go much too far and decompose categories that, though made up of
separable pieces, provide no additional value in their new state. Decomposition is application-
dependent on an element-by-element basis. Once decomposition has been done, these new
elements, which will become columns, need to be thoughtfully named, and the data they will
contain needs to be scrutinized. Text data that will fall into a definable number of values should
be reviewed for naming. These column names and values, like those of the codes, are tentative.

The Atomic Data Models
Now the process of normalization begins, and with it the drawing of the atomic data models.
There are many good texts on the subject and a wide variety of analysis and design tools that can
speed the process, so this book doesn’t suggest any particular method, since recommending one
method may hinder rather than help.

Each atomic transaction should be modeled, and should be labeled with the task number to
which it applies. Included in the model are table names, primary and foreign keys, and major
columns. Each normalized relationship should have a descriptive name, and estimated row
counts and transaction rates should appear with each table. Accompanying each model is an
additional sheet with all of the columns and datatypes, their ranges of value, and the tentative
names for the tables, columns, and named values in the columns.

The Atomic Business Model
This data document is now combined with the task document. The combined document is a
business model. It’s reviewed jointly by the application designers and end users for accuracy
and completeness.

The Business Model
At this point, both the application designers and the end users should possess a clear vision of the
business, its tasks, and its data. Once the business model is corrected and approved, the process
of synthesizing the tasks and data models into an overall business model begins. This part of the

Chapter 2: The Dangers in a Relational Database 33

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 2
Blind Folio 2:33

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

process sorts common data elements between tasks, completes final, large-scale normalization,
and resolves consistent, definitive names for all of the parts.

This can be quite a large drawing for major applications, with supporting documentation that
includes the tasks, the data models (with corrected element names, based on the full model), and a
list of each of the full-scale tables and their column names, datatypes, and contents. A final check
of the effort is made by tracing the data access paths of each transaction in the full business model
to determine that all the data the transaction requires is available for selection or insertion, and that
no tasks insert data with elements missing that are essential to the model’s referential integrity.

With the exception of the effort spent to properly name the various tables, columns, and
common values, virtually everything to this point has been analysis, not design. The aim has
been to promote understanding of the business and its components.

Data Entry
Screen design does not proceed from the business model. It is not focused on tables, but rather
on tasks, so screens are created that support the task orientation and the need to jump between
subtasks when necessary. In practical terms, this will often map readily to a primary table
used by the task, and to other tables that can be queried for values or updated as the primary
table is accessed.

But there will also be occasions where there simply is no main table, but instead a variety of
related tables, all of which will supply or receive data to support the task. These screens will look
and act quite differently from the typical table-oriented screens developed in many applications,
but they will significantly amplify the effectiveness of their users and their contribution to the
business. And that’s the whole purpose of this approach.

The interaction between the user and the machine is critical; the input and query screens
should consistently be task-oriented and descriptive, in English. The use of icons and graphical
interfaces plays an important role as well. Screens must reflect the way work is actually done,
and be built to respond in the language in which business is conducted.

Query and Reporting
If anything sets apart the relational approach, and SQL, from more traditional application
environments, it is the ability for end users to easily learn and execute ad hoc queries. These
are those reports and one-time queries that are outside of the basic set usually developed and
delivered along with the application code.

With SQLPLUS (and other reporting tools), end users are given unprecedented control over
their own data. Both the users and developers benefit from this ability: the users, because they
can build reports, analyze information, modify their queries, and reexecute them all in a matter
of minutes, and the developers, because they are relieved of the undesirable requirement of
creating new reports.

Users are granted the power to look into their data, analyze it, and respond with a speed and
thoroughness unimaginable just a few years ago. This leap in productivity is greatly extended if
the tables, columns, and data values are carefully crafted in English; it is greatly foreshortened
if bad naming conventions and meaningless codes and abbreviations are permitted to infect the
design. The time spent in the design process to name the objects consistently and descriptively
will pay off quickly for the users, and therefore for the business.

Some people, typically those who have not built major relational applications, fear that turning
query facilities over to end users will cripple the machine on which the facilities are used. The fear

34 Part I: Critical Database Concepts

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 2
Blind Folio 2:34

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

is that users will write inefficient queries that will consume overwhelming numbers of CPU cycles,
slowing the machine and every other user. Experience shows that this generally is not true. Users
quickly learn which kinds of queries run fast, and which do not. Further, most business intelligence
and reporting tools available today can estimate the amount of time a query will take, and restrict
access—by user, time of day, or both—to queries that would consume a disproportionate amount
of resources. In practice, the demands users make on a machine only occasionally get out of hand,
but the benefits they derive far exceed the cost of the processing. Virtually any time you can move
effort from a person to a machine, you save money.

The real goal of design is to clarify and satisfy the needs of the business and business users.
If there is a bias, it must always be toward making the application easier to understand and use,
particularly at the expense of CPU or disk, but less so if the cost is an internal complexity so great
that maintenance and change become difficult and slow.

Toward Object Name Normalization
The basic approach to naming is to choose meaningful, memorable, and descriptive readable
names, avoiding abbreviations and codes, and using underlines either consistently or not at all.
In a large application, table, column, and data names will often be multiword, as in the case of
ReversedSuspenseAccount or Last_GL_Close_Date. The goal of thoughtful naming methods is
ease of use: The names must be easily remembered and must follow rules that are easily
explained and applied. In the pages ahead, a somewhat more rigorous approach to naming is
presented, with the ultimate goal of developing a formal process of object name normalization.

Level-Name Integrity
In a relational database system, the hierarchy of objects ranges from the database, to the table
owners, to the tables, to the columns, to the data values. In very large systems, there may even be
multiple databases, and these may be distributed within locations. For the sake of brevity, the
higher levels will be ignored for now, but what is said will apply to them as well.

Each level in this hierarchy is defined within the level above it, and each level should be
given names appropriate to its own level and should not incorporate names from outside its own
level. For example, a table cannot have two columns called Name, and the account named
George cannot own two tables named AUTHOR.

There is no requirement that each of George’s tables have a name that is unique throughout
the entire database. Other owners may have AUTHOR tables as well. Even if George is granted
access to them, there is no confusion, because he can identify each table uniquely by prefixing
its owner’s name to the table name, as in Dietrich.AUTHOR. It would not be logically consistent
to incorporate George’s owner name into the name of each of his tables, as in GEOAUTHOR,
GEOBOOKSHELF, and so on. This confuses and complicates the table name by placing part of its
parent’s name in its own, in effect a violation of level-name integrity.

Brevity should never be favored over clarity. Including pieces of table names in column
names is a bad technique, because it violates the logical idea of levels, and the level-name
integrity that this requires. It is also confusing, requiring users to look up column names virtually
every time they want to write a query. Object names must be unique within their parent, but no
incorporation of names from outside an object’s own level should be permitted.

The support for abstract datatypes in Oracle strengthens your ability to create consistent
names for attributes. If you create a datatype called ADDRESS_TY, it will have the same attributes

Chapter 2: The Dangers in a Relational Database 35

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 2
Blind Folio 2:35

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

each time it is used. Each of the attributes will have a consistent name, datatype, and length,
making their implementation more consistent across the enterprise. However, using abstract
datatypes in this manner requires that you do both of the following:

■ Properly define the datatypes at the start so that you can avoid the need to modify the
datatype later

■ Support the syntax requirements of abstract datatypes (see Chapter 4 for details)

Foreign Keys
The one area of difficulty with using brief column names is the occasional appearance of a
foreign key in a table in which another column has the same name that the foreign key column
has in its home table. One possible long-term solution is to allow the use of the full foreign key
name, including the table name of its home table, as a column name in the local table (such as
BOOKSHELF.Title as a column name).

The practical need to solve the same-name column problem requires one of the following
actions:

■ Invent a name that incorporates the source table of the foreign key in its name without
using the dot (using an underline, for instance).

■ Invent a name that incorporates an abbreviation of the source table of the foreign key in
its name.

■ Invent a name different from its name in its source table.

■ Change the name of the conflicting column.

None of these is particularly attractive, but if you come across the same-name dilemma,
you’ll need to take one of these actions.

Singular Names
One area of great inconsistency and confusion is the question of whether objects should have
singular or plural names. Should it be the AUTHOR table or the AUTHORS table? Should it be
the Name column or the Names column?

There are two helpful ways to think about this issue. First, consider some columns common
to nearly every database: Name, Address, City, State, and Zip. Other than the first column, does it
ever occur to anyone to make these names plural? It is nearly self-evident when considering these
names that they describe the contents of a single row, a record. Even though relational databases
are “set-oriented,” clearly the fundamental unit of a set is a row, and it is the content of that row
that is well-described by singular column names. When designing a data entry screen to capture
a person’s name and address, should it look like this?

Names: ___

Addresses: ___

Cities: ____________________________ States __ Zips _____-____

36 Part I: Critical Database Concepts

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 2
Blind Folio 2:36

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Or will you make these column names singular on the screen, since you’re capturing one name
and address at a time, but tell the users that when they write queries they must all be converted to
plural? It is simply more intuitive and straightforward to restrict column names to singular.

If all objects are named consistently, neither you nor a user has to try to remember the rules
for what is plural and what isn’t. The benefit of this should be obvious. Suppose we decide that
all objects will henceforth be plural. We now have an “s” or an “es” on the end of virtually every
object, perhaps even on the end of each word in a long multiword object name. Of what
possible benefit is it to key all of these extra letters all the time? Is it easier to use? Is it easier to
understand? Is it easier to remember? Obviously, it is none of these.

Therefore, the best solution is this: All object names are always singular. The sole exception
to this rule is any widely accepted term already commonly used in the business, such as “sales.”

Brevity
As mentioned earlier, clarity should never be sacrificed for brevity, but given two equally
meaningful, memorable, and descriptive names, always choose the shorter. During application
development, propose alternative column and table names such as these to a group of users and
developers and get their input on choosing the clearest name. How do you build lists of
alternatives? Use a thesaurus and a dictionary. On a project team dedicated to developing
superior, productive applications, every team member should be given a thesaurus and a
dictionary as basic equipment, and then should be reminded over and over again of the
importance of careful object naming.

Object Name Thesaurus
Ultimately, relational databases should include an object name thesaurus, just as they include a
data dictionary. This thesaurus should enforce the company’s naming standards and ensure
consistency of name choice and abbreviation (where used).

Such standards may require the use of underlines in object naming to make the parsing of the
name into component parts a straightforward task. This also helps enforce the consistent use of
underlines, rather than the scattered, inconsistent usage within an application that underlines
frequently receive now.

If you work directly with a government agency or large firm, that organization may already
have object-naming standards. The object-naming standards of large organizations have over the
years radiated into the rest of the commercial marketplace, and may form the basis for the naming
standards used at your company. For example, those standards may provide the direction to choose
between “Corporation” and “Firm.” If they do not, you should develop your naming standards to
be consistent both with those base standards and with the guidelines put forth in this chapter.

Intelligent Keys and Column Values
Intelligent keys are so named because they contain nontrivial combinations of information. The
term is misleading in the extreme because it implies something positive or worthwhile. A more
meaningful term might be “overloaded” keys. General ledger and product codes often fall into
this category and contain all the difficulties associated with other codes, and more. Further, the
difficulties found in overloaded keys also apply to non-key columns that are packed with more
than one piece of meaningful data.

Chapter 2: The Dangers in a Relational Database 37

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 2
Blind Folio 2:37

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Typical of an overloaded key or column value is this description: “The first character is the
region code. The next four characters are the catalog number. The final digit is the cost center
code, unless this is an imported part, in which case an I is tagged onto the end of the number, or
unless it is a high-volume item, such as screws, in which case only three digits are used for
catalog number, and the region code is HD.”

Eliminating overloaded key and column values is essential in good relational design. The
dependencies built on pieces of these keys (usually foreign keys into other tables) are all at risk if
the structure is maintained. Unfortunately, many application areas have overloaded keys that
have been used for years and are deeply embedded in the company’s tasks. Some of them were
created during earlier efforts at automation, using databases that could not support multiple key
columns for composite keys. Others came about through historical accretion, by forcing a short
code, usually numeric, to mean more and to cover more cases than it was ever intended to at the
beginning. Eliminating the existing overloaded keys may have practical ramifications that make it
impossible to do immediately. This makes building a new, relational application more difficult.

The solution to this problem is to create a new set of keys, both primary and foreign, that
properly normalizes the data; then, make sure that people can access tables only through these
new keys. The overloaded key is then kept as an additional, and unique, table column. Access to
it is still possible using historical methods (matching the overloaded key in a query, for instance),
but the newly structured keys are promoted as the preferred method of access. Over time, with
proper training, users will gravitate to the new keys. Eventually, the overloaded keys (and other
overloaded column values) can simply be NULLed out or dropped from the table.

Failing to eliminate overloaded keys and values makes extracting information from the
database, validating the values, assuring data integrity, and modifying the structure all extremely
difficult and costly.

The Commandments
All of the major issues in designing for productivity have now been discussed. It probably is
worthwhile to sum these up in a single place—thus “The Commandments” (or perhaps “The
Suggestions”). Their presentation does not assume that you need to be told what to do, but rather
that you are capable of making rational judgments and can benefit from the experience of others
facing the same challenges. The purpose here is not to describe the development cycle, which
you probably understand better than you want to, but rather to bias that development with an
orientation that will radically change how the application will look, feel, and be used. Careful
attention to these ideas can dramatically improve the productivity and happiness of an
application’s users.

The Ten Commandments of Humane Design

1. Include users. Put them on the project team and teach them the relational model and SQL.

2. Name tables, columns, keys, and data jointly with the users. Develop an application
thesaurus to ensure name consistency.

3. Use English words that are meaningful, memorable, descriptive, short, and singular.
Use underlines consistently or not at all.

4. Don’t mix levels in naming.

38 Part I: Critical Database Concepts

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 2
Blind Folio 2:38

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

5. Avoid codes and abbreviations.

6. Use meaningful keys where possible.

7. Decompose overloaded keys.

8. Analyze and design from the tasks, not just the data. Remember that normalization is
not design.

9. Move tasks from users to the machine. It is profitable to spend cycles and storage to gain
ease of use.

10. Don’t be seduced by development speed. Take time and care in analyses, design,
testing, and tuning.

Chapter 2: The Dangers in a Relational Database 39

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 2
Blind Folio 2:39

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 2
Blind Folio 2:40

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 3
Blind Folio 3:41

CHAPTER
3

The Basic Parts of
Speech in SQL

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

W
ith the Structured Query Language, or SQL, you tell Oracle which information
you want it to select, insert, update, or delete. In fact, these four verbs are the
primary words you will use to give Oracle instructions. As of Oracle9i, you
can use an additional command, merge, to perform inserts and updates with a
single command.

In Chapter 1, you saw what is meant by “relational,” how tables are organized into columns
and rows, and how to instruct Oracle to select certain columns from a table and show you the
information in them row by row. In this and the following chapters, you will learn how to do this
more completely for the different datatypes supported by Oracle. In this section, you will learn
how to interact with SQL*PLUS, a powerful Oracle product that can take your instructions for
Oracle, check them for correctness, submit them to Oracle, and then modify or reformat the
response Oracle gives, based on orders or directions that you’ve set in place. It interacts with
you, which means you can “talk” to it, and it will “talk” back. You can give it directions, and it
will follow them precisely. It will tell you if it doesn’t understand something you’ve told it to do.

It may be a little confusing at first to understand the difference between what SQL*PLUS is
doing and what Oracle is doing, especially since the error messages that Oracle produces are
simply passed on to you by SQL*PLUS, but you will see as you work through this book where the
differences lie. As you get started, just think of SQL*PLUS as a coworker—an assistant who
follows your instructions and helps you do your work more quickly. You interact with this
coworker by typing on your keyboard.

You may follow the examples in this and subsequent chapters by typing the commands shown.
Your Oracle and SQL*PLUS programs should respond just as they do in these examples. You do
need to make certain that the tables used in this book have been loaded into your copy of Oracle.

You can understand what is described in this book without actually typing it in yourself; for
example, you can use the commands shown with your own tables. It will probably be clearer
and easier, though, if you have the same tables loaded into Oracle that are used here, and
practice using the same queries.

The CD contains instructions on loading the tables. Assuming that you have done this,
connect to SQL*PLUS and begin working by typing this:

sqlplus

(If you want to run SQL*PLUS from your desktop client machine, select the SQL Plus program
option from the Application Development menu option under the Oracle software menu option.)
This starts SQL*PLUS. (Note that you don’t type the * that is in the middle of the official product
name, and the asterisk doesn’t appear in the program name, either. From here on, SQLPLUS will
be referred to without the asterisk.) Since Oracle is careful to guard who can access the data it
stores, it always requires that you enter an ID and password to connect to it. Oracle will display a
copyright message, and then ask for your username and password. Log into your database using
the account and password you created to hold the example tables (such as practice/practice). If
you provide a valid username and password, SQLPLUS will announce that you’re connected to
Oracle, and then will display this prompt:

SQL>

42 Part I: Critical Database Concepts

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 3
Blind Folio 3:42

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

You are now in SQLPLUS, and it awaits your instructions. If the command fails, there are
several potential reasons: Oracle is not in your path, you are not authorized to use SQLPLUS, or
Oracle hasn’t been installed properly on your computer. If you get this message:

ERROR: ORA-1017: invalid username/password; logon denied

it means either that you’ve entered the username or password incorrectly, or that your username
has not yet been set up properly on your copy of Oracle. After three unsuccessful attempts to
enter a username and password that Oracle recognizes, SQLPLUS will terminate the attempt to
log on, with this message:

unable to CONNECT to ORACLE after 3 attempts, exiting SQL*Plus

If you get this message, contact your company’s database administrator. Assuming everything
is in order, and the SQL> prompt has appeared, you may now begin working with SQLPLUS.

When you want to quit working and leave SQLPLUS, type this:

quit

Style
First, some comments on style. SQLPLUS doesn’t care whether the SQL commands you type are
in uppercase or lowercase. This command:

SeLeCt feaTURE, section, PAGE FROM newsPaPeR;

will produce exactly the same result as this one:

select Feature, Section, Page from NEWSPAPER;

Case matters only when SQLPLUS or Oracle is checking an alphanumeric value for equality.
If you tell Oracle to find a row where Section = ‘f’ and Section is really equal to ‘F’, Oracle won’t
find it (since f and F are not identical). Aside from this use, case is completely irrelevant.
(Incidentally, the letter ‘F’, as used here, is called a literal, meaning that you want Section to be
tested literally against the letter ‘F’, not a column named F. The single quote marks enclosing the
letter tell Oracle that this is a literal, and not a column name.)

As a matter of style, this book follows certain conventions about case to make the text easier
to read:

■ select, from, where, order by, having, and group by will always be lowercase and
boldface.

■ SQLPLUS commands also will be lowercase and boldface: column, set, save, ttitle,
and so on.

■ IN, BETWEEN, UPPER, and other SQL operators and functions will be uppercase
and boldface.

Chapter 3: The Basic Parts of Speech in SQL 43

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 3
Blind Folio 3:43

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ Column names will be mixed uppercase and lowercase without boldface: Feature,
EastWest, Longitude, and so on.

■ Table names will be uppercase without boldface: NEWSPAPER, WEATHER,
LOCATION, and so on.

You may want to follow similar conventions in creating your own queries, or your company
already may have standards it would like you to use, or you may choose to invent your own. The
goal of any such standards should always be to make your work simple to read and understand.

Creating the NEWSPAPER Table
The examples in this book are based on the tables created by the scripts that are located on the CD.
Each table is created via the create table command, which specifies the names of the columns in
the table, as well as the characteristics of those columns. Here is the create table command for the
NEWSPAPER table, which is used in many of the examples in this chapter:

create table NEWSPAPER (
Feature VARCHAR2(15) not null,
Section CHAR(1),
Page NUMBER
);

In later chapters in this book, you’ll see how to interpret all the clauses of this command. For
now, you can read it as: “Create a table called NEWSPAPER. It will have three columns, named
Feature (a variable-length character column), Section (a fixed-length character column), and Page
(a numeric column). The values in the Feature column can be up to 15 characters long, and
every row must have a value for Feature. Section values will all be 1 character long.”

In later chapters, you’ll see how to extend this simple command to add constraints, indexes,
and storage clauses. For now, the NEWSPAPER table will be kept simple so that the examples
can focus on SQL.

Using SQL to select Data from Tables
Figure 3-1 shows a table of features from a local newspaper. If this were an Oracle table, rather
than just paper and ink on the front of the local paper, SQLPLUS would display it for you if you
typed this:

select Feature, Section, Page from NEWSPAPER;

FEATURE S PAGE
--------------- - ----------
National News A 1
Sports D 1
Editorials A 12
Business E 1
Weather C 2
Television B 7

44 Part I: Critical Database Concepts

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 3
Blind Folio 3:44

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Births F 7
Classified F 8
Doctor Is In F 6
Modern Life B 1
Comics C 4
Movies B 4
Bridge B 2
Obituaries F 6

14 rows selected.

What’s different between the table you created and the one shown in the output in
Figure 3-1? Both tables have the same information, but the format differs. For example,
the column headings differ slightly. In fact, they even differ slightly from the columns
you just asked for in the select statement.

The column named Section shows up as just the letter ‘S’, and although you used
uppercase and lowercase letters to type this:

select Feature, Section, Page from NEWSPAPER;

the column headings came back with all of the letters in uppercase.

Chapter 3: The Basic Parts of Speech in SQL 45

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 3
Blind Folio 3:45

Feature Section Page

Births F 7

Bridge B 2

Business E 1

Classified F 8

Comics C 4

Doctor Is In F 6

Editorials A 12

Modern Life B 1

Movies B 4

National News A 1

Obituaries F 6

Sports D 1

Television B 7

Weather C 2

FIGURE 3-1. A NEWSPAPER table

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

46 Part I: Critical Database Concepts

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 3
Blind Folio 3:46

These changes are the result of the assumptions SQLPLUS makes about how information
should be presented. You can change these assumptions, and you probably will, but until you
give it different orders, this is how SQLPLUS changes what you input:

■ It changes all the column headings to uppercase.

■ It allows columns to be only as wide as the column is defined to be in Oracle.

■ It squeezes out any spaces if the column heading is a function. (This will be
demonstrated in Chapter 7.)

The first point is obvious. The column names you used were shifted to uppercase. The second
point is not obvious. How are the columns defined? To find out, ask Oracle. Simply tell SQLPLUS
to describe the table, as shown here:

describe NEWSPAPER

Name Null? Type
------------------------------- -------- -------
FEATURE NOT NULL VARCHAR2(15)
SECTION CHAR(1)
PAGE NUMBER

This display is a descriptive table that lists the columns and their definitions for the
NEWSPAPER table; the describe command works for any table. Note that the details in this
description match the create table command given earlier in this chapter.

The first column tells the names of the columns in the table being described.
The second column, Null?, is really a rule about the column named to its left. When the

NEWSPAPER table was created, the NOT NULL rule instructed Oracle not to allow any user to
add a new row to the table if he or she left the Feature column empty (NULL means empty). Of
course, in a table such as NEWSPAPER, it probably would have been worthwhile to use the same
rule for all three columns. What good is it to know the title of a Feature without also knowing
what Section it’s in and what Page it’s on? But, for the sake of this example, only Feature was
created with the rule that it could not be NULL.

Because Section and Page have nothing in the Null? column, they are allowed to be empty in
any row of the NEWSPAPER table.

The third column, Type, tells the basic nature of the individual columns. Feature is a
VARCHAR2 (variable-length character) column that can be up to 15 characters (letters, numbers,
symbols, or spaces) long.

Section is a character column as well, but it is only one character long! The creator of the
table knew that newspaper sections in the local paper are only a single letter, so the column was
defined to be only as wide as it needed to be. It was defined using the CHAR datatype, which is
used for fixed-length character strings. When SQLPLUS went to display the results of your query:

select Feature, Section, Page from NEWSPAPER;

it knew from Oracle that Section was a maximum of only one character. It assumed that you did
not want to use up more space than this, so it displayed a column just one character wide, and
used as much of the column name as it could: ‘S’.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The third column in the NEWSPAPER table is Page, which is simply a number. Notice that
the Page column shows up as ten spaces wide, even though no pages use more than two
digits—numbers usually are not defined as having a maximum width, so SQLPLUS assumes a
maximum just to get started.

You also may have noticed that the heading for the only column composed solely of
numbers, Page, was right-justified—that is, it sits over on the right side of the column, whereas
the headings for columns that contain characters sit over on the left. This is standard alignment
for column headings in SQLPLUS. As with other column features, you’ll see in Chapter 6 how to
change alignment as needed.

Finally, SQLPLUS tells you how many rows it found in Oracle’s NEWSPAPER table. (Notice
the “14 rows selected” notation at the bottom of the display.) This is called feedback. You can
make SQLPLUS stop giving feedback by setting the feedback option, as shown here:

set feedback off

or you can set a minimum number of rows for feedback to work:

set feedback 25

This last example tells Oracle that you don’t want to know how many rows have been
displayed until there have been at least 25. Unless you tell SQLPLUS differently, feedback is
set to 6.

The set command is a SQLPLUS command, which means that it is an instruction telling
SQLPLUS how to act. There are many SQLPLUS options, such as feedback, that you can set.
Several of these will be shown and used in this chapter and in the chapters to follow. For a
complete list, look up set in the Alphabetical Reference section of this book.

The set command has a counterpart named show that allows you to see what instructions
you’ve given to SQLPLUS. For instance, you can check the setting of feedback by typing

show feedback

SQLPLUS will respond with

FEEDBACK ON for 25 or more rows

The width used to display numbers also is changed by the set command. You check it
by typing

show numwidth

SQLPLUS will reply as shown here:

numwidth 9

Since 9 is a wide width for displaying page numbers that never contain more than two digits,
shrink the display by typing

set numwidth 5

Chapter 3: The Basic Parts of Speech in SQL 47

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 3
Blind Folio 3:47

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

48 Part I: Critical Database Concepts

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 3
Blind Folio 3:48

However, this means that all number columns will be five digits wide. If you anticipate
having numbers with more than five digits, you must use a number higher than 5. Individual
columns in the display also can be set independently. This will be covered in Chapter 6.

select, from, where, and order by
You will use four primary keywords in SQL when selecting information from an Oracle table:
select, from, where, and order by. You will use select and from in every Oracle query you do.

The select keyword tells Oracle which columns you want, and from tells Oracle the name(s) of
the table or tables those columns are in. The NEWSPAPER table example showed how these
are used. In the first line that you entered, a comma follows each column name except the last.
You’ll notice that a correctly typed SQL query reads pretty much like an English sentence. A query
in SQLPLUS usually ends with a semicolon (sometimes called the SQL terminator). The where
keyword tells Oracle what qualifiers you’d like to put on the information it is selecting. For
example, if you input this:

select Feature, Section, Page from NEWSPAPER
where Section = 'F';

FEATURE S PAGE
--------------- - -----
Births F 7
Classified F 8
Obituaries F 6
Doctor Is In F 6

Oracle checks each row in the NEWSPAPER table before sending the row back to you. It skips
over those without the single letter ‘F’ in their Section column. It returns those where the Section
entry is ‘F’, and SQLPLUS displays them to you.

To tell Oracle that you want the information it returns sorted in the order you specify,
use order by. You can be as elaborate as you like about the order you request. Consider
these examples:

select Feature, Section, Page from NEWSPAPER
where Section = 'F'
order by Feature;

FEATURE S PAGE
--------------- - -----
Births F 7
Classified F 8
Doctor Is In F 6
Obituaries F 6

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 3: The Basic Parts of Speech in SQL 49

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 3
Blind Folio 3:49

They are nearly reversed when ordered by page, as shown here:

select Feature, Section, Page from NEWSPAPER
where Section = 'F'
order by Page;

FEATURE S PAGE
--------------- - -----
Obituaries F 6
Doctor Is In F 6
Births F 7
Classified F 8

In the next example, Oracle first puts the Features in order by Page (see the previous listing to
observe the order they are in when they are ordered only by Page). It then puts them in further
order by Feature, listing Doctor Is In ahead of Obituaries.

select Feature, Section, Page from NEWSPAPER
where Section = 'F'
order by Page, Feature;

FEATURE S PAGE
--------------- - -----
Doctor Is In F 6
Obituaries F 6
Births F 7
Classified F 8

Using order by also can reverse the normal order, like this:

select Feature, Section, Page from NEWSPAPER
where Section = 'F'
order by Page desc, Feature;

FEATURE S PAGE
--------------- - -----
Classified F 8
Births F 7
Doctor Is In F 6
Obituaries F 6

The desc keyword stands for descending. Because it followed the word “Page” in the order
by line, it put the page numbers in descending order. It would have the same effect on the
Feature column if it followed the word “Feature” in the order by line.

Notice that each of these keywords—select, from, where, and order by—has its own way of
structuring the words that follow it. The groups of words including these keywords are often
called clauses, as shown in Figure 3-2.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Thursday, July 25, 2002 4:46:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

50 Part I: Critical Database Concepts

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 3
Blind Folio 3:50

Logic and Value
Just as the order by clause can have several parts, so can the where clause, but with a
significantly greater degree of sophistication. You control the extent to which you use where
through the careful use of logical instructions to Oracle on what you expect it to return to you.
These instructions are expressed using mathematical symbols called logical operators. These are
explained shortly, and also are listed in the Alphabetical Reference section of this book.

The following is a simple example in which the values in the Page column are tested to see if
any equals 6. Every row where this is true is returned to you. Any row in which Page is not equal
to 6 is skipped (in other words, those rows for which Page = 6 is false).

select Feature, Section, Page
from NEWSPAPER
where Page = 6;

FEATURE S PAGE
--------------- - -----
Obituaries F 6
Doctor Is In F 6

The equal sign is called a logical operator, because it operates by making a logical test that
compares the values on either side of it—in this case, the value of Page and the value 6—to see if
they are equal.

In this example, no quotes are placed around the value being checked, because the column
the value is compared to (the Page column) is defined as a NUMBER datatype. Number values do
not require quotes around them during comparisons.

Single-Value Tests
You can use one of several logical operators to test against a single value, as shown in the
upcoming sidebar “Logical Tests Against a Single Value.” Take a few examples from any
of the expressions listed in this sidebar. They all work similarly and can be combined at will,
although they must follow certain rules about how they’ll act together.

Select Feature, Section, Page <--select clause

from NEWSPAPER <--from clause

where Section = ‘F’ <--where clause

FIGURE 3-2. Clauses

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 3: The Basic Parts of Speech in SQL 51

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 3
Blind Folio 3:51

Logical Tests Against a Single Value
All of these operators work with letters or numbers, and with columns or literals.

EQUAL, GREATER THAN, LESS THAN, NOT EQUAL

Page= 6 Page is equal to 6

Page> 6 Page is greater than 6

Page>= 6 Page is greater than or equal to 6

Page< 6 Page is less than 6

Page<= 6 Page is less than or equal to 6

Page!= 6 Page is not equal to 6

Page^= 6 Page is not equal to 6

Page<> 6 Page is not equal to 6

Because some keyboards lack an exclamation mark (!) or a caret (^), Oracle allows
three ways of typing the not equal operator. The final alternative, <>, qualifies as a not
equal operator because it permits only numbers less than 6 (in this example) or greater
than 6, but not 6 itself.

LIKE

Feature LIKE ’Mo%’ Feature begins with the letters Mo

Feature LIKE ’_ _ I%’ Feature has an I in the third position

Feature LIKE ’%o%o%’ Feature has two o’s in it

LIKE performs pattern matching. An underline character (_) represents exactly one
character. A percent sign (%) represents any number of characters, including zero
characters.

IS NULL, IS NOT NULL

Precipitation IS NULL Precipitation is unknown

Precipitation IS NOT NULL Precipitation is known

NULL tests to see if data exists in a column for a row. If the column is completely
empty, it is said to be NULL. The word IS must be used with NULL and NOT NULL;
equal, greater than, or less than signs do not work with NULL and NOT NULL.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

52 Part I: Critical Database Concepts

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 3
Blind Folio 3:52

Equal, Greater Than, Less Than, Not Equal
Logical tests can compare values, both for equality and for relative value. Here, a simple test is
made for all sections equal to B:

select Feature, Section, Page
from NEWSPAPER
where Section = 'B';

FEATURE S PAGE
--------------- - -----
Television B 7
Modern Life B 1
Movies B 4
Bridge B 2

The following is the test for all pages greater than 4:

select Feature, Section, Page
from NEWSPAPER
where Page > 4;

FEATURE S PAGE
--------------- - -----
Editorials A 12
Television B 7
Births F 7
Classified F 8
Obituaries F 6
Doctor Is In F 6

The following is the test for sections greater than B (this means later in the alphabet than B):

select Feature, Section, Page
from NEWSPAPER
where Section > 'B';

FEATURE S PAGE
--------------- - -----
Sports D 1
Business E 1
Weather C 2
Births F 7
Classified F 8
Comics C 4
Obituaries F 6
Doctor Is In F 6

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 3: The Basic Parts of Speech in SQL 53

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 3
Blind Folio 3:53

Just as a test can be made for greater than, so can a test be made for less than, as shown here
(all page numbers less than 8):

select Feature, Section, Page
from NEWSPAPER
where Page < 8;

FEATURE S PAGE
--------------- - ----------
National News A 1
Sports D 1
Business E 1
Weather C 2
Television B 7
Births F 7
Modern Life B 1
Comics C 4
Movies B 4
Bridge B 2
Obituaries F 6
Doctor Is In F 6

The opposite of the test for equality is the not equal test, as given here:

select Feature, Section, Page
from NEWSPAPER
where Page <> 1;

FEATURE S PAGE
--------------- - ----------
Editorials A 12
Weather C 2
Television B 7
Births F 7
Classified F 8
Comics C 4
Movies B 4
Bridge B 2
Obituaries F 6
Doctor Is In F 6

NOTE
Be careful when using the greater than and less than operators against
numbers that are stored in character datatype columns. All values in
VARCHAR2 and CHAR columns will be treated as characters during
comparisons. Therefore, numbers that are stored in those types of
columns will be compared as if they were character strings, not
numbers. If the column’s datatype is NUMBER, then 12 is greater than
9. If it is a character column, then 9 is greater than 12, because the
character ‘9’ is greater than the character ‘1’.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

54 Part I: Critical Database Concepts

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 3
Blind Folio 3:54

LIKE
One of the most powerful features of SQL is a marvelous pattern-matching operator called LIKE,
which is able to search through the rows of a database column for values that look like a pattern
you describe. It uses two special characters to denote which kind of matching to do: a percent
sign, called a wildcard, and an underline, called a position marker. To look for all of the Features
that begin with the letters ‘Mo’, use the following:

select Feature, Section, Page from NEWSPAPER
where Feature LIKE 'Mo%';

FEATURE S PAGE
--------------- - ----------
Modern Life B 1
Movies B 4

The percent sign (%) means anything is acceptable here: one character, a hundred characters,
or no characters. If the first letters are ‘Mo’, LIKE will find the Feature. If the query had used
‘MO%’ as its search condition instead, then no rows would have been returned, due to Oracle’s
case-sensitivity in data values. If you want to find those Features that have the letter ‘i’ in the
third position of their titles, and you don’t care which two characters precede the ‘i’ or what
set of characters follows, using two underlines (_ _) specifies that any character in those two
positions is acceptable. Position three must have a lowercase ‘i’; the percent sign after that says
anything is okay.

select Feature, Section, Page from NEWSPAPER
where Feature LIKE '__i%';

FEATURE S PAGE
--------------- - ----------
Editorials A 12
Bridge B 2
Obituaries F 6

Multiple percent signs also can be used. To find those words with two lowercase ‘o’s
anywhere in the Feature title, three percent signs are used, as shown here:

select Feature, Section, Page from NEWSPAPER
where Feature LIKE '%o%o%';

FEATURE S PAGE
--------------- - ----------
Doctor Is In F 6

For the sake of comparison, the following is the same query, but it is looking for two ‘i’s:

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 3: The Basic Parts of Speech in SQL 55

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 3
Blind Folio 3:55

select Feature, Section, Page from NEWSPAPER
where Feature LIKE '%i%i%';

FEATURE S PAGE
--------------- - ----------
Editorials A 12
Television B 7
Classified F 8
Obituaries F 6

This pattern-matching feature can play an important role in making an application friendlier
by simplifying searches for names, products, addresses, and other partially remembered items.

NULL and NOT NULL
The NEWSPAPER table has no columns in it that are NULL, even though the describe you did on
it showed that they were allowed. The following query on the COMFORT table contains, among
other data, the precipitation for San Francisco, California and Keene, New Hampshire, for four
sample dates during 2001:

select City, SampleDate, Precipitation
from COMFORT;

CITY SAMPLEDAT PRECIPITATION
------------- --------- -------------
SAN FRANCISCO 21-MAR-01 .5
SAN FRANCISCO 22-JUN-01 .1
SAN FRANCISCO 23-SEP-01 .1
SAN FRANCISCO 22-DEC-01 2.3
KEENE 21-MAR-01 4.4
KEENE 22-JUN-01 1.3
KEENE 23-SEP-01
KEENE 22-DEC-01 3.9

You can find out the city and dates on which precipitation was not measured with this query:

select City, SampleDate, Precipitation
from COMFORT
where Precipitation IS NULL;

CITY SAMPLEDAT PRECIPITATION
------------- --------- -------------
KEENE 23-SEP-01

IS NULL essentially instructs Oracle to identify columns in which the data is missing. You
don’t know for that day whether the value should be 0, 1, or 5 inches. Because it is unknown, the

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

value in the column is not set to 0; it stays empty. By using NOT, you also can find those cities
and dates for which data exists, with this query:

select City, SampleDate, Precipitation
from COMFORT
where Precipitation IS NOT NULL;

CITY SAMPLEDAT PRECIPITATION
------------- --------- -------------
SAN FRANCISCO 21-MAR-01 .5
SAN FRANCISCO 22-JUN-01 .1
SAN FRANCISCO 23-SEP-01 .1
SAN FRANCISCO 22-DEC-01 2.3
KEENE 21-MAR-01 4.4
KEENE 22-JUN-01 1.3
KEENE 22-DEC-01 3.9

Oracle lets you use the relational operators (=, !=, and so on) with NULL, but this kind of
comparison will not return meaningful results. Use IS or IS NOT for comparing values to NULL.

Simple Tests Against a List of Values
If there are logical operators that test against a single value, are there others that will test against
many values, such as a list? The sidebar “Logical Tests Against a List of Values” shows just such a
group of operators.

56 Part I: Critical Database Concepts

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 3
Blind Folio 3:56

Logical Tests Against a List of Values

Logical tests with numbers:

Page IN (1,2,3) Page is in the list (1,2,3)

Page NOT IN (1,2,3) Page is not in the list (1,2,3)

Page BETWEEN 6 AND 10 Page is equal to 6, 10, or anything
in between

Page NOT BETWEEN 6 AND 10 Page is below 6 or above 10

With letters (or characters):

Section IN (‘A’, ‘C’, ‘F’) Section is in the list (‘A’, ‘C’, ‘F’)

Section NOT IN (‘A’, ‘C’, ‘F’) Section is not in the list (‘A’, ‘C’, ‘F’)

Section BETWEEN ‘B’ AND ‘D’ Section is equal to ‘B’, ‘D’, or anything
in between (alphabetically)

Section NOT BETWEEN ‘B’ AND ‘D’ Section is below ‘B’ or above ‘D’
(alphabetically)

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Here are a few examples of how these logical operators are used:

select Feature, Section, Page
from NEWSPAPER
where Section IN ('A','B','F');

FEATURE S PAGE
--------------- - ----------
National News A 1
Editorials A 12
Television B 7
Births F 7
Classified F 8
Modern Life B 1
Movies B 4
Bridge B 2
Obituaries F 6
Doctor Is In F 6

select Feature, Section, Page
from NEWSPAPER
where Section NOT IN ('A','B','F');

FEATURE S PAGE
--------------- - ----------
Sports D 1
Business E 1
Weather C 2
Comics C 4

select Feature, Section, Page
from NEWSPAPER
where Page BETWEEN 7 and 10;

FEATURE S PAGE
--------------- - ----------
Television B 7
Births F 7
Classified F 8

These logical tests also can be combined, as in this case:

select Feature, Section, Page
from NEWSPAPER
where Section = 'F'
AND Page > 7;

FEATURE S PAGE
--------------- - ----------
Classified F 8

Chapter 3: The Basic Parts of Speech in SQL 57

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 3
Blind Folio 3:57

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

58 Part I: Critical Database Concepts

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 3
Blind Folio 3:58

The AND command has been used to combine two logical expressions and requires any row
Oracle examines to pass both tests; both Section = ‘F’ and Page > 7 must be true for a row to be
returned to you. Alternatively, OR can be used, and will return rows to you if either logical
expression turns out to be true:

select Feature, Section, Page
from NEWSPAPER
where Section = 'F'

OR Page > 7;

FEATURE S PAGE
--------------- - -----
Editorials A 12
Births F 7
Classified F 8
Obituaries F 6
Doctor Is In F 6

There are some Sections here that qualify even though they are not equal to ‘F’, because their
Page is greater than 7, and there are other Sections whose Page is less than or equal to 7, but
whose Section is equal to ‘F’.

Finally, choose those features in Section F between pages 7 and 10 with this query:

select Feature, Section, Page
from NEWSPAPER
where Section = 'F'
and Page BETWEEN 7 AND 10;

FEATURE S PAGE
--------------- - -----
Births F 7
Classified F 8

There are a few additional many-value operators whose use is more complex; they will be
covered in Chapter 8. They also can be found, along with those just discussed, in the
Alphabetical Reference section of this book.

Combining Logic
Both AND and OR follow the commonsense meaning of the words. They can be combined in a
virtually unlimited number of ways, but you must use care, because ANDs and ORs get
convoluted very easily.

Suppose you want to find the Features in the paper that the editors tend to bury, those that
are placed somewhere past page 2 of section A or B. You might try this:

select Feature, Section, Page
from NEWSPAPER
where Section = 'A'

or Section = 'B'
and Page > 2;

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 3: The Basic Parts of Speech in SQL 59

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 3
Blind Folio 3:59

FEATURE S PAGE
--------------- - -----
National News A 1
Editorials A 12
Television B 7
Movies B 4

Note that the result you got back from Oracle is not what you wanted. Somehow, page 1 of
section A was included. Why is this happening? Is there a way to get Oracle to answer the
question correctly? Although both AND and OR are logical connectors, AND is stronger. It binds
the logical expressions on either side of it more strongly than OR does (technically, AND is said
to have higher precedence), which means this where clause:

where Section = 'A'
or Section = 'B'

and Page > 2;

is interpreted to read, “where Section = ‘A’, or where Section = ‘B’ and Page > 2.” If you look at
each of the failed examples just given, you’ll see how this interpretation affected the result. The
AND is always acted on first.

You can break this bonding by using parentheses that enclose those expressions you want to
be interpreted together. Parentheses override the normal precedence:

select Feature, Section, Page
from NEWSPAPER
where Page > 2
and (Section = 'A' or Section = 'B');

FEATURE S PAGE
------------------ - ----
Editorials A 12
Television B 7
Movies B 4

The result is exactly what you wanted in the first place. Note that while you can type this
with the sections listed first, the result is identical because the parentheses tell Oracle what to
interpret together. Compare this to the different results caused by changing the order in the first
three examples, where parentheses were not used.

Another Use for where: Subqueries
What if the logical operators in the previous sidebars, “Logical Tests Against a Single Value” and
“Logical Tests Against a List of Values,” could be used not just with a single literal value (such as
‘F’) or a typed list of values (such as 4,2,7 or ‘A’,’C’,’F’), but with values brought back by an
Oracle query? In fact, this is a powerful feature of SQL.

Imagine that you are the author of the “Doctor Is In” feature, and each newspaper that
publishes your column sends along a copy of the table of contents that includes your piece.
Of course, each editor rates your importance a little differently, and places you in a section he or
she deems suited to your feature. Without knowing ahead of time where your feature is, or with

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

60 Part I: Critical Database Concepts

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 3
Blind Folio 3:60

what other features you are placed, how could you write a query to find out where a particular
local paper places you? You might do this:

select Section from NEWSPAPER
where Feature = 'Doctor Is In';

S
-
F

The result is ‘F’. Knowing this, you could do this query:

select FEATURE from NEWSPAPER
where Section = 'F';

FEATURE

Births
Classified
Obituaries
Doctor Is In

You’re in there with births, deaths, and classified ads. Could the two separate queries have
been combined into one? Yes, as shown here:

select FEATURE from NEWSPAPER
where Section = (select Section from NEWSPAPER

where Feature = 'Doctor Is In');

FEATURE

Births
Classified
Obituaries
Doctor Is In

Single Values from a Subquery
In effect, the select in parentheses (called a subquery) brought back a single value, F. The main
query then treated this F as if it were a literal ‘F’, as was used in the previous query. Remember
that the equal sign is a single-value test. It can’t work with lists, so if your subquery returned more
than one row, you’d get an error message like this:

select * from NEWSPAPER
where Section = (select Section from NEWSPAPER

where Page = 1);

ERROR: ORA-1427: single-row subquery returns more than one row

All of the logical operators that test single values can work with subqueries, as long as the
subquery returns a single row. For instance, you can ask for all of the features in the paper where

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 3: The Basic Parts of Speech in SQL 61

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 3
Blind Folio 3:61

the section is less than (earlier in the alphabet) the section that carries your column. The asterisk
in this select shows a shorthand way to request all the columns in a table without listing them
individually. They will be displayed in the order in which they were created in the table.

select * from NEWSPAPER
where Section < (select Section from NEWSPAPER

where Feature = 'Doctor Is In');

FEATURE S PAGE
--------------- - -----
National News A 1
Sports D 1
Editorials A 12
Business E 1
Weather C 2
Television B 7
Modern Life B 1
Comics C 4
Movies B 4
Bridge B 2

10 rows selected.

Ten other features rank ahead of your medical advice in this local paper.

Lists of Values from a Subquery
Just as the single-value logical operators can be used on a subquery, so can the many-value
operators. If a subquery returns one or more rows, the value in the column for each row will be
stacked up in a list. For example, suppose you want to know the cities and countries where it is
cloudy. You could have a table of complete weather information for all cities, and a LOCATION
table for all cities and their countries, as shown here:

select City, Country from LOCATION;

CITY COUNTRY
-------------------------- ---------------------------
ATHENS GREECE
CHICAGO UNITED STATES
CONAKRY GUINEA
LIMA PERU
MADRAS INDIA
MANCHESTER ENGLAND
MOSCOW RUSSIA
PARIS FRANCE
SHENYANG CHINA
ROME ITALY
TOKYO JAPAN
SYDNEY AUSTRALIA
SPARTA GREECE
MADRID SPAIN

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

select City, Condition from WEATHER;

CITY CONDITION
----------- -----------
LIMA RAIN
PARIS CLOUDY
MANCHESTER FOG
ATHENS SUNNY
CHICAGO RAIN
SYDNEY SNOW
SPARTA CLOUDY

First, you’d discover which cities were cloudy:

select City from WEATHER
where Condition = 'CLOUDY';

CITY

PARIS
SPARTA

Then, you would build a list including those cities and use it to query the LOCATION table:

select City, Country from LOCATION
where City IN ('PARIS', 'SPARTA');

CITY COUNTRY
-------------------------- ---------------------------
PARIS FRANCE
SPARTA GREECE

The same task can be accomplished by a subquery, where the select in parentheses builds a
list of cities that are tested by the IN operator, as shown here:

select City, Country from LOCATION
where City IN (select City from WEATHER

where Condition = 'CLOUDY');

CITY COUNTRY
-------------------------- ---------------------------
PARIS FRANCE
SPARTA GREECE

The other many-value operators work similarly. The fundamental task is to build a subquery
that produces a list that can be logically tested. The following are some relevant points:

■ The subquery must either have only one column, or compare its selected columns to
multiple columns in parentheses in the main query (covered in Chapter 12).

62 Part I: Critical Database Concepts

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 3
Blind Folio 3:62

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ The subquery must be enclosed in parentheses.

■ Subqueries that produce only one row can be used with either single- or many-value
operators.

■ Subqueries that produce more than one row can be used only with many-value
operators.

Combining Tables
If you’ve normalized your data, you’ll probably need to combine two or more tables to get all the
information you want.

Suppose you are the Oracle at Delphi. The Athenians come to ask about the forces of nature
that might affect the expected attack by the Spartans, as well as the direction from which they are
likely to appear:

select City, Condition, Temperature from WEATHER;

CITY CONDITION TEMPERATURE
----------- ----------- -----------
LIMA RAIN 45
PARIS CLOUDY 81
MANCHESTER FOG 66
ATHENS SUNNY 97
CHICAGO RAIN 66
SYDNEY SNOW 29
SPARTA CLOUDY 74

You realize your geography is rusty, so you query the LOCATION table:

select City, Longitude, EastWest, Latitude, NorthSouth
from LOCATION;

CITY LONGITUDE E LATITUDE N
------------------------- --------- - -------- -
ATHENS 23.43 E 37.58 N
CHICAGO 87.38 W 41.53 N
CONAKRY 13.43 W 9.31 N
LIMA 77.03 W 12.03 S
MADRAS 80.17 E 13.05 N
MANCHESTER 2.15 W 53.3 N
MOSCOW 37.35 E 55.45 N
PARIS 2.2 E 48.52 N
SHENYANG 123.3 E 41.48 N
ROME 12.29 E 41.54 N
TOKYO 139.5 E 35.42 N
SYDNEY 151.1 E 33.52 S
SPARTA 22.27 E 37.05 N
MADRID 3.14 W 40.24 N

Chapter 3: The Basic Parts of Speech in SQL 63

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 3
Blind Folio 3:63

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This is much more than you need, and it doesn’t have any weather information. Yet these two
tables, WEATHER and LOCATION, have a column in common: City. You can therefore put the
information from the two tables together by joining them. You merely use the where clause to tell
Oracle what the two tables have in common (this is similar to the example given in Chapter 1):

select WEATHER.City, Condition, Temperature, Latitude,
NorthSouth, Longitude, EastWest

from WEATHER, LOCATION
where WEATHER.City = LOCATION.City;

CITY CONDITION TEMPERATURE LATITUDE N LONGITUDE E
----------- ----------- ----------- -------- - --------- -
ATHENS SUNNY 97 37.58 N 23.43 E
CHICAGO RAIN 66 41.53 N 87.38 W
LIMA RAIN 45 12.03 S 77.03 W
MANCHESTER FOG 66 53.3 N 2.15 W
PARIS CLOUDY 81 48.52 N 2.2 E
SPARTA CLOUDY 74 37.05 N 22.27 E
SYDNEY SNOW 29 33.52 S 151.1 E

Notice that the only rows in this combined table are those where the same city is in both
tables. The where clause is still executing your logic, as it did earlier in the case of the
NEWSPAPER table. The logic you gave described the relationship between the two tables. It says,
“select those rows in the WEATHER table and the LOCATION table where the cities are equal.” If
a city was only in one table, it would have nothing to be equal to in the other table. The notation
used in the select statement is TABLE.ColumnName—in this case, WEATHER.City.

The select clause has chosen those columns from the two tables that you’d like to see
displayed; any columns in either table that you did not ask for are simply ignored. If the first line
had simply said this:

select City, Condition, Temperature, Latitude

then Oracle would not have known to which City you were referring. Oracle would tell you that
the column name City was ambiguous. The correct wording in the select clause is
WEATHER.City or LOCATION.City. In this example, it won’t make a bit of difference which of
these alternatives is used, but you will encounter cases where the choice of identically named
columns from two or more tables will contain very different data.

The where clause also requires the names of the tables to accompany the identical column
name by which the tables are combined: “where weather dot city equals location dot city”—that is,
where the City column in the WEATHER table equals the City column in the LOCATION table.

Consider that the combination of the two tables looks like a single table with seven columns
and seven rows. Everything that you excluded is gone. There is no Humidity column here, even
though it is a part of the WEATHER table. There is no Country column here, even though it is a part
of the LOCATION table. And of the 14 cities in the LOCATION table, only those that are in the
WEATHER table are here in this table. Your where clause didn’t allow the others to be selected.

A table that is built from columns in one or more tables is sometimes called a projection,
or a result table.

64 Part I: Critical Database Concepts

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 3
Blind Folio 3:64

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 3: The Basic Parts of Speech in SQL 65

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 3
Blind Folio 3:65

Creating a View
There is even more here than meets the eye. Not only does this look like a new table, but you
can give it a name and treat it like one. This is called creating a view. A view is a way of hiding
the logic that created the joined table just displayed. It works this way:

create view INVASION AS
select WEATHER.City, Condition, Temperature, Latitude,

NorthSouth, Longitude, EastWest
from WEATHER, LOCATION

where WEATHER.City = LOCATION.City;

View created.

Now you can act as if INVASION were a real table with its own rows and columns. You can
even ask Oracle to describe it to you:

describe INVASION

Name Null? Type
------------------------------- -------- ----
CITY VARCHAR2(11)
CONDITION VARCHAR2(9)
TEMPERATURE NUMBER
LATITUDE NUMBER
NORTHSOUTH CHAR(1)
LONGITUDE NUMBER
EASTWEST CHAR(1)

You can query it, too (note that you will not have to specify which table the City columns
were from, because that logic is hidden inside the view):

select City, Condition, Temperature, Latitude, NorthSouth,
Longitude, EastWest

from INVASION;

CITY CONDITION TEMPERATURE LATITUDE N LONGITUDE E
----------- ----------- ----------- -------- - --------- -
ATHENS SUNNY 97 37.58 N 23.43 E
CHICAGO RAIN 66 41.53 N 87.38 W
LIMA RAIN 45 12.03 S 77.03 W
MANCHESTER FOG 66 53.3 N 2.15 W
PARIS CLOUDY 81 48.52 N 2.2 E
SPARTA CLOUDY 74 37.05 N 22.27 E
SYDNEY SNOW 29 33.52 S 151.1 E

There will be some Oracle functions you won’t be able to use on a view that you can use on
a plain table, but they are few, and mostly involve modifying rows and indexing tables, which
will be discussed in later chapters. For the most part, a view behaves and can be manipulated
just like any other table.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

NOTE
Views do not contain any data. Tables contain data. As of Oracle8i,
you can create “materialized views” that contain data, but they are
truly tables, not views.

Suppose now you realize that you don’t really need information about Chicago or other cities
outside of Greece, so you change the query. Will the following work?

select City, Condition, Temperature, Latitude, NorthSouth,
Longitude, EastWest

from INVASION
where Country = 'GREECE';

SQLPLUS passes back this message from Oracle:

where Country = 'GREECE'
*

ERROR at line 4: ORA-00904: invalid column name

Why? Because even though Country is a real column in one of the tables behind the view
called INVASION, it was not in the select clause when the view was created. It is as if it does
not exist. So, you must go back to the create view statement and include only the country of
Greece there:

create or replace view INVASION as
select WEATHER.City, Condition, Temperature, Latitude,

NorthSouth, Longitude, EastWest
from WEATHER, LOCATION

where WEATHER.City = LOCATION.City
and Country = 'GREECE';

View created.

Using the create or replace view command allows you to create a new version of a view
without first dropping the old one. This command will make it easier to administer users’
privileges to access the view, as will be described in Chapter 19.

The logic of the where clause has now been expanded to include both joining two tables and a
single-value test on a column in one of those tables. Now, query Oracle. You’ll get this response:

select City, Condition, Temperature, Latitude, NorthSouth,
Longitude, EastWest

from INVASION;

CITY CONDITION TEMPERATURE LATITUDE N LONGITUDE E
----------- ----------- ----------- -------- - --------- -
ATHENS SUNNY 97 37.58 N 23.43 E
SPARTA CLOUDY 74 37.05 N 22.27 E

66 Part I: Critical Database Concepts

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 3
Blind Folio 3:66

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This allows you to warn the Athenians that the Spartans are likely to appear from the
southwest but will be overheated and tired from their march. With a little trigonometry, you
could even make Oracle calculate how far they will have marched. The old Oracle at Delphi
was always ambiguous in her predictions. She would have said, “The Spartans the Athenians will
conquer.” You can at least offer some facts.

Expanding the View
This power of views to hide or even modify data can be used for a variety of useful purposes.
Very complex reports can be built up by the creation of a series of simple views, and specific
individuals or groups can be restricted to seeing only certain pieces of the whole table.

In fact, any qualifications you can put into a query can become part of a view. You could, for
instance, let supervisors looking at a payroll table see only their own salaries and those of the
people working for them, or restrict operating divisions in a company to seeing only their own
financial results, even though the table actually contains results for all divisions. Most
importantly, views are not snapshots of the data at a certain point in the past. They are dynamic,
and always reflect the data in the underlying tables. The instant data in a table is changed, any
views created with that table change as well.

For example, you may create a view that restricts values based on column values. As shown
here, a query that restricts the LOCATION table on the Country column could be used to limit
the rows that are visible via the view:

create or replace view PERU_LOCATIONS as
select * from LOCATION
where Country = 'PERU';

A user querying PERU_LOCATIONS would not be able to see any rows from any country
other than Peru.

The queries used to define views may also reference pseudo-columns. A pseudo-column is a
“column” that returns a value when it is selected, but is not an actual column in a table. The User
pseudo-column, when selected, will always return the Oracle username that executed the query.
So, if a column in the table contains usernames, those values can be compared against the User
pseudo-column to restrict its rows, as shown in the following listing. In this example, the NAME
table is queried. If the value of its Name column is the same as the name of the user entering the
query, then rows will be returned.

create or replace view RESTRICTED_NAMES
select * from NAME
where Name = User;

This type of view is very useful when users require access to selected rows in a table. It
prevents them from seeing any rows that do not match their Oracle username.

Views are powerful tools. There will be more to come on the subject of views in Chapter 18.
The where clause can be used to join two tables based on a common column. The resulting

set of data can be turned into a view (with its own name), which can be treated as if it were a
regular table itself. The power of a view is in its ability to limit or change the way data is seen by
a user, even though the underlying tables themselves are not affected.

Chapter 3: The Basic Parts of Speech in SQL 67

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 3
Blind Folio 3:67

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 3
Blind Folio 3:68

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 4
Blind Folio 4:69

CHAPTER
4

The Basics of
Object-Relational

Databases

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

70 Part I: Critical Database Concepts

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 4
Blind Folio 4:70

Y
ou can extend your relational database to include object-oriented concepts and
structures. In this chapter, you will see an overview of the major object-oriented
features (first introduced in Oracle8) and the impact they have on SQL. You will
see detailed descriptions of more advanced object-oriented features in later
chapters; this chapter introduces the concepts and provides a general overview.

Do I Have to Use Objects?
Just because you use Oracle does not mean you have to use object-oriented programming (OOP)
concepts when implementing your database. In fact, the database is referred to as an object-relational
database management system (ORDBMS). The implication for developers is that three different
“flavors” of Oracle are available:

Relational The traditional Oracle relational database management system
(RDBMS), as described in the preceding chapters

Object-relational The traditional Oracle relational database, extended to include
object-oriented concepts and structures such as abstract datatypes,
nested tables, and varying arrays

Object-oriented An object-oriented database whose design is based solely on
object-oriented analysis and design

Oracle provides full support for all three implementations. If you have previously used Oracle
as a relational database, you can continue to use it in the same manner. Since the OOP capabilities
are extensions to the relational database, you can select which OOP features you want to use when
enhancing existing relational applications. If you want to redesign and implement your application
using only OOP features, you can also do that. Regardless of the method you choose, you should
first be familiar with the functions and features of the core Oracle relational database. Even if you
plan to use only OOP capabilities, you still need to know the functions and datatypes available in
Oracle, as well as its programming languages (SQL and PL/SQL).

In this chapter, you will see the basic parts of speech for SQL extended to include
object-relational structures. In the following chapters, you will find detailed descriptions of
Oracle’s functions, followed by sections on PL/SQL (Oracle’s procedural programming language),
triggers, and procedures. Following the chapters on PL/SQL and procedures, you will find several
chapters on the implementation of OOP features. You should understand Oracle’s functions,
structures, and programming languages before implementing the more advanced OOP and
object-relational structures.

Why Should I Use Objects?
Since you don’t have to use objects, should you use them at all? At first, using OOP features
may seem to complicate the design and implementation of your database systems—just as adding
new features to any system may automatically increase its complexity. OOP adherents claim
that objects reduce complexity by giving you an intuitive way of representing complex data and
its relations. For example, if you want to move a car, you can either move the car (an object),

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

or you can break it into its components (tires, steering column, and so on), move the components
individually, and then perform a join in the new location. Treating the car as an object is a more
natural way of relating to it and simplifies your interaction with it.

Besides simplifying your interactions with data, objects may help you in other ways. In this
chapter, you will see examples of three benefits that come from using OOP features:

■ Object reuse If you write OOP code, you increase the chances of reusing previously
written code modules. Similarly, if you create OOP database objects, you increase the
chances that the database objects can be reused.

■ Standards adherence If you create standard objects, you increase the chance that they
will be reused. If multiple applications or tables use the same set of database objects,
you have created a de facto standard for the database objects. For example, if you create
standard datatypes to use for all addresses, then all the addresses in your database will
use the same internal format.

■ Defined access paths For each object, you can define the procedures and functions
that act upon it—you can unite the data and the methods that access it. Having the
access paths defined in this manner allows you to standardize the data access methods
and enhance the reusability of the objects.

The costs of using objects are chiefly the added complexity of the system and the time it takes
to learn how to implement the features. But, as you’ll see in this chapter, the basics of extending
the Oracle RDBMS to include OOP capabilities build easily upon the relational model presented
in the earlier chapters. The short time required to develop and use abstract datatypes, as shown
later in this chapter, should help you gauge the time required for learning OOP features.

Everybody Has Objects
Everybody has data, and everybody has methods of interacting with data. Since the combination of
data and methods makes up an object, everybody has objects. Consider the bookshelf example
from the preceding chapters. If you track book borrowers, each entry will hold basic contact
information—name, address, and perhaps favorite type of book. You will usually have a standard
for the structure of an address—it starts with a person’s name, followed by street name, city name,
and state or region. When you add a new person to your list of borrowers, you’ll follow the same
process each time. Methods for adding new borrower records could include the following:

Add_Borrower For adding a person to the list

Update_Borrower For updating a person’s entry

Remove_Borrower For deleting a person from the list

Count_Borrower For counting the number of borrowers per favorite type of book

As shown by the Count_Borrower method, methods do not have to manipulate the data; they
can report on the data. They can perform functions on the data and return the result of the
function to the user. For example, if you stored borrowers’ birth dates, an Age method could be
used to calculate and report their ages.

Chapter 4: The Basics of Object-Relational Databases 71

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 4
Blind Folio 4:71

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Oracle supports many different types of objects. In the following sections, you will see
descriptions of the major object types available.

Abstract Datatypes
Abstract datatypes are datatypes that consist of one or more subtypes. Rather than being
constrained to the standard Oracle datatypes of NUMBER, DATE, and VARCHAR2, abstract
datatypes can more accurately describe your data. For example, an abstract datatype for
addresses may consist of the following columns:

Street VARCHAR2(50)
City VARCHAR2(25)
State CHAR(2)
Zip NUMBER

When you create a table that uses address information, you can create a column that uses the
abstract datatype for addresses—and thus contains the Street, City, State, and Zip columns that
are part of that datatype. Abstract datatypes can be nested; they can contain references to other
abstract datatypes. You will see a detailed example of nested abstract datatypes in the next
section of this chapter.

Two of the benefits listed earlier for objects—reuse and standards adherence— are realized
from using abstract datatypes. When you create an abstract datatype, you create a standard for
the representation of abstract data elements (such as addresses, people, or companies). If you use
the same abstract datatype in multiple places, you can be sure that the same logical data is
represented in the same manner in those places.

You can use abstract datatypes to create object tables. In an object table, the columns of the
table map to the columns of the abstract datatype.

Nested Tables
A nested table is a collection of rows, represented as a column within the main table. For each
record within the main table, the nested table may contain multiple rows. In one sense, it’s a way
of storing a one-to-many relationship within one table. Consider a table that contains information
about departments, each of which may have many projects in progress at any one time. In a
strictly relational model, you would create two separate tables—DEPARTMENT and PROJECT.

Nested tables allow you to store the information about projects within the DEPARTMENT
table. The PROJECT table records can be accessed directly via the DEPARTMENT table, without
the need to perform a join. The ability to select the data without traversing joins may make the
data easier to access for users. Even if you do not define methods for accessing the nested data,
you have clearly associated the department and project data. In a strictly relational model, the
association between the DEPARTMENT and PROJECT tables would be accomplished via foreign
key relationships. For examples of nested tables and other collection types, see Part IV.

Varying Arrays
A varying array is, like a nested table, a collection. A varying array is a set of objects, each with
the same datatype, seen as a column within a table. The size of the array is limited when it is
created. When you create a varying array in a table, the array is treated as a column in the main
table. Conceptually, a varying array is a nested table with a limited number of rows.

72 Part I: Critical Database Concepts

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 4
Blind Folio 4:72

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Varying arrays, also known as VARRAYS, allow you to store repeating values in tables.
For example, suppose you have a PROJECT table, and projects have workers assigned to them.
In the example system, a project can have many workers, and a worker can work on multiple
projects. In a strictly relational implementation, you can create a PROJECT table, a WORKER
table, and an intersection table PROJECT_WORKER that stores the relationships between them.

You can use varying arrays to store the worker names in the PROJECT table. If projects are
limited to ten workers or fewer, you can create a varying array with a limit of ten entries. The
datatype for the varying arrays will be whatever datatype is appropriate for the worker name
values. The varying array can then be populated, so that for each project, you can select the
names of all of the project’s workers—without querying the WORKER table. For each project
record in the PROJECT table, there would be multiple entries in the varying array holding the
worker names. For examples of varying arrays and other collection types, see Part IV.

Large Objects
A large object, or LOB, is capable of storing large volumes of data. The LOB datatypes available
are BLOB, CLOB, NCLOB, and BFILE. The BLOB datatype is used for binary data, and can
extend to 4GB in length. The CLOB datatype stores character data and can also store up to 4GB.
The NCLOB datatype is used to store CLOB data for multibyte character sets. The data for BLOB,
CLOB, and NCLOB datatypes is stored inside the database. Thus, you could have a single row
in the database that is over 4GB in length.

The fourth LOB datatype, BFILE, is a pointer to an external file. The files referenced by BFILEs
exist on the operating system; the database only maintains a pointer to the file. The size of the
external file is limited only by the operating system. Since the data is stored outside the database,
Oracle does not maintain the concurrency or integrity of the data.

You can use multiple LOBs per table. For example, you could have a table with a CLOB
column and two BLOB columns. This is an improvement over the LONG datatype, since you
can only have one LONG per table. Oracle provides a number of functions and procedures to
manipulate and select LOB data. Part IV contains implementation details for LOBs.

References
Nested tables and varying arrays are embedded objects—they are physically embedded within
another object. Another type of object, called a referenced object, is physically separate from the
objects that refer to it. References, also known as REFs, are essentially pointers to row objects.
A “row object” is different from a “column object.” An example of a “column object” is a varying
array—it is an object that is treated as a column in a table. A “row object,” on the other hand,
always represents a row.

The implementation of references is described in Part IV. As noted earlier in this chapter, you
do not have to use all the available OOP capabilities within Oracle. References are typically
among the last OOP features implemented when migrating a relational application to an
object-relational or OOP approach.

Object Views
Object views allow you to add OOP structures on top of your existing relational tables. For
example, you can create an abstract datatype based on an existing table’s definition. Object
views give you the benefits of relational table storage and OOP structures. Object views allow

Chapter 4: The Basics of Object-Relational Databases 73

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 4
Blind Folio 4:73

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

74 Part I: Critical Database Concepts

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 4
Blind Folio 4:74

you to begin to develop OOP features within your relational database—a bridge between the
relational and OOP worlds.

Before using object views, you should be familiar with abstract datatypes and triggers. See
Part IV for a full description of object views.

Naming Conventions for Objects
Chapter 2 included a discussion of the naming standards for tables and columns. In general, you
should use common, descriptive words for table and column names. For the OOP examples in
this book, the following rules will be enforced:

■ Table and column names are singular (such as EMPLOYEE, Name, and State)

■ Abstract datatype names are singular nouns with an _TY suffix (such as PERSON_TY
or ADDRESS_TY)

■ Table and datatype names are always uppercase (such as EMPLOYEE or PERSON_TY)

■ Column names are always capitalized (such as State and Start_Date)

■ Object view names are singular nouns with an _OV suffix (such as PERSON_OV
or ADDRESS_OV)

■ Nested table names are plural nouns with an _NT suffix (such as WORKERS_NT)

■ Varying array names are plural nouns with an _VA suffix (such as WORKERS_VA)

The name of an object should consist of two parts: the core object name and the suffix. The
core object name should follow your naming standards; the suffixes help to identify special types
of objects.

A Common Object Example
Let’s consider an object found in most systems: addresses. Even in a system as simple as the
bookshelf system, addresses are maintained and selected. These addresses follow a standard
format—the street address, city, and state or region. You can use this standard format as the basis
for an abstract datatype for addresses. First, expand it to include additional address information,
such as the Zip code. Next, use the create type command to create an abstract datatype:

create type ADDRESS_TY as object
(Street VARCHAR2(50),
City VARCHAR2(25),
State CHAR(2),
Zip NUMBER);

/

The create type command is the most important command in object-relational databases.
What the command in this example says is “create an abstract datatype named ADDRESS_TY. It
will be represented as having four attributes, named Street, City, State, and Zip, using the defined
datatypes and lengths for each column.” So far, no methods have been created by the user—but
the database has internally created methods that will be used whenever the ADDRESS_TY object

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

is accessed. For information on creating your own methods, see Part IV and the create type body
command entry in the Alphabetical Reference.

Within the create type command, the as object clause explicitly identifies ADDRESS_TY as
an OOP implementation.

Now that the ADDRESS_TY datatype exists, you can use it within other datatypes. For
example, you may decide to create a standard datatype for people. People have names and
addresses. Therefore, you can create the following type:

create type PERSON_TY as object
(Name VARCHAR2(25),
Address ADDRESS_TY);

/

What did this command do? First, the datatype was given a name—PERSON_TY— and
identified as an object via the as object clause. Then, two columns were defined. This line,

(Name VARCHAR2(25),

defines the first column of PERSON_TY’s representation. The second line,

Address ADDRESS_TY);

defines the second column of PERSON_TY’s representation. The second column, Address, uses
the ADDRESS_TY abstract datatype previously created. What are the columns within
ADDRESS_TY? According to the ADDRESS_TY definition, they are

create type ADDRESS_TY as object
(Street VARCHAR2(50),
City VARCHAR2(25),
State CHAR(2),
Zip NUMBER);

/

Based on these definitions, a PERSON_TY entry will have Name, Street, City, State, and Zip
columns—even though only one of those columns is explicitly defined within the PERSON_TY
type definition.

You can imagine how this capability to define and reuse abstract datatypes can simplify data
representation within your database. For example, a Street column is seldom used by itself; it is
almost always used as part of an address. Abstract datatypes allow you to join elements together
and deal with the whole—the address—instead of the parts—the Street and other columns that
constitute the address.

You can now use the PERSON_TY datatype in the process of table creation.

The Structure of a Simple Object
Try as you might, you can’t insert data into PERSON_TY. The reason is straightforward: A datatype
describes data, it does not store data. You cannot store data in a NUMBER datatype, and you
cannot store data in a datatype that you define, either. To store data, you have to create a table that
uses your datatype.

Chapter 4: The Basics of Object-Relational Databases 75

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 4
Blind Folio 4:75

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

76 Part I: Critical Database Concepts

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 4
Blind Folio 4:76

The following command creates a table named CUSTOMER. A customer has a Customer_ID
and all the attributes of a person (via the PERSON_TY datatype).

create table CUSTOMER
(Customer_ID NUMBER,
Person PERSON_TY);

What happens if you describe the CUSTOMER table? The output will show the following
column definitions:

describe CUSTOMER

Name Null? Type
------------------------------- -------- ----
CUSTOMER_ID NUMBER
PERSON PERSON_TY

The describe command shows that the Person column of the CUSTOMER table has been
defined using the PERSON_TY datatype. You can further explore the data dictionary to see the
construction of the PERSON_TY datatype. The columns of an abstract datatype are referred to as
its attributes. Within the data dictionary, the USER_TYPE_ATTRS view displays information about
the attributes of a user’s abstract datatypes.

NOTE
The data dictionary is a series of tables and views that contains
information about the structures and users in the database. You can
query the data dictionary for useful information about the database
objects that you own or have been granted access to. See Part VI for a
user-oriented guide to the data dictionary views available to you.

In the following query, the name, length, and datatype are selected for each of the attributes
within the PERSON_TY datatype:

select Attr_Name,
Length,
Attr_Type_Name

from USER_TYPE_ATTRS
where Type_Name = 'PERSON_TY';

ATTR_NAME LENGTH ATTR_TYPE_NAME
------------------------------ ---------- ------------------
NAME 25 VARCHAR2
ADDRESS ADDRESS_TY

The query output shows that the PERSON_TY type consists of a Name column (defined as a
VARCHAR2 column with a length of 25) and an Address column (defined using the ADDRESS_TY
type). You can query USER_TYPE_ATTRS again to see the attributes of the ADDRESS_TY datatype:

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 4: The Basics of Object-Relational Databases 77

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 4
Blind Folio 4:77

select Attr_Name,
Length,
Attr_Type_Name

from USER_TYPE_ATTRS
where Type_Name = 'ADDRESS_TY';

ATTR_NAME LENGTH ATTR_TYPE_NAME
------------------------------ ---------- ------------------
STREET 50 VARCHAR2
CITY 25 VARCHAR2
STATE 2 CHAR
ZIP NUMBER

You can describe the abstract datatypes as well:

desc PERSON_TY

Name Null? Type
--------------------------- -------- ----------------------------
NAME VARCHAR2(25)
ADDRESS ADDRESS_TY

desc ADDRESS_TY

Name Null? Type
--------------------------- -------- ----------------------------
STREET VARCHAR2(50)
CITY VARCHAR2(25)
STATE CHAR(2)
ZIP NUMBER

You will not often be called upon to completely decompose the types that constitute a table;
but if you need to, you can use the describe command or the queries shown in this section to
“drill down” through the layers of abstraction. Once you know the structures of each of the
abstract datatypes used by the table, you can insert records into it.

NOTE
If you do not own the tables and types you are trying to find
information about, you can query ALL_TAB_COLUMNS and
ALL_TYPE_ATTRS in place of USER_TAB_COLUMNS
and USER_TYPE_ATTRS. The ALL_TAB_COLUMNS and
ALL_TYPE_ATTRS views show all the columns and attributes
for the tables and types that you either own or have been granted
access to. Both ALL_TAB_COLUMNS and ALL_TYPE_ATTRS
contain an Owner column that identifies the table’s or type’s
owner. See Part VI for a description of the data dictionary views.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

NOTE
You can use the set describe depth command to see dependent types
and attributes when you describe a table. See Chapter 30.

Inserting Records into CUSTOMER
Oracle creates methods, called constructor methods, for data management when you create an
abstract datatype. A constructor method is a program that is named after the datatype; its
parameters are the names of the attributes defined for the datatype. When you need to insert
records into a table based on abstract datatypes, you use the constructor methods. For example,
the CUSTOMER table uses the PERSON_TY datatype, and the PERSON_TY datatype uses the
ADDRESS_TY datatype. To insert a record into the CUSTOMER table, you need to insert a record
using the PERSON_TY and ADDRESS_TY datatypes’ constructor methods.

In the following example, a record is inserted into CUSTOMER using the constructor methods
for the PERSON_TY and ADDRESS_TY datatypes. The constructor methods for these datatypes
are shown in bold in the example; they have the same names as the datatypes:

insert into CUSTOMER values
(1,
PERSON_TY('NEIL MULLANE',

ADDRESS_TY('57 MT PLEASANT ST',
'FINN', 'NH', 11111)));

1 row created.

The insert command provides the values to be inserted as a row in the CUSTOMER table.
The values provided must match the datatypes of the columns in the table.

In this example, a Customer_ID value of 1 is specified. Next, the values for the Person
column are inserted, using the PERSON_TY constructor method (shown in bold). Within the
PERSON_TY datatype, a Name is specified, and then the ADDRESS_TY constructor method is
used to insert the Address values. So, for the record inserted in the example, the Name value
is ‘NEIL MULLANE’, and the Street value is ‘57 MT PLEASANT ST’. Note that the parameters
for the constructor method are in the same order as the attributes of the datatype.

A second record can be inserted into CUSTOMER, using the exact same format for the calls
to the constructor methods (again shown in bold):

insert into CUSTOMER values
(2,
PERSON_TY('SEYMOUR HESTER',

ADDRESS_TY('1 STEPAHEAD RD',
'BRIANT', 'NH', 11111)));

The second record has now been inserted into the CUSTOMER table. You only need to use
constructor methods when you are manipulating records in tables that use abstract datatypes.

Selecting from Abstract Datatypes
If you want to select the Customer_ID values from CUSTOMER, you simply query that column’s
values from the table:

78 Part I: Critical Database Concepts

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 4
Blind Folio 4:78

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 4: The Basics of Object-Relational Databases 79

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 4
Blind Folio 4:79

select Customer_ID
from CUSTOMER;

CUSTOMER_ID

1
2

Querying the Customer_ID values is straightforward, since that column is a standard datatype
within the CUSTOMER table.

What if you want to select the person’s name from CUSTOMER? You couldn’t query it as
shown here:

select Name /* this will not work */
from CUSTOMER;

because Name is not a column in CUSTOMER. You’ll get the following error:

select Name
*

ERROR at line 1:
ORA-00904: invalid column name

Oracle reports this error because Name is not a column within the CUSTOMER table. Name
is an attribute within the PERSON_TY abstract datatype. To see the Name values, you need to
query the Name attribute within the Person column. You can’t query PERSON_TY directly; it’s
just a datatype, not a table. The query structure is shown in the following example:

select Customer_ID, C.Person.Name
from CUSTOMER C;

Notice the syntax for the Name column:

C.Person.Name

First, note that the access of the datatype’s attribute requires the use of a table alias. A table
alias, also known as a correlation variable, allows Oracle to resolve any ambiguity regarding the
name of the object being selected.

As a column name, Person.Name points to the Name attribute within the PERSON_TY
datatype. The format for the column name is

Correlation.Column.Attribute

This may be a little confusing. During inserts, you use the name of the datatype (actually, you
use the name of the constructor method, which is the same as the name of the datatype). During
selects, you use the name of the column. You use the name of the column for selects because
there may well be multiple columns using the same datatype in the table.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

80 Part I: Critical Database Concepts

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 4
Blind Folio 4:80

What if you want to select the Street values from the CUSTOMER table? The Street column is
part of the ADDRESS_TY datatype, which in turn is part of the PERSON_TY datatype. To select this
data, extend the Column.Attribute format to include the nested type. The format will be as follows:

Correlation.Column.Column.Attribute

Thus, to select the Street attribute of the Address attribute within the Person column, your
query will be

select C.Person.Address.Street
from CUSTOMER C;

PERSON.ADDRESS.STREET
--
57 MT PLEASANT ST
1 STEPAHEAD RD

The syntax

select C.Person.Address.Street

tells Oracle exactly how to find the Street attribute. The correlation variable can be any name
you choose (following Oracle’s naming standards for tables) as long as it does not conflict with
the name of any other table in the query.

If you use abstract datatypes, you can neither insert nor select values for the abstract datatypes’
attributes without knowing the exact structure of the attributes. For example, you cannot select the
CUSTOMER table’s City values unless you know that City is part of the Address attribute, and that
Address is part of the Person column. You cannot insert or update a column’s values unless you
know the datatype that it is a part of and the nesting of datatypes needed to reach it.

What if you need to reference the City column as part of a where clause? As in the prior
examples, you can refer to City as part of the Address attribute, nested within the Person column,
as shown next.

select C.Person.Name,
C.Person.Address.City

from CUSTOMER C
where C.Person.Address.City like 'F%';

PERSON.NAME PERSON.ADDRESS.CITY
------------------------- -------------------------
NEIL MULLANE FINN

When updating data within abstract datatypes, refer to its attributes via the Column.Attribute
syntax shown in the preceding examples. For example, to change the City value for the
customers who live in Briant, NH, execute the following update:

update CUSTOMER C
set C.Person.Address.City = 'HART'

where C.Person.Address.City = 'BRIANT';

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:10:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Oracle will use the where clause to find the right records to update, and the set clause to set
the new values for the rows’ City columns.

As shown in these examples, using abstract datatypes simplifies the representation of the data
but may complicate the way in which you query and work with the data. You need to weigh the
benefits of abstract datatypes—more intuitive representation of the data—against the potential
increase in complexity of data access.

In later chapters, you will see descriptions of the use and implementation of additional OOP
features, such as nested tables and varying arrays. Abstract datatypes provide a common starting
point for implementing OOP features within an Oracle database. In Part IV, you will see further
uses of abstract datatypes, nested tables, and varying arrays.

Object-Oriented Analysis and Design
In Chapter 2, you saw the basics of normalization—designing a relational database application.
When you consider adding in OOP features, such as abstract datatypes, you need to approach
database design from a slightly different perspective. For example, in traditional normalization,
you try to relate each attribute to its primary key. In OOP design, you go beyond normalization
and seek groups of columns that define a common object representation.

For example, in relational design, a CUSTOMER table may be created as follows:

create table CUSTOMER
(Customer_ID NUMBER primary key,
Name VARCHAR2(25),
Street VARCHAR2(50),
City VARCHAR2(25),
State CHAR(2),
Zip NUMBER);

From a Third Normal Form perspective, this is a proper representation of the CUSTOMER
table. Each of the attributes is related solely to the Customer_ID (the primary key of the table). But
looking at the table, you can see that there are columns that, when grouped together, represent
an object. The examples earlier in this chapter grouped the Street, City, State, and Zip columns
into a single datatype called ADDRESS_TY. Creating the ADDRESS_TY abstract datatype allows
you to use that datatype in multiple tables. If the abstract datatype is used in multiple relational
tables, then you benefit from object reuse and from adherence to the standard definition of
attribute structures.

Once you define abstract datatypes, you should look for relationships between them to see if
they should be nested (as PERSON_TY and ADDRESS_TY are). When analyzing your database
design for types, you should focus on those types that most likely will be reused or that will
always behave in the same manner. Once you have defined the types, you can apply them in the
creation of new database objects. If your tables already exist, you can use object views to overlay
OOP designs on relational tables. See Part IV for information on object views.

Once your types are defined, you can create methods for each type. The methods define the
behavior of data access involving the types. Usually, methods are created based on “use
cases”—how is the data used? There should be methods to account for each manner in which the
data is used. You will see examples of user-defined methods in Part IV.

Chapter 4: The Basics of Object-Relational Databases 81

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 4
Blind Folio 4:81

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Going Forward
Oracle enables you to use the database as a strictly relational database, as an object-relational
database, or as an OOP database. At its core, Oracle is a relational database; the OOP features
are implemented as extensions on the relational engine. Therefore, you should be very familiar
with Oracle’s relational features before starting to use its OOP features. This part of this book
mirrors that approach. In Part II, you will see detailed descriptions of Oracle’s implementation of
the SQL language. That part of the book focuses on the implementation of SQL for relational
tables; with some limitations, the same functions will work against tables that use OOP features
such as abstract datatypes. Following the chapters on SQL usage, you will see sections on PL/SQL
(Oracle’s procedural extension to SQL) and Java. Once you know PL/SQL, you will be able to
create your own methods for your datatypes, as explained in the OOP-related chapters. When
planning to use the advanced features, remember that they are extensions to SQL; a firm
grounding in SQL is essential to their effective use.

82 Part I: Critical Database Concepts

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 4
Blind Folio 4:82

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 5
Blind Folio 5:83

CHAPTER
5

Introduction to
Web-Enabled

Databases

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

M
any of the examples in this book focus on the use of SQL within the database.
The examples assume that you can log in directly to an Oracle database, or
that you are using a client-based tool that allows you to enter commands into
a database. With the introduction of web-based technologies, your ability to
interact with the database has been augmented by new options. You still need

to know SQL, but to take advantage of these options, you may need to understand web listeners,
new toolsets, languages such as Java, and application programming interfaces (APIs) such as
JDBC and SQLJ.

The complexity of the environment may be daunting at first. Consider a simple architecture,
shown in Figure 5-1, in which two computers are involved in the application—a client and a
server. The database resides on the server, and the user interacts with the server via the client.
The client and the server rely on the underlying network for their communications, and each runs
a version of Oracle Net (known as Net8 in earlier versions). The server listens for Oracle Net
requests issued by the client.

Now consider a three-tier architecture, shown in Figure 5-2. A three-tier architecture has three
separate components: a client, an application server, and a database server. In implementing a
three-tier architecture, you have many more choices available than you have in the traditional
client-server architecture. The communications protocol used to communicate between the client
and the application server can be different from that used to communicate between the application
server and the database server. The workload distribution among the three components can vary
widely across applications. The performance and reliability of the components in both stand-alone
and networked mode can influence the success or failure of the application.

NOTE
In some three-tier implementations, the application server and the
database server reside on the same physical server.

The three-tier architecture significantly increases your opportunities for distributing an
application’s workload over multiple servers. However, it also increases the number of points of
failure in the architecture, and complicates the configuration of a preproduction test environment.
Oracle supports many different ways of implementing a three-tier architecture, and you will need to
select the architecture that best suits the needs of your application. You should reevaluate your
environment needs for each new application rather than assume that a single architecture will
seamlessly support every desired outcome.

84 Part I: Critical Database Concepts

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 5
Blind Folio 5:84

FIGURE 5-1. Client-server architecture

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Most web-enabled databases rely on a three-tier model. Typically, an existing database server
is made available for web-based access. To make the database available, the server must be
accessible via an external network. To provide this network access, a second server is commonly
used as a firewall, restricting the kinds of commands that can be passed to the database server.
The application server can act as a firewall.

Consider the architecture shown in Figure 5-3. Based on Figure 5-2, it shows one possible
configuration for a web-enabled database. In Figure 5-3, the client is a computer with access to
the Internet, running a browser. That client communicates with the application server via the
Hypertext Transfer Protocol (HTTP). The application server, in turn, executes commands against
the database, formats the results in Hypertext Markup Language (HTML), and returns the results
to the client.

In this configuration, the application server provides authentication services (to make sure
the client is allowed to initiate the request), database connection services, and application
processing services. The client’s role is to initiate the request and display the results returned,
while the database serves as the repository for the data. Clearly, you should restrict the privileges
available to the application server to make sure only authorized commands can be performed
on behalf of clients.

Chapter 5: Introduction to Web-Enabled Databases 85

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 5
Blind Folio 5:85

FIGURE 5-2. Three-tier architecture

FIGURE 5-3. Common web-based implementation

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Where Does SQL Fit In?
SQL is the standard language for accessing Oracle data, so where in a web-based architecture
does it fit? SQL and Oracle’s procedural language, PL/SQL, are commonly used in the
following places:

■ Within the database server, in the form of stored procedures and packages (see Part III)

■ In commands executed to create and maintain the database structures

■ In direct queries of the database

■ In scripts and batch processes executed on the database server

■ In commands issued by the application server

You may have additional places within your architecture where SQL is used, but the preceding
are the most common. Since the client and the application server may not be communicating via
SQL, you need to have a web listener running on the application server in order to receive HTTP
requests. The application server will then be able to receive requests from clients (via HTTP) and
begin to act on them. If the application server communicates with the database server via SQL, then
the application server will require Oracle Net as well.

Instead of using standard SQL to communicate with the database server, the application
server can use Java Database Connectivity (JDBC) and SQLJ (a precompiler that generates JDBC
code). See Part V for details on the creation and use of JDBC and SQLJ programs. If you use
JDBC or SQLJ, you still need to provide Oracle Net on the application server to support database
connectivity. You also need to know SQL and the ways in which JDBC and SQLJ provide support
for different result sets.

Where Does Java Fit In?
With the ubiquity of Java on the web, you may be tempted to create a fully Java-based database
application. In that architecture, the client communicates with the application server via either
HTTP or the Internet Inter-ORB Protocol (IIOP). Within the database, you can create Java classes,
and the application server would interact with those Java classes via IIOP. Thus, you can create a
web-enabled database that does not rely on Oracle Net for any of its connectivity.

Within the database, you can write your stored procedures in either PL/SQL (see Part III) or
Java (see Part V). In general, you should use these languages for the functions they perform best:
PL/SQL for database interaction and Java for non-database-related functions. If you use Java
exclusively throughout your application, you should expect to encounter performance or
functionality limitations during its production usage.

Java is well suited for use on the client and application server. In your application
development process, you should test the implications of using Java in place of PL/SQL or SQL
for your database access. PL/SQL has been part of the Oracle kernel for over a decade and is well
suited for quick data retrieval and manipulation. Although Java technically fits into all the servers
shown in Figure 5-3, you need to evaluate how well it performs for your purposes.

86 Part I: Critical Database Concepts

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 5
Blind Folio 5:86

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Where Does Oracle Portal Fit In?
Oracle Portal is an Oracle product that is used to create web sites and applications (known as
WebDB in prior releases). The core data for the sites and applications is stored in Oracle tables.
When a client accesses the site, the client’s request is handled by a web listener, such as Oracle’s
9i Application Server (9iAS). The web listener executes PL/SQL functions stored within the
database. Those functions return the requested data embedded within HTML tags. The listener
then returns that data to the client, and the site is displayed within the client’s browser.

The table concept introduced in Chapter 1 may help to illustrate this process. To display the
WEATHER table in a client browser, you could create an Oracle Portal application. The WEATHER
table will reside within the database on the database server. To display the data in tabular format,
the query by the application server will embed HTML table-formatting tags in the output. The result
is an HTML file that contains the embedded HTML table-formatting tags along with the data from
the WEATHER table’s rows.

You can use Oracle Portal for many purposes, but you should consider your desired outcomes
before implementing it. As Oracle Portal requires a three-tier architecture, you need to make sure
this architecture fits your environment and your processing capabilities.

Within a web-enabled database, there is room for all technologies—PL/SQL in packages, SQL
in scripts, Java in classes, Oracle Portal as a user interface, and other Oracle products as integrating
technologies. As new development tools and integration components become available, look to
complement your current architecture. Integrating your data access methods and data presentation
technologies should simplify your application maintenance and design, giving you an extendable
platform for your future application requirements.

Chapter 5: Introduction to Web-Enabled Databases 87

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 5
Blind Folio 5:87

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 5
Blind Folio 5:88

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 6
Blind Folio 6:89

PART
II

SQL and SQL*PLUS

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 6
Blind Folio 6:90

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 6
Blind Folio 6:91

CHAPTER
6

Basic SQL*PLUS
Reports and
Commands

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

92 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 6
Blind Folio 6:92

S
QLPLUS is usually thought of as a kind of interactive report writer. It uses SQL to
get information from the Oracle database, and lets you create reports by giving you
easy control over titles, column headings, subtotals and totals, reformatting of
numbers and text, and much more. It also can be used to change the database by
using insert, update, and delete commands in SQL. SQLPLUS can even be used as

a code generator, where a series of commands in SQLPLUS can dynamically build a program
and then execute it.

In most production applications, more advanced report writers are used—such as Web-based
parameter-driven reports. SQLPLUS is most commonly used for simple queries and printed
reports. Getting SQLPLUS to format information in reports according to your taste and needs
requires only a handful of commands, or keywords that instruct SQLPLUS how to behave. They
are listed in Table 6-1. Detailed explanations, examples, and additional features of each of these
commands are given in the Alphabetical Reference section of this book.

In this chapter, you will see a basic report that was written using SQLPLUS, along with an
explanation of the features used to create it. If building a report seems a bit daunting at first,
don’t worry. Once you try the steps, you’ll find them simple to understand, and they will soon
become familiar.

You can write SQLPLUS reports while working interactively with SQLPLUS—that is, you can
type commands about page headings, column titles, formatting, breaks, totals, and so on, and
then execute a SQL query, and SQLPLUS will immediately produce the report formatted to your
specifications. For quick answers to simple questions that aren’t likely to recur, this is a fine
approach. More common, however, are complex reports that need to be produced periodically,
and that you’ll want to print rather than just view on the screen. Unfortunately, when you quit
SQLPLUS, it promptly forgets every instruction you’ve given it. If you were restricted to using
SQLPLUS only in this interactive way, then running the same report at a later time would require
typing everything all over again.

The alternative is very straightforward. You simply type the commands, line by line, into a
file. SQLPLUS can then read this file as if it were a script, and execute your commands just as if
you were typing them. In effect, you create a report program, but you do it without a programmer
or a compiler. You create this file using any of the popular editor programs available or even
(given certain restrictions) a word processor.

The editor is not a part of Oracle. Editors come in hundreds of varieties, and every company
or person seems to have a favorite. Oracle realized this, and decided to let you choose which
editor program to use, rather than packaging a program with Oracle and forcing you to use it.
When you’re ready to use your editor program, you suspend SQLPLUS, jump over to the editor
program, create or change your SQLPLUS report program (also called a start file), and then jump
back to SQLPLUS right at the spot you left and run that report (see Figure 6-1).

SQLPLUS also has a built-in editor of its own, sometimes called the command line editor,
which allows you to quickly modify a SQL query without leaving SQLPLUS. Its use will be
covered later in this chapter.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 6
Blind Folio 6:93

Chapter 6: Basic SQL*PLUS Reports and Commands 93

Command Definition

remark Tells SQLPLUS that the words to follow are to be treated as comments,
not instructions.

set headsep The heading separator identifies the single character that tells SQLPLUS
to split a title into two or more lines.

ttitle Sets the top title for each page of a report.

btitle Sets the bottom title for each page of a report.

column Gives SQLPLUS a variety of instructions on the heading, format,
and treatment of a column.

break on Tells SQLPLUS where to put spaces between sections of a report,
or where to break for subtotals and totals.

compute sum Makes SQLPLUS calculate subtotals.

set linesize Sets the maximum number of characters allowed on any line of
the report.

set pagesize Sets the maximum number of lines per page.

set newpage Sets the number of blank lines between pages.

spool Moves a report you would normally see displayed on the screen into a
file, so you can print it.

/**/ Marks the beginning and ending of a comment within a SQL entry.
Similar to remark.

-- Marks the beginning of an inline comment within a SQL entry. Treats
everything from the mark to the end of the line as a comment. Similar
to remark.

set pause Makes the screen display stop between pages of display.

save Saves the SQL query you’re creating into the file of your choice.

host Sends any command to the host operating system.

start or @ Tells SQLPLUS to follow (execute) the instructions you’ve saved in a file.

edit Pops you out of SQLPLUS and into an editor of your choice.

define _editor Tells SQLPLUS the name of the editor of your choice.

exit or quit Terminates SQLPLUS.

TABLE 6-1. Basic SQLPLUS Commands

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

94 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 6
Blind Folio 6:94

Building a Simple Report
Figure 6-2 shows a quick and easy report showing the dates books were checked out and returned.

Figure 6-3 shows the SQLPLUS start file that produced this report, in this case named
activity.sql. To run this report program in SQLPLUS, type this:

start activity.sql

FIGURE 6-1. Report creation process

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 6
Blind Folio 6:95

Chapter 6: Basic SQL*PLUS Reports and Commands 95

Thu Apr 04 page 1
Checkout Log for 1/1/02-3/31/02

Days
NAME TITLE CHECKOUTD RETURNEDD Out
-------------------- -------------------- --------- --------- -------
DORAH TALBOT EITHER/OR 02-JAN-02 10-JAN-02 8.00

POLAR EXPRESS 01-FEB-02 15-FEB-02 14.00
GOOD DOG, CARL 01-FEB-02 15-FEB-02 14.00
MY LEDGER 15-FEB-02 03-MAR-02 16.00

******************** -------
avg 13.00

EMILY TALBOT ANNE OF GREEN GABLES 02-JAN-02 20-JAN-02 18.00
MIDNIGHT MAGIC 20-JAN-02 03-FEB-02 14.00
HARRY POTTER AND THE 03-FEB-02 14-FEB-02 11.00
GOBLET OF FIRE

******************** -------
avg 14.33

FRED FULLER JOHN ADAMS 01-FEB-02 01-MAR-02 28.00
TRUMAN 01-MAR-02 20-MAR-02 19.00

******************** -------
avg 23.50

GERHARDT KENTGEN WONDERFUL LIFE 02-JAN-02 02-FEB-02 31.00
MIDNIGHT MAGIC 05-FEB-02 10-FEB-02 5.00
THE MISMEASURE OF 13-FEB-02 05-MAR-02 20.00
MAN

******************** -------
avg 18.67

JED HOPKINS INNUMERACY 01-JAN-02 22-JAN-02 21.00
TO KILL A 15-FEB-02 01-MAR-02 14.00
MOCKINGBIRD

******************** -------
avg 17.50

PAT LAVAY THE SHIPPING NEWS 02-JAN-02 12-JAN-02 10.00
THE MISMEASURE OF 12-JAN-02 12-FEB-02 31.00
MAN

******************** -------
avg 20.50

ROLAND BRANDT THE SHIPPING NEWS 12-JAN-02 12-MAR-02 59.00
THE DISCOVERERS 12-JAN-02 01-MAR-02 48.00
WEST WITH THE NIGHT 12-JAN-02 01-MAR-02 48.00

******************** -------
avg 51.67

avg 22.58

from the Bookshelf

FIGURE 6-2. Bookshelf checkout report output

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

96 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 6
Blind Folio 6:96

rem Bookshelf activity report

set headsep !

ttitle 'Checkout Log for 1/1/02-3/31/02'
btitle 'from the Bookshelf'

column Name format a20
column Title format a20 word_wrapped
column DaysOut format 999.99
column DaysOut heading 'Days!Out'

break on Name skip 1 on report
compute avg of DaysOut on Name
compute avg of DaysOut on report

set linesize 80
set pagesize 60
set newpage 0
set feedback off

spool activity.lst

select Name, Title, CheckoutDate, ReturnedDate,
ReturnedDate-CheckoutDate as DaysOut /*Count Days*/

from BOOKSHELF_CHECKOUT
order by Name, CheckoutDate;

spool off

FIGURE 6-3. The activity.sql file

1

2

3

4
5

6
7

8
9

10

11

12

How to Distinguish Between SQLPLUS and SQL
The select statement toward the bottom of Figure 6-3, beginning with the word “select”
and ending with the semicolon (;), is Structured Query Language—the language you
use to talk to the Oracle database. Every other command on the page is a SQLPLUS
command, used to format the results of a SQL query into a report.

The SQLPLUS start command causes SQLPLUS to read the file activity.sql and
execute the instructions you’ve placed in it. Reviewing this start file will show you the
basic SQLPLUS instructions you can use to produce reports or change the way SQLPLUS
interacts with you. Depending on your experience, this may seem formidable or
elementary. It is made up of a series of simple instructions to SQLPLUS.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 6: Basic SQL*PLUS Reports and Commands 97

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 6
Blind Folio 6:97

remark
The first line of Figure 6-3, at Circle 1, is documentation about the start file itself. Documentation
lines begin with

rem

which stands for remark. SQLPLUS ignores anything on a line that begins with rem, thus
allowing you to add comments, documentation, and explanations to any start file you create.
It is always a good idea to place remarks at the top of a start file, giving the filename, its creator
and date of creation, the name of anyone who has modified it, the date of modification, what
was modified, and an explanation of the purpose of the file. This will prove invaluable later on,
as dozens of reports begin to accumulate.

set headsep
The punctuation that follows set headsep (for heading separator) at Circle 2 in Figure 6-3 tells
SQLPLUS how you will indicate where you want to break a page title or a column heading that
runs longer than one line. When you first activate SQLPLUS, the default headsep character is the
vertical bar (|), but if you want to use vertical bars in your titles, you may find it simpler to use
a different headsep character.

set headsep !

CAUTION
Choosing a character that may otherwise appear in a title or column
heading will cause unexpected splitting.

ttitle and btitle
The line at Circle 3 in Figure 6-3:

ttitle 'Checkout Log for 1/1/02-3/31/02'

instructs SQLPLUS to put this top title at the top of each page of the report. The title you choose
must be enclosed in single quotation marks. This line:

btitle 'from the Bookshelf'

works similarly to ttitle, except that it goes on the bottom of each page (as the b indicates), and
also must be in single quotation marks. Because single quotes are used to enclose the entire title,
an apostrophe (the same character on your keyboard) would trick SQLPLUS into believing the
title had ended.

NOTE
To use apostrophes in titles, put two single quotation marks right next
to each other when you want to print a single quotation mark. Because
both SQL and SQLPLUS rely on single quotation marks to enclose
strings of characters, this technique is used throughout SQL and
SQLPLUS whenever an apostrophe needs to be printed or displayed.

1

2

3

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

When using ttitle this way, SQLPLUS will always center the title you choose based on the
linesize you set (linesize will be discussed later in the chapter), and will always place the
weekday, month, and the day of the month the report was run in the upper-left corner, and the
page number in the upper-right corner.

You can use the repheader and repfooter commands to create headers and footers for
reports. See the Alphabetical Reference section of this book for descriptions of repheader
and repfooter.

column
column allows you to change the heading and format of any column in a select statement. Look
at the report in Figure 6-2. The fifth column, “Days Out”, is not a column in the database, and is
called DaysOut in the query shown in Figure 6-3. The line:

column DaysOut heading 'Days!Out'

relabels the column and gives it a new heading. This heading breaks into two lines because it has
the headsep character (!) embedded in it. The line at Circle 4

column Name format a20

sets the width for the Name column’s display at 20. The a in a18 tells SQLPLUS that this is an
alphabetic column, as opposed to a numeric column. The width can be set to virtually any value,
irrespective of how the column is defined in the database.

The Name column is defined as 25 characters wide, so it’s possible that some names will
have more than 20 characters. If you did nothing else in defining this column on the report, any
Name more than 20 characters long would wrap onto the next line. Looking at Figure 6-2 again,
you can see that four of the titles have wrapped; the Title column is defined as VARCHAR2(100)
but is formatted as a20 (see Circle 5).

Instead of using the word_wrapped format, you could choose truncated, eliminating the
display of any characters that exceed the specified format length for the column.

Circle 6 in Figure 6-3 shows an example of formatting a number:

column DaysOut format 999.99

This defines a column with room for five digits and a decimal point. If you count the spaces
in the report for the DaysOut column, you’ll see seven spaces. Just looking at the column
command might lead you to believe the column would be six spaces wide, but this would leave
no room for a minus sign if the number were negative, so an extra space on the left is always
provided for numbers.

Circle 7 in Figure 6-3 refers to a column that didn’t appear in the table when we had
SQLPLUS describe it:

column DaysOut heading 'Days!Out'

What is DaysOut? Look at the select statement at the bottom of Figure 6-3. DaysOut appears
in the line:

ReturnedDate-CheckoutDate as DaysOut /*Count Days*/

98 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 6
Blind Folio 6:98

4

5

6

7

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 6: Basic SQL*PLUS Reports and Commands 99

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 6
Blind Folio 6:99

which tells SQL to perform date arithmetic—count the number of days between two dates—and
give the computation a simpler column name. As a consequence, SQLPLUS sees a column
named DaysOut, and all of its formatting and other commands will act as if it were a real column
in the table. The column command for DaysOut is an example. “DaysOut” is referred to as a
column alias—another name to use when referring to a column.

break on
Look at Circle 8 in Figure 6-3. Note on the report in Figure 6-2 how the checkout records for
each Name are grouped together. This effect was produced by the line:

break on Name skip 1 on report

as well as by the line:

order by Name, CheckoutDate;

in the select statement near the end of the start file.
SQLPLUS looks at each row as it is brought back from Oracle, and keeps track of the value in

Name. For the first four rows, this value is DORAH TALBOT, so SQLPLUS displays the rows it
has gotten. On the fifth row, Name changes to EMILY TALBOT. SQLPLUS remembers your break
instructions, which tell it that when Name changes, it should break away from the normal display
of row after row, and skip one line. You’ll notice one line between the Name sections on the
report. Unless the names were collected together because of the order by clause, it wouldn’t
make sense for break on to skip one line every time the Name changed. This is why the break on
command and the order by clause must be coordinated.

You also may notice that DORAH TALBOT is only printed on the first line of its section, as
are the rest of the names. This is done to eliminate the duplicate printing of each of these names
for every row in each section, which is visually unattractive. If you want, you can force it to
duplicate the name on each row of its section, by altering the break on command to read

break on Name duplicate skip 1

The report output in Figure 6-2 shows an average for DaysOut for the entire report. To be
able to get a grand total for a report, add an additional break using the break on report
command. Be careful when adding breaks, since they all need to be created by a single
command; entering two consecutive break on commands will cause the first command’s
instructions to be replaced by the second command. See Circle 8 for the break on command
used for the report:

break on Name skip 1 on report

compute avg
The averages calculated for each section on the report were produced by the compute avg
command at Circle 9. This command always works in conjunction with the break on command,

8

9

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

and the totals it computes will always be for the section specified by the break on. It is probably
wise to consider these two related commands as a single unit:

break on Name skip 1 on report
compute avg of DaysOut on Name
compute avg of DaysOut on report

In other words, this tells SQLPLUS to compute the average of the DaysOut for each Name.
SQLPLUS will do this first for DORAH TALBOT, then for each successive name. Every time
SQLPLUS sees a new Name, it calculates and prints an average for the previous DaysOut values.
compute avg also puts a row of asterisks below the column that break on is using, and prints the
word “avg” underneath. For reports with many columns that need to be added, a separate
compute avg (or compute sum if you’re calculating sums) statement is used for each calculation.
It also is possible to have several different kinds of breaks on a large report (for Name, Title, and
dates, for example) along with coordinated compute avg commands.

You can use a break on command without a compute sum command, such as for organizing
your report into sections where no totals are needed (addresses with a break on City would be an
example), but the reverse is not true.

NOTE
Every compute avg command must have a break on command to
guide it, and the on portion of both commands must match (such as
on Name in the preceding example, break on Name skip 1 on report
and compute avg of DaysOut on Name).

The following are the basic rules:

■ Every break on must have a related order by.

■ Every compute avg must have a related break on.

This makes sense, of course, but it’s easy to forget one of the pieces. In addition to compute
avg, you can also compute sum, compute count, compute max, or compute any other of
Oracle’s grouping functions on the set of records.

set linesize
The four commands at Circle 10 in Figure 6-3 control the gross dimensions of your report. The
command set linesize governs the maximum number of characters that will appear on a single
line. For letter-size paper, this number is usually around 70 or 80, unless your printer uses a very
compressed (narrow) character font.

If you put more columns of information in your SQL query than will fit into the linesize
you’ve allotted, SQLPLUS will wrap the additional columns down onto the next line and stack
columns under each other. You actually can use this to very good effect when a lot of data needs
to be presented.

SQLPLUS also uses linesize to determine where to center the ttitle, and where to place the
date and page number. Both date and page number appear on the top line, and the distance

100 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 6
Blind Folio 6:100

10

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 6: Basic SQL*PLUS Reports and Commands 101

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 6
Blind Folio 6:101

between the first letter of the date and the last digit of the page number will always equal the
linesize you set.

set pagesize
The set pagesize command sets the total number of lines SQLPLUS will place on each page,
including the ttitle, btitle, column headings, and any blank lines it prints. On letter- and
computer-size paper, this is usually 66 [6 lines per inch times 11 inches (U.S.)]. set pagesize is
coordinated with set newpage.

set newpage
A better name for set newpage might have been “set blank lines” because what it really does is
print blank lines before the top line (date, page number) of each page in your report. This is
useful both for adjusting the position of reports coming out on single pages on a laser printer, and
for skipping over the perforations between the pages of continuous form computer paper.

NOTE
set pagesize does not set the size of the body of the report (the
number of printed lines from the date down to the btitle); it sets the
total length of the page, measured in lines.

Thus, if you type this:

set pagesize 66
set newpage 9

SQLPLUS produces a report starting with 9 blank lines, followed by 57 lines of information
(counting from the date down to the btitle). If you increase the size of newpage, SQLPLUS puts
fewer rows of information on each page, but produces more pages altogether.

That’s understandable, you say, but what’s been done at Circle 10 on Figure 6-3? It says

set pagesize 60
set newpage 0

This is a strange size for a report page—is SQLPLUS to put zero blank lines between pages? No.
Instead, the 0 after newpage switches on a special property it has: set newpage 0 produces a
top-of-form character (usually a hex 13) just before the date on each page. Most modern printers
respond to this by moving immediately to the top of the next page, where the printing of the
report will begin. The combination of set pagesize 60 and set newpage 0 produces a report
whose body of information is exactly 60 lines long, and which has a top-of-form character at the
beginning of each page. This is a cleaner and simpler way to control page printing than jockeying
around with blank lines and lines per page. You can also use the set newpage none command,
which will result in no blank lines and no form feeds between report pages.

spool
In the early days of computers, most file storage was done on spools of either magnetic wire or
tape. Writing information into a file and spooling a file were virtually synonymous. The term has

11

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

survived, and spooling now generally refers to any process of moving information from one place
to another. In SQLPLUS,

spool activity.lst

tells SQL to take all of the output from SQLPLUS and write it to the file named activity.lst.
Once you’ve told SQLPLUS to spool, it continues to do so until you tell it to stop, which you
do by inputting

spool off

This means, for instance, that you could type

spool work.fil

and then type a SQL query, such as

select Feature, Section, Page from NEWSPAPER
where Section = 'F';

FEATURE S PAGE
--------------- - ----
Births F 7
Classified F 8
Obituaries F 6
Doctor Is In F 6

or a series of SQLPLUS commands, such as:

set pagesize 60
column Section heading 'My Favorites'

or anything else. Whatever prompts SQLPLUS produces, whatever error messages you get,
whatever appears on the computer screen while spooling—it all ends up in the file work.fil.
Spooling doesn’t discriminate. It records everything that happens from the instant you use the spool
command until you use spool off, which brings us back to the report at Circle 11 of Figure 6-3:

spool activity.lst

This phrase is carefully placed as the command just before the select statement, and spool off
immediately follows. Had spool activity.lst appeared any earlier, the SQLPLUS commands you
were issuing would have ended up on the first page of your report file. Instead, they go into the
file activity.lst, which is what you see in Figure 6-2: the results of the SQL query, formatted
according to your instructions, and nothing more. You are now free to print the file, confident
that a clean report will show up on your printer.

This set of commands will print the SQL query on the first page of the output, followed by
the data starting on the second page. To not show the SQL query with the output, you can also
change the order of commands: Type in the SQL query but without the concluding semicolon.

102 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 6
Blind Folio 6:102

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Press ENTER twice and the command will still be in SQLPLUS’s buffer, unexecuted. You can then
start spooling and execute the command:

(SQL command typed here)

spool activity.lst
/
spool off

/* */
Circle 12 of Figure 6-3 shows how a comment can be embedded in a SQL statement. This is
different in method and use from the remark statement discussed earlier. remark (or rem) must
appear at the beginning of a line, and works only for the single line on which it appears.
Furthermore, a multiple-line SQL statement is not permitted to have a remark within it. That is,

select Feature, Section, Page
rem this is just a comment
from NEWSPAPER
where Section = 'F';

is wrong. It will not work, and you’ll get an error message. However, you can embed remarks in
SQL following the method shown at Circle 12, or like this:

select Feature, Section, Page
/* this is just a comment */
from NEWSPAPER

where Section = 'F';

The secret lies in knowing that /* tells SQLPLUS a comment has begun. Everything it sees from
that point forward, even if it continues for many words and lines, is regarded as a comment until
SQLPLUS sees */, which tells it that the comment has ended. You can also use the characters “– –”
to begin a comment. The end of the line ends the comment. This kind of comment works just like a
single-line version of /* */ except that you use – – (two dashes) instead.

Some Clarification on Column Headings
It’s possible that the difference between the renaming that occurs in this:

ReturnedDate-CheckoutDate as DaysOut

and the new heading given the column Item in this:

column DaysOut heading 'Days!Out'

is not quite clear, particularly if you look at this command:

compute avg of DaysOut on Name

Chapter 6: Basic SQL*PLUS Reports and Commands 103

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 6
Blind Folio 6:103

12

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

104 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 6
Blind Folio 6:104

SQLPLUS commands are aware only of columns that actually appear in the select
statement. Every column command refers to a column in the select statement. Both break
on and compute refer only to columns in the select statement. The only reason a column
command or a compute command is aware of the column DaysOut is that it got its name in
the select statement itself. The renaming of “ReturnedDate-CheckoutDate” to “DaysOut” is
something done by SQL, not by SQLPLUS.

Other Features
It’s not terribly difficult to look at a start file and the report it produces and see how all of the
formatting and computation was accomplished. It’s possible to begin by creating the start file,
typing into it each of the commands you expect to need, and then running it in SQLPLUS to see if
it was correct. But when creating reports for the first time, it is often much simpler to experiment
interactively with SQLPLUS, adjusting column formats, the SQL query, the titles, and the totals,
until what you really want begins to take shape.

Command Line Editor
When you type a SQL statement, SQLPLUS remembers each line as you enter it, storing it in what
is called the SQL buffer (a fancy name for a computer scratchpad where your SQL statements are
kept). Suppose you’d entered this query:

select Featuer, Section, Page
from NEWSPAPER
where Section = 'F';

SQLPLUS responds with the following:

select Featuer, Section, Page
*

ERROR at line 1: ORA-0704: invalid column name

You realize you’ve misspelled “Feature.” You do not have to retype the entire query. The
command line editor is already present and waiting for instructions. First, ask it to list your query:

list

SQLPLUS immediately responds with this:

1 select Featuer, Section, Page
2 from NEWSPAPER
3* where Section = 'F'

Notice that SQLPLUS shows all three lines and numbers them. It also places an asterisk next
to line 3, which means it is the line your editing commands are able to affect. But you want to
change line 1, so you type, and SQLPLUS lists, this:

list 1

1* select Featuer, Section, Page

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 6: Basic SQL*PLUS Reports and Commands 105

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 6
Blind Folio 6:105

Line 1 is displayed and is now the current line. You can change it by typing this:

change /Featuer/Feature

1* select Feature, Section, Page

You can check the whole query again with this:

list

1 select Feature, Section, Page
2 from NEWSPAPER
3* where Section = 'F'

If you believe this is correct, enter a single slash after the prompt. This slash has nothing to do
with the change command or the editor. Instead, it tells SQLPLUS to execute the SQL in the buffer.

/

FEATURE S PAGE
--------------- - ----
Births F 7
Classified F 8
Obituaries F 6
Doctor Is In F 6

The change command requires that you mark the start and end of the text to be changed with
a slash (/) or some other character. The line:

change $Featuer$Feature

would have worked just as well. SQLPLUS looks at the first character after the word “change” and
assumes that is the character you’ve chosen to use to mark the start and end of the incorrect text
(these markers are usually called delimiters). You can also delete the current line, as shown here:

list

1 select Feature, Section, Page
2 from NEWSPAPER
3* where Section = 'F'

del

list

1 select Feature, Section, Page
2 from NEWSPAPER

del will delete just what is on the current line. You can pass the del command a range of line
numbers, to delete multiple lines at once, by specifying the first and last line numbers for the

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

range of lines to delete. To delete lines 3 through 7, use del 3 7. Note this has a space before the
number of the first line to delete (3) and another space before the number of the last line to delete
(7). If you leave out the space between the 3 and the 7, SQLPLUS will try to delete line 37. To
delete from line 2 to the end of the buffer, use del 2 LAST.

The word “delete” (spelled out) will erase all of the lines and put the word “delete” as line 1.
This will only cause problems, so avoid typing the whole word “delete.” If your goal is to clear
out the select statement completely, type this:

clear buffer

If you’d like to append something to the current line, you can use the append command:

list 1

1* select Feature, Section, Page

append "WhereItIs"

1* select Feature, Section, Page "WhereItIs"

append places its text right up against the end of the current line, with no spaces in between.
To put a space in, as was done here, type two spaces between the word append and the text.

You may also input a whole new line after the current line, as shown here:

list

1 select Feature, Section, Page "WhereItIs"
2* from NEWSPAPER

input where Section = 'A'

list

1 select Feature, Section, Page "WhereItIs"
2 from NEWSPAPER
3* where Section = 'A'

and then set the column heading for the WhereItIs column:

column WhereItIs heading "Where It Is"

and then run the query:

/

FEATURE S Where It Is
--------------- - -----------
National News A 1
Editorials A 12

106 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 6
Blind Folio 6:106

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

To review, the command line editor can list the SQL statement you’ve typed, change or
delete the current line (marked by the asterisk), append something onto the end of the current
line, or input an entire line after the current line. Once your corrections are made, the SQL
statement will execute if you type a slash at the SQL> prompt. Each of these commands can be
abbreviated to its own first letter, except del, which must be exactly the three letters del.

The command line editor can edit only your SQL statement. It cannot edit SQLPLUS
commands. If you’ve typed column Name format a18, for instance, and want to change it to
column Name format a20, you must retype the whole thing (this is in the SQLPLUS interactive
mode—if you’ve got the commands in a file, you obviously can change them with your own
editor). Also note that in interactive mode, once you’ve started to type a SQL statement, you must
complete it before you can enter any additional SQLPLUS commands, such as column formats or
ttitle. As soon as SQLPLUS sees the word select, it assumes everything to follow is part of the
select statement until it sees either a semicolon (;) at the end of the last SQL statement line or a
slash (/) at the beginning of the line after the last SQL statement line.

Either of these is correct:

select * from LEDGER;

select * from LEDGER
/

This is not:

select * from LEDGER/

set pause
During the development of a new report or when using SQLPLUS for quick queries of the
database, it’s usually helpful to set the linesize at 79 or 80, the pagesize at 24, and newpage
at 1. You accompany this with two related commands, as shown here:

set pause 'More. . .'
set pause on

The effect of this combination is to produce exactly one full screen of information for each page
of the report that is produced, and to pause at each page for viewing (“More. . .” will appear in the
lower-left corner) until you press ENTER. After the various column headings and titles are worked
out, the pagesize can be readjusted for a page of paper, and the pause eliminated with this:

set pause off

save
If the changes you want to make to your SQL statement are extensive, or you simply want to
work in your own editor, save the SQL you’ve created so far, in interactive mode, by writing the
SQL to a file, like this:

save fred.sql

Chapter 6: Basic SQL*PLUS Reports and Commands 107

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 6
Blind Folio 6:107

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQLPLUS responds with

Created file fred.sql

Your SQL (but not any column, ttitle, or other SQLPLUS commands) is now in a file named
fred.sql (or a name of your choice), which you can edit using your own editor.

If the file already exists, then you must use the replace option (abbreviated rep) of the save
command to save the new query in a file with that name. For this example, the syntax would be

save fred.sql rep

store
You can use the store command to save your current SQLPLUS environment settings to a file.
The following will create a file called my_settings.sql and will store the settings in that file:

store set my_settings.sql create

If the my_settings.sql file already existed, you could use the replace option instead of create,
and replace the old file with the new settings. You could also use the append option to append
the new settings to an existing file.

Editing
Everyone has a favorite editor. Word processing programs can be used with SQLPLUS, but only if
you save the files created in them in ASCII format (see your word processor manual for details on
how to do this). Editors are just programs themselves. They are normally invoked simply by
typing their name at the operating system prompt. On UNIX, it usually looks something like this:

> vi fred.sql

In this example, vi is your editor’s name, and fred.sql represents the file you want to edit (the
start file described previously was used here only as an example—you would enter the real name
of whatever file you want to edit). Other kinds of computers won’t necessarily have the > prompt,
but they will have something equivalent. If you can invoke an editor this way on your computer,
it is nearly certain you can do it from within SQLPLUS, except that you don’t type the name of
your editor, but rather the word edit:

SQL> edit fred.sql

You should first tell SQLPLUS your editor’s name. You do this while in SQLPLUS by defining
the editor, like this:

define _editor = "vi"

(That’s an underline before the e in editor.) SQLPLUS will then remember the name of
your editor (until you quit SQLPLUS) and allow you to use it any time you want. See the
sidebar “Using login.sql to Define the Editor” later in this chapter for directions on making
this happen automatically.

108 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 6
Blind Folio 6:108

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

host
In the unlikely event that none of the editing commands described in the previous section work,
but you do have an editor you’d like to use, you can invoke it by typing this:

host vi fred.sql

host tells SQLPLUS that this is a command to simply hand back to the operating system for
execution and is the equivalent of typing vi fred.sql at the > prompt. Incidentally, this same host
command can be used to execute almost any operating system command from within SQLPLUS,
including dir, copy, move, erase, cls, and others.

Adding SQLPLUS Commands
Once you’ve saved a SQL statement into a file, such as fred.sql, you can add to the file any
SQLPLUS commands you want. Essentially, you can build it in a similar fashion to activity.sql

Chapter 6: Basic SQL*PLUS Reports and Commands 109

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 6
Blind Folio 6:109

Using login.sql to Define the Editor
If you’d like SQLPLUS to define your editor automatically, put the define _editor
command in a file named login.sql. This is a special filename that SQLPLUS always
looks for whenever it starts up. If it finds login.sql, it executes any commands in it as if
you had entered them by hand. It looks first at the directory you are in when you type
SQLPLUS. If it doesn’t find login.sql there, it then looks in the home directory for
Oracle. If it doesn’t find login.sql there, it stops looking.

You can put virtually any command in login.sql that you can use in SQLPLUS,
including both SQLPLUS commands and SQL statements; all of them will be executed
before SQLPLUS gives you the SQL> prompt. This can be a convenient way to set up
your own individual SQLPLUS environment, with all the basic layouts the way you
prefer them. Here’s an example of a typical login.sql file:

prompt Login.sql loaded.
set feedback off
set sqlprompt 'What now, boss? '
set sqlnumber off
set numwidth 5
set pagesize 24
set linesize 79
define _editor="vi"

Another file, named glogin.sql, is used to establish default SQLPLUS settings for all
users of a database. This file, usually stored in the administrative directory for
SQLPLUS, is useful in enforcing column and environment settings for multiple users.

The meaning of each of these commands can be found in the Alphabetical
Reference section of this book.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

110 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 6
Blind Folio 6:110

in Figure 6-3. When you’ve finished working on it, you can exit your editor and be returned
to SQLPLUS.

start
Once you are back in SQLPLUS, test your editing work by executing the file you’ve just edited:

start fred.sql

All of the SQLPLUS and SQL commands in that file will execute, line by line, just as if you’d
entered each one of them by hand. If you’ve included a spool and a spool off command in the
file, you can use your editor to view the results of your work. This is just what was shown in
Figure 6-2—the product of starting activity.sql and spooling its results into activity.lst.

To develop a report, use steps like these, in cycles:

1. Use SQLPLUS to build a SQL query interactively. When it appears close to being
satisfactory, save it under a name such as test.sql. (The extension .sql is usually reserved
for start files, scripts that will execute to produce a report.)

2. Edit the file test.sql using a favorite editor. Add column, break, compute, set, and spool
commands to the file. You usually spool to a file with the extension .lst, such as test.lst.
Exit the editor.

3. Back in SQLPLUS, the file test.sql is started. Its results fly past on the screen, but also go
into the file test.lst. The editor examines this file.

4. Incorporate any necessary changes into test.sql and run it again.

5. Continue this process until the report is correct and polished.

Checking the SQLPLUS Environment
You saw earlier that the command line editor couldn’t change SQLPLUS commands, because it
could affect only SQL statements—those lines stored in the SQL buffer. You also saw that you could
save SQL statements and store environment settings into files, where they could be modified using
your own editor.

If you’d like to check how a particular column was defined, type

column DaysOut

without anything following the column name. SQLPLUS will then list all of the instructions
you’ve given about that column, as shown here:

COLUMN DaysOut ON
HEADING 'Days!Out' headsep '!'
FORMAT 999.99

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

If you type just the word column, without any column name following it, then all of the
columns will be listed:

COLUMN Title ON
FORMAT a20
word_wrap

COLUMN DaysOut ON
HEADING 'Days!Out' headsep '!'
FORMAT 999.99

COLUMN Name ON
FORMAT a20

ttitle, btitle, break, and compute are displayed simply by typing their names, with nothing
following. SQLPLUS answers back immediately with the current definitions. The first line
in each of the next examples is what you type; the following lines show SQLPLUS’s replies:

Ttitle
ttitle ON and is the following 31 characters:
Checkout Log for 1/1/02-3/31/02

btitle
btitle ON and is the following 18 characters:
from the Bookshelf

break
break on report nodup

on Name skip 1 nodup

compute
COMPUTE avg LABEL 'avg' OF DaysOut ON Name
COMPUTE avg LABEL 'avg' OF DaysOut ON report

Looking at those settings (also called parameters) that follow the set command requires using
the word show:

show headsep
headsep "!" (hex 21)

show linesize
linesize 80

show pagesize
pagesize 60

show newpage
newpage 0

Chapter 6: Basic SQL*PLUS Reports and Commands 111

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 6
Blind Folio 6:111

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

See the Alphabetical Reference section of this book under set and show for a complete list
of parameters.

The ttitle and btitle settings can be disabled by using the btitle off and ttitle off commands.
The following listing shows these commands. SQLPLUS does not reply to the commands.

ttitle off

btitle off

The settings for columns, breaks, and computes can be disabled via the clear columns, clear
breaks, and clear computes commands. The first line in each example in the following listings is
what you type; the following lines show what SQLPLUS replies:

clear columns
columns cleared

clear breaks
breaks cleared

clear computes
computes cleared

Building Blocks
This has been a fairly dense chapter, particularly if SQLPLUS is new to you, yet on reflection,
you’ll probably agree that what was introduced here is not really difficult. If Figure 6-3 looked
daunting when you began the chapter, look at it again now. Is there any line on it that you don’t
understand, or don’t have a sense of what is being done and why? You could, if you wanted,
simply copy this file (activity.sql) into another file with a different name, and begin to modify it
to suit your own tastes, and to query against your own tables. The structure of any reports you
produce will, after all, be very similar.

There is a lot going on in activity.sql, but it is made up of simple building blocks. This will be
the approach used throughout the book. Oracle provides building blocks, and lots of them, but
each separate block is understandable and useful.

In the previous chapters, you learned how to select data out of the database, choosing certain
columns and ignoring others, choosing certain rows based on logical restrictions you set up, and
combining two tables to give you information not available from either one on its own.

In this chapter, you learned how to give orders that SQLPLUS can follow in formatting and
producing the pages and headings of polished reports.

In the next several chapters, you’ll change and format your data row by row. Your expertise
and confidence should grow chapter by chapter; by the end of Part II of this book, you should be
able to produce very sophisticated reports in short order, to the considerable benefit of your
company and yourself.

112 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 6
Blind Folio 6:112

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 7
Blind Folio 7:113

CHAPTER
7

Getting Text Information
and Changing It

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

T
his chapter introduces string functions, which are software tools that allow you to
manipulate a string of letters or other characters. To quickly reference individual
functions, look them up by name in the Alphabetical Reference section of this
book. This chapter focuses on the manipulation of text strings; to perform word
searches (including word stem expansions and fuzzy matches), you should use

Oracle Text, as described in Chapter 24.
Functions in Oracle work in one of two ways. Some functions create new objects from old

ones; they produce a result that is a modification of the original information, such as turning
lowercase characters into uppercase. Other functions produce a result that tells you something
about the information, such as how many characters are in a word or sentence.

NOTE
If you are using PL/SQL, you can create your own functions with the
create function statement. See Part III for details.

Datatypes
Just as people can be classified into different types based on certain characteristics (shy, outgoing,
smart, silly, and so forth), different kinds of data can be classified into datatypes based on certain
characteristics.

Datatypes in Oracle include NUMBER, CHAR (short for CHARACTER), DATE, VARCHAR2,
LONG, RAW, LONG RAW, BLOB, CLOB, and BFILE. The first several are probably obvious. The
rest are special datatypes that you’ll encounter later. A full explanation of each of these can be
found by name or under “Datatypes” in the Alphabetical Reference section of this book. Each
datatype is covered in detail in the chapters ahead, as well as in Chapter 4. As with people, some
of the “types” overlap and some are fairly rare.

If the information is the character (VARCHAR2 or CHAR) type of information—a mixture of
letters, punctuation marks, numbers, and spaces (also called alphanumeric)—you’ll need string
functions to modify or inform you about it. Oracle’s SQL provides quite a few such tools.

What Is a String?
A string is a simple concept: a bunch of things in a line, like houses, popcorn or pearls, numbers,
or characters in a sentence.

Strings are frequently encountered in managing information. Names are strings of characters, as
in Juan L’Heureaux. Phone numbers are strings of numbers, dashes, and sometimes parentheses,
as in (415) 555-2676. Even a pure number, such as 5443702, can be considered as either a number
or a string of characters.

NOTE
Datatypes that are restricted to pure numbers (plus a decimal point
and minus sign, if needed) are called NUMBER, and are not usually
referred to as strings. A number can be used in certain ways that a
string cannot, and vice versa.

114 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 7
Blind Folio 7:114

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 7: Getting Text Information and Changing It 115

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 7
Blind Folio 7:115

Strings that can include any mixture of letters, numbers, spaces, and other symbols (such as
punctuation marks and special characters) are called character strings, or just character for short.

There are two string datatypes in Oracle. CHAR strings are always a fixed length. If you set a
value to a string with a length less than that of a CHAR column, Oracle automatically pads the
string with blanks. When you compare CHAR strings, Oracle compares the strings by padding
them out to equal lengths with blanks. This means that if you compare “character “ with “character”
in CHAR columns, Oracle considers the strings to be the same. The VARCHAR2 datatype is a
variable-length string. The VARCHAR datatype is synonymous with VARCHAR2, but this may
change in future versions of Oracle, so you should avoid using VARCHAR. Use CHAR for
fixed-length character string fields and VARCHAR2 for all other character string fields.

The simple Oracle string functions, explained in this chapter, are shown in Table 7-1.

Notation
Functions are shown with this kind of notation:

FUNCTION(string [,option])

The function itself will be in uppercase. The thing it affects (usually a string) will be shown
in lowercase italics. Any time the word string appears, it represents either a literal string of
characters or the name of a character column in a table. When you actually use a string function,
any literal must be in single quotes; any column name must appear without single quotes.

Every function has only one pair of parentheses. The value that function works on, as well
as additional information you can pass to the function, goes between the parentheses.

Some functions have options, parts that are not always required to make the function work
as you want. Options are always shown in square brackets: []. See the discussion on LPAD and
RPAD in the following section for an example of how options are used.

A simple example of how the LOWER function is printed follows:

LOWER(string)

The word “LOWER” with the two parentheses is the function itself, so it is shown here in
uppercase. string stands for the actual string of characters to be converted to lowercase, and is
shown in lowercase italics. Therefore,

LOWER('CAMP DOUGLAS')

would produce

camp douglas

The string ‘CAMP DOUGLAS’ is a literal (which you learned about in Chapter 3), meaning
that it is literally the string of characters that the function LOWER is to work on. Oracle uses
single quotation marks to denote the beginning and end of any literal string. The string in LOWER

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

116 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 7
Blind Folio 7:116

also could have been the name of a column from a table, in which case the function would
have operated on the contents of the column for every row brought back by a select statement.
For example,

select City, LOWER(City), LOWER('City') from WEATHER;

Function Name Use

| | Glues or concatenates two strings together. The | symbol is called a
vertical bar or pipe.

ASCII Returns the decimal representation in the database character set of the
first character of the string.

CHR Returns the character having the binary equivalent to the string in either
the database character set or the national character set.

CONCAT CONCATenates two strings together (same as | |).

INITCAP INITial CAPital. Capitalizes the first letter of a word or series of words.

INSTR Finds the location of a character IN a STRing.

LENGTH Tells the LENGTH of a string.

LOWER Converts every letter in a string to LOWERcase.

LPAD Left PAD. Makes a string a certain length by adding a certain set of
characters to the left.

LTRIM Left TRIM. Trims all the occurrences of any one of a set of characters off
the left side of a string.

RPAD Right PAD. Makes a string a certain length by adding a certain set of
characters to the right.

RTRIM Right TRIM. Trims all the occurrences of any one of a set of characters
off the right side of a string.

SOUNDEX Finds words that SOUND like the EXample specified.

SUBSTR SUBSTRing. Clips out a piece of a string.

TRIM TRIMs all occurrences of any one of a set of characters off either or both
sides of a string.

UPPER Converts every letter in a string into UPPERcase.

TABLE 7-1. Oracle String Functions

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 7: Getting Text Information and Changing It 117

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 7
Blind Folio 7:117

would produce this result:

CITY LOWER(CITY) LOWER('CITY')
----------- ----------- -------------
LIMA lima city
PARIS paris city
MANCHESTER manchester city
ATHENS athens city
CHICAGO chicago city
SYDNEY sydney city
SPARTA sparta city

At the top of the second column, in the LOWER function, CITY is not inside single quotation
marks. This tells Oracle that it is a column name, not a literal.

In the third column’s LOWER function, ‘CITY’ is inside single quotation marks. This means
you literally want the function LOWER to work on the word “CITY” (that is, the string of letters
C-I-T-Y), not the column by the same name.

Concatenation (||)
This notation:

string || string

tells Oracle to concatenate, or stick together, two strings. The strings, of course, can be either
column names or literals. For example,

select City||Country from LOCATION;

CITY || COUNTRY
--
ATHENSGREECE
CHICAGOUNITED STATES
CONAKRYGUINEA
LIMAPERU
MADRASINDIA
MANCHESTERENGLAND
MOSCOWRUSSIA
PARISFRANCE
SHENYANGCHINA
ROMEITALY
TOKYOJAPAN
SYDNEYAUSTRALIA
SPARTAGREECE
MADRIDSPAIN

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Here, the cities vary in width from 4 to 12 characters. The countries push right up against
them. This is just how the concatenate function is supposed to work: it glues columns or strings
together with no spaces in between.

This isn’t very easy to read, of course. To make this a little more readable, you could list cities
and countries with a comma and a space between them. You’d simply concatenate the City and
Country columns with a literal string of a comma and a space, like this:

select City ||', '||Country from LOCATION;

CITY ||','||COUNTRY
--
ATHENS, GREECE
CHICAGO, UNITED STATES
CONAKRY, GUINEA
LIMA, PERU
MADRAS, INDIA
MANCHESTER, ENGLAND
MOSCOW, RUSSIA
PARIS, FRANCE
SHENYANG, CHINA
ROME, ITALY
TOKYO, JAPAN
SYDNEY, AUSTRALIA
SPARTA, GREECE
MADRID, SPAIN

Notice the column title. See Chapter 6 for a review of column titles.
You could also use the CONCAT function to concatenate strings. The query

select CONCAT(City, Country) from LOCATION;

is equivalent to

select City||Country from LOCATION;

How to Cut and Paste Strings
In this section, you learn about a series of functions that often confuse users: LPAD, RPAD,
LTRIM, RTRIM, TRIM, LENGTH, SUBSTR, and INSTR. These all serve a common purpose:
they allow you to cut and paste.

Each of these functions does some part of cutting and pasting. For example, LENGTH tells
you how many characters are in a string. SUBSTR lets you clip out and use a substring—a portion
of a string—starting at one position in the string and continuing for a given length. INSTR lets
you find the location of a group of characters within another string. LPAD and RPAD allow you
to easily concatenate spaces or other characters on the left or right side of a string. LTRIM and
RTRIM clip characters off the ends of strings, and TRIM can clip characters from both ends at
once. Most interesting is that all of these functions can be used in combination with each other,
as you’ll soon see.

118 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 7
Blind Folio 7:118

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 7: Getting Text Information and Changing It 119

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 7
Blind Folio 7:119

RPAD and LPAD
RPAD and LPAD are very similar functions. RPAD allows you to “pad” the right side of a column
with any set of characters. The character set can be almost anything: spaces, periods, commas,
letters or numbers, pound signs (#), or even exclamation marks (!). LPAD does the same thing as
RPAD, but to the left side.

Here are the formats for RPAD and LPAD:

RPAD(string,length [,'set'])

LPAD(string,length [,'set'])

string is the name of a CHAR or VARCHAR2 column from the database (or a literal string), length
is the total number of characters long that the result should be (in other words, its width), and set
is the set of characters that do the padding. The set must be enclosed in single quotation marks.
The square brackets mean that the set (and the comma that precedes it) are optional. If you leave
this off, the function will automatically pad with spaces. This is sometimes called the default; that
is, if you don’t tell the function which set of characters to use, it will use spaces by default.

Many users produce tables with dots to help guide the eye from one side of the page to the
other. Here’s how RPAD does this:

select RPAD(City,35,'.'), Temperature from WEATHER;

RPAD(CITY,35,'.') TEMPERATURE
----------------------------------- -----------
LIMA............................... 45
PARIS.............................. 81
MANCHESTER......................... 66
ATHENS............................. 97
CHICAGO............................ 66
SYDNEY............................. 29
SPARTA............................. 74

Notice what happened here. RPAD took each city, from Lima through Sparta, and concatenated
dots on the right of it, adding just enough for each city so that the result (City plus dots) is exactly
35 characters long. The concatenate function (||) could not have done this. It would have added
the same number of dots to every city, leaving a ragged edge on the right.

LPAD does the same sort of thing, but on the left. Suppose you want to reformat cities and
temperatures so that the cities are right-justified (that is, they all align at the right):

select LPAD(City,11), Temperature from WEATHER;

LPAD(CITY,1 TEMPERATURE
----------- -----------

LIMA 45
PARIS 81

MANCHESTER 66
ATHENS 97

CHICAGO 66
SYDNEY 29
SPARTA 74

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

120 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 7
Blind Folio 7:120

LTRIM, RTRIM, and TRIM
LTRIM and RTRIM are like hedge trimmers. They trim off unwanted characters from the left and
right ends of strings. For example, suppose you have a MAGAZINE table with a column in it that
contains the titles of magazine articles, but the titles were entered by different people. Some
people always put the titles in quotes, while others simply entered the words; some used periods,
others didn’t; some started titles with “The,” while others did not. How do you trim these?

select Title from MAGAZINE;

TITLE

THE BARBERS WHO SHAVE THEMSELVES.
"HUNTING THOREAU IN NEW HAMPSHIRE"
THE ETHNIC NEIGHBORHOOD
RELATIONAL DESIGN AND ENTHALPY
"INTERCONTINENTAL RELATIONS."

Here are the formats for RTRIM and LTRIM:

RTRIM(string [,'set'])

LTRIM(string [,'set'])

string is the name of the column from the database (or a literal string), and set is the collection of
characters you want to trim off. If no set of characters is specified, the functions trim off spaces.

You can trim off more than one character at a time; to do so, simply make a list (a string) of the
characters you want removed. First, let’s get rid of the quotes and periods on the right, as shown here:

The preceding produces this:

RTRIM(TITLE,'."')

THE BARBERS WHO SHAVE THEMSELVES
"HUNTING THOREAU IN NEW HAMPSHIRE
THE ETHNIC NEIGHBORHOOD
RELATIONAL DESIGN AND ENTHALPY
"INTERCONTINENTAL RELATIONS

RTRIM removed both the double quotation marks and the periods from the right side of each
of these titles. The set of characters you want to remove can be as long as you want. Oracle will
check and recheck the right side of each title until every character in your string has been
removed—that is, until it runs into the first character in the string that is not in your set.

select RTRIM(Title,'."') from MAGAZINE

Set of characters
being trimmed

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 7: Getting Text Information and Changing It 121

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 7
Blind Folio 7:121

Combining Two Functions
Now what? How do you get rid of the quotes on the left? There are two options, the first of which
uses the LTRIM function. Title is buried in the middle of the RTRIM function. In this section, you
learn how to combine functions.

You know that when you ran the select statement:

select Title from MAGAZINE;

the result you got back was the content of the Title column, as shown next.

THE BARBERS WHO SHAVE THEMSELVES.
"HUNTING THOREAU IN NEW HAMPSHIRE"
THE ETHNIC NEIGHBORHOOD
RELATIONAL DESIGN AND ENTHALPY
"INTERCONTINENTAL RELATIONS."

Remember that the purpose of this:

RTRIM(Title,'."')

is to take each of these strings and remove the quotes on the right side, effectively producing a
result that is a new column whose contents are shown here:

THE BARBERS WHO SHAVE THEMSELVES
"HUNTING THOREAU IN NEW HAMPSHIRE
THE ETHNIC NEIGHBORHOOD
RELATIONAL DESIGN AND ENTHALPY
"INTERCONTINENTAL RELATIONS

Therefore, if you pretend that RTRIM(Title,’.”‘) is simply a column name itself, you can
substitute it for the string in this:

LTRIM(string,'set')

So you simply type your select statement to look like this:

select LTRIM(RTRIM(Title,'."'),'"') from MAGAZINE;

Taking this apart for clarity, you see

select LTRIM(RTRIM(Title,'."'),'"') from MAGAZINE

LTRIM function

Column you‘re trimming (the string)

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Is this how you want it? And what is the result of this combined function?

LTRIM(RTRIM(TITLE,'."'),'"')

THE BARBERS WHO SHAVE THEMSELVES
HUNTING THOREAU IN NEW HAMPSHIRE
THE ETHNIC NEIGHBORHOOD
RELATIONAL DESIGN AND ENTHALPY
INTERCONTINENTAL RELATIONS

Your titles are cleaned up.
Looking at a combination of functions the first (or the thousandth) time can be confusing, even

for an experienced query user. It’s difficult to assess which commas and parentheses go with
which functions, particularly when a query you’ve written isn’t working correctly; discovering
where a comma is missing, or which parenthesis isn’t properly matched with another, can be a
real adventure.

One simple solution to this is to break functions onto separate lines, at least until they’re all
working the way you want. SQLPLUS doesn’t care at all where you break a SQL statement, as
long as it’s not in the middle of a word or a literal string. To better visualize how this RTRIM and
LTRIM combination works, you could type it like this:

select LTRIM(
RTRIM(Title,'."')

,'"')
from MAGAZINE;

This makes what you are trying to do obvious, and it will work even if it is typed on four
separate lines with lots of spaces. SQLPLUS simply ignores extra spaces.

Suppose now you decide to trim off THE from the front of two of the titles, as well as the
space that follows it (and, of course, the double quote you removed before). You might do this:

select LTRIM(RTRIM(Title,'."'),'"THE ')
from MAGAZINE;

which produces the following:

LTRIM(RTRIM(TITLE,'."'),'"THE')

BARBERS WHO SHAVE THEMSELVES
UNTING THOREAU IN NEW HAMPSHIRE
NIC NEIGHBORHOOD
RELATIONAL DESIGN AND ENTHALPY
INTERCONTINENTAL RELATIONS

What happened? The second and third row got trimmed more than expected. Why? Because
LTRIM was busy looking for and trimming off anything that was a double quote, a T, an H, an E,
or a space. It was not looking for the word THE. It was looking for the letters in it, and it didn’t
quit the first time it saw any of the letters it was looking for. It quit when it saw a character that
wasn’t in its set.

122 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 7
Blind Folio 7:122

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In other words, all of these:

'"THE'
'HET"'
'E"TH'
'H"TE'
'ET"H'

and many other combinations of the letters will have the same effect when used as the set of an
LTRIM or RTRIM. The order of the letters of the set has no effect on how the function works.
Note, however, that the case of the letters is important. Oracle will check the case of both the
letters in the set and in the string. It will remove only those with an exact match.

LTRIM and RTRIM are designed to remove any characters in a set from the left or right of a
string. They’re not intended to remove words. To do that requires clever use of INSTR, SUBSTR,
and even DECODE, which you will learn about in Chapter 16.

The previous example makes one point clear: It’s better to make certain that data gets cleaned
up or edited before it is stored in the database. It would have been a lot less trouble if the
individuals typing these magazine article titles had simply avoided the use of quotes, periods,
and the word THE.

Using the TRIM Function
The preceding example showed how to combine two functions—a useful skill when dealing with
string manipulation. If you are trimming the exact same data from both the beginning and the end
of the string, then you can use the TRIM function in place of an LTRIM/RTRIM combination.

TRIM uses a unique syntax. The following example shows the use of the TRIM function with
its associated from clause within the function. In this example, the double quotes are removed
from the beginning and the end of the magazine article titles. Since the double quote is a
character string, it is placed inside two single quotes:

select TRIM('"' from Title) from MAGAZINE;

TRIM('"'FROMTITLE)

THE BARBERS WHO SHAVE THEMSELVES.
HUNTING THOREAU IN NEW HAMPSHIRE

Chapter 7: Getting Text Information and Changing It 123

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 7
Blind Folio 7:123

THE BARBERS WHO SHAVE THEMSELVES
"H UNTING THOREAU IN NEW HAMPSHIRE
THE ETH NIC NEIGHBORHHOOD

RELATIONAL DESIGN AND ENTHALPY
" INTERCONTINENTAL RELATIONS

What it trimmed: What is left behind:

NOT in the set '"THE'

In the set '"THE'

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

124 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 7
Blind Folio 7:124

THE ETHNIC NEIGHBORHOOD
RELATIONAL DESIGN AND ENTHALPY
INTERCONTINENTAL RELATIONS.

The quotes have been removed from the beginning and ending of the strings. If you just
want to trim one end of the strings, you could use the leading or trailing clauses, as shown in
the following listing.

select TRIM(leading '"' from Title) from MAGAZINE;
select TRIM(trailing '"' from Title) from MAGAZINE;

Using leading makes TRIM act like LTRIM; trailing makes it act like RTRIM. The most powerful
use of TRIM is its ability to act on both ends of the string at once, simplifying the code you have
to write—provided the same characters are being removed from both ends of the string.

Adding One More Function
Suppose that you decide to RPAD your trimmed-up Title with dashes and carets, perhaps also
asking for a magazine Name and Page number. Your query would look like this:

select Name, RPAD(RTRIM(LTRIM(Title,'"'),'."'),47,'-^'), Page
from MAGAZINE;

NAME RPAD(RTRIM(LTRIM(TITLE,'"'),'."'),47,'-^') PAGE
---------------- -- -----
BERTRAND MONTHLY THE BARBERS WHO SHAVE THEMSELVES-^-^-^-^-^ 70
LIVE FREE OR DIE HUNTING THOREAU IN NEW HAMPSHIRE-^-^-^-^-^ 320
PSYCHOLOGICA THE ETHNIC NEIGHBORHOOD-^-^-^-^-^-^-^-^-^- 246
FADED ISSUES RELATIONAL DESIGN AND ENTHALPY-^-^-^-^-^-^ 279
ENTROPY WIT INTERCONTINENTAL RELATIONS-^-^-^-^-^-^-^-^ 20

Each function has parentheses that enclose the column it is going to affect, so the real trick
in understanding combined functions in select statements is to read from the outside to the inside
on both left and right, watching (and even counting) the pairs of parentheses.

LOWER, UPPER, and INITCAP
These three related and very simple functions often are used together. LOWER takes any string
or column and converts any letters in it to lowercase. UPPER does the opposite, converting any
letters to uppercase. INITCAP takes the initial letter of every word in a string or column and
converts just those letters to uppercase.

Here are the formats for these functions:

LOWER(string)
UPPER(string)
INITCAP(string)

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 7: Getting Text Information and Changing It 125

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 7
Blind Folio 7:125

Returning to the WEATHER table, recall that each city is stored in uppercase letters, like this:

LIMA
PARIS
ATHENS
CHICAGO
MANCHESTER
SYDNEY
SPARTA

Therefore,

select City, UPPER(City), LOWER(City), INITCAP(LOWER(City))
from WEATHER;

produces this:

City UPPER(CITY) LOWER(CITY) INITCAP(LOW
----------- ----------- ----------- -----------
LIMA LIMA lima Lima
PARIS PARIS paris Paris
MANCHESTER MANCHESTER manchester Manchester
ATHENS ATHENS athens Athens
CHICAGO CHICAGO chicago Chicago
SYDNEY SYDNEY sydney Sydney
SPARTA SPARTA sparta Sparta

Look carefully at what is produced in each column, and at the functions that produced it in
the SQL statement. The fourth column shows how you can apply INITCAP to LOWER(City) and
have it appear with normal capitalization, even though it is stored as uppercase.

Another example is the Name column as stored in a MAGAZINE table:

NAME

BERTRAND MONTHLY
LIVE FREE OR DIE
PSYCHOLOGICA
FADED ISSUES
ENTROPY WIT

and then retrieved with the combined INITCAP and LOWER functions, as shown here:

select INITCAP(LOWER(Name)) from MAGAZINE;

INITCAP(LOWER(NA

Bertrand Monthly

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Live Free Or Die
Psychologica
Faded Issues
Entropy Wit

and as applied to the Name, cleaned-up Title, and Page (note that you’ll also rename the columns):

select INITCAP(LOWER(Name)) AS Name,
INITCAP(LOWER(RTRIM(LTRIM(Title,'"'),'."'))) AS Title,
Page

from Magazine;

NAME TITLE PAGE
---------------- ------------------------------------- -----
Bertrand Monthly The Barbers Who Shave Themselves 70
Live Free Or Die Hunting Thoreau In New Hampshire 320
Psychologica The Ethnic Neighborhood 246
Faded Issues Relational Design And Enthalpy 279
Entropy Wit Intercontinental Relations 20

LENGTH
This one is easy. LENGTH tells you how long a string is—how many characters it has in it,
including letters, spaces, and anything else.

This is the format for LENGTH:

LENGTH(string)

For example,

select Name, LENGTH(Name) from MAGAZINE;

NAME LENGTH(NAME)
---------------- ------------
BERTRAND MONTHLY 16
LIVE FREE OR DIE 16
PSYCHOLOGICA 12
FADED ISSUES 12
ENTROPY WIT 11

This isn’t normally useful by itself, but it can be used as part of another function, for calculating
how much space you’ll need on a report, or as part of a where or an order by clause.

NOTE
You cannot perform functions such as LENGTH on a column that uses
a LONG datatype.

SUBSTR
You can use the SUBSTR function to clip out a piece of a string.

126 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 7
Blind Folio 7:126

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 7: Getting Text Information and Changing It 127

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 7
Blind Folio 7:127

This is the format for SUBSTR:

SUBSTR(string,start [,count])

This tells SQL to clip out a subsection of the string, beginning at position start and continuing
for count characters. If you don’t specify the count, SUBSTR will clip beginning at start and
continuing to the end of the string. For example,

select SUBSTR(Name,6,4) from MAGAZINE;

gives you this:

SUBS

AND
FREE
OLOG
ISS

PY W

You can see how the function works. It clipped out the piece of the magazine name starting
in position 6 (counting from the left) and including a total of four characters.

A more practical use might be in separating out phone numbers from a personal address
book. For example, assume that you have an ADDRESS table that contains, among other things,
last names, first names, and phone numbers, as shown here:

select LastName, FirstName, Phone from ADDRESS;

LASTNAME FIRSTNAME PHONE
------------------------- ------------------------- ------------
BAILEY WILLIAM 213-293-0223
ADAMS JACK 415-453-7530
SEP FELICIA 214-522-8383
DE MEDICI LEFTY 312-736-1166
DEMIURGE FRANK 707-767-8900
CASEY WILLIS 312-684-1414
ZACK JACK 415-620-6842
YARROW MARY 415-787-2178
WERSCHKY ARNY 415-235-7387
BRANT GLEN 415-526-7512
EDGAR THEODORE 415-525-6252
HARDIN HUGGY 617-566-0125
HILD PHIL 603-934-2242
LOEBEL FRANK 202-456-1414
MOORE MARY 718-857-1638
SZEP FELICIA 214-522-8383
ZIMMERMAN FRED 503-234-7491

Suppose you want just those phone numbers in the 415 area code. One solution would be to
have a separate column called AreaCode. Thoughtful planning about tables and columns will

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

128 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 7
Blind Folio 7:128

eliminate a good deal of fooling around later with reformatting. However, in this instance, area
codes and phone numbers are combined in a single column, so a way must be found to separate
out the numbers in the 415 area code.

select LastName, FirstName, Phone from ADDRESS
where Phone like '415-%';

LASTNAME FIRSTNAME PHONE
------------------------- ------------------------- ------------
ADAMS JACK 415-453-7530
ZACK JACK 415-620-6842
YARROW MARY 415-787-2178
WERSCHKY ARNY 415-235-7387
BRANT GLEN 415-526-7512
EDGAR THEODORE 415-525-6252

Next, since you do not want to dial your own area code when calling friends, you can
eliminate this from the result by using another SUBSTR:

select LastName, FirstName, SUBSTR(Phone,5) from ADDRESS
where Phone like '415-%';

LASTNAME FIRSTNAME SUBSTR(P
------------------------- ------------------------- --------
ADAMS JACK 453-7530
ZACK JACK 620-6842
YARROW MARY 787-2178
WERSCHKY ARNY 235-7387
BRANT GLEN 526-7512
EDGAR THEODORE 525-6252

Notice that the default version of SUBSTR was used here. SUBSTR(Phone,5) tells SQL to clip
out the substring of the phone number, starting at position 5 and going to the end of the string.
Doing this eliminates the area code.

Of course, this:

SUBSTR(Phone,5)

has exactly the same effect as the following:

SUBSTR(Phone,5,8)

You can combine this with the concatenation and column renaming techniques discussed in
Chapter 6 to produce a quick listing of local friends’ phone numbers, as shown here:

select LastName ||', '||FirstName AS Name,
SUBSTR(Phone,5) AS Phone

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 7: Getting Text Information and Changing It 129

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 7
Blind Folio 7:129

from ADDRESS
where Phone like '415-%';

NAME PHONE
-- --------
ADAMS, JACK 453-7530
ZACK, JACK 620-6842
YARROW, MARY 787-2178
WERSCHKY, ARNY 235-7387
BRANT, GLEN 526-7512
EDGAR, THEODORE 525-6252

To produce a dotted line following the name, add the RPAD function:

select RPAD(LastName ||', '||FirstName,25,'.') AS Name,
SUBSTR(Phone,5) AS Phone

from ADDRESS
where Phone like '415-%';

NAME PHONE
------------------------- --------
ADAMS, JACK.............. 453-7530
ZACK, JACK............... 620-6842
YARROW, MARY............. 787-2178
WERSCHKY, ARNY........... 235-7387
BRANT, GLEN.............. 526-7512
EDGAR, THEODORE.......... 525-6252

The use of negative numbers in the SUBSTR function also works. Normally, the position
value you specify for the starting position is relative to the start of the string. When using a
negative number for the position value, it is relative to the end of the string. For example,

SUBSTR(Phone,-4)

would use the fourth position from the end of the Phone column’s value as its starting point. Since
no length parameter is specified in this example, the remainder of the string will be returned.

NOTE
Use this feature only for VARCHAR2 datatype columns. Do not use
this feature with columns that use the CHAR datatype. CHAR
columns are fixed-length columns, so their values are padded with
spaces to extend them to the full length of the column. Using a
negative number for the SUBSTR position value in a CHAR column
will determine the starting position relative to the end of the column,
not the end of the string.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

130 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 7
Blind Folio 7:130

The following example shows the result of this feature when it is used on a VARCHAR2 column:

select SUBSTR(Phone,-4)
from ADDRESS
where Phone like '415-5%';

SUBS

7512
6252

The count value of the SUBSTR function must always be positive or unspecified. Using a
negative count will return a NULL result.

INSTR
The INSTR function allows for simple or sophisticated searching through a string for a set of
characters, not unlike LTRIM and RTRIM, except that INSTR doesn’t clip anything off. It simply
tells you where in the string it found what you were searching for. This is similar to the LIKE
logical operator described in Chapter 3, except that LIKE can only be used in a where or having
clause, and INSTR can be used anywhere except in the from clause. Of course, LIKE can be
used for complex pattern searches that would be quite difficult, if even possible, using INSTR.

This is the format for INSTR:

INSTR(string,set [,start [,occurrence]])

INSTR searches in the string for a certain set of characters. It has two options, one within the
other. The first option is the default; it will look for the set starting at position 1. If you specify the
location to start, it will skip over all the characters up to that point and begin its search there.

The second option is occurrence. A set of characters may occur more than once in a string,
and you may really be interested only in whether something occurs more than once. By default,
INSTR will look for the first occurrence of the set. By adding the option occurrence and making it
equal to 3, for example, you can force INSTR to skip over the first two occurrences of the set and
give the location of the third.

Some examples will make all of this simpler to grasp. Recall the table of magazine articles.
Here is a list of their authors:

select Author from MAGAZINE;

AUTHOR

BONHOEFFER, DIETRICH
CHESTERTON, G. K.
RUTH, GEORGE HERMAN
WHITEHEAD, ALFRED
CROOKES, WILLIAM

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 7: Getting Text Information and Changing It 131

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 7
Blind Folio 7:131

To find the location of the first occurrence of the letter O, INSTR is used without its
options, and with set as ‘O’ (note the single quotation marks, since this is a literal), as shown
in the following listing:

select Author, INSTR(Author,'O') from MAGAZINE;

AUTHOR INSTR(AUTHOR,'O')
------------------------- -----------------
BONHOEFFER, DIETRICH 2
CHESTERTON, G. K. 9
RUTH, GEORGE HERMAN 9
WHITEHEAD, ALFRED 0
CROOKES, WILLIAM 3

This is, of course, the same as this:

select Author, INSTR(Author,'O',1,1) from MAGAZINE;

If it had looked for the second occurrence of the letter O, it would have found

select Author, INSTR(Author,'O',1,2) from MAGAZINE;

AUTHOR INSTR(AUTHOR,'O',1,2)
------------------------- ---------------------
BONHOEFFER, DIETRICH 5
CHESTERTON, G. K. 0
RUTH, GEORGE HERMAN 0
WHITEHEAD, ALFRED 0
CROOKES, WILLIAM 4

INSTR found the second O in Bonhoeffer’s name, at position 5, and in Crookes’ name, at
position 4. Chesterton has only one O, so for him, Ruth, and Whitehead, the result is zero,
meaning no success—no second O was found.

To tell INSTR to look for the second occurrence, you also must tell it where to start looking
(in this case, position 1). The default value of start is 1, which means that’s what it uses if you
don’t specify anything, but the occurrence option requires a start, so you have to specify both.

If set is not just one character but several, INSTR gives the location of the first letter of the set,
as shown here:

select Author, INSTR(Author,'WILLIAM') from MAGAZINE;

AUTHOR INSTR(AUTHOR,'WILLIAM')
------------------------- -----------------------
BONHOEFFER, DIETRICH 0
CHESTERTON, G. K. 0
RUTH, GEORGE HERMAN 0
WHITEHEAD, ALFRED 0
CROOKES, WILLIAM 10

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

132 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 7
Blind Folio 7:132

This has many useful applications. In the MAGAZINE table, for instance:

select Author, INSTR(Author,',') from MAGAZINE;

AUTHOR INSTR(AUTHOR,',')
------------------------- -----------------
BONHOEFFER, DIETRICH 11
CHESTERTON, G. K. 11
RUTH, GEORGE HERMAN 5
WHITEHEAD, ALFRED 10
CROOKES, WILLIAM 8

Here, INSTR searched the strings of author names for a comma, and then reported back the
position in the string where it found it.

Suppose you want to reformat the names of the authors from the formal “last name/comma/
first name” approach, and present them as they are normally spoken, as shown here:

To do this using INSTR and SUBSTR, find the location of the comma, and use this location to
tell SUBSTR where to clip. Taking this step by step, first find the comma:

select Author, INSTR(Author,',') from MAGAZINE;

AUTHOR INSTR(AUTHOR,',')
------------------------- -----------------
BONHOEFFER, DIETRICH 11
CHESTERTON, G. K. 11
RUTH, GEORGE HERMAN 5
WHITEHEAD, ALFRED 10
CROOKES, WILLIAM 8

Two SUBSTRs will be needed, one that clips out the author’s last name up to the position
before the comma, and one that clips out the author’s first name from two positions after the
comma through to the end.

First, look at the one that clips from position 1 to just before the comma:

select Author, SUBSTR(Author,1,INSTR(Author,',')-1)
from MAGAZINE;

BONHOEFFER, DIETRICH

DIETRICH BONHOEFFER

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

AUTHOR SUBSTR(AUTHOR,1,INSTR(AUT
------------------------- -------------------------
BONHOEFFER, DIETRICH BONHOEFFER
CHESTERTON, G. K. CHESTERTON
RUTH, GEORGE HERMAN RUTH
WHITEHEAD, ALFRED WHITEHEAD
CROOKES, WILLIAM CROOKES

Next, look at the one that clips from two positions past the comma to the end of the string:

select Author, SUBSTR(Author,INSTR(Author,',')+2) from MAGAZINE;

AUTHOR SUBSTR(AUTHOR,INSTR(AUTHO
------------------------- -------------------------
BONHOEFFER, DIETRICH DIETRICH
CHESTERTON, G. K. G. K.
RUTH, GEORGE HERMAN GEORGE HERMAN
WHITEHEAD, ALFRED ALFRED
CROOKES, WILLIAM WILLIAM

Look at the combination of these two with the concatenate function putting a space between
them, and a quick renaming of the column to ByFirstName:

column ByFirstName heading "By First Name"

select Author, SUBSTR(Author,INSTR(Author,',')+2)
||' ' ||
SUBSTR(Author,1,INSTR(Author,',')-1)
AS ByFirstName

from MAGAZINE;

AUTHOR By First Name
------------------------- ------------------------
BONHOEFFER, DIETRICH DIETRICH BONHOEFFER
CHESTERTON, G.K. G.K. CHESTERTON
RUTH, GEORGE HERMAN GEORGE HERMAN RUTH
WHITEHEAD, ALFRED ALFRED WHITEHEAD
CROOKES, WILLIAM WILLIAM CROOKES

It is daunting to look at a SQL statement like this one, but it was built using simple logic, and
it can be broken down the same way. Bonhoeffer can provide the example.

The first part looks like this:

SUBSTR(Author,INSTR(Author,',')+2)

This tells SQL to get the SUBSTR of Author starting two positions to the right of the comma and
going to the end. This will clip out DIETRICH—the author’s first name.

The beginning of the author’s first name is found by locating the comma at the end of his last
name (INSTR does this), and then sliding over two steps to the right (where his first name begins).

Chapter 7: Getting Text Information and Changing It 133

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 7
Blind Folio 7:133

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The following illustration shows how the INSTR function (plus 2) serves as the start for the
SUBSTR function:

This is the second part of the combined statement:

||' '||

which, of course, simply tells SQL to concatenate a space in the middle.
This is the third part of the combined statement:

SUBSTR(Author,1,INSTR(Author,',')-1)

This tells SQL to clip out the portion of the author’s name starting at position 1 and ending
one position before the comma, which results in the author’s last name:

The fourth part simply assigns a column alias:

AS ByFirstName

It was only possible to accomplish this transposition because each Author record in the
MAGAZINE table followed the same formatting conventions. In each record, the last name was
always the first word in the string and was immediately followed by a comma. This allowed
you to use the INSTR function to search for the comma. Once the comma’s position was known,
you could determine which part of the string was the last name, and the rest of the string was
treated as the first name.

134 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 7
Blind Folio 7:134

SUBSTR(Author, INSTR(Author,',') +2)

BONHOEFFER, DIETRICH

Add 2 to it to
move to the
beginning of the
author‘s first name

Find the
location of
the comma

SUBSTR(Author, 1, INSTR(Author,',') -1)

BONHOEFFER, DIETRICH

Subtract 1 from it to
move to the end of
the author’s last name

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 7: Getting Text Information and Changing It 135

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 7
Blind Folio 7:135

This is not often the case. Names are difficult to force into standard formats. Last names may
include prefixes (such as von in von Hagel) or suffixes (such as Jr., Sr., and III). Using the previous
example’s SQL, the name Richards, Jr., Bob would have been transformed into Jr., Bob Richards.

Because of the lack of a standard formatting for names, many applications store the first and
last names separately. Titles (such as MD) are usually stored in yet another column. A second
option when storing such data is to force it into a single format and use SUBSTR and INSTR to
manipulate that data when needed.

ASCII and CHR
The ASCII and CHR functions are seldom used during ad hoc queries. CHR converts numeric
values to their ASCII character string equivalents:

select CHR(70)||CHR(83)||CHR(79)||CHR(85)||CHR(71)
as ChrValues

from DUAL;

CHRVA

FSOUG

Oracle translated the CHR(70) to an ‘F’, CHR(83) to an ‘S’, and so on, based on the
database’s character set.

The ASCII function performs the reverse operation—but if you pass it a string, only the first
character of the string will be acted upon:

select ASCII('FSOUG') from DUAL;

ASCII('FSOUG')

70

To see each ASCII value, you will need to evaluate each of the letters via separate executions
of the ASCII function.

order by and where with String Functions
String functions can be used in a where clause, as shown here:

select City
from WEATHER
where LENGTH(City) < 7;

CITY

LIMA
PARIS
ATHENS
SPARTA
SYDNEY

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

They can also be used in an order by clause, as shown here:

select City
from WEATHER
order by LENGTH(City);

CITY

LIMA
PARIS
ATHENS
SPARTA
SYDNEY
CHICAGO
MANCHESTER

These are simple examples; much more complex clauses could be used. For example, you
could find all the authors with more than one O in their names by using INSTR in the where clause:

select Author from MAGAZINE
where INSTR(Author,'O',1,2) > 0;

AUTHOR

BONHOEFFER, DIETRICH
CROOKES, WILLIAM

This works by finding a second occurrence of the letter O in the author names. The > 0 is a
logical technique: recall that functions generally produce two different kinds of results, one that
creates new objects, and the other that tells you something about existing objects.

The INSTR function tells something about a string, specifically the position of the set it has
been asked to find. Here, it is asked to locate the second O in the Author string. Its result will be
a number that will be greater than zero for those names with at least two O’s, and zero for those
with one or less (when INSTR doesn’t find something, its result is a zero). So, a simple test for a
result greater than zero checks for the success of the INSTR search for a second O.

The where clause using INSTR produces the same result as this:

where Author LIKE '%O%O%'

Remember that the percent sign (%) is a wildcard, meaning it takes the place of anything,
so the like clause here tells SQL to look for two O ’s with anything before, between, or after them.
This is probably easier to understand than the previous example of INSTR.

There are often several ways to produce the same result in Oracle. Some will be easier to
understand, some will work more quickly, some will be more appropriate in certain situations,
and some simply will be a matter of personal style.

136 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 7
Blind Folio 7:136

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 7: Getting Text Information and Changing It 137

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 7
Blind Folio 7:137

SOUNDEX
There is one string function that is used almost exclusively in a where clause: SOUNDEX.
It has the unusual ability to find words that sound like other words, virtually regardless of
how either is spelled. This is especially useful when you’re not certain how a word or name
is really spelled.

This is the format for SOUNDEX:

SOUNDEX(string)

Here are a few of examples of its use:

select City, Temperature, Condition
from WEATHER
where SOUNDEX(City) = SOUNDEX('Sidney');

CITY TEMPERATURE CONDITION
----------- ----------- ---------
SYDNEY 29 SNOW

select City, Temperature, Condition from WEATHER
where SOUNDEX(City) = SOUNDEX('menncestr');

CITY TEMPERATURE CONDITION
----------- ----------- ---------
MANCHESTER 66 FOG

select Author from MAGAZINE
where SOUNDEX(Author) = SOUNDEX('Banheffer');

AUTHOR

BONHOEFFER, DIETRICH

SOUNDEX compares the sound of the entry in the selected column with the sound of the word
in single quotation marks, and looks for a close match. SOUNDEX makes certain assumptions
about how letters and combinations of letters are usually pronounced in English, and the two
words being compared must begin with the same letter. It will not always find the word you’re
searching for or have misspelled, but it can help.

It is not necessary that one of the two SOUNDEXs in the where clause have a literal in it.
SOUNDEX could be used to compare two columns to find those that sound alike.

One useful purpose for this function is cleaning up mailing lists. Many lists have duplicate
entries with slight differences in spelling or format of the customers’ names. By using SOUNDEX
to list all the names that sound alike, many of these duplicates can be discovered and eliminated.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

138 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 7
Blind Folio 7:138

Let’s apply this to the ADDRESS table:

select LastName, FirstName, Phone
from ADDRESS;

LASTNAME FIRSTNAME PHONE
------------------------- ------------------------- ------------
BAILEY WILLIAM 213-293-0223
ADAMS JACK 415-453-7530
SEP FELICIA 214-522-8383
DE MEDICI LEFTY 312-736-1166
DEMIURGE FRANK 707-767-8900
CASEY WILLIS 312-684-1414
ZACK JACK 415-620-6842
YARROW MARY 415-787-2178
WERSCHKY ARNY 415-235-7387
BRANT GLEN 415-526-7512
EDGAR THEODORE 415-525-6252
HARDIN HUGGY 617-566-0125
HILD PHIL 603-934-2242
LOEBEL FRANK 202-456-1414
MOORE MARY 718-857-1638
SZEP FELICIA 214-522-8383
ZIMMERMAN FRED 503-234-7491

To find duplicates, you must force Oracle to compare each LastName in the table to all the
others in the same table.

Join the ADDRESS table to itself by creating an alias for the table, calling it first a and then b.
Now it is as if there are two tables, a and b, with the common column LastName.

In the where clause, any column where the LastName in one table is identical to the LastName
in the other table is eliminated. This prevents a LastName from matching to itself.

Those that sound alike are then selected:

select a.LastName, a.FirstName, a.Phone
from ADDRESS a, ADDRESS b
where a.LastName != b.LastName
and SOUNDEX(a.LastName) = SOUNDEX(b.LastName);

LASTNAME FIRSTNAME PHONE
------------------------- ------------------------- ------------
SZEP FELICIA 214-522-8383
SEP FELICIA 214-522-8383

You can also perform SOUNDEX searches on individual words within a text entry. For
examples of this and other complex text searches, see Chapter 24.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

National Language Support
Oracle doesn’t have to use English characters; it can represent data in any language through its
implementation of National Language Support. By using characters made up of longer pieces of
information than ordinary characters, Oracle can represent Japanese and other such strings. See
NLSSORT, NLS_INITCAP, NLS_LOWER, and NLS_UPPER in the Alphabetical Reference section
of this book. In addition to the SUBSTR function, Oracle supports SUBSTRB (using bytes instead
of characters), SUBSTRC (using Unicode complete characters), SUBSTR2 (using UCS2
codepoints), and SUBSTR4 (using UCS4 codepoints).

Review
Data comes in several types, primarily DATE, NUMBER, and CHARACTER. Character data is
basically a string of letters, numbers, or other symbols, and is often called a character string, or
just a string. These strings can be changed or described by string functions. Oracle features two
types of character datatypes: variable-length strings (the VARCHAR2 datatype) and fixed-length
strings (the CHAR datatype). Values in CHAR columns are padded with spaces to the full column
length if they are shorter than the defined length of the column.

Functions such as RPAD, LPAD, LTRIM, RTRIM, TRIM, LOWER, UPPER, INITCAP, and
SUBSTR actually change the contents of a string or column before displaying them to you.

Functions such as LENGTH, INSTR, and SOUNDEX describe the characteristics of a string,
such as how long it is, where in it a certain character is located, or what it sounds like.

All of these functions can be used alone or in combination to select and present information
from an Oracle database. This is a straightforward process, built up from simple logical steps that
can be combined to accomplish very sophisticated tasks.

Chapter 7: Getting Text Information and Changing It 139

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 7
Blind Folio 7:139

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 7
Blind Folio 7:140

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 8
Blind Folio 8:141

CHAPTER
8

Playing the Numbers

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

142 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 8
Blind Folio 8:142

V
irtually everything we do, particularly in business, is measured, explained, and often
guided by numbers. While Oracle cannot correct our obsession with numbers and
the illusion of control they often give us, it will facilitate capable and thorough
analysis of the information in a database. Good mathematical analysis of familiar
numbers will often show trends and facts that were initially not apparent.

The Three Classes of Number Functions
Oracle functions deal with three classes of numbers: single values, groups of values, and lists of
values. As with string functions (discussed in Chapter 7), some of these functions change the values
they are applied to, while others merely report information about the values. The classes are
distinguished in this way:

A single value is one number, such as these:

■ A literal number, such as 544.3702

■ A variable in SQLPLUS or PL/SQL

■ One number from one column and one row of the database

Oracle single-value functions usually change these values through a calculation.
A group of values is all the numbers in one column from a series of rows, such as the closing

stock price for all the rows of stocks in the STOCK table from Chapter 1. Oracle group-value
functions tell you something about the whole group, such as average stock price, but not about
the individual members of the group.

A list of values is a series of numbers that can include:

■ Literal numbers, such as 1, 7.3, 22, 86

■ Variables in SQLPLUS or PL/SQL

■ Columns, such as OpeningPrice, ClosingPrice, Bid, Ask

Oracle list functions choose one member of a list of values.
Table 8-1 shows these functions by class. Some functions fit into more than one class. Other

functions fall somewhere between string and number functions, or are used to convert data from
one to the other. These are covered in Chapter 10.

Notation
Functions will be shown with this kind of notation:

FUNCTION(value [,option])

The function itself will be uppercase. Values and options will be shown in lowercase italics.
Whenever the word value appears this way, it represents one of the following: a literal number,
the name of a number column in a table, the result of a calculation, or a variable. Because
Oracle does not allow numbers to be used as column names, a literal number should not be in
single quotation marks (as a literal string would be in a string function). Column names also must
not have single quotation marks.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 8: Playing the Numbers 143

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 8
Blind Folio 8:143

Function Definition

Single-Value Functions

value1 + value2 Addition

value1 - value2 Subtraction

value1 * value2 Multiplication

value1 / value2 Division

ABS(value) ABSolute value

ACOS(value) Arc COSine of value, in radians

ASIN(value) Arc SINe of value, in radians

ATAN(value) Arc TANgent of value, in radians

ATAN2 (value1, value2) ATAN2 returns the arc tangent of two values. Input vaules are
unbounded, outputs are expressed in radians

BITAND (value1, value2) BITwise AND of value1 and value2, both of which must
resolve to nonnegative integers, and returns an integer

CEIL(value) Numeric CEILing: the smallest integer larger than or equal to value

COS(value) COSine of value

COSH(value) Hyperbolic COSine of value

EXP(value) e raised to value EXPonent

FLOOR(value) Largest integer smaller than or equal to value

LN(value) Natural Logarithm of value

LOG(value) Base 10 LOGarithm of value

MOD(value, divisor) MODulus

NVL(value, substitute) substitute for value if value is NULL

POWER(value, exponent) value raised to an exponent POWER

ROUND(value, precision) ROUNDing of value to precision

SIGN(value) 1 if value is positive, –1 if negative, 0 if zero

SIN(value) SINe of value

SINH(value) Hyperbolic SINe of value

SQRT(value) SQuare RooT of value

TAN(value) TANgent of value

TANH(value) Hyperbolic TANgent of value

TABLE 8-1. Numeric Functions

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

144 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 8
Blind Folio 8:144

Function Definition

TRUNC(value, precision) value TRUNCated to precision

VSIZE(value) Storage SIZE of value in Oracle

Group-Value Functions

AVG(value) AVeraGe of value for group of rows

CORR(value1, value2) Coefficient of CORRelation of a set of number pairs

COUNT(value) COUNT of rows for column

COVAR_POP(value1, value2) POPulation COVARiance of a set of number pairs

COVAR_SAMP(value1, value2) SAMPle COVARiance of a set of number pairs

CUME_DIST(value) CUMulative DISTribution of a value in a group of values

DENSE_RANK(value) Rank of a row in an ordered group of rows

FIRST(value) Analytic function performed on the row ranking FIRST in a set

GROUP_ID(value) Distinguishes duplicate groups resulting from a GROUP BY
specification

GROUPING(expression) Used in conjunction with ROLLUP and CUBE functions to
detect NULLs

GROUPING_ID Returns a number corresponding to the GROUPING bit
vector associated with a row

LAST(value) Analytic function performed on the row ranking LAST in a set

MAX(value) MAXimum of all values for group of rows

MIN(value) MINimum of all values for group of rows

PERCENTILE_CONT(value) Calculates the PERCENTILE ranking of a value in a set
assuming a CONTinuous linear model

PERCENTILE_DISC(value) Calculates the PERCENTILE ranking of a value in a set
assuming a DISCrete distribution model

PERCENT_RANK(value) Calculates the PERCENTILE ranking of a value in a set

RANK(value) Calculates the RANK of a value in a group of values

STDDEV(value) STanDard DEViation of all values for group of rows

STDDEV_POP(value) POPulation STanDard DEViation

STDDEV_SAMP(value) SAMPle STanDard DEViation

SUM(value) SUM of all values for group of rows

VAR_POP(value) POPulation VARiance

TABLE 8-1. Numeric Functions (continued)

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Every function has only one pair of parentheses. The value that function works on, as well as
additional information you can pass to the function, goes between the parentheses.

Some functions have options, or parts that are not required to make the function work but
that can give you more control if you choose to use them. Options are always shown in square
brackets: []. The necessary parts of a function always come before the optional parts.

Single-Value Functions
Most single-value functions are pretty straightforward. This section gives short examples of the
major functions, and shows both the results of the functions and how they correspond to columns,
rows, and lists. After the examples, you’ll see how to combine these functions. The syntax for all
of the functions is found in the Alphabetical Reference of this book.

A table named MATH was created to show the calculation effects of the many math functions.
It has only four rows and four columns, as shown here:

select Name, Above, Below, Empty from MATH;

NAME ABOVE BELOW EMPTY
------------ ------- ------- -----
WHOLE NUMBER 11 -22
LOW DECIMAL 33.33 -44.44
MID DECIMAL 55.5 -55.5
HIGH DECIMAL 66.666 -77.777

This table is useful because it has values with a variety of characteristics, which are spelled
out by the names of the rows. WHOLE NUMBER contains no decimal parts. LOW DECIMAL has
decimals that are less than .5, MID DECIMAL has decimals equal to .5, and HIGH DECIMAL
has decimals greater than .5. This range is particularly important when using ROUND and TRUNCate
functions, and in understanding how they affect the value of a number.

To the right of the Name column are three other columns: Above, which contains only
numbers above zero (positive numbers); Below, which contains only numbers below zero; and
Empty, which is NULL.

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 8
Blind Folio 8:145

Chapter 8: Playing the Numbers 145

Function Definition

VAR_SAMP(value) SAMPle VARiance

VARIANCE(value) VARIANCE of all values for group of rows

List Functions

COALESCE(value1, value2, …) Returns the first non-NULL value in the expression list

GREATEST(value1, value2, …) GREATEST value of a list

LEAST(value1, value2, …) LEAST value of a list

TABLE 8-1. Numeric Functions (continued)

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

NOTE
In Oracle, a number column may have no value in it at all: When
it is NULL, it is not zero; it is simply empty. This has important
implications in making computations, as you will see.

Not all of the rows in this MATH table are needed to demonstrate how most math functions
work, so the examples primarily use the last row, HIGH DECIMAL. In addition, the SQLPLUS
column command has been used to explicitly show the precision of the calculation, so that the
results of functions that affect a number’s precision can be clearly seen. To review the SQL and
SQLPLUS commands that produced the results that follow, look at the file math.sql (on the
accompanying CD-ROM). Chapter 14 discusses numeric formatting issues.

Addition, Subtraction, Multiplication,
and Division (+, -, *, and /)
This query shows each of the four basic arithmetic functions, using Above and Below:

select Name, Above, Below, Empty,
Above + Below AS Plus,
Above - Below AS Subtr,
Above * Below AS Times,
Above / Below AS Divided

from MATH
where Name = 'HIGH DECIMAL';

NAME ABOVE BELOW EMPTY PLUS SUBTR TIMES DIVIDED
------------ ------ ------- ----- ------- ------- ------------ --------
HIGH DECIMAL 66.666 -77.777 -11.111 144.443 -5185.081482 -.857143

NULL
In the following example, the same four arithmetic operations are now done again, except instead
of using Above and Below, Above and Empty are used. Note that any arithmetic operation that
includes a NULL value has NULL as a result. The calculated columns (columns whose values are
the result of a calculation) Plus, Subtr, Times, and Divided are all empty.

select Name, Above, Below, Empty,
Above + Empty AS Plus,
Above - Empty AS Subtr,
Above * Empty AS Times,
Above / Empty AS Divided

from MATH
where Name = 'HIGH DECIMAL';

NAME ABOVE BELOW EMPTY PLUS SUBTR TIMES DIVIDED
------------- ------ -------- ------ ------- -------- ------- ---------
HIGH DECIMAL 66.666 -77.777

146 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 8
Blind Folio 8:146

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 8: Playing the Numbers 147

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 8
Blind Folio 8:147

What you see here is evidence that a NULL value cannot be used in a calculation. NULL isn’t
the same as zero; think of NULL as a value that is unknown. For example, suppose you have a
table with the names of your friends and their ages, but the Age column for PAT SMITH is empty,
because you don’t know it. What’s the difference in your ages? It’s clearly not your age minus zero.
Your age minus an unknown age is also unknown, or NULL. You can’t fill in an answer because
you don’t have an answer. Because you can’t make the computation, the answer is NULL.

This is also the reason you cannot use NULL with an equal sign in a where clause (see
Chapter 3). It makes no sense to say x is unknown and y is unknown, therefore x and y are equal.
If Mrs. Wilkins’s and Mr. Adams’s ages are unknown, it doesn’t mean they’re the same age.

There also will be instances where NULL means a value is irrelevant, such as an apartment
number for a house. In some cases, the apartment number might be NULL because it is unknown
(even though it really exists), while in other cases it is NULL because there simply isn’t one. NULLs
will be explored in more detail later in this chapter, under “NULLs in Group-Value Functions.”

NVL: NULL-Value Substitution
The previous section states the general case about NULLs—that NULL represents an unknown or
irrelevant value. In particular cases, however, although a value is unknown, you may be able to
make a reasonable guess. If you’re a package carrier, for instance, and 30 percent of the shippers
that call you for pickups can’t tell you the weight or volume of their packages, will you declare
it completely impossible to estimate how many cargo planes you’ll need tonight? Of course not.
You know from experience the average weight and volume of your packages, so you’d plug in
these numbers for those customers who didn’t supply you with the information. Here’s the
information as supplied by your clients:

select Client, Weight from SHIPPING;

CLIENT WEIGHT
------------- ------
JOHNSON TOOL 59
DAGG SOFTWARE 27
TULLY ANDOVER

This is what the NULL-value substitution (NVL) function does:

select Client, NVL(Weight,43) from SHIPPING;

CLIENT NVL(WEIGHT,43)
------------- --------------
JOHNSON TOOL 59
DAGG SOFTWARE 27
TULLY ANDOVER 43

Here you know that the average package weight is 43 pounds, so you use the NVL function
to plug in 43 any time a client’s package has an unknown weight—that is, where the value in the
column is NULL. In this case, TULLY ANDOVER didn’t know the weight of their package when
they called it in, but you can still total these and have a fair estimate.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

148 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 8
Blind Folio 8:148

This is the format for NVL:

NVL(value,substitute)

If value is NULL, this function is equal to substitute. If value is not NULL, this function is equal
to value. substitute can be a literal number, another column, or a computation. If you really were a
package carrier with this problem, you could even have a table join in your select statement where
substitute was from a view that actually averaged the weight of all non-NULL packages.

NVL is not restricted to numbers. It can be used with CHAR, VARCHAR2, DATE, and other
datatypes as well, but the value and substitute must be the same datatype, and it is really useful
only in cases where the data is unknown, not where it’s irrelevant.

ABS: Absolute Value
Absolute value is the measure of the magnitude of something. For instance, in a temperature
change or a stock index change, the magnitude of the change has meaning in itself, regardless
of the direction of the change (which is important in its own right). Absolute value is always a
positive number.

This is the format for ABS:

ABS(value)

Note these examples:

ABS(146) = 146
ABS(-30) = 30

CEIL
CEIL (for ceiling) simply produces the smallest integer (or whole number) that is greater than or
equal to a specific value. Pay special attention to its effect on negative numbers.

The following is the format for CEIL and some examples:

CEIL(value)

CEIL(2) = 2
CEIL(1.3) = 2
CEIL(-2) = -2
CEIL(-2.3) = -2

FLOOR
FLOOR is the intuitive opposite of CEIL. This is the format for FLOOR, and some examples:

FLOOR(value)

FLOOR(2) = 2
FLOOR(1.3) = 1
FLOOR(-2) = -2
FLOOR(-2.3) = -3

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

MOD
MODulus is an odd little function primarily used in data processing for esoteric tasks, such as
“check digits,” which helps assure the accurate transmission of a string of numbers. MOD divides
a value by a divisor and tells you the remainder. For example, MOD(23,6) = 5 means divide 23
by 6. The answer is 3 with 5 left over, so 5 is the result of the modulus.

This is the format for MOD:

MOD(value,divisor)

Both value and divisor can be any real number. The value of MOD is zero if divisor is zero or
negative. Note the following examples:

MOD(100,10) = 0
MOD(22,23) = 22
MOD(10,3) = 1
MOD(-30.23,7) = -2.23
MOD(4.1,.3) = .2

The second example shows what MOD does whenever the divisor is larger than the dividend
(the number being divided). It produces the dividend as a result. Also note this important case
where value is an integer:

MOD(value,1) = 0

The preceding is a good test to see if a number is an integer.

POWER
POWER is simply the ability to raise a value to a given positive exponent, as shown here:

POWER(value,exponent)

POWER(3,2) = 9
POWER(3,3) = 27
POWER(-77.777,2) = 6049.261729
POWER(3,1.086) = 3.297264
POWER(64,.5) = 8

The exponent can be any real number.

SQRT: Square Root
Oracle has a separate square root function that gives results equivalent to POWER(value,.5):

SQRT(value)

SQRT(64) = 8
SQRT(66.666) = 8.16492
SQRT(4) = 2

Chapter 8: Playing the Numbers 149

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 8
Blind Folio 8:149

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The square root of a negative number is an imaginary number. Oracle doesn’t support imaginary
numbers, so it returns an error if you attempt to find the square root of a negative number.

EXP, LN, and LOG
The EXP, LN, and LOG functions are rarely used in business calculations but are quite common
in scientific and technical work. EXP is e (2.71828183…) raised to the specified power; LN is the
“natural,” or base e, logarithm of a value. The first two functions are reciprocals of one another;
LN(EXP(i)) = value. The LOG function takes a base and a positive value. LN(value) is the same as
LOG(2.71828183,value).

EXP(value)

EXP(3) = 20.085537
EXP(5) = 148.413159

LN(value)

LN(3) = 1.098612
LN(20.085536) = 3

LOG(value)

LOG(EXP(1),3) = 1.098612
LOG(10,100) = 2

ROUND and TRUNC
ROUND and TRUNC are two related single-value functions. TRUNC truncates, or chops off, digits
of precision from a number; ROUND rounds numbers to a given number of digits of precision.

Here are the formats for ROUND and TRUNC:

ROUND(value,precision)
TRUNC(value,precision)

There are some properties worth paying close attention to here. First, look at this simple example
of a select from the MATH table. Two digits of precision are called for (counting toward the right
from the decimal point).

select Name, Above, Below,
ROUND(Above,2),
ROUND(Below,2),
TRUNC(Above,2),
TRUNC(Below,2)

from MATH;

ROUND ROUND TRUNC TRUNC
NAME ABOVE BELOW (ABOVE,2) (BELOW,2) (ABOVE,2) (BELOW,2)
------------ ------- ------- --------- --------- --------- ---------
WHOLE NUMBER 11 -22 11 -22 11 -22

150 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 8
Blind Folio 8:150

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

LOW DECIMAL 33.33 -44.44 33.33 -44.44 33.33 -44.44
MID DECIMAL 55.5 -55.5 55.5 -55.5 55.5 -55.5
HIGH DECIMAL 66.666 -77.777 66.67 -77.78 66.66 -77.77

Only the bottom row is affected, because only it has three digits beyond the decimal point.
Both the positive and negative numbers in the bottom row were rounded or truncated: The
66.666 was rounded to a higher number, 66.67, but the -77.777 was rounded to a lower (more
negative) number, -77.78. When rounding is done to zero digits, this is the result:

select Name, Above, Below,
ROUND(Above,0),
ROUND(Below,0),
TRUNC(Above,0),
TRUNC(Below,0)

from MATH;

ROUND ROUND TRUNC TRUNC
NAME ABOVE BELOW (ABOVE,0) (BELOW,0) (ABOVE,0) (BELOW,0)
------------ ------- ------- --------- --------- --------- ---------
WHOLE NUMBER 11 -22 11 -22 11 -22
LOW DECIMAL 33.33 -44.44 33 -44 33 -44
MID DECIMAL 55.5 -55.5 56 -56 55 -55
HIGH DECIMAL 66.666 -77.777 67 -78 66 -77

Note that the decimal value of .5 was rounded up when 55.5 went to 56. This follows the
most common American rounding convention (some rounding conventions round up only if a
number is larger than .5). Compare these results with CEIL and FLOOR. They have significant
differences:

ROUND(55.5) = 56 ROUND(-55.5) = -56
TRUNC(55.5) = 55 TRUNC(-55.5) = -55
CEIL(55.5) = 56 CEIL(-55.5) = -55
FLOOR(55.5) = 55 FLOOR(-55.5) = -56

Finally, note that both ROUND and TRUNC can work with negative precision, moving to the
left of the decimal point:

select Name, Above, Below,
ROUND(Above,-1),
ROUND(Below,-1),
TRUNC(Above,-1),
TRUNC(Below,-1)

from MATH;

ROUND ROUND TRUNC TRUNC
NAME ABOVE BELOW (ABOVE,-1) (BELOW,-1)(ABOVE,-1) (BELOW,-1)
------------ ------ ------- ---------- ---------- --------- ----------
WHOLE NUMBER 11 -22 10 -20 10 -20
LOW DECIMAL 33.33 -44.44 30 -40 30 -40

Chapter 8: Playing the Numbers 151

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 8
Blind Folio 8:151

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

MID DECIMAL 55.5 -55.5 60 -60 50 -50
HIGH DECIMAL 66.666 -77.777 70 -80 60 -70

Rounding with a negative number can be useful when producing such things as economic
reports, where populations or dollar sums need to be rounded up to the millions, billions, or trillions.

SIGN
SIGN is the flip side of absolute value. Whereas ABS tells you the magnitude of a value but not
its sign, SIGN tells you the sign of a value but not its magnitude.

This is the format for SIGN:

SIGN(value)

Examples: SIGN(146) = 1 Compare to: ABS(146) = 146
SIGN(-30) = -1 ABS(-30) = 30

The SIGN of 0 is 0:

SIGN(0)=0

The SIGN function is often used in conjunction with the DECODE function. DECODE will be
described in Chapter 17.

SIN, SINH, COS, COSH, TAN, TANH, ACOS, ATAN,
ATAN2, and ASIN
The trigonometric functions sine, cosine, and tangent are scientific and technical functions not
used much in business. SIN, COS, and TAN give you the standard trigonometric function values
for an angle expressed in radians (degrees multiplied by pi divided by 180). SINH, COSH, and
TANH give you the hyperbolic functions for an angle.

SIN(value)

SIN(30*3.141593/180) = .5

COSH(value)

COSH(0) = 1

The ASIN, ACOS, and ATAN functions return the arc sine, arc cosine, and arc tangent values
(in radians) of the values provided. ATAN2 returns the arc tangent of two values. Input values are
unbounded; outputs are expressed in radians.

Group-Value Functions
Group-value functions are those statistical functions such as SUM, AVG, COUNT, and the like
that tell you something about a group of values taken as a whole: the average age of all of the friends
in the table mentioned earlier, for instance, or the oldest member of the group, or the youngest,

152 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 8
Blind Folio 8:152

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

or the number of members in the group, and more. Even when one of these functions is supplying
information about a single row—such as the oldest person—it is still information that is defined
by the row’s relation to the group.

As of Oracle9i, you can use a wide array of advanced statistical functions against your data—
including regression testing and sampling. In the following discussions, you will see descriptions
of the most commonly used group-value functions; for the others (all are listed in Table 8-1), see
the Alphabetical Reference.

NULLs in Group-Value Functions
Group-value functions treat NULL values differently than single-value functions do. Group functions
ignore NULL values and calculate a result in spite of them.

Take AVG as an example. Suppose you have a list of 100 friends and their ages. If you picked
20 of them at random, and averaged their ages, how different would the result be than if you
picked a different list of 20, also at random, and averaged it, or if you averaged all 100? In fact,
the averages of these three groups would be very close. What this means is that AVG is somewhat
insensitive to missing records, even when the missing data represents a high percentage of the
total number of records available.

NOTE
AVG is not immune to missing data, and there can be cases where it
will be significantly off (such as when missing data is not randomly
distributed), but these cases will be less common.

The relative insensitivity to missing data of AVG needs to be contrasted with, for instance, SUM.
How close to correct is the SUM of the ages of only 20 friends to the SUM of all 100 friends? Not
close at all. So if you had a table of friends, but only 20 out of 100 supplied their ages, and 80
out of 100 had NULL for their age, which would be a more reliable statistic about the whole group
and less sensitive to the absence of data—the AVG age of those 20 names, or the SUM of them?
Note that this is an entirely different issue than whether it is possible to estimate the sum of all 100
based on only 20 (in fact, it is precisely the AVG of the 20, times 100). The point is, if you don’t
know how many rows are NULL, you can use the following to provide a fairly reasonable result:

select AVG(Age) from LIST;

You cannot get a reasonable result from this, however:

select SUM(Age) from LIST;

This same test of whether or not results are reasonable defines how the other group functions
respond to NULLs. STDDEV and VARIANCE are measures of central tendency; they, too, are
relatively insensitive to missing data. (These will be covered in “STDDEV and VARIANCE,” later
in this chapter.)

MAX and MIN measure the extremes of your data. They can fluctuate wildly while AVG stays
relatively constant: If you add a 100-year-old man to a group of 99 people who are 50 years old,
the average age only goes up to 50.5—but the maximum age has doubled. Add a newborn baby,
and the average goes back to 50, but the minimum age is now 0. It’s clear that missing or unknown

Chapter 8: Playing the Numbers 153

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 8
Blind Folio 8:153

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

154 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 8
Blind Folio 8:154

NULL values can profoundly affect MAX, MIN, and SUM, so be cautious when using them,
particularly if a significant percentage of the data is NULL.

Is it possible to create functions that also take into account how sparse the data is and how
many values are NULL compared to how many have real values, and make good guesses about
MAX, MIN, and SUM? Yes, but such functions would be statistical projections, which must make
explicit their assumptions about a particular set of data. It is not an appropriate task for a general-
purpose group function. Some statisticians would argue that these functions should return NULL
if they encounter any NULLs, since returning any value can be misleading. Oracle returns something
rather than nothing, but leaves it up to you to decide whether the result is reasonable.

COUNT is a special case. It can go either way with NULL values, but it always returns a
number; it will never evaluate to NULL. Format and usage for COUNT will be shown shortly, but
to simply contrast it with the other group functions, it will count all of the non-NULL rows of a
column, or it will count all of the rows. In other words, if asked to count the ages of 100 friends,
COUNT will return a value of 20 (since only 20 of the 100 gave their age). If asked to count the
rows in the table of friends without specifying a column, it will return 100. An example of these
differences is given in “DISTINCT in Group Functions,” later in this chapter.

Examples of Single- and Group-Value Functions
Neither the group-value functions nor the single-value functions are particularly difficult to
understand, but a practical overview of how each function works is helpful in fleshing out some
of the options and consequences of their use.

The COMFORT table in these examples contains basic temperature data by city at noon and
midnight on each of four sample days each year: the equinoxes (about March 21 and September
23) and the solstices (about June 22 and December 22). You ought to be able to characterize
cities based on their temperatures on these days each year.

For the sake of these examples, this table has only eight rows: the data from the four dates in
2001 for San Francisco, California and Keene, New Hampshire. You can use Oracle’s number
functions to analyze these cities, their average temperature, the volatility of the temperature, and
so on, for 2001. With more years and data on more cities, an analysis of temperature patterns
and variability throughout the century could be made.

The table looks like this:

describe COMFORT

Name Null? Type
------------------------------- -------- ----
CITY NOT NULL VARCHAR2(13)
SAMPLEDATE NOT NULL DATE
NOON NUMBER(3,1)
MIDNIGHT NUMBER(3,1)
PRECIPITATION NUMBER

It contains this temperature data:

select City, SampleDate, Noon, Midnight from COMFORT;

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 8: Playing the Numbers 155

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 8
Blind Folio 8:155

CITY SAMPLEDAT NOON MIDNIGHT
------------- --------- ---- --------
SAN FRANCISCO 21-MAR-01 62.5 42.3
SAN FRANCISCO 22-JUN-01 51.1 71.9
SAN FRANCISCO 23-SEP-01 61.5
SAN FRANCISCO 22-DEC-01 52.6 39.8
KEENE 21-MAR-01 39.9 -1.2
KEENE 22-JUN-01 85.1 66.7
KEENE 23-SEP-01 99.8 82.6
KEENE 22-DEC-01 -7.2 -1.2

AVG, COUNT, MAX, MIN, and SUM
Due to a power failure, the noon temperature in San Francisco on September 23 did not get
recorded. The consequences of this can be seen in the following query:

select AVG(Noon), COUNT(Noon), MAX(Noon), MIN(Noon), SUM(Noon)
from COMFORT
where City = 'SAN FRANCISCO';

AVG(NOON) COUNT(NOON) MAX(NOON) MIN(NOON) SUM(NOON)
--------- ----------- --------- --------- ---------

55.4 3 62.5 51.1 166.2

AVG(Noon) is the average of the three temperatures that are known. COUNT(Noon) is the
count of how many rows there are in the Noon column that are not NULL. MAX and MIN are
self-evident. SUM(Noon) is the sum of only three dates because of the NULL for September 23.
Note that

SUM(NOON)

166.2

is by no coincidence exactly three times the AVG(Noon).

Combining Group-Value and Single-Value Functions
Suppose you would like to know how much the temperature changes in the course of a day.
This is a measure of volatility. Your first attempt to answer the question might be to subtract
the temperature at midnight from the temperature at noon:

select City, SampleDate, Noon-Midnight
from COMFORT
where City = 'KEENE';

CITY SAMPLEDAT NOON-MIDNIGHT
------------- --------- -------------
KEENE 21-MAR-01 41.1
KEENE 22-JUN-01 18.4
KEENE 23-SEP-01 17.2
KEENE 22-DEC-01 -6

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

With only four rows to consider in this table, you can quickly convert (or ignore) the pesky
minus sign. Volatility in temperature is really a magnitude—which means it asks by how much
the temperature changed. It doesn’t include a sign, so the -6 isn’t really correct. If it goes
uncorrected, and is included in a further calculation, such as the average change in a year,
the answer you get will be absolutely wrong, as shown here:

select AVG(Noon-Midnight)
from COMFORT
where City = 'KEENE';

AVG(NOON-MIDNIGHT)

17.675

The correct answer requires an absolute value, as shown next.

select AVG(ABS(Noon-Midnight))
from COMFORT
where City = 'KEENE';

AVG(ABS(NOON-MIDNIGHT))

20.675

Combining functions this way follows the same technique given in Chapter 7 in the section
on string functions. An entire function such as

ABS(Noon-Midnight)

is simply plugged into another function as its value, like this:

AVG(value)

which produces

AVG(ABS(Noon-Midnight))

This shows both single-value and group-value functions at work. You see that you can place
single-value functions inside group-value functions. The single-value functions will calculate a
result for every row, and the group-value functions will view that result as if it were the actual
value for the row. Single-value functions can be combined (nested inside each other) almost
without limit. Group-value functions can contain single-value functions in place of their value.
They can, in fact, contain many single-value functions in place of their value.

What about combining group functions? First of all, it doesn’t make any sense to nest them
this way:

select SUM(AVG(Noon)) from COMFORT;

The preceding will produce this error:

156 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 8
Blind Folio 8:156

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ERROR at line 1:
ORA-00978: nested group function without GROUP BY

Besides, if it actually worked, it would produce exactly the same result as this:

AVG(Noon)

because the result of AVG(Noon) is just a single value. The SUM of a single value is just the
single value, so it is not meaningful to nest group functions. The exception to this rule is in the
use of group by in the select statement, the absence of which is why Oracle produced the error
message here. This is covered in Chapter 11.

It can be meaningful to add, subtract, multiply, or divide the results of two or more group
functions. For example,

select MAX(Noon) - MIN(Noon)
from COMFORT
where City = 'SAN FRANCISCO';

MAX(NOON)-MIN(NOON)

11.4

gives the range of the temperatures in a year. In fact, a quick comparison of San Francisco and
Keene could be done with just a bit more effort:

select City, AVG(Noon), MAX(Noon), MIN(Noon),
MAX(Noon) - MIN(Noon) AS Swing

from COMFORT
group by City;

CITY AVG(NOON) MAX(NOON) MIN(NOON) SWING
------------- --------- --------- --------- -----
KEENE 54.4 99.8 -7.2 107
SAN FRANCISCO 55.4 62.5 51.1 11.4

This query is a good example of discovering information in your data: The average temperature
in the two cities is nearly identical, but the huge temperature swing in Keene, compared to San
Francisco, says a lot about the yearly temperature volatility of the two cities, and the relative effort
required to dress (or heat and cool a home) in one city compared to the other. The group by clause
will be explained in detail in Chapter 11. Briefly, in this example it forced the group functions to
work not on the total table, but on the subgroups of temperatures by city.

STDDEV and VARIANCE
Standard deviation and variance have their common statistical meanings, and use the same
format as all group functions:

select MAX(Noon), AVG(Noon), MIN(Noon), STDDEV(Noon),
VARIANCE(Noon)

Chapter 8: Playing the Numbers 157

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 8
Blind Folio 8:157

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

from COMFORT
where City = 'KEENE';

MAX(NOON) AVG(NOON) MIN(NOON) STDDEV(NOON) VARIANCE(NOON)
--------- --------- --------- ------------ --------------

99.8 54.4 -7.2 48.3338 2336.15

DISTINCT in Group Functions
All group-value functions have a DISTINCT versus ALL option. COUNT provides a good example
of how this works.

This is the format for COUNT (| means “or”):

COUNT([DISTINCT | ALL] value)

Here is an example:

select COUNT(DISTINCT City), COUNT(City), COUNT(*)
from COMFORT;

COUNT(DISTINCTCITY) COUNT(CITY) COUNT(*)
------------------- ----------- --------

2 8 8

This query shows a couple of interesting results. First, DISTINCT forces COUNT to count
only the number of unique city names. If asked to count the DISTINCT midnight temperatures, it
would return 7, because two of the eight temperatures were the same. When COUNT is used on
City but not forced to look at DISTINCT cities, it finds 8.

This also shows that COUNT can work on a character column. It’s not making a computation
on the values in the column, as SUM or AVG must; it is merely counting how many rows have a
value in the specified column.

COUNT has another unique property: value can be an asterisk, meaning that COUNT tells
you how many rows are in the table, regardless of whether any specific columns are NULL. It
will count a row even if all of its fields are NULL.

The other group functions do not share COUNT’s ability to use an asterisk, nor its ability to use
a character column for value (although MAX and MIN can). They do all share its use of DISTINCT,
which forces each of them to operate only on unique values. A table with values such as this:

select FirstName, Age from BIRTHDAY;

FIRSTNAME AGE
--------------- ----
GEORGE 42
ROBERT 52
NANCY 42
VICTORIA 42
FRANK 42

would produce this result:

158 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 8
Blind Folio 8:158

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

select AVG(DISTINCT Age) AS Average,
SUM(DISTINCT Age) AS Total

from BIRTHDAY;

AVERAGE TOTAL
------- ------

47 94

which, if you wanted to know the average age of your friends, is not the right answer. The use of
DISTINCT other than in COUNT is likely to be extremely rare, except perhaps in some statistical
calculations. MAX and MIN produce the same result with or without DISTINCT.

The alternative option to DISTINCT is ALL, which is the default. ALL tells SQL to check every
row, even if the value is a duplicate of the value in another row. You do not need to type ALL; if
you don’t type DISTINCT, ALL is used automatically.

List Functions
Unlike the group-value functions, which work on a group of rows, the list functions work on a
group of columns, either actual or calculated values, within a single row. In other words, list
functions compare the values of each of several columns and pick either the greatest or least of
the list. Consider the COMFORT table, shown here:

select City, SampleDate, Noon, Midnight from COMFORT;

CITY SAMPLEDAT NOON MIDNIGHT
------------- --------- ---- --------
SAN FRANCISCO 21-MAR-01 62.5 42.3
SAN FRANCISCO 22-JUN-01 51.1 71.9
SAN FRANCISCO 23-SEP-01 61.5
SAN FRANCISCO 22-DEC-01 52.6 39.8
KEENE 21-MAR-01 39.9 -1.2
KEENE 22-JUN-01 85.1 66.7
KEENE 23-SEP-01 99.8 82.6
KEENE 22-DEC-01 -7.2 -1.2

Now compare this query result with the following one. Note especially June and September
in San Francisco, and December in Keene:

select City, SampleDate, GREATEST(Midnight,Noon) AS High,
LEAST(Midnight,Noon) AS Low

from COMFORT;

CITY SAMPLEDAT HIGH LOW
------------- --------- ---- ----
SAN FRANCISCO 21-MAR-01 62.5 42.3
SAN FRANCISCO 22-JUN-01 71.9 51.1
SAN FRANCISCO 23-SEP-01
SAN FRANCISCO 22-DEC-01 52.6 39.8
KEENE 21-MAR-01 39.9 -1.2

Chapter 8: Playing the Numbers 159

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 8
Blind Folio 8:159

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

KEENE 22-JUN-01 85.1 66.7
KEENE 23-SEP-01 99.8 82.6
KEENE 22-DEC-01 -1.2 -7.2

September in San Francisco has a NULL result because GREATEST and LEAST couldn’t
legitimately compare an actual midnight temperature with an unknown noon temperature. In the
other two instances, the midnight temperature was actually higher than the noon temperature.

These are the formats for GREATEST and LEAST:

GREATEST(value1,value2,value3. . .)
LEAST(value1,value2,value3. . .)

Both GREATEST and LEAST can be used with many values, and the values can be columns,
literal numbers, calculations, or combinations of other columns. GREATEST and LEAST can also
be used with character columns. For example, they can choose the names that fall last (GREATEST)
or first (LEAST) in alphabetical order:

GREATEST('Bob','George','Andrew','Isaiah') = Isaiah
LEAST('Bob','George','Andrew','Isaiah') = Andrew

As of Oracle9i, you can use the COALESCE function to evaluate multiple values for
non-NULL values. Given a string of values, COALESCE will return the first non-NULL value
encountered; if all are NULL, then a NULL result will be returned.

In the COMFORT table, there is a NULL value for Noon for one of the San Francisco
measurements. The following query returns

select COALESCE(Noon, Midnight) from COMFORT
where City = 'SAN FRANCISCO';

COALESCE(NOON,MIDNIGHT)

62.5
51.1
61.5
52.6

In the first two records of the output, the value displayed is the Noon value. In the third record,
Noon is NULL so Midnight is returned instead. Oracle’s DECODE and CASE functions provide
similar functionality, as described in Chapter 17.

Finding Rows with MAX or MIN
Which city had the highest temperature ever recorded, and on what date? The answer is easy
with just eight rows to look at, but what if you have data from every city in the country and for
every day of every year for the last 50 years? Assume for now that the highest temperature for
the year occurred closer to noon than midnight. The following won’t work:

160 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 8
Blind Folio 8:160

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 8: Playing the Numbers 161

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 8
Blind Folio 8:161

select City, SampleDate, MAX(Noon)
from COMFORT;

Oracle flags the City column and gives this error message:

select City, SampleDate, MAX(Noon)
*

ERROR at line 1:
ORA-00937: not a single-group group function

This error message is a bit opaque. It means that Oracle has detected a flaw in the logic of the
question. Asking for columns means you want individual rows to appear; asking for MAX, a group
function, means you want a group result for all rows. These are two different kinds of requests.
The first asks for a set of rows, but the second requests just one computed row, so there is a conflict.
Here is how to construct the query:

select City, SampleDate, Noon
from COMFORT
where Noon = (select MAX(Noon) from COMFORT);

CITY SAMPLEDAT NOON
------------ ---------- -----
KEENE 23-SEP-01 99.8

This only produces one row. You might think, therefore, that the combination of a request for
the City and SampleDate columns along with the MAX of noon is not so contradictory as was just
implied. But what if you’d asked for minimum temperature instead?

select City, SampleDate, Midnight
from COMFORT
where Midnight = (select MIN(Midnight) from COMFORT);

CITY SAMPLEDAT MIDNIGHT
------------- --------- --------
KEENE 21-MAR-01 -1.2
KEENE 22-DEC-01 -1.2

Two rows! More than one satisfied the MIN request, so there is a conflict in trying to combine
a regular column request with a group function.

It is also possible to use two subqueries, each with a group-value function in it (or two subqueries,
where one does and the other doesn’t have a group function). Suppose you want to know the
highest and lowest noon temperatures for the year:

select City, SampleDate, Noon
from COMFORT
where Noon = (select MAX(Noon) from COMFORT)

or Noon = (select MIN(Noon) from COMFORT);

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

162 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 8
Blind Folio 8:162

CITY SAMPLEDAT NOON
------------- --------- -----
KEENE 23-SEP-01 99.8
KEENE 22-DEC-01 -7.2

Precedence and Parentheses
When more than one arithmetic or logical operator is used in a single calculation, which one
is executed first, and does it matter what order they are in? Consider the following query of the
DUAL table (a one-column, one-row table provided by Oracle):

select 2/2/4 from DUAL;

2/2/4

.25

When parentheses are introduced, although the numbers and the operation (division) stay the
same, the answer changes considerably:

select 2/(2/4) from DUAL;

2/(2/4)

4

The reason for this is precedence. Precedence defines the order in which mathematical
computations are made, not just in Oracle but in mathematics in general. The rules are simple:
Operations within parentheses have the highest precedence, then multiplication and division,
then addition and subtraction. When an equation is computed, any calculations inside parentheses
are made first. Multiplication and division are next. Finally, any addition and subtraction are
completed. When operations of equal precedence are to be performed, they are executed from
left to right. Here are a few examples:

2*4/2*3 = 12 (the same as ((2*4)/2)*3)
(2*4)/(2*3) = 1.333
4-2*5 = -6 (the same as 4 - (2*5))
(4-2)*5 = 10

AND and OR also obey precedence rules, with AND having the higher precedence. Observe
the effect of the AND, and also the left-to-right order, in these two queries:

select * from NEWSPAPER
where Section = 'B' AND Page = 1 OR Page = 2;

FEATURE S PAGE
--------------- - -----
Weather C 2
Modern Life B 1
Bridge B 2

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

3 rows selected.

select * from NEWSPAPER
where Page = 1 OR Page = 2 AND Section = 'B';

FEATURE S PAGE
--------------- - -----
National News A 1
Sports D 1
Business E 1
Modern Life B 1
Bridge B 2

5 rows selected.

If what you really want is page 1 or 2 in Section B, then parentheses are needed to overcome
the precedence of the AND. Parentheses override any other operations.

select * from NEWSPAPER
where Section = 'B' AND (Page = 1 OR Page = 2);

FEATURE S PAGE
--------------- - -----
Modern Life B 1
Bridge B 2

2 rows selected.

The truth is that even experienced programmers and mathematicians have trouble remembering
what will execute first when they write a query or an equation. It is always wise to make explicit
the order you want Oracle to follow. Use parentheses whenever there could be the slightest risk
of confusion.

Review
Single-value functions work on values in a row-by-row fashion. List functions compare columns
and choose just one, again in a row-by-row fashion. Single-value functions almost always change
the value of the column they are applied to. This doesn’t mean, of course, that they have modified
the database from which the value was drawn, but they do make a calculation with that value,
and the result is different than the original value.

List functions don’t change values in this way, but rather they simply choose (or report) the
GREATEST or LEAST of a series of values in a row. Both single-value and list functions will not
produce a result if they encounter a value that is NULL.

Both single-value and list functions can be used anywhere an expression can be used, such
as in the select and where clauses.

The group-value functions tell something about a whole group of numbers—all of the rows in
a set. The group-value functions tell you the average of those numbers, or the largest of them, or
how many there are, or the standard deviation of the values, and so on. Group functions ignore

Chapter 8: Playing the Numbers 163

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 8
Blind Folio 8:163

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

NULL values, and this fact must be kept firmly in mind when reporting about groups of values;
otherwise, there is considerable risk of misunderstanding the data.

Group-value functions also can report information on subgroups within a table, or be used to
create a summary view of information from one or more tables. Chapter 11 gives details on these
additional features.

Finally, mathematical and logical precedence affect the order in which queries are evaluated,
and this can have a dramatic effect on query results. Get into the habit of using parentheses to
make the order you want both explicit and easy to understand.

164 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 8
Blind Folio 8:164

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 9
Blind Folio 9:165

CHAPTER
9

Dates: Then, Now, and
the Difference

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

166 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 9
Blind Folio 9:166

O
ne of Oracle’s strengths is its ability to store and calculate dates, and the number
of seconds, minutes, hours, days, months, and years between dates. In addition
to basic date functions, Oracle supports a wide array of time zone conversion
functions. It also has the ability to format dates in virtually any manner you can
conceive of, from a simple 01-MAY-02, to May 1st in the 776th Year of the Reign

of Louis IX. You probably won’t use many of these date-formatting and computing functions, but
the most basic ones will prove to be very important.

Date Arithmetic
DATE is an Oracle datatype, just as VARCHAR2 and NUMBER are, and it has its own unique
properties. The DATE datatype is stored in a special internal Oracle format that includes not just
the month, day, and year, but also the hour, minute, and second. The benefit of all this detail
should be obvious. If you have, for instance, a customer help desk, for each call that is logged in,
Oracle can automatically store the date and time of the call in a single DATE column. You can
format the DATE column on a report to show just the date, or the date and the hour, or the date,
hour, and minute, or the date, hour, minute, and second. You can use the TIMESTAMP datatype
to store fractional seconds. See the “Using the TIMESTAMP Datatypes” section later in this
chapter for details.

SQLPLUS and SQL recognize columns that are of the DATE datatype, and understand that
instructions to do arithmetic with them call for date arithmetic, not regular math. Adding one to
a date, for instance, will give you another date: the next day. Subtracting one date from another
will give you a number: the count of days between the two dates.

However, since Oracle dates can include hours, minutes, and seconds, doing date arithmetic
can prove to be tricky, since Oracle could tell you the difference between today and tomorrow is
.516 days! (This will be explained later in this chapter.)

SYSDATE, CURRENT_DATE, and SYSTIMESTAMP
Oracle taps into the computer’s operating system for the current date and time. It makes these
available to you through a special function called SYSDATE. Think of SYSDATE as a function
whose result is always the current date and time, and that can be used anywhere any other
Oracle function can be used. You also can regard it as a hidden column or pseudo-column that
is in every table. Here, SYSDATE shows today’s date:

select SysDate from DUAL;

SYSDATE

15-MAR-02

NOTE
DUAL is a small but useful Oracle table created for testing functions
or doing quick calculations. Later in this chapter, the sidebar “The
DUAL Table for Quick Tests and Calculations” describes DUAL.

A second function, CURRENT_DATE, reports the system date in the session’s time zone:

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 9: Dates: Then, Now, and the Difference 167

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 9
Blind Folio 9:167

select Current_Date from DUAL;

CURRENT_D

15-MAR-02

Another function, SYSTIMESTAMP, reports the system date in the TIMESTAMP datatype format:

select SysTimeStamp from DUAL;

SYSTIMESTAMP

15-MAR-02 02.41.31.000000 PM -05:00

See the “Using the TIMESTAMP Datatypes” section later in this chapter for details on the
TIMESTAMP datatype and time zone format and functions. The following sections focus on the
use of the DATE datatype, since DATE will satisfy most date processing requirements.

The Difference Between Two Dates
HOLIDAY is a table of some secular holidays in the United States during 2002:

select Holiday, ActualDate, CelebratedDate from HOLIDAY;

HOLIDAY ACTUALDAT CELEBRATE
------------------------- --------- ---------
NEW YEAR DAY 01-JAN-02 01-JAN-02
MARTIN LUTHER KING, JR. 15-JAN-02 17-JAN-02
LINCOLNS BIRTHDAY 12-FEB-02 18-FEB-02
WASHINGTONS BIRTHDAY 22-FEB-02 18-FEB-02
FAST DAY, NEW HAMPSHIRE 22-FEB-02 22-FEB-02
MEMORIAL DAY 30-MAY-02 27-MAY-02
INDEPENDENCE DAY 04-JUL-02 04-JUL-02
LABOR DAY 02-SEP-02 02-SEP-02
COLUMBUS DAY 12-OCT-02 14-OCT-02
THANKSGIVING 28-NOV-02 28-NOV-02

Which holidays are not celebrated on the actual date of their anniversary during 2002? This
can be easily answered by subtracting the CelebratedDate from the ActualDate. If the answer is
not zero, then there is a difference between the two dates:

select Holiday, ActualDate, CelebratedDate
from Holiday
where CelebratedDate - ActualDate != 0;

HOLIDAY ACTUALDAT CELEBRATE
------------------------- --------- ---------
MARTIN LUTHER KING, JR. 15-JAN-02 17-JAN-02
LINCOLNS BIRTHDAY 12-FEB-02 18-FEB-02
WASHINGTONS BIRTHDAY 22-FEB-02 18-FEB-02
MEMORIAL DAY 30-MAY-02 27-MAY-02
COLUMBUS DAY 12-OCT-02 14-OCT-02

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

168 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 9
Blind Folio 9:168

The DUAL Table for Quick Tests and Calculations
DUAL is a tiny table Oracle provides with only one row and one column in it:

describe DUAL

Name Null? Type
------------------------------ ----------- -------------
DUMMY VARCHAR(1)

Since Oracle’s many functions work on both columns and literals, using DUAL lets
you see some functioning using just literals. In these examples, the select statement
doesn’t care which columns are in the table, and a single row is sufficient to demonstrate
a point. For example, suppose you want to quickly calculate POWER(4,3)—four
“cubed”:

select POWER(4,3) from DUAL;

POWER(4,3)

64

The actual column in DUAL is irrelevant. This means that you can experiment
with date formatting and arithmetic using the DUAL table and the date functions in
order to understand how they work. Then, those functions can be applied to actual
dates in real tables.

Date Functions
The major functions performed on DATE datatype columns are as follows:

■ ADD_MONTHS(date,count) Adds count months to date.

■ CURRENT_DATE Returns the current date in the session’s time zone.

■ CURRENT_TIMESTAMP Returns the current timestamp with the active time
zone information.

■ DBTIMEZONE Returns the current database timezone, in UTC format.

■ EXTRACT(timeunit FROM datetime) Extracts a portion of a date from a date
value—such as extracting the month value from a date column’s values.

■ FROM_TZ(timestamp) Converts a timestamp value to a timestamp with
timezone value.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 9: Dates: Then, Now, and the Difference 169

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 9
Blind Folio 9:169

■ GREATEST(date1,date2,date3,…) Picks latest date from list of dates.

■ LEAST(date1,date2,date3,…) Picks earliest date from list of dates.

■ LAST_DAY(date) Gives date of last day of month that date is in.

■ LOCALTIMESTAMP Returns the local timestamp in the active time zone,
with no time zone information shown.

■ MONTHS_BETWEEN(date2,date1) Gives date2−date1 in months (can be
fractional months).

■ NEW_TIME(date,‘this’,‘other’) Gives the date (and time) in this time zone.
this will be replaced by a three-letter abbreviation for the current time zone.
other will be replaced by a three-letter abbreviation for the other time zone for
which you’d like to know the time and date.

Time zones are as follows:

AST/ADT Atlantic standard/daylight time

BST/BDT Bering standard/daylight time

CST/CDT Central standard/daylight time

EST/EDT Eastern standard/daylight time

GMT Greenwich mean time

HST/HDT Alaska-Hawaii standard/daylight time

MST/MDT Mountain standard/daylight time

NST Newfoundland standard time

PST/PDT Pacific standard/daylight time

YST/YDT Yukon standard/daylight time

■ NEXT_DAY(date,‘day’) Gives date of next day after date, where ‘day’ is
‘Monday’, ‘Tuesday’, and so on.

■ NUMTODSINTERVAL(‘value’,‘dateunit’) Converts value to an INTERVAL
DAY TO SECOND literal, where ‘dateunit’ is ‘DAY’, ‘HOUR’, ‘MINUTE’, or
‘SECOND’.

■ NUMTOYMINTERVAL (‘value’,‘dateunit’) Converts value to an INTERVAL
YEAR TO MONTH literal, where ‘dateunit’ is ‘YEAR’ or ‘MONTH’.

■ ROUND(date,‘format’) Without format specified, rounds a date to 12 A.M.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Adding Months
If February 22 is “Fast Day” in New Hampshire, perhaps six months later could be celebrated as
“Feast Day.” If so, what would the date be? Simply use the ADD_MONTHS function, adding a
count of six months, as shown here:

170 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 9
Blind Folio 9:170

(midnight, the beginning of that day) if time of date is before noon; otherwise,
rounds up to next day. For use of format for rounding, see ROUND in the
Alphabetical Reference.

■ SESSIONTIMEZONE Returns the value of the current session’s timezone.

■ SYS_EXTRACT_UTC Extracts the Coordinated Universal Time (UTC) from the
current date.

■ SYSTIMESTAMP Returns the system date, including fractional seconds and
time zone of the database.

■ SYSDATE Returns the current date and time.

■ TO_CHAR(date,‘format’) Reformats date according to format.*

■ TO_DATE(string,‘format’) Converts a string in a given format into an Oracle
date. Will also accept a number instead of a string, with certain limits. format
is restricted.

■ TO_DSINTERVAL(‘value’) Converts value of CHAR, VARCHAR2, NCHAR,
or NVARCHAR2 datatype to an INTERVAL DAY TO SECOND type.

■ TO_TIMESTAMP(‘value’) Converts value of CHAR, VARCHAR2, NCHAR, or
NVARCHAR2 datatype to a value of TIMESTAMP datatype.

■ TO_TIMESTAMP_TZ(‘value’) Converts value of CHAR, VARCHAR2,
NCHAR, or NVARCHAR2 datatype to a value of TIMESTAMP WITH
TIMEZONE datatype.

■ TO_YMINTERVAL(‘value’) Converts value of CHAR, VARCHAR2, NCHAR, or
NVARCHAR2 datatype to a value of INTERVAL YEAR TO MONTH datatype.

■ TRUNC(date,‘format’) Without format specified, sets a date to 12 A.M.
(midnight, the beginning of that day). For use of format for truncating, see
TRUNC in the Alphabetical Reference.

■ TZ_OFFSET(‘value’) Returns the time zone offset corresponding to the value
entered based on the date the statement is executed.

*See the sidebar “Date Formats” later in this chapter.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 9: Dates: Then, Now, and the Difference 171

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 9
Blind Folio 9:171

column FeastDay heading "Feast Day"

select ADD_MONTHS(CelebratedDate,6) AS FeastDay
from HOLIDAY
where Holiday like 'FAST%';

Feast Day

22-AUG-02

Subtracting Months
If picnic area reservations have to be made at least six months before Columbus Day, what’s the
last day you can make them? Take the CelebratedDate for Columbus Day, and use ADD_MONTHS,
adding a negative count of six months (this is the same as subtracting months). This will tell you
the date six months before Columbus Day. Then subtract one day.

column LastDay heading "Last Day"

select ADD_MONTHS(CelebratedDate,-6) - 1 AS LastDay
from HOLIDAY
where Holiday = 'COLUMBUS DAY';

Last Day

13-APR-02

GREATEST and LEAST
Which comes first for each of the holidays that were moved to fall on Mondays, the actual or
the celebrated date? The LEAST function chooses the earliest date from a list of dates, whether
columns or literals; GREATEST chooses the latest date. These GREATEST and LEAST functions
are exactly the same ones that are used with numbers and character strings:

select Holiday, LEAST(ActualDate, CelebratedDate) AS First,
ActualDate, CelebratedDate

from HOLIDAY
where ActualDate - CelebratedDate != 0;

HOLIDAY FIRST ACTUALDAT CELEBRATE
------------------------- --------- --------- ---------
MARTIN LUTHER KING, JR. 15-JAN-02 15-JAN-02 17-JAN-02
LINCOLNS BIRTHDAY 12-FEB-02 12-FEB-02 18-FEB-02
WASHINGTONS BIRTHDAY 18-FEB-02 22-FEB-02 18-FEB-02
MEMORIAL DAY 27-MAY-02 30-MAY-02 27-MAY-02
COLUMBUS DAY 12-OCT-02 12-OCT-02 14-OCT-02

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

172 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 9
Blind Folio 9:172

Here, LEAST worked just fine, because it operated on DATE columns from a table. What
about literals?

select LEAST('20-JAN-02','20-DEC-02') from DUAL;

LEAST('20

20-DEC-02

This is quite wrong, almost as if you’d said GREATEST instead of LEAST. December 20, 2002,
is not earlier than January 20, 2002. Why did this happen? Because LEAST treated these literals
as strings.

It did not know to treat them as dates. The TO_DATE function converts these literals into an
internal DATE format that Oracle can use for its date-oriented functions:

select LEAST(TO_DATE('20-JAN-02'), TO_DATE('20-DEC-02'))
from DUAL;

LEAST(TO_

20-JAN-02

NEXT_DAY
NEXT_DAY computes the date of the next named day of the week (that is, Sunday, Monday,
Tuesday, Wednesday, Thursday, Friday, or Saturday) after the given date. For example, suppose
payday is always the first Friday after the 15th of the month. The table PAYDAY contains only the
pay cycle dates, each one being the 15th of the month, with one row for each month of the year:

select CycleDate from PAYDAY;

CYCLEDATE

15-JAN-02
15-FEB-02
15-MAR-02
15-APR-02
15-MAY-02
15-JUN-02
15-JUL-02
15-AUG-02
15-SEP-02
15-OCT-02
15-NOV-02
15-DEC-02

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 9: Dates: Then, Now, and the Difference 173

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 9
Blind Folio 9:173

What will be the actual payment dates?

column Payday heading "Pay Day"

select NEXT_DAY(CycleDate,'FRIDAY') AS Payday
from PAYDAY;

Pay Day

18-JAN-02
22-FEB-02
22-MAR-02
19-APR-02
17-MAY-02
21-JUN-02
19-JUL-02
16-AUG-02
20-SEP-02

A Warning About GREATEST and LEAST
Unlike many other Oracle functions and logical operators, the GREATEST and LEAST
functions will not evaluate literal strings that are in date format as dates. The dates are
treated as strings:

select Holiday, CelebratedDate
from HOLIDAY

where CelebratedDate = LEAST('17-JAN-02', '02-SEP-02');

HOLIDAY CELEBRATE
---------------------- ---------
LABOR DAY 02-SEP-02

In order for LEAST and GREATEST to work properly, the function TO_DATE must
be applied to the literal strings:

select Holiday, CelebratedDate
from HOLIDAY

where CelebratedDate = LEAST(TO_DATE('17-JAN-02'),
TO_DATE('02-SEP-02'));

HOLIDAY CELEBRATE
-------------------------- ---------
MARTIN LUTHER KING, JR. 17-JAN-02

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

18-OCT-02
22-NOV-02
20-DEC-02

This is nearly correct, except for February, March, and November, because NEXT_DAY is the
date of the next Friday after the cycle date. Since February 15, March 15, and November 15 are
Fridays, this (wrongly) gives the following Friday instead. The correct version is as follows:

column Payday heading "Pay Day"

select NEXT_DAY(CycleDate-1,'FRIDAY') AS PayDay
from PAYDAY;

NEXT_DAY is really a “greater than” kind of function. It asks for the next date greater than the
given date that falls on a specific day of the week. To catch those cycle dates that are already on
Friday, subtract one from the cycle date. This makes every cycle date appear one day earlier to
NEXT_DAY. The paydays are then always the correct Friday.

LAST_DAY
LAST_DAY produces the date of the last day of the month. Suppose that commissions and
bonuses are always paid on the last day of the month. What are those dates in 2002?

column EndMonth heading "End Month"

select LAST_DAY(CycleDate) AS EndMonth
from PAYDAY;

End Month

31-JAN-02
28-FEB-02
31-MAR-02
30-APR-02
31-MAY-02
30-JUN-02
31-JUL-02
31-AUG-02
30-SEP-02
31-OCT-02
30-NOV-02
31-DEC-02

MONTHS_BETWEEN Two Dates
You recently came across a file containing the birthdates of a group of friends. You load the
information into a table called BIRTHDAY and display it:

select FirstName, LastName, BirthDate from BIRTHDAY;

174 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 9
Blind Folio 9:174

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 9: Dates: Then, Now, and the Difference 175

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 9
Blind Folio 9:175

FIRSTNAME LASTNAME BIRTHDATE
--------------- --------------- ---------
GEORGE SAND 12-MAY-46
ROBERT JAMES 23-AUG-37
NANCY LEE 02-FEB-47
VICTORIA LYNN 20-MAY-49
FRANK PILOT 11-NOV-42

To calculate each person’s age, compute the months between today’s date and their birthdates,
and divide by 12 to get the years:

select FirstName, LastName, Birthdate,
MONTHS_BETWEEN(SysDate,Birthdate)/12 AS Age

from BIRTHDAY;

FIRSTNAME LASTNAME BIRTHDATE AGE
--------------- --------------- --------- -------
GEORGE SAND 12-MAY-46 55.8728
ROBERT JAMES 23-AUG-37 64.5933
NANCY LEE 02-FEB-47 55.1497
VICTORIA LYNN 20-MAY-49 52.8509
FRANK PILOT 11-NOV-42 59.3755

The division will print the Age with a decimal component. Since most people over the age of
seven don’t report their age using portions of years, you may want to apply a FLOOR function to
the computation.

Combining Date Functions
You are hired on March 15, 2002 at a great new job, with a starting salary that is lower than you
had hoped, but with a promise of a review the first of the month after six months have passed. If
the current date is March 15, 2002, when is your review date?

select SysDate AS Today,
LAST_DAY(ADD_MONTHS(SysDate,6)) + 1 Review

from DUAL;

TODAY REVIEW
--------- ---------
15-MAR-02 01-OCT-02

ADD_MONTHS takes the SysDate and adds six months to it. LAST_DAY takes this result and
figures the last day of that month. You then add 1 to the date to get the first day of the next month.
How many days until that review? You simply subtract today’s date from it. Note the use of
parentheses to ensure the proper order of the calculation:

select (LAST_DAY(ADD_MONTHS(SysDate,6))+ 1)-SysDate Wait
from DUAL;

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

WAIT

200

ROUND and TRUNC in Date Calculations
Assume that this is today’s SysDate:

SYSDATE

15-MAR-02

In the beginning of the chapter, it was noted that Oracle could subtract one date from another,
such as tomorrow minus today, and come up with an answer other than a whole number. Let’s
look at it:

select TO_DATE('16-MAR-02') - SysDate from DUAL;

TO_DATE('16-MAR-02')-SYSDATE

.516

The reason for the fractional number of days between today and tomorrow is that Oracle
keeps hours, minutes, and seconds with its dates, and SysDate is always current, up to the
second. It is obviously less than a full day until tomorrow.

To simplify some of the difficulties you might encounter using fractions of days, Oracle
makes a couple of assumptions about dates:

■ A date entered as a literal, such as ‘16-MAR-02’, is given a default time of 12 A.M.
(midnight) at the beginning of that day.

■ A date entered through SQLPLUS, unless a time is specifically assigned to it, is set to
12 A.M. (midnight) at the beginning of that day.

■ SysDate always includes both the date and the time, unless you intentionally round it
off. The ROUND function on any date sets it to 12 A.M. of that day if the time is before
exactly noon, and to 12 A.M. the next day if it is after noon. The TRUNC function acts
similarly, except that it sets the time to 12 A.M. for any time up to and including one
second before midnight.

To get the rounded number of days between today and tomorrow, use this:

select TO_DATE('16-MAR-02') - ROUND(SysDate) from DUAL;

TO_DATE('16-MAR-02')-ROUND(SYSDATE)

1

If the current time is after noon, the rounded difference will be 0 days.

176 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 9
Blind Folio 9:176

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ROUND, without a ‘format’ (see the earlier sidebar, “Date Functions”), always rounds a date
to 12 A.M. of the closest day. If dates that you will be working with contain times other than noon,
either use ROUND or accept possible fractional results in your calculations. TRUNC works
similarly, but sets the time to 12 A.M. of the current day.

TO_DATE and TO_CHAR Formatting
TO_DATE and TO_CHAR are alike insofar as they both have powerful formatting

capabilities. They are opposite insofar as TO_DATE converts a character string or a number into

Chapter 9: Dates: Then, Now, and the Difference 177

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 9
Blind Folio 9:177

Date Formats
These date formats are used with both TO_CHAR and TO_DATE:

MM Number of month: 12

RM Roman numeral month: XII

MON Three-letter abbreviation of month: AUG

MONTH Month fully spelled out: AUGUST, padded with blanks to 9 characters

DDD Number of days in year, since Jan 1: 354

DD Number of days in month: 23

D Number of days in week: 6

DY Three-letter abbreviation of day: FRI

DAY Day fully spelled out, padded to 9 characters

YYYY Full four-digit year: 1946

Y,YYY Year, with comma

SYYYY Signed year: 1000 B.C. = -1000

YYY Last three digits of year: 946

YY Last two digits of year: 46

Y Last one digit of year: 6

IYYY Four-digit year from ISO standard*

IYY Three-digit year from ISO standard

IY Two-digit year from ISO standard

I One-digit year from ISO standard

RR Last two digits of year relative to current date

RRRR Rounded year, accepting either two- or four-digit input

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

178 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 9
Blind Folio 9:178

CC Century (20 for 1999)

SCC Century, with BC dates prefixed with -

YEAR Year spelled out: NINETEEN-FORTY-SIX

SYEAR Year, with - before BC dates

Q Number of quarter: 3

WW Number of weeks in year, where week 1 starts on the first day of the year

IW Number of weeks in year from ISO standard

W Number of weeks in month where week 1 starts on the first day of
the month

J “Julian”—days since December 31, 4712 B.C.: 2422220

HH Hours of day, always 1-12: 11

HH12 Same as HH

HH24 Hours of day, 24-hour clock: 17

MI Minutes of hour: 58

SS Seconds of minute: 43

SSSSS Seconds since midnight, always 0-86399: 43000

FF Fractional seconds as in HH.MI.SS.FF

X Local radix character

/,-:.; Punctuation to be incorporated in display for TO_CHAR or ignored in
format for TO_DATE

A.M. Displays A.M. or P.M., depending upon time of day

P.M. Same effect as A.M.

AM or PM Same as A.M. but without periods

B.C. Displays B.C. or A.D., depending upon date

A.D. Same as B.C.

BC or AD Same as B.C. but without periods

E Abbreviated era name, for Asian calendars

EE Full era name, for Asian calendars

TZD Daylight savings time information

TZH Time zone hour

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

an Oracle date, whereas TO_CHAR converts an Oracle date into a character string. The formats
for these two functions are as follows:

TO_CHAR(date[,'format'[,'NLSparameters']])

TO_DATE(string[,'format'[,'NLSparameters']])

date must be a column defined as a DATE datatype in Oracle. It cannot be a string even if it
is in the default date format of DD-MON-YY. The only way to use a string where date appears in
the TO_CHAR function is to enclose it within a TO_DATE function.

Chapter 9: Dates: Then, Now, and the Difference 179

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 9
Blind Folio 9:179

TZM Time zone minute

TZR Time zone region

These date formats work only with TO_CHAR. They do not work with TO_DATE:

“string” string is incorporated in display for TO_CHAR.

fm Prefix to Month or Day: fmMONTH or fmday. Suppresses padding of
Month or Day (defined earlier) in format. Without fm, all months are
displayed at same width. Similarly true for days. With fm, padding is
eliminated. Months and days are only as long as their count of
characters.

Fx Format Exact: specifies exact format matching for the character
argument and the date format model.

TH Suffix to a number: ddTH or DDTH produces 24th or 24TH.
Capitalization comes from the case of the number—DD—not from the
case of the TH. Works with any number in a date: YYYY, DD, MM,
HH, MI, SS, and so on.

SP Suffix to a number that forces number to be spelled out: DDSP, DdSP,
or ddSP produces THREE, Three, or three. Capitalization comes from
case of number—DD—not from the case of SP. Works with any
number in a date: YYYY, DD, MM, HH, MI, SS, and so on.

SPTH Suffix combination of TH and SP that forces number to be both spelled
out and given an ordinal suffix: Ddspth produces Third. Capitalization
comes from case of number—DD—not from the case of SP. Works
with any number in a date: YYYY, DD, MM, HH, MI, SS, and so on.

THSP Same as SPTH.

*ISO is the International Standards Organization, which has a different set of standards for dates than
the U.S. formats.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

string is a literal string, a literal number, or a database column containing a string or a number.
In every case but one, the format of string must correspond to that described by the format. Only
if a string is in the default format can the format be left out. The default starts out as ‘DD-MON-YY’,
but you can change this with

alter session set NLS_DATE_FORMAT = "DD/MON/YYYY";

for a given SQL session or with the NLS_DATE_FORMAT init.ora parameter.
format is a collection of many options, which can be combined in virtually an infinite

number of ways. The sidebar “Date Formats” lists these options with explanations. Once you
understand the basic method of using the options, putting them into practice is simple.

NLSparameters is a string that sets the NLS_DATE_LANGUAGE option to a specific language,
as opposed to using the language for the current SQL session. You shouldn’t need to use this
option often. Oracle will return day and month names in the language set for the session with
alter session.

NOTE
In many cases, you can use the EXTRACT function in place
of TO_CHAR. See the “Using the EXTRACT Function” section
later in this chapter for examples.

TO_CHAR will be used as an example of how the options work. Defining a column format
for the TO_CHAR function results is the first task, because without it, TO_CHAR will produce a
column in SQLPLUS nearly 100 characters wide. By renaming the column (so its heading is
intelligible) and setting its format to 30 characters, a practical display is produced:

column Formatted format a30 word_wrapped
select BirthDate,

TO_CHAR(BirthDate,'MM/DD/YY') AS Formatted
from BIRTHDAY

where FirstName = 'VICTORIA';

BIRTHDATE FORMATTED
--------- ------------------------------
20-MAY-49 05/20/49

BirthDate shows the default Oracle date format: DD-MON-YY, or day of month, dash,
three-letter abbreviation for month, dash, last two digits of year. The TO_CHAR function in the
select statement is nearly self-evident. MM, DD, and YY in the TO_CHAR statement are key
symbols to Oracle in formatting the date. The slashes (/) are just punctuation, and Oracle will
accept a wide variety of punctuation. It doesn’t even need to be sensible. For example, here you
see > used as punctuation:

select BirthDate, TO_CHAR(BirthDate,'YYMM>DD') Formatted
from BIRTHDAY
where FirstName = 'VICTORIA';

180 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 9
Blind Folio 9:180

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

BIRTHDATE FORMATTED
--------- ------------------------------
20-MAY-49 4905>20

In addition to standard punctuation, Oracle allows you to insert text into the format. This is
done by enclosing the desired text in double quotation marks:

select BirthDate,
TO_CHAR(BirthDate,'Month, DDth "in, um,"

YyyY') AS Formatted
from BIRTHDAY ;

BIRTHDATE FORMATTED
--------- ------------------------------
12-MAY-46 May , 12TH in, um,

1946
23-AUG-37 August , 23RD in, um,

1937
02-FEB-47 February , 02ND in, um,

1947
20-MAY-49 May , 20TH in, um,

1949
11-NOV-42 November , 11TH in, um,

1942

Several consequences of the format are worth observing here. The full word Month told
Oracle to use the full name of the month in the display. Because it was typed with the first letter
in uppercase and the remainder in lowercase, each month in the result was formatted the same
way. The options for month are as follows:

Format Result

Month August

month august

Mon Aug

mon aug

The day of the month is produced by the DD in the format. A suffix of th on DD tells Oracle
to use ordinal suffixes, such as “TH”, “RD”, and “ND” with the number. In this instance, the
suffixes are also case-sensitive, but their case is set by the DD, not the th:

Format Result

DDth or DDTH 11TH

Ddth or DdTH 11Th

ddth or ddTH 11th

Chapter 9: Dates: Then, Now, and the Difference 181

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 9
Blind Folio 9:181

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This same approach holds true for all numbers in the format, including century, year, quarter,
month, week, day of the month (DD), Julian day, hours, minutes, and seconds.

The words between double quotation marks are simply inserted where they are found. Spaces
between any of these format requests are reproduced in the result (look at the three spaces before
the word “in” in the preceding example). YyyY is included simply to show that case is irrelevant
unless a suffix such as Th is being used. For simplicity’s sake, consider this format request:

select BirthDate, TO_CHAR(BirthDate,'Month, ddth, YyyY')
AS Formatted

from BIRTHDAY;

BIRTHDATE FORMATTED
--------- ------------------------------
12-MAY-46 May , 12th, 1946
23-AUG-37 August , 23rd, 1937
02-FEB-47 February , 02nd, 1947
20-MAY-49 May , 20th, 1949
11-NOV-42 November , 11th, 1942

This is a reasonably normal format. The days are all aligned, which makes comparing the rows
easy. This is the default alignment, and Oracle accomplishes it by padding the month names on the
right with spaces up to a width of nine spaces. There will be circumstances when it is more important
for a date to be formatted normally, such as at the top of a letter. The spaces between the month
and the comma would look odd. To eliminate the spaces, fm is used as a prefix for the words
“month” or “day”:

Format Result

Month, ddth August, 20th

fmMonth, ddth August, 20th

Day, ddth Monday, 20th

fmDay, ddth Monday, 20th

This is illustrated in the following:

select BirthDate, TO_CHAR(BirthDate,'fmMonth, ddth, YyyY')
AS Formatted

from BIRTHDAY;

BIRTHDATE FORMATTED
--------- ------------------------------
12-MAY-46 May, 12th, 1946
23-AUG-37 August, 23rd, 1937
02-FEB-47 February, 2nd, 1947
20-MAY-49 May, 20th, 1949
11-NOV-42 November, 11th, 1942

182 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 9
Blind Folio 9:182

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 9: Dates: Then, Now, and the Difference 183

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 9
Blind Folio 9:183

By combining all of these format controls and adding hours and minutes, you can produce a
birth announcement:

select FirstName, Birthdate, TO_CHAR(BirthDate,
'"Baby Girl on" fmMonth ddth, YYYY, "at" HH:MI "in the Morning"')

AS Formatted
from BIRTHDAY

where FirstName = 'VICTORIA';

FIRSTNAME BIRTHDATE FORMATTED
--------------- --------- ------------------------------
VICTORIA 20-MAY-49 Baby Girl on May 20th, 1949,

at 3:27 in the Morning

Suppose that after looking at this, you decide you’d rather spell out the date. Do this with the
sp control:

select FirstName, Birthdate, TO_CHAR(BirthDate,
'"Baby Girl on the" Ddsp "of" fmMonth, YYYY, "at" HH:MI')

AS Formatted
from BIRTHDAY

where FirstName = 'VICTORIA';

FIRSTNAME BIRTHDATE FORMATTED
--------------- --------- ------------------------------
VICTORIA 20-MAY-49 Baby Girl on the Twenty of

May, 1949, at 3:27

Well, 20 was spelled out, but it still doesn’t look right. Add the th suffix to the sp:

select FirstName, Birthdate, TO_CHAR(BirthDate,
'"Baby Girl on the" Ddspth "of" fmMonth, YYYY, "at" HH:MI')

AS Formatted
from BIRTHDAY

where FirstName = 'VICTORIA';

FIRSTNAME BIRTHDATE FORMATTED
--------------- --------- ------------------------------
VICTORIA 20-MAY-49 Baby Girl on the Twentieth of

May, 1949, at 3:27

But was it 3:27 A.M. or 3:27 P.M.? These could be added inside double quotation marks, but
then the result would always say “A.M.” or “P.M.”, regardless of the actual time of the day (since
double quotation marks enclose a literal). Instead, Oracle lets you add either “A.M.” or “P.M.”
after the time, but not in double quotation marks. Oracle then interprets this as a request to
display whether it is A.M. or P.M. Note how the select has this formatting control entered as P.M.,
but the result shows A.M., because the birth occurred in the morning:

select FirstName, Birthdate, TO_CHAR(BirthDate,
'"Baby Girl on the" Ddspth "of" fmMonth, YYYY, "at" HH:MI P.M.')

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

184 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 9
Blind Folio 9:184

AS Formatted
from BIRTHDAY

where FirstName = 'VICTORIA';

FIRSTNAME BIRTHDATE FORMATTED
--------------- --------- ------------------------------
VICTORIA 20-MAY-49 Baby Girl on the Twentieth of

May, 1949, at 3:27 A.M.

Consult the sidebar “Date Formats,” earlier in the chapter, for a list of all the possible date
options. How would you construct a date format for the 776th Year of the Reign of Louis IX? Use
date arithmetic to alter the year from A.D. to A.L. (Louis’s reign began in 1226, so subtract 1,226
years from the current year) and then simply format the result using TO_CHAR.

The Most Common TO_CHAR Error
Always check the date formats when using the TO_CHAR function. The most common error is
to interchange the ‘MM’ (Month) format with the ‘MI’ (Minutes) format when formatting the time
portion of a date.

For example, to view the current time, use the TO_CHAR function to query the time portion
of SysDate:

select TO_CHAR(SysDate,'HH:MI:SS') Now
from DUAL;

NOW

10:01:30

This example is correct, since it uses ‘MI’ to show the minutes. However, users often select
‘MM’ instead—partly because they are also selecting two other pairs of double letters, ‘HH’ and
‘SS’. Selecting ‘MM’ will return the month, not the minutes:

select TO_CHAR(SysDate,'HH:MM:SS') NowWrong
from DUAL;

NOWWRONG

10:03:30

This time is incorrect, because the month was selected in the minutes place. Since Oracle is
so flexible and has so many different supported date formats, it does not prevent you from making
this error.

NEW_TIME: Switching Time Zones
The NEW_TIME function tells you the time and date of a date column or literal date in other time
zones. This is the format for NEW_TIME:

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 9: Dates: Then, Now, and the Difference 185

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 9
Blind Folio 9:185

NEW_TIME(date,'this','other')

date is the date (and time) in this time zone. this will be replaced by a three-letter abbreviation
for the current time zone. other will be replaced by a three-letter abbreviation of the other time
zone for which you’d like to know the time and date. The time zone options are given in the
sidebar “Date Functions,” earlier in this chapter. To compare just the date, without showing the
time, of Victoria’s birth between Eastern standard time and Hawaiian standard time, use this:

select Birthdate, NEW_TIME(Birthdate,'EST','HST')
from BIRTHDAY
where FirstName = 'VICTORIA';

BIRTHDATE NEW_TIME(
--------- ---------
20-MAY-49 19-MAY-49

But how could Victoria have been born on two different days? Since every date stored in
Oracle also contains a time, it is simple enough using TO_CHAR and NEW_TIME to discover
both the date and the time differences between the two zones. This will answer the question:

select TO_CHAR(Birthdate,'fmMonth Ddth, YYYY "at" HH:MI AM') AS Birth,
TO_CHAR(NEW_TIME(Birthdate,'EST','HST'),
'fmMonth ddth, YYYY "at" HH:MI AM') AS Birth

from BIRTHDAY
where FirstName = 'VICTORIA';

BIRTH BIRTH
------------------------------ ------------------------------
May 20th, 1949 at 3:27 AM May 19th, 1949 at 10:27 PM

TO_DATE Calculations
TO_DATE follows the same formatting conventions as TO_CHAR, with some restrictions. The
purpose of TO_DATE is to turn a literal string, such as MAY 20, 1949, into an Oracle date format.
This allows the date to be used in date calculations.

This is the format for TO_DATE:

TO_DATE(string[,'format'])

To put the string 22-FEB-02 into Oracle date format, use this:

select TO_DATE('22-FEB-02','DD-MON-YY') from DUAL;

TO_DATE('

22-FEB-02

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Note, however, that the 22-FEB-02 format is already in the default format in which Oracle
displays and accepts dates. When a literal string has a date in this format, the format in the
TO_DATE can be left out, with exactly the same result:

select TO_DATE('22-FEB-02') from DUAL;

TO_DATE('

22-FEB-02

But what century is the date in? Is it 1902 or 2002? If you do not specify the full four-year
value for the year, then you are relying on the database to default to the proper century value.

If the string is in a familiar format, but not the default Oracle format of DD-MON-YY,
TO_DATE fails:

select TO_DATE('02/22/02') from DUAL;

ERROR: ORA-01843: not a valid month

When the format matches the literal string, the string is successfully converted to a date and is
then displayed in default date format:

select TO_DATE('02/22/02','MM/DD/YY') from DUAL;

TO_DATE('

22-FEB-02

Suppose you need to know the day of the week of February 22. The TO_CHAR function will
not work, even with the literal string in the proper format, because TO_CHAR requires a date (see
its format at the very beginning of the “TO_DATE and TO_CHAR Formatting” section):

select TO_CHAR('22-FEB-02','Day') from DUAL;
ORA-01722: invalid number

The message is somewhat misleading, but the point is that the query fails. You could use the
EXTRACT function, but this query will also work if you first convert the string to a date. Do this
by combining the two functions TO_CHAR and TO_DATE:

select TO_CHAR(TO_DATE('22-FEB-02'), 'Day') from DUAL;

TO_CHAR(TO_DATE('22-FEB-02'),'DAY')

Friday

TO_DATE can also accept numbers, without single quotation marks, instead of strings, as
long as they are formatted consistently. Here is an example:

186 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 9
Blind Folio 9:186

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

select TO_DATE(11051946,'MMDDYYYY') from DUAL;

TO_DATE(1

05-NOV-46

The punctuation in the format is ignored, but the number must follow the order of the format
controls. The number itself must not have punctuation.

How complex can the format control be in TO_DATE? Suppose you simply reversed the
TO_CHAR select statement shown earlier, put its result into the string portion of TO_DATE, and
kept its format the same as TO_CHAR:

select TO_DATE('Baby Girl on the Twentieth of May, 1949,
at 3:27 A.M.',
'"Baby Girl on the" Ddspth "of" fmMonth, YYYY,
"at" HH:MI P.M.')
AS Formatted

from BIRTHDAY
where FirstName = 'VICTORIA';

ERROR: ORA-01858: a non-numeric character was found
where a numeric was expected

This clearly failed. As it turns out, only a limited number of the format controls can be used.
These are the restrictions on format that govern TO_DATE:

■ No literal strings are allowed, such as “Baby Girl on the”.

■ Days cannot be spelled out. They must be numbers.

■ Punctuation is permitted.

■ fm is not necessary. If used, it is ignored.

■ If Month is used, the month in the string must be spelled out. If Mon is used, the month
must be a three-letter abbreviation. Uppercase and lowercase are ignored.

This select does work:

select TO_DATE('May 20, 1949, 3:27 A.M. ', 'Month Dd,
YYYY, HH:MI P.M.')

AS Formatted
from BIRTHDAY

where FirstName = 'VICTORIA';

FORMATTED

20-AUG-49

Chapter 9: Dates: Then, Now, and the Difference 187

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 9
Blind Folio 9:187

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

188 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 9
Blind Folio 9:188

Dates in where Clauses
Early in this chapter, you saw an example of date arithmetic used in a where clause:

select Holiday, ActualDate, CelebratedDate
from Holiday
where CelebratedDate - ActualDate != 0;

HOLIDAY ACTUALDAT CELEBRATE
------------------------- --------- ---------
MARTIN LUTHER KING, JR. 15-JAN-02 17-JAN-02
LINCOLNS BIRTHDAY 12-FEB-02 18-FEB-02
WASHINGTONS BIRTHDAY 22-FEB-02 18-FEB-02
MEMORIAL DAY 30-MAY-02 27-MAY-02
COLUMBUS DAY 12-OCT-02 14-OCT-02

Dates can be used with other Oracle logical operators as well, with some warnings and
restrictions. The BETWEEN operator will do date arithmetic if the column preceding it is a date,
even if the test dates are literal strings:

select Holiday, CelebratedDate
from HOLIDAY
where CelebratedDate BETWEEN

'01-JAN-02' and '22-FEB-02';

HOLIDAY CELEBRATE
------------------------- ---------
NEW YEAR DAY 01-JAN-02
MARTIN LUTHER KING, JR. 17-JAN-02
LINCOLNS BIRTHDAY 18-FEB-02
WASHINGTONS BIRTHDAY 18-FEB-02
FAST DAY, NEW HAMPSHIRE 22-FEB-02

The logical operator IN works as well with literal strings:

select Holiday, CelebratedDate
from HOLIDAY
where CelebratedDate IN ('01-JAN-02', '22-FEB-02');

HOLIDAY CELEBRATE
------------------------- ---------
NEW YEAR DAY 01-JAN-02
FAST DAY, NEW HAMPSHIRE 22-FEB-02

If you cannot rely on 2000 being the default century value, then you can use the TO_DATE
function to specify the century values for the dates within the IN operator:

select Holiday, CelebratedDate
from HOLIDAY

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

where CelebratedDate IN
(TO_DATE('01-JAN-2002','DD-MON-YYYY'),
TO_DATE('22-FEB-2002','DD-MON-YYYY'));

HOLIDAY CELEBRATE
------------------------- ---------
NEW YEAR DAY 01-JAN-02
FAST DAY, NEW HAMPSHIRE 22-FEB-02

LEAST and GREATEST do not work, because they assume the literal strings are strings, not
dates. Refer to the sidebar “A Warning About GREATEST and LEAST,” earlier in this chapter, for
an explanation of LEAST and GREATEST.

Dealing with Multiple Centuries
If your applications use only two-digit values for years, then you may encounter problems related
to the year 2000. If you only specify two digits of a year (such as ‘98’ for ‘1998’), then you are
relying on the database to specify the century value (the ‘19’) when the record is inserted. If you
are putting in dates prior to the year 2000 (for example, birthdates), then you may encounter
problems with the century values assigned to your data.

In Oracle, all date values have century values. If you only specify the last two digits of the
year value, then Oracle will, by default, use the current century as the century value when it
inserts a record. For example, the following listing shows an insert into the BIRTHDAY table.

insert into BIRTHDAY
(FirstName, LastName, BirthDate)
values
('ALICIA', 'ANN', '21-NOV-39');

In the preceding example, no century value is specified for the BirthDate column, and no
age is specified. If you use the TO_CHAR function on the BirthDate column, you can see the full
BirthDate that Oracle inserted—it defaulted to the current century:

select TO_CHAR(BirthDate,'DD-MON-YYYY') AS Bday
from BIRTHDAY
where FirstName = 'ALICIA'
and LastName = 'ANN';

BDAY

21-NOV-2039

For dates that can properly default to the current century, using the default does not present
a problem. Alicia’s BirthDate value is 21-NOV-2039—wrong by 100 years! Wherever you insert
date values, you should specify the full four-digit year value.

Chapter 9: Dates: Then, Now, and the Difference 189

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 9
Blind Folio 9:189

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Using the EXTRACT Function
As of Oracle9i, you can use the EXTRACT function in place of the TO_CHAR function when you
are selecting portions of date values—such as just the month or day from a date. The EXTRACT
function’s syntax is

EXTRACT
({ { YEAR

| MONTH
| DAY
| HOUR
| MINUTE
| SECOND
}

| { TIMEZONE_HOUR
| TIMEZONE_MINUTE
}

| { TIMEZONE_REGION
| TIMEZONE_ABBR
}

}
FROM { datetime_value_expression | interval_value_expression }

)

For instance, to extract the month in which Victoria was born, you could execute the following:

select BirthDate,
EXTRACT(Month from BirthDate) AS Month

from BIRTHDAY
where FirstName = 'VICTORIA';

BIRTHDATE MONTH
--------- ----------
20-MAY-49 5

For more complex extractions, you will need to use TO_CHAR, but EXTRACT can support
many common date value queries.

Using the TIMESTAMP Datatypes
As of Oracle9i, you can take advantage of several new datatypes. The DATE datatype stores date
and time to the second; the TIMESTAMP datatypes store date to the billionth of a second.

The base datatype for timestamp values is called TIMESTAMP. Like DATE, it stores the year,
month, day, hour, minute, and second. It also includes a fractional_seconds_precision setting that
determines the number of digits in the fractional part of the seconds field. By default, the precision
is 6; valid values are 0 to 9.

In the following example, a table is created with the TIMESTAMP datatype, and is populated
via the SYSTIMESTAMP function:

190 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 9
Blind Folio 9:190

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

create table X1
(tscol TIMESTAMP(5));

insert into X1 values (SYSTIMESTAMP);

Now select that value from the table:

select * from X1;

TSCOL

15-MAR-02 04.58.06.00542 PM

The output shows the second the row was inserted, down to five places after the decimal.
The SYSTIMESTAMP function returns data in the form of the TIMESTAMP (fractional seconds

precision) WITH TIME ZONE datatype. The exact same row, inserted into a column that is defined
with the TIMESTAMP(5) WITH TIME ZONE datatype, returns the data in the following format:

create table X2
(tscol TIMESTAMP(5) WITH TIME ZONE);

select * from X2;

TSCOL

15-MAR-02 04.58.06.00542 PM –05:00

In this output, the time zone is displayed as an offset of Coordinated Universal Time (UTC).
The database is presently set to a time zone that is five hours prior to UTC.

Oracle also supports a TIMESTAMP (fractional seconds precision) WITH LOCAL TIME ZONE
datatype, which is similar to TIMESTAMP WITH TIME ZONE. It differs in that the data is normalized
to the database time zone when it is stored in the database, and during retrievals the users see
data in the session time zone.

In addition to the TIMESTAMP datatypes, Oracle also supports two interval datatypes:
INTERVAL YEAR (year_precision) TO MONTH and INTERVAL DAY (day_precision) TO SECOND
(fractional_seconds_precision). INTERVAL YEAR TO MONTH stores a period of time in years and
months, where the precision is the number of digits in the YEAR field (ranging from 0 to 9; default
is 2 digits). The INTERVAL DAY TO SECOND datatype stores a period of time in days, hours,
minutes, and seconds; the precision for the day and seconds accepts values from 0 to 9. The
INTERVAL datatypes are mostly used during statistical analysis and data mining.

Chapter 9: Dates: Then, Now, and the Difference 191

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 9
Blind Folio 9:191

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 9
Blind Folio 9:192

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 10
Blind Folio 10:193

CHAPTER
10

Conversion and
Transformation

Functions

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

T
his chapter looks at functions that convert, or transform, one datatype into
another. Four major datatypes and their associated functions have been
covered thus far:

■ CHAR (fixed-length character strings) and VARCHAR2 (variable-length character strings)
include any letter of the alphabet, any number, and any of the symbols on the keyboard.
Character literals must be enclosed in single quotation marks: ‘Sault Ste. Marie!’

■ NUMBER includes just the digits 0 through 9, a decimal point, and a minus sign, if
necessary. NUMBER literals are not enclosed in quotation marks: -246.320

■ DATE is a special type that includes information about the date, time, and time zone.
It has a default format of DD-MON-YY, but can be displayed in many ways using the
TO_CHAR function, as you saw in Chapter 9. DATE literals must be enclosed in single
quotation marks: ‘26-AUG-81’

Each of these datatypes has a group of functions designed especially to manipulate data of its
own type, as shown in Chapters 7, 8, and 9. String functions are used with character columns or
literals, arithmetic functions are used with NUMBER columns or literals, and date functions are
used with DATE columns or literals. Most group and miscellaneous functions work with any of
these types. Some of these functions change the object they affect (whether CHAR, VARCHAR2,
NUMBER, or DATE), while others report information about the object.

In one sense, most of the functions studied so far have been transformation functions, meaning
they changed their objects. However, the functions covered in this chapter change their objects
in an unusual way: They transform them from one datatype into another, or they make a profound
transformation of the data in them. Table 10-1 describes these functions.

194 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 10
Blind Folio 10:194

Function Name Definition

ASCIISTR Translates a string in any character set and returns an ASCII STRing
in the database character set.

BIN_TO_NUM Converts a BINary value TO its NUMerical equivalent.

CAST CASTs one built-in or collection type to another; commonly used
with nested tables and varying arrays.

CHARTOROWID CHARacter TO ROW IDentifier. Changes a character string to act
like an internal Oracle row identifier, or RowID.

COMPOSE Translates a string in any datatype to a Unicode string in its fully
normalized form in the same character set as the input.

CONVERT CONVERTs a character string from one national language character
set to another.

TABLE 10-1. Transformation Functions

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 10: Conversion and Transformation Functions 195

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 10
Blind Folio 10:195

Function Name Definition

DECODE DECODEs a CHAR, VARCHAR2, or NUMBER into any of several
different character strings or NUMBERs, based on value. This is a very
powerful if, then, else function. Chapter 17 is devoted to DECODE.

DECOMPOSE Translates a string in any datatype to a Unicode string after canonical
decomposition in the same character set as the input.

HEXTORAW HEXadecimal TO RAW. Changes a character string of hex numbers
into binary.

NUMTODSINTERVAL Converts a NUMber to an INTERVAL DAY TO SECOND literal.

NUMTOYMINTERVAL Converts a NUMber to an INTERVAL YEAR TO MONTH literal.

RAWTOHEX RAW TO HEXadecimal. Changes a string of binary numbers to a
character string of hex numbers.

RAWTONHEX RAW TO NHEX. Converts raw to an NVARCHAR2 character value
containing its hexadecimal equivalent.

ROWIDTOCHAR ROW Identifier TO CHARacter. Changes an internal Oracle row
identifier, or RowID, to a character string.

ROWIDTONCHAR RAW TO NCHAR. Converts a RowID value to an NVARCHAR2
datatype.

TO_CHAR TO CHARacter. Converts a NUMBER or DATE to a character string.

TO_CLOB TO CLOB. Converts NCLOB values in a LOB column or other
character strings to CLOB values.

TO_DATE TO DATE. Converts a NUMBER, CHAR, or VARCHAR2 to a DATE
(an Oracle datatype).

TO_DSINTERVAL Converts a character string of CHAR, VARCHAR2, NCHAR, or
NVARCHAR2 datatype to an INTERVAL DAY TO SECOND type.

TO_LOB TO LOB. Converts a LONG to a LOB as part of an insert as select.

TO_MULTI_BYTE TO MULTI_BYTE. Converts the single-byte characters in a character
string to multibyte characters.

TO_NCHAR TO NCHAR. Converts a character string, NUMBER, or DATE from
the database character set to the national character set.

TO_NCLOB TO NCLOB. Converts CLOB values in a LOB column or other
character strings to NCLOB values.

TO_NUMBER TO NUMBER. Converts a CHAR or VARCHAR2 to a number.

TO_SINGLE_BYTE TO SINGLE BYTE. Converts the multibyte characters in a CHAR
or VARCHAR2 to single bytes.

TABLE 10-1. Transformation Functions (continued)

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The use of two of these functions, TO_CHAR and TO_DATE, has already been demonstrated
in Chapter 9. TO_CHAR transforms a date into a character string (in the format you request).
TO_CHAR can convert not just DATEs but also NUMBERs into character strings. TO_DATE is
also a transformation function. It takes either a character string or a number and converts it into
the DATE datatype. It then can be used in date arithmetic to calculate MONTHS_BETWEEN,
NEXT_DAY, and other date functions.

Elementary Conversion Functions
Although there are many conversion functions listed in Table 10-1, the most commonly used are
three whose purpose is to convert one datatype into another:

■ TO_CHAR transforms a DATE or NUMBER into a character string.

■ TO_DATE transforms a NUMBER, CHAR, or VARCHAR2 into a DATE.

■ TO_NUMBER transforms a CHAR or VARCHAR2 into a NUMBER.

Why are these transformations important? TO_DATE is obviously necessary to accomplish
date arithmetic. TO_CHAR allows you to manipulate a number as if it were a string, using string
functions. TO_NUMBER allows you to use a string that happens to contain only numbers as if
it were a number; by using it, you can add, subtract, multiply, divide, and so on.

This means that if you stored a nine-digit ZIP code as a number, you could transform it into a
string, and then use SUBSTR and concatenation to add a dash (such as when printing addresses
on envelopes):

select SUBSTR(TO_CHAR(948033515),1,5)||'-'||
SUBSTR(TO_CHAR(948033515),6) AS Zip

from DUAL;

ZIP

94803-3515

Here, the TO_CHAR function transforms the pure number 948033515 (notice that it has no
single quotation marks around it, as a CHAR or VARCHAR2 string must) into a character string.

196 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 10
Blind Folio 10:196

Function Name Definition

TO_YMINTERVAL Converts a character string of CHAR, VARCHAR2, NCHAR, or
NVARCHAR2 datatype to an INTERVAL YEAR TO MONTH type.

TRANSLATE TRANSLATEs characters in a string into different characters.

UNISTR Converts a string into Unicode in the database Unicode character set.

TABLE 10-1. Transformation Functions (continued)

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SUBSTR then clips out positions 1 to 5 of this “string,” producing 94803. A dash is concatenated
on the right end of this string, and then another TO_CHAR creates another “string,” which
another SUBSTR clips out from position 6 to the end. The second string, 3515, is concatenated
after the dash. The whole rebuilt string is relabeled Zip, and Oracle displays it: 94803-3515. This
TO_CHAR function lets you use string manipulation functions on numbers (and dates) as if they
were actually strings. Handy? Yes. But watch this:

select SUBSTR(948033515,1,5)||'-'||
SUBSTR(948033515,6) AS Zip

from DUAL;

ZIP

94803-3515

This shouldn’t work, because 948033515 is a NUMBER, not a character string. Yet the string
function SUBSTR clearly worked anyway. Would it work with an actual NUMBER database
column? Here’s a table with Zip as a NUMBER:

describe ADDRESS

Name Null? Type
------------------------------- -------- ----
LASTNAME VARCHAR2(25)
FIRSTNAME VARCHAR2(25)
STREET VARCHAR2(50)
CITY VARCHAR2(25)
STATE CHAR(2)
ZIP NUMBER
PHONE VARCHAR2(12)
EXT VARCHAR2(5)

Select just the ZIP code for all the Marys in the table:

select SUBSTR(Zip,1,5)||'-'||
SUBSTR(Zip,6) AS Zip

from ADDRESS
where FirstName = 'MARY';

ZIP

94941-4302
60126-2460

SUBSTR works here just as well as it does with strings, even though Zip is a NUMBER column
from the ADDRESS table. Will other string functions also work?

select Zip, RTRIM(Zip,20)
from ADDRESS

Chapter 10: Conversion and Transformation Functions 197

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 10
Blind Folio 10:197

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

where FirstName = 'MARY';

ZIP RTRIM(ZIP,20)
---------- --
949414302 9494143
601262460 60126246

The column on the left demonstrates that Zip is a NUMBER; it is even right-justified, as
numbers are by default. But the RTRIM column is left-justified, just as strings are, and it has
removed zeros and twos from the right side of the ZIP codes. Something else is peculiar here.
Recall from Chapter 7 the format for RTRIM, shown here:

RTRIM(string [,'set'])

The set to be removed from the string is enclosed within single quotation marks, yet in this
example,

RTRIM(Zip,20)

there are no quotation marks. So what is going on?

Automatic Conversion of Datatypes
Oracle is automatically converting these numbers, both the Zip and the 20, into strings, almost as
if they both had TO_CHAR functions in front of them. In fact, with a few clear exceptions, Oracle
will automatically transform any datatype into any other datatype, based on the function that is
going to affect it. If it’s a string function, Oracle will convert a NUMBER or a DATE instantly into
a string, and the string function will work. If it’s a DATE function and the column or literal is a
string in the format DD-MON-YY, Oracle will convert it into a DATE. If the function is arithmetic
and the column or literal is a character string, Oracle will convert it into a NUMBER and do the
calculation.

Will this always work? No. To have Oracle automatically convert one datatype into another,
the first datatype must already “look” like the datatype it is being converted to. The basic
guidelines are as follows:

■ Any NUMBER or DATE can be converted to a character string. Any string function can
be used on a NUMBER or DATE column. Literal NUMBERs do not have to be enclosed
in single quotation marks when used in a string function; literal DATEs do.

■ A CHAR or VARCHAR2 value will be converted to a NUMBER if it contains only
NUMBERs, a decimal point, or a minus sign on the left.

■ A CHAR or VARCHAR2 value will be converted to a DATE only if it is in the default
date format (usually DD-MON-YY). This is true for all functions except GREATEST and
LEAST, which will treat the value as a string, and is true for BETWEEN only if the column
to the left after the word BETWEEN is a DATE. Otherwise, TO_DATE must be used, with
proper format.

198 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 10
Blind Folio 10:198

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

These guidelines may be confusing, so favor the use of TO_DATE and other conversion
functions to make sure the values are treated properly. The following examples should help to
clarify the guidelines. The following are the effects of several randomly chosen string functions
on NUMBERs and DATEs:

select INITCAP(LOWER(SysDate)) from DUAL;

INITCAP(LOWER(SYSDATE))

26-Mar-02

Note that the INITCAP function put the first letter of “mar” into uppercase even though “mar”
was buried in the middle of the string “26-mar-02.” This is a feature of INITCAP that is not confined
to dates, although it is illustrated here for the first time. It works because the following works:

select INITCAP('this-is_a.test,of:punctuation;for+initcap')
from DUAL;

INITCAP('THIS-IS_A.TEST,OF:PUNCTUATION;FO

This-Is_A.Test,Of:Punctuation;For+Initcap

INITCAP puts the first letter of every word into uppercase. It determines the beginning of
a word based on its being preceded by any character other than a letter. You can also cut and
paste dates using string functions, just as if they were strings:

select SUBSTR(SysDate,4,3) from DUAL;

SUB

MAR

Here, a DATE is left-padded with 9s for a total length of 20:

select LPAD(SysDate,20,'9') from DUAL;

LPAD(SYSDATE,20,'9')

9999999999926-MAR-02

LPAD, or any other string function, also can be used on NUMBERs, whether literal (as shown
here) or as a column:

select LPAD(9,20,0) from DUAL;

LPAD(9,20,0)

00000000000000000009

Chapter 10: Conversion and Transformation Functions 199

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 10
Blind Folio 10:199

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

These examples show how string functions treat both NUMBERs and DATEs as if they were
character strings. The result of the function (what you see displayed) is itself a character string.
In this next example, a string (note the single quotation marks) is treated as a NUMBER by the
number function FLOOR:

select FLOOR('-323.78') from DUAL;

FLOOR('-323.78')

-324

Here, two literal character strings are converted to DATEs for the DATE function
MONTHS_BETWEEN. This works only because the literal strings are in the default date format
DD-MON-YY:

select MONTHS_BETWEEN('16-MAY-02','01-NOV-02') from DUAL;

MONTHS_BETWEEN('16-MAY-02','01-NOV-02')

-5.516129

One of the guidelines says that a DATE will not be converted to a NUMBER. Yet, here is an
example of addition and subtraction with a DATE. Does this violate the guideline?

select SysDate, SysDate + 1, SysDate - 1 from DUAL;

SYSDATE SYSDATE+1 SYSDATE-1
--------- --------- ---------
26-MAR-02 27-MAR-02 25-MAR-02

It does not, because the addition and subtraction is date arithmetic, not regular arithmetic.
Date arithmetic (covered in Chapter 9) works only with addition and subtraction, and only with
DATEs. Most functions will automatically convert a character string in default date format into
a DATE. An exception is this attempt at date addition with a literal:

select '26-MAR-02' + 1 from DUAL;

ERROR: ORA-01722: invalid number

Date arithmetic, even with actual DATE datatypes, works only with addition and subtraction.
Any other arithmetic function attempted with a date will fail. Dates are not converted to numbers,
as this attempt to divide a date by 2 illustrates:

select SysDate / 2 from DUAL;
*

ERROR at line 1: ORA-00932: inconsistent data types

Finally, a NUMBER will never be automatically converted to a DATE, because a pure number
cannot be in the default format for a DATE, which is DD-MON-YY:

200 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 10
Blind Folio 10:200

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

select NEXT_DAY(032602,'FRIDAY') from DUAL;
*

ERROR at line 1: ORA-00932: inconsistent data types

To use a NUMBER in a date function, TO_DATE is required.

A Warning About Automatic Conversion
The issue of whether it is a good practice to allow SQL to do automatic conversion of datatypes
has arguments on either side. On one hand, this practice considerably simplifies and reduces
the functions necessary to make a select statement work. On the other hand, if your assumption
about what will be in the column is wrong (for example, you assume a particular character
column will always have a number in it, meaning you can use it in a calculation), then, at some
point, a query will stop working, Oracle will produce an error, and time will have to be spent
trying to find the problem. Further, another person reading your select statement may be
confused by what appear to be inappropriate functions at work on characters or numbers. Using
TO_NUMBER makes it clear that a numeric value is always expected even if the column uses
the VARCHAR2 datatype.

A simple rule of thumb might be that it is best to use functions where the risk is low, such as
string manipulation functions on numbers, rather than arithmetic functions on strings. For your
benefit and that of others using your work, always put a note near the select statement signaling
the use of automatic type conversion.

Specialized Conversion Functions
As shown in Table 10-1, Oracle includes several specialized conversion functions. If you expect
to use SQLPLUS and Oracle simply to produce reports, you probably won’t ever need any of
these functions. On the other hand, if you plan to use SQLPLUS to update the database, expect
to build Oracle applications; or if you are using National Language Support, this information
will eventually prove valuable. The functions can be found, by name, in the Alphabetical
Reference section of this book.

NOTE
The CAST function is used with nested tables and varying arrays; see
Chapter 31 for details. The DECODE function is covered in Chapter 17.

The conversion functions generally take a single value as input and return a single converted
value as output. For example, the BIN_TO_NUM function converts binary values to decimal
numeric values. Its input value is a list of the digits of a binary value, separated by commas and
treated as a single input string:

select BIN_TO_NUM(1,1,0,1) from DUAL;

BIN_TO_NUM(1,1,0,1)

13

Chapter 10: Conversion and Transformation Functions 201

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 10
Blind Folio 10:201

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

202 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 10
Blind Folio 10:202

select BIN_TO_NUM(1,1,1,0) from DUAL;

BIN_TO_NUM(1,1,1,0)

14

Transformation Functions
Although in one sense any function that changes its object could be called a transformation
function, there are two unusual functions that you can use in many interesting ways to control
your output based on your input, instead of simply transforming it. These functions are
TRANSLATE and DECODE.

TRANSLATE
TRANSLATE is a simple function that does an orderly character-by-character substitution in a
string. This is the format for TRANSLATE:

TRANSLATE(string,if,then)

TRANSLATE looks at each character in string, and then checks if to see whether that character
is there. If it is, it notes the position in if where it found the character, and then looks at the same
position in then. TRANSLATE substitutes whichever character it finds there for the character in
string. Normally, the function is written on a single line, like this:

select TRANSLATE(7671234,234567890,'BCDEFGHIJ')
from DUAL;

TRANSLA

GFG1BCD

But it might be easier to understand if simply broken onto two lines (SQLPLUS doesn’t care,
of course):

select TRANSLATE(7671234,234567890,
'BCDEFGHIJ')

from DUAL;

TRANSLA

GFG1BCD

When TRANSLATE sees a 7 in the string, it looks for a 7 in the if, and translates it to the
character in the same position in the then (an uppercase G). If the character is not in the if, it
is not translated (observe what TRANSLATE did with the 1).

TRANSLATE is technically a string function, but, as you can see, it will do automatic data
conversion and work with a mix of strings and numbers. The following is an example of a very
simple code cipher, where every letter in the alphabet is shifted one position. Many years ago,
spies used such character-substitution methods to encode messages before sending them. The
recipient simply reversed the process. Do you remember the smooth-talking computer, HAL, in

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 10: Conversion and Transformation Functions 203

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 10
Blind Folio 10:203

the movie 2001: A Space Odyssey? If you TRANSLATE HAL’s name with a one-character shift in the
alphabet, you get this:

select TRANSLATE('HAL','ABCDEFGHIJKLMNOPQRSTUVWXYZ',
'BCDEFGHIJKLMNOPQRSTUVWXYZA') AS Who

from DUAL;

WHO

IBM

DECODE
If TRANSLATE is a character-by-character substitution, DECODE can be considered a
value-by-value substitution. For every value it sees in a field, DECODE checks for a match in
a series of if/then tests. DECODE is an incredibly powerful function, with a broad range of
areas where it can be useful. Chapter 17 is devoted entirely to advanced use of DECODE.

This is the format for DECODE:

DECODE(value,if1,then1,if2,then2,if3,then3,. . . ,else)

Only three if/then combinations are illustrated here, but there is no practical limit. To see
how this function works, recall the NEWSPAPER table you saw in earlier chapters:

select * from NEWSPAPER;

FEATURE S PAGE
--------------- - -----
National News A 1
Sports D 1
Editorials A 12
Business E 1
Weather C 2
Television B 7
Births F 7
Classified F 8
Modern Life B 1
Comics C 4
Movies B 4
Bridge B 2
Obituaries F 6
Doctor Is In F 6

Suppose you want to change the name of a couple of the regular features. DECODE will
check each Feature value, row by row. If the value it finds is ‘Sports’, then it will substitute
‘Games People Play’; if it finds ‘Movies’, then it will substitute ‘Entertainment’; if it finds anything
else in the value, then it will use the value of Feature.

In the next example, the page number is decoded. If the page number is 1, then the words
‘Front Page’ are substituted. If the page number is anything else, the words ‘Turn to’ are

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

concatenated with the page number. This illustrates that else can be a function, a literal, or
another column.

select Feature, Section,
DECODE(Page,'1','Front Page','Turn to '||Page)

from NEWSPAPER;

FEATURE S DECODE(PAGE,'1','FRONTPAGE','TURNTO'||PAGE)
--------------- - --
National News A Front Page
Sports D Front Page
Editorials A Turn to 12
Business E Front Page
Weather C Turn to 2
Television B Turn to 7
Births F Turn to 7
Classified F Turn to 8
Modern Life B Front Page
Comics C Turn to 4
Movies B Turn to 4
Bridge B Turn to 2
Obituaries F Turn to 6
Doctor Is In F Turn to 6

There are some restrictions on datatypes in the list of ifs and thens, which will be covered in
Chapter 17.

Review
Most functions in Oracle, although they are intended for a specific datatype, such as CHAR,
VARCHAR2, NUMBER, and DATE, will actually work with other datatypes as well. They do
this by performing an automatic type conversion. With a few logical exceptions, and the hope
of future compatibility, they will do this as long as the data to be converted “looks” like the
datatype required by the function.

Character functions will convert any NUMBER or DATE. NUMBER functions will convert a
CHAR or VARCHAR2 if it contains the digits 0 through 9, a decimal point, or a minus sign on the
left. NUMBER functions will not convert DATEs. DATE functions will convert character strings if
they are in the format DD-MON-YY. They will not convert NUMBERs.

Two functions, TRANSLATE and DECODE, will fundamentally change the data they act on.
TRANSLATE will do a character substitution according to any pattern you specify, and DECODE
will do a value substitution for any pattern you specify.

204 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 10
Blind Folio 10:204

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 11
Blind Folio 11:205

CHAPTER
11

Grouping Things
Together

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

U
p to this point, you’ve seen how SQL can select rows of information from
database tables, how the where clause can limit the number of rows being
returned to only those that meet certain rules that you define, and how the rows
returned can be sorted in ascending or descending sequence using order by.
You’ve also seen how the values in columns can be modified by character,

NUMBER, and DATE functions, and how group functions can tell you something about the
whole set of rows.

Beyond the group functions you’ve seen, there are also two group clauses: having and group
by. These are parallel to the where and order by clauses except that they act on groups, not on
individual rows. These clauses can provide very powerful insights into your data.

The Use of group by and having
If you want to generate a count of titles on the bookshelf, categorized by the type of book, you
would write a query like this:

select CategoryName, COUNT(*)
from BOOKSHELF
group by CategoryName;

and Oracle would respond with:

CATEGORYNAME COUNT(*)
-------------------- ----------
ADULTFIC 6
ADULTNF 10
ADULTREF 6
CHILDRENFIC 5
CHILDRENNF 1
CHILDRENPIC 3

Notice the mix of a column name, CategoryName, and the group function COUNT in the
select clause. This mix is possible only because CategoryName is referenced in the group by
clause. If it were not there, the opaque message first encountered in Chapter 8 would have
resulted in this:

SQL> select CategoryName, COUNT(*) from BOOKSHELF;
select CategoryName, COUNT(*) from BOOKSHELF

*
ERROR at line 1:
ORA-00937: not a single-group group function

This result occurs because the group functions, such as SUM and COUNT, are designed
to tell you something about a group of rows, not the individual rows of the table. The error is
avoided by using CategoryName in the group by clause, which forces the COUNT to count
all the rows grouped within each CategoryName.

206 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 11
Blind Folio 11:206

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 11: Grouping Things Together 207

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 11
Blind Folio 11:207

The having clause works very much like a where clause except that its logic is only related
to the results of group functions, as opposed to columns or expressions for individual rows,
which can still be selected by a where clause. Here, the rows in the previous example are further
restricted to just those where there are more than five books in a category:

select CategoryName, COUNT(*)
from BOOKSHELF
group by CategoryName

having COUNT(*) > 5;

CATEGORYNAME COUNT(*)
-------------------- ----------
ADULTFIC 6
ADULTNF 10
ADULTREF 6

To determine the average rating by category, you can use the AVG function, as shown in the
following listing:

select CategoryName, COUNT(*), AVG(Rating)
from BOOKSHELF
group by CategoryName;

CATEGORYNAME COUNT(*) AVG(RATING)
-------------------- ---------- -----------
ADULTFIC 6 3.66666667
ADULTNF 10 4.2
ADULTREF 6 3.16666667
CHILDRENFIC 5 2.8
CHILDRENNF 1 3
CHILDRENPIC 3 1

Rating is a character column, defined as a VARCHAR2, but it contains numeric values, so
Oracle can perform numeric functions on it (see Chapter 10). What is the overall average rating?

select AVG(Rating) from BOOKSHELF;

AVG(RATING)

3.32258065

In this case, there is no group by clause because the entire set of rows in the BOOKSHELF
table is treated as the group. Now you can use this result as part of a larger query: what
categories have average ratings that are greater than the average rating of all books?

select CategoryName, COUNT(*), AVG(Rating)
from BOOKSHELF
group by CategoryName

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

having AVG(Rating) >
(select AVG(Rating) from BOOKSHELF);

CATEGORYNAME COUNT(*) AVG(RATING)
-------------------- ---------- -----------
ADULTFIC 6 3.66666667
ADULTNF 10 4.2

Looking back at the earlier listings, this result is correct—only two of the groups have average
Rating values greater than the overall average.

Although the results are sorted by the CategoryName column, the purpose of group by is
not to produce a desired sequence but rather to collect “like” things together. The order they
appear in is a by-product of how group by works; group by is not meant to be used to change
the sorting order.

Adding an order by
The solution for creating an alternative order for display is the addition of an order by clause
following the having clause. You could add this:

order by CategoryName desc

which would reverse the order of the list:

select CategoryName, COUNT(*)
from BOOKSHELF
group by CategoryName
order by CategoryName desc;

CATEGORYNAME COUNT(*)
-------------------- ----------
CHILDRENPIC 3
CHILDRENNF 1
CHILDRENFIC 5
ADULTREF 6
ADULTNF 10
ADULTFIC 6

or you could use this instead:

order by COUNT(*) desc

yielding

CATEGORYNAME COUNT(*)
-------------------- ----------
ADULTNF 10
ADULTFIC 6
ADULTREF 6
CHILDRENFIC 5

208 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 11
Blind Folio 11:208

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHILDRENPIC 3
CHILDRENNF 1

Although you can use the column alias as part of the order by clause, you can’t use it as
part of the having clause. Giving COUNT(*) an alias of “Counter” and attempting to use having
Counter > 1 as a clause in this query will result in an “invalid column name” error:

select CategoryName, COUNT(*) as Counter
from BOOKSHELF
group by CategoryName

having Counter > 1
order by COUNT(*) desc;

having Counter > 1
*

ERROR at line 4:
ORA-00904: invalid column name

Order of Execution
The previous query has quite a collection of competing clauses! Here are the rules Oracle uses to
execute each of them, and the order in which execution takes place:

1. Choose rows based on the where clause.

2. Group those rows together based on the group by clause.

3. Calculate the results of the group functions for each group.

4. Choose and eliminate groups based on the having clause.

5. Order the groups based on the results of the group functions in
the order by clause. The order by clause must use either a group
function or a column specified in the group by clause.

The order of execution is important because it has a direct impact on the performance of your
queries. In general, the more records that can be eliminated via where clauses, the faster the
query will execute. This performance benefit is due to the reduction in the number of rows that
must be processed during the group by operation.

If a query is written to use a having clause to eliminate groups, then you should check to see
if the having condition can be rewritten as a where clause. In many cases, this rewrite won’t be
possible. It is usually only available when the having clause is used to eliminate groups based on
the grouping columns.

For example, if you have this query:

select CategoryName, COUNT(*), AVG(Rating)
from BOOKSHELF
where Rating > 1
group by CategoryName

Chapter 11: Grouping Things Together 209

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 11
Blind Folio 11:209

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

having CategoryName like 'A%'
order by COUNT(*) desc;

CATEGORYNAME COUNT(*) AVG(RATING)
-------------------- ---------- -----------
ADULTNF 10 4.2
ADULTFIC 6 3.66666667
ADULTREF 6 3.16666667

then the order of execution would be:

1. Eliminate rows based on

where Rating > 1

2. Group the remaining rows based on

group by CategoryName

3. For each CategoryName, calculate the

COUNT(*)

4. Eliminate groups based on

having CategoryName like 'A%'

5. Order the remaining groups.

This query will run faster if the groups eliminated in Step 4 can be eliminated as rows in Step 1.
If they are eliminated at Step 1, fewer rows will be grouped (Step 2), fewer calculations will be
performed (Step 3), and no groups will be eliminated (Step 4). Each of these steps in the execution
will run faster.

Since the having condition in this example is not based on a calculated column, it is easily
changed into a where condition:

select CategoryName, COUNT(*), AVG(Rating)
from BOOKSHELF
where Rating > 1
and CategoryName like 'A%'

group by CategoryName
order by COUNT(*) desc;

In the modified version, fewer rows will be grouped, resulting in a performance savings. As the
number of rows in your tables increases, the performance savings from early row elimination
can grow dramatically.

Views of Groups
In Chapter 3, a view called INVASION was created for the Oracle at Delphi, which joined
together the WEATHER and LOCATION tables. This view appeared to be a table in its own
right, with columns and rows, but each of its rows contained columns that actually came from
two separate tables.

210 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 11
Blind Folio 11:210

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The same process of creating a view can be used with groups. The difference is that each row
will contain information about a group of rows—a kind of subtotal table. For example, consider
this group query:

select CategoryName, COUNT(*)
from BOOKSHELF
group by CategoryName;

You can create a view based on this query, and you can then query the view:

create or replace view CATEGORY_COUNT as
select CategoryName, COUNT(*) AS Counter
from BOOKSHELF
group by CategoryName;

desc CATEGORY_COUNT

Name Null? Type
------------------------------------ -------- ------------
CATEGORYNAME VARCHAR2(20)
COUNTER NUMBER

select * from CATEGORY_COUNT;

CATEGORYNAME COUNTER
-------------------- ----------
ADULTFIC 6
ADULTNF 10
ADULTREF 6
CHILDRENFIC 5
CHILDRENNF 1
CHILDRENPIC 3

NOTE
Since the COUNT(*) column is a function, you have to give it a
column alias (in this case, Counter) when using the query as the
basis for a view.

Renaming Columns with Aliases
Notice the name Counter in the select clause. The AS Counter clause renames the column it
follows. The new names are called aliases, because they are used to disguise the real names
of the underlying columns (which are complicated because they have functions).

When you query the view, you can (and must) now use the new column names:

select CategoryName, Counter from CATEGORY_COUNT;

Chapter 11: Grouping Things Together 211

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 11
Blind Folio 11:211

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

“Counter” is referred to as a column alias—another name to use when referring to a column.
In the description of the view, and in the query, there is no evidence of the grouping function

performed—just the Counter column name. It is as if the view CATEGORY_COUNT was a real
table with rows of monthly sums. Why?

Oracle automatically takes a single word, without quotes, and uses it to rename the column
it follows. When it does this, Oracle forces the word—the alias—into uppercase, regardless of
how it was typed. You can see evidence of this by comparing the column names in the create
view and the describe commands. When creating a view, never put double quotes around your
column aliases. Always leave aliases in create view statements without quotes. This will cause
them to be stored in uppercase, which is required for Oracle to find them. See the sidebar
“Aliases in View Creation” for a warning on aliases.

You now have Category counts collected in a view. A total for the entire bookshelf could also
be created, using BOOKCOUNT as both the view name and the column alias for COUNT(*):

create or replace view BOOKCOUNT as
select COUNT(*) BOOKCOUNT
from BOOKSHELF;

View created.

If you query the view, you’ll discover it has only one record:

select BOOKCOUNT
from BOOKCOUNT;

BOOKCOUNT

31

As new rows are added and committed to the BOOKSHELF table, the BOOKCOUNT and
CATEGORY_COUNT views will reflect the changes to the counts.

212 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 11
Blind Folio 11:212

Aliases in View Creation
Internally, Oracle works with all column and table names in uppercase. This is how
they are stored in its data dictionary, and this is how it always expects them to be.
When aliases are typed to create a view, they should always be naked—without
quotation marks around them. Putting double quotation marks around an alias can
force the column name stored internally by Oracle to be in mixed case. If you do
this, Oracle will not be able to find the column when you execute a select unless
you enclose the column name within quotes during all of your queries.

Never use double quotation marks in creating aliases for a view.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The Power of Views of Groups
Now you’ll see the real power of a relational database. You’ve created views containing totals
by groups: Category and for the entire group. These views can now be joined together, just as
the tables were in Chapter 3, to reveal information never before apparent. For instance, what
percentage of the books are in each category?

select CategoryName, Counter, (Counter/BookCount)*100 as Percent
from CATEGORY_COUNT, BOOKCOUNT
order by CategoryName;

CATEGORYNAME COUNTER PERCENT
-------------------- ---------- ----------
ADULTFIC 6 19.3548387
ADULTNF 10 32.2580645
ADULTREF 6 19.3548387
CHILDRENFIC 5 16.1290323
CHILDRENNF 1 3.22580645
CHILDRENPIC 3 9.67741935

In this query, two views are listed in the from clause, but they are not joined in a where
clause. Why not? In this particular case, no where clause is necessary, because one of the views,
BOOKCOUNT, will only return one row (as shown in the previous listing). The one row in
BOOKCOUNT is joined to each row in CATEGORY_COUNT, yielding one row of output for
each row in CATEGORY_COUNT. The same results could have been obtained by directly
joining the BOOKSHELF table with the BOOKCOUNT view, but as you can see, the query is
more complicated and difficult to understand—and as the number of groups expands, the
query will grow even more cumbersome:

select CategoryName, COUNT(*),
(COUNT(*)/MAX(BookCount))*100 as Percent

from BOOKSHELF, BOOKCOUNT
group by CategoryName
order by CategoryName;

Notice the percentage calculation:

(COUNT(*)/MAX(BookCount))*100 as Percent

Since this result is part of a grouping function, each of the values must be grouped. Thus, an
initial attempt such as this would fail:

(COUNT(*)/BookCount)*100 as Percent

since BookCount is not grouped. As there is only one row in the BOOKCOUNT view, you can
perform a MAX function on it to return that single row, grouped by itself.

To create queries that compare one grouping of rows with another grouping of rows, at least
one of the groupings must be a view or an “inline view” created in the from clause of the query.
Beyond this technical restriction, however, it is just simpler and easier to understand doing the

Chapter 11: Grouping Things Together 213

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 11
Blind Folio 11:213

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

queries with views. Compare the last two examples, and the difference in clarity is apparent.
Views hide complexity.

To use the inline view method, put the view’s text within the from clause and give its
columns aliases there:

select CategoryName, Counter, (Counter/BookCount)*100 as Percent
from CATEGORY_COUNT,

(select COUNT(*) as BookCount from BOOKSHELF)
order by CategoryName;

In this example, the BOOKCOUNT view has been removed from the from clause, replaced
by its base query. In that query, the BookCount alias is given to the result of a COUNT(*)
performed against the BOOKSHELF table. In the main query, that BookCount alias is then used
as part of a calculation. Using this coding method, there is no need to create the BOOKCOUNT
view. Be careful when working with multiple grouping levels within the same query—creating
views commonly helps to simplify the creation and maintenance of the code.

order by in views
From a strictly theoretical perspective, there is no reason to have an order by clause stored in
a view—you can issue an order by clause when you query the view. As of Oracle8i, Oracle
supports the order by clause within views, as shown here:

create view BOOKSHELF_SORTED
as select * from BOOKSHELF
order by Title;

Having the data sorted in the view may simplify your application development. For example,
if your code steps through a set of records, having those records presorted may make your
processing and error checking simpler. In your application development, you will know that the
data will always be returned to you in an ordered fashion. The following query selects the Title
values, using the RowNum pseudo-column to limit the output to nine records:

select Title from BOOKSHELF_SORTED
where Rownum < 10;

TITLE

ANNE OF GREEN GABLES
BOX SOCIALS
CHARLOTTE'S WEB
COMPLETE POEMS OF JOHN KEATS
EITHER/OR
EMMA WHO SAVED MY LIFE
GOOD DOG, CARL
GOSPEL
HARRY POTTER AND THE GOBLET OF FIRE

214 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 11
Blind Folio 11:214

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 11: Grouping Things Together 215

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 11
Blind Folio 11:215

The views also give you more power to use the many character, NUMBER, and DATE
datatypes at will, without worrying about things like months appearing in alphabetical order.

Logic in the having Clause
In the having clause, the choice of the group function, and the column on which it operates,
might bear no relation to the columns or group functions in the select clause:

select CategoryName, COUNT(*),
(COUNT(*)/MAX(BookCount))*100 as Percent

from BOOKSHELF, BOOKCOUNT
group by CategoryName

having Avg(Rating) > 4
order by CategoryName;

CATEGORYNAME COUNT(*) PERCENT
-------------------- ---------- ----------
ADULTNF 10 32.2580645

Here, the having clause selected only those categories (the group by collected all the rows
into groups by CategoryName) with an average rating greater than 4. All other groups are
eliminated. For the group that met that criterion, the percentage of the total count was calculated.

The having clause is very effective for determining which rows in a table have duplicate
values in specific columns. For example, if you are trying to establish a new unique index on a
column (or set of columns) in a table, and the index creation fails due to uniqueness problems
with the data, then you can easily determine which rows caused the problem.

First, select the columns that you want to be unique, followed by a COUNT(*) column.
Group by the columns you want to be unique, and use the having clause to return only those
groups having COUNT(*)>1. The only records returned will be duplicates. The following query
shows this check being performed for the AuthorName column of the AUTHOR table:

select AuthorName, COUNT(*)
from AUTHOR
group by AuthorName

having COUNT(*)>1
order by AuthorName;

no rows selected

Which books have more than one author? Select the titles from BOOKSHELF_AUTHOR for which
the group (by Title) has more than one member:

column Title format a40

select Title, COUNT(*)
from BOOKSHELF_AUTHOR
group by Title

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

having COUNT(*)>1;

TITLE COUNT(*)
-- ----------
COMPLETE POEMS OF JOHN KEATS 2
JOURNALS OF LEWIS AND CLARK 4
KIERKEGAARD ANTHOLOGY 2
RUNAWAY BUNNY 2

Who are those ten authors? You could create a view based on this query, or try it as an
inline view:

column Title format a40
column AuthorName format a30

select Title, AuthorName
from BOOKSHELF_AUTHOR,
(select Title as GroupedTitle, COUNT(*) as TitleCounter

from BOOKSHELF_AUTHOR
group by Title

having COUNT(*) > 1)
where Title = GroupedTitle
order by Title, AuthorName;

TITLE AUTHORNAME
-- ---------------------
COMPLETE POEMS OF JOHN KEATS JOHN BARNARD
COMPLETE POEMS OF JOHN KEATS JOHN KEATS
JOURNALS OF LEWIS AND CLARK BERNARD DE VOTO
JOURNALS OF LEWIS AND CLARK MERIWETHER LEWIS
JOURNALS OF LEWIS AND CLARK STEPHEN AMBROSE
JOURNALS OF LEWIS AND CLARK WILLIAM CLARK
KIERKEGAARD ANTHOLOGY ROBERT BRETALL
KIERKEGAARD ANTHOLOGY SOREN KIERKEGAARD
RUNAWAY BUNNY CLEMENT HURD
RUNAWAY BUNNY MARGARET WISE BROWN

This query may look complicated (and using a view would make it simpler to read), but it
is based on the concepts covered in this chapter: An inline view performs a group by function
and uses a having clause to return only those titles with multiple authors. Those titles are then
used as the basis of a query against the BOOKSHELF_AUTHOR table. In a single query, the
BOOKSHELF_AUTHOR table is queried for grouped data and individual row data.

order by with Columns and Group Functions
The order by clause is executed after the where, group by, and having clauses. It can employ
group functions, or columns from the group by, or a combination. If it uses a group function, that
function operates on the groups, and then the order by sorts the results of the function in order.
If the order by uses a column from the group by, it sorts the rows that are returned based on that

216 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 11
Blind Folio 11:216

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

column. Group functions and single columns (so long as the column is in the group by) can be
combined in the order by.

In the order by clause, you can specify a group function and the column it affects even
though they have nothing at all to do with the group functions or columns in the select, group
by, or having clause. On the other hand, if you specify a column in the order by clause that is
not part of a group function, it must be in the group by clause. Let’s take the last example and
modify the order by clause:

order by TitleCounter desc, Title, AuthorName

The titles and authors will now be ordered based on the number of authors (with the greatest
number first), then by Title and AuthorName:

TITLE AUTHORNAME
-- ----------------------
JOURNALS OF LEWIS AND CLARK BERNARD DE VOTO
JOURNALS OF LEWIS AND CLARK MERIWETHER LEWIS
JOURNALS OF LEWIS AND CLARK STEPHEN AMBROSE
JOURNALS OF LEWIS AND CLARK WILLIAM CLARK
COMPLETE POEMS OF JOHN KEATS JOHN BARNARD
COMPLETE POEMS OF JOHN KEATS JOHN KEATS
KIERKEGAARD ANTHOLOGY ROBERT BRETALL
KIERKEGAARD ANTHOLOGY SOREN KIERKEGAARD
RUNAWAY BUNNY CLEMENT HURD
RUNAWAY BUNNY MARGARET WISE BROWN

Join Columns
As explained in Chapters 1 and 3, joining two tables together requires that they have a
relationship defined by a common column. This is also true in joining views, or tables and
views. The only exception is when one of the tables or views has just a single row, as the
BOOKCOUNT table does. In this case, SQL joins the single row to every row in the other
table or view, and no reference to the joining columns needs to be made in the where clause
of the query.

Any attempt to join two tables that both have more than one row without specifying the
joined columns in the where clause will produce what’s known as a Cartesian product, usually
a giant result where every row in one table is joined with every row in the other table. A small
80-row table joined to a small 100-row table in this way would produce 8,000 rows in your
display, and few of them would be at all meaningful.

Review
Tables in Oracle can be grouped into collections of related rows, such as by Title, AuthorName,
or CategoryName. This is done using the group by clause, which collects only those rows in the
table that pass the logical test of the where clause:

where CategoryName like 'A%'
group by CategoryName

Chapter 11: Grouping Things Together 217

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 11
Blind Folio 11:217

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The having clause looks at these groups and eliminates any based on whether they pass the
logical test of the group function used in the having clause, such as:

having COUNT(*) > 1

Those groups whose COUNT(*) is greater than one are returned to you. Each group has just
one row in the resulting table that is displayed. The having clause need not (and often will not)
correspond to the group functions in the select clause. After these rows have been chosen by
the having clause, they can be placed in the desired sequence by an order by:

order by COUNT(*)

The order by must use either a column named in the group by or any appropriate group
function that can reference any column without regard to the select or the having clause. Its
group function will make its computation row by row for each group created by the group
by clause.

All of these powerful grouping features can be combined to create complex summary views
of the underlying table, which appear very simple. Once created, their columns can be manipulated,
and their rows selected, just as with any other table. These views also can be joined to each
other, and to tables, to produce deep insights into the data. You can use inline views to reduce
the number of objects you maintain. You can use order by clauses within views. For commonly
used groupings, consider the use of views to simplify your application development. In the following
chapters, you will see additional functions and methods that allow you to perform even more
complex data manipulation.

218 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 11
Blind Folio 11:218

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 12
Blind Folio 12:219

CHAPTER
12

When One Query
Depends upon Another

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

T
his chapter and Chapter 13 introduce more difficult concepts than we’ve
previously seen. While many of these concepts are rarely used in the normal
course of running queries or producing reports, there will be occasions that call
for the techniques taught in these chapters. If they seem too challenging as you
study them, read on anyway. The odds are good that by the time you need these

methods, you’ll be able to use them.

Advanced Subqueries
You’ve encountered subqueries—those select statements that are part of a where clause in a
preceding select statement—in earlier chapters. Subqueries also can be used in insert, update,
and delete statements. This use will be covered in Chapter 15.

Often, a subquery will provide an alternative approach to a query. For example, suppose
you want to know what categories of books have been checked out. The following three-way
join provides this information:

select distinct C.ParentCategory, C.SubCategory
from CATEGORY C, BOOKSHELF B, BOOKSHELF_CHECKOUT BC
where C.CategoryName = B.CategoryName
and B.Title = BC.Title;

PARENTCA SUBCATEGORY
-------- --------------------
ADULT FICTION
ADULT NONFICTION
ADULT REFERENCE
CHILDREN FICTION
CHILDREN PICTURE BOOK

Three tables are joined in the same way that two tables are. The common columns
are set equal to each other in the where clause, as shown in the preceding listing. To join
three tables together, two of them must each be joined to a third. In this example, the
CATEGORY table is joined to the BOOKSHELF table, and the result of that join is joined
to the BOOKSHELF_CHECKOUT table. The distinct clause tells Oracle to return only the
distinct combinations of ParentCategory and SubCategory.

NOTE
Not every table is joined to every other table. In fact, the number of
links between the tables is usually one less than the number of tables
being joined.

Once the tables are joined, as shown in the first two lines of the where clause, then you
can determine the count of checkouts by parent category and subcategory.

220 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 12
Blind Folio 12:220

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 12: When One Query Depends upon Another 221

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 12
Blind Folio 12:221

Correlated Subqueries
Is there another way to perform multitable joins? Recall that a where clause can contain a subquery
select. Subquery selects can be nested—that is, a where clause in a subquery also can contain a
where clause with a subquery, which can contain a where clause with a subquery—on down for
more levels than you are ever likely to need. The following shows three selects, each connected to
another through a where clause:

select distinct C.ParentCategory, C.SubCategory
from CATEGORY C
where CategoryName in

(select CategoryName from BOOKSHELF
where Title in

(select Title from BOOKSHELF_CHECKOUT)
);

PARENTCA SUBCATEGORY
-------- --------------------
ADULT FICTION
ADULT NONFICTION
ADULT REFERENCE
CHILDREN FICTION
CHILDREN PICTURE BOOK

This query selects any categories containing books that have been checked out. It does this
simply by requesting a book whose Title is in the BOOKSHELF table and whose checkout record
is in the BOOKSHELF_CHECKOUT table. In a subquery, Oracle assumes the columns to be from
the first select statement, the one that contains the subquery in its where clause. This is called a
nested subquery, because for every CategoryName in the main (outer) query, the CategoryName
may be correlated in the second where clause.

Said differently, a subquery may refer to a column in a table used in its main query (the query
that has the subquery in its where clause). Consider the following query:

select Title from BOOKSHELF_AUTHOR
where Title in

(select Title from BOOKSHELF
where AuthorName = 'STEPHEN JAY GOULD');

TITLE

WONDERFUL LIFE
THE MISMEASURE OF MAN

Why does this query work? Taken on its own, the subquery would fail:

select Title from BOOKSHELF
where AuthorName = 'STEPHEN JAY GOULD';

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

where AuthorName = 'STEPHEN JAY GOULD'
*

ERROR at line 2:
ORA-00904: invalid column name

When executed as a subquery, it is correlated to the parent query—you can reference columns
of the first select in the subquery. You’ll see additional examples of correlated subqueries in this
chapter and the chapters that follow.

Coordinating Logical Tests
If a reader is looking for more books in a particular category, what authors should he or she read?
Suppose that Fred Fuller, who has checked out two biographies, asks for recommendations. Who
else should you recommend?

select distinct AuthorName from BOOKSHELF_AUTHOR
where Title in
(select Title from BOOKSHELF
where CategoryName in

(select distinct CategoryName from BOOKSHELF
where Title in

(select Title
from BOOKSHELF_CHECKOUT bc

where BC.Name = 'FRED FULLER')));

That may look a daunting at first, but it’s easy to follow if you talk through the code. Start at
the innermost query: Get a list of the titles that Fred Fuller has checked out. For those titles, go to
the BOOKSHELF table and get a list of the distinct CategoryName values those books are assigned
to. Now go to BOOKSHELF a second time and get all the titles in those categories. For those titles,
go to the BOOKSHELF_AUTHOR table and generate the list of authors. Here are the results:

AUTHORNAME

BERNARD DE VOTO
BERYL MARKHAM
DANIEL BOORSTIN
DAVID MCCULLOUGH
DIETRICH BONHOEFFER
G. B. TALBOT
JOHN ALLEN PAULOS
MERIWETHER LEWIS
STEPHEN AMBROSE
STEPHEN JAY GOULD
WILLIAM CLARK

Fred is asking for recommendations for new authors, so let’s exclude the ones he’s
already read. To see who Fred has read, simply query the BOOKSHELF_CHECKOUT and
BOOKSHELF_AUTHOR tables:

222 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 12
Blind Folio 12:222

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 12: When One Query Depends upon Another 223

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 12
Blind Folio 12:223

select distinct AuthorName
from BOOKSHELF_AUTHOR ba, BOOKSHELF_CHECKOUT bc
where ba.Title = bc.Title
and bc.Name = 'FRED FULLER';

AUTHORNAME

DAVID MCCULLOUGH

Now let’s exclude that author from the list we’re going to provide. We’ll do that by adding
an extra and clause to the query:

select distinct AuthorName from BOOKSHELF_AUTHOR
where Title in
(select Title from BOOKSHELF
where CategoryName in

(select distinct CategoryName from BOOKSHELF
where Title in

(select Title
from BOOKSHELF_CHECKOUT bc

where BC.Name = 'FRED FULLER')))
and AuthorName not in
(select AuthorName

from BOOKSHELF_AUTHOR ba, BOOKSHELF_CHECKOUT bc
where ba.Title = bc.Title
and bc.Name = 'FRED FULLER');

AUTHORNAME

BERNARD DE VOTO
BERYL MARKHAM
DANIEL BOORSTIN
DIETRICH BONHOEFFER
G. B. TALBOT
JOHN ALLEN PAULOS
MERIWETHER LEWIS
STEPHEN AMBROSE
STEPHEN JAY GOULD
WILLIAM CLARK

This and is a part of the main query, even though it follows the subquery. Also note that some
of the tables are queried at multiple points within the script; each of those queries is treated as
a separate access of the table.

Using EXISTS and Its Correlated Subquery
EXISTS is a test for existence. It is placed the way IN might be placed with a subquery, but differs
in that it is a logical test for the return of rows from a query, not for the rows themselves.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

How many authors have written more than one book on the bookshelf?

select AuthorName, COUNT(*)
from BOOKSHELF_AUTHOR
group by AuthorName

having COUNT(*) > 1;

AUTHORNAME COUNT(*)
------------------------------ ----------
DAVID MCCULLOUGH 2
DIETRICH BONHOEFFER 2
E. B. WHITE 2
SOREN KIERKEGAARD 2
STEPHEN JAY GOULD 2
W. P. KINSELLA 2
WILTON BARNHARDT 2

Attempting to find both AuthorName and Title fails, however, because the group by made
necessary by the COUNT(*) is on the primary key of the BOOKSHELF_AUTHOR table (AuthorName,
Title). Since each primary key, by definition, uniquely identifies only one row, the count of titles
for that one row can never be greater than one, so the having clause always tests false—it doesn’t
find any rows:

no rows selected.

EXISTS provides a solution. The following subquery asks, for each AuthorName selected in
the outer query, whether an AuthorName exists in the BOOKSHELF_AUTHOR table with a count
of Titles greater than one. If the answer for a given name is yes, the EXISTS test is true, and the
outer query selects an AuthorName and Title. The author names are correlated by the “BA” alias
given to the first BOOKSHELF_AUTHOR table.

select AuthorName, Title
from BOOKSHELF_AUTHOR BA
where EXISTS

(select *
from BOOKSHELF_AUTHOR BA2

where BA.AuthorName = BA2.AuthorName
group by BA2.AuthorName

having COUNT(BA2.Title) > 1)
order by AuthorName, Title;

AUTHORNAME TITLE
------------------------- ------------------------------
DAVID MCCULLOUGH JOHN ADAMS
DAVID MCCULLOUGH TRUMAN
DIETRICH BONHOEFFER LETTERS AND PAPERS FROM PRISON
DIETRICH BONHOEFFER THE COST OF DISCIPLESHIP
E. B. WHITE CHARLOTTE'S WEB
E. B. WHITE TRUMPET OF THE SWAN

224 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 12
Blind Folio 12:224

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SOREN KIERKEGAARD EITHER/OR
SOREN KIERKEGAARD KIERKEGAARD ANTHOLOGY
STEPHEN JAY GOULD THE MISMEASURE OF MAN
STEPHEN JAY GOULD WONDERFUL LIFE
W. P. KINSELLA BOX SOCIALS
W. P. KINSELLA SHOELESS JOE
WILTON BARNHARDT EMMA WHO SAVED MY LIFE
WILTON BARNHARDT GOSPEL

The two queries are correlated—note that the subquery references the BA.AuthorName column
even though that column is in the outer query, not the subquery. Within the subquery, the BA2 alias is
not required but helps make the code easier to maintain.

This same query could have been built using IN and a test on the column Name. No correlated
subquery is necessary here:

select AuthorName, Title
from BOOKSHELF_AUTHOR BA

where AuthorName in
(select AuthorName

from BOOKSHELF_AUTHOR
group by AuthorName

having COUNT(Title) > 1)
order by AuthorName, Title;

Outer Joins
The syntax for outer joins has changed considerably in Oracle9i. In the following examples, you
will see both the Oracle9i syntax and the pre-Oracle9i syntax. The pre-Oracle9i syntax is still
supported in Oracle9i, but its use should be discontinued. New development should use the new
syntax. The new syntax complies with ANSI SQL standards, while the old syntax does not.

Pre-Oracle9i Syntax for Outer Joins
What books were checked out during the time period tracked in the BOOKSHELF_CHECKOUT table?

select distinct Title
from BOOKSHELF_CHECKOUT;

TITLE
--
ANNE OF GREEN GABLES
EITHER/OR
GOOD DOG, CARL
HARRY POTTER AND THE GOBLET OF FIRE
INNUMERACY
JOHN ADAMS
MIDNIGHT MAGIC
MY LEDGER
POLAR EXPRESS

Chapter 12: When One Query Depends upon Another 225

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 12
Blind Folio 12:225

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

THE DISCOVERERS
THE MISMEASURE OF MAN
THE SHIPPING NEWS
TO KILL A MOCKINGBIRD
TRUMAN
WEST WITH THE NIGHT
WONDERFUL LIFE

That’s a correct report, but it doesn’t show the 0 counts—the books that were not checked out.
If you need to see the inventory of all books along with the checkout list, you’ll need to join
BOOKSHELF_CHECKOUT to BOOKSHELF:

select distinct B.Title
from BOOKSHELF_CHECKOUT BC, BOOKSHELF B

where BC.Title = B.Title;

But that query will return the exact same records—the only rows in BOOKSHELF that can
meet the join criteria are those that have been checked out. To list the rest of the books, you’ll
need to use an outer join—telling Oracle to return a row even if the join does not produce a
match. Pre-Oracle9i, the syntax for an outer join uses a (+) on the side of the join that will be
returning additional rows. In this case, that’s BOOKSHELF_CHECKOUT. The following query
shows the maximum number of days each book was checked out:

select B.Title, MAX(BC.ReturnedDate - BC.CheckoutDate)
"Most Days Out"

from BOOKSHELF_CHECKOUT BC, BOOKSHELF B
where BC.Title (+) = B.Title
group by B.Title;

TITLE Most Days Out
-- -------------
ANNE OF GREEN GABLES 18
BOX SOCIALS
CHARLOTTE'S WEB
COMPLETE POEMS OF JOHN KEATS
EITHER/OR 8
EMMA WHO SAVED MY LIFE
GOOD DOG, CARL 14
GOSPEL
HARRY POTTER AND THE GOBLET OF FIRE 11
INNUMERACY 21
JOHN ADAMS 28
JOURNALS OF LEWIS AND CLARK
KIERKEGAARD ANTHOLOGY
LETTERS AND PAPERS FROM PRISON
MIDNIGHT MAGIC 14
MY LEDGER 16
POLAR EXPRESS 14
PREACHING TO HEAD AND HEART
RUNAWAY BUNNY

226 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 12
Blind Folio 12:226

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SHOELESS JOE
THE COST OF DISCIPLESHIP
THE DISCOVERERS 48
THE GOOD BOOK
THE MISMEASURE OF MAN 31
THE SHIPPING NEWS 59
TO KILL A MOCKINGBIRD 14
TRUMAN 19
TRUMPET OF THE SWAN
UNDER THE EYE OF THE CLOCK
WEST WITH THE NIGHT 48
WONDERFUL LIFE 31

All of the Titles in BOOKSHELF are returned, even those that do not meet the join criteria. If
you display the BOOKSHELF_CHECKOUT.Title values instead, you will see that those values are
NULL. Think of the (+), which must immediately follow the join column of the shorter table, as
saying “add an extra (NULL) row of BC.Title any time there’s no match for B.Title.”

Oracle9i Syntax for Outer Joins
As of Oracle9i, you can use the ANSI SQL standard syntax for outer joins. In the from clause,
you can tell Oracle to perform a left, right, or full outer join. Let’s start with the example from
the last section:

select B.Title, MAX(BC.ReturnedDate - BC.CheckoutDate)
"Most Days Out"

from BOOKSHELF_CHECKOUT BC, BOOKSHELF B
where BC.Title (+) = B.Title
group by B.Title;

In this case, the BOOKSHELF_CHECKOUT table is having rows returned from it during the
join even if no matches are found. This can be rewritten as:

select B.Title, MAX(BC.ReturnedDate - BC.CheckoutDate)
"Most Days Out"

from BOOKSHELF_CHECKOUT BC right outer join BOOKSHELF B
on BC.Title = B.Title

group by B.Title;

Note the use of the on clause as part of the outer join syntax. Note that

from BOOKSHELF_CHECKOUT BC right outer join BOOKSHELF B

is equivalent to

from BOOKSHELF B left outer join BOOKSHELF_CHECKOUT BC

You can replace the on clause with a using clause along with the name of the column the
tables have in common—do not qualify the column name with a table name or table alias.

Chapter 12: When One Query Depends upon Another 227

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 12
Blind Folio 12:227

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

select Title, MAX(BC.ReturnedDate - BC.CheckoutDate)
"Most Days Out"

from BOOKSHELF_CHECKOUT BC right outer join BOOKSHELF B
using (Title)
group by Title;

Note that you cannot specify a table alias for the columns listed in the using clause—even in
the group by and select clauses.

As with the old syntax, the side used as the driving table for the outer join makes a difference;
doing a left outer join will not return all of the titles.

select B.Title, MAX(BC.ReturnedDate - BC.CheckoutDate)
"Most Days Out"

from BOOKSHELF_CHECKOUT BC left outer join BOOKSHELF B
on BC.Title = B.Title

group by B.Title;

TITLE Most Days Out
-- -------------
ANNE OF GREEN GABLES 18
EITHER/OR 8
GOOD DOG, CARL 14
HARRY POTTER AND THE GOBLET OF FIRE 11
INNUMERACY 21
JOHN ADAMS 28
MIDNIGHT MAGIC 14
MY LEDGER 16
POLAR EXPRESS 14
THE DISCOVERERS 48
THE MISMEASURE OF MAN 31
THE SHIPPING NEWS 59
TO KILL A MOCKINGBIRD 14
TRUMAN 19
WEST WITH THE NIGHT 48
WONDERFUL LIFE 31

16 rows selected.

The third option, full outer join, returns all rows from both tables. Rows that do not satisfy
the on condition return NULL values.

select B.Title, MAX(BC.ReturnedDate - BC.CheckoutDate)
"Most Days Out"

from BOOKSHELF_CHECKOUT BC full outer join BOOKSHELF B
on BC.Title = B.Title

group by B.Title;

Prior to Oracle9i, you can generate the full outer join results by performing two separate
outer joins—using each table as the outer table—and using a union operation to combine the
results in a single query.

228 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 12
Blind Folio 12:228

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Replacing NOT IN with an Outer Join
The various logical tests that can be done in a where clause all have their separate performance
measures. A NOT IN test may force a full read of the table in the subquery select. For example,
what books were not checked out? You could write a query like this:

select Title
from BOOKSHELF
where Title not in

(select Title from BOOKSHELF_CHECKOUT)
order by Title;

TITLE
--
BOX SOCIALS
CHARLOTTE'S WEB
COMPLETE POEMS OF JOHN KEATS
EMMA WHO SAVED MY LIFE
GOSPEL
JOURNALS OF LEWIS AND CLARK
KIERKEGAARD ANTHOLOGY
LETTERS AND PAPERS FROM PRISON
PREACHING TO HEAD AND HEART
RUNAWAY BUNNY
SHOELESS JOE
THE COST OF DISCIPLESHIP
THE GOOD BOOK
TRUMPET OF THE SWAN
UNDER THE EYE OF THE CLOCK

This is typically the way such a query would be written, even though experienced Oracle
users know it may be slow—you may be forcing Oracle to perform a time-intensive full table
scan on the BOOKSHELF_CHECKOUT table. The following query uses an outer join and
produces the same result. The difference is that this one will be efficient since the optimizer
can take advantage of indexes on the join columns:

select distinct B.Title
from BOOKSHELF_CHECKOUT BC right outer join BOOKSHELF B
on BC.Title = B.Title

where BC.Title is NULL
order by B.Title;

TITLE
--
BOX SOCIALS
CHARLOTTE'S WEB
COMPLETE POEMS OF JOHN KEATS
EMMA WHO SAVED MY LIFE
GOSPEL
JOURNALS OF LEWIS AND CLARK

Chapter 12: When One Query Depends upon Another 229

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 12
Blind Folio 12:229

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

230 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 12
Blind Folio 12:230

KIERKEGAARD ANTHOLOGY
LETTERS AND PAPERS FROM PRISON
PREACHING TO HEAD AND HEART
RUNAWAY BUNNY
SHOELESS JOE
THE COST OF DISCIPLESHIP
THE GOOD BOOK
TRUMPET OF THE SWAN
UNDER THE EYE OF THE CLOCK

Why does it work and give the same results as the NOT IN? The outer join between the two
tables ensures that all rows are available for the test, including those Titles for whom no checkout
records are listed in the BOOKSHELF_CHECKOUT table. The line

where BC.Title is NULL

produces only those Titles that don’t appear in the BOOKSHELF_CHECKOUT table (and are
therefore returned as NULL titles by Oracle). The logic here is obscure, but it works. The best
way to use this technique is simply to follow the model. Save this method for use when a NOT
IN will be searching a big table, and put plenty of explanatory comments nearby.

Replacing NOT IN with NOT EXISTS
A more common way of performing this type of query requires using the NOT EXISTS clause.
NOT EXISTS is typically used to determine which values in one table do not have matching
values in another table. In usage, it is identical to the EXISTS clause; in the following example,
you’ll see the difference in the query logic and the records returned.

NOT EXISTS allows you to use a correlated subquery to eliminate from a table all records that
may successfully be joined to another table. For this example, that means you can eliminate from
the BOOKSHELF table all Titles that are present in the Title column of the BOOKSHELF_CHECKOUT
table. The following query shows how this is done:

select B.Title
from BOOKSHELF B
where not exists

(select 'x' from BOOKSHELF_CHECKOUT BC
where BC.Title = B.Title)

order by B.Title;

TITLE
--
BOX SOCIALS
CHARLOTTE'S WEB
COMPLETE POEMS OF JOHN KEATS
EMMA WHO SAVED MY LIFE
GOSPEL
JOURNALS OF LEWIS AND CLARK
KIERKEGAARD ANTHOLOGY

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 12: When One Query Depends upon Another 231

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 12
Blind Folio 12:231

LETTERS AND PAPERS FROM PRISON
PREACHING TO HEAD AND HEART
RUNAWAY BUNNY
SHOELESS JOE
THE COST OF DISCIPLESHIP
THE GOOD BOOK
TRUMPET OF THE SWAN
UNDER THE EYE OF THE CLOCK

This query shows the books that have not been checked out, as previously shown via the not
in and outer join methods. How does this query work?

For each record in the BOOKSHELF table, the NOT EXISTS subquery is checked. If the join of
that record to the BOOKSHELF_CHECKOUT table returns a row, then the results of the subquery
EXIST. NOT EXISTS tells the query to reverse that return code; therefore, any row in BOOKSHELF
that can be successfully joined to BOOKSHELF_CHECKOUT will not be returned by the outer
query. The only rows left are the BOOKSHELF rows that do not have a matching row in
BOOKSHELF_CHECKOUT.

NOT EXISTS is a very efficient way to perform this type of query, especially when multiple
columns are used for the join. Because it uses a join, NOT EXISTS is frequently able to use
available indexes, whereas NOT IN may not be able to use those indexes. The ability to use
indexes for this type of query can have a dramatic impact on the query’s performance.

NATURAL and INNER Joins
As of Oracle9i, you can use the natural keyword to indicate that a join should be performed
based on all columns that have the same name in the two tables being joined. For example,
what titles in BOOK_ORDER match those already in BOOKSHELF?

select Title
from BOOK_ORDER natural join BOOKSHELF;

TITLE
--
GOSPEL
SHOELESS JOE

The natural join returned the results as if you had typed in:

select BO.Title
from BOOK_ORDER BO, BOOKSHELF
where BO.Title = BOOKSHELF.Title
and BO.Publisher = BOOKSHELF.Publisher
and BO.CategoryName = BOOKSHELF.CategoryName;

The join was performed based on the columns the two tables had in common.
Support for inner join syntax was introduced in Oracle9i. Inner joins are the default—they

return the rows the two tables have in common, and are the alternative to outer joins. Note that

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

232 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 12
Blind Folio 12:232

they support the on and using clauses, so you can specify your join criteria as shown in the
following listing:

select BO.Title
from BOOK_ORDER BO inner join BOOKSHELF B
on BO.Title = B.Title;

TITLE
--
GOSPEL
SHOELESS JOE

UNION, INTERSECT, and MINUS
Sometimes you need to combine information of a similar type from more than one table. A classic
example of this is merging two or more mailing lists prior to a mailing campaign. Depending upon
the purpose of a particular mailing, you might want to send letters to any of these combinations
of people:

■ Everyone in both lists (while avoiding sending two letters to someone who happens
to be in both lists)

■ Only those people who are in both lists

■ Those people in only one of the lists

These three combinations of lists are known in Oracle as UNION, INTERSECT, and MINUS.
In the following examples you will see how to use these three clauses to manage the results of
multiple queries. The examples will compare the books on hand (BOOKSHELF) with those on
order (BOOK_ORDER).

To see all of the books, UNION the two tables. To reduce the size of the output, only the
BOOKSHELF entries from the first half of the alphabet are selected:

select Title from BOOKSHELF
where Title < 'M%';

returns 14 rows.

select Title from BOOK_ORDER;

returns 6 rows. If we UNION them together, how many rows are returned?

select Title from BOOKSHELF
where Title < 'M%'

union
select Title from BOOK_ORDER;

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 12: When One Query Depends upon Another 233

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 12
Blind Folio 12:233

TITLE
--
ANNE OF GREEN GABLES
BOX SOCIALS
CHARLOTTE'S WEB
COMPLETE POEMS OF JOHN KEATS
EITHER/OR
EMMA WHO SAVED MY LIFE
GALILEO'S DAUGHTER
GOOD DOG, CARL
GOSPEL
HARRY POTTER AND THE GOBLET OF FIRE
INNUMERACY
JOHN ADAMS
JOURNALS OF LEWIS AND CLARK
KIERKEGAARD ANTHOLOGY
LETTERS AND PAPERS FROM PRISON
LONGITUDE
ONCE REMOVED
SHOELESS JOE
SOMETHING SO STRONG

19 rows selected.

Where did the extra record go? The problem is that one of the Title values in BOOK_ORDER
is already in the BOOKSHELF table. To show the duplicates, use UNION ALL instead of UNION:

select Title from BOOKSHELF
where Title < 'M%'

union all
select Title from BOOK_ORDER
order by Title;

TITLE
--
ANNE OF GREEN GABLES
BOX SOCIALS
CHARLOTTE'S WEB
COMPLETE POEMS OF JOHN KEATS
EITHER/OR
EMMA WHO SAVED MY LIFE
GALILEO'S DAUGHTER
GOOD DOG, CARL
GOSPEL
GOSPEL
HARRY POTTER AND THE GOBLET OF FIRE
INNUMERACY
JOHN ADAMS
JOURNALS OF LEWIS AND CLARK
KIERKEGAARD ANTHOLOGY
LETTERS AND PAPERS FROM PRISON

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

234 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 12
Blind Folio 12:234

LONGITUDE
ONCE REMOVED
SHOELESS JOE
SOMETHING SO STRONG

20 rows selected.

The duplicate title is now listed twice.
In the following, the two lists of books are intersected. This list contains only those names

that are in both underlying tables (note that the restriction on Title < ‘M%’ has been eliminated
for this example):

select Title from BOOKSHELF
intersect
select Title from BOOK_ORDER
order by Title;

TITLE
--
GOSPEL
SHOELESS JOE

Next, the list of new books (in BOOK_ORDER but not already in BOOKSHELF) is generated,
via the MINUS operator:

select Title from BOOK_ORDER
minus
select Title from BOOKSHELF
order by Title;

TITLE
--
GALILEO'S DAUGHTER
LONGITUDE
ONCE REMOVED
SOMETHING SO STRONG

You could have also used MINUS to show which books had not been checked out:

select Title from BOOKSHELF
minus

select Title from BOOKSHELF_CHECKOUT;

TITLE

BOX SOCIALS
CHARLOTTE'S WEB
COMPLETE POEMS OF JOHN KEATS
EMMA WHO SAVED MY LIFE
GOSPEL

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 12: When One Query Depends upon Another 235

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 12
Blind Folio 12:235

JOURNALS OF LEWIS AND CLARK
KIERKEGAARD ANTHOLOGY
LETTERS AND PAPERS FROM PRISON
PREACHING TO HEAD AND HEART
RUNAWAY BUNNY
SHOELESS JOE
THE COST OF DISCIPLESHIP
THE GOOD BOOK
TRUMPET OF THE SWAN
UNDER THE EYE OF THE CLOCK

15 rows selected.

You’ve just learned the basics of UNION, INTERSECT, and MINUS. Now let’s go into details.
In combining two tables, Oracle does not concern itself with column names on either side of the
combination operator—that is, Oracle will require that each select statement be valid and have
valid columns for its own table(s), but the column names in the first select statement do not have
to be the same as those in the second. Oracle does have these stipulations:

■ The select statements must have the same number of columns. If the two tables being
queried have differing numbers of columns selected, you can select strings in place of
columns to make the two queries’ column lists match.

■ The corresponding columns in the select statements must be the same datatype (they
needn’t be the same length).

When ordering the output, Oracle uses the column names from the first select statement in
giving the query results. Consequently, only column names from the first select statement can
be used in the order by.

You can use combination operators with two or more tables, but when you do, precedence
becomes an issue, especially if INTERSECT and MINUS appear. Use parentheses to force the
order you want.

IN Subqueries
Combination operators can be used in subqueries, but you must be careful with precedence.
A query of the form:

select ColA from TABLE_A
where ColA in

(select Col1 from TABLE_1)
union

(select Col2 from TABLE_2);

is poorly written and ambiguous. Which will be performed first, the union of the two queries as
part of a single where clause, or the in clause based on the query of TABLE_1, followed by a
union of that result with TABLE_2? Use parentheses to clarify your meaning and enforce the
proper precedence of operations. The in clause is always given a higher precedence than union

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

unless you use parentheses to alter the way the query is executed. If you want the union to have
higher precedence, use parentheses:

select ColA from TABLE_A
where ColA in

(select Col1 from TABLE_1
union
select Col2 from TABLE_2);

Restrictions on UNION, INTERSECT, and MINUS
Queries that use a UNION, INTERSECT, or MINUS in their where clause must have the same
number and type of columns in their select list. Note that the equivalent IN construction does
not have that limitation.

The use of combination operators in place of IN, AND, and OR is a matter of personal
style. Most SQL users regard IN, AND, and OR as being clearer and easier to understand than
combination operators.

236 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 12
Blind Folio 12:236

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:11:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 13
Blind Folio 13:237

CHAPTER
13

Some Complex
Possibilities

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

T
his chapter continues the study of the more complex Oracle functions and features.
Of particular interest here is the creation of simple and group queries that can be
turned into views, the use of totals in calculations, and the creation of reports
showing tree structure. Like the techniques covered in Chapter 12, these techniques
are not essential for most reporting needs. If they look overly difficult, don’t be

frightened off. If you are new to Oracle and the use of its query facilities, it is enough to know
that these capabilities exist and you can turn to them if needed.

Complex Groupings
Views can build upon each other. In Chapter 11, you saw the concept of creating a view of a
grouping of rows from a table. As shown in Chapter 11, you can easily join views to other views
and tables to produce additional views to simplify the task of querying and reporting.

As your groupings grow more complex, you will find that views are invaluable to your coding
efforts; they simplify the representation of data at different grouping levels within your application.
They also make it easier to use the more advanced statistical functions available in Oracle9i.

Consider the CATEGORY_COUNT view, first encountered in Chapter 11:

create or replace view CATEGORY_COUNT as
select CategoryName, COUNT(*) as Counter
from BOOKSHELF
group by CategoryName;

select * from CATEGORY_COUNT;

CATEGORYNAME COUNTER
-------------------- ----------
ADULTFIC 6
ADULTNF 10
ADULTREF 6
CHILDRENFIC 5
CHILDRENNF 1
CHILDRENPIC 3

Order the results by their Counter column values, with the highest first:

select * from CATEGORY_COUNT
order by Counter desc;

CATEGORYNAME COUNTER
-------------------- ----------
ADULTNF 10
ADULTFIC 6
ADULTREF 6
CHILDRENFIC 5
CHILDRENPIC 3
CHILDRENNF 1

238 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 13
Blind Folio 13:238

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 13: Some Complex Possibilities 239

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 13
Blind Folio 13:239

The output shows the ranking of the categories; the ADULTNF category ranks first in terms of
the number of books. Without displaying this list, you could determine where a different Counter
value would be in the rankings. To do this, we’ll use the RANK function. As shown in the following
listing, the RANK function takes a value as its input, and has several additional clauses—within
group and an order by clause that tells Oracle how to do the ranking. Where would a Counter
value of 3 rank?

select RANK(3) within group
(order by Counter desc)
from CATEGORY_COUNT;

RANK(3)WITHINGROUP(ORDERBYCOUNTERDESC)

5

A Counter value of 3 would be the fifth-highest Counter value. How about a Counter value of 8?

select RANK(8) within group
(order by Counter desc)
from CATEGORY_COUNT;

RANK(8)WITHINGROUP(ORDERBYCOUNTERDESC)

2

Adding those five books to the category would move it up to second place. From a percentile
basis, what would the percentile ranking for that category be?

select PERCENT_RANK(8) within group
(order by Counter desc)
from CATEGORY_COUNT;

PERCENT_RANK(8)WITHINGROUP(ORDERBYCOUNTERDESC)
--

.166666667

As expected, it would be in the top one-sixth of the categories.
With this technique of using both summary views and analytic functions, you can create

views and reports that include weighted averages, effective yield, percentage of total, percentage
of subtotal, and many similar calculations. There is no effective limit to how many views can be
built on top of each other, although even the most complex calculations seldom require more
than three or four levels of views built upon views. Note that you can also create inline views in
the from clause, as shown in Chapter 11.

Using Temporary Tables
You can create a table that exists solely for your session, or whose data persists for the duration
of your transaction. You can use temporary tables to support specialized rollups or specific
application processing requirements.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

240 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 13
Blind Folio 13:240

To create a temporary table, use the create global temporary table command. When you
create a temporary table, you can specify whether it should last for the duration of your session
(via the on commit preserve rows clause) or whether its rows should be deleted when the
transaction completes (via the on commit delete rows clause).

Unlike a permanent table, a temporary table does not automatically allocate space when it
is created. Space will be dynamically allocated for the table as rows are inserted:

create global temporary table YEAR_ROLLUP (
Year NUMBER(4),
Month VARCHAR2(9),
Counter NUMBER)

on commit preserve rows;

You can see the duration of your data in YEAR_ROLLUP by querying the Duration column of
USER_TABLES for this table. In this case the value of Duration is SYS$SESSION.

Now that the YEAR_ROLLUP table exists, you can populate it, such as via an insert as select
command with a complex query. You can then query the YEAR_ROLLUP table as part of a join
with other tables. You may find this method simpler to implement than the methods shown in the
prior sections.

Using ROLLUP, GROUPING, and CUBE
How can you perform grouping operations, such as totals, within a single SQL statement rather
than via SQL*Plus commands? As of Oracle8i, you can use the ROLLUP and CUBE functions to
enhance the grouping actions performed within your queries. Let’s see how this enables us to
manage the data related to the book returns. The book loaner program has become more popular,
so the loan time is now limited to 14 days, with a $0.20 fee per extra day. The following report
shows the late charges by person:

set headsep !
column Name format a20
column Title format a20 word_wrapped
column DaysOut format 999.99 heading 'Days!Out'
column DaysLate format 999.99 heading 'Days!Late'

break on Name skip 1 on report
compute sum of LateFee on Name
set linesize 80
set pagesize 60
set newpage 0

select Name, Title, ReturnedDate,
ReturnedDate-CheckoutDate as DaysOut /*Count days*/,
ReturnedDate-CheckoutDate -14 DaysLate,
(ReturnedDate-CheckoutDate -14)*0.20 LateFee

from BOOKSHELF_CHECKOUT
where ReturnedDate-CheckoutDate > 14
order by Name, CheckoutDate;

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 13: Some Complex Possibilities 241

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 13
Blind Folio 13:241

Days Days
NAME TITLE RETURNEDD Out Late LATEFEE
-------------------- -------------------- --------- ------- ------- ----------
DORAH TALBOT MY LEDGER 03-MAR-02 16.00 2.00 .4
******************** ----------
sum .4

EMILY TALBOT ANNE OF GREEN GABLES 20-JAN-02 18.00 4.00 .8
******************** ----------
sum .8

FRED FULLER JOHN ADAMS 01-MAR-02 28.00 14.00 2.8
TRUMAN 20-MAR-02 19.00 5.00 1

******************** ----------
sum 3.8

GERHARDT KENTGEN WONDERFUL LIFE 02-FEB-02 31.00 17.00 3.4
THE MISMEASURE OF 05-MAR-02 20.00 6.00 1.2
MAN

******************** ----------
sum 4.6

JED HOPKINS INNUMERACY 22-JAN-02 21.00 7.00 1.4
******************** ----------
sum 1.4

PAT LAVAY THE MISMEASURE OF 12-FEB-02 31.00 17.00 3.4
MAN

******************** ----------
sum 3.4

ROLAND BRANDT THE SHIPPING NEWS 12-MAR-02 59.00 45.00 9
THE DISCOVERERS 01-MAR-02 48.00 34.00 6.8
WEST WITH THE NIGHT 01-MAR-02 48.00 34.00 6.8

******************** ----------
sum 22.6

We can eliminate the DaysOut display and focus on the late fees, showing the fees due on
each of the return dates:

clear compute
clear break
select ReturnedDate, Name,

SUM((ReturnedDate-CheckoutDate -14)*0.20) LateFee
from BOOKSHELF_CHECKOUT

where ReturnedDate-CheckoutDate > 14
group by ReturnedDate, Name
order by ReturnedDate, Name;

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

RETURNEDD NAME LATEFEE
--------- -------------------- ----------
20-JAN-02 EMILY TALBOT .8
22-JAN-02 JED HOPKINS 1.4
02-FEB-02 GERHARDT KENTGEN 3.4
12-FEB-02 PAT LAVAY 3.4
01-MAR-02 FRED FULLER 2.8
01-MAR-02 ROLAND BRANDT 13.6
03-MAR-02 DORAH TALBOT .4
05-MAR-02 GERHARDT KENTGEN 1.2
12-MAR-02 ROLAND BRANDT 9
20-MAR-02 FRED FULLER 1

and then modify it further to group the late fees by month:

select TO_CHAR(ReturnedDate,'MONTH'), Name,
SUM((ReturnedDate-CheckoutDate -14)*0.20) LateFee

from BOOKSHELF_CHECKOUT
where ReturnedDate-CheckoutDate > 14
group by TO_CHAR(ReturnedDate,'MONTH'), Name;

TO_CHAR(R NAME LATEFEE
--------- -------------------- ----------
FEBRUARY GERHARDT KENTGEN 3.4
FEBRUARY PAT LAVAY 3.4
JANUARY EMILY TALBOT .8
JANUARY JED HOPKINS 1.4
MARCH DORAH TALBOT .4
MARCH FRED FULLER 3.8
MARCH GERHARDT KENTGEN 1.2
MARCH ROLAND BRANDT 22.6

Instead of simply grouping by Month and Name, you can use the ROLLUP function to generate
subtotals and totals. In the following example, the group by clause is modified to include a ROLLUP
function call. Notice the additional rows generated at the end of the result set and after each month.

select TO_CHAR(ReturnedDate,'MONTH'), Name,
SUM((ReturnedDate-CheckoutDate -14)*0.20) LateFee

from BOOKSHELF_CHECKOUT
where ReturnedDate-CheckoutDate > 14
group by ROLLUP(TO_CHAR(ReturnedDate,'MONTH'), Name);

TO_CHAR(R NAME LATEFEE
--------- -------------------- ----------
FEBRUARY GERHARDT KENTGEN 3.4
FEBRUARY PAT LAVAY 3.4
FEBRUARY 6.8
JANUARY EMILY TALBOT .8
JANUARY JED HOPKINS 1.4
JANUARY 2.2

242 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 13
Blind Folio 13:242

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

MARCH DORAH TALBOT .4
MARCH FRED FULLER 3.8
MARCH GERHARDT KENTGEN 1.2
MARCH ROLAND BRANDT 22.6
MARCH 28

37

For each month, Oracle has calculated the total LateFee, and shown it with a NULL name
value. The output shows two separate charges of $3.40 in February, and a monthly total of $6.80.
For the quarter, the total of the late charges is $37.00. You could have calculated these via
SQLPLUS commands (see Chapter 6), but this method allows you to generate these sums via a
single SQL command regardless of the tool used to query the database.

Let’s refine the appearance of the report. You can use the GROUPING function to determine
whether the row is a total or subtotal (generated by the ROLLUP) or corresponds to a NULL value
in the database. In the select clause, the Name column will be selected as follows:

select DECODE(GROUPING(Name),1, 'All names',Name),

The GROUPING function will return a value of 1 if the column’s value is generated by a
ROLLUP action. This query uses DECODE (discussed at length in Chapter 17) to evaluate the
result of the GROUPING function. If the GROUPING output is 1, the value was generated by the
ROLLUP function, and Oracle will print the phrase ‘All names’; otherwise, it will print the value
of the Name column. We will apply similar logic to the Date column. The full query is shown in
the following listing, along with its output:

select DECODE(GROUPING(TO_CHAR(ReturnedDate,'MONTH')),1,
'All months',TO_CHAR(ReturnedDate,'MONTH')),

DECODE(GROUPING(Name),1, 'All names',Name),
SUM((ReturnedDate-CheckoutDate -14)*0.20) LateFee

from BOOKSHELF_CHECKOUT
where ReturnedDate-CheckoutDate > 14
group by ROLLUP(TO_CHAR(ReturnedDate, 'MONTH'), Name);

DECODE(GRO DECODE(GROUPING(NAME),1,' LATEFEE
---------- ------------------------- ----------
FEBRUARY GERHARDT KENTGEN 3.4
FEBRUARY PAT LAVAY 3.4
FEBRUARY All names 6.8
JANUARY EMILY TALBOT .8
JANUARY JED HOPKINS 1.4
JANUARY All names 2.2
MARCH DORAH TALBOT .4
MARCH FRED FULLER 3.8
MARCH GERHARDT KENTGEN 1.2
MARCH ROLAND BRANDT 22.6
MARCH All names 28
All months All names 37

Chapter 13: Some Complex Possibilities 243

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 13
Blind Folio 13:243

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

244 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 13
Blind Folio 13:244

You can use the CUBE function to generate subtotals for all combinations of the values in the
group by clause. The following query uses the CUBE function to generate this information:

select DECODE(GROUPING(TO_CHAR(ReturnedDate,'MONTH')),1,
'All months',TO_CHAR(ReturnedDate,'MONTH')),

DECODE(GROUPING(Name),1, 'All names',Name),
SUM((ReturnedDate-CheckoutDate -14)*0.20) LateFee

from BOOKSHELF_CHECKOUT
where ReturnedDate-CheckoutDate > 14
group by CUBE(TO_CHAR(ReturnedDate, 'MONTH '), Name);

DECODE(GRO DECODE(GROUPING(NAME),1,' LATEFEE
---------- ------------------------- ----------
FEBRUARY GERHARDT KENTGEN 3.4
FEBRUARY PAT LAVAY 3.4
FEBRUARY All names 6.8
JANUARY EMILY TALBOT .8
JANUARY JED HOPKINS 1.4
JANUARY All names 2.2
MARCH DORAH TALBOT .4
MARCH FRED FULLER 3.8
MARCH GERHARDT KENTGEN 1.2
MARCH ROLAND BRANDT 22.6
MARCH All names 28
All months DORAH TALBOT .4
All months EMILY TALBOT .8
All months FRED FULLER 3.8
All months GERHARDT KENTGEN 4.6
All months JED HOPKINS 1.4
All months PAT LAVAY 3.4
All months ROLAND BRANDT 22.6
All months All names 37

The CUBE function provided the summaries generated by the ROLLUP option, plus it shows
the sums by Name for the ‘All months’ category. Being able to perform these summaries in standard
SQL greatly enhances your ability to pick the best reporting tool for your users.

Family Trees and connect by
One of Oracle’s more interesting but little used or understood facilities is its connect by clause.
Put simply, it is a method to report in order the branches of a family tree. Such trees are encountered
often: the genealogy of human families, livestock, horses, corporate management, company
divisions, manufacturing, literature, ideas, evolution, scientific research, and theory—even views
built upon views.

The connect by clause provides a means to report on all of the family members in any of
these many trees. It lets you exclude branches or individual members of a family tree, and allows

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 13: Some Complex Possibilities 245

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 13
Blind Folio 13:245

you to travel through the tree either up or down, reporting on the family members encountered
during the trip.

The earliest ancestor in the tree is technically called the root node. In everyday English, this
would be called the trunk. Extending from the trunk are branches, which have other branches,
which have still other branches. The forks where one or more branches split away from a larger
branch are called nodes, and the very end of a branch is called a leaf, or a leaf node. Figure 13-1
shows a picture of such a tree.

The following is a table of cows and bulls born between January 1900 and October 1908. As
each offspring is born, it is entered as a row in the table, along with its sex, parents (the cow and
bull), and birthdate. If you compare the Cows and Offspring in this table with Figure 13-1, you’ll
find they correspond. EVE has no recorded cow or bull parent, because she was born on a different
farm, and ADAM and BANDIT are bulls brought in for breeding, again with no parents in the table.

column Cow format a6
column Bull format a6
column Offspring format a10
column Sex format a3

select * from BREEDING
order by Birthdate;

OFFSPRING SEX COW BULL BIRTHDATE
---------- --- ------ ------ ---------
BETSY F EVE ADAM 02-JAN-00
POCO M EVE ADAM 15-JUL-00
GRETA F EVE BANDIT 12-MAR-01
MANDY F EVE POCO 22-AUG-02
CINDY F EVE POCO 09-FEB-03
NOVI F BETSY ADAM 30-MAR-03
GINNY F BETSY BANDIT 04-DEC-03
DUKE M MANDY BANDIT 24-JUL-04
TEDDI F BETSY BANDIT 12-AUG-05
SUZY F GINNY DUKE 03-APR-06
PAULA F MANDY POCO 21-DEC-06
RUTH F GINNY DUKE 25-DEC-06
DELLA F SUZY BANDIT 11-OCT-08
EVE F
ADAM M
BANDIT M

Next, a query is written to illustrate the family relationships visually. This is done using LPAD
and a special column, Level, that comes along with connect by. Level is a number, from 1 for
EVE to 5 for DELLA, that is really the generation. If EVE is the first generation of cattle, then DELLA
is the fifth generation. Whenever the connect by clause is used, the Level column can be used in
the select statement to discover the generation of each row. Level is a pseudo-column, like SysDate
and User. It’s not really a part of the table, but it is available under specific circumstances. The
next listing shows an example of using Level.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The results of this query are apparent in the following table, but why did the select statement
produce this? How does it work?

column Offspring format a30
select Cow, Bull, LPAD(' ',6*(Level-1))||Offspring AS Offspring,

Sex, Birthdate
from BREEDING

start with Offspring = 'EVE'
connect by Cow = PRIOR Offspring;

COW BULL OFFSPRING SEX BIRTHDATE
------ ------ ------------------------------- --- ---------

EVE F
EVE ADAM BETSY F 02-JAN-00
BETSY ADAM NOVI F 30-MAR-03
BETSY BANDIT GINNY F 04-DEC-03
GINNY DUKE SUZY F 03-APR-06
SUZY BANDIT DELLA F 11-OCT-08
GINNY DUKE RUTH F 25-DEC-06
BETSY BANDIT TEDDI F 12-AUG-05

246 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 13
Blind Folio 13:246

FIGURE 13-1. Eve’s descendants

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 13: Some Complex Possibilities 247

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 13
Blind Folio 13:247

EVE ADAM POCO M 15-JUL-00
EVE BANDIT GRETA F 12-MAR-01
EVE POCO MANDY F 22-AUG-02
MANDY BANDIT DUKE M 24-JUL-04
MANDY POCO PAULA F 21-DEC-06
EVE POCO CINDY F 09-FEB-03

Note that this is really Figure 13-1 turned clockwise onto its side. EVE isn’t centered, but she
is the root node (trunk) of this tree. Her children are BETSY, POCO, GRETA, MANDY, and CINDY.
BETSY’s children are NOVI, GINNY, and TEDDI. GINNY’s children are SUZY and RUTH. And
SUZY’s child is DELLA. MANDY also has two children, DUKE and PAULA.

This tree started with EVE as the first “offspring.” If the SQL statement had said start with
MANDY, only MANDY, DUKE, and PAULA would have been selected. start with defines the
beginning of that portion of the tree that will be displayed, and it includes only branches stretching
out from the individual that start with specifies. start with acts just as its name implies.

The LPAD in the select statement is probably somewhat confusing. Recall from Chapter 7 the
format for LPAD:

LPAD(string,length [,'set'])

That is, take the specified string and left-pad it for the specified length with the specified set
of characters. If no set is specified, left-pad the string with blanks. Compare this syntax to the
LPAD in the select statement shown earlier:

LPAD(' ',6*(Level-1))

In this case, the string is a single character, a space (indicated by the literal space enclosed in
single quotation marks). The 6*(Level-1) is the length, and since the set is not specified, spaces
will be used. In other words, this tells SQL to take this string of one space and left-pad it to the
number of spaces determined by 6*(Level-1), a calculation made by first subtracting 1 from the
Level and then multiplying this result by 6. For EVE the Level is 1, so 6*(1-1), or 0 spaces, is used.
For BETSY, the Level (her generation) is 2, so an LPAD of 6 is used. Thus, for each generation
after the first, six additional spaces will be concatenated to the left of the Offspring column. The
effect is obvious in the result just shown. The name of each Offspring is indented by left-padding
with the number of spaces corresponding to its Level or generation.

Why is this done, instead of simply applying the LPAD directly to Offspring? For two reasons.
First, a direct LPAD on Offspring would cause the names of the Offspring to be right-justified. The
names at each level would end up having their last letters lined up vertically. Second, if Level-1 is
equal to 0, as it is for EVE, the resulting LPAD of EVE will be 0 characters wide. EVE will vanish:

select Cow, Bull, LPAD(Offspring,6*(Level-1),' ') AS Offspring,
Sex, Birthdate from BREEDING

start with Offspring = 'EVE'
connect by Cow = PRIOR Offspring;

COW BULL OFFSPRING SEX BIRTHDATE
------ ------ ------------------------------- --- ---------

F
EVE ADAM BETSY F 02-JAN-00

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

BETSY ADAM NOVI F 30-MAR-03
BETSY BANDIT GINNY F 04-DEC-03
GINNY DUKE SUZY F 03-APR-06
SUZY BANDIT DELLA F 11-OCT-08
GINNY DUKE RUTH F 25-DEC-06
BETSY BANDIT TEDDI F 12-AUG-05
EVE ADAM POCO M 15-JUL-00
EVE BANDIT GRETA F 12-MAR-01
EVE POCO MANDY F 22-AUG-02
MANDY BANDIT DUKE M 24-JUL-04
MANDY POCO PAULA F 21-DEC-06
EVE POCO CINDY F 09-FEB-03

Thus, to get the proper spacing for each level, to ensure that EVE appears, and to make the
names line up vertically on the left, the LPAD should be used with the concatenation function,
and not directly on the Offspring column.

Now, how does connect by work? Look again at Figure 13-1. Starting with NOVI and
traveling downward, which cows are the offspring prior to NOVI? The first is BETSY, and the
offspring just prior to BETSY is EVE. Even though it is not instantly readable, this clause:

connect by Cow = PRIOR Offspring

tells SQL to find the next row in which the value in the Cow column is equal to the value in the
Offspring column in the prior row. Look at the table and you’ll see that this is true.

Excluding Individuals and Branches
There are two methods of excluding cows from a report. One uses the normal where clause
technique, and the other uses the connect by clause itself. The difference is that the exclusion
using the connect by clause will exclude not just the cow mentioned, but all of its children as
well. If you use connect by to exclude BETSY, then NOVI, GINNY, TEDDI, SUZY, RUTH, and
DELLA all vanish. The connect by really tracks the tree structure. If BETSY had never been born,
none of her offspring would have been either. In this example, the and clause modifies the
connect by clause:

select Cow, Bull, LPAD(' ',6*(Level-1))||Offspring AS Offspring,
Sex, Birthdate

from BREEDING
start with Offspring = 'EVE'

connect by Cow = PRIOR Offspring
and Offspring != 'BETSY';

COW BULL OFFSPRING SEX BIRTHDATE
------ ------ ------------------------------- --- ---------

EVE F
EVE ADAM POCO M 15-JUL-00
EVE BANDIT GRETA F 12-MAR-01
EVE POCO MANDY F 22-AUG-02
MANDY BANDIT DUKE M 24-JUL-04

248 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 13
Blind Folio 13:248

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

MANDY POCO PAULA F 21-DEC-06
EVE POCO CINDY F 09-FEB-03

The where clause removes only the cow or cows it mentions. If BETSY dies, she is removed
from the chart, but her offspring are not. In fact, notice that BETSY is still there under the Cow
column as mother of her children, NOVI, GINNY, and TEDDI:

select Cow, Bull, LPAD(' ',6*(Level-1))||Offspring AS Offspring,
Sex, Birthdate

from BREEDING
where Offspring != 'BETSY'
start with Offspring = 'EVE'

connect by Cow = PRIOR Offspring;

COW BULL OFFSPRING SEX BIRTHDATE
------ ------ ------------------------------- --- ---------

EVE F
BETSY ADAM NOVI F 30-MAR-03
BETSY BANDIT GINNY F 04-DEC-03
GINNY DUKE SUZY F 03-APR-06
SUZY BANDIT DELLA F 11-OCT-08
GINNY DUKE RUTH F 25-DEC-06
BETSY BANDIT TEDDI F 12-AUG-05
EVE ADAM POCO M 15-JUL-00
EVE BANDIT GRETA F 12-MAR-01
EVE POCO MANDY F 22-AUG-02
MANDY BANDIT DUKE M 24-JUL-04
MANDY POCO PAULA F 21-DEC-06
EVE POCO CINDY F 09-FEB-03

The order in which the family tree is displayed when using connect by is basically level by
level, left to right, as shown in Figure 13-1, starting with the lowest level, Level 1. For example,
you may want to alter this order to collect the cows and their offspring by birthdate:

select Cow, Bull, LPAD(' ',6*(Level-1))||Offspring AS Offspring,
Sex, Birthdate from BREEDING

start with Offspring = 'EVE'
connect by Cow = PRIOR Offspring
order by Cow, Birthdate;

COW BULL OFFSPRING SEX BIRTHDATE
------ ------ ------------------------------- --- ---------
BETSY ADAM NOVI F 30-MAR-03
BETSY BANDIT GINNY F 04-DEC-03
BETSY BANDIT TEDDI F 12-AUG-05
EVE ADAM BETSY F 02-JAN-00
EVE ADAM POCO M 15-JUL-00
EVE BANDIT GRETA F 12-MAR-01
EVE POCO MANDY F 22-AUG-02
EVE POCO CINDY F 09-FEB-03

Chapter 13: Some Complex Possibilities 249

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 13
Blind Folio 13:249

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

250 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 13
Blind Folio 13:250

GINNY DUKE SUZY F 03-APR-06
GINNY DUKE RUTH F 25-DEC-06
MANDY BANDIT DUKE M 24-JUL-04
MANDY POCO PAULA F 21-DEC-06
SUZY BANDIT DELLA F 11-OCT-08

EVE F

The generations are still obvious in the display, but siblings are more closely grouped with
each other. Another way to look at the same family tree is by Birthdate, as follows:

select Cow, Bull, LPAD(' ',6*(Level-1))||Offspring AS Offspring,
Sex, Birthdate

from BREEDING
start with Offspring = 'EVE'

connect by Cow = PRIOR Offspring
order by Birthdate;

COW BULL OFFSPRING SEX BIRTHDATE
------ ------ ------------------------------- --- ---------
EVE ADAM BETSY F 02-JAN-00
EVE ADAM POCO M 15-JUL-00
EVE BANDIT GRETA F 12-MAR-01
EVE POCO MANDY F 22-AUG-02
EVE POCO CINDY F 09-FEB-03
BETSY ADAM NOVI F 30-MAR-03
BETSY BANDIT GINNY F 04-DEC-03
MANDY BANDIT DUKE M 24-JUL-04
BETSY BANDIT TEDDI F 12-AUG-05
GINNY DUKE SUZY F 03-APR-06
MANDY POCO PAULA F 21-DEC-06
GINNY DUKE RUTH F 25-DEC-06
SUZY BANDIT DELLA F 11-OCT-08

EVE F

Now, the order of the rows no longer shows generations, as in a tree, but the indenting still
preserves this information. You can’t tell what offspring belong to which parents without looking
at the Cow and Bull columns, though. Not knowing Eve’s BirthDate clearly disrupts the display of
the family tree.

Traveling Toward the Roots
Thus far, the direction of travel in reporting on the family tree has been from parents toward
children. Is it possible to start with a child, and move backward to parent, grandparent, great-
grandparent, and so on? To do so, the word prior is simply moved to the other side of the equal
sign. The following traces DELLA’s ancestry:

select Cow, Bull, LPAD(' ',6*(Level-1))||Offspring AS Offspring,
Sex, Birthdate

from BREEDING

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 13: Some Complex Possibilities 251

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 13
Blind Folio 13:251

start with Offspring = 'DELLA'
connect by Offspring = PRIOR Cow;

COW BULL OFFSPRING SEX BIRTHDATE
------ ------ ------------------------------- --- ---------
SUZY BANDIT DELLA F 11-OCT-08
GINNY DUKE SUZY F 03-APR-06
BETSY BANDIT GINNY F 04-DEC-03
EVE ADAM BETSY F 02-JAN-00

EVE F

This shows DELLA’s own roots, but is a bit confusing if compared to the previous displays. It
looks as if DELLA is the ancestor, and EVE the great-great-granddaughter. Adding an order by for
Birthdate helps, but EVE is still further to the right:

select Cow, Bull, LPAD(' ',6*(Level-1))||Offspring AS Offspring,
Sex, Birthdate

from BREEDING
start with Offspring = 'DELLA'

connect by Offspring = PRIOR Cow
order by Birthdate;

COW BULL OFFSPRING SEX BIRTHDATE
------ ------ ------------------------------- --- ---------
EVE ADAM BETSY F 02-JAN-00
BETSY BANDIT GINNY F 04-DEC-03
GINNY DUKE SUZY F 03-APR-06
SUZY BANDIT DELLA F 11-OCT-08

EVE F

The solution is simply to change the calculation in the LPAD:

select Cow, Bull, LPAD(' ',6*(5-Level))||Offspring Offspring,
Sex, Birthdate

from BREEDING
start with Offspring = 'DELLA'

connect by Offspring = PRIOR Cow
order by Birthdate;

COW BULL OFFSPRING SEX BIRTHDATE
------ ------ ------------------------------- --- ---------
EVE ADAM BETSY F 02-JAN-00
BETSY BANDIT GINNY F 04-DEC-03
GINNY DUKE SUZY F 03-APR-06
SUZY BANDIT DELLA F 11-OCT-08

EVE F

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

252 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 13
Blind Folio 13:252

Finally, look how different this report is when the connect by tracks the parentage of the Bull.
Here are Adam’s offspring:

select Cow, Bull, LPAD(' ',6*(Level-1))||Offspring AS Offspring,
Sex, Birthdate

from BREEDING
start with Offspring = 'ADAM'

connect by PRIOR Offspring = Bull;

COW BULL OFFSPRING SEX BIRTHDATE
------ ------ ------------------------------- --- ---------

ADAM M
EVE ADAM BETSY F 02-JAN-00
EVE ADAM POCO M 15-JUL-00
EVE POCO MANDY F 22-AUG-02
EVE POCO CINDY F 09-FEB-03
MANDY POCO PAULA F 21-DEC-06
BETSY ADAM NOVI F 30-MAR-03

ADAM and BANDIT were the original bulls at the initiation of the herd. To create a single
tree that reports both ADAM’s and BANDIT’s offspring, you would have to invent a “father” for
the two of them, which would be the root of the tree. One of the advantages that these alternative
trees have over the type of tree shown earlier is that many inheritance groups, from families to
projects to divisions within companies, can be accurately portrayed in more than one way:

select Cow, Bull, LPAD(' ',6*(Level-1))||Offspring AS Offspring,
Sex, Birthdate

from BREEDING
start with Offspring = 'BANDIT'

connect by PRIOR Offspring = Bull;

COW BULL OFFSPRING SEX BIRTHDATE
------ ------ ------------------------------- --- ---------

BANDIT M
EVE BANDIT GRETA F 12-MAR-01
BETSY BANDIT GINNY F 04-DEC-03
MANDY BANDIT DUKE M 24-JUL-04
GINNY DUKE SUZY F 03-APR-06
GINNY DUKE RUTH F 25-DEC-06
BETSY BANDIT TEDDI F 12-AUG-05
SUZY BANDIT DELLA F 11-OCT-08

The Basic Rules
Using connect by and start with to create tree-like reports is not difficult, but certain basic rules
must be followed:

■ The order of the clauses when using connect by is as follows:

select
from

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

where
start with
connect by
order by

■ prior forces reporting to be from the root out toward the leaves (if the prior column is
the parent) or from a leaf toward the root (if the prior column is the child).

■ A where clause eliminates individuals from the tree, but not their descendants (or
ancestors, if prior is on the right side of the equal sign).

■ A qualification in the connect by (particularly a not equal) eliminates both an individual
and all of its descendants (or ancestors, depending on how you trace the tree).

■ connect by cannot be used with a table join in the where clause.

This particular set of commands is one that few people are likely to remember correctly.
However, with a basic understanding of the tree and inheritance, constructing a proper select
statement to report on a tree should just be a matter of referring to this chapter for correct syntax.

Chapter 13: Some Complex Possibilities 253

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 13
Blind Folio 13:253

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 13
Blind Folio 13:254

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 14
Blind Folio 14:255

CHAPTER
14

Building a Report
in SQL*PLUS

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

256 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 14
Blind Folio 14:256

C
hapter 6 showed basic formatting of reports, and Chapters 3 and 11 gave
methods for using groups and views. This chapter looks at more advanced
formatting methods as well as more complex computations of weighted
averages. This chapter will review the interrelationships among various
SQLPLUS commands as well.

Advanced Formatting
Chapter 1 showed an example of a stock table from the newspaper. Here, you will actually
manipulate that table to draw non-obvious information from it. For the sake of brevity, the stocks
examined will be limited to a small number in three industries: electronics, space, and medical.
These are the column commands in effect:

column Net format 99.90
column Industry format a11
column Company format a18
column CloseToday heading 'Close|Today' format 999.90
column CloseYesterday heading 'Close|Yest.' format 999.90
column Volume format 999,999,999

As shown in Figure 14-1, the first select simply retrieves the stocks in the three industries,
calculates the difference in closing prices between today and yesterday, and sorts the stocks in
order by Industry and Company.

This is a good beginning, but to make it more meaningful, some additional features must be
added. A new column is calculated to show the percentage of change between one day’s trading
and the next day’s trading:

(CloseToday/CloseYesterday)*100 - 100 AS Percent,

The calculation is given the alias Percent, and column formatting is put in place for it.
Additionally, both Company and Industry columns are cut back considerably to make room for
additional columns, which will be added shortly. Of course, on a wide report, such as one with
132 columns, this may not be necessary. It is done here for space considerations.

column Percent heading 'Percent|Change' format 9999.90
column Company format a8 trunc
column Industry heading 'Ind' format a5 trunc

See Figure 14-2 for the report including the Percent column and the modified formatting.

break on
Next, a break on command is set up to put a blank line between the end of an Industry group
and the beginning of the next Industry; the sum of the daily Volume, by Industry, is then computed.
Note the coordination between break on and compute sum in Figure 14-2.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 14: Building a Report in SQL*PLUS 257

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 14
Blind Folio 14:257

The break on and compute sum are now expanded, as shown in Figure 14-3. The order of
the columns in the break on is critical, as will be explained shortly. The compute sum has been
instructed to calculate the Volume on breaks of both the Industry and Report columns. Volume is
shown for each industry, as before, but now a total volume for all industries has been added. The
compute command has been expanded to allow you to compute the sum on Report. This must
be coordinated with the break on:

break on Report on Industry skip 1
compute sum of Volume on Industry Report

This will produce a sum of Volume for the entire report. This is the break on and compute
that appear in Figure 14-3. The placement of on Report in the break on command is unimportant:
on Report will always be the final break.

select Industry, Company,
CloseYesterday, CloseToday,
(CloseToday - CloseYesterday) AS Net,
Volume from STOCK

where Industry in ('ELECTRONICS', 'SPACE', 'MEDICAL')
order by Industry, Company

/

Close Close
INDUSTRY COMPANY Yest. Today NET VOLUME
----------- ------------------ ------- ------- ------ ------------
ELECTRONICS IDK 95.00 95.25 .25 9,443,523
ELECTRONICS MEMORY GRAPHICS 15.50 14.25 -1.25 4,557,992
ELECTRONICS MICRO TOKEN 77.00 76.50 -.50 25,205,667
MEDICAL AT SPACE 46.75 48.00 1.25 11,398,323
MEDICAL AUGUST ENTERPRISES 15.00 15.00 .00 12,221,711
MEDICAL HAYWARD ANTISEPTIC 104.25 106.00 1.75 3,358,561
MEDICAL KENTGEN BIOPHYSICS 18.25 19.50 1.25 6,636,863
SPACE BRANDON ELLIPSIS 32.75 33.50 .75 25,789,769
SPACE GENERAL ENTROPY 64.25 66.00 1.75 7,598,562
SPACE GENEVA ROCKETRY 22.75 27.25 4.25 22,533,944
SPACE NORTHERN BOREAL 26.75 28.00 1.25 1,348,323
SPACE OCKHAM SYSTEMS 21.50 22.00 .50 7,052,990
SPACE WONDER LABS 5.00 5.00 .00 2,553,712

FIGURE 14-1. Closing stock prices and volumes

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

258 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 14
Blind Folio 14:258

Next, the report is given a top title and a bottom title, using the extensive formatting capabilities
of ttitle and btitle. See the sidebar “ttitle and btitle Formatting Commands” for an explanation of this.

ttitle left 'Current Portfolio' -
right 'March 1st, 2002' skip 1 -
center 'Industry Listings ' skip 2;

btitle left 'portfoli.sql';

break on Industry skip 1

compute sum of Volume on Industry

select Industry,
Company,
CloseYesterday, CloseToday,
(CloseToday - CloseYesterday) AS Net,
(CloseToday/CloseYesterday)*100 – 100 AS Percent,
Volume

from STOCK
where Industry in ('ELECTRONICS', 'SPACE', 'MEDICAL')
order by Industry, Company

/

Close Close Percent
Ind COMPANY Yest. Today NET Change VOLUME
----- -------- ------- ------- ------ -------- ------------
ELECT IDK 95.00 95.25 .25 .26 9,443,523

MEMORY G 15.50 14.25 -1.25 -8.06 4,557,992
MICRO TO 77.00 76.50 -.50 -.65 25,205,667

***** ------------
sum 39,207,182

MEDIC AT SPACE 46.75 48.00 1.25 2.67 11,398,323
AUGUST E 15.00 15.00 .00 .00 12,221,711
HAYWARD 104.25 106.00 1.75 1.68 3,358,561
KENTGEN 18.25 19.50 1.25 6.85 6,636,863

***** ------------
sum 33,615,458

SPACE BRANDON 32.75 33.50 .75 2.29 25,789,769
GENERAL 64.25 66.00 1.75 2.72 7,598,562
GENEVA R 22.75 27.25 4.50 19.78 22,533,944
NORTHERN 26.75 28.00 1.25 4.67 1,348,323
OCKHAM S 21.50 22.00 .50 2.33 7,052,990
WONDER L 5.00 5.00 .00 .00 2,553,712

***** ------------
sum 66,877,300

FIGURE 14-2. Stock Report with a break on Industry and compute sum of Volume

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 14: Building a Report in SQL*PLUS 259

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 14
Blind Folio 14:259

break on Report on Industry skip 1
ttitle left 'Current Portfolio' -

right 'March 1st, 2002' skip 1 -
center 'Industry Listings ' skip 2;

btitle left 'portfoli.sql';

compute sum of Volume on Industry Report

select Industry,
Company,
CloseYesterday,
CloseToday,
(CloseToday - CloseYesterday) AS Net,
(CloseToday/CloseYesterday)*100 - 100 AS Percent,
Volume

from STOCK
where Industry in ('ELECTRONICS', 'SPACE', 'MEDICAL')
order by Industry, Company

/

Current Portfolio March 1st, 2002
Industry Listings

Close Close Percent
Ind COMPANY Yest. Today NET Change VOLUME
----- -------- ------- ------- ------ ------- ------------
ELECT IDK 95.00 95.25 .25 .26 9,443,523

MEMORY G 15.50 14.25 -1.25 -8.06 4,557,992
MICRO TO 77.00 76.50 -.50 -.65 25,205,667

***** ------------
sum 39,207,182

MEDIC AT SPACE 46.75 48.00 1.25 2.67 11,398,323
AUGUST E 15.00 15.00 .00 .00 12,221,711
HAYWARD 104.25 106.00 1.75 1.68 3,358,561
KENTGEN 18.25 19.50 1.25 6.85 6,636,863

***** ------------
sum 33,615,458

SPACE BRANDON 32.75 33.50 .75 2.29 25,789,769
GENERAL 64.25 66.00 1.75 2.72 7,598,562
GENEVA R 22.75 27.25 4.50 19.78 22,533,944
NORTHERN 26.75 28.00 1.25 4.67 1,348,323
OCKHAM S 21.50 22.00 .50 2.33 7,052,990
WONDER L 5.00 5.00 .00 .00 2,553,712

***** ------------
sum 66,877,300

139,699,940

portfoli.sql

FIGURE 14-3. Stock report with a break on Industry and Report and compute sum of Volume

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Order of Columns in break on
You can get into trouble if the order of the columns in break on is incorrect. Suppose that you
want to report on revenues by company, division, department, and project (where a division has
departments, and departments have projects). If you input this:

break on Project on Department on Division on Company

then the totals for each of these entities would be calculated every time the project changed, and
they wouldn’t be accumulated totals, only those for the project. This would be worthless. Instead,
the break on must be in order from the largest grouping to the smallest, like this:

break on Company on Division on Department on Project

break on Row
SQLPLUS also allows computes and breaks to be made on Row. Like on Report, the break on
and compute must be coordinated.

260 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 14
Blind Folio 14:260

ttitle and btitle Formatting Commands
The results of these ttitle and btitle commands can be seen later in this chapter in
Figure 14-5:

ttitle left 'Current Portfolio' -
right xINDUSTRY skip 1 -
center 'Industry Listings ' skip 4;

left, right, and center define where the string that follows is to be placed on the
page. A dash at the end of a line means another line of title commands follows. skip
tells how many blank lines to print after printing this line. Text in single quotation
marks is printed as is. Words not inside single quotation marks are usually variables. If
they’ve been defined by accept, NEW_VALUE, or define, their values will print in the
title. If they have not been defined, the name of the variable will print instead.

btitle left 'portfoli.sql on ' xTODAY -
right 'Page ' format 999 sql.pno;

sql.pno is a variable that contains the current page number. Formatting commands
can be placed anywhere in a title, and they will control formatting for any variables
from there forward in the ttitle or btitle unless another formatting command is
encountered.

For additional options for these commands, look in the Alphabetical Reference at
the end of this book under ttitle.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Adding Views
In order for the report to be useful, computations of each stock in relation to its industry segment
and to the whole are important. Two views are therefore created, shown next. The first summarizes
stock Volume, grouped by Industry. The second summarizes total stock volume.

create or replace view INDUSTRY as
select Industry, SUM(Volume) AS Volume
from STOCK
where Industry in ('ELECTRONICS', 'SPACE', 'MEDICAL')
group by Industry

/

create or replace view MARKET as
select SUM(Volume) AS Volume
from STOCK
where Industry in ('ELECTRONICS', 'SPACE', 'MEDICAL')

/

This practice of creating views in a SQLPLUS report is intended only for views that will be
repeatedly used. For single-use views, you can create inline views in the from clause to achieve
your goals (see Chapter 11).

Columns Used with ttitle and btitle
Some additional column definitions are now added, along with a new column, PartOfInd (explained
later in the chapter). See Circle A in Figure 14-4.

Two columns that will appear in ttitle and btitle are put in with the NEW_VALUE command.
Look at Circle B in Figure 14-4, and its effect in Circle 1 in Figure 14-5. The column Today was
used to produce today’s date in the btitle. How did this work? First of all, Today is an alias for a
formatted SysDate in the select statement:

TO_CHAR(SysDate,'fmMonth ddth, yyyy') AS Today

NEW_VALUE placed the contents of the Today column (March 1st, 2002 in this example)
into a variable named xToday, which is then used in btitle:

btitle left 'portfoli.sql on ' xToday -
right 'Page ' format 999 sql.pno

The variable could have had any name. xToday was chosen to make it easy to spot in the
listing, but it could even have the same name as the column Today, or something else, such as
DateVar or XYZ. portfoli.sql is simply the name of the start file used to produce this report. It’s
a useful practice to print somewhere on the report the name of the start file used to create the
report, so that if it needs to be rerun, it can be found quickly.

The last part of format 999 sql.pno, sql.pno, is a variable that always contains the current
page number. You can use it anywhere in either ttitle or btitle. If you place it in the btitle after
the word “right,” it shows up on the bottom-right corner of each page.

Chapter 14: Building a Report in SQL*PLUS 261

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 14
Blind Folio 14:261

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The format 999 that precedes it designates the format for the page number. Any time a
formatting command like this appears in ttitle or btitle, it defines the format of any number or
characters in the variables that follow it, all the way to the end of the ttitle or btitle command,
unless another format command is encountered.

262 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 14
Blind Folio 14:262

column User noprint

column PartOfInd heading 'Part|of Ind' format 999.90 A

column Today NEW_VALUE xTODAY noprint format a1 trunc
column Industry NEW_VALUE xINDUSTRY B

ttitle left 'Current Portfolio' -
right xINDUSTRY skip 1 -
center 'Industry Listings ' skip 4

btitle left 'portfoli.sql on ' xTODAY -
right 'Page ' format 999 sql.pno

clear breaks C
clear computes

break on Report page on Industry page D

compute sum of Volume on Report Industry
compute sum of PartOfInd on Industry E
compute avg of Net Percent on Industry
compute avg of Net Percent PartOfInd on Report

select S.Industry,
Company,
CloseYesterday, CloseToday,
(CloseToday - CloseYesterday) AS Net,
(CloseToday - CloseYesterday)*(S.Volume/I.Volume) AS PartOfInd,
(CloseToday/CloseYesterday)*100 - 100 AS Percent,
S.Volume,
TO_CHAR(SysDate,'fmMonth ddth, yyyy') AS Today

from STOCK S, INDUSTRY I
where S.Industry = I.Industry
AND I.Industry in ('ELECTRONICS', 'SPACE', 'MEDICAL')

order by I.Industry, Company
/

FIGURE 14-4. SQLPLUS commands for report by Industry

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 14: Building a Report in SQL*PLUS 263

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 14
Blind Folio 14:263

A Warning About Variables
There are two other items of importance in the column command:

column Today NEW_VALUE xToday noprint format a1 trunc

noprint tells SQLPLUS not to display this column when it prints the results of the SQL statement.
Without it, the date would appear on every row of the report. format a1 trunc is a bit more esoteric.
Dates that have been reformatted by TO_CHAR get a default width of about 100 characters (this

Current Portfolio 2 ELECTRONICS
Industry Listings

Close Close Part Percent
Ind COMPANY Yest. Today NET of Ind Change VOLUME
---- --------- ------- ------- ------ ------- ------- ------------
ELECT IDK 95.00 95.25 .25 .06 .26 9,443,523

MEMORY G 15.50 14.25 -1.25 -.15 -8.06 4,557,992
MICRO TO 77.00 76.50 -.50 -.32 -.65 25,205,667

***** ------ ------- ------- ------------
avg -.50 -2.82
sum -.41 39,207,182

portfoli.sql on March 1st, 2002 1 Page 1

Current Portfolio 3 MEDICAL
Industry Listings

Close Close Part Percent
Ind COMPANY Yest. Today NET of Ind Change VOLUME
----- -------- ------- ------- ------ ------- ------- ------------
MEDIC AT SPACE 46.75 48.00 1.25 .42 2.67 11,398,323

AUGUST E 15.00 15.00 .00 .00 .00 12,221,711
HAYWARD 104.25 106.00 1.75 .17 1.68 3,358,561
KENTGEN 18.25 19.50 1.25 .25 6.85 6,636,863

***** ------ ------- ------- ------------
avg 1.06 2.80
sum .85 33,615,458
portfoli.sql on March 1st, 2002 Page 2

FIGURE 14-5. Report by Industry, one industry per page

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

was discussed in Chapter 9). Even though the noprint option is in effect, SQLPLUS gets confused
and counts the width of the Today column when deciding whether linesize has been exceeded.
The effect is to completely foul up the formatting of the rows as they are displayed or printed. By
changing the format to a1 trunc, you minimize this effect.

The other column with NEW_VALUE is Industry. This column already has some column
definitions in effect:

column Industry heading 'Ind' format a5 trunc

264 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 14
Blind Folio 14:264

Current Portfolio 4 SPACE

Industry Listings

Close Close Part Percent
Ind COMPANY Yest. Today NET of Ind Change VOLUME
----- -------- ------- ------- ------ ------- ------- ------------
SPACE BRANDON 32.75 33.50 .75 .29 2.29 25,789,769

GENERAL 64.25 66.00 1.75 .20 2.72 7,598,562
GENEVA R 22.75 27.25 4.50 1.52 19.78 22,533,944
NORTHERN 26.75 28.00 1.25 .03 4.67 1,348,323
OCKHAM S 21.50 22.00 .50 .05 2.33 7,052,990
WONDER L 5.00 5.00 .00 .00 .00 2,553,712

***** ------ ------- ------- ------------
avg 5 1.46 5.30
sum 2.08 66,877,300

portfoli.sql on March 1st, 2002 Page 3

Current Portfolio SPACE

Industry Listings

Close Close Part Percent
Ind COMPANY Yest. Today NET of Ind Change VOLUME
----- -------- ------- ------- ------ ------- ------- ------------

------ ------- ------- ------------
6 .88 .19 2.66

139,699,940

portfoli.sql on March 1st, 2002 Page 4

FIGURE 14-5. Report by Industry, one industry per page (continued)

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

And now a new one is added as shown in the following listing (remember that different
instructions for a column may be given on several lines).

column Industry NEW_VALUE xIndustry

Like Today, this column command inserts the contents of the column from the select statement
into a variable called xIndustry. The value in this variable is coordinated with the break on. It gets
the value of Industry when the first row is read, and keeps it until a new value is encountered and
the break on forces a new page, as shown at Circles 2, 3, and 4 in Figure 14-5.

Here’s what SQLPLUS does:

1. Delays printing anything on a page until the break on detects a change in the value
of Industry or enough rows are retrieved to fill the page.

2. Prints the ttitle with the value xIndustry had before the value changed (or the page
got full).

3. Moves the value of xIndustry into an OLD_VALUE variable and saves it.

4. Prints the rows on the page.

5. Loads the new value into xIndustry.

6. Prints the btitle.

7. Begins collecting rows for the next page, and goes back to the first step.

What this means is that if xIndustry had been placed in the btitle instead of the ttitle, it would
contain the Industry for the following page, instead of the one being printed. MEDICAL (Circle 3)
would be at the bottom of page 1, SPACE (Circle 4) would be at the bottom of page 2, and so on.
To use the btitle properly for column values retrieved in the query, you would use this:

column Industry OLD_VALUE xIndustry

More on break on and compute
Circle C in Figure 14-4 immediately precedes the break on and compute commands. Once a
compute command is in place, it continues to be active until you either clear it or leave SQLPLUS.
This means you can have compute commands from previous reports that will execute on a current
report, producing all sorts of unwanted effects.

The break on command also persists, although any new break on command will completely
replace it. It is good practice to clear breaks and clear computes just before setting up new ones.

Here are the options available for break on:

■ break on column

■ break on row

■ break on report

Chapter 14: Building a Report in SQL*PLUS 265

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 14
Blind Folio 14:265

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

column can be a column name, an alias, or an expression such as SUBSTR(Industry,1,4). Each of
these options can be followed by one of these actions:

■ skip n

■ skip page

or by nothing. break on column produces the action any time the value in the selected column
changes. break on row forces a break with every row. break on report takes the specified action
every time a report ends.

The skip actions are to skip one or more lines (that is, print them blank) or to go to the top of
a new page. Recall from Chapter 3 that break on is used only once, with all of the columns and
actions you want. See Circle D in Figure 14-4.

The command compute, on the other hand, can be reused for each type of computation and
for one or more columns at once. Circle E shows a variety of ways in which it can be used. Note
how columns appear on either side of the on in the compute commands. No commas are used
anywhere in either break on or compute commands.

Here are possible computations:

compute avg compute num

compute count compute sum

compute max compute std

compute min compute var

These have the same meanings for a column in a SQLPLUS report that AVG(), COUNT(),
MAX(), MIN(), STDDEV(), SUM(), and VARIANCE() have in SQL. All of them except num
ignore NULLs, and none of them is able to use the DISTINCT keyword. compute num is similar
to compute count, except that compute count produces the count of non-NULL rows, and compute
num produces the count of all rows.

Displaying Current breaks and computes
Entering just the word break or compute in SQLPLUS will cause it to display the breaks and computes
it has in effect at the moment.

Running Several computes at Once
Figure 14-4 contains the following compute statements:

compute sum of Volume on Report Industry
compute sum of PartOfInd on Industry
compute avg of Net Percent on Industry
compute avg of Net Percent PartOfInd on Report

Look at Circles 5 and 6 in Figure 14-5 and you’ll see the effects of all of these. Observe that
the avg calculation for each column appears on one line, and the sum (where there is one)
appears on the following line. Further, the words sum and avg appear under the column that
follows the word on in the compute statement. They’re missing at Circle 6 for the grand totals

266 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 14
Blind Folio 14:266

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

because these are made on Report, and Report is not a column, so sum and avg can’t appear
under a column.

The Volume sum at Circle 5 is just for the Space industry stocks. The Volume sum at Circle 6
is for all industries (page 4 of this report contains only the grand totals and averages). Note that the
first compute here is for the sum of one column, Volume, on both Report and Industry. (Incidentally,
the order of the columns in a compute is irrelevant, unlike in a break on.)

The next compute, for PartOfInd on Industry, requires some explanation. (PartOfInd refers to
its part of the industry point shift or a change in stock price over all the stocks in the industry.)
PartOfInd comes from a portion of the select statement:

(CloseToday - CloseYesterday)*(S.Volume/I.Volume) AS PartOfInd,

This calculation weights the net change in a stock versus the other stocks in its Industry, based
on the volume traded. Compare the actual Net change between BRANDON and NORTHERN in
the SPACE industry. BRANDON changed only .75 but traded over 25 million shares. NORTHERN
changed 1.25 but traded only about 1 million shares. The contribution of BRANDON to the upward
shift in the SPACE industry is thus considerably greater than that of NORTHERN; this is reflected
in the relative values for the two under the PartOfInd column.

Now compare the sum of the PartOfInd column, 2.08, with the avg of the Net column, 1.46
(from the very next compute). Which is more representative of the change in stock price in this
industry? It is the sum of PartOfInd, because its values are weighted by stock volume. This example
is given to show the difference between a simple average in a column and a weighted average,
and to show how summary information is calculated. In one case, it is done by averaging; in
another it’s done by summing.

This is not the place to launch a detailed discussion of weighted averages, percentages, or
statistical calculations, but it is appropriate to point out that significant differences will result from
various methods of calculation. This will often affect decisions that are being made, so care and
caution are in order.

The final compute calls for the average of Net, Percent, and PartOfInd on Report. These values
are shown at Circle 6 as .88, .19, and 2.66, respectively. Look at the last line of Figure 14-6. This
is the same report as that in Figure 14-5, with a few exceptions. It is on one page instead of four;
its upper-right title is the date, not the industry segment; and its bottom line has an additional and
different result for averages and totals:

Market Averages and Totals 1.09 2.66 139,699,940

These are the correct results, and they differ from those that are or can be calculated from the
columns displayed using any compute statement, because the compute statements lack the weighting
of the total industry volume. So, how was this result produced? The answer is in Figure 14-7. At
Circle F, the btitle was turned off, and at Circle G (just following the select that produced the main
body of the report) is an additional select that includes the label Market Averages and Totals, and
a proper calculation of them.

This select statement is preceded by set heading off and ttitle off. These are necessary because
a new select will normally force a new top title to print. The set heading off command is used to
turn off the column titles that normally would appear above this line. The btitle at Circle F had to
be turned off before the first select executed, because the completion of the first select would
cause the btitle to print before the second select could even execute.

Chapter 14: Building a Report in SQL*PLUS 267

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 14
Blind Folio 14:267

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

268 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 14
Blind Folio 14:268

Current Portfolio March 1st, 2002
Industry Listings

Close Close Part Percent
Ind COMPANY Yest. Today NET of Ind Change VOLUME
----- -------- ------- ------- ------ ------- ------- ------------
ELECT IDK 95.00 95.25 .25 .06 .26 9,443,523

MEMORY G 15.50 14.25 -1.25 -.15 -8.06 4,557,992
MICRO TO 77.00 76.50 -.50 -.32 -.65 25,205,667

***** ------ ------- ------- ------------
avg -.50 -2.82
sum -.41 39,207,182

MEDIC AT SPACE 46.75 48.00 1.25 .42 2.67 11,398,323
AUGUST E 15.00 15.00 .00 .00 .00 12,221,711
HAYWARD 104.25 106.00 1.75 .17 1.68 3,358,561
KENTGEN 18.25 19.50 1.25 .25 6.85 6,636,863

***** ------ ------- ------- ------------
avg 1.06 2.80
sum .85 33,615,458

SPACE BRANDON 32.75 33.50 .75 .29 2.29 25,789,769
GENERAL 64.25 66.00 1.75 .20 2.72 7,598,562
GENEVA R 22.75 27.25 4.50 1.52 19.78 22,533,944
NORTHERN 26.75 28.00 1.25 .03 4.67 1,348,323
OCKHAM S 21.50 22.00 .50 .05 2.33 7,052,990
WONDER L 5.00 5.00 .00 .00 .00 2,553,712

***** ------ ------- ------- ------------
avg 1.46 5.30
sum 2.08 66,877,300

------ ------- ------- ------------
avg .88 .19 2.66
sum 139,699,940

Market Averages and Totals 1.09 2.66 139,699,940

FIGURE 14-6. Revised report with correct market averages and totals

column User noprint
column Today NEW_VALUE xTODAY noprint format a1 trunc
column Industry NEW_VALUE xINDUSTRY
column Net format 99.90
column Industry format a11
column Company format a18
column CloseToday heading 'Close|Today' format 999.90
column CloseYesterday heading 'Close|Yest.' format 999.90
column Volume format 999,999,999
column Percent heading 'Percent|Change' format 9999.90

FIGURE 14-7. How the correct market averages and totals were produced

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 14: Building a Report in SQL*PLUS 269

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 14
Blind Folio 14:269

As shown in the sample report outputs in this chapter (Figures 14-2, 14-3, 14-5, and 14-6),
when a compute command is used, the computed value is labeled with the function that was
executed. For example, in Figure 14-6, both an AVG and a SUM function are computed; the
output shows a label of “avg” for the AVG calculation, and “sum” for the SUM calculation. You
can override the default labels and specify your own labels for computed functions in the compute

column Company format a8 trunc
column Industry heading 'Ind' format a5 trunc

ttitle left 'Current Portfolio' right xTODAY skip 1 -
center 'Industry Listings' skip 2;

btitle off F

clear breaks
clear computes

break on Report on Industry skip 1

compute sum of Volume on Report Industry
compute sum of PartOfInd on Industry
compute avg of Net Percent on Industry
compute avg of Net Percent PartOfInd on Report

select S.Industry,
Company,
CloseYesterday, CloseToday,
(CloseToday - CloseYesterday) AS Net,
(CloseToday - CloseYesterday)*(S.Volume/I.Volume) AS PartOfInd,
(CloseToday/CloseYesterday)*100 - 100 AS Percent,
S.Volume, User,
To_CHAR(SysDate,'fmMonth ddth, yyyy') AS Today

from STOCK S, INDUSTRY I
where S.Industry = I.Industry
AND I.Industry in ('ELECTRONICS', 'SPACE', 'MEDICAL')

order by I.Industry, Company
/
set heading off
ttitle off
clear computes
select 'Market Averages and Totals ', G

SUM(((CloseToday-CloseYesterday)*S.Volume)/M.Volume) AS Net,
' ',
AVG((CloseToday/CloseYesterday))*100 - 100 AS Percent,
SUM(S.Volume) AS Volume

from STOCK S, MARKET M
where Industry in ('ELECTRONICS', 'SPACE', 'MEDICAL')

/

FIGURE 14-7. How the correct market averages and totals were produced (continued)

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

command. See the label clause of compute in the Alphabetical Reference for details. To avoid
having the compute commands apply to the Volume column of the second query, the clear
computes command is executed after the first query.

set termout off and set termout on
Another useful pair of commands is set termout off and set termout on. The former is often used
in a start file just before the spool command, and the latter is often used just after it. The effect is
to suppress the display of the report to the screen. For reports that are going to be printed, this
saves time (they’ll run faster) and avoids the annoying rolling of data across the screen. The spooling
to a file continues to work properly.

Variables in SQLPLUS
If you’re using SQLPLUS interactively, you can check on the current ttitle and btitle at any time
by typing their names alone on a line. SQLPLUS immediately shows you their contents:

ttitle
ttitle OFF and is the following 92 characters:

left 'Current Portfolio' right xTODAY
skip 1 center 'Industry Listings' skip 2

Note the presence of xTODAY, which is a variable, rather than its current contents. SQLPLUS
is capable of storing and using many variables—those used in ttitle and btitle are only some of
them. The current variables and their values can be discovered by typing define:

define
DEFINE _SQLPLUS_RELEASE = "900010000" (CHAR)
DEFINE _EDITOR = "Notepad" (CHAR)
DEFINE _O_VERSION = "Oracle9i Enterprise Edition Release 9.0.1.0.0
With the Partitioning option
JServer Release 9.0.1.0.0 - Beta" (CHAR)
DEFINE _O_RELEASE = "900010000" (CHAR)
DEFINE XINDUSTRY = "SPACE" (CHAR)
DEFINE XTODAY = "April 10th, 2002" (CHAR)

The _EDITOR variable is the editor you use when you type the word edit. You saw how to set
this up in your login.sql file back in Chapter 6. The other variables identify which version and
release of Oracle you are using.

The last variables are defined in the stock market queries, and their contents are just those
displayed in the reports. SQLPLUS stores variables for ttitle and btitle by defining them as equal
to some value, and then allows you to use them whenever a query is being executed. In fact,
variables can be used many places in a report other than in titles.

Suppose your stock database were updated automatically by a pricing service, and you
wanted to check regularly the closing prices and volumes on a stock-by-stock basis. This could
be easily accomplished with variables in the where clause. Normally, you would type this query:

270 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 14
Blind Folio 14:270

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

select Company, CloseYesterday, CloseToday, Volume
from STOCK where Company = 'IDK';

Close Close
COMPANY Yest. Today VOLUME
------------------ ------- ------- ------------
IDK 95.00 95.25 9,443,523

Alternatively, you could type this into a start file named, for example, closing.sql:

set heading on
column CloseToday heading 'Close|Today' format 999.90
column CloseYesterday heading 'Close|Yest.' format 999.90
column Volume format 999,999,999
column Company format a20

accept xCompany prompt 'Enter Company name: '

select Company, CloseYesterday, CloseToday, Volume
from STOCK
where Company = '&xCompany';

In this file, xCompany is a variable you have invented, such as xIndustry or xToday. accept
tells SQLPLUS to accept input from the keyboard, and prompt tells it to display a message. Note
that the variable name must be preceded by the ampersand (&) when it appears in the SQL select
statement, but not when it appears in the accept or in a title. Then, when you type this:

start closing.sql

the screen displays this:

Enter Company name:

You then type MEMORY GRAPHICS. SQLPLUS will display the following:

select Company, CloseYesterday, CloseToday, Volume
from STOCK
where Company = '&xCompany';

old 3: where Company = '&xCompany'
new 3: where Company = 'MEMORY GRAPHICS'

Close Close
COMPANY Yest. Today VOLUME
------------------ ------- ------- ------------
MEMORY GRAPHICS 15.50 14.25 4,557,992

First, it shows you the query you have set up. Next, it shows you the where clause—first with the
variable in it, and then with the value you typed. Finally, it shows you the results of the query.

Chapter 14: Building a Report in SQL*PLUS 271

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 14
Blind Folio 14:271

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

If you then typed start closing.sql again, but typed IDK for Company name, the old and new
would show this:

old 3: where Company = '&xCompany'
new 3: where Company = 'IDK'

and the result would be for IDK. It is unnecessary for the select and the old and new to be displayed
each time. Both of these can be controlled, the first by the set echo command and the second by
set verify. To see what these are set at currently, type the show command followed by the keyword
verify or echo:

show verify
verify ON

show echo
echo OFF

The revised version of the start file looks like this:

column CloseToday heading 'Close|Today' format 999.90
column CloseYesterday heading 'Close|Yest.' format 999.90
column Volume format 999,999,999
column Company format a20
set echo off
set verify off
set sqlcase upper
accept xCompany prompt 'Enter Company name: '

select Company, CloseYesterday, CloseToday, Volume
from STOCK
where Company = '&xCompany';

set sqlcase upper tells SQLPLUS to convert anything keyed into the variable (using the accept)
to uppercase before executing the query. This can be helpful if you’ve stored your data in uppercase
(which is a good practice) but don’t want to force people to type in uppercase any time they run
a query. Now when the start file is executed, this is what happens:

start closing.sql

Enter Company name: memory graphics

Close Close
COMPANY Yest. Today VOLUME
------------------ ------- ------- ------------
MEMORY GRAPHICS 15.50 14.25 4,557,992

The use of variables in start files can be very helpful, particularly for reports in which the basic
format of the report stays the same but certain parameters change, such as date, company division,
stock name, project, client, and so on. When the report starts, it asks the person using it for these

272 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 14
Blind Folio 14:272

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

details and then it runs. As just shown, typing only the word define will result in a list of all the
variables currently defined. Typing define with just one name will show only that variable’s contents:

define xCompany

DEFINE XCOMPANY = "memory graphics" (CHAR)

After a start file has completed, any variables are held by SQLPLUS until you exit or
intentionally undefine them:

undefine xCompany

An attempt now to see the variable’s value produces the following:

define xCompany

SP2-0135: symbol xcompany is UNDEFINED

You also can define a variable within the start file without using the accept command. Simply
assign a value directly, as shown here:

define xCompany = 'IDK'

Any place that &xCompany appears in the start file will have IDK substituted.

Other Places to Use Variables
Any variable that you define using either accept or define can be used directly in a btitle or ttitle
command without using the NEW_VALUE column command. NEW_VALUE simply takes the
contents of a column and issues its own define command for the variable name following
NEW_VALUE. The single difference in using the variable in titles, as opposed to the SQL statement,
is that in titles the variable is not preceded by an ampersand.

Variables also can be used in a setup start file, as explained later in this chapter in “Using
mask.sql.”

Numeric Formatting
The default method SQLPLUS uses for formatting numbers is to right-justify them in a column,
without commas, using decimal points only if the number is not an integer. The table NUMBERTEST
contains columns named Value1 and Value2, which have identical numbers in each column. These
will be used to show how numeric formatting works. The first query shows the default formatting:

select Value1, Value2 from NUMBERTEST;

VALUE1 VALUE2
------------ ------------

0 0
.0001 .0001
1234 1234

Chapter 14: Building a Report in SQL*PLUS 273

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 14
Blind Folio 14:273

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1234.5 1234.5

1234.56 1234.56
1234.567 1234.567

98761234.6 98761234.6

Row five is NULL. Notice how the decimal point moves from row to row. Just as columns
can be formatted individually in queries, the default format can be changed:

set numformat 9,999,999

select Value1, Value2 from NUMBERTEST;

VALUE1 VALUE2
---------- ----------

0 0
0 0

1,234 1,234
1,235 1,235

1,235 1,235
1,235 1,235

########## ##########

Now, row eight is filled with pound signs. The problem with row eight is that the format
defined is too narrow. You can fix this by adding another digit on the left, as shown here:

set numformat 99,999,999

select Value1, Value2 from NUMBERTEST;

VALUE1 VALUE2
----------- -----------

0 0
0 0

1,234 1,234
1,235 1,235

1,235 1,235
1,235 1,235

98,761,235 98,761,235

Using mask.sql
Columns used in one report may also need to be used regularly in several reports. Instead of
retyping the formatting commands for these columns in every start file, it can be useful to keep
all the basic column commands in a single file. This file might be called mask.sql, because it
contains formatting (also called masking) information for columns. For example, the file might
look like the following:

274 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 14
Blind Folio 14:274

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 14: Building a Report in SQL*PLUS 275

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 14
Blind Folio 14:275

REM File mask.sql
set numwidth 12
set numformat 999,999,999.90

column Net format 99.90
column Industry format a11
column Company format a18
column CloseToday heading 'Close|Today' format 999.90
column CloseYesterday heading 'Close|Yest.' format 999.90
column Volume format 999,999,999

define xDepartment = 'Systems Planning Dept. 3404'

This is then effectively embedded in a start file (usually near the top) simply by including this line:

start mask.sql

show all and spooling
You’ve seen several commands that use the set command, and whose current status can be
determined using the show command, such as feedback, echo, verify, heading, and so on. There
are actually about 50 such commands that can be set. These can all be displayed at once using this:

show all

Unfortunately, these fly by so quickly on the screen that it’s impossible to read most of them.
You can solve this problem by spooling. Simply spool to a file, as in the previous example, execute
show all, and then spool off. You can now look at the current status of all the set commands using
your editor on the file. You can look up these commands in the Alphabetical Reference at the end
of this book under set. The rows returned by the show all command will be ordered alphabetically.

As an alternative, you can use the store command described in Chapter 6 to save your current
SQLPLUS environment settings to a file (like mask.sql). You can then execute this file at a later
date to reset your environment settings.

Folding onto New Lines
Information retrieved from a database is often just fine with only one line of column titles, and
columns of data stacked below them. Occasionally, however, a different kind of layout is preferable.
Sometimes, this can be accomplished using literal columns of nothing but blank spaces, to
properly position real data on more than one line and have it line up properly. These literal
columns are given an alias in the SQL and then a blank heading in the column command. The
technique parallels what was done for the total line in Figure 14-6. For example, look at this:

column Industry format a14 trunc
column B format a21 heading ' '
column Company format a20
column Volume format 999,999,999 justify left
set linesize 60

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

276 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 14
Blind Folio 14:276

select Industry, ' ' AS B,
Company,
CloseYesterday, CloseToday,
(CloseToday - CloseYesterday) AS Net,
Volume

from STOCK
where Industry in ('ADVERTISING','GARMENT')
order by Industry, Company;

INDUSTRY COMPANY
-------------- --------------------- --------------------
CLOSEYESTERDAY CLOSETODAY NET VOLUME

--------------- --------------- --------------- ------------
ADVERTISING AD SPECIALTY

31.75 31.75 .00 18,333,876

MBK COMMUNICATIONS
43.25 41.00 -2.25 10,022,980

NANCY LEE FEATURES
13.50 14.25 .75 14,222,692

GARMENT ROBERT JAMES APPAREL
23.25 24.0 .75 19,032,481

A literal column of one space, given an alias of B, is defined by the column command as 21
characters wide with a blank heading. This is used specifically to move the company names over
so that the columns line up as desired, with stock Volume directly below the Company name, and
column B for CloseToday and Net lining up with the blank.

fold_after and fold_before
Next, look at how the column command fold_after affects every column in the select. Notice how
the fold_after essentially puts these columns on their own lines.

clear columns
column Net format 99.90
column A format a15 fold_after 1
column Company format a20 fold_after 1
column CloseToday heading 'Close|Today' format 999.90 -

fold_after
column CloseYesterday heading 'Close|Yest.' format 999.90 -

fold_after 1
column Net fold_after 1
column Volume format 999,999,999 fold_after 1
set heading off

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 14: Building a Report in SQL*PLUS 277

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 14
Blind Folio 14:277

select Industry||',' AS A,
Company,
CloseYesterday,
CloseToday, (CloseToday - CloseYesterday) AS Net,
Volume

from STOCK
where Industry in ('ADVERTISING','GARMENT')
order by Industry, Company;

The previous query produces the following output. Note that even though CloseToday had
no number following its fold_after clause, SQLPLUS used a default of 1.

ADVERTISING,
AD SPECIALTY
31.75
31.75
.00

18,333,876

ADVERTISING,
MBK COMMUNICATIONS
43.25
41.00

-2.25
10,022,980

ADVERTISING,
NANCY LEE FEATURES
13.50
14.25
.75

14,222,692

GARMENT,
ROBERT JAMES APPAREL
23.25
24.00
.75

19,032,481

Additional Reporting Controls
Many of the commands illustrated here, as well as in other chapters, have options considerably
beyond those used in these examples. All of the options for each of these commands can be found
in the Alphabetical Reference, under the individual command names.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 14
Blind Folio 14:278

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 15
Blind Folio 15:279

CHAPTER
15

Changing Data:
insert, update,

merge, and delete

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

U
ntil now, virtually everything you’ve learned about Oracle, SQL, and SQLPLUS
has related to selecting data from tables in the database. This chapter shows
how to change the data in a table: how to insert new rows, update the values of
columns in rows, and delete rows entirely. Although these topics have not been
covered explicitly, nearly everything you already know about SQL, including

datatypes, calculations, string formatting, where clauses, and the like can be used here, so there
really isn’t much new to learn. Oracle gives you a transparent, distributed database capability
that inserts, updates, and deletes data in remote databases as well (see Chapter 22). As you’ll see
in this chapter, Oracle9i introduces two new capabilities in this area: multitable inserts and the
merge command to support inserts and updates in a single command.

insert
The SQL command insert lets you place a row of information directly into a table (or indirectly,
through a view). The COMFORT table tracks temperatures at noon and midnight and daily
precipitation, city by city, for four sample dates through the year:

describe COMFORT

Name Null? Type
--- -------- ------------
CITY NOT NULL VARCHAR2(13)
SAMPLEDATE NOT NULL DATE
NOON NUMBER(3,1)
MIDNIGHT NUMBER(3,1)
PRECIPITATION NUMBER

To add a new row to this table, use this:

insert into COMFORT
values ('WALPOLE', '21-MAR-01'),

56.7, 43.8, 0);

1 row created.

The word values must precede the list of data to be inserted. A character string must be in
single quotation marks. Numbers can stand by themselves. Each field is separated by commas,
and the fields must be in the same order as the columns are when the table is described.

A date must be in single quotation marks and in the default Oracle date format. To insert a
date not in the default format, use the TO_DATE function, with a formatting mask, as shown in
the following:

insert into COMFORT
values ('WALPOLE', TO_DATE('06/22/2001','MM/DD/YYYY'),

56.7, 43.8, 0);

1 row created.

280 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 15
Blind Folio 15:280

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Inserting a Time
Inserting dates without time values will produce a default time of midnight, the very beginning of
the day. If you want to insert a date with a time other than midnight, simply use the TO_DATE
function and include a time:

insert into COMFORT
values ('WALPOLE', TO_DATE('06/22/2001 1:35',

'MM/DD/YYYY HH24:MI'), 56.7, 43.8, 0);

1 row created.

NOTE
To store fractional seconds, you can use the TIMESTAMP and
TIMESTAMP WITH TIME ZONE datatypes, as described in Chapter 9.

Columns also can be inserted out of the order they appear when described, if you first (before
the word values) list the order the data is in. This doesn’t change the fundamental order of the
columns in the table. It simply allows you to list the data fields in a different order. (See Part IV
for information on inserting data into user-defined datatypes.)

You also can “insert” a NULL. This simply means the column will be left empty for this row,
as shown in the following:

insert into COMFORT
(SampleDate, Precipitation, City, Noon, Midnight)

values ('23-SEP-01', NULL,
'WALPOLE', 86.3, 72.1);

1 row created.

insert with select
You also can insert information that has been selected from a table. Here, a mix of columns
selected from the COMFORT table, together with literal values for SampleDate (22-DEC-01) and
City (WALPOLE), are inserted. Note the where clause in the select statement, which will retrieve
only one row. Had the select retrieved five rows, five new ones would have been inserted; if ten
rows had been retrieved, then ten new rows would have been inserted; and so on.

insert into COMFORT
(SampleDate, Precipitation, City, Noon, Midnight)

select '22-DEC-01', Precipitation,
'WALPOLE', Noon, Midnight

from COMFORT
where City = 'KEENE'
and SampleDate = '22-DEC-01';

1 row created.

Chapter 15: Changing Data: insert, update, merge, and delete 281

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 15
Blind Folio 15:281

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

NOTE
You cannot use the insert into...select from syntax with LONG
datatypes unless you are using the TO_LOB function to insert the
LONG data into a LOB column.

Of course, you don’t need to simply insert the value in a selected column. You can modify
the column using any of the appropriate string, date, or number functions within the select
statement. The results of those functions are what will be inserted. You can attempt to insert a
value in a column that exceeds its width (for character datatypes) or its magnitude (for number
datatypes). You have to fit within the constraints you defined on your columns. These attempts
will produce a “value too large for column” or “mismatched datatype” error message. If you now
query the COMFORT table for the city of Walpole, the results will be the records you inserted:

select * from COMFORT
where City = 'WALPOLE';

CITY SAMPLEDAT NOON MIDNIGHT PRECIPITATION
------------- --------- ---------- ---------- -------------
WALPOLE 21-MAR-01 56.7 43.8 0
WALPOLE 22-JUN-01 56.7 43.8 0
WALPOLE 22-JUN-01 56.7 43.8 0
WALPOLE 23-SEP-01 86.3 72.1
WALPOLE 22-DEC-01 -7.2 -1.2 3.9

5 rows selected.

There are two records shown for ‘22-JUN-01’ because one of them has a time component. Use the
TO_CHAR function to see the time:

select City, SampleDate,
TO_CHAR(SampleDate,'HH24:MI:SS') AS TimeofDay, Noon

from COMFORT
where City = 'WALPOLE';

CITY SAMPLEDAT TIMEOFDA NOON
------------- --------- -------- ----------
WALPOLE 21-MAR-01 00:00:00 56.7
WALPOLE 22-JUN-01 00:00:00 56.7
WALPOLE 22-JUN-01 01:35:00 56.7
WALPOLE 23-SEP-01 00:00:00 86.3
WALPOLE 22-DEC-01 00:00:00 -7.2

Using the APPEND Hint to Improve insert Performance
As you will learn in Chapter 38, Oracle uses an optimizer to determine the most efficient way to
perform each SQL command. For insert statements, Oracle tries to insert each new record into an
existing block of data already allocated to the table. This execution plan optimizes the use of
space required to store the data. However, it may not provide adequate performance for an insert

282 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 15
Blind Folio 15:282

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 15: Changing Data: insert, update, merge, and delete 283

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 15
Blind Folio 15:283

with a select command that inserts multiple rows. You can override the execution plan by using
the APPEND hint to improve the performance of large inserts. The APPEND hint will tell the
database to find the last block into which the table’s data has ever been inserted. The new records
will be inserted starting in the next block following the last previously used block. Since the data
is being written into new blocks of the table, there is much less space management work for the
database to do during the insert. Therefore, the insert may complete faster when the APPEND
hint is used.

You specify the APPEND hint within the insert command. A hint looks like a comment—it
starts with /* and ends with */. The only difference is that the starting set of characters includes
a + before the name of the hint. The following example shows an insert command whose data
is appended to the table:

insert /*+ APPEND */ into BOOKSHELF (Title)
select Title from BOOK_ORDER
where Title not in (select Title from BOOKSHELF);

The records from the BOOK_ORDER table will be inserted into the BOOKSHELF table. Instead
of attempting to reuse previously used space within the BOOKSHELF table, the new records will be
placed at the end of the table’s physical storage space.

Since the new records will not attempt to reuse available space that the table has already
used, the space requirements for the BOOKSHELF table may increase. In general, you should use
the APPEND hint only when inserting large volumes of data into tables with little reusable space.
The point at which appended records will be inserted is called the table’s high-water mark—and
the only way to reset the high-water mark is to truncate the table. Since truncate will delete all
records and cannot be rolled back, you should make sure you have a backup of the table’s data
prior to performing the truncate. See truncate in the Alphabetical Reference for further details.

rollback, commit, and autocommit
When you insert, update, or delete data from the database, you can reverse, or roll back, the work
you’ve done. This can be very important when an error is discovered. The process of committing
or rolling back work is controlled by two SQLPLUS commands, commit and rollback. Additionally,
SQLPLUS has the facility to automatically commit your work without your explicitly telling it to
do so. This is controlled by the autocommit feature of set. Like other set features, you can show
it, like this:

show autocommit

autocommit OFF

OFF is the default. You can also specify a number for the autocommit value; this value will
determine the number of commands after which Oracle will issue a commit. This means inserts,
updates, and deletes are not made final until you commit them:

commit;

commit complete

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Until you commit, only you can see how your work affects the tables. Anyone else with
access to these tables will continue to get the old information. You will see new information
whenever you select from the table. Your work is, in effect, in a “staging” area, which you
interact with until you commit. You can do quite a large number of inserts, updates, and deletes,
and still undo the work (return the tables to the way they used to be) by issuing this command:

rollback;

rollback complete

However, the message “rollback complete” can be misleading. It means only that Oracle has
rolled back any work that hasn’t been committed. If you commit a series of transactions, either
explicitly with the word commit or implicitly by another action, the “rollback complete” message
won’t really mean anything.

Using savepoints
You can use savepoints to roll back portions of your current set of transactions. Consider the
following commands:

insert into COMFORT
values ('WALPOLE', '22-APR-01',50.1, 24.8, 0);

savepoint A;

insert into COMFORT
values ('WALPOLE', '27-MAY-01',63.7, 33.8, 0);

savepoint B;

insert into COMFORT
values ('WALPOLE', '07-AUG-01',83.0, 43.8, 0);

Now, select the data from COMFORT for Walpole:

select * from COMFORT
where City = 'WALPOLE';

CITY SAMPLEDAT NOON MIDNIGHT PRECIPITATION
------------- --------- ---------- ---------- -------------
WALPOLE 21-MAR-01 56.7 43.8 0
WALPOLE 22-JUN-01 56.7 43.8 0
WALPOLE 22-JUN-01 56.7 43.8 0
WALPOLE 23-SEP-01 86.3 72.1
WALPOLE 22-DEC-01 -7.2 -1.2 3.9
WALPOLE 22-APR-01 50.1 24.8 0
WALPOLE 27-MAY-01 63.7 33.8 0
WALPOLE 07-AUG-01 83 43.8 0

284 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 15
Blind Folio 15:284

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 15: Changing Data: insert, update, merge, and delete 285

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 15
Blind Folio 15:285

The output shows the five former records plus the three new rows we’ve added. Now roll back
just the last insert:

rollback to savepoint B;

If you now query COMFORT, you’ll see that the last insert has been rolled back, but the others
are still there:

select * from COMFORT
where City = 'WALPOLE';

CITY SAMPLEDAT NOON MIDNIGHT PRECIPITATION
------------- --------- ---------- ---------- -------------
WALPOLE 21-MAR-01 56.7 43.8 0
WALPOLE 22-JUN-01 56.7 43.8 0
WALPOLE 22-JUN-01 56.7 43.8 0
WALPOLE 23-SEP-01 86.3 72.1
WALPOLE 22-DEC-01 -7.2 -1.2 3.9
WALPOLE 22-APR-01 50.1 24.8 0
WALPOLE 27-MAY-01 63.7 33.8 0

The last two records are still not committed; you need to execute a commit command or
another command to force a commit to occur. You can still roll back the second insert (to
savepoint A) or roll back all of the inserts (via a rollback command).

Implicit commit
The actions that will force a commit to occur, even without your instructing it to, are quit, exit
(the equivalent of quit), and any Data Definition Language (DDL) command. Using any of these
commands forces a commit.

Auto rollback
If you’ve completed a series of inserts, updates, or deletes, but have not yet explicitly or implicitly
committed them, and you experience serious difficulties, such as a computer failure, Oracle will
automatically roll back any uncommitted work. If the machine or database goes down, it does
this as cleanup work the next time the database is brought back up.

Multitable Inserts
As of Oracle9i, you can perform multiple inserts in a single command. You can perform all of the
inserts unconditionally or you can specify conditions—using a when clause to tell Oracle how
to manage the multiple inserts. If you specify all, then all of the when clauses will be evaluated;
specifying first tells Oracle to skip subsequent when clauses after it finds one that is true for the
row being evaluated. You can also use an else clause to tell Oracle what to do if none of the
when clauses evaluates to true.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

To illustrate this functionality, let’s create a new table with a slightly different structure than
COMFORT:

drop table COMFORT_TEST;
create table COMFORT_TEST (
City VARCHAR2(13) NOT NULL,
SampleDate DATE NOT NULL,
Measure VARCHAR2(10),
Value NUMBER(3,1)
);

COMFORT_TEST will have multiple records for each record in COMFORT—its Measure column
will have values like ‘Midnight’, ‘Noon’, and ‘Precip’, allowing us to store a greater number of
measures for each city on each sample date.

Now populate COMFORT_TEST with data from COMFORT, unconditionally:

insert ALL
into COMFORT_TEST (City, SampleDate, Measure, Value)

values (City, SampleDate, 'NOON', Noon)
into COMFORT_TEST (City, SampleDate, Measure, Value)

values (City, SampleDate, 'MIDNIGHT', Midnight)
into COMFORT_TEST (City, SampleDate, Measure, Value)

values (City, SampleDate, 'PRECIP', Precipitation)
select City, SampleDate, Noon, Midnight, Precipitation
from COMFORT
where City = 'KEENE';

12 rows created.

This query tells Oracle to insert multiple rows for each row returned from the COMFORT table.
The query of COMFORT returns four rows. The first into clause inserts the Noon value, along with
a text string of ‘NOON’ in the Measure column. The second into clause inserts the Midnight values,
and the third inserts the Precipitation values, as shown in the query of COMFORT_TEST following
the insert:

select * from COMFORT_TEST;

CITY SAMPLEDAT MEASURE VALUE
------------- --------- ---------- ----------
KEENE 21-MAR-01 NOON 39.9
KEENE 22-JUN-01 NOON 85.1
KEENE 23-SEP-01 NOON 99.8
KEENE 22-DEC-01 NOON -7.2
KEENE 21-MAR-01 MIDNIGHT -1.2
KEENE 22-JUN-01 MIDNIGHT 66.7
KEENE 23-SEP-01 MIDNIGHT 82.6
KEENE 22-DEC-01 MIDNIGHT -1.2
KEENE 21-MAR-01 PRECIP 4.4
KEENE 22-JUN-01 PRECIP 1.3

286 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 15
Blind Folio 15:286

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 15: Changing Data: insert, update, merge, and delete 287

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 15
Blind Folio 15:287

KEENE 23-SEP-01 PRECIP
KEENE 22-DEC-01 PRECIP 3.9

12 rows selected.

What if you had used the first keyword instead of the all keyword? Unless you use when
clauses, you can’t use the first keyword. The following example shows the use of the when clause
to restrict which inserts are performed within the multi-insert command. For this example, the all
keyword is used:

delete from COMFORT_TEST;
commit;

insert ALL
when Noon > 80 then
into COMFORT_TEST (City, SampleDate, Measure, Value)

values (City, SampleDate, 'NOON', Noon)
when Midnight > 70 then
into COMFORT_TEST (City, SampleDate, Measure, Value)

values (City, SampleDate, 'MIDNIGHT', Midnight)
when Precipitation is not null then
into COMFORT_TEST (City, SampleDate, Measure, Value)

values (City, SampleDate, 'PRECIP', Precipitation)
select City, SampleDate, Noon, Midnight, Precipitation
from COMFORT
where City = 'KEENE';

6 rows created.

What six rows were inserted? The two Noon values that met this condition:

when Noon > 80 then

and the one Midnight value that met this condition:

when Midnight > 70 then

and the three Precipitation values that met this condition:

when Precipitation is not null then

You can see the results in COMFORT_TEST:

select * from COMFORT_TEST;

CITY SAMPLEDAT MEASURE VALUE
------------- --------- ---------- ----------
KEENE 22-JUN-01 NOON 85.1
KEENE 23-SEP-01 NOON 99.8

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

KEENE 23-SEP-01 MIDNIGHT 82.6
KEENE 21-MAR-01 PRECIP 4.4
KEENE 22-JUN-01 PRECIP 1.3
KEENE 22-DEC-01 PRECIP 3.9

What if you had used first instead?

delete from COMFORT_TEST;
commit;

insert FIRST
when Noon > 80 then
into COMFORT_TEST (City, SampleDate, Measure, Value)

values (City, SampleDate, 'NOON', Noon)
when Midnight > 70 then
into COMFORT_TEST (City, SampleDate, Measure, Value)

values (City, SampleDate, 'MIDNIGHT', Midnight)
when Precipitation is not null then
into COMFORT_TEST (City, SampleDate, Measure, Value)

values (City, SampleDate, 'PRECIP', Precipitation)
select City, SampleDate, Noon, Midnight, Precipitation
from COMFORT
where City = 'KEENE';

4 rows created.

Four rows are inserted:

select * from COMFORT_TEST;

CITY SAMPLEDAT MEASURE VALUE
------------- --------- ---------- ----------
KEENE 21-MAR-01 PRECIP 4.4
KEENE 22-DEC-01 PRECIP 3.9
KEENE 22-JUN-01 NOON 85.1
KEENE 23-SEP-01 NOON 99.8

What happened to the MIDNIGHT value? The only record that passed the MIDNIGHT
when clause:

when Midnight > 70 then

also passed the NOON when clause:

when Noon > 80 then

so its Noon value (99.8) was inserted. Since the first keyword was used, and the condition that
was evaluated first (Noon), was true, Oracle did not check the rest of the conditions for that row.
The same process happened to the PRECIP measures—the other non-NULL Precipitation value
was on the same record as the Noon reading of 85.1.

288 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 15
Blind Folio 15:288

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

What if none of the conditions had been met? To show that option, let’s create a third table,
COMFORT2, with the same structure as COMFORT:

create table COMFORT2 (
City VARCHAR2(13) NOT NULL,
SampleDate DATE NOT NULL,
Noon NUMBER(3,1),
Midnight NUMBER(3,1),
Precipitation NUMBER
);

Now, we’ll execute an insert for all cities (using the first clause) along with an else clause
specifying that any rows that fail the conditions will be placed into the COMFORT2 table. For
this example, the when conditions are changed to limit the number of rows that pass the conditions.

delete from COMFORT_TEST;
delete from COMFORT2;
commit;

insert FIRST
when Noon > 80 then
into COMFORT_TEST (City, SampleDate, Measure, Value)

values (City, SampleDate, 'NOON', Noon)
when Midnight > 100 then
into COMFORT_TEST (City, SampleDate, Measure, Value)

values (City, SampleDate, 'MIDNIGHT', Midnight)
when Precipitation >100 then
into COMFORT_TEST (City, SampleDate, Measure, Value)

values (City, SampleDate, 'PRECIP', Precipitation)
else

into COMFORT2
select City, SampleDate, Noon, Midnight, Precipitation
from COMFORT

where City = 'KEENE';

4 rows created.

The feedback tells you how many rows were created, but not which table they were created
in. The total reported is for all inserts combined. In this case, two records were inserted into
COMFORT_TEST and two were inserted into COMFORT2 because of the else condition:

select * from COMFORT_TEST;

CITY SAMPLEDAT MEASURE VALUE
------------- --------- ---------- ----------
KEENE 22-JUN-01 NOON 85.1
KEENE 23-SEP-01 NOON 99.8

Chapter 15: Changing Data: insert, update, merge, and delete 289

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 15
Blind Folio 15:289

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

290 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 15
Blind Folio 15:290

select * from COMFORT2;

CITY SAMPLEDAT NOON MIDNIGHT PRECIPITATION
------------- --------- ---------- ---------- -------------
KEENE 21-MAR-01 39.9 -1.2 4.4
KEENE 22-DEC-01 -7.2 -1.2 3.9

delete
Removing a row or rows from a table requires the delete command, as seen in the examples
in the last section. The where clause is essential to removing only the rows you intend. delete
without a where clause will empty the table completely. The following command deletes the
Walpole entries from the COMFORT table.

delete from COMFORT where City = 'WALPOLE';

Of course, a where clause in a delete, just as in an update or a select that is part of an insert,
can contain as much logic as any select statement, and may include subqueries, unions, intersects,
and so on. You can always rollback a bad insert, update, or delete, but you really should experiment
with the select before actually making the change to the database, to make sure you are doing
the right thing.

Now that you’ve just deleted the rows where City = ‘WALPOLE’, you can test the effect of
that delete with a simple query:

select * from COMFORT
where City = 'WALPOLE';

no rows selected

Now rollback the delete and run the same query:

rollback;
rollback complete

select * from COMFORT
where City = 'WALPOLE';

CITY SAMPLEDAT NOON MIDNIGHT PRECIPITATION
------------- --------- ---------- ---------- -------------
WALPOLE 21-MAR-01 56.7 43.8 0
WALPOLE 22-JUN-01 56.7 43.8 0
WALPOLE 22-JUN-01 56.7 43.8 0
WALPOLE 23-SEP-01 86.3 72.1
WALPOLE 22-DEC-01 -7.2 -1.2 3.9

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 15: Changing Data: insert, update, merge, and delete 291

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 15
Blind Folio 15:291

WALPOLE 22-APR-01 50.1 24.8 0
WALPOLE 27-MAY-01 63.7 33.8 0

7 rows selected.

This illustrates that recovery is possible, so long as a commit hasn’t occurred.
An additional command for deleting records, truncate, does not behave the same as delete.

Whereas delete allows you to commit or rollback the deletion, truncate automatically deletes all
records from the table. The action of the truncate command cannot be rolled back or committed;
the truncated records are unrecoverable. See the truncate command in the Alphabetical Reference
for further details.

update
update requires setting specific values for each column you want to change, and specifying which
row or rows you want to affect by using a carefully constructed where clause:

update COMFORT set Precipitation = .5, Midnight = 73.1
where City = 'KEENE'
and SampleDate = '22-DEC-2001';

1 row updated.

Here is the effect, shown in the 22-DEC-01 record:

select * from COMFORT
where City = 'KEENE';

CITY SAMPLEDAT NOON MIDNIGHT PRECIPITATION
------------- --------- ---------- ---------- -------------
KEENE 21-MAR-01 39.9 -1.2 4.4
KEENE 22-JUN-01 85.1 66.7 1.3
KEENE 23-SEP-01 99.8 82.6
KEENE 22-DEC-01 -7.2 73.1 .5

4 rows selected.

What if you later discover that the thermometer used in Keene consistently reports its
temperatures too high by one degree? You also can do calculations, string functions, and almost
any other legitimate function in setting a value for the update (just as you can for an insert, or in
the where clause of a delete). Here, each temperature in Keene is decreased by one degree:

update COMFORT set Midnight = Midnight - 1, Noon = Noon - 1
where City = 'KEENE';

4 rows updated.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

292 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 15
Blind Folio 15:292

Here is the effect of the update:

select * from COMFORT
where City = 'KEENE';

CITY SAMPLEDAT NOON MIDNIGHT PRECIPITATION
------------- --------- ---------- ---------- -------------
KEENE 21-MAR-01 38.9 -2.2 4.4
KEENE 22-JUN-01 84.1 65.7 1.3
KEENE 23-SEP-01 98.8 81.6
KEENE 22-DEC-01 -8.2 72.1 .5

NOTE
If your update violates the column definitions or constraints, it will
fail. In this case, setting Noon or Midnight to values of 100 or greater
will violate the numeric scale of the columns.

As with delete, the where clause is critical. Without one, every row in the database will be
updated. With an improperly constructed where clause, the wrong rows will be updated, often
in ways that are hard to discover or fix, especially if your work has been committed. Always
set feedback on when doing updates, and look at the feedback to be sure the number of rows
updated is what you expected it to be. Query the rows after you update to see if the expected
change took place.

update with Embedded select
It is possible to set values in an update by embedding a select statement right in the middle of it. Note
that this select has its own where clause, picking out the temperature for the city of MANCHESTER
from the WEATHER table, and the update has its own where clause to affect just the city of Keene
on a certain day:

update COMFORT set Midnight =
(select Temperature

from WEATHER
where City = 'MANCHESTER')

where City = 'KEENE'
and SampleDate = '22-DEC-01';

1 row updated.

Here is the effect of the update:

select * from COMFORT
where City = 'KEENE';

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 15: Changing Data: insert, update, merge, and delete 293

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 15
Blind Folio 15:293

CITY SAMPLEDAT NOON MIDNIGHT PRECIPITATION
------------- --------- ---------- ---------- -------------
KEENE 21-MAR-01 38.9 -2.2 4.4
KEENE 22-JUN-01 84.1 65.7 1.3
KEENE 23-SEP-01 98.8 81.6
KEENE 22-DEC-01 -8.2 66 .5

4 rows selected.

When using subqueries with updates, you must be certain that the subquery will return no
more than one record for each of the records to be updated; otherwise, the update will fail. See
Chapter 12 for details on correlated queries.

You also can use an embedded select to update multiple columns at once. The columns must
be in parentheses and separated by a comma, as shown here:

update COMFORT set (Noon, Midnight) =
(select Humidity, Temperature

from WEATHER
where City = 'MANCHESTER')

where City = 'KEENE'
and SampleDate = '22-DEC-01';

1 row updated.

Here is the effect:

select * from COMFORT
where City = 'KEENE';

CITY SAMPLEDAT NOON MIDNIGHT PRECIPITATION
------------- --------- ---------- ---------- -------------
KEENE 21-MAR-01 38.9 -2.2 4.4
KEENE 22-JUN-01 84.1 65.7 1.3
KEENE 23-SEP-01 98.8 81.6
KEENE 22-DEC-01 98 66 .5

4 rows selected.

update with NULL
You also can update a table and set a column equal to NULL. This is the sole instance of using
the equal sign with NULL, instead of the word “is.” For example,

update COMFORT set Noon = NULL
where City = 'KEENE'

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

294 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 15
Blind Folio 15:294

and SampleDate = '22-DEC-01';

1 row updated.

will set the noon temperature to NULL for Keene on December 22, 2001.

NOTE
The primary issues with insert, update, and delete are careful
construction of where clauses to affect (or insert) only the rows you
really want, and the normal use of SQL functions within these inserts,
updates, and deletes. It is extremely important that you exercise
caution about committing work before you are certain it is correct.
These commands extend the power of Oracle well beyond simple
queries, and allow direct manipulation of data.

Using the merge Command
As of Oracle9i, you can use the merge command to perform inserts and updates into a single
table in a single command. Based on the conditions you specify, Oracle will take the source
data—either a table, view, or a query—and update existing values if the conditions are met. If
the conditions are not met, the row will be inserted.

For the example, change the rows in the COMFORT2 table created earlier in this chapter:

update COMFORT2 set Noon = 55;
insert into COMFORT2 values ('KEENE', '16-MAY-01', 55, 55, 1);
commit;

The data in COMFORT2 should now look like this:

select * from COMFORT2;

CITY SAMPLEDAT NOON MIDNIGHT PRECIPITATION
------------- --------- ---------- ---------- -------------
KEENE 21-MAR-01 55 -2.2 4.4
KEENE 22-DEC-01 55 66 .5
KEENE 16-MAY-01 55 55 1

The Keene data in COMFORT is:

select * from COMFORT where City = 'KEENE';

CITY SAMPLEDAT NOON MIDNIGHT PRECIPITATION
------------- --------- ---------- ---------- -------------
KEENE 21-MAR-01 38.9 -2.2 4.4
KEENE 22-JUN-01 84.1 65.7 1.3

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 15: Changing Data: insert, update, merge, and delete 295

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 15
Blind Folio 15:295

KEENE 23-SEP-01 98.8 81.6
KEENE 22-DEC-01 66 .5

With COMFORT2 as the data source, we can now perform a merge on the COMFORT table.
For the rows that match (the ‘21-MAR-01’ and ‘22-DEC-01’ entries, we’ll update the Noon values
in COMFORT. The rows that exist only in COMFORT2 (the ‘16-MAY-01’ row) will be inserted
into COMFORT. The following listing shows the command to use.

merge into COMFORT C1
using (select City, SampleDate, Noon, Midnight,

Precipitation from COMFORT2) C2
on (C1.City = C2.City and C1.SampleDate=C2.SampleDate)

when matched then
update set Noon = C2.Noon

when not matched then
insert (C1.City, C1.SampleDate, C1.Noon,

C1.Midnight, C1.Precipitation)
values (C2.City, C2.SampleDate, C2.Noon,

C2.Midnight, C2.Precipitation);

3 rows merged.

The output tells you the number of rows processed from the source table, but does not tell
you how many rows were inserted or updated. You can see the changes by querying COMFORT
(note the Noon=55 records):

select * from COMFORT where City = 'KEENE';

CITY SAMPLEDAT NOON MIDNIGHT PRECIPITATION
------------- --------- ---------- ---------- -------------
KEENE 21-MAR-01 55 -2.2 4.4
KEENE 22-JUN-01 84.1 65.7 1.3
KEENE 23-SEP-01 98.8 81.6
KEENE 22-DEC-01 55 66 .5
KEENE 16-MAY-01 55 55 1

Take a look at the command to see how this was accomplished. In the first line, the target
table is named and given an alias of C1:

merge into COMFORT C1

In the next two lines, the using clause provides the source data for the merge, and the source
is given the alias C2:

using (select City, SampleDate, Noon, Midnight,
Precipitation from COMFORT2) C2

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The condition for the merge is then specified in the on clause. If the source data’s City and
SampleDate values match those in the target table, then the data will be updated. The when
matched then clause, followed by an update command, tells Oracle what columns to update
in the source table:

on (C1.City = C2.City and C1.SampleDate=C2.SampleDate)
when matched then

update set Noon = C2.Noon

If there is no match, then the row should be inserted, as specified in the when not matched
clause:

when not matched then
insert (C1.City, C1.SampleDate, C1.Noon,

C1.Midnight, C1.Precipitation)
values (C2.City, C2.SampleDate, C2.Noon,

C2.Midnight, C2.Precipitation);

You can use the merge command to simplify operations in which many rows are inserted and
updated from a single source. As with all updates, you should be very careful to use the appropriate
where clauses in the using clause of your merge commands.

296 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 15
Blind Folio 15:296

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER
16

Advanced Use of
Functions and

Variables

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 16
Blind Folio 16:297

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

I
n previous chapters, you’ve seen definitions and examples for character, number,
and date functions, as well as for the use of variables. The examples ranged from
simple to fairly complex, and enough explanation was provided so that you could
construct rather sophisticated combined functions on your own.

This chapter expands on some of the earlier uses and shows examples of how
functions can be combined to solve more difficult problems. Oracle has made solving some
of these problems easier using SQL itself, but the examples in this chapter can expand your
thinking about how to apply functions to solve real problems.

Functions in order by
Functions can be used in an order by to change the sorting sequence. Here, these SUBSTR
functions cause the list of authors to be put in alphabetical order by first name:

select Author
from MAGAZINE
order by SUBSTR(Author,INSTR(Author,',')+2);

AUTHOR

WHITEHEAD, ALFRED
BONHOEFFER, DIETRICH
CHESTERTON, G.K.
RUTH, GEORGE HERMAN
CROOKES, WILLIAM

Bar Charts and Graphs
You also can produce simple bar charts and graphs in SQLPLUS, using a mix of LPAD and a
numeric calculation. The following bar chart shows the average number of days books have
been checked out by each patron. First, look at the column formatting commands that will
be used:

column Name format a16
column DaysOut Format 999
column Graph Heading 'Day| 1 2 3 4 5 6 7-
|....0....0....0....0....0....0....0' justify c
column Graph format a35

The first two of these commands (lines) are straightforward. The third requires some
explanation. The dash at the end of the third line tells SQLPLUS the column command is
wrapped onto the next line. If the dash appears at the end of a line, SQLPLUS assumes that
it means another line of this command follows. Here is the SQL statement that produced
the horizontal bar chart in the following listing.

select Name,
AVG(ReturnedDate-CheckOutDate) DaysOut,

298 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 16
Blind Folio 16:298

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

LPAD('o',ROUND(AVG(ReturnedDate-CheckOutDate)/2,0),'o')
AS Graph

from BOOKSHELF_CHECKOUT
group by Name
order by AVG(ReturnedDate-CheckOutDate);

Day
1 2 3 4 5 6 7

NAME DAYSOUT0....0....0....0....0....0....0
---------------- ------- -----------------------------------
DORAH TALBOT 13 ooooooo
EMILY TALBOT 14 ooooooo
JED HOPKINS 18 ooooooooo
GERHARDT KENTGEN 19 ooooooooo
PAT LAVAY 21 oooooooooo
FRED FULLER 24 oooooooooooo
ROLAND BRANDT 52 oooooooooooooooooooooooooo

7 rows selected.

This use of LPAD is similar to what was done in Chapter 13, where the cows and bulls
were shown in their family tree. Basically, a lowercase o is the column here, and it is padded
on the left with a number of additional lowercase o’s, to the maximum width determined by
ROUND(AVG(ReturnedDate-CheckOutDate)/2,0).

Notice that the scale of the column heading is in increments of two. A simple change to the
SQL will produce a classic graph rather than a bar chart. The literal column is changed from an
o to a lowercase x, and the padding on the left is done by spaces.

select Name,
AVG(ReturnedDate-CheckOutDate) DaysOut,
LPAD('x',ROUND(AVG(ReturnedDate-CheckOutDate)/2,0),' ')
AS Graph

from BOOKSHELF_CHECKOUT
group by Name
order by AVG(ReturnedDate-CheckOutDate);

Day
1 2 3 4 5 6 7

NAME DAYSOUT0....0....0....0....0....0....0
---------------- ------- -----------------------------------
DORAH TALBOT 13 x
EMILY TALBOT 14 x
JED HOPKINS 18 x
GERHARDT KENTGEN 19 x
PAT LAVAY 21 x
FRED FULLER 24 x
ROLAND BRANDT 52 x

7 rows selected.

Chapter 16: Advanced Use of Functions and Variables 299

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 16
Blind Folio 16:299

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

300 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 16
Blind Folio 16:300

Another way to graph the data is by its distribution rather than by person. First, a view is
created that puts each number of days out into its decile. Thus 13, 14, 18, and 19 become 10;
20 through 29 become 20; 30 through 39 become 30; and so on:

create or replace view DaysOutRange as
select ROUND((ReturnedDate-CheckOutDate),-1) Decile,

COUNT(*) Counter
from BOOKSHELF_CHECKOUT

group by ROUND((ReturnedDate-CheckOutDate),-1);

Next, a column heading is set up, similar to the previous heading although shorter and in
increments of one:

column Graph Heading 'Count| 1 1|....5....0....5'-
justify c
column Graph format a15

The next SQL determines the count of values that are represented in each decile.

select Decile, Counter,
LPAD('o',Counter,'o') AS Graph

from DAYSOUTRANGE;

Count
1 1

DECILE COUNTER5....0....5
---------- ---------- ---------------

10 8 oooooooo
20 5 ooooo
30 3 ooo
50 2 oo
60 1 o

If one of the dates were NULL, the group by output would include a NULL group, with a
count and display similar to those shown in this listing. If you want to customize how Oracle
handles books with NULL ReturnedDate values, you can use the NVL function to replace the
NULL value with one of your choosing (such as SysDate). For more complex data replacement
logic, you can use DECODE and CASE, as introduced later in this chapter and more fully
described in Chapter 17.

Using TRANSLATE
TRANSLATE converts characters in a string into different characters, based on a substitution plan
you give it, from if to then:

TRANSLATE(string,if,then)

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 16: Advanced Use of Functions and Variables 301

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 16
Blind Folio 16:301

In the following SQL, the letters in a sentence are replaced. Any time an uppercase T is
detected, it is replaced by an uppercase T. In effect, nothing changes. Any time an uppercase
vowel is detected, however, it is replaced by a lowercase version of the same vowel. Any
letter not in the TAEIOU string is left alone. When a letter is found in TAEIOU, its position is
checked in the TAEIOU string, and the letter there is substituted. Thus, the letter E, at position
3 in TAEIOU, is replaced by e, in position 3 of Taeiou:

select TRANSLATE('NOW VOWELS ARE UNDER ATTACK','TAEIOU','Taeiou')
from DUAL;

TRANSLATE('NOWVOWELSAREUNDE

NoW VoWeLS aRe uNDeR aTTaCK

Eliminating Characters
Extending this logic, what happens if the if string is TAEIOU and the then string is only T ?
Checking for the letter E (as in the word VOWELS) finds it in position 3 of TAEIOU. There is
no position 3 in the then string (which is just the letter T), so the value in position 3 is nothing.
So E is replaced by nothing. This same process is applied to all of the vowels. They appear in
the if string, but not in the then string. As a result, they disappear, as shown here:

select TRANSLATE('NOW VOWELS ARE UNDER ATTACK','TAEIOU','T')
from DUAL;

TRANSLATE('NOWVOWE

NW VWLS R NDR TTCK

This feature of TRANSLATE, the ability to eliminate characters from a string, can prove very
useful in cleaning up data. Recall the magazine titles in Chapter 7:

select Title from MAGAZINE;

TITLE

THE BARBERS WHO SHAVE THEMSELVES.
"HUNTING THOREAU IN NEW HAMPSHIRE"
THE ETHNIC NEIGHBORHOOD
RELATIONAL DESIGN AND ENTHALPY
"INTERCONTINENTAL RELATIONS."

The method used in Chapter 7 to clean out the periods and double quotes was a nested
combination of LTRIM and RTRIM:

select LTRIM(RTRIM(Title,'."') ,'"') from MAGAZINE;

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The same goal can be accomplished with a single use of TRANSLATE:

select TRANSLATE(Title,'T".','T') AS TITLE
from MAGAZINE;

TITLE

THE BARBERS WHO SHAVE THEMSELVES
HUNTING THOREAU IN NEW HAMPSHIRE
THE ETHNIC NEIGHBORHOOD
RELATIONAL DESIGN AND ENTHALPY
INTERCONTINENTAL RELATIONS

In the listing, you have to include one character in the then string—in this case, the letter T
translates to the letter T. All other characters in the if set are eliminated.

Complex Cut and Paste
The NAME table contains a list of names as you might receive them from a mailing list company
or another application. First name, last name, and initials are all in one column:

column Name format a25

select Name from NAME;

NAME

HORATIO NELSON
VALDO
MARIE DE MEDICIS
FLAVIUS JOSEPHUS
EDYTHE P. M. GAMMIERE

Suppose you want to cut and paste these names and put them into a table with FirstName
and LastName columns. How would you go about it? The technique you learned in Chapter 7
involved using INSTR to locate a space, and using the number it returns in a SUBSTR to clip
out the portion up to that space. Here’s an attempt to do just that for the first name:

select SUBSTR(Name,1,INSTR(Name,' '))
from NAME;

SUBSTR(NAME,1,INSTR(NAME,

HORATIO

MARIE
FLAVIUS
EDYTHE

302 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 16
Blind Folio 16:302

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 16: Advanced Use of Functions and Variables 303

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 16
Blind Folio 16:303

VALDO has vanished! The problem is that these names are not as consistent as the authors’
names were in Chapter 7. One of these names (probably a magician) is only one name long, so
there is no space for the INSTR to find. When INSTR has an unsuccessful search, it returns a 0.
The SUBSTR of the name VALDO, starting at position 1 and going for 0 positions, is nothing, so
he disappears. This is solved with DECODE. In place of this:

INSTR(Name,' ')

you put the entire expression, like this:

DECODE(INSTR(Name,' '),0,99,INSTR(Name,' '))

DECODE’s format is this:

DECODE(value,if1,then1[,if2,then2,if3,then3]...,else)

In the preceding example, DECODE tests the value of INSTR(Name, ‘ ‘). If it is equal to 0,
DECODE substitutes 99; otherwise, it returns the default value, which is also INSTR(Name, ‘ ‘).
The choice of 99 as a substitute is arbitrary. It will create an effective SUBSTR function for
VALDO that looks like this:

SUBSTR('VALDO',1,99)

This works because SUBSTR will clip out text from the starting number, 1, to the ending
number or the end of the string, whichever comes first. With the DECODE function in place,
the first names are retrieved correctly:

select SUBSTR(Name,1,
DECODE(INSTR(Name,' '),0,99,INSTR(Name,' ')))

from NAME;

SUBSTR(NAME,1,DECODE(INST

HORATIO
VALDO
MARIE
FLAVIUS
EDYTHE

How about the last names? You could use INSTR again to search for a space, and use the
location of the space in the string, plus one (+1), as the starting point for SUBSTR. No ending
point is required for SUBSTR, because you want it to go to the end of the name. This is what
happens:

select SUBSTR(Name,INSTR(Name,' ')+1)
from NAME;

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

304 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 16
Blind Folio 16:304

SUBSTR(NAME,INSTR(NAME,''

NELSON
VALDO
DE MEDICIS
JOSEPHUS
P. M. GAMMIERE

This didn’t quite work. One solution is to use three INSTR functions, looking successively
for the first, second, or third occurrence of a space in the name. Each of these INSTRs will return
either the location where it found a space or a 0 if it didn’t find any. In a name with only one
space, the second and third INSTRs will both return 0. The GREATEST function, therefore, will
pick the number returned by the INSTR that found the space furthest into the name:

select SUBSTR(Name,
GREATEST(INSTR(Name,' '),INSTR(Name,' ',1,2),

INSTR(Name,' ',1,3)) +1)
from NAME;

SUBSTR(NAME,GREATEST(INST

NELSON
VALDO
MEDICIS
JOSEPHUS
GAMMIERE

Except for the fact that you also got VALDO again, this worked. (GREATEST also could have
been used similarly in place of DECODE in the previous example.) There is a second and simpler
method:

select SUBSTR(Name,INSTR(Name,' ',-1)+1)
from NAME;

SUBSTR(NAME,INSTR(NAME,''

NELSON
VALDO
MEDICIS
JOSEPHUS
GAMMIERE

The -1 in the INSTR tells it to start its search in the final position and go backward, or right
to left, in the Name column. When it finds the space, INSTR returns its position, counting from
the left as usual. The -1 simply makes INSTR start searching from the end rather than from the
beginning. A -2 would make it start searching from the second position from the end, and so on.

The +1 in the SUBSTR command has the same purpose as in the previous example: Once the
space is found, SUBSTR has to move one position to the right to begin clipping out the Name. If
no space is found, the INSTR returns 0, and SUBSTR therefore starts with position 1. That’s why
VALDO made the list.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

How do you get rid of VALDO? Add an ending position to the SUBSTR instead of its default
(which goes automatically all the way to the end). The ending position is found by using this:

DECODE(INSTR(Name,' '),0,0,LENGTH(Name))

which says, “Find the position of a space in the Name. If the position is 0, return 0; otherwise,
return the LENGTH of the Name.” For VALDO, the DECODE produces 0 as the ending position
for SUBSTR, so nothing is displayed. For any other name, because there is a space somewhere,
the LENGTH of the Name becomes the ending position for the SUBSTR, so the whole last name
is displayed.

This is similar to the DECODE used to extract the first name, except that the value 99 used
there has been replaced by LENGTH(Name), which will always work, whereas 99 would fail
for a name longer than 99 characters. This won’t matter here, but in other uses of DECODE and
SUBSTR, it could be important:

select SUBSTR(Name,
INSTR(Name,' ',-1)+1,
DECODE(INSTR(Name,' '), 0, 0, LENGTH(Name)))

from NAME;

SUBSTR(NAME,INSTR(NAME,''

NELSON

MEDICIS
JOSEPHUS
GAMMIERE

This DECODE also could have been replaced by a GREATEST:

select SUBSTR(Name,
INSTR(Name,' ',-1)+1,
GREATEST(INSTR(Name,' '),0))

from NAME;

A third method to accomplish the same end uses RTRIM. Remember that RTRIM eliminates
everything specified in its set from the right side of a string until it encounters any character not
in its set. The RTRIM here effectively erases all the letters on the right until it hits the first space
(just before the last name) or reaches the beginning of the string:

select
SUBSTR(Name,LENGTH(RTRIM(NAME,'ABCDEFGHIJKLMNOPQRSTUVWXYZ'))

+1)
from NAME;

SUBSTR(NAME,LENGTH(RTRIM(

NELSON

Chapter 16: Advanced Use of Functions and Variables 305

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 16
Blind Folio 16:305

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

MEDICIS
JOSEPHUS
GAMMIERE

LENGTH then measures the resulting string (with the last name erased). This tells you the
position of the space before the last name. Add 1 to this number, do a SUBSTR starting there,
and you’ll get just the last name. Let’s create a table with FirstName and LastName columns
(you’ll see complete details on creating tables in Chapter 18):

create table TWONAME(
FirstName VARCHAR2(25),
LastName VARCHAR2(25)
);

Table created.

Now, use an insert with a subquery to load the table data with the first and last names from
the NAME table:

insert into TWONAME (FirstName, LastName)
select
SUBSTR(Name,1,DECODE(INSTR(Name,' '),0,99,INSTR(Name,' '))),
SUBSTR(Name,LENGTH(RTRIM(NAME,'ABCDEFGHIJKLMNOPQRSTUVWXYZ'))+1)
from NAME;

Check the contents of the TWONAME table:

select * from TWONAME;

FIRSTNAME LASTNAME
------------------------- -------------------------
HORATIO NELSON
VALDO
MARIE MEDICIS
FLAVIUS JOSEPHUS
EDYTHE GAMMIERE

You can use similar techniques to extract the middle initial or initials, and apply these methods
elsewhere as well, such as to addresses, product descriptions, company names, and so on.

When moving data from an old system to a new one, reformatting is frequently necessary
and often difficult. The facilities exist in SQL, but they require some knowledge of how the
functions work and some thoughtfulness to avoid the kinds of difficulties shown in the examples
so far in this chapter.

306 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 16
Blind Folio 16:306

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 16: Advanced Use of Functions and Variables 307

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 16
Blind Folio 16:307

Counting String Occurrences
Within Larger Strings
You can use a combination of the LENGTH and REPLACE functions to determine how many
times a string (such as ABC) occurs within a larger string (such as ABCDEFABC). The REPLACE
function replaces a character or characters in a string with zero or more characters. Thus,

REPLACE('ADAH', 'A', 'BLAH')

will evaluate the string ADAH. Everywhere an A is found, it will be replaced with the string
BLAH. Thus, the function shown in this example will return the string BLAHDBLAHH.

You can use the REPLACE function to eliminate characters from strings. For example, you
can replace the character string you’re searching for with NULL values. Thus,

REPLACE('GEORGE', 'GE', NULL)

returns a value of OR. The two separate occurrences of GE in GEORGE were each set to NULL.
You can use the REPLACE function to determine how many times a string (like GE) is found

in a larger string (like GEORGE). First, replace the string with NULL values:

select REPLACE('GEORGE', 'GE', NULL)
from DUAL;

The result of that query will be OR:

RE
--
OR

More importantly, the LENGTH of the result of that query will provide information about
how many times the string was found. The following query will tell you how long the resulting
string is:

select LENGTH(REPLACE('GEORGE', 'GE', NULL))
from DUAL;

LENGTH(REPLACE('GEORGE','GE',NULL))

2

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Now you can tell how many times the string was found. If you subtract the length of the
shortened string from the original string and divide that difference by the length of the search
string, the result will be the number of times the search string was found:

select (LENGTH('GEORGE')
- LENGTH(REPLACE('GEORGE', 'GE', NULL)))
/ LENGTH('GE') AS Counter

from DUAL;

COUNTER

2

This example uses strings instead of character columns in order to be simpler to understand;
in real applications, you would replace the original string (GEORGE) with your column name.
The length of the string GEORGE is six characters. The length of GEORGE after GE is replaced
with NULL is two characters. Therefore, the difference in the lengths of the original and
shortened strings is four characters. Dividing four characters by the length of the search string
(two characters) tells you that the string was found twice.

The only problem with this method occurs when the search string is zero characters in length
(since you cannot divide by zero). Searching for a zero-length string may indicate a problem with
the application logic that initiated the search.

Additional Facts About Variables
The command accept forces SQLPLUS to define the variable as equal to the entered value,
and it can do this with a text message, with control over the datatype entered, and even with
the response blanked out from viewing (such as for passwords; see the entry for accept in the
Alphabetical Reference).

You can pass arguments to a start file when it is started by embedding numbered variables
in the select statements (rather than variables with names).

To select all of the checkout records between one date and another, the select statement
might look like this:

select * from BOOKSHELF_CHECKOUT
where CheckOutDate BETWEEN '&1' AND '&2';

That query can be saved as a file (such as checkout.sql) and started from within SQLPLUS:

start checkout.sql 01-JAN-02 31-JAN-02

The start file checkout.sql would begin, with 01-JAN-02 substituted for &1, and 31-JAN-02
substituted for &2. As with other variables, character and DATE datatypes must be enclosed
in single quotation marks in the SQL statement. One limitation of this is that each argument
following the word start must be a single word without spaces.

Variable substitutions are not restricted to the SQL statement. The start file also may use
variables for such things as SQLPLUS commands.

308 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 16
Blind Folio 16:308

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Variables can be concatenated simply by pushing them together. You can concatenate a
variable with a constant by using a period:

select * from BOOKSHELF_CHECKOUT
where CheckOutDate BETWEEN '01-&StartMonth.-02' AND '01-&EndMonth.-02';

This select statement will query for a starting month and an ending month, then build the two
dates using a period as a concatenation operator.

NOTE
No period is necessary before the variable—only after it. The
ampersand (&) tells SQLPLUS that a variable is beginning.

Related set Commands
Normally, the ampersand denotes a variable. This can be changed with set define followed by
the single symbol that you’d prefer to use to denote a variable.

set escape defines a character you can place just in front of the ampersand (or other defined
symbol) so that SQLPLUS will treat the symbol as a literal, not as denoting a variable.

set concat can change the default concatenation operator for variables, which is the period,
to another single symbol. This variable concatenation is used in addition to, and separately from,
the SQL concatenation operator, which is usually two vertical bars (||).

set scan turns variable substitution off or on for the SQL statement. If scan is off, any variable
in a select statement is treated as a literal—for example, &Test is treated as the literal word
&Test, not as the value it is defined as. Variables used in SQLPLUS commands, however, are
still substituted as before.

As of Oracle9i, set scan on/off is deprecated—use set define in place of set scan.
See the set command in the Alphabetical Reference for additional environment

configuration options.

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 16
Blind Folio 16:309

Chapter 16: Advanced Use of Functions and Variables 309

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 16
Blind Folio 16:310

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 17
Blind Folio 17:311

CHAPTER
17

DECODE and CASE:
if, then, and else in SQL

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

T
he DECODE function is without doubt one of the most powerful in Oracle’s SQL.
It is one of several extensions Oracle added to the standard SQL language. This
chapter will explore a number of ways that DECODE can be used, including the
generation of “cross-tab” reports. As of Oracle9i, you can also use the CASE
function and the COALESCE function to execute complex logical tests within

your SQL statements.
This is an advanced and often difficult chapter. Most of what is illustrated here is unnecessary

for the vast majority of reporting; don’t be concerned if it seems beyond your needs. Its real value
is more for sophisticated reporting and programming.

if, then, else
In programming and logic, a common construction of a problem is in the pattern if, then, else.
For example, if this day is a Saturday, then Adah will play at home; if this day is a Sunday, then
Adah will go to her grandparent’s home; if this day is a holiday, then Adah will go over to Aunt
Dora’s; else Adah will go to school. In each case, “this day” was tested, and if it was one of a
list of certain days, then a certain result followed, or else (if it was none of those days) another
result followed. DECODE follows this kind of logic. Chapter 10 provided an introduction that
demonstrated the basic structure and usage of DECODE.

This is DECODE’s format:

DECODE(value,if1,then1,if2,then2,if3,then3,. . . ,else)

value represents any column in a table (regardless of datatype) or any result of a computation,
such as one date minus another, a SUBSTR of a character column, one number times another,
and so on. value is tested for each row. If value equals if1, then the result of the DECODE is
then1; if value equals if2, then the result of the DECODE is then2; and so on, for virtually as
many if/then pairs as you can construct. If value equals none of the ifs, then the result of the
DECODE is else. Each of the ifs, thens, and the else also can be a column or the result of a
function or computation. You can have up to 255 elements within the parentheses.

Let’s consider the checkout history for the bookshelf, as recorded in the BOOKSHELF_
CHECKOUT table:

column Name format a16
column Title format a24 word_wrapped
set pagesize 60

select * from BOOKSHELF_CHECKOUT;

NAME TITLE CHECKOUTD RETURNEDD
---------------- ------------------------ --------- ---------
JED HOPKINS INNUMERACY 01-JAN-02 22-JAN-02
GERHARDT KENTGEN WONDERFUL LIFE 02-JAN-02 02-FEB-02
DORAH TALBOT EITHER/OR 02-JAN-02 10-JAN-02
EMILY TALBOT ANNE OF GREEN GABLES 02-JAN-02 20-JAN-02
PAT LAVAY THE SHIPPING NEWS 02-JAN-02 12-JAN-02
ROLAND BRANDT THE SHIPPING NEWS 12-JAN-02 12-MAR-02

312 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 17
Blind Folio 17:312

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 17: DECODE and CASE: if, then, and else in SQL 313

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 17
Blind Folio 17:313

ROLAND BRANDT THE DISCOVERERS 12-JAN-02 01-MAR-02
ROLAND BRANDT WEST WITH THE NIGHT 12-JAN-02 01-MAR-02
EMILY TALBOT MIDNIGHT MAGIC 20-JAN-02 03-FEB-02
EMILY TALBOT HARRY POTTER AND THE 03-FEB-02 14-FEB-02

GOBLET OF FIRE
PAT LAVAY THE MISMEASURE OF MAN 12-JAN-02 12-FEB-02
DORAH TALBOT POLAR EXPRESS 01-FEB-02 15-FEB-02
DORAH TALBOT GOOD DOG, CARL 01-FEB-02 15-FEB-02
GERHARDT KENTGEN THE MISMEASURE OF MAN 13-FEB-02 05-MAR-02
FRED FULLER JOHN ADAMS 01-FEB-02 01-MAR-02
FRED FULLER TRUMAN 01-MAR-02 20-MAR-02
JED HOPKINS TO KILL A MOCKINGBIRD 15-FEB-02 01-MAR-02
DORAH TALBOT MY LEDGER 15-FEB-02 03-MAR-02
GERHARDT KENTGEN MIDNIGHT MAGIC 05-FEB-02 10-FEB-02

As you look through the checkout list, you realize that some of the books were checked out
for a rather long time. You can order by the number of days checked out to highlight the readers
who keep books for the longest time:

select Name, Title, ReturnedDate-CheckOutDate DaysOut
from BOOKSHELF_CHECKOUT
order by DaysOut desc;

NAME TITLE DAYSOUT
---------------- ------------------------ ----------
ROLAND BRANDT THE SHIPPING NEWS 59
ROLAND BRANDT THE DISCOVERERS 48
ROLAND BRANDT WEST WITH THE NIGHT 48
GERHARDT KENTGEN WONDERFUL LIFE 31
PAT LAVAY THE MISMEASURE OF MAN 31
FRED FULLER JOHN ADAMS 28
JED HOPKINS INNUMERACY 21
GERHARDT KENTGEN THE MISMEASURE OF MAN 20
FRED FULLER TRUMAN 19
EMILY TALBOT ANNE OF GREEN GABLES 18
DORAH TALBOT MY LEDGER 16
EMILY TALBOT MIDNIGHT MAGIC 14
DORAH TALBOT POLAR EXPRESS 14
DORAH TALBOT GOOD DOG, CARL 14
JED HOPKINS TO KILL A MOCKINGBIRD 14
EMILY TALBOT HARRY POTTER AND THE 11

GOBLET OF FIRE
PAT LAVAY THE SHIPPING NEWS 10
DORAH TALBOT EITHER/OR 8
GERHARDT KENTGEN MIDNIGHT MAGIC 5

But is it specific readers who are the issue, or is it that there are certain categories of books
that take longer to read? There are multiple variables involved, and looking at them in isolation

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

314 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 17
Blind Folio 17:314

may lead to incorrect decisions. What is the average number of days out for the books in each
category?

select B.CategoryName,
MIN(BC.ReturnedDate-BC.CheckOutDate) MinOut,
MAX(BC.ReturnedDate-BC.CheckOutDate) MaxOut,
AVG(BC.ReturnedDate-BC.CheckOutDate) AvgOut

from BOOKSHELF_CHECKOUT BC, BOOKSHELF B
where BC.Title = B.Title
group by B.CategoryName;

CATEGORYNAME MINOUT MAXOUT AVGOUT
-------------------- ---------- ---------- ----------
ADULTFIC 10 59 27.6666667
ADULTNF 16 48 29.1111111
ADULTREF 8 8 8
CHILDRENFIC 5 18 12
CHILDRENPIC 14 14 14

This is more useful, but it doesn’t factor in the impact of the different people checking out
books in the categories. To accomplish that, you could use an additional level of grouping, but
it will be easier to use if you create a cross-tab report. The following listing generates a report
that shows the minimum, maximum, and average days out by person by category. This query
uses the DECODE function to perform the calculations.

column CategoryName format a11

select B.CategoryName,
MAX(DECODE(BC.Name, 'FRED FULLER',

BC.ReturnedDate-BC.CheckOutDate,NULL)) MaxFF,
AVG(DECODE(BC.Name, 'FRED FULLER',

BC.ReturnedDate-BC.CheckOutDate,NULL)) AvgFF,
MAX(DECODE(BC.Name, 'DORAH TALBOT',

BC.ReturnedDate-BC.CheckOutDate,NULL)) MaxDT,
AVG(DECODE(BC.Name, 'DORAH TALBOT',

BC.ReturnedDate-BC.CheckOutDate,NULL)) AvgDT,
MAX(DECODE(BC.Name, 'GERHARDT KENTGEN',

BC.ReturnedDate-BC.CheckOutDate,NULL)) MaxGK,
AVG(DECODE(BC.Name, 'GERHARDT KENTGEN',

BC.ReturnedDate-BC.CheckOutDate,NULL)) AvgGK
from BOOKSHELF_CHECKOUT BC, BOOKSHELF B

where BC.Title = B.Title
group by B.CategoryName;

CATEGORYNAM MAXFF AVGFF MAXDT AVGDT MAXGK AVGGK
----------- ---------- ---------- ---------- ---------- ---------- ----------
ADULTFIC
ADULTNF 28 23.5 16 16 31 25.5
ADULTREF 8 8
CHILDRENFIC 5 5
CHILDRENPIC 14 14

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 17: DECODE and CASE: if, then, and else in SQL 315

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 17
Blind Folio 17:315

The output now shows the borrowers across the top—Fred Fuller’s maximum checkout time
is the MaxFF column, Dorah Talbot’s is the MaxDT column, and Gerhardt Kentgen’s is the
MaxGK column. The output shows that the AdultNF category has the longest average checkout
time for each of the borrowers shown, and that in Gerhardt Kentgen’s case it is significantly longer
than the average checkout time in the other category he checked out.

How was this report generated? In the query, the grouping is by CategoryName. The MaxFF
column query is shown here:

select B.CategoryName,
MAX(DECODE(BC.Name, 'FRED FULLER',

BC.ReturnedDate-BC.CheckOutDate,NULL)) MaxFF,

DECODE is performing an if-then check on the data: If the BC.Name column value in a row
is ‘FRED FULLER’, then calculate the difference between the ReturnedDate and CheckOutDate,
else return a NULL. That list of values is then evaluated and the maximum value is returned. A
similar set of operations returns the average checkout time for Fred Fuller:

AVG(DECODE(BC.Name, 'FRED FULLER',
BC.ReturnedDate-BC.CheckOutDate,NULL)) AvgFF,

Replacing Values via DECODE
In the last example, DECODE was used to return values conditionally, depending on the Name
of the person who checked out a book. You can also use DECODE to replace values in a list.
For example, selecting the category names from BOOKSHELF yields:

select distinct CategoryName from BOOKSHELF;

CATEGORYNAM

ADULTFIC
ADULTNF
ADULTREF
CHILDRENFIC
CHILDRENNF
CHILDRENPIC

To replace these names, you could join BOOKSHELF to CATEGORY and select the
ParentCategory and SubCategory from the CATEGORY table. If the list of categories is static,
you could avoid the join to the CATEGORY table and perform the replacement via a DECODE
function, as shown in the following listing. Note how DECODE supports multiple if-then
combinations within a single call.

select distinct
DECODE(CategoryName,'ADULTFIC','Adult Fiction',

'ADULTNF','Adult Nonfiction',

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

316 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 17
Blind Folio 17:316

'ADULTREF','Adult Reference',
'CHILDRENFIC','Children Fiction',
'CHILDRENNF','Children Nonfiction',
'CHILDRENPIC','Children Picturebook',
CategoryName)

from BOOKSHELF;

DECODE(CATEGORYNAME,

Adult Fiction
Adult Nonfiction
Adult Reference
Children Fiction
Children Nonfiction
Children Picturebook

In this case, the data is static; for volatile data, hard-coding the translations into the application
code would not be an acceptable programming practice. The technique shown here is useful for
transaction processing systems in which you are trying to minimize the number of database calls
performed. In this example, there is no database access required to change ‘ADULTNF’ to ‘Adult
Nonfiction’; the change occurs within the DECODE function call. Note that if there are any other
categories found, the else condition in the DECODE function returns the original CategoryName
column value.

DECODE within DECODE
You can DECODE function calls within other DECODE function calls. Let’s say you want to
charge late fees, with different late fee rates for different categories of books. Adult category
books may be kept later, but the penalty for late days will be higher.

Start with a basic flat rate charge of $0.20 per day for books checked out for more than
14 days:

column Name format a16
column Title format a20 word_wrapped
column DaysOut format 999.99 heading 'Days Out'
column DaysLate format 999.99 heading 'Days Late'
set pagesize 60
break on Name

select Name, Title, ReturnedDate,
ReturnedDate-CheckoutDate as DaysOut /*Count days*/,
ReturnedDate-CheckoutDate -14 DaysLate,
(ReturnedDate-CheckoutDate -14)*0.20 LateFee

from BOOKSHELF_CHECKOUT
where ReturnedDate-CheckoutDate > 14
order by Name, CheckoutDate;

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 17: DECODE and CASE: if, then, and else in SQL 317

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 17
Blind Folio 17:317

NAME TITLE RETURNEDD Days Out Days Late LATEFEE
---------------- -------------------- --------- -------- --------- ----------
DORAH TALBOT MY LEDGER 03-MAR-02 16.00 2.00 .4
EMILY TALBOT ANNE OF GREEN GABLES 20-JAN-02 18.00 4.00 .8
FRED FULLER JOHN ADAMS 01-MAR-02 28.00 14.00 2.8

TRUMAN 20-MAR-02 19.00 5.00 1
GERHARDT KENTGEN WONDERFUL LIFE 02-FEB-02 31.00 17.00 3.4

THE MISMEASURE OF 05-MAR-02 20.00 6.00 1.2
MAN

JED HOPKINS INNUMERACY 22-JAN-02 21.00 7.00 1.4
PAT LAVAY THE MISMEASURE OF 12-FEB-02 31.00 17.00 3.4

MAN
ROLAND BRANDT THE SHIPPING NEWS 12-MAR-02 59.00 45.00 9

THE DISCOVERERS 01-MAR-02 48.00 34.00 6.8
WEST WITH THE NIGHT 01-MAR-02 48.00 34.00 6.8

For books in the Adult categories, increase the allowed days late to 21 days. This won’t
change the number of days out, but will change the DaysLate column calculation. Since
CategoryName is not a column in BOOKSHELF_CHECKOUT, this modification also requires
the addition of the BOOKSHELF table to the from clause.

select BC.Name, BC.Title, BC.ReturnedDate,
BC.ReturnedDate-BC.CheckoutDate as DaysOut /*Count days*/,
DECODE(SUBSTR(CategoryName,1,5), 'ADULT',

BC.ReturnedDate-BC.CheckoutDate -21,
BC.ReturnedDate-BC.CheckoutDate -14) DaysLate,

DECODE(SUBSTR(CategoryName,1,5), 'ADULT',
(BC.ReturnedDate-BC.CheckoutDate -21)*0.30,
(BC.ReturnedDate-BC.CheckoutDate -14)*0.20) LateFee

from BOOKSHELF_CHECKOUT BC, BOOKSHELF B
where BC.Title = B.Title
and BC.ReturnedDate-BC.CheckoutDate >

DECODE(SUBSTR(CategoryName,1,5), 'ADULT',21,14)
order by BC.Name, BC.CheckoutDate;

NAME TITLE RETURNEDD Days Out Days Late LATEFEE
---------------- -------------------- --------- -------- --------- ----------
EMILY TALBOT ANNE OF GREEN GABLES 20-JAN-02 18.00 4.00 .8
FRED FULLER JOHN ADAMS 01-MAR-02 28.00 7.00 2.1
GERHARDT KENTGEN WONDERFUL LIFE 02-FEB-02 31.00 10.00 3
PAT LAVAY THE MISMEASURE OF 12-FEB-02 31.00 10.00 3

MAN
ROLAND BRANDT THE SHIPPING NEWS 12-MAR-02 59.00 38.00 11.4

THE DISCOVERERS 01-MAR-02 48.00 27.00 8.1
WEST WITH THE NIGHT 01-MAR-02 48.00 27.00 8.1

In the select clause, the query logic for the DaysLate column is

DECODE(SUBSTR(CategoryName,1,5), 'ADULT',
BC.ReturnedDate-BC.CheckoutDate -21,
BC.ReturnedDate-BC.CheckoutDate -14) DaysLate

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

318 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 17
Blind Folio 17:318

In DECODE’s if-then-else format, this says “If the first five characters of the CategoryName
column match the string ‘ADULT’, then subtract 21 from the number of days late; otherwise,
subtract 14 days.” The LateFee calculation uses similar logic. The where clause uses a DECODE
to determine the limiting value for the rows returned—for ADULT category books, allow 21 days;
otherwise, allow 14:

and BC.ReturnedDate-BC.CheckoutDate >
DECODE(SUBSTR(CategoryName,1,5), 'ADULT',21,14)

Now add an additional rule: For Adult fiction category books, the late fee will be double the
late fee for other Adult books. From the last query, the calculation for LateFee is:

DECODE(SUBSTR(CategoryName,1,5), 'ADULT',
(BC.ReturnedDate-BC.CheckoutDate –21)*0.30,
(BC.ReturnedDate-BC.CheckoutDate -14)*0.20) LateFee

The new rule requires an additional category check within the DECODE already performed.
The new LateFee calculation is shown here:

DECODE(SUBSTR(CategoryName,1,5), 'ADULT',
DECODE(SUBSTR(CategoryName,6,3),'FIC',
(BC.ReturnedDate-BC.CheckoutDate –21)*0.60,
(BC.ReturnedDate-BC.CheckoutDate –21)*0.30),
(BC.ReturnedDate-BC.CheckoutDate -14)*0.20) LateFee

Reading through the preceding listing, the first DECODE function tells Oracle that if the
first five letters of the CategoryName are ‘ADULT’, then perform the second DECODE function.
The second DECODE tells Oracle that if letters 6, 7, and 8 of the CategoryName are ‘FIC’, then
the late fee is $0.60 per day after the twenty-first day; otherwise, it is $0.30 per day after the
twenty-first day. At that point, the inner DECODE function completes. For the first DECODE
function, the else clause (for non-ADULT category books) then specifies the late fee calculation.
The query and result are shown in the following listing; you can see the impact by comparing
the LateFee column for ‘THE SHIPPING NEWS’ in this report and the last report.

select BC.Name, BC.Title, BC.ReturnedDate,
BC.ReturnedDate-BC.CheckoutDate as DaysOut /*Count days*/,
DECODE(SUBSTR(CategoryName,1,5), 'ADULT',

BC.ReturnedDate-BC.CheckoutDate -21,
BC.ReturnedDate-BC.CheckoutDate -14) DaysLate,

DECODE(SUBSTR(CategoryName,1,5), 'ADULT',
DECODE(SUBSTR(CategoryName,6,3),'FIC',
(BC.ReturnedDate-BC.CheckoutDate -21)*0.60,
(BC.ReturnedDate-BC.CheckoutDate -21)*0.30),
(BC.ReturnedDate-BC.CheckoutDate -14)*0.20) LateFee

from BOOKSHELF_CHECKOUT BC, BOOKSHELF B
where BC.Title = B.Title
and BC.ReturnedDate-BC.CheckoutDate >

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 17: DECODE and CASE: if, then, and else in SQL 319

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 17
Blind Folio 17:319

DECODE(SUBSTR(CategoryName,1,5), 'ADULT',21,14)
order by BC.Name, BC.CheckoutDate;

NAME TITLE RETURNEDD Days Out Days Late LATEFEE
---------------- -------------------- --------- -------- --------- ----------
EMILY TALBOT ANNE OF GREEN GABLES 20-JAN-02 18.00 4.00 .8
FRED FULLER JOHN ADAMS 01-MAR-02 28.00 7.00 2.1
GERHARDT KENTGEN WONDERFUL LIFE 02-FEB-02 31.00 10.00 3
PAT LAVAY THE MISMEASURE OF 12-FEB-02 31.00 10.00 3

MAN
ROLAND BRANDT THE SHIPPING NEWS 12-MAR-02 59.00 38.00 22.8

THE DISCOVERERS 01-MAR-02 48.00 27.00 8.1
WEST WITH THE NIGHT 01-MAR-02 48.00 27.00 8.1

You can nest DECODEs within other DECODEs to support complex logic within your data
processing. For example, you may choose to print one column if it has a non-NULL value, and
a second column if the first is NULL. With DECODE, that is a simple function call:

DECODE(Column1, NULL, Column2, Column1)

If Column1 is NULL, Column2 will be returned; otherwise, Column1’s non-NULL value will
be returned. You could also use NVL or the Oracle9i COALESCE and NULLIF functions to
perform similar logic.

COALESCE will return the first non-NULL value encountered in a list of values. The last
DECODE example could be rewritten as

COALESCE(Column1, Column2)

Since COALESCE is a new function and its name does not clearly convey its usage, be sure
to provide comments within your code to explain the logical tests performed.

Greater Than and Less Than in DECODE
DECODE supports logic checks, but how do you do numeric comparisons in this format? The
simplest solution is often to use the SIGN function. SIGN returns a 1 if the number is positive, 0
if it is 0, and –1 if the number is negative. Because SIGN operates on numbers, you can evaluate
any function that returns a number, including date arithmetic.

Let’s modify the LateFee business rule again. Using the same base calculation, we’ll modify
the outcome so that we will not collect late fees that are less than or equal to $4.00. Here is the
original LateFee calculation:

DECODE(SUBSTR(CategoryName,1,5), 'ADULT',
DECODE(SUBSTR(CategoryName,6,3),'FIC',
(BC.ReturnedDate-BC.CheckoutDate –21)*0.60,
(BC.ReturnedDate-BC.CheckoutDate –21)*0.30),
(BC.ReturnedDate-BC.CheckoutDate -14)*0.20) LateFee

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

320 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 17
Blind Folio 17:320

If that value is less than 4, we will return a 0; otherwise, we will return the calculated value.
To implement this requirement, subtract 4 from the LateFee value; if the result is positive (its
SIGN value is 1), return that result; otherwise, return a 0.

DECODE(SIGN(
DECODE(SUBSTR(CategoryName,1,5), 'ADULT',

DECODE(SUBSTR(CategoryName,6,3),'FIC',
(BC.ReturnedDate-BC.CheckoutDate –21)*0.60,
(BC.ReturnedDate-BC.CheckoutDate –21)*0.30),
(BC.ReturnedDate-BC.CheckoutDate -14)*0.20) –4),

1,
DECODE(SUBSTR(CategoryName,1,5), 'ADULT',

DECODE(SUBSTR(CategoryName,6,3),'FIC',
(BC.ReturnedDate-BC.CheckoutDate –21)*0.60,
(BC.ReturnedDate-BC.CheckoutDate –21)*0.30),
(BC.ReturnedDate-BC.CheckoutDate -14)*0.20),

0) LateFee

Building from a simple foundation, this series of DECODE function calls allows you to
perform very complex logic on the LateFee calculations. The first DECODE evaluates the SIGN
of the next DECODE function result when 4 is subtracted from it. If that number is positive, the
calculated late fee is returned; otherwise, a 0 is returned. The following listing shows this
calculation and the output that results.

select BC.Name, BC.Title, BC.ReturnedDate,
BC.ReturnedDate-BC.CheckoutDate as DaysOut /*Count days*/,
DECODE(SUBSTR(CategoryName,1,5), 'ADULT',

BC.ReturnedDate-BC.CheckoutDate -21,
BC.ReturnedDate-BC.CheckoutDate -14) DaysLate,

DECODE(SIGN(
DECODE(SUBSTR(CategoryName,1,5), 'ADULT',

DECODE(SUBSTR(CategoryName,6,3),'FIC',
(BC.ReturnedDate-BC.CheckoutDate -21)*0.60,
(BC.ReturnedDate-BC.CheckoutDate -21)*0.30),
(BC.ReturnedDate-BC.CheckoutDate -14)*0.20) -4),

1,
DECODE(SUBSTR(CategoryName,1,5), 'ADULT',

DECODE(SUBSTR(CategoryName,6,3),'FIC',
(BC.ReturnedDate-BC.CheckoutDate -21)*0.60,
(BC.ReturnedDate-BC.CheckoutDate -21)*0.30),
(BC.ReturnedDate-BC.CheckoutDate -14)*0.20),

0) LateFee
from BOOKSHELF_CHECKOUT BC, BOOKSHELF B

where BC.Title = B.Title
and BC.ReturnedDate-BC.CheckoutDate >

DECODE(SUBSTR(CategoryName,1,5), 'ADULT',21,14)
order by BC.Name, BC.CheckoutDate;

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 17: DECODE and CASE: if, then, and else in SQL 321

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 17
Blind Folio 17:321

NAME TITLE RETURNEDD Days Out Days Late LATEFEE
---------------- -------------------- --------- -------- --------- ----------
EMILY TALBOT ANNE OF GREEN GABLES 20-JAN-02 18.00 4.00 0
FRED FULLER JOHN ADAMS 01-MAR-02 28.00 7.00 0
GERHARDT KENTGEN WONDERFUL LIFE 02-FEB-02 31.00 10.00 0
PAT LAVAY THE MISMEASURE OF 12-FEB-02 31.00 10.00 0

MAN
ROLAND BRANDT THE SHIPPING NEWS 12-MAR-02 59.00 38.00 22.8

THE DISCOVERERS 01-MAR-02 48.00 27.00 8.1
WEST WITH THE NIGHT 01-MAR-02 48.00 27.00 8.1

You can eliminate the display of the first four rows (with $0 late fees) by making a similar
modification to the where clause.

Using CASE
As of Oracle9i, you can use the CASE function in place of DECODE. The CASE function uses
the keywords when, then, else, and end to indicate the logic path followed, which may make
the resulting code easier to follow than an equivalent DECODE.

Consider this simple DECODE example from earlier in this chapter:

select distinct
DECODE(CategoryName,'ADULTFIC','Adult Fiction',

'ADULTNF','Adult Nonfiction',
'ADULTREF','Adult Reference',
'CHILDRENFIC','Children Fiction',
'CHILDRENNF','Children Nonfiction',
'CHILDRENPIC','Children Picturebook',
CategoryName)

from BOOKSHELF;

The equivalent CASE function is

select distinct
CASE CategoryName
when 'ADULTFIC' then 'Adult Fiction'
when 'ADULTNF' then 'Adult Nonfiction'
when 'ADULTREF' then 'Adult Reference'
when 'CHILDRENFIC' then 'Children Fiction'
when 'CHILDRENNF' then 'Children Nonfiction'
when 'CHILDRENPIC' then 'Children Picturebook'
else CategoryName

end
from BOOKSHELF;

CASECATEGORYNAMEWHEN

Adult Fiction
Adult Nonfiction
Adult Reference

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Children Fiction
Children Nonfiction
Children Picturebook

CASE evaluates the first when clause and returns a match if the limiting condition is met. As
with DECODE, you can nest CASE function calls. How would you perform the LateFee column
calculations using CASE?

The DECODE function began by calculating a higher rate for ADULT category books:

DECODE(SUBSTR(CategoryName,1,5), 'ADULT',
(BC.ReturnedDate-BC.CheckoutDate –21)*0.30,
(BC.ReturnedDate-BC.CheckoutDate -14)*0.20) LateFee

The CASE equivalent is

CASE SUBSTR(CategoryName,1,5)
when 'ADULT' then (BC.ReturnedDate-BC.CheckoutDate –21)*0.30
else (BC.ReturnedDate-BC.CheckoutDate -14)*0.20

end

The second rule (ADULTFIC books have doubled late fees) requires a nested CASE command:

CASE SUBSTR(CategoryName,1,5)
when 'ADULT' then

CASE SUBSTR(CategoryName,6,3)
when 'FIC' then (BC.ReturnedDate-BC.CheckoutDate –21)*0.60
else (BC.ReturnedDate-BC.CheckoutDate –21)*0.30
end

else (BC.ReturnedDate-BC.CheckoutDate -14)*0.20
end

This is more complex, but the logic is very easy to follow, and will usually be simpler to
maintain than the equivalent DECODE clause. Now consider the final condition: If the calculated
late fee is less than or equal to $4, return a 0. Since we are using the CASE function, we do not
need to use a SIGN function—we can just use a “<“ comparison as part of the command processing.
The following example shows how to add this check: An additional CASE function is added, and
the inner CASE function call is enclosed in parentheses. The result is compared to $4:

CASE when
(CASE SUBSTR(CategoryName,1,5)
when 'ADULT' then

CASE SUBSTR(CategoryName,6,3)
when 'FIC' then (BC.ReturnedDate-BC.CheckoutDate –21)*0.60
else (BC.ReturnedDate-BC.CheckoutDate –21)*0.30
end

else (BC.ReturnedDate-BC.CheckoutDate -14)*0.20
end)
< 4 then 0

322 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 17
Blind Folio 17:322

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 17: DECODE and CASE: if, then, and else in SQL 323

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 17
Blind Folio 17:323

The else clause for this CASE function call is the same as the inner CASE execution—it calculates
the late fee.

else
CASE SUBSTR(CategoryName,1,5)
when 'ADULT' then

CASE SUBSTR(CategoryName,6,3)
when 'FIC' then (BC.ReturnedDate-BC.CheckoutDate –21)*0.60
else (BC.ReturnedDate-BC.CheckoutDate –21)*0.30
end

else (BC.ReturnedDate-BC.CheckoutDate -14)*0.20
end

end

The full query is shown in the following listing, along with its output.

column LateFee format 999.99

select BC.Name, BC.Title, BC.ReturnedDate,
BC.ReturnedDate-BC.CheckoutDate as DaysOut /*Count days*/,
DECODE(SUBSTR(CategoryName,1,5), 'ADULT',

BC.ReturnedDate-BC.CheckoutDate -21,
BC.ReturnedDate-BC.CheckoutDate -14) DaysLate,

CASE when
(CASE SUBSTR(CategoryName,1,5)
when 'ADULT' then

CASE SUBSTR(CategoryName,6,3)
when 'FIC' then (BC.ReturnedDate-BC.CheckoutDate -21)*0.60
else (BC.ReturnedDate-BC.CheckoutDate -21)*0.30
end

else (BC.ReturnedDate-BC.CheckoutDate -14)*0.20
end)
< 4 then 0 else
CASE SUBSTR(CategoryName,1,5)
when 'ADULT' then

CASE SUBSTR(CategoryName,6,3)
when 'FIC' then (BC.ReturnedDate-BC.CheckoutDate -21)*0.60
else (BC.ReturnedDate-BC.CheckoutDate -21)*0.30
end

else (BC.ReturnedDate-BC.CheckoutDate -14)*0.20
end

end AS LateFee
from BOOKSHELF_CHECKOUT BC, BOOKSHELF B

where BC.Title = B.Title
and BC.ReturnedDate-BC.CheckoutDate >

DECODE(SUBSTR(CategoryName,1,5), 'ADULT',21,14)
order by BC.Name, BC.CheckoutDate;

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

NAME TITLE RETURNEDD Days Out Days Late LATEFEE
---------------- -------------------- --------- -------- --------- -------
EMILY TALBOT ANNE OF GREEN GABLES 20-JAN-02 18.00 4.00 .00
FRED FULLER JOHN ADAMS 01-MAR-02 28.00 7.00 .00
GERHARDT KENTGEN WONDERFUL LIFE 02-FEB-02 31.00 10.00 .00
PAT LAVAY THE MISMEASURE OF 12-FEB-02 31.00 10.00 .00

MAN
ROLAND BRANDT THE SHIPPING NEWS 12-MAR-02 59.00 38.00 22.80

THE DISCOVERERS 01-MAR-02 48.00 27.00 8.10
WEST WITH THE NIGHT 01-MAR-02 48.00 27.00 8.10

Comparing the CASE version to the DECODE version earlier in this chapter, you can see
that the CASE command is six lines longer but is simpler to read and maintain. For Oracle9i
databases, CASE offers a powerful alternative to DECODE—and both CASE and DECODE
provide solid solutions when you need to perform logic within your queries.

324 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 17
Blind Folio 17:324

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 18
Blind Folio 18:325

CHAPTER
18

Creating, Dropping,
and Altering Tables

and Views

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

U
ntil now, the emphasis of this book has been on using tables. This chapter looks
at creating, dropping, and changing tables, creating views, and options such as
index-organized or partitioned tables. You’ve seen numerous create table
commands to this point; this chapter will reinforce those examples and show
how to use the latest options.

Creating a Table
Consider the TROUBLE table. This is similar to the COMFORT table discussed earlier in the book,
but is used to track cities with unusual weather patterns.

describe TROUBLE

Name Null? Type
------------------------------- -------- ----
CITY NOT NULL VARCHAR2(13)
SAMPLEDATE NOT NULL DATE
NOON NUMBER(3,1)
MIDNIGHT NUMBER(3,1)
PRECIPITATION NUMBER

The columns in the TROUBLE table represent the three major datatypes in Oracle—
VARCHAR2, DATE, and NUMBER. Here is the SQL that created this Oracle table:

create table TROUBLE (
City VARCHAR2(13) NOT NULL,
SampleDate DATE NOT NULL,
Noon NUMBER(3,1),
Midnight NUMBER(3,1),
Precipitation NUMBER
);

These are the basic elements of this command:

■ The words create table

■ The name of the table

■ An opening parenthesis

■ Column definitions

■ A closing parenthesis

■ A SQL terminator

The individual column definitions are separated by commas. There is no comma after the last
column definition. The table and column names must start with a letter of the alphabet, but may
include letters, numbers, and underscores. Names may be 1 to 30 characters in length, must be

326 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 18
Blind Folio 18:326

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

unique within the table, and cannot be an Oracle reserved word (see “Object Names” in the
Alphabetical Reference of this book).

If the names are not within double quotes, case does not matter in creating a table. There are
no options for DATE datatypes. Character datatypes must have their maximum length specified.
NUMBERs may be either high-precision (up to 38 digits) or specified-precision, based on the
maximum number of digits and the number of places allowed to the right of the decimal (an
Amount field for U.S. currency, for instance, would have only two decimal places).

NOTE
Do not enclose table and column names within double quotes, or
case will matter. This can be disastrous for your users or developers.

See Part IV of this book for additional create table options for object-relational features.

Character Width and NUMBER Precision
Specifying the maximum length for character (CHAR and VARCHAR2) columns and the precision
for NUMBER columns has consequences that must be considered during the design of the table.
Improper decisions can be corrected later, using the alter table command, but the process can
be difficult.

Deciding on a Proper Width
A character column that is not wide enough for the data you want to put in it will cause an insert
to fail and result in this error message:

ERROR at line 1: ORA-01401: inserted value too large for column

The maximum width for CHAR (fixed-length) columns is 2,000 characters. VARCHAR2
(varying-length character) columns can have up to 4,000 characters. In assigning width to a
column, allot enough space to allow for all future possibilities. A CHAR(15) for a city name,
for instance, is just going to get you in trouble later on. You’ll have to either alter the table or
truncate or distort the names of some cities.

NOTE
There is no penalty in Oracle for defining a wide VARCHAR2
column. Oracle is clever enough not to store blank spaces at the
end of VARCHAR2 columns. The city name SAN FRANCISCO, for
example, will be stored in 13 spaces even if you’ve defined the
column as VARCHAR2(50). And if a column has nothing in it (NULL),
Oracle will store nothing in the column, not even a blank space (it
does store a couple of bytes of internal database control information,
but this is unaffected by the size you specify for the column). The
only effect that choosing a higher number will have is in the default
SQLPLUS column formatting. SQLPLUS will create a default heading
the same width as the VARCHAR2 definition.

Chapter 18: Creating, Dropping, and Altering Tables and Views 327

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 18
Blind Folio 18:327

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

328 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 18
Blind Folio 18:328

Choosing NUMBER Precision
A NUMBER column with incorrect precision will have one of two consequences. Oracle will
either reject the attempt to insert the row of data, or drop some of the data’s precision. Here are
four rows of data about to be entered into Oracle:

insert into TROUBLE values
('PLEASANT LAKE','21-MAR-01',
39.99, -1.31, 3.6);

insert into TROUBLE values
('PLEASANT LAKE','22-JUN-01',
101.44, 86.2, 1.63);

insert into TROUBLE values
('PLEASANT LAKE','23-SEP-01',
92.85, 79.6, 1.00003);

insert into TROUBLE values
('PLEASANT LAKE','22-DEC-01',
-17.445, -10.4, 2.4);

These are the results of this attempt:

insert into TROUBLE values ('PLEASANT LAKE',
'21-MAR-01', 39.99, -1.31, 3.6);

1 row created.

insert into TROUBLE values ('PLEASANT LAKE',
'22-JUN-01', 101.44, 86.2, 1.63);

'22-JUN-01', 101.44, 86.2, 1.63)
*

ERROR at line 2:
ORA-01438: value larger than specified precision allows for this column

insert into TROUBLE values ('PLEASANT LAKE',
'23-SEP-01', 92.85, 79.6, 1.00003);

1 row created.

insert into TROUBLE values ('PLEASANT LAKE',
'22-DEC-01', -17.445, -10.4, 2.4);

1 row created.

The first, third, and fourth rows were inserted, but the second insert failed because 101.44
exceeded the precision set in the create table statement, where Noon was defined as NUMBER(3,1).
The 3 here indicates the maximum number of digits Oracle will store. The 1 means that one of
those three digits is reserved for a position to the right of the decimal point. Thus, 12.3 would be
a legitimate number, but 123.4 would not be.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Note that the error here is caused by the 101, not the .44, because NUMBER(3,1) leaves only
two positions available to the left of the decimal point. The .44 will not cause the “value larger
than specified precision” error. It would simply be rounded to one decimal place. This will be
demonstrated shortly, but first, look at the results of a query of the four rows we’ve attempted to insert:

select * from TROUBLE;

CITY SAMPLEDAT NOON MIDNIGHT PRECIPITATION
------------- --------- -------- -------- -------------
PLEASANT LAKE 21-MAR-01 40 -1.3 3.6
PLEASANT LAKE 23-SEP-01 92.9 79.6 1.00003
PLEASANT LAKE 22-DEC-01 -17.4 -10.4 2.4

The three rows were successfully inserted; only the problematic row is missing. Oracle automatically
backed out the single insert statement that failed.

Rounding During Insertion
If you correct the create table statement and increase the number of digits available for Noon
and Midnight, as shown here:

drop table TROUBLE;
create table TROUBLE (
City VARCHAR2(13) NOT NULL,
SampleDate DATE NOT NULL,
Noon NUMBER(4,1),
Midnight NUMBER(4,1),
Precipitation NUMBER
);

then the four insert statements will all be successful. A query now will reveal this:

insert into TROUBLE values
('PLEASANT LAKE','21-MAR-01',
39.99, -1.31, 3.6);

insert into TROUBLE values
('PLEASANT LAKE','22-JUN-01',
101.44, 86.2, 1.63);

insert into TROUBLE values
('PLEASANT LAKE','23-SEP-01',
92.85, 79.6, 1.00003);

insert into TROUBLE values
('PLEASANT LAKE','22-DEC-01',
-17.445, -10.4, 2.4);

select * from TROUBLE;

Chapter 18: Creating, Dropping, and Altering Tables and Views 329

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 18
Blind Folio 18:329

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CITY SAMPLEDAT NOON MIDNIGHT PRECIPITATION
------------- --------- -------- -------- -------------
PLEASANT LAKE 21-MAR-01 40 -1.3 3.6
PLEASANT LAKE 22-JUN-01 101.4 86.2 1.63
PLEASANT LAKE 23-SEP-01 92.9 79.6 1.00003
PLEASANT LAKE 22-DEC-01 -17.4 -10.4 2.4

Look at the first insert statement. The value for Noon is 39.99. In the query, it is rounded to
40. Midnight in the insert is -1.31. In the query it is -1.3. Oracle rounds the number based on the
digit just to the right of the allowed precision. Table 18-1 shows the effects of precision in several
examples. See Chapter 8 for examples of the ROUND function.

330 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 18
Blind Folio 18:330

Value in insert Statement Actual Value in Table

For precision of NUMBER(4,1)

123.4 123.4

123.44 123.4

123.45 123.5

123.445 123.4

1234.5 insert fails

For precision of NUMBER(4)

123.4 123

123.44 123

123.45 123

123.445 123

1234.5 1235

12345 insert fails

For precision of NUMBER(4,-1)

123.4 120

123.44 120

123.45 120

123.445 120

125 130

1234.5 1230

TABLE 18-1. Results of inserts into NUMBER Datatype Columns

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Constraints in create table
The create table statement lets you enforce several different kinds of constraints on a table: candidate
keys, primary keys, foreign keys, and check conditions. A constraint clause can constrain a single
column or group of columns in a table. The point of these constraints is to get Oracle to do most
of the work in maintaining the integrity of your database. The more constraints you add to a table
definition, the less work you have to do in applications to maintain the data. On the other hand,
the more constraints there are in a table, the longer it takes to update the data.

There are two ways to specify constraints: as part of the column definition (a column constraint)
or at the end of the create table statement (a table constraint). Clauses that constrain several
columns must be table constraints.

The Candidate Key
A candidate key is a combination of one or more columns, the values of which uniquely identify
each row of a table. The following listing shows the creation of a UNIQUE constraint for the
TROUBLE table:

drop table TROUBLE;

create table TROUBLE (
City VARCHAR2(13) NOT NULL,
SampleDate DATE NOT NULL,
Noon NUMBER(4,1),
Midnight NUMBER(4,1),
Precipitation NUMBER,
constraint TROUBLE_UQ UNIQUE (City, SampleDate)
);

Chapter 18: Creating, Dropping, and Altering Tables and Views 331

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 18
Blind Folio 18:331

Value in insert Statement Actual Value in Table

12345 insert fails

For precision of NUMBER

123.4 123.4

123.44 123.44

123.45 123.45

123.445 123.445

125 125

1234.5 1234.5

12345.6789012345678 12345.6789012345678

TABLE 18-1. Results of inserts into NUMBER Datatype Columns (continued)

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The key of this table is the combination of City and SampleDate. Notice that both columns
are also declared to be NOT NULL. This feature allows you to prevent data from being entered
into the table without certain columns having data in them. Clearly, temperature and precipitation
information is not useful without knowing where or when it was collected. This technique is
common for columns that are the primary key of a table, but is also useful if certain columns are
critical for the row of data to be meaningful. If NOT NULL isn’t specified, the column can have
NULL values.

The Primary Key
The primary key of a table is one of the candidate keys that you give some special characteristics.
You can have only one primary key, and a primary key column cannot contain NULLs:

drop table TROUBLE;
create table TROUBLE (
City VARCHAR2(13),
SampleDate DATE,
Noon NUMBER(4,1),
Midnight NUMBER(4,1),
Precipitation NUMBER,
constraint TROUBLE_PK PRIMARY KEY (City, SampleDate)
);

This create table statement has the same effect as the previous one, except that you can have
several UNIQUE constraints but only one PRIMARY KEY constraint.

For single-column primary or candidate keys, you can define the key on the column with a
column constraint instead of a table constraint:

create table AUTHOR
(AuthorName VARCHAR2(50) primary key,
Comments VARCHAR2(100));

In this case, the AuthorName column is the primary key, and Oracle will generate a name for the
PRIMARY KEY constraint. This is not recommended if you want to enforce a common naming
standard for keys, as discussed later in “Naming Constraints.”

Designating Index Tablespaces
UNIQUE and PRIMARY KEY constraints create indexes. Unless you tell Oracle differently, those
indexes will be placed in your default tablespace (tablespaces are described fully in Chapter 20).
To specify a different tablespace, use the using index tablespace clause of the create table
command, as shown in the following listing:

create table AUTHOR2
(AuthorName VARCHAR2(50),
Comments VARCHAR2(100),
constraint AUTHOR_PK primary key (AuthorName)

using index tablespace USERS);

332 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 18
Blind Folio 18:332

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The index associated with the AUTHOR_PK primary key constraint will be placed in the USERS
tablespace. See Chapter 20 for details on the use of tablespaces.

NOTE
In a default installation, the USERS tablespace is created and is the
default tablespace.

The Foreign Key
A foreign key is a combination of columns with values based on the primary key values from
another table. A foreign key constraint, also known as a referential integrity constraint, specifies
that the values of the foreign key correspond to actual values of the primary key in the other
table. In the BOOKSHELF table, for example, the CategoryName column refers to values for the
CategoryName column in the CATEGORY table:

create table BOOKSHELF
(Title VARCHAR2(100) primary key,
Publisher VARCHAR2(20),
CategoryName VARCHAR2(20),
Rating VARCHAR2(2),
constraint CATFK foreign key (CategoryName)
references CATEGORY(CategoryName));

You can refer to a primary or unique key, even in the same table. However, you can’t refer to
a table in a remote database in the references clause. You can use the table form (which is used
here to create a PRIMARY KEY on the TROUBLE table) instead of the column form to specify
foreign keys with multiple columns.

Sometimes you may want to delete these dependent rows when you delete the row they
depend on. In the case of BOOKSHELF and CATEGORY, if you delete a CategoryName from
CATEGORY, you may want to make the matching BOOKSHELF CategoryName column values
NULL. In another case, you might want to delete the whole row. The clause on delete cascade
added to the references clause tells Oracle to delete the dependent row when you delete the
corresponding row in the parent table. This action automatically maintains referential integrity.
For more information on the clauses on delete cascade and references, consult “Integrity
Constraint” in the Alphabetical Reference of this book.

The CHECK Constraint
Many columns must have values that are within a certain range or that satisfy certain conditions.
With a CHECK constraint, you can specify an expression that must always be true for every row
in the table. For example, the RATING table stores the valid ratings; to limit the available values
beyond the limits enforced by the column definition, you can use a CHECK constraint, as shown
in the following listing:

create table RATING_WITH_CHECK
(Rating VARCHAR2(2) CHECK (Rating <= 9),
RatingDescription VARCHAR2(50));

Chapter 18: Creating, Dropping, and Altering Tables and Views 333

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 18
Blind Folio 18:333

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

A column-level CHECK constraint can’t refer to values in other rows; it can’t use the pseudo-
columns SysDate, UID, User, UserEnv, CurrVal, NextVal, Level, or RowNum. You can use the
table constraint form (as opposed to the column constraint form) to refer to multiple columns in
a CHECK constraint.

Naming Constraints
You can name your constraints. If you use an effective naming scheme for your constraint names,
you will be better able to identify and manage the constraints. The name of a constraint should
identify the table it acts upon and the type of constraint it represents. For example, the primary
key on the TROUBLE table could be named TROUBLE_PK.

You can specify a name for a constraint when you create the constraint. If you do not specify
a name for the constraint, then Oracle will generate a name. Most of Oracle’s generated constraint
names are of the form SYS_C######; for example, SYS_C000145. Since the system-generated
constraint name does not tell you anything about the table or the constraint, you should name
your constraints.

In the following example, the PRIMARY KEY constraint is created, and named, as part of the
create table command for the TROUBLE table. Notice the constraint clause:

create table TROUBLE (
City VARCHAR2(13),
SampleDate DATE,
Noon NUMBER(4,1),
Midnight NUMBER(4,1),
Precipitation NUMBER,
constraint TROUBLE_PK PRIMARY KEY (City, SampleDate)
);

The constraint clause of the create table command names the constraint (in this case,
TROUBLE_PK). You may use this constraint name later when enabling or disabling constraints.

Dropping Tables
Dropping tables is very simple. You use the words drop table and the table name, as shown here:

drop table TROUBLE;

Table dropped.

You drop a table only when you no longer need it. In Oracle, the truncate command lets you
remove all the rows in the table and reclaim the space for other uses without removing the table
definition from the database.

Truncating is also very simple:

truncate table TROUBLE;

Table truncated.

334 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 18
Blind Folio 18:334

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Truncating can’t be rolled back. If there are triggers that delete rows that depend on rows in
the table, truncating does not execute those triggers. You should be sure you really want to truncate
before doing it.

Altering Tables
Tables can be altered in one of three ways: by adding a column to an existing table; by changing
a column’s definition; or by dropping a column. Adding a column is straightforward, and similar
to creating a table. Suppose you decide to add two new columns to the TROUBLE table: Condition,
which you believe should be NOT NULL, and Wind, for the wind speed. The first attempt starts
by creating the table and populating it with a few records:

create table TROUBLE (
City VARCHAR2(13),
SampleDate DATE,
Noon NUMBER(4,1),
Midnight NUMBER(4,1),
Precipitation NUMBER);

insert into TROUBLE values
('PLEASANT LAKE','21-MAR-01',
39.99, -1.31, 3.6);

insert into TROUBLE values
('PLEASANT LAKE','22-JUN-01',
101.44, 86.2, 1.63);

insert into TROUBLE values
('PLEASANT LAKE','23-SEP-01',
92.85, 79.6, 1.00003);

insert into TROUBLE values
('PLEASANT LAKE','22-DEC-01',
-17.445, -10.4, 2.4);

The first attempt at adding the new columns looks like this:

alter table TROUBLE add (
Condition VARCHAR2(9) NOT NULL,
Wind NUMBER(3)
);

alter table TROUBLE add (
*

ERROR at line 1: ORA-01758: table must be empty to add
mandatory (NOT NULL) column

Chapter 18: Creating, Dropping, and Altering Tables and Views 335

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 18
Blind Folio 18:335

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

336 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 18
Blind Folio 18:336

You get an error message because you cannot add a column defined as NOT NULL—when
you try to add it, the column won’t have anything in it. Each row in the table would have a new
empty column defined as NOT NULL.

The alter table command’s add clause will work with a NOT NULL column if the table is empty,
but usually, it is impractical to empty a table of all its rows just to add a NOT NULL column. And you
can’t use Export and Import if you add a column after Exporting but before Importing.

The alternative is to first alter the table by adding the column without the NOT NULL restriction:

alter table TROUBLE add (
Condition VARCHAR2(9),
Wind NUMBER(3)
);

Table altered.

Then, fill the column with data for every row (either with legitimate data or a placeholder until
legitimate data can be obtained):

update TROUBLE set Condition = 'SUNNY';

Finally, alter the table again, and modify the column definition to NOT NULL:

alter table TROUBLE modify (
Condition VARCHAR2(9) NOT NULL,
City VARCHAR2(17)
);

Table altered.

Note that the City column was also modified to enlarge it to 17 characters (just to show how
this is done). When the table is described, it shows this:

describe TROUBLE

Name Null? Type
------------------------------- -------- ------------
CITY NOT NULL VARCHAR2(17)
SAMPLEDATE NOT NULL DATE
NOON NUMBER(4,1)
MIDNIGHT NUMBER(4,1)
PRECIPITATION NUMBER
CONDITION NOT NULL VARCHAR2(9)
WIND NUMBER(3)

The table contains the following:

select * from TROUBLE;

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 18: Creating, Dropping, and Altering Tables and Views 337

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 18
Blind Folio 18:337

CITY SAMPLEDAT NOON MIDNIGHT PRECIPITATION CONDITION WIND
--------------- --------- ------ -------- ------------- --------- ----
PLEASANT LAKE 21-MAR-99 40 -1.3 3.6 SUNNY
PLEASANT LAKE 22-JUN-99 101.4 86.2 1.63 SUNNY
PLEASANT LAKE 23-SEP-99 92.9 79.6 1.00003 SUNNY
PLEASANT LAKE 22-DEC-99 -17.4 -10.4 2.4 SUNNY

Here you see the effect of the changes. City is now 17 characters wide instead of 13. Condition
has been added to the table as NOT NULL and is SUNNY (temporarily). WIND has been added,
and is NULL.

To make a NOT NULL column nullable, use the alter table command with the NULL clause,
as follows:

alter table TROUBLE modify
(Condition NULL);

The Rules for Adding or Modifying a Column
These are the rules for adding a column to a table:

■ You may add a column at any time if NOT NULL isn’t specified.

■ You may add a NOT NULL column in three steps:

1. Add the column without NOT NULL specified.

2. Fill every row in that column with data.

3. Modify the column to be NOT NULL.

NOTE
If you use the default clause when adding a column, Oracle will
update each row with that default value when it adds the column;
these updates fire any AFTER UPDATE triggers defined on the table
(see Chapter 28).

These are the rules for modifying a column:

■ You can increase a character column’s width at any time.

■ You can increase the number of digits in a NUMBER column at any time.

■ You can increase or decrease the number of decimal places in a NUMBER column
at any time.

In addition, if a column is NULL for every row of the table, you can make any of these changes:

■ You can change the column’s datatype.

■ You can decrease a character column’s width.

■ You can decrease the number of digits in a NUMBER column.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

You can only change the datatype of a column if the column is empty (NULL) in all rows of
the table.

Exceptions for LONG-LOB Column Changes
There is one notable exception to the restrictions on datatype changes. Oracle supports the changing
of LONG datatype columns to LOB datatypes even if there is data already in the LONG column.
The following listing illustrates this functionality:

create table LONGTEST
(Col1 NUMBER,
Longcol LONG);

Table created.

insert into LONGTEST values (1,'This is a LONG value');

1 row created.

alter table LONGTEST modify (Longcol CLOB);

Table altered.

desc LONGTEST

Name Null? Type
--- -------- --------
COL1 NUMBER
LONGCOL CLOB

select Longcol from LONGTEST;

LONGCOL

This is a LONG value

Dropping a Column
As of Oracle8i, you can drop a column from a table. Dropping a column is more complicated
than adding or modifying a column, because of the additional work that Oracle has to do. Just
removing the column from the list of columns in the table—so it doesn’t show up when you
select * from the table—is easy. It’s recovering the space that was actually taken up by the
column values that is more complex, and potentially very time-consuming for the database. For
this reason, you can drop a column immediately or you can mark it as “unused,” to be dropped
at a later time. If the column is dropped immediately, the action may impact performance. If the
column is marked as unused, there will be no impact on performance. The column can actually
be dropped at a later time when the database is less heavily used.

To drop a column, use either the set unused clause or the drop clause of the alter table
command. You cannot drop a pseudo-column, a column of a nested table, or a partition key column.

In the following example, column Wind is dropped from the TROUBLE table:

338 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 18
Blind Folio 18:338

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

alter table TROUBLE drop column Wind;

Alternatively, you can mark the Wind column as unused:

alter table TROUBLE set unused column Wind;

Marking a column as “unused” does not release the space previously used by the column,
until you drop the unused columns:

alter table TROUBLE drop unused columns;

You can query USER_UNUSED_COL_TABS, DBA_UNUSED_COL_TABS, and
ALL_UNUSED_COL_TABS to see all tables with columns marked as unused.

NOTE
Once you have marked a column as “unused,” you cannot access
that column.

You can drop multiple columns in a single command, as shown in the following listing:

alter table TROUBLE drop (Condition, Wind);

NOTE
When dropping multiple columns, the column keyword of the alter
table command should not be used; it causes a syntax error. The
multiple column names must be enclosed in parentheses, as shown
in the preceding listing.

If the dropped columns are part of primary keys or unique constraints, then you will need to
also use the cascade constraints clause as part of your alter table command. If you drop a column
that belongs to a primary key, Oracle will drop both the column and the primary key index.

Creating a View
Since you’ve already seen the techniques for creating a view in prior chapters, they will not
be reviewed here. However, this section gives several additional points about views that will
prove useful.

If a view is based on a single underlying table, you can insert, update, or delete rows in the
view. This will actually insert, update, or delete rows in the underlying table. There are restrictions
on your ability to do this, although the restrictions are quite sensible:

■ You cannot insert if the underlying table has any NOT NULL columns that don’t appear
in the view.

■ You cannot insert or update if any one of the view’s columns referenced in the insert or
update contains functions or calculations.

Chapter 18: Creating, Dropping, and Altering Tables and Views 339

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 18
Blind Folio 18:339

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

340 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 18
Blind Folio 18:340

■ You cannot insert, update, or delete if the view contains group by, distinct, or a
reference to the pseudo-column RowNum.

You can insert into a view based on multiple tables if Oracle can determine the proper rows
to insert. In a multitable view, Oracle determines which of the tables are key-preserved. If a view
contains enough columns from a table to identify the primary key for that table, then the key is
preserved and Oracle may be able to insert rows into the table via the view.

Stability of a View
Remember that the results of querying a view are built instantly from a table (or tables) when you
execute the query. Until that moment, the view has no data of its own, as a table does. It is merely
a description (a SQL statement) of what information to pull out of other tables and how to organize
it. As a consequence, if a table is dropped, the validity of a view is destroyed. Attempting to query a
view where the underlying table has been dropped will produce an error message about the view.

NOTE
The sole exception to this rule is the use of materialized views,
introduced in Oracle8i. In fact, a materialized view is actually a table
that stores data one would normally query via a view. Materialized
views are described in detail in Chapter 23.

In the following sequence, a view is created on an existing table, the table is dropped, and
the view then is queried.

First, the view is created:

create view RAIN as
select City, Precipitation
from TROUBLE;

View created.

The underlying table is dropped:

drop table TROUBLE;

Table dropped.

The view is queried:

select * from RAIN;
*

ERROR at line 1: ORA-04063: view "PRACTICE.RAIN" has errors

Similarly, a view is created using the asterisk in the view creation:

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 18: Creating, Dropping, and Altering Tables and Views 341

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 18
Blind Folio 18:341

create view RAIN as
select * from TROUBLE;

View created.

But then the underlying table is altered:

alter table TROUBLE add (
Warning VARCHAR2(20)
);

Table altered.

Despite the change to the view’s base table, the view is still valid, although the columns in
the view are only those that existed at the time of the CREATE VIEW.

After altering the table, replace the view. To re-create a view while keeping in place all the
privileges that have been granted for it, use the create or replace view command, as shown in
the following listing. This command will replace the view text of an existing view with the new
view text, while the old grants on the view will not be affected.

create or replace view RAIN as
select * from TROUBLE;

order by in Views
As of Oracle8i, you can use an order by in a create view statement, as shown in the following
listing based on the re-created TROUBLE table. Note that queries against this view will incur a
performance penalty because of the additional sort activity they perform.

create view TROUBLE_SORTED
as select * from TROUBLE

order by City, SampleDate;

View created.

select * from TROUBLE_SORTED;

CITY SAMPLEDAT NOON MIDNIGHT PRECIPITATION
------------- --------- ---------- ---------- -------------
PLEASANT LAKE 21-MAR-01 40 -1.3 3.6
PLEASANT LAKE 22-JUN-01 101.4 86.2 1.63
PLEASANT LAKE 23-SEP-01 92.9 79.6 1.00003
PLEASANT LAKE 22-DEC-01 -17.4 -10.4 2.4

Creating a Read-Only View
You can use the with read only clause of the create view command to prevent users from
manipulating records via the view. Consider the RAIN view created in the previous section:

create or replace view RAIN as
select * from TROUBLE;

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

If a user has the ability to delete records from the TROUBLE table, then the user could delete
the TROUBLE records via the RAIN view:

delete from RAIN;

The user could also insert or update the records in the TROUBLE table by performing those
operations against the RAIN view. If the view is based on a join of multiple tables, then the user’s
ability to update the view’s records is limited; a view’s base tables cannot be updated unless only
one table is involved in the update and the updated table’s full primary key is included in the
view’s columns.

To prevent modifications to the base tables via a view, you can use the with read only clause
of the create view command. If you use the with read only clause when creating a view, users
will only be able to select records from the view. Users will be unable to manipulate the records
obtained from the view even if the view is based on a single table:

create or replace view RAIN_READ_ONLY as
select * from TROUBLE
with read only;

You can also use INSTEAD OF triggers to manage the data manipulation commands executed
against views. See Chapter 30 for details on INSTEAD OF triggers.

Creating a Table from a Table
The RAIN view that was previously created from the TROUBLE table could alternatively have
been a table. Oracle lets you create a new table on the fly, based on a select statement on an
existing table:

create table RAIN_TABLE as
select City, Precipitation
from TROUBLE;

Table created.

NOTE
The create table ... as select ... command will not work if one of the
selected columns uses the LONG datatype.

When the new table is described, it reveals that it has “inherited” its column definitions from
the TROUBLE table. A table created in this fashion can include all columns, using an asterisk if
you like, or a subset of columns from another table. It also can include “invented” columns,
which are the product of functions or the combination of other columns, just as in a view. The
character column definitions will adjust to the size necessary to contain the data in the invented
columns. NUMBER columns that had specified precision in the source table, but undergo
computation in inventing a new column, will simply be NUMBER columns, with no specified
precision, in the new table. When the table RAIN is described, it shows its column definitions:

342 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 18
Blind Folio 18:342

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 18: Creating, Dropping, and Altering Tables and Views 343

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 18
Blind Folio 18:343

describe RAIN_TABLE

Name Null? Type
------------------------------- -------- ------------
CITY NOT NULL VARCHAR2(13)
PRECIPITATION NUMBER

When RAIN_TABLE is queried, it contains just the columns and data selected from the
TROUBLE table as it existed when RAIN_TABLE was created:

select * from RAIN_TABLE;

CITY PRECIPITATION
------------- -------------
PLEASANT LAKE 3.6
PLEASANT LAKE 1.63
PLEASANT LAKE 1.00003
PLEASANT LAKE 2.4

You also can use this technique to create a table with column definitions like that of the
source table, but with no rows in it, by building a where clause that will select no rows from
the old table:

create table RAIN_EMPTY as
select City, Precipitation
from TROUBLE
where 1=2;

Table created.

Querying this table will show there is nothing in it:

select * from RAIN_EMPTY;

no rows selected.

You can create a table based on a query without generating redo log entries (chronological
records of database actions used during database recoveries). Avoiding the generation of these
entries is accomplished by using the nologging keyword in the create table command. When the
redo log entries are circumvented in this way, the performance of the create table command will
improve, since less work is being done; the larger the table, the greater the impact. However,
since the new table’s creation is not being written to the redo log files (which record the redo log
entries), the table will not be re-created if, following a database failure, those redo log files are
used to recover the database. Therefore, you should consider performing a backup of the database
soon after using the nologging option if you want to be able to recover the new table.

The following example shows how to use the nologging keyword during table creations
based on queries. By default, table creations based on queries generate redo log entries.

create table RAIN_NOLOG
nologging

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

as
select * from TROUBLE;

Table created.

Note that you can specify nologging at the partition level and at the LOB level. The use of
nologging will improve the performance of the operations that create the initial data in the table.

Creating an Index-Organized Table
An index-organized table keeps its data sorted according to the primary key column values for
the table. Index-organized tables store their data as if the entire table was stored in an index.
Indexes are described more fully in Chapter 20; in Oracle, they serve two main purposes:

■ To enforce uniqueness When a PRIMARY KEY or UNIQUE constraint is created,
Oracle creates an index to enforce the uniqueness of the indexed columns.

■ To improve performance When a query can use an index, the performance of the
query may dramatically improve. See Chapter 38 for details on the conditions under
which a query may use an index.

An index-organized table allows you to store the entire table’s data in an index. A normal
index only stores the indexed columns in the index; an index-organized table stores all of the
table’s columns in the index.

To create an index-organized table, use the organization index clause of the create table
command, as shown in the following example:

create table TROUBLE_IOT (
City VARCHAR2(13),
SampleDate DATE,
Noon NUMBER(4,1),
Midnight NUMBER(4,1),
Precipitation NUMBER,
constraint TROUBLE_IOT_PK PRIMARY KEY (City, SampleDate))
organization index;

To create TROUBLE as an index-organized table, you must create a PRIMARY KEY constraint
on it.

An index-organized table is appropriate if you will always be accessing the TROUBLE data
by the City and SampleDate columns (in the where clauses of your queries). To minimize the
amount of active management of the index required, you should use index-organized tables only
if the table’s data is very static. If the table’s data changes frequently, or if you need to index
additional columns of the table, then you should use a regular table, with indexes as appropriate.

In general, index-organized tables are most effective when the primary key constitutes a large
part of the table’s columns. If the table contains many frequently accessed columns that are not part
of the primary key, then the index-organized table will need to repeatedly access its overflow
area. Despite this drawback, you may choose to use index-organized tables to take advantage of
a key feature that is not available with standard tables: the ability to use the move online option

344 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 18
Blind Folio 18:344

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

of the alter table command. You can use that option to move a table from one tablespace to
another while it is being accessed by inserts, updates, and deletes. You cannot use the move
online option for partitioned index-organized tables. Partitioning is described in the next section.

Using Partitioned Tables
As of Oracle8, you can divide the rows of a single table into multiple parts. Dividing a table’s
data in this manner is called partitioning the table; the table that is partitioned is called a
partitioned table, and the parts are called partitions.

Partitioning is useful for very large tables. By splitting a large table’s rows across multiple
smaller partitions, you accomplish several important goals:

■ The performance of queries against the tables may improve, since Oracle may have to only
search one partition (one part of the table) instead of the entire table to resolve a query.

■ The table may be easier to manage. Since the partitioned table’s data is stored in multiple
parts, it may be easier to load and delete data in the partitions than in the large table.

■ Backup and recovery operations may perform better. Since the partitions are smaller
than the partitioned table, you may have more options for backing up and recovering
the partitions than you would have for a single large table.

The Oracle optimizer will know that the table has been partitioned; as shown later in this
section, you can also specify the partition to use as part of the from clause of your queries.

Creating a Partitioned Table
To create a partitioned table, you specify how to set up the partitions of the table’s data as part of
the create table command. Typically, tables are partitioned by ranges of values.

Consider the BOOKSHELF table:

create table BOOKSHELF
(Title VARCHAR2(100) primary key,
Publisher VARCHAR2(20),
CategoryName VARCHAR2(20),
Rating VARCHAR2(2),
Constraint CATFK foreign key (CategoryName)
references CATEGORY(CategoryName));

If you will be storing a large number of records in the BOOKSHELF table, you may want to
separate the rows across multiple partitions. To partition the table’s records, use the partition by
range clause of the create table command, as shown next. The ranges will determine the values
stored in each partition.

create table BOOKSHELF_RANGE_PART
(Title VARCHAR2(100) primary key,
Publisher VARCHAR2(20),
CategoryName VARCHAR2(20),
Rating VARCHAR2(2),

Chapter 18: Creating, Dropping, and Altering Tables and Views 345

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 18
Blind Folio 18:345

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

constraint CATFK2 foreign key (CategoryName)
references CATEGORY(CategoryName)
)
partition by range (CategoryName)
(partition PART1 values less than ('B')

tablespace PART1_TS,
partition PART2 values less than (MAXVALUE)

tablespace PART2_TS);
/

The BOOKSHELF table will be partitioned based on the values in the CategoryName column:

partition by range (CategoryName)

For any Category values less than B (the ADULT categories), the record will be stored in the
partition named PART1. The PART1 partition will be stored in the PART1_TS tablespace (see
Chapter 20 for details on tablespaces). Any other category will be stored in the PART2 partition.
Note that in the PART2 partition definition, the range clause is

partition PART2 values less than (MAXVALUE)

You do not need to specify a maximum value for the last partition; the maxvalue keyword
tells Oracle to use the partition to store any data that could not be stored in the earlier partitions.

You can create multiple partitions, each with its own upper value defined. For each partition,
you only specify the maximum value for the range. The minimum value for the range is implicitly
determined by Oracle.

Range partitions were the only type of partition available in Oracle8. Oracle8i introduced
hash partitions. A hash partition determines the physical placement of data by performing a hash
function on the values of the partition key. In range partitioning, consecutive values of the partition
key are usually stored in the same partition. In hash partitioning, consecutive values of the partition
key are not necessarily stored in the same partition. Hash partitioning distributes a set of records
over a greater set of partitions than range partitioning does, potentially decreasing the likelihood
for I/O contention.

To create a hash partition, use the partition by hash clause in place of the partition by range
clause, as shown in the following listing:

create table BOOKSHELF_HASH_PART
(Title VARCHAR2(100) primary key,
Publisher VARCHAR2(20),
CategoryName VARCHAR2(20),
Rating VARCHAR2(2),
constraint CATFK_HASH foreign key (CategoryName)
references CATEGORY(CategoryName)
)
partition by hash (CategoryName)
partitions 10;

You can name each partition and specify its tablespace, just as you would for range partitioning,
as shown here:

346 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 18
Blind Folio 18:346

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

create table BOOKSHELF_HASH_PART
(Title VARCHAR2(100) primary key,
Publisher VARCHAR2(20),
CategoryName VARCHAR2(20),
Rating VARCHAR2(2),
constraint CATFK_HASH foreign key (CategoryName)
references CATEGORY(CategoryName)
)
partition by hash (CategoryName)
partitions 2
store in (PART1_TS, PART2_TS);

Following the partition by hash (CategoryName) line, you have two choices for format:

■ As shown in the preceding listing, you can specify the number of partitions and the
tablespaces to use:

partitions 2

store in (PART1_TS, PART2_TS);

This method will create partitions with system-generated names of the format SYS_Pnnn.
The number of tablespaces specified in the store in clause does not have to equal the number
of partitions. If more partitions than tablespaces are specified, the partitions will be assigned to
the tablespaces in a round-robin fashion.

■ You can specify named partitions:

partition by hash (CategoryName)

(partition PART1 tablespace PART1_TS,

partition PART2 tablespace PART2_TS);

In this method, each partition is given a name and a tablespace, with the option of using an
additional lob or varray storage clause (see Chapters 31 and 32). This method gives you more
control over the location of the partitions, with the added benefit of letting you specify meaningful
names for the partitions.

Creating Subpartitions
As of Oracle8i, you can create subpartitions—partitions of partitions. You can use subpartitions
to combine the two types of partitions: range partitions and hash partitions. You can use hash
partitions in combination with range partitions, creating hash partitions of the range partitions.
For very large tables, this composite partitioning may be an effective way of separating the data
into manageable and tunable divisions.

The following example range-partitions the BOOKSHELF table by the Title column, and
hash-partitions the Title partitions by CategoryName values:

create table BOOKSHELF_RANGE_HASH_PART
(Title VARCHAR2(100) primary key,
Publisher VARCHAR2(20),
CategoryName VARCHAR2(20),
Rating VARCHAR2(2),
constraint CATFK3 foreign key (CategoryName)

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 18
Blind Folio 18:347

Chapter 18: Creating, Dropping, and Altering Tables and Views 347

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

references CATEGORY(CategoryName)
)
partition by range (Title)
subpartition by hash (CategoryName)
subpartitions 6
(partition PART1 values less than ('M')

tablespace PART1_TS,
partition PART2 values less than (MAXVALUE)

tablespace PART2_TS);

The BOOKSHELF table will be range-partitioned into two partitions, using the Title value
ranges specified for the named partitions. Each of those partitions will be hash-partitioned on the
CategoryName column.

List Partitioning
As of Oracle9i, you can use list partitions in place of range and hash partitioning. In list
partitioning, you tell Oracle all of the possible values, and designate the partitions into which
the corresponding rows should be inserted. The following example shows the BOOKSHELF
entries list partitioned by CategoryName:

create table BOOKSHELF_LIST_PART
(Title VARCHAR2(100) primary key,
Publisher VARCHAR2(20),
CategoryName VARCHAR2(20),
Rating VARCHAR2(2),
constraint CATFK4 foreign key (CategoryName)
references CATEGORY(CategoryName)
)
partition by list (CategoryName)
(partition PART1 values ('ADULTFIC', 'ADULTNF', 'ADULTREF')

tablespace PART1_TS,
partition PART2 values

('CHILDRENFIC', 'CHILDRENNF', 'CHILDRENPIC')
tablespace PART1_TS);

NOTE
In Oracle9i Release 9.0.1, if you attempt to insert a row with a value
that does not exist in the list partition definitions—in this case, a
different category name—the insert attempt will result in an error.
This restriction is to be eliminated in a later version of Oracle9i.

Indexing Partitions
When you create a partitioned table, you should create an index on the table. The index may
be partitioned according to the same range values that were used to partition the table. In the
following listing, the create index command for the BOOKSHELF_LIST_PART (list partitioned)
table is shown. The index partitions are placed in the PART1_NDX_TS and PART2_NDX_TS
tablespaces.

348 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 18
Blind Folio 18:348

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 18: Creating, Dropping, and Altering Tables and Views 349

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 18
Blind Folio 18:349

create index BOOKSHELF__LIST_CATEGORY
on BOOKSHELF_LIST_PART(CategoryName)
local
(partition PART1
tablespace PART1_NDX_TS,

partition PART2
tablespace PART2_NDX_TS);

Notice the local keyword. In this create index command, no ranges are specified. Instead,
the local keyword tells Oracle to create a separate index for each partition of the BOOKSHELF_
LIST_PART table. There were two partitions created on BOOKSHELF_LIST_PART. This index will
create two separate indexes—one for each partition. Since there is one index per partition, the
indexes are “local” to the partitions.

You can also create “global” indexes. A global index may contain values from multiple partitions.

create index BOOKSHELF_LIST_CATEGORY_G
on BOOKSHELF_LIST_PART(Publisher)
global;

)

The global clause in this create index command allows you to create a non-partitioned index
(as shown here) or to specify ranges for the index values that are different from the ranges for the
table partitions. Local indexes may be easier to manage than global indexes; however, global
indexes may perform uniqueness checks faster than local (partitioned) indexes perform them.

NOTE
You cannot create global indexes for hash partitions or subpartitions.

Managing Partitioned Tables
You can use the alter table command to add, drop, exchange, move, modify, rename, split, and
truncate partitions. These alter table command options allow you to alter the existing partition
structure, as may be required after a partitioned table has been used heavily. For example, the
distribution of the CategoryName values within the partitioned table may have changed, or the
maximum value may have increased. See the “ALTER TABLE” entry in the Alphabetical Reference
for information on these options.

Querying Directly from Partitions
If you know the partition from which you will be retrieving your data, you can specify the name
of the partition as part of the from clause of your query. For example, suppose you want to query
the records for the books in the ADULT categories. The optimizer should be able to use the partition
definitions to determine that only the PART1 partition could contain data that can resolve this
query; but if you want, you can explicitly tell Oracle to use PART1 as part of your query:

insert into BOOKSHELF_LIST_PART select * from BOOKSHELF;

select COUNT(*) from BOOKSHELF_LIST_PART partition (part1);

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

COUNT(*)

22

This example explicitly names the partition in which Oracle is to search for the ADULT
category records. If the partition is modified (for example, if its range of values is altered), then
PART1 may no longer be the partition that contains these records. Thus, you should use great
care when using this syntax.

In general, this syntax is not necessary, because Oracle stores the range definitions for the
partitions. When you query from the partitioned table, Oracle determines which partitions should
be involved in resolving the query. This process may result in a small number of rows being
searched for the query, thus improving query performance. Additionally, the partitions may be
stored in different tablespaces (and thus on separate disk devices), helping to reduce the potential
for disk I/O contention during the processing of the query.

During an insert into the partitioned table, Oracle uses the partitions’ definitions to determine
which partition the record should be inserted into. Thus, you can use a partitioned table as if it
were a single table, and rely on Oracle to manage the internal separation of the data.

Online Redefinition of Tables
As described earlier in this chapter, you can perform many object redefinition commands
online—including moving index-organized tables, replacing views, and dropping columns. As
of Oracle9i, you can redefine tables online; you can even partition a non-partitioned table while
it is accessible to users. You can use this feature to move tables among tablespaces in online
transaction processing applications.

To accomplish this while the database is being accessed, use the DBMS_REDEFINITION
package provided with Oracle9i. There are some significant restrictions on this process (from the
Oracle9i Administrator’s Guide), as shown here:

■ Tables must have primary keys to be candidates for online redefinition.

■ The table to be redefined and the final redefined table must have the same primary
key column.

■ Tables that have materialized views and materialized view logs defined on them cannot
be redefined online.

■ Tables that are materialized view container tables and Advanced Queuing tables cannot
be redefined online.

■ The overflow table of an index-organized table cannot be redefined online.

■ Tables with user-defined types (objects, REFs, collections, typed tables) cannot be
redefined online.

■ Tables with FILE columns cannot be redefined online.

■ Tables with LONG columns cannot be redefined online. Tables with LOB columns
are acceptable.

■ The table to be redefined cannot be part of a cluster.

350 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 18
Blind Folio 18:350

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ Tables in the SYS and SYSTEM schema cannot be redefined online.

■ Temporary tables cannot be redefined.

■ There is no horizontal subsetting support (in other words, no where clause can be
specified on the source table).

■ Only simple deterministic expressions can be used when mapping the columns in the
interim table to those of the original table. For example, subqueries are not allowed.

■ If new columns (which are not instantiated with existing data for the original table) are
being added as part of the redefinition, then they must not be declared NOT NULL until
the redefinition is complete.

■ There cannot be any referential constraints between the table being redefined and the
interim table.

If your tables meet those criteria, you can now start the redefinition process. The redefinition
process has six steps:

1. Verify that the table can be rebuilt online.

2. Create the interim table and its indexes, grants, constraints, and triggers.

3. Start the redefinition.

4. Optionally, abort the process or sync the source/destination tables.

5. Finish the redefinition process.

6. Clean up the interim table.

The following steps show the redefinition of the AUTHOR table as it is partitioned while
being accessible to users.

1. Verify That the Table Can Be Rebuilt Online
To verify that the table can be rebuilt online, execute the CAN_REDEF_TABLE procedure,
providing the schema owner and table name as input:

execute DBMS_REDEFINITION.CAN_REDEF_TABLE('PRACTICE','AUTHOR');

If an error stack is reported, the first error listed will tell you what the problem is; later errors
concerning the DBMS_REDEFINITION package can be ignored.

2. Create the Interim Table
What do you want AUTHOR to look like in the new tablespace? Create an interim table that will
be used during the redefinition process. To simplify matters, keep the column names and order
the same as the source AUTHOR table.

create table AUTHOR_INTERIM
(AuthorName VARCHAR2(50) primary key,
Comments VARCHAR2(100)

Chapter 18: Creating, Dropping, and Altering Tables and Views 351

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 18
Blind Folio 18:351

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

)
partition by range (AuthorName)
(partition PART1 values less than ('M'),
partition PART2 values less than (MAXVALUE)
);

In this example, the AUTHOR_INTERIM table will serve as the interim table during the
redefinition. Once the process is complete, AUTHOR_INTERIM will replace the old AUTHOR
table—and the only indexes, constraints, triggers, and grants available for AUTHOR then will
be those that you create on AUTHOR_INTERIM prior to the final step (Step 5 in this description).
You can optionally create the indexes, triggers, grants, and constraints after the redefinition
process completes, but creating them now avoids the need for locks on active tables later.

3. Start the Redefinition
The START_REDEF_TABLE procedure begins the redefinition. The AUTHOR_INTERIM table will
now be populated with the committed data in the AUTHOR table, so the time and undo segment
(transaction size) requirements for this step depend on the size of the AUTHOR table. As parameters,
pass the schema owner, old table name, and the interim table name:

execute DBMS_REDEFINITION.START_REDEF_TABLE -
('PRACTICE','AUTHOR','AUTHOR_INTERIM');

If AUTHOR_INTERIM had a different column list than AUTHOR, that column list would be
passed as the fourth parameter to the START_REDEF_TABLE procedure. Once this procedure has
completed, you can query AUTHOR_INTERIM to verify its data contents—Oracle will have
populated it with the data from AUTHOR.

4(a). OPTIONAL—Abort the Process
If you need to abort the redefinition process at this point, use the ABORT_REDEF_TABLE
procedure, with the schema owner, source table, and interim table as input parameters.

execute DBMS_REDEFINITION.ABORT_REDEF_TABLE -
('PRACTICE','AUTHOR','AUTHOR_INTERIM');

After aborting the redefinition, you should consider truncating the interim (AUTHOR_INTERIM)
table as well to reclaim its space allocation.

4(b). OPTIONAL—Sync the Tables
During the conclusion of the redefinition process, Oracle will sync the data between the source
and interim tables. To shorten the time required by that part of the process, you can sync the
tables prior to the final step. This optional step allows you to instantiate the latest production data
in the interim table, minimizing later impact on your online users.

To sync the source and interim tables, use the SYNC_INTERIM_TABLE procedure, with the
schema owner, source table, and interim table as input parameters.

execute DBMS_REDEFINITION.SYNC_INTERIM_TABLE -
('PRACTICE','AUTHOR','AUTHOR_INTERIM');

352 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 18
Blind Folio 18:352

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

5. Finish the Redefinition Process
To complete the redefinition process, execute the FINISH_REDEF_TABLE procedure, as shown in
the following examples. The input parameters are the owner, source table, and interim table names.

execute DBMS_REDEFINITION.FINISH_REDEF_TABLE -
('PRACTICE','AUTHOR','AUTHOR_INTERIM');

During this step, the AUTHOR table will take over the characteristics of the AUTHOR_INTERIM
table—it will become a partitioned table, and will take over AUTHOR_INTERIM’s internal object
ID value.

Since the AUTHOR table should now be partitioned, you can verify its redefinition by querying
USER_TAB_PARTITIONS:

select Table_Name, Tablespace_Name, High_Value
from USER_TAB_PARTITIONS
where Table_Name = 'AUTHOR';

TABLE_NAME TABLESPACE_NAME HIGH_VALUE
------------ --------------- ----------
AUTHOR USERS MAXVALUE
AUTHOR USERS 'M'

As shown in the preceding listing, the AUTHOR table partitions both reside in the USERS tablespace.
At this point, you should verify that the foreign keys on AUTHOR are enabled; that all necessary
grants are in place; that the indexes are all in place; and that all triggers are enabled.

6. Clean Up the Interim Table
Although AUTHOR has taken over the AUTHOR_INTERIM definitions, the AUTHOR_INTERIM
table is still out there! AUTHOR and AUTHOR_INTERIM have switched places—AUTHOR_
INTERIM is now a non-partitioned table. Once you have verified that the new AUTHOR table is
correct, you should clean up the AUTHOR_INTERIM table—either by truncating it or dropping it
to free the space it had allocated.

Chapter 18: Creating, Dropping, and Altering Tables and Views 353

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 18
Blind Folio 18:353

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 18
Blind Folio 18:354

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 19
Blind Folio 19:355

CHAPTER
19

By What Authority?

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

I
nformation is vital to success, but when damaged or in the wrong hands, it can
threaten success. Oracle provides extensive security features to safeguard your
information from both unauthorized viewing and intentional or inadvertent damage.
This security is provided by granting or revoking privileges on a person-by-person
and privilege-by-privilege basis, and is in addition to (and independent of) any

security your computer system already has. Oracle uses the create user, create role, and grant
commands to control data access.

Users, Roles, and Privileges
Every Oracle user has a name and password, and owns any tables, views, and other resources
that he or she creates. An Oracle role is a set of privileges (or the type of access that each user
needs, depending on his or her status and responsibilities). You can grant or bestow specific
privileges to roles and then assign roles to the appropriate users. A user can also grant privileges
directly to other users.

Database system privileges let you execute specific sets of commands. The CREATE TABLE
privilege, for example, lets you create tables. The GRANT ANY PRIVILEGE privilege allows you
to grant any system privilege.

Database object privileges give you the ability to perform some operation on various
objects. The DELETE privilege, for example, lets you delete rows from tables and views. The
SELECT privilege allows you to query with a select from tables, views, sequences, and snapshots
(materialized views).

See “Privilege” in the Alphabetical Reference at the end of this book for a complete list of
system and object privileges.

Creating a User
The Oracle system comes with many users already created, including SYSTEM and SYS. The SYS
user owns the core internal tables Oracle uses to manage the database; SYSTEM owns additional
tables and views. You can log on to the SYSTEM user to create other users, since SYSTEM has
that privilege.

When installing Oracle, you (or a system administrator) first create a user for yourself. This is
the format for the create user command:

create user user identified {by password | externally};

Other privileges can be set via this command; see the create user command in the Alphabetical
Reference for details.

To connect your computer system’s userid and password into Oracle’s security so that only
one logon is required for host-based users, use externally instead of giving a password. A system
administrator (who has a great many privileges) may want the extra security of having a separate
password. Let’s call the system administrator Dora in the following examples:

create user Dora identified by avocado;

Dora’s account now exists and is secured by a password.

356 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 19
Blind Folio 19:356

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 19: By What Authority? 357

You also can set up the user with specific tablespaces (space on disk for the user’s
tables—discussed in the following chapter) and quotas (limits) for space and resource usage.
See create user in the Alphabetical Reference and Chapter 20 for a discussion of tablespaces
and resources.

To change a password, use the alter user command:

alter user Dora identified by psyche;

Now Dora has the password “psyche” instead of “avocado.” However, Dora cannot log into her
account until she first has the CREATE SESSION system privilege:

grant CREATE SESSION to Dora;

You’ll see additional examples of system privilege grants later in this chapter.

Password Management
Passwords can expire, and accounts may be locked due to repeated failed attempts to connect.
When you change your password, a password history may be maintained to prevent reuse of
previous passwords.

The expiration characteristics of your account’s password are determined by the profile
assigned to your account. Profiles, which are created by the create profile command, are
managed by the DBA (database administrator, discussed later in the chapter). See the “CREATE
PROFILE” entry in the Alphabetical Reference for full details on the create profile command.
Relative to passwords and account access, profiles can enforce the following:

■ The “lifetime” of your password, which determines how frequently you must change it

■ The grace period following your password’s “expiration date” during which you can
change the password

■ The number of consecutive failed connect attempts allowed before the account is
automatically “locked”

■ The number of days the account will remain locked

■ The number of days that must pass before you can reuse a password

■ The number of password changes that must take place before you can reuse a password

Additional password management features allow the minimum length and complexity of
passwords to be enforced.

In addition to the alter user command, you can use the password command in SQLPLUS
to change your password. If you use the password command, your new password will not be
displayed on the screen as you type. Database administrators can change any user’s password
via the password command; other users can change only their own password.

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 19
Blind Folio 19:357

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

358 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 19
Blind Folio 19:358

When you enter the password command, you will be prompted for the old and new
passwords, as shown in the following listing:

connect dora/psyche
password
Changing password for dora
Old password:
New password:
Retype new password:

When the password has been successfully changed, you will receive the feedback:

Password changed

Enforcing Password Expiration
You can use profiles to manage the expiration, reuse, and complexity of passwords. You can
limit the lifetime of a password, and lock an account whose password is too old. You can also
force a password to be at least moderately complex, and lock any account that has repeated
failed login attempts.

For example, if you set the FAILED_LOGIN_ATTEMPTS resource of the user’s profile to 5,
then four consecutive failed login attempts will be allowed for the account; the fifth will cause
the account to be locked.

NOTE
If the correct password is supplied on the fifth attempt, then the ‘failed
login attempt count’ is reset to 0, allowing for five more consecutive
unsuccessful login attempts before the account is locked.

In the following listing, the LIMITED_PROFILE profile is created, for use by the user JANE:

create profile LIMITED_PROFILE limit
FAILED_LOGIN_ATTEMPTS 5;

create user JANE identified by EYRE
profile LIMITED_PROFILE;

grant CREATE SESSION to JANE;

If there are five consecutive failed connects to the JANE account, the account will be
automatically locked by Oracle. When you then use the correct password for the JANE
account, you will receive an error.

connect jane/eyre
ERROR: ORA-28000: the account is locked

To unlock the account, use the account unlock clause of the alter user command (from a
DBA account), as shown in the following listing:

alter user JANE account unlock;

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 19: By What Authority? 359

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 19
Blind Folio 19:359

Following the unlocking of the account, connections to the JANE account will once again be
allowed. You can manually lock an account via the account lock clause of the alter user command.

alter user JANE account lock;

If an account becomes locked due to repeated connection failures, it will automatically
become unlocked when its profile’s PASSWORD_LOCK_TIME value is exceeded. For example,
if PASSWORD_LOCK_TIME is set to 1, then the JANE account in the previous example would
be locked for one day, at which point the account would be unlocked.

You can establish a maximum lifetime for a password via the PASSWORD_LIFE_TIME
resource within profiles. For example, you could force users of the LIMITED_PROFILE profile
to change their passwords every 30 days.

alter profile LIMITED_PROFILE limit
PASSWORD_LIFE_TIME 30;

In this example, the alter profile command is used to modify the LIMITED_PROFILE profile.
The PASSWORD_LIFE_TIME value is set to 30, so each account that uses that profile will have its
password expire after 30 days. If your password has expired, you must change it the next time
you log in unless the profile has a specified grace period for expired passwords. The grace period
parameter is called PASSWORD_GRACE_TIME. If the password is not changed within the grace
period, the account expires.

NOTE
If you are going to use the PASSWORD_LIFE_TIME parameter, then
you need to give the users a way to change their passwords easily.

An “expired” account is different from a “locked” account. A locked account, as shown
earlier in this section, may be automatically unlocked by the passage of time. An expired
account, however, requires manual intervention by the DBA to be re-enabled.

NOTE
If you use the password expiration features, make sure the accounts
that own your applications have different profile settings; otherwise,
they may become locked and the application may become unusable.

To re-enable an expired account, you will need to execute the alter user command, as shown
in the following example. In this example, the DBA manually expires JANE’s password:

alter user jane password expire;

User altered.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Next, JANE attempts to connect to her account. When she provides her password, she is
immediately prompted for a new password for the account.

connect jane/eyre
ERROR: ORA-28001: the account has expired

Changing password for jane
Old password:
New password:
Retype new password:
Password changed
Connected.

You can also force users to change their passwords when they first access their accounts, via
the password expire clause of the create user command. The create user command does not,
however, allow you to set an expiration date for the new password set by the user; to do that,
you must use the PASSWORD_LIFE_TIME profile parameters shown in the previous examples.

To see the password expiration date of any account, query the Expiry_Date column of the
DBA_USERS data dictionary view. Users who want to see the password expiration date for their
accounts can query the Expiry_Date column of the USER_USERS data dictionary view (via either
SQL*Plus or a client-based query tool).

Enforcing Password Reuse Limitations
To prevent a password from being reused, you can use one of two profile parameters:
PASSWORD_REUSE_MAX or PASSWORD_REUSE_TIME. These two parameters are mutually
exclusive; if you set a value for one of them, the other must be set to UNLIMITED.

The PASSWORD_REUSE_TIME parameter specifies the number of days that must pass
before a password can be reused. For example, if you set PASSWORD_REUSE_TIME to 60,
then you cannot reuse the same password within 60 days.

The PASSWORD_REUSE_MAX parameter specifies the number of password changes that
must occur before a password can be reused. If you attempt to reuse the password before the
limit is reached, Oracle will reject your password change.

For example, you can set PASSWORD_REUSE_MAX for the LIMITED_PROFILE profile
created earlier in this chapter.

alter profile LIMITED_PROFILE limit
PASSWORD_REUSE_MAX 3
PASSWORD_REUSE_TIME UNLIMITED;

If the user JANE now attempts to reuse a recent password, the password change attempt will
fail. For example, suppose she changes her password, as in the following line:

alter user JANE identified by austen;

and then changes it again:

alter user JANE identified by whitley;

360 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 19
Blind Folio 19:360

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 19: By What Authority? 361

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 19
Blind Folio 19:361

During her next password change, she attempts to reuse a recent password, and the
attempt fails.

alter user jane identified by austen;
alter user jane identified by austen
*
ERROR at line 1:
ORA-28007: the password cannot be reused

She cannot reuse any of her recent passwords; she will need to come up with a new password.
Password histories are stored in the table named USER_HISTORY$ under the SYS schema.

In this table, Oracle stores the userid, encrypted password value, and the date/timestamp for the
creation of the password. When the PASSWORD_REUSE_TIME value is exceeded or the number
of changes exceeds PASSWORD_REUSE_MAX, the old password records are deleted from the
SYS.USER_HISTORY$ table. If a new encryption matches an existing encryption, the new
password is rejected.

Because the old passwords are stored in a table owned by SYS, the data is stored in the
SYSTEM tablespace. Therefore, if you plan to maintain a very large password history for a very
large number of users who are forced to change passwords frequently, the space requirements
of the password history table (SYS.USER_HISTORY$) may impact the space requirements of
your SYSTEM tablespace.

Three Standard Roles
Now that Dora has an account, what can she do in Oracle? At this point, nothing—Dora has no
system privileges.

Oracle provides three standard roles for compatibility with previous versions: CONNECT,
RESOURCE, and DBA.

The CONNECT Role
Occasional users will usually be given only the CONNECT role or the CREATE SESSION
privilege. CONNECT gives users the ability to log in and perform basic functions. This ability
becomes meaningful with the addition of access to specific tables belonging to other users, and
the privilege to select, insert, update, and delete rows in these tables, as each of these rights is
granted. In addition to creating sessions, users who have the CONNECT role may also create
tables, views, sequences, clusters, synonyms (discussed in this chapter), and links to other
databases (see Chapter 22).

The RESOURCE Role
More sophisticated and regular users of the database may be granted the RESOURCE role.
RESOURCE gives users the additional rights to create their own tables, sequences, procedures,
triggers, datatypes (see Part IV of this book), operators, indextypes, indexes, and clusters. See
Part III of this book for a discussion of stored procedures and triggers.

The DBA Role
The DBA (database administrator) role has all system privileges—including unlimited space
quotas—and the ability to grant all privileges to other users. In this chapter, dba refers to the

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

person who is the database administrator and has the DBA role, while DBA refers just to those
privileges encompassed by the DBA role. SYSTEM is for use by a DBA user. Some of the rights
that are reserved for the dba are never given to, or needed by, normal users. Little time will be
spent here on those rights. Other rights typically used by dbas are also regularly used by and
important to users. This subset of DBA privileges will be explained shortly.

Format for the grant Command
Here is the format for the grant command for system privileges:

grant {system privilege | role | all [privileges] }
[, {system privilege | role | all [privileges] }. . .]
to {user | role} [, {user | role}]. . .
[identified by password]
[with admin option]

By using the grant command, you can grant any system privilege or role to another user,
to another role, or to public. The with admin option clause permits the grantee to bestow the
privilege or role on other users or roles. The all clause grants the user or role all privileges except
the SELECT ANY DICTIONARY system privilege.

The grantor can revoke a role from a user as well.

Revoking Privileges
Privileges granted can be taken away. The revoke command is similar to the grant command:

revoke {system privilege | role | all [privileges] }
[, {system privilege | role | all [privileges] }. . .]
from {user | role} [, {user | role}]. . .

An individual with the DBA role can revoke CONNECT, RESOURCE, DBA, or any other
privilege or role from anyone, including another dba. This, of course, is dangerous, and is
why DBA privileges should be given neither lightly nor to more than a tiny minority who really
need them.

NOTE
Revoking everything from a given user does not eliminate that user
from Oracle, nor does it destroy any tables that user had created; it
simply prohibits that user’s access to them. Other users with access to
the tables will still have exactly the same access they’ve always had.

To remove a user and all the resources owned by that user, use the drop user command
like this:

drop user username [cascade];

The cascade option drops the user along with all the objects owned by the user, including
referential integrity constraints. The cascade option invalidates views, synonyms, stored

362 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 19
Blind Folio 19:362

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 19: By What Authority? 363

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 19
Blind Folio 19:363

procedures, functions, or packages that refer to objects in the dropped user’s schema. If you don’t
use the cascade option and there are still objects owned by the user, Oracle does not drop the
user and instead returns an error message.

What Users Can Grant
A user can grant privileges on any object he or she owns. The dba can grant any system privilege
(because the DBA role has the GRANT ANY and the GRANT ANY ROLE privileges).

Suppose that user Dora owns the COMFORT table and is a dba. She creates two new users,
Bob and Judy, with these privileges:

create user Judy identified by sarah;

User created.

grant CONNECT to Judy;

Grant succeeded.

create user Bob identified by carolyn;

User created.

grant CONNECT, RESOURCE to bob;

Grant succeeded.

This sequence of commands gives both Judy and Bob the ability to connect to Oracle, and
gives Bob some extra capabilities. But can either do anything with Dora’s tables? Not without
explicit access.

To give others access to your tables, use a second form of the grant command:

grant { object privilege | all [privileges] }
[(column [, column] . . .)]
[, { object privilege | all [privileges] }
[(column [, column] . . .)]] . . .
on object to {user | role}
[with grant option]
[with hierarchy option];

The privileges a user can grant include these:

■ On the user’s tables, views, and materialized views:
INSERT
UPDATE (all or specific columns)
DELETE
SELECT

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

364 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 19
Blind Folio 19:364

The INSERT, UPDATE, and DELETE privileges can only be granted on materialized
views if they are updateable. See Chapter 23 for details on the creation of
materialized views.

■ On tables, you can also grant:
ALTER (table—all or specific columns)
REFERENCES
INDEX (columns in a table)
ON COMMIT REFRESH
QUERY REWRITE
ALL (of the items previously listed)

■ On procedures, functions, packages, abstract datatypes, libraries, indextypes,
and operators:
EXECUTE

■ On sequences:
SELECT
ALTER

■ On directories (for BFILE LOB datatypes and external tables):
READ
WRITE

■ On abstract datatypes and views:
UNDER (for the ability to create subviews under a view, or subtype under a type)

The privilege granted must be one of the object privileges (ALL, ALTER, DELETE, EXECUTE,
INDEX, INSERT, ON COMMIT REFRESH, QUERY REWRITE, READ, REFERENCES, SELECT,
UNDER, UPDATE, or WRITE). These privileges give the grantee the ability to take some action on
the object. The object can be one of the objects listed here or a synonym for any of these objects.

When you execute another user’s procedure or function, it is typically executed using the
privileges of its owner. This means that you don’t need explicit access to the data the procedure
or function uses; you see only the result of the execution, not the underlying data. You can also
create stored procedures that execute under the privileges of the invoking user instead of the
procedure owner; see Chapter 29 for details.

Dora gives Bob SELECT access to the COMFORT table:

grant select on COMFORT to Bob;

Grant succeeded.

The with grant option clause of the grant command allows the recipient of that grant to pass
along the privileges he or she has received to other users. If the user Dora grants privileges on
her tables to the user Bob with grant option, then Bob can make grants on Dora’s tables to other
users (Bob can only pass along those privileges—such as SELECT—that he has been granted). If

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 19: By What Authority? 365

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 19
Blind Folio 19:365

you intend to create views based on another user’s tables and grant access to those views to other
users, you first must be granted access with grant option to the base tables.

Moving to Another User with connect
To test the success of her grant, Dora connects to Bob’s username with the connect command.
This command may be used via one of the following methods:

■ By entering both the username and password on the same line as the command

■ By entering the command alone and then responding to prompts

■ By entering the command and username and responding to the prompt for the password

The latter two methods suppress display of the password and are therefore inherently more
secure. The following listing shows a sample connection to the database.

connect Bob/carolyn

Connected.

Once connected, Dora selects from the table to which Bob has been given SELECT access.

NOTE
Unless a synonym is used, the table name must be preceded by the
username of the table’s owner. Without this, Oracle will say the table
does not exist.

select * from Dora.COMFORT;

CITY SAMPLEDAT NOON MIDNIGHT PRECIPITATION
------------- --------- ----- -------- -------------
SAN FRANCISCO 21-MAR-01 62.5 42.3 .5
SAN FRANCISCO 22-JUN-01 51.1 71.9 .1
SAN FRANCISCO 23-SEP-01 61.5 .1
SAN FRANCISCO 22-DEC-01 52.6 39.8 2.3
KEENE 21-MAR-01 39.9 -1.2 4.4
KEENE 22-JUN-01 85.1 66.7 1.3
KEENE 23-SEP-01 99.8 82.6
KEENE 22-DEC-01 -7.2 -1.2 3.9

For convenience, a view named COMFORT is created, which is simply a straight select from
the table Dora.COMFORT:

create view COMFORT as select * from Dora.COMFORT;

View created.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Selecting from this view will produce exactly the same results as selecting from
Dora.COMFORT:

select * from COMFORT;

CITY SAMPLEDAT NOON MIDNIGHT PRECIPITATION
------------- --------- ----- -------- -------------
SAN FRANCISCO 21-MAR-01 62.5 42.3 .5
SAN FRANCISCO 22-JUN-01 51.1 71.9 .1
SAN FRANCISCO 23-SEP-01 61.5 .1
SAN FRANCISCO 22-DEC-01 52.6 39.8 2.3
KEENE 21-MAR-01 39.9 -1.2 4.4
KEENE 22-JUN-01 85.1 66.7 1.3
KEENE 23-SEP-01 99.8 82.6
KEENE 22-DEC-01 -7.2 -1.2 3.9

Now Dora returns to her own username and creates a view that selects only a part of the
COMFORT table:

connect Dora/psyche
Connected.

create view SOMECOMFORT as
select * from COMFORT
where City = 'KEENE';

View created.

She then grants both SELECT and UPDATE privileges to Bob on this view, and revokes all
privileges from Bob (via the revoke command) for the whole COMFORT table:

grant select, update on SOMECOMFORT to Bob;

Grant succeeded.

revoke all on COMFORT from Bob;

Revoke succeeded.

Dora then reconnects to Bob’s username to test the effects of this change:

connect Bob/carolyn
Connected.

select * from COMFORT;
*

ERROR at line 1: ORA-04063: view "BOB.COMFORT" has errors

Attempting to select from his COMFORT view fails because the underlying table named
in Bob’s view was the Dora.COMFORT table. Not surprisingly, attempting to select from

366 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 19
Blind Folio 19:366

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Dora.COMFORT would produce exactly the same message. Next, an attempt to select
from Dora.SOMECOMFORT is made:

select * from Dora.SOMECOMFORT;

CITY SAMPLEDAT NOON MIDNIGHT PRECIPITATION
------------- --------- ----- -------- -------------
KEENE 21-MAR-01 39.9 -1.2 4.4
KEENE 22-JUN-01 85.1 66.7 1.3
KEENE 23-SEP-01 99.8 82.6
KEENE 22-DEC-01 -7.2 -1.2 3.9

This works perfectly well, even though direct access to the COMFORT table had been
revoked, because Dora gave Bob access to a portion of COMFORT through the SOMECOMFORT
view. It is just that portion of the table related to KEENE.

This shows a powerful security feature of Oracle: You can create a view using virtually any
restrictions you like or any computations in the columns, and then give access to the view, rather
than to the underlying tables, to other users. They will see only the information the view presents.
This can even be extended to be user-specific. The “Security by User” section later in this chapter
gives complete details on this feature.

Now, the view LITTLECOMFORT is created under Bob’s username, on top of the view
SOMECOMFORT:

create view LITTLECOMFORT as select * from Dora.SOMECOMFORT;

View created.

and the row for September 23, 2001, is updated:

update LITTLECOMFORT set Noon = 88
where SampleDate = '23-SEP-01';

1 row updated.

When the view LITTLECOMFORT is queried, it shows the effect of the update:

select * from LITTLECOMFORT;

CITY SAMPLEDAT NOON MIDNIGHT PRECIPITATION
------------- --------- ----- -------- -------------
KEENE 21-MAR-01 39.9 -1.2 4.4
KEENE 22-JUN-01 85.1 66.7 1.3
KEENE 23-SEP-01 88 82.6
KEENE 22-DEC-01 -7.2 -1.2 3.9

A query of Dora.SOMECOMFORT would show the same results, as would a query of
COMFORT itself if Dora made it on her own username. The update was successful against
the underlying table even though it went through two views (LITTLECOMFORT and
SOMECOMFORT) to reach it.

Chapter 19: By What Authority? 367

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 19
Blind Folio 19:367

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

368 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 19
Blind Folio 19:368

NOTE
You need to grant users SELECT access to any table in which they can
update or delete records. This is in keeping with the evolving ANSI
standard and reflects the fact that a user who only had UPDATE or
DELETE privilege on a table could use the database’s feedback
comments to discover information about the underlying data.

create synonym
An alternative method to creating a view that includes an entire table or view from another user
is to create a synonym:

create synonym LITTLECOMFORT for Dora.SOMECOMFORT;

This synonym can be treated exactly like a view. See the create synonym command in the
Alphabetical Reference.

Using Ungranted Privileges
Let’s say an attempt is made to delete the row you just updated:

delete from LITTLECOMFORT where SampleDate = '23-SEP-01';
*

ERROR at line 1: ORA-01031: insufficient privileges

Bob has not been given DELETE privileges by Dora, so the attempt fails.

Passing on Privileges
Bob can grant authority for other users to access his tables, but cannot bestow on other users
access to tables that don’t belong to him. Here, he attempts to give INSERT authority to Judy:

grant insert on Dora.SOMECOMFORT to Judy;
*

ERROR at line 1: ORA-01031: insufficient privileges

Because Bob does not have this authority, he fails to give it to Judy. Next, Bob tries to pass on
the privilege he does have, SELECT:

grant select on Dora.SOMECOMFORT to Judy;
*

ERROR at line 1: ORA-01031: insufficient privileges

He cannot grant this privilege, either, because the view SOMECOMFORT does not belong to
him. If he had been granted access to SOMECOMFORT with grant option, then the preceding

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

grant command would have succeeded. The view LITTLECOMFORT does belong to him, though,
so he can try to pass authority to that on to Judy:

grant select on LITTLECOMFORT to Judy;

ERROR at line 1:
ORA-01720: grant option does not exist for 'DORA.SOMECOMFORT'

Since the LITTLECOMFORT view relies on one of Dora’s views, and Bob was not granted
SELECT with grant option on that view, Bob’s grant fails.

In addition, a new table, owned by Bob, is created and loaded with the current information
from his view LITTLECOMFORT:

create table NOCOMFORT as
select * from LITTLECOMFORT;

Table created.

SELECT privileges on it are granted to Judy as well:

grant select on NOCOMFORT to Judy;

Grant succeeded.

Queries are made from Judy’s account against the table for which Bob granted the SELECT
privilege to Judy:

connect Judy/sarah
select * from Bob.NOCOMFORT;

CITY SAMPLEDAT NOON MIDNIGHT PRECIPITATION
------------- --------- ----- -------- -------------
KEENE 21-MAR-01 39.9 -1.2 4.4
KEENE 22-JUN-01 85.1 66.7 1.3
KEENE 23-SEP-01 88 82.6
KEENE 22-DEC-01 -7.2 -1.2 3.9

This grant was successful. A NOCOMFORT table was created, and owned, by Bob’s
username. He was able to successfully give access to this table.

If Dora wants Bob to be able to pass on his privileges to others, she can add another clause
to the grant statement:

connect Dora/psyche
grant select, update on SOMECOMFORT to Bob with grant option;

Grant succeeded.

Chapter 19: By What Authority? 369

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 19
Blind Folio 19:369

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The with grant option clause enables Bob to pass on access to SOMECOMFORT to Judy through
his LITTLECOMFORT view. Note that attempts to access a table to which a user does not have
the SELECT privilege always result in this message:

ERROR at line 1: ORA-00942: table or view does not exist

This message appears rather than a message about not having access privilege so that a
person without permission to query a table doesn’t know that it even exists.

Creating a Role
In addition to the three system roles shown earlier in this chapter—CONNECT, RESOURCE, and
DBA—you can create your own roles within Oracle. The roles you create can comprise table or
system privileges or a combination of both. In the following sections, you will see how to create
and administer roles.

To create a role, you need to have the CREATE ROLE system privilege. The syntax for role
creation is shown in the following listing:

create role role_name
[not identified
|identified {by password | using [schema.]package
|externally | globally }];

When a role is first created, it has no privileges associated with it. Password options for roles
are discussed in “Adding a Password to a Role,” later in this chapter.

Two sample create role commands are shown in the following example:

create role CLERK;
create role MANAGER;

The first command creates a role called CLERK, which will be used in the examples in the
following sections of this chapter. The second command creates a role called MANAGER, which
will also be featured in those examples.

Granting Privileges to a Role
Once a role has been created, you may grant privileges to it. The syntax for the grant command
is the same for roles as it was for users. When granting privileges to roles, you use the role name
in the to clause of the grant command, as shown in the following listing:

grant select on COMFORT to CLERK;

As shown in this example, the role name takes the place of the username in the grant
command. The privilege to select from the COMFORT table will now be available to any user
of the CLERK role.

If you are a dba, or have been granted the GRANT ANY PRIVILEGE system role, then you
may grant system privileges—such as CREATE SESSION, CREATE SYNONYM, and CREATE
VIEW—to roles. These privileges will then be available to any user of your role.

370 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 19
Blind Folio 19:370

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 19: By What Authority? 371

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 19
Blind Folio 19:371

The ability to log into the database is given via the CREATE SESSION system privilege. In the
following example, this privilege is granted to the CLERK role. This privilege is also granted to the
MANAGER role, along with the CREATE DATABASE LINK system privilege.

grant CREATE SESSION to CLERK;
grant CREATE SESSION, CREATE DATABASE LINK to MANAGER;

Granting a Role to Another Role
Roles can be granted to other roles. You can do this via the grant command, as shown in the
following example:

grant CLERK to MANAGER;

In this example, the CLERK role is granted to the MANAGER role. Even though you have not
directly granted any table privileges to the MANAGER role, it will now inherit any privileges
that have been granted to the CLERK role. Organizing roles in this way is a common design for
hierarchical organizations.

When granting a role to another role (or to a user, as in the following section), you may grant
the role using the with admin option clause, as shown in the following listing:

grant CLERK to MANAGER with admin option;

If the with admin option clause is used, then the grantee has the authority to grant the role to
other users or roles. The grantee can also alter or drop the role.

Granting a Role to Users
Roles can be granted to users. When granted to users, roles can be thought of as named sets of
privileges. Instead of granting each privilege to each user, you grant the privileges to the role
and then grant the role to each user. This greatly simplifies the administrative tasks involved in
the management of privileges.

NOTE
Privileges that are granted to users via roles cannot be used as the
basis for views, procedures, functions, packages, or foreign keys.
When creating these types of database objects, you must rely on
direct grants of the necessary privileges.

You can grant a role to a user via the grant command, as shown in the following example:

grant CLERK to Bob;

The user Bob in this example will have all of the privileges that were granted to the CLERK
role (CREATE SESSION and SELECT privileges on COMFORT).

When granting a role to a user, you may grant the role using the with admin option clause,
as shown in the following listing:

grant MANAGER to Dora with admin option;

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Dora now has the authority to grant the MANAGER role to other users or roles, or to alter or
drop the role.

Adding a Password to a Role
You can use the alter role command for only one purpose: to change the authority needed to
enable it. By default, roles do not have passwords associated with them. To enable security for
a role, use the identified keyword in the alter role command. There are two ways to implement
this security.

First, you can use the identified by clause of the alter role command to specify a password,
as shown in the following listing:

alter role MANAGER identified by cygnusxi;

Any time a user tries to activate that role, the password will be required. If, however, that role
is set up as a default role for the user, then no password will be required for that role when the
user logs in. See the upcoming “Enabling and Disabling Roles” section of this chapter for more
details on these topics.

Roles can be tied to operating system privileges as well. If this capability is available on your
operating system, then you use the identified externally clause of the alter role command. When
the role is enabled, Oracle will check the operating system to verify your access. Altering a role
to use this security feature is shown in the following example:

alter role MANAGER identified externally;

In most UNIX systems, the verification process uses the /etc/group file. To use this file for any
operating system, the OS_ROLES database startup parameter in the init.ora file must be set to TRUE.

The following example of this verification process is for a database instance called “Local” on
a UNIX system. The server’s /etc/group file may contain the following entry:

ora_local_manager_d:NONE:1:dora

This entry grants the MANAGER role to the account named Dora. The _d suffix indicates that
this role is to be granted by default when Dora logs in. An _a suffix would indicate that this role
is to be enabled with admin option. If this role were also the user’s default role, then the suffix
would be _ad. If more than one user were granted this role, then the additional usernames would
be appended to the /etc/group entry, as shown in the following listing:

ora_local_manager_d:NONE:1:dora,judy

If you use this option, all roles in the database will be enabled via the operating system.

Removing a Password from a Role
To remove a password from a role, use the not identified clause of the alter role command, as
shown in the following listing. By default, roles do not have passwords.

alter role MANAGER not identified;

372 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 19
Blind Folio 19:372

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Enabling and Disabling Roles
When a user’s account is altered, a list of default roles for that user can be created via the default
role clause of the alter user command. The default action of this command sets all of a user’s
roles as default roles, enabling all of them every time the user logs in.

NOTE
The maximum number of roles a user can have enabled at any time is
set via the MAX_ENABLED_ROLES database initialization parameter.

The syntax for this portion of the alter user command is as follows:

alter user username
default role {[role1, role2]
[all | all except role1, role2][NONE]};

As shown by this syntax, a user can be altered to have, by default, specific roles enabled, all
roles enabled, all except specific roles enabled, or no roles enabled. For example, the following
alter user command will enable the CLERK role whenever Bob logs in:

alter user Bob
default role CLERK;

To enable a nondefault role, use the set role command, as shown in this example:

set role CLERK;

You may also use the all and all except clauses that were available in the alter user command:

set role all;
set role all except CLERK;

If a role has a password associated with it, that password must be specified via an identified
by clause:

set role MANAGER identified by cygnusxi;

To disable a role in your session, use the set role none command, as shown in the following
listing. This will disable all roles in your current session. Once all of the roles have been disabled,
re-enable the ones you want.

set role none;

Since you may find it necessary to execute a set role none command from time to time, you
may want to grant the CREATE SESSION privilege to users directly rather than via roles.

Chapter 19: By What Authority? 373

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 19
Blind Folio 19:373

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Revoking Privileges from a Role
To revoke a privilege from a role, use the revoke command, described earlier in this chapter.
Specify the privilege, object name (if it is an object privilege), and role name, as shown in the
following example:

revoke SELECT on COMFORT from CLERK;

Users of the CLERK role will then be unable to query the COMFORT table.

Dropping a Role
To drop a role, use the drop role command, as shown in the following example:

drop role MANAGER;
drop role CLERK;

The roles you specify, and their associated privileges, will be removed from the database
entirely.

Granting UPDATE to Specific Columns
You may want to grant users the SELECT privilege to more columns than you want to grant them
the UPDATE privilege. Since SELECT columns can be restricted through a view, to further restrict
the columns that can be updated requires a special form of the user’s grant command. Here is an
example for two columns in the COMFORT table:

grant update (Noon, Midnight) on COMFORT to Judy;

Revoking Object Privileges
If object privileges can be granted, they can also be taken away. This is similar to the grant
command:

revoke { object privilege | all [privileges]}
[(column [, column]. . .)]

[, { object privilege | all [privileges]}
[(column [, column]. . .)]]. . .]

on object
from {user | role} [,{user | role}]
[cascade constraints] [force];

revoke all removes any of the privileges listed previously, from SELECT through INDEX;
revoking individual privileges will leave intact others that had also been granted. The with grant
option is revoked along with the privilege to which it was attached.

If a user defines referential integrity constraints on the object, Oracle drops these constraints
if you revoke privileges on the object using the cascade constraints option. The force option
applies to user-defined datatypes (see Chapter 31). The force option revokes the EXECUTE
privilege on user-defined datatype objects with table or type dependencies; all dependent objects

374 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 19
Blind Folio 19:374

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 19: By What Authority? 375

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 19
Blind Folio 19:375

will be marked as invalid and data in dependent tables will become inaccessible until the necessary
privilege is re-granted.

Security by User
Access to tables can be granted specifically, table by table, and view by view, to each user.
There is, however, an additional technique that will simplify this process in some cases. Recall
the bookshelf checkout records:

select Name, SUBSTR(Title,1,30) from BOOKSHELF_CHECKOUT;

NAME SUBSTR(TITLE,1,30)
------------------------- ------------------------------
JED HOPKINS INNUMERACY
GERHARDT KENTGEN WONDERFUL LIFE
DORAH TALBOT EITHER/OR
EMILY TALBOT ANNE OF GREEN GABLES
PAT LAVAY THE SHIPPING NEWS
ROLAND BRANDT THE SHIPPING NEWS
ROLAND BRANDT THE DISCOVERERS
ROLAND BRANDT WEST WITH THE NIGHT
EMILY TALBOT MIDNIGHT MAGIC
EMILY TALBOT HARRY POTTER AND THE GOBLET OF
PAT LAVAY THE MISMEASURE OF MAN
DORAH TALBOT POLAR EXPRESS
DORAH TALBOT GOOD DOG, CARL
GERHARDT KENTGEN THE MISMEASURE OF MAN
FRED FULLER JOHN ADAMS
FRED FULLER TRUMAN
JED HOPKINS TO KILL A MOCKINGBIRD
DORAH TALBOT MY LEDGER
GERHARDT KENTGEN MIDNIGHT MAGIC

To enable each borrower to access this table, but restrict the access given to a view of only
each borrower’s own single row, you could create 19 separate views, each with a different name
in the where clause, and you could make separate grants to each of these views for each borrower.
Alternatively, you could create a view whose where clause contained User, the pseudo-column,
like this:

create view MY_CHECKOUT as
select * from BOOKSHELF_CHECKOUT
where SUBSTR(Name,1,INSTR(Name,' ')-1) = User;

The owner of the BOOKSHELF_CHECKOUT table can create this view and grant SELECT on
it to users. A user can then query the BOOKSHELF_CHECKOUT table through the MY_CHECKOUT
view. The where clause will find his or her username in the Name column (see the where clause),
and return just that user’s records.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

376 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 19
Blind Folio 19:376

In the following example, a user name Jed is created and granted access to the MY_CHECKOUT
view. Selecting from that view yields just those books checked out by him.

create user jed identified by hop;

User created.

grant CREATE SESSION to jed;

Grant succeeded.

grant select on MY_CHECKOUT to jed;

Grant succeeded.

connect jed/hop

Connected.

select * from Practice.MY_CHECKOUT;

NAME

TITLE

CHECKOUTD RETURNEDD
--------- ---------
JED HOPKINS
INNUMERACY
01-JAN-02 22-JAN-02

JED HOPKINS
TO KILL A MOCKINGBIRD
15-FEB-02 01-MAR-02

Whenever MY_CHECKOUT is queried, it will return records depending on the pseudo-column
User—the user of SQLPLUS at the moment the view is queried.

Granting Access to the Public
Rather than grant access to every worker, the grant command can be generalized to the public:

grant select on MY_CHECKOUT to public;

This gives everyone access, including users created after this grant was made. However, each
user will still have to access the table using the owner’s username as a prefix. To avoid this, a
dba may create a public synonym (which creates a name accessible to all users that stands for
Practice.MY_CHECKOUT):

create public synonym MY_CHECKOUT for Practice.MY_CHECKOUT;

From this point forward, anyone can access MY_CHECKOUT without prefixing it with the
schema owner (Practice in this case). This approach gives tremendous flexibility for security.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 19: By What Authority? 377

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 19
Blind Folio 19:377

Workers could see only their own salaries, for instance, in a table that contains salaries for
everyone. If, however, a user creates a table or view with the same name as a public synonym,
any future SQL statements by this user will act on this new table or view, and not on the one by
the same name to which the public has access.

NOTE
All of these accesses—and all attempts at system-level operations,
such as logins—may be audited. See AUDIT in the Alphabetical
Reference for an introduction to Oracle’s security auditing
capabilities.

Granting Limited Resources
When granting resource quotas in an Oracle database, the quota parameter of the create user or
alter user command is used, as shown in the following listing. In this example, Bob is granted a
quota of 100MB in the USERS tablespace.

alter user Bob
quota 100M on USERS;

A user’s space quota may be set when the user is created, via the create user command.
If you want to remove limits on a user’s space quota, you can grant that user the UNLIMITED
TABLESPACE system privilege. See the create user and alter user commands in the Alphabetical
Reference for further details on these commands.

Profiles can also be used to enforce other resource limits, such as the amount of CPU time or
idle time a user’s requests to Oracle can take. A profile detailing these resource limits is created
and then assigned to one or more users. See the create profile and alter user command entries in
the Alphabetical Reference for full details.

Advanced Options
In addition to the functions described in this chapter, Oracle supports advanced security features.
Oracle’s Virtual Private Database (VPD) feature offers a security model similar to that described
in the “Security by User” section earlier in this chapter. VPD automatically adds where clauses to
all of the commands issued by different users, allowing you to create complex security programs
that are enforced within the database. With VPD, you can create policies that allow you to have
data from multiple business areas in the same table while users querying the table only see their
business area’s data. Within VPD, you can use a procedure to validate a role instead of embedding
a role in an application (create role rolename identified using procedurename).

A second security option, Oracle Label Security, allows you to assign security labels to rows.
You could, for example, create a system in which managers could see all rows while lower levels
within an organization could only see a subset of the rows. Each row’s security label is compared
to the user’s security privileges during data access. Oracle Label Security is an appropriate solution
when your row-level security rules are best enforced via hierarchical groupings of rows by users.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

For details on VPD and Oracle Label Security, see the Oracle9i Security Products and
Features guide and the Oracle9i Security Overview documentation.

Database administrators can create functions to manage password complexity; for
documentation and an example, see the utlpwdmg.sql file in the /rdbms/admin directory
under the Oracle software home directory.

378 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 19
Blind Folio 19:378

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 20
Blind Folio 20:379

CHAPTER
20

Changing the
Oracle Surroundings

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

L
ike Chapter 19, this chapter looks at that subset of database administrator (DBA)
functions used by most Oracle users—functions not restricted to DBAs. These
include indexes on tables, clusters, sequence generators, and allocations of space
for tables and indexes. This chapter shows how Oracle’s databases are structured
internally, which helps in understanding how Oracle’s many features actually work

and how they interrelate. Only limited options of the create index, create tablespace, and create
cluster commands will be shown in this chapter. Full options are described in Chapter 40 and
are shown in the Alphabetical Reference later in this book.

Indexes
An index is a simple concept. It is typically a listing of keywords accompanied by the location
of information on a subject. To find information on indexes, for instance, you look up the word
“indexes” in the index at the back of this book. It will give the number of the page you are
reading now. The word “indexes” is the key, and the page numbers given point you to the
location of discussions about indexes in this book. This is related to the idea of primary keys
in Oracle, which was described in Chapter 2.

While indexes are not strictly necessary to running Oracle, they do speed the process.
For example, while you could find the information on indexes simply by reading through
this book until you encountered the page with the information on it, this would be slow and
time-consuming. Because the index at the back of the book is in alphabetical order, you can
quickly go to the appropriate spot in the index (without reading every entry) where “index” is
found. If the word is not common, this is quicker than reading through the book from front to
back. These same principles apply to Oracle indexes. For example, if you are searching for a
particular book, you can query with a limiting condition on the Title column:

select * from BOOKSHELF
where Publisher = 'SCHOLASTIC';

If BOOKSHELF does not have an index on the Publisher column, Oracle has to read every
row in the table until it finds all publishers that match the where clause of your query. If the table
is small, that may not cause a performance problem. As the table grows in size, the time required
to return all the matching rows to the user may impact the performance of the application and
the business process it supports.

To speed the data retrieval, you can create an index on the Publisher column. Then, when
you execute the same query, Oracle first looks in the index, which is sorted, thus finding the
publisher named ‘SCHOLASTIC’ very quickly (Oracle doesn’t read every entry, but jumps directly
to the close vicinity of the name, much as you would in looking through the index of a book).
The index entry then gives Oracle the exact location in the table (and on disk) of the row(s) for
that publisher.

Knowing this, it is clear how indexing an important column (one that’s likely to appear in
a where clause) will speed up Oracle’s response to a query. Indexing will likewise speed up
queries where two tables are joined, if the columns that are related (by the where clause) are
indexed. These are the basics of indexing; the rest of this chapter shows a number of additional
features and issues related to indexing that will affect how quickly it works. For the impact of
indexes on the optimization of your queries, see Chapter 38.

380 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 20
Blind Folio 20:380

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Creating an Index
You create an index via the create index command. When you designate a primary key or a
unique column during table creation or maintenance, Oracle will automatically create a unique
index to support that constraint. The full command syntax for create index is shown in the
Alphabetical Reference. Its most commonly used format is as follows:

create [bitmap | unique] index index on table(column [,column]. . .)
[reverse];

index must be a unique name and follow the naming conventions of Oracle columns. table is
simply the name of the table on which the index will be established, and column is the name
of the column.

Bitmap indexes allow you to create useful indexes on columns with very few distinct values;
see “Creating a Bitmap Index,” later in this chapter. The reverse keyword tells Oracle to reverse
the bytes of the indexed value, which may improve the data and processing distribution during
the insert of many sequential data values.

You can establish a single index on multiple columns by listing the columns one after the
other, separated by commas. For the following examples, the BOOKSHELF_AUTHOR table was
created without a primary key:

create table BOOKSHELF_AUTHOR
(Title VARCHAR2(100),
AuthorName VARCHAR2(50),
constraint TitleFK Foreign key (Title) references BOOKSHELF(Title),
constraint AuthorNameFK Foreign key (AuthorName)
references AUTHOR(AuthorName));

Enforcing Uniqueness
Recall from Chapter 2 that a set of tables is said to be in Third Normal Form if all of the columns
in each table’s rows are dependent only on the primary key. In the BOOKSHELF_AUTHOR
table, the primary key is the combination of the columns Title and AuthorName. In other tables,
a primary key might be an employee ID, a client ID, an account number, or, in a bank, a
combination of branch number and account number.

In each of these cases, the uniqueness of the primary key is critical. A bank with duplicate
account numbers, or a billing system with duplicate client IDs, would wreak havoc as
transactions were posted to accounts belonging to different people but having the same primary
key (this is why names usually are not commonly used as primary keys—there are too many
duplicates). To avoid this danger, have your database help prevent the creation of duplicate
primary keys. Oracle offers two facilities that help:

■ You can guarantee the uniqueness of a key through either indexing or constraints.

■ You can use the sequence generators (discussed later in this chapter).

Creating a Unique Index
You can create a unique index on the combination of Title and AuthorName in the BOOKSHELF_
AUTHOR table in three ways: by creating a primary key constraint, by creating a unique constraint,

Chapter 20: Changing the Oracle Surroundings 381

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 20
Blind Folio 20:381

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

382 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 20
Blind Folio 20:382

or by creating a unique index. If you create a constraint, you will be able to create foreign keys that
refer to it. If you create the unique index first, you will still be able to create a primary key on the
table—Oracle will use the existing index as the primary key index.

The following listing shows the create index command for this multicolumn index:

create unique index BA$TITLE_AUTHOR
on BOOKSHELF_AUTHOR(Title, AuthorName);

The primary key method is shown here:

alter table BOOKSHELF_AUTHOR
add constraint BA_PK primary key (Title, AuthorName);

To create a unique constraint, just replace the primary key clause with unique. When you
attempt to create a unique index on a table that already has data in it, the command will fail if
any duplicates exist. If the create unique index statement succeeds, then any future attempt to
insert (or update) a row that would create a duplicate key will fail and result in this error message:

ERROR at line 1: ORA-00001: unique constraint (BOOKSHELF_AUTHOR.BA_PK) violated

When you create an index, it requires storage space. See “Placing an Index in the Database,”
later in this chapter, for details concerning the location of the created indexes.

Creating a Bitmap Index
To help tune queries that use nonselective columns in their limiting conditions, you can use
bitmap indexes. Bitmap indexes should only be used if the data is infrequently updated, because
they add to the cost of all data manipulation transactions against the tables they index.

Bitmap indexes are appropriate when nonselective columns are used as limiting conditions
in a query. For example, if there are very few distinct Rating values in a very large BOOKSHELF
table, then you would not usually create a traditional B-tree index on Rating, even if it is commonly
used in where clauses. However, Rating may be able to take advantage of a bitmap index.

Internally, a bitmap index maps the distinct values for the columns to each record. For this
example, assume there are five Rating values (1, 2, 3, 4, and 5) in a very large BOOKSHELF
table. Since there are five Rating values, there are five separate bitmap entries for the Rating
bitmap index. If the first five rows in the table have a Rating value of 1, and the next five
have a Rating value of 2, then the Rating bitmap entries would resemble those shown in the
following listing:

Rating bitmaps:
1: < 1 1 1 1 1 0 0 0 0 0 >
2: < 0 0 0 0 0 1 1 1 1 1 >
3: < 0 0 0 0 0 0 0 0 0 0 >
4: < 0 0 0 0 0 0 0 0 0 0 >
5: < 0 0 0 0 0 0 0 0 0 0 >

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In the preceding listing, each column of 0s and 1s represents a row in the BOOKSHELF table.
Since ten rows are considered, ten bitmap values are shown. Reading the bitmap for Rating, the
first five records have a Rating value of 1 (the ‘1’ values), and the next five do not (the ‘0’ values).
There is a separate bitmap entry for each possible value.

The Oracle optimizer can dynamically convert bitmap index entries to RowIDs during query
processing. This conversion capability allows the optimizer to use indexes on columns that have
many distinct values (via B-tree indexes) and on those that have few distinct values (via bitmap
indexes).

To create a bitmap index, use the bitmap clause of the create index command, as shown in
the following listing. You should indicate its nature as a bitmap index within the index name so
that it will be easy to detect during tuning operations.

create bitmap index BOOKSHELF$BITMAP_RATING
on BOOKSHELF(Rating);

If you choose to use bitmap indexes, you will need to weigh the performance benefit during
queries against the performance cost during data manipulation commands. The more bitmap
indexes there are on a table, the greater the cost will be during each transaction. You should not
use bitmap indexes on a column that frequently has new values added to it. Each addition of a
new value to the Rating column will require that a corresponding new bitmap be created.

When to Create an Index
Indexes are most useful on larger tables, on columns that are likely to appear in where clauses
either as a simple equality, such as this shown next:

where AuthorName = 'STEPHEN JAY GOULD'
and Rating = '5'

or in joins, such as this:

where BOOKSHELF.Title = BOOKSHELF_AUTHOR.Title

See Chapter 38 for details on the usage of indexes by the optimizer. If there is no where clause,
no index is used.

Variety in Indexed Columns
Traditional (B-tree) indexes are most useful on columns with a significant amount of variety in
their data. For instance, a column that indicates whether a company is a current client with a Y
or N would be a poor choice for a traditional index, and could actually slow down a query; a
bitmap index would be a much better choice for that example. A telephone number column
would be a good candidate for a B-tree index. An area code column would be marginal,
depending on the distribution of unique area code values in the table.

In a multicolumn index, put the column likely to be accessed most often first. As of Oracle9i,
you can use the optimizer’s skip-scan feature to use multicolumn indexes even if the leading
column is not mentioned in the query. See Chapter 38 for examples of index usage.

Chapter 20: Changing the Oracle Surroundings 383

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 20
Blind Folio 20:383

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Small tables may be better left unindexed, except to enforce uniqueness in the primary key.
A small table is one that takes fewer than five database blocks; beyond that, indexing will nearly
always be productive.

Bitmap indexes present a viable indexing alternative for columns that have very few distinct
values. Bitmap indexes are commonly used for “flag” columns that are restricted to values such
as Y and N. Bitmap indexes are particularly effective when multiple bitmap indexes are used in
a query; the optimizer can quickly evaluate the bitmaps and determine which rows meet all of
the criteria for which bitmap indexes are available.

How Many Indexes to Use on a Table
You can create many indexes on a single table, with many columns in each index. The tradeoff
for indexing too many columns is the speed of inserting new rows: Every index also must have a
new entry made in it when an insert is done. If your table will be used primarily for queries, the
only cost of indexing as many columns as you can (that have variety, and will be used in where
clauses, of course) is using some extra disk space. Strictly from a data loading performance
perspective, it is better to have a small number of indexes with many columns than to have
many indexes with a small number of columns in each.

Except in cluster indexes (discussed later in this chapter), columns that are NULL will not
appear in an index. Indexes based on more than one column will have an entry if any of the
columns are not NULL. If all columns are NULL for a given row, no entry will appear for it in
the index.

Placing an Index in the Database
You can specify where the index to a table is placed by assigning it to a specific tablespace.
As was briefly mentioned in Chapter 19, a tablespace is a logical division of the database,
corresponding to one or more datafiles. Datafiles provide the physical storage for the database—
sections of disk where tables and indexes are stored. Databases have several tablespaces, each
with its own name. To reduce the potential for disk contention, an index for a table should be
placed in a tablespace that is on a physically separate disk drive than its corresponding table.

To specify the tablespace in which to locate an index, the normal create index statement is
simply followed by the word tablespace and the tablespace name, as shown here:

create unique index BA$TITLE_AUTHOR
on BOOKSHELF_AUTHOR(Title, AuthorName)

tablespace BA_INDEXES;

In this example, BA_INDEXES is the name given to a tablespace previously created by the
database administrator. The use of the tablespace option in a create index statement lets you
physically separate your tables from their associated indexes.

When you create a primary key or unique constraint, Oracle will automatically create an
index to enforce uniqueness. Unless you specify otherwise, that index will be created in the
same tablespace as the table that the constraint modifies, and will use the default storage
parameters for that tablespace. Since that storage location is typically undesirable, you should
take advantage of the using index clause when creating primary key and unique constraints.

The using index clause allows you to specify the storage parameters and tablespace location
for an index created by a constraint. In the following example, a primary key is created on the

384 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 20
Blind Folio 20:384

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

BOOKSHELF_AUTHOR table and is placed in the BA_INDEXES tablespace. This example assumes
that there is not an existing index on the specified columns.

alter table BOOKSHELF_AUTHOR
add constraint BA_PK primary key (Title, AuthorName)

using index tablespace BA_INDEXES;

See “Integrity Constraint” in the Alphabetical Reference for further options for the using
index clause, and see create index in the Alphabetical Reference for performance-related
index creation options.

Rebuilding an Index
Oracle provides a fast index rebuild capability that allows you to re-create an index without
having to drop the existing index. The currently available index is used as the data source for
the index, instead of using the table as the data source. During the index rebuild, you can
change its storage parameters and tablespace assignment.

In the following example, the BA_PK index is rebuilt (via the rebuild clause). Its storage
parameters are changed to use an initial extent size of 8MB and a next extent size of 4MB, in
the BA_INDEXES tablespace.

alter index BA_PK rebuild
storage (initial 8M next 4M pctincrease 0)
tablespace BA_INDEXES;

NOTE
When the BA_PK index is rebuilt, there must be enough space for
both the old index and the new index to exist simultaneously. After
the new index has been created, the old index will be dropped and
its space will be freed.

When you create an index that is based on previously indexed columns, Oracle may be
able to use the existing indexes as data sources for the new index. For example, if you create a
two-column index on the Title and AuthorName columns, and later decide to create an index
on just the Title column, Oracle will use the existing index as the data source for the new index.
As a result, the performance of your create index commands will improve—if you create the
indexes in an order that can take advantage of this feature.

As of Oracle8i, you can rebuild indexes while they are being accessed via the rebuild online
clause of the alter index command.

Function-based Indexes
As of Oracle8i, you can create function-based indexes. Prior to Oracle8i, any query that performed
a function on a column could not use that column’s index. Thus, this query could not use an
index on the Title column:

select * from BOOKSHELF
where UPPER(Title) = 'MY LEDGER';

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 20
Blind Folio 20:385

Chapter 20: Changing the Oracle Surroundings 385

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

but this query could:

select * from BOOKSHELF
where Title = 'MY LEDGER';

since the second query does not perform the UPPER function on the Title column. As of
Oracle8i, you can create indexes that allow function-based accesses to be supported by index
accesses. Instead of creating an index on the column Title, you can create an index on the
column expression UPPER(Title), as shown in the following listing:

create index BOOKSHELF$UPPER_TITLE on
BOOKSHELF(UPPER(Title));

Although function-based indexes can be useful, be sure to consider the following questions
when creating them:

■ Can you restrict the functions that will be used on the column? If so, can you restrict
all functions from being performed on the column?

■ Do you have adequate storage space for the additional indexes?

■ When you drop the table, you will be dropping more indexes (and therefore more
extents) than before; how will that impact the time required to drop the table?

Function-based indexes are useful, but you should implement them sparingly. The more
indexes you create on a table, the longer all inserts, updates, and deletes will take.

NOTE
Your DBA must enable the “query rewrite” capabilities
in the database in order for you to use function-based
indexes. The QUERY_REWRITE_ENABLED initialization
parameter defaults to FALSE.

Tablespaces and the Structure of the Database
People who have worked with computers for any period of time are familiar with the concept of
a file; it’s a place on disk where information is stored, and it has a name. Its size is usually not
fixed: if you add information to the file, it can grow larger and take up more disk space, up to
the maximum available. This process is managed by the operating system, and often involves
distributing the information in the file over several smaller sections of the disk that are not physically
near each other. The operating system handles the logical connection of these smaller sections
without your being aware of it at all. To you, the file looks like a single whole.

Oracle uses files as a part of its organizational scheme, but its logical structure goes beyond
the concept of a file. A datafile is an operating system file used to store Oracle data. Each datafile
is assigned to a tablespace—a logical division within the database. Tablespaces commonly
include the SYSTEM tablespace (for Oracle’s internal data dictionary), USERS (for user objects),
and others for application tables, indexes, and additional database structures.

386 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 20
Blind Folio 20:386

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The datafiles can have a fixed size or can be allowed to extend themselves automatically
when they fill, up to a defined limit. To add more space to a tablespace, you can manually
extend your datafiles or add new datafiles. New rows can then be added to existing tables, and
those tables may then have rows in multiple datafiles.

Each table has a single area of disk space, called a segment, set aside for it in the tablespace.
Each segment, in turn, has an initial area of disk space, called the initial extent, set aside for it in
the tablespace. Once the segment has used up this space, the next extent, another single area of
disk space, is set aside for it. When it has used this up as well, yet another next extent is set aside.
This process continues with every table until the whole tablespace is full. At that point, someone
has to add a new file to the tablespace or extend the tablespace’s files before any more growth in
the tables can take place.

Every database also contains a SYSTEM tablespace. It contains the data dictionary, and the
names and locations of all the tablespaces, tables, indexes, and clusters for this database. The
objects within the SYSTEM tablespace are owned by the SYS and SYSTEM users; no other users
should own objects in this tablespace, as they may impact the rest of the database.

create tablespace
The create tablespace command allows one or more files to be assigned immediately to the
tablespace. It also specifies a default storage clause for any tables created without an explicit
storage clause mentioned in the create table or create index statement. You must have DBA
privileges to create tablespaces; see Chapter 40 for a discussion of the creation and management
of tablespaces.

The default values for storage are operating-system-specific. The minimum and maximum
values for each of these options are available in the Alphabetical Reference under create table
and “Storage.” These options may be changed with the alter tablespace command. The create
table command for the BOOKSHELF table, placed in the PRACTICE tablespace, looks like this:

create table BOOKSHELF
(Title VARCHAR2(100) primary key,
Publisher VARCHAR2(20),
CategoryName VARCHAR2(20),
Rating VARCHAR2(2),
constraint CATFK foreign key (CategoryName)
references CATEGORY(CategoryName)
)
tablespace PRACTICE
;

In this form, the BOOKSHELF table will inherit the default storage definitions of the
PRACTICE tablespace. To override these defaults, the storage clause is used in the create
table command:

create table BOOKSHELF
(Title VARCHAR2(100) primary key,
Publisher VARCHAR2(20),
CategoryName VARCHAR2(20),
Rating VARCHAR2(2),

Chapter 20: Changing the Oracle Surroundings 387

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 20
Blind Folio 20:387

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

constraint CATFK foreign key (CategoryName)
references CATEGORY(CategoryName)
)
tablespace PRACTICE
storage (initial 4M next 4M minextents 2 pctincrease 0)
;

If you use temporary tables (see Chapter 13), you can create a tablespace dedicated to their storage
needs. Use the create temporary tablespace command (fully described in the Alphabetical
Reference) to support this special type of table.

As of Oracle8i, you can create locally managed tablespaces; as of Oracle9i, locally managed
tablespaces are the default. In a locally managed tablespace, Oracle maintains a bitmap in the
datafile headers to manage the location of data within the datafiles. If you are not using a locally
managed tablespace, the extent management information is maintained by tables in the data
dictionary (a dictionary-managed tablespace). In general, locally managed tablespaces provide
a simpler and more consistent way to manage the space within your tablespaces. Space
management is covered in greater detail in Chapter 40.

DBAs can alter a tablespace via the alter tablespace command. Tablespaces may be altered
to be read-only:

alter tablespace PRACTICE read only;

or changed from read-only to writable:

alter tablespace PRACTICE read write;

The data in a read-only tablespace cannot be altered. As of Oracle8i, you can move
tablespaces among databases; this concept, called a transportable tablespace, requires that the
tablespaces to be moved first be placed in a read-only state. See the Oracle9i DBA Handbook
for details on the management of datafiles and tablespaces.

Temporary Tablespaces
When you execute a command that performs a sorting or grouping operation, Oracle may create
a temporary segment to manage the data. The temporary segment is created in a temporary
tablespace, and the user executing the command does not have to manage that data. Oracle
will dynamically create the temporary segment and will release its space once the operation
has completed. If there is not enough temporary space available and the temporary tablespace
datafiles cannot autoextend, the command will fail. Each user in the database has an associated
temporary tablespace—there may be just one such tablespace for all users to share. As of
Oracle9i, DBAs can define a default temporary tablespace for all users. See the Oracle9i DBA
Handbook for further details.

Rollback Segments and System-Managed Undo
The SQL command rollback allows users to undo transactions that have been made against a
database. The rollback command is available for any update, insert, or delete transaction; it is
not available for changes to database objects (such as alter table commands). When you select

388 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 20
Blind Folio 20:388

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 20: Changing the Oracle Surroundings 389

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 20
Blind Folio 20:389

data that another user is changing, Oracle uses the rollback segments to show you the data as it
existed before the changes began.

How the Database Uses Rollback Segments
Rollback segments are involved in every transaction that occurs within the database. The number
and size of rollback segments available are specified by the DBA during database creation
(see the create rollback segment entry in the Alphabetical Reference). Because rollback
segments are created in tablespaces, their maximum size is limited to the amount of space
in the tablespaces’ datafiles.

The database assigns transactions to rollback segments in a least recently used/round-robin
fashion, resulting in a fairly even distribution of the number of transactions across the pool of
rollback segments. Although you can specify which rollback segment a transaction should use,
most transactions use the default. Because of the round-robin assignment method used, it is
usually not advantageous to have rollback segments of varied sizes.

If you use rollback segments, you should work with your DBA to understand any variations
in size that exist among them. Some databases may have very large rollback segments available
for large transactions; the same transactions would fail if executed while using smaller rollback
segments.

If your transaction exceeds the amount of space available in its rollback segment, and the
rollback segment cannot extend further, the transaction will fail. If you execute a long-running
query, and the data it relies on has changed and the prior version of that data is no longer
available in the rollback segments, your query will fail. It is critical for application developers
to understand how the DBAs have configured the rollback segments and how their applications
modify data.

Using Undo Tablespaces
As of Oracle9i, you can use automatic undo management to place all undo data in a single
tablespace. When the DBA creates an undo tablespace, Oracle manages the storage, retention,
and space utilization for your rollback data via system-managed undo (SMU). When a retention
time is set (in the database’s initialization parameter file), Oracle will make a best effort to retain
all committed undo data in the database for the specified number of seconds. With that setting,
any query taking less than the retention time should not result in an error as long as the undo
tablespace has been sized properly. While the database is running, DBAs can change the
UNDO_RETENTION parameter value via the alter system command.

Clusters
Clustering is a method of storing tables that are intimately related and often joined together
into the same area on disk. For example, instead of the BOOKSHELF table being in one section
of the disk and the BOOKSHELF_AUTHOR table being somewhere else, their rows could be
interleaved together in a single area, called a cluster. The cluster key is the column or columns
by which the tables are usually joined in a query (for example, Title for the BOOKSHELF and
BOOKSHELF_AUTHOR tables). To cluster tables, you must own the tables you are going to
cluster together.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The following is the basic format of the create cluster command:

create cluster cluster (column datatype [,column
datatype]. . .) [other options];

The cluster name follows the table-naming conventions, and column datatype is the name
and datatype you will use as the cluster key. The column name may be the same as one of the
columns of a table you will put in this cluster, or it may be any other valid name. Here’s an
example:

create cluster BOOKandAUTHOR (Col1 VARCHAR2(100));

Cluster created.

This creates a cluster (a space is set aside, as it would be for a table) with nothing in it. The
use of Col1 for the cluster key is irrelevant; you’ll never use it again. However, its definition
should match the primary key of the table to be added. Next, tables are created to be included
in this cluster:

create table BOOKSHELF
(Title VARCHAR2(100) primary key,
Publisher VARCHAR2(20),
CategoryName VARCHAR2(20),
Rating VARCHAR2(2),
constraint CATFK foreign key (CategoryName)
references CATEGORY(CategoryName)
)
cluster BOOKandAUTHOR (Title);

Prior to inserting rows into BOOKSHELF, you must create a cluster index:

create index BOOKandAUTHORndx
on cluster BOOKandAUTHOR;

Recall that the presence of a cluster clause here precludes the use of a tablespace or storage
clause. Note how this structure differs from a standard create table statement:

create table BOOKSHELF
(Title VARCHAR2(100) primary key,
Publisher VARCHAR2(20),
CategoryName VARCHAR2(20),
Rating VARCHAR2(2),
constraint CATFK foreign key (CategoryName)
references CATEGORY(CategoryName)
);

In the first create table statement, the cluster BOOKandAUTHOR (Title) clause follows the
closing parenthesis of the list of columns being created in the table. BOOKandAUTHOR is the
name of the cluster previously created. Title is the column in this table that will be stored in the

390 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 20
Blind Folio 20:390

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

cluster key Col1. It is possible to have multiple cluster keys in the create cluster statement, and
to have multiple columns stored in those keys in the create table statement. Notice that nowhere
does either statement say explicitly that the Title column goes into the Col1 cluster key. The
matchup is done by position only: Col1 and Title were both the first objects mentioned in their
respective cluster statements. Multiple columns and cluster keys are matched first to first, second
to second, third to third, and so on. Now a second table is added to the cluster:

create table BOOKSHELF_AUTHOR
(Title VARCHAR2(100),
AuthorName VARCHAR2(50),
constraint TitleFK Foreign key (Title) references BOOKSHELF(Title),
constraint AuthorNameFK Foreign key (AuthorName)
references AUTHOR(AuthorName)
)
cluster BOOKandAUTHOR (Title);
;

When these two tables are clustered, each unique Title is actually stored only once, in the cluster
key. To each Title are attached the columns from both of these tables.

The data from both of these tables is actually stored in a single location, almost as if the cluster
were a big table containing data drawn from both of the tables that make it up.

An additional cluster option, a hash cluster, uses the cluster column values to determine the
physical location in which the row is stored. See the entry for the create cluster command in the
Alphabetical Reference.

Sequences
You can assign unique numbers, such as customer IDs, to columns in your database by using a
sequence; you don’t need to create a special table and code to keep track of the unique numbers
in use. This is done by using the create sequence command, as shown here:

create sequence CustomerID increment by 1 start with 1000;

This will create a sequence that can be accessed during insert and update commands (also
select, although this is rare). Typically, the unique sequence value is created with a statement
like the following:

insert into CUSTOMER
(Name, Contact, ID)

values
('COLE CONSTRUCTION','VERONICA',CustomerID.NextVal);

The NextVal attached to CustomerID tells Oracle you want the next available sequence
number from the CustomerID sequence. This is guaranteed to be unique; Oracle will not give
it to anyone else. To use the same number more than once (such as in a series of inserts into
related tables), CurrVal is used instead of NextVal, after the first use. That is, using NextVal
ensures that the sequence table gets incremented and that you get a unique number, so you have
to use NextVal first. Once you’ve used NextVal, that number is stored in CurrVal for your use

Chapter 20: Changing the Oracle Surroundings 391

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 20
Blind Folio 20:391

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

anywhere, until you use NextVal again, at which point both NextVal and CurrVal change to the
new sequence number.

If you use both NextVal and CurrVal in a single SQL statement, both will contain the value
retrieved by NextVal. Neither of these can be used in subqueries, as columns in the select clause
of a view, with DISTINCT, UNION, INTERSECT, or MINUS, or in the order by, group by, or
having clause of a select statement.

You can also cache sequence values in memory for faster access, and you can make the
sequence cycle back to its starting value once a maximum value is reached. See create sequence
in the Alphabetical Reference.

392 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 20
Blind Folio 20:392

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 21
Blind Folio 21:393

CHAPTER
21

Using SQL*Loader
to Load Data

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

394 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 21
Blind Folio 21:394

I
n the scripts provided in Appendix A, a large number of insert commands are
executed. In place of those inserts, you could create a file containing the data to
be loaded and then use Oracle’s SQL*Loader utility to load the data. This chapter
provides you with an overview of the use of SQL*Loader and its major capabilities.
Two additional data-movement utilities, Export and Import, are covered in Chapter 40.

SQL*Loader, Export, and Import are described in great detail in the Oracle9i Database Utilities
provided with the standard Oracle documentation set.

SQL*Loader loads data from external files into tables in the Oracle database. SQL*Loader
requires two primary files: the datafile, which contains the information to be loaded, and the
control file, which contains information on the format of the data, the records and fields within
the file, the order in which they are to be loaded, and even, when needed, the names of the
multiple files that will be used for data. You can also combine the control file information into
the datafile itself, although the two are usually separated to make it easier to reuse the control file.

When executed, SQL*Loader will automatically create a log file and a “bad” file. The log file
records the status of the load, such as the number of rows processed and the number of rows
committed. The “bad” file will contain all the rows that were rejected during the load due to
data errors, such as nonunique values in primary key columns.

Within the control file, you can specify additional commands to govern the load criteria. If
these criteria are not met by a row, the row will be written to a “discard” file. The log, bad, and
discard files will have the extensions .log, .bad, and .dsc, respectively. Control files are typically
given the extension .ctl.

SQL*Loader is a powerful utility for loading data, for several reasons:

■ It is highly flexible, allowing you to manipulate the data as it is being loaded.

■ You can use SQL*Loader to break a single large data set into multiple sets of
data during commit processing, significantly reducing the size of the transactions
processed by the load.

■ You can use its Direct Path loading option to perform loads very quickly.

To start using SQL*Loader, you should first become familiar with the control file, as described
in the next section.

The Control File
The control file tells Oracle how to read and load the data. The control file tells SQL*Loader
where to find the source data for the load and the tables into which to load the data, along
with any other rules that must be applied during the load processing. These rules can include
restrictions for discards (similar to where clauses for queries) and instructions for combining
multiple physical rows in an input file into a single row during an insert. SQL*Loader will use
the control file to create the insert commands executed for the data load.

The control file is created at the operating-system level, using any text editor that enables
you to save plain text files. Within the control file, commands do not have to obey any rigid
formatting requirements, but standardizing your command syntax will make later maintenance
of the control file simpler.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 21: Using SQL*Loader to Load Data 395

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 21
Blind Folio 21:395

The following listing shows a sample control file for loading data into the BOOKSHELF table:

LOAD DATA
INFILE 'bookshelf.dat'
INTO TABLE BOOKSHELF
(Title POSITION(01:100) CHAR,
Publisher POSITION(101:120) CHAR,
CategoryName POSITION(121:140) CHAR,
Rating POSITION(141:142) CHAR)

In this example, data is loaded from the file bookshelf.dat into the BOOKSHELF table. The
bookshelf.dat file contains the data for all four of the BOOKSHELF columns, with whitespace
padding out the unused characters in those fields. Thus, the Publisher column value always
begins at space 101 in the file, even if the Title value is less than 100 characters. Although this
formatting makes the input file larger, it may simplify the loading process. No length needs to
be given for the fields, since the starting and ending positions within the input data stream
effectively give the field length.

The infile clause names the input file, and the into table clause specifies the table into
which the data will be loaded. Each of the columns is listed, along with the position where its
data resides in each physical record in the file. This format allows you to load data even if the
source data’s column order does not match the order of columns in your table.

To perform this load, the user executing the load must have INSERT privilege on the
BOOKSHELF table.

Loading Variable-Length Data
If the columns in your input file have variable lengths, you can use SQL*Loader commands to
tell Oracle how to determine when a value ends. In the following example, a comma separates
the input values:

LOAD DATA
INFILE 'bookshelf.dat'
BADFILE '/user/load/bookshelf.bad'
TRUNCATE
INTO TABLE BOOKSHELF
FIELDS TERMINATED BY ","
(Title, Publisher, CategoryName, Rating)

The fields terminated by “,” clause tells SQL*Loader that during the load, each column value
will be terminated by a comma. Thus, the input file does not have to be 142 characters wide for
each row, as was the case in the first load example. The lengths of the columns are not specified
in the control file, since they will be determined during the load.

In this example, the name of the bad file is specified by the badfile clause. In general, the
name of the bad file is only given when you want to redirect the file to a different directory.

This example also shows the use of the truncate clause within a control file. When this
control file is executed by SQL*Loader, the BOOKSHELF table will be truncated before the start

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:12:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

of the load. Since truncate commands cannot be rolled back, you should use care when using
this option. In addition to truncate, you can use the following options:

■ append Adds rows to the table.

■ insert Adds rows to an empty table. If the table is not empty, the load will abort with
an error.

■ replace Empties the table and then adds the new rows. The user must have DELETE
privilege on the table.

Starting the Load
To execute the commands in the control file, you need to run SQL*Loader with the appropriate
parameters. SQL*Loader is started via the SQLLDR command at the operating system prompt.

NOTE
The SQL*Loader executable may consist of the name SQLLDR
followed by a version number. Consult your platform-specific
Oracle documentation for the exact name. For Oracle9i, the
executable file should be named SQLLDR.

When you execute SQLLDR, you need to specify the control file, username/password, and
other critical load information, as shown in Table 21-1.

396 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 21
Blind Folio 21:396

SQLLDR Keyword Description

Userid Username and password for the load, separated by a slash.

Control Name of the control file.

Log Name of the log file.

Bad Name of the bad file.

Discard Name of the discard file.

Discardmax Maximum number of rows to discard before stopping the load.
The default is to allow all discards.

Skip Number of logical rows in the input file to skip before starting to
load data. Usually used during reloads from the same input file
following a partial load. The default is 0.

Load Number of logical rows to load. The default is all.

Errors Number of errors to allow. The default is 50.

TABLE 21-1. SQL*Loader Options

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Each load must have a control file, since none of the input parameters specifies critical
information for the load—the input file and the table being loaded.

If you want, you can separate the arguments to SQLLDR with commas. Enter them with
the keywords (such as userid or log), followed by the parameter value. Keywords are always
followed by an equal sign (=) and the appropriate argument.

If the userid keyword is omitted, you will be asked for it. If a slash is given after the equal
sign, an externally identified account will be used. You also can use an Oracle Net database

Chapter 21: Using SQL*Loader to Load Data 397

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 21
Blind Folio 21:397

SQLLDR Keyword Description

Rows Number of rows to commit at a time. Use this parameter to break
up the transaction size during the load. The default for conventional
path loads is 64; the default for Direct Path loads is all rows.

Bindsize Size of conventional path bind array, in bytes. The default is
operating-system-dependent.

Silent Suppress messages during the load.

Direct Use Direct Path loading. The default is FALSE.

Parfile Name of the parameter file that contains additional load parameter
specifications.

Parallel Perform parallel loading. The default is FALSE.

File File to allocate extents from (for parallel loading).

Skip_Unusable_Indexes Allows loads into tables that have indexes in unusable states.
The default is FALSE.

Skip_Index_Maintenance Stops index maintenance for Direct Path loads, leaving them in
unusable states. The default is FALSE.

Readsize Size of the read buffer; default is 1MB.

External_table Use external table for load; default is NOT_USED; other valid
values are GENERATE_ONLY and EXECUTE.

Columnarrayrows Number of rows for direct path column array; default is 5,000.

Streamsize Size in bytes of the direct path stream buffer; default is 256,000.

Multithreading A flag to indicate if multithreading should be used during a direct
path load.

Resumable A TRUE/FALSE flag to enable or disable resumable operations for
the current session; default is FALSE.

Resumable_name Text identifier for the resumable operation.

Resumable_timeout Wait time for resumable operation; default is 7200 seconds.

TABLE 21-1. SQL*Loader Options (continued)

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

398 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 21
Blind Folio 21:398

specification string to log in to a remote database and load the data into it. For example, your
command may start

sqlldr userid=usernm/mypass@dev

The direct keyword, which invokes the Direct Path load option, is described in “Direct Path
Loading” later in this chapter.

The SILENT parameter tells SQLLDR to suppress certain informative data:

■ HEADER suppresses the SQL*LOADER header.

■ FEEDBACK suppresses the feedback at each commit point.

■ ERRORS suppresses the logging (in the log file) of each record that caused an Oracle
error, although the count is still logged.

■ DISCARDS suppresses the logging (in the log file) of each record that was discarded,
although the count is still logged.

■ PARTITIONS disables the writing of the per-partition statistics to the log file.

■ ALL suppresses all of the preceding.

If more than one of these is entered, separate each with a comma and enclose the list in
parentheses. For example, you can suppress the header and errors information via the following
keyword setting:

silent=(HEADER,ERRORS)

NOTE
Commands in the control file override any in the
calling command line.

Let’s load a sample set of data into the BOOKSHELF table, which has four columns (Title,
Publisher, CategoryName, and Rating). The data to be loaded is in a file called bookshelf.txt,
and consists of two records:

Good Record,Some Publisher, ADULTNF, 3
Another Title, Some Publisher, ADULTPIC, 4

NOTE
Each line is ended by a carriage return. Even though the first line’s last
value is not as long as the column it is being loaded into, the row will
stop at the carriage return.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 21: Using SQL*Loader to Load Data 399

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 21
Blind Folio 21:399

The data is separated by commas, and we don’t want to delete the data previously loaded
into BOOKSHELF, so the control file will look like this:

LOAD DATA
INFILE 'bookshelf.txt'
APPEND
INTO TABLE BOOKSHELF
FIELDS TERMINATED BY ","
(Title, Publisher, CategoryName, Rating)

Save that file as bookshelf.ctl, in the same directory as the input data file. Next, run SQLLDR and
tell it to use the control file:

sqlldr practice/practice control=bookshelf.ctl log=bookshelf.log

When the load completes, you should have one successfully loaded record and one failure. The
successfully loaded record will be in the BOOKSHELF table:

select Title
from BOOKSHELF
where Publisher like '%Publisher';

TITLE
--
Good Record

A file named bookshelf.bad will be created, and will contain one record:

Another Title,Some Publisher,ADULTPIC,4

Why was that record rejected? Check the log file, bookshelf.log, which will say, in part:

Record 2: Rejected - Error on table BOOKSHELF.
ORA-02291: integrity constraint (PRACTICE.CATFK) violated -
parent key not found

Table BOOKSHELF:
1 Row successfully loaded.
1 Row not loaded due to data errors.

Row 2, the “Another Title” row, was rejected because the value for the CategoryName column
violated the foreign key constraint—ADULTPIC is not listed as a category in the CATEGORY table.

Because the rows that failed are isolated into the bad file, you can use that file as the input for
a later load once the data has been corrected.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Logical and Physical Records
In Table 21-1, several of the keywords refer to “logical” rows. A logical row is a row that is
inserted into the database. Depending on the structure of the input file, multiple physical rows
may be combined to make a single logical row.

For example, the input file may look like this:

Good Record,Some Publisher, ADULTNF, 3

in which case there would be a one-to-one relationship between that physical record and the
logical record it creates. But the datafile may look like this instead:

Good Record,
Some Publisher,
ADULTNF,
3

To combine the data, you need to use continuation rules. In this case, the column values
are split one to a line, so there is a set number of physical records for each logical record. To
combine them, use the concatenate clause within the control file. In this case, you would specify
concatenate 4 to create a single logical row from the four physical rows.

The logic for creating a single logical record from multiple physical records can be much
more complex than a simple concatenation. You can use the continueif clause to specify the
conditions that cause logical records to be continued. You can further manipulate the input data
to create multiple logical records from a single physical record (via the use of multiple into table
clauses). See the control file syntax in the “SQLLDR” entry of the Alphabetical Reference in this
book and the notes in the following section.

You can use SQL*Loader to generate multiple inserts from a single physical row (similar to
the multitable insert capability described in Chapter 15). For example, suppose the input data is
denormalized, with fields City and Rainfall, while the input data is in the format City, Rainfall1,
Rainfall2, Rainfall3. The control file would resemble the following (depending on the actual
physical stop and start positions of the data in the file):

into table RAINFALL
when City != ' '
(City POSITION(1:5) CHAR,
Rainfall POSITION(6:10) INTEGER EXTERNAL) -- 1st row

--
into table RAINFALL
when City != ' '
(City POSITION(1:5) CHAR,
Rainfall POSITION(11:16) INTEGER EXTERNAL) -- 2nd row

--
into table RAINFALL
when City != ' '
(City POSITION(1:5) CHAR,
Rainfall POSITION(16:21) INTEGER EXTERNAL) -- 3rd row

400 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 21
Blind Folio 21:400

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Note that separate into table clauses operate on each physical row. In this example, they
generate separate rows in the RAINFALL table; they could also be used to insert rows into
multiple tables.

Control File Syntax Notes
The full syntax for SQL*Loader control files is shown in the “SQLLDR” entry in the Alphabetical
Reference, so it is not repeated here.

Within the load clause, you can specify that the load is recoverable or unrecoverable. The
unrecoverable clause only applies to Direct Path loading, and is described in “Tuning Data
Loads” later in this chapter.

In addition to using the concatenate clause, you can use the continueif clause to control the
manner in which physical records are assembled into logical records. The this clause refers to
the current physical record, while the next clause refers to the next physical record. For example,
you could create a two-character continuation character at the start of each physical record. If that
record should be concatenated to the preceding record, set that value equal to ‘**’. You could
then use the continueif next (1:2)=‘**’ clause to create a single logical record from the multiple
physical records. The ‘**’ continuation character will not be part of the merged record.

The syntax for the into table clause includes a when clause. The when clause, shown in
the following listing, serves as a filter applied to rows prior to their insertion into the table. For
example, you can specify

when Rating>'3'

to load only books with ratings greater than 3 into the table. Any row that does not pass the when
condition will be written to the discard file. Thus, the discard file contains rows that can be used
for later loads, but that did not pass the current set of when conditions. You can use multiple
when conditions, connected with and clauses.

Use the trailing nullcols clause if you are loading variable-length records for which the last
column does not always have a value. With this clause in effect, SQL*Loader will generate NULL
values for those columns.

As shown in an example earlier in this chapter, you can use the fields terminated by clause
to load variable-length data. Rather than being terminated by a character, the fields can be
terminated by whitespace or enclosed by characters or optionally enclosed by other characters.

For example, the following entry loads AuthorName values and sets the values to uppercase
during the insert. If the value is blank, a NULL is inserted:

AuthorName POSITION(10:34) CHAR TERMINATED BY WHITESPACE
NULLIF AuthorName=BLANKS "UPPER(:AuthorName)"

When you load DATE datatype values, you can specify a date mask. For example, if you had
a column named ReturnDate and the incoming data is in the format Mon-DD-YYYY in the first
11 places of the record, you could specify the ReturnDate portion of the load as follows:

ReturnDate POSITION (1:11) DATE "Mon-DD-YYYY"

Chapter 21: Using SQL*Loader to Load Data 401

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 21
Blind Folio 21:401

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Within the into table clause, you can use the recnum keyword to assign a record number
to each logical record as it is read from the datafile, and that value will be inserted into the
assigned column of the table. The constant keyword allows you to assign a constant value to a
column during the load. For character columns, enclose the constant value within single quotes.
If you use the sysdate keyword, the selected column will be populated with the current system
date and time.

CheckOutDate SYSDATE

If you use the sequence option, SQL*Loader will maintain a sequence of values during the
load. As records are processed, the sequence value will be increased by the increment you
specify. If the rows fail during insert (and are sent to the bad file), those sequence values will not
be reused. If you use the max keyword within the sequence option, the sequence values will use
the current maximum value of the column as the starting point for the sequence. The following
listing shows the use of the sequence option:

Seqnum_col SEQUENCE(MAX,1)

You can also specify the starting value and increment for a sequence to use when inserting.
The following example inserts values starting with a value of 100, incrementing by 2. If a row is
rejected during the insert, its sequence value is skipped.

Seqnum_col SEQUENCE(100,2)

If you store numbers in VARCHAR2 columns, avoid using the sequence option for those
columns. For example, if your table already contains the values 1 through 10 in a VARCHAR2
column, then the maximum value within that column is 9—the greatest character string. Using
that as the basis for a sequence option will cause SQL*Loader to attempt to insert a record using
10 as the newly created value—and that may conflict with the existing record.

SQL*Loader control files can support complex logic and business rules. For example, your
input data for a column holding monetary values may have an implied decimal; 9990 would be
inserted as 99.90. In SQL*Loader, you could insert this by performing the calculation during the
data load:

money_amount position (20:28) external decimal(9) ":tax_amount/100"

See the “SQL*Loader Case Studies” of the Oracle9i Utilities Guide for additional SQL*Loader
examples and sample control files.

Managing Data Loads
Loading large data volumes is a batch operation. Batch operations should not be performed
concurrently with the small transactions prevalent in many database applications. If you have
many concurrent users executing small transactions against a table, you should schedule your
batch operations against that table to occur at a time when no users are accessing the table.

Oracle maintains read consistency for users’ queries. If you execute the SQL*Loader job
against the table at the same time that other users are querying the table, Oracle will internally

402 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 21
Blind Folio 21:402

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

maintain undo entries to enable those users to see their data as it existed when they first queried
the data. To minimize the amount of work Oracle must perform to maintain read consistency
(and to minimize the associated performance degradation caused by this overhead), schedule
your long-running data load jobs to be performed when few other actions are occurring in the
database. In particular, avoid contention with other accesses of the same table.

Design your data load processing to be easy to maintain and reuse. Establish guidelines for
the structure and format of the input datafiles. The more standardized the input data formats are,
the simpler it will be to reuse old control files for the data loads. For repeated scheduled loads
into the same table, your goal should be to reuse the same control file each time. Following
each load, you will need to review and move the log, bad, data, and discard files so they do not
accidentally get overwritten.

Within the control file, use comments to indicate any special processing functions being
performed. To create a comment within the control file, begin the line with two dashes, as
shown in the following example:

-- Limit the load to LA employees:
when Location='LA'

If you have properly commented your control file, you will increase the chance that it can be
reused during future loads. You will also simplify the maintenance of the data load process itself,
as described in the next section.

Repeating Data Loads
Data loads do not always work exactly as planned. Many variables are involved in a data load,
and not all of them will always be under your control. For example, the owner of the source data
may change its data formatting, invalidating part of your control file. Business rules may change,
forcing additional changes. Database structures and space availability may change, further affecting
your ability to load the data.

In an ideal case, a data load will either fully succeed or fully fail. However, in many cases,
a data load will partially succeed, making the recovery process more difficult. If some of the
records have been inserted into the table, then attempting to reinsert those records should result
in a primary key violation. If you are generating the primary key value during the insert (via the
sequence option), then those rows may not fail the second time—and will be inserted twice.

To determine where a load failed, use the log file. The log file will record the commit points
as well as the errors encountered. All of the rejected records should be in either the bad file or
the discard file. You can minimize the recovery effort by forcing the load to fail if many errors are
encountered. To force the load to abort before a large number of errors is encountered, use the
errors keyword of the SQLLDR command. You can also use the discardmax keyword to limit the
number of discarded records permitted before the load aborts.

If you set errors to 0, the first error will cause the load to fail. What if that load fails after
100 records have been inserted? You will have two options: identify and delete the inserted
records and reapply the whole load, or skip the successfully inserted records. You can use the
skip keyword of SQLLDR to skip the first 100 records during its load processing. The load will
then continue with record 101 (which, we hope, has been fixed prior to the reload attempt). If
you cannot identify the rows that have just been loaded into the table, you will need to use the
skip option during the restart process.

Chapter 21: Using SQL*Loader to Load Data 403

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 21
Blind Folio 21:403

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The proper settings for errors and discardmax depend on the load. If you have full control
over the data load process, and the data is properly “cleaned” before being extracted to a load
file, you may have very little tolerance for errors and discards. On the other hand, if you do not
have control over the source for the input datafile, you need to set errors and discardmax high
enough to allow the load to complete. After the load has completed, you need to review the log
file, correct the data in the bad file, and reload the data using the original bad file as the new
input file. If rows have been incorrectly discarded, you need to do an additional load using the
original discard file as the new input file.

After modifying the errant CategoryName value, you can rerun the BOOKSHELF table load
example using the original bookshelf.dat file. During the reload, you have two options when
using the original input datafile:

■ Skip the first row by specifying skip=1 in the SQLLDR command line.

■ Attempt to load both rows, whereby the first row fails because it has
already been loaded (and thus causes a primary key violation).

Alternatively, you can use the bad file as the new input datafile and not worry about errors
and skipped rows.

Tuning Data Loads
In addition to running the data load processes at off-peak hours, you can take other steps to
improve the load performance. The following steps all impact your overall database environment,
and must be coordinated with the database administrator. The tuning of a data load should not
be allowed to have a negative impact on the database or on the business processes it supports.

First, batch data loads may be timed to occur while the database is in NOARCHIVELOG
mode. While in NOARCHIVELOG mode, the database does not keep an archive of its online
redo log files prior to overwriting them. Eliminating the archiving process improves the
performance of transactions. Since the data is being loaded from a file, you can re-create the
loaded data at a later time by reloading the datafile rather than recovering it from an archived
redo log file.

However, there are significant potential issues with disabling NOARCHIVELOG mode. You
will not be able to perform a point-in-time recovery of the database unless archiving is enabled.
If there are non-batch transactions performed in the database, you will probably need to run
the database in ARCHIVELOG mode all the time, including during your loads. Furthermore,
switching between ARCHIVELOG and NOARCHIVELOG modes requires you to shut down the
instance. If you switch the instance to NOARCHIVELOG mode, perform your data load, and
then switch the instance back to ARCHIVELOG mode, you should perform a backup of the
database (see Chapter 40) immediately following the restart.

Instead of running the entire database in NOARCHIVELOG mode, you can disable archiving
for your data load process by using the unrecoverable keyword within SQL*Loader. The
unrecoverable option disables the writing of redo log entries for the transactions within the data
load. You should only use this option if you will be able to re-create the transactions from the
input files during a recovery. If you follow this strategy, you must have adequate space to store
old input files in case they are needed for future recoveries. The unrecoverable option is only
available for Direct Path loads, as described in the next section.

404 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 21
Blind Folio 21:404

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Rather than control the redo log activity at the load process level, you can control it at the
table or partition level. If you define an object as nologging, then block-level inserts performed
by SQL*Loader Direct Path loading and the insert /*+ APPEND */ command will not generate
redo log entries.

If your operating environment has multiple processors, you can take advantage of the CPUs
by parallelizing the data load. The parallel option of SQLLDR, as described in the next section,
uses multiple concurrent data load processes to reduce the overall time required to load the data.

In addition to these approaches, you should work with your database administrator to make
sure the database environment and structures are properly tuned for data loads. Tuning efforts
should include the following:

■ Preallocate space for the table, to minimize dynamic extensions during the loads.

■ Allocate sufficient memory resources to the shared memory areas, including the log
buffer area.

■ Streamline the data writing process by creating multiple database writer (DBWR)
processes for the database.

■ Remove any unnecessary triggers during the data loads. If possible, disable or remove
the triggers prior to the load, and perform the trigger operations on the loaded data
manually after it has been loaded.

■ Remove or disable any unnecessary constraints on the table. You can use SQL*Loader
to dynamically disable and re-enable constraints.

■ Remove any indexes on the tables. If the data has been properly cleaned prior to the
data load, then uniqueness checks and foreign key validations will not be necessary
during the loads. Dropping indexes prior to data loads significantly improves
performance.

If you leave indexes on during a data load, Oracle must manage and rebalance the index
with each inserted record. The larger your data load is, the more work Oracle will have to do to
manage the associated indexes. If you can, you should consider dropping the indexes prior to the
load and then re-creating them after the load completes. The only time indexes do not cause a
penalty for data load performance is during a Direct Path load, as described in the next section.

Direct Path Loading
SQL*Loader, when inserting records, generates a large number of insert statements. To avoid the
overhead associated with using a large number of inserts, you may use the Direct Path option in
SQL*Loader. The Direct Path option creates preformatted data blocks and inserts those blocks
into the table. As a result, the performance of your load can dramatically improve. To use the
Direct Path option, you must not be performing any functions on the values being read from the
input file.

Any indexes on the table being loaded will be placed into a temporary DIRECT LOAD state
(you can query the index status from USER_INDEXES). Oracle will move the old index values to
a temporary index it creates and manages. Once the load has completed, the old index values
will be merged with the new values to create the new index, and Oracle will drop the temporary
index it created. When the index is once again valid, its status will change to VALID. To minimize

Chapter 21: Using SQL*Loader to Load Data 405

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 21
Blind Folio 21:405

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

the amount of space necessary for the temporary index, presort the data by the indexed columns.
The name of the index for which the data is presorted should be specified via a sorted indexes
clause in the control file.

To use the direct path option, specify

DIRECT=TRUE

as a keyword on the SQLLDR command line or include this option in the control file.
If you use the Direct Path option, you can use the unrecoverable keyword to improve your

data load performance. This instructs Oracle not to generate redo log entries for the load. If you
need to recover the database at a later point, you will need to re-execute the data load in order
to recover the table’s data. All conventional path loads are recoverable, and all Direct Path loads
are recoverable by default.

Direct Path loads are faster than conventional loads, and unrecoverable Direct Path loads are
faster still. Since performing unrecoverable loads impacts your recovery operations, you need to
weigh the costs of that impact against the performance benefit you will realize. If your hardware
environment has additional resources available during the load, you can use the parallel Direct
Path load option to divide the data load work among multiple processes. The parallel Direct Path
operations may complete the load job faster than a single Direct Path load.

Instead of using the parallel option, you could partition the table being loaded (see Chapter 18).
Since SQL*Loader allows you to load a single partition, you could execute multiple concurrent
SQL*Loader jobs to populate the separate partitions of a partitioned table. This method requires
more database administration work (to configure and manage the partitions), but it gives you
more flexibility in the parallelization and scheduling of the load jobs.

As of Oracle9i, you can take advantage of multithreaded loading functionality for Direct
Path loads to convert column arrays to stream buffers and perform stream buffer loading in
parallel. Use the streamsize parameter and multithreading flag to enable this feature.

Direct Path loading may impact the space required for the table’s data. Since Direct Path
loading inserts blocks of data, it does not follow the usual methods for allocating space within
a table. The blocks are inserted at the end of the table, after its high-water mark, which is the
highest block into which the table’s data has ever been written. If you insert 100 blocks worth
of data into a table and then delete all of the rows, the high-water mark for the table will still be
set at 100. If you then perform a conventional SQL*Loader data load, the rows will be inserted
into the already allocated blocks. If you instead perform a Direct Path load, Oracle will insert
new blocks of data following block 100, potentially increasing the space allocation for the table.
The only way to lower the high-water mark for a table is to truncate it (which deletes all rows
and cannot be rolled back) or to drop and re-create it. You should work with your database
administrator to identify space issues prior to starting your load.

Additional Oracle9i Enhancements
In addition to features noted earlier in this chapter, SQL*Loader features support for Unicode and
expanded datatypes. As of Oracle9i, SQL*Loader can load integer and zoned/packed decimal
datatypes across platforms with different byte ordering and accept EBCDIC-based zoned or
packed decimal data encoded in IBM format. SQL*Loader also offers support for loading XML
columns, loading object types with subtypes (see Chapter 30), and Unicode (UTF16 character set).

406 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 21
Blind Folio 21:406

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL*Loader also provides native support for the new Oracle9i date, time, and interval-related
datatypes (see Chapter 9).

If a SQL*Loader job fails, you may be able to resume it where it failed using the resumable,
resumable_name, and resumable_timeout options. For example, if the segment to which the
loader job was writing could not extend, you can disable the load job, fix the space allocation
problem, and resume the job. Your ability to perform these actions depends on the configuration
of the database; work with your DBA to make sure the resumable features are enabled and
adequate undo history is maintained for your purposes.

As of Oracle9i, you can access external files as if they are tables inside the database. This
“external table” feature, described in Chapter 25, allows you to potentially avoid loading large
volumes of data into the database. The syntax for external table definitions very closely resembles
that of the SQL*Loader control file. Although they are limited in some significant ways (you cannot
perform DML on external tables, for example), you should consider external tables as alternatives
to data loads. See Chapter 25 for implementation details.

Chapter 21: Using SQL*Loader to Load Data 407

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 21
Blind Folio 21:407

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 21
Blind Folio 21:408

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 22
Blind Folio 22:409

CHAPTER
22

Accessing
Remote Data

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

A
s your databases grow in size and number, you will very likely need to share data
among them. Sharing data requires a method of locating and accessing the data. In
Oracle, remote data accesses such as queries and updates are enabled through the
use of database links. As described in this chapter, database links allow users to treat
a group of distributed databases as if they were a single, integrated database. In this

chapter, you will also find information about direct connections to remote databases, such as those
used in client-server applications.

Database Links
Database links tell Oracle how to get from one database to another. You may also specify the
access path in an ad hoc fashion (see “Dynamic Links: Using the SQLPLUS copy Command,”
later in this chapter). If you will frequently use the same connection to a remote database, then
a database link is appropriate.

How a Database Link Works
A database link requires that Oracle Net (previously known as SQL*Net and Net8) be running on
each of the machines (hosts) involved in the remote database access. Oracle Net is usually started
by the database administrator (DBA) or the system manager. A sample architecture for a remote
access using a database link is shown in Figure 22-1. This figure shows two hosts, each running
Oracle Net. There is a database on each of the hosts. A database link establishes a connection from
the first database (named LOCAL, on the Branch host) to the second database (named REMOTE, on
the Headquarters host). The database link shown in Figure 22-1 is located in the Local database.

Database links specify the following connection information:

■ The communications protocol (such as TCP/IP) to use during the connection

■ The host on which the remote database resides

■ The name of the database on the remote host

■ The name of a valid account in the remote database

■ The password for that account

410 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 22
Blind Folio 22:410

FIGURE 22-1. Sample architecture for a database link

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

When used, a database link actually logs in as a user in the remote database, and then logs
out when the remote data access is complete. A database link can be private, owned by a single
user, or public, in which case all users in the Local database can use the link.

The syntax for creating a database link is shown in “Syntax for Database Links,” later in this
chapter.

Using a Database Link for Remote Queries
If you are a user in the Local database shown in Figure 22-1, you can access objects in the Remote
database via a database link. To do this, simply append the database link name to the name of any
table or view that is accessible to the remote account. When appending the database link name to
a table or view name, you must precede the database link name with an @ sign.

For local tables, you reference the table name in the from clause:

select *
from BOOKSHELF;

For remote tables, use a database link named REMOTE_CONNECT. In the from clause,
reference the table name followed by @REMOTE_CONNECT:

select *
from BOOKSHELF@REMOTE_CONNECT;

When the database link in the preceding query is used, Oracle will log in to the database
specified by the database link, using the username and password provided by the link. It will then
query the BOOKSHELF table in that account and return the data to the user who initiated the
query. This is shown graphically in Figure 22-2. The REMOTE_CONNECT database link shown
in Figure 22-2 is located in the Local database.

As shown in Figure 22-2, logging in to the Local database and using the REMOTE_CONNECT
database link in your from clause returns the same results as logging in directly to the remote database
and executing the query without the database link. It makes the remote database seem local.

NOTE
The maximum number of database links that can be used in a
single query is set via the OPEN_LINKS parameter in the database’s
initialization parameter file. This parameter defaults to four.

Chapter 22: Accessing Remote Data 411

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 22
Blind Folio 22:411

FIGURE 22-2. Using a database link for a remote query

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

There are restrictions to the queries that are executed using database links. You should avoid
using database links in queries that use the connect by, start with, and prior keywords. Some
queries using these keywords will work (for example, if prior is not used outside of the connect
by clause, and start with does not use a subquery), but most uses of tree-structured queries will
fail when using database links.

Using a Database Link for Synonyms and Views
You may create local synonyms and views that reference remote objects. To do this, reference the
database link name, preceded by an @ sign, wherever you refer to a remote table. The following
example shows how to do this for synonyms. The create synonym command in this example is
executed from an account in the Local database.

create synonym BOOKSHELF_SYN
for BOOKSHELF@REMOTE_CONNECT;

In this example, a synonym called BOOKSHELF_SYN is created for the BOOKSHELF table
accessed via the REMOTE_CONNECT database link. Every time this synonym is used in a from
clause of a query, the remote database will be queried. This is very similar to the remote queries
shown earlier; the only real change is that the database link is now defined as part of a local
object (in this case, a synonym).

What if the remote account that is accessed by the database link does not own the table
being referenced? In that event, any synonyms that are available to the remote account (either
private or public) can be used. If no such synonyms exist for a table that the remote account has
been granted access to, then you must specify the table owner’s name in the query, as shown in
the following example:

create synonym BOOKSHELF_SYN
for Practice.BOOKSHELF@REMOTE_CONNECT;

In this example, the remote account used by the database link does not own the BOOKSHELF
table, nor does the remote account have a synonym called BOOKSHELF. It does, however, have
privileges on the BOOKSHELF table owned by the remote user Practice in the Remote database.
Therefore, the owner and table name are specified; both are interpreted in the Remote database.
The syntax for these queries and synonyms is almost the same as if everything were in the local
database; the only addition is the database link name.

To use a database link in a view, simply add it as a suffix to table names in the create view
command. The following example creates a view in the local database of a remote table using
the REMOTE_CONNECT database link:

create view LOCAL_BOOKSHELF_VIEW
as
select * from BOOKSHELF@REMOTE_CONNECT
where Title > 'M';

The from clause in this example refers to BOOKSHELF@REMOTE_CONNECT. Therefore, the
base table for this view is not in the same database as the view. Also note that a where clause is
placed on the query, to limit the number of records returned by it for the view.

412 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 22
Blind Folio 22:412

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This view may now be treated the same as any other view in the local database. Access to this
view can be granted to other users, provided those users also have access to the REMOTE_CONNECT
database link.

Using a Database Link for Remote Updates
The database link syntax for remote updates is the same as that for remote queries. Append the
name of the database link to the name of the table being updated. For example, to change the
Rating values for books in a remote BOOKSHELF table, you would execute the update command
shown in the following listing:

update BOOKSHELF@REMOTE_CONNECT
set Rating = '5'

where Title = 'INNUMERACY';

This update command will use the REMOTE_CONNECT database link to log in to the remote
database. It will then update the BOOKSHELF table in that database, based on the set and where
conditions specified.

You can use subqueries in the set portion of the update command (refer to Chapter 15). The
from clause of such subqueries can reference either the local database or a remote database. To
refer to the remote database in a subquery, append the database link name to the table names in
the from clause of the subquery. An example of this is shown in the following listing:

update BOOKSHELF@REMOTE_CONNECT /*in remote database*/
set Rating =

(select Rating
from BOOKSHELF@REMOTE_CONNECT /*in remote database*/
where Title = 'WONDERFUL LIFE')

where Title = 'INNUMERACY';

NOTE
If you do not append the database link name to the table names in the
from clause of update subqueries, tables in the local database will be
used. This is true even if the table being updated is in a remote
database.

In this example, the remote BOOKSHELF table is updated based on the Rating value
on the remote BOOKSHELF table. If the database link is not used in the subquery, as in the
following example, then the BOOKSHELF table in the local database will be used instead.
If this is unintended, it will cause local data to be mixed into the remote database table. If
you’re doing it on purpose, be very careful.

update BOOKSHELF@REMOTE_CONNECT /*in remote database*/
set Rating =

(select Rating
from BOOKSHELF /*in local database*/
where Title = 'WONDERFUL LIFE')

where Title = 'INNUMERACY';

Chapter 22: Accessing Remote Data 413

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 22
Blind Folio 22:413

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Syntax for Database Links
You can create a database link with the following command:

create [shared] [public] database link REMOTE_CONNECT
connect to {current_user | username identified by password [authentication clause]}
using 'connect string';

The specific syntax to use when creating a database link depends upon two criteria:

■ The “public” or “private” status of the database link

■ The use of default or explicit logins for the remote database

These criteria and their associated syntax are described in turn in the following sections.

NOTE
To create a database link, you must have CREATE DATABASE LINK
system privilege. The account to which you will be connecting in the
remote database must have CREATE SESSION system privilege. Both
of these system privileges are included as part of the CONNECT role
in Oracle.

Public vs. Private Database Links
A public database link is available to all users in a database. By contrast, a private database link
is only available to the user who created it. It is not possible for one user to grant access on a
private database link to another user. The database link must either be public (available to all
users) or private.

To specify a database link as public, use the public keyword in the create database link
command, as shown in the following example.

create public database link REMOTE_CONNECT
connect to username identified by password

using 'connect string';

NOTE
To create a public database link, you must have CREATE PUBLIC
DATABASE LINK system privilege. This privilege is included in the
DBA role in Oracle.

Default vs. Explicit Logins
In place of the connect to ... identified by ... clause, you can use connect to current_user when
creating a database link. If you use the current_user option, then when that link is used, it will
attempt to open a session in the remote database that has the same username and password as the
local database account. This is called a default login, since the username/password combination
will default to the combination in use in the local database.

414 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 22
Blind Folio 22:414

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The following listing shows an example of a public database link created with a default login
(the use of default logins is described further in “Using the User Pseudo-column in Views,” later
in this chapter):

create public database link REMOTE_CONNECT
connect to current_user
using 'connect string';

When this database link is used, it will attempt to log in to the remote database using the
current user’s username and password. If the current username is not valid in the remote database,
or if the password is different, then the login attempt will fail. This failure will cause the SQL
statement using the link to fail.

An explicit login specifies a username and password that the database link will use while
connecting to the remote database. No matter which local account uses the link, the same
remote account will be used. The following listing shows the creation of a database link with
an explicit login:

create public database link REMOTE_CONNECT
connect to WAREHOUSE identified by ACCESS339
using 'connect string';

This example shows a common usage of explicit logins in database links. In the remote database,
a user named Warehouse was created, and was given the password ACCESS339. The Warehouse
account can then be granted SELECT access to specific tables, solely for use by database links. The
REMOTE_CONNECT database link then provides access to the remote Warehouse account for all
local users.

Connect String Syntax
Oracle Net uses service names to identify remote connections. The connection details for
these service names are contained in files that are distributed to each host in the network. When
a service name is encountered, Oracle checks the local Oracle Net configuration file (called
tnsnames.ora) to determine which protocol, host name, and database name to use during the
connection. All of the connection information is found in external files.

When using Oracle Net, you must know the name of the service that points to the remote
database. For example, if the service name HQ specifies the connection parameters for the database
you need, then HQ should be used as the connect string in the create database link command.
The following example shows a private database link, using a default login and an Oracle Net
service name:

create database link REMOTE_CONNECT
connect to current_user
using 'HQ';

When this link is used, Oracle checks the tnsnames.ora file on the local host to determine
which database to connect to. When it attempts to log in to that database, it uses the current
user’s username and password.

Chapter 22: Accessing Remote Data 415

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 22
Blind Folio 22:415

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The tnsnames.ora files for a network of databases should be coordinated by the DBAs for
those databases. A typical entry in the tnsnames.ora file (for a network using the TCP/IP protocol)
is shown in the following listing:

HQ =(DESCRIPTION=
(ADDRESS_LIST =

(ADDRESS = (PROTOCOL=TCP)
(HOST=host1)
(PORT=1521))

)
(CONNECT DATA=

(SERVICE_NAME = HQ.host1)
)

)

In this listing, the HQ service name is mapped to a connect descriptor that tells the database
which protocol to use (TCP/IP), and which host (host1) and database (HQ) to connect to. The
“port” information refers to the port on the host that will be used for the connection; that data is
environment-specific. Different protocols will have different keywords, but they all must convey
the same content.

Using Shared Database Links
If you use the Shared Server option for your database connections and your application will employ
many concurrent database link connections, you may benefit from using shared database links. A
shared database link uses shared server connections to support the database link connections. If
you have multiple concurrent database link accesses into a remote database, you can use shared
database links to reduce the number of server connections required.

To create a shared database link, use the shared keyword of the create database link
command. As shown in the following listing, you will also need to specify a schema and
password for the remote database:

create shared database link HR_LINK_SHARED
connect to current_user
authenticated by HR identified by puffin55556d
using 'hq';

The HR_LINK_SHARED database link uses the connected user’s username and password when
accessing the ‘hq’ database, as specified via the connect to current_user clause. In order to prevent
unauthorized attempts to use the shared link, shared links require the authenticated by clause. In
this example, the account used for authentication is an application account, but you can also use
an empty schema for authentication. The authentication account must have the CREATE SESSION
system privilege. During usage of the HR_LINK_SHARED link, connection attempts will include
authentication against the HR link account.

If you change the password on the authentication account, you will need to drop and
re-create each database link that references it. To simplify maintenance, create an account that
is only used for authentication of shared database link connections. The account should have
only the CREATE SESSION system privilege, and should not have any privileges on any of the
application tables.

416 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 22
Blind Folio 22:416

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

If your application uses database links infrequently, you should use traditional database links
without the shared clause. Without the shared clause, each database link connection requires a
separate connection to the remote database.

Using Synonyms for Location Transparency
Over the lifespan of an application, its data very likely will move from one database to another,
or from one host to another. Therefore, it will simplify application maintenance if the exact
physical location of a database object is shielded from the user (and the application).

The best way to implement such location transparency is through the use of synonyms. Instead of
writing applications (or SQLPLUS reports) that contain queries that specify a table’s owner, such as

select *
from Practice.BOOKSHELF;

you should create a synonym for that table, and then reference the synonym in the query:

create synonym BOOKSHELF
for Practice.BOOKSHELF;

select *
from BOOKSHELF;

The logic required to find the data has thus been moved out of your application and into the
database. Moving the table location logic to the database will be a benefit any time you move the
table (for example, when moving from a development database to a test database).

In addition to hiding the ownership of tables from an application, you can hide the data’s
physical location through the use of database links and synonyms. By using local synonyms for
remote tables, you move another layer of logic out of the application and into the database. For
example, the local synonym BOOKSHELF, as defined in the following listing, refers to a table that
is located in a different database, on a different host. If that table ever moves, only the link has to
be changed; the application code, which uses the synonym, will not change.

create synonym BOOKSHELF
for BOOKSHELF@REMOTE_CONNECT;

If the remote account used by the database link is not the owner of the object being referenced,
then you have two options. First, you can reference an available synonym in the remote database:

create synonym BOOKSHELF
for BOOKSHELF@REMOTE_CONNECT;

where BOOKSHELF, in the remote account used by the database link, is a synonym for another
user’s BOOKSHELF table.

The second option is to include the remote owner’s name when creating the local synonym,
as shown in the following listing.

create synonym BOOKSHELF
for Practice.BOOKSHELF@REMOTE_CONNECT;

Chapter 22: Accessing Remote Data 417

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 22
Blind Folio 22:417

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

These two examples will result in the same functionality for your queries, but there are
differences between them. The second example, which includes the owner name, is potentially
more difficult to maintain, because you are not using a synonym in the remote database. The two
examples also have slightly different functionality when the describe command is used. If the
remote account accesses a synonym (instead of a table), you will not be able to describe that
table, even though you can select from it. For describe to work correctly, you need to use the
format shown in the last example and specify the owner.

Using the User Pseudo-column in Views
The User pseudo-column is very useful when you are using remote data access methods. For
example, you may not want all remote users to see all records in a table. To solve this problem,
you must think of remote users as special users within your database. To enforce the data restriction,
you need to create a view that the remote accounts will access. But what can you use in the
where clause to properly restrict the records? The User pseudo-column, combined with properly
selected usernames, allows you to enforce this restriction.

As you may recall from Chapter 19, queries used to define views may also reference
pseudo-columns. A pseudo-column is a “column” that returns a value when it is selected,
but it is not an actual column in a table. The User pseudo-column, when selected, always
returns the Oracle username that executed the query. So, if a column in the table contains
usernames, those values can be compared against the User pseudo-column to restrict its records,
as shown in the following example. In this example, the NAME table is queried. If the value of
the first part of the Name column is the same as the name of the user entering the query, then
records will be returned.

create view MY_CHECKOUT as
select * from BOOKSHELF_CHECKOUT
where SUBSTR(Name,1,INSTR(Name,' ')-1) = User;

NOTE
We need to shift our point of view for this discussion. Since the
discussion concerns operations on the database that owns the table
being queried, that database will be referred to as the “local”
database, and the users from other databases will be referred to as
“remote” users.

When restricting remote access to the rows of your table, you should first consider which
columns would be the best to use for the restriction. There are usually logical divisions to the
data within a table, such as Department or Region. For each distinct division, create a separate
user account in your local database. For this example, let’s add a Region column to the BOOKSHELF
table. We will now be able to record the list of books from multiple distributed locations in a
single table:

alter table BOOKSHELF
add
(Region VARCHAR2(10));

418 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 22
Blind Folio 22:418

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Suppose you have four major regions represented in your BOOKSHELF table, and you have
created an Oracle account for each region. You could then set up each remote user’s database
link to use his or her specific user account in your local database. For this example, assume the
regions are called NORTH, EAST, SOUTH, and WEST. For each of the regions, a specific database
link would be created. For example, the members of the SOUTH department would use the
database link shown in the following listing:

create database link SOUTH_LINK
connect to SOUTH identified by PAW
using 'HQ';

The database link shown in this example is a private database link with an explicit login to
the SOUTH account in the remote database.

When remote users query via their database links (such as SOUTH_LINK from the previous
example), they will be logged in to the HQ database, with their Department name (such as SOUTH)
as their username. Thus, the value of the User column for any table that the user queries will be
SOUTH.

Now create a view of your base table, comparing the User pseudo-column to the value of the
Department column in the view’s where clause (this use of the User pseudo-column was first
demonstrated in Chapter 19):

create or replace view RESTRICTED_BOOKSHELF
as select *

from BOOKSHELF
where Region = User;

A user who connects via the SOUTH_LINK database link—and thus is logged in as the
SOUTH user—would only be able to see the BOOKSHELF records that have a Region value
equal to ‘SOUTH’. If users are accessing your table from a remote database, then their logins are
occurring via database links—and you know the local accounts they are using because you set
them up.

This type of restriction can also be performed in the remote database rather than in the
database where the table resides. Users in the remote database may create views within their
databases of the following form:

create or replace view SOUTH_BOOKSHELF
as select *

from BOOKSHELF@REMOTE_CONNECT
where Region = 'SOUTH';

In this case, the Region restriction is still in force, but it is administered locally, and the
Region restriction is coded into the view’s query. Choosing between the two restriction options
(local or remote) is based on the number of accounts required for the desired restriction to be
enforced.

To secure your production database, you should limit the privileges granted to the accounts
used by database links. Grant those privileges via roles, and use views (with the with read only
or with check option clause) to further limit the ability of those accounts to be used to make
unauthorized changes to the data.

Chapter 22: Accessing Remote Data 419

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 22
Blind Folio 22:419

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

420 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 22
Blind Folio 22:420

Dynamic Links: Using the
SQLPLUS copy Command
The SQLPLUS copy command is an underutilized, underappreciated command. It allows data to be
copied between databases (or within the same database) via SQLPLUS. Although it allows you to
select which columns to copy, it works best when all the columns of a table are being chosen. The
greatest benefit from using this command is its ability to commit after each array of data has been
processed (explained shortly). This in turn generates transactions that are of a manageable size.

Consider the case of a large table, such as BOOKSHELF_CHECKOUT. What if the
BOOKSHELF_CHECKOUT table has 100,000 rows that use a total of 100MB of space, and you
need to make a copy of that table into a different database? The easiest option involves creating a
database link and then using that link in a create table ... as select command, as shown next.

create database link REMOTE_CONNECT
connect to PRACTICE identified by PRACTICE
using 'HQ';

create table BOOKSHELF_CHECKOUT
as
select * from BOOKSHELF_CHECKOUT@REMOTE_CONNECT;

The first command creates the database link, and the second creates a new table based on all the
data in the remote table.

Unfortunately, this option creates a very large transaction (all 100,000 rows would be inserted
into the new table as a single transaction) that places a large burden on internal Oracle structures
called rollback segments. Rollback segments and system-managed undo (see Chapter 40) store
the prior image of data until that data is committed to the database. Since this table is being
populated by a single insert, a single, large transaction is generated, which may exceed the space
in the currently available rollback segments. This failure will in turn cause the table creation to fail.

To break the transaction into smaller entries, use the SQLPLUS copy command, which has
the following syntax:

copy from
[remote username/remote password@connect string]
[to username/password@connect string]
{append|create|insert|replace}
table name
using subquery;

If the current account is to be the destination of the copied data, then the word to and the
local username, password, and connect string are not necessary. If the current account is to be
the source of the copied data, then the remote connection information for the data source is not
necessary.

To set the transaction entry size, use the SQLPLUS set command to set a value for the
arraysize parameter. This determines the number of records that will be retrieved in each batch.
The copycommit parameter tells SQLPLUS how many batches should be committed at one time.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The following SQLPLUS script accomplishes the same data-copying goal that the create table as
command met; however, it breaks up the single transaction into multiple transactions. In this
example, the data is committed after every 1,000 records. This reduces the transaction’s rollback
segment entry size needed from 100MB to 1MB.

set copycommit 1
set arraysize 1000

copy from PRACTICE/PRACTICE@HQ -
create BOOKSHELF_CHECKOUT -
using -
select * from BOOKSHELF_CHECKOUT

NOTE
Except for the last line, each line in the copy command must be
terminated with a dash (-), since this is a SQLPLUS command.

The different data options within the copy command are described in Table 22-1.
The feedback provided by the copy command may be confusing at first. After the final

commit is complete, the database reports to the user the number of records that were committed
in the last batch. It does not report the total number of records committed (unless they are all
committed in a single batch).

Connecting to a Remote Database
In addition to the inter-database connections described earlier in this chapter, you may connect
directly to a remote database via an Oracle tool. Thus, instead of typing

sqlplus username/password

Chapter 22: Accessing Remote Data 421

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 22
Blind Folio 22:421

Option Description

APPEND Inserts the rows into the destination table. Automatically creates the table
if it does not exist.

CREATE Creates the table and then inserts the rows.

INSERT Inserts the rows into the destination table if it exists; otherwise, returns an
error. When using INSERT, all columns must be specified in the using
subquery.

REPLACE Drops the existing destination table and replaces it with a new table
containing the copied data.

TABLE 22-1. COPY Command Options

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

422 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 22
Blind Folio 22:422

and accessing your local database, you can go directly to a remote database. To do this, enter
your username and password along with the Oracle Net connect string for the remote database:

sqlplus username/password@HQ

This command will log you in directly to the HQ database. The host configuration for this
type of login is shown in Figure 22-3; the Branch host has the Oracle tools (such as SQLPLUS)
on it and is running Oracle Net, and the Remote host is running Oracle Net and has an Oracle
database. There may or may not be a database on the Branch host; specifying the Oracle Net
connect string to the remote database forces Oracle to ignore any local databases.

As Figure 22-3 shows, there are very few hardware requirements for the Branch host. All it
has to support is the front-end tool and Oracle Net—a typical configuration for client-server
applications. A client machine, such as the Branch host, is used primarily for presentation of the
data via the database access tools. The server side, such as the Headquarters host, is used to
maintain the data and process the data access requests from users.

Regardless of the configuration you use and the configuration tools available, you need to
tell Oracle Net how to find the remote database. Work with your DBA to make sure the remote
server is properly configured to listen for new connection requests, and to make sure the client
machines are properly configured to issue those requests.

FIGURE 22-3. Sample architecture for a remote connection

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 23
Blind Folio 23:423

CHAPTER
23

Using Materialized
Views

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

T
o improve the performance of an application, you can make local copies of
remote tables that use distributed data, or create summary tables based on group
by operations. Oracle provides materialized views to store copies of data or
aggregations. In previous versions of Oracle, materialized views based on remote
data were known as “snapshots.” Materialized views can be used to replicate all

or part of a single table, or to replicate the result of a query against multiple tables; refreshes of
the replicated data can be done automatically by the database at time intervals that you specify.
In this chapter, you will see the general usage of materialized views, including their refresh
strategies, followed by a description of the optimization strategies available.

Functionality
Materialized views are copies (also known as replicas) of data, based upon queries. In its simplest
form, a materialized view can be thought of as a table created by a command such as the
following:

create table LOCAL_BOOKSHELF
as
select * from BOOKSHELF@REMOTE_CONNECT;

In this example, a table named LOCAL_BOOKSHELF is created in the local database
and is populated with data from a remote database (defined by the database link named
REMOTE_CONNECT). Once the LOCAL_BOOKSHELF table is created, though, its data may
immediately become out of sync with the master table (BOOKSHELF@REMOTE_CONNECT).
Also, LOCAL_BOOKSHELF may be updated by local users, further complicating its
synchronization with the master table.

Despite these synchronization problems, there are benefits to replicating data in this way.
Creating local copies of remote data may improve the performance of distributed queries,
particularly if the tables’ data does not change frequently. You may also use the local table
creation process to restrict the rows returned, restrict the columns returned, or generate new
columns (such as by applying functions to selected values). This is a common strategy for
decision-support environments, in which complex queries are used to periodically “roll up”
data into summary tables for use during analyses.

Materialized views automate the data replication and refresh processes. When materialized
views are created, a refresh interval is established to schedule refreshes of replicated data. Local
updates can be prevented, and transaction-based refreshes can be used. Transaction-based
refreshes, available for some types of materialized views, send from the master database only
those rows that have changed for the materialized view. This capability, described later in this
chapter, may significantly improve the performance of your refreshes.

Required System Privileges
To create a materialized view, you must have the privileges needed to create the underlying
objects it will use. You must have the CREATE MATERIALIZED VIEW or CREATE SNAPSHOT
privilege, as well as the CREATE TABLE or CREATE ANY TABLE system privileges. In addition,
you must have either the UNLIMITED TABLESPACE system privilege or a sufficient specified

424 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 23
Blind Folio 23:424

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

space quota in a local tablespace. To create a refresh-on-commit materialized view, you must
also have the ON COMMIT REFRESH system privilege on any tables you do not own, or the ON
COMMIT REFRESH system privilege.

NOTE
Oracle9i supports the keyword snapshot in place of materialized
view for backward compatibility.

Materialized views of remote tables require queries of remote tables; therefore, you must
have privileges to use a database link that accesses the remote database. The link you use can be
either public or private. If the database link is private, you need to have the CREATE DATABASE
LINK system privilege. See Chapter 22 for further information on database links.

If you are creating materialized views to take advantage of the query rewrite feature (in which
the optimizer dynamically chooses to select data from the materialized view instead of the
underlying table), you must have the QUERY REWRITE privilege. If the tables are in another
user’s schema, you must have the GLOBAL QUERY REWRITE privilege.

Required Table Privileges
When creating a materialized view, you can reference tables in a remote database via a database
link. The account that the database link uses in the remote database must have access to the
tables and views used by the database link. You cannot create a materialized view based on
objects owned by the user SYS.

Within the local database, you can grant SELECT privilege on a materialized view to other
local users. Since most materialized views are read-only (although they can be updatable), no
additional grants are necessary. If you create an updatable materialized view, you must grant
users UPDATE privilege on both the materialized view and the underlying local table it accesses.
For information on the local objects created by materialized views, see “Local and Remote
Objects Created,” later in this chapter.

Read-Only vs. Updatable
A read-only materialized view cannot pass data changes from itself back to its master table. An
updatable materialized view can send changes to its master table.

Although that may seem to be a simple distinction, the underlying differences between these
two types of materialized views are not simple. A read-only materialized view is implemented as
a create table as select command. When transactions occur, they occur only within the master
table; the transactions are sent to the read-only materialized view. Thus, the method by which
the rows in the materialized view change is controlled—the materialized view’s rows only
change following a change to the materialized view’s master table.

In an updatable materialized view, there is less control over the method by which rows in the
materialized view are changed. Rows may be changed based on changes in the master table, or
rows may be changed directly by users of the materialized view. As a result, you need to send
records from the master table to the materialized view, and vice versa. Since multiple sources
of changes exist, multiple masters exist (referred to as a multimaster configuration).

Chapter 23: Using Materialized Views 425

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 23
Blind Folio 23:425

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

If you use updatable materialized views, you need to treat the materialized view as a master,
complete with all of the underlying replication structures and facilities normally found at master
sites. You also need to decide how the records will be propagated from the materialized view
back to the master. During the transfer of records from the materialized view to master, you need
to decide how you will reconcile conflicts. For example, what if the record with ID=1 is deleted
at the materialized view site, while at the master site, a record is created in a separate table that
references (via a foreign key) the ID=1 record? You cannot delete the ID=1 record from the
master site, since that record has a “child” record that relates to it. You cannot insert the child
record at the materialized view site, since the parent (ID=1) record has been deleted. How do
you plan to resolve such conflicts?

Read-only materialized views let you avoid the need for conflict resolution by forcing all
transactions to occur in the controlled master table. This may limit your functionality, but it
is an appropriate solution for the vast majority of replication needs. If you need multimaster
replication, see the Oracle9i Replication guide for guidelines and detailed implementation
instructions.

create materialized view Syntax
The basic syntax for creating a materialized view is shown in the following listing. See the
Alphabetical Reference for the full command syntax. Following the command description,
examples are given that illustrate the creation of local replicas of remote data.

create materialized view [user.]name
[organization index iot_clause]
[{ { segment attributes clauses }

| cluster cluster (column [, column] ...) }
[{partitioning clause | parallel clause | build clause }]
| on prebuilt table [{with | without} reduced precision]]

[using index
[{ physical attributes clauses| tablespace clause }
[physical attributes clauses| tablespace clause]
| using no index]

[refresh clause]
[for update] [{disable | enable} query rewrite]
as subquery;

The create materialized view command has four major sections. The first section is the
header, in which the materialized view is named (the first line in the listing):

create materialized view [user.]name

The materialized view will be created in your user account (schema) unless a different
username is specified in the header. In the second section, the storage parameters are set:

[organization index iot_clause]
[{ { segment attributes clauses }

| cluster cluster (column [, column] ...) }
[{partitioning clause | parallel clause | build clause }]

426 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 23
Blind Folio 23:426

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

| on prebuilt table [{with | without} reduced precision]]
[using index
[{ physical attributes clauses| tablespace clause }

[physical attributes clauses| tablespace clause]
| using no index]

The storage parameters will be applied to a table that will be created in the local database.
For information about the available storage parameters, see the “Storage” entry in the
Alphabetical Reference. If the data has already been replicated to a local table, you can
use the on prebuilt table clause to tell Oracle to use that table as a materialized view.

NOTE
You can specify the storage parameters to be used for the index that is
automatically created on the materialized view.

In the third section, the refresh options are set:

[refresh clause]

The syntax for refresh clause is

{ refresh
{ { fast | complete | force }
| on { demand | commit }
| { start with | next } date
| with { primary key | rowid }
| using
{ default [master | local] rollback segment
| [master | local] rollback segment rollback_segment
}
[default [master | local] rollback segment
| [master | local] rollback segment rollback_segment
]...

}
[{ fast | complete | force }
| on { demand | commit }
| { start with | next } date
| with { primary key | rowid }
| using
{ default [master | local] rollback segment
| [master | local] rollback segment rollback_segment
}
[default [master | local] rollback segment
| [master | local] rollback segment rollback_segment
]...

]...
| never refresh
}

Chapter 23: Using Materialized Views 427

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 23
Blind Folio 23:427

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The refresh option specifies the mechanism Oracle should use when refreshing the
materialized view. The three options available are fast, complete, and force. Fast refreshes are
only available if Oracle can match rows in the materialized view directly to rows in the base
table(s); they use tables called materialized view logs to send specific rows from the master table
to the materialized view. Complete refreshes completely re-create the materialized view. The
force option for refreshes tells Oracle to use a fast refresh if it is available; otherwise, a complete
refresh will be used. If you have created a simple materialized view but want to use complete
refreshes, specify refresh complete in your create materialized view command. The refresh
options are further described in “Refreshing Materialized Views,” later in this chapter. Within
this section of the create materialized view command, you also specify the mechanism used to
relate values in the materialized view to the master table—whether RowIDs or primary key
values should be used. By default, primary keys are used.

If the master query for the materialized view references a join or a single-table aggregate,
you can use the on commit option to control the replication of changes. If you use on commit,
changes will be sent from the master to the replica when the changes are committed on the
master table. If you specify on demand, the refresh will occur when you manually execute a
refresh command.

The fourth section of the create materialized view command is the query that the
materialized view will use:

[for update] [{disable | enable} query rewrite]
as subquery

If you specify for update, the materialized view will be updatable; otherwise, it will be
read-only. Most materialized views are read-only replicas of the master data. If you use updatable
materialized views, you need to be concerned with issues such as two-way replication of
changes and the reconciliation of conflicting data changes. Updatable materialized views are an
example of multimaster replication; for full details on implementing a multimaster replication
environment, see the Oracle9i Replication guide.

NOTE
The query that forms the basis of the materialized view should not use
the User or SysDate pseudo-columns.

The following example creates a read-only materialized view called LOCAL_BOOKSHELF
in a local database, based on a remote table named BOOKSHELF that is accessible via the
REMOTE_CONNECT database link. The materialized view is placed in the USERS tablespace.

create materialized view LOCAL_BOOKSHELF
storage (initial 100K next 100K pctincrease 0)
tablespace USERS
refresh force
start with SysDate next SysDate+7
with primary key
as
select * from BOOKSHELF@REMOTE_CONNECT;

428 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 23
Blind Folio 23:428

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Oracle responds with:

Materialized view created.

The command shown in the preceding example will create a read-only materialized view
called LOCAL_BOOKSHELF. Its underlying table will be created with the specified storage
parameters in a tablespace named USERS. Since the data in the materialized view’s local base
table will be changing over time, in production databases you should store materialized views
in their own tablespace. The force refresh option is specified because no materialized view log
exists on the base table for the materialized view; Oracle will try to use a fast refresh but will
use a complete refresh until the materialized view log is created. The materialized view’s query
specifies that the entire BOOKSHELF table, with no modifications, is to be copied to the local
database. As soon as the LOCAL_BOOKSHELF materialized view is created, its underlying table
will be populated with the BOOKSHELF data. Thereafter, the materialized view will be refreshed
every seven days. The storage parameters that are not specified will use the default values for
those parameters for the USERS tablespace.

The following example creates a materialized view named LOCAL_CATEGORY_COUNT in
a local database, based on a remote table named BOOKSHELF in a database accessed via the
REMOTE_CONNECT database link.

create materialized view LOCAL_CATEGORY_COUNT
storage (initial 50K next 50K pctincrease 0)
tablespace USERS
refresh force
start with SysDate next SysDate+7
as
select CategoryName, COUNT(*) CountPerCat
from BOOKSHELF@REMOTE_CONNECT
group by CategoryName;

The query in the LOCAL_CATEGORY_COUNT materialized view counts the number of
books in each category in the remote BOOKSHELF table.

There are a few important points to note about the two examples shown in this section:

■ The group by query used in the LOCAL_CATEGORY_COUNT materialized view could
be performed in SQLPLUS against the LOCAL_BOOKSHELF materialized view. That is,
the group by operation can be performed outside of the materialized view.

■ Since LOCAL_CATEGORY_COUNT uses a group by clause, it is a complex materialized
view and may only be able to use complete refreshes. LOCAL_BOOKSHELF, as a simple
materialized view, can use fast refreshes.

The two materialized views shown in the preceding examples reference the same table. Since
one of the materialized views is a simple materialized view that replicates all columns and all
rows of the master table, the second materialized view may at first appear to be redundant.
However, sometimes the second, complex materialized view is the more useful of the two.

How can this be? First, remember that these materialized views are being used to service the
query needs of local users. If those users always perform group by operations in their queries,

Chapter 23: Using Materialized Views 429

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 23
Blind Folio 23:429

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

and their grouping columns are fixed, then LOCAL_CATEGORY_COUNT may be more useful
to them. Second, if the transaction volume on the master BOOKSHELF table is very high, or the
master BOOKSHELF table is very small, there may not be a significant difference in the refresh
times of the fast and complete refreshes. The most appropriate materialized view is the one that
is most productive for your users.

RowID vs. Primary Key–Based Materialized Views
You can base materialized views on primary key values of the master table instead of basing them
on the master table’s RowIDs. You should decide between these options based on several factors:

■ System stability If the master site is not stable, then you may need to perform database
recoveries involving the master table. When you use Oracle’s Export and Import utilities to
perform recoveries, the RowID values of rows are likely to change. If the system requires
frequent Exports and Imports, you should use primary key–based materialized views.

■ Amount of data replicated If you normally don’t replicate the primary key columns,
you can reduce the amount of data replicated by replicating the RowID values instead.

■ Amount of data sent during refreshes During refreshes, RowID-based materialized
views usually require less data to be sent to the materialized view than primary
key–based materialized views require (unless the primary key is a very short column).

■ Size of materialized view log table Oracle allows you to store the changes to master
tables in separate tables called materialized view logs (described later in this chapter). If
the primary key consists of many columns, the materialized view log table for a primary
key–based materialized view may be considerably larger than the materialized view log
for a comparable RowID-based materialized view.

■ Referential integrity To use primary key–based materialized views, you must have
defined a primary key on the master table. If you cannot define a primary key on the
master table, then you must use RowID-based materialized views.

Underlying Objects Created
When you create a materialized view, a number of objects are created in the local and remote
databases. The supporting objects created within a database are the same for both simple and
complex materialized views. With simple materialized views, you have the ability to create
additional objects called materialized view logs, which are discussed in “create materialized
view log Syntax,” later in this chapter.

Consider the simple materialized view shown in the last section:

create materialized view LOCAL_BOOKSHELF
storage (initial 100K next 100K pctincrease 0)
tablespace USERS
refresh force
start with SysDate next SysDate+7
with primary key
as
select * from BOOKSHELF@REMOTE_CONNECT;

430 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 23
Blind Folio 23:430

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Within the local database, this command will create the following objects in the materialized
view owner’s schema in addition to the materialized view object:

■ A table named LOCAL_BOOKSHELF that is the local base table for the materialized
view of the remote table. This table contains the replicated data.

■ An index on the materialized view’s local base table (LOCAL_BOOKSHELF). See the
following section, “Indexing Materialized View Tables.” The index in this example is
created on the Title column, the primary key of the source table for the materialized view.

There is only one permissible change that should be made to these underlying objects: The
LOCAL_BOOKSHELF table should be indexed to reflect the query paths that are normally used
by local users. When you index the materialized view’s local base table, you need to factor in
your indexes’ storage requirements when you estimate the materialized view’s space needs. See
the following section, “Indexing Materialized View Tables,” for further details.

No supporting objects are created in the remote database unless you use materialized view
logs to record changes to rows in the master table. Materialized view logs are described in
“create materialized view log Syntax,” later in this chapter.

Indexing Materialized View Tables
As noted in the preceding discussion, the local base table contains the data that has been
replicated. Because that data has been replicated with a goal in mind (usually to improve
performance in the database or the network), it is important to follow through to that goal after the
materialized view has been created. Performance improvements for queries are usually gained
through the use of indexes. Columns that are frequently used in the where clauses of queries should
be indexed; if a set of columns is frequently accessed in queries, then a concatenated index on that
set of columns can be created. (See Chapter 38 for more information on the Oracle optimizer.)

Oracle does not automatically create indexes for complex materialized views on columns
other than the primary key. You need to create these indexes manually. To create indexes on
your local base table, use the create index command (see the Alphabetical Reference). Do not
create any constraints on the materialized view’s local base table.

Since no indexes are created on the columns that users are likely to query from the
materialized view, you should create indexes on the materialized view’s local base table.

Using Materialized Views to Alter Query Execution Paths
For a large database, a materialized view may offer several performance benefits. You can use
materialized views to influence the optimizer to change the execution paths for queries. This
feature, called query rewrite, enables the optimizer to use a materialized view in place of the
table queried by the materialized view, even if the materialized view is not named in the query.
For example, if you have a large SALES table, you may create a materialized view that sums the
SALES data by region. If a user queries the SALES table for the sum of the SALES data for a region,
Oracle can redirect that query to use your materialized view in place of the SALES table. As a
result, you can reduce the number of accesses against your largest tables, improving the system
performance. Further, since the data in the materialized view is already grouped by region,
summarization does not have to be performed at the time the query is issued.

Chapter 23: Using Materialized Views 431

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 23
Blind Folio 23:431

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

NOTE
You must specify query rewrite in the materialized view definition for
the view to be used as part of a query rewrite operation.

To use the query rewrite capability effectively, you should create a dimension that defines the
hierarchies within the table’s data. For example, countries are part of continents, and you can
create tables to support this hierarchy:

create dimension GEOGRAPHY
level COUNTRY_ID is COUNTRY.Country
level CONTINENT_id is CONTINENT.Continent
hierarchy COUNTRY_ROLLUP (

COUNTRY_ID child of
CONTINENT_ID

join key COUNTRY.Continent references CONTINENT_id);

If you summarize your SALES data in a materialized view at the country level, then the
optimizer will be able to redirect queries for country-level SALES data to the materialized view.
Since the materialized view should contain less data than the SALES table, the query of the
materialized view should yield a performance improvement over a similar query of the SALES table.

To enable a materialized view for query rewrite, all of the master tables for the materialized
view must be in the materialized view’s schema, and you must have the QUERY REWRITE system
privilege. If the view and the tables are in separate schemas, you must have the GLOBAL QUERY
REWRITE system privilege. In general, you should create materialized views in the same schema as
the tables on which they are based; otherwise, you will need to manage the permissions and grants
required to create and maintain the materialized view.

Refreshing Materialized Views
The data in a materialized view may be replicated either once (when the view is created) or
at intervals. The create materialized view command allows you to set the refresh interval,
delegating the responsibility for scheduling and performing the refreshes to the database. In
the following sections, you will see how to perform both manual and automatic refreshes.

What Kind of Refreshes Can Be Performed?
To see what kind of refresh and rewrite capabilities are possible for your materialized views, you
can query the MV_CAPABILITIES_TABLE table. The capabilities may change between versions,
so you should re-evaluate your refresh capabilities following Oracle software upgrades. To create
this table, execute the utlxmv.sql script located in the /rdbms/admin directory under the Oracle
software home directory.

The columns of MV_CAPABILITIES TABLE are

desc MV_CAPABILITIES_TABLE

Name Null? Type
--- -------- ----------------
STATEMENT_ID VARCHAR2(30)

432 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 23
Blind Folio 23:432

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

MVOWNER VARCHAR2(30)
MVNAME VARCHAR2(30)
CAPABILITY_NAME VARCHAR2(30)
POSSIBLE CHAR(1)
RELATED_TEXT VARCHAR2(2000)
RELATED_NUM NUMBER
MSGNO NUMBER(38)
MSGTXT VARCHAR2(2000)
SEQ NUMBER

To populate the MV_CAPABILITIES_TABLE table, execute the DBMS_MVIEW.EXPLAIN_MVIEW
procedure, using the name of the materialized view as the input value as shown in the following
listing.

execute DBMS_MVIEW.EXPLAIN_MVIEW('local_bookshelf');

The utlxmv.sql script provides guidance on the interpretation of the column values, as shown
in the following listing.

CREATE TABLE MV_CAPABILITIES_TABLE
(STATEMENT_ID VARCHAR(30), -- Client-supplied unique statement identifier
MVOWNER VARCHAR(30), -- NULL for SELECT based EXPLAIN_MVIEW
MVNAME VARCHAR(30), -- NULL for SELECT based EXPLAIN_MVIEW
CAPABILITY_NAME VARCHAR(30), -- A descriptive name of the particular

-- capability:
-- REWRITE
-- Can do at least full text match
-- rewrite
-- REWRITE_PARTIAL_TEXT_MATCH
-- Can do at least full and partial
-- text match rewrite
-- REWRITE_GENERAL
-- Can do all forms of rewrite
-- REFRESH
-- Can do at least complete refresh
-- REFRESH_FROM_LOG_AFTER_INSERT
-- Can do fast refresh from an mv log
-- or change capture table at least
-- when update operations are
-- restricted to INSERT
-- REFRESH_FROM_LOG_AFTER_ANY
-- can do fast refresh from an mv log
-- or change capture table after any
-- combination of updates
-- PCT
-- Can do Enhanced Update Tracking on
-- the table named in the RELATED_NAME
-- column. EUT is needed for fast
-- refresh after partitioned
-- maintenance operations on the table

Chapter 23: Using Materialized Views 433

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 23
Blind Folio 23:433

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

434 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 23
Blind Folio 23:434

-- named in the RELATED_NAME column
-- and to do non-stale tolerated
-- rewrite when the mv is partially
-- stale with respect to the table
-- named in the RELATED_NAME column.
-- EUT can also sometimes enable fast
-- refresh of updates to the table
-- named in the RELATED_NAME column
-- when fast refresh from an mv log
-- or change capture table is not
-- possible.

POSSIBLE CHARACTER(1), -- T = capability is possible
-- F = capability is not possible

RELATED_TEXT VARCHAR(2000),-- Owner.table.column, alias name, etc.
-- related to this message. The
-- specific meaning of this column
-- depends on the MSGNO column. See
-- the documentation for
-- DBMS_MVIEW.EXPLAIN_MVIEW() for details

RELATED_NUM NUMBER, -- When there is a numeric value
-- associated with a row, it goes here.
-- The specific meaning of this column
-- depends on the MSGNO column. See
-- the documentation for
-- DBMS_MVIEW.EXPLAIN_MVIEW() for details

MSGNO INTEGER, -- When available, QSM message #
-- explaining why not possible or more
-- details when enabled.

MSGTXT VARCHAR(2000),-- Text associated with MSGNO.
SEQ NUMBER); -- Useful in ORDER BY clause when

-- selecting from this table.

Once the EXPLAIN_MVIEW procedure has been executed, you can query MV_CAPABILITIES_
TABLE to determine your options.

select Capability_Name, Msgtxt
from MV_CAPABILITIES_TABLE
where Msgtxt is not null;

For the LOCAL_BOOKSHELF materialized view, the query returns:

CAPABILITY_NAME

MSGTXT
--
PCT_TABLE
relation is not a partitioned table

REFRESH_FAST_AFTER_INSERT
the detail table does not have a materialized view log

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 23: Using Materialized Views 435

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 23
Blind Folio 23:435

REFRESH_FAST_AFTER_ONETAB_DML
see the reason why REFRESH_FAST_AFTER_INSERT is disabled

REFRESH_FAST_AFTER_ANY_DML
see the reason why REFRESH_FAST_AFTER_ONETAB_DML is disabled

REFRESH_FAST_PCT
PCT is not possible on any of the detail tables in the
materialized view

REWRITE_FULL_TEXT_MATCH
query rewrite is disabled on the materialized view

REWRITE_PARTIAL_TEXT_MATCH
query rewrite is disabled on the materialized view

REWRITE_GENERAL
query rewrite is disabled on the materialized view

REWRITE_PCT
general rewrite is not possible and PCT is not possible on
any of the detail tables

Since the query rewrite clause was not specified during the creation of the materialized view,
the query rewrite capabilities are disabled for LOCAL_BOOKSHELF. Fast refresh capabilities are
not supported because the base table does not have a materialized view log. If you change your
materialized view or its base table, you should regenerate the data in MV_CAPABILITIES_TABLE
to see the new capabilities.

Automatic Refreshes
Consider the LOCAL_BOOKSHELF materialized view described earlier. Its refresh schedule settings,
defined by its create materialized view command, are shown in bold in the following listing:

create materialized view LOCAL_BOOKSHELF
storage (initial 100K next 100K pctincrease 0)
tablespace USERS
refresh force
start with SysDate next SysDate+7
with primary key
as
select * from BOOKSHELF@REMOTE_CONNECT;

The refresh schedule has three components. First, the type of refresh (fast, complete, or force)
is specified. Fast refreshes use materialized view logs (described later in this chapter) to send
changed rows from the master table to the materialized view. Complete refreshes completely
re-create the materialized view. The force option for refreshes tells Oracle to use a fast refresh
if it is available; otherwise, a complete refresh will be used.

The start with clause tells the database when to perform the first replication from the master
table to the local base table. It must evaluate to a future point in time. If you do not specify a start

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

436 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 23
Blind Folio 23:436

with time but specify a next value, Oracle will use the next clause to determine the start time.
To maintain control over your replication schedule, you should specify a value for the start with
clause.

The next clause tells Oracle how long to wait between refreshes. Since it will be applied to a
different base time each time the materialized view is refreshed, the next clause specifies a date
expression instead of a fixed date. In the previous example, the expression is

next SysDate+7

Every time the materialized view is refreshed, the next refresh will be scheduled for seven
days later. Although the refresh schedule in this example is fairly simple, you can use many of
Oracle’s date functions to customize a refresh schedule. For example, if you want to refresh
every Monday at noon, regardless of the current date, you can set the next clause to

NEXT_DAY(TRUNC(SysDate),'MONDAY')+12/24

This example will find the next Monday after the current system date; the time portion of that
date will be truncated, and 12 hours will be added to the date. (For information on date functions
in Oracle, see Chapter 9.)

For automatic materialized view refreshes to occur, you must have at least one background
snapshot refresh process running in your database. The refresh process, called Jnnn (where nnn is
a number from 000 to 999), periodically “wakes up” and checks whether any materialized views
in the database need to be refreshed. The number of Jnnn processes running in your database is
determined by an initialization parameter called JOB_QUEUE_PROCESSES. That parameter must
be set (in your initialization parameter file) to a value greater than 0; for most cases, a value of 1
should be sufficient. A coordinator process starts job queue processes as needed.

If the database is not running the Jnnn processes, you need to use manual refresh methods,
described in the next section.

Manual Refreshes
In addition to the database’s automatic refreshes, you can perform manual refreshes of
materialized views. These override the normally scheduled refreshes; the new start with value
will be based on the time of your manual refresh.

To refresh a single materialized view, use DBMS_MVIEW.REFRESH. Its two main parameters
are the name of the materialized view to be refreshed and the method to use. For this method,
you can specify ‘c’ for a complete refresh, ‘f’ for fast refresh, and ‘?’ for force. For example:

execute DBMS_MVIEW.REFRESH('local_bookshelf','c');

If you are refreshing multiple materialized views via a single execution of
DBMS_MVIEW.REFRESH, list the names of all of the materialized views in the first
parameter, and their matching refresh methods in the second parameter, as shown here:

execute DBMS_MVIEW.REFRESH('local_bookshelf,local_category_count','?c');

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 23: Using Materialized Views 437

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 23
Blind Folio 23:437

In this example, the materialized view named LOCAL_BOOKSHELF will be refreshed via a
fast refresh if possible (force), while the second materialized view will use a complete refresh.

You can use a separate procedure in the DBMS_MVIEW package to refresh all of the
materialized views that are scheduled to be automatically refreshed. This procedure, named
REFRESH_ALL, will refresh each materialized view separately. It does not accept any parameters.
The following listing shows an example of its execution:

execute DBMS_MVIEW.REFRESH_ALL;

Since the materialized views will be refreshed via REFRESH_ALL consecutively, they are
not all refreshed at the same time. Therefore, a database or server failure during the execution of
this procedure may cause the local materialized views to be out of sync with each other. If that
happens, simply rerun this procedure after the database has been recovered. As an alternative,
you can create refresh groups, as described in the next section.

Another procedure within DBMS_MVIEWS, REFRESH_ALL_MVIEWS, refreshes all
materialized views that have the following properties:

■ The materialized view has not been refreshed since the most recent change to a master
table or master materialized view on which it depends.

■ The materialized view and all of the master tables or master materialized views on
which it depends are local.

■ The materialized view is in the view DBA_MVIEWS.

Enforcing Referential Integrity Among Materialized Views
The referential integrity between two related tables, both of which have simple materialized
views based on them, may not be enforced in their materialized views. If the tables are refreshed
at different times, or if transactions are occurring on the master tables during the refresh, it is
possible for the materialized views of those tables to not reflect the referential integrity of the
master tables.

For example, BOOKSHELF and BOOKSHELF_CHECKOUT are related to each other via a
primary key/foreign key relationship, so simple materialized views of these tables may contain
violations of this relationship, including foreign keys without matching primary keys. In this
example, that could mean records in the BOOKSHELF_CHECKOUT materialized view with
Title values that do not exist in the BOOKSHELF materialized view.

There are a number of potential solutions to this problem. First, time the refreshes to occur
when the master tables are not in use. Second, perform the refreshes manually (see the following
section for information on this) immediately after locking the master tables or quiescing the
database. Third, you may join the tables in the materialized view, creating a complex materialized
view that will be based on the master tables (which will be properly related to each other).

Using refresh groups is a fourth solution to the referential integrity problem. You can collect
related materialized views into refresh groups. The purpose of a refresh group is to coordinate
the refresh schedules of its members. Materialized views whose master tables have relationships
with other master tables are good candidates for membership in refresh groups. Coordinating the
refresh schedules of the materialized views will maintain the master tables’ referential integrity in

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

the materialized views as well. If refresh groups are not used, the data in the materialized views
may be inconsistent with regard to the master tables’ referential integrity.

Manipulation of refresh groups is performed via the DBMS_REFRESH package. The
procedures within that package are MAKE, ADD, SUBTRACT, CHANGE, DESTROY, and
REFRESH, as shown in the following examples. Information about existing refresh groups can be
queried from the USER_REFRESH and USER_REFRESH_CHILDREN data dictionary views.

NOTE
Materialized views that belong to a refresh group do not have to
belong to the same schema, but they do have to be all stored within
the same database.

Create a refresh group by executing the MAKE procedure in the DBMS_REFRESH package,
whose structure is shown in the following listing:

DBMS_REFRESH.MAKE
(name IN VARCHAR2,
list IN VARCHAR2, |
tab IN DBMS_UTILITY.UNCL_ARRAY,

next_date IN DATE,
interval IN VARCHAR2,
implicit_destroy IN BOOLEAN := FALSE,
lax IN BOOLEAN := FALSE,
job IN BINARY INTEGER := 0,
rollback_seg IN VARCHAR2 := NULL,
push_deferred_rpc IN BOOLEAN := TRUE,
refresh_after_errors IN BOOLEAN := FALSE,
purge_option IN BINARY_INTEGER := NULL,
parallelism IN BINARY_INTEGER := NULL,
heap_size IN BINARY_INTEGER := NULL);

All but the first four of the parameters for this procedure have default values that are usually
acceptable. The list and tab parameters are mutually exclusive. You can use the following
command to create a refresh group for materialized views named LOCAL_BOOKSHELF and
LOCAL_CATEGORY_COUNT. The command is shown here separated across several lines, with
continuation characters at the end of each line; you can also enter it on a single line.

execute DBMS_REFRESH.MAKE -
(name => 'book_group', -
list => 'local_bookshelf, local_category_count', -
next_date => SysDate, -
interval => 'SysDate+7');

438 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 23
Blind Folio 23:438

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 23
Blind Folio 23:439

Chapter 23: Using Materialized Views 439

NOTE
The list parameter, which is the second parameter in the listing, has
a single quote at its beginning and at its end, with none between.
In this example, two materialized views—LOCAL_BOOKSHELF and
LOCAL_CATEGORY_COUNT—are passed to the procedure via a
single parameter.

The preceding command will create a refresh group named BOOK_GROUP, with two
materialized views as its members. The refresh group name is enclosed in single quotes, as is
the list of members—but not each member.

If the refresh group is going to contain a materialized view that is already a member of
another refresh group (for example, during a move of a materialized view from an old refresh
group to a newly created refresh group), then you must set the lax parameter to TRUE so that
Oracle will automatically remove the materialized view from the previous refresh group. A
materialized view can only belong to one refresh group at a time.

To add materialized views to an existing refresh group, use the ADD procedure of the
DBMS_REFRESH package, whose structure is

DBMS_REFRESH.ADD
(name IN VARCHAR2,
list IN VARCHAR2, |
tab IN DBMS_UTILITY.UNCL_ARRAY,

lax IN BOOLEAN := FALSE);

As with the MAKE procedure, the ADD procedure’s lax parameter does not have to be
specified unless a materialized view is being moved between two refresh groups. When this
procedure is executed with the lax parameter set to TRUE, the materialized view is moved to
the new refresh group and is automatically deleted from the old refresh group.

To remove materialized views from an existing refresh group, use the SUBTRACT procedure
of the DBMS_REFRESH package, as in the following:

DBMS_REFRESH.SUBTRACT
(name IN VARCHAR2,
list IN VARCHAR2, |
tab IN DBMS_UTILITY.UNCL_ARRAY,

lax IN BOOLEAN := FALSE);

As with the MAKE and ADD procedures, a single materialized view or a list of materialized
views (separated by commas) may serve as input to the SUBTRACT procedure. You can alter the
refresh schedule for a refresh group via the CHANGE procedure of the DBMS_REFRESH package.

DBMS_REFRESH.CHANGE
(name IN VARCHAR2,
next_date IN DATE := NULL,
interval IN VARCHAR2 := NULL,
implicit_destroy IN BOOLEAN := NULL,

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

rollback_seg IN VARCHAR2 := NULL,
push_deferred_rpc IN BOOLEAN := NULL,
refresh_after_errors IN BOOLEAN := NULL,
purge_option IN BINARY_INTEGER := NULL,
parallelism IN BINARY_INTEGER := NULL,
heap_size IN BINARY_INTEGER := NULL);

The next_date parameter is analogous to the start with clause in the create materialized view
command. The interval parameter is analogous to the next clause in the create materialized
view command. For example, to change the BOOK_GROUP’s schedule so that it will be replicated
every three days, you can execute the following command (which specifies a NULL value for the
next_date parameter, leaving that value unchanged):

execute DBMS_REFRESH.CHANGE
(name => 'book_group',
next_date => null,
interval => 'SysDate+3');

After this command is executed, the refresh cycle for the BOOK_GROUP refresh group will
be changed to every three days.

NOTE
Refresh operations on refresh groups may take longer than
comparable materialized view refreshes. Group refreshes may also
require significant undo segment space to maintain data consistency
during the refresh.

You may manually refresh a refresh group via the REFRESH procedure of the
DBMS_REFRESH package. The REFRESH procedure accepts the name of the refresh group as
its only parameter. The command shown in the following listing will refresh the refresh group
named BOOK_GROUP:

execute DBMS_REFRESH.REFRESH('book_group');

To delete a refresh group, use the DESTROY procedure of the DBMS_REFRESH package, as
shown in the following example. Its only parameter is the name of the refresh group.

execute DBMS_REFRESH.DESTROY(name => 'book_group');

You may also implicitly destroy the refresh group. If you set the implicit_destroy parameter
to TRUE when you create the group with the MAKE procedure, the refresh group will be deleted
(destroyed) when its last member is removed from the group (usually via the SUBTRACT
procedure).

Additional Materialized View Management Options
There are two additional packages that you can use to manage and evaluate your materialized
views: DBMS_MVIEW and DBMS_OLAP. To create these packages for materialized views, you
must run dbmssnap.sql and dbmssum.sql respectively.

The DBMS_MVIEW package options are shown in Table 23-1.

440 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 23
Blind Folio 23:440

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 23: Using Materialized Views 441

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 23
Blind Folio 23:441

The DBMS_MVIEW package is used to perform management actions such as evaluating,
registering, or refreshing a materialized view.

The DBMS_OLAP package can be used to determine whether a materialized view would
enhance your database query performance, generate materialized view creation scripts, estimate

Subprogram Description

BEGIN_TABLE_REORGANIZATION A process to preserve the data needed for a
materialized view refresh is performed, used prior to
reorganizing the master table.

END_TABLE_REORGANIZATION Ensures that the materialized view master table is in
the proper state and that the master table is valid, at
the end of a master table reorganization.

EXPLAIN_MVIEW Explains what is possible with an existing or proposed
materialized view (is it fast refreshable, is query
rewrite available?).

EXPLAIN_REWRITE Explains why a query failed to rewrite, or which
materialized views will be used if it rewrites.

I_AM_A_REFRESH The value of the I_AM_A_REFRESH package state is
returned, called during replication.

PMARKER Used for Partition Change Tracking, returns a partition
marker from a RowID.

PURGE_DIRECT_LOAD_LOG Used with data warehousing, this subprogram purges
rows from the direct loader log after they are no
longer needed by a materialized view.

PURGE_LOG Purges rows from the materialized view log.

PURGE_MVIEW_FROM_LOG Purges rows from the materialized view log.

REFRESH Refreshes one or more materialized views that are not
members of the same refresh group.

REFRESH_ALL_MVIEW Refreshes all materialized views that do not reflect
changes to their master table or master materialized
view.

REFRESH_DEPENDENT Refreshes all table-based materialized views that
depend on either a specified master table or master
materialized view. The list can contain one or more
master tables or master materialized views.

REGISTER_MVIEW Enables an individual materialized view’s
administration.

UNREGISTER_MVIEW Used to unregister a materialized view at a master site
or master materialized view site.

TABLE 23-1. DBMS_MVIEW Subprograms

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

the size the materialized view would be, and so on. The DMBS_OLAP package has the following
options shown in Table 23-2.

See the Oracle9i Supplied PL/SQL Packages and Types Reference guide for details on this
package.

442 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 23
Blind Folio 23:442

Subprogram Description

ADD_FILTER_ITEM Filters the contents used during the recommendation
process.

CREATE_ID Creates an internal ID used by a new workload
collection, a new filter, or a new advisor run.

ESTIMATE_MVIEW_SIZE Estimates the size of a materialized view in bytes and
rows that you could create.

EVALUATE_MVIEW_STRATEGY Measures the utilization of each existing materialized
view.

GENERATE_MVIEW_REPORT Generates an HTML-based report on the given Advisor
run.

GENERATE_MVIEW_SCRIPT Generates a simple script containing the SQL
commands to implement recommendations made in the
Summary Advisor report.

LOAD_WORKLOAD_CACHE Obtains a SQL cache workload.

LOAD_WORKLOAD_TRACE Loads a workload collected by Oracle Trace.

LOAD_WORKLOAD_USER Loads a user-defined workload.

PURGE_FILTER Deletes a specific filter or all filters.

PURGE_RESULTS Removes all results or those for a specific run.

PURGE_WORKLOAD Deletes a specific collection or all workloads.

RECOMMEND_MVIEW_STRATEGY Generates a set of recommendations about which
materialized views should be created, retained, or
dropped.

SET_CANCELLED Stops the Advisor. If the Advisor is taking too long to
report results, stops the Advisor.

VALIDATE_DIMENSION Verifies that the relationships specified in a dimension
are correct.

VALIDATE_WORKLOAD_CACHE Validates the SQL Cache workload before performing
load operations.

VALIDATE_WORKLOAD_TRACE Validates the Oracle Trace workload before performing
load operations.

VALIDATE_WORKLOAD_USER Validates the user-supplied workload before performing
load operations.

TABLE 23-2. DBMS_OLAP Subprograms

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

create materialized view log Syntax
In simple materialized views, each record in the materialized view is based on a single row in
a single master table. When simple materialized views are used, a materialized view log can be
created on the master table. The materialized view log is a table that records the date on which
every changed row within the master table last replicated. The record of changed rows can then
be used during refreshes to send out to the materialized views only those rows that have changed
in the master table. Multiple simple materialized views based on the same table can use the same
materialized view log.

The full syntax for the create materialized view log command is shown in the Alphabetical
Reference. The following listing shows part of the syntax; as you may note from its syntax, it has
all of the parameters normally associated with tables:

create materialized view log on [schema .] table
[{ physical_attributes_clause
| tablespace tablespace
| { logging | nologging }
| { cache | nocache }
}
[physical_attributes_clause
| tablespace tablespace
| { logging | nologging }
| { cache | nocache }
]...
]
[parallel_clause] [partitioning_clauses]
[with
{ object id | primary key | rowid | sequence | (column [, column]...) }
[, { object id | primary key | rowid | sequence | (column [, column]...) }]...
]
[{ including | excluding } new values];

The create materialized view log command is executed in the master table’s database,
usually by the owner of the master table. Materialized view logs should not be created for tables
that are only involved in complex materialized views (since they wouldn’t be used). No name is
specified for the materialized view log.

A materialized view log for the BOOKSHELF table can be created via the following command,
executed from within the account that owns the table:

create materialized view log on BOOKSHELF
tablespace USERS

storage (initial 40K next 40K pctincrease 0)
with primary key;

The command shown in this example creates a materialized view log in a tablespace named
USERS. Because materialized view logs may grow unpredictably over time, in production
databases, you should store their associated objects in tablespaces that are dedicated to
materialized view logs. The LOCAL_BOOKSHELF materialized view was created using the with

Chapter 23: Using Materialized Views 443

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 23
Blind Folio 23:443

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

444 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 23
Blind Folio 23:444

primary key clause, so the materialized view log for the BOOKSHELF table should also be created
using the with primary key clause.

Required System Privileges
To create the materialized view log, you must have CREATE TABLE and CREATE TRIGGER
system privileges. If you are creating the materialized view log from a user account that does
not own the master table, you need to have CREATE ANY TABLE, COMMENT ANY TABLE, and
CREATE ANY TRIGGER system privileges as well as SELECT privilege on the materialized view
master table.

Local and Remote Objects Created
When a materialized view log is created, two objects are created in the master table’s schema.
From the perspective of the materialized view owner, the create materialized view log command
occurs in the remote database, and the objects it creates are all in the remote database. The
materialized view log creates a table and a trigger:

■ A table is created to store the identifiers of the rows that change in the master table,
along with a separate timestamp column to record the time the changed rows were last
replicated.

■ An internal trigger is created to insert the key values—either RowIDs or primary key
values—and refresh timestamps of updated, inserted, or deleted rows into the
materialized view log table.

The columns shown in the create materialized view log command are related to the use of
subqueries within materialized view queries. You can use a subquery within a materialized view
query only if the subquery completely preserves the key values of the replicated data. Subqueries
can be used only with primary key–based materialized views.

Altering Materialized Views and Logs
You may alter the storage parameters, refresh option, and refresh schedule for existing materialized
views. If you are unsure of the current settings for a snapshot, check the USER_MVIEWS data
dictionary view.

The syntax for the alter materialized view command is shown in the Alphabetical Reference.
The command in the following listing alters the refresh option used by the LOCAL_BOOKSHELF
materialized view:

alter materialized view LOCAL_BOOKSHELF
refresh complete;

All future refreshes of LOCAL_BOOKSHELF will refresh the entire local base table.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

To alter a materialized view, you must either own the materialized view or have the ALTER
ANY MATERIALIZED VIEW system privilege.

The storage parameters for materialized view logs may be modified via the alter materialized
view log command. The syntax for this command is shown in the Alphabetical Reference.

Changing the storage-related parameters for a materialized view log will change the storage
parameters on the materialized view log’s table. For example, the following command will
change the next parameter within the storage clause for the materialized view log (assuming the
tablespace is dictionary-managed):

alter materialized view log on BOOKSHELF
storage (next 100K);

To alter a materialized view log, you must own the table, have ALTER privilege for the table,
or have ALTER ANY TABLE system privilege.

Dropping Materialized Views and Logs
To drop a materialized view, you must have the system privileges required to drop both the
materialized view and all of its related objects. You need to have DROP MATERIALIZED VIEW
if the object is in your schema, or DROP ANY MATERIALIZED VIEW system privilege if the
materialized view is not in your schema.

The following command drops the LOCAL_CATEGORY_COUNT materialized view created
earlier in this chapter:

drop materialized view LOCAL_CATEGORY_COUNT;

Materialized view logs can be dropped via the drop materialized view log command. Once
the materialized view log is dropped from a master table, no fast refreshes can be performed for
simple materialized views based on that table. A materialized view log should be dropped when
no simple materialized views are based on the master table. The following command drops the
materialized view log that was created on the BOOKSHELF table earlier in this chapter:

drop materialized view log on BOOKSHELF;

To drop a materialized view log, you must have the ability to drop both the materialized view
log and its related objects. If you own the materialized view log, you must have the DROP TABLE
and DROP TRIGGER system privileges. If you do not own the materialized view log, you need
the DROP ANY TABLE and DROP ANY TRIGGER system privileges to execute this command.

Chapter 23: Using Materialized Views 445

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 23
Blind Folio 23:445

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 23
Blind Folio 23:446

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 24
Blind Folio 24:447

CHAPTER
24

Using Oracle Text
for Text Searches

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

A
s the amount of text in your database increases, so does the complexity of the text
queries performed against the database. Instead of just performing string matches,
you will need new text-search features—such as weighting the terms in a search
of multiple terms or ranking the results of a text search.

You can use Oracle Text to perform text-based searches. In prior versions,
this feature was known as the ConText Cartridge and interMedia Text. If you have previously
used ConText, you may find the configuration for Oracle Text to be simpler and better integrated
with the Oracle kernel. As of Oracle9i, new features such as index sets have been added to
further enhance text-searching capabilities.

You can use Oracle Text to perform wildcard searching, “fuzzy matches,” relevance ranking,
proximity searching, term weighting, and word expansions. In this chapter, you’ll see how to
configure and use Oracle Text.

Adding Text to the Database
Text can be added to the database either by physically storing the text in a table or by storing
pointers to external files in the database. That is, for the books on the bookshelf, you can store
reviews either in the database or in external files. If you store the reviews in external files, then
you store the filenames in the database.

To store the reviews in the database, create the BOOK_REVIEW tables. In this chapter, you
will see examples of two types of indexes: CONTEXT and CTXCAT. To support these examples,
two separate tables will be created: BOOK_REVIEW_CONTEXT and BOOK_REVIEW_CTXCAT,
both loaded with the same data.

create table BOOK_REVIEW_CONTEXT
(Title VARCHAR2(100) primary key,
Reviewer VARCHAR2(25),
Review_Date DATE,
Review_Text VARCHAR2(4000));

insert into BOOK_REVIEW_CONTEXT values
('MY LEDGER', 'EMILY TALBOT', '01-MAY-02',
'A fascinating look into the transactions and finances of G. B. Talbot
and Dora Talbot as they managed a property in New Hampshire around 1900.
The stories come through the purchases – for medicine, doctor visits and
gravesites – for workers during harvests – for gifts at the general store
at Christmas. A great read. ');

create table BOOK_REVIEW_CTXCAT
(Title VARCHAR2(100) primary key,
Reviewer VARCHAR2(25),
Review_Date DATE,
Review_Text VARCHAR2(4000));

insert into BOOK_REVIEW_CTXCAT values
('MY LEDGER', 'EMILY TALBOT', '01-MAY-02',
'A fascinating look into the transactions and finances of G. B. Talbot
and Dora Talbot as they managed a property in New Hampshire around 1900.

448 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 24
Blind Folio 24:448

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The stories come through the purchases – for medicine, doctor visits and
gravesites – for workers during harvests – for gifts at the general store
at Christmas. A great read. ');

The Review_Text column of the BOOK_REVIEW tables is defined as having a VARCHAR2(4000)
datatype. For longer values, consider the use of CLOB datatypes. See Chapter 32 for details on
CLOB datatypes. You can select the review text from the database:

set linesize 70
select Review_Text
from BOOK_REVIEW_CONTEXT
where Title = 'MY LEDGER';

REVIEW_TEXT

--
A fascinating look into the transactions and finances of G. B. Talbot
and Dora Talbot as they managed a property in New Hampshire around 190
0. The stories come through the purchases - for medicine, doctor visi
its and gravesites - for workers during harvests - for gifts at the gen
earl store at Christmas. A great read.

Text Queries and Text Indexes
Querying text is different from querying data because words have shades of meaning, relationships
to other words, and opposites. You may want to search for words that are near each other, or
words that are related to others. These queries would be extremely difficult if all you had
available was the standard relational operators. By extending SQL to include text indexes,
Oracle Text permits you to ask very complex questions about the text.

To use Oracle Text, you need to create a text index on the column in which the text is stored.
“Text index” is a slightly confusing term—it is actually a collection of tables and indexes that
store information about the text stored in the column.

There are several different types of text indexes available in Oracle9i. The first, CONTEXT,
is supported in Oracle8i as well as Oracle9i. As of Oracle9i, you can use the CTXCAT text index
to further enhance your text index management and query capabilities. In this chapter, you will
see examples of both types of indexes. You can use a third type of index, CTXRULE, to build a
content-based document classification application. See the Oracle Text Application Developer’s
Guide for details on the use of CTXRULE indexes.

NOTE
Before creating a text index on a table, you must create a
primary key for the table (if one does not already exist).

You can create a text index via a special version of the create index command. For a
CONTEXT index, specify the Ctxsys.Context index type, as shown in the following listing:

create index Review_Context_Index on BOOK_REVIEW_CONTEXT(Review_Text)
indextype is ctxsys.context;

Chapter 24: Using Oracle Text for Text Searches 449

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 24
Blind Folio 24:449

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

When the text index is created, Oracle creates a number of indexes and tables in your
schema to support your text queries. You can rebuild your text index via the alter index
command, just as you would for any other index.

As of Oracle9i, you can use a CTXCAT index type in place of the CONTEXT index type:

create index Review_CtxCat_Index on BOOK_REVIEW_CTXCAT(Review_Text)
indextype is ctxsys.ctxcat;

The CTXCAT index type supports the transactional synchronization of data between the
base table (BOOK_REVIEW_CTXCAT) and its text index. With CONTEXT indexes, you need to
manually tell Oracle to update the values in the text index after data changes in the base table.
CTXCAT index types do not generate “score” values during text queries (as CONTEXT indexes
do), but the query syntax is largely the same for the two types. The following sections illustrate
the types of text queries you can perform via Oracle Text.

Text Queries
Once a text index is created on the Review_Text column of the BOOK_REVIEW_CONTEXT
table, text-searching capabilities increase dramatically. You can now look for any book review
that contains the word ‘property’:

select Title
from BOOK_REVIEW_CONTEXT
where CONTAINS(Review_Text, 'property')>0;

The CONTAINS function takes two parameters—the column name and the search string—
and checks the text index for the Review_Text column. If the word “property” is found in the
Review_Text column’s text index, then a score greater than 0 is returned by the database, and
the matching Title value is returned. The score is an evaluation of how well the record being
returned matches the criteria specified in the CONTAINS function.

If you create a CTXCAT index, use the CATSEARCH function in place of CONTAINS.
CATSEARCH takes three parameters: the column name, the search string, and the name of
the index set. Index sets are described in the “Index Sets” section later in this chapter. For
this example, there is no index set, so that parameter is set to NULL:

select Title
from BOOK_REVIEW_CTXCAT
where CATSEARCH(Review_Text, 'property', NULL)>0;

CATSEARCH does not compute a score but uses the >0 syntax, simplifying your migration
from CONTEXT indexes to CTXCAT indexes.

How a Text Query Works
When a function such as CONTAINS or CATSEARCH is used in a query, the text portion of the
query is processed by Oracle Text. The remainder of the query is processed just like a regular
query within the database. The results of the text query processing and the regular query
processing are merged to return a single set of records to the user.

450 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 24
Blind Folio 24:450

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Available Text Query Expressions
Oracle Text would be rather limited if it allowed you to search only for exact matches of
words. Oracle Text offers a broad array of text-searching capabilities you can use to customize
your queries. Most of the text-searching capabilities are enabled via the CONTAINS and
CATSEARCH functions, which can appear only in the where clause of a select statement; never
in the where clauses of inserts, updates, or deletes.

The operators within CONTAINS allow you to perform the following text searches:

■ Exact matches of a word or phrase

■ Exact matches of multiple words, using Boolean logic to combine searches

■ Searches based on how close words are to each other in the text

■ Searches for words that share the same word “stem”

■ “Fuzzy” matches of words

■ Searches for words that sound like other words

CATSEARCH supports the exact match search functions as well as the creation of “index
sets,” described later in this chapter. In the following sections, you will see examples of these
types of text searches, along with information about the operators you can use to customize
text searches.

Searching for an Exact Match of a Word
The following query of the BOOK_REVIEW tables returns the title for all reviews including the
word “property”:

REM CONTAINS method for CONTEXT indexes:
select Title
from BOOK_REVIEW_CONTEXT
where CONTAINS(Review_Text, 'property')>0;

REM CATSEARCH method for CTXCAT indexes:
select Title
from BOOK_REVIEW_CTXCAT
where CATSEARCH(Review_Text, 'property', NULL)>0;

Within the function calls, the > sign is called a threshold operator. The preceding text search
can be translated to the following:

select all the Title column values
from the BOOK_REVIEW_CONTEXT table
where the score for the text search of the Review_Text column
for an exact match of the word 'property'
exceeds a threshold value of 0.

Chapter 24: Using Oracle Text for Text Searches 451

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 24
Blind Folio 24:451

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The threshold analysis compares the score—the internal score Oracle calculated when the text
search was performed—to the specified threshold value. Score values for individual searches
range from 0 to 10 for each occurrence of the search string within the text. For CONTEXT
indexes, you can display the score as part of your query.

To show the text-search score, use the SCORE function, which has a single parameter—a label
you assign to the score within the text search:

column Title format a30

select Title, SCORE(10)
from BOOK_REVIEW_CONTEXT
where CONTAINS(Review_Text, 'property', 10)>0;

TITLE SCORE(10)
------------------------------ ----------
MY LEDGER 3

In this listing, the CONTAINS function’s parameters are modified to include a label (10) for the
text-search operation performed. The SCORE function will display the score of the text search
associated with that label.

For CONTEXT indexes, you can use the SCORE function in the select list (as shown in the
preceding query) or in a group by clause or an order by clause.

Searching for an Exact Match of Multiple Words
What if you want to search the text for multiple words? You can use Boolean logic (ANDs and
ORs) to combine the results of multiple text searches in a single query. You can also search for
multiple terms within the same function calls and let Oracle resolve the search results.

For example, if you wanted to search for reviews that had the words “property” and “harvests”
in the review text, you could enter the following query:

REM CONTAINS method for CONTEXT indexes:
select Title
from BOOK_REVIEW_CONTEXT
where CONTAINS(Review_Text, 'property AND harvests')>0;

REM CATSEARCH method for CTXCAT indexes:
select Title
from BOOK_REVIEW_CTXCAT
where CATSEARCH(Review_Text, 'property AND harvests', NULL)>0;

NOTE
This search does not look for the phrase “property and harvests”
but rather for two individual words anywhere in the searched text.
You will see the syntax for phrase searches in the next section.

452 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 24
Blind Folio 24:452

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 24: Using Oracle Text for Text Searches 453

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 24
Blind Folio 24:453

Instead of using AND in the CONTEXT index query, you could have used an ampersand (&).
Before using this method in SQLPLUS, set define off so the & character will not be seen as part of
a variable name:

set define off

REM CONTAINS method for CONTEXT indexes:
select Title
from BOOK_REVIEW_CONTEXT
where CONTAINS(Review_Text, 'property & harvests')>0;

For the CTXCAT index, the word AND can be left out entirely:

REM CATSEARCH method for CTXCAT indexes:
select Title
from BOOK_REVIEW_CTXCAT
where CATSEARCH(Review_Text, 'property harvests', NULL)>0;

Using either the & character or the word AND denotes an AND operation—so the CONTAINS
function will return a row only if the review text includes both the words “property” and
“harvests.” Each search must pass the threshold criteria defined for the search scores. If you want
to search for more than two terms, just add them to the CONTAINS or CATSEARCH clause, as
shown in the following listing:

REM CONTAINS method for CONTEXT indexes:
select Title
from BOOK_REVIEW_CONTEXT
where CONTAINS(Review_Text, 'property AND harvests AND workers')>0;

REM CATSEARCH method for CTXCAT indexes:
select Title
from BOOK_REVIEW_CTXCAT
where CATSEARCH(Review_Text, 'property harvests workers', NULL)>0;

The query in this listing returns a row only if its search scores for “property,” “harvests,” and
“workers” are each greater than 0.

In addition to AND, you can use the OR operator—in which case a record is returned if
either of the search conditions meets the defined threshold. The symbol for OR in Oracle Text
is a vertical line (|), so the following two queries are processed identically:

REM CONTAINS method for CONTEXT indexes:
select Title
from BOOK_REVIEW_CONTEXT
where CONTAINS(Review_Text, 'property OR harvests')>0;

select Title

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

from BOOK_REVIEW_CONTEXT
where CONTAINS(Review_Text, 'property | harvests')>0;

When these queries are executed, a record is returned if either of the two separate searches (for
“property” and “harvests”) returns a score greater than 0. The CATSEARCH function does not
support the use of the term or; only the | symbol is supported:

REM CATSEARCH method for CTXCAT indexes:

select Title
from BOOK_REVIEW_CTXCAT
where CATSEARCH(Review_Text, 'property | harvests', NULL)>0;

The ACCUM (accumulate) operator provides another method for combining searches.
ACCUM adds together the scores of the individual searches and compares the accumulated score
to the threshold value. The symbol for ACCUM is a comma (,), so the two queries shown in the
following listing are equivalent:

REM CONTAINS method for CONTEXT indexes:
select Title
from BOOK_REVIEW_CONTEXT
where CONTAINS(Review_Text, 'property ACCUM harvests')>0;

select Title
from BOOK_REVIEW_CONTEXT
where CONTAINS(Review_Text, 'property , harvests')>0;

The ACCUM syntax is supported in CATSEARCH function calls but should not be used, since
CATSEARCH does not calculate a score to compare to the threshold value.

You can also use Oracle Text to subtract the scores from multiple searches before comparing
the result to the threshold score. The MINUS operator in CONTAINS subtracts the score of the
second term’s search from the score of the first term’s search. The queries in the following listing
will determine the search score for “property” and subtract from it the search score for “house”
and compare the difference to the threshold score.

REM CONTAINS method for CONTEXT indexes:
select Title
from BOOK_REVIEW_CONTEXT
where CONTAINS(Review_Text, 'property MINUS house')>0;

select Title
from BOOK_REVIEW_CONTEXT
where CONTAINS(Review_Text, 'property - house')>0;

You can use the symbol – in place of the MINUS operator, as shown in the preceding listing.
For CONTEXT indexes, the – operator reduces the score when comparing the overall search

score to the threshold value, but does not eliminate the row from consideration. To eliminate
rows based on search terms in CONTEXT indexes, use the “~” as the “not” operator.

454 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 24
Blind Folio 24:454

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

For CTXCAT indexes, the symbol “–” has a different meaning than it does with CONTEXT
indexes. For CTXCAT indexes, “–” tells Oracle Text not to return the row if the search term after
the “–” is found (like “~” in CONTEXT indexes). If the second term is found, CATSEARCH will
not return the row. For CATSEARCH queries, you can replace “–” with the word “not”.

You can use parentheses to clarify the logic within your search criteria. If your search uses
both ANDs and ORs, you should use parentheses to clarify the way in which the rows are
processed. For example, the following query returns a row if the searched text contains either
the word “house” or both the words “workers” and “harvests”:

REM CONTAINS method for CONTEXT indexes:
select Title
from BOOK_REVIEW_CONTEXT
where CONTAINS(Review_Text, 'house OR (workers AND harvests)')>0;

CATSEARCH does not require the word AND between “workers” and “harvests”:

REM CATSEARCH method for CTXCAT indexes:
select Title
from BOOK_REVIEW_CTXCAT
where CATSEARCH(Review_Text, 'house | (workers harvests)', NULL)>0;

If you change the location of the parentheses, you change the logic of the text search. The
following query returns a row if the searched text contains either “house” or “workers” and also
contains the word “harvests”:

select Title
from BOOK_REVIEW_CONTEXT
where CONTAINS(Review_Text, '(house OR workers) AND harvests')>0;

When evaluating the scores of multiple searches against CONTEXT indexes, you can tell
Oracle Text to weigh the scores of some searches more heavily than others. For example, if
you want the search score for “harvests” to be doubled when compared to the threshold score,
you can use the asterisk symbol (*) to indicate the factor by which the search score should be
multiplied.

The following query will double the search score for “harvests” when it is evaluated in an
OR condition:

select Title, SCORE(10)
from BOOK_REVIEW_CONTEXT
where CONTAINS(Review_Text, 'harvests*2 OR property*1',10)>5;

When using CONTEXT indexes, you can weight the search scores to indicate the relevance of
the terms in the search. If one term is the most important term in the search, then give that term
the highest weighting. Through the use of the AND, OR, ACCUM, and MINUS operators, you
should be able to search for any combination of word matches. In the next section, you will see
how to search for phrases.

Chapter 24: Using Oracle Text for Text Searches 455

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 24
Blind Folio 24:455

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

456 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 24
Blind Folio 24:456

Searching for an Exact Match of a Phrase
When searching for an exact match for a phrase, you specify the whole phrase as part of the
search string. If your phrase includes reserved words (such as “and,” “or,” or “minus”), then you
need to use the escape characters shown in this section so that the search is executed properly.

The following query searches for any title whose review entry includes the phrase “doctor visits.”

REM CONTAINS method for CONTEXT indexes:
select Title
from BOOK_REVIEW_CONTEXT
where CONTAINS(Review_Text, 'doctor visits')>0;

REM CATSEARCH method for CTXCAT indexes:
select Title
from BOOK_REVIEW_CTXCAT
where CATSEARCH(Review_Text, 'doctor visits',NULL)>0;

If the search phrase includes a reserved word within Oracle Text, then you must use curly
braces ({}) to enclose the text. The following query searches for the phrase “transactions and
finances.” The word “and” is enclosed in braces.

REM CONTAINS method for CONTEXT indexes:
select Title
from BOOK_REVIEW_CONTEXT
where CONTAINS(Review_Text, 'transactions {and} finances')>0;

REM CATSEARCH method for CTXCAT indexes:
select Title
from BOOK_REVIEW_CTXCAT
where CATSEARCH(Review_Text, 'transactions {and} finances',NULL)>0;

The query of ‘transactions {and} finances’ is different from a query of ‘transactions and
finances’. The query of ‘transactions {and} finances’ returns a record only if the phrase
“transactions and finances” exists in the searched text. The query of ‘transactions and finances’
returns a record if the search score for the word “transactions” and the search score for the word
“finances” are both above the threshold score (or in a CTXCAT index, if both are found).

You can enclose the entire phrase within curly braces, in which case any reserved words
within the phrase will be treated as part of the search criteria, as shown in the following example:

REM CONTAINS method for CONTEXT indexes:
select Title
from BOOK_REVIEW_CONTEXT
where CONTAINS(Review_Text, '{transactions and finances}')>0;

Searches for Words That Are Near Each Other
You can use the proximity search capability to perform a text search based on how close terms
are to each other within the searched document. A proximity search returns a high score for
words that are next to each other, and returns a low score for words that are far apart. If the
words are next to each other, the proximity search returns a score of 100.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 24: Using Oracle Text for Text Searches 457

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 24
Blind Folio 24:457

To use proximity searching against CONTEXT indexes, use the keyword NEAR, as shown in
the following example:

REM CONTAINS method for CONTEXT indexes:
select Title
from BOOK_REVIEW_CONTEXT
where CONTAINS(Review_Text, 'workers NEAR harvests')>0;

You can replace the NEAR operator with its equivalent symbol, the semicolon (;). The revised
query is shown in the following listing:

REM CONTAINS method for CONTEXT indexes:
select Title
from BOOK_REVIEW_CONTEXT
where CONTAINS(Review_Text, 'workers ; harvests')>0;

In CONTEXT index queries, you can specify the maximum number of words between the
search terms. For example, for words within 10 words of each other, you may use a search
string of ‘NEAR((workers, harvests),10)’.

You can use the phrase- and word-searching methods shown in this chapter to search for
exact matches of words and phrases, as well as to perform proximity searches of exact words
and phrases. Thus far, all the searches have used exact matches of the search terms as the basis
for the search. In the next four sections, you will see how to expand the search terms via four
methods: wildcards, word stems, fuzzy matches, and SOUNDEX searches.

Using Wildcards During Searches
In the previous examples in this chapter, the queries selected text values that exactly match the
criteria specified. For example, the search terms included “workers” but not “worker.” You can
use wildcards to expand the list of valid search terms used during your query.

Just as in regular text-string wildcard processing, two wildcards are available:

Character Description

% Percent sign; multiple-character wildcard

_ Underscore; single-character wildcard

The following query will search for all text matches for all words that start with the characters
“worker”:

REM CONTAINS method for CONTEXT indexes:
select Title
from BOOK_REVIEW_CONTEXT
where CONTAINS(Review_Text, 'worker%')>0;

The following query limits the expansion of the text string to exactly three characters. In place
of the % sign in the preceding query, three underscores (_ _ _) are used. Since the underscore is
a single-character wildcard, the text string cannot expand beyond three characters during the

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

search. For example, the word “workers” could be returned by the text search, but the word
“workplace” would be too long to be returned.

REM CONTAINS method for CONTEXT indexes:
select Title
from BOOK_REVIEW_CONTEXT
where CONTAINS(Review_Text, 'work___')>0;

You should use wildcards when you are certain of some of the characters within the search
string. If you are uncertain of the search string, you should use one of the methods described in
the following sections—word stems, fuzzy matches, and SOUNDEX matches.

Searching for Words That Share the Same Stem
Rather than using wildcards, you can use stem-expansion capabilities to expand the list of text
strings. Given the “stem” of a word, Oracle will expand the list of words to search for to include
all words having the same stem. Sample expansions are shown here:

Stem Sample Expansions

Play plays played playing playful

Works working work worked workman workplace

Have had has haven’t hasn’t

Story stories

Since “works” and “work” have the same stem, a stem-expansion search using the word
“works” will return text containing the word “work.”

To use stem expansion within a query, you need to use the dollar sign ($) symbol. Within
the search string, the ‘$’ should immediately precede the word to be expanded, with no space
between the ‘$’ and the word.

The following listing shows the result of a query against BOOK_REVIEW_CONTEXT for all
reviews that contain a word sharing the stem of the word “manage”:

REM CONTAINS method for CONTEXT indexes:
select Title
from BOOK_REVIEW_CONTEXT
where CONTAINS(Review_Text, '$manage')>0;

When this query is executed, Oracle expands the word “$manage” to include all words with the
same stem, and then performs the search. If a review contains one of the words with a stem of
“manage”, the record will be returned to the user.

The expansion of terms via word stems simplifies the querying process for the user. You no
longer need to know what form of a verb or noun was used when the text was entered—all forms
are used as the basis for the search. You do not need to specify specific text strings, as you do
when querying for exact matches or using wildcards. Instead, you specify a word, and Oracle
Text dynamically determines all the words that should be searched for, based on the word you
specified.

458 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 24
Blind Folio 24:458

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Searching for Fuzzy Matches
A fuzzy match expands the specified search term to include words that are spelled similarly but
that do not necessarily have the same word stem. Fuzzy matches are most helpful when the text
contains misspellings. The misspellings can be either in the searched text or in the search string
specified by the user during the query.

For example, ‘MY LEDGER’ will not be returned by this query because its review does not
contain the word “hardest”:

REM CONTAINS method for CONTEXT indexes:
select Title
from BOOK_REVIEW_CONTEXT
where CONTAINS(Review_Text, 'hardest')>0;

It does, however, contain the word “harvest.” A fuzzy match will return reviews containing the
word “harvest,” even though “harvest” has a different word stem than the word used as the
search term.

To use a fuzzy match, precede the search term with a question mark, with no space between
the question mark and the beginning of the search term. The following example illustrates the use
of the fuzzy match capability.

REM CONTAINS method for CONTEXT indexes:
select Title
from BOOK_REVIEW_CONTEXT
where CONTAINS(Review_Text, '?hardest')>0;

Searches for Words That Sound Like Other Words
Stem-expansion searches expand a search term to multiple terms based on the stem of the word.
Fuzzy matches expand a search term based on similar words in the text index. A third kind of
search-term expansion, SOUNDEX, expands search terms based on how the word sounds. The
SOUNDEX expansion method uses the same text-matching logic available via the SOUNDEX
function in SQL.

To use the SOUNDEX option, you must precede the search term with an exclamation mark
(!), with no space between the exclamation mark and the search term. During the search, Oracle
evaluates the SOUNDEX values of the terms in the text index and searches for all words that have
the same SOUNDEX value.

As shown in the following query, you can search for all reviews that include the word
“great,” using a SOUNDEX match technique:

REM CONTAINS method for CONTEXT indexes:
select Title
from BOOK_REVIEW_CONTEXT
where CONTAINS(Review_Text, '!grate')>0;

The ‘MY LEDGER’ review is returned because the words “grate” and “great” have the same
SOUNDEX value.

Chapter 24: Using Oracle Text for Text Searches 459

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 24
Blind Folio 24:459

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

You can also nest operators, allowing you to perform stem expansions on the terms returned
by a fuzzy match. In the following example, a fuzzy match is performed on the word “stir,” and
the terms returned from the fuzzy match are expanded using stem expansion:

REM CONTAINS method for CONTEXT indexes:
select Title
from BOOK_REVIEW_CONTEXT
where CONTAINS(Review_Text, '$?stir')>0;

The major search options for CONTAINS are summarized in Table 24-1. For a list of all
supported syntax (including thesaurus use, synonym expansion, and XML support), see the
Oracle Text Reference guide. The search options for CATSEARCH are summarized in Table 24-2.
Table 24-2 does not list the deprecated CONTAINS features such as ACCUM that are not
documented as supported features for CATSEARCH.

460 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 24
Blind Folio 24:460

Operator Description

OR Returns a record if either search term has a score that exceeds the threshold

| Same as OR

AND Returns a record if both search terms have a score that exceeds the threshold

& Same as AND

ACCUM Returns a record if the sum of the search terms’ scores exceeds the threshold

, Same as ACCUM

MINUS Returns a record if the score of the first search minus the score of the second
search exceeds the threshold

– Same as MINUS

* Assigns different weights to the score of the searches

NEAR The score will be based on how near the search terms are to each other in the
searched text

; Same as NEAR

NOT Excludes the row if the term after the NOT is found

~ Same as NOT

EQUIV Treats two terms (term1 equiv term2) as the same during search scoring

= Same as EQUIV

{} Encloses reserved words such as AND if they are part of the search term

% Multiple-character wildcard

TABLE 24-1. Major CONTAINS Options

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Using the ABOUT Operator
In Oracle Text, you can search on themes of documents. Thematic searching is integrated with
text-term searching. You can use the ABOUT operator to search for terms that have to do with
the theme of the document rather than the specific terms within the document. For example:

REM CONTAINS method for CONTEXT indexes:
select Review_Text
from BOOK_REVIEW_CONTEXT
where CONTAINS(Review_Text, 'ABOUT(medicine)')>0;

REM CATSEARCH method for CTXCAT indexes:
select Title
from BOOK_REVIEW_CTXCAT
where CATSEARCH(Review_Text, 'ABOUT(medicine)', NULL)>0;

Chapter 24: Using Oracle Text for Text Searches 461

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 24
Blind Folio 24:461

Operator Description

_ Single-character wildcard

$ Performs stem expansion of the search term prior to performing the search

? Performs a fuzzy match of the search term prior to performing the search

! Performs a SOUNDEX search

() Specifies the order in which search criteria are evaluated

TABLE 24-1. Major CONTAINS Options (continued)

Operator Description

| Returns a record if either search term is found

AND Returns a record if both search terms are found. This is the default action, so
(a b) is treated as (a AND b).

– Returns rows that contain the term preceding the “–” and do not contain the
term following it.

NOT Same as –.

" " Encloses phrases.

() Specifies the order in which search criteria are evaluated.

TABLE 24-2. CATSEARCH Options

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Index Synchronization
When using CONTEXT indexes, you need to manage the text index contents; the text indexes are
not updated when the base table is updated. As soon as a Review_Text value is updated, its text
index is out of sync with the base table. To sync the index, execute the SYNC_INDEX procedure
of the CTX_DDL package, as shown in the following listing:

execute CTX_DDL.SYNC_INDEX('REVIEW_INDEX');

Index Sets
Historically, problems with queries of text indexes have occurred when other criteria are used
alongside text searches as part of the where clause. For example, are where clauses on non-text
columns applied before or after the text searches are completed, and how are the results properly
ordered? To improve the “mixed” query capability, Oracle9i features index sets. The indexes
within the index set may be on structured relational columns or on text columns.

To create an index set, use the CTX_DDL package to create the index set and add indexes to
it. When you create a text index, you can then specify the index set it belongs to. To execute this
example, you should first drop the REVIEW_CTXCAT_INDEX text index created earlier in this
chapter on the BOOK_REVIEW_CTXCAT table:

drop index REVIEW_CTXCAT_INDEX;

To create an index set named Reviews, use the CREATE_INDEX_SET procedure:

execute CTX_DDL.CREATE_INDEX_SET('Reviews');

You can now add indexes to the index set via the ADD_INDEX procedure. First, add a
standard, non-text index:

execute CTX_DDL.ADD_INDEX('Reviews', 'Reviewer');
execute CTX_DDL.ADD_INDEX('Reviews', 'Review_Date');

Now create a CTXCAT text index. Specify Ctxsys.Ctxcat as the index type, and list the index
set in the parameters clause:

create index REVIEW_CTXCAT_INDEX
on BOOK_REVIEW_CTXCAT(Review_Text)

indextype is CTXSYS.CTXCAT
parameters ('index set Reviews');

You can now order your results by the result of the combined index set search.

select * from BOOK_REVIEW_CTXCAT
where CATSEARCH(Review_Text, 'great',

'Reviewer=''EMILY TALBOT''
order by Review_Date desc')>0;

462 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 24
Blind Folio 24:462

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

To resolve this query, Oracle Text will use the index set, allowing you to order the results
properly. Note that there are two quotes around the string ‘EMILY TALBOT’, since that is a text
string search—it will be converted to a set of single quotes when the query is executed.

Index sets can contain up to 99 indexes on NUMBER, DATE, CHAR, and VARCHAR2 datatypes.
No column in an index set index can exceed 30 bytes (so in this example, the Title column
cannot be indexed as part of an index set). The indexed columns must not contain NULL values.

For more details on index sets, text index management, and text application development,
see Oracle Text Application Developer’s Guide and Oracle Text Reference, both provided as
part of the standard Oracle documentation set.

Chapter 24: Using Oracle Text for Text Searches 463

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 24
Blind Folio 24:463

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 24
Blind Folio 24:464

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 25
Blind Folio 25:465

CHAPTER
25

Using External Tables

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

A
s of Oracle9i, you can use the external table feature to access external files as if
they are tables inside the database. When you create an external table, you define
its structure and location within Oracle. When you query the table, Oracle reads
the external table and returns the results just as if the data had been stored within
the database. But since the data is outside the database, you do not have to be

concerned about the process for loading it into the database—a potentially significant benefit for
data warehouses and large databases.

External tables have limits—you cannot insert, update, or delete their rows from within
Oracle, and you cannot index them. Since they are part of the database application, you will
have to account for them as part of your backup and recovery processes. Despite these
complications, external tables can be a powerful addition to your database architecture plans.

Accessing the External Data
To access external files from within Oracle, you must first use the create directory command to
define a directory object pointing to the external file location. Users who will access the external
files must have the READ privilege on the directory.

NOTE
Before you start, verify that the external directory exists, and that
the user who will be issuing the create directory command has
the CREATE ANY DIRECTORY system privilege.

The following example creates a directory named BOOK_DIR and grants READ and WRITE
access to the Practice schema:

create directory BOOK_DIR as 'e:\oracle\external';
grant read on directory BOOK_DIR to practice;
grant write on directory BOOK_DIR to practice;

The Practice user can now read files in the e:\oracle\external directory as if they were inside
the database. Because Practice has also been granted WRITE privilege on that directory, the
Practice user can create log, discard, and bad files within the directory—just as if that user were
executing the SQL*Loader utility (see Chapter 21).

The following listing generates two files for sample data, one from BOOKSHELF and one
from BOOKSHELF_AUTHOR. Note that the spool command cannot use the directory name
created via create directory; you need to specify the full operating system directory name.

connect practice/practice

set pagesize 0 newpage 0 feedback off
select Title||'~'||Publisher||'~'||CategoryName||'~'||Rating||'~'
from BOOKSHELF
order by Title

spool e:\oracle\external\bookshelf_dump.lst

466 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 25
Blind Folio 25:466

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

/
spool off

select Title||'~'||AuthorName||'~'
from BOOKSHELF_AUTHOR
order by Title

spool e:\oracle\external\book_auth_dump.lst
/
spool off

In addition to the data, the output files will contain a single line at the top with a “/” and a
final line that reads “SQL> spool off”. To simplify data management, you should manually edit
the file at the operating system level to delete these extra lines.

If another user is to access the data in the bookshelf_dump.lst and book_auth_dump.lst files,
you must grant that user READ privilege on the BOOK_DIR directory:

grant read on directory BOOK_DIR to another_user;

and the files themselves must be readable by the Oracle user at the operating system level.

Creating an External Table
Now that the external data is available and accessible, you can create a table structure that
accesses it. To do so, you need to use the organization external clause of the create table
command. Within that clause, you can specify the data structure much as you would for a
SQL*Loader control file. The following listing shows the creation of the BOOKSHELF_EXT
table, based on the data in the bookshelf.lst spool file created in the prior section:

set feedback on heading on newpage 1 pagesize 60

create table BOOKSHELF_EXT
(Title VARCHAR2(100),
Publisher VARCHAR2(20),
CategoryName VARCHAR2(20),
Rating VARCHAR2(2)
)
organization external
(type ORACLE_LOADER
default directory BOOK_DIR
access parameters (records delimited by newline
fields terminated by "~"

(Title CHAR(100),
Publisher CHAR(20),
CategoryName CHAR(20),
Rating CHAR(2)

))
location ('bookshelf_dump.lst')
);

Chapter 25: Using External Tables 467

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 25
Blind Folio 25:467

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

468 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 25
Blind Folio 25:468

Oracle will respond with:

Table created.

although no data will have been created inside the Oracle database.
Similarly, you can create a table based on the book_auth_dump.lst spool file:

create table BOOKSHELF_AUTHOR_EXT
(Title VARCHAR2(100),
AuthorName VARCHAR2(50)
)
organization external
(type ORACLE_LOADER
default directory BOOK_DIR
access parameters (records delimited by newline

fields terminated by "~"
(Title CHAR(100),
AuthorName CHAR(50)

))
location ('book_auth_dump.lst')
);

NOTE
Oracle will perform only cursory validation when the external table is
created. You will not see most errors until you attempt to query the
table. The syntax for the access parameters is very specific, and minor
errors in the access definition may prevent all of the rows from being
accessed.

You can verify the contents of the external tables by querying from them and comparing them
to the source tables, as shown in the following listing:

select Title from BOOKSHELF
where CategoryName = 'CHILDRENPIC';

TITLE

GOOD DOG, CARL
POLAR EXPRESS
RUNAWAY BUNNY

3 rows selected.

select Title from BOOKSHELF_EXT
where CategoryName = 'CHILDRENPIC';

TITLE

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

GOOD DOG, CARL
POLAR EXPRESS
RUNAWAY BUNNY

3 rows selected.

select COUNT(*) from BOOKSHELF_AUTHOR;

COUNT(*)

37

select COUNT(*) from BOOKSHELF_AUTHOR_EXT;

COUNT(*)

37

You can join the “internal” table BOOKSHELF_AUTHOR to its external counterpart,
BOOKSHELF_AUTHOR_EXT, to verify there are no rows missing or added:

select * from BOOKSHELF_AUTHOR BA
where not exists
(select 'x' from BOOKSHELF_AUTHOR_EXT BAE
where BA.Title = BAE.Title
and BA.AuthorName = BAE.AuthorName);

no rows selected

The BOOKSHELF_AUTHOR_EXT table points to the book_auth_dump.lst file. If you alter the
data in the file, the data in BOOKSHELF_AUTHOR_EXT will change. As illustrated here, you can
query external tables the same way you query standard tables—in joins, as part of views, and so
on. You can perform functions on the external table columns during queries just as you would for
standard tables.

You can query the USER_EXTERNAL_TABLES data dictionary view for information about your
external tables, including the default directory and access definitions:

desc USER_EXTERNAL_TABLES

Name Null? Type
--- -------- --------------
TABLE_NAME NOT NULL VARCHAR2(30)
TYPE_OWNER CHAR(3)
TYPE_NAME NOT NULL VARCHAR2(30)
DEFAULT_DIRECTORY_OWNER CHAR(3)
DEFAULT_DIRECTORY_NAME NOT NULL VARCHAR2(30)
REJECT_LIMIT VARCHAR2(40)
ACCESS_TYPE VARCHAR2(7)
ACCESS_PARAMETERS VARCHAR2(4000)

Chapter 25: Using External Tables 469

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 25
Blind Folio 25:469

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

For example, the BOOKSHELF_AUTHOR_EXT table uses BOOK_DIR as its default directory,
as shown in the following listing:

select * from USER_EXTERNAL_TABLES
where Table_Name = 'BOOKSHELF_AUTHOR_EXT';

TABLE_NAME TYP TYPE_NAME DEF
------------------------------ --- --------------------------- ---
DEFAULT_DIRECTORY_NAME REJECT_LIMIT ACCESS_
------------------------------ ------------------------------------- -------
ACCESS_PARAMETERS

BOOKSHELF_AUTHOR_EXT SYS ORACLE_LOADER SYS
BOOK_DIR 0 CLOB
records delimited by newline

fields terminated by "~"
(Title CHAR(100),
AuthorName CHAR(50)

)

USER_EXTERNAL_TABLES does not show the name of the external file (or files) the table
references. To see that information, query USER_EXTERNAL_LOCATIONS:

select * from USER_EXTERNAL_LOCATIONS;

TABLE_NAME

LOCATION

DIR DIRECTORY_NAME
--- ------------------------------
BOOKSHELF_AUTHOR_EXT
book_auth_dump.lst
SYS BOOK_DIR

BOOKSHELF_EXT
bookshelf_dump.lst
SYS BOOK_DIR

External Table Creation Options
Within the organization external clause, there are four main subclauses: type, default directory,
access parameters, and location. When you create an external table, you can use these clauses
to customize the way Oracle views the external data.

Type and Default Directory
The syntax for the type component is

([type access_driver_type] external_data_properties)
[reject limit { integer | unlimited }]

470 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 25
Blind Folio 25:470

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

For external tables, the access driver is the API used to transform the external data. Use type
ORACLE_LOADER for your external tables—the only type available at this time—as shown in the
examples earlier in this chapter.

NOTE
Because the access driver is part of the Oracle software, only files
accessible by the database can be accessed as external tables. Files
the Oracle user cannot access cannot be used as external tables.

Following the type declaration, you can set a “reject limit” value. By default, no rows can
be rejected—any problem with any row will cause the select statement to return an error. Let’s
generate another copy of the BOOKSHELF data to a separate file, and this time leave in the extra
lines SQL*Plus inserts during the spool operation:

set pagesize 0 newpage 0 feedback off
select Title||'~'||Publisher||'~'||CategoryName||'~'||Rating||'~'
from BOOKSHELF
order by Title

spool e:\oracle\external\bookshelf_dump_2.lst
/
spool off

Now create a new table that references this spool file, telling Oracle to skip the first record
(skip 1) and to allow one other error (reject limit 1). That will account for the “/” in the first line
and the “SQL> spool off” in the last line:

set feedback on heading on newpage 1 pagesize 60

create table BOOKSHELF_EXT_2
(Title VARCHAR2(100),
Publisher VARCHAR2(20),
CategoryName VARCHAR2(20),
Rating VARCHAR2(2)
)
organization external
(type ORACLE_LOADER
default directory BOOK_DIR
access parameters (records delimited by newline

skip 1
fields terminated by
"~"
(Title CHAR(100),
Publisher CHAR(20),
CategoryName CHAR(20),
Rating CHAR(2)

))
location ('bookshelf_dump_2.lst')
)

Chapter 25: Using External Tables 471

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 25
Blind Folio 25:471

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

472 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 25
Blind Folio 25:472

reject limit 1
;

You can now verify the number of rows in the table:

set feedback on heading on newpage 1 pagesize 60
select COUNT(*) from BOOKSHELF_EXT_2;

COUNT(*)

31

The default directory clause specifies the directory object to be used for all datafiles that
do not specify another directory. If you use multiple external files located in multiple directories,
you can name one of them as the default directory and specify the others by directory name in
the location clause. You must use directory object names (such as BOOK_DIR) in the location
clause, not the full directory path name.

Access Parameters
The access parameters clause tells Oracle how to map the rows in the file to rows in the table. Its
syntax is shown in the following illustration:

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Within the access parameters clause, you first tell Oracle how to create a record—whether
its length is fixed or variable, and how rows are delimited. In the case of the BOOKSHELF_EXT
example, the records are delimited by newlines. If there were multiple rows on a single line, you
could use a character string as a separator between rows. Since the external data may come from
a non-Oracle database, Oracle supports multiple character sets and string sizes.

As with SQL*Loader, you can specify a when clause to limit which rows are selected. In the
following listing, the BOOKSHELF_EXT_3 table is created, with a when clause (shown in bold)
to limit it to only books in the CHILDRENPIC category.

create table BOOKSHELF_EXT_3
(Title VARCHAR2(100),
Publisher VARCHAR2(20),
CategoryName VARCHAR2(20),
Rating VARCHAR2(2)
)
organization external
(type ORACLE_LOADER
default directory BOOK_DIR
access parameters (records delimited by newline

load when CategoryName = 'CHILDRENPIC'
skip 1

fields terminated by "~"
(Title CHAR(100),
Publisher CHAR(20),
CategoryName CHAR(20),
Rating CHAR(2)

))
location ('bookshelf_dump_2.lst')
)
reject limit 1
;

You can see the result here:

select SUBSTR(Title, 1,30), CategoryName
from BOOKSHELF_EXT_3;

SUBSTR(TITLE,1,30) CATEGORYNAME
------------------------------ --------------------
GOOD DOG, CARL CHILDRENPIC
POLAR EXPRESS CHILDRENPIC
RUNAWAY BUNNY CHILDRENPIC

3 rows selected.

BOOKSHELF_EXT_3 accesses the same file as BOOKSHELF_EXT_2, but it only shows the
records for the CHILDRENPIC category due to its load when clause.

As with SQL*Loader, you can create a log file, a bad file, and a discard file. Rows that fail
the load when condition will be written to the discard file. Rows that fail the access parameters

Chapter 25: Using External Tables 473

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 25
Blind Folio 25:473

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

conditions will be written to the bad file, and the load details will be written to the log file. For
all three types of files, you can specify a directory object along with the filename so that you
can write the output to a directory other than your input datafile directory. You can specify
nodiscardfile, nobadfile, and nologfile to prevent these files from being created. Use directory
object names (such as BOOK_DIR in this chapter’s examples) when specifying locations for
discard files, bad files, and log files. If you don’t specify locations for log files, bad files, and
discard files, Oracle creates them in the default directory with system-generated names.

Within the access parameters clause, you also specify the field definitions and delimiters,
such as

fields terminated by "~"
(Title CHAR(100),
Publisher CHAR(20),
CategoryName CHAR(20),
Rating CHAR(2))

You can use the missing field values are null clause to set values for NULL column values,
but you must exercise caution when using this option. For example, the AUTHOR table has
NULL values in its Comments column. The external table creation for AUTHOR_EXT is shown
in the following listing:

set pagesize 0 newpage 0 feedback off
select AuthorName||'~'||Comments||'~'
from AUTHOR
order by AuthorName

spool e:\oracle\external\author_dump.lst
/
spool off

set feedback on heading on newpage 1 pagesize 60
create table AUTHOR_EXT
(AuthorName VARCHAR2(50),
Comments VARCHAR2(100)

)
organization external
(type ORACLE_LOADER
default directory BOOK_DIR
access parameters (records delimited by newline

skip 1
fields terminated by "~"
missing field values are null
(AuthorName CHAR(50),
Comments CHAR(100)

))
location ('author_dump.lst')
)
reject limit 1
;

474 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 25
Blind Folio 25:474

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

But this is not correct—if you select the AuthorName values from AUTHOR_EXT, you will
see that the values include:

select AuthorName from AUTHOR_EXT
where AuthorName like 'S%';

AUTHORNAME
--
SOREN KIERKEGAARD
STEPHEN AMBROSE
STEPHEN JAY GOULD
SQL> spool off

4 rows selected.

Because of the missing field values are null clause, the “SQL> spool off” line at the end of
the listing was read as an AuthorName value, with a NULL Comments value. This highlights the
problem with coding exceptions into your loader definitions—you need to make sure you fully
understand the source data and the way the loader will treat it. In most cases, your data integrity
will be better served by forcing rows to fail (into bad files or discard files) and evaluating the
failed rows apart from your general loads.

See the SQL*Loader entry in the Alphabetical Reference for the full syntax available for the
access parameters clause.

Location
In the location clause, you specify the datafiles to use as the source data for the table. You can
name multiple files in the location clause if they all exist in directory objects the user has READ
privilege on. The following example combines two separate BOOKSHELF spool files to illustrate
the ability to combine multiple files into a single external table.

create table BOOKSHELF_EXT_4
(Title VARCHAR2(100),
Publisher VARCHAR2(20),
CategoryName VARCHAR2(20),
Rating VARCHAR2(2)
)
organization external
(type ORACLE_LOADER
default directory BOOK_DIR
access parameters (records delimited by newline

skip 1
fields terminated by "~"
(Title CHAR(100),
Publisher CHAR(20),
CategoryName CHAR(20),
Rating CHAR(2)

))
location ('bookshelf_dump_2.lst', 'bookshelf_dump.lst')
)

Chapter 25: Using External Tables 475

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 25
Blind Folio 25:475

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

reject limit 1
;

The order of the files is important—the skip 1 applies to the first file, not to the second file.
The second file, bookshelf_dump.lst, is the file that was previously edited to eliminate the
non-data rows in its first and last rows. The result, reflecting the rows in both, is shown in
the following listing:

select COUNT(*) from BOOKSHELF_EXT_4;

COUNT(*)

62

Limitations, Benefits, and
Potential Uses of External Tables
External tables have limitations that may make them inappropriate for some online transaction
procession applications. You cannot perform any insert, update, or delete operations on external
tables. The more dynamic the table is, the less appropriate external files may be. As shown in the
examples earlier in this chapter, you can change the file dynamically at the operating system
level. If your application generates inserts only, you may be able to write those inserted records
into an external file instead of a database table.

You cannot index external tables. The lack of indexes on external tables does not have to be
a negative factor in application performance. Queries of external tables complete very quickly,
even though a full table scan is required with each access. There is I/O involved, but modern
I/O systems use caching and RAID techniques to significantly reduce the performance penalty
associated with repeated full scans of the same file.

You cannot specify constraints on an external table. Even creating a NOT NULL or foreign
key constraint fails:

alter table BOOKSHELF_EXT add constraint CATFK
foreign key (CategoryName) references CATEGORY(CategoryName);

foreign key (CategoryName) references CATEGORY(CategoryName)
*
ERROR at line 2:
ORA-30657: operation not supported on external organized table

Despite these limitations, external tables offer many useful features. You can join external
tables (to each other, or to standard tables). You can use hints to force the optimizer to choose
different join paths, and you can see the results in the query execution paths (see Chapter 38 for
details on hints and the Oracle optimizer).

As an alternative to data loading, external tables offer DBAs and application developers the
possibility of accessing data without supporting long-running load programs. Because the files
can be edited at the operating system level, you can quickly replace a table’s data without
worrying about outstanding transactions modifying the table. For example, you could use this

476 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 25
Blind Folio 25:476

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

capability to create multiple external tables and create a union all view across them, creating a
partition view across multiple files. You can then manage each table’s data separately at the file
system level, replacing their contents as needed.

Because the external table can be queried, you can use the external table as the data source
for an insert as select command. During that operation, Oracle will attempt to load the external
files in parallel, potentially improving performance. To further improve performance of the
insert as select operation, you should use the APPEND hint to force block-level inserts. When
you specify the degree of parallelism for the insert as select operation, Oracle starts multiple
ORACLE_LOADER access drivers to process the data in parallel. To further enhance load
performance, avoid using variable-length fields, delimited fields, character set conversion,
NULLIF, DEFAULTIF, and datatype conversion operations. Turning off badfile (with nobadfile)
eliminates the costs associated with the file creation and the maintenance of the original
row’s context.

During the insert as select, you can perform functions on the data as it is processed.
You can perform the functions either in the insert as select command syntax or in the external
table definition. This capability highlights an important benefit of external tables—you can
centralize the representation and processing requirements for your data, building translation
routines into your table definitions. There is no processing data stored in SQL*Loader control
files or PL/SQL routines; all of the logic is built into the table definition, accessible via
USER_EXTERNAL_TABLES.

During queries, external tables allow you to select specific data sets (via the load when
clause, as illustrated in this chapter). If you have multiple data sources for a data warehouse
load, you can choose which data will be made available even while the data is outside the
database. You can use this feature to maintain application availability during data loads. These
loads can occur in parallel if the external file has a FIXED file format.

The limited access feature also allows you to enforce complex security rules concerning
data access. For example, you may keep sensitive data outside the database, in a secure
directory. Users with READ access to that directory would be able to use the external table and
join it to other tables; users without that access would be limited to the data inserted into the
publicly accessible tables. Highly secure data, or lightly accessed dynamic data, need not be
inserted into the database until it is needed, if at all.

If you use external tables in your database architecture, you must make sure your backup
and recovery plans account for those files as well as the rest of your database. If the external files
change more rapidly than the database files, you may need to back them up more frequently in
order to take advantage of Oracle’s full recovery capabilities.

Chapter 25: Using External Tables 477

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 25
Blind Folio 25:477

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 25
Blind Folio 25:478

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 26
Blind Folio 26:479

CHAPTER
26

Using Flashback
Queries

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

480 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 26
Blind Folio 26:480

A
s part of its read consistency model, Oracle displays data that has been committed
to the database. As of Oracle9i, you can query data as it existed prior to a transaction
being committed. If you accidentally commit an errant update or delete, you can
use this capability—called a flashback query—to see the data as it existed prior to
the commit. You can use the results of the flashback query to restore the data.

Flashback queries are limited. To use them, your database must be using system-managed
undo, a feature introduced in Oracle9i to replace rollback segments; see your DBA to determine
if this feature is enabled in your environment. The DBA must create an undo tablespace, enable
automatic undo management, and establish an undo retention time window. Oracle will attempt
to maintain enough undo information in the undo tablespace to support flashback queries during
the retention time period. The retention time setting and the amount of space available in the
undo tablespace can significantly impact your ability to successfully execute a flashback query.

NOTE
Oracle uses undo to roll back transactions and support flashback
queries. Oracle uses redo (captured in the online redo log files)
to apply transactions during database recoveries.

As you will see in the examples in this chapter, flashback queries are not simple. While syntax
improvements have been documented as included in Oracle9i Release 2, flashback queries still
require non-standard SQL commands. You should not rely on flashback queries as part of your
application design because of their complexity, because you cannot predict their performance,
and because of their dependence on system elements outside of the application developer’s
control (such as the number of transactions during a time period and the size of the undo tablespace).
Rather, you should treat them as an option during critical periods of testing, support, and data
recovery. For example, you could use them to create copies of tables at multiple past points in
time for use when reconstructing changed data.

NOTE
To use flashback queries, you must have EXECUTE
privilege on the DBMS_FLASHBACK package.

Time-based Flashback Example
The BOOK_ORDER table has six records, as shown in the following listing:

select * from BOOK_ORDER;

TITLE PUBLISHER CATEGORYNAME
------------------------------ -------------------- ------------
SHOELESS JOE MARINER ADULTFIC
GOSPEL PICADOR ADULTFIC
SOMETHING SO STRONG PANDORAS ADULTNF
GALILEO'S DAUGHTER PENGUIN ADULTNF
LONGITUDE PENGUIN ADULTNF

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ONCE REMOVED SANCTUARY PUB ADULTNF

6 rows selected.

A shipment has arrived, and the old BOOK_ORDERS records are deleted and the deletion is
committed. Unfortunately, not all of the books were in the shipment, so the delete is inappropriate:

delete from BOOK_ORDER;
commit;

How can you reconstruct the unreceived records from the BOOK_ORDER table, since you only
have the received books in hand? You could perform a database recovery by using import to
restore the table, or performing a physical database recovery. With flashback queries, you can
avoid the need to perform these recovery operations.

First, let’s query the old data from the database. Since flashback mode only supports queries,
doing more with the data (such as saving it to a separate table) will be addressed in a more complex
example in the next section. To enter flashback mode, use the ENABLE_AT_TIME procedure of the
DBMS_FLASHBACK package. In the following example, the flashback is enabled at a time five
minutes in the past (SysDate-5/1440).

select COUNT(*) from BOOK_ORDER;

COUNT(*)

0

execute DBMS_FLASHBACK.ENABLE_AT_TIME(SysDate-5/1440);

PL/SQL procedure successfully completed.

select COUNT(*) from BOOK_ORDER;

COUNT(*)

6

Once the query is complete, disable flashback mode:

execute DBMS_FLASHBACK.DISABLE;

PL/SQL procedure successfully completed.

NOTE
You must disable flashback mode before enabling it again.

When you execute a flashback query, only the state of the data is changed. The current
system time is used (as you can see by querying the SysDate value) and the current data
dictionary is used.

Chapter 26: Using Flashback Queries 481

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 26
Blind Folio 26:481

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

482 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 26
Blind Folio 26:482

NOTE
You cannot execute a flashback query against
a remote table across a database link.

Saving the Data
As shown in the BOOK_ORDER example, flashback queries are simple to implement, provided
the undo management of the database is properly configured and the undo information is
available. But how can you work with the flashback data? While in flashback mode, you cannot
perform DDL or DML operations, so you cannot execute a create table as select command to
save old data to a temporary work table.

To perform DDL and DML operations against flashback data, you will need to use PL/SQL,
Oracle’s procedural language extension to the SQL programming language (see Chapter 27).
The sequence of commands for the PL/SQL used to save flashback data is as follows:

1. Define the cursor that queries the data and a variable to hold the data.

2. Begin the PL/SQL block.

3. Enable flashback query mode.

4. Open the cursor.

5. Disable flashback query mode.

6. Loop through the selected records, exiting when there are no more records.

Let’s save the old data. With flashback mode disabled, create a new table with the same
structure as BOOK_ORDER but with no records in it:

drop table BOOK_ORDER_FLASH;
create table BOOK_ORDER_FLASH
(Title VARCHAR2(100) primary key,
Publisher VARCHAR2(20),
CategoryName VARCHAR2(20));

Table created.

Now, execute a PL/SQL block. In the cursor definition, you can specify the rows and columns
you want returned. In this example, the entire table is selected.

declare cursor OLD_BOOK_ORDER is select * from BOOK_ORDER;
OBO BOOK_ORDER%ROWTYPE;

begin
DBMS_FLASHBACK.ENABLE_AT_TIME(SysDate-30/1440);
open OLD_BOOK_ORDER;
DBMS_FLASHBACK.DISABLE;
loop

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

fetch OLD_BOOK_ORDER into OBO;
exit when OLD_BOOK_ORDER%NOTFOUND;
insert into BOOK_ORDER_FLASH
values (OBO.Title, OBO.Publisher, OBO.CategoryName);

end loop;
close OLD_BOOK_ORDER;
commit;

end;
/

Oracle responds with:

PL/SQL procedure successfully completed.

You can now verify that the flashback data has been saved:

column Title format a30

select * from BOOK_ORDER_FLASH;

TITLE PUBLISHER CATEGORYNAME
------------------------------ -------------------- ------------
SHOELESS JOE MARINER ADULTFIC
GOSPEL PICADOR ADULTFIC
SOMETHING SO STRONG PANDORAS ADULTNF
GALILEO'S DAUGHTER PENGUIN ADULTNF
LONGITUDE PENGUIN ADULTNF
ONCE REMOVED SANCTUARY PUB ADULTNF

6 rows selected.

If the flashback query attempted to use an index created after the flashback point in time,
the query would fail. In that event, you should use hints to tell the optimizer which data access
method to use (a full table scan or a different index); see Chapter 38 for details on the use of hints.

Limitations of Time-Based Flashbacks
The preceding examples showed how to use the system timestamp during your flashback
query. However, Oracle internally uses the System Change Number (SCN), not the system
timestamp, to generate the flashback data. The system timestamp is matched to SCN values
every five minutes; the table SYS.SMON_SCN_TIME shows at least the last five days worth of
SCN/system timestamp matches. When you flashback to a point in time, Oracle uses the most
recent five-minute timestamp preceding the requested time. If SMON_SCN_TIME has a record
for 1:00 P.M. and 1:05 P.M., a request for a flashback to 1:04 P.M. will return the data from 1:00 P.M.

SMON_SCN_TIME only maintains the most recent 1,440 entries, so flashback queries that go
beyond the most recent five days in an always-open database must use an SCN-based approach
as described in the next section. If you shut down your database periodically (such as for offline
backups), the 1,440 records in SMON_SCN_TIME will span more than five days.

Chapter 26: Using Flashback Queries 483

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 26
Blind Folio 26:483

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

484 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 26
Blind Folio 26:484

SCN-based Flashback Example
When you perform time-based flashbacks, you are really doing SCN-based flashbacks; you’re
just relying on Oracle to find an SCN near the time you specified. If you know the exact SCN,
you can perform a flashback with a great degree of precision. In place of the ENABLE_AT_TIME
procedure, you will call the ENABLE_AT_SYSTEM_CHANGE_NUMBER procedure, as shown in
the following example.

To begin an SCN-based flashback, you must first know the SCN of your transaction. To get
the latest change number, issue a commit and then execute the GET_SYSTEM_CHANGE_NUMBER
function of the DBMS_FLASHBACK package prior to executing your transaction. The following
example shows this process as part of a transaction against the BOOK_ORDER_FLASH table
created and populated in the first part in this chapter. First, the current SCN is assigned to a
variable named SCN_FLASH and displayed via the SQL*Plus print command:

commit;

variable SCN_FLASH number;
execute :SCN_FLASH :=DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER;

PL/SQL procedure successfully completed.

print SCN_FLASH

SCN_FLASH

1589270

Next, the delete command is issued and the result is committed:

delete from BOOK_ORDER_FLASH;

6 rows deleted.

commit;

You can now query the flashback data. Although the SCN value is known, you can continue
to use the SCN_FLASH variable value if you are within the same session:

execute DBMS_FLASHBACK.ENABLE_AT_SYSTEM_CHANGE_NUMBER(:SCN_FLASH);

PL/SQL procedure successfully completed.

select COUNT(*) from BOOK_ORDER_FLASH;

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 26: Using Flashback Queries 485

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 26
Blind Folio 26:485

COUNT(*)

6

execute DBMS_FLASHBACK.DISABLE;

You can now use the flashback data in BOOK_ORDER_FLASH, accessed by the
ENABLE_AT_SYSTEM_CHANGE_NUMBER procedure, to populate BOOK_ORDER:

declare cursor OLD_BOOK_ORDER is select * from BOOK_ORDER_FLASH;
OBO BOOK_ORDER_FLASH%ROWTYPE;

begin
DBMS_FLASHBACK.ENABLE_AT_SYSTEM_CHANGE_NUMBER(:SCN_FLASH);
open OLD_BOOK_ORDER;
DBMS_FLASHBACK.DISABLE;
loop
fetch OLD_BOOK_ORDER into OBO;
exit when OLD_BOOK_ORDER%NOTFOUND;
insert into BOOK_ORDER
values (OBO.Title, OBO.Publisher, OBO.CategoryName);

end loop;
close OLD_BOOK_ORDER;
commit;

end;
/

PL/SQL procedure successfully completed.

select COUNT(*) from BOOK_ORDER;

COUNT(*)

6

NOTE
DDL operations that alter the structure of a table invalidate the old
undo data for the table, and flashback capabilities are limited to the
time since the DDL was executed. Space-related changes (such as
changing pctfree) do not invalidate the old undo data.

For DBAs, flashback queries may offer a means of avoiding recovery operations. If the
data can be reconstructed via flashback queries, and if the data volume is not overwhelming,
you may be able to save the results of multiple flashback queries in separate tables. You
could then compare the data in the tables via the SQL options shown in prior chapters—
correlated subqueries, exists, not exists, minus, and so on. If you cannot avoid the need for
a recovery operation, you should be able to pinpoint the time period to be used for a time-
based recovery operation.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

For application developers and application administrators, flashback queries provide an
important tool for reconstructing data. Flashback queries may be particularly critical during
testing and support operations. Rather than making flashback queries part of your production
application design, you should use them as a fallback option for those support cases that cannot
be resolved before data is affected.

486 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 26
Blind Folio 26:486

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 27
Blind Folio 27:487

PART
III

PL/SQL

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Front Matter
Blind Folio FM:488

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 27
Blind Folio 27:489

CHAPTER
27

An Introduction to
PL/SQL

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

P
L/SQL is Oracle’s procedural language (PL) superset of the Structured Query
Language (SQL). You can use PL/SQL to do such things as codify your
business rules through the creation of stored procedures and packages, trigger
database events to occur, or add programming logic to the execution of
SQL commands.

The steps involved in the creation of triggers, stored procedures, and packages are described
in the following chapters in this section of this book. In this chapter, you will see the basic structures
and syntax used in PL/SQL.

PL/SQL Overview
PL/SQL code is grouped into structures called blocks. If you create a stored procedure or package,
you give the block of PL/SQL code a name; if the block of PL/SQL code is not given a name, then
it is called an anonymous block. The examples in this chapter will feature anonymous blocks of
PL/SQL code; the following chapters in this section illustrate the creation of named blocks.

A block of PL/SQL code contains three sections:

Section Description

Declarations Defines and initializes the variables and cursors used in
the block

Executable Commands Uses flow-control commands (such as if commands and loops)
to execute the commands and assign values to the declared
variables

Exception Handling Provides customized handling of error conditions

Within a PL/SQL block, the first section is the Declarations section. Within the Declarations
section, you define the variables and cursors that the block will use. The Declarations section
starts with the keyword declare and ends when the Executable Commands section starts (as indicated
by the keyword begin). The Executable Commands section is followed by the Exception Handling
section; the exception keyword signals the start of the Exception Handling section. The PL/SQL
block is terminated by the end keyword.

The structure of a typical PL/SQL block is shown in the following listing:

declare
<declarations section>

begin
<executable commands>
exception
<exception handling>

end;

In the following sections of this chapter, you will see descriptions of each section of the
PL/SQL block.

490 Part III: PL/SQL

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 27
Blind Folio 27:490

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Declarations Section
The Declarations section begins a PL/SQL block. The Declarations section starts with the declare
keyword, followed by a list of variable and cursor definitions. You can define variables to have
constant values, and variables can inherit datatypes from existing columns and query results as
shown in the following examples.

In the following listing, the area of a circle is calculated. The result is stored in a table named
AREAS. The AREAS table has two columns, to store radius and area values. The area of the circle
is calculated by squaring the value for the circle’s radius and multiplying that value times the
constant pi:

declare
pi constant NUMBER(9,7) := 3.1415927;
radius INTEGER(5);
area NUMBER(14,2);

begin
radius := 3;
area := pi*power(radius,2);
insert into AREAS values (radius, area);

end;

The end; signals the end of the PL/SQL block; depending on the tool you use, you may need
to add a / to execute the PL/SQL block. When the PL/SQL block is executed, you will receive the
following response from Oracle:

PL/SQL procedure successfully completed.

To verify that the PL/SQL block completed correctly, you can select from the database the
rows that were inserted by the PL/SQL code. The query and results in the following listing show
the row the PL/SQL block created in the AREAS table.

select *
from AREAS;

RADIUS AREA
---------- ----------

3 28.27

The output shows that a single row was inserted into the AREAS table by the PL/SQL block.
Only one row was created because only one Radius value was specified.

In the first section of the PL/SQL block, shown in the following listing, three variables are
declared. You must declare the variables that will be used in the Executable Commands section
of the PL/SQL block.

declare
pi constant NUMBER(9,7) := 3.1415927;
radius INTEGER(5);
area NUMBER(14,2);

Chapter 27: An Introduction to PL/SQL 491

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 27
Blind Folio 27:491

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

492 Part III: PL/SQL

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 27
Blind Folio 27:492

The first variable declared is pi, which is set to a constant value via the constant keyword.
Because it is declared as a constant, the value of the variable pi cannot be changed in the
Executable Commands section. The value is assigned via the := operator:

pi constant NUMBER(9,7) := 3.1415927;

You can also assign constant values via the default keyword:

pi NUMBER(9,7) DEFAULT 3.1415927;

The next two variables are defined but are not given default values:

radius INTEGER(5);
area NUMBER(14,2);

You can assign an initial value to a variable in the Declarations section. To set an initial value
for a variable, simply follow its datatype specification with the value assignment, as shown in the
following listing:

radius INTEGER(5) := 3;

In the example, the datatypes include NUMBER and INTEGER. PL/SQL datatypes include all
of the valid SQL datatypes as well as complex datatypes based on query structures. Table 27-1
lists the supported PL/SQL datatypes.

In the following example, a cursor is declared to retrieve a record from the RADIUS_VALS
table. RADIUS_VALS is a table with one column, named Radius, that holds radius values to be
used in these examples. The cursor is declared in the Declarations section, and a variable named
rad_val is declared with a datatype based on the cursor’s results.

declare
pi constant NUMBER(9,7) := 3.1415927;
area NUMBER(14,2);
cursor rad_cursor is

select * from RADIUS_VALS;
rad_val rad_cursor%ROWTYPE;

begin
open rad_cursor;
fetch rad_cursor into rad_val;
area := pi*power(rad_val.radius,2);
insert into AREAS values (rad_val.radius, area);

close rad_cursor;
end;

For this example, the table RADIUS_VALS contains a single row with a Radius value of 3.
In the first part of the Declarations section, the pi and area variables are defined, as they were

in the examples earlier in this chapter. The radius variable is not defined; instead, a cursor named
rad_cursor is defined. The cursor definition consists of a cursor name (rad_cursor) and a query

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 27: An Introduction to PL/SQL 493

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 27
Blind Folio 27:493

(select * from RADIUS_VALS;). A cursor holds the results of a query for processing by other
commands within the PL/SQL block:

declare
pi constant NUMBER(9,7) := 3.1415927;
area NUMBER(14,2);
cursor rad_cursor is

select * from RADIUS_VALS;

A final declaration creates a variable whose structure is anchored by the cursor’s result set:

rad_val rad_cursor%ROWTYPE;

The rad_val variable will be able to reference each column of the query’s result set. In this example,
the query only returns a single column, but if the table contained multiple columns, you would be
able to reference all of them via the rad_val variable.

Scalar Datatypes

BINARY_INTEGER INT NVARCHAR2 STRING

BOOLEAN INTEGER NUMBER TIMESTAMP

CHAR INTERVAL DAY TO
SECOND

NUMERIC TIMESTAMP WITH
LOCAL TIME ZONE

CHARACTER INTERVAL YEAR TO
MONTH

PLS_INTEGER TIMESTAMP WITH
TIME ZONE

DATE LONG POSITIVE UROWID

DEC LONG RAW POSITIVEN VARCHAR

DECIMAL NATURAL REAL VARCHAR2

DOUBLE PRECISION NATURALN SIGNTYPE RAW

FLOAT NCHAR SMALLINT ROWID

Composite Types

RECORD TABLE VARRAY

Reference Types

REF CURSOR REF object_type

LOB Types

BFILE BLOB CLOB NCLOB

TABLE 27-1. PL/SQL Datatypes

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In addition to the %ROWTYPE declaration, you can use the %TYPE declaration to inherit
datatype information. If you use the %ROWTYPE declaration, the variable inherits the column
and datatype information for all the columns in the cursor’s result set. If you use the %TYPE
declaration, then the variable only inherits the definition of the column used to define it. You can
even base %TYPE definitions on cursors, as shown in the following example.

cursor rad_cursor is
select * from RADIUS_VALS;

rad_val rad_cursor%ROWTYPE;
rad_val_radius rad_val.Radius%TYPE;

In the preceding listing, the rad_val variable inherits the datatypes of the result set of the rad_
cursor cursor. The rad_val_radius variable inherits the datatype of the Radius column within the
rad_val variable.

The advantage of datatype anchoring using %ROWTYPE and %TYPE definitions is that it
makes the datatype definitions in your PL/SQL code independent of the underlying data structures.
If the RADIUS_VALS Radius column is changed from a NUMBER(5) datatype to a NUMBER(4,2)
datatype, you do not need to modify your PL/SQL code; the datatype assigned to the associated
variables will be determined dynamically at runtime.

Executable Commands Section
In the Executable Commands section, you manipulate the variables and cursors declared in the
Declarations section of your PL/SQL block. The Executable Commands section always starts with the
keyword begin. In the following listing, the first PL/SQL block example from the Declarations section
is repeated: the area of a circle is calculated, and the results are inserted into the AREAS table:

declare
pi constant NUMBER(9,7) := 3.1415927;
radius INTEGER(5);
area NUMBER(14,2);

begin
radius := 3;
area := pi*power(radius,2);
insert into AREAS values (radius, area);

end;

In the preceding listing, the Executable Commands section is

begin
radius := 3;
area := pi*power(radius,2);
insert into AREAS values (radius, area);

end;

Following the begin keyword, the PL/SQL block’s work begins. First, a value is assigned to the radius
variable, and the radius variable and the pi constant value are used to determine the value of the
area variable. The Radius and Area values are then inserted into the AREAS table.

494 Part III: PL/SQL

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 27
Blind Folio 27:494

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 27: An Introduction to PL/SQL 495

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 27
Blind Folio 27:495

The Executable Commands section of the PL/SQL block may contain commands that execute
the cursors declared in the Declarations section. In the following example (from the “Declarations
Section” section of this chapter), the Executable Commands section features several commands
that reference the rad_cursor cursor:

declare
pi constant NUMBER(9,7) := 3.1415927;
area NUMBER(14,2);
cursor rad_cursor is

select * from RADIUS_VALS;
rad_val rad_cursor%ROWTYPE;

begin
open rad_cursor;
fetch rad_cursor into rad_val;
area := pi*power(rad_val.radius,2);
insert into AREAS values (rad_val.radius, area);

close rad_cursor;
end;

In the first command involving the cursor, the open command is used:

open rad_cursor;

When the rad_cursor cursor is opened, the query declared for that cursor is executed and the
records to be returned are identified. Next, records are fetched from the cursor:

fetch rad_cursor into rad_val;

In the Declarations section, the rad_val variable was declared to anchor its datatypes to the
rad_cursor cursor:

cursor rad_cursor is
select * from RADIUS_VALS;

rad_val rad_cursor%ROWTYPE;

When you fetch a record from the cursor into the rad_val variable, you can still address each
column value selected via the cursor’s query. When the cursor’s data is no longer needed, you can
close the cursor, as shown in the following listing:

close rad_cursor;

The Executable Commands section may contain conditional logic, such as if commands and
loops. In the following sections, you will see examples of each of the major types of flow-control
operations permitted in PL/SQL. You can use the flow-control operations to alter the manner in
which the fetched records and executable commands are managed.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Conditional Logic
Within PL/SQL, you can use if, else, elsif, and case commands to control the flow of
commands within the Executable Commands section. The formats of the if clauses are shown
in the following listing:

if <some condition>
then <some command>

elsif <some condition>
then <some command>

else <some command>
end if;

You can nest if conditions within each other, as shown in the following listing:

if <some condition>
then
if <some condition>
then <some command>
end if;

else <some command>
end if;

By nesting if conditions, you can quickly develop complex logic flows within your Executable
Commands section. When nesting if conditions, make sure you are not making the flow control
more complex than it needs to be; always check to see whether logical conditions can be combined
into simpler orders.

The area of a circle example used in the previous section will now be modified to include
conditional logic. In the following listing, the Executable Commands section of the PL/SQL block
has been modified to include if and then commands:

declare
pi constant NUMBER(9,7) := 3.1415927;
area NUMBER(14,2);
cursor rad_cursor is

select * from RADIUS_VALS;
rad_val rad_cursor%ROWTYPE;

begin
open rad_cursor;
fetch rad_cursor into rad_val;
area := pi*power(rad_val.radius,2);
if area >30
then
insert into AREAS values (rad_val.radius, area);

end if;
close rad_cursor;

end;

496 Part III: PL/SQL

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 27
Blind Folio 27:496

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In the preceding listing, an if condition is used to control the flow of commands within the
Executable Commands section of the PL/SQL block. The flow-control commands are shown in
the following listing:

if area >30
then
insert into AREAS values (rad_val.radius, area);

end if;

The flow-control commands in this example begin after the area variable’s value has been
determined. If the value is greater than 30, then a record will be inserted into the AREAS table; if
the value is less than 30, then no record will be inserted into the table. You can use this sort of
flow control to direct which of several SQL statements are to be executed, based on the conditions
in your if conditions.

The following listing shows syntax for flow control involving SQL commands:

if area>30
then <some command>

elsif area<10
then <some command>

else <some command>
end if;

Loops
You can use loops to process multiple records within a single PL/SQL block. PL/SQL supports
three types of loops:

Simple loops A loop that keeps repeating until an exit or exit when statement is
reached within the loop

FOR loops A loop that repeats a specified number of times

WHILE loops A loop that repeats while a condition is met

In the following sections, you will see examples of each type of loop. The loop examples will
use as their starting point the PL/SQL blocks used previously in this chapter. You can use loops to
process multiple records from a cursor.

Simple Loops
In the following listing, a simple loop is used to generate multiple rows in the AREAS table. The
loop is started by the loop keyword, and the exit when clause determines when the loop should
be exited. An end loop clause identifies the end of the loop.

declare
pi constant NUMBER(9,7) := 3.1415927;
radius INTEGER(5);
area NUMBER(14,2);

begin
radius := 3;

Chapter 27: An Introduction to PL/SQL 497

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 27
Blind Folio 27:497

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

loop
area := pi*power(radius,2);
insert into AREAS values (radius, area);

radius := radius+1;
exit when area >100;

end loop;
end;

The loop section of the example establishes the flow control for the commands in the
Executable Commands section of the PL/SQL block. The steps within the loop are described in
the following commented version of the loop commands:

loop
/* Calculate the area, based on the radius value. */

area := pi*power(radius,2);
/* Insert the current values into the AREAS table. */
insert into AREAS values (radius, area);
/* Increment the radius value by 1. */

radius := radius+1;
/* Evaluate the last calculated area. If the value */
/* exceeds 100, then exit. Otherwise, repeat the */
/* loop using the new radius value. */

exit when area >100;
/* Signal the end of the loop. */

end loop;

The loop should generate multiple entries in the AREAS table. The first record will be the record
generated by a Radius value of 3. Once an area value exceeds 100, no more records will be inserted
into the AREAS table.

Sample output following the execution of the PL/SQL block is shown in the following listing:

select *
from AREAS
order by Radius;

RADIUS AREA
---------- ----------

3 28.27
4 50.27
5 78.54
6 113.1

Since the area value for a Radius value of 6 exceeds 100, no further Radius values are
processed and the PL/SQL block completes.

Simple Cursor Loops
You can use the attributes of a cursor—such as whether or not any rows are left to be fetched—as
the exit criteria for a loop. In the following example, a cursor is executed until no more rows are

498 Part III: PL/SQL

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 27
Blind Folio 27:498

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

returned by the query. To determine the status of the cursor, the cursor’s attributes are checked.
Cursors have four attributes you can use in your program:

%FOUND A record can be fetched from the cursor

%NOTFOUND No more records can be fetched from the cursor

%ISOPEN The cursor has been opened

%ROWCOUNT The number of rows fetched from the cursor so far

The %FOUND, %NOTFOUND, and %ISOPEN cursor attributes are Booleans; they are set to
either TRUE or FALSE. Because they are Boolean attributes, you can evaluate their settings without
explicitly matching them to values of TRUE or FALSE. For example, the following command will
cause an exit to occur when rad_cursor%NOTFOUND is TRUE:

exit when rad_cursor%NOTFOUND;

In the following listing, a simple loop is used to process multiple rows from a cursor:

declare
pi constant NUMBER(9,7) := 3.1415927;
area NUMBER(14,2);
cursor rad_cursor is

select * from RADIUS_VALS;
rad_val rad_cursor%ROWTYPE;

begin
open rad_cursor;
loop
fetch rad_cursor into rad_val;
exit when rad_cursor%NOTFOUND;
area := pi*power(rad_val.radius,2);
insert into AREAS values (rad_val.radius, area);

end loop;
close rad_cursor;

end;

The loop section of the PL/SQL block uses values from the RADIUS_VALS table as its input.
Instead of basing the exit criteria on the Area value, the cursor’s %NOTFOUND attribute is
checked. If no more rows are found in the cursor, then %NOTFOUND will be TRUE—and thus,
the loop will be exited. The commented version of the loop is shown in the following listing:

loop
/* Within the loop, fetch a record. */

fetch rad_cursor into rad_val;
/* If the fetch attempt reveals no more */
/* records in the cursor, then exit the loop. */

exit when rad_cursor%NOTFOUND;
/* If the fetch attempt returned a record, */
/* then process the Radius value and insert */
/* a record into the AREAS table. */

Chapter 27: An Introduction to PL/SQL 499

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 27
Blind Folio 27:499

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

area := pi*power(rad_val.radius,2);
insert into AREAS values (rad_val.radius, area);
/* Signal the end of the loop. */

end loop;

When the preceding PL/SQL block is executed, every record in the RADIUS_VALS table will
be processed by the loop. So far, the RADIUS_VALS table only contains one record—a Radius
value of 3. Prior to executing the PL/SQL block for this section, add two new Radius values to the
RADIUS_VALS table: 4 and 10.

The following listing shows the addition of the new records to the RADIUS_VALS table:

insert into RADIUS_VALS values (4);
insert into RADIUS_VALS values (10);
commit;

select *
from RADIUS_VALS
order by Radius;

RADIUS

3
4

10

Once the new records have been added to the RADIUS_VALS table, execute the PL/SQL block
shown earlier in this section. The output of the PL/SQL block is shown in the following listing:

select *
from AREAS
order by Radius;

RADIUS AREA
---------- ----------

3 28.27
4 50.27

10 314.16

The query of the AREAS table shows that every record in the RADIUS_VALS table was fetched
from the cursor and processed. Once there were no more records to process in the cursor, the
loop was exited and the PL/SQL block completed.

FOR Loops
In simple loops, the loop executes until an exit condition is met. In a FOR loop, the loop executes
a specified number of times. An example of a FOR loop is shown in the following listing. The
FOR loop’s start is indicated by the keyword for, followed by the criteria used to determine when
the processing is complete and the loop can be exited. Since the number of times the loop is executed
is set when the loop is begun, an exit command isn’t needed within the loop.

500 Part III: PL/SQL

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 27
Blind Folio 27:500

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In the following example, the areas of circles are calculated based on Radius values ranging
from 1 through 7, inclusive.

declare
pi constant NUMBER(9,7) := 3.1415927;
radius INTEGER(5);
area NUMBER(14,2);

begin
for radius in 1..7 loop
area := pi*power(radius,2);
insert into AREAS values (radius, area);

end loop;
end;

The steps involved in processing the loop are shown in the following commented listing:

/* Specify the criteria for the number of loop */
/* executions. */

for radius in 1..7 loop
/* Calculate the area using the current Radius */
/* value. */
area := pi*power(radius,2);
/* Insert the area and radius values into the AREAS */
/* table. */
insert into AREAS values (radius, area);
/* Signal the end of the loop. */

end loop;

Note that there is no line that says

radius := radius+1;

in the FOR loop. Since the specification of the loop specifies

for radius in 1..7 loop

the Radius values are already specified. For each value, all of the commands within the loop are
executed (these commands can include other conditional logic, such as if conditions). Once the
loop has completed processing a Radius value, the limits on the for clause are checked, and either
the next Radius value is used or the loop execution is complete.

Sample output from the FOR loop execution is shown in the following listing:

select *
from AREAS
order by Radius;

RADIUS AREA
---------- ----------

1 3.14

Chapter 27: An Introduction to PL/SQL 501

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 27
Blind Folio 27:501

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 12.57
3 28.27
4 50.27
5 78.54
6 113.1
7 153.94

7 rows selected.

Cursor FOR Loops
In FOR loops, the loop executes a specified number of times. In a Cursor FOR loop, the results of
a query are used to dynamically determine the number of times the loop is executed. In a Cursor
FOR loop, the opening, fetching, and closing of cursors is performed implicitly; you do not need
to explicitly specify these actions.

The following listing shows a Cursor FOR loop that queries the RADIUS_VALS table and inserts
records into the AREAS table:

declare
pi constant NUMBER(9,7) := 3.1415927;
area NUMBER(14,2);
cursor rad_cursor is

select * from RADIUS_VALS;
begin
for rad_val in rad_cursor
loop
area := pi*power(rad_val.radius,2);
insert into AREAS values (rad_val.radius, area);

end loop;
end;

In a Cursor FOR loop, there is no open or fetch command. The command

for rad_val in rad_cursor

implicitly opens the rad_cursor cursor and fetches a value into the rad_val variable. When no
more records are in the cursor, the loop is exited and the cursor is closed. In a Cursor FOR loop,
there is no need for a close command. Note that rad_val is not explicitly declared in the block.

The loop portion of the PL/SQL block is shown in the following listing, with comments to
indicate the flow of control. The loop is controlled by the existence of a fetchable record in the
rad_cursor cursor. There is no need to check the cursor’s %NOTFOUND attribute—that is
automated via the Cursor FOR loop.

/* If a record can be fetched from the cursor, */
/* then fetch it into the rad_val variable. If */
/* no rows can be fetched, then skip the loop. */

for rad_val in rad_cursor
/* Begin the loop commands. */
loop

/* Calculate the area based on the Radius value */

502 Part III: PL/SQL

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 27
Blind Folio 27:502

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

/* and insert a record into the AREAS table. */
area := pi*power(rad_val.radius,2);
insert into AREAS values (rad_val.radius, area);

/* Signal the end of the loop commands. */
end loop;

Sample output is shown in the following listing; for this example, the RADIUS_VALS table
has three records, with Radius values of 3, 4, and 10:

select *
from RADIUS_VALS
order by Radius;

RADIUS

3
4

10

The execution of the PL/SQL block with the Cursor FOR loop will generate the following
records in the AREAS table:

select *
from AREAS
order by Radius;

RADIUS AREA
---------- ----------

3 28.27
4 50.27

10 314.16

WHILE Loops
In a WHILE loop, the loop is processed until an exit condition is met. Instead of specifying the
exit condition via an exit command within the loop, the exit condition is specified in the while
command that initiates the loop.

In the following listing, a WHILE loop is created so that multiple Radius values will be
processed. If the current value of the Radius variable meets the while condition in the loop’s
specification, then the loop’s commands are processed. Once a Radius value fails the while
condition in the loop’s specification, the loop’s execution is terminated:

declare
pi constant NUMBER(9,7) := 3.1415927;
radius INTEGER(5);
area NUMBER(14,2);

begin
radius := 3;
while radius<=7
loop

Chapter 27: An Introduction to PL/SQL 503

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 27
Blind Folio 27:503

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

area := pi*power(radius,2);
insert into AREAS values (radius, area);

radius := radius+1;
end loop;

end;

The WHILE loop is similar in structure to the simple loop, since it terminates the loop based
on a variable’s value. The following listing shows the steps involved in the loop, with embedded
comments:

/* Set an initial value for the Radius variable. */
radius := 3;
/* Establish the criteria for the termination of */
/* the loop. If the condition is met, execute the */
/* commands within the loop. If the condition is */
/* not met, then terminate the loop. */

while radius<=7
/* Begin the commands to be executed. */

loop
/* Calculate the area based on the current */
/* Radius value and insert a record in the */
/* AREAS table. */

area := pi*power(radius,2);
insert into AREAS values (radius, area);

/* Set a new value for the Radius variable. The */
/* new value of Radius will be evaluated against */
/* the termination criteria and the loop commands */
/* will be executed for the new Radius value or */
/* the loop will terminate. */

radius := radius+1;
/* Signal the end of the commands within the loop. */

end loop;

When executed, the PL/SQL block in the previous listing will generate records in the AREAS
table. The output of the PL/SQL block is shown in the following listing:

select *
from AREAS
order by Radius;

RADIUS AREA
---------- ----------

3 28.27
4 50.27
5 78.54
6 113.1
7 153.94

504 Part III: PL/SQL

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 27
Blind Folio 27:504

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Because of the value assigned to the Radius variable prior to the loop, the loop is forced to
execute at least once. You should verify that your variable assignments meet the conditions used
to limit the loop executions.

CASE Statements
As of Oracle9i, you can use case statements to control the branching logic within your PL/SQL
blocks. For example, you can use them to assign values conditionally or to transform values prior
to inserting them. In the following example, case expressions use the Radius values to determine
which rows to insert into the AREAS table:

declare
pi constant NUMBER(9,7) := 3.1415927;
area NUMBER(14,2);
cursor rad_cursor is

select * from RADIUS_VALS;
rad_val rad_cursor%ROWTYPE;

begin
open rad_cursor;
loop
fetch rad_cursor into rad_val;
exit when rad_cursor%NOTFOUND;
area := pi*power(rad_val.radius,2);
case
when rad_val.Radius = 3
then
insert into AREAS values (rad_val.radius, area);

when rad_val.Radius = 4
then
insert into AREAS values (rad_val.radius, area);

when rad_val.Radius = 10
then
insert into AREAS values (0, 0);

else raise CASE_NOT_FOUND;
end case;

end loop;
close rad_cursor;

end;

This block generates the following output. The case clause forced the insert for the Radius
value of 10 to user Radius and Area values of 0:

select * from AREAS;

RADIUS AREA
---------- ----------

3 28.27
4 50.27
0 0

Chapter 27: An Introduction to PL/SQL 505

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 27
Blind Folio 27:505

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The keyword case begins the clause:

case
when rad_val.Radius = 3
then
insert into AREAS values (rad_val.radius, area);

The when clauses are evaluated sequentially. The else keyword within the case clause works
similarly to the else keyword within an if-then clause. If you omit the else keyword, PL/SQL adds
the following implicit else clause:

else raise CASE_NOT_FOUND;

The end case clause ends the case clause. The case clause is commonly used to translate lists
of values to their descriptions, as in the case of the bookshelf category names:

case CategoryName
when 'ADULTFIC' then 'Adult Fiction'
when 'ADULTNF' then 'Adult Nonfiction'
when 'ADULTREF' then 'Adult Reference'
when 'CHILDRENFIC' then 'Children Fiction'
when 'CHILDRENNF' then 'Children Nonfiction'
when 'CHILDRENPIC' then 'Children Picturebook'
else CategoryName

end;

See Chapter 17 for examples of the complex uses of case.

Exception Handling Section
When user-defined or system-related exceptions (errors) are encountered, the control of the
PL/SQL block shifts to the Exception Handling section. Within the Exception Handling section,
the when clause is used to evaluate which exception is to be “raised”—that is, executed.

If an exception is raised within the Executable Commands section of your PL/SQL block, the
flow of commands immediately leaves the Executable Commands section and searches the Exception
Handling section for an exception matching the error encountered. PL/SQL provides a set of
system-defined exceptions and allows you to add your own exceptions. Examples of user-defined
exceptions are shown in Chapters 28 and 29.

The Exception Handling section always begins with the keyword exception, and it precedes the
end command that terminates the Executable Commands section of the PL/SQL block. The placement
of the Exception Handling section within the PL/SQL block is shown in the following listing:

declare
<declarations section>

begin
<executable commands>
exception
<exception handling>

end;

506 Part III: PL/SQL

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 27
Blind Folio 27:506

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The Exception Handling section of a PL/SQL block is optional—none of the PL/SQL blocks
shown previously in this chapter included an Exception Handling section. However, the examples
shown in this chapter have been based on a very small set of known input values with very
limited processing performed.

In the following listing, the simple loop for calculating the area of a circle is shown, with
two modifications (shown in bold). A new variable named some_variable is declared in the
Declarations section, and a calculation to determine the variable’s value is created in the Executable
Commands section.

declare
pi constant NUMBER(9,7) := 3.1415927;
radius INTEGER(5);
area NUMBER(14,2);
some_variable NUMBER(14,2);

begin
radius := 3;
loop
some_variable := 1/(radius-4);
area := pi*power(radius,2);
insert into AREAS values (radius, area);

radius := radius+1;
exit when area >100;

end loop;
end;

Because the calculation for some_variable involves division, you may encounter a situation in
which the calculation attempts to divide by zero—an error condition. The first time through the loop,
the Radius variable (with an initial value of 3) is processed and a record is inserted into the AREAS
table. The second time through the loop, the Radius variable has a value of 4—and the calculation for
some_variable encounters an error:

declare
*
ERROR at line 1:
ORA-01476: divisor is equal to zero
ORA-06512: at line 9

Since an error was encountered, the first row inserted into AREAS is rolled back, and the PL/SQL
block terminates.

You can modify the processing of the error condition by adding an Exception Handling
section to the PL/SQL block, as shown in the following listing.

declare
pi constant NUMBER(9,7) := 3.1415927;
radius INTEGER(5);
area NUMBER(14,2);
some_variable NUMBER(14,2);

begin
radius := 3;

Chapter 27: An Introduction to PL/SQL 507

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 27
Blind Folio 27:507

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

loop
some_variable := 1/(radius-4);
area := pi*power(radius,2);
insert into AREAS values (radius, area);

radius := radius+1;
exit when area >100;

end loop;
exception
when ZERO_DIVIDE
then insert into AREAS values (0,0);

end;

The Exception Handling section of the PL/SQL block is repeated in the following listing:

exception
when ZERO_DIVIDE
then insert into AREAS values (0,0);

When the PL/SQL block encounters an error, it scans the Exception Handling section for
the defined exceptions. In this case, it finds the ZERO_DIVIDE exception, which is one of the
system-defined exceptions available in PL/SQL. In addition to the system-defined exceptions and
user-defined exceptions, you can use the when others clause to address all exceptions not defined
within your Exception Handling section. The command within the Exception Handling section for
the matching exception is executed and a row is inserted into the AREAS table. The output of the
PL/SQL block is shown in the following listing:

select *
from AREAS;

RADIUS AREA
---------- ----------

3 28.27
0 0

The output shows that the first Radius value (3) was processed, and the exception was encountered
on the second pass through the loop.

NOTE
Once an exception is encountered, you cannot return to your normal
flow of command processing within the Executable Commands
section. If you need to maintain control within the Executable
Commands section, you should use if conditions to test for possible
exceptions before they are encountered by the program or create a
nested block with its own local exception handling.

The available system-defined exceptions are listed in the “Exceptions” entry in the
Alphabetical Reference. Examples of user-defined exceptions are shown in Chapters 28 and 29.

508 Part III: PL/SQL

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 27
Blind Folio 27:508

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 28
Blind Folio 28:509

CHAPTER
28

Triggers

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

510 Part III: PL/SQL

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 28
Blind Folio 28:510

A
trigger defines an action the database should take when some database-

related event occurs. Triggers may be used to supplement declarative referential
integrity, to enforce complex business rules, or to audit changes to data. The
code within a trigger, called the trigger body, is made up of PL/SQL blocks (see
Chapter 27).

The execution of triggers is transparent to the user. Triggers are executed by the database
when specific types of data manipulation commands are performed on specific tables. Such
commands may include inserts, updates, and deletes. Updates of specific columns may also be
used as triggering events. As of Oracle8i, triggering events may also include DDL commands and
database events (such as shutdowns and logins).

Because of their flexibility, triggers may supplement referential integrity; they should not be
used to replace it. When enforcing the business rules in an application, you should first rely on
the declarative referential integrity available with Oracle; use triggers to enforce rules that cannot
be coded through referential integrity.

Required System Privileges
To create a trigger on a table, you must be able to alter that table. Therefore, you must either own
the table, have the ALTER privilege for the table, or have the ALTER ANY TABLE system privilege.
In addition, you must have the CREATE TRIGGER system privilege; to create triggers in another
user’s account (also called a schema), you must have the CREATE ANY TRIGGER system privilege.
The CREATE TRIGGER system privilege is part of the RESOURCE role provided with Oracle.

To alter a trigger, you must either own the trigger or have the ALTER ANY TRIGGER system
privilege. You may also alter triggers by altering the tables they are based on, which requires that
you have either the ALTER privilege for that table or the ALTER ANY TABLE system privilege. For
information on altering triggers, see “Enabling and Disabling Triggers,” later in this chapter.

To create a trigger on a database-level event, you must have the ADMINISTER DATABASE
TRIGGER system privilege.

Required Table Privileges
Triggers may reference tables other than the one that initiated the triggering event. For example, if
you use triggers to audit changes to data in the BOOKSHELF table, then you may insert a record
into a different table (say, BOOKSHELF_AUDIT) every time a record is changed in BOOKSHELF.
To do this, you need to have privileges to insert into BOOKSHELF_AUDIT (to perform the
triggered transaction).

NOTE
The privileges needed for triggered transactions cannot come from
roles; they must be granted directly to the creator of the trigger.

Types of Triggers
A trigger’s type is defined by the type of triggering transaction and by the level at which the
trigger is executed. In the following sections, you will see descriptions of these classifications,
along with relevant restrictions.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Row-Level Triggers
Row-level triggers execute once for each row affected by a DML statement. For the BOOKSHELF
table auditing example described earlier, each row that is changed in the BOOKSHELF table may
be processed by the trigger. Row-level triggers are the most common type of trigger; they are often
used in data auditing applications. Row-level triggers are also useful for keeping distributed data
in sync. Materialized views, which use internal row-level triggers for this purpose, are described in
Chapter 23.

Row-level triggers are created using the for each row clause in the create trigger command.
The syntax for triggers is shown in “Trigger Syntax,” later in this chapter.

Statement-Level Triggers
Statement-level triggers execute once for each DML statement. For example, if a single INSERT
statement inserted 500 rows into the BOOKSHELF table, a statement-level trigger on that table
would only be executed once. Statement-level triggers therefore are not often used for data-related
activities; they are normally used to enforce additional security measures on the types of actions
that may be performed on a table.

Statement-level triggers are the default type of trigger created via the create trigger command.
The syntax for triggers is shown in “Trigger Syntax,” later in this chapter.

BEFORE and AFTER Triggers
Because triggers are executed by events, they may be set to occur immediately before or after
those events. Since the events that execute triggers include database DML statements, triggers
can be executed immediately before or after inserts, updates, and deletes. For database-level
events, additional restrictions apply; you cannot trigger an event to occur before a login or startup
takes place.

Within the trigger, you can reference the old and new values involved in the DML statement.
The access required for the old and new data may determine which type of trigger you need. “Old”
refers to the data as it existed prior to the DML statement; updates and deletes usually reference
old values. “New” values are the data values that the DML statement creates (such as the columns
in an inserted record).

If you need to set a column value in an inserted row via your trigger, then you need to use a
BEFORE INSERT trigger to access the “new” values. Using an AFTER INSERT trigger would not
allow you to set the inserted value, since the row will already have been inserted into the table.

AFTER row-level triggers are frequently used in auditing applications, since they do not fire
until the row has been modified. The row’s successful modification implies that it has passed the
referential integrity constraints defined for that table.

INSTEAD OF Triggers
You can use INSTEAD OF triggers to tell Oracle what to do instead of performing the actions that
invoked the trigger. For example, you could use an INSTEAD OF trigger on a view to redirect
inserts into a table or to update multiple tables that are part of a view. You can use INSTEAD OF
triggers on either object views (see Chapter 30) or relational views.

For example, if a view involves a join of two tables, your ability to use the update command
on records in the view is limited. However, if you use an INSTEAD OF trigger, you can tell Oracle
how to update, delete, or insert records in the view’s underlying tables when a user attempts to

Chapter 28: Triggers 511

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 28
Blind Folio 28:511

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

change values via the view. The code in the INSTEAD OF trigger is executed in place of the
insert, update, or delete command you enter.

In this chapter, you will see how to implement basic triggers. INSTEAD OF triggers, which
were initially introduced to support object views, are described in Chapter 30.

Schema Triggers
You can create triggers on schema-level operations such as create table, alter table, drop table,
audit, rename, truncate, and revoke. You can even create triggers to prevent users from dropping
their own tables! For the most part, schema-level triggers provide two capabilities: preventing
DDL operations and providing additional security monitoring when DDL operations occur.

Database-Level Triggers
You can create triggers to be fired on database events, including errors, logins, logoffs, shutdowns,
and startups. You can use this type of trigger to automate database maintenance or auditing actions.

Trigger Syntax
The full syntax for the create trigger command is shown in the Alphabetical Reference section of
this book. The following listing contains an abbreviated version of the command syntax:

create [or replace] trigger [schema .] trigger
{ before | after | instead of }
{ dml_event_clause
| { ddl_event [or ddl_event]...

| database_event [or database_event]...
}
on { [schema .] schema | database }

}
[when (condition)]
{ pl/sql_block | call_procedure_statement }

The syntax options available depend on the type of trigger in use. For example, a trigger on a
DML event will use the dml_event_clause, which follows this syntax:

{ delete | insert | update [of column [, column]...] }
[or { delete | insert | update [of column [, column]...] }]...
on { [schema .] table | [nested table nested_table_column of] [schema .] view }
[referencing_clause] [for each row]

Clearly, there is a great deal of flexibility in the design of a trigger. The before and after
keywords indicate whether the trigger should be executed before or after the triggering event. If
the instead of clause is used, the trigger’s code will be executed instead of the event that caused the
trigger to be invoked. The delete, insert, and update keywords (the last of which may include a
column list) indicate the type of data manipulation that will constitute a triggering event. When
referring to the old and new values of columns, you can use the defaults (“old” and “new”) or
you can use the referencing clause to specify other names.

512 Part III: PL/SQL

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 28
Blind Folio 28:512

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

When the for each row clause is used, the trigger will be a row-level trigger; otherwise, it will
be a statement-level trigger. The when clause is used to further restrict when the trigger is executed.
The restrictions enforced in the when clause may include checks of old and new data values.

For example, suppose we want to track any changes to the Rating value in the BOOKSHELF
table whenever rating values are lowered. First, we’ll create a table that will store the audit records:

drop table BOOKSHELF_AUDIT;
create table BOOKSHELF_AUDIT
(Title VARCHAR2(100),
Publisher VARCHAR2(20),
CategoryName VARCHAR2(20),
Old_Rating VARCHAR2(2),
New_Rating VARCHAR2(2),
Audit_Date DATE);

The following row-level BEFORE UPDATE trigger will be executed only if the Rating value is
lowered. This example also illustrates the use of the new keyword, which refers to the new value
of the column, and the old keyword, which refers to the old value of the column.

create or replace trigger BOOKSHELF_BEF_UPD_ROW
before update on BOOKSHELF
for each row
when (new.Rating < old.Rating)
begin
insert into BOOKSHELF_AUDIT
(Title, Publisher, CategoryName,
Old_Rating, New_Rating, Audit_Date)

values
(:old.Title, :old.Publisher, :old.CategoryName,
:old.Rating, :new.Rating, Sysdate);

end;

Breaking this create trigger command into its components makes it easier to understand.
First, the trigger is named:

create or replace trigger BOOKSHELF_BEF_UPD_ROW

The name of the trigger contains the name of the table it acts upon and the type of trigger it
is. (See “Naming Triggers,” later in this chapter, for information on naming conventions.)

This trigger applies to the BOOKSHELF table; it will be executed before update transactions
have been committed to the database:

before update on BOOKSHELF

Because the for each row clause is used, the trigger will apply to each row changed by the
update statement. If this clause is not used, then the trigger will execute at the statement level.

for each row

Chapter 28: Triggers 513

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 28
Blind Folio 28:513

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

514 Part III: PL/SQL

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 28
Blind Folio 28:514

The when clause adds further criteria to the triggering condition. The triggering event not only
must be an update of the BOOKSHELF table, but also must reflect a lowering of the Rating value:

when (new.Rating < old.Rating)

The PL/SQL code shown in the following listing is the trigger body. The commands shown
here are to be executed for every update of the BOOKSHELF table that passes the when condition.
For this to succeed, the BOOKSHELF_AUDIT table must exist, and the owner of the trigger must
have been granted privileges (directly, not via roles) on that table. This example inserts the old
values from the BOOKSHELF record into the BOOKSHELF_AUDIT table before the BOOKSHELF
record is updated.

begin
insert into BOOKSHELF_AUDIT
(Title, Publisher, CategoryName,
Old_Rating, New_Rating, Audit_Date)

values
(:old.Title, :old.Publisher, :old.CategoryName,
:old.Rating, :new.Rating, Sysdate);

end;

NOTE
When the new and old keywords are referenced in the PL/SQL block,
they are preceded by colons (:).

This example is typical of auditing triggers. The auditing activity is completely transparent to
the user who performs the update of the BOOKSHELF table. However, the transaction against the
BOOKSHELF table is dependent on the successful execution of the trigger.

Combining DML Trigger Types
Triggers for multiple insert, update, and delete commands on a table can be combined into a
single trigger, provided they are all at the same level (row level or statement level). The following
example shows a trigger that is executed whenever an insert or an update occurs. Several points
(shown in bold) should stand out in this example:

■ The update portion of the trigger occurs only when the Rating column’s value is updated.

■ An if clause is used within the PL/SQL block to determine which of the two commands
invoked the trigger.

■ In this example the column to be changed is specified in the dml_event_clause instead
of in the when clause as in prior examples.

drop trigger BOOKSHELF_BEF_UPD_ROW;

create or replace trigger BOOKSHELF_BEF_UPD_INS_ROW

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 28: Triggers 515

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 28
Blind Folio 28:515

before insert or update of Rating on BOOKSHELF
for each row
begin
if INSERTING then
insert into BOOKSHELF_AUDIT
(Title, Publisher, CategoryName,
New_Rating, Audit_Date)

values
(:new.Title, :new.Publisher, :new.CategoryName,
:new.Rating, Sysdate);

else -- if not inserting then we are updating the Rating
insert into BOOKSHELF_AUDIT
(Title, Publisher, CategoryName,
Old_Rating, New_Rating, Audit_Date)

values
(:old.Title, :old.Publisher, :old.CategoryName,
:old.Rating, :new.Rating, Sysdate);

end if;
end;

Again, look at the trigger’s component parts. First, it is named and identified as a before
insert and before update (of Rating) trigger, executing for each row:

create or replace trigger BOOKSHELF_BEF_UPD_INS_ROW
before insert or update of Rating on BOOKSHELF
for each row

The trigger body then follows. In the first part of the trigger body, shown in the following
listing, the type of transaction is checked via an if clause. Valid transaction types are INSERTING,
DELETING, and UPDATING. In this case, the trigger checks to see if the record is being inserted
into the BOOKSHELF table. If it is, then the first part of the trigger body is executed. The INSERTING
portion of the trigger body inserts the new values of the record into the BOOKSHELF_AUDIT table.

begin
if INSERTING then
insert into BOOKSHELF_AUDIT
(Title, Publisher, CategoryName,
New_Rating, Audit_Date)

values
(:new.Title, :new.Publisher, :new.CategoryName,
:new.Rating, Sysdate);

Other transaction types can then be checked. In this example, because the trigger executed,
the transaction must be either an insert or an update of the Rating column. Since the if clause in
the first half of the trigger body checks for inserts, and the trigger is only executed for inserts and
updates, the only conditions that should execute the second half of the trigger body are updates
of Rating. Therefore, no additional if clauses are necessary to determine the DML event type. This

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

516 Part III: PL/SQL

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 28
Blind Folio 28:516

portion of the trigger body is the same as in the previous example: prior to being updated, the old
values in the row are written to the BOOKSHELF_AUDIT table.

else –- if not inserting then we are updating the Rating
insert into BOOKSHELF_AUDIT
(Title, Publisher, CategoryName,
Old_Rating, New_Rating, Audit_Date)

values
(:old.Title, :old.Publisher, :old.CategoryName,
:old.Rating, :new.Rating, Sysdate);

Combining trigger types in this manner may help you to coordinate trigger development among
multiple developers, since it consolidates all the database events that depend on a single table.

Setting Inserted Values
You may use triggers to set column values during inserts and updates. The previous examples in
this chapter set the BOOKSHELF_AUDIT.Audit_Date value to the result of the SYSDATE function.
You may also use updates to support different application needs, such as storing an uppercase
version of a value along with the mixed-case version entered by users. In that case, you may have
partially denormalized your table to include a column for the derived data. Storing this data in an
uppercase format (for this example, in the column UpperPerson) allows you to display data to the
users in its natural format while using the uppercase column during queries.

Since the uppercase version of the value is derived data, it may become out of sync with the
user-entered column. Unless your application supplies a value for the uppercase version during
inserts, that column’s value will be NULL when a new row is entered.

To avoid this synchronization problem, you can use a database trigger. Put a BEFORE INSERT
and a BEFORE UPDATE trigger on the table; they will act at the row level. As shown in the
following listing, this approach can set a new value for UpperName every time the Name
column’s value is changed in BOOKSHELF_CHECKOUT:

alter table BOOKSHELF_CHECKOUT add (UpperName VARCHAR2(25));

create or replace trigger BOOKSHELF_CHECKOUT_BUI_ROW
before insert or update of Name on BOOKSHELF_CHECKOUT
for each row
begin
:new.UpperName := UPPER(:new.Name);

end;

In this example, the trigger body determines the value for UpperName by using the UPPER
function on the Name column. This trigger will be executed every time a row is inserted into
BOOKSHELF_CHECKOUT and every time the Name column is updated. The Name and
UpperName columns will thus be kept in sync.

Maintaining Duplicated Data
The method of setting values via triggers, shown in the previous section, can be combined with
the remote data access methods described in Chapter 22. As with materialized views, you may
replicate all or some of the rows in a table.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 28: Triggers 517

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 28
Blind Folio 28:517

For example, you may want to create and maintain a second copy of your application’s audit
log. By doing so, you safeguard against a single application erasing the audit log records created
by multiple applications. Duplicate audit logs are frequently used in security monitoring.

Consider the BOOKSHELF_AUDIT table used in the examples in this chapter. A second table,
BOOKSHELF_AUDIT_DUP, could be created, possibly in a remote database. For this example,
assume that a database link called AUDIT_LINK can be used to connect the user to the database
in which BOOKSHELF_AUDIT_DUP resides (refer to Chapter 22 for details on database links).

drop table BOOKSHELF_AUDIT_DUP;
create table BOOKSHELF_AUDIT_DUP
(Title VARCHAR2(100),
Publisher VARCHAR2(20),
CategoryName VARCHAR2(20),
Old_Rating VARCHAR2(2),
New_Rating VARCHAR2(2),
Audit_Date DATE);

To automate populating the BOOKSHELF_AUDIT_DUP table, the following trigger could be
placed on the BOOKSHELF_AUDIT table:

create or replace trigger BOOKSHELF_AUDIT_AFT_INS_ROW
after insert on BOOKSHELF_AUDIT
for each row
begin
insert into BOOKSHELF_AUDIT_DUP@AUDIT_LINK
(Title, Publisher, CategoryName,
New_Rating, Audit_Date)

values (:new.Title, :new.Publisher, :new.CategoryName,
:new.New_Rating, :new.Audit_Date);

end;

As the trigger header shows, this trigger executes for each row that is inserted into the
BOOKSHELF_AUDIT table. It inserts a single record into the BOOKSHELF_AUDIT_DUP table in
the database defined by the AUDIT_LINK database link. AUDIT_LINK may point to a database
located on a remote server. For asynchronous replication requirements, consider using materialized
views instead (see Chapter 23).

You can see the actions of these triggers by inserting a row into BOOKSHELF:

insert into BOOKSHELF
(Title, Publisher, CategoryName, Rating) values
('HARRY POTTER AND THE CHAMBER OF SECRETS',
'SCHOLASTIC','CHILDRENFIC','4');

1 row created.

select Title from BOOKSHELF_AUDIT;

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

518 Part III: PL/SQL

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 28
Blind Folio 28:518

TITLE

HARRY POTTER AND THE CHAMBER OF SECRETS

select Title from BOOKSHELF_AUDIT_DUP;

TITLE

HARRY POTTER AND THE CHAMBER OF SECRETS

Customizing Error Conditions
Within a single trigger, you may establish different error conditions. For each of the error
conditions you define, you may select an error message that appears when the error occurs. The
error numbers and messages that are displayed to the user are set via the RAISE_APPLICATION_
ERROR procedure, which may be called from within any trigger.

The following example shows a statement-level BEFORE DELETE trigger on the BOOKSHELF
table. When a user attempts to delete a record from the BOOKSHELF table, this trigger is executed
and checks two system conditions: that the day of the week is neither Saturday nor Sunday, and
that the Oracle username of the account performing the delete begins with the letters “LIB.” The
trigger’s components will be described following the listing.

create or replace trigger BOOKSHELF_BEF_DEL
before delete on BOOKSHELF
declare
weekend_error EXCEPTION;
not_library_user EXCEPTION;

begin
if TO_CHAR(SysDate,'DY') = 'SAT' or

TO_CHAR(SysDate,'DY') = 'SUN' THEN
RAISE weekend_error;

end if;
if SUBSTR(User,1,3) <> 'LIB' THEN

RAISE not_library_user;
end if;
EXCEPTION
WHEN weekend_error THEN
RAISE_APPLICATION_ERROR (-20001,
'Deletions not allowed on weekends');

WHEN not_library_user THEN
RAISE_APPLICATION_ERROR (-20002,
'Deletions only allowed by Library users');

end;

The header of the trigger defines it as a statement-level BEFORE DELETE trigger:

create or replace trigger BOOKSHELF_BEF_DEL
before delete on BOOKSHELF

There are no when clauses in this trigger, so the trigger body is executed for all deletes.
The next portion of the trigger declares the names of the two exceptions that are defined

within this trigger:

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 28: Triggers 519

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 28
Blind Folio 28:519

declare
weekend_error EXCEPTION;
not_library_user EXCEPTION;

The first part of the trigger body contains an if clause that uses the TO_CHAR function on the
SysDate function. If the current day is either Saturday or Sunday, then the WEEKEND_ERROR
error condition is raised. This error condition, called an exception, must be defined within the
trigger body.

if TO_CHAR(SysDate,'DY') = 'SAT' or
TO_CHAR(SysDate,'DY') = 'SUN' THEN
RAISE weekend_error;

end if;

A second if clause checks the User pseudo-column to see if its first three letters are “LIB.” If
the username does not begin with “LIB,” then the NOT_LIBRARY_USER exception is raised. In
this example, the operator <> is used; this is equivalent to != (meaning “not equals”).

if SUBSTR(User,1,3) <> 'LIB' THEN
RAISE not_library_user;

end if;

The final portion of the trigger body tells the trigger how to handle the exceptions. It begins
with the keyword exception, followed by a when clause for each of the exceptions. Each of
the exceptions in this trigger calls the RAISE_APPLICATION_ERROR procedure, which takes two
input parameters: the error number (which must be between –20001 and –20999), and the error
message to be displayed. In this example, two different error messages are defined, one for each
of the defined exceptions:

EXCEPTION
WHEN weekend_error THEN
RAISE_APPLICATION_ERROR (-20001,
'Deletions not allowed on weekends');

WHEN not_library_user THEN
RAISE_APPLICATION_ERROR (-20002,
'Deletions only allowed by Library users');

The use of the RAISE_APPLICATION_ERROR procedure gives you great flexibility in managing
the error conditions that may be encountered within your trigger. For a further description of
procedures, see Chapter 29.

NOTE
The exceptions will still be raised even if the delete operations
find no rows to delete.

When a non-“LIB” user attempts to delete a row from BOOKSHELF, this is the result:

delete from BOOKSHELF
where Title = 'MY LEDGER';

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

delete from BOOKSHELF
*

ERROR at line 1:
ORA-20002: Deletions only allowed by Library users
ORA-06512: at "PRACTICE.BOOKSHELF_BEF_DEL", line 17
ORA-04088: error during execution of trigger 'PRACTICE.BOOKSHELF_BEF_DEL'

Calling Procedures Within Triggers
Rather than creating a large block of code within a trigger body, you can save the code as a
stored procedure and call the procedure from within the trigger, by using the call command. For
example, if you create an INSERT_BOOKSHELF_AUDIT_DUP procedure that inserts rows into
BOOKSHELF_AUDIT_DUP, you can call it from a trigger on the BOOKSHELF_AUDIT table, as
shown in the following listing:

create or replace trigger BOOKSHELF_AFT_INS_ROW
after insert on BOOKSHELF_AUDIT
for each row
begin
call INSERT_BOOKSHELF_AUDIT_DUP(:new.Title, :new.Publisher,

:new.CategoryName, :new.Old_Rating, :new.New_Rating,
:new.Audit_Date);

end;

Naming Triggers
The name of a trigger should clearly indicate the table it applies to, the DML commands that trigger
it, its before/after status, and whether it is a row-level or statement-level trigger. Since a trigger name
cannot exceed 30 characters in length, you need to use a standard set of abbreviations when
naming. In general, the trigger name should include as much of the table name as possible. Thus,
when creating a BEFORE UPDATE, row-level trigger on a table named BOOKSHELF_CHECKOUT,
you should not name the trigger BEFORE_UPDATE_ROW_LEVEL_BC. A better name would be
BOOKSHELF_CHECKOUT_BEF_UPD_ROW.

Creating DDL Event Triggers
You can create triggers that are executed when a DDL event occurs. If you are planning to use
this feature solely for security purposes, you should investigate using the audit command instead.
For example, you can use a DDL event trigger to execute the trigger code for create, alter, and
drop commands performed on a cluster, function, index, package, procedure, role, sequence,
synonym, table, tablespace, trigger, type, user, or view. If you use the on schema clause, the
trigger will execute for any new data dictionary objects created in your schema. The following
example will execute a procedure named INSERT_AUDIT_RECORD whenever objects are
created within your schema:

create or replace trigger CREATE_DB_OBJECT_AUDIT
after create on schema
begin
call INSERT_AUDIT_RECORD (ora_dict_obj_name);

end;

520 Part III: PL/SQL

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 28
Blind Folio 28:520

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

As shown in this example, you can reference system attributes such as the object name. The
available attributes are listed in Table 28-1.

To protect the objects within a schema, you may want to create a trigger that is executed for
each attempted drop table command. That trigger will have to be a BEFORE DROP trigger:

create or replace trigger PREVENT_DROP
before drop on Practice.schema

begin
if ora_dict_obj_owner = 'PRACTICE'

and ora_dict_obj_name like 'BOO%'
and ora_dict_obj_type = 'TABLE'

then
RAISE_APPLICATION_ERROR (

-20002, 'Operation not permitted.');
end if;

end;

Chapter 28: Triggers 521

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 28
Blind Folio 28:521

Attribute Type Description Example

ora_client_ip_
address

VARCHAR Returns the IP
address of the
client in a LOGON
event, when the
underlying protocol
is TCP/IP.

if (ora_sysevent =
‘LOGON’)

then addr :=
ora_client_ip_address;
end if;

ora_database_
name

VARCHAR2(50) Database name. DECLARE
db_name VARCHAR2(50);

BEGIN
db_name :=

ora_database_name;
END;

ora_des_
encrypted_
password

VARCHAR2 The DES encrypted
password of the
user being created
or altered.

IF (ora_dict_obj_type =
‘USER’)
THEN INSERT INTO

event_table
(ora_des_encrypted_
password);
END IF;

ora_dict_obj_
name

VARCHAR(30) Name of the
dictionary object
on which the DDL
operation occurred.

INSERT INTO event_table
(‘Changed object is ‘ ||
ora_dict_obj_name’);

TABLE 28-1. System Event Attributes

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

522 Part III: PL/SQL

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 28
Blind Folio 28:522

Attribute Type Description Example

ora_dict_obj_
name_list
(name_list OUT
ora_name_list_t)

BINARY_INTEGER Returns the list of
object names of
objects being
modified in the
event.

if (ora_sysevent =
‘ASSOCIATE
STATISTICS’)
then number_modified :=

ora_dict_obj_name_list
(name_list);
end if;

ora_dict_obj_
owner

VARCHAR(30) Owner of the
dictionary object
on which the DDL
operation occurred.

INSERT INTO event_table
(‘object owner is’ ||
ora_dict_obj_owner’);

ora_dict_obj_
owner_list(own
er_list OUT
ora_name_list_t)

BINARY_INTEGER Returns the list of
object owners of
objects being
modified in the
event.

if (ora_sysevent =
‘ASSOCIATE
STATISTICS’)
then

number_of_modified_
objects :=
ora_dict_obj_owner_list
(owner_list);
end if;

ora_dict_
obj_type

VARCHAR(20) Type of the
dictionary object
on which the DDL
operation occurred.

INSERT INTO event_table
(‘This
object is a ‘ ||
ora_dict_obj_type);

ora_grantee(
user_list
OUT

ora_name_list_t)

BINARY_INTEGER Returns the grantees
of a grant event in
the OUT parameter;
returns the number
of grantees in the
return value.

if (ora_sysevent =
‘GRANT’) then
number_of_users :=
ora_grantee(user_list);
end if;

ora_instance_
num

NUMBER Instance number. IF (ora_instance_num = 1)
THEN INSERT INTO
event_table
(‘1’);
END IF;

TABLE 28-1. System Event Attributes (continued)

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 28: Triggers 523

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 28
Blind Folio 28:523

Attribute Type Description Example

ora_is_alter_
column(
Column_name
IN VARCHAR2)

BOOLEAN Returns TRUE if the
specified column is
altered.

if (ora_sysevent =
‘ALTER’ and
ora_dict_obj_type =
‘TABLE’)

then alter_column :=
ora_is_alter_column
(‘FOO’);
end if;

ora_is_creating_
nested_table

BOOLEAN Returns TRUE if the
current event is
creating a nested
table.

if (ora_sysevent =
‘CREATE’ and
ora_dict_obj_type =
‘TABLE’ and
ora_is_creating_
nested_table)
then insert into

event_tab
values (‘A nested table is
created’);
end if;

ora_is_drop_
column(
Column_name
IN VARCHAR2)

BOOLEAN Returns TRUE if the
specified column is
dropped.

if (ora_sysevent =
‘ALTER’ and
ora_dict_obj_type =
‘TABLE’)

then drop_column :=
ora_is_drop_column
(‘FOO’);
end if;

ora_is_
servererror

BOOLEAN Returns TRUE if
given error is on
error stack, FALSE
otherwise.

IF
(ora_is_servererror
(error_number
))
THEN INSERT INTO

event_table
(‘Server error!!’);
END IF;

ora_login_user VARCHAR2(30) Login user name. SELECT ora_login_user
FROM dual;

TABLE 28-1. System Event Attributes (continued)

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

524 Part III: PL/SQL

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 28
Blind Folio 28:524

Attribute Type Description Example

ora_partition_
pos

BINARY_INTEGER In an INSTEAD OF
trigger for CREATE
TABLE, the position
within the SQL text
where you could
insert a PARTITION
clause.

-- Retrieve ora_sql_txt
into
-- sql_text variable
first.

n := ora_partition_pos;
new_stmt :=
substr(sql_text, 1, n-1)
||
‘ ‘ ||
my_partition_clause ||
‘ ‘ || substr(sql_text,
n));

ora_privileges(
Privilege_list
OUT
ora_name_list_t)

BINARY_INTEGER Returns the list of
privileges being
granted by the
grantee or the list of
privileges revoked
from the revokee in
the OUT parameter;
returns the number
of privileges in the
return value.

if (ora_sysevent = ‘GRANT’
or
ora_sysevent = ‘REVOKE’)
then

number_of_privileges :=
ora_privileges(priv_list);
end if;

ora_revokee (
User_list OUT
ora_name_list_t)

BINARY_INTEGER Returns the
revokees of a
revoke event in the
OUT parameter;
returns the number
of revokees in the
return value.

if (ora_sysevent =
‘REVOKE’)
then
number_of_users :=
ora_revokee(user_list);

ora_server_error NUMBER Given a position
(1 for top of stack),
it returns the error
number at that
position on error
stack.

INSERT INTO event_table
(‘top
stack error ‘ ||
ora_server_error(1));

ora_server_
error_depth

BINARY_INTEGER Returns the total
number of error
messages on the
error stack.

n := ora_server_
error_depth;
-- This value is used with
-- other functions such as
-- ora_server_error

TABLE 28-1. System Event Attributes (continued)

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 28: Triggers 525

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 28
Blind Folio 28:525

Attribute Type Description Example

ora_server_
error_msg
(position in
BINARY_INTEGER)

VARCHAR2 Given a position (1
for top of stack), it
returns the error
message at that
position on error
stack.

INSERT INTO event_table
(‘top
stack error message’ ||
ora_server_error_msg(1));

ora_server_error_
num_params
(position in
binary_integer)

BINARY_INTEGER Given a position (1
for top of stack), it
returns the number
of strings that have
been substituted
into the error
message using a
format like "%s".

n :=
ora_server_error_
num_params(1);

ora_server_
error_param
(position in
binary_integer,
param in
binary_integer)

VARCHAR2 Given a position (1
for top of stack) and
a parameter
number, returns the
matching "%s",
"%d", and so on
substitution value in
the error message.

-- E.g. the 2nd %s in a
message
-- like “Expected %s,
found %s”
param :=
ora_server_error_
param(1,2);

ora_sql_txt
(sql_text out
ora_name_list_t)

BINARY_INTEGER Returns the SQL
text of the triggering
statement in the
OUT parameter.
If the statement is
long, it is broken
up into multiple
PL/SQL table
elements. The
function return
value specifies how
many elements are
in the PL/SQL table.

sql_text
ora_name_list_t;
stmt VARCHAR2(2000);
...
n := ora_sql_
txt(sql_text);
FOR i IN 1..n LOOP
stmt := stmt ||
sql_text(i);
END LOOP;
INSERT INTO event_
table (‘text
of triggering statement:
‘ ||
stmt);

ora_sysevent VARCHAR2(20) System event firing
the trigger: Event
name is same as
that in the syntax.

INSERT INTO event_table
(ora_sysevent);

TABLE 28-1. System Event Attributes (continued)

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Note that the trigger references the event attributes within its if clauses. Attempting to drop a
table in the Practice schema whose name starts with BOO results in the following:

drop table BOOKSHELF_AUDIT_DUP;

drop table BOOKSHELF_AUDIT_DUP
*
ERROR at line 1:
ORA-00604: error occurred at recursive SQL level 1
ORA-20002: Operation not permitted.
ORA-06512: at line 6

You can use the RAISE_APPLICATION_ERROR procedure to further customize the error
message displayed to the user.

526 Part III: PL/SQL

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 28
Blind Folio 28:526

Attribute Type Description Example

ora_with_grant_
option

BOOLEAN Returns TRUE if
the privileges are
granted with grant
option.

if (ora_sysevent =
‘GRANT’ and
ora_with_grant_option =
TRUE)
then insert into

event_table
(‘with grant option’);
end if;

space_error_info(
error_number
OUT NUMBER,
error_type OUT
VARCHAR2,
object_owner
OUT
VARCHAR2,
table_space_
name OUT
VARCHAR2,
object_name
OUT
VARCHAR2,
sub_object_
name OUT
VARCHAR2)

BOOLEAN Returns TRUE if
the error is related
to an out-of-space
condition, and fills
in the OUT
parameters with
information about
the object that
caused the error.

if (space_error_
info(eno, typ,
owner, ts, obj, subobj) =
TRUE)
then

dbms_output.put_line(‘The
object ‘ || obj || ‘
owned by ‘
|| owner || ‘ has run out
of
space.’);
end if;

TABLE 28-1. System Event Attributes (continued)

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Creating Database Event Triggers
Like DML events, database events can execute triggers. When a database event occurs (a
shutdown, startup, or error), you can execute a trigger that references the attributes of the event
(as with DDL events). You could use a database event trigger to perform system maintenance
functions immediately after each database startup.

For example, the following trigger pins packages on each database startup. Pinning packages
is an effective way of keeping large PL/SQL objects in the shared pool of memory, improving
performance and enhancing database stability. This trigger, PIN_ON_STARTUP, will run each
time the database is started.

create or replace trigger PIN_ON_STARTUP
after startup on database
begin

DBMS_SHARED_POOL.KEEP (
'SYS.STANDARD', 'P');

end;

This example shows a simple trigger that will be executed immediately after a database
startup. You can modify the list of packages in the trigger body to include those most used by
your applications.

Startup and shutdown triggers can access the ora_instance_num, ora_database_name,
ora_login_user, and ora_sysevent attributes listed in Table 28-1. See the Alphabetical Reference
for the full create trigger command syntax.

Enabling and Disabling Triggers
Unlike declarative integrity constraints (such as NOT NULL and PRIMARY KEY), triggers do not
necessarily affect all rows in a table. They only affect operations of the specified type, and then
only while the trigger is enabled. Any data created prior to a trigger’s creation will not be affected
by the trigger.

By default, a trigger is enabled when it is created. However, there are situations in which you
may want to disable a trigger. The two most common reasons involve data loads. During large
data loads, you may want to disable triggers that would execute during the load. Disabling the
triggers during data loads may dramatically improve the performance of the load. After the data
has been loaded, you need to manually perform the data manipulation that the trigger would
have performed had it been enabled during the data load.

The second data load–related reason for disabling a trigger occurs when a data load fails
and has to be performed a second time. In such a case, it is likely that the data load partially
succeeded—and thus the trigger was executed for a portion of the records loaded. During a
subsequent load, the same records would be inserted. Thus, it is possible that the same trigger
will be executed twice for the same insert operation (when that insert operation occurs during
both loads). Depending on the nature of the operations and the triggers, this may not be desirable.
If the trigger was enabled during the failed load, then it may need to be disabled prior to the start
of a second data load process. After the data has been loaded, you need to manually perform the
data manipulation that the trigger would have performed had it been enabled during the data load.

Chapter 28: Triggers 527

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 28
Blind Folio 28:527

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

To enable a trigger, use the alter trigger command with the enable keyword. To use this
command, you must either own the table or have the ALTER ANY TRIGGER system privilege.
A sample alter trigger command is shown in the following listing:

alter trigger BOOKSHELF_BEF_UPD_INS_ROW enable;

A second method of enabling triggers uses the alter table command, with the enable all triggers
clause. You may not enable specific triggers with this command; you must use the alter trigger
command to do that. The following example shows the usage of the alter table command:

alter table BOOKSHELF enable all triggers;

To use the alter table command, you must either own the table or have the ALTER ANY
TABLE system privilege.

You can disable triggers using the same basic commands (requiring the same privileges) with
modifications to their clauses. For the alter trigger command, use the disable clause:

alter trigger BOOKSHELF_BEF_UPD_INS_ROW disable;

For the alter table command, use the disable all triggers clause:

alter table BOOKSHELF disable all triggers;

You can manually compile triggers. Use the alter trigger compile command to manually
compile existing triggers that have become invalid. Since triggers have dependencies, they can
become invalid if an object the trigger depends on changes. The alter trigger debug command
allows PL/SQL information to be generated during trigger recompilation.

Replacing Triggers
The status of a trigger is the only portion that can be altered. To alter a trigger’s body, the trigger
must be re-created or replaced. When replacing a trigger, use the create or replace trigger command
(refer to “Trigger Syntax” and the examples earlier in the chapter).

Dropping Triggers
Triggers may be dropped via the drop trigger command. To drop a trigger, you must either own
the trigger or have the DROP ANY TRIGGER system privilege. An example of this command is
shown in the following listing:

drop trigger BOOKSHELF_BEF_UPD_INS_ROW;

528 Part III: PL/SQL

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 28
Blind Folio 28:528

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 29
Blind Folio 29:529

CHAPTER
29

Procedures, Functions,
and Packages

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

S
ophisticated business rules and application logic can be stored as procedures within
Oracle. Stored procedures—groups of SQL, PL/SQL, and Java statements—enable
you to move code that enforces business rules from your application to the database.
As a result, the code will be stored once for use by multiple applications. Because
Oracle supports stored procedures, the code within your applications should become

more consistent and easier to maintain.

NOTE
For details on Java and its use in stored procedures, see Chapters 34,
35, and 36. This chapter will focus on PL/SQL procedures.

You may group procedures and other PL/SQL commands into packages. In the following
sections, you will see implementation details and recommendations for packages, procedures,
and functions (procedures that can return values to the user).

You may experience performance gains when using procedures, for two reasons:

■ The processing of complex business rules may be performed within the database—and
therefore by the server. In client-server or three-tier applications, shifting complex processing
from the application (on the client) to the database (on the server) may dramatically
improve performance.

■ Because the procedural code is stored within the database and is fairly static, you may
also benefit from the reuse of the same queries within the database. The Shared SQL
Area in the System Global Area (SGA) will store the parsed versions of the executed
commands. Thus, the second time a procedure is executed, it may be able to take
advantage of the parsing that was previously performed, improving the performance
of the procedure’s execution.

In addition to these advantages, your application development efforts may also benefit.
Business rules that are consolidated within the database no longer need to be written into each
application, thus saving you time during application creation and simplifying the maintenance
process.

Required System Privileges
To create a procedural object, you must have the CREATE PROCEDURE system privilege (which
is part of the RESOURCE role). If the procedural object will be in another user’s schema, then you
must have the CREATE ANY PROCEDURE system privilege.

Executing Procedures
Once a procedural object has been created, it may be executed. When a procedural object is
executed, it may rely on the table privileges of its owner, or may rely on the privileges of the user
who is executing it. When the procedure is created using the definer’s rights, a user executing the
procedure does not need to be granted access to the tables that the procedure accesses.

530 Part III: PL/SQL

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 29
Blind Folio 29:530

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In prior versions of Oracle, the only option was for the procedural objects to be executed
under the privileges of the procedure owner (called definer rights). As an alternative, you can use
invoker rights, in which case the procedures execute under the privileges of the user executing
the procedure. If a procedure uses invoker rights, the user must have access to all of the database
objects accessed by the procedure. Unless stated otherwise, the examples in this chapter assume
users are executing procedures under the owner’s privileges.

To allow other users to execute your procedural object, grant them the EXECUTE privilege on
that object, as shown in the following example:

grant execute on MY_PROCEDURE to Dora;

The user Dora will now be able to execute the procedure named MY_PROCEDURE. If you do not
grant the EXECUTE privilege to users, they must have the EXECUTE ANY PROCEDURE system
privilege in order to execute the procedure.

When executed, procedures usually have variables passed to them. For example, a procedure
that interacts with the BOOKSHELF table may accept a value for the Title column as its input. In
this example, we will assume that the procedure creates a new record in the BOOKSHELF table
when a new book is received (from the list of books in the BOOK_ORDER table). This procedure
can be called from any application within the database (provided the user calling the procedure
has been granted the EXECUTE privilege for it).

The syntax used to execute a procedure depends on the environment from which the
procedure is called. From within SQL*Plus, a procedure can be executed by using the execute
command, followed by the procedure name. Any arguments to be passed to the procedure must
be enclosed in parentheses following the procedure name, as shown in the following example
(which uses a procedure called NEW_BOOK):

execute NEW_BOOK('ONCE REMOVED');

The command will execute the NEW_BOOK procedure, passing to it the value ONCE REMOVED.
From within another procedure, function, package, or trigger, the procedure can be called

without the execute command. If the NEW_BOOK procedure was called from a trigger on the
BOOK_ORDER table, the body of that trigger may include the following command:

NEW_BOOK(:new.Title);

The NEW_BOOK procedure will be executed using the new value of the Title column as its
input. (See Chapter 28 for further information on the use of old and new values within triggers.)

To execute a procedure owned by another user, you must either create a synonym for that
procedure or reference the owner’s name during the execution, as shown in the following listing:

execute Practice.NEW_BOOK('ONCE REMOVED');

The command will execute the NEW_BOOK procedure in the Practice schema.
Alternatively, a synonym for the procedure could be created by using the following command:

create synonym NEW_BOOK for Practice.NEW_BOOK;

Chapter 29: Procedures, Functions, and Packages 531

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 29
Blind Folio 29:531

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The owner of that synonym would then no longer need to refer to the procedure’s owner to
execute the procedure. You could simply enter the command:

execute NEW_BOOK('ONCE REMOVED');

and the synonym would point to the proper procedure.
When you execute remote procedures, the name of a database link must be specified (see

Chapter 22 for information on database links). The name of the database link must immediately
follow the procedure’s name and precede the variables, as shown in the following example:

execute NEW_BOOK@REMOTE_CONNECT('ONCE REMOVED');

The command uses the REMOTE_CONNECT database link to access a procedure called
NEW_BOOK in a remote database.

To make the location of the procedure transparent to the user, a synonym may be created for
the remote procedure, as shown in the following example:

create synonym NEW_BOOK
for NEW_BOOK@REMOTE_CONNECT;

Once this synonym has been created, the user may refer to the remote procedure by using
the name of the synonym. Oracle assumes that all remote procedure calls involve updates in the
remote database.

Required Table Privileges
Procedural objects may reference tables. For the objects to execute properly, the owner of the
procedure, package, or function being executed must have privileges on the tables it uses. Unless
you are using invoker rights, the user who is executing the procedural object does not need
privileges on its underlying tables.

NOTE
The privileges needed for procedures, packages, and functions cannot
come from roles; they must be granted directly to the owner of the
procedure, package, or function.

Procedures vs. Functions
Functions can return a value to the caller, and functions can be directly referenced in queries.
This value is returned through the use of the return keyword within the function. Examples of
functions are shown in “create function Syntax,” later in this chapter.

Procedures vs. Packages
Packages are groups of procedures, functions, variables, and SQL statements grouped together
into a single unit. To execute a procedure within a package, you must first list the package name,
and then list the procedure name, as shown in the following example:

532 Part III: PL/SQL

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 29
Blind Folio 29:532

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

execute BOOK_INVENTORY.NEW_BOOK('ONCE REMOVED');

Here, the NEW_BOOK procedure within the BOOK_INVENTORY package was executed.
Packages allow multiple procedures to use the same variables and cursors. Procedures within

packages may be either available to the public (as is the NEW_BOOK procedure in the prior example)
or private, in which case they are only accessible via commands from within the package (such
as calls from other procedures). Examples of packages are shown in “create package Syntax,” later
in this chapter.

Packages may also include commands that are to be executed each time the package is called,
regardless of the procedure or function called within the package. Thus, packages not only group
procedures but also give you the ability to execute commands that are not procedure-specific.
See “Initializing Packages,” later in this chapter, for an example of code that is executed each
time a package is called.

create procedure Syntax
The syntax for the create procedure command is shown in the Alphabetical Reference. The syntax is

create [or replace] procedure [schema .] procedure
[(argument [in | out | in out] [nocopy] datatype

[, argument [in | out | in out] [nocopy] datatype]...
)]

[authid { current_user | definer }]
{ is | as } { pl/sql_subprogram_body |
language { java name 'string'| c [name name] library lib_name

[agent in (argument)]
[with context] [parameters (parameters)]
}};

Both the header and the body of the procedure are created by this command.
The NEW_BOOK procedure is created by the command shown in the following listing:

create or replace procedure NEW_BOOK (aTitle IN VARCHAR2,
aPublisher IN VARCHAR2, aCategoryName IN VARCHAR2)

as
begin

insert into BOOKSHELF (Title, Publisher, CategoryName, Rating)
values (aTitle, aPublisher, aCategoryName, NULL);

delete from BOOK_ORDER
where Title = aTitle;

end;

Here, the NEW_BOOK procedure will accept a book’s title, publisher, and category as its input.
It can be called from any application. It inserts a record into the BOOKSHELF table, with a NULL
value for the Rating column, and deletes the matching Title from the BOOK_ORDER table.

If a procedure already exists, you may replace it via the create or replace procedure command.
The benefit of using this command (instead of dropping and re-creating the old procedure) is that
the EXECUTE privilege grants previously made on the procedure will remain in place.

Chapter 29: Procedures, Functions, and Packages 533

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 29
Blind Folio 29:533

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The IN qualifier is used for arguments for which values must be specified when calling the
procedure. In the NEW_BOOK example, the aTitle, aPublisher, and aCategoryName arguments
are declared as IN. The OUT qualifier signifies that the procedure passes a value back to the caller
through this argument. The IN OUT qualifier signifies that the argument is both an IN and an
OUT: A value must be specified for this argument when the procedure is called, and the procedure
will return a value to the caller via this argument. If no qualifier type is specified, then the default
value is IN.

In the create procedure syntax, authid refers to the type of authentication: definer rights (the
default) or invoker rights (the current_user). The nocopy keyword tells Oracle to pass the variable
value back to the user as quickly as possible.

By default, a procedure consists of a block of code written in PL/SQL (block refers to the code
that the procedure will execute when called). In the NEW_BOOK example, the block is as follows:

begin
insert into BOOKSHELF (Title, Publisher, CategoryName, Rating)
values (aTitle, aPublisher, aCategoryName, NULL);

delete from BOOK_ORDER
where Title = aTitle;

end;

The PL/SQL block shown is fairly simple, consisting of a single SQL statement. PL/SQL blocks
within procedures can include any DML statement; they cannot be used for DDL statements
(such as create view).

Alternatively, language refers to the language in which the code is written. For Java examples,
see Chapter 36.

The following listing shows the execution of the NEW_BOOK procedure, and the resulting
changes to the BOOK_ORDER and BOOKSHELF tables.

select Title from BOOK_ORDER;

TITLE
--
SHOELESS JOE
GOSPEL
SOMETHING SO STRONG
GALILEO'S DAUGHTER
LONGITUDE
ONCE REMOVED

execute NEW_BOOK('ONCE REMOVED','SANCTUARY PUB','ADULTNF');

PL/SQL procedure successfully completed.

select Title from BOOK_ORDER;

TITLE
--
SHOELESS JOE

534 Part III: PL/SQL

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 29
Blind Folio 29:534

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 29: Procedures, Functions, and Packages 535

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 29
Blind Folio 29:535

GOSPEL
SOMETHING SO STRONG
GALILEO'S DAUGHTER
LONGITUDE

select * from BOOKSHELF
where Title = 'ONCE REMOVED';

TITLE
--
PUBLISHER CATEGORYNAME RA
-------------------- -------------------- --
ONCE REMOVED
SANCTUARY PUB ADULTNF

create function Syntax
The syntax for the create function command is more complicated than the syntax for the create
procedure command. At a high level, the syntax is

create [or replace] function [schema .] function
[(argument [in | out | in out] [nocopy] datatype

[, argument [in | out | in out] [nocopy] datatype]...
)]

return datatype
[{ invoker_rights_clause | deterministic | parallel_enable_clause }
[invoker_rights_clause | deterministic | parallel_enable_clause]...

]
{ { aggregate | pipelined } using [schema .] implementation_type
| [pipelined] { is | as } { pl/sql_function_body | call_spec }};

Both the header and the body of the function are created by this command.
The return keyword specifies the datatype of the function’s return value. This can be any

valid PL/SQL datatype (see Chapter 27). Every function must have a return clause, since the
function must, by definition, return a value to the calling environment.

The following example shows a function named OVERDUE_CHARGES, which returns the
overdue book charges by person, based on calculations against the BOOKSHELF_CHECKOUT
table. The input is the person’s name, while the output is the balance for that person.

create or replace function OVERDUE_CHARGES (aName IN VARCHAR2)
return NUMBER
is
owed_amount NUMBER(10,2);

begin
select SUM(((ReturnedDate-CheckoutDate) -14)*0.20)
into owed_amount
from BOOKSHELF_CHECKOUT

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

536 Part III: PL/SQL

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 29
Blind Folio 29:536

where Name = aName;
RETURN(owed_amount);

end;

To show the differences between procedures and functions, we’ll look at this function piece
by piece. First, the function is named and the input is specified:

create or replace function OVERDUE_CHARGES (aName IN VARCHAR2)

Next, we define the characteristics of the value to be returned. The definition of the variable
whose value will be returned has three parts: its datatype, its name, and its length. The datatype
in this example is set via the return NUMBER clause. The variable is then named owed_amount,
and is defined as a NUMBER(10,2). Thus, all three parts of the variable—its datatype, its name,
and its length—have been defined.

return NUMBER
is
owed_amount NUMBER(10,2);

The PL/SQL block follows. In the SQL statement, the sum of all late charges ($0.20 per day
over 14 days) is calculated. The sum is selected into a variable called owed_amount (which we
previously defined). The RETURN(owed_amount) command line then returns the value in the
owed_amount variable to the calling program.

begin
select SUM(((ReturnedDate-CheckoutDate) -14)*0.20)
into owed_amount
from BOOKSHELF_CHECKOUT

where Name = aName;
RETURN(owed_amount);

end;

If a function already exists, you may replace it via the create or replace function command. If
you use the or replace clause, any EXECUTE grants previously made on the function will remain
in place.

If the function is to be created in a different account (also known as a schema), then you must
have the CREATE ANY PROCEDURE system privilege. If no schema is specified, then the function
will be created in your schema. To create a function in your schema, you must have been granted
the CREATE PROCEDURE system privilege (which is part of the RESOURCE role). Having the
privilege to create procedures gives you the privilege to create functions and packages as well.

You can check the function by creating a variable and setting its value equal to the function’s
returned value:

variable owed number;
execute :owed := OVERDUE_CHARGES('FRED FULLER');

PL/SQL procedure successfully completed.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

You can verify the results by printing the variable’s value:

print owed

OWED

3.8

Referencing Remote Tables in Procedures
Remote tables can be accessed by the SQL statements in procedures. A remote table can be
queried via a database link in the procedure, as shown in the following example. In this example,
the NEW_BOOK procedure inserts a record into the BOOKSHELF table in the database defined
by the REMOTE_CONNECT database link while deleting from a local copy of BOOK_ORDER.

create or replace procedure NEW_BOOK (aTitle IN VARCHAR2,
aPublisher IN VARCHAR2, aCategoryName IN VARCHAR2)

as
begin

insert into BOOKSHELF@REMOTE_CONNECT
(Title, Publisher, CategoryName, Rating)
values (aTitle, aPublisher, aCategoryName, NULL);

delete from BOOK_ORDER
where Title = aTitle;

end;

Procedures may also use local synonyms. For example, you may create a local synonym for a
remote table, as follows:

create synonym BOOKSHELF for BOOKSHELF@REMOTE_CONNECT;

You can then rewrite your procedure to remove the database link specifications:

create or replace procedure NEW_BOOK (aTitle IN VARCHAR2,
aPublisher IN VARCHAR2, aCategoryName IN VARCHAR2)

as
begin

insert into BOOKSHELF
(Title, Publisher, CategoryName, Rating)
values (aTitle, aPublisher, aCategoryName, NULL);

delete from BOOK_ORDER
where Title = aTitle;

end;

Removing database link names from procedures allows you to remove the details of the
table’s physical location from the procedure. If the table changes location, only the synonym
will change, while the procedure will still be valid.

Chapter 29: Procedures, Functions, and Packages 537

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 29
Blind Folio 29:537

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Debugging Procedures
The SQLPLUS show errors command displays all the errors associated with the most recently
created procedural object. This command checks the USER_ERRORS data dictionary view for the
errors associated with the most recent compilation attempt for that object. show errors displays
the line and column number for each error, as well as the text of the error message.

To view errors associated with previously created procedural objects, you may query
USER_ERRORS directly, as shown in the following listing. This example queries USER_ERRORS
for error messages encountered during the creation of the OVERDUE_CHARGES function shown
earlier in this chapter.

select Line, /*Line number of the error. */
Position, /*Column number of the error.*/
Text /*Text of the error message.*/

from USER_ERRORS
where Name = 'OVERDUE_CHARGES'
and Type = 'FUNCTION'

order by Sequence;

Valid values for the Type column are VIEW, PROCEDURE, PACKAGE, FUNCTION, and
PACKAGE BODY.

Two other data dictionary view levels—ALL and DBA—may also be used to retrieve information
about errors involving procedural objects. For information on these views, see Chapter 37.

Using the DBMS_OUTPUT Package
In addition to the debugging information provided by the show errors command, you may use
the DBMS_OUTPUT package, one of a set of packages that is automatically installed when you
create an Oracle database.

To use DBMS_OUTPUT, you must issue the set serveroutput on command before executing
the procedural object you will be debugging.

DBMS_OUTPUT allows you to use three debugging functions within your package:

PUT Puts multiple outputs on the same line

PUT_LINE Puts each output on a separate line

NEW_LINE Used with PUT; signals the end of the current output line

PUT and PUT_LINE are used to generate the debugging information you want to display. For
example, if you are debugging a procedure that includes a loop (refer to Chapter 27), you may
want to track the changes in a variable with each pass through the loop. To track the variable’s
value, you may use a command similar to the one shown in the following listing. In this example,
the value of the Owed_Amount column is printed, prefixed by the literal string ‘Owed:’.

DBMS_OUTPUT.PUT_LINE('Owed:'||Owed_Amount);

You may also use PUT and PUT_LINE outside of loops, but such uses may be better
accomplished via the use of the RETURN command in functions (refer to “create function
Syntax,” earlier in this chapter).

538 Part III: PL/SQL

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 29
Blind Folio 29:538

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Creating Your Own Functions
Rather than just calling custom functions via execute commands, you may use them within SQL
expressions. This enables you to extend the functionality of SQL, customizing it to your needs.
Such functions can be used in the same manner as Oracle-provided functions, such as SUBSTR
and TO_CHAR. Custom functions cannot be used in CHECK or DEFAULT constraints and cannot
manipulate any database values.

You can call either stand-alone functions (created via the create function command shown
in the previous sections) or functions declared in package specifications (to be covered in “create
package Syntax” later in this chapter). Procedures are not directly callable from SQL, but may be
called by the functions you create.

For example, consider the OVERDUE_CHARGES function shown earlier in this chapter,
which calculated the total owed for overdue books. It had a single input variable—the person’s
name. However, to see the OVERDUE_CHARGES results for all of the book borrowers, you
would normally need to execute this procedure once for each record in the BOOKSHELF_
CHECKOUT table.

You can improve the overdue charges calculation process. Consider the following query:

create view BOOK_BORROWERS
as select distinct Name from BOOKSHELF_CHECKOUT;

select Name,
OVERDUE_CHARGES(Name)

from BOOK_BORROWERS;

Oracle returns the following output:

NAME OVERDUE_CHARGES(NAME)
------------------------- ---------------------
DORAH TALBOT -.8
EMILY TALBOT .2
FRED FULLER 3.8
GERHARDT KENTGEN 2.8
JED HOPKINS 1.4
PAT LAVAY 2.6
ROLAND BRANDT 22.6

7 rows selected.

This single query uses the custom OVERDUE_CHARGES function to calculate the overdue
charges for all book borrowers. It’s not quite correct—people are getting credit for books they
returned early. You can use the create or replace function command to add a where clause to
the function’s query:

create or replace function OVERDUE_CHARGES (aName IN VARCHAR2)
return NUMBER
is
owed_amount NUMBER(10,2);

begin

Chapter 29: Procedures, Functions, and Packages 539

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 29
Blind Folio 29:539

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

select SUM(((ReturnedDate-CheckoutDate) -14)*0.20)
into owed_amount
from BOOKSHELF_CHECKOUT

where Name = aName
and ReturnedDate-CheckoutDate > 14;

RETURN(owed_amount);
end;

The corrected output is shown in the following listing:

select Name,
OVERDUE_CHARGES(Name)

from BOOK_BORROWERS;

NAME OVERDUE_CHARGES(NAME)
------------------------- ---------------------
DORAH TALBOT .4
EMILY TALBOT .8
FRED FULLER 3.8
GERHARDT KENTGEN 4.6
JED HOPKINS 1.4
PAT LAVAY 3.4
ROLAND BRANDT 22.6

The query selected each name from BOOK_BORROWERS; for each name, it executed the
OVERDUE_CHARGES function, which selected data from BOOKSHELF_CHECKOUT.

To take advantage of this feature, your functions must follow the same guidelines as Oracle’s
functions. Most notably, they must not update the database, and must contain only IN parameters.

NOTE
Although this technique works, it has performance costs. The more
data there is in the table, the bigger the performance penalty will be
when comparing this method to a traditional join.

Customizing Error Conditions
You may establish different error conditions within procedural objects (refer to Chapter 28 for
examples of customized error conditions within triggers). For each of the error conditions you
define, you may select an error message that will appear when the error occurs. The error numbers
and messages that are displayed to the user are set by you via the RAISE_APPLICATION_ERROR
procedure, which may be called from within any procedural object.

You can call RAISE_APPLICATION_ERROR from within procedures, packages, and functions.
It requires two inputs: the message number and the message text. You get to assign both the message
number and the text that will be displayed to the user. This is a very powerful addition to the
standard exceptions that are available in PL/SQL (see “Exception” in the Alphabetical Reference).

The following example shows the OVERDUE_CHARGES function defined earlier in this chapter.
Now, however, it has an additional section (shown in bold). Titled EXCEPTION, this section tells

540 Part III: PL/SQL

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 29
Blind Folio 29:540

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Oracle how to handle nonstandard processing. In this example, the NO_DATA_FOUND exception’s
standard message is overridden via the RAISE_APPLICATION_ERROR procedure.

create or replace function OVERDUE_CHARGES (aName IN VARCHAR2)
return NUMBER
is
owed_amount NUMBER(10,2);

begin
select SUM(((ReturnedDate-CheckoutDate) -14)*0.20)
into owed_amount
from BOOKSHELF_CHECKOUT

where Name = aName
and (ReturnedDate-CheckoutDate) > 14;

RETURN(owed_amount);
EXCEPTION
when NO_DATA_FOUND THEN
RAISE_APPLICATION_ERROR(-20100,
'No books borrowed.');
end;

In the preceding example, the NO_DATA_FOUND exception was used. If you want to define
custom exceptions, you need to name the exception in a Declarations section of the procedure,
which immediately precedes the begin command. As shown in the following listing, this section
should include entries for each of the custom exceptions you have defined, listed as type EXCEPTION:

declare
some_custom_error EXCEPTION;

NOTE
If you are using the exceptions already defined within PL/SQL, you do
not need to list them in the Declarations section of the procedural
object. See “Exception” in the Alphabetical Reference for a list of the
predefined exceptions.

In the exception portion of the procedural object’s code, you tell the database how to handle
the exceptions. It begins with the keyword exception, followed by a WHEN clause for each
exception. Each exception may call the RAISE_ APPLICATION_ERROR procedure, which takes
two input parameters: the error number (which must be between -20001 and -20999) and the
error message to be displayed. In the preceding example, only one exception was defined.
Multiple exceptions can be defined, as shown in the following listing; you may use the when
others clause to handle all nonspecified exceptions:

EXCEPTION
when NO_DATA_FOUND THEN
RAISE_APPLICATION_ERROR(-20100,
'No books borrowed.');

when some_custom_error THEN

Chapter 29: Procedures, Functions, and Packages 541

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 29
Blind Folio 29:541

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

RAISE_APPLICATION_ERROR (-20101,
'Some custom error message.');

The use of the RAISE_APPLICATION_ERROR procedure gives you great flexibility in
managing the error conditions that may be encountered within procedural objects.

Naming Procedures and Functions
Procedures and functions should be named according to the business function they perform or
business rule they enforce. There should be no ambiguity about their purpose.

The NEW_BOOK procedure shown earlier should be renamed. NEW_BOOK performs a
business function—inserting records into BOOKSHELF and deleting them from BOOK_ORDER—
so its name should reflect that function. A better choice for the name would be RECEIVE_BOOK_
ORDER. Since it performs a function, a verb (in this case, “receive”) must describe what it does.
The name of the procedure should also include the name of the major table(s) it impacts. If the
tables are properly named, then the name of the table should be the direct object upon which
the verb acts (in this case, BOOK_ORDER or BOOKSHELF). For the sake of consistency, we will
continue to refer to the procedure as NEW_BOOK for the remainder of this chapter.

create package Syntax
When creating packages, the package specification and the package body are created separately.
Thus, there are two commands to use: create package for the package specification, and create
package body for the package body. Both of these commands require that you have the CREATE
PROCEDURE system privilege. If the package is to be created in a schema other than your own,
then you must have the CREATE ANY PROCEDURE system privilege.

Here is the syntax for creating package specifications:

create [or replace] package [user.] package
[authid {definer | current_user}]
{is | as}
package specification;

A package specification consists of the list of functions, procedures, variables, constants,
cursors, and exceptions that will be available to users of the package.

A sample create package command is shown in the following listing. In this example, the
BOOK_MANAGEMENT package is created. The OVERDUE_CHARGES function and NEW_BOOK
procedure seen earlier in this chapter are included in the package.

create or replace package BOOK_MANAGEMENT
as
function OVERDUE_CHARGES(aName IN VARCHAR2) return NUMBER;
procedure NEW_BOOK (aTitle IN VARCHAR2,

aPublisher IN VARCHAR2, aCategoryName IN VARCHAR2);
end BOOK_MANAGEMENT;

542 Part III: PL/SQL

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 29
Blind Folio 29:542

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

NOTE
You may append the name of the procedural object to the end clause,
as shown in the preceding example. This may make it easier to
coordinate the logic within your code.

A package body contains the blocks and specifications for all of the public objects listed in
the package specification. The package body may include objects that are not listed in the package
specification; such objects are said to be private and are not available to users of the package.
Private objects may only be called by other objects within the same package body. A package
body may also include code that is run every time the package is invoked, regardless of the part
of the package that is executed—see “Initializing Packages,” later in this chapter, for an example.

The syntax for creating package bodies is

create [or replace] package body [user.] package body
{is | as}
package body;

The name of the package body should be the same as the name of the package specification.
Continuing the BOOK_MANAGEMENT example, its package body can be created via the

create package body command shown in the following example:

create or replace package body BOOK_MANAGEMENT
as
function OVERDUE_CHARGES (aName IN VARCHAR2)
return NUMBER
is
owed_amount NUMBER(10,2);

begin
select SUM(((ReturnedDate-CheckoutDate) -14)*0.20)
into owed_amount
from BOOKSHELF_CHECKOUT

where Name = aName
and (ReturnedDate-CheckoutDate) > 14;

RETURN(owed_amount);
EXCEPTION
when NO_DATA_FOUND THEN
RAISE_APPLICATION_ERROR(-20100,
'No books borrowed.');

end OVERDUE_CHARGES;
procedure NEW_BOOK (aTitle IN VARCHAR2,

aPublisher IN VARCHAR2, aCategoryName IN VARCHAR2)
is
begin

insert into BOOKSHELF
(Title, Publisher, CategoryName, Rating)
values (aTitle, aPublisher, aCategoryName, NULL);

delete from BOOK_ORDER
where Title = aTitle;

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 29
Blind Folio 29:543

Chapter 29: Procedures, Functions, and Packages 543

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

end NEW_BOOK;
end BOOK_MANAGEMENT;

The create or replace package body command shown in the preceding example combines
the create function command for the OVERDUE_CHARGES function with the create procedure
command for the NEW_BOOK procedure. The end clauses all have the names of their associated
objects appended to them (shown in bold in the prior listing). Modifying the end clauses in this
manner helps to clarify the ending points of the object’s source code.

Additional functions, procedures, exceptions, variables, cursors, and constants may be defined
within the package body, but they will not be available to the public unless they have been
declared within the package specification (via the create package command). If a user has been
granted the EXECUTE privilege on a package, then that user can access any of the public objects
that are declared in the package specification.

Initializing Packages
Packages may include code that is to be run the first time a user executes a function or procedure
in the package within each session. In the following example, the BOOK_MANAGEMENT package
body is modified to include a SQL statement that records the current user’s username and the
timestamp for the first time a package component is executed within the session. Two new variables
must also be declared in the package body to record these values.

Since the two new variables are declared within the package body, they are not available to
the public. Within the package body, they are separated from the procedures and functions. The
package initialization code is shown in bold in the following listing:

create or replace package body BOOK_MANAGEMENT
as
User_Name VARCHAR2(30);
Entry_Date DATE;
function OVERDUE_CHARGES (aName IN VARCHAR2)
return NUMBER
is
owed_amount NUMBER(10,2);

begin
select SUM(((ReturnedDate-CheckoutDate) -14)*0.20)
into owed_amount
from BOOKSHELF_CHECKOUT

where Name = aName
and (ReturnedDate-CheckoutDate) > 14;

RETURN(owed_amount);
EXCEPTION
when NO_DATA_FOUND THEN
RAISE_APPLICATION_ERROR(-20100,
'No books borrowed.');

end OVERDUE_CHARGES;
procedure NEW_BOOK (aTitle IN VARCHAR2,

aPublisher IN VARCHAR2, aCategoryName IN VARCHAR2)
is
begin

544 Part III: PL/SQL

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 29
Blind Folio 29:544

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

insert into BOOKSHELF
(Title, Publisher, CategoryName, Rating)
values (aTitle, aPublisher, aCategoryName, NULL);

delete from BOOK_ORDER
where Title = aTitle;

end NEW_BOOK;
begin
select User, SysDate
into User_Name, Entry_Date
from DUAL;

end BOOK_MANAGEMENT;

NOTE
The code that is to be run the first time that a component of the
package is executed is stored in its own PL/SQL block at the bottom
of the package body. It does not have its own end clause; it uses the
package body’s end clause.

The first time a BOOK_MANAGEMENT package component is executed in the user’s session,
the User_Name and Entry_Date variables will be populated by the query shown in the previous
listing. These two variables can then be used by the functions and procedures within the package,
although this example does not use them in the interest of brevity.

To execute a procedure or function that is within a package, specify both the package name
and the name of the procedure or function in the execute command, as follows:

execute BOOK_MANAGEMENT.NEW_BOOK('SOMETHING SO STRONG','PANDORAS','ADULTNF');

Viewing Source Code for Procedural Objects
The source code for existing procedures, functions, packages, and package bodies can be
queried from the following data dictionary views:

USER_SOURCE For procedural objects owned by the user

ALL_SOURCE For procedural objects owned by the user or to which the user has
been granted access

DBA_SOURCE For all procedural objects in the database

Select information from the USER_SOURCE view via a query similar to the one shown in the
following listing. In this example, the Text column is selected, ordered by the Line number. The
Name of the object and the object Type are used to define which object’s source code is to be
displayed. The following example uses the NEW_BOOK procedure shown earlier in this chapter:

select Text
from USER_SOURCE
where Name = 'NEW_BOOK'
and Type = 'PROCEDURE'

Chapter 29: Procedures, Functions, and Packages 545

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 29
Blind Folio 29:545

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

order by Line;

TEXT

procedure NEW_BOOK (aTitle IN VARCHAR2,

aPublisher IN VARCHAR2, aCategoryName IN VARCHAR2)
as
begin

insert into BOOKSHELF (Title, Publisher, CategoryName, Rating)
values (aTitle, aPublisher, aCategoryName, NULL);

delete from BOOK_ORDER
where Title = aTitle;

end;

As shown in this example, the USER_SOURCE view contains one record for each line of the
NEW_BOOK procedure. The sequence of the lines is maintained by the Line column; therefore,
the Line column should be used in the order by clause.

Valid values for the Type column are PROCEDURE, FUNCTION, PACKAGE, PACKAGE
BODY, JAVA SOURCE, TYPE, and TYPE BODY.

Compiling Procedures,
Functions, and Packages
Oracle compiles procedural objects when they are created. However, procedural objects may
become invalid if the database objects they reference change. The next time the procedural
objects are executed, they will be recompiled by the database.

You can avoid this runtime compiling—and the performance degradation it may cause—by
explicitly recompiling the procedures, functions, and packages. To recompile a procedure, use
the alter procedure command, as shown in the following listing. The compile clause is the only
valid option for this command.

alter procedure NEW_BOOK compile;

To recompile a procedure, you must either own the procedure or have the ALTER ANY
PROCEDURE system privilege.

To recompile a function, use the alter function command, with the compile clause:

alter function OVERDUE_CHARGES compile;

To recompile a function, you must either own the function or have the ALTER ANY PROCEDURE
system privilege.

When recompiling packages, you may either recompile both the package specification and
the body or just recompile the package body. By default, both the package specification and the
package body are recompiled. You cannot use the alter function or alter procedure command to
recompile functions and procedures stored within a package.

546 Part III: PL/SQL

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 29
Blind Folio 29:546

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 29: Procedures, Functions, and Packages 547

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 29
Blind Folio 29:547

If the source code for the procedures or functions within the package body has changed but
the package specification has not, you may want to recompile only the package body. In most
cases, it is appropriate to recompile both the specification and the package body.

The following is the syntax for the alter package command:

alter package [user.] package_name
compile [debug] [package | body | specification];

To recompile a package, use the preceding alter package command with the compile clause,
as follows:

alter package BOOK_MANAGEMENT compile;

To recompile a package, you must either own the package or have the ALTER ANY PROCEDURE
system privilege. Since neither PACKAGE nor BODY was specified in the preceding example, the
default of PACKAGE was used, resulting in the recompilation of both the package specification
and the package body.

Replacing Procedures, Functions, and Packages
Procedures, functions, and packages may be replaced via their respective create or replace
command. Using the or replace clause keeps in place any existing grants that have been made
for those objects. If you choose to drop and re-create procedural objects, you have to regrant any
EXECUTE privileges that had previously been granted.

Dropping Procedures, Functions, and Packages
To drop a procedure, use the drop procedure command, as follows:

drop procedure NEW_BOOK;

To drop a procedure, you must either own the procedure or have the DROP ANY PROCEDURE
system privilege.

To drop a function, use the drop function command, as follows:

drop function OVERDUE_CHARGES;

To drop a function, you must either own the function or have the DROP ANY PROCEDURE
system privilege.

To drop a package (both the specification and the body), use the drop package command,
as follows:

drop package BOOK_MANAGEMENT;

To drop a package, you must either own the package or have the DROP ANY PROCEDURE
system privilege.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

To drop a package body, use the drop package command with the body clause, as follows:

drop package body BOOK_MANAGEMENT;

To drop a package body, you must either own the package or have the DROP ANY PROCEDURE
system privilege.

548 Part III: PL/SQL

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 29
Blind Folio 29:548

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 30
Blind Folio 30:549

PART
IV

Object-Relational
Databases

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 30
Blind Folio 30:550

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 30
Blind Folio 30:551

CHAPTER
30

Implementing Types,
Object Views,
and Methods

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

I
n this chapter, you will see further details on the use of abstract datatypes, first
introduced in Chapter 4. This chapter covers topics such as security administration
for abstract datatypes and the indexing of abstract datatype attributes. The creation of
methods for abstract datatypes is also shown, along with the use of object views and
INSTEAD OF triggers.

To use the information provided in this chapter, you should be familiar with abstract
datatypes (see Chapter 4), views (see Chapter 18), the grant command (see Chapter 19), indexes
(see Chapter 20), and PL/SQL procedures and triggers (Chapters 27, 28, and 29). Elements of
each of these topics play a part in the implementation of an object-relational database. The first
section of this chapter provides a high-level review of the abstract datatypes shown in Chapter 4.

Revisiting Abstract Datatypes
As described in Chapter 4, you can use abstract datatypes to group related columns into objects.
For example, columns that are part of address information can be grouped into an ADDRESS_TY
datatype via the create type command:

create type ADDRESS_TY as object
(Street VARCHAR2(50),
City VARCHAR2(25),
State CHAR(2),
Zip NUMBER);

NOTE
Depending on the tool you use, you may need to add a “/” to the end
to execute this command.

The create type command in the preceding listing creates an ADDRESS_TY abstract datatype.
You can use ADDRESS_TY when creating additional database objects. For example, the
following create type command creates the PERSON_TY datatype, using the ADDRESS_TY
datatype as the datatype for its Address column:

create type PERSON_TY as object
(Name VARCHAR2(25),
Address ADDRESS_TY);

Because the Address column of the PERSON_TY datatype uses the ADDRESS_TY datatype, it
holds not one value but four—the four columns that constitute the ADDRESS_TY datatype.

Security for Abstract Datatypes
The previous example assumed that the same user owned both the ADDRESS_TY datatype and
the PERSON_TY datatype. What if the owner of the PERSON_TY datatype were different from the
ADDRESS_TY datatype’s owner?

552 Part IV: Object-Relational Databases

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 30
Blind Folio 30:552

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:13:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

For example, what if the account named Dora owns the ADDRESS_TY datatype, and the user
of the account named George tries to create the PERSON_TY datatype? George executes the
following command:

create type PERSON_TY as object
(Name VARCHAR2(25),
Address ADDRESS_TY);

If George does not own the ADDRESS_TY abstract datatype, then Oracle will respond to this
create type command with the following message:

Warning: Type created with compilation errors.

The compilation errors are caused by problems creating the constructor method—a special
method created by Oracle when the datatype is created. Oracle cannot resolve the reference to
the ADDRESS_TY datatype, since George does not own a datatype with that name. George could
issue the create type command again (using the or replace clause) to specifically reference
Dora’s ADDRESS_TY datatype:

create or replace type PERSON_TY as object
(Name VARCHAR2(25),
Address Dora.ADDRESS_TY);

Warning: Type created with compilation errors.

To see the errors associated with the datatype creation, use the show errors command:

show errors
Errors for TYPE PERSON_TY:

LINE/COL ERROR
-------- --
0/0 PL/SQL: Compilation unit analysis terminated
3/11 PLS-00201: identifier 'DORA.ADDRESS_TY' must be declared

George will not be able to create the PERSON_TY datatype (which includes the
ADDRESS_TY datatype) unless Dora first grants him EXECUTE privilege on her type. The
following listing shows this grant:

grant EXECUTE on ADDRESS_TY to George;

Now that the proper grants are in place, George can create a datatype that is based on Dora’s
ADDRESS_TY datatype, as shown in the following listing.

create or replace type PERSON_TY as object
(Name VARCHAR2(25),
Address Dora.ADDRESS_TY);

Chapter 30: Implementing Types, Object Views, and Methods 553

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 30
Blind Folio 30:553

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Using another user’s datatypes is not trivial. For example, during insert operations, you must
specify the owner of each type. George can create a table based on his PERSON_TY datatype
(which includes Dora’s ADDRESS_TY datatype), as shown in the following listing:

create table CUSTOMER
(Customer_ID NUMBER,
Person PERSON_TY);

If George owned the PERSON_TY and ADDRESS_TY datatypes, an insert into CUSTOMER
would use the format:

insert into CUSTOMER values
(1,PERSON_TY('SomeName',

ADDRESS_TY('StreetValue','CityValue','ST',11111)));

Since George does not own the ADDRESS_TY datatype, this command will fail. During the
insert, the ADDRESS_TY constructor method is used—and Dora owns it. Therefore, the insert
command must be modified to specify Dora as the owner of ADDRESS_TY. The following
example shows the corrected insert statement, with the reference to Dora shown in bold:

insert into CUSTOMER values
(1,PERSON_TY('SomeName',

Dora.ADDRESS_TY('StreetValue','CityValue','ST',11111)));

Can George use a synonym for Dora’s datatype? No. Although George can create a synonym
named ADDRESS_TY:

create synonym ADDRESS_TY for Dora.ADDRESS_TY;

this synonym cannot be used:

create type PERSON2_TY
(Name VARCHAR2(25),
Address ADDRESS_TY);

/

Warning: Type created with compilation errors.

You cannot use a synonym for another user’s datatype. Therefore, you will need to refer to
the datatype’s owner during each insert command.

NOTE
When you create a synonym, Oracle does not check the validity of
the object for which you are creating a synonym. When you create
synonym x for y, Oracle does not check to make sure that y is a valid
object name or valid object type. The validity of that object is only
checked when the object is accessed via the synonym.

Be sure to drop the synonym before continuing with the examples:

drop synonym ADDRESS_TY;

554 Part IV: Object-Relational Databases

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 30
Blind Folio 30:554

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In a relational-only implementation of Oracle, you grant the EXECUTE privilege on
procedural objects, such as procedures and packages. Within the object-relational implementation
of Oracle, the EXECUTE privilege is extended to cover abstract datatypes as well. The EXECUTE
privilege is appropriate because abstract datatypes can include methods—PL/SQL functions and
procedures that operate on the datatype. If you grant someone the privilege to use your datatype,
you are granting the user the privilege to execute the methods you have defined on the datatype.
Although Dora did not yet define any methods on the ADDRESS_TY datatype, Oracle
automatically creates constructor methods to access the data. Any object (such as PERSON_TY)
that uses the ADDRESS_TY datatype uses the constructor method associated with ADDRESS_TY.
Even if you haven’t created any methods for your abstract datatype, there are still procedures
associated with it.

You can describe CUSTOMER:

describe CUSTOMER

Name Null? Type
--- -------- ---------
CUSTOMER_ID NUMBER
PERSON PERSON_TY

You can use the set describe depth command in SQL*Plus to show the datatype attributes for
tables that use object-relational features. You can specify depth values from 1 to 50:

set describe depth 2

desc CUSTOMER

Name Null? Type
--- -------- ----------------
CUSTOMER_ID NUMBER
PERSON PERSON_TY
NAME VARCHAR2(25)
ADDRESS DORA.ADDRESS_TY

set describe depth 3

desc customer

Name Null? Type
--- -------- ----------------
CUSTOMER_ID NUMBER
PERSON PERSON_TY
NAME VARCHAR2(25)
ADDRESS DORA.ADDRESS_TY
STREET VARCHAR2(50)
CITY VARCHAR2(25)
STATE CHAR(2)
ZIP NUMBER

Chapter 30: Implementing Types, Object Views, and Methods 555

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 30
Blind Folio 30:555

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Indexing Abstract Datatype Attributes
In the example from Chapter 4, the CUSTOMER table was created. As shown in the following
listing, the CUSTOMER table contains a normal column (Customer_ID) and a Person column that
is defined by the PERSON_TY abstract datatype:

create table CUSTOMER
(Customer_ID NUMBER,
Person PERSON_TY);

From the datatype definitions shown in the previous section of this chapter, you can see that
PERSON_TY has one column (Name) followed by an Address column defined by the
ADDRESS_TY datatype.

As shown in Chapter 4, you fully qualify the datatype attributes when referencing columns
within the abstract datatypes, by prefacing the attribute name with the column name, and by
prefacing the column name with a correlation variable. For example, the following query returns
the Customer_ID column along with the Name column. The Name column is an attribute of the
datatype that defines the Person column, so you refer to the attribute as Person.Name:

select Customer_ID, C.Person.Name
from CUSTOMER C;

NOTE
When querying the attributes of an abstract datatype, you must use a
correlation variable for the table, as shown in this example.

To set the display attributes for an abstract datatype’s attributes in SQL*Plus, use the column
command, specifying the name of the datatype and the attribute:

column Customer_ID format 9999999
column Person.Name format A25

You can refer to attributes within the ADDRESS_TY datatype by specifying the full path through
the related columns. For example, the Street column is referred to as Person.Address.Street, fully
describing its location within the structure of the table. In the following example, the City column
is referenced twice: once in the list of columns to select, and once within the where clause. In each
reference, a correlation variable (in this example, C) is required.

select C.Person.Name,
C.Person.Address.City

from CUSTOMER C
where C.Person.Address.City like 'F%';

Because the City column is used with a range search in the where clause, the Oracle
optimizer may be able to use an index when resolving the query. If an index is available
on the City column, then Oracle can quickly find all the rows that have City values starting
with the letter F, as requested by the query.

556 Part IV: Object-Relational Databases

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 30
Blind Folio 30:556

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

NOTE
The inner workings of the Oracle optimizer—and the conditions
under which indexes are used—are described in Chapter 38. See that
chapter for guidelines regarding the columns to index.

To create an index on a column that is part of an abstract datatype, you need to specify the
full path to the column as part of the create index command. To create an index on the City
column (which is part of the Address column), you can execute the following command:

create index I_CUSTOMER$CITY
on CUSTOMER(Person.Address.City);

This command will create an index named I_CUSTOMER$CITY on the Person.Address.City
column. Whenever the City column is accessed, the Oracle optimizer will evaluate the SQL used
to access the data and determine if the new index can be useful to improve the performance of
the query.

NOTE
In the create index command, you do not use correlation variables
when referencing the attributes of abstract datatypes.

When creating tables based on abstract datatypes, you should consider how the columns
within the abstract datatypes will be accessed. If, like the City column in the previous example,
certain columns will commonly be used as part of limiting conditions in queries, then they
should be indexed. In this regard, the representation of multiple columns in a single abstract
datatype may hinder your application performance, since it may obscure the need to index
specific columns within the datatype. When using abstract datatypes, you become accustomed
to treating a group of columns as a single entity, such as the Address columns or the Person
columns. It is important to remember that the optimizer, when evaluating query access paths,
will consider the columns individually. In addition, remember that indexing the City column in
one table that uses the ADDRESS_TY datatype does not affect the City column in a second table
that uses the ADDRESS_TY datatype. For example, if there is a second table named BRANCH that
uses the ADDRESS_TY datatype, then its City column will not be indexed unless you create an
index for it. The fact that there is an index on the City column in the CUSTOMER table will have
no impact on the City column in the BRANCH table.

Thus, one of the advantages of abstract datatypes—the ability to improve adherence to
standards for logical data representation—does not extend to the physical data representation.
You need to address each physical implementation separately.

Implementing Object Views
The CUSTOMER table created in the previous section of this chapter assumed that a PERSON_TY
datatype already existed. When implementing object-relational database applications, you should
first use the relational database design methods described in the first part of this book. After the
database design is properly normalized, you should look for groups of columns (or individual

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 30
Blind Folio 30:557

Chapter 30: Implementing Types, Object Views, and Methods 557

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

columns) that constitute the representation of an abstract datatype. You can then create your tables
based on the abstract datatypes, as shown earlier in this chapter.

But what if your tables already exist? What if you had previously created a relational database
application and now want to implement object-relational concepts in your application without
rebuilding and re-creating the entire application? To do this, you need the ability to overlay
object-oriented (OO) structures, such as abstract datatypes, on existing relational tables. Oracle
provides object views as a means for defining objects used by existing relational tables.

NOTE
Throughout the examples in this book, the names of object views will
always end with the suffix OV.

In the examples earlier in this chapter, the order of operations was as follows:

1. Create the ADDRESS_TY datatype.

2. Create the PERSON_TY datatype, using the ADDRESS_TY datatype.

3. Create the CUSTOMER table, using the PERSON_TY datatype.

If the CUSTOMER table already existed, you could create the ADDRESS_TY and PERSON_TY
datatypes, and use object views to relate them to the CUSTOMER table. In the following listing,
the CUSTOMER table is created as a relational table, using only the built-in datatypes:

drop table CUSTOMER;

create table CUSTOMER
(Customer_ID NUMBER primary key,
Name VARCHAR2(25),
Street VARCHAR2(50),
City VARCHAR2(25),
State CHAR(2),
Zip NUMBER);

If you want to create another table or application that stores information about people and
addresses, you may choose to create the ADDRESS_TY and PERSON_TY datatypes. However,
for consistency, they should be applied to the CUSTOMER table as well.

With the CUSTOMER table already created (and possibly containing data), you should create
the abstract datatypes. First, create ADDRESS_TY:

drop type PERSON_TY;
drop type ADDRESS_TY;
create or replace type ADDRESS_TY as object
(Street VARCHAR2(50),
City VARCHAR2(25),
State CHAR(2),
Zip NUMBER);

558 Part IV: Object-Relational Databases

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 30
Blind Folio 30:558

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Next, create PERSON_TY, which uses ADDRESS_TY:

create or replace type PERSON_TY as object
(Name VARCHAR2(25),
Address ADDRESS_TY);

Now, create an object view based on the CUSTOMER table using the datatypes you have
defined. An object view starts with the create view command. Within the create view command,
you specify the query that will form the basis of the view. You’ll use the datatypes you just
created. The code for creating the CUSTOMER_OV object view is shown in the following listing:

create view CUSTOMER_OV (Customer_ID, Person) as
select Customer_ID,

PERSON_TY(Name,
ADDRESS_TY(Street, City, State, Zip))

from CUSTOMER;

Let’s look at this command closely. In the first line, the object view is named:

create view CUSTOMER_OV (Customer_ID, Person) as

The CUSTOMER_OV view will have two columns: the Customer_ID column and the Person
column (the latter is defined by the PERSON_TY datatype). Note that you cannot specify “object”
as an option within the create view command.

In the next section of the create view command, you create the query that will form the basis
for the view:

select Customer_ID,
PERSON_TY(Name,
ADDRESS_TY(Street, City, State, Zip))

from CUSTOMER;

This example presents several important syntax issues. When a table is built on existing
abstract datatypes, you select column values from the table by referring to the names of the
columns (such as Person and Address in earlier examples) instead of their constructor methods.
When creating the object view, however, you refer to the names of the constructor methods
(PERSON_TY and ADDRESS_TY) instead.

NOTE
See Chapter 4 for examples of queries that refer to columns defined
by abstract datatypes.

You can use a where clause in the query that forms the basis of the object view. In the
following example, the CUSTOMER_OV is modified to include a where clause that limits it
to showing the CUSTOMER values for which the State column has a value of ‘DE’:

create or replace view CUSTOMER_OV (Customer_ID, Person) as
select Customer_ID,

PERSON_TY(Name,
ADDRESS_TY(Street, City, State, Zip))

from CUSTOMER
where State = 'DE';

Chapter 30: Implementing Types, Object Views, and Methods 559

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 30
Blind Folio 30:559

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Note that when you create the object view CUSTOMER_OV, the where clause of the view’s
base query does not refer to the abstract datatype. Instead, it refers directly to the CUSTOMER
table. The where clause refers directly to the State column because the query refers directly to
the CUSTOMER table—a relational table that is not based on any abstract datatypes.

To create object views based on relational tables, the order of operations is as follows:

1. Create the CUSTOMER table if it does not already exist.

2. Create the ADDRESS_TY datatype.

3. Create the PERSON_TY datatype, using the ADDRESS_TY datatype.

4. Create the CUSTOMER_OV object view, using the defined datatypes.

There are two main benefits to using object views. First, they allow you to create abstract
datatypes that operate against tables that already exist. Since you can use the same abstract data-
types in multiple tables within your application, you can improve your application’s adherence
to standard representation of data and your ability to reuse existing objects. Since you can define
methods for the abstract datatypes, the methods will apply to the data within any new tables you
create as well as to your existing tables.

Second, object views provide two different ways to enter data into the base table. The
flexibility of data manipulation for object views—being able to treat the base table as either a
relational table or an object table—is a significant benefit for application developers. In the
next section, you will see the data-manipulation options available for object views.

Manipulating Data via Object Views
You can update the data in the CUSTOMER table via the CUSTOMER_OV object view, or you
can update the CUSTOMER table directly. By treating CUSTOMER as just a table, you can insert
data into it via a normal SQL insert command, as shown in the following example:

insert into CUSTOMER values
(123,'SIGMUND','47 HAFFNER RD','LEWISTON','NJ',22222);

This insert command inserts a single record into the CUSTOMER table. Even though you
have created an object view on the table, you can still treat the CUSTOMER table as a regular
relational table.

Since the object view has been created on the CUSTOMER table, you can insert into
CUSTOMER via the constructor methods used by the view. As previously shown in this chapter,
when you insert data into an object that uses abstract datatypes, you specify the names of the
constructor methods within the insert command. The example shown in the following listing
inserts a single record into the CUSTOMER_OV object view using the CUSTOMER_TY,
PERSON_TY, and ADDRESS_TY constructor methods:

insert into CUSTOMER_OV values
(234,
PERSON_TY('EVELYN',
ADDRESS_TY('555 HIGH ST','LOWLANDS PARK','NE',33333)));

560 Part IV: Object-Relational Databases

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 30
Blind Folio 30:560

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Since you can use either method to insert values into the CUSTOMER_OV object view, you
can standardize the manner in which your application performs data manipulation. If your inserts
are all based on abstract datatypes, then you can use the same kind of code for inserts regardless
of whether the abstract datatypes were created before or after the table.

You can query the rows just entered from either CUSTOMER or CUSTOMER_OV; but
because the view has a where clause, CUSTOMER_OV will only show the rows that pass that
limiting condition.

Using INSTEAD OF Triggers
If you create an object view, you can use an INSTEAD OF trigger. Views cannot use the standard
table-based triggers described in Chapter 28. You can use INSTEAD OF triggers to tell Oracle
how to update the underlying tables that are part of the view. You can use INSTEAD OF triggers
on either object views or standard relational views.

For example, if a view involves a join of two tables, your ability to update records in the view is
limited. However, if you use an INSTEAD OF trigger, you can tell Oracle how to update, delete, or
insert records in tables when a user attempts to change values via the view. The code in the
INSTEAD OF trigger is executed in place of the insert, update, or delete command you enter.

For example, you may have a view that joins the BOOKSHELF table to BOOKSHELF_AUTHOR:

create or replace view AUTHOR_PUBLISHER as
select BA.AuthorName, Title, B.Publisher
from BOOKSHELF_AUTHOR BA inner join BOOKSHELF B
using (Title);

You can select values from this view—and if you use INSTEAD OF triggers, you can also
perform data manipulation via this view. Consider these records:

select AuthorName, Publisher from AUTHOR_PUBLISHER
where AuthorName = 'W. P. KINSELLA';

AUTHORNAME PUBLISHER
-- ----------
W. P. KINSELLA MARINER
W. P. KINSELLA BALLANTINE

If we attempt to update the Publisher value, the update fails:

update AUTHOR_PUBLISHER
set Publisher = 'MARINER'

where AuthorName = 'W. P. KINSELLA';

set Publisher = 'MARINER'
*

ERROR at line 2:
ORA-01779: cannot modify a column which maps to a

non key-preserved table

Chapter 30: Implementing Types, Object Views, and Methods 561

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 30
Blind Folio 30:561

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

562 Part IV: Object-Relational Databases

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 30
Blind Folio 30:562

The problem is that Oracle cannot determine which publisher in which record to update in
BOOKSHELF. To perform the update via the view, you will need to use an INSTEAD OF trigger.

In the following listing, an INSTEAD OF trigger for the AUTHOR_PUBLISHER view is created:

create trigger AUTHOR_PUBLISHER_UPDATE
instead of UPDATE on AUTHOR_PUBLISHER
for each row
begin
if :old.Publisher <> :new.Publisher
then
update BOOKSHELF

set Publisher = :new.Publisher
where Title = :old.Title;

end if;
if :old.AuthorName <> :new.AuthorName
then
update BOOKSHELF_AUTHOR

set AuthorName = :new.AuthorName
where Title = :old.Title;

end if;
end;

In the first part of this trigger, the trigger is named and its purpose is described via the instead
of clause. The trigger has been named to make its function clear: It is used to support update
commands executed against the AUTHOR_PUBLISHER view. It is a row-level trigger; each
changed row will be processed, as shown next.

create trigger AUTHOR_PUBLISHER_UPDATE
instead of UPDATE on AUTHOR_PUBLISHER
for each row

The next section of the trigger tells Oracle how to process the update. In the first check
within the trigger body, the Publisher value is checked. If the old Publisher value is equal
to the new Publisher value, then no changes are made. If the values are not the same, then
the BOOKSHELF table is updated with the new Publisher value:

begin
if :old.Publisher <> :new.Publisher
then
update BOOKSHELF

set Publisher = :new.Publisher
where Title = :old.Title;

end if;

In the next section of the trigger, the AuthorName value is evaluated. If the AuthorName
value has changed, then the BOOKSHELF table is updated to reflect the new AuthorName value:

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

if :old.AuthorName <> :new.AuthorName
then
update BOOKSHELF_AUTHOR

set AuthorName = :new.AuthorName
where Title = :old.Title;

end if;

Thus, the view relies on two tables—BOOKSHELF and BOOKSHELF_AUTHOR—and an
update of the view can update either or both of the tables. The INSTEAD OF trigger, introduced
to support object views, is a powerful tool for application development.

You can now update the AUTHOR_PUBLISHER view directly and have the trigger update the
proper underlying table. For example, the following command will update the BOOKSHELF table:

update AUTHOR_PUBLISHER
set Publisher = 'MARINER'

where AuthorName = 'W. P. KINSELLA';

2 rows updated.

Verify the update by querying the BOOKSHELF table:

select Publisher from BOOKSHELF
where Title in

(select Title from BOOKSHELF_AUTHOR
where AuthorName = 'W. P. KINSELLA');

PUBLISHER

MARINER
MARINER

INSTEAD OF triggers are very powerful. As shown in this example, you can use them to
perform operations against different database tables, using the flow-control logic available within
PL/SQL. In dealing with object views, you can use the INSTEAD OF triggers to redirect DML
against the object views to the base tables for the views.

Methods
When you created an object view on the CUSTOMER table, you defined abstract datatypes that
the table used. Those datatypes help to standardize the representation of data, but they serve
another purpose as well. You can define methods that apply to datatypes, and by applying those
datatypes to existing tables, you can apply those methods to the data in those tables.

Consider the CUSTOMER_OV object view:

create or replace view CUSTOMER_OV (Customer_ID, Person) as
select Customer_ID,

PERSON_TY(Name,
ADDRESS_TY(Street, City, State, Zip))

from CUSTOMER;

Chapter 30: Implementing Types, Object Views, and Methods 563

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 30
Blind Folio 30:563

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This view applies the PERSON_TY and ADDRESS_TY abstract datatypes to the data in the
CUSTOMER table. If any methods are associated with those datatypes, they will apply to the
data in the table. When you create an abstract datatype, you use the create type command.
When you create a method, you use the create type body command.

Syntax for Creating Methods
Before creating the body for a method, you must name the method within the datatype declaration.
For example, let’s create a new datatype, ANIMAL_TY. The datatype definition for ANIMAL_TY is
shown in the following listing:

create or replace type ANIMAL_TY as object
(Breed VARCHAR2(25),
Name VARCHAR2(25),
BirthDate DATE,

member function AGE (BirthDate IN DATE) return NUMBER);

The ANIMAL_TY datatype could be used as part of an object view on the BREEDING table
used in Chapter 13. In the BREEDING table, the name of an offspring, its sex, its parents, and its
birthdate are recorded.

Within the create type command, this line:

member function AGE (BirthDate IN DATE) return NUMBER)

names the function that is a “member” of the ANIMAL_TY datatype. Since AGE will return a
value, it is a function (see Chapter 29). To define the AGE function, use the create type body
command, whose full syntax is shown in the Alphabetical Reference.

Let’s create the AGE function as a member function within the ANIMAL_TY datatype.
The AGE function will return the age, in days, of the animals:

create or replace type body ANIMAL_TY as
member function Age (BirthDate DATE) return NUMBER is

begin
RETURN ROUND(SysDate - BirthDate);
end;

end;

If you had additional functions or procedures to code, you would specify them within the
same create type body command, before the final end clause.

Now that the AGE function has been created, it is associated with the ANIMAL_TY datatype.
If a table uses this datatype, then it can use the AGE function. However, there is a problem with
the way in which the function is specified. The AGE function, as previously defined in the create
type body command, does not explicitly restrict updates. The AGE function does not update any
data, but there is no guarantee that the type body will not later be changed to cause AGE to
update data. To call a member function within a SQL statement, you need to make sure that the
function cannot update the database. Therefore, you need to modify the function specification in
the create type command. The modification is shown in bold in the following listing:

564 Part IV: Object-Relational Databases

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 30
Blind Folio 30:564

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

create or replace type ANIMAL_TY as object
(Breed VARCHAR2(25),
Name VARCHAR2(25),
BirthDate DATE,

member function AGE (BirthDate IN DATE) return NUMBER,
PRAGMA RESTRICT_REFERENCES(AGE, WNDS));

NOTE
You cannot drop or re-create a type that is in use by a table.
Therefore, it is critical that you make this modification before
creating a table that uses the ANIMAL_TY datatype.

The following line

PRAGMA RESTRICT_REFERENCES(AGE, WNDS));

tells Oracle that the AGE function operates in the Write No Database State—it cannot modify
the database. Other available restrictions are Read No Database State (RNDS—no queries
performed), Write No Package State (WNPS—no values of packaged variables are changed),
and Read No Package State (RNPS—no values of packaged variables are referenced).

You can now use the AGE function within a query. If ANIMAL_TY is used as the datatype
for a column named Animal in the table named ANIMAL, then the table structure could be as
follows:

create table ANIMAL
(ID NUMBER,
Animal ANIMAL_TY);

insert into ANIMAL values
(11,ANIMAL_TY('COW','MIMI',TO_DATE('01-JAN-1997','DD-MON-YYYY')));

You can now invoke the AGE function, which is part of the ANIMAL_TY datatype. Like the
attributes of an abstract datatype, the member methods are referenced using the column names
that use the datatypes (in this case, Animal.AGE):

select A.Animal.AGE(A.Animal.BirthDate)
from ANIMAL A;

A.ANIMAL.AGE(A.ANIMAL.BIRTHDATE)

1987

The A.Animal.AGE(A.Animal.BirthDate) call executes the AGE method within the
ANIMAL_TY datatype. Therefore, you do not have to store variable data such as age within
your database. Instead, you can store static data—such as birthdate—in your database and
use function and procedure calls to derive the variable data.

Chapter 30: Implementing Types, Object Views, and Methods 565

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 30
Blind Folio 30:565

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

NOTE
In this example, you need to use correlation variables in two
places—when calling the AGE method and when passing the
name of the Birthdate column to that method.

Managing Methods
You can add new methods to a datatype by altering the datatype (via the alter type command).
When altering a datatype, list all of its methods, both the old and the new. After altering the
datatype, alter the datatype’s body, listing all of the datatype’s methods in a single command.

You do not need to grant EXECUTE privilege on the member functions and procedures of
abstract datatypes. If you grant another user EXECUTE privilege on the ANIMAL_TY datatype, that
user automatically has EXECUTE privilege on the methods that are part of the datatype. Thus, the
grant of access to the datatype includes both the data representation and its data access methods,
in accordance with OO concepts.

When creating member functions, you can specify them as being map methods or order
methods (or neither, as in the case of the ANIMAL_TY.Age member function). A map method
returns the relative position of a given record in the ordering of all records within the object.
A type body can contain only one map method, which must be a function.

An order method is a member function that takes a record in the object as an explicit argument
and returns an integer value. If the returned value is negative, zero, or positive, the implicit “self”
argument of the function is less than, equal to, or greater than, respectively, that of the explicitly
specified record. When multiple rows within an object are compared in an order by clause, the
order method is automatically executed to order the rows returned. A datatype specification can
contain only one order method, which must be a function with the return type INTEGER.

The notion of ordering within the rows of an abstract datatype may have more relevance
when you consider the implementation of collectors—datatypes that hold multiple values per
row. Oracle offers two types of collectors, called nested tables and varying arrays. In the next
chapter, you will see how to implement these collector types.

566 Part IV: Object-Relational Databases

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 30
Blind Folio 30:566

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 31
Blind Folio 31:567

CHAPTER
31

Collectors
(Nested Tables and

Varying Arrays)

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C
ollectors make use of abstract datatypes. You should be familiar with the creation
and implementation of abstract datatypes (see Chapters 4 and 30) before attempting
to use varying arrays and nested tables.

Varying Arrays
A varying array allows you to store repeating attributes of a record in a single row. For example,
suppose you want to track which of your tools were borrowed by which of your neighbors. You
could model this in a relational database by creating a BORROWER table:

create table BORROWER
(Name VARCHAR2(25),
Tool VARCHAR2(25),

constraint BORROWER_PK primary key (Name, Tool));

Even though the worker’s Name value does not change, it is repeated in each record because
it is part of the primary key. Collectors such as varying arrays allow you to repeat only those
column values that change, potentially saving storage space. You can use collectors to accurately
represent relationships between datatypes in your database objects. In the following sections, you
will see how to create and use collectors.

Creating a Varying Array
You can create a varying array based on either an abstract datatype or one of Oracle’s standard
datatypes (such as NUMBER). For example, you could create a new datatype, TOOL_TY, as
shown in the following listing, which has only one column; you should limit varying arrays to
one column. If you need to use multiple columns in an array, consider using nested tables
(described later in this chapter).

create type TOOL_TY as object
(ToolName VARCHAR2(25));

You do not have to create the base type—in this case, TOOL_TY—before you can create a
varying array (to be named TOOLS_VA). Since the varying array is based on only one column,
you can create the TOOLS_VA type in a single step. To create the varying array, use the as
varray() clause of the create type command:

create or replace type TOOLS_VA as varray(5) of VARCHAR2(25);

When this create type command is executed, a type named TOOLS_VA is created. The as
varray(5) clause tells Oracle that a varying array is being created, and it will hold a maximum of
five entries per record. The name of the varying array is pluralized TOOLS instead of TOOL to
show that this type will be used to hold multiple records. The suffix VA makes it clear that the
type is a varying array. You can now use this type as the basis for a column definition, as shown
in the following listing.

568 Part IV: Object-Relational Databases

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 31
Blind Folio 31:568

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

create table BORROWER
(Name VARCHAR2(25),
Tools TOOLS_VA,

constraint BORROWER_PK primary key (Name));

Describing the Varying Array
The BORROWER table will contain one record for each borrower, even if that borrower has
multiple tools. The multiple tools will be stored in the Tools column, using the TOOLS_VA
varying array. You can describe the BORROWER table as follows:

desc BORROWER

Name Null? Type
------------------------------- -------- ----
NAME NOT NULL VARCHAR2(25)
TOOLS TOOLS_VA

Note that the set describe depth command shown in Chapter 30 will not affect this output.
You can query similar information from USER_TAB_COLUMNS:

select Column_Name,
Data_Type

from USER_TAB_COLUMNS
where Table_Name = 'BORROWER';

COLUMN_NAME DATA_TYPE
------------------------------ ----------------------------
NAME VARCHAR2
TOOLS TOOLS_VA

USER_TYPES shows TOOLS_VA is a collection, with no attributes:

select TypeCode,
Attributes

from USER_TYPES
where Type_Name = 'TOOLS_VA';

TYPECODE ATTRIBUTES
------------------------------ ----------
COLLECTION 0

For more details on TOOLS_VA, query the USER_COLL_TYPES data dictionary view, as
shown in the following listing.

select Coll_Type,
Elem_Type_Owner,
Elem_Type_Name,
Upper_Bound,
Length

Chapter 31: Collectors (Nested Tables and Varying Arrays) 569

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 31
Blind Folio 31:569

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

from USER_COLL_TYPES
where Type_Name = 'TOOLS_VA';

COLL_TYPE ELEM_TYPE_OWNER
------------------------------ -----------------------------
ELEM_TYPE_NAME UPPER_BOUND LENGTH
------------------------------ ----------- ----------
VARYING ARRAY
VARCHAR2 5 25

If you base a varying array on an existing abstract datatype, then the datatype’s owner will be
displayed in the Elem_Type_Owner column, and the datatype’s name will be displayed in the
Elem_Type_Name column. Since TOOLS_VA uses VARCHAR2 instead of an abstract datatype,
the Elem_Type_Owner column’s value is NULL.

Inserting Records into the Varying Array
When a datatype is created, the database automatically creates a method called a constructor
method for the datatype. As shown in Chapter 30, you need to use the constructor method when
inserting records into columns that use an abstract datatype. Since a varying array is an abstract
datatype, you need to use constructor methods to insert records into tables that use varying
arrays. Furthermore, since the varying array is itself an abstract datatype, you may need to nest
calls to multiple constructor methods to insert a record into a table that uses a varying array.

The columns of the BORROWER table are Name and Tools (a varying array using the
TOOLS_VA datatype). The following command will insert a single record into the BORROWER
table. In this example, the record will have a single Name column value and three Tools values.

insert into BORROWER values
('JED HOPKINS',
TOOLS_VA('HAMMER','SLEDGE','AX'));

This insert command first specifies the value for the Name column. Because the Name
column is not part of any abstract datatype, it is populated in the same way you would insert
values into any relational column:

insert into BORROWER values
('JED HOPKINS',

The next part of the insert command inserts records into the Tools column. Because the Tools
column uses the TOOLS_VA varying array, you need to use the TOOLS_VA constructor method:

TOOLS_VA('HAMMER','SLEDGE','AX'));

Since this is a varying array, you can pass multiple values to the TOOLS_VA constructor
method. That is what is shown in the preceding listing; for the single neighbor name, three tools
are listed in a single insert. If the varying array had been based on the TOOL_TY datatype, you
would have instead nested calls to the TOOL_TY within the TOOLS_VA calls:

570 Part IV: Object-Relational Databases

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 31
Blind Folio 31:570

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

insert into BORROWER values
('JED HOPKINS',
TOOLS_VA(

TOOL_TY('HAMMER'),
TOOL_TY('SLEDGE'),
TOOL_TY('AX')));

Basing the varying array on an Oracle-supplied datatype (such as NUMBER) instead of an
abstract or user-defined datatype simplifies the insert command by eliminating the nested calls
to additional constructor methods.

The TOOLS_VA varying array was defined to have up to five values. In this insert command,
only three values were entered for the row; the other two are uninitialized. If you want to set the
uninitialized values to NULL, then you can specify that in the insert command:

insert into BORROWER values
('JED HOPKINS',
TOOLS_VA('HAMMER','SLEDGE','AX',NULL,NULL));

If you specify too many values to insert into the varying array, Oracle responds with:

ORA-22909: exceeded maximum VARRAY limit

You cannot insert records into a table that contains a varying array unless you know the
structure and datatypes within the array. This example assumed that all the datatypes used by the
BORROWER table were within the schema used to create the BORROWER table. If the datatypes
are owned by a separate schema, the creator of the BORROWER table will need EXECUTE
privilege on those datatypes. During inserts, the creator of the BORROWER table needs to
specify the owners of the datatypes. See Chapter 30 for examples of using datatypes created
under other schemas.

Selecting Data from Varying Arrays
When you insert records into a varying array, you need to make sure that the number of entries
you insert does not exceed the varying array’s maximum. The maximum number of entries is
specified when the varying array is created, and can be queried from USER_COLL_TYPES, as
shown in the previous section of this chapter.

You can query the varying array to determine its maximum number of entries per row, called
its LIMIT, and the current number of entries per row, called its COUNT. However, this query
cannot be performed directly, via a SQL select command. To retrieve the COUNT, LIMIT, and
data from a varying array, you need to use PL/SQL. You can use a set of nested Cursor FOR
loops, as shown in the next listing.

NOTE
For an overview of PL/SQL and Cursor FOR loops, see Chapter 27.

set serveroutput on
declare

Chapter 31: Collectors (Nested Tables and Varying Arrays) 571

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 31
Blind Folio 31:571

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

cursor borrower_cursor is
select * from BORROWER;

begin
for borrower_rec in borrower_cursor
loop
dbms_output.put_line('Contact Name: '||borrower_rec.Name);
for i in 1..borrower_rec.Tools.Count
loop
dbms_output.put_line(borrower_rec.Tools(i));

end loop;
end loop;

end;

The following is the output of this PL/SQL script:

Contact Name: JED HOPKINS
HAMMER
SLEDGE
AX

PL/SQL procedure successfully completed.

The script uses several PL/SQL features to retrieve data from the varying array. The data will
be displayed via the PUT_LINE procedure of the DBMS_OUTPUT package (see Chapter 29), so
you must first enable PL/SQL output to be displayed:

set serveroutput on

In the Declarations section of the PL/SQL block, a cursor is declared; the cursor’s query
selects all the values from the BORROWER table:

declare
cursor borrower_cursor is
select * from BORROWER;

The Executable Commands section of the PL/SQL block contains two nested FOR loops. In the
first loop, each record from the cursor is evaluated and the Name value is printed via PUT_LINE:

begin
for borrower_rec in borrower_cursor
loop
dbms_output.put_line('Contact Name: '||borrower_rec.Name);

NOTE
You should only print character data via PUT_LINE. PL/SQL will print
numeric values via PUT_LINE, but you cannot concatenate them to
expressions before printing. Therefore, you may need to use the
TO_CHAR function on numeric data before printing it via PUT_LINE.

572 Part IV: Object-Relational Databases

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 31
Blind Folio 31:572

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 31: Collectors (Nested Tables and Varying Arrays) 573

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 31
Blind Folio 31:573

In the next section of the PL/SQL block, the rows are evaluated further to retrieve the data
stored in the varying array. A second FOR loop, nested within the first loop, is executed. The
inner FOR loop is limited by the number of values in the array, as defined by the COUNT
method (the maximum number of values in the array is available via the LIMIT method).

The values in the Tools array will be printed, one by one, by this loop:

for i in 1..borrower_rec.Tools.Count
loop
dbms_output.put_line(borrower_rec.Tools(i));

The notation

Tools(i)

tells Oracle to print the array value that corresponds to the value of i. Thus, the first time through
the loop, the first value in the array is printed; then the value of i is incremented, and the second
value in the array is printed.

The last part of the PL/SQL block closes the two nested loops and ends the block:

end loop;
end loop;

end;

Because this method involves nested loops within PL/SQL, selecting data from varying arrays
is not trivial.

You can use the TABLE function in the from clause to simplify the process of selecting data
from varying arrays. Consider the following query and its output:

select B.Name, N.*
from BORROWER B, TABLE(B.Tools) N;

NAME COLUMN_VALUE
------------------------- -------------------------
JED HOPKINS HAMMER
JED HOPKINS SLEDGE
JED HOPKINS AX

How did that work? The TABLE clause took as its input the name of the varying array, and its
output is given the alias N. The values within N are selected, generating the second column of
the output. This method is simpler than the PL/SQL method, but because of its unique syntax it
may be more confusing for users.

Note that we may get a different number of tools for each borrower—anywhere from zero to
five. For example, the following row would insert a row with just one entry in the varying array:

insert into BORROWER values
('FRED FULLER',
TOOLS_VA('HAMMER'));

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

You can select that data via PL/SQL, via the TABLE function, or via SQL:

select * from BORROWER;

NAME

TOOLS
--
JED HOPKINS
TOOLS_VA('HAMMER', 'SLEDGE', 'AX')

FRED FULLER
TOOLS_VA('HAMMER')

For greater flexibility in selecting data from collectors, you should consider the use of nested
tables, as described in the next section.

Nested Tables
Whereas varying arrays have a limited number of entries, a second type of collector, a nested
table, has no limit on the number of entries per row. A nested table is, as its name implies, a table
within a table. In this case, it is a table that is represented as a column within another table. You
can have multiple rows in the nested table for each row in the main table.

For example, if you have a table of animal breeders, you may also have data about their animals.
Using a nested table, you could store the information about breeders and all of their animals within
the same table. Consider the ANIMAL_TY datatype introduced in Chapter 30:

create or replace type ANIMAL_TY as object
(Breed VARCHAR2(25),
Name VARCHAR2(25),
BirthDate DATE);

NOTE
To keep this example simple, this version of the ANIMAL_TY datatype
does not include any methods.

NOTE
For this example, you should drop the ANIMAL table if it exists in
your practice schema.

The ANIMAL_TY datatype contains a record for each animal—its breed, name, and birthdate.
To use this datatype as the basis for a nested table, you need to create a new datatype:

create type ANIMALS_NT as table of ANIMAL_TY;

574 Part IV: Object-Relational Databases

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 31
Blind Folio 31:574

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The as table of clause of this create type command tells Oracle that you will be using this type as
the basis for a nested table. The name of the type, ANIMALS_NT, has a pluralized root to indicate
that it stores multiple rows, and has the suffix NT to indicate that it will be a nested table.

You can now create a table of breeders, using the ANIMALS_TY datatype:

create table BREEDER
(BreederName VARCHAR2(25),
Animals ANIMALS_NT)
nested table ANIMALS store as ANIMALS_NT_TAB;

In this create table command, the BREEDER table is created. The first column of the BREEDER
table is a BreederName column. The second column is a column named Animals, whose
definition is the nested table ANIMALS_NT:

create table BREEDER
(BreederName VARCHAR2(25),
Animals ANIMALS_NT)

When creating a table that includes a nested table, you must specify the name of the table
that will be used to store the nested table’s data. That is, the data for the nested table is not stored
“inline” with the rest of the table’s data. Instead, it is stored apart from the main table. The data in
the Animals column will be stored in one table, and the data in the BreederName column will be
stored in a separate table. Oracle will maintain pointers between the tables. In this example, the
“out-of-line” data for the nested table is stored in a table named ANIMALS_NT_TAB:

nested table ANIMALS store as ANIMALS_NT_TAB;

This example highlights the importance of naming standards for collectors. If you pluralize
the column names (“Animals” instead of “Animal”) and consistently use suffixes (TY, NT, and so
forth), you can tell what an object is just by its name. Furthermore, since nested tables and varying
arrays may be based directly on previously defined datatypes, their names may mirror the names
of the datatypes on which they are based. Thus, a datatype named ANIMAL_TY could be used as
the basis for a varying array named ANIMALS_VA or a nested table named ANIMALS_NT. The
nested table would have an associated out-of-line table named ANIMALS_NT_TAB. If you know
that a table named ANIMALS_NT_TAB exists and you are consistent in your object naming, you
automatically know that it stores data based on a datatype named ANIMAL_TY.

Inserting Records into a Nested Table
You can insert records into a nested table by using the constructor methods for its datatype. For
the Animals column, the datatype is ANIMALS_NT; thus, you will use the ANIMALS_NT constructor
method. The ANIMALS_NT type, in turn, uses the ANIMAL_TY datatype. As shown in the following
example, inserting a record into the BREEDER table requires you to use both the ANIMALS_NT
and ANIMAL_TY constructor methods. In the example, three animals are listed for the breeder
named Jane James.

insert into BREEDER values
('JANE JAMES',
ANIMALS_NT(

Chapter 31: Collectors (Nested Tables and Varying Arrays) 575

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 31
Blind Folio 31:575

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ANIMAL_TY('DOG', 'BUTCH', '31-MAR-01'),
ANIMAL_TY('DOG', 'ROVER', '05-JUN-01'),
ANIMAL_TY('DOG', 'JULIO', '10-JUN-01')

));

This insert command first specifies the name of the breeder:

insert into BREEDER values
('JANE JAMES',

Next, the value for the Animals column is entered. Since the Animals column uses the ANIMALS_NT
nested table, the ANIMALS_NT constructor method is called:

ANIMALS_NT(

The ANIMALS_NT nested table uses the ANIMAL_TY datatype, so the ANIMAL_TY constructor
method is called for each value inserted:

ANIMAL_TY('DOG', 'BUTCH', '31-MAR-01'),
ANIMAL_TY('DOG', 'ROVER', '05-JUN-01'),
ANIMAL_TY('DOG', 'JULIO', '10-JUN-01')

));

You can see the datatypes that constitute the table and its nested table via the describe command.
Use the set describe depth SQL*Plus command to enable the display of the datatype attributes.

set describe depth 2

desc breeder

Name Null? Type
--- -------- ------------
BREEDERNAME VARCHAR2(25)
ANIMALS ANIMALS_NT
BREED VARCHAR2(25)
NAME VARCHAR2(25)
BIRTHDATE DATE

You can query this metadata from USER_TAB_COLUMNS, USER_TYPES, USER_COLL_TYPES,
and USER_TYPE_ATTRS data dictionary views as in the examples earlier in this chapter.

Querying Nested Tables
Nested tables support a great variety of queries. A nested table is a column within a table. To
support queries of the columns and rows of a nested table, use the TABLE function introduced
earlier in this chapter. The THE clause used in prior versions of Oracle is supported for backward
compatibility, but is being deprecated.

To see how the TABLE function is used, first consider the nested table by itself. If it were a
normal column of a relational table, you would be able to query it via a normal select command:

576 Part IV: Object-Relational Databases

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 31
Blind Folio 31:576

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

select BirthDate /* This won't work.*/
from ANIMALS_NT
where Name = 'JULIO';

ANIMALS_NT is not a normal table; it’s a datatype. To select columns (such as BirthDate) from
the nested table, you first need to “flatten” the table so it can be queried. First, apply the TABLE
function to the nested table column (BREEDER.Animals), as shown in the following listing:

select BreederName, N.Name, N.BirthDate
from BREEDER, TABLE(BREEDER.Animals) N;

BREEDERNAME NAME BIRTHDATE
------------------------- ------------------------- ---------
JANE JAMES BUTCH 31-MAR-01
JANE JAMES ROVER 05-JUN-01
JANE JAMES JULIO 10-JUN-01

With the data in this format, it is simple to retrieve the proper row:

select BreederName, N.Name, N.BirthDate
from BREEDER, TABLE(BREEDER.Animals) N

where N.Name = 'JULIO';

BREEDERNAME NAME BIRTHDATE
------------------------- ------------------------- ---------
JANE JAMES JULIO 10-JUN-01

inserts, updates, and deletes with the TABLE function
You can use the TABLE function whenever you need to perform inserts or updates directly against
the nested table. For example, a breeder probably will have more animals as time goes by, so
you need the ability to add new records to the ANIMALS_NT nested table within the BREEDER
table. You will have to insert records into the nested table without adding new records into the
BREEDER table, and you will need to relate the new Animal records to breeders who are already
in the BREEDER table.

The following insert statement adds a new record to the nested table in Jane James’ BREEDER
record:

insert into TABLE(select Animals
from BREEDER

where BreederName = 'JANE JAMES')
values
(ANIMAL_TY('DOG','MARCUS','01-AUG-01'));

The insert does not provide a value for the BreederName column; we are only inserting into
the nested table of a breeder’s row. The TABLE function is again used to “flatten” the nested table
in the Animals column (for Jane’s row) and the new values are inserted. Note the use of the where
clause within the TABLE function call to specify the rows to be acted on.

You can also update the dog’s birthdate. Julio’s birthdate was originally entered as 10-JUN-01
but has since been discovered to be 01-SEP-01. The following update changes the nested table’s

Chapter 31: Collectors (Nested Tables and Varying Arrays) 577

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 31
Blind Folio 31:577

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

BirthDate value for Julio. Its syntax and structure are very close to the query examples shown
earlier in this chapter.

update TABLE(select Animals
from BREEDER

where BreederName = 'JANE JAMES') N
set N.BirthDate = '01-SEP-01'

where N.Name = 'JULIO';

You can verify this change by querying the nested table data:

select BreederName, N.Name, N.BirthDate
from BREEDER, TABLE(BREEDER.Animals) N;

BREEDERNAME NAME BIRTHDATE
------------------------- ------------------------- ---------
JANE JAMES BUTCH 31-MAR-01
JANE JAMES ROVER 05-JUN-01
JANE JAMES JULIO 01-SEP-01
JANE JAMES MARCUS 01-AUG-01

You can delete nested table entries as well:

delete TABLE(select Animals
from BREEDER

where BreederName = 'JANE JAMES') N
where N.Name = 'JULIO';

1 row deleted.

select BreederName, N.Name, N.BirthDate
from BREEDER, TABLE(BREEDER.Animals) N;

BREEDERNAME NAME BIRTHDATE
------------------------- ------------------------- ---------
JANE JAMES BUTCH 31-MAR-01
JANE JAMES ROVER 05-JUN-01
JANE JAMES MARCUS 01-AUG-01

Management Issues for Nested Tables and
Varying Arrays
The administrative tasks required for nested tables and varying arrays have several differences,
which are discussed in the following sections, along with advice on which collector type may
best meet your criteria.

578 Part IV: Object-Relational Databases

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 31
Blind Folio 31:578

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Managing Large Collections
When storing data that is related to a table, you can choose one of three methods: a varying
array, a nested table, or a separate table. If you have a limited number of rows, a varying array
may be appropriate. As the number of rows increases, however, you may begin to encounter
performance problems while accessing the varying array. These problems may be caused by a
characteristic of varying arrays: They cannot be indexed. Nested tables and standard relational
tables, however, can be indexed. As a result, the performance of a varray collector may worsen
as it grows in size.

NOTE
As of Oracle9i, transportable tablespaces can have varying arrays.

Varying arrays are further burdened by the difficulty in querying data from them. If varying
arrays are not a good solution for your application, which alternative should you use: a nested
table or a separate relational table? It depends. Nested tables and relational tables serve different
purposes, so your answer depends on what you are trying to do with the data. The key differences
are as follows:

■ Nested tables are abstract datatypes, created via the create type command. Therefore,
they can have methods associated with them. If you plan to attach methods to the data,
then you should use nested tables instead of relational tables. Alternatively, you could
consider using object views with methods, as described in Chapter 30.

■ Relational tables are easily related to other relational tables. If the data may be related to
many other tables, then it may be best not to nest the data within one table. Storing it in
its own table will give you the greatest flexibility in managing the data relationships.

Variability in Collectors
As noted in Chapter 4, abstract datatypes can help you to enforce standards within your database.
However, you may not be able to realize the same standardization benefits when you are using
collectors. Consider the TOOLS_VA varying array shown earlier in this chapter. If another application
or table wants to use a TOOLS_VA varying array, that application must use the same definition
for the array, including the same maximum number of values. However, the new application
may have a different value for the maximum number of tools. Thus, the array must be altered to
support the greatest possible number of values it may contain in any of its implementations. As
a result, the usefulness of the array’s limiting powers may diminish. To support multiple array
limits, you would need to create multiple arrays—eliminating any object reuse benefits you may
have received from creating the varying arrays. You would then need to manage the different
array limits and know what the limit is in each array.

You may also find that multiple nested tables are similar, with a difference in only one or two
columns. You may be tempted to create a single, all-inclusive nested table type that is used in
multiple tables, but that table would also encounter management problems. You would need to
know which columns of the nested table were valid for which implementations. If you cannot
use the same column structure, with the same meaning and relevance of the columns in each
instance, then you should not use a shared nested table datatype. If you want to use nested tables

Chapter 31: Collectors (Nested Tables and Varying Arrays) 579

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 31
Blind Folio 31:579

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

in that environment, you should create a separate nested table datatype for each instance in
which you will use the nested table, and manage them all separately. Having multiple nested
table datatypes will complicate the management of the database.

Location of the Data
In a varying array, the data in the array is stored with the rest of the data in the table. In nested
tables, however, the data may be stored out-of-line. As a result, the amount of data scanned
during queries that do not involve the collector data may be less for a nested table than for a
varying array. That is, during a query, the database will not need to read through the data in the
nested table; if a varying array is used, then the database may need to read through the varying
array’s data to find the data it needs. Out-of-line data, as used by nested tables, can improve the
performance of queries.

Out-of-line collector data mimics the way the data would be stored in a normal relational
database application. For example, in a relational application, you would store related data
(such as workers and skills) in separate tables, and the tables would be physically stored apart.
Out-of-line nested tables store their data apart from the main table but maintain a relationship
with the main table. Out-of-line data may improve the performance of queries by distributing
across multiple tables the I/O performed against the table.

Out-of-line data is also used to store the large objects (LOBs) that are stored internally (as
opposed to BFILEs, which are pointers to LOBs external to the database). In the next chapter,
you will see how to create and manipulate LOB values up to 4GB in length. The combination
of abstract datatypes, object views, collectors, and LOBs provides a strong foundation for the
implementation of an object-relational database application. In Chapter 33, you will see how
to extend these objects further toward the creation of an object-oriented database.

580 Part IV: Object-Relational Databases

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 31
Blind Folio 31:580

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 32
Blind Folio 32:581

CHAPTER
32

Using Large Objects

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

582 Part IV: Object-Relational Databases

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 32
Blind Folio 32:582

Y
ou can use a LONG datatype to store character data up to 2GB in length per row;
the LONG RAW datatype provides storage for long binary data. In place of LONG
and LONG RAW, you can use the LOB datatypes (BLOB, CLOB, NCLOB, and
BFILE) for storage of long data up to 4GB in length. While Oracle still allows
LONG and LONG RAW columns to be created, Oracle recommends that you

create new columns using the LOB datatypes and that you convert existing LONG and LONG RAW
columns to CLOB or BLOB columns, respectively. If you use one of these datatypes to store large
objects (LOBs), you can take advantage of new capabilities for viewing and manipulating the data.
You can also use Oracle Text (see Chapter 24) to perform text searches on CLOB data.

In this chapter, you will see how to use the LOB datatypes and how to manipulate the
data—which does not even have to be stored within the database!

Available Datatypes
Four types of LOBs are supported:

LOB Datatype Description

BLOB Binary LOB; binary data, up to 4GB in length, stored in the
database

CLOB Character LOB; character data, up to 4GB in length, stored in the
database

BFILE Binary File; read-only binary data stored outside the database, the
length of which is limited by the operating system

NCLOB A CLOB column that supports a multibyte character set

You can create multiple LOBs per table. For example, suppose you want to create a PROPOSAL
table to track formal proposals you submit. Your proposal records may consist of a series of word
processing files and spreadsheets used to document and price the proposed work. The PROPOSAL
table will contain VARCHAR2 datatypes (for columns such as the name of the proposal recipient)
plus LOB datatypes (containing the word processing and spreadsheet files). The create table
command in the following listing creates the PROPOSAL table:

create table PROPOSAL
(Proposal_ID NUMBER(10),
Recipient_Name VARCHAR2(25),
Proposal_Name VARCHAR2(25),
Short_Description VARCHAR2(1000),
Proposal_Text CLOB,
Budget BLOB,
Cover_Letter BFILE,

constraint PROPOSAL_PK primary key (Proposal_ID));

Since you may submit multiple proposals to the same recipient, assign each proposal a
Proposal_ID number. The PROPOSAL table stores the recipient of the proposal, the name of

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

the proposal, and a short description. Then, taking advantage of the LOB datatypes available in
Oracle, add three columns:

Proposal_Text A CLOB containing the text of the proposal

Budget A BLOB containing a spreadsheet showing calculations of the cost
and profit for the proposed work

Cover_Letter A binary file (BFILE) stored outside the database that contains your
cover letter that accompanies the proposal

Each row in the PROPOSAL table will have up to three LOB values stored. Oracle will use
the normal database capabilities to support data integrity and concurrency for the Proposal and
Budget entries, but not for the Cover_Letter values. Since the Cover_Letter column uses the BFILE
datatype, its data is stored outside the database. Internally, the database stores only a locator
value that allows it to find the external file. Oracle does not guarantee the data integrity of BFILE
files stored outside the database. Also, Oracle does not validate that the file exists when you insert a
record using a BFILE datatype. Data concurrency and integrity are maintained only for internally
stored LOBs.

The data for the LOB columns, whether stored inside or outside the database, may not be
physically stored within the PROPOSAL table. Within the PROPOSAL table, Oracle stores locator
values that point to data locations. For BFILE datatypes, the locator points to an external file; for
BLOB and CLOB datatypes, the locator points to a separate data location that the database creates
to hold the LOB data. Thus, the LOB data is not necessarily stored directly with the rest of the
data in the PROPOSAL table.

Storing the data out-of-line like this allows the database to avoid having to scan the LOB data
each time it reads multiple rows from the database. The LOB data will only be read when it is
required; otherwise, only its locator values will be read. You can specify the storage parameters
(tablespace and sizing) for the area used to hold the LOB data, as described in the next section.

Specifying Storage for LOB Data
When you create a table that includes a LOB column, you can specify the storage parameters
for the area used for the LOB data. Thus, for a table that has no LOB columns, you would have
a storage clause in the create table command (see Chapter 20). If the table has at least one LOB
column, then you also need an additional lob clause within your create table command.

Consider the PROPOSAL table, this time with storage and tablespace clauses:

create table PROPOSAL
(Proposal_ID NUMBER(10),
Recipient_Name VARCHAR2(25),
Proposal_Name VARCHAR2(25),
Short_Description VARCHAR2(1000),
Proposal_Text CLOB,
Budget BLOB,
Cover_Letter BFILE,

constraint PROPOSAL_PK primary key (Proposal_ID))

Chapter 32: Using Large Objects 583

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 32
Blind Folio 32:583

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

584 Part IV: Object-Relational Databases

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 32
Blind Folio 32:584

storage (initial 50K next 50K pctincrease 0)
tablespace PROPOSALS;

Since there are three LOB columns, the create table command should be modified to include
the storage specifications for the out-of-line LOB data. Two of the LOB columns—Proposal_Text
and Budget—will store data within the database. The revised version of the create table command,
with the LOB storage clause specified, is shown in the following listing.

create table PROPOSAL
(Proposal_ID NUMBER(10),
Recipient_Name VARCHAR2(25),
Proposal_Name VARCHAR2(25),
Short_Description VARCHAR2(1000),
Proposal_Text CLOB,
Budget BLOB,
Cover_Letter BFILE,

constraint PROPOSAL_PK primary key (Proposal_ID))
storage (initial 50K next 50K pctincrease 0)
tablespace PROPOSALS
lob (Proposal_Text, Budget) store as
(tablespace Proposal_Lobs

storage (initial 100K next 100K pctincrease 0)
chunk 16K pctversion 10 nocache logging);

The last four lines of the create table command tell Oracle how to store the out-of-line LOB
data. The instructions are as follows:

lob (Proposal_Text, Budget) store as
(tablespace Proposal_Lobs

storage (initial 100K next 100K pctincrease 0)
chunk 16K pctversion 10 nocache logging);

The lob clause tells Oracle that the next set of commands deals with the out-of-line storage
specifications for the table’s LOB columns. The two LOB columns (Proposal_Text and Budget)
are explicitly listed. When the two columns’ values are stored out-of-line, they are stored in a
segment as specified via the lob clause:

lob (Proposal_Text, Budget) store as

NOTE
If there were only one LOB column, you could specify a name for
the LOB segment. You would name the segment immediately after the
store as clause in the preceding command.

The next two lines specify the tablespace and storage parameters for the out-of-line LOB
storage. The tablespace clause assigns the out-of-line data to the PROPOSAL_LOBS tablespace,
and the storage clause is used to specify the initial, next, and pctincrease values the out-of-line

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

data storage will use. See the entry for the storage clause in the Alphabetical Reference for an
explanation of the available storage parameters for segments.

(tablespace Proposal_Lobs
storage (initial 100K next 100K pctincrease 0)

Since the segments are for storing LOB data, several additional parameters are available, and
they are specified within the lob clause:

chunk 16K pctversion 10

The chunk LOB storage parameter tells Oracle how much space to allocate during each LOB
value manipulation. The default chunk size is 1K, going up to a maximum value of 32K.

The pctversion parameter is the maximum percentage of overall LOB storage space used for
creating new versions of the LOB. By default, older versions of the LOB data will not be overwritten
until 10 percent of the available LOB storage space is used.

The last two parameters of the LOB storage space tell Oracle how to handle the LOB data during
reads and writes:

nocache logging);

The nocache parameter in the lob storage clause specifies that the LOB values are not stored
in memory for faster access during queries. The default lob storage setting is nocache; its opposite
is cache.

The logging parameter specifies that all operations against the LOB data will be recorded in
the database’s redo log files. The opposite of logging, nologging, keeps operations from being
recorded in the redo log files, thereby improving the performance of table-creation operations.
You can also specify the tablespace and storage parameters for a LOB index. See the create table
command entry in the Alphabetical Reference for the full syntax related to LOB indexes.

Now that the table has been created, you can begin to enter records into it. In the next section,
you will see how to insert LOB values into the PROPOSAL table and how to use the DBMS_LOB
package to manipulate the values.

Manipulating and Selecting LOB Values
LOB data can be selected or manipulated in several ways. As of Oracle9i, you can use the character
string functions you would use on VARCHAR2 columns against LOB datatypes. For large LOB
values (> 100KB in length), or for more complex operations against the data, you should manipulate
LOB data via the DBMS_LOB package. Other methods for manipulating LOB data include using
application programming interface (API) and Oracle Call Interface (OCI) programs. In this section,
you will see the use of the string functions plus an overview of the DBMS_LOB package. As these
examples demonstrate, LOBs are much more flexible than LONG datatypes in terms of data
manipulation possibilities.

Initializing Values
Consider the PROPOSAL table again. The Proposal_ID column is the primary key column for the
PROPOSAL table. The PROPOSAL table contains three LOB columns—one BLOB column, one

Chapter 32: Using Large Objects 585

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 32
Blind Folio 32:585

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

586 Part IV: Object-Relational Databases

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 32
Blind Folio 32:586

CLOB, and one BFILE. For each of the LOB columns, Oracle will store a locator value that tells it
where to find any out-of-line data stored for the record.

When you insert a record into a table that contains LOBs, you use functions to tell Oracle to
create an empty locator value for the internally stored LOB columns. An empty locator value is
different from a NULL value. If an internally stored LOB column’s value is NULL, then you have
to set it to an empty locator value before updating it to a non-NULL value.

Suppose you begin to work on a proposal and enter a record in the PROPOSAL table. At this
point, you have neither a budget spreadsheet nor a cover letter. The insert command is shown in
the following listing:

insert into PROPOSAL
(Proposal_ID, Recipient_Name, Proposal_Name, Short_Description,
Proposal_Text,
Budget, Cover_Letter)

values
(1, 'DOT RODALE', 'MAINTAIN ORGANIC GARDEN', NULL,
'This is the text of a proposal to maintain an organic garden.',
EMPTY_BLOB(),NULL);

The inserted record has a Proposal_ID of 1 and a Recipient_Name of DOT RODALE. The
Proposal_Name value is MAINTAIN ORGANIC GARDEN and the Short_Description column is
left NULL for now. The Proposal_Text column is set equal to a short character string for now. To
set the Budget column to an empty locator value, the EMPTY_BLOB function is used. If you had
wanted to set a CLOB datatype column equal to an empty locator value, then you would have
used the EMPTY_CLOB function. The Cover_Letter column, since it is an externally stored BFILE
value, is set to NULL.

To set a LOB column to an empty locator value, you have to know its datatype:

BLOB Use EMPTY_BLOB()

CLOB Use EMPTY_CLOB()

NCLOB Use EMPTY_CLOB()

BFILE Use BFILENAME

You use the BFILENAME procedure to point to a directory and filename combination. Before
entering a value for the directory in the BFILENAME function, a user with the DBA role or CREATE
ANY DIRECTORY system privilege must create the directory. To create a directory, use the create
directory command, as shown in the following example:

create directory proposal_dir as '/u01/proposal/letters';

When inserting BFILE entries, you refer to the logical directory name—such as proposal_
dir—instead of the physical directory name on the operating system. Users with DBA authority
can grant READ access to the directory names to users. See the entry for the create directory
command in the Alphabetical Reference for further details.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

You can now enter a second PROPOSAL record; this record will have a Cover_Letter value:

insert into PROPOSAL
(Proposal_ID, Recipient_Name, Proposal_Name, Short_Description,
Proposal_Text, Budget,

Cover_Letter)
values
(2, 'BRAD OHMONT', 'REBUILD FENCE', NULL,
EMPTY_CLOB(), EMPTY_BLOB(),
BFILENAME('proposal_dir','P2.DOC'));

In this listing, a second proposal—rebuilding a fence—is inserted into the PROPOSAL table.
The EMPTY_CLOB() and EMPTY_BLOB() functions are used to insert empty locator values in
the table. The BFILENAME function tells Oracle exactly where to find the cover letter—it’s in the
proposal_dir directory and its name is P2.DOC. Within the BFILENAME function, the first parameter
is always the directory name, and the second parameter is the name of the file within that directory.

NOTE
The P2.DOC file does not have to exist for this record to be inserted
successfully.

When you select the value from a LOB column, Oracle uses the locator value to find the data
that is associated with the LOB data. You never need to know or specify the locator values. And,
as you’ll see in the following sections, you can do things with LOB values that are impossible to do
with LONG datatypes.

insert with Subqueries
What if you want to duplicate a proposal record? For example, suppose you begin to work on a
third proposal, and it is very similar to the first proposal:

insert into PROPOSAL
(Proposal_ID, Recipient_Name, Proposal_Name, Short_Description,
Proposal_Text, Budget, Cover_Letter)

select 3, 'SKIP GATES', 'CLEAR GATES FIELD', NULL,
Proposal_Text, Budget, Cover_Letter

from PROPOSAL
where Proposal_ID = 1;

This insert command tells Oracle to find the PROPOSAL record with a Proposal_ID value
of 1. Take the Proposal_Text, Budget, and Cover_Letter column values and the literal values
specified (3, SKIP GATES, and so forth) and insert a new record into the PROPOSAL table. Note
that the inserted columns will be set to empty locator values. The ability to perform inserts based
on queries is a significant advantage of using LOB datatypes—you cannot perform this type of
insert if a LONG column is part of the query.

Chapter 32: Using Large Objects 587

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 32
Blind Folio 32:587

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

588 Part IV: Object-Relational Databases

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 32
Blind Folio 32:588

NOTE
If you use insert as select to populate LOB values, you may have
multiple BFILE values pointing to the same external file. You may
need to update the new values to point to the correct external files.
Oracle does not maintain data integrity for the external files.

Updating LOB Values
In the third record that was created, the Proposal_Text value was copied from the first record. To
update the Proposal_Text value of the record that has a Proposal_ID of 3, execute the following
command:

update PROPOSAL
set Proposal_Text = 'This is the new proposal text.'

where Proposal_ID = 3;

You can also update the Cover_Letter column to point to the correct cover letter. Use the
BFILENAME function to point to the correct file:

update PROPOSAL
set Cover_Letter = BFILENAME('proposal_dir', 'P3.DOC')

where Proposal_ID = 3;

You can update NULL values of BFILE columns without first setting them to empty locator
values. If you had inserted a record with a NULL value for Budget (a BLOB column), you could
not update the Budget column’s value unless you first set its value to EMPTY_BLOB() via an
update command. After setting the value to EMPTY_BLOB() and establishing an empty locator
value, you could then update the Budget column value.

Using String Functions to Manipulate LOB Values
As of Oracle9i, you can use the Oracle-provided string functions against CLOB values. For example,
you can use SUBSTR, INSTR, LTRIM, and INITCAP to modify the strings. See Chapter 7 for
descriptions of the built-in string functions.

In the PROPOSAL table, the Proposal_Text column is defined as a CLOB datatype. Here are
the three Proposal_Text values (the second is NULL).

select Proposal_Text from PROPOSAL;

PROPOSAL_TEXT

This is the text of a proposal to maintain an organic garden.

This is the new proposal text.

Applying INITCAP to the third record yields this result:

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 32: Using Large Objects 589

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 32
Blind Folio 32:589

select INITCAP(Proposal_Text) from PROPOSAL
where Proposal_ID = 3;

INITCAP(PROPOSAL_TEXT)

This Is The New Proposal Text.

Applying INSTR to all three rows returns the expected result:

select INSTR(Proposal_Text,'new',1,1) from PROPOSAL;

INSTR(PROPOSAL_TEXT,'NEW',1,1)

0
0

13

You can use SUBSTR to return the first ten characters of the text:

select SUBSTR(Proposal_Text,1,10) from PROPOSAL
where Proposal_ID = 3;

SUBSTR(PROPOSAL_TEXT,1,10)

This is th

However, you cannot perform NVL and DECODE on the CLOB columns:

select NVL(Proposal_Text, 'Null') from PROPOSAL;
*

ERROR at line 1:
ORA-00932: inconsistent datatypes

For complex manipulations, you should use the DBMS_LOB package, as described in the
following sections.

Using DBMS_LOB to Manipulate LOB Values
You can use the DBMS_LOB package to change or select LOB values. In the following sections, you
will see how to perform SQL functions such as SUBSTR and INSTR on LOB values, as well as how to
append to LOB values, compare LOB values, and read LOB values.

The string comparison and manipulation procedures and functions available within the
DBMS_LOB package are listed in Table 32-1.

The major procedures and functions available within the DBMS_LOB package are described in
the following sections. When using BFILEs, the maximum number of files you can concurrently have
open is limited by the setting of the SESSION_MAX_OPEN_FILES parameter in the database’s system
parameter file. The default maximum number of concurrently open BFILE files is 10; the maximum is
either 50 or the value of the MAX_OPEN_FILES parameter, whichever is lower.

In the following examples, the Proposal_Text CLOB column is used to show the impact of the
major procedures and functions.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

590 Part IV: Object-Relational Databases

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 32
Blind Folio 32:590

Subprogram Description

APPEND Procedure Appends the contents of the source LOB to the destination LOB

CLOSE Procedure Closes a previously opened internal or external LOB

COMPARE Function Compares two entire LOBs or parts of two LOBs

COPY Procedure Copies all, or part, of the source LOB to the destination LOB

CREATETEMPORARY
Procedure

Creates a temporary BLOB or CLOB and its corresponding
index in the user’s default temporary tablespace

ERASE Procedure Erases all or part of a LOB

FILECLOSE Procedure Closes the file

FILECLOSEALL Procedure Closes all previously opened files

FILEEXISTS Function Checks if the file exists on the server

FILEGETNAME Procedure Gets the directory alias and filename

FILEISOPEN Function Checks if the file was opened using the input BFILE locators

FILEOPEN Procedure Opens a file

FREETEMPORARY Procedure Frees the temporary BLOB or CLOB in the user’s default
temporary tablespace

GETCHUNKSIZE Function Returns the amount of space used in the LOB chunk to store
the LOB value

GETLENGTH Function Gets the length of the LOB value

INSTR Function Returns the matching position of the nth occurrence of the
pattern in the LOB

ISOPEN Function Checks to see if the LOB was already opened using the input
locator

ISTEMPORARY Function Checks if the locator is pointing to a temporary LOB

LOADFROMFILE Procedure Loads BFILE data into an internal LOB

OPEN Procedure Opens a LOB (internal, external, or temporary) in the
indicated mode

READ Procedure Reads data from the LOB starting at the specified offset

SUBSTR Function Returns part of the LOB value starting at the specified offset

TRIM Procedure Trims the LOB value to the specified shorter length

WRITE Procedure Writes data to the LOB from a specified offset

WRITEAPPEND Procedure Writes a buffer to the end of a LOB

TABLE 32-1. DBMS_LOB Subprograms

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

READ
The READ procedure reads a piece of a LOB value. In the PROPOSAL table example, the Proposal_
Text for the first row is

select Proposal_Text
from PROPOSAL
where Proposal_ID = 1;

PROPOSAL_TEXT

This is the text of a proposal to maintain an organic garden.

This is a fairly short description, so it could have been stored in a VARCHAR2 datatype column.
Since it is stored in a CLOB column, though, its maximum length is much greater than it would
have been if it had been stored in a VARCHAR2 column—it can expand to 4GB in length. For
these examples, we’ll use this short string for purposes of demonstration; you can use the same
functions and operations against longer CLOB strings, as well.

The READ procedure has four parameters, which must be specified in this order:

1. The LOB locator (for either a BLOB, CLOB, or BFILE)

2. The number of bytes or characters to be read

3. The offset (starting point of the read) from the beginning of the LOB value

4. The output data from the READ procedure

If the end of the LOB value is reached before the specified number of bytes is read, the READ
procedure will return an error.

Because the READ procedure requires the LOB locator as input, the READ procedure is executed
within PL/SQL blocks. You will need to select the LOB locator value, provide that as input to the
READ procedure, and then display the text read via the DBMS_OUTPUT package.

A WORD ABOUT THE DBMS_OUTPUT PACKAGE As noted in Chapter 29, you can
use the DBMS_OUTPUT package to display the values of variables within a PL/SQL block. The
PUT_LINE procedure within DBMS_OUTPUT displays the specified output on a line. Before
using the DBMS_OUTPUT package, you should first execute the set serveroutput on command.
In the next section, you’ll see how to create the PL/SQL block that will read the data from a LOB.

A READ EXAMPLE To use the READ procedure, you need to know the locator value of the
LOB you want to read. The locator value must be selected from the table that contains the LOB.
Since the locator value must be supplied as input to the READ procedure, you should use PL/SQL
variables to hold the locator value. The READ procedure, in turn, will place its output in a
PL/SQL variable. You can use the DBMS_OUTPUT package to display the output value. The
structure of the PL/SQL block for this example is as follows:

declare
variable to hold locator value
variable to hold the amount (the number of characters/bytes to read)

Chapter 32: Using Large Objects 591

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 32
Blind Folio 32:591

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

variable to hold the offset
variable to hold the output

begin
set value for amount_var;
set value for offset_var;
select locator value into locator var from table;
DBMS_LOB.READ(locator var, amount var, offset var, output var);
DBMS_OUTPUT.PUT_LINE('Output:' || output var);

end;

NOTE
See Chapter 27 for an overview of PL/SQL blocks and their
components.

For the PROPOSAL table, selecting the first ten characters from the Proposal_Text column
would look like this:

declare
locator_var CLOB;
amount_var INTEGER;
offset_var INTEGER;
output_var VARCHAR2(10);

begin
amount_var := 10;
offset_var := 1;
select Proposal_Text into locator_var
from PROPOSAL

where Proposal_ID = 1;
DBMS_LOB.READ(locator_var, amount_var, offset_var, output_var);
DBMS_OUTPUT.PUT_LINE('Start of proposal text: ' || output_var);

end;

When the preceding PL/SQL block is executed, the output will match the SQL SUBSTR example
shown earlier:

Start of proposal text: This is th

PL/SQL procedure successfully completed.

The output shows the first ten characters of the Proposal_Text value, starting at the first character
of the LOB value.

The PL/SQL block in the preceding example first declared the variables to use:

declare
locator_var CLOB;
amount_var INTEGER;
offset_var INTEGER;
output_var VARCHAR2(10);

592 Part IV: Object-Relational Databases

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 32
Blind Folio 32:592

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Next, values were assigned to the variables:

begin
amount_var := 10;
offset_var := 1;

The locator value was selected from the table and stored in a variable named locator_var :

select Proposal_Text into locator_var
from PROPOSAL
where Proposal_ID = 1;

Next, the READ procedure was called, using the values that had been assigned so far:

DBMS_LOB.READ(locator_var, amount_var, offset_var, output_var);

As a result of the execution of the READ procedure, the output_var variable will be populated
with the data that was read. The PUT_LINE procedure displays that data:

DBMS_OUTPUT.PUT_LINE('Start of proposal text: ' || output_var);

This format for PL/SQL blocks will be used throughout the rest of this chapter. You can optionally
set the variable values when they are declared.

If you want to select a different portion of the Proposal_Text CLOB, just change the amount
and offset variables. If you change the number of characters read, you need to change the size of
the output variable, too. In the following example, 12 characters are read from the Proposal_Text,
starting from the tenth character:

declare
locator_var CLOB;
amount_var INTEGER;
offset_var INTEGER;
output_var VARCHAR2(12);

begin
amount_var := 12;
offset_var := 10;
select Proposal_Text into locator_var
from PROPOSAL

where Proposal_ID = 1;
DBMS_LOB.READ(locator_var, amount_var, offset_var, output_var);
DBMS_OUTPUT.PUT_LINE('Part of proposal text: ' || output_var);

end;

Output from this PL/SQL block is shown in the following listing:

Part of proposal text: he text of a

PL/SQL procedure successfully completed.

Chapter 32: Using Large Objects 593

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 32
Blind Folio 32:593

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

If Proposal_Text had been created as a VARCHAR2 column, you could have selected this
data using the SUBSTR function. However, you would have been limited to a maximum column
length of 4,000 characters. Also, note that the LOB column can contain binary data (BLOB datatypes),
and you can use the READ procedure to select data from BLOBs in the same way you select from
CLOBs. For BLOBs, you should declare the output buffer to use the RAW datatype. In PL/SQL,
RAW and VARCHAR2 datatypes (used for the output variables for CLOB and BLOB reads) have a
maximum length of 32,767 characters.

SUBSTR
The SUBSTR function within the DBMS_LOB package performs the SQL SUBSTR function on a
LOB value. This function has three input parameters, which must be specified in this order:

1. The LOB locator

2. The number of bytes or characters to be read

3. The offset (starting point of the read) from the beginning of the LOB value

Because SUBSTR is a function, there is no output variable value returned directly from SUBSTR,
as there was with READ. For the READ procedure, you declared an output variable and then
populated it within the READ procedure call. The PL/SQL block used for the READ procedure is
shown in the following listing, with the lines related to the output variable shown in bold:

declare
locator_var CLOB;
amount_var INTEGER;
offset_var INTEGER;
output_var VARCHAR2(12);

begin
amount_var := 12;
offset_var := 10;
select Proposal_Text into locator_var
from PROPOSAL

where Proposal_ID = 1;
DBMS_LOB.READ(locator_var, amount_var, offset_var, output_var);
DBMS_OUTPUT.PUT_LINE('Section of proposal text: ' || output_var);

end;

Since SUBSTR is a function, you will populate the output variable differently. The format is

output_var := DBMS_LOB.SUBSTR(locator_var, amount_var, offset_var);

The preceding PL/SQL statement uses the SUBSTR function of the DBMS_LOB package to
select 12 characters from the Proposal_Text LOB column, starting at the tenth character. The
output is shown in the following listing.

Section of proposal text: he text of a
PL/SQL procedure successfully completed.

594 Part IV: Object-Relational Databases

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 32
Blind Folio 32:594

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 32: Using Large Objects 595

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 32
Blind Folio 32:595

The equivalent SQL function call is

select SUBSTR(Proposal_Text,10,12)
from PROPOSAL
where Proposal_ID = 1;

The SUBSTR example differs from the READ example in only two ways: the name of the
function call, and the manner of assigning a value to the output variable. As with the READ
procedure example, the PUT_LINE procedure of the DBMS_OUTPUT package is used to display
the results.

In general, you should use the SUBSTR function whenever you are interested in selecting only a
specific section of the LOB value. The READ function can be used to select only a portion of a text
string (as in the previous examples), but it is more often used within a loop. For example, suppose
the LOB value is larger than the largest allowed RAW or VARCHAR2 variable in PL/SQL (32,767
characters). In that case, you can use the READ procedure within a loop to read all the data from
the LOB value. Refer to Chapter 27 for details on the different loop options available in PL/SQL.

INSTR
The INSTR function within the DBMS_LOB package performs the SQL INSTR function on a
LOB value.

The INSTR function has four input parameters, which must be specified in this order:

1. The LOB locator

2. The pattern to be tested for (RAW bytes for BLOBs, character strings for CLOBs)

3. The offset (starting point of the read) from the beginning of the LOB value

4. The occurrence of the pattern within the LOB value

The INSTR function within DBMS_LOB searches the LOB for a specific pattern of bytes or
characters. The occurrence variable allows you to specify which occurrence of the pattern within
the searched value should be returned. The output of the INSTR function is the position of the start
of the pattern within the searched string. For example, in SQL,

INSTR('ABCABC', 'A', 1, 1) = 1

means that within the string ABCABC, the pattern A is searched for, starting at the first position of
the string, and looking for the first occurrence. The A is found in the first position of the searched
string. If you start the search at the second position of the string, the answer will be different:

INSTR('ABCABC', 'A', 2, 1) = 4

Since this INSTR starts at the second position, the first A is not part of the value that is searched.
Instead, the first A found is the one in the fourth position.

If you change the last parameter in the SQL INSTR to look for the second occurrence of the
string A, starting at the second position, then the pattern is not found:

INSTR('ABCABC', 'A', 2, 2) = 0

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

If the SQL INSTR function cannot find the matching occurrence of the pattern, then a 0 is
returned. The INSTR function of the DBMS_LOB package operates in the same manner.

Because INSTR is a function, you need to assign its output variable in the same manner as the
SUBSTR function’s output variable was assigned. In the following listing, the Proposal_Text CLOB
value is searched for the string ‘pr’. A position_var variable is declared to hold the output of the
INSTR function.

declare
locator_var CLOB;
pattern_var VARCHAR2(2);
offset_var INTEGER;
occur_var INTEGER;
position_var INTEGER;

begin
pattern_var := 'pr';
offset_var := 1;
occur_var := 1;
select Proposal_Text into locator_var
from PROPOSAL

where Proposal_ID = 1;
position_var := DBMS_LOB.INSTR(locator_var, pattern_var,

offset_var, occur_var);
DBMS_OUTPUT.PUT_LINE('Found string at position: ' || position_var);

end;

The output would be

Found string at position: 23

PL/SQL procedure successfully completed.

The output shows that the search string ‘pr’ is found within the Proposal_Text, starting at the
twenty-third character of the LOB value. Since Oracle9i supports SQL string functions against
CLOB columns, this function call is equivalent to the following query:

select INSTR(Proposal_Text ,'pr',1,1)
from PROPOSAL
where Proposal_ID = 1;

GETLENGTH
The GETLENGTH function of the DBMS_LOB package returns the length of the LOB value. The
DBMS_LOB.GETLENGTH function is similar in function to the SQL LENGTH function, but is used
only for LOB values.

The GETLENGTH function of the DBMS_LOB package has only one input parameter: the locator
value for the LOB. In the following listing, variables are declared to hold the locator value and
the output value. The GETLENGTH function is then executed, and the result is reported via the
PUT_LINE procedure:

596 Part IV: Object-Relational Databases

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 32
Blind Folio 32:596

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

declare
locator_var CLOB;
length_var INTEGER;

begin
select Proposal_Text into locator_var
from PROPOSAL

where Proposal_ID = 1;
length_var := DBMS_LOB.GETLENGTH(locator_var);
DBMS_OUTPUT.PUT_LINE('Length of LOB: ' || length_var);

end;

The following is the GETLENGTH output:

Length of LOB: 61

PL/SQL procedure successfully completed.

If the LOB value is NULL, then the GETLENGTH function will return a value of NULL.
The equivalent SQL function for CLOB values is

select LENGTH(Proposal_Text)
from PROPOSAL
where Proposal_ID = 1;

COMPARE
The COMPARE function of the DBMS_LOB package compares two LOB values. If the two LOB
values are the same, then the COMPARE function returns a 0; otherwise, it returns a non-zero
integer value (usually 1 or -1). To execute the COMPARE function, the DBMS_LOB package
essentially performs two READ functions and compares the results. Thus, for each of the LOB
values to be compared, you need to supply a locator value and an offset value; the number of
characters or bytes to be compared will be the same for both LOB values. You can only compare
LOBs of the same datatype.

The COMPARE function has five input parameters, which must be specified in this order:

1. The LOB locator for the first LOB

2. The LOB locator for the second LOB

3. The amount variable (the number of bytes or characters to compare)

4. The offset (starting point of the read) from the beginning of the first LOB value

5. The offset (starting point of the read) from the beginning of the second LOB value

Since the two LOBs being compared can have different offset values, you can compare the first
part of one LOB value with the second part of a different LOB value. The example in the following

Chapter 32: Using Large Objects 597

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 32
Blind Folio 32:597

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

listing compares the first 25 characters of the Proposal_Text values from two entries: the Proposal_
ID 1 record, and the Proposal_ID 3 record:

declare
first_locator_var CLOB;
second_locator_var CLOB;
amount_var INTEGER;
first_offset_var INTEGER;
second_offset_var INTEGER;
output_var INTEGER;

begin
amount_var := 25;
first_offset_var := 1;
second_offset_var := 1;
select Proposal_Text into first_locator_var
from PROPOSAL

where Proposal_ID = 1;
select Proposal_Text into second_locator_var
from PROPOSAL
where Proposal_ID = 3;

output_var :=DBMS_LOB.COMPARE(first_locator_var, second_locator_var,
amount_var, first_offset_var, second_offset_var);

DBMS_OUTPUT.PUT_LINE('Comparison value (0 if the same): '||
output_var);

end;

The following is the output:

Comparison value (0 if the same): 1

PL/SQL procedure successfully completed.

If the two strings are the same, then the COMPARE function will return a 0.
In the following listing, the same two LOBs are compared, but this time only their first five

characters are used for the comparison. Since both start with the characters “This “, the COMPARE
will return a 0.

declare
first_locator_var CLOB;
second_locator_var CLOB;
amount_var INTEGER;
first_offset_var INTEGER;
second_offset_var INTEGER;
output_var INTEGER;

begin
amount_var := 5;
first_offset_var := 1;
second_offset_var := 1;
select Proposal_Text into first_locator_var
from PROPOSAL

598 Part IV: Object-Relational Databases

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 32
Blind Folio 32:598

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

where Proposal_ID = 1;
select Proposal_Text into second_locator_var
from PROPOSAL
where Proposal_ID = 3;

output_var :=DBMS_LOB.COMPARE(first_locator_var, second_locator_var,
amount_var, first_offset_var, second_offset_var);

DBMS_OUTPUT.PUT_LINE('Comparison value (0 if the same): ' ||
output_var);

end;

Comparison value (0 if the same): 0

PL/SQL procedure successfully completed.

The COMPARE function allows you to compare character strings to character strings and
compare binary data to binary data. If you are using the COMPARE function on BLOB columns,
you should define the locator variables as RAW datatypes.

WRITE
The WRITE procedure of the DBMS_LOB package allows you to write data in specific locations
of the LOB. For example, you can write binary data into a section of a BLOB, overwriting the
existing data there. You can write character data into CLOB fields using the WRITE procedure.
This procedure has four input parameters, which must be specified in this order:

1. The LOB locator for the LOB

2. The amount variable (the number of bytes or characters to write)

3. The offset (starting point of the write) from the beginning of the LOB value

4. The buffer variable assigned to the character string or binary data being added

Because the WRITE procedure updates the LOB value, you should first lock the row via a select
for update, as shown in bold in the following listing. In this example, a record is selected and locked.
The text ADD NEW TEXT is then written to the LOB value, overwriting the data starting in position 10
(as defined by the offset variable).

declare
locator_var CLOB;
amount_var INTEGER;
offset_var INTEGER;
buffer_var VARCHAR2(12);

begin
amount_var := 12;
offset_var := 10;
buffer_var := 'ADD NEW TEXT';
select Proposal_Text into locator_var
from PROPOSAL

where Proposal_ID = 3

Chapter 32: Using Large Objects 599

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 32
Blind Folio 32:599

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

for update;
DBMS_LOB.WRITE(locator_var, amount_var, offset_var, buffer_var);

commit;
end;

Since the WRITE procedure changes the data, a commit command is added before the end
clause of the PL/SQL block.

For the WRITE procedure, no output is provided. To see the changed data, you need to either
call the READ procedure (within the same PL/SQL block, if you want) or select the LOB value from
the table again:

select Proposal_Text
from PROPOSAL
where Proposal_ID = 3;

PROPOSAL_TEXT

This is tADD NEW TEXTsal text.

The WRITE procedure overwrote 12 characters, starting at the tenth character of the Proposal_
Text. You can use the WRITEAPPEND procedure to append new data to the end of an existing
LOB value.

For CLOB data, you can rewrite this using an update statement combined with SUBSTR and
concatenation functions.

APPEND
The APPEND procedure of the DBMS_LOB package appends data from one LOB to a second LOB.
Since this amounts to an update of a LOB value, the record being updated should be locked prior
to executing the APPEND procedure.

The APPEND procedure takes only two parameters: the locator value for the destination LOB,
and the locator value for the source LOB. If either parameter is NULL, the APPEND procedure will
return an error.

In the following example, two locator variables are defined. The first locator variable is named
dest_locator_var; this is the locator value for the LOB into which the data is to be appended. The
second locator variable, source_locator_var, is the locator value for the source data that is to be
appended to the destination LOB. The destination LOB, since it is being updated, is locked via a
select for update command. In this example, the Proposal_Text value for the Proposal_ID 1 record
is appended to the Proposal_Text value for the Proposal_ID 3 record:

declare
dest_locator_var CLOB;
source_locator_var CLOB;

begin
select Proposal_Text into dest_locator_var
from PROPOSAL

where Proposal_ID = 3
for update;

select Proposal_Text into source_locator_var
from PROPOSAL

600 Part IV: Object-Relational Databases

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 32
Blind Folio 32:600

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

where Proposal_ID = 1;
DBMS_LOB.APPEND(dest_locator_var, source_locator_var);

commit;
end;

To see the changed data, you can select the record from the PROPOSAL table:

select Proposal_Text
from PROPOSAL
where Proposal_ID = 3;

PROPOSAL_TEXT

This is tADD NEW TEXTsal text.This is the text of a proposal to
maintain an orga

What happened to the rest of the text? By default, only 80 characters of LONG and LOB values
are displayed during queries. To see the rest of the text, use the set long command:

set long 1000

select Proposal_Text
from PROPOSAL
where Proposal_ID = 3;

PROPOSAL_TEXT

This is tADD NEW TEXTsal text.This is the text of a proposal to
maintain an organic garden.

In this example, the first 1,000 characters of the LOB value were displayed. If you need to know
how long the LOB is, use the GETLENGTH function as described earlier in this chapter.

In addition to allowing you to append CLOB values, the APPEND procedure allows you to
append BLOB values. When appending BLOB data, you need to be aware of the format of the
BLOB data and the impact of appending new data on the end of the BLOB value. For BLOB values,
the APPEND function may be most useful for applications in which the BLOB contains only raw
data (such as digital data transmissions) rather than formatted binary data (such as spreadsheet files
formatted by a program).

For CLOB data, you could rewrite this with an update statement, setting the Proposal_Text value
equal to the concatenation of multiple values.

ERASE
You can use the ERASE procedure of the DBMS_LOB package to erase the characters or bytes in
any part of a LOB. You can use ERASE to erase the entire LOB value, or you can specify which
section of the LOB to erase. ERASE is similar in function to WRITE. If you ERASE data in a BLOB
value, the data is replaced with zero-byte filler. If you ERASE data in a CLOB value, spaces are
inserted into the CLOB.

Since you are updating a LOB value, you should follow the standard procedures for LOB updates:
lock the row and commit when the procedure has completed.

Chapter 32: Using Large Objects 601

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 32
Blind Folio 32:601

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In the following PL/SQL block, a portion of the Proposal_Text for the record with Proposal_ID
3 is erased. The erased characters will start at an offset of 10 and continue for 17 characters. The
parameters for the ERASE procedure, in order, are

1. The LOB locator for the LOB

2. The amount variable (the number of bytes or characters to erase)

3. The offset (starting point of the erasure) from the beginning of the LOB value

declare

locator_var CLOB;

amount_var INTEGER;

offset_var INTEGER;

begin

amount_var := 17;

offset_var := 10;

select Proposal_Text into locator_var

from PROPOSAL

where Proposal_ID = 3

for update;

DBMS_LOB.ERASE(locator_var, amount_var, offset_var);

commit;

end;

The change to the record can be seen by querying the Proposal_Text value:

select Proposal_Text
from PROPOSAL
where Proposal_ID = 3;

PROPOSAL_TEXT

This is t ext.This is the text of a proposal to
maintain an organic garden.

NOTE
The space previously held by the erased data is replaced by blanks;
the rest of the data in the LOB does not change its position.

For CLOB data, you can rewrite this operation using an update statement, setting a new value
for Proposal_Text by concatenating SUBSTR results and a blank string.

TRIM
You can use the TRIM procedure of the DBMS_LOB package to reduce the size of a LOB value by
trimming characters or bytes from the end of the value (such as the SQL RTRIM function). When the
TRIM procedure is executed, you specify the locator value for the LOB and the LOB’s new length.

602 Part IV: Object-Relational Databases

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 32
Blind Folio 32:602

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In the following listing, the Proposal_Text for the Proposal_ID 3 record is trimmed to its first
ten characters. Since the TRIM procedure changes the data, a commit command is added before
the end clause of the PL/SQL block.

declare
locator_var CLOB;
new_length_var INTEGER;

begin
new_length_var := 10;
select Proposal_Text into locator_var
from PROPOSAL

where Proposal_ID = 3
for update;

DBMS_LOB.TRIM(locator_var, new_length_var);
commit;
end;

For the TRIM procedure, no output is provided. To see the changed data, you need to select
the LOB value from the table again:

select Proposal_Text
from PROPOSAL
where Proposal_ID = 3;

PROPOSAL_TEXT
--
This is t

The sample output shows the results of the TRIM procedure following the ERASE procedure
executed in the preceding section. For CLOB data, you could rewrite this as a simple update:

update PROPOSAL
set Proposal_Text = SUBSTR(Proposal_Text,1,10)

where Proposal_ID = 3;

COPY
You can use the COPY procedure of the DBMS_LOB package to copy data from a part of one LOB
into a second LOB. Unlike the APPEND procedure, you do not have to copy the full text of one
LOB value into another. During the COPY procedure, you can specify the offset to read from and
the offset to write to. The five parameters of the COPY procedure are, in order:

1. The destination LOB locator

2. The source LOB locator

3. The amount (the number of characters or bytes to copy)

4. The offset to start writing to within the destination LOB value

5. The offset to start reading from within the destination LOB value

Chapter 32: Using Large Objects 603

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 32
Blind Folio 32:603

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

COPY is a combination of the READ and WRITE capabilities. Like the WRITE operation, the
COPY procedure modifies the LOB value. Therefore, the record should first be locked, and the
PL/SQL block must contain a commit command. In the following example, the first 61 characters
of the Proposal_ID 1 record are copied to the Proposal_ID 3 record. Since the destination LOB uses
an offset of 1, the copied data will overwrite data within the destination LOB.

declare
dest_locator_var CLOB;
source_locator_var CLOB;
amount_var INTEGER;
dest_offset_var INTEGER;
source_offset_var INTEGER;

begin
amount_var := 61;
dest_offset_var := 1;
source_offset_var := 1;
select Proposal_Text into dest_locator_var
from PROPOSAL

where Proposal_ID = 3
for update;

select Proposal_Text into source_locator_var
from PROPOSAL
where Proposal_ID = 1;

DBMS_LOB.COPY(dest_locator_var, source_locator_var,
amount_var, dest_offset_var, source_offset_var);

commit;
end;

The COPY procedure displays no output. To see the changed data, you need to select the LOB
value from the table again:

select Proposal_Text
from PROPOSAL
where Proposal_ID = 3;

PROPOSAL_TEXT

This is the text of a proposal to maintain an organic garden.

Using the BFILE Functions and Procedures
Since BFILE values are stored externally, several functions and procedures are used to manipulate
the files prior to executing READ, SUBSTR, INSTR, GETLENGTH, or COMPARE operations on
BFILE LOBs. The BFILE-related procedures and functions within DBMS_LOB, shown earlier in
Table 32-1, allow you to open files, close files, get the filename, check whether a file exists, and
check whether a file is open. The existence-check function is necessary because Oracle does not
maintain the data stored in the external file; Oracle only maintains the pointer created via the
BFILENAME procedure when the record is inserted or updated. You should use the procedures
and functions in Table 32-1 to control the files used by your PL/SQL code. For example, to read
the first ten bytes from the Cover_Letter BFILE for the Proposal_ID 2 record, you would OPEN the

604 Part IV: Object-Relational Databases

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 32
Blind Folio 32:604

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

file and then execute the READ procedure. The PUT_LINE procedure of the DBMS_OUTPUT
package can then be called to show the data that was read.

If you use an Exception Handling section in your PL/SQL block, then you need to be sure to
include FILECLOSE procedure calls within the declared exceptions. (Refer to Chapter 27 for further
details on exception handling within PL/SQL blocks.)

To move data from an external file into a BLOB datatype, you can create a BFILE datatype in a
table and use the BFILENAME function to create a LOB locator that points to the external file. The
BFILENAME function takes two parameters: the directory name and the filename. For example:

insert into PROPOSAL (Proposal_ID, Cover_Letter)
values (4, BFILENAME ('proposal_dir','extfile.doc'));

You can then open the file and use the LOADFROMFILE procedure to load the BLOB datatype
with the data from the external file.

If the data is presently in a LONG datatype, you can change it to a CLOB or NCLOB column
via the alter table command. You can also use alter table to change a LONG RAW column to a
BLOB datatype column. For insert as select operations, you can use the TO_LOB SQL function to
move the data from the LONG column to a BLOB column.

Deleting LOBS
When you delete LOB values, the locator value is deleted. If the deleted value is an internal LOB
(BLOB, CLOB, or NCLOB), then both the locator and the LOB value are deleted. If the deleted
value is an external LOB (BFILE), then only the locator value is deleted; you will need to manually
delete the file to which the locator points.

Chapter 32: Using Large Objects 605

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 32
Blind Folio 32:605

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 32
Blind Folio 32:606

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 33
Blind Folio 33:607

CHAPTER
33

Advanced
Object-Oriented

Concepts

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

S
o far, all of the object-oriented programming (OOP) features of Oracle shown in
this book have shared two characteristics: They are embedded objects, and they are
column objects. An embedded object is one that is completely contained within
another. For example, a nested table is contained within a table, so it is an embedded
object. Although a nested table’s data is stored apart from the main table, its data can

only be accessed via the main table. A column object is one that is represented as a column in a
table. For example, a varying array is represented as a column in a table, so it is a column object.

To take advantage of OOP capabilities, a database must also support row objects—objects that
are represented as rows instead of columns. The row objects are not embedded objects; instead,
they are referenced objects, accessible via references from other objects. In this chapter, you will
see how row objects are created and referenced.

As you will see in this chapter, row objects can be extended for use within some of the objects
discussed in prior chapters (such as object views). In addition to row objects, this chapter covers
the application of objects to PL/SQL—creating object PL/SQL.

Row Objects vs. Column Objects
The distinction between row objects and column objects is critical. First, consider column objects.
Column objects are based on extensions of features already in the database. An abstract datatype
or a varying array can be embedded as a column within a table. A nested table or a large object
(LOB) can be stored in a single column of a table. In each case, the object is represented as a
column within a table.

Nested tables and LOBs, however, involve data that is stored out-of-line from the main table.
When you use a LOB (refer to Chapter 32), you specify the storage values for the table that will
store the LOB data, and Oracle creates LOB locators that point from the main table to the rows in
the LOB table. When you create a nested table, you specify the name of the table in which the
nested table’s records will be stored—and Oracle creates pointers from the main table to the records
in the nested tables. Thus, the main table and its embedded nested table are related.

In row objects, the objects are represented as rows, not columns. The data is not embedded
within the main table; instead, the main table contains a reference to another table. Nested tables,
since they are stored apart from the main table, provide a useful tool for understanding row objects.
What if the nested table’s data is not embedded within the main table, and each of its rows is a
row object? The main table will define references to the related data.

The object-relational features of Oracle described in earlier chapters relied on column objects.
In this chapter, the focus is on the advanced OOP capabilities, which are based on row objects. You
use row objects to create references between the rows of different tables.

Object Tables and OIDs
In an object table, each row is a row object. An object table differs from a normal relational table in
several ways. First, each row within the object table has an OID—an object identifier value—
assigned by Oracle when the row is created. Second, the rows of an object table can be referenced
by other objects within the database.

You can create an object table via the create table command. Consider the ANIMAL_TY datatype
shown in previous chapters:

608 Part IV: Object-Relational Databases

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 33
Blind Folio 33:608

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

create or replace type ANIMAL_TY as object
(Breed VARCHAR2(25),
Name VARCHAR2(25),
BirthDate DATE);

NOTE
To keep this example simple, the ANIMAL_TY datatype is created
without any member functions.

To create an object table of the ANIMAL_TY datatype, issue the following create table command:

create table ANIMAL of ANIMAL_TY;

Table created.

Note that the command has an unusual syntax—creating the table of an abstract datatype. The
resulting table may first appear to be a normal relational table:

describe ANIMAL

Name Null? Type
------------------------------- -------- ------------
BREED VARCHAR2(25)
NAME VARCHAR2(25)
BIRTHDATE DATE

The ANIMAL table’s columns map to the attributes of the ANIMAL_TY datatype. However, there
are significant differences in how you can use the table, since it is an object table. As noted earlier
in this section, each row within the object table will have an OID value, and the rows can be
referenced as objects.

Inserting Rows into Object Tables
Because ANIMAL is an object table, you can use its datatype’s constructor method when inserting
data into the table. Since the ANIMAL table is based on the ANIMAL_TY abstract datatype, the
ANIMAL_TY constructor method can be used when inserting values into ANIMAL.

NOTE
Refer to Chapters 4 and 30 for detailed discussions of constructor
methods.

In the following listing, three rows are inserted into the ANIMAL object table. In each command,
the ANIMAL_TY constructor method is called.

insert into ANIMAL values
(ANIMAL_TY('MULE','FRANCES', '01-APR-02'));

insert into ANIMAL values

Chapter 33: Advanced Object-Oriented Concepts 609

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 33
Blind Folio 33:609

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

(ANIMAL_TY('DOG','BENJI', '03-SEP-01'));
insert into ANIMAL values

(ANIMAL_TY('CROCODILE','LYLE', '14-MAY-00'));

If the abstract datatype on which the object table is based is itself based on a second abstract
datatype, you may need to nest calls to multiple constructor methods within your insert command.
(Refer to Chapter 4 for examples of nested abstract datatypes.)

NOTE
If an object table is based on a datatype that does not contain any
nested datatypes, you can also insert records into the object table
using the normal insert command syntax for relational tables.

When you insert a row into an object table, Oracle assigns an OID to the row. Having an
OID allows you to use the row as a referenceable object. OID values are not reused.

Selecting Values from Object Tables
When the ANIMAL table was created, it was based entirely on the ANIMAL_TY datatype:

create table ANIMAL of ANIMAL_TY;

When you select from a table that contains an abstract datatype, you refer to the abstract
datatype’s columns as part of the table’s columns. That is, if you used the ANIMAL_TY datatype
as the basis for a column named Animal, then you would select the animal names by selecting
Animal.Name from the table.

An object table, though, is based on a datatype—it has no other columns. Therefore, you do
not need to reference the datatype when accessing the columns. To select the names from the
ANIMAL table, just query the datatype’s attributes directly:

select Name
from ANIMAL;

NAME

FRANCES
BENJI
LYLE

You can refer to the columns within the where clause just as if ANIMAL were a relational table:

select Name
from ANIMAL
where Breed = 'CROCODILE';

NAME

LYLE

610 Part IV: Object-Relational Databases

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 33
Blind Folio 33:610

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 33: Advanced Object-Oriented Concepts 611

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 33
Blind Folio 33:611

If the ANIMAL_TY datatype used another abstract datatype for one of its columns, that datatype’s
column would be referenced during all selects, updates, and deletes. (Refer to Chapter 4 for
examples of queries from nested abstract datatypes.)

Updates and Deletes from Object Tables
If the object table is based on an abstract datatype that uses no other abstract datatypes, then an
update or delete of an object table uses the same format as you would use for relational tables. In
this example, the ANIMAL_TY datatype does not use any other abstract datatype for one of its
columns, so your updates and deletes from the ANIMAL object table behave the same as if
ANIMAL were a relational table.

In the following command, one of the rows of ANIMAL is updated:

update ANIMAL
set BirthDate = '01-MAY-00'

where Name = 'LYLE';

1 row updated.

Note that during the update, the columns of the object table are referred to as if ANIMAL
were a relational table. During a delete, you use the same means to reference the object table’s
columns in the where clause:

delete from ANIMAL
where Name = 'LYLE';

1 row deleted.

Keeping a crocodile alongside mules and dogs probably wasn’t such a good idea anyway.

The REF Function
The REF function allows you to reference existing row objects. For example, the ANIMAL table has
(after the deletion of one row, shown in the previous section) two row objects, each of which
has an OID value assigned to it. You can see the OID assigned to each row by using the REF
function, as shown here:

select REF(A)
from ANIMAL A
where Name = 'FRANCES';

REF(A)

0000280209FFD8EC317DA111D6B008444553544200FFD8EC307
DA111D6B008444553544200004123160000

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

NOTE
Your REF value should be different than the one shown here, but
should have the same format.

In this example, the ANIMAL table was given the alias A, and that alias was used as input
to the REF function. The output shows the OID for the row object that met the limiting condition
of the query.

NOTE
The REF function takes as its input the alias given to the object table.
The other functions shown later in this chapter also take aliases as
inputs, so you should be familiar with this syntax.

Since the REF function can only reference row objects, you cannot use it to reference column
objects. Column objects include abstract datatypes, LOBs, and collectors.

As you can see, the REF function by itself does not give you any useful information. You need
to use another function—DEREF—that translates the REF output into values. You can then use REF
and DEREF to reference row object values, as described in the next section.

Using the DEREF Function
The REF function takes a row object as its argument and returns a reference value. The DEREF
function does the opposite—it takes a reference value (the OID generated for a reference) and
returns the value of the row object.

Earlier in this chapter, the ANIMAL object table was created using the ANIMAL_TY abstract
datatype:

create table ANIMAL of ANIMAL_TY;

To see how DEREF and REF work together, consider a table that is related to the ANIMAL table.
The KEEPER table will track the people who take care of the animals. It will have a column for
the name of the keeper (KeeperName) and a reference to the ANIMAL object table (AnimalKept),
as shown in the following listing:

create table KEEPER
(KeeperName VARCHAR2(25),
AnimalKept REF ANIMAL_TY);

The first part of the create table command looks normal:

create table KEEPER
(KeeperName VARCHAR2(25),

but the last line shows a new feature:

AnimalKept REF ANIMAL_TY);

612 Part IV: Object-Relational Databases

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 33
Blind Folio 33:612

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The AnimalKept column references data that is stored elsewhere. The REF function points the
AnimalKept column to a row object of the ANIMAL_TY datatype. Since ANIMAL is an object
table of the ANIMAL_TY datatype, the AnimalKept column can point to the row objects within
the ANIMAL object table. You can point the REF to any object table of that type.

When you describe the KEEPER table, you can see that its AnimalKept column relies on a REF:

describe KEEPER

Name Null? Type
------------------------------- -------- ----
KEEPERNAME VARCHAR2(25)
ANIMALKEPT REF OF ANIMAL_TY

To see the full details, use a higher value for the describe depth:

set describe depth 2

desc KEEPER

Name Null? Type
--------------------------------------- -------- ----------------
KEEPERNAME VARCHAR2(25)
ANIMALKEPT REF OF ANIMAL_TY
BREED VARCHAR2(25)
NAME VARCHAR2(25)
BIRTHDATE DATE

Now, insert a record into KEEPER. You need to use the REF function to store the ANIMAL
references in the AnimalKept column.

insert into KEEPER
select 'CATHERINE WEILZ',

REF(A)
from ANIMAL A

where Name = 'BENJI';

Let’s look at this insert command closely. First, the KeeperName value is selected as a
literal value:

insert into KEEPER
select 'CATHERINE WEILZ',

Next, the value for the AnimalKept column must be specified. But the datatype of AnimalKept
is REF OF ANIMAL_TY, so you must select the reference from the ANIMAL object table to populate
the AnimalKept column:

REF(A)
from ANIMAL A

where Name = 'BENJI';

Chapter 33: Advanced Object-Oriented Concepts 613

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 33
Blind Folio 33:613

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

614 Part IV: Object-Relational Databases

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 33
Blind Folio 33:614

What’s going on here? First, the ANIMAL object table is queried, and the REF function returns
the OID for the row object selected. The OID is then stored in the KEEPER table as a pointer to that
row object in the ANIMAL object table.

Does the KEEPER table contain the animal information? No. KEEPER contains the name of the
keeper and a reference to a row object in the ANIMAL table. You can see the reference OID by
querying KEEPER:

select * from KEEPER;

KEEPERNAME

ANIMALKEPT
--
CATHERINE WEILZ
0000220208FFD8EC327DA111D6B008444553544200FFD8EC307DA111D6B0084445
53544200

The AnimalKept column, as shown in this listing, contains the reference to the row object, not
the value of the data stored in the row object.

You can’t see the referenced value unless you use the DEREF function. When you select from
KEEPER, Oracle will use the OID to evaluate the reference (REF). The DEREF function will take
the reference and return a value.

In the following query, the value of the AnimalKept column in KEEPER is the parameter passed
to the DEREF function. DEREF will take the OID from AnimalKept and find the referenced object;
the function will evaluate the reference and return the values to the user.

select DEREF(K.AnimalKept)
from KEEPER K
where KeeperName = 'CATHERINE WEILZ';

DEREF(K.ANIMALKEPT)(BREED, NAME, BIRTHDATE)

ANIMAL_TY('DOG', 'BENJI', '03-SEP-01')

NOTE
The parameter for the DEREF function is the column name of the REF
column, not the table name.

The result shows that the CATHERINE WEILZ record in KEEPER references an ANIMAL record
for the animal named BENJI. A few aspects of this query are noteworthy:

■ The query used a reference to a row object to travel from one table (KEEPER) to a second
(the ANIMAL object table). Thus, a join is performed in the background, without you
specifying the join criteria.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 33: Advanced Object-Oriented Concepts 615

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 33
Blind Folio 33:615

■ The object table itself is not mentioned in the query. The only table listed in the query is
KEEPER. You do not need to know the name of the object table to DEREF its values.

■ The entire referenced row object was returned, not just part of the row.

These are significant differences that separate object queries from relational queries. Thus,
when querying your tables, you need to know the way in which their relationships are established.
Are the relationships based on foreign keys and primary keys, or on object tables and REF
datatypes? To help smooth the transition between relational and object-oriented approaches,
Oracle allows you to create object views that contain REFs superimposed on existing relational
tables. See “Object Views with REFs,” later in this chapter.

The VALUE Function
The DEREF function was applied to the relational table—the KEEPER table, in this case. The DEREF
function returns the value of the reference that goes from the relational table to the object table.

What about querying from the object table? Can you select from ANIMAL?

select * from ANIMAL;

BREED NAME BIRTHDATE
------------------------- ------------------------- ---------
MULE FRANCES 01-APR-02
DOG BENJI 03-SEP-01

Even though ANIMAL is an object table, you can select from it as if it were a relational table.
This is consistent with the examples of inserts and selects shown earlier in this chapter. However,
that is not what was shown via the DEREF. The DEREF showed the full structure of the abstract
datatype used by the ANIMAL object table:

select DEREF(K.AnimalKept)
from KEEPER K
where KeeperName = 'CATHERINE WEILZ';

DEREF(K.ANIMALKEPT)(BREED, NAME, BIRTHDATE)

ANIMAL_TY('DOG', 'BENJI', '03-SEP-01')

To see the same structures from a query of the ANIMAL object table, use the VALUE function.
As shown in the following listing, VALUE shows you the data in the same format that DEREF will
use. The parameter for the VALUE function is the table alias.

select VALUE(A)
from ANIMAL A
where Name = 'BENJI';

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

616 Part IV: Object-Relational Databases

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 33
Blind Folio 33:616

VALUE(A)(BREED, NAME, BIRTHDATE)

ANIMAL_TY('DOG', 'BENJI', '03-SEP-01')
ANIMAL_TY('DOG', 'BENJI', '03-SEP-01')

The VALUE function is useful when debugging references and within PL/SQL, as shown in
“Object PL/SQL,” later in this chapter. Since it allows you to query the formatted values directly
from the object table, you can select those values without using the DEREF query of KEEPER’s
AnimalKept column.

Invalid References
You can delete the object to which a reference points. For example, you can delete a row from
the ANIMAL object table to which a KEEPER record points:

delete from ANIMAL
where Name = 'BENJI';

The record in KEEPER that references this ANIMAL record will now have what is called a
dangling REF. If you insert a new ANIMAL row for the animal named BENJI, it won’t be recognized
as being part of the same reference established earlier. The reason is that the first time you inserted
a BENJI row, Oracle generated an OID for the row object, and that is what the KEEPER column
referenced. When you deleted the row object, the OID went away—and Oracle does not reuse
OID numbers. Therefore, when the new BENJI record is entered, it is given a new OID value—
and the KEEPER record still points to the old value.

This is a critical difference between relational and OOP systems. In a relational system, the
join between two tables is dependent only on the current data. In an OOP system, the join is
between objects—and just because two objects have the same data, that doesn’t mean they are
the same.

Object Views with REFs
You can use object views to superimpose OOP structures on existing relational tables (refer to
Chapter 30). For example, you can create abstract datatypes and use them within the object view
of an existing table. Using object views allows you to access the table via either relational command
syntax or abstract datatype syntax. As a result, object views provide an important technological
bridge from existing relational applications to object-relational applications.

A Quick Review of Object Views
This example from Chapter 30 will serve as part of the basis for the advanced object views in this
chapter. First, a CUSTOMER table is created, with the Customer_ID column as its primary key:

create table CUSTOMER
(Customer_ID NUMBER constraint CUSTOMER_PK primary key,
Name VARCHAR2(25),
Street VARCHAR2(50),

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

City VARCHAR2(25),
State CHAR(2),
Zip NUMBER);

Next, two abstract datatypes are created. The first, ADDRESS_TY, contains attributes for
addresses: Street, City, State, and Zip. The second, PERSON_TY, contains a Name attribute plus
an Address attribute that uses the ADDRESS_TY datatype, as shown in the following listing:

create or replace type ADDRESS_TY as object
(Street VARCHAR2(50),
City VARCHAR2(25),
State CHAR(2),
Zip NUMBER);

create or replace type PERSON_TY as object
(Name VARCHAR2(25),
Address ADDRESS_TY);

Since the CUSTOMER table was created without using the ADDRESS_TY and PERSON_TY
datatypes, you need to use object views in order to access CUSTOMER data via object-based
accesses (such as methods). You can create an object view that specifies the abstract datatypes that
apply to the CUSTOMER table. In the following listing, the CUSTOMER_OV object view is created:

create view CUSTOMER_OV (Customer_ID, Person) as
select Customer_ID,

PERSON_TY(Name,
ADDRESS_TY(Street, City, State, Zip))

from CUSTOMER;

In the creation of the CUSTOMER_OV object view, the constructor methods for the two abstract
datatypes (ADDRESS_TY and PERSON_TY) are specified. You can now access the CUSTOMER table
directly (as a relational table) or via the constructor methods for the abstract datatypes.

The CUSTOMER table will be used in the next set of examples in this chapter.

Object Views Involving References
If the CUSTOMER table shown in the previous section is related to another table, you can use
object views to create a reference between the tables. That is, Oracle will use the existing primary
key/foreign key relationships to simulate OIDs for use by REFs between the tables. You will thus
be able to access the tables either as relational tables or as objects. When you treat the tables as
objects, you will be able to use the REFs to automatically perform joins of the tables (refer to
“Using the DEREF Function,” earlier in this chapter, for examples).

The CUSTOMER table has a primary key of Customer_ID. Let’s create a small table that will
contain a foreign key reference to the Customer_ID column. In the following listing, the CUSTOMER_
CALL table is created. The primary key of the CUSTOMER_CALL table is the combination
of Customer_ID and Call_Number. The Customer_ID column of CUSTOMER_CALL is a foreign

Chapter 33: Advanced Object-Oriented Concepts 617

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 33
Blind Folio 33:617

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

key back to CUSTOMER—you cannot record a call for a customer who does not already have a
record in CUSTOMER. A single nonkey attribute, Call_Date, is created within the CUSTOMER_
CALL table.

create table CUSTOMER_CALL
(Customer_ID NUMBER,
Call_Number NUMBER,
Call_Date DATE,
constraint CUSTOMER_CALL_PK

primary key (Customer_ID, Call_Number),
constraint CUSTOMER_CALL_FK foreign key (Customer_ID)

references CUSTOMER(Customer_ID));

For example, you could have the following CUSTOMER and CUSTOMER_CALL entries:

insert into CUSTOMER values
(123,'SIGMUND','47 HAFFNER RD','LEWISTON','NJ',22222);
insert into CUSTOMER values
(234,'EVELYN','555 HIGH ST','LOWLANDS PARK','NE',33333);

insert into CUSTOMER_CALL values
(123,1,TRUNC(SysDate)-1);
insert into CUSTOMER_CALL values
(123,2,TRUNC(SysDate));

The foreign key from CUSTOMER_CALL to CUSTOMER defines the relationship between the
tables. From an OOP point of view, the records in CUSTOMER_CALL reference the records in
CUSTOMER. Therefore, we must find a way to assign OID values to the records in CUSTOMER
and generate references in CUSTOMER_CALL.

How to Generate OIDs
First, use an object view to assign OIDs to the records in CUSTOMER. Remember that OIDs
are assigned to records in an object table—and an object table, in turn, is based on an abstract
datatype. Therefore, we first need to create an abstract datatype that has the same structure as the
CUSTOMER table:

create or replace type CUSTOMER_TY as object
(Customer_ID NUMBER,
Name VARCHAR2(25),
Street VARCHAR2(50),
City VARCHAR2(25),
State CHAR(2),
Zip NUMBER);

Now, create an object view based on the CUSTOMER_TY type, while assigning OID values
to the records in CUSTOMER:

create or replace view CUSTOMER_OV of CUSTOMER_TY
with object identifier (Customer_ID) as

618 Part IV: Object-Relational Databases

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 33
Blind Folio 33:618

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

select Customer_ID, Name, Street, City, State, Zip
from CUSTOMER;

The first part of this create view command gives the view its name (CUSTOMER_OV) and tells
Oracle that the view’s structure is based on the CUSTOMER_TY datatype:

create or replace view CUSTOMER_OV of CUSTOMER_TY

The next part of the create view command tells the database how to construct OID values for
the rows in CUSTOMER. The with object identifier clause is followed by the column to use for the
OID—in this case, the Customer_ID value. This will allow you to address the rows within the
CUSTOMER table as if they were referenceable row objects within an object table.

with object identifier (Customer_ID) as

NOTE
The with object identifier clause replaces the with object OID clause
used in earlier versions of Oracle. The with object OID syntax is still
supported for backward compatibility.

The final part of the create view command gives the query on which the view’s data access
will be based. The columns in the query must match the columns in the view’s base datatype.

select Customer_ID, Name, Street, City, State, Zip
from CUSTOMER;

The rows of CUSTOMER are now accessible as row objects via the CUSTOMER_OV view.
The OID values generated for the CUSTOMER_OV rows are called pkOIDs, because they are
based on CUSTOMER’s primary key values. Relational tables can be accessed as row objects if
you create object views for them.

How to Generate References
The rows of CUSTOMER_CALL reference rows in CUSTOMER. From a relational perspective, the
relationship is determined by the foreign key pointing from the CUSTOMER_CALL.Customer_ID
column to the CUSTOMER.Customer_ID column. Now that the CUSTOMER_OV object view has
been created, and the rows in CUSTOMER can be accessed via OIDs, you need to create reference
values in CUSTOMER_CALL that reference CUSTOMER. Once the REFs are in place, you will be
able to use the DEREF function (shown earlier in this chapter) to access the CUSTOMER data from
within CUSTOMER_CALL.

The create view command for the object view of CUSTOMER_CALL is shown in the following
listing. It uses a new function, MAKE_REF, which is described following the listing.

create view CUSTOMER_CALL_OV as
select MAKE_REF(CUSTOMER_OV, Customer_ID) Customer_ID,

Call_Number,
Call_Date

from CUSTOMER_CALL;

Chapter 33: Advanced Object-Oriented Concepts 619

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 33
Blind Folio 33:619

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

620 Part IV: Object-Relational Databases

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 33
Blind Folio 33:620

With the exception of the MAKE_REF operation, this create view command looks like a normal
create view command. The MAKE_REF operation is shown in this line:

select MAKE_REF(CUSTOMER_OV, Customer_ID) Customer_ID,

The MAKE_REF function takes as arguments the name of the object view being referenced and
the name of the column (or columns) that form the foreign key in the local table. In this case, the
Customer_ID column of the CUSTOMER_CALL table references the column that is used as the basis
of OID generation in the CUSTOMER_OV object view. Therefore, two parameters are passed to
MAKE_REF: CUSTOMER_OV and Customer_ID. The result of the MAKE_REF operation is given the
column alias Customer_ID. Since this command creates a view, the result of an operation must be
given a column alias.

What does MAKE_REF do? It creates references (called pkREFs, since they are based on primary
keys) from the CUSTOMER_CALL_OV view to the CUSTOMER_OV view. You can now query the
two views as if CUSTOMER_OV were an object table and CUSTOMER_CALL_OV were a table
that contains a REF datatype that references CUSTOMER_OV.

Querying the Object Views
The queries of the object views with REFs mirror the structure of the queries of table REFs. You
use the DEREF function to select the value of the referenced data, as shown earlier in this chapter.
Applied to the object views, the query will be

select DEREF(CCOV.Customer_ID)
from CUSTOMER_CALL_OV CCOV
where Call_Date = TRUNC(SysDate);

DEREF(CCOV.CUSTOMER_ID)(CUSTOMER_ID, NAME, STREET, CITY, STATE,ZIP)

CUSTOMER_TY(123, 'SIGMUND', '47 HAFFNER RD', 'LEWISTON','NJ',22222)

The query found the record in CUSTOMER_CALL for which the Call_Date value was the
current system date. It then took the Customer_ID value from that record and evaluated its
reference. That Customer_ID value, from the MAKE_REF function, pointed to a pkOID value in
the CUSTOMER_OV object view. The CUSTOMER_OV object view returned the record whose
pkOID matched the referenced value. The DEREF function then returned the value of the
referenced row. The query thus returned rows from CUSTOMER even though the user only
queried CUSTOMER_CALL.

Object views of column objects enable you to work with tables as if they were both relational
tables and object-relational tables. When extended to row objects, object views enable you to
generate OID values based on established foreign key/primary key relationships. Object views
allow you to continue to use the existing constraints and standard insert, update, delete, and
select commands. They also allow you to use OOP features such as references against the object
tables. Object views thus provide an important technological bridge for migrating to an OOP
database architecture.

As described earlier in this chapter, Oracle performs joins that resolve the references defined
in the database. When the referenced data is retrieved, it brings back the entire row object that

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 33
Blind Folio 33:621

was referenced. To reference the data, you need to establish pkOIDs in the table that is the
“primary key” table in the relationship, and use MAKE_REF to generate references in the table
that is the “foreign key” table in the relationship. You can then work with the data as if it were
stored in object tables.

Object PL/SQL
PL/SQL programs can use the abstract datatypes you have created. Whereas earlier versions of PL/SQL
could only use the Oracle-provided datatypes (such as DATE, NUMBER, and VARCHAR2), you can
now use your own user-defined datatypes as well. The result is the merging of SQL, procedural logic,
and OOP extensions—a combination referred to as object PL/SQL.

The following anonymous PL/SQL block uses object PL/SQL concepts. The CUSTOMER_TY
abstract datatype is used as the datatype for the Cust1 variable, and its value is populated by a
query of the CUSTOMER_OV object view.

set serveroutput on
declare

Cust1 CUSTOMER_TY;
begin

select VALUE(COV) into Cust1
from CUSTOMER_OV COV

where Customer_ID = 123;
DBMS_OUTPUT.PUT_LINE(Cust1.Name);
DBMS_OUTPUT.PUT_LINE(Cust1.Street);

end;

The output of this PL/SQL block is

SIGMUND
47 HAFFNER RD

In the first part of the PL/SQL block, a variable is declared using the CUSTOMER_TY datatype:

declare
Cust1 CUSTOMER_TY;

The Cust1 variable value is selected from the CUSTOMER_OV object view (created in the
previous section of this chapter). The VALUE function is used to retrieve the data in the structure
of the abstract datatype. Since the data will be selected in the format of the abstract datatype, you
need to use the CUSTOMER_OV object view created on the CUSTOMER table.

begin
select VALUE(COV) into Cust1
from CUSTOMER_OV COV

where Customer_ID = 123;

Chapter 33: Advanced Object-Oriented Concepts 621

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

622 Part IV: Object-Relational Databases

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 33
Blind Folio 33:622

The Cust1.Name and Cust1.Street values are then retrieved from the attributes of the Cust1
variable and displayed. You cannot pass the entire Cust1 variable to the PUT_LINE procedure.

DBMS_OUTPUT.PUT_LINE(Cust1.Name);
DBMS_OUTPUT.PUT_LINE(Cust1.Street);

end;

This is a deliberately simple example, but it shows the power of object PL/SQL. You can use
object PL/SQL anywhere you use abstract datatypes. Your PL/SQL is thus no longer bound to the
Oracle-provided datatypes, and may more accurately reflect the objects in your database. In this
example, an object view was queried to illustrate that the queries can access either column objects
or row objects. You can then select the attributes of the abstract datatype and manipulate or display
them. If you have defined methods for the abstract datatype, you can apply them as well.

For example, you can call the datatype’s constructor methods within your PL/SQL blocks. In the
following example, a variable named NewCust is defined using the CUSTOMER_TY datatype. The
NewCust variable is then set equal to a set of values using the CUSTOMER_TY constructor method.
The NewCust variable’s set of values is then inserted via the CUSTOMER_OV object view.

declare
NewCust CUSTOMER_TY;

begin
NewCust :=
CUSTOMER_TY(345,'NewCust','StreetVal', 'City','ST',00000);

insert into CUSTOMER_OV
values (NewCust);

end;

You can see the result of the insert by querying CUSTOMER_OV:

select Customer_ID, Name from CUSTOMER_OV;

CUSTOMER_ID NAME
----------- -------------------------

123 SIGMUND
234 EVELYN
345 NewCust

In addition to calling constructor methods, you can call the methods you have created on
your abstract datatypes. If you will be comparing the values of variables that use the abstract
datatypes, you will need to define map or order methods for the datatypes. This capability allows
you to further extend object PL/SQL—you define the datatypes and the functions at the database
level, and they are callable within any of your PL/SQL programs. Object PL/SQL represents a
significant enhancement over traditional PL/SQL.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Objects in the Database
The features available in Oracle—column objects, row objects, and object extensions to PL/SQL—
enable you to implement objects in your database without sacrificing the investment you have
already made in analysis and design. You can continue to create systems based on relational
design techniques and tune them based on relational access methods. The tools that Oracle
provides allow you to create an OOP layer above your relational tables. Once you have that
layer in place, you can access the relational data as if it were stored in a fully OOP database.

Having an OOP layer allows you to realize some of the benefits of an OOP system, such
as abstraction and encapsulation. You can apply the methods for each abstract datatype
across a set of consistently implemented objects, and benefit from object reuse and standards
enforcement. At the same time, you can benefit from Oracle’s relational features. The ability
to use both relational and object technology within an application lets you use the proper tool
for the proper job within the database.

When implementing the object portion of an object-relational database, start by defining the
abstract datatypes that are the core components of your business. Every object-relational feature,
whether it relates to column objects or row objects, is based on an abstract datatype. The better
you have defined your datatypes and their methods, the better you will be able to implement
objects. If necessary, nest objects so that you can have multiple variations of the same core datatype.
The result will be a database that is properly designed to take advantage of the relational and
OOP features Oracle provides now, and will provide in versions to come.

Chapter 33: Advanced Object-Oriented Concepts 623

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 33
Blind Folio 33:623

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 33
Blind Folio 33:624

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 34
Blind Folio 34:625

PART
V

Java in Oracle

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 34
Blind Folio 34:626

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 34
Blind Folio 34:627

CHAPTER
34

An Introduction to Java

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

I
n this chapter, you will see an overview of Java as it relates to Oracle database
applications. There are numerous uses of Java beyond Oracle applications, and there
are many features of the language that will not be used by most Oracle developers.
The goal of this chapter is to provide developers who have a background in SQL and
PL/SQL with an understanding of the Java language structures. This is not an exhaustive

review of Java (there are numerous books that accomplish that goal) but rather a short overview
of the Java language components most commonly used by Oracle developers.

Although there are many cases in which PL/SQL and Java correlate well to each other, there
are significant differences in terminology and usage. That shouldn’t be surprising, since the two
programming languages were developed independently. Furthermore, PL/SQL’s object-oriented
capabilities were not part of its initial implementation, whereas Java has been object-oriented
since its inception. To use Java effectively, you need to take a different approach than the one
you may have taken in the past with PL/SQL.

Chapter 27 presented an introduction to the PL/SQL language structures and flow control. This
chapter mirrors that approach: You will see the structures used by Java and the basic flow-control
methods provided. Where applicable, you will also see the matching PL/SQL structures. You
should be familiar with PL/SQL (Chapter 27); packages, functions, and procedures (Chapter 29);
and abstract datatypes and methods (Chapter 30) before reading this chapter.

Java vs. PL/SQL: An Overview
In comparing PL/SQL to Java, you get no further than the basic PL/SQL structure—a block—
before you encounter a significant difference in terminology between the two languages. In
PL/SQL, a block is a structured piece of code that has a Declarations section, an Executable
Commands section, and an Exception Handling section. For a PL/SQL block, the structure may
be represented as follows:

declare
<declarations section>

begin
<executable commands>

exception
<exception handling>

end;

In Java, the term block refers to a much smaller subset of code. In Java, a block is a collection
of statements enclosed by curly braces, { and }. For example, the following pseudocode contains
two Java blocks:

if (some condition) {
block of code to process if condition is met

}
else {

block of code to process if condition is not met
}

628 Part V: Java in Oracle

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 34
Blind Folio 34:628

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Within PL/SQL, that entire code section would be merely one part of a larger block; within
Java, it contains two separate blocks. Throughout this chapter, all references to “blocks” refer to
Java blocks unless otherwise specified.

A second major difference between PL/SQL and Java is in the declaration of variables. In a
PL/SQL block, you define your variables before you begin the Executable Commands section.
In a Java program, you can define variables where they are needed within the program. A Java
program has no Declarations section comparable to the one used in PL/SQL blocks.

Throughout this chapter, you will see a number of other differences between PL/SQL and
Java. It’s important to remember that Java does not replace PL/SQL within your applications—you
can continue to use PL/SQL for Oracle applications. For data-retrieval operations, you should test
the performance of PL/SQL and Java before deciding on a technical direction to follow.

Getting Started
To use the examples in this section, you need a copy of the Java Development Kit (JDK), which is
available for free download from http://java.sun.com. You need to install the JDK on the server
on which you will be running the Java programs. As of the time of this writing, JDK 1.4 is the
most recent production release; most development efforts use JDK 1.3.1. At a minimum, you
should use JDK 1.2.2.

Declarations
Within Java, you can declare variables as needed. A variable has a name and a datatype, and is
used to store a data value during the program’s execution. A variable also has a scope, allowing
it to be publicly accessible or private—similar to the manner in which procedures within packages
can have private variables.

Examples of Java variable declarations include:

char aCharVariable = 'J';
boolean aBooleanVariable = false;

By convention, Java variables always start with a lowercase letter, as shown in this example.
In the example, the datatypes are CHAR and BOOLEAN, and each variable is assigned an initial
value. Note that the assignment character in Java is =, as opposed to := or => in PL/SQL. Each
declaration is terminated with a semicolon.

The available primitive datatypes in Java are listed in Table 34-1.

Chapter 34: An Introduction to Java 629

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 34
Blind Folio 34:629

Datatype Description

byte Byte-length integer

short Short integer

int Integer

TABLE 34-1. Primitive Java Datatypes

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In addition to the primitive datatypes listed in Table 34-1, you can use reference datatypes,
which are based on the contents of variables. You may note that there is no primitive datatype
for variable-length character strings—Java provides a String class for that purpose. Classes are
discussed later in this chapter.

Executable Commands
You can assign values to variables via the use of expressions and statements. The arithmetic
operators supported by Java include:

Operator Description

* Multiplication

/ Division

+ Addition

- Subtraction

% Modulus

In addition to these operators, you can use Java’s unary operators to simplify your coding. For
example, you can increment variables via the ++ operator:

aLoopCounter = aLoopCounter++;

or you could simply write:

aLoopCounter++

NOTE
The ++ operator is called a unary operator because it has only one
operand. If an operator requires two operands (such as *), it is called
a binary operator.

630 Part V: Java in Oracle

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 34
Blind Folio 34:630

Datatype Description

long Long integer

float Single-precision floating-point real number

double Double-precision floating-point real number

char A single Unicode character

boolean A Boolean value, true or false

TABLE 34-1. Primitive Java Datatypes (continued)

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In PL/SQL, that would have been written:

aLoopCounter := aLoopCounter +1;

If the ++ operator is placed in front of the variable name, then it is a preincrement operator
rather than a postincrement operator:

int anotherCounter = ++aLoopCounter;

In this example, the variable anotherCounter is set to the incremented value of aLoopCounter.
By contrast,

int anotherCounter = aLoopCounter++;

sets anotherCounter to the value of aLoopCounter before it is incremented. You can decrement a
variable’s value, via the -- unary operator:

aLoopCounter = aLoopCounter--;

You can also combine the assignment of values with an operation. For example, instead of writing

aNumberVariable = aNumberVariable * 2;

you can write

aNumberVariable *= 2;

You can perform similar combinations using /=, %=, +=, and -=.
If you perform multiple arithmetic operations, you should use parentheses to clearly indicate

the order in which the operations should be evaluated, as shown in the following example.

aNumberVariable = (aNumberVariable*2) +2;

Terminating these operations with semicolons makes them statements—complete units
of execution.

Conditional Logic
You can evaluate variables by using expressions and statements. To do so, you may use one or
more of the fundamental classes provided as part of Java. A full listing of those methods is beyond
the scope of this book; see Sun’s Java documentation site or one of the many Java books available
for the functionality currently provided.

NOTE
The number of supplied classes changes dramatically with each
release of Java.

Chapter 34: An Introduction to Java 631

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 34
Blind Folio 34:631

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In the following listing, the Character.isUpperCase method is used to evaluate the aCharVariable
declared earlier:

if (Character.isUpperCase(aCharVariable)) {
some commands to execute

}

If the aCharVariable value is uppercase, the commands in the following block will be executed;
otherwise, flow will continue to the next part of the program.

The following is the general syntax for if clauses:

if (expression) {
statement

}

Notice the lack of a then clause. If the expression being evaluated is true, the following block is
automatically executed.

You can also have else clauses to evaluate different conditions, as shown in the following listing:

if (expression) {
statement

}
else {

statement
}

If you have multiple conditions to check, you can use the else if clause to evaluate each in
turn, ending with an else clause. The following listing illustrates the use of else if clauses.

if (aCharVariable == 'V') {
statement

}
else if (aCharVariable == 'J') {

statement
}
else {

statement
}

In addition to supporting if clauses for conditional logic, Java features a switch clause. Used
in conjunction with its break clause and statement labels, the switch clause can approximate the
functionality of goto clauses (which Java does not support). First, let’s look at a simple switch
example. Using the case statement, multiple values of the aMonth variable are evaluated. Depending
on the aMonth value, the text name for the month is displayed, and the processing leaves the
switch block by means of a break.

int aMonth=2;
switch (aMonth) {
case 1:

632 Part V: Java in Oracle

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 34
Blind Folio 34:632

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 34: An Introduction to Java 633

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 34
Blind Folio 34:633

System.out.println("January");
break;

case 2:
System.out.println("February");
break;

case 3:
System.out.println("March");
break;

default:
System.out.println("Out of range");
break;

}

This kind of code is much more complex to write than a simple TO_CHAR, but it illustrates
the switch usage. The switch operator takes the aMonth variable as its input, and evaluates its
value. If the value matches a case value, then the System.out.println method is called to print the
month’s name, and processing control leaves the switch block by means of a break. If the value
does not match one of the case clauses, then the default option is executed.

Where does control go? By default, it goes to the next section of the program. However, you
have the option of creating labels for sections of your code, and passing the name of those labels
to the break clause. The following listing shows an example of a label and a break clause:

somelabel:
if (aCharVariable == 'V') {

statement
}
else {

statement
}
int aMonth=2;
switch (aMonth) {
case 1:

System.out.println("January");
break somelabel;

case 2:
System.out.println("February");
break someotherlabel;

case 3:
System.out.println("March");
break somethirdlabel;

default:
System.out.println("Out of range");
break;

}

In this example, the if clause is evaluated, followed by the switch clause. Note that the aMonth
variable is not declared until just before it is needed. For this example, the aMonth variable is
assigned a value of 2, so the program will display the word “February” and will then branch over
to the section of code identified by the someotherlabel label. If the aMonth value had been 1, the
if clause at the beginning of the code listing would have been reexecuted.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Java also supports a ternary operator—an operator that takes three operands and whose function
is similar to that of DECODE. Acting as an inline if-else combination, the ternary operator evaluates
an expression. If the expression evaluates to true, then the second operand is returned, else the
third is returned. The syntax is as follows:

expression ? operand1 : operand2

The following listing shows a sample ternary operation:

aStatusVariable = (aCharVariable == 'V') ? "OK" : "Invalid";

In this example, the expression

(aCharVariable == 'V')

is evaluated. If it is true, “OK” is returned; otherwise, “Invalid” is returned.
You can use the ternary operator to simulate the use of a GREATEST function:

double greatest = (a > b) ? a : b;

In this example, the expression (a>b) is evaluated, where a and b are the names of variables. If that
expression is true, a’s value is returned; otherwise, b’s value is returned.

NOTE
Java has a “greatest” method for numeric values—the
Max method within the java.lang.Math class. The ternary
example in the preceding listing can be rewritten as
double greatest = Math.max(a, b);

You can combine multiple logic checks via the use of AND and OR operations. In Java, an
AND operation is represented by the && operator:

if (aCharVariable == 'V' && aMonth == 3) {
statement

}

The OR operation is represented by ||, as shown in the following listing:

if (aCharVariable == 'V' || aMonth == 3) {
statement

}

For performance reasons, the && and || operations are carried out only if required; the
second expression is not evaluated if the first expression determines the result. In the case of the
AND operator, if the first value is false, then the evaluation ends at that point and the Boolean
value false is returned. In the case of the OR operator, if the first expression is false, the second
expression will still be evaluated because only one of the test conditions needs to be true for the

634 Part V: Java in Oracle

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 34
Blind Folio 34:634

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Boolean value true to be returned. If the first value of the OR operator were true, then subsequent
expressions would not need to be evaluated and true would be returned.

The & and | operators are bitwise AND and OR; they are not short-circuited as && and || are.
All expressions will always be evaluated. This functionality can be important if you are testing the
return values of method calls and you need to make sure the methods are executed.

Loops
Java supports three main types of loops: WHILE loops, DO-WHILE loops, and FOR loops. In this
section, you will see examples of each type of loop. Since Java is not written as an extension of
SQL, it does not support cursor FOR loops as PL/SQL does.

WHILE Loops and DO-WHILE Loops
A while clause evaluates a condition; if the condition is true, the associated block of statements is
executed. The syntax for a WHILE loop is of the following form:

while (expression) {
statement
statement

}

The WHILE loop executes the block of statements (the section within the { and } braces)
repeatedly until the expression is no longer true:

int aNumberVariable = 3;
while (aNumberVariable < 7) {

some_processing_statement
aNumberVariable++;

}

In this example, a counter variable (aNumberVariable) is created and initialized. The variable’s
value is then evaluated via the while clause. If the value is less than 7, the associated statement
block is executed. As part of that block, the variable is incremented. When the block completes,
the variable is again evaluated and the loop continues.

NOTE
For examples of WHILE loop processing, see “Classes”
later in this chapter.

You could also write this as a DO-WHILE loop:

int aNumberVariable = 3;
do {

some_processing_statement
aNumberVariable++;

} while (aNumberVariable < 7);

Chapter 34: An Introduction to Java 635

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 34
Blind Folio 34:635

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In a DO-WHILE loop, the expression’s value is not evaluated until the block has been
processed at least one time.

FOR Loops
You can use a FOR loop to repeatedly execute a block of code. In a FOR loop, you specify an
initial value, a termination value, and an increment for the loop counter. The loop counter will
be incremented each time through the loop by the increment you specify until the termination
value is reached. The following is the syntax for a FOR loop:

for (initialization; termination; increment) {
statement;

}

The prior section’s WHILE example can be rewritten with a for clause, as shown in the
following listing:

for (int aNumberVariable=3; aNumberVariable<7; aNumberVariable++) {
some_processing_statement

}

The for clause version for this example is much shorter than the while version. In this example,
the aNumberVariable variable is declared and initialized within the FOR loop. As long as the
variable’s value does not exceed 7, the block will be executed. For each pass through the loop,
the variable’s value is incremented by 1 via the ++ unary operator.

Within a loop, you can use the continue clause to jump to another statement within the loop.
If you just use the continue clause by itself, the process flow will jump to the end of the loop body
and evaluate the loop’s termination test. If you use continue with a label (as shown previously in
the section on the switch clause), processing will continue at the next iteration of the labeled loop.

Cursors and Loops
Within PL/SQL, you can use cursor FOR loops to iterate through the results of a query. You can
use Java’s WHILE and FOR loops to simulate the functionality of a PL/SQL cursor FOR loop. The
examples provided with Oracle9i show how this can be accomplished. Java examples are found
in the /jdbc/demo directory under the Oracle software home directory. The Employee.java file
found there creates the Employee class within Java. As part of that class, the example issues the
following commands:

Statement stmt conn.createStatement();
ResultSet rset = stmt.executeQuery ("select ENAME from EMP");
//iterate through the result set and print the employee names
while (rset.next ())
System.out.println (rset.getString (1));

This example assumes that a connection to the database has already been established. The
first line of the example creates a variable called stmt, based on a connection variable called
conn (not shown in this partial listing). The second line of the example creates a variable called
rset, based on the result set that the query stmt will return. Following a comment (prefixed by //),

636 Part V: Java in Oracle

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 34
Blind Folio 34:636

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 34: An Introduction to Java 637

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 34
Blind Folio 34:637

a while clause fetches each row in the result set. If the fetch retrieves a row from the result set,
the ENAME from that EMP row is printed; otherwise, the loop will end.

From a programming perspective, you should be specific in the data returned. The example
provided by Oracle can be modified to use the column name returned, instead of an absolute
column number, as shown in the following listing:

Statement stmt conn.createStatement();
ResultSet rset = stmt.executeQuery ("select ENAME from EMP");
//iterate through the result set and print the employee names
while (rset.next()) {
System.out.println (rset.getString ("ENAME"));
}

The JDBC (Java Database Connectivity; see Chapter 35) demos provided by Oracle show samples
of queries involving procedure calls, LOBs, and DML. In most cases, your Java code will be
performing in a similar manner to the previous example: Write the process flow-control language
in Java and pass it a statement to execute. Based on the outcome of that statement, you can direct
different actions to occur via the use of while, for, if, break, continue, and switch clauses, as shown
earlier in this chapter.

Exception Handling
Java provides a robust set of error-handling routines and enables you to create complex error-handling
procedures. In PL/SQL, you raise an exception; in Java, you throw exceptions. If an exception is
thrown, you need to use the Java catch clause to capture and properly process the exception.

Java’s exception-handling syntax is based on three blocks: try, catch, and finally. The try
block includes the statements that might throw an exception. The catch block immediately
following the try block associates exception handlers with the exceptions that may be thrown by
the try block. The finally block cleans up any system resources not properly cleaned up during the
catch block processing. The general structure is as follows:

try {
statements

}
catch () {

statements
}
catch () {

statements
}
finally {

statements
}

For example, the following code comes from the PLSQL.java example file provided as part
of Oracle9i:

try {
Statement stmt = conn.createStatement ();

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

stmt.execute ("drop table plsqltest");
}
catch (SQLException e) {
}

In this example, a variable named stmt is created to execute a drop table command. If the
execution fails—for example, if the table does not exist—how will that error be processed? The catch
clause tells Java to handle it via an exception object called SQLException, a standard part of Java’s
SQL implementation. As shown in the example, the catch clause takes two parameters (an exception
object and a variable name) and is optionally followed by a block of statements to execute.

The try block can contain multiple statements, or you can create separate try blocks for each
statement. In general, it is easier to manage exception handling if you consolidate your catch blocks,
so consolidating your try blocks will help you manage your code as it changes and grows.

The finally block cleans up the state of the current code section before passing control to any
subsequent parts of the program. At runtime, the contents of the finally block are always executed,
regardless of the outcome of the try block. For example, you could use the finally block to close
a database connection.

Reserved Words
The reserved words in Java are listed in Table 34-2. You cannot use these words as the names of
classes, methods, or variables.

638 Part V: Java in Oracle

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 34
Blind Folio 34:638

abstract else interface super

boolean extends long switch

break false native synchronized

byte final new this

case finally null throw

catch float package throws

char for private transient

class goto protected true

const if public try

continue implements return void

default import short volatile

do instanceof static while

double int strictfp

TABLE 34-2. Java Reserved Words

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Classes
In the prior sections of this chapter, you saw the basic syntax structures for Java. In this section,
you will see how to use that syntax to create and use objects. A simple program for printing the
word “Oracle” is shown in the following listing:

public class HelloOracle {
public static void main (String[] args) {

System.out.println("Oracle");
}

}

This example creates a class called HelloOracle. Within the HelloOracle class, a public method
called main is created. The main method prints the word “Oracle.” This is significantly more
complex than

select 'Oracle' from dual;

but the Java version has features lacking in the SQL version. HelloOracle is a class, and as such
its methods can be called from within other classes. HelloOracle could have multiple methods;
in this example, it has only the main method.

The main method’s declaration (public static void main) has a number of keywords that you
should become familiar with:

public Defining the class as public allows all classes to call this method.

static Declares that this is a class method; you use static to declare class methods. An
additional option is the keyword final for methods and variables whose values
cannot change (similar to PL/SQL’s constant option).

void Specifies the return value’s data type from the procedure. Since this procedure
does not return values, its type is void.

In this example, the method is given the name main because that will simplify running the
class’s method. Now that the class has been created, you can compile and load it.

NOTE
To compile and execute a Java class, you must have the JDK on your
server. The following examples assume that the binaries that are part
of that kit are located in a directory that is automatically searched via
the PATH environment variable, and the directory containing your
.class files is included in the CLASSPATH environment variable. The
programs referenced here (javac and java) are located in the /bin
subdirectory of the JDK software directory.

First, save the program as a plain text file called HelloOracle.java. Next, compile it:

javac HelloOracle.java

Chapter 34: An Introduction to Java 639

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 34
Blind Folio 34:639

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

A new file, called HelloOracle.class, will be created on your server. You can then run the class:

java HelloOracle

And the output will be displayed:

Oracle

As shown in the HelloOracle example, the class is first given a name, along with other
optional attributes related to its inheritance of other classes’ attributes. In the class body, all of the
class variables and methods are defined. As with abstract datatypes in Oracle, Java classes have
methods associated with them for the manipulation of their related data.

Let’s consider a more complex example. The following listing is a Java program that computes
the area of a circle, given a radius value as input (see Chapter 27 for the PL/SQL version):

// AreaOfCircle.java
//
public class AreaOfCircle {
public static void main(String[] args) {
try {

int input = Integer.parseInt(args[0]);
double result=area(input);
System.out.println(result);

}
catch (ArrayIndexOutOfBoundsException oob) {

System.out.println("You did not provide the radius of the circle.");
System.out.println("Usage: java AreaOfCircle 10");

}
catch (NumberFormatException nfe) {

System.out.println("Enter a valid number for the radius.");
System.out.println("Usage: java AreaOfCircle 10");

}
} /// main

public static double area (int rad) {
double pi=3.1415927;
double areacircle=pi*rad*rad;
return areacircle;

} /// area
} ///AreaOfCircle

NOTE
Be sure to include a closing brace, }, for each block. In the examples
shown in this chapter, the closing braces are always on a line by
themselves to simplify debugging and processing flow-control errors
that may arise.

640 Part V: Java in Oracle

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 34
Blind Folio 34:640

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

First, note that the class and the name of the file must be the same. In this case, the class is
named AreaOfCircle, so this text is stored in a file called AreaOfCircle.java. The class has two
methods, called main and area. When you execute the class, the main method is automatically
executed. The main method takes the string provided as input and parses it as an integer into the
input variable:

int input=Integer.parseInt(args[0]);

There are at least two possible exceptions that could be thrown when running this code. The
first exception handled, ArrayIndexOutOfBoundsException, occurs when you try to reference a
position in an array that doesn’t exist. As the code explicitly references the first position of the
array named args (args[0]), an exception will be thrown if no data was passed to the program.
The other possible error, NumberFormatException, would occur if a non-numeric value was
passed in. For example, if you ran the program by entering, “java AreaOfCircle XYZ” instead of
“java AreaOfCircle 123”, the NumberFormatException would be thrown because XYZ isn’t a
valid number. Both of these exceptions are handled by the two catch statements that provide
the user with useful feedback regarding the cause of the error:

catch (ArrayIndexOutOfBoundsException oob) {
System.out.println("You did not provide the radius of the circle.");
System.out.println("Usage: java AreaOfCircle 10");

}
catch (NumberFormatException nfe) {

System.out.println("You did not enter a valid number for the radius.");
System.out.println("Usage: java AreaOfCircle 10");

}

Next, a variable named result is declared, and set equal to the value returned by the call to
area(input):

double result=area(input);

To process that directive, the area method is executed, using the input variable’s value as its
input. That method is as follows:

public static double area (int rad) {
double pi=3.1415927;
double areacircle=pi*rad*rad;
return areacircle;

}

In its definition, the area method specifies that it will accept one variable, an integer type
named rad. That variable’s value (passed from the input variable in the main method) is then
processed, and a variable named areacircle is calculated and returned to main. In main, that
value is then printed:

double result=area(input);
System.out.println(result);

Chapter 34: An Introduction to Java 641

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 34
Blind Folio 34:641

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Testing the program is straightforward:

javac AreaOfCircle.java
java AreaOfCircle 10

The following is the output:

314.15927

Let’s extend this example to include WHILE loop processing. In this example, the area
method will be called repeatedly until the resulting input value exceeds a given value:

// AreaOfCircleWhile.java
//
public class AreaOfCircleWhile {

public static void main(String[] args) {
try {
int input=Integer.parseInt(args[0]);
while (input < 7) {
double result=area(input);
System.out.println(result);
input++;

}
}
catch (ArrayIndexOutOfBoundsException oob) {

System.out.println("You did not provide the radius of the circle.");
System.out.println("Usage: java AreaOfCircle 10");

}
catch (NumberFormatException nfe) {

System.out.println("Enter a valid number for the radius.");
System.out.println("Usage: java AreaOfCircle 10");

}
} /// main
public static double area (int rad) {
double pi=3.1415927;
double areacircle=pi*rad*rad;
return areacircle;

} /// area
} /// AreaOfCircleWhile

In this listing, the area method and the exception handling blocks are unchanged from the
prior example. The change is in the main method:

int input=Integer.parseInt(args[0]);
while (input < 7) {

double result=area(input);
System.out.println(result);
input++;

}

642 Part V: Java in Oracle

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 34
Blind Folio 34:642

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

While the input value is less than 7, the input value will be processed. After the area for that radius
value has been calculated and printed, the input value is incremented:

input++;

and the loop is evaluated again. Sample output is shown in the following listing.

javac AreaOfCircleWhile.java
java AreaOfCircleWhile 4

50.2654832
78.5398175
113.0973372

The output shows the area calculations for input radius values of 4, 5, and 6.
This example is not as complete as a finished program—you may need additional exception

handling to handle non-integers, for example—but the structure is the important lesson to learn
from this example. In addition to the methods shown in this example, you could create a constructor
for the AreaOfCircleWhile class. All Java classes have constructors to initialize new objects based
on the class. The constructor’s name is the same as the name of the class. If you create a class with
no constructor, then Java will create a default constructor at runtime. Like a method, the constructor
body can contain local variable declarations, loops, and statement blocks. The constructor
initializes these variables for the class.

In the following chapters, you will see how to implement Java within Oracle: within stored
procedures and via SQLJ/JDBC. Those chapters assume that you have the basic knowledge of
Java that is provided in this chapter. For additional information about the Java language, please
see the Sun Microsystems web site and the variety of books devoted to Java.

Chapter 34: An Introduction to Java 643

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 34
Blind Folio 34:643

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 34
Blind Folio 34:644

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 35
Blind Folio 35:645

CHAPTER
35

JDBC and SQLJ
Programming

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

J
ava Database Connectivity (JDBC) and SQLJ build on the Java and programming
basics described earlier in this book. The discussions and examples in this chapter
assume you are familiar with the Java syntax and structures described in Chapter 34.
This chapter does not cover every aspect of JDBC and SQLJ but focuses on the basic
configuration and usage of these tools.

You can use JDBC to execute dynamic SQL statements in Java programs. Oracle provides
sample files with its standard software installation. The following listing is from the Employee.java
demo file, located with the file /jdbc/demo/demo.zip under the Oracle software home directory.
The Employee.java demo issues the following commands after establishing a database connection:

Statement stmt conn.createStatement();
ResultSet rset = stmt.executeQuery ("select ENAME from EMP");
//iterate through the result set and print the employee names
while (rset.next ())
System.out.println (rset.getString (1));

When you execute a SQL statement via JDBC—in this case, select Ename from EMP—the SQL
statement is not checked for errors until it is run. The JDBC program that contains the SQL command
will compile even if the SQL statement is invalid.

By contrast, SQLJ performs a precompilation step that includes syntax checks for the SQL
embedded within the program. SQLJ also performs type checking and schema checking to make
sure the data can be properly retrieved and processed. When the SQLJ precompilation is complete,
the result is a Java program that runs via JDBC calls. SQLJ and JDBC, though distinct, are interrelated.

Getting Started
To use the examples in this section, you need a copy of the Java Development Kit (JDK), which
is available for free download from http://java.sun.com. You need to install the JDK on the server
on which you will be developing and running the Java programs. As of the time of this writing,
JDK 1.4 is the most recent production release; most development efforts use JDK 1.3.1. At a
minimum, you should use JDK 1.2.2. The examples in this chapter assume JDK 1.3.1 is in use.

Additional Steps for NT Users
If you will be accessing Oracle9i, you must set the CLASSPATH environment variable to find
the classes12.zip file (for JDK 1.2.2 or 1.3.1) provided by Oracle. The file is located in the
/jdbc/lib directory beneath your Oracle home directory or available for download from http://
technet.oracle.com. For JDK 1.1.8, use the classes111.zip file found in the /jdbc/lib directory.

NOTE
This step is not performed by the standard Oracle9i installation, so
you need to do it manually. If the system variables are not properly
set, you will not be able to compile Java classes that use Oracle’s
JDBC classes.

646 Part V: Java in Oracle

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 35
Blind Folio 35:646

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

To set your system variables, click the System icon in the Control Panel. Choose the Environment
tab to list the environment variables and their definitions. The PATH variable should already be
set, so select it and edit its value. Add the new entry to the end of the list, as shown in the following
listing. This value should be separated from the other values in the list by a semicolon.

E:\Oracle\Ora91\jdbc\lib\classes12.zip

Replace “E:\Oracle\Ora91” with your Oracle software home directory. You should also add
the JDK binaries directory to the PATH setting. The next listing shows the PATH setting expanded
to include a JDK 1.3.1 binaries directory (replace “E:\jdk131” with the directory in which you
installed the JDK):

E:\jdk131\bin

Next, create an environment variable named CLASSPATH if it doesn’t already exist (it won’t
for an initial Java setup). This variable must have two entries, separated by a semicolon. The first
entry must be a period, which denotes the current directory. The second entry must be the directory
for the classes12.zip file, using the same form and value as you used for the PATH value:

.;E:\Oracle\Ora91\jdbc\lib\classes12.zip

If CLASSPATH is not set correctly, you will get a NoClassDefFoundError error when you run a
compiled class.

NOTE
Be sure to use a version of the JDK that is compatible with the Oracle
release you are using. If you use a new release of the JDK with an
older release of Oracle’s drivers, you may encounter “access
violation” errors when executing your programs.

Testing Your Connection
Oracle provides a sample program called JdbcCheckup.java that you can use to verify your JDBC
configuration. This file may be in a Zip file (demo.zip on the /jdbc/demo directory), in which case
you need to extract it before running the program. Compile and execute the JdbcCheckup.java class:

javac JdbcCheckup.java
java JdbcCheckup

When you execute JdbcCheckup, you are prompted for a username, password, and connect
string for a database. That connection information will be used to attempt a connection; if successful,
that attempt will return the following output:

Connecting to the database...Connecting...
connected.
Hello World.
Your JDBC installation is correct.

Chapter 35: JDBC and SQLJ Programming 647

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 35
Blind Folio 35:647

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

If you don’t receive feedback telling you that your installation is correct, you need to check
your configuration. Common problems include incorrectly set environment variables (PATH
and CLASSPATH) and mismatched versions of database connection drivers. If you change the
environment variable values, you need to shut down and restart the command windows for the
changes to take effect.

Using the JDBC Classes
JDBC is implemented in Oracle via a set of Oracle-provided classes whose names begin with
oracle.sql, while the standard JDBC classes provided with the JDK begin with java.sql. The
JdbcCheckup.java class, shown in the following listing, provides a good roadmap for beginning
JDBC programmers. The JdbcCheckup.java class assumes you are using Oracle Net to connect
to the database.

NOTE
The following code is provided by Oracle. Your programming
standards may implement these commands differently, such as by
calling System.out.println in place of System.out.print, or by placing
the brackets in different places.

/*
* This sample can be used to check the JDBC installation.
* Just run it and provide the connect information. It will select
* "Hello World" from the database.
*/

// You need to import the java.sql package to use JDBC
import java.sql.*;

// We import java.io to be able to read from the command line
import java.io.*;

class JdbcCheckup
{
public static void main (String args [])

throws SQLException, IOException
{
// Load the Oracle JDBC driver
DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

// Prompt the user for connect information
System.out.println ("Please enter information to test connection

to the database");
String user;
String password;
String database;

user = readEntry ("user: ");

648 Part V: Java in Oracle

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 35
Blind Folio 35:648

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

int slash_index = user.indexOf ('/');
if (slash_index != -1)

{
password = user.substring (slash_index + 1);
user = user.substring (0, slash_index);

}
else {
password = readEntry ("password: ");

}
database = readEntry ("database (a TNSNAME entry): ");

System.out.print ("Connecting to the database...");

System.out.flush ();

System.out.println ("Connecting...");
Connection conn =
DriverManager.getConnection ("jdbc:oracle:oci8:@" + database,

user, password);

System.out.println ("connected.");

// Create a statement
Statement stmt = conn.createStatement ();

// Run a query
ResultSet rset=stmt.executeQuery("select 'Hello World' from dual");
// Loop through the query results
while (rset.next ()) {
System.out.println (rset.getString (1));

}

System.out.println ("Your JDBC installation is correct.");

// close the resultSet
rset.close();

// Close the statement
stmt.close();

// Close the connection
conn.close();

}

// Utility function to read a line from standard input
static String readEntry (String prompt)

{
try

{
StringBuffer buffer = new StringBuffer ();

Chapter 35: JDBC and SQLJ Programming 649

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 35
Blind Folio 35:649

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

System.out.print (prompt);
System.out.flush ();
int c = System.in.read ();
while (c != '\n' && c != -1)

{
buffer.append ((char)c);
c = System.in.read ();

}
return buffer.toString ().trim ();

}
catch (IOException e)

{
return "";

}
}

}

NOTE
Production applications would be expected to include many more
exception handling sections than shown in this brief example. See
Chapter 34 for an example of exception handling.

Starting at the top, this script first imports the java.sql classes provided by Sun Microsystems:

import java.sql.*;

and the Oracle-provided JDBC driver is then registered:

DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

When you are prompted for information, the user variable is populated via a call to the
readEntry function:

user = readEntry ("user: ");

The readEntry function is defined later in the class, in the section beginning

// Utility function to read a line from standard input
static String readEntry (String prompt)

Once the connection data has been input, a connection object is created to maintain the
state of the database session. The getConnection call in the following listing starts the connection:

Connection conn =
DriverManager.getConnection ("jdbc:oracle:oci8:@" + database,

user, password);

650 Part V: Java in Oracle

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 35
Blind Folio 35:650

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 35: JDBC and SQLJ Programming 651

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 35
Blind Folio 35:651

If you receive an error during the connection, this step is usually the cause. An incorrect
username/password combination, a mismatched set of drivers, or failure to install and configure
Oracle Net will cause this step to fail.

By default, a connection object is created with autocommit turned on—every transaction is
automatically committed. To change that setting, you can use the following command (assuming
you name the connection object conn, as shown in the example):

conn.setAutoCommit(false);

The class then creates a statement, executes a hard-coded query, and prints the output:

// Create a statement
Statement stmt = conn.createStatement ();

// Run a query
ResultSet rset =stmt.executeQuery("select 'Hello World' from dual");
while (rset.next ()) {

System.out.println (rset.getString (1));
}

The resultset, statement, and connection are then closed and the program completes. Note that
there are two steps in executing the statement: First, it’s created via the call to the createStatement
method, and then it’s executed via the executeQuery method. In place of executeQuery, you can
use execute or, if running an insert, update, or delete SQL statement, executeUpdate. If you select
a column value (instead of just a text string), you should specify that column value in the print
command, as shown in the following listing.

ResultSet rset =stmt.executeQuery("select User from dual");
while (rset.next ()) {

System.out.println (rset.getString ("USER"));

Using JDBC for Data Manipulation
Let’s combine the pieces that have been described so far: the basic connection syntax from
this chapter with the Java classes from Chapter 34. The example in this section will query the
RADIUS_VALS table, calculate an area for each value, and insert those values into the AREAS
table. Thus, it requires the use of the Java equivalent of a cursor FOR loop, along with support
for executable commands and inserts.

For the example, put three records into the RADIUS_VALS table:

delete from RADIUS_VALS;
insert into RADIUS_VALS(Radius) values (3);
insert into RADIUS_VALS(Radius) values (4);
insert into RADIUS_VALS(Radius) values (10);
commit;

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The following listing, JdbcCircle.java, contains the connection components from
JdbcCheckup.java. The executable commands for the circle area start in the section called
RetrieveRadius, shown in bold in the listing.

// You need to import the java.sql package to use JDBC
import java.sql.*;
// We import java.io to be able to read from the command line
import java.io.*;

class JdbcCircle {

public static void main (String args [])
throws SQLException, IOException {

// Load the Oracle JDBC driver
DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
// Prompt the user for connect information
System.out.println ("Please enter information for connection");
String user;
String password;
String database;

user = readEntry ("user: ");
int slash_index = user.indexOf ('/');
if (slash_index != -1) {

password = user.substring (slash_index + 1);
user = user.substring (0, slash_index);

}
else {
password = readEntry ("password: ");

}
database = readEntry ("database (a TNSNAME entry): ");
System.out.println ("Connecting to the database...");

Connection conn =
DriverManager.getConnection ("jdbc:oracle:oci8:@" + database,

user, password);
System.out.println ("connected.");

// Create a statement
Statement stmt = conn.createStatement ();

// RetrieveRadius
ResultSet rset =stmt.executeQuery("select Radius from RADIUS_VALS");

while (rset.next ()) {
// if you wish to print the values:
// System.out.println (rset.getInt ("RADIUS"));

652 Part V: Java in Oracle

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 35
Blind Folio 35:652

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

int radInput = rset.getInt ("RADIUS");

// Retrieve Radius value, calculate area:
double result = area(radInput);

// insert the value into AREAS
String sql = "insert into AREAS values ("+radInput+","+result+ ")";
// If you want to print the SQL statement:
// System.out.println(sql);

// Create a statement for the insert:
Statement insArea = conn.createStatement();
// Execute the insert:
boolean insertResult = insArea.execute(sql);

}

// close the resultSet
rset.close();
// Close the statement
stmt.close();
// Close the connection
conn.close();

}

// Utility function to calculate the area
public static double area (int rad) {
double pi=3.1415927;
double areacircle=pi*rad*rad;
return areacircle;

}

// Utility function to read a line from standard input
static String readEntry (String prompt) {

try {

StringBuffer buffer = new StringBuffer ();
System.out.print (prompt);
System.out.flush ();
int c = System.in.read ();
while (c != '\n' && c != -1) {

buffer.append ((char)c);
c = System.in.read ();

}
return buffer.toString ().trim ();

}
catch (IOException e) {

return "";

Chapter 35: JDBC and SQLJ Programming 653

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 35
Blind Folio 35:653

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

654 Part V: Java in Oracle

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 35
Blind Folio 35:654

}
}

}

In the RetrieveRadius section, the query to be executed is passed to the executeQuery method.
The result of the query is stored in a variable named rset.

// RetrieveRadius
ResultSet rset =stmt.executeQuery("select Radius from RADIUS_VALS");

As noted in Chapter 34, you can use a WHILE loop in Java to approximate the functionality
of a PL/SQL cursor FOR loop. The following section of the RetrieveRadius section uses the getInt
method to retrieve the integer Radius value from the result set. If the value had been a string, then
the getString method would have been used instead.

while (rset.next ()) {
// if you wish to print the values:
// System.out.println (rset.getInt ("RADIUS"));
int radInput = rset.getInt ("RADIUS");

The radInput variable, assigned in the preceding listing, can now be used as input to the area
calculation. The area calculation is performed via a utility function (see the full JdbcCircle listing)
based on the code examples presented in Chapter 34.

// Retrieve Radius value, calculate area:
double result = area(radInput);

We now have the radius value (the radInput variable) and the area value (the result variable)
to use when populating the AREAS table. Let’s build the insert statement to perform the insert. First,
use the string concatenation functions in Java to concatenate text with the variable values. Make
sure not to include a semicolon at the end of the generated command string.

// insert the value into AREAS
String sql = "insert into AREAS values ("+radInput+","+result+ ")";
// If you want to print the SQL statement:
// System.out.println(sql);

Next, create a statement and execute the insert command (via a call to the sql variable that
contains the command text):

// Create a statement for the insert:
Statement insArea = conn.createStatement();
// Execute the insert:
boolean insertResult = insArea.execute(sql);

Did it work? Compile and execute the JdbcCircle.java file, and then check the AREAS table:

select * from AREAS
order by Radius;

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

RADIUS AREA
--------- ---------

3 28.27
4 50.27

10 314.16

This example is based on a simple calculation—the area of a circle—but illustrates the key
concepts in JDBC development: connecting to the database, retrieving data, implementing a
cursor FOR loop, assigning variables, generating a dynamic SQL statement, and executing DML.
In the next section, you will see this example written in SQLJ to illustrate the functionality and
coding differences between the two languages.

SQLJ
SQLJ is a preprocessor that embeds SQL commands as JDBC calls within a Java program. Unlike
JDBC, SQLJ performs syntax checking on SQL statements during the compilation process. In the
next section, you will see how to configure SQLJ. SQLJ requires the use of an additional set of
classes, in the translator.zip file, to generate the Java classes.

Additional Setup Steps for SQLJ
If you will be accessing Oracle9i using SQLJ, you must set the CLASSPATH system variable to
include the translator.zip file (for all JDK versions) provided by Oracle. The file is located in the
/sqlj/lib directory beneath the Oracle home directory.

NOTE
This step is not performed by the standard Oracle9i installation,
so you need to do it manually. If the system variables are not
properly set, you will not be able to compile Java classes that use
Oracle’s SQLJ classes.

To set your system variables, click the System icon in your Control Panel. Choose the
Environment tab to list the environment variables and their definitions. If you did not add the
JDK binaries to your PATH setting (as shown earlier in this chapter), then you must add them
before using SQLJ.

NOTE
The SQLJ program, sqlj.exe, must also be in your path. By default,
Oracle will install this program to the /bin directory beneath the
Oracle home directory.

Replace “E:\Oracle\Ora91” with your Oracle software home directory, and replace “E:\jdk131”
with the directory in which you downloaded the JDK. The CLASSPATH environment variable for
SQLJ developers is different from that used by JDBC developers. For JDBC development, you only
need the classes12.zip file to be in the classpath.

Chapter 35: JDBC and SQLJ Programming 655

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 35
Blind Folio 35:655

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

For SQLJ, you need to add the SQLJ translator.zip and runtime12.zip file directory, usually
the /sqlj/lib directory under the Oracle software home directory. In the following listing, the
one-line CLASSPATH setting is shown on multiple lines.

.;E:\Oracle\Ora91\jdbc\lib\classes12.zip;
E:\Oracle\Ora91\sqlj\lib\runtime12.zip;
E:\Oracle\Ora91\sqlj\lib\translator.zip

NOTE
Replace “E:\Oracle\Ora91” with your Oracle software
home directory.

If you encounter errors when compiling the SQLJ examples in this chapter, check your
CLASSPATH environment variable. You may need to shut down and restart your command
window for changes to your CLASSPATH settings to take effect.

NOTE
Be sure to use a version of the JDK that is compatible with the Oracle
release you are using. If you use a new release of the JDK with an
older release of Oracle’s drivers, you may encounter “access
violation” errors when executing your programs.

Testing Your SQLJ Configuration
Oracle provides a test script called TestInstallSQLJ.sqlj in the /sqlj/demo directory below the Oracle
software home directory. TestInstallSQLJ.sqlj, in turn, reads a file named connect.properties in
the same directory. The connect.properties file identifies the database, username, and password
to be used for the demonstration connection. For example, the connect.properties file may
contain the following entries:

sqlj.url=jdbc:oracle:oci8:@
sqlj.user=scott
sqlj.password=tiger

NOTE
Add the name of your database directly after the @ in the sqlj.url
entry, and use your test username and password in place of the
preceding listing’s example values.

The TestInstallSQLJ.sqlj demo file inserts a row into a table named SALES, which has a
column named Item_Name. For the purposes of this demo, you can create the SALES table
with the following command:

create table SALES
(Item_Number NUMBER,

656 Part V: Java in Oracle

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 35
Blind Folio 35:656

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Item_Name CHAR(30),
Sales_Date DATE,
Cost NUMBER,
Sales_Rep_Number NUMBER,
Sales_Rep_Name CHAR(20));

If you already have a SCOTT/TIGER account in your database, you can use that account and
its SALES table for the connection test (although doing so will delete the rows presently in that
table). If you prefer using JDBC for your table creation, you can run the TestInstallCreateTable.java
class provided in the /sqlj/demo directory to create the SALES table. The TestInstallCreateTable.java
file relies on the connection information specified in the connect.properties file.

With the SALES table in place and the connect.properties file properly configured, translate
the TestInstallSQLJ.sqlj file:

sqlj TestInstallSQLJ.sqlj

This step should complete with no reported errors. As part of the SQLJ translation, the Java
class will be compiled, so you can execute:

java TestInstallSQLJ

If your configuration is correct, you should see the following output:

Hello, SQLJ!

NOTE
The longest part of the translation step is the Java compilation. If the
translation process generates a JAVA file, you can manually compile
that file (via javac). Depending on the errors encountered during
compilation, manually compiling the file may provide you with more
relevant debugging information than the translator provides.

Using the SQLJ Classes
When you translated the TestInstallSQLJ.sqlj file, several new files were created, including a
TestInstallSQL.java file and a compiled TestInstallSQLJ.class file. Having seen a JDBC file earlier
in this chapter, you should skim through the TestInstallSQLJ.java file to see what the translator
did. You will see that it creates a class called MyIter:

class MyIter
extends sqlj.runtime.ref.ResultSetIterImpl
implements sqlj.runtime.NamedIterator
{
public MyIter(sqlj.runtime.profile.RTResultSet resultSet)
throws java.sql.SQLException

{
super(resultSet);
ITEM_NAMENdx = findColumn("ITEM_NAME");

Chapter 35: JDBC and SQLJ Programming 657

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 35
Blind Folio 35:657

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

}
public String ITEM_NAME()
throws java.sql.SQLException

{
return resultSet.getString(ITEM_NAMENdx);

}
private int ITEM_NAMENdx;

}

The MyIter class is a SQLJ iterator—a structure used to iterate through the results of queries
returning multiple rows. Later in the file, the iterator is used as the basis for the query:

MyIter iter;

// #sql iter = { SELECT ITEM_NAME FROM SALES };

And the query is executed:

sqlj.runtime.profile.RTResultSet __sJT_result =
__sJT_execCtx.executeQuery();

iter = new MyIter(__sJT_result);

SQLJ screens the JDBC details from you; you do not need to manually enter all the query-
management code yourself. For each SQL statement, SQLJ creates the code needed to execute
it via JDBC and Java. First, it creates a connection context object. The connection context
maintains the JDBC connection. Each statement that is executed uses a different connection
context object. For example, the TestInstallSQLJ.java file contains the following command to
create a connection context:

sqlj.runtime.ConnectionContext __sJT_connCtx =
sqlj.runtime.ref.DefaultContext.getDefaultContext();

In the preceding command, a connection context object is created based on the default context
options. A default context supports a connection that your classes can use to access the database
without having to specify a connection context object.

Within the connection context, all the commands are executed via execution context objects.
Within TestInstallSQLJ.java, you should see commands similar to the following to create an
execution context:

sqlj.runtime.ExecutionContext __sJT_execCtx =
__sJT_connCtx.getExecutionContext();
if (__sJT_execCtx == null)

sqlj.runtime.error.RuntimeRefErrors.raise_NULL_EXEC_CTX();
synchronized (__sJT_execCtx) {
sqlj.runtime.profile.RTStatement __sJT_stmt =

__sJT_execCtx.registerStatement(__sJT_connCtx,
TestInstallSQLJ_SJProfileKeys.getKey(0), 0);

658 Part V: Java in Oracle

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 35
Blind Folio 35:658

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The last line of the preceding listing refers to profile keys. When you translated
the TestInstallSQLJ.sqlj file, Oracle automatically created several files in addition to the
TestInstallSQLJ.java file. The translator retrieves the SQL statements from the SQLJ file you created
and creates two files: a file with a .ser extension that stores the statement profiles, and a file with
a .class extension that stores the profile keys. Thus, when you read the TestInstallSQLJ.java file,
you will see that the SQL commands are commented out, as shown in the following listing:

// #sql iter = { SELECT ITEM_NAME FROM SALES };

The actual SQL commands executed by the program are not visible unless you have the
source code (either the .sqlj file or the .java file created by the translator).

Using SQLJ for Data Manipulation
Using TestInstallSQLJ.sqlj as a basis, you can develop a program that retrieves data from the
RADIUS_VALS table, performs the circle area calculation, and inserts the results into the AREAS
table. Because SQLJ handles the JDBC connection management, the logic flow of the SQLJ program
should be simpler to follow than the JDBC program, for people with a background in PL/SQL.

The following listing is the SqljCircle.sqlj file. As in the JdbcCircle.java example earlier in this
chapter, the area calculation is performed via a utility function. The most relevant part for this
example—the commands needed to extract and manipulate the data—is shown in bold.

/* Import SQLExceptions class. The SQLException comes from
JDBC. Executable #sql clauses result in calls to JDBC, so methods
containing executable #sql clauses must either catch or throw
SQLException.

*/
import java.sql.SQLException ;
import oracle.sqlj.runtime.Oracle;

// iterator for the select
#sql iterator MyIter (int Radius);

class SqljCircle {

//Main method
public static void main (String args[]) {

try {
/* if you're using a non-Oracle JDBC Driver, add a call here to

DriverManager.registerDriver() to register your Driver
*/
// set the default connection to the URL, user, and password
// specified in your connect.properties file
Oracle.connect(SqljCircle.class, "connect.properties");
SqljCircle ti = new SqljCircle();
ti.runExample();

} catch (SQLException e) {
System.err.println("Error running the example: " + e);

}

Chapter 35: JDBC and SQLJ Programming 659

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 35
Blind Folio 35:659

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

} //End of method main

//Method that runs the example
void runExample() throws SQLException {

MyIter iter;

#sql iter = { select Radius from RADIUS_VALS};
while (iter.next()) {

// To see the radius values:
//System.out.println(iter.Radius());

int radInput = iter.Radius();
double result=area(radInput);
// To see the result values:
//System.out.println(result);

#sql { insert into AREAS values(:radInput,:result)};
#sql {commit};

}
iter.close();

}

// Utility function to calculate the area
public static double area (int rad) {
double pi=3.1415927;
double areacircle=pi*rad*rad;
return areacircle;

}
}

Since the query of RADIUS_VALS will return multiple rows, an iterator is specified within the
SQLJ file. If you prefer, you can create and use JDBC result sets instead (see the JDBC examples
earlier in this chapter). When you execute the query for the program, the result is passed as the
value for the iterator:

#sql iter = { select Radius from RADIUS_VALS};

Next, use a WHILE loop to evaluate the rows:

while (iter.next()) {
// To see the radius values:
//System.out.println(iter.Radius());

For each row passed to the iterator, capture the Radius value and use that as the radInput value.
Then, create the result variable to hold the calculated area value based on the Radius value.

int radInput = iter.Radius();
double result=area(radInput);

660 Part V: Java in Oracle

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 35
Blind Folio 35:660

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 35: JDBC and SQLJ Programming 661

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 35
Blind Folio 35:661

// To see the result values:
//System.out.println(result);

Now that the values have been calculated, you can insert them into the AREAS table. This
example assumes that the AREAS table is empty prior to executing the SqljCircle class. Within the
insert command, the radInput and result variables are prefixed by a colon. Note that the entire
command is enclosed within curly braces, {}, and that no semicolon appears within the braces.
Each row is committed following each insert.

#sql { insert into AREAS values(:radInput,:result)};
#sql {commit};

This example contains an explicit commit command so that you can add additional criteria to
control the commit frequency within the application.

Now, close the iterator:

iter.close();

and you’re done. You can check the AREAS table for the result.
For the example, put three records into the RADIUS_VALS table:

delete from AREAS;
delete from RADIUS_VALS;
insert into RADIUS_VALS(Radius) values (3);
insert into RADIUS_VALS(Radius) values (4);
insert into RADIUS_VALS(Radius) values (10);
commit;

The connect.properties file should resemble the following, where “orcl” is the name of the
instance to connect to:

sqlj.url=jdbc:oracle:oci8:@orcl
sqlj.user=practice
sqlj.password=practice

The following listing shows the compilation and execution of SqljCircle.sqlj:

sqlj SqljCircle.sqlj
java SqljCircle

You can verify the results from within SQL*Plus:

select * from AREAS
order by Radius;

RADIUS AREA
--------- ---------

3 28.27
4 50.27

10 314.16

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Because it supports SQL calls so easily, SQLJ is attractive to first-time JDBC programmers.
By comparison, the SqljCircle.java file generated by the translator is three times longer than the
SqljCircle.sqlj file. See the Oracle documentation for further information on the options available
for implementing and managing iterators.

This chapter provides an overview of SQLJ’s capabilities—queries, data manipulation, multirow
result set management, variable assignments, and DML operations. For additional information
regarding SQLJ’s capabilities, please see Oracle’s SQLJ documentation.

662 Part V: Java in Oracle

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 35
Blind Folio 35:662

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 36
Blind Folio 36:663

CHAPTER
36

Java Stored
Procedures

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Y
ou can write stored procedures, triggers, object type methods, and functions that
call Java classes. In this chapter, you will see a sample set of Java procedures,
along with the commands required to execute a procedure. To get the most from
this chapter, you should already be familiar with Java structures (refer to Chapter 34)
and the uses of Java classes, JDBC, and SQLJ (refer to Chapter 35). You should also

be familiar with the basic syntax and usage of stored procedures (refer to Chapter 29).
To focus on the database access operations of the Java classes, the example in this chapter is

brief. The following class, called AreasDML, contains methods to insert and delete records from
the AREAS table. In this example, the calculation of the area is not performed; rather, all required
values are supplied during the insert. The following listing shows the AreasDML.sqlj file:

import sqlj.runtime.*;
import sqlj.runtime.ref.*;
import java.sql.SQLException ;
import oracle.sqlj.runtime.Oracle;
import java.sql.*;

class AreasDML {

//Insert method
public static void insert (

oracle.sql.NUMBER radius,
oracle.sql.NUMBER area) throws SQLException {

try {
#sql {insert into AREAS values

(:radius, :area) };
}
catch (SQLException e) {

System.err.println(e.getMessage());
}

}//End of method insert

//Delete method
public static void delete (

oracle.sql.NUMBER radius,
oracle.sql.NUMBER area) throws SQLException {

try {
#sql {delete from AREAS

where Radius = :radius};
}
catch (SQLException e) {

System.err.println(e.getMessage());
}

} //End of method delete
}

The AreasDML.sqlj file defines the AreasDML class. Within the AreasDML class, there are
separate methods for processing inserts and deletes. In each of the method specifications, the
datatypes for the AREAS table’s columns are listed:

664 Part V: Java in Oracle

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 36
Blind Folio 36:664

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

public static void insert (
oracle.sql.NUMBER radius,
oracle.sql.NUMBER area)

These parameters use the datatypes provided as part of Oracle’s class libraries. If you use the
standard Java datatypes, you may encounter datatype-related problems during the class execution.

NOTE
If you import the oracle.sqlj.* libraries, you can use NUMBER in
place of oracle.sql.NUMBER.

The next part of the insert method inserts the values into the AREAS table:

#sql {insert into AREAS values
(:radius, :area) };

Note that the variable names are case-sensitive—they must exactly match the names
declared earlier.

The delete method is very similar in structure. Its SQL statement is

#sql {delete from AREAS
where Radius = :radius};

Note that no part of the class creates a connection to the database, in contrast with the
examples in Chapter 35. The connection used to invoke this class will provide the connection
context for the class’s methods.

Verify that the class compiles properly by processing it via the SQLJ preprocessor:

sqlj AreasDML.sqlj

This step should complete successfully. If you encounter errors during this compilation step,
check your SQLJ environment configuration (see Chapter 35).

Loading the Class into the Database
Before loading a class into the database, confirm that it compiles properly via SQLJ. You can
then use the loadjava utility to load the class into the database. The syntax for the loadjava
utility is as follows:

loadjava {-user | -u} username/password[@database]
[-option_name -option_name ...] filename filename ...

The options available for the loadjava utility are shown in Table 36-1.
For example, to load the AreasDML.sqlj file into the Practice schema in an instance named

“orcl”, you can use the following command:

loadjava –u Practice/practice@orcl.world -verbose AreasDML.sqlj

Chapter 36: Java Stored Procedures 665

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 36
Blind Folio 36:665

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

666 Part V: Java in Oracle

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 36
Blind Folio 36:666

Option Description

<filenames> Any number and combination of .java, .class, .sqlj, .ser, .jar, .zip, and
resource filename arguments, in any order.

andresolve Compiles source files and resolves each class file as it is loaded.

debug Generates debugging information.

definer Specifies that the methods of uploaded classes will execute with the
privileges of their definer, not their invoker. By default, methods execute
with the privileges of their invoker.

encoding Sets (or resets) the option -encoding in the database table JAVA$OPTIONS
to the specified value.

fileout Prints messages to an output file.

force Forces the loading of Java class files regardless of whether they have been
loaded before. By default, previously loaded class files are rejected.

grant Grants EXECUTE privilege on uploaded classes to the listed users and roles.

help Prints loadjava help text.

javaresource Directs loadjava to load a JAR file without unpacking it.

nousage Suppresses the usage message given if either no option is specified or if the
-help option is specified.

noserverside Changes the behavior of the server-side loadjava tool to use a JDBC driver
to access objects.

noverify Causes the classes to be loaded without bytecode verification. You must be
granted oracle.aurora.security.JServerPermission(Verifier) to execute this
option. In addition, this option must be used in conjunction with -r.

oci8 Directs loadjava to communicate with the database using the OCI JDBC
driver. This option (the default) and -thin are mutually exclusive.

resolve Resolves all external references in the loaded and compiled classes.
If this option is not specified, files are loaded but not compiled or
resolved until runtime.

resolver Binds newly created class schema objects to a user-defined resolver spec.

schema Specifies the schema for newly created objects.

stdout Causes the output to be directed to stdout, rather than to stderr.

synonym Automatically creates a public synonym for the uploaded classes.

TABLE 36-1. loadjava Options

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

You should see the following output:

arguments: '-u' 'practice/practice@orcl.world' '-verbose' 'AreasDML.sql'
created :JAVA$CLASS$MD5$TABLE
creating : source AreasDML
created :CREATE$JAVA$LOB$TABLE
loading : source AreasDML
creating : AreasDML

NOTE
The name of the class should not match the name of any of the
existing objects in your schema.

The AreasDML class is now loaded into the database. Here’s what it created (you can query
new objects from USER_OBJECTS based on their object creation timestamps):

OBJECT_NAME OBJECT_TYPE
-- ------------------
AreasDML JAVA CLASS
AreasDML JAVA SOURCE
AreasDML_SJProfileKeys JAVA CLASS
CREATE$JAVA$LOB$TABLE TABLE
JAVA$CLASS$MD5$TABLE TABLE
JAVA$OPTIONS TABLE
SYS_C002684 INDEX
SYS_C002685 INDEX
SYS_LOB0000032362C00002$$ LOB

9 rows selected.

Chapter 36: Java Stored Procedures 667

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 36
Blind Folio 36:667

Option Description

tableschema Creates the loadjava internal tables within this specified schema, rather than
in the Java file destination schema.

thin Directs loadjava to communicate with the database using the thin JDBC
driver. This option and –oci8 are mutually exclusive.

time Prints a timestamp on every message.

unresolvedok When combined with -resolve, ignores unresolved errors.

user Specifies a user, password, and database connect string for the load.

verbose Enables the display of progress messages during loadjava execution.

TABLE 36-1. loadjava Options (continued)

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

(The names of the indexes and LOB, which start with SYS_ , will be different in your database,
since each name includes a sequence number that is database-specific.) The AreasDML source,
class, and profile keys should be familiar from the SQLJ examples in Chapter 35.

How to Access the Class
Now that the AreasDML class has been loaded into the database, you must create a procedure to
call each of the methods. The create procedure command in the following listing creates a
procedure called InsertAreaViaJava:

create or replace procedure InsertAreaViaJava
(Radius NUMBER,
Area NUMBER)

as
language java
name 'AreasDML.insert(oracle.sql.NUMBER, oracle.sql.NUMBER)';
/

This brief procedure has two parameters—Radius and Area. Its language java clause tells
Oracle that the procedure is calling a Java method. The name of the method is specified in the
name clause (be sure to be consistent with your use of capital letters). The formats for the Java
method call are then specified.

A separate procedure will delete the AREA table’s records via a method call:

create or replace procedure DeleteAreaViaJava
(Radius NUMBER,
Area NUMBER)

as
language java
name 'AreasDML.delete(
oracle.sql.NUMBER, oracle.sql.NUMBER)';

/

Now, go into SQL*Plus and use the call command to execute the Java classes. For this
example, start with the AREAS table empty:

delete from AREAS;
commit;

call InsertAreaViaJava(10,314.15);

You will see this response:

Call completed.

The call command will pass the values 10 and 314.15 as parameters to the InsertAreaViaJava
stored procedure. It will format them according to the specifications in the name clause and will
pass them to the AreasDML.insert method. That method will use your current connection to

668 Part V: Java in Oracle

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 36
Blind Folio 36:668

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

execute its SQLJ commands, and the row will be inserted. Most of these libraries and classes will
not have been loaded yet within the database. That’s a lot of steps to go through, so the
performance will be affected the first time you run the Java stored procedure, but subsequent
executions will be much faster. You can verify its success by querying the AREAS table:

select * from AREAS;

RADIUS AREA
--------- ---------

10 314.15

And you can delete that record via a call to DeleteAreaViaJava:

call DeleteAreaViaJava(10,314.15);

Oracle will reply

Call completed.

The call to DeleteAreaViaJava will complete much faster than the call to InsertAreaViaJava,
because your Java libraries will have been loaded the first time you executed InsertAreaViaJava.

Check out the error handling by passing a character string to be inserted:

call InsertAreaViaJava('J',314.15);
*

ERROR at line 1:
ORA-01722: invalid number

As expected, the datatype mismatch caused a problem—in this case, Oracle detects that the data
being passed to the PL/SQL procedure does not match the datatype of the procedure’s parameter.

When debugging Java stored procedures, you can call System.err.println from within your
Java code, as shown in the AreasDML.sqlj listing earlier in this chapter. To display the output
within your SQL*Plus session, you must first execute the following commands:

set serveroutput on
call DBMS_JAVA.SET_OUTPUT(10000);

Calling DBMS_JAVA.SET_OUTPUT will redirect the output of System.out.println to
DBMS_OUTPUT.PUT_LINE. Otherwise, the System.out.println output will only go to the
database’s log file.

Where to Perform Commands
The AreasDML example is intended to provide an overview of the implementation of Java stored
procedures. Suppose you now want to make the procedures more complex. Since area and
radius are directly related to each other, you only need to accept the radius value as input to
the procedure. You could then calculate the area and insert the calculated value. As shown in
Chapters 27, 34, and 35, you can perform those calculations either in Java or in PL/SQL.

Chapter 36: Java Stored Procedures 669

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 36
Blind Folio 36:669

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Your choice of a platform and language for your data processing will impact your
performance. In general, you will pay a performance penalty the first time you execute
a Java stored procedure (as the classes are loaded), but subsequent executions will not
pay the same penalty. If you repeatedly execute the same commands, the performance
impact of the first execution will be minimal.

For example, multiple executions of the InsertAreaViaJava procedure completed in 0.5
seconds, 0.2 seconds, 0.2 seconds, and 0.2 seconds. A series of inserts into the AREAS table
completed in an average of 0.18 seconds.

Logging out and logging back in impacts your performance, but not nearly as much as the
first execution of the procedure. When you use Java stored procedures, you must therefore be
aware of the way in which the application interacts with Oracle. If your users frequently log
out and log back in, then they will pay a performance penalty the first time they execute the
procedure following each login. Furthermore, the first execution of the procedure following a
database startup will pay the most severe performance penalty. The performance impact of these
actions must be taken into account during the design stage of your application development.

To reduce the performance penalties associated with the Java stored procedure calls:

■ Execute each Java stored procedure following database startup. In the case of the
AreasDML example, this may involve inserting and deleting a test record following
each startup.

■ Reduce the number of short-term database connections; for example, by connection
pooling.

■ Perform most of your direct database manipulation via standard SQL and PL/SQL.

Java is an appropriate technology to use for many computational processes and for display
manipulation. In general, SQL and PL/SQL are slightly more efficient than Java for database
connections and data manipulation. However, the performance of Java within Oracle makes it a
strong alternative to PL/SQL; the primary source of the performance penalty for Java stored
procedures is the time required to go through the PL/SQL wrapper. When designing applications
that integrate Java, SQL, and PL/SQL, focus on using each language for the functions that it
performs best.

If your code involves many loops and manipulations of data, Java should outperform PL/SQL.
The costs of using Java—for Java object creation and the PL/SQL header interaction—will be
offset by the improved performance Java yields during the actual work.

The calculation of a circle’s area is simple arithmetic, handled easily by both PL/SQL and
Java. Thus, you could put the area calculation in either part of the application—in a PL/SQL
procedure that calculates the area prior to passing it to SQLJ to be inserted, or as part of the SQLJ
class. In general, actions that involve selecting data from the database and manipulating it are
best handled by PL/SQL and SQL. Computations on the selected data may be processed faster by
Java. In your application design, be sure to use the proper tool for the proper function, and avoid
unnecessary performance penalties.

670 Part V: Java in Oracle

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 36
Blind Folio 36:670

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 37
Blind Folio 37:671

PART
VI

Hitchhiker’s Guides

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 37
Blind Folio 37:672

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 37
Blind Folio 37:673

CHAPTER
37

The Hitchhiker’s
Guide to the Oracle9i

Data Dictionary

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

O
racle’s data dictionary stores all the information that is used to manage the
objects in the database. Although the data dictionary is usually the domain of
database administrators (DBAs), it also is a source of valuable information for
developers and end users.

In this chapter, you will see the data dictionary—Oracle’s internal directory—from the
perspective of an end user; the data dictionary tables and views are not listed alphabetically, but
rather are grouped by function (tables, security, and so on). This organization is designed to let
you quickly find your way to the information you need. The most-used data dictionary views are
all shown here, along with examples of their usage.

Depending on which Oracle configuration options you are using, some of the groups will not
apply to your database. The most commonly used views are listed first. The groupings used in
this chapter are, in order:

■ The Road Maps: DICTIONARY (DICT) and DICT_COLUMNS

■ Things You Select from: Tables (and Columns), Views, Synonyms, and Sequences

■ Constraints and Comments

■ Indexes and Clusters

■ Abstract Datatypes, ORDBMS-Related Structures, and LOBs

■ Database Links and Materialized Views

■ Triggers, Procedures, Functions, and Packages

■ Dimensions

■ Space Allocation and Usage, Including Partitions and Subpartitions

■ Users and Privileges

■ Roles

■ Auditing

■ Miscellaneous

■ Monitoring: The V$ Dynamic Performance Tables

NOTE
As new features are added, it is expected that the data dictionary will
be modified with each future release of Oracle.

A Note About Nomenclature
With some exceptions, the names of the objects in the Oracle data dictionary begin with one of
three prefixes: “USER,” “ALL,” or “DBA.” Records in the “USER” views usually show information
about objects owned by the account performing the query. Records in the “ALL” views include
the “USER” records plus information about objects on which privileges have been granted to

674 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 37
Blind Folio 37:674

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 37: The Hitchhiker’s Guide to the Oracle9i Data Dictionary 675

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 37
Blind Folio 37:675

PUBLIC or to the user. “DBA” views encompass all of the database objects, regardless of owner.
For most database objects, “USER,” “ALL,” and “DBA” views are available.

In keeping with the user focus of this guide, the emphasis will be on the “USER” views or
those that are accessible to all users. The “ALL” and “DBA” views will be described when they
are applicable.

The Road Maps: DICTIONARY (DICT) and
DICT_COLUMNS
Descriptions for the objects that make up the Oracle data dictionary are accessible via a view
named DICTIONARY. This view, also accessible via the public synonym DICT, queries the
database to determine which data dictionary views you can see. It also searches for public
synonyms for those views.

The following example queries DICT for the names of all data dictionary views whose names
include the string ‘VIEWS’. Selecting from DICT via a non-DBA account, as shown in the
following listing, returns the object name and comments for each data dictionary object that
matches your search criteria. There are only two columns in this view: Table_Name and the
table’s associated Comments.

column Comments format a35 word_wrapped
column Table_Name format a25

select Table_Name, Comments
from DICT
where Table_Name like '%VIEWS%';

TABLE_NAME COMMENTS
------------------------- -----------------------------------
ALL_BASE_TABLE_MVIEWS All materialized views with log(s)

in the database that the user can
see

ALL_MVIEWS All materialized views in the
database

ALL_REGISTERED_MVIEWS Remote materialized views of local
tables that the user can see

ALL_VIEWS Description of views accessible to
the user

USER_BASE_TABLE_MVIEWS All materialized views with log(s)
owned by the user in the database

USER_MVIEWS All materialized views in the
database

USER_REGISTERED_MVIEWS Remote materialized views of local
tables currently using logs owned
by the user

USER_VIEWS Description of the user's own views

You can query the columns of the dictionary views via the DICT_COLUMNS view. Like the
DICTIONARY view, DICT_COLUMNS displays the comments that have been entered into the
database for the data dictionary views. DICT_COLUMNS has three columns: Table_Name,

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

676 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 37
Blind Folio 37:676

Column_Name, and Comments. Querying DICT_COLUMNS lets you determine which data
dictionary views would be most useful for your needs.

For example, if you want to view space allocation and usage information for your database
objects but are not sure which data dictionary views store that information, you can query
DICT_COLUMNS, as shown in the following example, which looks for all the dictionary tables
that have a column named Blocks:

select Table_Name
from DICT_COLUMNS
where Column_Name = 'BLOCKS'
and Table_Name like 'USER%';

TABLE_NAME

USER_ALL_TABLES
USER_EXTENTS
USER_FREE_SPACE
USER_OBJECT_TABLES
USER_SEGMENTS
USER_TABLES
USER_TAB_PARTITIONS
USER_TAB_SUBPARTITIONS
USER_TS_QUOTAS

To list all of the available column names that you could have used in the last example, query
DICT_COLUMNS:

select distinct Column_Name
from DICT_COLUMNS
order by Column_Name;

Whenever you’re unsure about where to find the data you want, just check DICTIONARY
and DICT_COLUMNS. If it appears that a large number of views could be useful, query
DICTIONARY (as in the first example) to see the Comments on each view.

Things You Select from: Tables (and Columns),
Views, Synonyms, and Sequences
A user’s catalog lists all of those objects that the user can select records from; that is, any object
that can be listed in the from clause of a query. Although sequences are not referenced directly in
from clauses, Oracle includes them in the catalog. In this section, you will see how to retrieve
information about tables, columns, views, synonyms, sequences, and the user catalog.

Catalog: USER_CATALOG (CAT)
Querying USER_CATALOG will display all tables, views, synonyms, and sequences the user
owns. The Table_Name column shows the name of the object (even if it is not a table), and the
Table_Type column shows the type of object:

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

select Table_Name, Table_Type
from USER_CATALOG
where Table_Name like 'T%';

USER_CATALOG may also be referred to by the public synonym CAT.
Two additional catalogs are available. ALL_CATALOG lists everything in your USER_CATALOG

view plus any objects that you or PUBLIC have been granted access to. DBA_CATALOG is a
DBA-level version of the catalog showing all tables, views, sequences, and synonyms in the
database. In addition to the Table_Name and Table_Type columns shown in the USER_CATALOG
query, ALL_CATALOG and DBA_CATALOG include an Owner column.

Objects: USER_OBJECTS (OBJ)
USER_CATALOG only displays information for tables, views, sequences, and synonyms. To
retrieve information on all types of objects, query USER_OBJECTS. You can use this view to find
out about many types of objects, including clusters, database links, directories, functions, indexes,
libraries, packages, package bodies, Java classes, abstract datatypes, resource plans, sequences,
synonyms, tables, triggers, materialized views, LOBs, and views. USER_OBJECTS’ columns are
listed in Table 37-1.

USER_OBJECTS (also known by its public synonym OBJ) contains several vital pieces of
information that are not found in other data dictionary views. It records the creation date of

Chapter 37: The Hitchhiker’s Guide to the Oracle9i Data Dictionary 677

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 37
Blind Folio 37:677

Column Name Description

Object_Name The name of the object

SubObject_Name The name of the subobject, such as a partition name

Object_ID A unique, Oracle-assigned ID for the object

Data_Object_ID The object number of the segment that contains the object’s data

Object_Type The object type (‘TABLE’, ‘INDEX’, ‘TABLE PARTITION’, and so on)

Created The timestamp for the object’s creation (a DATE column)

Last_DDL_Time The timestamp for the last DDL command used on the object, including
alter, grant, and revoke

Timestamp The timestamp for the object’s creation (same as Created, but stored as a
character column)

Status The status of the object (‘VALID’ or ‘INVALID’)

Temporary A flag to indicate whether the object is a temporary table

Generated A flag to indicate whether the object’s name was system-generated

Secondary A flag to indicate whether the object is a secondary index created by a
domain index

TABLE 37-1. Columns in USER_OBJECTS

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

objects (the Created column) and the last time an object was altered (the Last_DDL_Time
column). These columns are very useful when trying to reconcile different sets of objects in
the same application.

NOTE
If you re-create objects in any way, such as via the Import utility
(see Chapter 40), their Created values will change to the last time
they were created.

Two additional object listings are available. ALL_OBJECTS lists everything in your
USER_OBJECTS view plus any objects for which access has been granted to you or PUBLIC.
DBA_OBJECTS is a DBA-level version of the object listing, showing all of the objects in the
database. In addition to the columns shown in the USER_OBJECTS view, ALL_OBJECTS and
DBA_OBJECTS include an Owner column.

Tables: USER_TABLES (TABS)
Although all of a user’s objects are shown in USER_OBJECTS, few attributes of those objects are
shown there. To get more information about an object, you need to look at the view that is specific
to that type of object. For tables, that view is USER_TABLES. It can also be referenced via the
public synonym TABS.

NOTE
Earlier versions of Oracle included a view called TAB. That view,
which is similar in function to TABS, is still supported because of
Oracle products that reference it. However, TAB does not contain the
columns that TABS contains. Use TABS in your data dictionary queries.

The columns in USER_TABLES can be divided into four major categories (Identification,
Space-Related, Statistics-Related, and Other), as shown in Table 37-2.

678 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 37
Blind Folio 37:678

Identification Space-Related Statistics-Related Other

Table_Name Tablespace_Name Num_Rows Degree

Backed_Up Cluster_Name Blocks Instances

Partitioned Pct_Free Empty_Blocks Cache

IOT_Name Pct_Used Avg_Space Table_Lock

Logging Ini_Trans Chain_Cnt Buffer_Pool

IOT_Type Max_Trans Avg_Row_Len Row_Movement

Temporary Initial_Extent Sample_Size Duration

TABLE 37-2. Columns in USER_TABLES

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 37: The Hitchhiker’s Guide to the Oracle9i Data Dictionary 679

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 37
Blind Folio 37:679

The table’s name is shown in the Table_Name column. The Backed_Up column shows whether
or not the table has been backed up since its last modification. The Partitioned column will have
a value of ‘YES’ if the table has been partitioned (data dictionary views related to partitions are
described in the “Space Allocation and Usage” section of this chapter). If the table is an object
table, then the Table_Type_Owner column will show the owner of the type.

The “Space-Related” columns are described in the “Storage” entry of the Alphabetical
Reference. The “Statistics-Related” columns are populated when the table is analyzed.

Querying the Table_Name column from USER_TABLES will display the names of all of the
tables in the current account. The following query lists all of the tables whose names begin with
the letter ‘L’:

select Table_Name from USER_TABLES
where Table_Name like 'L%';

The ALL_TABLES view shows all of the tables owned by the user as well as any to which the
user has been granted access. Most third-party reporting tools that list available tables for queries
obtain that list by querying ALL_TABLES. Since ALL_TABLES can contain entries for multiple users,
it contains an Owner column in addition to the columns shown in Table 37-2. DBA_TABLES,
which lists all tables in the database, has the same column definitions as ALL_TABLES.

The Degree and Instances columns in the “Other” category of Table 37-2 relate to how the
table is queried during parallel queries. For information on Degree, Instances, and the other table
parameters, see CREATE TABLE in the Alphabetical Reference.

NOTE
For external tables, see USER_EXTERNAL_TABLES.

Columns: USER_TAB_COLUMNS (COLS)
Although users do not query from columns, the data dictionary view that shows columns is
closely tied to the data dictionary view of tables. This view, called USER_TAB_COLUMNS, lists

Identification Space-Related Statistics-Related Other

Nested Next_Extent Last_Analyzed Skip_Corrupt

Secondary Min_Extents Avg_Space_
Freelist_Blocks

Monitoring

Max_Extents Num_Freelist_Blocks Cluster_Owner

Pct_Increase Global_Stats Dependencies

Freelists User_Stats

Freelist_Groups

TABLE 37-2. Columns in USER_TABLES (continued)

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

information specific to columns. USER_TAB_COLUMNS can also be queried via the public
synonym COLS.

The columns you can query from USER_TAB_COLUMNS can be separated into three major
categories, as shown in Table 37-3.

The Table_Name and Column_Name columns contain the names of your tables and
columns. The usage of the “Definition-Related” columns is described in the “Datatypes” entry
in the Alphabetical Reference. The “Statistics-Related” columns are populated when the table
is analyzed (see the analyze command in the Alphabetical Reference). Statistics for columns are
also provided in the USER_TAB_COL_STATISTICS view (described shortly).

To see the column definitions for a table, query USER_TAB_COLUMNS, specify the
Table_Name in the where clause:

select Column_Name, Data_Type
from USER_TAB_COLUMNS
where Table_Name = 'NEWSPAPER';

COLUMN_NAME DATA_TYPE
------------- ---------
FEATURE VARCHAR2
SECTION CHAR
PAGE NUMBER

680 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 37
Blind Folio 37:680

Identification Definition-Related Statistics-Related

Table_Name Data_Type Num_Distinct

Column_Name Data_Length Low_Value

Column_ID Data_Precision High_Value

Character_Set_Name Data_Scale Density

Char_Col_Decl_Length Nullable Num_Nulls

Default_Length Num_Buckets

Data_Default Last_Analyzed

Data_Type_Mod Sample_Size

Data_Type_Owner Global_Stats

Char_Length User_Stats

Char_Used Avg_Col_Len

V80_Fmt_Image

Data_Upgraded

TABLE 37-3. Columns in USER_TAB_COLUMNS

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 37: The Hitchhiker’s Guide to the Oracle9i Data Dictionary 681

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 37
Blind Folio 37:681

The information in this example is also obtainable via the SQLPLUS describe command;
however, describe does not give you the option of seeing the column defaults and statistics. The
ALL_TAB_COLUMNS view shows the columns for all of the tables and views owned by the user
as well as any to which the user has been granted access. Since ALL_TAB_COLUMNS can contain
entries for multiple users, it contains an Owner column in addition to the columns shown in
Table 37-3. DBA_TAB_COLUMNS, which lists the column definitions for all tables and views
in the database, has the same column definitions as ALL_TAB_COLUMNS.

Column Statistics
Most of the column statistics are available in both USER_TAB_COLUMNS (their former home)
and USER_TAB_COL_STATISTICS. The columns available in USER_TAB_COL_STATISTICS are
the “Statistics-Related” columns of USER_TAB_COLUMNS shown in Table 37-3 plus the
Table_Name and Column_Name columns.

USER_TAB_COL_STATISTICS contains statistics columns that are also provided via USER_
TAB_COLUMNS for backward-compatibility. You should access them via USER_TAB_COL_
STATISTICS.

Column Value Histograms
You can use histograms to improve the analysis used by the cost-based optimizer. The USER_
TAB_HISTOGRAMS view contains information about each column’s histogram, including the
Table_Name, Column_Name, Endpoint_Number, Endpoint_Value, and Endpoint_Actual_Value.
The values in USER_TAB_HISTOGRAMS are used by the optimizer to determine the distribution
of the column values within the table. “ALL” and “DBA” versions of USER_TAB_HISTOGRAMS
are available.

Updatable Columns
You can update records in views that contain joins in their view queries, provided the join meets
certain criteria. The USER_UPDATABLE_COLUMNS view lists all columns you can update. You
can query the Owner, Table_Name, and Column_Name for the column; the Updatable column
will have a value of YES if the column can be updated, and a value of NO if the column cannot
be updated. You can also query to determine if you can insert or delete records from the view via
the Insertable and Deletable columns.

Views: USER_VIEWS
The base query of a view is accessible via the USER_VIEWS data dictionary view, which contains
ten columns; the three main columns are as follows:

View_Name The name of the view

Text_Length The length of the view’s base query, in characters

Text The query that the view uses

The other columns, described later in this section, are related to object views.

NOTE
This section only applies to traditional views. For materialized views,
see “Database Links and Materialized Views” later in the chapter.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The Text column is a LONG datatype. This may cause a problem when querying
USER_VIEWS via SQLPLUS, because SQLPLUS truncates LONGs. The point at which truncation
occurs, however, can be changed via the set long command. USER_VIEWS provides a mechanism
for determining the proper setting for the LONG truncation point, as you’ll see in the following
example.

The Text_Length column shows the length of the view’s query. Therefore, the SQLPLUS
LONG truncation point must be set to a value equal to or greater than the view’s Text_Length
value. For example, the following listing shows a view whose View_Name is AGING and whose
Text_Length is 355:

select View_Name, Text_Length
from USER_VIEWS
where View_Name = 'AGING';

View_Name Text_Length
---------------- -------------
AGING 355

Since the length of the view’s text is 355 characters, use the set long command to increase the
LONG truncation point to at least 355 (the default is 80) to see the full text of the view’s query:

set long 355

You can then query USER_VIEWS for the view’s Text, using the query shown in the following
listing:

select Text
from USER_VIEWS
where View_Name = 'AGING';

If you had not used the set long command, then the output would have been truncated at
80 characters, with no message telling you why the truncation occurred. Before querying other
views, you will need to recheck their Text_Length values.

NOTE
You can query the column definitions for views from
USER_TAB_COLUMNS, the same view you query for tables.

If you use column aliases in your views, and your column aliases are part of the view’s query,
then your data dictionary queries for information about views will be simplified. Since the entire
text of the view’s query is displayed in USER_VIEWS, the column aliases will be displayed as well.

You can create views using this format:

create view NEWSPAPER_VIEW (SomeFeature, SomeSection)
as select Feature, Section

from NEWSPAPER;

682 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 37
Blind Folio 37:682

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Listing the column names in the header of the create view command removes the column
aliases from the query and thus prevents you from seeing them via USER_VIEWS. The only way
to see the view’s column names would be to query USER_TAB_COLUMNS. If the column names
are in the query, then you only need to query one data dictionary view (USER_VIEWS) for both
the query and the column names.

For example, given the NEWSPAPER_VIEW view created in the last example, if you were to
query USER_VIEWS, you would see

select Text
from USER_VIEWS
where View_Name ='NEWSPAPER_VIEW';

TEXT

select Feature, Section from NEWSPAPER

This query does not show you the new column names you assigned, since you did not make
those column names part of the view’s query. To make those column names show up in
USER_VIEWS, add them as column aliases in the view’s query:

create view NEWSPAPER_VIEW
as select Feature AS SomeFeature, Section AS SomeSection

from NEWSPAPER;

Now when you query USER_VIEWS, the column aliases will be displayed as part of the view’s
query text:

select Text
from USER_VIEWS
where View_Name ='NEWSPAPER_VIEW';

TEXT

select Feature SomeFeature, Section SomeSection
from NEWSPAPER

To support object views, USER_VIEWS contains the following columns:

Type_Text Type clause of the typed view

Type_Text_Length Length of the type clause of the typed view

OID_Text WITH OID clause of the typed view

OID_Text_Length Length of the WITH OID clause of the typed view

View_Type_Owner Owner of the view’s type for typed views

View_Type Type of the view

See Chapters 30 and 33 for information on object views and types.

Chapter 37: The Hitchhiker’s Guide to the Oracle9i Data Dictionary 683

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 37
Blind Folio 37:683

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The ALL_VIEWS view lists all of the views owned by the user as well as any views to which
the user has been granted access. Since ALL_VIEWS can contain entries for multiple users, it
contains an Owner column in addition to the columns listed earlier in this section. DBA_VIEWS,
which lists all views in the database, has the same column definitions as ALL_VIEWS.

Synonyms: USER_SYNONYMS (SYN)
USER_SYNONYMS lists all of the synonyms that a user owns. The columns are as follows:

Synonym_Name The name of the synonym

Table_Owner The owner of the table that the synonym refers to

Table_Name The name of the table that the synonym refers to

DB_Link The name of the database link used in the synonym

USER_SYNONYMS is useful when debugging programs or resolving problems with users’ access
to objects within applications. USER_SYNONYMS is also known by the public synonym SYN.

The DB_Link column will be NULL if the synonym does not use a database link. Therefore,
if you want to see a list of the database links currently in use by the synonyms owned by your
account, execute this query:

elect distinct DB_Link
from USER_SYNONYMS
where DB_Link is not null;

The ALL_SYNONYMS view lists all of the synonyms owned by the user, public synonyms,
and all synonyms to which the user has been granted access. Since ALL_SYNONYMS can
contain entries for multiple users, it contains an Owner column in addition to the columns listed
earlier in this section. DBA_SYNONYMS, which lists all synonyms in the database, has the same
column definitions as ALL_SYNONYMS.

Sequences: USER_SEQUENCES (SEQ)
To display the attributes of sequences, you can query the USER_SEQUENCES data dictionary
view. This view can also be queried using the public synonym SEQ. The columns of USER_
SEQUENCES are listed in Table 37-4.

684 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 37
Blind Folio 37:684

Column Name Description

Sequence_Name Name of the sequence

Min_Value Minimum value of the sequence

Max_Value Maximum value of the sequence

TABLE 37-4. Columns in USER_SEQUENCES

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The Last_Number column is not updated during normal database operation; it is used during
database restart/recovery operations.

ALL_SEQUENCES lists all of the sequences owned by the user or to which the user has been
granted access. Since ALL_SEQUENCES can contain entries for multiple users, it contains a
Sequence_Owner column in addition to the columns listed in Table 37-4. DBA_SEQUENCES,
which lists all sequences in the database, has the same column definitions as ALL_SEQUENCES.

Constraints and Comments
Constraints and comments help you to understand how tables and columns relate to each other.
Comments are strictly informational; they do not enforce any conditions on the data stored in the
objects they describe. Constraints, on the other hand, define the conditions under which that data
is valid. Typical constraints include NOT NULL, UNIQUE, PRIMARY KEY, and FOREIGN KEY. In
the following sections, you will see how to retrieve data about constraints and comments from
the data dictionary.

Constraints: USER_CONSTRAINTS
Constraint information is accessible via the USER_CONSTRAINTS view. This information is very
useful when trying to alter data constraints or resolve problems with an application’s data. The
columns of this view are listed in Table 37-5.

Although this is a “USER” view, it contains an Owner column. In this view, Owner refers to
the owner of the constraint, not the owner of the table (which is the user).

Valid values for the Constraint_Type column are shown in Table 37-5. Understanding the
constraint types is crucial when you are trying to get useful information about your constraints.

FOREIGN KEY constraints will always have values for the R_Owner and R_Constraint_Name
columns. These two columns will tell you which constraint the FOREIGN KEY references. A
FOREIGN KEY references another constraint, not another column. NOT NULL constraints on
columns are stored as CHECK constraints, so they have a Constraint_Type of ‘C’.

Querying USER_CONSTRAINTS will give you the names of all the constraints on a table. This
is important when trying to interpret error messages that only provide the name of the constraint
that was violated.

Chapter 37: The Hitchhiker’s Guide to the Oracle9i Data Dictionary 685

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 37
Blind Folio 37:685

Column Name Description

Increment_By Increment between sequence values

Cycle_Flag A flag to indicate whether the value should cycle back to the Min_Value
once the Max_Value is reached

Order_Flag A flag to indicate whether sequence numbers are generated in order

Cache_Size The number of sequence entries cached in memory

Last_Number The last sequence number written to disk or cached

TABLE 37-4. Columns in USER_SEQUENCES (continued)

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

686 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 37
Blind Folio 37:686

Column Name Description

Owner The owner of the constraint.

Constraint_Name The name of the constraint.

Constraint_Type The type of constraint:
‘C’ CHECK constraint; includes NOT NULLs
‘P’ PRIMARY KEY constraint
‘R’ FOREIGN KEY (reference) constraint
‘U’ UNIQUE constraint
‘V’ WITH CHECK OPTION constraint (for views)
‘O’ WITH READ ONLY constraint (for views)

Table_Name The name of the table associated with the constraint.

Search_Condition The search condition used (for CHECK constraints).

R_Owner The owner of the table referenced by a FOREIGN KEY constraint.

R_Constraint_Name The name of the constraint referenced by a FOREIGN KEY constraint.

Delete_Rule The action to take on the FOREIGN KEY tables when a PRIMARY KEY
record is deleted (CASCADE or NO ACTION).

Status The status of the constraint (ENABLED or DISABLED).

Deferrable A flag to indicate whether the constraint can be deferred.

Deferred A flag to indicate whether the constraint was initially deferred.

Validated A flag (VALIDATED or NOT VALIDATED) to indicate whether all data
obeys the constraint.

Generated A flag to indicate whether the constraint name has been generated by
the database.

Bad A flag to indicate whether a date was used in the constraint creation
without specifying a century value for CHECK constraints, resulting in
ambiguous 2-digit years; applies only to constraints in databases
upgraded from prior versions of Oracle. Such constraints may result in
ORA-02436 errors if not dropped and re-created properly.

Rely A flag to indicate if the constraint is enforced or unenforced.

Last_Change The date the constraint was last enabled or disabled.

Index_Owner Owner of the related index.

Index_Name Name of the related index.

Invalid Valid/Invalid flag.

View_Related Yes/No flag to record if the constraint is view related.

TABLE 37-5. Columns in USER_CONSTRAINTS

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Once you know the name and type of a constraint, you can check the columns associated
with it via the USER_CONS_COLUMNS view, described in the next section.

If you do not assign constraint names when creating them, Oracle will generate unique constraint
names. See “Integrity Constraint” in the Alphabetical Reference for further details. If a constraint name
has been system-generated, that fact will be indicated via the Generated column.

If you defer a constraint (as indicated by the Deferred column), the constraint will not be
enforced for the duration of a transaction. For example, if you were performing bulk updates on
related tables and could not guarantee the order of transactions, you may decide to defer constraint
checking on the tables until all of the updates have completed.

ALL_CONSTRAINTS lists the constraints on all of the tables that the user can access.
DBA_CONSTRAINTS lists all of the constraints in the database. Each of these views has the
same set of columns as USER_CONSTRAINTS (since they all include the Owner column).

Constraint Columns: USER_CONS_COLUMNS
You can view the columns associated with constraints via the USER_CONS_COLUMNS data
dictionary view. If you have already queried USER_CONSTRAINTS to obtain the types and
names of the constraints involved, you can use USER_CONS_COLUMNS to determine which
columns are involved in the constraint. The columns in this view are the following:

Owner The owner of the constraint

Constraint_Name The name of the constraint

Table_Name The name of the table associated with the constraint

Column_Name The name of the column associated with the constraint

Position The order of the column within the constraint definition

There are only two columns in USER_CONS_COLUMNS that are not in USER_CONSTRAINTS:
Column_Name and Position. A sample query of this table is shown in the following listing:

select Column_Name, Position
from USER_CONS_COLUMNS
where Constraint_Name = 'SYS_C0008791';

COLUMN_NAME POSITION
------------ --------
FIRSTNAME 1
LASTNAME 2

As shown in the preceding listing, the combination of FirstName and LastName forms the constraint
(in this case, a primary key).

The Position column is significant. When you create a UNIQUE or PRIMARY KEY constraint,
Oracle automatically creates a unique index on the set of columns you specify. The index is
created based on the column order you specify. The column order, in turn, affects the performance
of the index. An index comprising multiple columns will be used most efficiently if the leading
column of that index (Position=1) is used in the query’s where clause. See Chapter 38 for further
details on optimizers.

Chapter 37: The Hitchhiker’s Guide to the Oracle9i Data Dictionary 687

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 37
Blind Folio 37:687

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

688 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 37
Blind Folio 37:688

The ALL_CONS_COLUMNS and DBA_CONS_COLUMNS views have the same column
definitions as USER_CONS_COLUMNS. ALL_CONS_COLUMNS can be used to display column
information about constraints on all tables that the user can access regardless of owner. DBA_
CONS_COLUMNS lists the column-level constraint information for the entire database.

Constraint Exceptions: EXCEPTIONS
When enabling constraints on tables that already contain data, you may encounter constraint
violations within the data. For example, you may attempt to create a PRIMARY KEY constraint
on a column that contains the same value for multiple records, but such an attempt would fail
due to uniqueness constraint violations.

You can capture information about the rows that cause constraint creations to fail. First,
create a table called EXCEPTIONS in your schema; the SQL script that should be used to create
this table is named utlexcpt.sql, and is usually located in the /rdbms/admin directory under the
Oracle home directory.

The EXCEPTIONS table contains four columns: Row_ID (the RowID of each row that violated
the constraint), Owner (the owner of the violated constraint), Table_Name (the table on which
the violated constraint was created), and Constraint (the constraint violated by the row). After
creating the EXCEPTIONS table, attempt to enable a PRIMARY KEY constraint:

alter table NEWSPAPER enable PRIMARY KEY
exceptions into EXCEPTIONS;

ORA-02437: cannot enable (NEWSPAPER.SYS_C00516) - primary key violated

The constraint creation fails, and a reference to all rows that violate the constraint is placed in
the EXCEPTIONS table. For example, if the PRIMARY KEY constraint in the last example generated
exceptions, then you could query the EXCEPTIONS table as shown in the following listing:

select Owner, Table_Name, Constraint from EXCEPTIONS;

OWNER TABLE_NAME CONSTRAINT
---------- ---------- ----------
PRACTICE NEWSPAPER SYS_C00516
PRACTICE NEWSPAPER SYS_C00516

Two rows violated the constraint named SYS_C00516 (which, in this example, is the
constraint name given to the PRIMARY KEY constraint for the NEWSPAPER table). You can
determine which rows of the NEWSPAPER table correspond to these exceptions by joining the
Row_ID column of the EXCEPTIONS table to the RowID pseudo-column of the table on which
the constraint was being placed (in this example, the NEWSPAPER table):

select *
from NEWSPAPER
where RowID in

(select Row_ID from EXCEPTIONS);

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 37: The Hitchhiker’s Guide to the Oracle9i Data Dictionary 689

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 37
Blind Folio 37:689

The rows that caused the constraint violations will then be displayed.

NOTE
Row_ID is an actual column in the EXCEPTIONS table, with a
datatype of ROWID. It is joined to the RowID pseudo-column
in the table from which the exceptions were generated.

Table Comments: USER_TAB_COMMENTS
You can add a comment to a table, view, or column after it has been created. Comments on
the data dictionary views are the basis for the records displayed via the DICTIONARY and
DICT_COLUMNS views. To display comments about your own tables, use the USER_TAB_
COMMENTS view.

USER_TAB_COMMENTS contains three columns:

Table_Name The name of the table or view

Table_Type The object type (table, object table, or view)

Comments Comments that have been entered for the object

To add a comment to a table, use the comment command, as shown in the following listing:

comment on table BIRTHDAY is 'Birthday list for Blacksburg
employees';

Query USER_TAB_COMMENTS by specifying the Table_Name you want to see the
Comments for, as shown in the following listing:

select Comments
from USER_TAB_COMMENTS
where Table_Name = 'BIRTHDAY';

COMMENTS

Birthday list for Blacksburg

employees

To remove a comment, set the comment to two single quotes with no space between them:

comment on table BIRTHDAY is '';

You can view the comments on all of the tables you can access via the ALL_TAB_COMMENTS
view. ALL_TAB_COMMENTS has an additional column, Owner, which specifies the owner of
the table. DBA_TAB_COMMENTS lists all of the tables in the database, and it has an Owner
column as well.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Column Comments: USER_COL_COMMENTS
USER_COL_COMMENTS displays the comments that have been entered for columns within your
tables. These comments are added to the database via the comment command. USER_COL_
COMMENTS contains three columns:

Table_Name The name of the table or view

Column_Name The name of the column

Comments Comments that have been entered for the column

Query USER_COL_COMMENTS by specifying the Table_Name and Column_Name you
want to see the Comments for:

select Comments
from USER_COL_COMMENTS
where Table_Name = 'BIRTHDAY'
and Column_Name = 'AGE';

To add a comment to a column, use the comment command, as shown in the following listing:

comment on column BIRTHDAY.AGE is 'Age in years';

To remove a comment, set the comment to two single quotes with no space between them:

comment on column BIRTHDAY.AGE is '';

You can view the column comments on all of the tables you can access via the ALL_COL_
COMMENTS view. ALL_COL_COMMENTS has an additional column, Owner, which specifies
the owner of the table. DBA_COL_COMMENTS lists all of the columns in all of the tables in the
database, and it has an Owner column as well.

Indexes and Clusters
Indexes and clusters do not change the data that is stored in tables; however, they do change the
way that data is stored and accessed. In the following sections, you will see data dictionary views
that describe indexes and clusters. You will see descriptions of the data dictionary views related
to partitioned indexes in “Space Allocation and Usage” in this chapter.

Indexes: USER_INDEXES (IND)
In Oracle, indexes are very closely related to constraints. The PRIMARY KEY and UNIQUE
constraints always have associated unique indexes. As with constraints, two data dictionary
views are used to query information about indexes: USER_INDEXES and USER_IND_COLUMNS.
USER_INDEXES is also known by its public synonym, IND.

The columns in USER_INDEXES can be grouped into four categories, as shown in Table 37-6.
The name of the index is shown in the Index_Name column. The owner and name for the

table being indexed are in the Table_Owner and Table_Name columns. The Uniqueness column

690 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 37
Blind Folio 37:690

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

will be set to UNIQUE for unique indexes and set to NONUNIQUE for nonunique indexes.
Table_Type records whether the index is on a ‘TABLE’ or a ‘CLUSTER’.

The “Space-Related” columns are described in the “Storage” entry in the Alphabetical
Reference. The “Statistics-Related” columns are populated when the table is analyzed (see the
analyze command in the Alphabetical Reference). The Degree and Instances columns refer to
the degree of parallelism used when the index is created.

To see all of the indexes on a table, query USER_INDEXES using the Table_Owner and
Table_Name columns in the where clause, as shown in the following listing:

select Index_Name, Uniqueness
from USER_INDEXES
where Table_Owner = 'PRACTICE'
and Table_Name = 'BIRTHDAY';

INDEX_NAME UNIQUENES
---------------- ---------
PK_BIRTHDAY UNIQUE

Chapter 37: The Hitchhiker’s Guide to the Oracle9i Data Dictionary 691

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 37
Blind Folio 37:691

Identification Space-Related Statistics-Related Other

Index_Name Tablespace_Name Blevel Degree

Table_Owner Ini_Trans Leaf_Blocks Instances

Table_Name Max_Trans Distinct_Keys Include_Column

Table_Type Initial_Extent Avg_Leaf_Blocks_Per_Key Buffer_Pool

Uniqueness Next_Extent Avg_Data_Blocks_Per_Key Duration

Status Min_Extents Clustering_Factor Pct_Direct_Access

Partitioned Max_Extents Num_Rows Parameters

Index_Type Pct_Increase Sample_Size Domidx_Status

Temporary Pct_Free Last_Analyzed Domidx_Opstatus

Generated Freelists User_Stats Funcidx_Status

Logging Freelist_Groups Global_Stats Join_Index

Compression Pct_Threshold

Prefix_Length

Secondary

Ityp_Owner

Ityp_Name

TABLE 37-6. Columns in USER_INDEXES

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The query output in the preceding example shows that an index named PK_BIRTHDAY exists
on the BIRTHDAY table. By using the same naming standard for all of your indexes, you can make
it very easy to identify the purpose and table for an index just by looking at the Index_Name. In
this example, PK signifies PRIMARY KEY; the constraint name can be specified during constraint
creation to supersede the system-generated constraint name.

The Clustering_Factor column is not directly related to clusters, but rather represents the
degree to which the rows in the table are ordered. The more ordered those rows are, the more
efficient range queries will be (range queries are those in which a range of values is given for a
column, such as where LastName like ‘A%’).

To discover which columns are part of the index, and their order within the index, you need
to query the USER_IND_COLUMNS view, which is described in the next section.

ALL_INDEXES shows all of the indexes owned by the user as well as any created on tables to
which the user has been granted access. Since ALL_INDEXES can contain entries for multiple
users, it contains an Owner column in addition to the columns shown in Table 37-6. DBA_
INDEXES, which lists all indexes in the database, has the same column definitions as ALL_INDEXES.

NOTE
For function-based indexes, see USER_IND_EXPRESSIONS.

Indexed Columns: USER_IND_COLUMNS
You can determine which columns are in an index by querying USER_IND_COLUMNS. The
columns available via this view are as follows:

Index_Name The name of the index

Table_Name The name of the indexed table

Column_Name The name of a column within the index

Column_Position The column’s position within the index

Column_Length The indexed length of the column

Char_Length Maximum codepoint length of the column (Unicode)

Descend A Y/N flag to indicate whether or not the column is sorted in
descending order

Five columns in this view are not in USER_INDEXES: Column_Name, Column_Position,
Column_Length, Char_Length, and Descend. Column_Length, like the statistics-related columns
in USER_INDEXES, is populated when the index’s base table is analyzed (see the analyze command
in the Alphabetical Reference). A sample query of this table, using the Index_Name from the
USER_INDEXES example, is shown in the following listing (in this example, the Column_Position
column is given the alias Pos):

select Column_Name, Column_Position Pos
from USER_IND_COLUMNS
where Index_Name = 'PK_BIRTHDAY';

692 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 37
Blind Folio 37:692

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

COLUMN_NAME POS
------------ ---
FIRSTNAME 1
LASTNAME 2

As you can see from this query, the PK_BIRTHDAY index consists of two columns: FirstName
and LastName, in that order. See Chapter 38 for details on how the optimizer uses multicolumn
indexes.

The ALL_IND_COLUMNS and DBA_IND_COLUMNS views have the same column definitions
as USER_IND_COLUMNS. ALL_IND_COLUMNS can be used to display column information
about indexes on all tables that the user can access regardless of owner. DBA_IND_COLUMNS
lists the column-level index information for the entire database.

Bitmap Join Index Columns: USER_JOIN_IND_COLUMNS
If you create a bitmap join index (introduced in Oracle9i), you can query USER_JOIN_IND_
COLUMNS for the join details. USER_JOIN_IND_COLUMNS records the names of the tables
involved in the join, the inner and outer join columns, and the dimension and fact tables involved.

Clusters: USER_CLUSTERS (CLU)
The storage and statistics parameters associated with clusters are accessible via USER_CLUSTERS
(also known by the public synonym CLU). The columns in this data dictionary view are shown in
Table 37-7, separated by type.

Chapter 37: The Hitchhiker’s Guide to the Oracle9i Data Dictionary 693

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 37
Blind Folio 37:693

Identification Space-Related Statistics-Related Other

Cluster_Name Tablespace_Name Avg_Blocks_Per_Key Degree

Cluster_Type Pct_Free Hashkeys Instances

Function Pct_Used Cache

Key_Size Buffer_Pool

Ini_Trans Single_Table

Max_Trans Dependencies

Initial_Extent

Next_Extent

Min_Extents

Max_Extents

Pct_Increase

Freelists

Freelist_Groups

TABLE 37-7. Columns in USER_CLUSTERS

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

694 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 37
Blind Folio 37:694

The Cluster_Name column contains the name of the cluster. Cluster_Type specifies whether
the cluster uses a standard B-tree index or a hashing function for the cluster.

The usage of the “Space-Related” columns is described in the “Storage” entry in the Alphabetical
Reference. The “Statistics-Related” columns are populated when the table is analyzed.

ALL_CLUSTERS and DBA_CLUSTERS have an additional column, Owner, since they list
clusters in multiple schemas.

You can specify a hashing function for a cluster. User-specified hashing functions are most
useful if the following conditions exist:

■ The cluster key column is numeric.

■ The cluster key column values are sequentially assigned.

■ You know the maximum number of cluster key column values for the table.

If all three conditions are met, you can use the hash is clause of the create cluster command
to specify your own hashing function (see create cluster in the Alphabetical Reference).

Cluster Columns: USER_CLU_COLUMNS
To see the mapping of table columns to cluster columns, query USER_CLU_COLUMNS, whose
columns are the following:

Cluster_Name The name of the cluster

Clu_Column_Name The name of the key column in the cluster

Table_Name The name of a table within the cluster

Tab_Column_Name The name of the key column in the table

Since a single cluster can store data from multiple tables, USER_CLU_COLUMNS is useful for
determining which columns of which tables map to the cluster’s columns.

There is no “ALL” version of this view. There are only USER_CLU_COLUMNS for the user’s
cluster columns, and DBA_CLU_COLUMNS, which shows the column mappings for all clusters
in the database.

Abstract Datatypes, ORDBMS-Related
Structures, and LOBs
In the following sections, you will see the data dictionary views associated with object-relational
structures such as abstract datatypes, methods, and large objects (LOBs). “ALL” and “DBA”
versions of all of these data dictionary views are available. Because they contain records for
multiple owners, the “ALL” and “DBA” versions of these views contain Owner columns as well
as the columns listed in this section.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Abstract Datatypes: USER_TYPES
Abstract datatypes created within your schema are listed in USER_TYPES, which includes
columns for the Type_Name, number of attributes (Attributes), and number of methods (Methods)
defined for the datatype.

For example, the ANIMAL_TY datatype has three attributes and one method (methods are
defined via the create type body command), as shown in the following listing:

select Type_Name,
Attributes,
Methods

from USER_TYPES;

TYPE_NAME ATTRIBUTES METHODS
------------------------------ ---------- ----------
ANIMAL_TY 3 1

Datatype Attributes: USER_TYPE_ATTRS
To see the attributes of a datatype, you need to query the USER_TYPE_ATTRS view. The columns
in USER_TYPE_ATTRS are shown in Table 37-8.

Chapter 37: The Hitchhiker’s Guide to the Oracle9i Data Dictionary 695

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 37
Blind Folio 37:695

Column Name Description

Type_Name Name of the type

Attr_Name Name of the attribute

Attr_Type_Mod The type modifier of the attribute

Attr_Type_Owner Owner of the attribute’s type, if the attribute is based
on another datatype

Attr_Type_Name Name of the type of the attribute

Length Length of the attribute

Precision Precision of the attribute

Scale Scale of the attribute

Character_Set_Name Character set of the attribute

Attr_No Ordinal position of the attribute within the type definition

Inherited YES/NO flag to indicate if the attribute is inherited from
a supertype

TABLE 37-8. Columns in USER_TYPE_ATTRS

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

You can query USER_TYPE_ATTRS to see the relationships between nested abstract datatypes.
For example, the PERSON_TY datatype uses the ADDRESS_TY datatype, as shown in the
following listing:

select Attr_Name,
Length,
Attr_Type_Name

from USER_TYPE_ATTRS
where Type_Name = 'PERSON_TY';

ATTR_NAME LENGTH ATTR_TYPE_NAME
------------------------------ ---------- ------------------
NAME 25 VARCHAR2
ADDRESS ADDRESS_TY

Datatype Methods: USER_TYPE_METHODS and USER_METHOD_PARAMS
If a type has methods defined for it, then you query USER_TYPE_METHODS to determine the
methods’ names. USER_TYPE_METHODS contains columns showing the type name (Type_Name),
method name (Method_Name), method number (Method_No, used for overloaded methods), and
type of method (Method_Type). USER_TYPE_METHODS also includes columns that show the
number of parameters (Parameters) and results (Results) returned by the method.

For example, the ANIMAL_TY datatype has one method, a member function named AGE. The
AGE method has one input parameter (Birthdate) and one output result (the age, in days). Querying
USER_TYPE_METHODS shows that two parameters are defined for AGE, not one as expected:

select Parameters,
Results

from USER_TYPE_METHODS
where Type_Name = 'ANIMAL_TY'
and Method_Name = 'AGE';

PARAMETERS RESULTS
---------- ----------

2 1

Why does AGE have two parameters if it only has one input parameter defined? To find out,
you can query USER_METHOD_PARAMS, which describes the parameters for your methods:

select Param_Name, Param_No, Param_Type_Name
from USER_METHOD_PARAMS;

PARAM_NAME PARAM_NO PARAM_TYPE_NAME
------------------------------ ---------- -----------------
SELF 1 ANIMAL_TY
BIRTHDATE 2 DATE

USER_METHOD_PARAMS shows that for each method, Oracle creates an implicit SELF
parameter. The results of your methods are shown in USER_METHOD_RESULTS:

696 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 37
Blind Folio 37:696

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

select Method_Name,
Result_Type_Name

from USER_METHOD_RESULTS
where Type_Name = 'ANIMAL_TY';

METHOD_NAME RESULT_TYPE_NAME
------------------------------ ----------------------------
AGE NUMBER

Other Datatypes: USER_REFS, USER_COLL_TYPES, and
USER_NESTED_TABLES
If you use REFs (see Chapter 33), you can query the USER_REFS data dictionary view to display
the REFs you have defined. USER_REFS will show the name of the table containing the REF column
(Table_Name) and the column name of the object column (Column_Name). The attributes of the
REF—such as whether or not it is stored with the RowID—are also accessible via USER_REFS.

Collector types (nested tables and varying arrays) are described via the USER_COLL_TYPES
data dictionary view. The columns of USER_COLL_TYPES include Type_Name, Upper_Bound
(for varying arrays), and the Length and Precision of the elements. You can use USER_COLL_TYPES
in conjunction with the abstract datatype data dictionary views shown earlier in this section to
determine the type structure of a collector. You can also query USER_NESTED_TABLES and
USER_VARRAYS to see details for your collections.

LOBs: USER_LOBS
As described in Chapter 32, you can store large objects inside the database. The USER_LOBS
view provides information on the LOBs defined in your tables, as shown in the following listing:

column column_name format A30

select Table_Name,
Column_Name

from USER_LOBS;

TABLE_NAME COLUMN_NAME
------------------------------ ----------------------------
PROPOSAL PROPOSAL_TEXT
PROPOSAL BUDGET

USER_LOBS also shows the names of the segments used to hold the LOB data when it grows
large; however, it does not show the datatypes of the LOB columns. To see the LOB datatypes,
you can either describe the table that includes the LOBs or query USER_TAB_COLUMNS (as
shown earlier in this chapter).

To use BFILE datatypes for LOBs, you have to create directories (see the entry for the create
directory command in the Alphabetical Reference). The ALL_DIRECTORIES data dictionary
shows the Owner, Directory_Name, and Directory_Path for each directory to which you have
been granted access. A “DBA” version of this view is also available. No “USER” version of this
view is available.

Chapter 37: The Hitchhiker’s Guide to the Oracle9i Data Dictionary 697

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 37
Blind Folio 37:697

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Database Links and Materialized Views
Database links and materialized views are used to manage access to remote data. Depending
on the type of materialized view you use, you may be able to use materialized view logs. In the
following sections, you will see descriptions of the data dictionary views you can use to display
information about database links and materialized views. For further information on database
links, see Chapter 22. For further information on materialized views, see Chapter 23.

Database Links: USER_DB_LINKS
To see the database links created under your account, query USER_DB_LINKS. The columns
of this view, including the link name (DB_Link), username to connect to (Username), and the
connection string (Host), show the information about the remote connection that the link will
be used to establish. The Username and Password values will be used to log in to the remote
database defined by the Host value.

The Host column stores the Oracle Net service names. This column stores the exact character
string you specify during the create database link command, and does not alter its case. Therefore,
you should be careful with the case you use when creating database links. Otherwise, your queries
against USER_DB_LINKS will have to take into account inconsistencies in the case of the Host
column. For example, looking for a database link that uses the ‘HQ’ service descriptor would
require you to enter

select * from USER_DB_LINKS
where UPPER(Host) = 'HQ';

since it is possible that there are entries with a Host value of ‘hq’ instead of ‘HQ’.

NOTE
If you are using default logins to the remote database, then Password
will be NULL.

The ALL_DB_LINKS view lists all of the database links that either are owned by the user or
are PUBLIC database links. DBA_DB_LINKS lists all database links in the database. ALL_DB_
LINKS and DBA_DB_LINKS share most of the same column definitions as USER_DB_LINKS; they
have an Owner column in place of the Password column.

See Chapter 22 for further information on the uses of database links.

Materialized Views
You can query USER_MVIEWS to display information about the materialized views owned by
your account. This view, whose columns are listed in Table 37-9, shows the structural
information about the materialized view as well as its refresh schedule.

NOTE
See Chapter 23 for details on materialized views.

698 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 37
Blind Folio 37:698

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 37: The Hitchhiker’s Guide to the Oracle9i Data Dictionary 699

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 37
Blind Folio 37:699

The name of the materialized view is found in the Mview_Name column of USER_MVIEWS.
The local base table for the view is the Container_Name column.

Column Name Description

Owner The account that owns the materialized view

Mview_Name The name of the materialized view

Container_Name The base table (in the local database) for the materialized view’s data;
pre-Oracle8i, the Mview_Name preceded by “SNAP$_”

Query The query that defines the materialized view

Query_Len The length of the materialized view’s base query

Updatable A flag to indicate whether the snapshot can be updated

Update_Log The name of the table that logs changes made to an updatable snapshot

Master_Rollback_Seg The rollback segment to use during snapshot population and refresh
operations

Master_Link The database link used to access the master database

Rewrite_Enabled A Y/N flag to indicate if query rewrite is enabled for the view

Rewrite_Capability Rules and restrictions for query rewrites

Refresh_Mode DEMAND, COMMIT, or NEVER, depending on the refresh mode
for the view

Refresh_Method Values used to drive a fast refresh of the view (Complete, Fast,
Never, or Force)

Build_Mode IMMEDIATE, DEFERRED, or PREBUILT instantiation of the materialized
view data during its creation

Fast_Refreshable What methods are available for fast refresh of the materialized view

Last_Refresh_Type The most recent refresh type used

Last_Refresh_Date A timestamp to record the last time the snapshot’s data was refreshed

Staleness The status of the materialized view’s data relative to its master tables

After_Fast_Refresh Staleness status following a fast refresh

Compile_State Validity of the materialized view

Use_No_Index Y/N flag to indicate if the materialized view was created with the
USING NO INDEX clause

TABLE 37-9. Columns in USER_MVIEWS

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

To determine which database links are being used by your materialized views, query the
Master_Link column, as shown in the following example:

select Master_Link
from USER_MVIEWS;

The names of the database links returned by this query can be used as input for queries
against USER_DB_LINKS. This query will display all of the database link information available
for database links used in your materialized views:

select *
from USER_DB_LINKS
where DB_Link in

(select Master_Link
from USER_MVIEWS);

Additional queries that are useful in the management of materialized views are provided in
Chapter 23.

The ALL_MVIEWS and DBA_MVIEWS views have the same column definitions as
USER_MVIEWS. You can use ALL_MVIEWS to display information about all materialized views
that the user can access regardless of owner. DBA_MVIEWS lists materialized view information
for all users in the database.

Two related views—USER_REFRESH and USER_REFRESH_CHILDREN—display information
about refresh groups. USER_MVIEW_REFRESH_TIMES shows the last time each materialized
view was refreshed.

Additional Materialized View Capabilities
You can query USER_MVIEW_ANALYSIS to see the materialized views that support query
rewrite. If a materialized view had been created as a snapshot prior to Oracle8i, or if it contains
references to a remote table, then it will not be listed in this view. You can query the owner of
the materialized view, its name (Mview_Name), and the owner of the base table (Mview_Table_
Owner). Many of the columns in this view are flags, such as Summary (‘Y’ if the view contains an
aggregation), Known_Stale (‘Y’ if the view’s data is inconsistent with the base table), and Contains_
Views (‘Y’ if the materialized view references a view).

If the materialized view contains aggregations, you can query USER_MVIEW_AGGREGATES
for details on the aggregations. Columns in this view are as follows:

Owner Owner of the materialized view

Mview_Name Name of the materialized view

Position_in_Select Position within the query

Container_Column Name of the column

Agg_Function Aggregate function

DistinctFlag ‘Y’ if the aggregation uses the DISTINCT function

Measure The SQL text of the measure, excluding the aggregate function

700 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 37
Blind Folio 37:700

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

You can query details of the relations within materialized views from the USER_MVIEW_
DETAIL_RELATIONS and USER_MVIEW_KEYS data dictionary views. If the materialized view
is based on joins, see USER_MVIEW_JOINS for the join details. In general, USER_MVIEW_
ANALYSIS will be the most commonly used data dictionary view related to materialized views.

Materialized View Logs: USER_MVIEW_LOGS
Materialized view logs can be used by many materialized views to determine which records
in the master table need to be refreshed in the materialized view of that table. You can query
USER_MVIEW_LOGS for information about a user’s logs, including the name of the master table
(Master), the table holding the log records (Log_Table), and whether the materialized view is
based on the primary key or the RowID (the Primary_Key and Rowids columns). USER_MVIEW_
LOGS is usually queried for maintenance purposes, such as to determine the name of the trigger
used to create the materialized view log records.

There is no “ALL” version of this view. DBA_MVIEW_LOGS has the same column definitions
as USER_MVIEW_LOGS, and shows all materialized view logs in the database. You can query
USER_BASE_TABLE_MVIEWS for a listing of the materialized view master tables using
materialized view logs.

Triggers, Procedures, Functions, and Packages
You can use procedures, packages, and triggers—blocks of PL/SQL code stored in the database—
to enforce business rules or to perform complicated processing. Triggers are described in Chapter 28.
Procedures, functions, and packages are described in Chapter 29. In the following sections, you
will see how to query the data dictionary for information about triggers, procedures, packages,
and functions.

Triggers: USER_TRIGGERS
USER_TRIGGERS contains information about the triggers owned by your account. This view,
whose columns are listed in Table 37-10, shows the trigger type and body.

Chapter 37: The Hitchhiker’s Guide to the Oracle9i Data Dictionary 701

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 37
Blind Folio 37:701

Column Name Description

Trigger_Name Name of the trigger

Trigger_Type The type of trigger (BEFORE STATEMENT, BEFORE EACH ROW,
and so on)

Triggering_Event The command that executes the trigger (INSERT, UPDATE, or DELETE)

Table_Owner The owner of the table that the trigger is defined for

Base_Object_Type The type of object on which the trigger is based (TABLE, VIEW,
SCHEMA, or DATABASE)

Table_Name The name of the table or view that the trigger is defined for

TABLE 37-10. Columns in USER_TRIGGERS

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The ALL_TRIGGERS view lists the triggers for all tables to which you have access. DBA_
TRIGGERS lists all of the triggers in the database. Both of these views contain an additional
column, Owner, which records the owner of the trigger.

A second trigger-related data dictionary view, USER_TRIGGER_COLS, shows how columns
are used by a trigger. It lists the name of each column affected by a trigger, as well as how the
trigger is used. Like USER_TRIGGERS, “ALL” and “DBA” versions of this data dictionary view
are available.

Procedures, Functions, and Packages: USER_SOURCE
The source code for existing procedures, functions, packages, and package bodies can be
queried from the USER_SOURCE data dictionary view. The Type column in USER_SOURCE
identifies the procedural object as a ‘PROCEDURE’, ‘FUNCTION’, ‘PACKAGE’, ‘PACKAGE
BODY’, ‘TRIGGER’, ‘TYPE’, ‘TYPE BODY’, or ‘JAVA SOURCE’. Each line of code is stored in
a separate record in USER_SOURCE.

You can select information from USER_SOURCE via a query similar to the one shown in the
following listing. In this example, the Text column is selected and ordered by Line number. The
Name of the object and the object Type are used to specify which object’s source code to display.

select Text
from USER_SOURCE
where Name = '&procedure_name'
and Type = 'PROCEDURE'

order by Line;

NOTE
The sequence of the lines is maintained by the Line column;
therefore, the Line column should be used in the order by clause.

702 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 37
Blind Folio 37:702

Column Name Description

Column_Name For nested table triggers, the name of the nested table column

Referencing_Names Names used for referencing OLD and NEW values in the trigger

When_Clause The when clause used for the trigger

Status Whether the trigger is ENABLED or DISABLED

Description The description for the trigger

Action_Type Action type for the trigger body (CALL or PL/SQL)

Trigger_Body The trigger text

TABLE 37-10. Columns in USER_TRIGGERS (continued)

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The ALL_SOURCE and DBA_SOURCE views have all of the columns found in USER_SOURCE
plus an additional Owner column (the owner of the object). ALL_SOURCE can be used to display
the source code for all procedural objects that the user can access regardless of owner. DBA_
SOURCE lists the source code for all users in the database.

NOTE
To see the persistent parameter settings for PL/SQL units, query
USER_STORED_SETTINGS.

Code Errors: USER_ERRORS
The show errors command in SQLPLUS checks the USER_ERRORS data dictionary view for the
errors associated with the most recent compilation attempt for a procedural object. show errors
will display the line and column number for each error, as well as the text of the error message.

To view errors associated with previously created procedural objects, you may query
USER_ERRORS directly. You may need to do this when viewing errors associated with package
bodies, since a package compilation that results in an error may not display the package body’s
error when you execute the show error command. You may also need to query USER_ERRORS
when you encounter compilation errors with multiple procedural objects.

The following are the columns available in USER_ERRORS:

Name The name of the procedural object

Type The object type (‘PROCEDURE’, ‘FUNCTION’, ‘PACKAGE’, ‘PACKAGE
BODY’, ‘TRIGGER’, ‘TYPE’, ‘TYPE BODY’, or ‘JAVA SOURCE’)

Sequence The line sequence number, for use in the query’s order by clause

Line The line number within the source code at which the error occurs

Position The position within the Line at which the error occurs

Text The text of the error message

Queries against this view should always include the Sequence column in the order by clause.
“ALL” and “DBA” versions of this view are also available; they feature an additional column,
Owner, which records the owner of the object.

Code Size: USER_OBJECT_SIZE
You can query the amount of space used in the SYSTEM tablespace for a procedural object from
the USER_OBJECT_SIZE data dictionary view. As shown in the following listing, the four separate
size areas can be added together to determine the total space used in the SYSTEM data dictionary
tables to store the object. The four Size columns, along with the Name and Type columns,
constitute all of the columns in this view.

select Source_Size+Code_Size+Parsed_Size+Error_Size Total
from USER_OBJECT_SIZE
where Name = '&procedure_name'
and Type = 'PROCEDURE';

Chapter 37: The Hitchhiker’s Guide to the Oracle9i Data Dictionary 703

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 37
Blind Folio 37:703

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

There is also a “DBA” version of this view available: DBA_OBJECT_SIZE lists the sizes for all
objects in the database.

Dimensions
You can create and maintain dimensions and hierarchies. For example, you may have a table
named COUNTRY, with columns named Country and Continent. A second table, named
CONTINENT, may have a column named Continent. If you have the CREATE DIMENSION
system privilege, you can create a dimension to reflect the relationship between these elements:

create dimension GEOGRAPHY
level COUNTRY_ID is COUNTRY.Country
level CONTINENT_ID is CONTINENT.Continent
hierarchy COUNTRY_ROLLUP (

COUNTRY_ID child of
CONTINENT_ID

join key COUNTRY.Continent references CONTINENT_id);

You can query the Dimension_Name column of the USER_DIMENSIONS view to see the
names of your dimensions. USER_DIMENSIONS also contains columns for the dimension owner
(Owner), state (the Invalid column, set to ‘Y’ or ‘N’), and revision level (the Revision column).
The attributes of a dimension are accessed via additional data dictionary views.

To see the hierarchies within a dimension, query USER_DIM_HIERARCHIES. This view has
only three columns: Owner, Dimension_Name, and Hierarchy_Name. Querying USER_DIM_
HIERARCHIES for the GEOGRAPHY dimension returns the name of its hierarchies:

select Hierarchy_Name
from USER_DIM_HIERARCHIES;

HIERARCHY_NAME

COUNTRY_ROLLUP

You can see the hierarchy details for COUNTRY_ROLLUP by querying USER_DIM_CHILD_OF,
as shown in the following listing:

column join_key_id format a4

select Child_Level_Name,
Parent_Level_Name,
Position, Join_Key_Id

from USER_DIM_CHILD_OF
where Hierarchy_Name = 'COUNTRY_ROLLUP';

CHILD_LEVEL_NAME PARENT_LEVEL_NAME POSITION JOIN
---------------------- ------------------------------ --------- ----
COUNTRY_ID CONTINENT_ID 1 1

To see the join key for a hierarchy, query USER_DIM_JOIN_KEY:

704 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 37
Blind Folio 37:704

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

select Level_name, Child_Join_Column
from USER_DIM_JOIN_KEY
where Dimension_Name = 'GEOGRAPHY'
and Hierarchy_Name = 'COUNTRY_ROLLUP';

LEVEL_NAME CHILD_JOIN_COLUMN
------------------------------ ------------------------------
CONTINENT_ID CONTINENT

You can see the levels of a dimension by querying the USER_DIM_LEVELS data dictionary
view, and see the key columns for the levels via USER_DIM_LEVEL_KEY. Attribute information
for dimensions is accessible via USER_DIM_ATTRIBUTES.

There are “ALL” and “DBA” views of all of the data dictionary views related to dimensions.
Because the “USER” views for dimensions contain an Owner column, there are no additional
columns found in the corresponding “ALL” and “DBA” views.

Space Allocation and Usage, Including
Partitions and Subpartitions
You can query the data dictionary to determine the space that is available and allocated for
database objects. In the following sections, you will see how to determine the default storage
parameters for objects, your space usage quota, available free space, and the way in which objects
are physically stored. For information on Oracle’s methods of storing data, see Chapters 20 and 40.

Tablespaces: USER_TABLESPACES
You can query the USER_TABLESPACES data dictionary view to determine which tablespaces you
have been granted access to and the default storage parameters in each. A tablespace’s default
storage parameters will be used for each object stored within that tablespace unless the create or
alter command for that object specifies its own storage parameters. The storage-related columns
in USER_TABLESPACES, listed in Table 37-11, are very similar to the storage-related columns in
USER_TABLES. See the “Storage” entry of the Alphabetical Reference for further details.

Chapter 37: The Hitchhiker’s Guide to the Oracle9i Data Dictionary 705

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 37
Blind Folio 37:705

Column Name Description

Tablespace_Name The name of the tablespace.

Block_Size Database block size in use for this tablespace.

Initial_Extent The default INITIAL parameter for objects in the tablespace.

Next_Extent The default NEXT parameter for objects in the tablespace.

Min_Extents The default MINEXTENTS parameter for objects in the tablespace.

Max_Extents The default MAXEXTENTS parameter for objects in the tablespace.

TABLE 37-11. Columns in USER_TABLESPACES

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

There is no “ALL” version of this view. DBA_TABLESPACES shows the storage parameters for
all tablespaces.

Space Quotas: USER_TS_QUOTAS
USER_TS_QUOTAS is a very useful view for determining the amount of space you have currently
allocated and the maximum amount of space available to you by tablespace. A sample query of
USER_TS_QUOTAS is shown in the following listing:

select * from USER_TS_QUOTAS;

TABLESPACE_NAME BYTES MAX_BYTES BLOCKS MAX_BLOCKS
--------------- ---------- ---------- ---------- ----------
USERS 67584 0 33 0

USER_TS_QUOTAS contains one record for each Tablespace_Name. The Bytes column
reflects the number of bytes allocated to objects owned by the user. Max_Bytes is the maximum
number of bytes the user can own in that tablespace; if there is no quota for that tablespace, then
Max_Bytes will display a value of 0. The Bytes and Max_Bytes columns are translated into Oracle
blocks in the Blocks and Max_Blocks columns, respectively.

There is no “ALL” version of this view. DBA_TS_QUOTAS shows the storage quotas for all
users for all tablespaces and is a very effective way to list space usage across the entire database.

706 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 37
Blind Folio 37:706

Column Name Description

Pct_Increase The default PCTINCREASE parameter for objects in the tablespace.

Min_Extlen The minimum extent size for objects in the tablespace.

Status The tablespace’s status (‘ONLINE’, ‘OFFLINE’, ‘INVALID’, ‘READ
ONLY’). An “invalid” tablespace is one that has been dropped; its
record is still visible via this view.

Contents A flag to indicate whether the tablespace is used to store permanent
objects (‘PERMANENT’) or only temporary segments (‘TEMPORARY’).

Logging A flag to indicate the default LOGGING/NOLOGGING parameter
value for objects in the tablespace.

Extent_Management Where extent management is performed for the tablespace
(‘DICTIONARY’ or ‘LOCAL’).

Allocation_Type Type of extent allocation in effect.

Segment_Space_
Management

Flag to indicate if free space is managed via free lists (MANUAL) or
bitmaps (AUTO).

TABLE 37-11. Columns in USER_TABLESPACES (continued)

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:14:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Segments and Extents: USER_SEGMENTS and
USER_EXTENTS
As described in Chapter 20, space is allocated to objects (such as tables, clusters, and indexes) in
segments, the physical counterparts to the logical objects created in the database. You can query
USER_SEGMENTS to see the current storage parameters and space usage in effect for your segments.
USER_SEGMENTS is very useful when you are in danger of exceeding one of the storage limits;
its columns are listed in Table 37-12.

Segments consist of contiguous sections called extents. The extents that constitute segments
are described in USER_EXTENTS. In USER_EXTENTS, you will see the actual size of each extent
within the segment; this is very useful for tracking the impact of changes to the next and
pctincrease settings. In addition to the Segment_Name, Segment_Type, and Tablespace_Name

Chapter 37: The Hitchhiker’s Guide to the Oracle9i Data Dictionary 707

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 37
Blind Folio 37:707

Column Name Description

Segment_Name The name of the segment

Partition_Name NULL if the object is not partitioned; otherwise, the segment’s
partition name

Segment_Type The type of segment (‘TABLE’, ‘CLUSTER’, ‘INDEX’, ‘ROLLBACK’,
and so on)

Tablespace_Name The name of the tablespace in which the segment is stored

Bytes The number of bytes allocated to the segment

Blocks The number of Oracle blocks allocated to the segment

Extents The number of extents in the segment

Initial_Extent The size of the initial extent in the segment

Next_Extent The value of the NEXT parameter for the segment

Min_Extents The minimum number of extents in the segment

Max_Extents The value of the MAXEXTENTS parameter for the segment

Pct_Increase The value of the PCTINCREASE parameter for the segment

Freelists The number of process freelists (lists of data blocks in the segment
that can be used during inserts) allocated to the segment; if a
segment has multiple freelists, then contention for free blocks during
concurrent inserts will be lessened

Freelist_Groups The number of freelist groups (the number of groups of freelists, for
use with the Parallel Server option) allocated to the segment

Buffer_Pool Buffer pool into which the segment will be read (‘DEFAULT’, ‘KEEP’,
or ‘RECYCLE’) if you have defined multiple buffer pools

TABLE 37-12. Columns in USER_SEGMENTS

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

columns, USER_EXTENTS has four new columns: Extent_ID (to identify the extent within the
segment), Bytes (the size of the extent, in bytes), Blocks (the size of the extent, in Oracle blocks),
and Partition_Name (if the segment is part of a partitioned object).

Both USER_SEGMENTS and USER_EXTENTS have “DBA” versions, which are useful for
listing the space usage of objects across owners. Both DBA_SEGMENTS and DBA_EXTENTS
have an additional Owner column. If you want to list all of the owners who own segments in
a tablespace, you can query based on the Tablespace_Name column in DBA_SEGMENTS, and
list all of the owners of segments in that tablespace.

Partitions and Subpartitions
A single table’s data can be stored across multiple partitions. See Chapter 20 for examples of
partitions and descriptions of the indexing options available. To see how a table is partitioned,
you should query the USER_PART_TABLES data dictionary view, whose columns are listed, by
category, in Table 37-13.

Most of the columns of USER_PART_TABLES define the default storage parameters for the table
partitions. When a partition is added to the table, it will by default use the storage parameters shown
in USER_PART_TABLES. USER_PART_TABLES also shows the number of partitions in the table
(Partition_Count), the number of columns in the partition key (Partitioning_Key_Count), and the
type of partitioning (Partitioning_Type).

USER_PART_TABLES stores a single row for each table that has been partitioned. To see
information about each of the individual partitions that belong to the table, you can query
USER_TAB_PARTITIONS. In USER_TAB_PARTITIONS, you will see one row for each of the table’s
partitions. The columns of USER_TAB_PARTITIONS are shown, by category, in Table 37-14.

708 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 37
Blind Folio 37:708

Identification Storage-Related

Table_Name Def_Tablespace_Name

Partitioning_Type Def_Pct_Free

Subpartitioning_Type Def_Pct_Used

Partition_Count Def_Ini_Trans

Def_Subpartition_Count Def_Max_Trans

Partitioning_Key_Count Def_Initial_Extent

Subpartitioning_Key_Count Def_Next_Extent

Def_Logging Def_Min_Extents

Def_Buffer_Pool Def_Max_Extents

Def_Pct_Increase

Def_Freelists

Def_Freelist_Groups

TABLE 37-13. Columns in USER_PART_TABLES

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

USER_TAB_PARTITIONS contains columns that identify the table to which the partition
belongs and shows the partition’s storage parameters and the statistics for the partition. The
“Statistics-Related” columns are populated when the table is analyzed (see the analyze command
in the Alphabetical Reference). The “Identification” columns show the high value for the range
used to define the partition (High_Value) and the position of the partition within the table
(Partition_Position).

The columns used for the partition key are accessible via the USER_PART_KEY_COLUMNS
data dictionary view. USER_PART_KEY_COLUMNS contains only four columns:

Name The name of the partitioned table or index

Object_Type Object type (TABLE or INDEX)

Column_Name The name of the column that is part of the partition key

Column_Position The position of the column within the partition key

Statistics for the partition columns are accessible via the USER_PART_COL_STATISTICS data
dictionary view. The columns in USER_PART_COL_STATISTICS closely mirror those in USER_
TAB_COL_STATISTICS.

Data distribution within the partitions is recorded during the processing of the analyze command.
The data histogram information for partitions is accessible via the USER_PART_HISTOGRAMS
data dictionary view. The columns of this view are Table_Name, Partition_Name, Column_
Name, Bucket_Number, Endpoint_Value, and Endpoint_Actual_Value.

Chapter 37: The Hitchhiker’s Guide to the Oracle9i Data Dictionary 709

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 37
Blind Folio 37:709

Identification Storage-Related Statistics-Related

Table_Name Tablespace_Name Num_Rows

Composite Pct_Free Blocks

Partition_Name Pct_Used Empty_Blocks

Subpartition_Count Ini_Trans Avg_Space

High_Value Max_Trans Chain_Cnt

High_Value_Length Initial_Extent Avg_Row_Len

Partition_Position Next_Extent Sample_Size

Logging Min_Extent Last_Analyzed

Buffer_Pool Max_Extent Global_Stats

Pct_Increase User_Stats

Freelists

Freelist_Groups

TABLE 37-14. Columns in USER_TAB_PARTITIONS

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Since indexes may be partitioned, there is a USER_IND_PARTITIONS data dictionary view
available. The columns in USER_IND_PARTITIONS can be grouped into three categories, as
shown in Table 37-15.

The columns in USER_IND_PARTITIONS parallel those in USER_INDEXES, with a few
modifications to the “Identification” columns. The “Identification” columns for partitioned
indexes show the name of the partition, the high value for the partition, and the position of the
partition within the table. The “Statistics-Related” columns are populated when the partition is
analyzed (see the analyze command in the Alphabetical Reference). The “Space-Related”
columns describe the space allocation for the index; see the “Storage” entry in the Alphabetical
Reference for information on storage parameters.

If a partition has subpartitions, you can see the details for the subpartitions via data dictionary
views. USER_IND_SUBPARTITIONS contains the “Space-Related” and “Statistics-Related” columns
of USER_IND_PARTITIONS, along with columns to identify the subpartition (Subpartition_Name
and Subpartition_Position). Similarly, USER_TAB_SUBPARTITIONS contains the “Space-Related”
and “Statistics-Related” columns of USER_TAB_PARTITIONS along with Subpartition_Name and
Subpartition_Position columns. Thus, you can determine the space definitions of each of your
partitions and subpartitions.

As shown earlier in this section, you can query the USER_PART_COL_STATISTICS and
USER_PART_HISTOGRAMS data dictionary views for statistical information regarding partitions.
For subpartitions, you can query USER_SUBPART_COL_STATISTICS and USER_SUBPART_
HISTOGRAMS, whose structures mirror that of the partition statistics views. To see the

710 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 37
Blind Folio 37:710

Identification Space-Related Statistics-Related

Index_Name Tablespace_Name Blevel

Composite Ini_Trans Leaf_Blocks

Partition_Name Max_Trans Distinct_Keys

Subpartition_Count Initial_Extent Avg_Leaf_Blocks_Per_Key

High_Value Next_Extent Avg_Data_Blocks_Per_Key

High_Value_Length Min_Extent Clustering_Factor

Partition_Position Max_Extent Num_Rows

Status Pct_Increase Sample_Size

Logging Pct_Free Last_Analyzed

Buffer_Pool Freelists User_Stats

Compression Freelist_Groups Pct_Direct_Access

Domidx_Opstatus Global_Stats

Parameters

TABLE 37-15. Columns in USER_IND_PARTITIONS

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

subpartition key columns, you can query USER_SUBPART_KEY_COLUMNS, whose column
structure is identical to that of USER_PART_KEY_COLUMNS.

Free Space: USER_FREE_SPACE
In addition to viewing the space you have used, you can also query the data dictionary to see
how much space is currently marked as “free” space. USER_FREE_SPACE lists the free extents in
all tablespaces accessible to the user. It lists by Tablespace_Name the File_ID, Block_ID, and
relative file number of the starting point of the free extent. The size of the free extent is listed in
both bytes and blocks. DBA_FREE_SPACE is frequently used by DBAs to monitor the amount of
free space available and the degree to which it has become fragmented.

Users and Privileges
Users and their privileges are recorded within the data dictionary. In the following sections, you
will see how to query the data dictionary for information about user accounts, resource limits,
and user privileges.

Users: USER_USERS
You can query USER_USERS to list information about your account. The USER_USERS view
includes your Username, User_ID (a number assigned by the database), Default_Tablespace,
Temporary_Tablespace, and Created date (when your account was created). The Account_Status
column in USER_USERS displays the status of your account, whether it is locked, unlocked
(‘OPEN’), or expired. If the account is locked, the Lock_Date column will display the date the
account was locked and the Expiry_Date column will display the date of expiration. You can also
query information about the resource consumer group (Initial_Rsrc_Consumer_Group) assigned
to you by the DBA, and your External_Name value.

ALL_USERS contains only the Username, User_ID, and Created columns from USER_USERS,
but it lists that information for all accounts in the database. ALL_USERS is useful when you need
to know the usernames that are available (for example, during grant commands). DBA_USERS
contains all of the columns in USER_USERS, plus two additional columns: Password (the
encrypted password for the account) and Profile (the user’s resource profile). DBA_USERS lists
this information for all users in the database.

Resource Limits: USER_RESOURCE_LIMITS
In Oracle, profiles can be used to place limits on the amount of system and database resources
available to a user. If no profiles are created in a database, the default profile, which specifies
unlimited resources for all users, will be used. The resources that can be limited are described in
the create profile entry of the Alphabetical Reference. Profiles enforce additional security
measures, such as expiration dates on accounts and the minimum length of passwords.

To view the limits that are in place for your current session, you can query
USER_RESOURCE_LIMITS. Its columns are the following:

Resource_Name The name of the resource (for example, SESSIONS_PER_USER)

Limit The limit placed on this resource

Chapter 37: The Hitchhiker’s Guide to the Oracle9i Data Dictionary 711

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 37
Blind Folio 37:711

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

USER_PASSWORD_LIMITS describes the password profile parameters for the user. It has the
same columns as USER_RESOURCE_LIMITS.

There is no “ALL” or “DBA” version of this view; it is limited to the user’s current session.
To see the cost associated with each available resource, you can query the RESOURCE_COST
view. DBAs can access the DBA_PROFILES view to see the resource limits for all profiles. The
Resource_Type column of DBA_PROFILES indicates whether the resource profile is a ‘PASSWORD’
or ‘KERNEL’ profile.

Table Privileges: USER_TAB_PRIVS
To view grants for which you are the grantee, the grantor, or the object owner, query USER_TAB_
PRIVS (user table privileges). In addition to its Grantee, Grantor, and Owner columns, this view
contains columns for the Table_Name, Privilege, and a flag (set to ‘YES’ or ‘NO’) to indicate
whether the privilege was granted with admin option (Grantable).

USER_TAB_PRIVS_MADE displays the USER_TAB_PRIVS records for which the user is the
owner (it therefore lacks an Owner column). USER_TAB_PRIVS_RECD (user table privileges
received) displays the USER_TAB_PRIVS records for which the user is the grantee (it therefore
lacks a Grantee column). Since both USER_TAB_PRIVS_ MADE and USER_TAB_PRIVS_RECD
are simply subsets of USER_TAB_PRIVS, you can duplicate their functionality simply by querying
against USER_TAB_PRIVS with an appropriate where clause to view the subset you want.

There are “ALL” versions available for USER_TAB_PRIVS, USER_TAB_PRIVS_MADE, and
USER_TAB_PRIVS_RECD. The “ALL” versions list those objects for which either the user or PUBLIC
is the grantee or grantor. There is a “DBA” version of USER_TAB_PRIVS named DBA_TAB_PRIVS
that lists all object privileges granted to all users in the database. DBA_TAB_PRIVS and ALL_
TAB_PRIVS have the same column definitions as USER_TAB_PRIVS.

Column Privileges: USER_COL_PRIVS
In addition to granting privileges on tables, you can also grant privileges at the column level. For
example, you can grant users the ability to update only certain columns in a table. See Chapter 19
and the grant command in the Alphabetical Reference for further details.

The data dictionary views used to display column privileges are almost identical in design to
the table privileges views described in the previous section. There is an additional Column_Name
column in each of the COL views, and the Hierarchy column is not found there. USER_COL_PRIVS
is analogous to USER_TAB_PRIVS, USER_COL_PRIVS_MADE is analogous to USER_TAB_
PRIVS_MADE, and USER_COL_PRIVS_RECD is analogous to USER_TAB_PRIVS_RECD. Also,
the following tables have a Hierarchy column that the related COL_PRIVS tables do not have:
USER_TAB_PRIVS, USER_TAB_PRIVS_MADE, and USER_TAB_PRIVS_RECD.

“ALL” versions are available for all of the column privileges views. DBA_COL_PRIVS lists all
column privileges that have been granted to users in the database (just as DBA_TAB_PRIVS lists
all table privileges granted to users).

System Privileges: USER_SYS_PRIVS
USER_SYS_PRIVS lists the system privileges that have been granted to the user. Its columns are
Username, Privilege, and Admin_Option (a flag set to ‘YES’ or ‘NO’ to indicate whether the privilege
was granted with admin option). All system privileges directly granted to a user are displayed via
this view. System privileges granted to a user via a role are not displayed here. The following
query shows sample output for the PRACTICE account:

712 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 37
Blind Folio 37:712

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

select * from USER_SYS_PRIVS;

USERNAME PRIVILEGE
------------------------------ -----------------------
PRACTICE CREATE DIMENSION
PRACTICE UNLIMITED TABLESPACE

There is no “ALL” version of this view. To see the system privileges granted to all users in the
database, query DBA_SYS_PRIVS, which has the same column definitions as USER_SYS_PRIVS.

Roles
In addition to privileges granted directly to users, sets of privileges may be grouped into roles. Roles
may be granted to users or to other roles, and may consist of both object and system privileges.
For information on the use and management of roles, see Chapter 19.

To see which roles have been granted to you, query the USER_ROLE_PRIVS data dictionary
view. Any roles that have been granted to PUBLIC will also be listed here. The available columns
for USER_ROLE_PRIVS are as follows:

Username The username (may be ‘PUBLIC’)

Granted_Role The name of the role granted to the user

Admin_Option A flag to indicate whether the role was granted with admin option
(‘YES’ or ‘NO’)

Default_Role A flag to indicate whether the role is the user’s default role (‘YES’ or
‘NO’)

OS_Granted A flag to indicate whether the operating system is being used to
manage roles (‘YES’ or ‘NO’)

To list all of the roles available in the database, you need to have DBA authority; you can
then query DBA_ROLES to list all roles. DBA_ROLE_PRIVS lists the assignment of those roles to
all of the users in the database.

Roles may receive three different types of grants, and each has a corresponding data
dictionary view:

Table/column
grants

ROLE_TAB_PRIVS. Similar to USER_TAB_PRIVS and USER_COL_PRIVS,
except that it has a Role column instead of a Grantee column

System
privileges

ROLE_SYS_PRIVS. Similar to USER_SYS_PRIVS, except that it has a Role
column instead of a Username column

Role grants ROLE_ROLE_PRIVS. Lists all roles that have been granted to other roles

NOTE
If you are not a DBA, these data dictionary views list only those roles
that have been granted to you.

Chapter 37: The Hitchhiker’s Guide to the Oracle9i Data Dictionary 713

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 37
Blind Folio 37:713

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In addition to these views, there are two views, each with a single column, that list the
privileges and roles enabled for the current session:

SESSION_PRIVS The Privilege column lists all system privileges available to the session,
whether granted directly or via roles.

SESSION_ROLES The Role column lists all roles that are currently enabled for the session.

SESSION_PRIVS and SESSION_ROLES are available to all users.

NOTE
See Chapter 19 for information on enabling and disabling roles and
the setting of default roles.

Auditing
As a non-DBA user within an Oracle database, you cannot enable the database’s auditing
features. If auditing has been enabled, there are data dictionary views that anyone can use to
view the audit trail.

Many different audit trail data dictionary views are available. Most of these views are based
on a single audit trail table in the database (SYS.AUD$). The most generic of the audit trail views
available is named USER_AUDIT_TRAIL. Its columns are described in Table 37-16. Since this

714 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 37
Blind Folio 37:714

Column Name Description

OS_Username The audited user’s operating system account

Username The Oracle username of the audited user

UserHost A numeric ID for the instance used by the audited user

Terminal The user’s operating system terminal identifier

TimeStamp The date and time the audit record was created

Owner The owner of the object affected by an action (for action audits)

Obj_Name The name of the object affected by an action (for action audits)

Action The numeric code for the audited action

Action_Name The name of the audited action

New_Owner The owner of the object named in the New_Name column

New_Name The new name of an object that has been renamed

Obj_Privilege The object privilege that has been granted or revoked

TABLE 37-16. Columns in USER_AUDIT_TRAIL

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 37: The Hitchhiker’s Guide to the Oracle9i Data Dictionary 715

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 37
Blind Folio 37:715

view shows the audit records for many different types of actions, many of the columns may be
inapplicable for any given row. The “DBA” version of this view, DBA_AUDIT_TRAIL, lists all
entries from the audit trail table; USER_AUDIT_TRAIL lists only those that are relevant to the user.

As shown in Table 37-16, a vast array of auditing capabilities is available (see the audit
command in the Alphabetical Reference for a complete listing). Each type of audit can be
accessed via its own data dictionary view. The following are the available views:

USER_AUDIT_OBJECT For statements concerning objects

USER_AUDIT_SESSION For connections and disconnections

USER_AUDIT_STATEMENT For grant, revoke, audit, noaudit, and alter system
commands issued by the user

Column Name Description

Sys_Privilege The system privilege that has been granted or revoked

Admin_Option A flag to indicate whether the role or system privilege was granted with
admin option (‘Y’ or ‘N’)

Grantee The username specified in a grant or revoke command

Audit_Option The auditing options set via an audit command

Ses_Actions A string of characters serving as a session summary, recording success
and failure for different actions

Logoff_Time The date and time the user logged off

Logoff_LRead The number of logical reads performed during the session

Logoff_PRead The number of physical reads performed during the session

Logoff_LWrite The number of logical writes performed during the session

Logoff_DLock The number of deadlocks detected during the session

Comment_Text A text comment on the audit trail entry

SessionID The numeric ID for the session

EntryID A numeric ID for the audit trail entry

StatementID The numeric ID for each command that was executed

ReturnCode The return code for each command that was executed; if the command
was successful, then the ReturnCode will be 0

Priv_Used The system privilege used to execute the action

Client_ID Client ID

Session_CPU Session CPU used

TABLE 37-16. Columns in USER_AUDIT_TRAIL (continued)

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

There are “DBA” versions available for each of the “USER” views in the previous list; the
“DBA” versions show all of the audit trail records that fit into the view’s category.

You can view the auditing options that are currently in effect for your objects by querying
USER_OBJ_AUDIT_OPTS. For each object listed in USER_OBJ_AUDIT_OPTS, the audit options
for each command that may be performed on that object (identified by the Object_Name and
Object_Type columns) are listed in USER_OBJ_AUDIT_OPTS. The column names of USER_
OBJ_AUDIT_OPTS correspond to the first three letters of the command (for example, Alt for alter,
Upd for update, and so on). Each column will record whether that command is audited for that
object when the command is successful (‘S’), unsuccessful (‘U’), or both. The default auditing
options in effect for any new objects in the database can be displayed via the ALL_DEF_AUDIT_
OPTS view, which has the same column naming conventions as USER_OBJ_AUDIT_OPTS.

The commands that can be audited are stored in a reference table named AUDIT_ACTIONS,
which has two columns: Action (the numeric code for the action) and Name (the name of the
action/command). Action and Name correspond to the Action and Action_Name columns of
USER_AUDIT_TRAIL.

DBAs can use several additional auditing views that do not have “USER” counterparts,
including DBA_AUDIT_EXISTS, DBA_PRIV_AUDIT_OPTS, DBA_STMT_AUDIT_OPTS, and
STMT_AUDIT_OPTION_MAP. See the Oracle Server Administrator’s Guide for details on these
DBA-only views.

Miscellaneous
In addition to the data dictionary views described earlier in this chapter, several miscellaneous
views and tables may be available within your data dictionary. These views and tables include
DBA-only views and the table used when the explain plan command is executed. In the following
sections, you will see brief descriptions for each of the miscellaneous view types.

Monitoring: The V$ Dynamic
Performance Tables
The views that monitor the database environment performance are called the system statistics
views. The system statistics tables, also called the dynamic performance tables, are commonly
referred to as the V$ (pronounced “Vee-Dollar”) tables, because they all begin with the letter V
followed by the dollar sign ($).

The definitions and usage of columns within the monitoring views are subject to change with
each version of the database that is released. Correctly interpreting the results of ad hoc queries
against views usually requires referring to the Oracle9i Database Administrator’s Guide. The V$
tables are normally used only by the DBA. Consult the Oracle9i Database Reference and the
Oracle9i DBA Handbook for details on the use of the V$ views.

CHAINED_ROWS
When a row no longer fits within the data block its row header is stored in, that row may store
the remainder of its data in a different block or set of blocks. Such a row is said to be chained,
and chained rows may cause poor performance due to the increased number of blocks that must
be read to read a single row.

716 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 37
Blind Folio 37:716

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The analyze command can be used to generate a listing of the chained rows within a table.
This listing of chained rows can be stored in a table called CHAINED_ROWS. To create the
CHAINED_ROWS table in your schema, run the utlchain.sql script (usually found in the /rdbms/
admin subdirectory under the Oracle home directory).

To populate the CHAINED_ROWS table, use the list chained rows into clause of the analyze
command, as shown in the following listing:

analyze TABLE BIRTHDAY list chained rows into CHAINED_ROWS;

The CHAINED_ROWS table lists the Owner_Name, Table_Name, Cluster_Name (if the table
is in a cluster), Partition_Name (if the table is partitioned), Subpartition_Name (if the table contains
subpartitions), Head_RowID (the RowID for the row), and an Analyze_TimeStamp column that
shows the last time the table or cluster was analyzed. You can query the table based on the
Head_RowID values in CHAINED_ROWS, as shown in the following example:

select * from BIRTHDAY
where RowID in

(select Head_RowID
from CHAINED_ROWS

where Table_Name = 'BIRTHDAY');

If the chained row is short in length, then it may be possible to eliminate the chaining by
deleting and reinserting the row.

PLAN_TABLE
When tuning SQL statements, you may want to determine the steps that the optimizer will take to
execute your query. To view the query path, you must first create a table in your schema named
PLAN_TABLE. The script used to create this table is called utlxplan.sql, and is usually stored in
the /rdbms/admin subdirectory of the Oracle software home directory.

After you have created the PLAN_TABLE table in your schema, you can use the explain plan
command, which will generate records in your PLAN_TABLE, tagged with the Statement_ID
value you specify for the query you want to have explained:

explain plan
set Statement_ID = 'MYTEST'
for
select * from BIRTHDAY
where LastName like 'S%';

The ID and Parent_ID columns in PLAN_TABLE establish the hierarchy of steps (Operations)
that the optimizer will follow when executing the query. See Chapter 38 for details on the Oracle
optimizer and the interpretation of PLAN_TABLE records.

Interdependencies: USER_DEPENDENCIES
and IDEPTREE
Objects within Oracle databases can depend upon each other. For example, a stored procedure
may depend upon a table, or a package may depend upon a package body. When an object

Chapter 37: The Hitchhiker’s Guide to the Oracle9i Data Dictionary 717

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 37
Blind Folio 37:717

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

within the database changes, any procedural object that depends upon it will have to be recompiled.
This recompilation can take place either automatically at runtime (with a consequential performance
penalty) or manually (see Chapter 29 for details on compiling procedural objects).

Two sets of data dictionary views are available to help you track dependencies. The first is
USER_DEPENDENCIES, which lists all direct dependencies of objects. However, this only goes
one level down the dependency tree. To fully evaluate dependencies, you must create the recursive
dependency-tracking objects in your schema. To create these objects, run the utldtree.sql script
(usually located in the /rdbms/admin subdirectory of the Oracle home directory). This script creates
two objects you can query: DEPTREE and IDEPTREE. They contain identical information, but
IDEPTREE is indented based on the pseudo-column Level, and is thus easier to read and interpret.

DBA-Only Views
Since this chapter is intended for use by developers and end users, the data dictionary views
available only to DBAs are not covered here. The DBA-only views are used to provide information
about distributed transactions, lock contention, rollback segments, and other internal database
functions. For information on the use of the DBA-only views, see the Oracle9i Database
Administrator’s Guide.

Oracle Label Security
Users of Oracle Label Security can view additional data dictionary views, including ALL_SA_
GROUPS, ALL_SA_POLICIES, ALL_SA_USERS, and ALL_SA_USER_PRIVS. For details on the
usage of these views, see the Oracle Label Security Administrator’s Guide.

SQL*Loader Direct Load Views
To manage the direct load option within SQL*Loader, Oracle maintains a number of data
dictionary views. These generally are only queried for debugging purposes, upon request from
Oracle Customer Support. The SQL*Loader direct load option is described under the “SQLLDR”
entry in the Alphabetical Reference; its supporting data dictionary views are listed here:

■ LOADER_COL_INFO

■ LOADER_CONSTRAINT_INFO

■ LOADER_FILE_TS

■ LOADER_PARAM_INFO

■ LOADER_PART_INFO

■ LOADER_REF_INFO

■ LOADER_TAB_INFO

■ LOADER_TRIGGER_INFO

For details on the use of these views, see the catldr.sql script, usually located in the
/rdbms/admin subdirectory of the Oracle home directory.

718 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 37
Blind Folio 37:718

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 37
Blind Folio 37:719

Chapter 37: The Hitchhiker’s Guide to the Oracle9i Data Dictionary 719

National Language Support (NLS) Views
Three data dictionary views are used to display information about the National Language Support
parameters currently in effect in the database. Nonstandard values for the NLS parameters (such
as NLS_DATE_FORMAT and NLS_SORT) can be set via the database’s parameter file or via the
alter session command. (See the alter session command in the Alphabetical Reference for further
information on NLS settings.) To see the current NLS settings for your session, instance, and database,
query NLS_SESSION_PARAMETERS, NLS_INSTANCE_PARAMETERS, and NLS_DATABASE_
PARAMETERS, respectively.

Libraries
Your PL/SQL routines (see Chapter 27) can call external C programs. To see which external C
program libraries are owned by you, you can query USER_LIBRARIES, which displays the name of
the library (Library_Name), the associated file (File_Spec), whether or not the library is dynamically
loadable (Dynamic), and the library’s status (Status). ALL_LIBRARIES and DBA_LIBRARIES are
also available; they include an additional Owner column to indicate the owner of the library. For
further information on libraries, see the entry for the create library command in the Alphabetical
Reference.

Heterogeneous Services
To support the management of heterogeneous services, Oracle provides 16 data dictionary views.
All of the views in this category begin with the letters HS instead of DBA. In general, these views
are used primarily by DBAs. For details on the HS views, see the Oracle9i Database Reference.

Indextypes and Operators
Operators and indextypes are closely related. You can use the create operator command to create
a new operator and define its bindings. You can reference operators in indextypes and in SQL
statements. The operators, in turn, reference functions, packages, types, and other user-defined
objects.

You can query the USER_OPERATORS view to see each operator’s Owner, Operator_Name,
and Number_of_Binds values. Ancillary information for operators is accessible via USER_
OPANCILLARY, and you can query USER_OPARGUMENTS to see the operator arguments.
You can query USER_OPBINDINGS to see the operator bindings.

USER_INDEXTYPE_OPERATORS lists the operators supported by indextypes. Indextypes, in
turn, are displayed via USER_INDEXTYPES. There are “ALL” and “DBA” views of all the operator
and indextype views.

Outlines
When you use stored outlines, you can retrieve the name of, and details for, the outlines
via the USER_OUTLINES data dictionary views. To see the hints that make up the outlines,
query USER_OUTLINE_HINTS. There are “ALL” and “DBA” versions of USER_OUTLINES and
USER_OUTLINE_HINTS.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 37
Blind Folio 37:720

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 38
Blind Folio 38:721

CHAPTER
38

The Hitchhiker’s
Guide to the

Oracle Optimizer

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

722 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 38
Blind Folio 38:722

W
ithin the relational model, the physical location of data is unimportant.
Within Oracle, the physical location of your data and the operation used to
retrieve the data are unimportant—until the database needs to find the data.
If you query the database, you should be aware of the operations Oracle
performs to retrieve and manipulate the data. The better you understand the

execution path Oracle uses to perform your query, the better you will be able to manipulate and
tune the query.

In this chapter, you will see the operations Oracle uses to query and process data, presented
from a user’s perspective. First, the operations that access tables are described, followed by index
access operations, data set operations, joins, and miscellaneous operations. For each type of
operation, relevant tuning information is provided to help you use the operation in the most
efficient and effective manner possible.

The focus of this chapter is the operations Oracle goes through when executing SQL
statements. If you are attempting to tune an application, you should evaluate the application
architecture and operating environment to determine if they are appropriate for your users’
requirements before examining the SQL. An application that performs a large number of queries
across a slow network just to display a data entry screen will be perceived as slow even if the
database activity portion is fast; tuning the SQL in that example may yield little in the way of
performance improvement.

Before beginning to tune your queries, you need to decide which optimizer you will be using.

Which Optimizer?
The Oracle optimizer has two primary modes of operation: cost-based or rule-based. To set
the optimizer goal, you can specify CHOOSE (for cost-based) or RULE (for rule-based) for the
OPTIMIZER_MODE parameter in your database’s initialization parameter file. You can override
the optimizer’s default operations at the query and session level, as shown later in this chapter.

NOTE
As of Oracle9i, you can store parameters in a system parameter
file, replacing the init.ora parameter file used in prior versions.

Setting OPTIMIZER_MODE to RULE invokes the rule-based optimizer (RBO), which evaluates
possible execution paths and rates the alternative execution paths based on a series of syntactical
rules. In general, the RBO is seldom used by new applications, and is found primarily in applications
developed and tuned for earlier versions of Oracle.

Setting OPTIMIZER_MODE to CHOOSE invokes the cost-based optimizer (CBO). You can use
the analyze command and the DBMS_STATS package to generate statistics about the objects in
your database. The generated statistics include the number of rows in a table and the number of
distinct keys in an index. Based on the statistics, the CBO evaluates the cost of the available
execution paths and selects the execution path that has the lowest relative cost. If you use the CBO,
you need to make sure that you analyze the data frequently enough for the statistics to accurately
reflect the data within your database. If a query references tables that have been analyzed and
tables that have not been analyzed, the CBO selects values for the missing statistics—and it may

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

decide to perform an inappropriate execution path. To improve performance, you should use either
the RBO or the CBO consistently throughout your database. Since the CBO supports changes in
data volumes and data distribution, you should favor its use.

To use the CBO, you should first analyze your tables and indexes. You can analyze individual
tables, indexes, partitions, or clusters via the analyze command (see the Alphabetical Reference
for the full syntax). When analyzing, you can scan the full object (via the compute statistics
clause) or part of the object (via the estimate statistics clause). In general, you can gather
adequate statistics by analyzing 10 to 20 percent of an object—in much less time than you
would need to compute the statistics. Here is a sample analyze command:

analyze table BOOKSHELF estimate statistics;

Once you have analyzed an object, you can query the statistics-related columns of the
data dictionary views to see the values generated. See Chapter 37 for a description of those
views and their statistics-related columns.

The DBMS_STATS package is a replacement for the analyze command, and is the
recommended method as of Oracle9i. The GATHER_TABLE_STATS procedure within
DBMS_STATS requires two parameters: the schema owner and the name of the table; all
other parameters (such as partition name and the percent of the table to be scanned via the
estimate statistics method) are optional. The following command gathers the statistics for the
BOOKSHELF table in the PRACTICE schema:

execute DBMS_STATS.GATHER_TABLE_STATS('PRACTICE','BOOKSHELF');

Other procedures within DBMS_STATS include GATHER_INDEX_STATS (for indexes),
GATHER_SCHEMA_STATS (for all objects in a schema), GATHER DATABASE_STATS (for all
objects in the database), and GATHER_SYSTEM_STATS (for system statistics). You can use
other procedures within the DBMS_STATS package to migrate statistics from one database to
another, avoiding the need to recalculate statistics for different copies of the same tables. See
Oracle’s Supplied PL/SQL Packages and Types Reference for further information on the
DBMS_STATS package.

The examples in this section assume that the cost-based optimizer is used and that the tables
and indexes have been analyzed.

Operations That Access Tables
Two operations directly access the rows of a table: a full table scan and a RowID-based access
to the table. For information on operations that access table rows via clusters, see “Queries That
Use Clusters,” later in this chapter.

TABLE ACCESS FULL
A full table scan sequentially reads each row of a table. The optimizer calls the operation used
during a full table scan a TABLE ACCESS FULL. To optimize the performance of a full table
scan, Oracle reads multiple blocks during each database read.

Chapter 38: The Hitchhiker’s Guide to the Oracle Optimizer 723

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 38
Blind Folio 38:723

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

A full table scan is used whenever there is no where clause on a query. For example, the
following query selects all of the rows from the BOOKSHELF table:

select *
from BOOKSHELF;

To resolve the preceding query, Oracle will perform a full table scan of the BOOKSHELF
table. If the BOOKSHELF table is small, a full table scan of BOOKSHELF may be fairly quick,
incurring little performance cost. However, as BOOKSHELF grows in size, the cost of performing
a full table scan grows. If you have multiple users performing full table scans of BOOKSHELF,
then the cost associated with the full table scans grows even faster.

With proper planning, full table scans need not be performance problems. You should
work with your database administrators to make sure the database has been configured to take
advantage of features such as the Parallel Query Option and multiblock reads. Unless you have
properly configured your environment for full table scans, you should carefully monitor their use.

NOTE
Depending on the data being selected, the optimizer may choose
to use a full scan of an index in place of a full table scan.

You can display Oracle’s chosen execution path via a feature called an “explain plan.” You
will see how to generate explain plans later in this chapter. For this example, the explain plan
would look like this:

Execution Plan
--

0 SELECT STATEMENT Optimizer=CHOOSE (Cost=1 Card=31 Bytes=1209
)

1 0 TABLE ACCESS (FULL) OF 'BOOKSHELF' (Cost=1 Card=31 Bytes=1
209)

The TABLE ACCESS (FULL) operation shown in the explain plan shows that the optimizer
chose to perform a full table scan of the BOOKSHELF table. Each step has an ID (in this case, 0
and 1) with step 0 being the step that returns data to the user. Steps may have parent steps (in this
case, step 1 provides its data to step 0, so it is listed as having a parent ID of 0). As queries grow
more complicated, the explain plans grow more complicated. The emphasis in this chapter is on
the operations Oracle uses; you can verify the steps by generating the explain plans. To simplify
the discussion, a walkthrough of the generation and interpretation of complex explain plans will
be deferred until later in the chapter; a graphical method of depicting the explain plan will be
used to describe the major execution path steps and data flow.

TABLE ACCESS BY ROWID
To improve the performance of table accesses, you can use Oracle operations that access rows
by their RowID values. The RowID records the physical location where the row is stored. Oracle
uses indexes to correlate data values with RowID values—and thus with physical locations of the
data. Given the RowID of a row, Oracle can use the TABLE ACCESS BY ROWID operation to
retrieve the row.

724 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 38
Blind Folio 38:724

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

When you know the RowID, you know exactly where the row is physically located. However,
you do not need to memorize the RowIDs for your rows; instead, you can use indexes to access
the RowID information, as described in the next major section, “Operations That Use Indexes.”
Because indexes provide quick access to RowID values, they help to improve the performance
of queries that make use of indexed columns.

Related Hints
Within a query, you can specify hints that direct the CBO in its processing of the query. To
specify a hint, use the syntax shown in the following example. Immediately after the select
keyword, enter the following string:

/*+

Next, add the hint, such as

FULL(bookshelf)

Close the hint with the following string:

*/

Hints use Oracle’s syntax for comments within queries, with the addition of the “+” sign
at the start of the hint. Throughout this chapter, the hints relevant to each operation will be
described. For table accesses, there are two relevant hints: FULL and ROWID. The FULL hint
tells Oracle to perform a full table scan (the TABLE ACCESS FULL operation) on the listed table,
as shown in the following listing:

select /*+ FULL(bookshelf) */ *
from BOOKSHELF
where Title like 'T%';

If you did not use the FULL hint, Oracle would normally plan to use the primary key index
on the Title column to resolve this query. Since the table is presently small, the full table scan is
not costly. As the table grows, you would probably favor the use of a RowID-based access for
this query.

The ROWID hint tells the optimizer to use a TABLE ACCESS BY ROWID operation to
access the rows in the table. In general, you should use a TABLE ACCESS BY ROWID operation
whenever you need to return rows quickly to users and whenever the tables are large. To use
the TABLE ACCESS BY ROWID operation, you need to either know the RowID values or use
an index.

Operations That Use Indexes
Within Oracle are two major types of indexes: unique indexes, in which each row of the indexed
table contains a unique value for the indexed column(s), and nonunique indexes, in which the
rows’ indexed values can repeat. The operations used to read data from the indexes depend on
the type of index in use and the way in which you write the query that accesses the index.

Chapter 38: The Hitchhiker’s Guide to the Oracle Optimizer 725

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 38
Blind Folio 38:725

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

726 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 38
Blind Folio 38:726

Consider the BOOKSHELF table:

create table BOOKSHELF
(Title VARCHAR2(100) primary key,
Publisher VARCHAR2(20),
CategoryName VARCHAR2(20),
Rating VARCHAR2(2),
constraint CATFK foreign key (CategoryName)
references CATEGORY(CategoryName));

The Title column is the primary key for the BOOKSHELF table—that is, it uniquely identifies each
row, and each attribute is dependent on the Title value.

Whenever a PRIMARY KEY or UNIQUE constraint is created, Oracle creates a unique index
to enforce uniqueness of the values in the column. As defined by the create table command, a
PRIMARY KEY constraint will be created on the BOOKSHELF table. The index that supports the
primary key will be given a system-generated name, since the constraint was not explicitly named.

You can create indexes on other columns of the BOOKSHELF table manually. For example,
you could create a nonunique index on the CategoryName column via the create index
command:

create index BOOKSHELF$CATEGORY
on BOOKSHELF(CategoryName)

tablespace INDEXES
compute statistics;

The BOOKSHELF table now has two indexes on it: a unique index on the Title column, and
a nonunique index on the CategoryName column. One or more of the indexes could be used
during the resolution of a query, depending on how the query is written and executed. As part
of the index creation, its statistics were gathered via the compute statistics clause. Since the
table is already populated with rows, you do not need to execute a separate command to
analyze the index.

INDEX UNIQUE SCAN
To use an index during a query, your query must be written to allow the use of an index. In most
cases, you allow the optimizer to use an index via the where clause of the query. For example,
the following query could use the unique index on the Title column:

select *
from BOOKSHELF
where Title = 'INNUMERACY';

Internally, the execution of the preceding query will be divided into two steps. First, the Title
column index will be accessed via an INDEX UNIQUE SCAN operation. The RowID value that
matches the title ‘INNUMERACY’ will be returned from the index; that RowID value will then be
used to query BOOKSHELF via a TABLE ACCESS BY ROWID operation.

If all of the columns selected by the query had been contained within the index, then Oracle
would not have needed to use the TABLE ACCESS BY ROWID operation; since the data would

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

be in the index, the index would be all that is needed to satisfy the query. Because the query
selected all columns from the BOOKSHELF table, and the index did not contain all of the
columns of the BOOKSHELF table, the TABLE ACCESS BY ROWID operation was necessary.

INDEX RANGE SCAN
If you query the database based on a range of values, or if you query using a nonunique index,
then an INDEX RANGE SCAN operation is used to query the index.

Consider the BOOKSHELF table again, with a unique index on its Title column. A query of
the form

select Title
from BOOKSHELF
where Title like 'M%';

would return all Title values beginning with ‘M’. Since the where clause uses the Title column,
the primary key index on the Title column can be used while resolving the query. However, a
unique value is not specified in the where clause; a range of values is specified. Therefore, the
unique primary key index will be accessed via an INDEX RANGE SCAN operation. Because
INDEX RANGE SCAN operations require reading multiple values from the index, they are less
efficient than INDEX UNIQUE SCAN operations.

In the preceding example, only the Title column was selected by the query. Since the values
for the Title column are stored in the primary key index—which is being scanned—there is no
need for the database to access the BOOKSHELF table directly during the query execution. The
INDEX RANGE SCAN of the primary key index is the only operation required to resolve the query.

The CategoryName column of the BOOKSHELF table has a nonunique index on its
values. If you specify a limiting condition for CategoryName values in your query’s where
clause, an INDEX RANGE SCAN of the CategoryName index may be performed. Since the
BOOKSHELF$CATEGORY index is a nonunique index, the database cannot perform an INDEX
UNIQUE SCAN on BOOKSHELF$CATEGORY, even if CategoryName is equated to a single
value in your query.

When Indexes Are Used
Since indexes have a great impact on the performance of queries, you should be aware of the
conditions under which an index will be used to resolve a query. The following sections
describe the conditions that can cause an index to be used while resolving a query.

If You Set an Indexed Column Equal to a Value
In the BOOKSHELF table, the CategoryName column has a nonunique index named
BOOKSHELF$CATEGORY. A query that compares the CategoryName column to a value
will be able to use the BOOKSHELF$CATEGORY index.

The following query compares the CategoryName column to the value ‘ADULTNF’:

select Title
from BOOKSHELF
where CategoryName = 'ADULTNF';

Chapter 38: The Hitchhiker’s Guide to the Oracle Optimizer 727

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 38
Blind Folio 38:727

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

728 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 38
Blind Folio 38:728

Since the BOOKSHELF$CATEGORY index is a nonunique index, this query may return
multiple rows, and an INDEX RANGE SCAN operation may be used when reading data from it.
Depending on the table’s statistics, Oracle may choose to perform a full table scan instead.

If it uses the index, the execution of the preceding query may include two operations: an
INDEX RANGE SCAN of BOOKSHELF$CATEGORY (to get the RowID values for all of the rows
with ‘ADULTNF’ values in the CategoryName column), followed by a TABLE ACCESS BY ROWID
of the BOOKSHELF table (to retrieve the Title column values).

If a column has a unique index created on it, and the column is compared to a value with
an “=“ sign, then an INDEX UNIQUE SCAN will be used instead of an INDEX RANGE SCAN.

If You Specify a Range of Values for an Indexed Column
You do not need to specify explicit values in order for an index to be used. The INDEX RANGE
SCAN operation can scan an index for ranges of values. In the following query, the Title column
of the BOOKSHELF table is queried for a range of values (those that start with M):

select Title
from BOOKSHELF
where Title like 'M%';

A range scan can also be performed when using the “<”or “>” operators:

select Title
from BOOKSHELF
where Title > 'M';

When specifying a range of values for a column, an index will not be used to resolve the
query if the first character specified is a wildcard. The following query will not perform an
INDEX RANGE SCAN on the available indexes:

select Publisher
from BOOKSHELF
where Title like '%M%';

Since the first character of the string used for value comparisons is a wildcard, the index
cannot be used to find the associated data quickly. Therefore, a full table scan (TABLE ACCESS
FULL operation) will be performed instead. Depending on the statistics for the table and the
index, Oracle may choose to perform a full scan of the index instead. In this example, if the
selected column is the Title column, the optimizer may choose to perform a full scan of the
primary key index rather than a full scan of the BOOKSHELF table.

If No Functions Are Performed on the Column in the where Clause
Consider the following query, which will use the BOOKSHELF$CATEGORY index:

select COUNT(*)
from BOOKSHELF
where CategoryName = 'ADULTNF';

What if you did not know whether the values in the CategoryName column were stored as
uppercase, mixed case, or lowercase values? In that event, you may write the query as follows:

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

select COUNT(*)
from BOOKSHELF
where UPPER(CategoryName) = 'ADULTNF';

The UPPER function changes the Manager values to uppercase before comparing them to the
value ‘ADULTNF’. However, using the function on the column may prevent the optimizer from
using an index on that column. The preceding query (using the UPPER function) will perform a
TABLE ACCESS FULL of the BOOKSHELF table unless you have created a function-based index
on UPPER(CategoryName); see Chapter 20 for details on function-based indexes.

If you concatenate two columns together or a string to a column, then indexes on those
columns will not be used. The index stores the real value for the column, and any change to
that value will prevent the optimizer from using the index.

If No IS NULL or IS NOT NULL Checks Are Used for the Indexed Column
NULL values are not stored in indexes. Therefore, the following query will not use an index;
there is no way the index could help to resolve the query:

select Title
from BOOKSHELF
where CategoryName is null;

Since CategoryName is the only column with a limiting condition in the query, and the
limiting condition is a NULL check, the BOOKSHELF$CATEGORY index will not be used and
a TABLE ACCESS FULL operation will be used to resolve the query.

What if an IS NOT NULL check is performed on the column? All of the non-NULL values
for the column are stored in the index; however, the index search would not be efficient. To
resolve the query, the optimizer would need to read every value from the index and access the
table for each row returned from the index. In most cases, it would be more efficient to perform
a full table scan than to perform an index scan (with associated TABLE ACCESS BY ROWID
operations) for all of the values returned from the index. Therefore, the following query may not
use an index:

select Title
from BOOKSHELF
where CategoryName is not null;

If the selected columns are in an index, the optimizer may choose to perform a full index
scan in place of the full table scan.

If Equivalence Conditions Are Used
In the examples in the prior sections, the Title value was compared to a value with an “=” sign,
as in this query:

select *
from BOOKSHELF
where Title = 'INNUMERACY';

Chapter 38: The Hitchhiker’s Guide to the Oracle Optimizer 729

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 38
Blind Folio 38:729

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

What if you wanted to select all of the records that did not have a Title of ‘INNUMERACY’?
The = would be replaced with !=, and the query would now be

select *
from BOOKSHELF
where Title != 'INNUMERACY';

When resolving the revised query, the optimizer may not use an index. Indexes are used
when values are compared exactly to another value—when the limiting conditions are equalities,
not inequalities. The optimizer would only choose an index in this example if it decided the full
index scan (plus the TABLE ACCESS BY ROWID operations to get all the columns) would be
faster than a full table scan.

Another example of an inequality is the not in clause, when used with a subquery. The
following query selects values from the BOOKSHELF table for books that aren’t written by
Stephen Jay Gould:

select *
from BOOKSHELF
where Title NOT IN

(select Title
from BOOKSHELF_AUTHOR

where AuthorName = 'STEPHEN JAY GOULD');

In some cases, the query in the preceding listing would not be able to use an index on
the Title column of the BOOKSHELF table, since it is not set equal to any value. Instead, the
BOOKSHELF.Title value is used with a not in clause to eliminate the rows that match those
returned by the subquery. To use an index, you should set the indexed column equal to a value.
In many cases, Oracle now internally rewrites the not in as a not exists clause, allowing the
query to use an index. The following query, which uses an in clause, could use an index on
the BOOKSHELF.Title column or could perform a nonindexed join between the tables; the
optimizer will choose the path with the lowest cost based on the available statistics:

select *
from BOOKSHELF
where Title IN

(select Title
from BOOKSHELF_AUTHOR

where AuthorName = 'STEPHEN JAY GOULD');

If the Leading Column of a Multicolumn Index Is Set Equal to a Value
An index can be created on a single column or on multiple columns. If the index is created on
multiple columns, the index will be used if the leading column of the index is used in a limiting
condition of the query.

If your query specifies values for only the nonleading columns of the index, the index will
not be used to resolve the query prior to Oracle9i. As of Oracle9i, the index skip-scan feature
enables the optimizer to potentially use a concatenated index even if its leading column is not
listed in the where clause.

730 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 38
Blind Folio 38:730

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 38: The Hitchhiker’s Guide to the Oracle Optimizer 731

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 38
Blind Folio 38:731

If the MAX or MIN Function Is Used
If you select the MAX or MIN value of an indexed column, the optimizer may use the index to
quickly find the maximum or minimum value for the column.

If the Index Is Selective
All of the previous rules for determining if an index will be used consider the syntax of the query
being performed and the structure of the index available. If you are using the CBO, the optimizer
can use the selectivity of the index to judge whether using the index will lower the cost of
executing the query.

In a highly selective index, a small number of records are associated with each distinct column
value. For example, if there are 100 records in a table and 80 distinct values for a column in that
table, the selectivity of an index on that column is 80/100 = 0.80. The higher the selectivity, the
fewer the number of rows returned for each distinct value in the column.

The number of rows returned per distinct value is important during range scans. If an index
has a low selectivity, then the many INDEX RANGE SCAN operations and TABLE ACCESS BY
ROWID operations used to retrieve the data may involve more work than a TABLE ACCESS FULL
of the table.

The selectivity of an index is not considered by the optimizer unless you are using the CBO
and have analyzed the index. The optimizer can use histograms to make judgments about the
distribution of data within a table. For example, if the data values are heavily skewed so that most
of the values are in a very small data range, the optimizer may avoid using the index for values in
that range while using the index for values outside the range.

Combining Output from Multiple Index Scans
Multiple indexes—or multiple scans of the same index—can be used to resolve a single query.
For the BOOKSHELF table, two indexes are available: the unique primary key index on the
Title column, and the BOOKSHELF$CATEGORY index on the CategoryName column. In the
following sections, you will see how the optimizer integrates the output of multiple scans via
the AND-EQUAL and INLIST ITERATOR operations.

AND-EQUAL of Multiple Indexes
If limiting conditions are specified for multiple indexed columns in a query, the optimizer may
be able to use multiple indexes when resolving the query.

The following query specifies values for both the Title and CategoryName columns of the
BOOKSHELF table:

select *
from BOOKSHELF
where Title > 'M'
and CategoryName > 'B';

The query’s where clause contains two separate limiting conditions. Each of the limiting
conditions corresponds to a different index: the first to the primary key and the second to
BOOKSHELF$CATEGORY. When resolving the query, the optimizer may use both indexes,
or it may perform a full table scan.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

If the indexes are used, each index will be scanned via an INDEX RANGE SCAN operation.
The RowIDs returned from the scan of the primary key index will be compared with those
returned from the scan of the BOOKSHELF$CATEGORY index. The RowIDs that are returned
from both indexes will be used during the subsequent TABLE ACCESS BY ROWID operation.
Figure 38-1 shows the order in which the operations are executed.

The AND-EQUAL operation, as shown in Figure 38-1, compares the results of the two index
scans. In general, accesses of a single multicolumn index (in which the leading column is used
in a limiting condition in the query’s where clause) will perform better than an AND-EQUAL of
multiple single-column indexes.

INLIST ITERATION of Multiple Scans
If you specify a list of values for a column’s limiting condition, the optimizer may perform
multiple scans and concatenate the results of the scans. For example, the query in the following
listing specifies two separate values for the BOOKSHELF.CategoryName value. An INDEX hint,
as described in the next section, advises the optimizer to use the available index in place of a
full table scan.

select *
from BOOKSHELF
where CategoryName in ('ADULTNF', 'CHILDRENPIC');

Since a range of values is not used, a single INDEX RANGE SCAN operation may be inefficient
when resolving the query. Therefore, the optimizer may choose to perform two separate scans of
the same index and concatenate the results.

When resolving the query, the optimizer may perform an INDEX RANGE SCAN on
BOOKSHELF$CATEGORY for each of the limiting conditions. The RowIDs returned from the
index scans would be used to access the rows in the BOOKSHELF table (via TABLE ACCESS BY

732 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 38
Blind Folio 38:732

FIGURE 38-1. Order of operations for an AND-EQUAL operation

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ROWID operations). The rows returned from each of the TABLE ACCESS BY ROWID operations
may be combined into a single set of rows via the CONCATENATION operation.

Alternatively, the optimizer could use a single INDEX RANGE SCAN operation followed by
a TABLE ACCESS BY ROWID, with an INLIST ITERATOR operation used to navigate through the
selected rows from the table.

Related Hints
Several hints are available to direct the optimizer in its use of indexes. The INDEX hint is the most
commonly used index-related hint. The INDEX hint tells the optimizer to use an index-based scan
on the specified table. You do not need to mention the index name when using the INDEX hint,
although you can list specific indexes if you choose.

For example, the following query uses the INDEX hint to suggest the use of an index on the
BOOKSHELF table during the resolution of the query:

select /*+ index(bookshelf bookshelf$category) */ Title
from BOOKSHELF
where CategoryName = 'ADULTNF';

According to the rules provided earlier in this section, the preceding query should use the
index without the hint being needed. However, if the index is nonselective or the table is small
and you are using the CBO, then the optimizer may choose to ignore the index. If you know
that the index is selective for the data values given, you can use the INDEX hint to force an
index-based data access path to be used.

In the hint syntax, name the table (or its alias, if you give the table an alias) and, optionally,
the name of the suggested index. The optimizer may choose to disregard any hints you provide.

If you do not list a specific index in the INDEX hint, and multiple indexes are available for
the table, the optimizer evaluates the available indexes and chooses the index whose scan is
likely to have the lowest cost. The optimizer could also choose to scan several indexes and
merge them via the AND-EQUAL operation described in the previous section.

A second hint, INDEX_ASC, functions the same as the INDEX hint: It suggests an ascending
index scan for resolving queries against specific tables. A third index-based hint, INDEX_DESC,
tells the optimizer to scan the index in descending order (from its highest value to its lowest). To
suggest an index fast full scan, use the INDEX_FFS hint. The ROWID hint is similar to the INDEX
hint, suggesting the use of the TABLE ACCESS BY ROWID method for the specified table. The
AND_EQUAL hint suggests the optimizer merge the results of multiple index scans.

Additional Tuning Issues for Indexes
When you’re creating indexes on a table, two issues commonly arise: should you use multiple
indexes or a single concatenated index, and if you use a concatenated index, which column
should be the leading column of the index?

In general, it is faster for the optimizer to scan a single concatenated index than to scan
and merge two separate indexes. The more rows returned from the scan, the more likely the
concatenated index scan will outperform the merge of the two index scans. As you add more
columns to the concatenated index, it becomes less efficient for range scans.

For the concatenated index, which column should be the leading column of the index? The
leading column should be very frequently used as a limiting condition against the table, and it

Chapter 38: The Hitchhiker’s Guide to the Oracle Optimizer 733

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 38
Blind Folio 38:733

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

734 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 38
Blind Folio 38:734

should be highly selective. In a concatenated index, the optimizer will base its estimates of the
index’s selectivity (and thus its likelihood of being used) on the selectivity of the leading column
of the index. Of these two criteria—being used in limiting conditions and being the most
selective column—the first is more important. If the leading column of the index is not used in
a limiting condition (as described earlier in this chapter), the index will not be used unless you
take advantage of Oracle9i’s index skip-scan capability. You may need to use an INDEX hint to
force the optimizer to use the skip-scan method.

A highly selective index based on a column that is never used in limiting conditions will
never be used. A poorly selective index on a column that is frequently used in limiting conditions
will not benefit your performance greatly. If you cannot achieve the goal of creating an index that
is both highly selective and frequently used, then you should consider creating separate indexes
for the columns to be indexed.

Many applications emphasize online transaction processing over batch processing; there
may be many concurrent online users but a small number of concurrent batch users. In general,
index-based scans allow online users to access data more quickly than if a full table scan had
been performed. When creating your application, you should be aware of the kinds of queries
executed within the application and the limiting conditions in those queries. If you are familiar
with the queries executed against the database, you may be able to index the tables so that the
online users can quickly retrieve the data they need. When the database performance directly
impacts the online business process, the application should perform as few database accesses
as possible.

Operations That Manipulate Data Sets
Once the data has been returned from the table or index, it can be manipulated. You can group
the records, sort them, count them, lock them, or merge the results of the query with the results
of other queries (via the UNION, MINUS, and INTERSECT operators). In the following sections,
you will see how the data manipulation operations are used.

Most of the operations that manipulate sets of records do not return records to the users until
the entire operation is completed. For example, sorting records while eliminating duplicates
(known as a SORT UNIQUE operation) cannot return records to the user until all of the records
have been evaluated for uniqueness. On the other hand, index scan operations and table access
operations can return records to the user as soon as a record is found.

When an INDEX RANGE SCAN operation is performed, the first row returned from the query
passes the criteria of the limiting conditions set by the query—there is no need to evaluate the
next record returned prior to displaying the first record. If a set operation—such as a sorting
operation—is performed, then the records will not be immediately displayed. During set operations,
the user will have to wait for all rows to be processed by the operation. Therefore, you should
limit the number of set operations performed by queries used by online users (to limit the perceived
response time of the application). Sorting and grouping operations are most common in large
reports and batch transactions.

Ordering Rows
Three of Oracle’s internal operations sort rows without grouping the rows. The first is the SORT
ORDER BY operation, which is used when an order by clause is used in a query. For example,
the BOOKSHELF table is queried and sorted by Publisher:

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 38: The Hitchhiker’s Guide to the Oracle Optimizer 735

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 38
Blind Folio 38:735

select Title from BOOKSHELF
order by Publisher;

When the preceding query is executed, the optimizer will retrieve the data from the
BOOKSHELF table via a TABLE ACCESS FULL operation (since there are no limiting conditions
for the query, all rows will be returned). The retrieved records will not be immediately displayed
to the user; a SORT ORDER BY operation will sort the records before the user sees any results.

Occasionally, a sorting operation may be required to eliminate duplicates as it sorts records.
For example, what if you only want to see the distinct Publisher values in the BOOKSHELF table?
The query would be as follows:

select DISTINCT Publisher from BOOKSHELF;

As with the prior query, this query has no limiting conditions, so a TABLE ACCESS FULL operation
will be used to retrieve the records from the BOOKSHELF table. However, the DISTINCT function
tells the optimizer to only return the distinct values for the Publisher column.

To resolve the query, the optimizer takes the records returned by the TABLE ACCESS FULL
operation and sorts them via a SORT UNIQUE operation. No records will be displayed to the
user until all of the records have been processed.

In addition to being used by the DISTINCT function, the SORT UNIQUE operation is invoked
when the MINUS, INTERSECT, and UNION (but not UNION ALL) functions are used.

A third sorting operation, SORT JOIN, is always used as part of a MERGE JOIN operation and
is never used on its own. The implications of SORT JOIN on the performance of joins is
described in “Operations That Perform Joins,” later in this chapter.

Grouping Rows
Two of Oracle’s internal operations sort rows while grouping like records together. The two
operations—SORT AGGREGATE and SORT GROUP BY—are used in conjunction with grouping
functions (such as MIN, MAX, and COUNT). The syntax of the query determines which operation
is used.

In the following query, the maximum Publisher value, alphabetically, is selected from the
BOOKSHELF table:

select MAX(Publisher)
from BOOKSHELF;

To resolve the query, the optimizer will perform two separate operations. First, a TABLE ACCESS
FULL operation will select the Publisher values from the table. Second, the rows will be analyzed
via a SORT AGGREGATE operation, which will return the maximum Publisher value to the user.

If the Publisher column were indexed, the index could be used to resolve queries of the
maximum or minimum value for the index (as described in “Operations That Use Indexes,”
earlier in this chapter). Since the Publisher column is not indexed, a sorting operation is required.
The maximum Publisher value will not be returned by this query until all of the records have
been read and the SORT AGGREGATE operation has completed.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

736 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 38
Blind Folio 38:736

The SORT AGGREGATE operation was used in the preceding example because there is no
group by clause in the query. Queries that use the group by clause use an internal operation
named SORT GROUP BY.

What if you want to know the number of titles from each publisher? The following query
selects the count of each Publisher value from the BOOKSHELF table using a group by clause:

select Publisher, COUNT(*)
from BOOKSHELF
group by Publisher;

This query returns one record for each distinct Publisher value. For each Publisher value, the
number of its occurrences in the BOOKSHELF table will be calculated and displayed in the
COUNT(*) column.

To resolve this query, Oracle will first perform a full table scan (there are no limiting
conditions for the query). Since a group by clause is used, the rows returned from the TABLE
ACCESS FULL operation will be processed by a SORT GROUP BY operation. Once all the rows
have been sorted into groups and the count for each group has been calculated, the records will
be returned to the user. As with the other sorting operations, no records are returned to the user
until all of the records have been processed.

The operations to this point have involved simple examples—full table scans, index scans,
and sorting operations. Most queries that access a single table use the operations described in the
previous sections. When tuning a query for an online user, avoid using the sorting and grouping
operations that force users to wait for records to be processed. When possible, write queries that
allow application users to receive records quickly as the query is resolved. The fewer sorting and
grouping operations you perform, the faster the first record will be returned to the user. In a batch
transaction, the performance of the query is measured by its overall time to complete, not the
time to return the first row. As a result, batch transactions may use sorting and grouping operations
without impacting the perceived performance of the application.

If your application does not require all of the rows to be sorted prior to presenting query
output, consider using the FIRST_ROWS hint. FIRST_ROWS tells the optimizer to favor execution
paths that do not perform set operations.

Operations Using RowNum
Queries that use the RowNum pseudo-column use either the COUNT or COUNT STOPKEY
operation to increment the RowNum counter. If a limiting condition is applied to the RowNum
pseudo-column, such as

where RowNum < 10

then the COUNT STOPKEY operation is used. If no limiting condition is specified for the
RowNum pseudo-column, then the COUNT operation is used. The COUNT and COUNT
STOPKEY operations are not related to the COUNT function.

The following query will use the COUNT operation during its execution, since it refers to
the RowNum pseudo-column:

select Title,
RowNum

from BOOKSHELF;

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

To resolve the preceding query, the optimizer will perform a full index scan (against the
primary key index for BOOKSHELF), followed by a COUNT operation to generate the RowNum
values for each returned row. The COUNT operation does not need to wait for the entire set of
records to be available. As each record is returned from the BOOKSHELF table, the RowNum
counter is incremented and the RowNum for the record is determined.

In the following example, a limiting condition is placed on the RowNum pseudo-column:

select Title,
RowNum

from BOOKSHELF
where RowNum < 10;

To enforce the limiting condition, the optimizer replaces the COUNT operation with a COUNT
STOPKEY operation, which compares the incremented value of the RowNum pseudo-column
with the limiting condition supplied. When the RowNum value exceeds the value specified in
the limiting condition, no more rows are returned by the query.

UNION, MINUS, and INTERSECT
The UNION, MINUS, and INTERSECT functions allow the results of multiple queries to be
processed and compared. Each of the functions has an associated operation—the names of the
operations are UNION, MINUS, and INTERSECTION.

The following query selects all of the Title values from the BOOKSHELF table and from the
BOOK_ORDER table:

select Title
from BOOKSHELF
UNION

select Title
from BOOK_ORDER;

When the preceding query is executed, the optimizer will execute each of the queries separately,
then combine the results. The first query is

select Title
from BOOKSHELF

There are no limiting conditions in the query, and the Title column is indexed, so the primary
key index on the BOOKSHELF table will be scanned.

The second query is

select Title
from BOOK_ORDER

There are no limiting conditions in the query, so the BOOK_ORDER table will be accessed via
a TABLE ACCESS FULL operation.

Since the query performs a UNION of the results of the two queries, the two result sets will
then be merged via a UNION-ALL operation. Using the UNION operator forces Oracle to
eliminate duplicate records, so the result set is processed by a SORT UNIQUE operation before

Chapter 38: The Hitchhiker’s Guide to the Oracle Optimizer 737

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 38
Blind Folio 38:737

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

the records are returned to the user. The UNION-ALL optimizer operation, shown in Figure 38-2,
is used when both union and union all queries are executed. The order of operations for the
UNION operator is shown in Figure 38-2.

If the query had used a UNION ALL function in place of UNION, the SORT UNIQUE
operation (seen in Figure 38-2) would not have been necessary. The query would be

select Title
from BOOKSHELF
UNION ALL

select Title
from BOOK_ORDER;

When processing the revised query, the optimizer would perform the scans required by the
two queries, followed by a UNION-ALL operation. No SORT UNIQUE operation would be
required, since a UNION ALL function does not eliminate duplicate records.

When processing the UNION query, the optimizer addresses each of the UNIONed queries
separately. Although the examples shown in the preceding listings all involved simple queries
with full table scans, the UNIONed queries can be very complex, with correspondingly complex
execution paths. The results are not returned to the user until all of the records have been
processed.

NOTE
UNION ALL is a row operation. UNION, which
includes a SORT UNIQUE, is a set operation.

738 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 38
Blind Folio 38:738

FIGURE 38-2. Order of operations for the UNION function

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

When a MINUS function is used, the query is processed in a manner very similar to the
execution path used for the UNION example. In the following query, the Title values from the
BOOKSHELF and BOOK_ORDER tables are compared. If a Title value exists in BOOK_ORDER
but does not exist in BOOKSHELF, then that value will be returned by the query. In other words,
we want to see all of the Titles on order that we don’t already have.

select Title
from BOOK_ORDER
MINUS

select Title
from BOOKSHELF;

When the query is executed, the two MINUSed queries will be executed separately. The
first of the queries,

select Title
from BOOK_ORDER

requires a full table scan of the BOOK_ORDER table. The second query,

select Title
from BOOKSHELF

requires a full index scan of the BOOKSHELF primary key index.
To execute the MINUS function, each of the sets of records returned by the full table scans is

sorted via a SORT UNIQUE operation (in which rows are sorted and duplicates are eliminated).
The sorted sets of rows are then processed by the MINUS operation. The order of operations for
the MINUS function is shown in Figure 38-3.

Chapter 38: The Hitchhiker’s Guide to the Oracle Optimizer 739

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 38
Blind Folio 38:739

FIGURE 38-3. Order of operations for the MINUS function

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

As shown in Figure 38-3, the MINUS operation is not performed until each set of records
returned by the queries is sorted. Neither of the sorting operations returns records until the sorting
operation completes, so the MINUS operation cannot begin until both of the SORT UNIQUE
operations have completed. Like the UNION query example, the example query shown for the
MINUS operation will perform poorly for online users who measure performance by the speed
with which the first row is returned by the query.

The INTERSECT function compares the results of two queries and determines the rows they
have in common. The following query determines the Title values that are found in both the
BOOKSHELF and BOOK_ORDER tables:

select Title
from BOOK_ORDER

INTERSECT
select Title
from BOOKSHELF;

To process the INTERSECT query, the optimizer starts by evaluating each of the queries
separately. The first query,

select Title
from BOOK_ORDER

requires a TABLE ACCESS FULL operation against the BOOK_ORDER table. The second query,

select Title
from BOOKSHELF

requires a full scan of the BOOKSHELF primary key index. The results of the two table scans are
each processed separately by SORT UNIQUE operations. That is, the rows from BOOK_ORDER
are sorted, and the rows from BOOKSHELF are sorted. The results of the two sorts are compared
by the INTERSECTION operation, and the Title values returned from both sorts are returned by
the INTERSECT function.

Figure 38-4 shows the order of operations for the INTERSECT function for the preceding
example.

As shown in Figure 38-4, the execution path of a query that uses an INTERSECT function
requires SORT UNIQUE operations to be used. Since SORT UNIQUE operations do not return
records to the user until the entire set of rows has been sorted, queries using the INTERSECT
function will have to wait for both sorts to complete before the INTERSECTION operation can
be performed. Because of the reliance on sort operations, queries using the INTERSECT function
will not return any records to the user until the sorts complete.

The UNION, MINUS, and INTERSECT functions all involve processing sets of rows prior to
returning any rows to the user. Online users of an application may perceive that queries using
these functions perform poorly, even if the table accesses involved are tuned; the reliance on
sorting operations will affect the speed with which the first row is returned to the user.

740 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 38
Blind Folio 38:740

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Selecting Rows for Update
You can lock rows by using the select for update syntax. For example, the following query selects
the rows from the BOOK_ORDER table and locks them to prevent other users from acquiring
update locks on the rows. Using select for update allows you to use the where current of clause
in insert, update, and delete commands. A commit will invalidate the cursor, so you will need
to reissue the select for update after every commit.

select *
from BOOK_ORDER
for update of Title;

When the preceding query is executed, the optimizer will first perform a TABLE ACCESS
FULL operation to retrieve the rows from the BOOK_ORDER table. The TABLE ACCESS FULL
operation returns rows as soon as they are retrieved; it does not wait for the full set to be
retrieved. However, a second operation must be performed by this query. The FOR UPDATE
optimizer operation is called to lock the records. It is a set-based operation (like the sorting
operations), so it does not return any rows to the user until the complete set of rows has
been locked.

Selecting from Views
When you create a view, Oracle stores the query that the view is based on. For example, the
following view is based on the BOOKSHELF table:

create or replace view ADULTFIC as
select Title, Publisher

Chapter 38: The Hitchhiker’s Guide to the Oracle Optimizer 741

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 38
Blind Folio 38:741

FIGURE 38-4. Order of operations for the INTERSECT function

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

742 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 38
Blind Folio 38:742

from BOOKSHELF
where CategoryName = 'ADULTFIC';

When you select from the ADULTFIC view, the optimizer will take the criteria from your
query and combine them with the query text of the view. If you specify limiting conditions in
your query of the view, those limiting conditions will—if possible—be applied to the view’s
query text. For example, if you execute the query

select Title, Publisher
from ADULTFIC
where Title like 'T%';

the optimizer will combine your limiting condition

where Title like 'T%';

with the view’s query text, and it will execute the query

select Title, Publisher
from BOOKSHELF
where CategoryName = 'ADULTFIC'
and Title like 'T%';

In this example, the view will have no impact on the performance of the query. When
the view’s text is merged with your query’s limiting conditions, the options available to the
optimizer increase; it can choose among more indexes and more data access paths.

The way that a view is processed depends on the query on which the view is based. If the
view’s query text cannot be merged with the query that uses the view, the view will be resolved
first before the rest of the conditions are applied. Consider the following view:

create or replace view PUBLISHER_COUNT as
select Publisher, COUNT(*) Count_Pub
from BOOKSHELF
group by Publisher;

The PUBLISHER_COUNT view will display one row for each distinct Publisher value in
the BOOKSHELF table along with the number of records that have that value. The Count_Pub
column of the PUBLISHER_COUNT view records the count per distinct Publisher value.

How will the optimizer process the following query of the PUBLISHER_COUNT view?

select *
from PUBLISHER_COUNT
where Count_Pub > 1;

The query refers to the view’s Count_Pub column. However, the query’s where clause cannot be
combined with the view’s query text, since Count_Pub is created via a grouping operation. The
where clause cannot be applied until after the result set from the PUBLISHER_COUNT view has
been completely resolved.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Views that contain grouping operations are resolved before the rest of the query’s criteria are
applied. Like the sorting operations, views with grouping operations do not return any records
until the entire result set has been processed. If the view does not contain grouping operations,
the query text may be merged with the limiting conditions of the query that selects from the
view. As a result, views with grouping operations limit the number of choices available to the
optimizer and do not return records until all of the rows are processed—and such views may
perform poorly when queried by online users.

When the query is processed, the optimizer will first resolve the view. Since the view’s
query is

select Publisher, COUNT(*) Count_Pub
from BOOKSHELF
group by Publisher;

the optimizer will read the data from the BOOKSHELF table via a TABLE ACCESS FULL
operation. Since a group by clause is used, the rows from the TABLE ACCESS FULL operation
will be processed by a SORT GROUP BY operation. An additional operation—FILTER—will
then process the data. The FILTER operation is used to eliminate rows based on the criteria in
the query:

where Count_Pub > 1

If you use a view that has a group by clause, rows will not be returned from the view until
all of the rows have been processed by the view. As a result, it may take a long time for the first
row to be returned by the query, and the perceived performance of the view by online users may
be unacceptable. If you can remove the sorting and grouping operations from your views, you
increase the likelihood that the view text can be merged with the text of the query that calls the
view—and as a result, the performance may improve (although the query may use other set
operations that negatively impact the performance).

Selecting from Subqueries
Whenever possible, the optimizer will combine the text from a subquery with the rest of the query.
For example, consider the following query:

select Title
from BOOKSHELF
where Title in

(select Title from BOOK_ORDER);

The optimizer, in evaluating the preceding query, will determine that the query is functionally
equivalent to the following join of the BOOKSHELF and BOOK_ORDER tables:

select BOOKSHELF.Title
from BOOKSHELF, BOOK_ORDER
where BOOKSHELF.Title = BOOK_ORDER.Title;

With the query now written as a join, the optimizer has a number of operations available
to process the data (as described in “Operations That Perform Joins,” later in this chapter).

Chapter 38: The Hitchhiker’s Guide to the Oracle Optimizer 743

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 38
Blind Folio 38:743

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

744 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 38
Blind Folio 38:744

If the subquery cannot be resolved as a join, it will be resolved before the rest of the query
text is processed against the data—similar in function to the manner in which the FILTER
operation is used for views. As a matter of fact, the FILTER operation is used for subqueries if
the subqueries cannot be merged with the rest of the query!

Subqueries that rely on grouping operations have the same tuning issues as views that contain
grouping operations. The rows from such subqueries must be fully processed before the rest of
the query’s limiting conditions can be applied.

When the query text is merged with the view text, the options available to the optimizer
increase. For example, the combination of the query’s limiting conditions with the view’s limiting
conditions may allow a previously unusable index to be used during the execution of the query.

The automatic merging of the query text and view text can be disabled via the NO_MERGE
hint. The PUSH_PRED hint forces a join predicate into a view; PUSH_SUBQ causes nonmerged
subqueries to be evaluated as early as possible in the execution path.

Additional Tuning Issues
If you are tuning queries that will be used by online users, you should try to reduce the number
of sorting operations. When using the operations that manipulate sets of records, you should try
to reduce the number of nested sorting operations.

For example, a UNION of queries in which each query contains a group by clause will
require nested sorts; a sorting operation would be required for each of the queries, followed
by the SORT UNIQUE operation required for the UNION. The sort operation required for the
UNION will not be able to begin until the sorts for the group by clauses have completed. The
more deeply nested the sorts are, the greater the performance impact on your queries.

If you are using UNION functions, check the structures and data in the tables to see if it is
possible for both queries to return the same records. For example, you may be querying data
from two separate sources and reporting the results via a single query using the UNION function.
If it is not possible for the two queries to return the same rows, then you could replace the
UNION function with UNION ALL—and avoid the SORT UNIQUE operation performed by
the UNION function.

If you are using the Parallel Query Option, work with your database administrator to make
sure your database and tables are configured properly to take advantage of parallelism. The
optimizer can parallelize many operations, including table scans, index scans, and sorts. Most
join operations, described in the next section, can also be executed in parallel.

Operations That Perform Joins
Often, a single query will need to select columns from multiple tables. To select the data from
multiple tables, the tables are joined in the SQL statement—the tables are listed in the from
clause, and the join conditions are listed in the where clause. In the following example, the
BOOKSHELF and BOOK_ORDER tables are joined, based on their common Title column values:

select BOOKSHELF.Title
from BOOKSHELF, BOOK_ORDER
where BOOKSHELF.Title = BOOK_ORDER.Title;

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 38: The Hitchhiker’s Guide to the Oracle Optimizer 745

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 38
Blind Folio 38:745

which can be rewritten using the join syntax introduced with Oracle9i as:

select Title
from BOOKSHELF inner join BOOK_ORDER
using (Title);

or:

select Title
from BOOKSHELF natural inner join BOOK_ORDER;

The join conditions can function as limiting conditions for the join. Since the
BOOKSHELF.Title column is equated to a value in the where clause, the optimizer may be able
to use an index on the BOOKSHELF.Title column during the execution of the query. If an index
is available on the BOOK_ORDER.Title column, that index would be considered for use by the
optimizer as well.

Oracle has three methods for processing joins: MERGE JOIN operations, NESTED LOOPS
operations, and HASH JOIN operations. Based on the conditions in your query, the available
indexes, and (for CBO) the available statistics, the optimizer will choose which join operation
to use. Depending on the nature of your application and queries, you may want to force the
optimizer to use a method different from its first choice of join methods. In the following sections,
you will see the characteristics of the different join methods and the conditions under which each
is most useful.

How Oracle Handles Joins of More than Two Tables
If a query joins more than two tables, the optimizer treats the query as a set of multiple joins. For
example, if your query joined three tables, then the optimizer would execute the joins by joining
two of the tables together, and then joining the result set of that join to the third table. The size of
the result set from the initial join impacts the performance of the rest of the joins. If the size of the
result set from the initial join is large, then many rows will be processed by the second join.

If your query joins three tables of varying size—such as a small table named SMALL, a medium-
sized table named MEDIUM, and a large table named LARGE—you need to be aware of the
order in which the tables will be joined. If the join of MEDIUM to LARGE will return many rows,
then the join of the result set of that join with the SMALL table may perform a great deal of work.
Alternatively, if SMALL and MEDIUM were joined first, then the join between the result set of the
SMALL-MEDIUM join and the LARGE table may minimize the amount of work performed by the
query. Later in this chapter, the section “Displaying the Execution Path,” which describes the
explain plan and set autotrace on commands, will show how you can interpret the order of joins.

MERGE JOIN
In a MERGE JOIN operation, the two inputs to the join are processed separately, sorted, and
joined. MERGE JOIN operations are commonly used when there are no indexes available for
the limiting conditions of the query.

In the following query, the BOOKSHELF and BOOKSHELF_AUTHOR tables are joined. If
neither table has an index on its Title column, then there are no indexes that can be used during

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

the query (since there are no other limiting conditions in the query). The example uses a hint to
force a merge join to be used:

select /*+ USE_MERGE (bookshelf, bookshelf_author)*/
BOOKSHELF_AUTHOR.AuthorName

from BOOKSHELF, BOOKSHELF_AUTHOR
where BOOKSHELF.Title = BOOKSHELF_AUTHOR.Title
and BOOKSHELF.Publisher > 'T%';

or

select /*+ USE_MERGE (bookshelf, bookshelf_author)*/
BOOKSHELF_AUTHOR.AuthorName

from BOOKSHELF inner join BOOKSHELF_AUTHOR
on BOOKSHELF.Title = BOOKSHELF_AUTHOR.Title

where BOOKSHELF.Publisher > 'T%';

To resolve the query, the optimizer may choose to perform a MERGE JOIN of the tables. To
perform the MERGE JOIN, each of the tables is read individually (usually by a TABLE ACCESS
FULL operation or a full index scan). The set of rows returned from the table scan of the
BOOKSHELF_AUTHOR table is sorted by a SORT JOIN operation. The set of rows returned from
the index scan and table access by RowID of the BOOKSHELF table is already sorted (in the
index), so no additional SORT JOIN operation is needed for that part of the execution path. The
data from the SORT JOIN operations is then merged via a MERGE JOIN operation. Figure 38-5
shows the order of operations for the MERGE JOIN example. The explain plan is as follows:

Execution Plan
--

0 SELECT STATEMENT Optimizer=CHOOSE (Cost=7 Card=5 Bytes=320)
1 0 MERGE JOIN (Cost=7 Card=5 Bytes=320)
2 1 TABLE ACCESS (BY INDEX ROWID) OF 'BOOKSHELF' (Cost=2 Car

d=4 Bytes=120)
3 2 INDEX (FULL SCAN) OF 'SYS_C002547' (UNIQUE) (Cost=1 Ca

rd=4)
4 1 SORT (JOIN) (Cost=5 Card=37 Bytes=1258)
5 4 TABLE ACCESS (FULL) OF 'BOOKSHELF_AUTHOR' (Cost=1 Card

=37 Bytes=1258)

When a MERGE JOIN operation is used to join two sets of records, each set of records is
processed separately before being joined. The MERGE JOIN operation cannot begin until it has
received data from both of the SORT JOIN operations that provide input to it. The SORT JOIN
operations, in turn, will not provide data to the MERGE JOIN operation until all of the rows have
been sorted. If indexes are used as data sources, the SORT JOIN operations may be bypassed.

If the MERGE JOIN operation has to wait for two separate SORT JOIN operations to
complete, a join that uses the MERGE JOIN operation will typically perform poorly for online
users. The perceived poor performance is due to the delay in returning the first row of the join to
the users. As the tables increase in size, the time required for the sorts to be completed increases
dramatically. If the tables are of greatly unequal size, then the sorting operation performed on
the larger table will negatively impact the performance of the overall query.

746 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 38
Blind Folio 38:746

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Since MERGE JOIN operations involve full scanning and sorting of the tables involved, you
should only use MERGE JOIN operations if both tables are very small or if both tables are very
large. If both tables are very small, then the process of scanning and sorting the tables will
complete quickly. If both tables are very large, then the sorting and scanning operations required
by MERGE JOIN operations can take advantage of Oracle’s parallel options.

Oracle can parallelize operations, allowing multiple processors to participate in the execution
of a single command. Among the operations that can be parallelized are the TABLE ACCESS
FULL and sorting operations. Since a MERGE JOIN uses the TABLE ACCESS FULL and sorting
operations, it can take full advantage of Oracle’s parallel options. Parallelizing queries involving
MERGE JOIN operations frequently improves the performance of the queries (provided there are
adequate system resources available to support the parallel operations).

NESTED LOOPS
NESTED LOOPS operations join two tables via a looping method: The records from one table are
retrieved, and for each record retrieved, an access is performed of the second table. The access
of the second table is performed via an index-based access.

A form of the query from the preceding MERGE JOIN section is shown in the following
listing. A hint is used to recommend an index-based access of the BOOKSHELF table:

select /*+ INDEX(bookshelf) */
BOOKSHELF_AUTHOR.AuthorName

from BOOKSHELF, BOOKSHELF_AUTHOR
where BOOKSHELF.Title = BOOKSHELF_AUTHOR.Title;

Since the Title column of the BOOKSHELF table is used as part of the join condition in the
query, the primary key index can resolve the join. When the query is executed, a NESTED
LOOPS operation can be used to execute the join.

Chapter 38: The Hitchhiker’s Guide to the Oracle Optimizer 747

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 38
Blind Folio 38:747

FIGURE 38-5. Order of operations for the MERGE JOIN operation

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

To execute a NESTED LOOPS join, the optimizer must first select a driving table for the join,
which is the table that will be read first (usually via a TABLE ACCESS FULL operation, although
index scans are commonly seen). For each record in the driving table, the second table in the
join will be queried. The example query joins BOOKSHELF and BOOKSHELF_AUTHOR, based
on values of the Title column. During the NESTED LOOPS execution, an operation will select all
of the records from the BOOKSHELF_AUTHOR table. The primary key index of the BOOKSHELF
table will be probed to determine if it contains an entry for the value in the current record from
the BOOKSHELF_AUTHOR table. If a match is found, then the Title value will be returned from
the BOOKSHELF primary key index. If other columns were needed from BOOKSHELF, the row
would be selected from the BOOKSHELF table via a TABLE ACCESS BY ROWID operation. The
flow of operations for the NESTED LOOPS join is shown in Figure 38-6.

As shown in Figure 38-6, at least two data access operations are involved in the NESTED
LOOPS join: an access of the driving table and an access, usually index-based, of the driven
table. The data access methods most commonly used—TABLE ACCESS FULL, TABLE ACCESS
BY ROWID, and index scans—return records to successive operations as soon as a record is
found; they do not wait for the whole set of records to be selected. Because these operations can
provide the first matching rows quickly to users, NESTED LOOPS joins are commonly used for
joins that are frequently executed by online users.

When implementing NESTED LOOPS joins, you need to consider the size of the driving
table. If the driving table is large and is read via a full table scan, then the TABLE ACCESS FULL
operation performed on it may negatively affect the performance of the query. If indexes are
available on both sides of the join, Oracle will select a driving table for the query. The method
of selection for the driving table depends on the optimizer in use. If you are using the CBO, then
the optimizer will check the statistics for the size of the tables and the selectivity of the indexes
and will choose the path with the lowest overall cost. If you are using the RBO, and indexes are
available for all join conditions, then the driving table will usually be the table that is listed last
in the from clause.

748 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 38
Blind Folio 38:748

FIGURE 38-6. Order of operations for NESTED LOOPS

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

When joining three tables together, Oracle performs two separate joins: a join of two tables
to generate a set of records, and then a join between that set of records and the third table. If
NESTED LOOPS joins are used, then the order in which the tables are joined is critical. The
output from the first join generates a set of records, and that set of records is used as the driving
table for the second join.

The size of the set of records returned by the first join impacts the performance of the second
join—and thus may have a significant impact on the performance of the overall query. You
should attempt to join the most selective tables first so that the impact of those joins on future
joins will be negligible. If large tables are joined in the first join of a multijoin query, then the
size of the tables will impact each successive join and will negatively impact the overall
performance of the query.

NESTED LOOPS joins are useful when the tables in the join are of unequal size—you can
use the smaller table as the driving table and select from the larger table via an index-based
access. The more selective the index is, the faster the query will complete.

HASH JOIN
The optimizer may dynamically choose to perform joins using the HASH JOIN operation in
place of either MERGE JOIN or NESTED LOOPS. The HASH JOIN operation compares two tables
in memory. During a hash join, the first table is scanned and the database applies “hashing”
functions to the data to prepare the table for the join. The values from the second table are then
read (typically via a TABLE ACCESS FULL operation), and the hashing function compares the
second table with the first table. The rows that result in matches are returned to the user.

NOTE
Although they have similar names, hash joins have nothing
to do with hash clusters or with the TABLE ACCESS HASH
operation discussed later in this chapter.

The optimizer may choose to perform hash joins even if indexes are available. In the sample
query shown in the following listing, the BOOKSHELF and BOOKSHELF_AUTHOR tables are
joined on the Title column:

select /*+ USE_HASH (bookshelf) */
BOOKSHELF_AUTHOR.AuthorName

from BOOKSHELF, BOOKSHELF_AUTHOR
where BOOKSHELF.Title = BOOKSHELF_AUTHOR.Title;

The BOOKSHELF table has a unique index on its Title column. Since the index is available
and can be used to evaluate the join conditions, the optimizer may choose to perform a NESTED
LOOPS join of the two tables as shown in the previous section. If a hash join is performed, then
each table will be read via a separate operation. The data from the table and index scans will
serve as input to a HASH JOIN operation.

The order of operations for a hash join is shown in Figure 38-7. As shown, the hash join
does not rely on operations that process sets of rows. The operations involved in hash joins
return records quickly to users. Hash joins are appropriate for queries executed by online users
if the tables are small and can be scanned quickly.

Chapter 38: The Hitchhiker’s Guide to the Oracle Optimizer 749

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 38
Blind Folio 38:749

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Processing Outer Joins
When processing an outer join, the optimizer will use one of the three methods described
in the previous sections. For example, if the sample query were performing an outer join
between BOOK_ORDER and CATEGORY (to see which categories had no books on order),
a NESTED LOOPS OUTER operation may be used instead of a NESTED LOOPS operation.
In a NESTED LOOPS OUTER operation, the table that is the “outer” table for the outer join is
typically used as the driving table for the query; as the records of the inner table are scanned
for matching records, NULL values are returned for rows with no matches.

Related Hints
You can use hints to override the optimizer’s selection of a join method. Hints allow you to specify
the type of join method to use or the goal of the join method.

In addition to the hints described in this section, you can use the FULL and INDEX hints,
described earlier, to influence the way in which joins are processed. For example, if you use
a hint to force a NESTED LOOPS join to be used, then you may also use an INDEX hint to
specify which index should be used during the NESTED LOOPS join and which table should
be accessed via a full table scan.

Hints About Goals
You can specify a hint that directs the optimizer to execute a query with a specific goal in mind.
The available goals related to joins are the following:

■ ALL_ROWS Execute the query so that all of the rows are returned as quickly as possible.

750 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 38
Blind Folio 38:750

FIGURE 38-7. Order of operations for the HASH JOIN operation

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ FIRST_ROWS Execute the query so that the first row will be returned as quickly as
possible.

By default, the optimizer will execute a query using an execution path that is selected to
minimize the total time needed to resolve the query. Thus, the default is to use ALL_ROWS as
the goal. If the optimizer is only concerned about the total time needed to return all rows for
the query, then set-based operations such as sorts and MERGE JOIN can be used. However, the
ALL_ROWS goal may not always be appropriate. For example, online users tend to judge the
performance of a system based on the time it takes for a query to return the first row of data.
The users thus have FIRST_ROWS as their primary goal, with the time it takes to return all of the
rows as a secondary goal.

The available hints mimic the goals: the ALL_ROWS hint allows the optimizer to choose
from all available operations to minimize the overall processing time for the query, while the
FIRST_ROWS hint tells the optimizer to select an execution path that minimizes the time required
to return the first row to the user.

NOTE
You should only use the ALL_ROWS or FIRST_ROWS
hint if you have first analyzed the tables.

In the following example, the query from the join examples is modified to include the
ALL_ROWS hint:

select /*+ ALL_ROWS */
BOOKSHELF_AUTHOR.AuthorName

from BOOKSHELF, BOOKSHELF_AUTHOR
where BOOKSHELF.Title = BOOKSHELF_AUTHOR.Title;

You could modify this query to use the FIRST_ROWS hint instead:

select /*+ FIRST_ROWS */
BOOKSHELF_AUTHOR.AuthorName

from BOOKSHELF, BOOKSHELF_AUTHOR
where BOOKSHELF.Title = BOOKSHELF_AUTHOR.Title;

If you use the FIRST_ROWS hint, the optimizer will be less likely to use MERGE JOIN and
more likely to use NESTED LOOPS. The join method selected partly depends on the rest of the
query. For example, the join query example does not contain an order by clause (which is a set
operation performed by the SORT ORDER BY operation). If the query is revised to contain an
order by clause, as shown in the following listing, how does that change the join processing?

select /*+ FIRST_ROWS */
BOOKSHELF_AUTHOR.AuthorName

from BOOKSHELF, BOOKSHELF_AUTHOR
where BOOKSHELF.Title = BOOKSHELF_AUTHOR.Title
order by BOOKSHELF_AUTHOR.AuthorName;

Chapter 38: The Hitchhiker’s Guide to the Oracle Optimizer 751

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 38
Blind Folio 38:751

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

With an order by clause added to the query, the SORT ORDER BY operation will be the last
operation performed before the output is shown to the user. The SORT ORDER BY operation will
not complete—and will not display any records to the user—until all of the records have been
sorted. Therefore, the FIRST_ROWS hint in this example tells the optimizer to perform the join as
quickly as possible, providing the data to the SORT ORDER BY operation as quickly as possible.
The addition of the sorting operation (the order by clause) in the query may negate or change
the impact of the FIRST_ROWS hint on the query’s execution path (since a SORT ORDER BY
operation will be slow to return records to the user regardless of the join method chosen).

Hints About Methods
In addition to specifying the goals the optimizer should use when evaluating join method
alternatives, you can list the specific operations to use and the tables to use them on. If a query
involves only two tables, you do not need to specify the tables to join when providing a hint
for a join method to use.

The USE_NL hint tells the optimizer to use a NESTED LOOPS operation to join tables. In the
following example, the USE_NL hint is specified for the join query example. Within the hint, the
BOOKSHELF table is listed as the inner table for the join.

select /*+ USE_NL(bookshelf) */
BOOKSHELF_AUTHOR.AuthorName

from BOOKSHELF, BOOKSHELF_AUTHOR
where BOOKSHELF.Title = BOOKSHELF_AUTHOR.Title;

If you want all of the joins in a many-table query to use NESTED LOOPS operations, you
could just specify the USE_NL hint with no table references. In general, you should specify table
names whenever you use a hint to specify a join method, because you do not know how the
query may be used in the future. You may not even know how the database objects are currently
set up—for example, one of the objects in your from clause may be a view that has been tuned
to use MERGE JOIN operations.

If you specify a table in a hint, you should refer to the table alias or the unqualified table
name. That is, if your from clause refers to a table as

from FRED.HIS_TABLE, ME.MY_TABLE

then you should not specify a hint such as

/*+ USE_NL(ME.MY_TABLE) */

Instead, you should refer to the table by its name, without the owner:

/*+ USE_NL(my_table) */

If multiple tables have the same name, then you should assign table aliases to the tables and
refer to the aliases in the hint. For example, if you join a table to itself, then the from clause may
include the text shown in the following listing:

from BOOKSHELF B1, BOOKSHELF B2

752 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 38
Blind Folio 38:752

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

A hint forcing the BOOKSHELF-BOOKSHELF join to use NESTED LOOPS would be written
to use the table aliases, as shown in the following listing:

/*+ USE_NL(b2) */

The optimizer will ignore any hint that isn’t written with the proper syntax. Any hint
with improper syntax will be treated as a comment (since it is enclosed within the /* and */
characters).

NOTE
USE_NL is a hint, not a rule. The optimizer may recognize the hint
and choose to ignore it, based on the statistics available when the
query is executed.

If you are using NESTED LOOPS joins, then you need to be concerned about the order
in which the tables are joined. The ORDERED hint, when used with NESTED LOOPS joins,
influences the order in which tables are joined.

When you use the ORDERED hint, the tables will be joined in the order in which they
are listed in the from clause of the query. If the from clause contains three tables, such as

from BOOK_ORDER, BOOKSHELF, BOOKSHELF_AUTHOR

then the first two tables will be joined by the first join, and the result of that join will be joined
to the third table.

Since the order of joins is critical to the performance of NESTED LOOPS joins, the ORDERED
hint is often used in conjunction with the USE_NL hint. If you use hints to specify the join order,
you need to be certain that the relative distribution of values within the joined tables will not
change dramatically over time; otherwise, the specified join order may cause performance
problems in the future.

You can use the USE_MERGE hint to tell the optimizer to perform a MERGE JOIN between
specified tables. In the following listing, the hint instructs the optimizer to perform a MERGE
JOIN operation between BOOKSHELF and BOOKSHELF_AUTHOR:

select /*+ USE_MERGE (bookshelf, bookshelf_author)*/
BOOKSHELF_AUTHOR.AuthorName

from BOOKSHELF, BOOKSHELF_AUTHOR
where BOOKSHELF.Title = BOOKSHELF_AUTHOR.Title
and BOOKSHELF.Publisher > 'T%';

You can use the USE_HASH hint to tell the optimizer to consider using a HASH JOIN
method. If no tables are specified, then the optimizer will select the first table to be scanned
into memory based on the available statistics.

select /*+ USE_HASH (bookshelf) */
BOOKSHELF_AUTHOR.AuthorName

from BOOKSHELF, BOOKSHELF_AUTHOR
where BOOKSHELF.Title = BOOKSHELF_AUTHOR.Title;

Chapter 38: The Hitchhiker’s Guide to the Oracle Optimizer 753

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 38
Blind Folio 38:753

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

If you are using the CBO but have previously tuned your queries to use rule-based
optimization, you can tell the CBO to use the rule-based method when processing your query.
The RULE hint tells the optimizer to use the RBO to optimize the query; all other hints in the
query will be ignored. In the following example, the RULE hint is used during a join:

select /*+ RULE */
BOOKSHELF_AUTHOR.AuthorName

from BOOKSHELF, BOOKSHELF_AUTHOR
where BOOKSHELF.Title = BOOKSHELF_AUTHOR.Title;

In general, you should only use the RULE hint if you have tuned your queries specifically
for the RBO. Although the RULE hint is still supported, you should investigate using the CBO
in its place for your queries.

You can set the optimizer goal at the session level via the alter session command. In the
following example, the session’s optimizer_goal parameter is changed to RULE:

alter session set optimizer_goal = RULE;

Other settings for the session’s optimizer_goal parameter include COST, CHOOSE, ALL_ROWS,
and FIRST_ROWS.

Additional hints for influencing joins include LEADING (to tell Oracle to use the specified
table first in the join order) and ORDERED (join tables in the order they are listed in the
from clause).

Additional Tuning Issues
As noted in the discussions of NESTED LOOPS and MERGE JOIN operations, operations differ
in the time they take to return the first row from a query. Since MERGE JOIN relies on set-based
operations, it will not return records to the user until all of the rows have been processed.
NESTED LOOPS, on the other hand, can return rows to the user as soon as rows are available.

Because NESTED LOOPS joins are capable of returning rows to users quickly, they are often
used for queries that are frequently executed by online users. Their efficiency at returning the
first row, however, is often impacted by set-based operations applied to the rows that have been
selected. For example, adding an order by clause to a query adds a SORT ORDER BY operation
to the end of the query processing—and no rows will be displayed to the user until all of the rows
have been sorted.

As described in “Operations That Use Indexes,” earlier in this chapter, using functions on a
column prevents the database from using an index on that column during data searches unless
you have created a function-based index. You can use this information to dynamically disable
indexes and influence the join method chosen. For example, the following query does not
specify a join hint, but it disables the use of indexes on the Title column by concatenating the
Title values with a null string:

select BOOKSHELF_AUTHOR.AuthorName
from BOOKSHELF, BOOKSHELF_AUTHOR
where BOOKSHELF.Title||'' = BOOKSHELF_AUTHOR.Title||'';

754 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 38
Blind Folio 38:754

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The dynamic disabling of indexes allows you to force MERGE JOIN operations to be used
even if you are using the RBO (in which no hints are accepted).

As noted during the discussion of the NESTED LOOPS operation, the order of joins is as
important as the join method selected. If a large or nonselective join is the first join in a series,
the large data set returned will negatively impact the performance of the subsequent joins in the
query as well as the performance of the query as a whole.

Depending on the hints, optimizer goal, and statistics, the optimizer may choose to use a
variety of join methods within the same query. For example, the optimizer may evaluate a
three-table query as a NESTED LOOPS join of two tables, followed by a MERGE JOIN of the
NESTED LOOPS output with the third table. Such combinations of join types are usually found
when the ALL_ROWS optimizer goal is in effect.

To see the order of operations, you can use the set autotrace on command to see the
execution path, as described in the next section.

Displaying the Execution Path
You can display the execution path for a query in either of two ways:

■ Use the explain plan command

■ Use the set autotrace on command

In the following sections, both commands are explained; for the remainder of the chapter, the
set autotrace on command will be used to illustrate execution paths as reported by the optimizer.

Using set autotrace on
You can have the execution path automatically displayed for every transaction you execute
within SQLPLUS. The set autotrace on command will cause each query, after being executed,
to display both its execution path and high-level trace information about the processing involved
in resolving the query.

To use the set autotrace on command, you must have first created a PLAN_TABLE table
within your account. The PLAN_TABLE structure may change with each release of Oracle, so
you should drop and re-create your copy of PLAN_TABLE with each Oracle upgrade. The
commands shown in the following listing will drop any existing PLAN_TABLE and replace it
with the current version.

NOTE
In order for you to use set autotrace on, your DBA must have first
created the PLUSTRACE role in the database and granted that role
to your account. The PLUSTRACE role gives you access to the
underlying performance-related views in the Oracle data dictionary.
The script to create the PLUSTRACE role is called plustrce.sql,
usually found in the /sqlplus/admin directory under the Oracle
software home directory.

Chapter 38: The Hitchhiker’s Guide to the Oracle Optimizer 755

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 38
Blind Folio 38:755

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The following example refers to $ORACLE_HOME. Replace that symbol with the home
directory for Oracle software on your operating system. The file that creates the PLAN_TABLE
table is located in the /rdbms/admin subdirectory under the Oracle software home directory.

drop table PLAN_TABLE;
@$ORACLE_HOME/rdbms/admin/utlxplan.sql

When you use set autotrace on, records are inserted into your copy of the PLAN_TABLE to
show the order of operations executed. After the query completes, the selected data is displayed.
After the query’s data is displayed, the order of operations is shown followed by statistical
information about the query processing. The following explanation of set autotrace on focuses
on the section of the output that displays the order of operations.

NOTE
To show only the explain plan output, use the set autotrace on
explain command.

If you use the set autotrace on command, you will not see the explain plan for your queries
until after they complete. The explain plan command (described next) shows the execution
paths without running the queries first. Therefore, if the performance of a query is unknown, you
may choose to use the explain plan command before running it. If you are fairly certain that the
performance of a query is acceptable, use set autotrace on to verify its execution path.

In the following example, a full table scan of the BOOKSHELF table is executed. The rows
of output are not displayed in this output, for the sake of brevity. The order of operations is
displayed below the query.

select *
from BOOKSHELF;

Execution Plan
--

0 SELECT STATEMENT Optimizer=CHOOSE (Cost=1 Card=31 Bytes=1209
)

1 0 TABLE ACCESS (FULL) OF 'BOOKSHELF' (Cost=1 Card=31 Bytes=1
209)

The “Execution Plan” shows the steps the optimizer will use to execute the query. Each step
is assigned an ID value (starting with 0). The second number shows the “parent” operation of the
current operation. Thus, for the preceding example, the second operation—the TABLE ACCESS
(FULL) OF ‘BOOKSHELF’—has a parent operation (the select statement itself). Each step displays
a cumulative cost for that step plus all of its child steps. Note that the line breaks are not
word-wrapped; the Bytes value for step 1 is 1,209.

You can generate the order of operations for DML commands, too. In the following example,
a delete statement’s execution path is shown:

delete
from BOOKSHELF_AUTHOR;

756 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 38
Blind Folio 38:756

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 38
Blind Folio 38:757

Execution Plan
--

0 DELETE STATEMENT Optimizer=CHOOSE (Cost=1 Card=37)
1 0 DELETE OF 'BOOKSHELF_AUTHOR'
2 1 TABLE ACCESS (FULL) OF 'BOOKSHELF_AUTHOR' (Cost=1 Card=3

7)

The delete command, as expected, involves a full table scan. If you have analyzed your
tables, the Execution Plan column’s output shows the number of rows from each table, the
relative cost of each step, and the overall cost of the operation. You could use that information
to pinpoint the operations that are the most costly during the processing of the query.

In the following example, a slightly more complex query is executed. An index-based query
is made against the BOOKSHELF table, using its primary key index.

select /*+ INDEX(bookshelf) */ *
from BOOKSHELF
where Title like 'M%';

Execution Plan
--

0 SELECT STATEMENT Optimizer=CHOOSE (Cost=2 Card=2 Bytes=78)
1 0 TABLE ACCESS (BY INDEX ROWID) OF 'BOOKSHELF' (Cost=2 Card=

2 Bytes=78)
2 1 INDEX (RANGE SCAN) OF 'SYS_C002547' (UNIQUE) (Cost=1 Car

d=2)

This listing includes three operations. Operation #2, the INDEX RANGE SCAN of the
BOOKSHELF primary key index (its name was system-generated), provides data to operation #1,
the TABLE ACCESS BY INDEX ROWID operation. The data returned from the TABLE ACCESS BY
ROWID is used to satisfy the query (operation #0).

The preceding output also shows that the optimizer is automatically indenting each
successive step within the execution plan. In general, you should read the list of operations
from the inside out and from top to bottom. Thus, if two operations are listed, the one that is
the most indented will usually be executed first. If the two operations are at the same level
of indentation, then the one that is listed first (with the lowest operation number) will be
executed first.

In the following example, BOOKSHELF and BOOKSHELF_AUTHOR are joined without the
benefit of indexes:

select /*+ USE_MERGE (bookshelf, bookshelf_author)*/
BOOKSHELF_AUTHOR.AuthorName

from BOOKSHELF, BOOKSHELF_AUTHOR
where BOOKSHELF.Title = BOOKSHELF_AUTHOR.Title
and BOOKSHELF.Publisher > 'T%';

Execution Plan
--

0 SELECT STATEMENT Optimizer=CHOOSE (Cost=7 Card=5 Bytes=320)
1 0 MERGE JOIN (Cost=7 Card=5 Bytes=320)
2 1 TABLE ACCESS (BY INDEX ROWID) OF 'BOOKSHELF' (Cost=2 Car

Chapter 38: The Hitchhiker’s Guide to the Oracle Optimizer 757

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

d=4 Bytes=120)
3 2 INDEX (FULL SCAN) OF 'SYS_C002547' (UNIQUE) (Cost=1 Ca

rd=4)
4 1 SORT (JOIN) (Cost=5 Card=37 Bytes=1258)
5 4 TABLE ACCESS (FULL) OF 'BOOKSHELF_AUTHOR' (Cost=1 Card

=37 Bytes=1258)

The indentation here may seem confusing at first, but the operational parentage information
provided by the operation numbers clarifies the order of operations. The innermost operations
are performed first—the TABLE ACCESS FULL and INDEX FULL SCAN operations. Next, the full
table scan’s data is processed via a SORT JOIN operation (in operation 4), while the output from
the index scan (which is sorted already) is used as the basis for a TABLE ACCESS BY ROWID
(step 2). Both step 2 and step 4 have operation #1, the MERGE JOIN, as their parent operations.
The MERGE JOIN operation provides data back to the user via the select statement. The picture
of this data flow was shown in Figure 38-5. You should be comfortable reading the execution
path and picturing its matching data flow.

If the same query were run as a NESTED LOOPS join, a different execution path would be
generated. As shown in the following listing, the NESTED LOOPS join would be able to take
advantage of the primary key index on the Title column of the BOOKSHELF table:

select /*+ INDEX(bookshelf) */
BOOKSHELF_AUTHOR.AuthorName

from BOOKSHELF, BOOKSHELF_AUTHOR
where BOOKSHELF.Title = BOOKSHELF_AUTHOR.Title;

Execution Plan
--

0 SELECT STATEMENT Optimizer=CHOOSE (Cost=1 Card=37 Bytes=1924
)

1 0 NESTED LOOPS (Cost=1 Card=37 Bytes=1924)
2 1 TABLE ACCESS (FULL) OF 'BOOKSHELF_AUTHOR' (Cost=1 Card=3

7 Bytes=1258)
3 1 INDEX (UNIQUE SCAN) OF 'SYS_C002547' (UNIQUE)

NESTED LOOPS joins are among the few execution paths that do not follow the “read from
the inside out” rule of indented execution paths. To read the NESTED LOOPS execution path
correctly, examine the order of the operations that directly provide data to the NESTED LOOPS
operation (in this case, operations #2 and #3). Of those two operations, the operation with the
lowest number (#2, in this example) is executed first. Thus, the TABLE ACCESS FULL of the
BOOKSHELF_AUTHOR table is executed first (BOOKSHELF_AUTHOR is the driving table for
the query).

Once you have established the driving table for the query, the rest of the execution path
can be read from the inside out and from top to bottom. The second operation performed is the
INDEX UNIQUE SCAN of the BOOKSHELF primary key index. The NESTED LOOPS operation
is then able to return rows to the user.

If a hash join had been selected instead of a NESTED LOOPS join, the execution path would
have been

select /*+ USE_HASH (bookshelf) */
BOOKSHELF_AUTHOR.AuthorName

758 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 38
Blind Folio 38:758

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 38: The Hitchhiker’s Guide to the Oracle Optimizer 759

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 38
Blind Folio 38:759

from BOOKSHELF, BOOKSHELF_AUTHOR
where BOOKSHELF.Title = BOOKSHELF_AUTHOR.Title;

Execution Plan
--

0 SELECT STATEMENT Optimizer=CHOOSE (Cost=3 Card=37 Bytes=1924
)

1 0 HASH JOIN (Cost=3 Card=37 Bytes=1924)
2 1 INDEX (FULL SCAN) OF 'SYS_C002547' (UNIQUE) (Cost=1 Card

=31 Bytes=558)
3 1 TABLE ACCESS (FULL) OF 'BOOKSHELF_AUTHOR' (Cost=1 Card=3

7 Bytes=1258)

The hash join execution path shows that two separate scans are performed. Since the two
operations are listed at the same level of indentation, the BOOKSHELF table’s primary key
index is scanned first (since it has the lower operation number).

NOTE
When using the set autotrace on command, you do not have
to manage the records within the PLAN_TABLE. Oracle will
automatically delete the records it inserts into PLAN_TABLE
once the execution path has been displayed.

If you use the parallel query options or query remote databases, an additional section of the
set autotrace on output will show the text of the queries executed by the parallel query server
processes or the query executed within the remote database.

To disable the autotrace feature, use the set autotrace off command.

Using explain plan
You can use the explain plan command to generate the execution path for a query without first
running the query. To use the explain plan command, you must first create a PLAN_TABLE table
in your schema (see the previous instructions on creating the table). To determine the execution
path of a query, prefix the query with the following SQL:

explain plan
set Statement_ID = 'TEST'
for

To make the tuning process simpler, always use the same Statement_ID value and delete the
records for each execution path before using the explain plan command a second time.

An example of the execution of the explain plan command is shown in the following listing.
The query shown in the listing will not be run during the command; only its execution path steps
will be generated, and they will be inserted as records in PLAN_TABLE.

explain plan
set Statement_ID = 'TEST'
for
select /*+ USE_HASH (bookshelf) */

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

BOOKSHELF_AUTHOR.AuthorName
from BOOKSHELF, BOOKSHELF_AUTHOR

where BOOKSHELF.Title = BOOKSHELF_AUTHOR.Title;

Explained.

When the explain plan command is executed, records will be inserted into PLAN_TABLE.
You can query PLAN_TABLE using the following query. The results of the query will show the
operations performed at each step and the parent-child relationships between the execution path
steps, similar to the indented display of the set autotrace on command.

select ID ID_plus_exp,
Parent_ID parent_id_plus_exp,
LPAD(' ',2*(level-1))|| /* Indent for the level */
Operation|| /* The operation */
DECODE(other_tag,null,'','*')|| /* will display an '*' if parallel */
DECODE(options,null,'',' ('||options||')')|| /* display the options */
DECODE(object_name,null,'',' of '''||object_name||'''')||
DECODE(object_type,null,'',' '||object_type||')')||
DECODE(id,0,decode(optimizer,null,'',' optimizer='||optimizer))||
DECODE(cost,null,'',' (cost='||cost|| /* display cost info. */
DECODE(cardinality,null,'',' card='||cardinality)|| /* cardinality */
DECODE(bytes,null,'',' bytes='||bytes)||')') plan_plus_exp,
object_node object_node_plus_exp /* parallel and remote info */
from PLAN_TABLE
start with ID=0 and Statement_ID='TEST'
connect by prior ID=Parent_ID and Statement_ID='TEST'
order by ID,Position;

The query shown in the preceding listing uses the connect by operator to evaluate the
hierarchy of steps in the query’s execution path. The query in the listing assumes the
Statement_ID field has been set to ‘TEST’. The execution path steps will be displayed in the
column given the Execution_Path alias.

The output from the preceding query is shown in the following listing:

i p PLAN_PLUS_EXP OBJECT_N
---- ---- -- --------

0 SELECT STATEMENT optimizer=CHOOSE (cost=3 card=37 bytes=1924
)

1 0 HASH JOIN (cost=3 card=37 bytes=1924)
2 1 INDEX (FULL SCAN) of 'SYS_C002547' UNIQUE) (cost=1 card=

31 bytes=558)
3 1 TABLE ACCESS (FULL) of 'BOOKSHELF_AUTHOR' (cost=1 card=3

7 bytes=1258)

The first two columns show the ID and the parent ID for each step. The output includes the
Cost column, which displays the relative “cost” of each step. You cannot compare the costs of
dissimilar queries during your tuning process.

760 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 38
Blind Folio 38:760

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Implementing Stored Outlines
As you migrate from one database to another, the execution paths for your queries may change.
Your execution paths may change for several reasons:

■ You may be using a different optimizer in different databases (cost-based in one,
rule-based in another).

■ You may have enabled different optimizer features in the different databases.

■ The statistics for the queried tables may differ in the databases.

■ The frequency with which statistics are gathered may differ among the databases.

■ The databases may be running different versions of the Oracle kernel.

The effects of these differences on your execution paths can be dramatic, and can have
a significant negative impact on your query performance as you migrate or upgrade your
application. To minimize the impact of these differences on your query performance, Oracle
introduced a feature called a stored outline in Oracle8i.

A stored outline stores a set of hints for a query. Those hints will be used every time the
query is executed. Using the stored hints will increase the likelihood that the query will use the
same execution path each time. Hints do not mandate an execution path (they’re hints, not
commands) but do decrease the impact of database moves on your query performance.

To start creating hints for all queries, set the CREATE_STORED_OUTLINES initialization
parameter to TRUE; thereafter, all the outlines will be saved under the DEFAULT category. As
an alternative, you can create custom categories of outlines and use the category name as a
value in the initialization parameter file, as shown in the following listing:

CREATE_STORED_OUTLINES = development

In this example, stored outlines will be stored for queries within the DEVELOPMENT category.
You must have the CREATE ANY OUTLINE system privilege in order to create an outline. Use

the create outline command to create an outline for a query, as shown in the following listing:

create outline REORDERS
for category DEVELOPMENT
on

select BOOKSHELF.Title
from BOOKSHELF, BOOK_ORDER

where BOOKSHELF.Title = BOOK_ORDER.Title;

NOTE
If you do not specify a name for your outline, the
outline will be given a system-generated name.

If you have set CREATE_STORED_OUTLINES to TRUE in your initialization parameter file,
the RDBMS will create stored outlines for your queries; using the create outline command gives
you more control over the outlines that are created.

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 38
Blind Folio 38:761

Chapter 38: The Hitchhiker’s Guide to the Oracle Optimizer 761

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

NOTE
You can create outlines for DML commands
and for create table as select commands.

Once an outline has been created, you can alter it. For example, you may need to alter the
outline to reflect significant changes in data volumes and distribution. You can use the rebuild
clause of the alter outline command to regenerate the hints used during query execution:

alter outline REORDERS rebuild;

You can also rename an outline via the rename clause of the alter outline command:

alter outline REORDERS rename to BOOK_REORDERS;

You can change the category of an outline via the change category clause, as shown in the
following example:

alter outline REORDERS change category to DEFAULT;

For the stored outlines to be used by the optimizer, set the USE_STORED_ OUTLINES
initialization parameter to TRUE or to a category name (such as DEVELOPMENT in the earlier
examples). If stored outline use is enabled, any query with a stored outline will use the hints
generated when the outline was created. You can also enable USE_STORED_OUTLINES at the
session level via the alter session command.

To manage stored outlines, use the OUTLN_PKG package, which gives you three
capabilities:

■ Drop outlines that have never been used

■ Drop outlines within a specific category

■ Move outlines from one category to another

Each of these three capabilities has a corresponding procedure within OUTLN_PKG. To
drop outlines that have never been used, execute the DROP_UNUSED procedure, as shown
in the following listing:

execute OUTLN_PKG.DROP_UNUSED;

To drop all of the outlines within a category, execute the DROP_BY_CAT procedure, which
has the name of the category as its only input parameter. The following example drops all of the
outlines within the DEVELOPMENT category:

execute OUTLN_PKG.DROP_BY_CAT -
(cat => 'DEVELOPMENT');

To reassign outlines from an old category to a new category, use the UPDATE_BY_CAT
procedure, as shown in the following example.

762 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 38
Blind Folio 38:762

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 38: The Hitchhiker’s Guide to the Oracle Optimizer 763

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 38
Blind Folio 38:763

execute OUTLN_PKG.UPDATE_BY_CAT -
(old_cat => 'DEVELOPMENT', -
new_cat => 'TEST');

To drop a specific outline, use the drop outline command.

Miscellaneous Operations
In addition to the operations shown previously in this chapter—table access, index access, data
set manipulation, and joins—a number of other operations are used by the optimizer when
executing a query. The operations described in the following sections can impact your query’s
performance, but they tend to be less tunable or less frequently used than the operations
previously described.

Filtering Rows
When a where clause is used to eliminate rows for a query, Oracle may use a FILTER operation
to select the rows that meet the where clause criteria. The FILTER operation is not always shown
in the set autotrace on output, even though it may be used. See the View example earlier in this
chapter for an illustration of the FILTER operation. When a FILTER operation is listed explicitly in
a query’s execution path, it usually indicates that no index is available to assist in the processing
of a limiting condition. FILTER operations are commonly seen in queries that use the connect by
clause and occasionally during the processing of VIEW operations.

Queries That Use connect by Clauses
When a query uses a connect by clause, Oracle uses a CONNECT BY operation to execute the
query. The execution path will show that the CONNECT BY operation usually takes three inputs
as it progresses up and down a “tree” of records. For best performance from a connect by query,
you should create a set of indexes that can be used by the columns in the connect by clause.

For example, the connect by examples shown throughout this book use the BREEDING table
to illustrate the family history of cows and bulls. The following query travels from the root node
of the family tree (the cow named ‘EVE’) to the descendants. A connect by query can be written
to travel either from the root to its descendants or from a descendant to its ancestors.

select Cow,
Bull,
LPAD(' ',6*(Level-1))||Offspring Offspring,
Sex,
Birthdate

from BREEDING
start with Offspring = 'EVE'

connect by Cow = PRIOR Offspring;

With no indexes on the BREEDING table, the following execution path is generated for this
query (as reported via set autotrace on, with the table analyzed):

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

764 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 38
Blind Folio 38:764

Execution Plan
--

0 SELECT STATEMENT Optimizer=CHOOSE (Cost=1 Card=16 Bytes=320)
1 0 CONNECT BY (WITH FILTERING)
2 1 NESTED LOOPS
3 2 TABLE ACCESS (FULL) OF 'BREEDING' (Cost=1 Card=1 Bytes

=5)
4 2 TABLE ACCESS (BY USER ROWID) OF 'BREEDING'
5 1 HASH JOIN
6 5 CONNECT BY PUMP
7 5 TABLE ACCESS (FULL) OF 'BREEDING' (Cost=1 Card=16 Byte

s=320)

The CONNECT BY operation has multiple inputs: an initial table scan to determine the
location of the root node, followed by a pair of table access operations to traverse the data tree.
Of the data access operations that supply data to the CONNECT BY operation, two are TABLE
ACCESS FULL operations.

To reduce the number of TABLE ACCESS FULL operations required by the CONNECT BY
operation, you should create a pair of concatenated indexes on the columns used in the connect
by clause. For the query of the BREEDING table, the connect by clause is

connect by Cow = PRIOR Offspring

To properly index the data for the query, you can create two concatenated indexes of the
Cow and Offspring columns. In the first index, the Cow column should be the leading column.
In the second index, reverse the order of the columns in the index. The pair of indexes created
on the Cow and Offspring columns can be used regardless of the direction used when traversing
the data tree. As of Oracle9i, you can create just one concatenated index and use the skip-scan
feature to quickly scan the index.

In the following listing, the two concatenated indexes are created:

create index Cow$Offspring
on BREEDING(Cow,Offspring);

create index Offspring$Cow
on BREEDING(Offspring, Cow);

With those two indexes available, the execution path for the query of the BREEDING table will
now use index-based accesses instead of full table scans, as shown in the following listing. Note
that you may need to hint the optimizer to use the specific index, as shown here:

select /*+ INDEX(breeding offspring$cow) */
Cow,
Bull,
LPAD(' ',6*(Level-1))||Offspring Offspring,
Sex,
Birthdate

from BREEDING
start with Offspring = 'EVE'

connect by Cow = PRIOR Offspring;

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Execution Plan
--

0 SELECT STATEMENT Optimizer=CHOOSE (Cost=148 Card=3 Bytes=60)
1 0 CONNECT BY (WITH FILTERING)
2 1 NESTED LOOPS
3 2 TABLE ACCESS (FULL) OF 'BREEDING' (Cost=1 Card=1 Bytes

=5)
4 2 TABLE ACCESS (BY USER ROWID) OF 'BREEDING'
5 1 NESTED LOOPS
6 5 BUFFER (SORT)
7 6 CONNECT BY PUMP
8 5 TABLE ACCESS (BY INDEX ROWID) OF 'BREEDING' (Cost=148

Card=3 Bytes=60)
9 8 INDEX (SKIP SCAN) OF 'OFFSPRING$COW' (NON-UNIQUE) (C

ost=18 Card=3)

In the preceding listing, one of the TABLE ACCESS FULL operations for the BREEDING table
has been replaced by index-based accesses. A hint was used to force the optimizer to use the
OFFSPRING$COW index, illustrating the Oracle9i skip scan feature (see operation #9 in the
listing). In general, index-based accesses will perform better than full table scans for connect by
queries, particularly if there are multiple levels in the data tree.

Queries That Use Sequences
When a query selects values from a sequence, a SEQUENCE operation will appear in the
execution path for the query. In general, sequence values are selected by querying DUAL (the
public synonym for the SYS.DUAL table). If another table is already involved in the query, you
do not need to add DUAL to the query in order to select from the sequence.

The use of DUAL as a base table for the query is arbitrary; the important criteria are that the
table be accessible and that it have one row in it for each sequence number you want returned.

To improve the performance of queries that generate values from sequences, you can “cache”
a preallocated set of sequence values in memory. By default, 20 sequence values will be cached.
When caching sequence values, Oracle will not replenish the cache until all 20 values have
been used. If the database is shut down, any cached sequence values will be lost; on database
startup, the next 20 values will be cached.

For example, if you select 12 values from a sequence, 8 will still be left in the cache. If you
then shut down the database, those 8 values will be lost. When the database is restarted, another
20 sequence values—starting after the last previously cached value—will be cached. Thus,
there will be a gap of eight sequence values in the values selected from the sequence. See the
Alphabetical Reference for the syntax of the create sequence and alter sequence commands.

Queries That Use Database Links
If a query uses a database link to access remote data, the optimizer will show that a REMOTE
operation is used. When a REMOTE operation is used, the Other column of the PLAN_TABLE
table will record the query that is executed in the remote database. When tuning a query that
uses remote objects, you should seek to minimize the amount of traffic between the instances.
Minimizing the traffic between databases includes limiting both the size of the data sent from

Chapter 38: The Hitchhiker’s Guide to the Oracle Optimizer 765

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 38
Blind Folio 38:765

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

the remote database to the local database and the number of times the remote database is accessed
during the query.

Queries That Use Clusters
If a table is stored in a cluster, a TABLE ACCESS CLUSTER operation can be used to access the
table. In general, data manipulation against clustered tables performs poorly when compared
to data manipulation against nonclustered tables. If your tables will be frequently modified by
insert, update, and delete, then using clusters may negatively impact the performance of your
application. Clusters are most appropriate when the data stored in them is static.

For the NESTED LOOPS join example, the BOOKSHELF_AUTHOR table was used as the
driving table and an index-based access was used to find matching records in the BOOKSHELF
table. During the access to the BOOKSHELF data, the primary key index was used. If the
BOOKSHELF table was stored in a cluster, and the Title column was the cluster key column,
then the operations used to access the data within the NESTED LOOPS join would have
changed slightly.

If BOOKSHELF were in a cluster, then BOOKSHELF_AUTHOR could still be the driving table
for the join. The access to the BOOKSHELF table’s data would be at most a two-step process: an
INDEX UNIQUE SCAN of the cluster key’s index, followed by a TABLE ACCESS CLUSTER of the
BOOKSHELF table. A TABLE ACCESS CLUSTER operation is used whenever data is read from a
table after selecting index values from the cluster index for the table’s cluster.

If BOOKSHELF were in a hash cluster, the method of reading the data from the table would
change completely. In a hash cluster, the physical location of a row is determined by the values
in the row. If BOOKSHELF were in a hash cluster, and the Title column values were used as the
hashing function for the hash cluster, then the query

select *
from BOOKSHELF
where Title = 'INNUMERACY';

would use a TABLE ACCESS HASH operation to read the data. Since the physical location of the
data would already be known by the optimizer, no index-based accesses would be necessary.

Related Hints
You can use the HASH hint to tell the optimizer to use a TABLE ACCESS HASH operation when
scanning a table. When you specify the HASH hint, you should provide the name (or alias) of
the table to be read via the TABLE ACCESS HASH operation.

NOTE
There is no relation between hash clusters and hash joins.
To specify the use of hash joins, use the USE_HASH hint.

If you are using non-hash clusters, then you can specify that a table be read via a TABLE
ACCESS CLUSTER operation via the CLUSTER hint. In general, the CLUSTER and HASH hints
are mostly used when the queries being modified do not contain joins. If a query contains a
join, you should use the join-related hints to have the greatest impact on the query’s chosen
execution path.

766 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 38
Blind Folio 38:766

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Additional Tuning Issues
In addition to the operations and hints listed in the previous sections, you can use two other sets
of hints to influence the query processing. The additional hints allow you to control the parallelism
of queries and the caching of data within the System Global Area (SGA).

If your server has multiple processors, and the data being queried is distributed across multiple
devices, then you may be able to improve the processing of your queries by parallelizing the
data access and sorting operations. When a query is parallelized, multiple processes are run in
parallel, each of which accesses or sorts data. A query coordinator process distributes the workload
and assembles the query results for the user.

The degree of parallelism—the number of scanning or sorting processes started for a query—
can be set at the table level (see the create table command in the Alphabetical Reference). The
optimizer will detect the table-level settings for the degree of parallelism and will determine the
number of query server processes to be used during the query. The optimizer will dynamically
check the number of processors and devices involved in the query and will base its parallelism
decisions on the available resources.

You can influence the parallelism of your queries via the PARALLEL hint. In the following
example, a degree of parallelism of four is set for a query of the BOOKSHELF table:

select /*+ PARALLEL (bookshelf,4) */ *
from BOOKSHELF;

If you are using the Real Application Clusters option, you can specify an “instances”
parameter in the PARALLEL hint. In the following query, the full table scan process will
be parallelized, with a proposed degree of parallelism of four across two instances:

select /*+ PARALLEL(bookshelf,4,2) */ *
from BOOKSHELF
order by Publisher;

In the preceding query, a second operation—the SORT ORDER BY operation for the order
by Publisher clause—was added. Because the sorting operation can also be parallelized, the
query may use nine query server processes instead of five (four for the table scan, four for the
sort, and one for the query coordinator). The optimizer will dynamically determine the degree
of parallelism to use based on the table’s settings, the database layout, and the available
system resources.

If you want to disable parallelism for a query, you can use the NOPARALLEL hint. The
NOPARALLEL hint may be used if you want to execute serially a query against a table whose
queries are typically executed in a parallelized fashion.

If a small table (less than five database blocks in size) is read via a full table scan, that table’s
data is marked to be kept in the SGA for as long as possible. Data read via index scans and
TABLE ACCESS BY ROWID operations is also kept in the SGA for as long as possible and is
removed only when necessary by additional memory requests from the application. If a table is
larger than five blocks, and it is read via a full table scan, its blocks will normally be marked for
removal from the SGA as early as possible. If the table read by a full table scan is larger than five
blocks, and you want its data to be kept in memory for as long as possible, you can mark the
table as a “cached” table, using the cache clause of the create table or alter table command.

Chapter 38: The Hitchhiker’s Guide to the Oracle Optimizer 767

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 38
Blind Folio 38:767

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

If a large table has not been marked as a cached table, and you want its data to stay in the
SGA after the query completes, you can use the CACHE hint to tell the optimizer to keep the
data in the SGA for as long as possible. The CACHE hint is usually used in conjunction with the
FULL hint.

In the following listing, the BOOKSHELF table is queried; although its data will be read via
a TABLE ACCESS FULL operation, the data will not be immediately removed from the SGA:

select /*+ FULL(bookshelf) CACHE(bookshelf) */ *
from BOOKSHELF;

If a table is commonly used by many queries or users, and there is no appropriate indexing
scheme available for the query, then you should use caching to improve the performance of
accesses to that table. Caching is most useful for static tables. To dynamically disable the cache
settings for a table, use the NOCACHE hint.

Review
The preceding sections have shown the methods used by the optimizer to access and manipulate
data. When tuning queries, you need to keep in mind several factors:

■ The goal of the user Do you want rows to be quickly returned, or do you care more
about the total throughput time for the query?

■ The type of joins used Are the tables properly indexed to take advantage of NESTED
LOOPS operations?

■ The size of the tables How large are the tables that are being queried? If there are
multiple joins, how large is the set of data returned from each join?

■ The selectivity of the data How selective are the indexes in use?

■ The sorting operations How many sorting operations are performed? Are nested
sorting operations being performed?

If you can carefully manage the issues related to performance, then the number of “problem”
queries within your database should diminish. If a query appears to be taking more resources
than it should, then you should use the set autotrace on or explain plan command to determine
the order of operations used for the query. You can use the tips and discussions provided
throughout this chapter to then tune the operations or the set of operations. The tuned query
will then be able to meet your goals.

768 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 38
Blind Folio 38:768

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 39
Blind Folio 39:769

CHAPTER
39

The Hitchhiker’s
Guide to Oracle9iAS

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

770 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 39
Blind Folio 39:770

W
ith the introduction of Oracle9i Application Server (9iAS), Oracle presents the
development community with a full-featured suite of tools and applications
to develop, deploy, manage, and tune applications for the Web. Oracle9iAS
is a reliable, scalable, middle-tier application server that enables you and
your organization to benefit from the true power of the Internet. Rather than

being a single product, Oracle9iAS is a collection of services designed to work together to deliver
content dynamically to the Web. You can pick and choose the services you need, and can add
new services as you grow and change. Oracle9iAS is designed to enable the newest web
development methods, tools, and standards, supporting Java J2EE, XML, PL/SQL, or JavaServer
Pages, and many others. Oracle9iAS also provides services for configuring the other application
services, configuring web and database caching, and a host of other application components.

NOTE
Thanks to Brad Brown of TUSC for his contributions to this
chapter. For further details on the development of 9iAS-based
applications, see Brad’s book Oracle9i Web Development
(Osborne/McGraw-Hill–Oracle Press, 2001).

Oracle classifies the 9iAS services into several groups according to the type of support
they provide:

■ Communication Services Web servers to handle requests to and from the Web

■ Business Logic Services Development tools and languages for building custom applications

■ Presentation Services Dynamic web page development tools

■ Caching Services Tools to improve web site performance by caching common data
or pages

■ Content Management Services Internet File System (IFS) for managing documents in
the database

■ Business Intelligence Services Useful for creating reports and ad-hoc queries of user
activity on your sites

■ Database Services Oracle9i database for storing your application data

As part of the 9iAS Suite, Oracle also provides several developer kits to aid in creating dynamic,
flexible applications, tools to manage the database, and security once the web sites are deployed.

The openness of this suite affords you and your site designers and developers tremendous
flexibility and scalability in the tools and services you want to use. As your needs grow, you can
add services or change development direction without leaving the integrated Oracle environment.
For example, if you’re well-versed in Oracle Forms, but don’t have much experience with the
Web, you might choose to deploy your forms and reports on the Web today, and add Java or
PL/SQL Server Pages as you gain more experience. If you have static pages you want to make
dynamic, you can gain management control of the static content using IFS, deploy them today,

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 39: The Hitchhiker’s Guide to Oracle9iAS 771

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 39
Blind Folio 39:771

and add Java tags to create JavaServer Pages (JSPs) that query their dynamic content from the
database later. As your site traffic grows, you might find caching most-used data or pages
beneficial to increase performance. When your web sites become really popular, you can deploy
your applications and data across multiple servers, add more caching, and manage everything
using the Enterprise Manager and the Advanced Security system services. Of course, as your sites
gain attention and prestige, others will want to incorporate your content, which you can easily
provide through the use of XML and Enterprise Java Beans.

Oracle9iAS currently comes in three editions: Standard Edition, Enterprise Edition, and
Wireless Edition. Standard Edition provides the tools needed to get started with your application
development efforts and to grow to a medium-size web site. Enterprise Edition adds extra services
to grow your site from a medium to a large web presence. For deploying content to cell phones
and small web appliances using the Wireless Access Protocol (WAP) interface, Oracle provides
the Wireless Edition, which adds Portal-to-Go.

In 9iAS release 2, Oracle has further enhanced the functionality of the 9iAS toolset and has
recategorized some of the features. In 9iAS release 2, the solutions and components are

Solution Oracle9iAS Components

J2EE and Internet Applications Oracle HTTP Server
Oracle9iAS Containers for J2EE
Oracle9iAS Web Services
Oracle PL/SQL
Oracle9iAS Forms Services
Oracle XML Developer Kit
Oracle9i Client

Portals Oracle9iAS Portal
Oracle9iAS Portal Developer Kit

Wireless Oracle9iAS Wireless

Caching Oracle9iAS Web Cache

Business Intelligence Oracle9iAS Reports Services
Oracle9iAS Discoverer
Oracle9iAS Personalization
Oracle9iAS Clickstream Intelligence

E-Business Integration Oracle9iAS InterConnect
Oracle9iAS Unified Messaging
Oracle Internet File System

Management and Security Oracle Enterprise Manager
Oracle9iAS Single Sign-On
Oracle Internet Directory
Oracle9iAS Infrastructure

NOTE
The Oracle9iAS Database Cache is no longer part of 9iAS as of
Release 2.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

772 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 39
Blind Folio 39:772

In the following sections, you will see descriptions of the major components of 9iAS. This is
not an exhaustive list, but rather a high-level description of the most commonly used features.
Please see the full production documentation set for detailed descriptions of all components.

Communication Services
Communication Services provide Internet connectivity to your users. The Web is the most visible
facet and interface of the Internet today, consisting of client and server computers, which can
handle multimedia documents. The Internet follows a standard set of protocols and conventions,
and has become a universe of network-accessible information. The communication is based on
the Hypertext Transfer Protocol (HTTP). Communication Services are the components, protocols,
and procedures that provide multimedia communication services—real-time audio, video, and
data communications—over packet networks, including Internet Protocol (IP)-based networks.
The bottom line is that Communication Services are, in effect, the Web server.

Oracle9iAS provides you with several options for your Communication Services. These
services continue to expand with each release of 9iAS.

Communication Services—Powered by Apache
Oracle supports the following Oracle Apache Modules in the current release:

mod_ssl Secure Sockets Layer (SSL) message encryption support.

mod_perl Support for writing Apache modules in Perl.

mod_jserv Communication with Java servlet engine (J2EE).

mod_plsql PL/SQL toolkit support.

mod_ose Delegates URLs to stateful Java and PL/SQL servlets in Oracle Servlet
Engine (OSE). This module
—keeps session IDs in cookies or redirected URLs
—routes requests to the appropriate OSE sessions
—communicates with OSE over Network Services (that is, SQL*Net),

which gives firewall support between Oracle HTTP Server and
OSE, and connection pooling.

http_core Core Apache features.

mod_access Host-based access control; provides access control based on client
hostname or IP address.

mod_actions Filetype/method-based script execution; provides for CGI scripts
based on media type or request method.

mod_alias Aliases and redirects; provides for mapping different parts of the host
filesystem in the document tree and for URL redirection.

mod_auth User authentication using text files, Basic and Digest Authentication.

mod_auth_anon Anonymous user authentication, FTP-style.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 39: The Hitchhiker’s Guide to Oracle9iAS 773

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 39
Blind Folio 39:773

mod_autoindex Automatic directory listings.

mod_cgi Execution of CGI scripts; processes any file with MIME type
application/x-httpd-cgi.

mod_define Enables the Define directive, which defines a variable that can be
expanded on any configuration line. The Define directive has the
status Extension, which means that it is not compiled into the server
by default.

mod_digest MD5 authentication; provides for user authentication using MD5
Digest Authentication.

mod_dir Basic directory handling; provides for “trailing slash” redirects and
serving directory index files.

mod_dms Enables you to monitor performance of site components with
Oracle’s Dynamic Monitoring Service.

mod_env Passing of environments to CGI scripts; provides for passing
environment variables to CGI/SSI scripts.

mod_expires Apply Expires: headers to resources; provides for the generation of
Expires headers according to user-specified criteria.

mod_fastcgi This third-party module supports the fastcgi protocol, which enables
you to maintain a pool of running servers for CGI applications
(thereby eliminating startup and initialization overhead).

mod_headers Add arbitrary HTTP headers to resources; document headers can be
merged, replaced, or removed.

mod_include Server-parsed documents; provides for server-parsed HTML
documents.

mod_info Summarizes the entire server configuration, including all installed
modules and directive settings.

mod_log_config User-configurable logging replacement for mod_log_common.

mod_log_common Provides for logging requests made to the server, using the Common
Log Format or a user-specified format.

mod_mime Determines and registers document types using file extensions.

mod_negotiation Content negotiation.

mod_oc4j Routes requests from the Oracle HTTP Server to Oracle9iAS
Containers for J2EE (OC4J), providing the ajp13 protocol for
communication with the servlet engine.

mod_oradav The Oracle module (an OCI application written in C) that is an
extended implementation of mod_dav, and is integrated with the
Oracle HTTP Server. mod_oradav performs read/write activity to
local files and to Oracle databases.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

mod_ossl Sets security parameters for mod_oc4j. This Oracle module enables
strong cryptography for the HTTP Server.

mod_osso Enables single sign-on for the Oracle HTTP Server. mod_osso
examines incoming requests and determines whether the resource
requested is protected, and if so, retrieves the HTTP Server cookie
for the user.

libproxy (mod_proxy) Caching proxy capabilities; provides for an HTTP 1.0 caching
proxy server.

mod_rewrite Powerful URL-to-file name mapping using regular expressions; provides
a rule-based rewriting engine to rewrite requested URLs on-the-fly.

mod_setenvif Sets environment variables based on client information; provides
for the capability to set environment variables based on attributes of
the request.

mod_so Support for loading modules at runtime; provides for loading of
executable code and modules into the server at startup or restart time.

mod_speling Automatically corrects minor typographical errors in URLs; attempts
to correct misspellings of URLs users enter, by ignoring capitalization
and allowing up to one misspelling.

mod_status Server status display; enables a Webmaster, DBA, or server
administrator to find out how well the server is performing,
presenting an HTML page that gives the current server statistics
in an easily readable form.

mod_unique_id Creates a unique ID for each request.

mod_userdir User home directories; provides for user-specific directories.

mod_usertrack User tracking using cookies.

mod_vhost_alias Enables dynamically configured mass virtual hosting.

Communication Services—IIS
Incoming requests are handled by the Oracle Communication Services, more commonly known
as the Web Server. Oracle9iAS comes bundled with the Apache Web Server and also supports
Microsoft Internet Information Server (IIS). With the Oracle Plug-in for Microsoft IIS, you can
directly invoke PL/SQL and Java Web-stored objects from an Oracle database. Oracle Plug-in
for Microsoft IIS provides functionality in a Microsoft IIS environment that’s similar to the
Oracle HTTP Server Modules: mod_plsql and mod_ose. Using it, you can access web application
components in one of the following two ways:

■ Passing a preconfigured virtual directory prefix (PL/SQL access)

■ Passing a predefined file extension and virtual directory prefixes, which are stored
in the Java configuration file (Java access)

774 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 39
Blind Folio 39:774

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

PL/SQL Web Component Access
Oracle Plug-in for Microsoft IIS supports accessing PL/SQL server pages and PL/SQL stored
procedures written with the Oracle PL/SQL Web Toolkit. If you have an existing PL/SQL
application, you should have no problem invoking it from IIS. PL/SQL requests are filtered
using a predefined prefix and are executed using pooled database connections. Developers have
the ability to configure PL/SQL component access from multiple databases.

Java Web Component Access
Oracle Plug-in for Microsoft IIS supports accessing JSPs and servlets. Java requests are filtered
using a Java configuration file.

For more information, see Oracle Plug-in for Microsoft IIS Configuration and User’s Guide in
the Oracle9i Application Server Documentation Library.

Content Management Services
Content Management Services make all your content, regardless of the file type, accessible in
one heterogeneous file hierarchy through web browsers, Microsoft Windows networking, File
Transfer Protocol (FTP), or an e-mail client. In addition, you can use these services to configure
sophisticated file searching capabilities, event alerts, and check-in, check-out functionality to
support collaborative projects. On Windows NT- or Windows 2000-based servers, many of these
services are available through Microsoft IIS. To enable these same services on all operating systems,
Oracle introduced Internet File System.

Oracle Internet File System
Oracle Internet File System (IFS) is a service that stores files in an Oracle database. From the
user’s viewpoint, Oracle IFS appears like any other file system accessible through web browsers,
Microsoft Windows Explorer, FTP, NFS, or an e-mail client. The fact that files are stored in the
database is transparent to users because users don’t directly interact with the database.

NOTE
The latest 9iAS Release 2 iFS must use an Oracle9i database;
Release 1 can use Oracle8i or Oracle9i.

Unlike other file systems, Oracle IFS stores all your document files in the same file system.
For example, you can display e-mail message files and address books, web files, and word
processing or spreadsheet files within a single file hierarchy, or you can perform a single search
to locate all references to a topic.

File System Management
As with most traditional operating system-based file systems, you can manage the files you own
or those for which you have the proper permissions. The main file management features include

■ Renaming files You can rename files you own.

■ Deleting files You can delete files for which you have the correct permissions.

Chapter 39: The Hitchhiker’s Guide to Oracle9iAS 775

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 39
Blind Folio 39:775

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

776 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 39
Blind Folio 39:776

■ Uploading files You can upload files using FTP, NFS, Windows Explorer (by using
Server Message Block and Web Folders), and the Web.

■ Setting automatic expiration on files You can set an expiration date for each file you
upload to Oracle IFS. The file is automatically deleted on that date.

■ Modifying file attributes You can view and modify file attributes such as description,
filename, and the access control permissions.

Unlike most traditional operating system-based file systems, IFS is built to support collaborative
team development and management of documents. These additional features include

■ Check-in, check-out (CICO) For group projects, you can check out files, so others
can’t overwrite your work. Files remain locked until you check them back in or an
administrator releases the lock.

■ Versioning Developers can decide to make a file versioned. Each time the versioned
file is checked in, a new version is created and stored. File versions can be kept or
purged as needed.

■ Searching Oracle IFS includes a Find utility that uses Oracle Text extensions to search
across multiple file types. This advanced search utility enables you to search quickly
without having to know database syntax.

■ Multiple folders per file This feature allows multiple folders to be assigned to files,
avoiding making multiple copies of files when the same document fits into a number of
categories. This feature reduces maintenance when files are updated and also saves
storage space.

■ Extensible file attributes Application developers can extend Oracle IFS to manage
new types for custom information. For each new type, you can define custom attributes
about the information, which are then used to track and search for the information. This
is especially useful for tracking binary or proprietary application-owned file types that,
traditionally, are difficult to search.

Ultra Search
Oracle Ultra Search is new in the Oracle9i database release and enables you to search inside
databases, as well as static HTML pages. Other search engines cannot see content inside a database
and wouldn’t be able to find, for example, documents, newspaper articles, and so forth stored
inside a database. Ultra Search unifies search areas across heterogeneous corporate repositories,
web sites, and groupware content. Oracle Ultra Search includes a web interface, web crawling,
and search administration facilities to provide a unified interface for enterprise and vertical portal
search applications.

Business Logic Services
Business Logic Services are the development tools and languages that support your application
logic. With Business Logic Services, you can build and run custom web applications. The
following sections describe the major elements that provide Business Logic Services in Oracle9iAS.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Oracle Business Components for Java
Oracle Business Components for Java is a 100 percent pure Java and XML framework that
enables productive development, portable deployment, and flexible customization of multitiered
database applications from reusable business components. Application developers can use this
framework to

■ Author and test business logic in components that automatically integrate with databases

■ Reuse business logic through multiple SQL views of data that support different
application tasks

■ Access and update the views from servlets, JSPs, and Thin-Java Swing clients

■ Customize application functionality in layers without modifying the delivered application

See Chapter 34 for an introduction to Java.

Oracle PL/SQL
Oracle PL/SQL is a scalable engine for running business logic against data in Oracle Database
Cache and Oracle databases. It enables you to invoke PL/SQL procedures stored in Oracle
databases through your web browsers. The stored procedures retrieve data from tables in the
database and generate HTML pages, which include the data that is then returned to the client
browser. See Chapter 27 for an introduction to PL/SQL.

Oracle Forms Services
If you have the Enterprise Edition of Oracle9iAS installed, you can run applications based on
Oracle Forms technology either over the Internet or over your company intranet. On the
application server tier, Oracle Forms Services consists of a listener and a runtime engine, where
the application logic is stored. On the client tier, Oracle Forms Services consists of a Java applet,
which provides the user interface for the runtime engine, and Oracle JInitiator (a Java plug-in),
which provides the capability to specify the use of a specific Java virtual machine on the client.

In Oracle9iAS, when you submit a URL to launch an Oracle Forms-based application, the
Web listener accepts the request and downloads the Oracle Forms applet to your browser. The
Oracle Forms applet then establishes a persistent connection to an Oracle Forms runtime engine.
All processing takes place between the Oracle Forms applet and the Oracle Forms Services
runtime engine, which seamlessly handles any queries or commits to the database.

Presentation Services
Presentation Services deliver dynamic content to client browsers, supporting servlets, JavaServer
Pages, Perl/CGI scripts, PL/SQL Server Pages, forms, and business intelligence. You can use
Presentation Services to build your presentation layer for your web applications. While Oracle
puts these services into a separate group, you can think of them grouped with the Business Logic
Services, in that your application logic can reside within these components. You can break your
business logic into executable components, which can then be called or invoked by these services.

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 39
Blind Folio 39:777

Chapter 39: The Hitchhiker’s Guide to Oracle9iAS 777

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Apache JServ
Apache JServ is a 100 percent pure Java servlet engine that is fully compliant with the following
Sun Microsystems Java specifications:

■ Java Servlet APIs version 2.0

■ Java Runtime Environment (JRE) version 1.1

Beginning with version 1.0.2.2 of Oracle9iAS, Oracle offers the J2EE servlet engine. Apache
JServ works on any Java Virtual Machine that’s compliant with this JRE and executes any Java
servlet that’s compliant with this version of the Java Servlet APIs specification. When the HTTP
server receives a servlet request, it’s routed to mod_jserv, which forwards the request to the
Apache JServ servlet engine.

OracleJSP (JavaServer Pages)
JSP technology extends Java Servlet technology, and supports the use of Java calls and scriptlets
within HTML and XML pages. By using JSP pages, you can create user interfaces by combining
static template data with dynamic content. JSP pages support component-based development,
separating business logic (usually in JavaBeans or PL/SQL-stored procedure calls) from the
presentation, thus enabling you to focus on your areas of expertise. Consequently, JSP developers
(who may not know Java) can focus on presentation logic, while Java developers can focus on
business logic. For general information about JSPs, refer to the JavaServer Pages Specification
(available from http://java.sun.com).

OracleJSP is an implementation of JavaServer Pages version 1.1 (along with some features
of HSP 1.2) as specified by Sun Microsystems and extends this specification to provide the
following benefits:

■ Portability between servlet environments OracleJSP pages are supported on all
web servers that support Java servlets built to the version 2.0 or higher specification.
Consequently, you can migrate your existing JSP pages that are compliant with the version
1.0 specifications to Oracle9i Application Server without needing to rewrite them.

■ Support for SQLJ SQLJ is a standard syntax for embedding SQL commands directly
into Java code. OracleJSP supports SQLJ programming in JSP scriptlets. This includes
support for an additional filename extension, sqljsp, which causes the OracleJSP
translator to invoke the Oracle SQLJ translator. See Chapter 35 for examples of SQLJ
programming.

■ Oracle JSP Markup Language (JML) Oracle provides the JML tag set as a sample tag
library, which enables developers unfamiliar with Java syntax to jumpstart by using
looping, conditionals, and other high-level programming logic.

■ Extended National Language Support (NLS) OracleJSP provides extended NLS support
for servlet environments that cannot encode multibyte request parameters and bean
property settings. For such environments, OracleJSP offers the translate_params configuration
parameter, which can be enabled to direct OracleJSP to override the servlet container
and do the encoding itself.

778 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 39
Blind Folio 39:778

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ Extended datatypes OracleJSP provides the JmlBoolean, JmlNumber, JmlFPNumber,
and JmlString JavaBean classes in the oracle.jsp.jml package to wrap the most common
Java datatypes. These extended datatypes provide a way to work around the limitations
of Java primitive types and wrapper classes in the standard java.lang package.

■ Custom JavaBeans OracleJSP includes a set of custom JavaBeans for quickly accessing
the Oracle database.

As of Oracle9iAS Release 2, the new name for OracleJSP is “OC4J JSP Container,” combining
the old OracleJSP with Ironflare’s Orion.

Oracle PL/SQL Server Pages (PSP)
Oracle PSPs are one of the most exciting new features offered to traditional Oracle PL/SQL
developers in Oracle9iAS. PSPs are analogous to JavaServer Pages, but they use PL/SQL, rather
than Java, for the server-side scripting. Unlike the other server page offerings, PSPs are fully
compiled components executed as Oracle stored procedures. The Oracle PSP service includes
the PSP Compiler and the PL/SQL Web Toolkit.

By using this service when developing applications, you can separate page formatting from
application logic. Starting with either an existing web page or a stored procedure, you can create
dynamic web pages by embedding PL/SQL tags. These dynamic web pages can perform database
operations and display the results as HTML, XML, or plain text. Typically, a PL/SQL server page is
intended to display in a web browser. It can also be retrieved and interpreted by a program that
can make HTTP requests, such as a Java or Perl application, enabling you to improve your
application’s modular development and reuse.

If you plan to use PSPs as your presentation layer solution, it’s important to understand that
unless you use a Database Cache Server, the PL/SQL will be executed on the database server, not
on the application server. Java and most other languages execute their code on the application
server, making those solutions scalable without using a Database Cache Server.

Perl Interpreter
The Perl Interpreter is a persistent Perl runtime environment, which is embedded in the Apache
HTTP Server, thus saving the overhead of starting an external interpreter, as in a traditional CGI
call. When Oracle HTTP Server receives a Perl request, it’s routed through mod_perl to the Perl
Interpreter for processing.

Business Intelligence Services
Oracle Business Intelligence Services enables you to manage and analyze your business and your
web site daily by enabling you to deploy and share business intelligence over the Web or over
your corporate intranet.

Oracle Reports Services
Using Oracle Reports Services and its Reports Servlet Services, you can create and run new
or existing Oracle Reports on an internal company intranet, an external company extranet, or
publish them to the Internet. Oracle Reports Services is optimized to deploy Oracle Reports
applications (reports and graphics) in a multitiered environment. The Reports Services consist of

Chapter 39: The Hitchhiker’s Guide to Oracle9iAS 779

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 39
Blind Folio 39:779

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

the server component, runtime engines, and the servlet runner. In Oracle9iAS, when a client
submits a request for a report, the Oracle HTTP Server Web listener routes that request to the
Oracle Reports Services server component. The server routes the request to the Oracle Reports
Services runtime engine, which runs the report. The report output is then sent back to the client
through the Oracle HTTP Server Web listener. Reports can be formatted as HTML, Adobe
Acrobat, or as plain text for the user. Developers can also easily customize the report for import
into Microsoft Excel or any other commonly supported document type, such as Multipurpose
Internet Mail Extensions (MIME).

Oracle Discoverer 4i Viewer/Oracle9iAS Discoverer
Oracle9iAS Discoverer (previously known as Discoverer 4i Viewer) is a tool for running and
viewing workbooks (reports) created with Oracle Discoverer 4i Plus over the Web. Targeted
at power users, Discoverer enables you to access information from the database and embed
it in your site using graphic user interface (GUI) tools and a What You See Is What You Get
(WYSIWYG) data display, without being experienced SQL developers. You can publish live
reports to web sites by creating a linkable URL that indicates to Discoverer which workbooks
to open. Clicking the URL invokes the workbook query to the database and returns live
results to the browser. Users interact with the query results to drill up or down, to enter values
into optional parameters, or to follow links to other workbooks or applications.

Portal Services
You can use Portal Services to build portal sites that integrate all your content on a single web page.
Portal sites give your users a single, centralized, personalized view of relevant applications and
data. By using Oracle9iAS Portal Services and Portal-to-Go, you can make your portal sites accessible
to both fixed and mobile clients. While building simple applications within Oracle Portal is also
possible, its real purpose is in offering applications to users through a subscription model.

Oracle Portal
An enterprise portal is a Web-based application that provides a common, integrated entry point
for accessing dissimilar data types on a single web page. For example, you can create portals
that give users access to web applications, business documents, business intelligence reports,
charts, and links that reside both inside and outside your corporate intranet. You can manage the
user experience, creating and administering portal pages that contain portlets. To users, portlets
on a page appear as regions of an HTML page that present text or graphics as links to more
information or applications. Portlets provide access to web resources, such as applications, web
pages, or syndicated content feed. Portlets are owned by portlet providers, which provide the
communication link between the portal page and the portlets. When an application is ready for
the user, it’s published, and the portal administrator makes it available to the intended audience.
Users then subscribe to the portlet, effectively putting it on their personalized pages.

Portal-to-Go
Portal-to-Go is a translation layer available on the Enterprise Edition of the database that enables
web content to be displayed on Wireless Application Protocol (WAP)-enabled devices, such
as browser-enabled cell phones and hand-held devices. Portal-to-Go works by isolating content

780 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 39
Blind Folio 39:780

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

acquisition from content delivery. It works like an XSLT style sheet, providing an intermediary
format layer—Portal-to-Go XML—between the source format and the target format. Portal-to-Go
XML is a set of Document Type Definitions (DTDs) and XML document conventions used to define
content and internal objects in Oracle Portal-to-Go.

9i Dynamic Services
Dynamic Services use XML, XSLT, and a common Java or PL/SQL client API to turn any web
content or legacy application accessible via the Web into a service, usable by other applications
or the end user. Services are application calls or web data sources wrapped in an XML service
package that defines the input and output APIs, the properties of the data source, and the
execution flow. Thinking of each dynamic service as an application component, the services
can be grouped and published together to form a coherent web application interface. Dynamic
Services offer support for most web protocols (for example, HTTP, UDDI, LDAP, SMTP, XML
Schema, or SOAP) and enable developers also to wrap legacy applications with custom APIs,
giving them a new standards-based interface. As part of the Dynamic Services architecture,
Oracle provides a central registry for managing and defining the properties, rights, syntax, and
execution flow of the applications contained within Dynamic Services. Oracle also provides a
Dynamic Services Adapter to incorporate management of the Dynamic Services into the 9iAS
Portal registry, so any services defined in Dynamic Services are immediately available for
publication as a portlet.

Developer’s Toolkits
To support application development and deployment, Oracle has provided in Oracle9iAS
several toolkits containing libraries and tools. Using these Developer’s Toolkits, you can build
web applications that can access your database.

Oracle Java Messaging Service (JMS) Toolkit
Oracle Java Messaging Service (JMS) extends the standard Sun Microsystems Java Message Service
version 1.02 specification. In addition to the standard JMS features, Oracle JMS provides a Java
API for Oracle Advanced Queuing (AQ). This API supports the AQ administrative operations and
other AQ features including

■ An administrative API to create queue tables, queues, and topics.

■ Point-to-multipoint communication that extends the standard point-to-point by using
recipient lists for topics.

■ Message propagation between destinations, which allows applications to define
remote subscribers.

■ Transacted sessions so you can perform JMS, as well as SQL operations in one
common transaction.

■ Message retention after messages are dequeued.

■ Message delay to make messages visible after a specified time.

Chapter 39: The Hitchhiker’s Guide to Oracle9iAS 781

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 39
Blind Folio 39:781

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ Exception handling so messages can be moved to exception queues if they cannot be
processed successfully.

■ Oracle8i or Oracle9i AdtMessages message types, which are stored in the database as
Oracle objects. Consequently, the payload of the message can be queried after it’s
enqueued. Subscriptions can be defined on the contents of these messages in addition
to the message properties.

Oracle SQLJ
Oracle SQLJ is a preprocessor that developers can use to embed static SQL operations in Java
code. A SQLJ program is a Java method containing embedded static SQL statements that comply
with the ANSI-standard SQLJ Language Reference syntax. Static SQL operations are predefined.
The operations themselves don’t change in real time as a user runs the application, although the
data values returned can change dynamically.

Oracle SQLJ consists of a translator and a runtime component. The translator converts
embedded SQL into calls to the SQLJ runtime component, which performs the SQL operations. In
standard SQLJ, this is typically done through calls to a JDBC driver. In the case of Oracle9iAS,
it’s done through an Oracle JDBC driver. When you run SQLJ applications, the runtime
component is invoked to handle the SQL operations. See Chapter 35 for more on using SQLJ.

Oracle XML Developer’s Kit
Extensible Markup Language (XML) is quickly becoming the new standard for web development,
especially among business-to-business (B2B) content and service providers. Oracle XML Developer’s
Kit (XDK) contains XML component libraries and utilities you can use to enable applications and
web sites with XML. Using Java stored procedures, the API to call the components is available to
either Java or PL/SQL-based applications. See Chapter 41 for more on XML.

Oracle9i features several enhanced database operations to store XML through SQL and render
traditional database data as XML. These functionalities are required to support B2B and business-
to-customer (B2C) e-business, packaged applications, and Internet content management. The
main area of XML support in Oracle9i is built-in XML XDKs.

With Java preloaded and the C XDK linked into Oracle9i, developers can easily access World
Wide Web Consortium (W3C) functionalities that generate, manipulate, render, and store
XML-formatted data in Oracle9i. Also available in PL/SQL and C++, the XDKs offer XML/XSLT
parsers, XML Schema processors, XML Class Generators, XML Transviewer Beans, and the
XSQL Servlet, providing basic building block features that let developers quickly enable their
applications for XML.

Oracle LDAP Developer’s Kit
The Lightweight Directory Access Protocol (LDAP) Developer’s Kit supports client connectivity
with Oracle Internet Directory, the Oracle LDAP directory server. Oracle Internet Directory
combines a native implementation of the Internet Engineering Task Force’s (IETF) LDAPv3 standard
with an Oracle8i or Oracle9i back-end data store. Specifically, you can use Oracle LDAP Developer’s
Kit to develop and monitor LDAP-enabled applications. It supports encrypted connections and
client calls to directory services, and you can use it to manage your directory data.

782 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 39
Blind Folio 39:782

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 39: The Hitchhiker’s Guide to Oracle9iAS 783

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 39
Blind Folio 39:783

Caching Services
To scale your e-business web site, Oracle9iAS provides Caching Services in the Enterprise Edition
of the suite. These services include Oracle Web Cache and, in 9iAS Release 1, Oracle Database
Cache. Oracle Web Cache is a content-aware service that improves the performance, scalability,
and availability of web sites by caching both static and dynamic pages. Oracle Database Cache,
which is not available with Oracle9iAS Release 2, is a middle-tier database cache that reduces
the load between the application and database tiers by caching frequently requested data,
avoiding unnecessary network round-trips for read-only data.

Oracle Database Cache
Oracle Database Cache resides on the middle tier as a service of 9iAS. It improves the performance
and scalability of applications that access Oracle databases by caching frequently used data on
the middle-tier machine. With Oracle Database Cache, your applications can process several
times as many requests as their original capacity because round-trips to the back-end database
are greatly reduced. Oracle Database Cache service supports running stateful servlets, JavaServer
Pages, Enterprise JavaBeans, and CORBA objects in Oracle8i and Oracle9i JVM.

Who Should Use Oracle Database Cache?
If your applications meet the following criteria, you can use Oracle Database Cache to boost the
scalability of your web sites and the performance of your applications:

■ Your applications access an Oracle database.

■ You use a multitiered environment, where the clients, Application Server, and Oracle
database servers are located on separate machines.

■ Your applications communicate with an Oracle database through Oracle Call Interface
(OCI) or an access layer built on OCI, like JDBC-OCI, ODBC, or OLE.

■ Your web or application users generate mostly read-only queries.

■ Your applications can tolerate some synchronization delay with data in the source
database. That is, the cache doesn’t need to be as up-to-date as the real-time data in
the master database. (You decide how often to refresh the data.)

Oracle Database Cache Environment
In the Oracle Database Cache environment, the cache software consists of a thin middle-tier
database instance for caching frequently accessed data and running intelligent software that
routes queries. The source database is on the back end running in its own tier. It is the original
and primary storage for the data. Currently, Oracle Database Cache can cache data from only
one source database.

Example of How Requests Are Served by Oracle Database Cache
When users request frequently accessed data, the request passes from the client to the Oracle
Database Cache, through the web server, and the database cache returns the data. Because the
data is stored on the same tier, the data is returned quickly and the request doesn’t need to pass

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

to the source database server for retrieval of the data. If a new user requests the same information,
the request is again served in the middle-tier database cache, which returns the data quickly. If
the data doesn’t reside in the cache, the request is then routed through to the source database for
resolution, cached in the middle tier, and served to the user. Any subsequent request for the same
data is served from the cache.

How Oracle Database Cache Is Different Than the Source Database
Although Oracle Database Cache looks like a regular database instance placed in the middle tier,
important differences exist.

■ Oracle Database Cache does cache data, but it isn’t a persistent store for data.

■ You cannot perform backup and recovery on it. If you need to back up your data, then
you must store it on the source database.

■ Oracle Database Cache cannot be used to create tables or other database objects. The
only way you can put data into this environment is by caching data from the source
database to the middle-tier instance.

■ Oracle Database Cache doesn’t provide transparent application fail-over (TAF) guarantees
if it fails because Oracle Database Cache isn’t a true persistent store for data. It’s only a
mirror of the source instance.

■ Oracle Database Cache cannot be treated as an enlisted database in global transactions
to avoid an unnecessary and expensive two-phase commit.

How Do Applications Make Use of Oracle Database Cache?
To take advantage of the benefits of Oracle Database Cache, you only need to configure the
environment of your applications. You needn’t make any modifications to your applications if
they use SQL statements to access the database or are linked with OCI using dynamic libraries
and are layered directly on OCI. If your applications satisfy either criterion, queries are routed
to the middle-tier database cache automatically.

Oracle Web Cache
Oracle Web Cache is a web server caching service that improves the performance, scalability,
and availability of busy web sites that run on Oracle9iAS and the Oracle database. Most
Webmasters run statistics on their sites and have a good idea what pages are hit most often. By
storing frequently accessed pages in virtual memory, Oracle Web Cache reduces the need to
repeatedly process requests for those URLs on the web server. Unlike legacy proxy servers and
other web server products that only handle static images and text, Oracle Web Cache caches
both static and dynamically generated HTTP content from one or more application web servers.
Using Oracle Web Cache, web clients experience faster page retrieval, and the load on the HTTP
servers is significantly reduced.

Oracle Web Cache is positioned in front of Oracle HTTP Servers to cache their pages and to
provide content to web users who request it. When web browsers access your web sites, they
send HTTP requests to Oracle Web Cache, which acts as a virtual server or virtual request router
to the Oracle HTTP Servers. If the requested content has changed or aged off, Oracle Web Cache
retrieves the new content from an Oracle HTTP Server.

784 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 39
Blind Folio 39:784

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Oracle Web Cache Main Features
The main features of Oracle Web Cache make it ideal for dynamic e-commerce web sites that
host online catalogs, news services, B2B services, and portals:

■ Static and dynamically generated content caching Caches documents according to
rules and timetables you specify.

■ Cache invalidation Supports page invalidation as a means to keep Oracle Web
Cache pages consistent with the content on Oracle9iAS.

■ Performance assurance Built-in performance measurement handles performance
issues, while maintaining cache consistency. These statistics assign a priority order to
contents and determine which documents can be served old and which must be
retrieved fresh.

■ Surge protection Lets you set limits on the number of concurrent requests passed to
Oracle Web Cache to avoid overburdening it.

■ Load balancing Dynamically distributes requests over many web servers that Oracle
Web Cache cannot serve itself. Oracle Web Cache is designed to manage HTTP
requests for up to 100 Oracle9iAS server machines.

■ Backend fail-over Automatically redistributes the load over the remaining web servers
when one server fails or is taken offline. When the failed server returns to operation,
Oracle Web Cache automatically includes it in the server pool.

■ Session tracking Supports web sites that use session ID tracking to track users.

■ Security Provides password authentication for administration tasks, control over which
ports operations can be requested from, and timeout for inactive connections.

Oracle9iAS Clickstream Analysis
Oracle9iAS Clickstream Intelligence is a web-based, comprehensive analytical tool that enables
you to acquire, analyze, and report on web interactions with customers, suppliers, and employees.
It is one of the key Business Intelligence components of Oracle9iAS Release 2. Clickstream
Intelligence leverages the business intelligence tools in Oracle9iAS and the Oracle9i database
to provide an integrated and extensible solution for measuring web traffic and improving web
site effectiveness.

The Runtime Administrator simplifies the setup, management, and deployment of clickstream
data sources. This web-based tool enables you to define how Clickstream Intelligence interprets
web log file data, determine which types of data you want to track, and configure and populate
the database for optimal storage of clickstream data. The Oracle9iAS Clickstream Intelligence
Administrator’s Guide describes in detail how to use the Runtime Administrator.

Oracle9iAS Clickstream Intelligence Analytics (Clickstream Analytics) provides more than
150 preconfigured reports that display data acquired from your web sites. Clickstream Analytics
reports, called worksheets, are grouped with other reports of a similar nature to form workbooks
that can be accessed and viewed with Oracle9iAS Discoverer. You can use Oracle9iAS
Discoverer Viewer as well as Oracle9iAS Discoverer Plus to view and analyze data related to
web site traffic.

Chapter 39: The Hitchhiker’s Guide to Oracle9iAS 785

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 39
Blind Folio 39:785

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Oracle9iAS Clickstream Intelligence can be installed into the Oracle9i database included in
Oracle9i Application Server, or may be installed into a standalone Oracle9i Enterprise Edition
database. The Oracle9iAS Clickstream Intelligence database model is built via Oracle9i Warehouse
Builder, a tool for designing and deploying databases.

System Services
Oracle9iAS includes Oracle Enterprise Manager and Oracle Advanced Security to provide
system management and security services for your applications. These services manage your
Oracle environment and network security through encryption and authentication.

Oracle Enterprise Manager
Oracle Enterprise Manager has been enhanced from a database administration tool into a system
management tool that provides an integrated environment for centrally managing your Oracle
platform. This service is also available in the Enterprise Edition, and combines a GUI console,
Oracle Management Servers, Oracle Intelligent Agents, common services, and administrative tools.
In Oracle9iAS, you use the console to manage Oracle Database Cache, Oracle Forms Services,
and the host operating system. From the console, you can perform the following tasks:

■ Centrally administer and diagnose Oracle Database Cache and Oracle Forms Services

■ Monitor the status of your Oracle products and third-party services

■ Schedule maintenance activities on multiple machines at varying time intervals

■ Monitor networked services for scheduled and unusual events

■ Customize your display by organizing your server components into logical groups
according to your unique system architecture; as your system grows and changes,
you can rearrange the services to fit the new architecture

Oracle Advanced Security
Oracle Advanced Security provides a “soup-to-nuts” suite of security services for Oracle Database
Cache, Oracle8i and Oracle9i JVM, and Oracle8i and Oracle9i PL/SQL. Its functionality is
two-fold: first, network security features protect enterprise networks and securely extend corporate
networks to the Internet; second, it integrates security and directory services, combining to
provide enterprise user management and single sign-on.

Network security features ensure data privacy, data integrity, and user authentication between
the multiple servers in the network. They also provide users single sign-on where the user
authenticates once, and then authentication occurs transparently in subsequent connections to
other databases or services on the network. Using a single sign-on, users can access multiple
schemas and applications with a single password.

Security and Directory Services provide you or your systems administrator tools to manage
users centrally on a central directory service, rather than repeatedly managing the same users
on individual databases and servers. Using Oracle Enterprise Security Manager, a tool accessible
through Oracle Enterprise Manager, enterprise users and their authorizations are managed in
Oracle Internet Directory or other LDAP directory services.

786 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 39
Blind Folio 39:786

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Database Services
Oracle9i Database Services provide distinct advantages over the Oracle8i database. The Oracle9i
database contains many important new features that optimize traditional business applications
and facilitate critical advancement for web applications. Oracle9i database’s new features deliver
the performance, scalability, and availability essential to your applications. These features are
covered throughout this book, including partitioning options, external tables, flashback queries,
online object reorganization, dynamic parameter management, new functions, new packages
(such as DBMS_METADATA for extracting DDL) and new datatypes (such as TIMESTAMP).

iSQL*Plus
iSQL*Plus is a browser-based implementation of SQLPLUS, which can be used over the Internet
to connect to an Oracle RDBMS to perform the same actions as through the SQLPLUS command
line. The iSQL*Plus implementation uses a web browser, an Oracle HTTP Server with the
iSQL*Plus Server, and an Oracle RDBMS Server.

Starting, Stopping, and Restarting iAS (Apache)
The Oracle9iAS control program is named apache on NT and apachectl on UNIX. To start
Oracle9iAS on NT at the command line, verify that the apache executable is in the system PATH
environment variable. To check this, find the apache executable, typically located in the
ORACLE_HOME\Apache\Apache directory, and then check the path by selecting the system
icon in the Control Panel and selecting the Environment tab (NT) or Advanced tab (Win 2000
or Win XP Pro). Add the directory for the apache executable in the PATH environment variable
if it is not set.

To start Oracle9iAS from the command line, enter the following:

apache –k start

To stop Oracle9iAS from the command line, enter the following:

apache –k shutdown

You can also start and stop Oracle9iAS using the Oracle HTTP Server shortcuts under Start |
Programs | Oracle | Oracle HTTP Server. Additionally, the Services icon in the Control Panel
(Administrative Tools/Services under Win XP Pro) has an entry for Oracle HTTP Server, allowing
you to start and stop Oracle9iAS here, or you can set the service startup to automatic and have
the Oracle HTTP Server started at system startup.

To start Oracle9iAS on UNIX, use the following command to check if your path has been set
containing the directory that holds the httpd executable:

echo $PATH

To start Oracle9iAS on UNIX from the command line, enter

apachectl

Chapter 39: The Hitchhiker’s Guide to Oracle9iAS 787

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 39
Blind Folio 39:787

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

or enter

httpd

To have Oracle9iAS start automatically when the server is rebooted, edit the /etc/rc.d/rc.local
file and add the following command:

$ORACLE_HOME/Apache/Apache/bin/httpd

To shut down Oracle9iAS, enter

apachectl shutdown

or

kill –9 'cat $ORACLE_HOME/Apache/Apache/logs/httpd.pid'

Command-line syntax for apache and apachectl is

Usage: APACHE [-D name] [-d directory] [-f file] [-n service]
[-C "directive"] [-c "directive"] [-k signal]
[-v] [-V] [-h] [-l] [-L] [-S] [-t] [-T]

Command-line options for UNIX and NT are shown in Table 39-1.

788 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 39
Blind Folio 39:788

Option Description

-D name Define a name for use in <IfDefine name> directives

-d directory Specify an alternate initial ServerRoot

-f file Specify an alternate ServerConfigFile

-C “directive” Process directive before reading config files

-c “directive” Process directive after reading config files

-v Show version number

-V Show compile settings

-h List available command-line options

-l List compiled-in modules

-L List available configuration directives

TABLE 39-1. UNIX and NT Apache Command-Line Options

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 39: The Hitchhiker’s Guide to Oracle9iAS 789

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 39
Blind Folio 39:789

Option Description

-S Show parsed settings (currently only vhost settings)

-t Run syntax check for config files (with docroot check)

-T Run syntax check for config files (without docroot check)

-n name Name the Oracle9iAS service for -k options

-k stop|shutdown Tell running Oracle9iAS to shut down

-k restart Tell running Oracle9iAS to do a graceful restart

-k start Tell Oracle9iAS to start

-k install | -i Install an Oracle9iAS service

-k config Reconfigure an installed Oracle9iAS service

-k uninstall | -u Uninstall an Oracle9iAS service

TABLE 39-1. UNIX and NT Apache Command-Line Options (continued)

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 39
Blind Folio 39:790

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 40
Blind Folio 40:791

CHAPTER
40

The Hitchhiker’s
Guide to Database

Administration

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

792 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 40
Blind Folio 40:792

I
n this chapter, you will see the basic steps involved in administering an Oracle
database. There are many components to the database administrator (DBA)
job, and there are books written specifically for DBAs. This chapter will provide
an overview of the tasks of a DBA, along with guidance on the usage of
standard DBA tools.

In earlier chapters, you have already seen many of the functions of a DBA, such as creating
tables, indexes, views, users, synonyms, database links, and packages. The DBA topics described
in this chapter will therefore focus on the production-control functions of the DBA role:

■ Creating a database

■ Starting and stopping the database

■ Sizing and managing the memory areas for the database

■ Allocating and managing space for the objects

■ Creating and managing undo

■ Performing backups

For each of these topics, many options are available to developers and DBAs. The following
sections of this chapter should provide you with enough information to get started, and to learn
what questions to ask of your DBAs and system administrators. For further details on all of these
topics, see Oracle9i DBA Handbook.

Creating a Database
The simplest way to generate a create database script is via the Oracle Universal Installer (OUI).
When you install Oracle, OUI gives you the option to create a database. If you use that option,
OUI will create a small database that is useful for practice, and can be deleted once you are
done practicing. The create database scripts provided by Oracle give you a solid template for
your standard create database scripts. A sample create database script is found in the build_db.sql
file in the /rdbms/admin subdirectory under the Oracle software home directory. See the create
database entry in the Alphabetical Reference for the full command syntax.

The create database command is issued from within SQLPLUS, via an account with the
SYSDBA system privilege:

SQL> connect system/manager as sysdba
SQL> startup nomount
SQL> create database...

To issue connect as SYSDBA successfully, you must have the proper authorization at the
operating system and database levels. See your operating system-specific Oracle documentation
for information on the operating system rights needed.

Using the Oracle Enterprise Manager
Oracle Enterprise Manager (OEM), a graphical user interface (GUI) tool, is supplied as part of
the standard Oracle toolset to enable DBAs to manage databases from a personal computer. The

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

OEM toolset provides a robust interface for remote database administration. All DBAs can use
the same central OEM repository (a set of tables created in a database) to perform their work. In
addition to those changes, OEM includes task scheduling and assignment features to enable
around-the-clock database coverage.

You must make several key decisions before installing and configuring OEM. You need to
decide where the OEM repository is to be created and how and when you are going to perform
backups to protect this repository. Since you can use OEM as an interface to Oracle Recovery
Manager (RMAN), recovery information can be stored in the OEM repository. You may want to
create a small, separate database in which to store the OEM repository. You should ensure that
this database is backed up frequently so that recovery of the repository itself is assured.

If you are the only DBA working with the OEM toolset, you will not have to consider who
will handle administration of specific databases in your environment. If there are several DBAs
at the site, you will need to determine task definitions, database responsibilities, and schedules.
With OEM, you can grant levels of access and privilege to each DBA in the group on a
task-by-task basis. You can configure OEM to enable you to send e-mail requests and
assignments to other DBAs or take control of a problem to speed resolution.

If you have a previous version of OEM installed, migrate that repository to the newest version
to take advantage of the new features. If you have more than one repository on your system, you
will need to take precautions to ensure that you migrate each version of the repository without
damaging currently stored information.

Oracle supports the Simple Network Messaging Protocol (SNMP). By supporting SNMP,
Oracle products can be easily integrated into monitoring tools for systems and networks.

Although you do not have to use OEM, it provides a common GUI for managing your databases.
As your enterprise grows in size (and in number of databases and DBAs), the consistency of the
DBA interface will support consistent implementation of your change-control and production-
control processes.

Starting and Stopping the Database
To start a database, issue the startup command from within SQLPLUS, as shown in the following
listing. In the examples in this chapter, the name of the database is MYDB.

SQL> connect system/manager as sysdba;
SQL> startup open MYDB;

Alternatively, you can first mount the database and then open it via an alter database command:

SQL> connect system/manager as sysdba;
SQL> startup mount MYDB;
SQL> alter database open;

When the database is mounted but not open, you can manage its files. For example, if you
moved some of the database’s files while the database was shut down, you need to let Oracle
know where to find them before it will restart. To give the new locations of the files, you can
mount the database (as shown in the preceding listing) and then use the alter database command
to rename the old files to their new locations. Once you have finished telling Oracle the new
locations for the files, you can open the database via the alter database open command.

Chapter 40: The Hitchhiker’s Guide to Database Administration 793

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 40
Blind Folio 40:793

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Four primary options are available for shutting down the database. In a normal shutdown
(the default), Oracle waits for all users to log out of the database before shutting down. In a
transactional shutdown, Oracle waits for active transactions to complete before shutting down.
In an immediate shutdown, Oracle rolls back all existing uncommitted transactions and logs
out any users currently logged in. In an abort shutdown, the database immediately shuts down,
and all uncommitted transactions are lost.

NOTE
While the database is in the process of shutting down or starting up,
no new logins are permitted.

To perform a normal shutdown, use the shutdown command. An immediate shutdown, as
shown in the following listing, uses the shutdown immediate version of the shutdown command.
To abort the database, use shutdown abort.

SQL> connect system/manager as sysdba;
SQL> shutdown immediate

If you use shutdown abort, Oracle will automatically perform recovery operations during the
next database startup. In normal and immediate shutdowns, your shutdown process may stop if
deadlocks exist between multiple users. In those cases, you may need to stop the shutdown and
issue a shutdown abort in its place. A shutdown abort may also be useful in situations where the
database needs to be stopped in the shortest possible time, for example, for an impending power
failure. During the subsequent startup, Oracle will perform any necessary recovery operations.

NOTE
If you are shutting down the database to make a backup, you
should use either shutdown or shutdown immediate. If you have
problems during your shutdowns, you may use the following
sequence: shutdown abort, startup, and then shutdown.

You may also use OEM to start up and shut down the instance, via the General tab on the
Instance Manager/Configuration screen.

Sizing and Managing Memory Areas
When you start a database, Oracle allocates a memory area (the System Global Area, or SGA)
shared by all of the database users. The two largest areas of the SGA are the database buffer
cache and the Shared Pool; their size will directly impact the memory requirements for the
database and the performance of database operations. Their sizes are controlled by parameters
in the database’s initialization file.

The database buffer cache is an area in the SGA used to hold the data blocks that are read
from the data segments in the database, such as tables, indexes, and clusters. The size of the
database buffer cache is determined by the DB_CACHE_SIZE parameter (expressed in terms of
number of bytes) in the initialization parameter file for the database. The default size for the

794 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 40
Blind Folio 40:794

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

database blocks is set via the DB_BLOCK_SIZE parameter specified in the parameter file
during database creation. Managing the size of the database buffer cache is an important part
of managing and tuning the database.

The database has a default block size, but you can establish cache areas for different database
block sizes and then create tablespaces to use those caches. For example, you can create a 4K
database block size database with some tablespaces set to 8K. The size of the 8K cache would be
set via the DB_8K_CACHE_SIZE parameter. To create tablespaces to use that cache, specify
blocksize 8K as part of the create tablespace command. If the default block size for the database
is 4K, you would not set a value for DB_4K_CACHE_SIZE; the size specified for DB_CACHE_SIZE
would be used for the 4K cache.

The different cache areas can be resized while the database is running. The caches must be
increased or decreased in granules. For a database with an SGA less than 128M, the granule size
is 4M—so DB_8K_CACHE_SIZE can be 4M, 8M, 12M, and so on. If you attempt to use any other
setting, Oracle will round it up to the next granule size. The following listing shows the setting of
the DB_8K_CACHE_SIZE parameter.

alter system set DB_8K_CACHE_SIZE = 8m;

If you create a tablespace that uses a non-default database block size, you must be sure that
the related cache size parameter (such as DB_8K_CACHE_SIZE) is updated in your database
parameter file. If you are using an init.ora file, you must update it with the new value. If you are
using a system parameter file, it will be automatically updated when you execute the alter system
command.

NOTE
You cannot alter the SGA_MAX_SIZE or JAVA_POOL_SIZE parameter
values while the database is open.

Typically, the data block buffer cache is about 1 to 2 percent of the allocated size of the
database. Oracle will manage the space available by using an algorithm that keeps the most
actively used blocks in memory for as long as possible. When free space is needed in the cache,
the new data blocks will either use the space occupied by infrequently accessed blocks or the
space occupied by a modified block once it has been written out to disk.

If the SGA is not large enough to hold the most frequently used data, different objects will
contend for space within the data block buffer cache. This is particularly likely when multiple
applications use the same database and thus share the same SGA. In that case, the most recently
used tables and indexes from each application constantly contend for space in the SGA with the
most recently used objects from other applications. As a result, requests for data from the data
block buffer cache will result in a lower ratio of “hits” to “misses.” Data block buffer cache
misses result in physical I/Os for data reads, resulting in performance degradation.

The Shared Pool stores the data dictionary cache (information about the database structures)
and the library cache (information about statements that are run against the database). While the
data block buffer and dictionary cache enable sharing of structural and data information among
users in the database, the library cache allows the sharing of commonly used SQL statements.

The Shared Pool contains the execution plan and parse tree for SQL statements run against
the database. The second time that an identical SQL statement is run (by any user), Oracle is able

Chapter 40: The Hitchhiker’s Guide to Database Administration 795

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 40
Blind Folio 40:795

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

796 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 40
Blind Folio 40:796

to take advantage of the parse information available in the Shared Pool to expedite the statement’s
execution. Like the data block buffer cache, the Shared Pool is managed via an LRU algorithm.
As the Shared Pool fills, less recently used execution paths and parse trees will be removed from
the library cache to make room for new entries. If the Shared Pool is too small, statements will
be continually reloaded into the library cache, affecting performance.

The size (in bytes) of the Shared Pool is set via the SHARED_POOL_SIZE initialization parameter.
Like the other caches, the Shared Pool size can be altered while the database is open.

The Initialization Parameter File
The characteristics of the database instance—such as the size of the SGA and the number of
background processes—are specified during startup. These parameters are stored in a binary
file called the system parameter file. To generate the system parameter file for an open database,
use the create spfile command. You can generate a readable version of the system parameter
file via the create pfile from spfile command. See the Alphabetical Reference for the command
syntax for these commands. The “pfile” version of the parameter file, formerly known as the
init.ora file, usually contains the database name as part of the filename. For example, a database
named MYDB may have a pfile file named initmydb.ora.

Allocating and Managing Space for the Objects
To understand how space should be allocated within the database, you first have to know how
the space is used within the database. In this section, you will see an overview of the Oracle
database space usage functions.

When a database is created, it is divided into multiple logical sections called tablespaces.
The SYSTEM tablespace is the first tablespace created. You can then create additional tablespaces
to hold different types of data (such as tables, indexes, and rollback segments).

When a tablespace is created, datafiles are created to hold its data. These files immediately
allocate the space specified during their creation. Each datafile can support only one tablespace.
Datafiles can be set to automatically extend when they run out of space; you can set the
increment by which they extend and their maximum size. A database can have multiple users,
each of whom has a schema. Each user’s schema is a collection of logical database objects, such
as tables and indexes, that refer to physical data structures that are stored in tablespaces. Objects
from a user’s schema may be stored in multiple tablespaces, and a single tablespace can contain
objects from multiple schemas.

When a database object (such as a table or index) is created, it is assigned to a tablespace via
user defaults or specific instructions. A segment is created in that tablespace to hold the data
associated with that object. The space that is allocated to the segment is never released until the
segment is dropped, manually shrunk, or truncated.

A segment is made up of sections called extents—contiguous sets of Oracle blocks. Once the
existing extents can no longer hold new data, the segment will obtain another extent. The
extension process will continue until no more free space is available in the tablespace’s datafiles
or until an internal maximum number of extents per segment is reached. If a segment is
composed of multiple extents, there is no guarantee that those extents will be contiguous.

Tablespaces can be created as locally managed (the default) or dictionary-managed. In a
dictionary-managed tablespace, the extent location information is stored in the data dictionary.
In a locally managed tablespace, that data is stored in the datafile headers. Oracle encourages
the use of locally managed tablespaces. To review, databases have one or more tablespaces, and

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 40: The Hitchhiker’s Guide to Database Administration 797

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 40
Blind Folio 40:797

tablespaces consist of one or more datafiles. Within those tablespaces, Oracle stores segments for
database objects. Each segment can have multiple extents.

Managing the space used by tablespaces, datafiles, segments, and database objects is one of
the basic functions of the DBA. The intent of this overview is to aid you in the planning of their
physical storage.

Implications of the storage Clause
The amount of space used by a segment is determined by its storage parameters. These parameters
are determined by the database at segment-creation time; if no specific storage parameters are
given in the create table, create index, create cluster, or create rollback segment command,
then the database will use the default storage parameters for the tablespace in which the segment
is to be stored.

NOTE
You can assign default tablespaces to users, and assign space quotas
within those tablespaces, via the create user, alter user, and grant
commands. See the Alphabetical Reference for the command syntax.

When you create a table, index, or other segment, you can use the default values for a locally
managed tablespace (the recommended option) or specify a storage clause as part of the create
command. You can also specify a tablespace clause, enabling you to direct Oracle to store the
data in a particular tablespace. For example, a create table command in a dictionary-managed
tablespace may include the following clauses:

tablespace USERS
storage (initial 1M next 1M pctincrease 0
minextents 1 maxextents 200)

For a locally managed USERS tablespace, the create table command would only need to include

tablespace USERS

The storage parameters specify the initial extent size, the next extent size, the pctincrease
(a factor by which each successive extent will geometrically grow), the maxextents (maximum
number of extents), and the minextents (minimum number of extents). After the segment has been
created, the initial and minextents values cannot be altered unless you perform a reorganization
of the object. The default values for the storage parameters for each tablespace are available in
the DBA_TABLESPACES and USER_TABLESPACES views.

When you create a tablespace, you specify its default storage parameters. The following
command creates a dictionary-managed tablespace and specifies its default storage parameters.
See the syntax for create tablespace in the Alphabetical Reference.

create tablespace CODES_TABLES
datafile '/u01/oracle/VLDB/codes_tables.dbf' size 10M
extent management dictionary
default storage

(initial 1M next 1M maxextents 200 pctincrease 0);

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

When a segment is created, it will acquire at least one extent. The initial extent will be used
to store data until it no longer has any free space available (the pctfree clause can be used to
reserve a percentage of space within each block in the segment to remain available for updates
of existing rows). When additional data is added to the segment, the segment will extend by
obtaining a second extent of the size specified by the next parameter. There is no guarantee that
the second extent will be physically contiguous to the first extent. In the storage clause shown
in the preceding listing, the initial extent is 1MB in size, and the next extent is 1MB. Because
pctincrease is set to 0, every later extent will be 1MB as well, up to a maximum of 200 extents
(the maxextents setting).

The pctincrease parameter is designed to minimize the number of extents in growing tables.
A non-zero value for this parameter can be very dangerous—it causes the size of each successive
extent to increase geometrically by the pctincrease factor specified.

NOTE
pctincrease cannot be used with locally managed tablespaces.

To create a locally managed tablespace, specify the local option for the extent management
clause in the create tablespace command. An example of the create tablespace command
declaring a locally managed tablespace is shown here:

create tablespace CODES_TABLES
datafile '/u01/oracle/VLDB/codes_tables.dbf'
size 10M
extent management local uniform size 256K;

Assuming that the block size for the database in which this tablespace is created is 4KB in
this example, the tablespace is created with the extent management declared as local and with
a uniform size of 256KB. Each bit in the bitmap describes 64 blocks (256/4). If the uniform size
clause is omitted, the default is autoallocate. The default size for uniform is 1MB.

NOTE
If you specify local in a create tablespace command, you cannot
specify a default storage clause, minextents, or temporary.

Locally managed tablespaces can take over some of the space management tasks performed
by DBAs in dictionary-managed tablespaces. Because of their architecture, they are less likely to
be fragmented, and their objects are less likely to have space-related problems.

NOTE
You cannot create the SYSTEM tablespace as locally managed in
Oracle8i or in Oracle9i Release 1 when you create the database,
and it cannot be converted at a later time. As of Oracle9i Release 2
(version 9.2), you can create a locally managed SYSTEM tablespace.

798 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 40
Blind Folio 40:798

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

You can create a set of locally managed tablespaces with a small number of storage
parameters and resolve most of the space requests in your database. For example, you could
create three DATA tablespaces as shown here:

create tablespace DATA_SMALL
datafile '/u01/oracle/VLDB/data_small.dbf'
size 10M
extent management local uniform size 1M;

create tablespace DATA_MEDIUM
datafile '/u01/oracle/VLDB/data_medium.dbf'
size 100M
extent management local uniform size 4M;

create tablespace DATA_LARGE
datafile '/u01/oracle/VLDB/data_large.dbf'
size 1000M
extent management local uniform size 16M;

In this example, the DATA_SMALL tablespace creates objects with extent sizes that are each
1MB; DATA_MEDIUM uses 4MB extent sizes, and DATA_LARGE uses 16MB extent sizes. If you
have a small table, simply place it in the DATA_SMALL tablespace. If it grows significantly in
size, you can move it to the DATA_MEDIUM or DATA_LARGE tablespace.

Within each of these example tablespaces, all objects will have the same storage parameters,
simplifying any future maintenance you perform. Using consistent extent sizes also improves the
reuse of space once an object has been dropped from the tablespace or moved.

The following sections describe space management of each major object type. Note that if
you use locally managed tablespaces, many of the storage clause issues do not apply; you rely
on the tablespace to manage the space based on the parameters defined at the tablespace level.
Although this may result in some overallocation of space, it will greatly simplify the space
management operations in your database.

Table Segments
Table segments, also called data segments, store the rows of data associated with tables or clusters.
Each data segment contains a header block that serves as a space directory for the segment.

Once a data segment acquires an extent, it keeps that extent until the segment is either dropped
or truncated. Deleting rows from a table via the delete command has no impact on the amount
of space that has been allocated to that table. The number of extents will increase until either
(1) the maxextents value is reached (if one is set), (2) the user’s quota in the tablespace is reached,
or (3) the tablespace runs out of space (if the datafiles cannot autoextend).

To minimize the amount of wasted space in a data segment, tune the pctfree parameter.
The pctfree parameter specifies the amount of space that will be kept free within each data
block. The free space can then be used when NULL-valued columns are updated to have values,
or when updates to other values in the row force the total length of the row to increase. The
proper setting of pctfree is application-specific since it is dependent on the nature of the updates
that are being performed.

Chapter 40: The Hitchhiker’s Guide to Database Administration 799

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 40
Blind Folio 40:799

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

800 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 40
Blind Folio 40:800

You can use the alter table command to alter most storage parameters for an existing table.
You can use the move option of the alter table command to change the tablespace assignment
for a table.

Index Segments
Like table segments, index segments hold the space that has been allocated to them until they
are dropped; however, they can also be indirectly dropped if the table or cluster they index is
dropped. To minimize contention, indexes should be stored in a tablespace that is different from
the tablespace that holds their associated tables.

Index segments in dictionary-managed tablespaces have storage clauses that specify their initial,
next, minextents, maxextents, and pctincrease values, and they are as likely to be fragmented as
their tables are.

You can use the rebuild option of the alter index command to alter the storage and
tablespace settings for an index. For example, if you create an index with an overly large initial
extent, you can reclaim the space from that extent by rebuilding the index and specifying a
new value for initial, as shown in the following example. In the following listing, the JOB_PK
index is rebuilt with an initial extent of 10MB.

alter index JOB_PK rebuild
tablespace INDEXES
storage (initial 10M next 10M pctincrease 0);

During the index rebuild process, both the old and the new indexes will temporarily coexist
in the database. Therefore, you must have enough space available to store both indexes prior to
executing the alter index rebuild command.

While the index is being built, the optimizer can gather statistics about the index’s contents.
Use the compute statistics clause of the create index and alter index rebuild commands to
generate the statistics while the index is being built; the combined operation will be faster than
separate creation and statistics-gathering commands.

Rollback Segments and System-Managed Undo
Rollback segments can dynamically shrink to a specified size, or they can be manually shrunk
to a size of your choosing. The optimal clause, which allows rollback segments to shrink to
an optimal size after extending, helps to provide interim support to systems that have not been
properly implemented for the way they are being used. For system-managed undo (SMU), Oracle
automatically allocates and deallocates undo segments as processing requires.

As of Oracle9i, you can use automatic undo management to place all undo data in a single
tablespace. When you create an undo tablespace, Oracle manages the storage, retention, and
space utilization for your rollback data via system-managed undo (SMU).

To start using SMU, you must first create an undo tablespace using the following command:

create undo tablespace UNDO_TBS datafile 'filespec' size 20m;

Next, set the UNDO_MANAGEMENT initialization parameter in your system parameter file
or init.ora file to AUTO. Specify your undo tablespace via the UNDO_TABLESPACE initialization
parameter. You will not need to create or manage any rollback segments within the undo tablespace.
Shut down the database and use the updated init.ora or spfile.ora to start up the database.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Setting Undo Retention
You can explicitly manage how long Oracle retains undo data in the undo tablespace via the
UNDO_RETENTION initialization parameter. Retaining undo serves two purposes: it supports
the retention of inactive, in-use (IIU) data for long-running queries, and it supports queries that
show the prior state of current data (Oracle Flashback queries).

For example, if you set

UNDO_RETENTION=600

then Oracle will make a best effort to retain all committed undo data in the database for 600 seconds.
With that setting, any query taking less than 10 minutes should not result in an ORA-1555 (“Snapshot
too old”) error. While the database is running, you can change the UNDO_RETENTION
parameter value via the alter system command.

Creating an Undo Tablespace
You can create an undo tablespace during the database creation process, as shown in the
following listing:

create database UNDODB
undo tablespace UNDO_TBS
...

In an existing database, you can use the create tablespace command to create an undo
tablespace:

create undo tablespace UNDO_TBS
datafile '/u01/oracle/undodb/undo_tbs_1.dbf'
size 100m;

See the Alphabetical Reference for the full syntax of the create tablespace command.
Once you have created an undo tablespace, you can manage it via the alter tablespace

command. For example, you can add datafiles to the undo tablespace or rename existing
datafiles the same as you would for any other tablespace. To stop using a tablespace as your
undo tablespace, use the alter system command to set a new value for the UNDO_TABLESPACE
initialization parameter, or change that parameter during a database shutdown/startup.

NOTE
You cannot have more than one active undo tablespace within a
database at any given time.

Temporary Segments
Temporary segments store temporary data during sorting operations (such as large queries, index
creations, and unions). Each user has a temporary tablespace specified when the account is created
via create user, or altered via alter user. The user’s temporary tablespace must be a tablespace
that has been designated as a temporary tablespace; as of Oracle9i, permanent tablespaces
cannot be used for this purpose.

Chapter 40: The Hitchhiker’s Guide to Database Administration 801

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 40
Blind Folio 40:801

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

When you create a database, you can specify a default temporary tablespace for all users. For
an existing database, you can change the default tablespace via the alter database command, as
shown in the following listing:

alter database default temporary tablespace TEMP;

When you alter the database’s default temporary tablespace assignment, users who had been
assigned the old default temporary tablespace will be redirected to the new default temporary
tablespace. To see the current default temporary tablespace, execute the following query:

select Property_Value
from DATABASE_PROPERTIES
where Property_Name = 'DEFAULT_TEMP_TABLESPACE';

You can specify a tablespace as a “temporary” tablespace via the create temporary tablespace
command. A temporary tablespace cannot be used to hold any permanent segments, only temporary
segments created during operations. The first sort to use the temporary tablespace allocates a
temporary segment within the temporary tablespace; when the query completes, the space used
by the temporary segment is not dropped. Instead, the space used by the temporary segment is
available for use by other queries, allowing the sorting operation to avoid the costs of allocating
and releasing space for temporary segments. If your application frequently uses temporary
segments for sorting operations, the sorting process should perform better if a dedicated temporary
tablespace is used.

To dedicate an existing tablespace for temporary segments, specify the temporary clause of
the create tablespace or alter tablespace command, as shown in the following listing:

alter tablespace TEMP temporary;

NOTE
If there are any permanent segments (tables or indexes, for example)
stored in TEMP, the command shown in the preceding listing will fail.

To enable the TEMP tablespace to store permanent (nontemporary) objects, use the
permanent clause of the create tablespace or alter tablespace command, as shown in the
following listing:

alter tablespace TEMP permanent;

The Contents column in the DBA_TABLESPACES data dictionary view displays the status of
the tablespace as either “TEMPORARY” or “PERMANENT.”

Free Space
A free extent in a tablespace is a collection of contiguous free blocks in the tablespace. A tablespace
may contain multiple data extents and free extents. When a segment is dropped, its extents are
deallocated and marked as free. In dictionary-managed tablespaces, these free extents are not
always recombined with neighboring free extents; the barriers between these free extents may be

802 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 40
Blind Folio 40:802

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

maintained. The SMON background process periodically coalesces neighboring free extents,
provided the default pctincrease for the tablespace is nonzero.

NOTE
The SMON background process only coalesces tablespaces whose
default pctincrease value is nonzero. A pctincrease of 1 will force
SMON to coalesce the adjacent free space in a tablespace but will
only coalesce eight areas of adjoining extents at a time. Each of the
eight coalesces will join two or more extents together to create one
larger extent. For best space management, use locally managed
tablespaces so that you never have to worry about coalescing. If you
must use dictionary-managed tablespaces, maintain a pctincrease
of 0 and periodically coalesce any dropped extents manually.

To force the tablespace to coalesce its free space, use the coalesce clause of the alter
tablespace clause, as shown in the following listing:

alter tablespace DATA coalesce;

The preceding command will force the neighboring free extents in the DATA tablespace to be
coalesced into larger free extents. The command will coalesce up to eight separate areas, just like
SMON.

NOTE
The alter tablespace command will not coalesce free extents that are
separated by data extents.

Locally managed tablespaces do not require the same degree of free space management.
Since locally managed tablespaces can be configured to have consistent extent sizes for all
segments, dropped extents are easily reused.

When allocating a new extent, Oracle will not merge contiguous free extents unless there is
no alternative. In dictionary-managed tables, this can result in the large free extent at the rear of
the tablespace being used while the smaller free extents toward the front of the tablespace are
relatively unused. The small free extents become “speed bumps” in the tablespace because they
are not, by themselves, of adequate size to be of use. As this usage pattern progresses, the amount
of space wasted in the tablespace increases.

In an ideal database, all objects are created at their appropriate size, and all free space is
always stored together, a resource pool waiting to be used. If you can avoid dynamic space
allocation during application usage, you remove both a performance impact and a source of
potential application failure.

Sizing Database Objects
Choosing the proper space allocation parameters for database objects is critical. Developers should
begin estimating space requirements before the first database objects are created. Afterward, the

Chapter 40: The Hitchhiker’s Guide to Database Administration 803

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 40
Blind Folio 40:803

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

space requirements can be refined based on actual usage statistics. The following sections discuss
the space estimation methods for tables, indexes, and clusters.

Why Size Objects?
You should size your database objects for three reasons:

■ To preallocate space in the database, thereby minimizing the amount of future work
required to manage object space requirements

■ To reduce the amount of space wasted due to overallocation of space

■ To improve the likelihood of a dropped free extent being reused by another segment

You can accomplish all of these goals by following the sizing methodology shown in the
following sections. This methodology is based on Oracle’s internal methods for allocating space
to database objects. Rather than rely on detailed calculations, the methodology relies on
approximations that will dramatically simplify the sizing process while simplifying the long-term
maintainability of the database.

The Golden Rule for Space Calculations
Keep your space calculations simple, generic, and consistent across databases. There are far more
productive ways to spend your work time than performing extremely detailed space calculations
that Oracle may ignore anyway. Even if you follow the most rigorous sizing calculations, you
cannot be sure how Oracle will load the data into the table or index.

Consider an index on a table with 100,000 rows. During tests, loading the data into the table
in sorted order required 920 blocks for the index. The table and index were then truncated and
the data was reloaded in a nonsorted order; the index now required 1,370 blocks. The 49 percent
increase in space required by the index was due to Oracle’s internal index management processes.
If you can’t reliably be within 49 percent of the correct answer, why spend a lot of time on sizing
exercises?

In the following section, you’ll see how to simplify the space estimation process, freeing you
to perform much more useful DBA functions. These processes should be followed whether you
are generating the default storage values for a dictionary-managed tablespace or the extent sizes
for locally managed tablespaces.

The Ground Rules for Space Calculations
Oracle follows a set of internal rules when allocating space:

■ Oracle only allocates whole blocks, not parts of blocks.

■ Oracle allocates sets of blocks, usually in multiples of five blocks.

■ Oracle may allocate larger or smaller sets of blocks depending on the available free space
in the tablespace.

The first two rules can serve as the basis for fairly exact space estimates, but the third
overrides the first two. Even if you try to allocate exactly 20 blocks for a table, Oracle may
find a free extent that is 22 blocks and use it rather than leave a 2-block free extent.

804 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 40
Blind Folio 40:804

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Your goal should be to work with Oracle’s space allocation methods instead of against them.
If you use consistent extent sizes, you can largely delegate the space allocation to Oracle.

The Impact of Extent Size on Performance
There is no direct performance benefit gained by reducing the number of extents in a table. In
some situations (such as in parallel query environments), having multiple extents in a table can
significantly reduce I/O contention and enhance your performance. Regardless of the number
of extents in your tables, the extents need to be properly sized.

Oracle reads data from tables in two ways: by RowID (usually immediately following an
index access) and via full table scans. If the data is read via RowID, then the number of extents
in the table is not a factor in the read performance. Oracle will read each row from its physical
location (as specified in the RowID) and retrieve the data.

If the data is read via a full table scan, then the size of your extents can impact performance to a
very small degree. When reading data via a full table scan, Oracle will read multiple blocks at a
time. The number of blocks read at a time is set via the DB_FILE_MULTIBLOCK_READ_COUNT
database initialization parameter, and is limited by the operating system’s I/O buffer size. For
example, if your database block size is 4KB and your operating system’s I/O buffer size is 64KB,
then you can read up to 16 blocks per read during a full table scan. In that case, setting
DB_FILE_MULTIBLOCK_READ_COUNT to a value higher than 16 will not change the
performance of the full table scans.

Your extent sizes should take advantage of Oracle’s ability to perform multiblock reads
during full table scans. Thus, if your operating system’s I/O buffer is 64KB, then your extent sizes
should be a multiple of 64KB.

Consider a table that has ten extents, each of which is 64KB in size. For this example, the
operating system’s I/O buffer size is 64KB. To perform a full table scan, Oracle must perform ten
reads (since 64KB is the operating system I/O buffer size). If the data is compressed into a single
640KB extent, Oracle still must perform ten reads to scan the table. Compressing the extents
results in no gain in performance.

If the table’s extent size is not a multiple of the I/O buffer size, then the number of reads
required may increase. For the same 640KB table, you could create eight extents that are 80KB
each. To read the first extent, Oracle will perform two reads: one for the first 64KB of the extent,
and a second read for the last 16KB of the extent (reads cannot span extents). To read the whole
table, Oracle must therefore perform two reads per extent, or 16 reads. Reducing the number of
extents from ten to eight increased the number of reads by 60 percent.

To avoid paying a performance penalty for your extent sizes, you must therefore choose
between one of the following strategies:

1. Create extents that are significantly larger than your I/O size. If the extents are very large,
then very few additional reads will be necessary even if the extent size is not a multiple
of the I/O buffer size.

2. Set DB_FILE_MULTIBLOCK_READ_COUNT to take full advantage of the I/O buffer size
for your operating system. Note that setting it too high may make the optimizer think
that full table scans are more efficient than they actually are, resulting in changes to
existing execution plans.

3. If you must create small extents, choose extent sizes that are a multiple of the I/O buffer
size for your operating system.

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 40
Blind Folio 40:805

Chapter 40: The Hitchhiker’s Guide to Database Administration 805

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

If the I/O buffer size for your operating system is 64KB, then your pool of extent sizes to
choose is 64KB, 128KB, 256KB, 512KB, 1MB, and so on. In the next section, you will see how
to further reduce the pool of extent sizes from which to choose.

To maximize the reuse of dropped free extents in dictionary-managed tablespaces, use a pool
of extent sizes that meets the following criterion: Every extent size will hold an integral multiple
of every smaller extent size. The simplest implementation of this rule is to create extent sizes that
increase by doubling: 1MB, 2MB, 4MB, 16MB, 32MB. To reduce the number of extent sizes to
manage, you can quadruple the values instead of doubling: 1MB, 4MB, 16MB, and so on. Using
those values for extent sizes will eliminate I/O problems and will enhance the likelihood that
dropped extents will be reused.

Sizing the Objects
To effectively manage your space, all you need to do is select a set of space values that meet the
criteria described in the preceding sections. Once the space allocations are finalized, separate
them by tablespace. For example:

create tablespace DATA_1M
datafile '/u01/oracle/VLDB/data_1m.dbf'
size 100M
extent management local uniform size 1M;

create tablespace DATA_4M
datafile '/u02/oracle/VLDB/data_4m.dbf'
size 400M
extent management local uniform size 4M;

create tablespace DATA_16M
datafile '/u03/oracle/VLDB/data_16m.dbf'
size 16000M
extent management local uniform size 16M;

In this example, three separate DATA tablespaces are created, with extent sizes of 1MB, 4MB,
and 16MB. If you need to create a table 3MB in size, you can either create it with three 1MB
extents in DATA_1M or with one 4MB extent in DATA_4M. A table that will grow to 10MB can
be placed in DATA_16M.

As your tables grow in size, your default storage clauses will grow in a consistent fashion,
following the space rules and your standards for extent sizes. DATA_64M would be next, followed
by DATA_256M and DATA_1G. Use the same extent sizes across your databases to ease space
management of your entire database environment.

As the extent sizes grow, the distribution of extent sizes across tablespaces will usually result
in a separation of table types—small static tables will be isolated in the tablespaces with small
extent sizes. Large transaction processing tables (or their partitions) will be segregated to the large
extent size tables, simplifying later management and tuning activities.

In the following sections you will see guidelines for estimations of the space usage for your
objects. Since the target sizes (1MB, 4MB, 16MB, and so on) are not close together, the following
estimations do not include highly detailed calculations.

806 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 40
Blind Folio 40:806

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 40: The Hitchhiker’s Guide to Database Administration 807

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 40
Blind Folio 40:807

NOTE
As of Oracle9i, the database block size may change at the tablespace
level. Be sure the extent sizes you choose account for the largest
block size in use in the database. Limiting the usage of nonstandard
block sizes in the database will simplify cross-database maintenance
and your sizing procedures.

Creating and Managing Rollback Segments
As noted in the section on rollback segments and system-managed undo in the space management
section of this chapter, rollback segments dynamically expand and contract to support your
transactions. When a database is created, Oracle automatically creates a SYSTEM rollback
segment that supports transactions within the data dictionary. A second rollback segment must
be created and brought online prior to the use of any non-SYSTEM tablespaces. See the create
database command scripts created by OUI for examples of the create rollback segment command.

In general, you should be aware of the following procedures involving rollback segments:

■ How to take them online and offline

■ How to determine their maximum size

■ How to assign transactions to specific rollback segments

These three steps will allow developers to properly support the transaction sizes required for
the batch and online portions of applications.

Activating Rollback Segments
Activating a rollback segment makes it available to the database users. A rollback segment may
be deactivated without being dropped. A deactivated rollback segment will maintain the space
already allocated to it, and can be reactivated at a later date. The following examples provide the
full set of rollback segment activation commands.

An active rollback segment can be deactivated via the alter rollback segment command.

alter rollback segment SEGMENT_NAME offline;

To drop a rollback segment, use the drop rollback segment command.

drop rollback segment SEGMENT_NAME;

To create a rollback segment, use the create rollback segment command, as shown in the
following listing:

create rollback segment SEGMENT_NAME
tablespace RBS;

Note that the example create rollback segment command creates a private rollback segment
(since the public keyword was not used) and that it creates it in a non-SYSTEM tablespace called

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

RBS. Since no storage parameters are specified, the rollback segment will use the default storage
parameters for that tablespace. (You will see the space management details for rollback segments
later in this chapter.)

Although the rollback segment has been created, it is not yet in use by the database. To activate
the new rollback segment, bring it online using the following command:

alter rollback segment SEGMENT_NAMEonline;

Once a rollback segment has been created, you should list it in the database’s initialization
parameter file. A sample initialization entry for rollback segments is shown in the following listing:

rollback_segments = (r0,r1,r2)

NOTE
The SYSTEM rollback segment should never be listed in the
initialization parameter file. The SYSTEM rollback segment can
never be dropped; it is always acquired along with any other
rollback segments that the instance may acquire.

In the preceding example, the rollback segments named r0, r1, and r2 are online. If you take
a rollback segment offline, remove its entry from the parameter file. When you take a rollback
segment offline, it will remain online until its active transactions complete.

How to Determine the Maximum Size
of a Rollback Segment
A rollback segment is a segment in the database, so you can query its storage values from the
DBA_SEGMENTS data dictionary view. When working with rollback segments, it is important
to know how large the rollback segment can grow. Since a transaction cannot span rollback
segments, rollback segments must be large enough to support the largest transaction you will
be executing. As described in the next section, you can force Oracle to use a specific rollback
segment for your transactions.

The maximum size of a rollback segment can be determined by querying DBA_SEGMENTS:

select Segment_Name,
Tablespace_Name,
Bytes AS Current_Size,
Initial_Extent + Next_Extent*(Max_Extents-1)

AS Max_Size
from DBA_SEGMENTS

where Segment_Type = 'ROLLBACK';

The result of this query tells you the maximum size for the rollback segments, based on the
segment definitions. You should then compare that value to the free space within the datafiles
for the rollback segment’s tablespace. If the datafiles have autoextend enabled, the size of the
rollback segment datafiles may be limited by either the available disk space or the maxsize
setting for the datafiles.

808 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 40
Blind Folio 40:808

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Thursday, July 25, 2002 5:05:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Whenever possible, limit the size of batch transactions. The smaller a transaction, the more
manageable it is within the database. If you must have a large transaction, then you should
isolate that transaction to a specific tablespace, as described in the next section. If you cannot
assign the transaction to a rollback segment, then all of the non-SYSTEM rollback segments must
be large enough to support the transaction.

If a rollback segment must frequently extend beyond its optimal setting, the performance of
your transactions may be impacted by this dynamic space management. Set the optimal storage
parameter for your rollback segments to reflect the average space usage within the segment.

Monitoring an Undo Tablespace
For system-managed undo, the primary view for gathering statistics on the undo tablespace usage
is V$UNDOSTAT. The V$UNDOSTAT view provides a histogram of the retained data usage. In
ten-minute intervals, Oracle records the total number of undo blocks consumed in the UndoBlks
column of V$UNDOSTAT, and the number of transactions supported in the TxnCount column.
You can use the data from V$UNDOSTAT to determine if the undo tablespace is properly sized
for the transaction volume of the application. Oracle maintains 144 rows in V$UNDOSTAT,
reflecting the past day’s statistics.

Other columns of interest in V$UNDOSTAT include MaxQuerylen, which records the
duration in seconds of the longest query executed; the undo retention must be greater than this
value. If the NoSpaceErrCnt column of V$UNDOSTAT has a nonzero value, you should add
space to the undo tablespace to avoid future space-related errors.

How to Assign Transactions to
Specific Rollback Segments
You can use the set transaction command to specify which rollback segment a transaction
should use. You should execute the set transaction command before large transactions to ensure
that they use rollback segments that are created specifically for them.

The settings that are specified via the set transaction command will be used only for the
current transaction. The following example shows a series of transactions. The first transaction
is directed to use the ROLL_BATCH rollback segment. The second transaction (following the
second commit) will be randomly assigned to a production rollback segment.

commit;

set transaction use rollback segment ROLL_BATCH;
insert into TABLE_NAME
select * from DATA_LOAD_TABLE;

commit;

REM* The commit command clears the rollback segment assignment.
REM* Implicit commits, like those caused by DDL commands, will
REM* also clear the rollback segment designation.

insert into TABLE_NAME select * from SOME_OTHER_TABLE;

Chapter 40: The Hitchhiker’s Guide to Database Administration 809

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 40
Blind Folio 40:809

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Performing Backups
Like the rest of the material in this chapter, this section provides an overview. Backup and
recovery is a complex topic, and all backup and recovery methods should be thoroughly tested
and practiced before being implemented in a production environment. The purpose of this
section is to give developers an understanding of Oracle’s capabilities, along with the impact of
the backup decisions on recovery efforts and availability. Before using backup and recovery
methods in a production environment, you should refer to books that are dedicated to that topic,
including Oracle’s documentation.

The backup methods provided by Oracle can be categorized as follows:

■ Logical backups, using Export (and its companion utility, Import)

■ Physical file system backups: offline backups and online backups

■ Incremental physical file system backups via Recovery Manager (RMAN)

The following sections describe each of these methods and their capabilities.

Export and Import
Oracle’s Export utility queries the database, including the data dictionary, and writes the output
to a binary file called an export dump file. You can export the full database, specific users, or
specific tables. During exports, you may choose whether or not to export the data dictionary
information associated with tables, such as the grants, indexes, and constraints associated with
them. The file written by Export will contain the commands necessary to completely re-create
all of the chosen objects and data.

As of Oracle9i, you can perform tablespace-level exports to export all of the objects contained
in a tablespace. Any indexes defined on the exported tables would also be exported. Tablespace-
level exports use the tablespaces clause of the Export utility, as described later in this chapter.

Once data has been exported, it may be imported via Oracle’s Import utility. The Import
utility reads the binary export dump file created by Export and executes the commands found
there. For example, these commands may include a create table command, followed by an
insert command to load data into the table.

The data that has been exported does not have to be imported into the same database, or the
same schema, as was used to generate the export dump file. You may use the export dump file to
create a duplicate set of the exported objects under a different schema or in a separate database.

You can import either all or part of the exported data. If you import the entire export dump
file from a Full export, then all of the database objects—including tablespaces, datafiles, and
users—will be created during the import. However, it is often useful to pre-create tablespaces
and users in order to specify the physical distribution of objects in the database.

If you are only going to import part of the data from the export dump file, then the tablespaces,
datafiles, and users that will own and store that data should be set up prior to the import.

Exported data may be imported into an Oracle database created under the next higher version
of the Oracle software. The reverse capability—importing from an export file created by a more
recent major release—is commonly supported, but extra actions may be required to support the
older version of the views Export uses. The README.doc files that accompany Oracle releases
detail the requirements for using Export and Import across specific versions.

810 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 40
Blind Folio 40:810

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Export
The Export utility has four levels of functionality: Full mode, Tablespace mode, User mode, and
Table mode. You can export partitions via a modified version of Table mode exports.

In Full mode, the full database is exported. The entire data dictionary is read, and the DDL
needed to re-create the full database is written to the export dump file. This file includes creation
commands for all tablespaces, all users, and all of the objects, data, and privileges in their schemas.

In Tablespace mode, all of the objects contained in the specified tablespace(s) will be exported,
including the definition of indexes on the contained objects, even if they are in another tablespace.

In User mode, a user’s objects are exported, as well as the data within them. All grants and
indexes created by the user on the user’s objects are also exported. Grants and indexes created
by users other than the owner are not exported.

In Table mode, a specified table is exported. The table’s structure, indexes, and grants are
exported along with or without its data. Table mode can also export the full set of tables owned
by a user (by specifying the schema owner but no table names). You can also specify partitions
of a table to export.

Export can be run interactively, through Oracle Enterprise Manager, or via command files.
The run-time options that can be specified for Export are listed in Table 40-1, along with their
default values in Oracle9i.

Chapter 40: The Hitchhiker’s Guide to Database Administration 811

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 40
Blind Folio 40:811

Keyword Description

userid Username/password of the account running the export. Userid must be
the first parameter on the command line.

buffer Size of the buffer used to fetch data rows. The default is system
dependent; this value is usually set to a high value (> 64,000).

file Name of the export dump file; default is expdat.dmp.

compress A Y/N flag to indicate whether export should compress fragmented
segments into single extents. This affects the storage clauses that will be
stored in the export file for those objects. Default is Y. Having objects in
one large extent is not always the best choice. For large tables, you
should use compress = N.

grants A Y/N flag to indicate whether grants on database objects will be
exported. Default is Y.

indexes A Y/N flag to indicate whether indexes on tables will be exported.
Default is Y.

direct A Y/N flag to indicate if a direct export should be performed. A direct
export bypasses the buffer cache during the export, generating significant
performance gains for the export process. Default is N.

log The name of a file to which the log of the export will be written.

TABLE 40-1. Export Run-Time Options

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

812 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 40
Blind Folio 40:812

Keyword Description

rows A Y/N flag to indicate whether rows should be exported. If this is set to
N, then only the DDL for the database objects will be created in the
export file. Default is Y.

consistent A Y/N flag to indicate whether a read-consistent version of all exported
objects should be maintained. This is needed when tables that are related
to each other are being modified by users during the export process.

full If set to Y, then a Full database export is performed. Default is N.

owner A list of database accounts to be exported; User exports of those
accounts may then be performed.

tables A list of tables to be exported; Table exports of those tables may then be
performed. As of Oracle9i, this parameter supports the use of the % and
_ wildcards for pattern matching.

recordlength The length, in bytes, of the export dump file record. Usually not
specified unless you are going to transfer the export file between
different operating systems.

triggers A Y/N flag to indicate if triggers should be exported. Default is Y.

statistics A parameter to indicate whether analyze commands for the exported
objects should be written to the export dump file. Valid values are
COMPUTE, ESTIMATE (the default), and N. In earlier versions of Oracle,
this parameter was called analyze.

parfile The name of a parameter file to be passed to Export. This file may
contain entries for all of the parameters listed here.

constraints A Y/N flag to indicate whether constraints on tables are exported.
Default is Y.

feedback The number of rows after which to display progress during Table
exports. The default value is 0, so no feedback is displayed until a
table is completely exported.

filesize The maximum size for an export dump file. If multiple files are listed
in the file entry, the export will be directed to those files based on the
filesize setting.

flashback_scn Specifies the SCN Export will use to enable flashback. The export is
performed with data consistent as of this SCN.

flashback_time Time used to get the SCN closest to the specified time. The export is
performed with data consistent as of this SCN.

query A where clause that will be applied to each table during the export.

TABLE 40-1. Export Run-Time Options (continued)

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 40: The Hitchhiker’s Guide to Database Administration 813

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 40
Blind Folio 40:813

A number of the parameters conflict with each other or may result in inconsistent instructions
for Export. For example, setting full=Y and owner=HR would fail, since the full parameter calls
for a Full export, while the owner parameter specifies a User export.

NOTE
The default values and available parameters may change with each
release of Oracle.

You can display the Export parameters online via the following command:

exp help=Y

The compress=Y option alters the initial parameter of the storage clause for segments that have
multiple extents. During a subsequent import, the total allocated space for that segment will be
compressed into a single extent. There are two important points to note concerning this functionality:

■ First, it is the allocated, not the used, space that is compressed. An empty table with 300MB
allocated to it in three 100MB extents will be compressed into a single empty 300MB extent.
No space will be reclaimed.

■ Second, if the tablespace has multiple datafiles, a segment may allocate space that is
greater than the size of the largest datafile. In that case, using compress=Y would
change the storage clause to have an initial extent size that is greater than any datafile
size. Since a single extent cannot span more than one datafile, the object creation
will fail during import.

Keyword Description

resumable A Y/N flag to indicate if the session is resumable following errors. Default
is N.

resumable_name The specified value is inserted into the DBA_RESUMABLE view to help
identify the resumable statement.

resumable_timeout The wait time for resumable statements.

tts_full_check Perform full or partial dependency check for transportable tablespaces.

volsize Number of bytes to write to each tape volume.

tablespaces In Oracle9i, the tablespaces whose tables should be exported, including
all tables that have a partition located in the specified tablespaces.

transport_tablespace Set to Y if you are using the pluggable tablespace option available as of
Oracle8i. Use in conjunction with the tablespaces keyword. Default is N.

template Template name used to invoke iAS mode export.

TABLE 40-1. Export Run-Time Options (continued)

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In the following example, the compress=Y option is used, as the HR and THUMPER owners
are exported:

exp system/manager file=expdat.dmp compress=Y owner=(HR,THUMPER)

NOTE
You can avoid space fragmentation problems through the use of
locally managed tablespaces.

Consistent Exports
During the process of writing the database’s data to the export dump file, Export reads one table
at a time. Thus, although Export started at a specific point in time, each table is read at a different
time. The data as it exists in each table at the moment Export starts to read that table is what will
be exported. Since most tables are related to other tables, this may result in inconsistent data
being exported if users are modifying data during the export. The export dump file may contain
inconsistent data, such as foreign key records from one table without matching primary key
records from a related table.

To avoid inconsistency in your exports, there are two options:

■ First, you should schedule exports to occur when no one is making modifications to
tables. If feasible, you can use the startup restrict option to make sure only DBAs are
logged in while the export is occurring.

■ Second, you can use the consistent parameter. This parameter is only available for
complete exports. During a consistent export, Oracle will try to create a read-consistent
version of the exported data as of the time the export started. You will get “snapshot too
old” errors if Oracle cannot re-create the read-consistent version of the tables. To guarantee
you will not encounter “snapshot too old” errors, you must create large rollback segments
or a large undo tablespace because Oracle will overwrite old rollback segment entries
without regard to your consistent=Y setting.

■ Third, you could quiesce the database, which restricts logins to SYSDBA-privileged
users. While the database is quiesced, all ongoing transactions and queries appear to
hang, and no new user logins are permitted.

Whenever possible, guarantee the consistency of exported data by running exports while the
database is not being used or is mounted in restricted mode. If you are unable to do this, restrict
the database usage during the export and perform a consistent=Y export.

Another alternative is to create two parameter files (parfile). One file will contain the names
of the majority of tables within your database or schema. You can use this file for your first
export with the default of consistent=N. The second file, containing the names of the tables
whose consistency must be maintained, is used to perform an export with consistent=Y. Using
this approach, the size of your rollback segments will not need to be as large, and the performance
of your system will not suffer as much.

814 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 40
Blind Folio 40:814

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Exporting Tablespaces
The better you have distributed your application schema owners and their objects across
tablespaces, the easier it will be to export them. For example, if you want to export all of
the objects in the AP_DATA schema, you can execute a User export if only a single user
owns objects in that tablespace. If multiple users own objects in the DATA tablespace, you
can export all of the objects within the tablespace using one command (starting with Oracle9i)
regardless of which schema owns the object:

exp demo/demo tablespaces=DATA

The following query maps users to tablespaces to determine the distribution of their tables
and indexes:

break on Owner on Tablespace_Name
column Objects format A20
select

Owner,
Tablespace_Name,
COUNT(*)||' tables' Objects

from DBA_TABLES
where Owner <> 'SYS'
group by

Owner,
Tablespace_Name

union
select

Owner,
Tablespace_Name,
COUNT(*)||' indexes' Objects

from DBA_INDEXES
where Owner <> 'SYS'
group by

Owner,
Tablespace_Name;

Sample output from this query is shown in the following listing:

OWNER TABLESPACE_NAME OBJECTS
------------- ----------------- --------------------
FLOWER USERS 3 tables

2 indexes
HR HR_TABLES 27 tables

HR_INDEXES 35 indexes
THUMPER USERS 5 tables

The sample output shown in the preceding listing shows that the user account FLOWER
owns tables and indexes in the USERS tablespace, and that THUMPER owns several tables in

Chapter 40: The Hitchhiker’s Guide to Database Administration 815

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 40
Blind Folio 40:815

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

that tablespace as well. The user HR owns objects in both the HR_TABLES and the HR_INDEXES
tablespaces.

Before determining the proper combinations of users to export for a tablespace, the inverse
mapping—of tablespaces to users—should be reviewed via the following query:

break on Tablespace_Name on Owner
column Objects format A20
select

Tablespace_Name,
Owner,
COUNT(*)||' tables' Objects

from DBA_TABLES
where Owner <> 'SYS'
group by

Tablespace_Name,
Owner

union
select

Tablespace_Name,
Owner,
COUNT(*)||' indexes' Objects

from DBA_INDEXES
where Owner <> 'SYS'
group by

Tablespace_Name,
Owner;

Sample output from this query is shown in the following listing:

TABLESPACE_NAME OWNER OBJECTS
----------------- ----------- --------------------
HR_INDEXES HR 35 indexes
HR_TABLES HR 27 tables
USERS FLOWER 3 tables

2 indexes
THUMPER 5 tables

The sample output shown in the preceding listing shows that the HR_TABLES tablespace
contains objects from just one user (the HR account). The HR_INDEXES tablespace is similarly
isolated. The USERS tablespace, on the other hand, contains both tables and indexes from several
accounts.

The results of the preceding queries illustrate the importance of properly distributing users’
objects among tablespaces. Since the HR_TABLES tablespace only contains tables owned by the
HR account (from the second query), exporting the HR tables will export all of the objects in the
HR_TABLES tablespace. As seen from the first query, HR does not own any tables anywhere else
in the database. Because HR’s tables are isolated to the HR_TABLES tablespace, and because that
tablespace is only used by the HR account, a User export of HR will export all of the tables in
HR_TABLES. Since the indexes on those tables are stored in HR_INDEXES, that tablespace can be
re-created at the same time from the same export dump file.

816 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 40
Blind Folio 40:816

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

As of Oracle9i, you can use the tablespaces parameter to export all tables located in a
specific tablespace. If any table has a partition in the specified tablespace, the entire table will be
exported. If you set indexes=Y, the tables’ associated indexes will be exported regardless of their
tablespace location.

Exporting Partitions
You can reference partitions and subpartitions within tables when you perform Table exports.
For example, if the SALES table in the THUMPER schema is partitioned into PART1, PART2, and
PART3, then you can export the entire table or its partitions.

To export the entire table, use the tables parameter of Export:

exp system/manager FILE=expdat.dmp TABLES=(Thumper.SALES)

To export a specific partition or subpartition, list the partition or subpartition name following
the table name. The table name and the partition name should be separated by a colon (:). In the
following listing, the PART1 partition is exported:

exp system/manager FILE=expdat.dmp TABLES=(Thumper.SALES:Part1)

If you export a partition, all of its subpartitions will be exported.

Import
The Import utility reads the export dump file and runs the commands stored there. Import may be
used to selectively bring back objects or users from the export dump file.

You can run Import either interactively or via command files. The run-time options that can
be specified for Import and their default values are listed in Table 40-2.

Chapter 40: The Hitchhiker’s Guide to Database Administration 817

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 40
Blind Folio 40:817

Keyword Description

userid Username/password of the account running the import; this must
be the first parameter, and the “userid=” text is optional.

buffer Size of the buffer used to fetch data rows. The default is system
dependent; this value is usually set to a high value (>100,000).

file Name of the export dump file to be imported.

show A Y/N flag to specify whether the file contents should be displayed
rather than executed. Default is N.

ignore A Y/N flag to indicate whether the import should ignore errors
encountered when issuing create commands. This flag is used if
the objects being imported already exist. Default is N.

grants A Y/N flag to indicate whether grants on database objects will be
imported. Default is Y.

TABLE 40-2. Import Parameters and Default Values

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

818 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 40
Blind Folio 40:818

Keyword Description

indexes A Y/N flag to indicate whether indexes on tables will be imported.
Default is Y.

rows A Y/N flag to indicate whether rows should be imported. If this is set
to N, then only the DDL for the database objects will be executed.
Default is Y.

log The name of a file to which the log of the import will be written.

full A Y/N flag; if set to Y, then the Full export dump file is imported.
Default is N.

fromuser A list of database accounts whose objects should be read from the
export dump file (when FULL=N).

touser A list of database accounts into which objects in the export dump file
will be imported. fromuser and touser do not have to be set to the
same value.

tables A list of tables to be imported. As of Oracle9i, the % and _ wildcards
are supported for table names.

recordlength The length, in bytes, of the export dump file record. Usually left at the
default value unless you are going to transfer the export file between
different operating systems.

commit A Y/N flag to indicate whether Import should commit after each
array (whose size is set by buffer). If this is set to N (the default), then
Import will commit after every table is imported. For large tables,
commit=N requires equally large undo segments.

parfile The name of a parameter file to be passed to Import. This file may
contain entries for all of the parameters listed here.

constraints A Y/N flag to indicate whether constraints on tables will be imported.
Default is Y.

destroy A Y/N flag to indicate whether the create tablespace commands found
in dump files from Full exports will be executed (thereby destroying the
datafiles in the database being imported into). Default is N.

indexfile This option writes all of the create table, create cluster, and create
index commands to a file, rather than running them. All but the
create index commands will be commented out. If constraints=Y,
then constraints will be written to the file as well. This file can then
be run (with slight modifications) after importing with indexes=N. It is
useful for separating tables and indexes into separate tablespaces.

TABLE 40-2. Import Parameters and Default Values (continued)

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

A number of the Import parameters conflict with each other or may result in inconsistent
instructions for Import. For example, setting full=Y and owner=HR would fail, since the full
parameter calls for a Full import, while the owner parameter specifies a User import.

Chapter 40: The Hitchhiker’s Guide to Database Administration 819

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 40
Blind Folio 40:819

Keyword Description

skip_unusable_indexes A Y/N flag that indicates if Import should skip partition indexes
marked as “unusable.” You may want to skip the indexes during
import and manually create them later to improve index creation
performance. Default is N.

feedback The number of rows after which to display progress during table
imports. The default value is 0, so no feedback is displayed until
a table is completely imported.

toid_novalidate Enables Import to skip validation of specified object types.

filesize The maximum dump size that was specified on export if the
parameter filesize was used on export.

statistics A flag to indicate if precomputed statistics should be imported.
Default is ALWAYS; other values are NONE, SAFE (for
nonquestionable statistics), and RECALCULATE (recalculate
during the import).

resumable A Y/N flag to indicate if the session is resumable following errors.
Default is N.

resumable_name The specified value is inserted into the DBA_RESUMABLE view to
help identify the resumable statement.

resumable_timeout The wait time for resumable statements.

compile A Y/N flag to indicate if procedures, functions, and packages should
be recompiled during import. Default is Y.

volsize Maximum number of bytes in a file on each volume of tape.

transport_tablespace A Y/N flag to indicate that transportable tablespace metadata is
to be imported into the database. Default is N.

tablespaces The name or list of names of tablespaces to be transported into the
database.

datafiles The list of datafiles to be transported into the database.

tts_owners The name or list of names of owners of data in the transportable
tablespace.

TABLE 40-2. Import Parameters and Default Values (continued)

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

820 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 40
Blind Folio 40:820

Undo Segment Requirements
By default, the database will issue a commit after every table is completely imported. As a result,
the rollback segment will contain a RowID for each row imported. To reduce the sizes of the
undo segment entries, specify commit=Y along with a value for buffer. A commit will then be
executed after every buffer worth of data, as shown in the following example. In the first import
command shown, a commit is executed after every table is loaded. In the second command
shown, a commit is executed after every 64,000 bytes of data are inserted.

imp system/manager file=expdat.dmp
imp system/manager file=expdat.dmp buffer=64000 commit=Y

How large should buffer be? buffer should be large enough to handle the largest single row
to be imported. If you do not know the longest row length that was exported, start with a
reasonable value (such as 50,000) and run the import. If an IMP-00020 error is returned, then
the buffer size is not large enough. Increase it and try the import again.

When using commit=Y, remember that a commit is being performed for each buffer array.
This implies that if the import of a table fails, it is possible that some of the rows in that table may
have already been imported and committed. The partial load may then be either used or deleted
prior to running the import again.

In tables with BFILE, LONG, LOB, REF, ROWID, and UROWID columns, rows are inserted
individually. The buffer value does not have to accommodate the LONG and LOB portions of
the row; Import will attempt to allocate additional buffer areas as needed for those portions.

Importing into Different Accounts
To move objects from one user to another user via Export/Import, perform a User export of the
owner of the objects. During the import, specify the owner as the fromuser and the account that
is to own the objects as the touser.

For example, to copy THUMPER’s objects into the FLOWER account, you could execute
the following commands. The first command exports the THUMPER owner, and the second
command imports the THUMPER objects into the FLOWER account.

exp system/manager file=thumper.dat owner=thumper grants=N
indexes=Y compress=Y rows=Y

imp system/manager file=thumper.dat FROMUSER=thumper TOUSER=flower
rows=Y indexes=Y

See the Oracle9i Utilities Guide for further details on Export and Import, along with data
recovery examples.

Offline Backups
An offline backup (sometimes called a cold backup) is a physical backup of the database files,
made after the database has been shut down via either a shutdown normal or a shutdown
immediate or a shutdown transactional. While the database is shut down, each of the files that

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 40: The Hitchhiker’s Guide to Database Administration 821

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 40
Blind Folio 40:821

is actively used by the database is backed up. These files provide a complete image of the
database as it existed at the moment it was shut down.

NOTE
You should not rely on an offline backup performed following a
shutdown abort, since it may be inconsistent. If you must perform
a shutdown abort, you should restart the database and perform a
normal shutdown or a shutdown immediate or a shutdown
transactional prior to beginning your offline backup.

The following files should be backed up during cold backups:

■ All datafiles

■ All control files

■ All online redo logs

You may optionally choose to back up the database initialization parameter file, particularly
if the backup will serve as the basis for a disaster recovery process.

Having all of these files backed up while the database is closed provides a complete image
of the database as it existed at the time it was closed. The full set of these files could be retrieved
from the backups at a later date and the database would be able to function. It is not valid to
perform a file system backup of the database while it is open unless an online backup is being
performed (as discussed later in this chapter).

Ideally, all of the datafiles are located in directories at the same level on each device. For
example, all database files may be stored in an instance-specific subdirectory under an /oracle
directory for each device (such as /db01/oracle/MYDB). Directories such as these should contain
all of the datafiles, redo log files, and control files for a database. The only file you may optionally
add to the offline backup that will not be in this location is the production initialization parameter
file, which should be in either the /app/oracle/admin/INSTANCE_NAME/pfile subdirectory under the
Oracle software base directory or the /database directory under the Oracle software home directory.

If you use the directory structure in the prior example, your backup commands are greatly
simplified, since you will be able to use wildcards in the filenames. After shutting down the
database, back up the files to the backup destination area (either a tape or a separate disk area).

NOTE
If necessary, you can also back up the init.ora and config.ora files at
the same time.

Since offline backups involve changes to the database’s availability, they are usually
scheduled to occur at night.

Offline backups are very reliable. To reduce their impact on the database’s availability,
you may use online backups. As described in the following section, online backups use Oracle’s
ARCHIVELOG mode to allow consistent file system backups during database usage.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

822 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 40
Blind Folio 40:822

Online Backups
You can use online backups for any database that is running in ARCHIVELOG mode. In this mode,
the online redo logs are archived, creating a full log of all transactions within the database.

Oracle writes to the online redo log files in a cyclical fashion; after filling the first log file, it
begins writing to the second log until that one fills, and then begins writing to the third. Once the
last online redo log file is filled, the LGWR (Log Writer) background process begins to overwrite
the contents of the first redo log file.

When Oracle is run in ARCHIVELOG mode, the ARC0-ARC9 (Archiver) background processes
make a copy of each redo log file before overwriting it. These archived redo log files are usually
written to a disk device. The archived redo log files may also be written directly to a tape device,
but this tends to be very operator-intensive.

You can perform file system backups of a database while that database is open, provided the
database is running in ARCHIVELOG mode. An online backup involves setting each tablespace
into a backup state, backing up its datafiles, and then restoring the tablespace to its normal state.

NOTE
When using the Oracle-supplied RMAN utility, you do not have to
place each tablespace into a backup state. The utility will put the
tablespace into and take it out of the backup state automatically.

The database can be fully recovered from an online backup, and can, via the archived
redo logs, be rolled forward to any point in time. When the database is then opened, any
committed transactions that were in the database at that time will have been restored and
any uncommitted transactions will have been rolled back.

While the database is open, the following files are backed up:

■ All datafiles

■ All archived redo log files

■ One control file, via the alter database command

Online backup procedures are very powerful for two reasons. First, they provide full
point-in-time recovery. Databases that are not running in ARCHIVELOG mode can only be
recovered to the point in time when the backup occurred. Second, they allow the database
to remain open during the file system backup. Thus, even databases that cannot be shut
down due to user requirements can still have file system backups.

Getting Started
To make use of the ARCHIVELOG capability, the database must first be placed in ARCHIVELOG
mode. The following listing shows the steps needed to place a database in ARCHIVELOG
mode. Run SQLPLUS and mount the database (providing its name in place of “mydb” in these
examples), then alter it as shown here:

SQL> connect system/manager as sysdba
SQL> startup mount mydb;
SQL> alter database archivelog;
SQL> alter database open;

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 40: The Hitchhiker’s Guide to Database Administration 823

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 40
Blind Folio 40:823

The following command will display the current ARCHIVELOG status of the database from
within SQLPLUS:

archive log list

NOTE
To see the currently active online redo log and its sequence number,
query the V$LOG dynamic view.

To change a database back to NOARCHIVELOG mode, use the following set of commands
after shutting down the database:

SQL> connect system/manager as sysdba
SQL> startup mount mydb;
SQL> alter database noarchivelog;
SQL> alter database open;

A database that has been placed in ARCHIVELOG mode will remain in that mode until it is
placed in NOARCHIVELOG mode. The location of the archived redo log files is determined by
the settings in the database’s parameter file. The parameters to note in Oracle9i are as follows
(with sample values):

log_archive_dest_1 = /db01/oracle/arch/CC1/arch
log_archive_dest_state_1 = ENABLE
log_archive_start = TRUE
log_archive_format = arch%s.arc

In this example, the archived redo log files are being written to the directory
/db01/oracle/arch/CC1. The archived redo log files will all begin with the letters “arch,”
followed by a sequence number. For example, the archived redo log file directory may
contain the following files:

arch_170.arc
arch_171.arc
arch_172.arc

Each of these files contains the data from a single online redo log. They are numbered
sequentially, in the order in which they were created. The size of the archived redo log files
varies, but does not exceed the size of the online redo log files.

If the destination directory of the archived redo log files runs out of space, then ARCH will
stop processing the online redo log data and the database will temporarily hang. This situation
can be resolved by adding more space to the archived redo log file destination disk or by backing
up the archived redo log files and then removing them from this directory.

NOTE
Never delete archived redo log files until you have backed them up
and verified that you can restore them successfully.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

824 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 40
Blind Folio 40:824

Although the initialization parameter LOG_ARCHIVE_START parameter may be set to TRUE,
the database will not be in ARCHIVELOG mode unless you have executed the alter database
archivelog command shown earlier in this section. Once the database is in ARCHIVELOG mode,
it will remain in that mode through subsequent database shutdowns and startups until you
explicitly place it in NOARCHIVELOG mode via the alter database noarchivelog command.

Performing Online Database Backups
Once a database is running in ARCHIVELOG mode, you can back it up while it is open and
available to users. This capability allows round-the-clock database availability to be achieved
while still guaranteeing the recoverability of the database.

Although online backups can be performed during normal working hours, they should be
scheduled for the times of the least user activity for several reasons. First, the online backups will
use operating system commands to back up the physical files, and these commands will use the
available I/O resources in the system (impacting the system performance for interactive users).
Second, while the tablespaces are being backed up, the manner in which transactions are written
to the archived redo log files changes. When you put a tablespace in “backup” mode, the DBWR
process writes all of the blocks in the buffer cache that belong to any file that is part of the tablespace
back to disk. When the blocks are read back into memory and then changed, they will be copied
to the log buffer the first time that a change is made to them. As long as they stay in the buffer
cache, they will not be recopied to the online redo log file. This will use a great deal more space
in the archived redo log file destination directory.

The command file for a hot backup has three parts:

1. A tablespace-by-tablespace backup of the datafiles, which in turn consists of

a. Setting the tablespace into backup state

b. Backing up the tablespace’s datafiles

c. Restoring the tablespace to its normal state

2. Backup of the archived redo log files, which consists of

a. Recording which files are in the archived redo log destination directory

b. Backing up the archived redo log files, then (optionally) deleting or compressing them

3. Backup of the control file via the alter database backup controlfile command.

NOTE
The online backup process is automated via the RMAN utility.

You should create a script to perform the backups. The script should run at the operating
system level, with SQLPLUS commands executed for Steps 1a, 1c, and 3.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 40: The Hitchhiker’s Guide to Database Administration 825

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 40
Blind Folio 40:825

When the datafiles are being backed up, you may back them up directly to tape or to disk.
If you have enough disk space available, choose the latter option, since it will greatly reduce the
time necessary for the backup procedures to complete.

Recovery Manager
Beginning in Oracle8.0, a Recovery Manager toolset called RMAN has been supplied to enable
you to back up and recover your databases in an automated manner using either a command-line
mode or the Recovery Manager from within the Oracle Enterprise Manager. You can use either
approach to back up, restore, and recover database files.

Recovery Manager keeps track of backups either through a Recovery Catalog or by placing
the required information into the control file for the database being backed up. Recovery
Manager adds new backup capabilities that are unavailable in the other Oracle backup utilities.
There are four components within the Recovery Manager: the RMAN executable, one or more
target databases, the Recovery catalog database, and the Media management software. The only
components that you must have are the RMAN executable and a target database. Since RMAN
automatically stores its metadata in the target database’s control file, you do not have to have a
recovery catalog.

The most significant new capability provided via Recovery Manager is the ability to perform
incremental physical backups of datafiles. During a full (called a level 0) datafile backup, all of
the blocks ever used in the datafile are backed up. During a cumulative (level 1) datafile backup,
all of the blocks used since the last full datafile backup are backed up. An incremental (level 2)
datafile backup backs up only those blocks that have changed since the most recent cumulative
or full backup. You can define the levels used for incremental backups.

The ability to perform incremental and cumulative backups of datafiles may greatly improve
the performance of backups. The greatest performance improvements will be realized by very
large databases in which only a small subset of a large tablespace changes. Using the traditional
backup methods, you would need to back up all of the datafiles in the tablespace. Using
Recovery Manager, you only back up the blocks that have changed since the last backup.

During database recovery using Recovery Manager, you need to know which files are current,
which are restored, and the backup method you plan to use. If you use the recover catalog,
Recovery Manager stores its catalog of information in an Oracle database—and you need to back
up that database or else you may lose your entire backup and recovery catalog of information.

Recovery Manager is only used by DBAs, who need to make the decisions regarding the
Recovery Manager architecture for your environment (for example, deciding on the location of
the recovery catalog). You should work with your DBA to understand the recovery options in
use and their implications for database availability and recovery time.

Performing a Backup with Oracle Enterprise Manager (OEM)
To perform any level backup using the OEM tool, connect to the OEM Server Manager console,
select the appropriate database and right-click to bring up the database options. From the
database options, select the Backup option from the Backup Manager menu. The Backup Wizard
will activate.

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

To perform a backup operation, the target database must be running and available. After
the initial Welcome screen, you are prompted to select a Strategy choice. You can select a
predefined backup strategy or customize your own backup strategy. OEM displays the Backup
Frequency options screen with three choices:

1. A Decision Support System (DSS) with a backup frequency of once a week

2. A moderately updated system (OLTP) that is not very large with a backup frequency
of every day

3. A frequently updated, medium to large database with a backup frequency of full
backups weekly and incremental backups nightly

The default option is a DSS system backed up once a week on Sunday. Once you have
selected a strategy, you will be prompted for the time to execute the backup, and the databases
to back up. To perform an immediate backup, you can choose the Customize option from the
initial Strategy screen.

Where to Go from Here
In this chapter, you’ve seen a high-level overview of the topics that production DBAs deal with
every day. In addition to the topics discussed here, DBAs monitor databases, tune databases, install
software, maintain database connectivity, and many other tasks. If you are interested in learning
more about those tasks, see your Oracle documentation set or the Oracle9i DBA Handbook
(Oracle Press, 2001). The more developers understand about database administration, the more
likely they are to build applications that take advantage of the database’s inherent capabilities.

826 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 40
Blind Folio 40:826

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 41
Blind Folio 41:827

CHAPTER
41

The Hitchhiker’s Guide
to XML in Oracle

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

X
ML (eXtensible Markup Language) is a standardized syntax for describing hierarchical
data. Rather than being a programming language, XML is a universal format for
structured documents and data. Its tag-based syntax will be familiar to those
familiar with HTML (HyperText Markup Language) and gives it the flexibility to
handle complex data. Whereas HTML tells a Web browser how to present data,

XML tells applications what the data means.
XML is well suited to solving data interchange problems among heterogeneous systems;

database-resident data is easily accessed, converted, and stored. In this chapter, you will see an
overview of the XML access methods available in Oracle9i. XML and its toolsets are evolving;
see http://www.w3.org for the most current information.

NOTE
Thanks to Mike Holder of TUSC for his contributions to this chapter.

Document Type Definitions,
Elements, and Attributes
In XML, application-specific tags or “elements” wrap around the data they describe. The
syntax for these tags is defined in a special kind of XML document called a Document Type
Definition (DTD). The DTD defines the structure for a valid XML document. The structure is
strictly hierarchical.

Each XML document is an instantiation of an “infoset”—the abstract data model consisting
of a document and its information items. Information items are mostly elements, attributes, and
content. For example, an XML infoset may contain the following:

<book>
<title>MY LEDGER</title>
<chapter num="1">

<title>Beginning</title>
<text>&chapter1;</text>

</chapter>
</book>

In this example, the tags <book> and </book> define the starting and ending points of the
infoset. The XML document describes a book named “MY LEDGER”. That book has chapters,
and the first chapter’s title is “Beginning”. The text of the chapter is not stored inside the XML
document; instead, a pointer is created to an external file.

In addition to being a tag in the file, “title” is an element. It has content, in this example,
“MY LEDGER”. As shown in this example, you can set the content of elements by providing
values between tags (for the title) or within the tag (as in the chapter number setting). Elements
can contain content, child elements, or both, or they may be empty. For data interchange, you
should avoid creating elements that contain both content and child elements. To create an
empty element, its tag would be in the format:

<name/>

828 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 41
Blind Folio 41:828

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

NOTE
Element names are case-sensitive.

Each element has exactly one parent, and a parent can have any number of children. The
strict hierarchical nature of XML means that if an element starts within another element (such as
“chapter” within “book”), its ending tag must precede the ending tag for the parent element.

As shown in the book example, elements have attributes. For example, the chapter element
has an attribute named num. The attribute value is enclosed in double quotes:

<chapter num="1">

NOTE
Like element names, attribute names are case-sensitive.

In general, applications use element attributes for specific items (such as the chapter number)
and element content for the bulk of the data (in this case, the chapter text).

An XML document is said to be well-formed if the following conditions are met:

■ Every start tag has a matching end tag.

■ Elements do not overlap.

■ There is one root element.

■ Attribute values are always within quotes.

■ An element cannot have two attributes within the same name.

■ Comments and processing instructions do not appear inside tags.

■ There are no unescaped < or & signs in an element’s or attribute’s character data.

These are the basic syntax rules. If an XML document conforms to these rules, it may still
not be valid. To be valid, the XML document must conform to the rules of a Document Type
Definition (DTD). The DTD is a formal way of describing what elements and entities may appear
in an XML document, and what each element’s contents and attributes are.

For example, consider the following XML document.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE CustomerList SYSTEM "Example1.dtd">
<CustomerList>

<Customer preferredCustomer="">
<ID>12345</ID>
<Address>

<Name>TUSC</Name>
<Street>377 E BUTTERFIELD RD</Street>
<City>LOMBARD</City>
<State>IL</State>
<Country>USA</Country>

Chapter 41: The Hitchhiker’s Guide to XML in Oracle 829

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 41
Blind Folio 41:829

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

<ZIP_CODE>60148</ZIP_CODE>
<PHONE>630-960-2909</PHONE>

</Address>
<CreditRating>EXCELLENT</CreditRating>
<SalesRepID></SalesRepID>
<RegionID>5</RegionID>
<Comments>THIS IS A TEST XML DOCUMENT</Comments>
<ShippingMethod>M</ShippingMethod>

</Customer>
</CustomerList>

The first line is an XML declaration, which starts with “<?” and ends with “?>“:

<?xml version="1.0" encoding="UTF-8"?>

The version attribute should be set to 1.0 for now. The encoding attribute is optional; its default
value is UTF-8. You can also set a third attribute, standalone. In this case, the XML document is not
standalone; it has a related DTD, as specified in the second line:

<!DOCTYPE CustomerList SYSTEM "Example1.dtd">

The related DTD file Example1.dtd for this example is shown in the following listing:

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT CustomerList (Customer*)>
<!ELEMENT Customer (ID, Address, CreditRating*, SalesRepID*,

RegionID, Comments*, ShippingMethod)>
<!ATTLIST Customer preferredCustomer CDATA #IMPLIED>
<!ELEMENT ID (#PCDATA)>
<!ELEMENT Address (Name, Street*, City, County,

State, Country, ZIP_CODE, PHONE)>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Street (#PCDATA)>
<!ELEMENT City (#PCDATA)>
<!ELEMENT County (#PCDATA)>
<!ELEMENT State (#PCDATA)>
<!ELEMENT Country (#PCDATA)>
<!ELEMENT ZIP_CODE (#PCDATA)>
<!ELEMENT PHONE (#PCDATA)>
<!ELEMENT CreditRating (#PCDATA)>
<!ELEMENT SalesRepID (#PCDATA)>
<!ELEMENT RegionID (#PCDATA)>
<!ELEMENT Comments (#PCDATA)>
<!ELEMENT ShippingMethod (#PCDATA)>

The DTD is analogous to the control file specifications for external tables. It tells applications
what they will find in the XML document—the element names and the hierarchy of elements. An
XML document can have only one DTD.

The syntax for the element declarations is

<!ELEMENT element_name (content_model)>

830 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 41
Blind Folio 41:830

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

where content_model specifies what children an element can or must have and the order they
are in. The simplest content model is #PCDATA, which says that the element can contain only
parsed character data. For example:

<!ELEMENT Name (#PCDATA)>

In this example, the CustomerList element contains zero or more “Customer” elements, as
indicated by the * suffix:

<!ELEMENT CustomerList (Customer*)>

The allowable suffixes are

* Permits zero or more occurrences

+ Permits one or more occurrences

? Permits zero or one occurrences

As shown in the Address element specification, you can specify a sequence of multiple
elements by separating them with commas:

<!ELEMENT Address (Name, Street*, City, County,
State, Country, ZIP_CODE, PHONE)>

You can provide multiple options within the specification, separated by the vertical bar (|)
character. For example, a point on a two-dimensional graph may be specified via its horizontal
and vertical measurements or its distance and angle from the center:

<!ELEMENT Point ((x,y) | (distance, angle))>

For real-world applications, DTDs can quickly become very complex. You can have attribute
lists, external references, entity attributes, IDs, conditional inclusions, and other structures within
your DTD. Refer to XML documentation for a thorough review of DTD structures and options.

NOTE
Before creating a DTD for a standard business operation, see
if one is already available for your purpose. Web sites such as
http://www.xml.org/xml/registry.jsp provide many examples of DTDs.
These registries provide a valuable resource for the documentation of
industry standard DTDs and their components.

XML Schema
The XML Schema specification is an alternative to DTDs. It includes data typing, which is
particularly helpful when working with relational databases. Whereas DTDs are not extensible
(they’re just control files), XML Schema is extensible in the following ways:

■ Parts of schemas can be reused in other schemas.

■ Complex structures can be reused in other schemas.

Chapter 41: The Hitchhiker’s Guide to XML in Oracle 831

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 41
Blind Folio 41:831

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ Derived datatypes can be created based on existing datatypes.

■ A single document instance can reference multiple schemas.

Within XML Schema, elements are declared using xsd:element, as shown in the following listing:

<xsd:element name="Date">

The element’s datatype can be declared via the type attribute:

<xsd:element name="Date" type="date">

You can specify the minimum and maximum number of occurrences for the element via the
minOccurs and maxOccurs attributes:

<xsd:element name="Date" type="date" minOccurs="0" maxOccurs="1">

Built-in XML Schema types include primitive types (such as string, Boolean, number,
float, date, time, and datetime) and derived types (such as normalizedString, integer, token,
and language). The full list of types can be found at http://www.w3.org/TR/xmlschema-2/.

You can create and name complex types, just as you can create abstract datatypes in Oracle.
The following code creates the “Address” type:

<xsd:complexType name="Address">
<xsd:sequence>

<xsd:element name="Street1"/>
<xsd:element name="Street2"/>
<xsd:element name="City"/>
<xsd:element name="State"/>
<xsd:element name="Zip"/>

</xsd:sequence>
</xsd:complexType>

You can then refer to the “Address” complex type when defining your elements:

<xsd:element name="mailingAddress" type="Address"/>
<xsd:element name="billingAddress" type="Address"/>

If you are declaring a content model for a single element, use an anonymous type, as shown
in the following listing.

<xsd:element name="Name">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="First"/>
<xsd:element name="MiddleInitial"/>
<xsd:element name="Last"/>

</xsd:sequence>
</xsd:complexType

</xsd:element>

832 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 41
Blind Folio 41:832

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Attributes are declared using xsd:attribute, as shown in the following example:

<xsd:attribute name="paid" type="boolean"/>

You can create attributes within a complex type:

<xsd:element name="Invoice">
<xsd:complexType>

<xsd:attribute name="paid" use="optional" default="True"/>
</xsd:complexType>

</xsd:element>

In addition to creating attributes, you can create attribute groups and model groups. Model
groups are groups or element definitions, named for reuse. The “group” element must be a
top-level schema component (a child of the “schema” element). For example, the following
listing shows the creation of a MealOptions group, referenced by the “FlightDinner” element.

<xsd:element name="FlightDinner">
<xsd:sequence>

<xsd:element ref="Name"/>
<xsd:group ref="MealOptions"/>

</xsd:sequence>
</xsd:element>

<xsd:group name="MealOptions">
<xsd:choice>

<xsd:element name="Fish" type="Meal"/>
<xsd:element name="Meat" type="Meal"/>
<xsd:element name="Vegetarian" type="Meal"/>

</xsd:choice>
</xsd:group>

Attributes are commonly grouped together if elements often use the same set of attributes.
This is similar to the approach described in Part IV of this book, in which common attributes
were combined to form new datatypes. For example, the following definition for a “Product”
element uses an attribute group named productDetails. Other elements can reuse this same
attribute group, improving your ability to enforce a standardized representation of this data.

<xsd:element name="Product">
<xsd:complexType>

<xsd:attributeGroup ref="productDetails"/>
</xsd:complexType>

</xsd:element>

<xsd:attributeGroup name="productDetails">
<xsd:attribute name="productID" use="required" type="xsd:ID"/>
<xsd:attribute name="name" use="required" type="xsd:string"/>
<xsd:attribute name="description" use="required" type="xsd:string"/>
<xsd:attribute name="unit" type="xsd:positiveInteger"/>

Chapter 41: The Hitchhiker’s Guide to XML in Oracle 833

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 41
Blind Folio 41:833

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

<xsd:attribute name="price" use="required" type="xsd:decimal"/>
<xsd:attribute name="stock" type="xsd:integer"/>

</xsd:attributeGroup>

You can enforce uniqueness within a document instance by using xsd:unique:

<xsd:unique name="uniqueProductID">
<xsd:selector xpath="tc:Product/"/>
<xsd:field xpath="tc:@productID"/>

</xsd:unique>

Uniqueness is declared at the same level as the complex type definition for the “Product”
element. The tc: namespace is for the schema we are creating and is declared in the xsd:schema
element. The xsd:selector value specifies the elements to constrain (the “Product” elements), and
xsd:field specifies the attribute to constrain (productID).

You can use xsd:key and xsd:keyref to create references between elements. For example, you
can create a “Customer” element and then reference it from multiple “Invoice” elements:

<xsd:key name="customerID">
<xsd:selector xpath="tc:SalesData/"/>
<xsd:field xpath="tc:Customer/@CustID"/>

</xsd:key>

<xsd:keyref name="item" refer="customerID">
<xsd:selector xpath="tc:SalesData/"/>
<xsd:field xpath="tc:Invoice/@CustID"/>

</xsd:keyref>

To allow an element to be NULL, use the nillable attribute:

<xsd:element name="FlightDinner" nillable="true"/>

Using XSU to Select, Insert,
Update, and Delete XML values
You can use Oracle’s XML-SQL Utility (XSU) to convert the result of a SQL query to XML. XSU
supports dynamic generation of DTDs and the insertion of XML into database tables. You can
also use XSU to update or delete rows from database objects.

You can access XSU via Java and PL/SQL APIs (application programming interfaces). The XSU
Java classes are part of the Oracle kernel software. The PL/SQL API is a wrapper that publishes the
Java classes to PL/SQL (see Chapter 36). Because the XSU classes are stored in the database, you
can write new stored procedures to directly access XSU’s Java classes. Since there is a PL/SQL API
available, XSU’s functionality can be accessed directly through SQL.

For example, you can generate the XML version of the RATING table via the XSU PL/SQL
procedures. The following listing creates a procedure named PRINTCLOBOUT that will be called
as part of the data output process. The data will be read in as a CLOB.

834 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 41
Blind Folio 41:834

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 41: The Hitchhiker’s Guide to XML in Oracle 835

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 41
Blind Folio 41:835

create or replace procedure PRINTCLOBOUT(result IN OUT NOCOPY CLOB)
is

xmlstr varchar2(32767);
line varchar2(2000);
begin
xmlstr := dbms_lob.SUBSTR(result,32767);
loop
exit when xmlstr is null;
line := substr(xmlstr,1,instr(xmlstr,chr(10))-1);
dbms_output.put_line('| '||line);
xmlstr := substr(xmlstr,instr(xmlstr,chr(10))+1);

end loop;
end;

Now that the PRINTCLOBOUT procedure exists, run the following anonymous PL/SQL
block. This block queries the RATING table, so that table must be accessible from your schema
(see the accompanying CD-ROM):

declare
queryCtx DBMS_XMLquery.ctxType;
result CLOB;

begin
-- set up the query context...
queryCtx := DBMS_XMLQuery.newContext('select * from rating');
-- get the result..

result := DBMS_XMLQuery.getXML(queryCtx);
-- Now you can use the result to put it in tables/send as messages..
printClobOut(result);
DBMS_XMLQuery.closeContext(queryCtx); -- you must close the query..

end;

The result is the RATING table, formatted with XML tags:

| <?xml version = '1.0'?>
| <ROWSET>
| <ROW num="1">
| <RATING>1</RATING>
| <RATINGDESCRIPTION>ENTERTAINMENT</RATINGDESCRIPTION>
| </ROW>
| <ROW num="2">
| <RATING>2</RATING>
| <RATINGDESCRIPTION>BACKGROUND INFORMATION</RATINGDESCRIPTION>
| </ROW>
| <ROW num="3">
| <RATING>3</RATING>
| <RATINGDESCRIPTION>RECOMMENDED</RATINGDESCRIPTION>
| </ROW>
| <ROW num="4">

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

| <RATING>4</RATING>
| <RATINGDESCRIPTION>STRONGLY RECOMMENDED</RATINGDESCRIPTION>
| </ROW>
| <ROW num="5">
| <RATING>5</RATING>
| <RATINGDESCRIPTION>REQUIRED READING</RATINGDESCRIPTION>
| </ROW>
| </ROWSET>

PL/SQL procedure successfully completed.

Insert, Update, and Delete Processing with XSU
To insert a document into a table or view, use the DBMS_XMLSave package. XSU will parse the
document and create an insert statement that inserts the values into all the columns of the table
or view. An absent element is treated as a NULL value.

create or replace procedure INSPROC(xmlDoc IN CLOB,
tableName IN VARCHAR2) is

insCtx DBMS_XMLSave.ctxType;
rows number;

begin
insCtx := DBMS_XMLSave.newContext(tableName); -- get the context
rows := DBMS_XMLSave.insertXML(insCtx,xmlDoc); -- insert the doc
DBMS_XMLSave.closeContext(insCtx); -- close the handle

end;

You can now pass in XML documents as CLOB input values to the INSPROC procedure,
along with the table name. INSPROC will take the XML document and insert its values into the
table. Updates can be executed via calls to a separate procedure, UPDATEPROC, shown in the
following listing.

create or replace procedure UPDATEPROC (xmlDoc IN clob) is
updCtx DBMS_XMLSave.ctxType;
rows number;

begin
updCtx := DBMS_XMLSave.newContext('RATING'); -- get context
DBMS_XMLSave.clearUpdateColumnList(updCtx); -- clear settings
DBMS_XMLSave.setKeyColumn(updCtx,'RATING'); -- set RATING as key
rows := DBMS_XMLSave.updateXML(updCtx,xmlDoc); -- update
DBMS_XMLSave.closeContext(updCtx); -- close context

end;

In this example, the Rating column is the key column used for the update’s where clause:

DBMS_XMLSave.setKeyColumn(updCtx,'RATING'); -- set RATING as key

The new values are passed in as an XML document in CLOB format, and the RATING table
values are updated based on the contents of the XML document.

836 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 41
Blind Folio 41:836

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Deletes function in much the same way. The following procedure takes an XML document as
its input, establishes the Rating column as the key for the RATING table, and performs the delete
based on the key values in the input document. Note that newContext takes the table name RATING
as its input value, while setKeyColumn takes the key column name (which in this case happens
to also be Rating).

create or replace procedure DELETEPROC(xmlDoc IN clob) is
delCtx DBMS_XMLSave.ctxType;
rows number;

begin
delCtx := DBMS_XMLSave.newContext('RATING');
DBMS_XMLSave.setKeyColumn(delCtx,'RATING');
rows := DBMS_XMLSave.deleteXML(delCtx,xmlDoc);
DBMS_XMLSave.closeContext(delCtx);

end;

XSU and Java
If you prefer, you can perform the XSU DML operations via calls to Java classes instead
of the PL/SQL procedures. In place of the DBMS_XMLQuery package, you should execute
the oracle.xml.sql.query.OracleXMLQuery class. In place of the DBMS_XMLSave package,
use oracle.xml.sql.dml.OracleXMLSave.

For example, the Oracle-provided sample Java program for XML queries is customized
slightly in the following listing. It relies on connection management in a fashion very similar
to that shown in the SQLJ and JDBC examples (see Chapter 35). The program imports the
oracle.xml.sql.query.OracleXMLQuery class, enabling it to get the XML string; Java’s
System.out.println method is then called to display the output.

import oracle.xml.sql.query.OracleXMLQuery;
import java.lang.*;
import java.sql.*;

// class to test the String generation!
class testXMLSQL {

public static void main(String[] argv)
{

try{
// create the connection
Connection conn = getConnection("practice","practice");

// Create the query class.
OracleXMLQuery qry = new OracleXMLQuery(conn, "select * from rating");

// Get the XML string
String str = qry.getXMLString();

// Print the XML output

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 41
Blind Folio 41:837

Chapter 41: The Hitchhiker’s Guide to XML in Oracle 837

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

System.out.println(" The XML output is:\n"+str);
// Always close the query to get rid of any resources..

qry.close();
}catch(SQLException e){
System.out.println(e.toString());

}
}

// Get the connection given the user name and password..!
private static Connection getConnection(String username,
String password)

throws SQLException
{

// register the JDBC driver..
DriverManager.registerDriver(new oracle.jdbc.OracleDriver());

// Create the connection using the OCI8 driver
Connection conn =

DriverManager.getConnection("jdbc:oracle:oci8:@or90",username,password);

return conn;
}

}

For details on SQLJ, connection management, and Java, see Part V of this book.

Customizing the Query Process
You can create your own procedures to simplify the interaction with the DBMS_XMLQuery and
DBMS_XMLSave packages. For example, the following listing creates a function named GET_XML.
GET_XML will select the rows from the table and display it in XML format.

create function GET_XML (in_SQL varchar2)
return CLOB

is queryCtx DBMS_XMLQuery.ctxType;
result CLOB;

begin queryCtx := DBMS_XMLQuery.newContext(in_SQL);
result := DBMS_XMLQuery.getXML(queryCtx);
DBMS_XMLQuery.closeContext(queryCtx);
return result;

end;

The data will be returned in CLOB format, so you can use the set long command to set the
maximum display length (the default is 80 characters). You can call GET_XML from within SQL
queries, as shown in the following listing.

set pagesize 100 long 2000

select GET_XML('select * from category') from DUAL;

838 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 41
Blind Folio 41:838

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

GET_XML('SELECT*FROMCATEGORY')
--
<?xml version = '1.0'?>
<ROWSET>

<ROW num="1">
<CATEGORYNAME>ADULTREF</CATEGORYNAME>
<PARENTCATEGORY>ADULT</PARENTCATEGORY>
<SUBCATEGORY>REFERENCE</SUBCATEGORY>

</ROW>
<ROW num="2">

<CATEGORYNAME>ADULTFIC</CATEGORYNAME>
<PARENTCATEGORY>ADULT</PARENTCATEGORY>
<SUBCATEGORY>FICTION</SUBCATEGORY>

</ROW>
<ROW num="3">

<CATEGORYNAME>ADULTNF</CATEGORYNAME>
<PARENTCATEGORY>ADULT</PARENTCATEGORY>
<SUBCATEGORY>NONFICTION</SUBCATEGORY>

</ROW>
<ROW num="4">

<CATEGORYNAME>CHILDRENPIC</CATEGORYNAME>
<PARENTCATEGORY>CHILDREN</PARENTCATEGORY>
<SUBCATEGORY>PICTURE BOOK</SUBCATEGORY>

</ROW>
<ROW num="5">

<CATEGORYNAME>CHILDRENFIC</CATEGORYNAME>
<PARENTCATEGORY>CHILDREN</PARENTCATEGORY>
<SUBCATEGORY>FICTION</SUBCATEGORY>

</ROW>
<ROW num="6">

<CATEGORYNAME>CHILDRENNF</CATEGORYNAME>
<PARENTCATEGORY>CHILDREN</PARENTCATEGORY>
<SUBCATEGORY>NONFICTION</SUBCATEGORY>

</ROW>
</ROWSET>

Using XMLType
As of Oracle9i, you can use XMLType as a datatype in your tables. XMLType can be used to store
and query XML data in the database. As a type, XMLType has member functions (see Chapter 30)
to access, extract, and query XML data using a class of operations known as Xpath expressions.
The SYS_XMLGEN, SYS_XMLAGG, and DBMS_XMLGEN packages create XMLType values from
existing object-relational data. When you designate a column as using the XMLType datatype,
Oracle will store the data internally in a CLOB datatype.

The following listing shows the creation of a table using the XMLType datatype:

create table MY_XML_TABLE
(Key1 NUMBER,
Xml_Column SYS.XMLTYPE);

Chapter 41: The Hitchhiker’s Guide to XML in Oracle 839

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 41
Blind Folio 41:839

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

840 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 41
Blind Folio 41:840

If you describe the table, you will see its columns:

desc MY_XML_TABLE

Name Null? Type
--- -------- ------------
KEY1 NUMBER
XML_COLUMN SYS.XMLTYPE

If you increase the describe depth, you will see the member functions for the XMLType
column as well:

set describe depth 5

desc MY_XML_TABLE
Name Null? Type
--- -------- -------------
KEY1 NUMBER
XML_COLUMN SYS.XMLTYPE

METHOD

STATIC FUNCTION CREATEXML RETURNS XMLTYPE
Argument Name Type In/Out Default?
------------------------------ ------------------- ------ --------
XMLDATA CLOB IN

METHOD

STATIC FUNCTION CREATEXML RETURNS XMLTYPE
Argument Name Type In/Out Default?
------------------------------ ------------------- ------ --------
XMLDATA VARCHAR2 IN

METHOD

MEMBER FUNCTION EXTRACT RETURNS XMLTYPE
Argument Name Type In/Out Default?
------------------------------ ------------------- ------ --------
XPATH VARCHAR2 IN

METHOD

MEMBER FUNCTION EXISTSNODE RETURNS NUMBER
Argument Name Type In/Out Default?
------------------------------ ----------------------- ------ --------
XPATH VARCHAR2 IN

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

METHOD

MEMBER FUNCTION ISFRAGMENT RETURNS NUMBER

METHOD

MEMBER FUNCTION GETCLOBVAL RETURNS CLOB

METHOD

MEMBER FUNCTION GETSTRINGVAL RETURNS VARCHAR2

METHOD

MEMBER FUNCTION GETNUMBERVAL RETURNS NUMBER

You can now insert values into MY_XML_TABLE by calling XMLType’s CREATEXML method:

insert into MY_XML_TABLE (Key1, Xml_Column)
values (1, SYS.XMLTYPE.CREATEXML
('<book>
<title>MY LEDGER</title>
<chapter num= "1 ">

<title>Beginning</title>
<text>This is the ledger of G.B. Talbot</text>

</chapter>
</book>'));

You can query the data by calling the GETCLOBVAL method. This query

select M.Xml_Column.GETCLOBVAL() as XML_Data
from MY_XML_TABLE M
where Key1 = 1;

returns this data:

XML_DATA

<book>
<title>MY LEDGER</title>
<chapter num="1">

<title>Beginning</title>
<text>This is the ledger of G.B. Talbot</text>

</chapter>
|</book>

NOTE
You can create functional indexes on columns created with the
XMLType datatype to improve performance of queries.

Chapter 41: The Hitchhiker’s Guide to XML in Oracle 841

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 41
Blind Folio 41:841

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Other Features
This chapter has shown a very high-level view of the interaction of XML data with the Oracle
database. There are many other possibilities, including the use of style sheets for data formatting,
and creating XSQL pages. You can even create text indexes on XMLType columns:

create index XML_INDEX on MY_XML_TABLE (Xml_Column)
indextype is ctxsys.context;

NOTE
See Chapter 24 for further details on text indexes.

Oracle provides additional packages to interact with XML data, including:

DBMS_XMLGEN Converts the results of SQL queries to canonical XML format,
returning them as a CLOB. DBMS_XMLGEN is implemented in
C, and compiled in the database kernel. DBMS_XMLGEN is
similar in functionality to DBMS_XMLQuery package.

SYS_XMLGEN Generates XML within SQL queries. DBMS_XMLGEN and
other packages operate at a query level, giving aggregated
results for the entire query. SYS_XMLGEN operates on a single
argument inside a SQL query and converts the result to XML.
SYS_XMLGEN takes in a scalar value, object type, or an
XMLType instance to be converted to an XML document. It
also takes an optional XMLGenFormatType object to specify
formatting options for the result. SYS_XMLGEN returns an
XMLType.

SYS_XMLAGG Aggregates over a set of XMLTypes. SYS_XMLAGG aggregates
all the input XML documents/fragments and produces a single
XML document by concatenating XML fragments, and adding
a top-level tag that defaults to ROWSET.

Oracle provides utilities to support additional uses, such as oraxml (a command-line interface
to parse an XML document) and oraxsl (a command-line interface used to apply a style sheet on
multiple XML documents). A full discussion of every utility and data access method is beyond the
scope of this book; please see the Oracle9i Application Developer’s Guide – XML for additional
options and sample programs.

842 Part VI: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 41
Blind Folio 41:842

P:\010Comp\Oracle8\521-1\CD\Ventura\book.vp
Friday, July 19, 2002 4:15:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:843

PART
VII

Alphabetical Reference
Copyright © 2001, 2002, Oracle Corporation. All rights reserved. This appendix contains
Oracle Corporation User Documentation reproduced herein with permission of Oracle
Corporation, and offers brief summaries of the most common SQL commands used by DBAs.
The commands are arranged alphabetically. This material is extracted from Oracle9i SQL
Reference, SQL*Plus User’s Guide and Reference, and Oracle9i Database Utilities Release 1.

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:48:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

T
his chapter contains references for most major Oracle commands, keywords, features,
and functions, with cross-referencing of topics. The reference is intended for use by
both developers and users of Oracle, but assumes some familiarity with the products.
Reading the first four pages of this reference will help you make the most productive
use of the entries.

What This Alphabetical Reference Includes
This alphabetical reference contains entries for virtually every Oracle command in SQL, PL/SQL, and
SQLPLUS, as well as definitions of all relevant terms used in Oracle and SQL. Each command is listed
with its correct format or syntax, an explanation of its purpose and use, the product or products in which
it is used, and important details, restrictions, and hints about it, along with examples to illustrate proper
usage. Topics are in alphabetical order, and are cross-referenced, both within the alphabetical reference
and to preceding chapters in the book.

What This Alphabetical Reference
Does Not Include
This is not a tutorial; it does not explain the screen-oriented development tools. Additionally, there are
a few areas where usage is likely to be so specialized or infrequent that inclusion here did not seem of
much benefit. In these instances, the text refers you to the Oracle manual where you can find the needed
information.

General Format of Entries
Entries in this reference are typically either definitions of terms or descriptions of functions, commands,
and keywords. These are usually structured in seven sections: the keyword, its type, the products in
which it is used, a "See also" cross-reference, the format in which the keyword appears, a description
of its components, and an example of its use. A typical entry looks like the following:

RPAD
SEE ALSO CHARACTER FUNCTIONS, LPAD, LTRIM, RTRIM, TRIM, Chapter 7
FORMAT RPAD(string,length [,'set'])
DESCRIPTION Right PAD. RPAD makes a string a certain length by adding a certain set of
characters to the right. If set is not specified, the default pad character is a space.
EXAMPLE

select RPAD('HELLO ',24,'WORLD') from DUAL;

produces this:

HELLO WORLDWORLDWORLDWOR

The Sections of Each Entry
The KEYWORD usually appears on a line by itself. In some cases a brief definition follows. If a
keyword has more than one definition, either in different Oracle tools or in different Oracle versions,
the keyword will be followed by a brief qualifier in order to indicate that more than one listing exists
for this keyword.

844 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:844

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:48:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SEE ALSO suggests other topics that are closely related to the keyword, or gives the chapter or
chapters in the book that give detailed descriptions of how the keyword is used in practice. Occasionally
you will be referred to the Oracle manual or other reference book that contains detail beyond the scope
of this reference.

FORMAT generally follows the notation of Oracle manuals, with all SQL and other keywords
in uppercase. In actual use, these must be entered exactly as they are shown (except that case is
irrelevant). Variables and variable parameters are shown in lowercase italic. This indicates that some
appropriate value should be substituted. When parentheses are shown, they must be entered where
they appear, just as are words shown in uppercase.

Standard Usages for Variables
Some standard usages for variables follow:

This Variable Indicates

Column The name of a column

Database The name of a database

Link The name of a link in Oracle Net

Password A password

Segment The name of a segment

Table The name of a table

Tablespace The name of a tablespace

User The name of a user or owner

View The name of a view

Other Formatting Guidelines
Some other guidelines for formatting follow:

■ character means the value must be a single character.

■ string typically represents a character column or an expression or column that can be treated
like a CHAR or VARCHAR2 column after automatic data conversion.

■ value usually represents a NUMBER column or an expression or column that can be treated
like a NUMBER column after automatic data conversion.

■ date usually represents a date column or an expression or column that can be treated like a
date column after automatic data conversion.

■ integer must be a whole number, such as -3, 0, or 12.

■ expression means any form of a column. This could be a literal, a variable, a mathematical
computation, a function, or virtually any combination of functions and columns whose final
result is a single value, such as a string, a number, or a date.

■ Occasionally other notation is used as well, such as condition or query. This is explained or
is apparent in context.

■ Optional items are enclosed in square brackets, as in [user.], meaning that user is not
necessarily required.

Other Formatting Guidelines 845

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:845

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:48:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ Alternative items in a list are separated by a single broken vertical bar, as in OFF | ON,
which should be read "OFF or ON." On some systems this vertical bar is displayed as a
solid vertical bar.

■ Required options, where one item of a list of items is required, are surrounded by curly
braces, as in {OFF | ON}.

■ The default item in a list, if there is one, will be listed first.

■ Three periods (or ellipses) indicate that the previous expression can be repeated any number
of times, as in column [,column]. . ., which means that ,column may be any number of
additional columns separated by commas.

■ In rare instances, normal notation is either insufficient or inappropriate for what is being shown.
In these cases, the Description will spell out more fully what is intended in the Format.

Other Elements of a Listing
A few commands have a Return type, which indicates the datatype of the value returned by a function.

DESCRIPTION is a verbal explanation of the command and its parts. Boldface words within the
description usually direct references to either commands or variables shown in the Format section.

Examples will show either the results of a function, or how a keyword is used in a real command.
The style of the examples is not the same as that of the Format section. Instead, it follows the style of
the first part of this book (described in Chapter 3), since this is more typical of real coding practice.

The Order of the Keywords
This reference is in alphabetical order, with all entries that begin with symbols coming before the first
entry beginning with the letter A.

Words that are hyphenated or that have an underscore character in them are alphabetized as if the
hyphen or underscore were a space.

Symbols
The symbols are listed in order of appearance with a short definition or name. Those symbols with
definitions in boldface have full entries dedicated to them, or are prefixes to words that are covered
in the pages that follow.

_ underline (also called underscore, underbar)

! exclamation mark

" double quotation mark

pound sign

$ dollar sign

? question mark

% percent sign

& ampersand

&& double ampersand

' single quotation mark or apostrophe

() parentheses

846 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:846

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:48:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

* asterisk or multiplication

** exponentiation in PL/SQL

+ plus

- subtraction or hyphen

- - double hyphen, SQL comment minus or hyphen

. period or dot, a name or variable separator

.. to

/ division or slash

/* slash asterisk, SQL comment divided by or slash

: colon

:= is set equal to in PL/SQL

; semicolon

<< >> label name delimiter in PL/SQL

< less than

<= less than or equal to

< > not equal

!= not equal

= equal

> greater than

>= greater than or equal to

@ at sign

@@ double at sign

[] square brackets

^ caret

^= not equal

{} curly braces

| broken vertical bar

|| concatenation

_ (Underscore)
The underscore represents a single position with the LIKE operator. See LIKE.

_EDITOR
See EDIT.

! (Exclamation Mark)
SEE ALSO =, CONTAINS, SOUNDEX, Chapter 24

! (Exclamation Mark) 847

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:847

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:48:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

FORMAT Within SQL, ! is used as part of the "not equal" expression !=. For example, you can
select all the city values that are not in the continent of Asia:

select City
from LOCATION
where Continent != 'ASIA';

For CONTEXT text indexes, ! signals the text engine to perform a SOUNDEX search. The terms to
search for will be expanded to include terms that sound like the search term, using the text's SOUNDEX
value to determine possible matches.

select Title
from BOOK_REVIEW_CONTEXT
where CONTAINS(Review_Text, '!grate')>0;

" (Double Quotation Mark)
SEE ALSO ALIAS, TO_CHAR, Chapters 7 and 9
DESCRIPTION " surrounds a table or column alias that contains special characters or a space,
or surrounds literal text in a date format clause of TO_CHAR.
EXAMPLE Here it is used as an alias:

select NEXT_DAY(CycleDate,'FRIDAY') "Pay Day!"
from PAYDAY;

and here it is used as a formatting portion of TO_CHAR:

select FirstName, Birthdate, TO_CHAR(BirthDate,
'"Baby Girl on" fmMonth ddth, YYYY, "at" HH:MI "in the Morning"')
"Formatted"

from BIRTHDAY
where FirstName = 'VICTORIA';

FIRSTNAME BIRTHDATE Formatted
--------------- --------- ------------------------------
VICTORIA 20-MAY-49 Baby Girl on May 20th, 1949,

at 3:27 in the Morning

(Pound Sign)
SEE ALSO DOCUMENT, REMARK, /* */, Chapter 6
DESCRIPTION # completes a block of documentation in a SQLPLUS start file where the block
is begun by the word DOCUMENT. SQL*PLUS ignores all lines from the line where it sees the word
DOCUMENT until the line after the #.

$ (Dollar Sign)
SEE ALSO @,@@, HOST, START, CONTAINS, Chapter 24
FORMAT For SQL*PLUS:

$ host_command

848 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:848

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:48:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

For CONTEXT text indexes:

select column
from table

where CONTAINS(text_column, '$search_term') >0;

DESCRIPTION $ passes any host command back to the operating system for execution without
exiting SQL*PLUS. $ is shorthand for HOST. This doesn’t work on all hardware or operating systems.
For a CONTEXT text index, $ instructs the search engine to perform a stem expansion on the search
term. A stem expansion includes in the search words that have the same word stem. For example, a
stem expansion of the word 'sing' would include 'singing,' 'sang,' and 'sung.'

? (Question Mark)
SEE ALSO CONTAINS, Chapter 24
FORMAT

select column
from table

where CONTAINS(text_column, '?term')>0;

DESCRIPTION For CONTEXT text indexes, ? instructs the text engine to perform a fuzzy match
search. The terms to search for will be expanded to include terms that are spelled similarly to the
search term, using the text index as the source for possible matches.

% (Percent)
% is a wild card used to represent any number of positions and characters with the LIKE operator.
See LIKE.

%FOUND
SEE ALSO %ISOPEN, %NOTFOUND, %ROWCOUNT, CURSOR, SQL CURSOR, Chapter 27
FORMAT

cursor%FOUND

or

SQL%FOUND

DESCRIPTION %FOUND is a success flag for select, insert, update, and delete. cursor is the
name of an explicit cursor declared in a PL/SQL block, or the implicit cursor named SQL. %FOUND
can be attached to a cursor name as a suffix. The two together are a success flag for the execution of
select, insert, update, and delete statements in PL/SQL blocks.

PL/SQL temporarily sets aside a section of memory as a scratchpad for the execution of SQL
statements, and for storing certain kinds of information (or attributes) about the state of that execution.
If the SQL statement is a select, this area will contain one row of data.

%FOUND is one of those attributes. %FOUND is typically tested (via IF/THEN logic) after an
explicit fetch has been performed from the cursor. It will be TRUE if the fetch retrieved a row, and FALSE
otherwise. It always evaluates TRUE, FALSE, or NULL. %NOTFOUND is the logical opposite. It is FALSE
when %FOUND is TRUE, TRUE when %FOUND is FALSE, and NULL when %FOUND is NULL.

Testing %FOUND for the condition of an explicit cursor before it is OPENed raises an EXCEPTION
(error code ORA-01001, INVALID CURSOR).

%FOUND 849

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:849

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:48:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

%ISOPEN
SEE ALSO SQL CURSOR, Chapter 27
FORMAT

cursor%ISOPEN

DESCRIPTION cursor must be either the name of an explicitly declared cursor or the implicit
cursor named SQL. Evaluates to TRUE if the named cursor is open, FALSE if it is not. SQL%ISOPEN
will always evaluate FALSE, because the SQL cursor is opened and closed automatically when a SQL
statement not explicitly declared is executed (see SQL CURSOR). %ISOPEN is used in PL/SQL logic;
it cannot be a part of a SQL statement.

%NOTFOUND
See %FOUND.

%ROWCOUNT
SEE ALSO CLOSE, DECLARE, DELETE, FETCH, INSERT, OPEN, SELECT, UPDATE, Chapter 27
FORMAT

cursor%ROWCOUNT

DESCRIPTION cursor must be either the name of an explicitly declared cursor, or the implicit
cursor named SQL. cursor%ROWCOUNT contains the cumulative total number of rows that have
been fetched from the active set in this cursor. This can be used to intentionally process only a fixed
number of rows, but is more commonly used as an exception handler for selects that are intended to
return just one row (for example select. . . into). In these cases, %ROWCOUNT is set to 0 if no rows
are returned (%NOTFOUND can make this test as well), and to 2 if more than one row is returned,
regardless of the actual number.

%ROWCOUNT is used in PL/SQL logic; it cannot be a part of a SQL statement. If SQL%ROWCOUNT
is used, it can only refer to the most recently opened implicit cursor. If no implicit cursor has been opened,
SQL%ROWCOUNT returns NULL.

%ROWTYPE
SEE ALSO FETCH, Chapter 27
FORMAT

{[user.]table | cursor}%ROWTYPE

DESCRIPTION %ROWTYPE declares a record variable to have the same structure as an entire
row in a table (or view), or as a row retrieved by the named cursor. %ROWTYPE is used as part of a
variable declaration and assures that the variable will contain the appropriate fields and datatypes to
handle all of the columns being fetched. If [user.]table is used, the table (or view) must exist in the
database.

To create a variable that will contain corresponding fields, use declare, a variable name, and
%ROWTYPE with the table name, and then select a row into the record. Because the variable has
the same structure as the table, you can reference the fields as variable.field, using notation similar
to table.column used in SQL statements. select. . .into and fetch. . .into are the only methods for loading
an entire record variable. Individual fields within the record can be loaded using := as shown here.

850 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:850

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:48:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

BOOKSHELF_RECORD.Publisher := 'PANDORAS';

If a cursor is used as the prefix for %ROWTYPE, then it can contain a select statement with only
as many columns as are needed. However, if a column that is fetched from a named cursor is an
expression, rather than a simple column name, the expression must be given an alias in the select
statement before it can be referenced using this technique.

%TYPE
SEE ALSO %ROWTYPE, Chapter 27
FORMAT

{[user.]table.column | variable}%TYPE

DESCRIPTION %TYPE is used to declare a variable to be of the same type as a previously
declared variable, or as a particular column in a table that exists in the database you're connected to.
EXAMPLE In this example a new variable, Writer, is declared to be the same type as the
AuthorName column in the AUTHOR table. Since Writer now exists, it can be used to declare yet
another new variable, Coauthor:

Writer AUTHOR.AuthorName%TYPE;
Coauthor Writer%TYPE;

& or && (Ampersand or Double Ampersand)
SEE ALSO :, ACCEPT, DEFINE, START, CONTAINS, Chapters 14 and 24
FORMAT For SQL*PLUS:

&integer
&variable
&&variable

For CONTEXT indexes:

select Title
from BOOK_REVIEW_CONTEXT
where CONTAINS(Review_Text, 'property & harvests')>0;

DESCRIPTION & and && can be used in several ways (&& applies only to the second definition
below):

■ Prefix for parameters in a SQL*PLUS start file. Values are substituted for &1, &2, etc. See START.

■ Prefix for a substitution variable in a SQL command in SQL*PLUS. SQL*PLUS will prompt for
a value if an undefined & or && variable is found. && will define the variable and thereby
preserve its value; & will not define or preserve the value, but only substitute what is entered
one time. See ACCEPT and DEFINE.

■ When using CONTEXT indexes, & is used to signal an AND condition for text searches
involving multiple search terms. If any of the search terms is not found, the text will not be
returned by the search.

' (Single Quotation Mark)
SEE ALSO " (Double Quotation Mark), Chapter 7

' (Single Quotation Mark) 851

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:851

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:48:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

FORMAT

'string'

DESCRIPTION ' surrounds a literal, such as a character string or date constant. To use one
quotation mark or an apostrophe in a string constant, use two ' marks (not a double quotation mark).
Avoid the use of apostrophes in data (and elsewhere) whenever possible.
EXAMPLE

select 'William' from DUAL;

produces this:

William

whereas this:

select 'William''s brother' from DUAL;

produces this:

William's brother

() (Parentheses)
SEE ALSO PRECEDENCE, SUBQUERY, UPDATE, Chapters 4, 12, and 15
DESCRIPTION encloses subqueries or lists of columns, or controls precedence within expressions.

* (Multiplication)
SEE ALSO +, -, /, Chapters 8 and 24
FORMAT

value1 * value2

DESCRIPTION value1 * value2 means value1 multiplied by value2. For CONTEXT indexes, * is
used to weight the individual search terms differently.

** (Exponentiation)
SEE ALSO POWER
FORMAT

x ** y

DESCRIPTION x is raised to the power y. x and y may be constants, variables, columns, or
expressions. Both must be numeric.
EXAMPLE 4**4 = 256

+ (Addition)
SEE ALSO -, *, /, Chapter 8
FORMAT

value1 + value2

852 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:852

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:48:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION value1 + value2 means value1 plus value2.

- (Subtraction [Form 1])
SEE ALSO +, *, /, Chapter 8, CONTAINS, MINUS, Chapter 24
FORMAT

value1 - value2

DESCRIPTION value1 - value2 means value1 minus value2. For CONTEXT indexes, a ‘-’ tells
the text search of two terms to subtract the score of the second term's search from the score of the first
term's search before comparing the result to the threshold score. For CTXCAT indexes, a ‘-’ tells the
text search engine to exclude the row from the result set if the term following the ‘-’ is found.

- (Hyphen [Form 2])
SEE ALSO Chapter 14
FORMAT

command text -
text -
text

DESCRIPTION SQL*PLUS command continuation. - continues a command on the following line.
EXAMPLE

ttitle left 'Current Portfolio' -
right 'November 1st, 1999' skip 1 -
center 'Industry Listings ' skip 4;

- (Comment)
SEE ALSO /* */, REMARK, Chapter 6
FORMAT

-- any text

DESCRIPTION -- tells Oracle a comment has begun. Everything from that point to the end of the
line is treated as a comment. These delimiters are used only within SQL itself or in PL/SQL and must
appear before the SQLTERMINATOR.
EXAMPLE

select Feature, Section, Page
-- this is just a comment
from NEWSPAPER -- this is another comment
where Section = 'F';

. (Period or Dot [Form 1])
FORMAT

&variable.suffix

DESCRIPTION The . is a variable separator, used in SQL*PLUS to separate the variable name
from a suffix, so that the suffix is not considered a part of the variable name.
EXAMPLE Here the suffix “st” is effectively concatenated to the contents of the variable &Avenue.

. (Period or Dot [Form 1]) 853

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:853

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:48:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

define Avenue = 21
select '100 &Avenue.st Street' from DUAL;

produces this:

100 21st Street

This same technique might also be used in a where clause.

. (Period or Dot [Form 2])
SEE ALSO SYNTAX OPERATORS, Chapters 4, 21
FORMAT

[user.][table.]column

DESCRIPTION The . is a name separator, used to specify the complete name of a column,
including (optionally) its table or user. The . is also used to address columns within abstract datatypes
during selects, updates, and deletes.
EXAMPLE

select Practice.BOOKSHELF.Title
from Practice.BOOKSHELF, Practice.BOOKSHELF_AUTHOR
where Practice.BOOKSHELF.Title = Practice.BOOKSHELF_AUTHOR.Title;

If the table contains columns based on an abstract datatype, the datatype's attributes may be accessed
via the . notation.

select C.Person.Address.City
from Company C
where C.Person.Address.State = 'FL';

See Chapter 4 for further examples.

.. (To)
See LOOP.

/ (Division [Form 1])
SEE ALSO +, -, *, Chapter 8
FORMAT

value1 / value2

DESCRIPTION value1 / value2 means value1 divided by value2.

/ (Slash [Form 2])
SEE ALSO ;, BUFFER, EDIT, GET, RUN, SET, SQLTERMINATOR, Chapter 14
DESCRIPTION / executes the SQL in the SQL buffer without displaying it, unlike RUN, which
displays it first.

/* */ (Comment)
SEE ALSO REMARK, Chapter 6

854 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:854

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:48:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

FORMAT

/* any text */

DESCRIPTION /* tells Oracle a comment has begun. Everything Oracle sees from that point
forward, even for many words and lines, it regards as a comment until it sees the ending */, which
ends the comment. Comments cannot be embedded within comments; that is, a /* is terminated by
the first following */, even if there is an intervening /*.
EXAMPLE

select Feature, Section, Page
/* this is a multi-line comment

used to extensively document the code */
from NEWSPAPER
where Section = 'F';

: (Colon, Host Variable Prefix)
SEE ALSO INDICATOR VARIABLE
FORMAT

:name

DESCRIPTION name is the name of a host variable. When PL/SQL is embedded in a host language
through an Oracle precompiler, host variables can be referenced from within the PL/SQL blocks by
prefixing their host language names with a colon. In effect, this is the host variable. If PL/SQL changes
its value through an assignment (:=), the value of the host variable is changed. They may be used
anywhere a PL/SQL variable can be used. The one exception is in assigning the value NULL to a host
variable, which is not supported directly, but requires the use of an indicator variable.
EXAMPLE

int BookCount;
...

select COUNT(*) into :BookCount from BOOKSHELF;

:= (Set Equal To)
SEE ALSO DECLARE, FETCH, SELECT INTO, Chapter 27
FORMAT

variable := expression

DESCRIPTION The PL/SQL variable is set equal to the expression, which may be a constant, NULL,
or a calculation with other variables, literals, and PL/SQL functions.
EXAMPLE

Extension := Quantity * Price;
Title := 'BARBERS WHO SHAVE THEMSELVES';
Name := NULL;

; (Semicolon)
SEE ALSO / (Slash), BUFFER, EDIT, GET, RUN, SQLTERMINATOR, CONTAINS, NEAR, Chapter 24

; (Semicolon) 855

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:855

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:49:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION ; executes the SQL or the command that precedes it. For CONTEXT indexes, ;
indicates that a proximity search should be executed for the specified text strings. If the search terms
are 'summer' and 'lease', then a proximity search for the two terms could be

select Text
from SONNET
where CONTAINS(Text,'summer;lease') >0;

When evaluating the text search results, text with the words 'summer' and 'lease' near to each
other in the text will have higher scores than text with the words 'summer' and 'lease' farther apart.

< < > > (PL/SQL Label Name Delimiter)
See BEGIN, BLOCK STRUCTURE, END, GOTO, LOOP, Chapter 27.

@ ("At" Sign [Form 1])
SEE ALSO @@, START
FORMAT @file
DESCRIPTION @ starts the SQL*PLUS start file named file. @ is similar to START, but does not
allow command line arguments.

@ ("At" Sign [Form 2])
SEE ALSO CONNECT, COPY, DATABASE LINK, Chapter 22
FORMAT

CON[NECT] user[/password] [@database];
COPY [FROM user/password@database]

[TO user/password@database]
{APPEND | CREATE | INSERT | REPLACE}
table [(column, [column]...)]
USING query;

SELECT... FROM [user.]table[link] [, [user.]table[@link]]...

DESCRIPTION @ prefixes a database name in a CONNECT or COPY command, or a link name
in a from clause.

@@ (Double "At" Sign)
SEE ALSO @ (Form 1), START
FORMAT

@@file

DESCRIPTION @@ starts a nested SQL*PLUS start file named file. @@ is similar to @, but differs
in that @@, when used in a command file, will search for a start file in the same directory as the command
file that called it (rather than in the directory you are in when you execute the command file).

{} (Curly Braces)
SEE ALSO CONTAINS, Chapter 24, Chapter 34
FORMAT For text searches, {} indicate that the enclosed text should be considered part of the
search string even if it is a reserved word. For example, if the search term is 'in and out,' and you
want to search for the entire phrase, then you must enclose the word 'and' within braces:

856 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:856

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:49:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

REM CONTAINS method for CONTEXT indexes:
select Title
from BOOK_REVIEW_CONTEXT
where CONTAINS(Review_Text, 'transactions {and} finances')>0;

Within Java, {} indicate the beginning and ending of a block. See Chapter 34 for examples of
Java blocks.

| (Vertical Bar)
SEE ALSO BTITLE, HEADSEP, TTITLE, Chapter 6, Chapter 24
FORMAT

text|text

DESCRIPTION When used in a SQL*PLUS column, ttitle or btitle command, | is the default
headsep character, and is used to denote the splitting of a line onto a second line. (When used in
listings in this Reference, | denotes a break between alternative choices: variable | literal would be
read “variable or literal.” On some machines this shows as a solid vertical bar.) Within text queries,
| signals an OR condition for searches involving multiple search terms. If either of the search terms
is found, and its search score exceeds the specified threshold value, the text will be returned by the
search.
EXAMPLE Here's how | is used as a headsep character.

TTITLE 'This is the First Line|and This is the Second'

produces this:

This is the First Line
and This is the Second

Here's how | is used as an OR clause in a text search query:

REM CONTAINS method for CONTEXT indexes:
select Title
from BOOK_REVIEW_CONTEXT
where CONTAINS(Review_Text, 'property | harvests')>0;
REM CATSEARCH method for CTXCAT indexes:
select Title
from BOOK_REVIEW_CTXCAT
where CATSEARCH(Review_Text, 'property | harvests', NULL)>0;

|| (Concatenation)
SEE ALSO . (Period or Dot [Form 1]), CONCAT, SUBSTR, Chapter 7
FORMAT

expression1 || expression2

DESCRIPTION || concatenates two strings together.
EXAMPLE Use || to display a column of cities, followed by a comma, a space, and the country:

select City||', '||Country from LOCATION;

ABS (Absolute Value)
SEE ALSO NUMBER FUNCTIONS, Chapter 8

ABS (Absolute Value) 857

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:857

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:49:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

FORMAT

ABS(value)

value must be a number, whether a literal number, the name of a number column, a literal
character string containing a valid number, or a character column containing only a valid number.
DESCRIPTION Absolute value is the measure of the magnitude of something, and is always a
positive number.
EXAMPLES

ABS(146) = 146
ABS(-30) = 30
ABS('-27.88') = 27.88

ABSTRACT DATATYPE
Abstract datatypes are datatypes that consist of one or more attributes. Rather than being constrained
to the standard datatypes of NUMBER, DATE, and VARCHAR2, abstract datatypes can consist of
multiple attributes and/or other, previously defined abstract datatypes. Abstract datatypes are also
known as user-defined types (UDTs). See Chapters 4 and 30 for examples, and CREATE TYPE for
creation syntax.

ACCEPT
SEE ALSO &, &&, DEFINE, Chapter 14
FORMAT

ACC[EPT] variable [NUM[BER]|CHAR|DATE] [FOR[MAT] format]
[DEF[AULT] default] [PROMPT text | NOPR[OMPT]] [HIDE]

DESCRIPTION ACCEPT takes input from a user’s keyboard and puts it in the named variable. If
the variable has not been previously DEFINEd, it is created. NUMBER, CHAR, or DATE determines
the datatype of the variable as it is input. CHAR will accept any numbers or characters. DATE accepts
character strings in valid date formats (or an error message will be returned). NUMBER will accept only
numbers and an optional decimal point and minus sign, otherwise ACCEPT will produce an error
message. FORMAT specifies the input format for the reply (such as A20). DEFAULT sets the default value
if a reply is not given. PROMPT displays the text to the user before accepting the input. NOPROMPT
skips a line and waits for input without displaying any prompt. Using neither PROMPT nor NOPROMPT
causes ACCEPT to invent a prompt asking for the value of the variable. HIDE suppresses the user's
entry, and is valuable for passwords and the like.
EXAMPLE The following prompts the user with “How hot?” and puts the user's entry in a number
variable named Temperature:

ACCEPT Temperature NUMBER PROMPT 'How hot? '

ACCUMULATE
See CONTAINS.

ACOS
SEE ALSO ASIN, ATAN, ATAN2, COS, COSH, EXP, LN, LOG, SIN, SINH, TAN, TANH

858 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:858

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:49:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

FORMAT

ACOS(value)

DESCRIPTION ACOS returns the arc cosine of a value. Input values range from -1 to 1; outputs
are expressed in radians.

ADD_MONTHS
SEE ALSO DATE FUNCTIONS, Chapter 9
FORMAT

ADD_MONTHS(date,integer)

DESCRIPTION ADD_MONTHS adds a number of months to date, and returns the date that is
that many months in the future. date must be a legitimate Oracle date. integer must be an integer; a
non-integer value will be truncated to the next smallest integer. A negative value for integer will return
a date in the past.
EXAMPLE ADD_MONTHS adds 1 month and 0.3 months to April 22, 2001:

select ADD_MONTHS(TO_DATE('22-APR-01'),1),
ADD_MONTHS(TO_DATE('22-APR-01'),.3) from DUAL;

ADD_MONTH ADD_MONTH
--------- ---------
22-MAY-01 22-APR-01

ALIAS
Alias is a temporary name assigned to a table or a column within a SQL statement and used to refer to
it elsewhere in the same statement (if a table) or in a SQL*PLUS command (if a column). You can use
the AS keyword to separate the column definition from its alias. See " (Double Quotation Mark), AS,
and SELECT. When used for a table, the alias is referred to as a correlation name.

ALL
SEE ALSO ANY, BETWEEN, EXISTS, IN, LOGICAL OPERATORS, Chapter 12
FORMAT

operator ALL list

DESCRIPTION != ALL is the equivalent of NOT IN. operator can be any one of =, >, >=, <, <=, !=
and list can be a series of literal strings (such as 'Talbot', 'Jones', 'Hild'), or a series of literal numbers
(such as 2, 43, 76, 32.06, 444), or a column from a subquery, where each row of the subquery becomes
a member of the list, such as this:

LOCATION.City != ALL (select City from WEATHER)

It also can be a series of columns in the where clause of the main query, as shown here:

Prospect != ALL (Vendor, Client)

RESTRICTIONS list cannot be a series of columns in a subquery, such as this:

Prospect != ALL (select Vendor, Client from . . .)

ALL 859

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:859

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:49:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Many people find this operator and the ANY operator very difficult to remember, because the logic for
some of their cases is not immediately intuitive. As a result, some form of EXISTS is usually substituted. The
combination of an operator with ALL and a list can be illustrated with the following explanations:

Page = ALL (4,2,7) Page is equal to every item in the list—no number qualifies. A subquery could
return a list where all the items were identical, and a value of Page could be equal
to every one of them, but this would be very rare.

Page > ALL (4,2,7) Page is greater than the greatest item in the list (4,2,7)—anything larger than 7
qualifies.

Page >= ALL (4,2,7) Page is greater than or equal to the greatest item in the list (4,2,7)—anything equal
to or larger than 7 qualifies.

Page < ALL (4,2,7) Page is less than the lowest item in the list (4,2,7)—anything below 2 qualifies.

Page <= ALL (4,2,7) Page is less than or equal to the lowest item in the list (4,2,7)—anything equal to
or lower than 2 qualifies.

Page != ALL (4,2,7) Page is not equal to any item in the list—any number qualifies except 4, 2, and 7

ALLOCATE (Embedded SQL)
SEE ALSO DECLARE CURSOR, Precompiler documentation
FORMAT

EXEC SQL [AT { db_name | :host_variable }]
ALLOCATE { :cursor_variable | :host_ptr }
[[INDICATOR] :ind_ptr]

DESCRIPTION The ALLOCATE clause allocates a cursor variable that will be referenced in a
PL/SQL block. See the precompiler documentation for details on ALLOCATE and related clauses such
as the host pointer.

ALTER CLUSTER
SEE ALSO CREATE CLUSTER, CREATE TABLE, STORAGE, Chapter 20
FORMAT
alter_cluster::=

860 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:860

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:49:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

physical_attributes_clause::=

allocate_extent_clause::=

deallocate_unused_clause::=

parallel_clause::=

DESCRIPTION Descriptions of the parameters can be found under CREATE TABLE. They have
the same purpose and effect, except that here they are used to alter a cluster. Size is described under
CREATE CLUSTER. In order to alter a cluster, you must either own the cluster or have ALTER ANY
CLUSTER system privilege.

All tables in a cluster use the values for PCTFREE, PCTUSED, INITRANS, MAXTRANS,
TABLESPACE, and STORAGE set by CREATE CLUSTER. ALTER CLUSTER changes these values for
future cluster blocks, but does not affect those that already exist. ALTER CLUSTER does not allow
changing the extent parameters in STORAGE. The DEALLOCATE UNUSED clause allows the cluster
to shrink in size, freeing unused space.

ALTER CLUSTER 861

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:861

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:49:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

EXAMPLE

alter cluster BOOKandAUTHOR size 1024;

ALTER DATABASE
SEE ALSO ALTER ROLLBACK SEGMENT, CREATE DATABASE, RECOVER, START UP,
SHUTDOWN, Chapter 40
FORMAT
alter_database::=

startup_clauses::=

recovery_clauses::=

862 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:862

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:49:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

general_recovery::=

full_database_recovery::=

partial_database_recovery::=

ALTER DATABASE 863

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:863

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:49:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

parallel_clause::=

managed_standby_recovery::=

recover_clause::=

864 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:864

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:49:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

cancel_clause::=

finish_clause::=

database_file_clauses::=

ALTER DATABASE 865

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:865

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:49:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

autoextend_clauses::=

maxsize_clause::=

logfile_clauses::=

866 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:866

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:49:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

logfile_descriptor::=

controlfile_clauses::=

trace_file_clause::=

standby_database_clauses::=

ALTER DATABASE 867

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:867

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:49:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

commit_switchover_clause::=

default_settings_clauses::=

set_time_zone_clause::=

conversion_clauses::=

redo_thread_clauses::=

868 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:868

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:49:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

security_clause::=

DESCRIPTION To alter a database, you must have the ALTER DATABASE system privilege.
database is the database name, and must be eight or fewer characters long.
When a database is first created, it is MOUNTed in EXCLUSIVE mode, meaning no one but its

creator has access to it. To allow multiple instances to access the database, use MOUNT PARALLEL
if you have installed the Oracle Real Application Clusters option.

After mounting a database, you OPEN it. RESETLOGS resets the redo log, cleaning out any redo
entries. You use this option to restore a database after a partial recovery from a media failure. The
NORESETLOGS option leaves everything the same when you OPEN the database.

You can RECOVER the database with a recover clause. This command performs media recovery
for a lost database. You can use multiple recovery processes to apply redo entries to datafiles for each
instance. See RECOVER. You can BACKUP a CONTROLFILE to the specified file or to a trace file.

STANDBY databases provide a mechanism for automated failover in the event of a database
failure. See the Oracle9i Database Administrator’s Guide for details on the creation and management
of standby databases.

RENAME changes the name of an existing database or log file. DBAs can also CREATE DATAFILEs
and CREATE TEMPFILEs and manage the increments by which datafiles autoextend. The AUTOEXTEND
clause can be used to dynamically extend datafiles as needed, in increments of NEXT size, to a
maximum of MAXSIZE (or UNLIMITED). You can use the RESIZE clause to increase or decrease the
size of an existing datafile. You can bring a file ONLINE or take it OFFLINE with the datafile clause.
You can CREATE a new DATAFILE to replace an old one to re-create a data file lost without backup.

ARCHIVELOG and NOARCHIVELOG define the way redo log files are used. NOARCHIVELOG
is the default, and using it means that redo files will be reused without saving their contents elsewhere.
This provides instance recovery except from a media failure, such as a disk crash. ARCHIVELOG forces
redo files to be archived (usually to another disk or a tape), so that you can recover from a media failure.
This mode also supports instance recovery.

ADD LOGFILE adds a redo file or files to the database. file_definition specifies the LOGFILE names
and sizes. SIZE is the number of bytes set aside for this file. Suffixing this with K multiplies the value by
1024; using M multiplies it by 1048576. REUSE (without SIZE) means destroy the contents of any file
by this name and give the name to this database. SIZE with REUSE creates the file if it doesn't exist, and
checks its size if it does. SIZE alone will create the file if it doesn't exist, but will return an error if it
does. The log file is assigned to a thread, either explicitly with the thread clause or to the thread assigned
to the current instance of Oracle. A GROUP is a collection of log files. You can add a GROUP of log
files by listing them, and you can name the group with an integer.

ADD LOGFILE MEMBER adds new files to an existing log file group, either by specifying the GROUP
integer or by listing all the log files in the group.

DROP LOGFILE drops an existing redo log file group. DROP LOGFILE MEMBER drops one or more
members of a log file group.

You can RENAME GLOBAL_NAME to change the name of the database. If you specify a domain,
tell Oracle where the database is on the network. You must change references to the database from
remote databases as well.

ALTER DATABASE 869

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:869

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:49:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

You can use the RESET COMPATIBILITY option, in conjunction with the COMPATIBLE parameter
in the initialization parameter file, to revert from compatibility with one version of Oracle to a previous
version.

You can ENABLE or DISABLE a THREAD. PUBLIC makes the thread available to any instance not
requesting a specific thread.

ALTER DIMENSION
SEE ALSO CREATE DIMENSION, DROP DIMENSION
FORMAT
alter_dimension::=

level_clause::=

hierarchy_clause::=

870 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:870

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:49:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

join_clause::=

attribute_clause::=

DESCRIPTION ALTER DIMENSION modifies the attributes, hierarchy, and levels of an existing
dimension. See CREATE DIMENSION.
EXAMPLE

alter dimension TIME drop hierarchy MONTH_TO_DATE;

ALTER FUNCTION
SEE ALSO CREATE FUNCTION, DROP FUNCTION, Chapter 29
FORMAT
alter_function::=

DESCRIPTION ALTER FUNCTION recompiles a PL/SQL function. You can avoid runtime overhead
and error messages by explicitly compiling a function in advance. To alter a function, you must either own
the function or have the ALTER ANY PROCEDURE system privilege.

ALTER INDEX
SEE ALSO CREATE INDEX, DROP INDEX, STORAGE, Chapters 18 and 20
FORMAT
alter_index::=

ALTER INDEX 871

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:871

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:49:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

deallocate_unused_clause::=

allocate_extent_clause::=

872 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:872

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:49:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

parallel_clause::=

physical_attributes_clause::=

logging_clause::=

rebuild_clause::=

ALTER INDEX 873

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:873

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:49:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

key_compression::=

alter_index_partitioning::=

modify_index_default_attrs::=

modify_index_partition::=

874 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:874

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:49:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

rename_index_partition::=

drop_index_partition::=

split_index_partition::=

index_partition_description::=

segment_attributes_clause::=

modify_index_subpartition::=

DESCRIPTION user is the user who owns the index you wish to alter (if you are not that user, you
must have DBA privileges). index is the name of an existing index. See CREATE TABLE for a description
of INITRANS and MAXTRANS. The default for INITRANS for indexes is 2; MAXTRANS is 255. STORAGE
contains subclauses that are described under STORAGE. You must have INDEX privilege on the table
in order to create an index, and you must also either own the index or have the ALTER ANY INDEX
system privilege.

ALTER INDEX 875

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:875

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:50:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

You can use the REBUILD clause of the ALTER INDEX command to change the storage characteristics
of an existing index. REBUILD uses the existing index as the basis for the new index. All index storage
commands are supported, such as STORAGE (for extent allocation), TABLESPACE (to move the index
to a new tablespace), and INITRANS (to change the initial number of entries).

You can modify, rename, drop, split, or rebuild index partitions.
COMPRESS enables key compression, eliminating repeated occurrence of key column values for

nonunique indexes. integer specifies the prefix length (number of prefix columns to compress). By
default, indexes are not compressed. You cannot compress a bitmapped index.

COMPUTE STATISTICS generates statistics for the cost based optimizer at the time the index is rebuilt.

ALTER INDEXTYPE
SEE ALSO CREATE INDEXTYPE, DROP INDEXYPE
FORMAT
alter_indextype::=

using_type_clause::=

DESCRIPTION Use ALTER INDEXTYPE to add or drop an operator of the indextype, to modify
the implementation type, or to change the properties of the indextype.

ALTER JAVA
SEE ALSO CREATE JAVA, DROP JAVA, Chapter 34
FORMAT
alter_java::=

876 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:876

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:50:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

invoker_rights_clause::=

DESCRIPTION ALTER JAVA recompiles a Java source schema object. You can also use this
command to change the authorization enforced (definer or current user). To alter Java source schema
objects, you must either own the source or class or have the ALTER ANY PROCEDURE system privilege.

ALTER MATERIALIZED VIEW
SEE ALSO CREATE MATERIALIZED VIEW, DROP MATERIALIZED VIEW, MATERIALIZED VIEW,
Chapter 23
FORMAT
alter_materialized_view::=

ALTER MATERIALIZED VIEW 877

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:877

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:50:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

physical_attributes_clause::=

data_segment_compression::=

LOB_storage_clause::=

878 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:878

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:50:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

LOB_parameters::=

modify_LOB_storage_clause::=

modify_LOB_parameters::=

ALTER MATERIALIZED VIEW 879

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:879

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:50:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

parallel_clause::=

logging_clause::=

allocate_extent_clause::=

deallocate_unused_clause::=

alter_iot_clauses::=

index_org_table_clause::=

880 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:880

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:50:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

index_org_overflow_clause::=

alter_overflow_clause::=

add_overflow_clause::=

scoped_table_ref_constraint::=

alter_mv_refresh::=

ALTER MATERIALIZED VIEW 881

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:881

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:50:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION The keyword SNAPSHOT is supported as a replacement for MATERIALIZED
VIEW for backward compatibility.

ALTER MATERIALIZED VIEW lets you change the storage characteristics or refresh mode and
times of a materialized view. You can also enable or disable query rewrite for the materialized view.
To alter a materialized view, you must own the materialized view or have ALTER ANY SNAPSHOT or
ALTER ANY MATERIALIZED VIEW system privilege. See CREATE MATERIALIZED VIEW and Chapter 23
for details.
EXAMPLE
alter materialized view MONTHLY_SALES

enable query rewrite;

ALTER MATERIALIZED VIEW LOG
SEE ALSO CREATE MATERIALIZED VIEW, CREATE MATERIALIZED VIEW LOG, DROP
MATERIALIZED VIEW LOG, Chapter 23
FORMAT
alter_materialized_view_log::=

new_values_clause::=

882 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:882

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:50:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

physical_attributes_clause::=

allocate_extent_clause::=

parallel_clause::=

DESCRIPTION The keyword SNAPSHOT is supported as a replacement for MATERIALIZED
VIEW for backward compatibility.

ALTER MATERIALIZED VIEW LOG lets you change the storage characteristics of a materialized
view log. To alter the log, you must either have ALTER privilege on the log table, or you must have the
ALTER ANY TABLE system privilege. See CREATE MATERIALIZED VIEW LOG and Chapter 23.

ALTER OUTLINE
SEE ALSO CREATE OUTLINE, DROP OUTLINE
FORMAT
alter_outline::=

ALTER OUTLINE 883

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:883

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:50:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION You can use ALTER OUTLINE to rename a stored outline or to assign it to a
different category. Stored outlines maintain sets of hints for previously executed queries. See the
Oracle9i DBA Handbook.

ALTER PACKAGE
SEE ALSO CREATE PACKAGE, DROP PACKAGE, Chapter 29
FORMAT
alter_package::=

DESCRIPTION ALTER PACKAGE recompiles a package specification and/or body. If you recompile
the specification using PACKAGE, you recompile both the specification and the body. Recompiling the
specification will cause referencing procedures to be recompiled. You can recompile the BODY without
affecting the specification. To alter a package, you must either be the owner of the package or have ALTER
ANY PROCEDURE system privilege.

ALTER PROCEDURE
SEE ALSO CREATE PROCEDURE, DROP PROCEDURE, Chapter 29
FORMAT
alter_procedure::=

DESCRIPTION ALTER PROCEDURE recompiles a PL/SQL procedure. You can avoid runtime
overhead and error messages by explicitly compiling a procedure in advance. To alter a procedure,
you must either own the procedure or have ALTER ANY PROCEDURE system privilege.

ALTER PROFILE
SEE ALSO CREATE PROFILE, DROP PROFILE, Chapter 19
FORMAT
alter_profile::=

884 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:884

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:50:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

resource_parameters::=

password_parameters::=

DESCRIPTION ALTER PROFILE lets you modify a particular profile setting. See CREATE PROFILE
for details.

ALTER PROFILE 885

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:885

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:50:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ALTER RESOURCE COST
SEE ALSO CREATE PROFILE
FORMAT
alter_resource_cost::=

DESCRIPTION The resource cost formula calculates the total cost of resources used in an Oracle
session. ALTER RESOURCE COST lets you assign a weight to several resources. CPU_PER_SESSION is
the amount of CPU used in a session in hundredths of a second. CONNECT_TIME is the elapsed time
of the session in minutes. LOGICAL_READS_ PER_SESSION is the number of data blocks read from
both memory and disk during a session. PRIVATE_SGA is the number of bytes in a private System
Global Area (SGA), which is only relevant if you are using the shared server architecture. By assigning
weights, you change the formula used to calculate total resource cost.

ALTER ROLE
SEE ALSO CREATE ROLE, DROP ROLE, Chapter 19
FORMAT
alter_role::=

DESCRIPTION ALTER ROLE lets you modify a role. See CREATE ROLE and Chapter 19 for details.

ALTER ROLLBACK SEGMENT
SEE ALSO CREATE DATABASE, CREATE ROLLBACK SEGMENT, CREATE TABLESPACE, DROP
ROLLBACK SEGMENT, STORAGE, Chapter 40

886 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:886

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:50:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

FORMAT
alter_rollback_segment::=

DESCRIPTION segment is a name assigned to this rollback segment. STORAGE contains
subclauses that are described under STORAGE. The INITIAL and MINEXTENTS options are not
applicable. A rollback segment can be taken ONLINE or OFFLINE while the database is open.
You can SHRINK it to a specified size (the default is its OPTIMAL size).

ALTER SEQUENCE
SEE ALSO AUDIT, CREATE SEQUENCE, DROP SEQUENCE, GRANT, REVOKE, NEXTVAL
and CURRVAL under PSEUDO-COLUMNS, Chapter 20
FORMAT
alter_sequence::=

DESCRIPTION All of these options affect the future use of an existing sequence with the name
sequence. (Note that start with is not available. To change the value with which a sequence starts,
you must DROP the sequence and CREATE it again.)

ALTER SEQUENCE 887

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:887

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:50:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

A new MAXVALUE cannot be specified that is lower than the existing CURRVAL on an ascending
sequence (one which has a positive number as its INCREMENT BY). A similar rule applies for MINVALUE
on a descending sequence (which has a negative INCREMENT BY).

To alter a sequence, you must have ALTER privilege on the sequence or have the ALTER ANY
SEQUENCE system privilege.

All other features of ALTER SEQUENCE work as they do in CREATE SEQUENCE, except that they
apply to an existing sequence. See CREATE SEQUENCE for details.

ALTER SESSION
SEE ALSO Oracle9i Performance Guide and Reference, Oracle9i Database Administrator's Guide
FORMAT
alter_session::=

alter_session_set_clause::=

DESCRIPTION The ALTER SESSION command alters settings in effect for the current user session.
To generate performance statistics for SQL statement processing by Oracle, set SQL_TRACE to TRUE. To
turn them off, set it to FALSE. The initialization parameter SQL_TRACE sets the initial value for this trace.

ADVISE allows you to send transaction handling advice to remote databases involved in distributed
transactions. You can CLOSE a DATABASE LINK to eliminate the session's link to a remote database.

You can specify whether procedures can COMMIT or not, the degree to which DML operations
are parallelized, and whether resumable operations are enabled. If you enable parallel DML or DDL
for your session, you still must specify the PARALLEL hint for the operations to be executed in parallel.

ALTER SNAPSHOT
See ALTER MATERIALIZED VIEW

888 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:888

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:50:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ALTER SNAPSHOT LOG
See ALTER MATERIALIZED VIEW LOG

ALTER SYSTEM
SEE ALSO ALTER SESSION, ARCHIVE_LOG, CREATE PROFILE
FORMAT
alter_system::=

ALTER SYSTEM 889

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:889

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:50:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

archive_log_clause::=

end_session_clause::=

alter_system_set_clause::=

alter_system_reset_clause::=

890 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:890

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:50:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION ALTER SYSTEM lets you configure your Oracle instance in many ways. Via the
SET options, you can change many of the initialization parameter values while the database is running.
If you are using a system parameter file, the changes will be saved and will be in effect the next time
the database is started. If you are using an initialization parameter file (such as init.ora), you will need
to modify that file so the change is in effect during subsequent database startups.

You can also use the ALTER SYSTEM command to SWITCH LOGFILE, forcing Oracle to change
log file groups.

CHECKPOINT performs a checkpoint for (GLOBAL) all instances or (LOCAL) your instance of
Oracle. CHECK DATAFILES verifies that every instance (GLOBAL) or your instance (LOCAL) of Oracle
can access all online data files.

ENABLE or DISABLE RESTRICTED SESSION turns on or off a restricted session, accessible only
to users with that system privilege.

ENABLE or DISABLE DISTRIBUTED RECOVERY turns this option on or off, respectively.
FLUSH SHARED_POOL clears all data from the SGA shared pool.
SUSPEND suspends database activity; RESUME re-enables the database.
QUIESCE RESTRICTED places the database into a consistent state during which only SYS and SYSTEM,

connected as SYSDBA, can perform operations. UNQUIESCE returns the database to its normal mode.
ARCHIVE LOG manually archives the redo log files or enables automatic archiving.
KILL SESSION ends a session with both the SID column and the SERIAL# column of the V$SESSION

table identifying the session. DISCONNECT SESSION, unlike KILL SESSION, gives you the option of
forcing the session's outstanding transactions to be posted prior to the termination of the session.

ALTER TABLE
SEE ALSO CREATE TABLE, DISABLE, DROP, ENABLE, Chapters 18, 20, 31, and 32
FORMAT
alter_table::=

ALTER TABLE 891

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:891

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:50:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

alter_table_properties::=

physical_attributes_clause::=

logging_clause::=

892 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:892

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:51:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

data_segment_compression::=

supplemental_lp_grp_clauses::=

allocate_extent_clause::=

deallocate_unused_clause::=

upgrade_table_clause::=

records_per_block_clause::=

ALTER TABLE 893

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:893

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:51:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

parallel_clause::=

row_movement_clause::=

alter_iot_clauses::=

index_org_table_clause::=

mapping_table_clauses::=

key_compression::=

index_org_overflow_clauses::=

894 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:894

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:51:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

segment_attributes_clause::=

alter_overflow_clauses::=

add_overflow_clause::=

alter_mapping_table_clause::=

column_clauses::=

ALTER TABLE 895

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:895

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:51:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

add_column_clause::=

modify_column_clause::=

modify_col_properties::=

modify_col_substitutable::=

drop_column_clause::=

rename_column_clause::=

896 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:896

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:51:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

modify_collection_retrieval::=

constraint_clauses::=

drop_constraint_clause::=

column_properties::=

object_type_col_properties::=

substitutable_column_clause::=

ALTER TABLE 897

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:897

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:51:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

nested_table_col_properties::=

object_properties::=

supplemental_logging_props::=

physical_properties::=

898 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:898

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:51:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

varray_col_properties::=

LOB_storage_clause::=

LOB_parameters::=

modify_LOB_storage_clause::=

ALTER TABLE 899

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:899

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:51:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

modify_LOB_parameters::=

alter_varray_col_properties::=

LOB_partition_storage::=

XMLType_column_properties::=

900 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:900

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:51:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

XMLType_storage::=

XMLSchema_spec::=

alter_external_table_clause::=

external_data_properties::=

ALTER TABLE 901

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:901

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:51:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

alter_table_partitioning::=

modify_table_default_attrs::=

902 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:902

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:51:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

set_subpartition_template::=

modify_table_partition::=

modify_range_partition::=

modify_hash_partition::=

ALTER TABLE 903

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:903

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:51:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

modify_list_partition::=

modify_table_subpartition::=

move_table_partition::=

move_table_subpartition::=

add_table_partition::=

add_range_partition_clause::=

add_hash_partition_clause::=

904 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:904

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:52:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

add_list_partition_clause::=

coalesce_table_partition::=

drop_table_partition::=

drop_table_subpartition::=

rename_partition_subpart::=

truncate_partition_subpart::=

split_table_partition::=

ALTER TABLE 905

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:905

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:52:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

split_table_subpartition::=

merge_table_partitions::=

merge_table_subpartitions::=

exchange_partition_subpart::=

exceptions_clause::=

906 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:906

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:52:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

list_values_clause::=

range_values_clause::=

partitioning_storage_clause::=

partition_attributes::=

add_hash_subpartition::=

ALTER TABLE 907

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:907

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:52:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

add_list_subpartition::=

modify_hash_subpartition::=

modify_list_subpartition::=

table_partition_description::=

908 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:908

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:52:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

partition_level_subpartition::=

partition_spec::=

subpartition_spec::=

update_global_index_clause::=

parallel_clause::=

move_table_clause::=

ALTER TABLE 909

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:909

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:52:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

enable_disable_clause::=

using_index_clause::=

global_partitioned_index::=

index_partitioning_clause::=

910 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:910

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:52:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION ALTER TABLE changes the definition of an existing table. ADD allows you to add
a new column to the end of an existing table, or add a constraint to the table's definition. These follow
the same format used in CREATE TABLE.

MODIFY changes an existing column, with some restrictions:

■ You may change the type of column or decrease its size only if the column is NULL
in every row of the table.

■ A NOT NULL column may be added only to a table with no rows.

■ An existing column can be modified to NOT NULL only if it has a non-NULL value
in every row or a default value is specified during the alteration.

■ Increasing the length of a NOT NULL column without specifying NULL will leave
it NOT NULL.

You can use the SET UNUSED clause to mark columns as unused. When you use the DROP
UNUSED COLUMNS clause, the table will be reorganized and all unused columns will be dropped.

ALLOCATE EXTENT lets you allocate a new extent explicitly. ENABLE and DISABLE enable and
disable constraints. All other features of ALTER TABLE work as they do in CREATE TABLE, except that
they apply to an existing table. See CREATE TABLE for details.

In order to alter a table, you must either have the ALTER privilege for that table or the ALTER ANY
TABLE system privilege.

CACHE specifies that the blocks for this table, when read, are to be marked as "most recently
used" and kept in the data block buffer cache for as long as possible. This option is useful if the
tables are small and fairly static. NOCACHE (the default) reverts the table back to the normal LRU
list behavior.

PARALLEL, along with DEGREE and INSTANCES, specifies the parallel characteristics of the table
(for databases using the Real Application Clusters option). DEGREE specifies the number of query
servers to use; INSTANCES specifies how the table is to be split among instances of Real Application
Clusters for parallel query processing. An integer n specifies that the table is to be split among the
specified number of available instances.

You can use ALTER TABLE to ADD, DROP, EXCHANGE, MODIFY, MOVE, SPLIT, or TRUNCATE
partitions. See Chapter 18 and CREATE TABLE.

The LOB storage clauses specify the storage area to be used for LOB data that will not be stored in
the table itself (out-of-line).

The MOVE ONLINE option allows you to access a table for DML operations during an online
table reorganization. The MOVE and MOVE ONLINE options are only available for non-partitioned
index-organized tables. During a MOVE ONLINE operation, parallel DML operations against the table
are not supported.

ALTER TABLESPACE
SEE ALSO CREATE TABLESPACE, DROP TABLESPACE, STORAGE, Chapters 20, 40

ALTER TABLESPACE 911

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:911

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:52:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

FORMAT
alter_tablespace::=

datafile_tempfile_clauses::=

912 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:912

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:52:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION tablespace is the name of an existing tablespace. ADD DATAFILE adds to the
tablespace a file or series of files described according to a file_definition, which specifies the database
file names and sizes.

The file name format is operating system specific. SIZE is the number of bytes set aside for this file.
Suffixing this with K multiplies the value by 1024; using M multiplies it by 1048576. REUSE (without
SIZE) means destroy the contents of any file by this name and assign it for use by this tablespace. SIZE
and REUSE create the file if it doesn't exist, and check its size if it does. SIZE alone will create the file if
it doesn't exist, but will return an error if it does.

You can use the AUTOEXTEND clause to dynamically resize your datafiles as needed, in increments
of NEXT size, to a maximum of MAXSIZE (or UNLIMITED).

NOLOGGING specifies the default action for the writing of redo log entries for certain types of
transactions in the tablespace. You can override this setting at the object level. See Chapter 18.

RENAME changes the name of an existing tablespace file. The tablespace should be offline while
the renaming takes place. Note that RENAME does not actually rename the files; it only associates their
new names with this tablespace. Actually renaming operating system files must be done with the
operating system itself. To properly rename files, first ALTER TABLESPACE OFFLINE, rename the files
in the operating system, RENAME them with ALTER TABLESPACE, and then ALTER TABLESPACE
ONLINE.

DEFAULT STORAGE defines the default storage for all future objects created in this tablespace,
unless those defaults are overridden, such as by CREATE TABLE. ONLINE brings the tablespace back
online. OFFLINE takes it offline, either without waiting for its users to logoff (IMMEDIATE), or after
they’ve all stopped using it (NORMAL).

MINIMUM EXTENT sets the minimum size for any extent created in the tablespace. COALESCE
combines neighboring free extents in the tablespace into fewer, larger free extents.

READ ONLY tablespaces are never updated by Oracle, and can be placed on read-only media.
Read-only tablespaces do not need repeated backups. All tablespaces are created read-write. To change
a read-only tablespace back to read-write status, use the READ WRITE clause.

BEGIN BACKUP can be executed at any time. It puts the tablespace in a state such that an online
backup can occur while users are accessing the tablespace. END BACKUP indicates the system backup
is finished. If the tablespace is online, any system backup must also back up archive redo logs. If it is
offline, this is unnecessary.

TEMPORARY tablespaces cannot contain any permanent objects (such as tables or indexes); they
can only hold the temporary segments used by Oracle during the processing of sorting operations and
index creations. A PERMANENT tablespace can hold every type of Oracle segment.

ALTER TRIGGER
SEE ALSO CREATE TRIGGER, DROP TRIGGER, ENABLE, TRIGGER, Chapter 28
FORMAT
alter_trigger::=

ALTER TRIGGER 913

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:913

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:52:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION ALTER TRIGGER enables, disables, renames or recompiles a PL/SQL trigger. See
CREATE TRIGGER and Chapter 28 for a discussion of triggers. To use the ALTER TRIGGER command,
you must either own the trigger or have ALTER ANY TRIGGER system privilege.

You can use the COMPILE clause to manually recompile an invalid trigger object. Since triggers
have dependencies, they can become invalid if an object the trigger depends on changes. The DEBUG
clause allows PL/SQL information to be generated during trigger recompilation.

ALTER TYPE
SEE ALSO CREATE TYPE, CREATE TYPE BODY, Chapters 4 and 30
FORMAT
alter_type::=

invoker_rights_clause::=

element_spec::=

inheritance_clauses::=

914 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:914

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:52:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

subprogram_clauses::=

procedure_spec::=

function_spec::=

constructor_spec::=

map_order_function_spec::=

pragma_clause::=

ALTER TYPE 915

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:915

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:52:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

alter_method_spec::=

alter_attribute_definition::=

dependent_handling_clause::=

exceptions_clause::=

DESCRIPTION ALTER TYPE allows you to modify existing abstract datatypes. When you create a
method that acts on the abstract datatype, you use the CREATE TYPE BODY command (see entry in
this chapter). Each method defined in the type body must first be listed in the type. Member functions
typically use the PRAGMA RESTRICT_REFERENCES option with the WNDS (Write No Database State)
constraint.

ALTER USER
SEE ALSO CREATE TABLESPACE, GRANT, CREATE PROFILE, CREATE USER, Chapter 19
FORMAT

916 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:916

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:52:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

alter_user::=

proxy_clause::=

ALTER USER 917

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:917

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:52:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION You use ALTER USER to change a user's password, or the DEFAULT tablespace
(for objects the user owns) or TEMPORARY tablespace (for temporary segments used by the user).
Without ALTER USER, the defaults for both of these are set by the defaults of the first tablespace (both
for objects and temporary segments) to which the user is GRANTed resource and the default temporary
tablespace defined at the database level. ALTER USER can also change the quota, the resource profile,
or the default role (see CREATE USER). You can use the PASSWORD EXPIRE clause to force a user's
password to expire, in which case the user must change his or her password during the next login. The
ACCOUNT UNLOCK clause allows you to unlock an account that has exceeded its maximum number
of consecutive failed login attempts. See CREATE PROFILE for details on password control. To alter a
user, you must have the ALTER USER system privilege.

You can use the PROXY clause to connect as the specified user and to activate all, some, or none
of the user's roles. PROXY is typically used in three-tier applications involving application servers.

ALTER VIEW
SEE ALSO CREATE VIEW, DROP VIEW, Chapter 18
FORMAT
alter_view::=

DESCRIPTION ALTER VIEW recompiles a view or alters its constraints. To alter a view, you must
either own the view or have ALTER ANY TABLE system privilege.

ANALYZE
SEE ALSO Chapter 38
FORMAT

918 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:918

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:52:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

analyze::=

compute_statistics_clause::=

estimate_statistics_clause::=

validation_clauses::=

ANALYZE 919

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:919

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:52:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

for_clause::=

into_clause::=

DESCRIPTION Oracle recommends you use the DBMS_STATS package in place of the ANALYZE
command, but ANALYZE offers capabilities not yet found in DBMS_STATS. ANALYZE, unlike
DBMS_STATS, supports the ability to sample a specific number of rows, to validate an index, to list
chained rows, and to collect data on freelist blocks.

ANALYZE lets you collect statistics about a table, cluster, partition, or index for the optimizer,
storing them in the data dictionary; it lets you delete these statistics; it validates the structure of an
object; and it identifies migrated and chained rows of a table or cluster with a listing in a local table.
Estimating is usually faster and pretty much as accurate as COMPUTE for optimizer statistics. You use
the VALIDATE STRUCTURE clause to test an object for possible data corruption. To analyze a table,
you must either own the table or have the ANALYZE ANY system privilege.

You can use the FOR clause with COMPUTE STATISTICS and ESTIMATE STATISTICS. The FOR
clause allows you to alter the default behavior of ANALYZE. You can analyze a table without its indexes
(FOR TABLE), a table and all of its indexed columns (FOR TABLE FOR INDEXED COLUMNS), just the
indexed columns (FOR ALL INDEXED COLUMNS), or just specific columns. The SIZE parameter is
used to populate data histograms used by the cost-based optimizer during advanced tuning efforts.

The LIST CHAINED ROWS clause records information about row chaining in a table you specify.

AND
See LOGICAL OPERATORS, PRECEDENCE, CONTAINS.

ANSI
The American National Standards Institute sets standards for the SQL language and its many elements.

ANY
SEE ALSO ALL, BETWEEN, EXISTS, IN, LOGICAL OPERATORS, Chapter 12
FORMAT

operator ANY list

920 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:920

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:52:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION = ANY is the equivalent of IN. operator can be any one of =, >, >=, <, <=, != and
list can be a series of literal strings (such as 'Talbot', 'Jones', or 'Hild'), or series of literal numbers (such
as 2, 43, 76, 32.06, or 444), or a column from a subquery, where each row of the subquery becomes a
member of the list, as shown here:

LOCATION.City = ANY (select City from WEATHER)

It also can be a series of columns in the where clause of the main query, as shown here:

Prospect = ANY (Vendor, Client)

RESTRICTIONS list cannot be a series of columns in a subquery, like this:

Prospect = ANY (select Vendor, Client from . . .)

Many people find this operator and the ALL operator very difficult to remember, because the logic
for some of their cases is not immediately intuitive. As a result, some form of EXISTS is usually substituted.

The combination of an operator with ANY and a list can be illustrated with these explanations:

Page = ANY (4,2,7) Page is in the list (4,2,7)—2, 4, and 7 all qualify.

Page > ANY (4,2,7) Page is greater than any single item in the list (4,2,7)—even 3 qualifies, because
it is greater than 2.

Page >= ANY (4,2,7) Page is greater than or equal to any single item in the list (4,2,7)—even 2
qualifies, because it is equal to 2.

Page < ANY (4,2,7) Page is less than any single item in the list (4,2,7)—even 6 qualifies, because it
is less than 7.

Page <= ANY (4,2,7) Page is less than or equal to any single item in the list (4,2,7)—even 7 qualifies.

Page != ANY (4,2,7) Page is not equal to any single item in the list (4,2,7)—any number qualifies so
long as the list has more than one value. With only one value, != ANY is the
equivalent of !=.

APPEND
SEE ALSO CHANGE, DEL, EDIT, LIST, Chapter 6
FORMAT

A[PPEND] text

DESCRIPTION APPEND is a feature of the SQL*PLUS command line editor. APPEND places the
text at the end of the current line in the current buffer, with no intervening spaces. If you want a space
between the end of the current line and text, put two spaces between APPEND and text. If you want to
append a semicolon at the end of a line, put two of them together (one of them will be regarded as a
command terminator and discarded).
EXAMPLE

APPEND ;;

APPLICATION
An application is a set of forms, menus, reports, and other components that satisfies a particular business
function. For example, you might build an application to serve as an order entry system.

APPLICATION 921

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:921

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:52:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ARCH PROCESS
One of the background processes used by Oracle, ARCH performs automatic archiving of redo log
files when the database is used in ARCHIVELOG mode. See BACKGROUND PROCESS.

ARCHIVE
In a general sense, archiving means to save data for possible later use. In a specific sense, it means
to save the data found in the online redo logs, in the event that the logs are needed to restore the
database due to a media failure.

ARCHIVE LOG
SEE ALSO ALTER DATABASE, RECOVER, Chapter 40
FORMAT

ARCHIVE LOG {LIST|STOP}|{START|NEXT|ALL|integer} [TO destination]

DESCRIPTION ARCHIVE LOG starts or stops automatic archiving of online redo log files,
manually archives specific redo log files, or displays information about redo log files. START enables
automatic archiving; STOP disables it. LIST shows the archive status for the online redo logs.
NEXT manually archives the next online redo log file group that has been filled but not yet archived.
ALL manually archives all filled but not yet archived redo log file groups. You can specify the online
redo log group number and the destination area for the archived files.
EXAMPLE

ARCHIVE LOG ALL
ARCHIVE LOG LIST

ARGUMENT
An argument is an expression within the parentheses of a function or procedure, supplying a value
for the function or procedure to use.

ARRAY PROCESSING
Array processing is processing performed on batches of data rather than one row at a time. In some
Oracle utilities such as Export/Import and the precompilers, users can set the size of the array; increasing
the array size will generally improve performance.

ARRAYSIZE (SQL*PLUS)
See SET.

AS
SEE ALSO ALIAS, TO_CHAR, Chapters 7 and 9
DESCRIPTION AS is used to separate column formulas from column aliases.
EXAMPLE Here AS separates the column alias PayDay from its column formula:

select NEXT_DAY(CycleDate,'FRIDAY') AS PayDay
from PAYDAY;

922 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:922

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:53:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ASCII
SEE ALSO CHARACTER FUNCTIONS, ASCIISTR, CHR
FORMAT

ASCII(string)

DESCRIPTION ASCII is an acronym for “American Standard Code for Information Interchange.”
It is a convention for using digital data to represent printable characters.

The ASCII function will return the ASCII value of the first (leftmost) character in the string. The ASCII
value of a character is an integer between 0 and 255. Those between 0 and 127 are well defined. Those
above 127 (“extended ASCII set”) tend to differ by country, application, and computer manufacturer.
The letter A, for instance, is equal to the ASCII number 65; B is 66; C is 67, and so on. The decimal
point is 46. A minus sign is 45. The number 0 is 48; 1 is 49; 2 is 50, and so on.
EXAMPLE

select ASCII('.'), ASCII(.5),
ASCII('E'), ASCII('EMILY')

from DUAL;

ASCII('.') ASCII(.5) ASCII('E') ASCII('EMILY')
---------- --------- ---------- --------------

46 46 69 69

ASCIISTR
SEE ALSO CHARACTER FUNCTIONS, ASCII, CHR
FORMAT

ASCIISTR(string)

DESCRIPTION The ASCII function takes a string and returns its ASCII equivalent in the database
character set.
EXAMPLE

select ASCIISTR('E'), ASCIISTR('EMILY')
from DUAL;

A ASCII
- -----
E EMILY

ASIN
SEE ALSO ACOS, ATAN, ATAN2, COS, COSH, EXP, LN, LOG, SIN, SINH, TAN, TANH
FORMAT ASIN(value)
DESCRIPTION ASIN returns the arc sine of a value. Input values range from -1 to 1; outputs are
expressed in radians.

ASSOCIATE STATISTICS
SEE ALSO ANALYZE

ASSOCIATE STATISTICS 923

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:923

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:53:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

FORMAT
associate_statistics::=

column_association::=

function_association::=

using_statistics_type::=

default_cost_clause::=

default_selectivity_clause::=

924 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:924

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:53:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION ASSOCIATE STATISTICS associates a set of statistics functions with one or more
columns, standalone functions, packages, types, or indexes. You must have the required privileges to
ALTER the object being modified.

You can view associations in USER_USTATS after you analyze the object with which you are
associating your statistics functions.

ATAN
SEE ALSO ACOS, ASIN, ATAN2, COS, COSH, EXP, LN, LOG, SIN, SINH, TAN, TANH
FORMAT

ATAN(value)

DESCRIPTION ATAN returns the arc tangent of a value. Input values are unbounded; outputs are
expressed in radians.

ATAN2
SEE ALSO ACOS, ASIN, ATAN, COS, COSH, EXP, LN, LOG, SIN, SINH, TAN, TANH
FORMAT

ATAN2(value1, value2)

DESCRIPTION ATAN2 returns the arc tangent of two values. Input values are unbounded;
outputs are expressed in radians.

ATTRIBUTE
An attribute can be one of three things:

■ A synonym of "characteristic" or "property"

■ Another name for column

■ A part of an abstract datatype

SEE ALSO COLUMN, Chapter 30
FORMAT

ATTRIBUTE [type_name.attribute_name [option ...]]

Option can be one of the following:

ALI[AS] alias
CLE[AR]
FOR[MAT] format
LIKE {type_name.attribute_name|alias}
ON|OFF

DESCRIPTION ATTRIBUTE sets the display attributes for attributes of a user-defined type column
in SQL*PLUS.
EXAMPLE

ATTRIBUTE ADDRESS_TY.Street FORMAT A50

AUDIT
SEE ALSO CREATE DATABASE LINK, DATA DICTIONARY, NOAUDIT, PRIVILEGE

AUDIT 925

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:925

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:53:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

FORMAT
audit::=

sql_statement_clause::=

auditing_by_clause::=

schema_object_clause::=

auditing_on_clause::=

926 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:926

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:53:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION You can AUDIT statements executed by users and statements that access specific
objects.

The statement options are:

Option Audits

CLUSTER Create, alter, drop, or truncate cluster

CONTEXT Create or drop context

DATABASE LINK Create or drop database link

DIMENSION Create, alter, or drop dimension

DIRECTORY Create or drop directory

INDEX Create, alter, or drop index

NOT EXISTS SQL statements that fail because an object does not exist

PROCEDURE Create or drop procedure, function, library or package; create package body

PROFILE Create, alter, or drop profile

PUBLIC DATABASE LINK Create or drop public database link

PUBLIC SYNONYM Create or drop public synonym

ROLE Create, alter, drop, or set role

ROLLBACK SEGMENT Create, alter, or drop rollback segment

SEQUENCE Create, alter, or drop sequence

SESSION Logon attempts

SYNONYM Create or drop synonym

SYSTEM AUDIT Audit or noaudit of SQL statements

SYSTEM GRANT Grant or Revoke of system privileges and roles

TABLE Create, drop, or truncate table

TABLESPACE Create, alter, or drop tablespace

TRIGGER Create, alter, or drop trigger; alter table with ENABLE|DISABLE ALL TRIGGERS

TYPE Create, alter, or drop type or type body

USER Create, alter, or drop user

VIEW Create or drop view

ALL audits all of these facilities but not the following:

ALTER SEQUENCE ALTER SEQUENCE

ALTER TABLE ALTER TABLE

COMMENT TABLE COMMENT ON TABLE table, view, materialized view
COMMENT ON COLUMN table.column, view.column,
materialized view.column

DELETE TABLE DELETE FROM table, view

AUDIT 927

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:927

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:53:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

EXECUTE PROCEDURE CALL
Execution of any procedure or function or access to any variable,
library, or cursor inside a package

GRANT DIRECTORY GRANT privilege ON directory
REVOKE privilege ON directory

GRANT PROCEDURE GRANT privilege ON procedure, function, package
REVOKE privilege ON procedure, function, package

GRANT SEQUENCE GRANT privilege ON sequence
REVOKE privilege ON sequence

GRANT TABLE GRANT privilege ON table, view, materialized view
REVOKE privilege ON table, view, materialized view

GRANT TYPE GRANT privilege ON TYPE
REVOKE privilege ON TYPE

INSERT TABLE INSERT INTO table, view

LOCK TABLE LOCK TABLE table, view

SELECT SEQUENCE Any statement containing sequence.CURRVAL or sequence.NEXTVAL

SELECT TABLE SELECT FROM table, view, materialized view

UPDATE TABLE UPDATE table, view

BY user audits only SQL statements issued by particular users. The default is to audit all users.
WHENEVER [NOT] SUCCESSFUL writes a row to an audit table only when an attempted access to

an audited table or system facility is (or is NOT) successful. Omitting this optional clause causes a row
to be written whether an access is successful or not.

Auditing information is written to a table named SYS.AUD$ and accessed via views; see DATA
DICTIONARY VIEWS.
EXAMPLE This audits all updates by a user named CLERK_USER:

audit UPDATE TABLE by clerk_user;

AUDIT TRAIL
An audit trail is a physical record of the rows written when auditing is enabled. If you have enabled
auditing (via the AUDIT_TRAIL initialization parameter) and auditing commands have been issued by
users or the DBA, the internal audit trail table AUD$, owned by SYS, contains all audit trail rows.

AUDITING
Auditing is a set of Oracle features that allow the DBA and users to track usage of the database. The
DBA can set default auditing activity. The auditing information is stored in the data dictionary, and
SQL statements control which information is stored. For example, you can have all attempts to update
a table's data be recorded, or only unsuccessful attempts. Alternatively, you can have all logins to
Oracle be recorded, or only unsuccessful attempts to do DBA activities.

AUTOCOMMIT
AUTOCOMMIT is a SQL*PLUS setting used to automatically commit changes to the database
following any SQL command that inserts, updates, or deletes data in the database. See SET.

928 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:928

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:53:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

AUTORECOVERY (SQL*PLUS)
See SET.

AVG
SEE ALSO COMPUTE, GROUP FUNCTIONS, Chapter 8
FORMAT

AVG ([DISTINCT | ALL] expr) [OVER (analytic_clause)]

DESCRIPTION AVG is the average of value for a group of rows. DISTINCT forces only unique
values to be averaged. NULL rows are ignored by this function, which may affect results.

B-TREE
B-TREE is a high performance indexing structure used by Oracle to create and store indexes.

BACKGROUND PROCESS
A background process is one of the processes used by an instance of Oracle to perform and coordinate
tasks on behalf of concurrent users of a database.

BEGIN
SEE ALSO BLOCK STRUCTURE, DECLARE, END, EXCEPTION, TERMINATOR, Chapter 27
FORMAT

[<<block label>>]
[DECLARE]
BEGIN

... block logic ...
END [block label];

DESCRIPTION BEGIN is the opening statement of a PL/SQL block’s executable section. It can be
followed with any legal PL/SQL logic, and an exception handler, and is closed with the END statement.
At least one executable statement is required between BEGIN and END. See BLOCK STRUCTURE.

block label is a name given to a PL/SQL block that starts with the word BEGIN and finishes with
the word END. The word END is followed by a terminator, usually a semicolon (see TERMINATOR for
exceptions). block label follows normal naming conventions for objects, and must be bracketed by <<
and >>. These symbols tell PL/SQL that this is a label. BEGIN may optionally be preceded by a section
called DECLARE (which follows the block label) and may optionally contain a section called EXCEPTION.

BETWEEN
See LOGICAL OPERATORS.

BFILE
BFILE is a datatype (see DATA TYPES) used for binary LOB data stored outside the database. Oracle
does not maintain read consistency or data integrity for the externally stored data. Within the database,
a LOB locator value is stored to point to the external file. Before creating a BFILE entry, you must first
create a directory. See CREATE DIRECTORY.

BFILE 929

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:929

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:53:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

BFILENAME
SEE ALSO BFILE, CREATE DIRECTORY, Chapter 32
FORMAT

BFILENAME ('directory' , 'filename')

DESCRIPTION BFILENAME returns a BFILE locator associated with the specified filename and
directory object.

BIN_TO_NUM
SEE ALSO NUMBER FUNCTIONS, Chapter 8
FORMAT

BIN_TO_NUM (expr [, expr]...)

DESCRIPTION BIN_TO_NUM converts a bit vector to its equivalent number.
EXAMPLE

select BIN_TO_NUM(1,0,0,1) from DUAL;

BIN_TO_NUM(1,0,0,1)

9

BIND VARIABLE
A bind variable is a variable in a SQL statement that must be replaced with a valid value or address
of a value in order for the statement to successfully execute.

BITAND
SEE ALSO DECODE, Chapter 17
FORMAT

BITAND (argument1, argument2)

DESCRIPTION BITAND computes an AND operation on the bits of argument1 and argument2,
both of which must resolve to nonnegative integers, and returns an integer. This function is commonly
used with the DECODE function.

BITMAP INDEX
A bitmap index is a type of index best suited for columns with few distinct values (and thus, poor
selectivity). If there are few distinct values for a column, and it is frequently used as a limiting condition
in queries, you should consider using a bitmap index for the column. See Chapter 20 for further details
on bitmap indexes. For full syntax information, see CREATE INDEX.

BLOB
A BLOB is a binary large object, stored inside the database. See Chapter 32.

930 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:930

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:53:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

BLOCK
A block is the basic unit of storage (physical and logical) for all Oracle data. The Oracle block size
varies by operating system and may differ from the block size of the host operating system. Common
block sizes are 4K, 8K, and 16 K. For the size of a block on your specific operating system, refer to
your Installation and User's Guide. Database block sizes can differ at the tablespace level.

BLOCK STRUCTURE
A block structure is a structure of block sections in PL/SQL.
PRODUCTS PL/SQL
SEE ALSO BEGIN, DECLARE, END, EXCEPTION, GOTO, Chapter 27
DESCRIPTION PL/SQL blocks can be embedded in SQL*PLUS and any of several programming
languages, through the use of the Oracle precompilers. PL/SQL blocks are structured like this:

[<<block label>>]
[DECLARE
.. declarations (CURSOR, VARIABLE and EXCEPTION)...]

BEGIN

... block logic (executable code)...

[EXCEPTION

... exception handling logic (for fatal errors)...]

END [block label];

As the brackets show, both the DECLARE and EXCEPTION sections are optional. A block may
optionally be labeled by a block name, which must be bracketed by << and >>.

The sections of a block must be in this order, although blocks may nest inside of other blocks in
either the block logic or exception handling logic sections. blocks may be used for branching using a
GOTO, or as a prefix in referencing a variable in another block (see DECLARE for details on this). If a
variable will be referenced in a cursor declaration, it must be declared before the cursor is declared.
See Chapter 27 for examples of block structures and loops.
EXAMPLE

<<calc_areas>>
DECLARE

pi constant NUMBER(9,7) := 3.14159;
area NUMBER(14,2);
cursor rad_cursor is

select * from RADIUS_VALS;
rad_val rad_cursor%ROWTYPE;

BEGIN
open rad_cursor;
loop
fetch rad_cursor into rad_val;
exit when rad_cursor%NOTFOUND;
area := pi*power(rad_val.radius,2);
insert into AREAS values (rad_val.radius, area);

end loop;
close rad_cursor;

END calc_areas;

BLOCK STRUCTURE 931

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:931

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:53:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

BRANCH
Branches are a series of connected nodes of a logical tree. See CONNECT BY.

BREAK
SEE ALSO CLEAR, COMPUTE, Chapters 6 and 14
FORMAT

BRE[AK] [ON report_element [action [action]]] ...

Where report_element is

{column|expr|ROW|REPORT}

and action is

[SKI[P]n|[SKI[P]] PAGE][NODUP[LICATES]|DUP[LICATES]]

DESCRIPTION A break occurs when SQL*PLUS detects a specified change, such as the end of a
page or a change in the value of an expression. A break will cause SQL*PLUS to perform some action
you've specified in the BREAK command, such as SKIP, and to print some result from a COMPUTE
command, such as averages or totals for a column. Only one BREAK command may be in effect at a time.
A new BREAK command may specify changes, and their associated actions, that are to cause a break.

A break ON REPORT causes a break at the end of a report or query.
A change in the value of an expression may occur at any time prior to the REPORT break, and

there may be several ON expression clauses in a single BREAK statement; however, their order in the
BREAK command should be the same as in the order by of the select statement. That is, each expression
that appears in the BREAK command also should be placed in the order by clause of select, in identical
sequence, or the result will be meaningless. In addition, their order should be from the largest grouping
to the smallest (for example, ON Corporation, ON Division, ON Project).

ON ROW causes a break for every row selected.
ON PAGE causes a break at the end of each page, and is independent of breaks caused by expression,

ON ROW, or ON REPORT.
SKIP skips a number of lines, and PAGE or SKIP PAGE skips to a new page, before printing the result

of the associated COMPUTE for the break.
NODUPLICATES suppresses the printing of the values in the expression or column in the BREAK

for every row except the first one after the BREAK occurs.
BREAK by itself will display the current break settings.
CLEAR BREAKS will remove any existing BREAKs.
For examples of these in use, see Chapter 14.

BTITLE (bottom title)
SEE ALSO ACCEPT, DEFINE, PARAMETERS, REPFOOTER, REPHEADER, SET HEADSEP, TTITLE,
Chapter 14
FORMAT

BTI[TLE] [printspec [text|variable]... | OFF | ON]

DESCRIPTION BTITLE puts text (may be multiline) at the bottom of each page of a report. OFF
and ON suppress and restore the display of the text without changing its contents. BTITLE by itself
displays the current btitle options and text or variable. text is a bottom title you wish to give this report,

932 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:932

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:53:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

and variable is a user-defined variable or a system-maintained variable, including SQL.LNO, the
current line number, SQL.PNO, the current page number, SQL.RELEASE, the current Oracle release
number, SQL.SQLCODE, the current error code, and SQL.USER, the username.

options are described next:

■ COL n skips directly to position n (from the left margin) of the current line.

■ S[KIP] n prints n blank lines. If no n is specified, one blank line is printed. If n is 0, no blank
lines are printed and the current position for printing becomes position 1 of the current line
(leftmost on the page).

■ TAB n skips forward n positions (backward if n is negative).

■ BOLD prints the output data in bold print.

■ LE[FT], CE[NTER], and R[IGHT]. Left-justify, center, and right-justify data respectively on the
current line. Any text or variables following these commands are justified as a group, up to
the end of the command, or a LEFT, CENTER, RIGHT, or COL. CENTER and RIGHT use the
value set by the SET LINESIZE command to determine where to place the text or variable.

■ FORMAT string specifies the format model that will control the format of following text
or variables, and follows the same syntax as FORMAT in a COLUMN command, such as
FORMAT A12 or FORMAT $999,999.99. Each time a FORMAT appears, it supersedes the
previous one that was in effect. If no FORMAT model has been specified, the one set by SET
NUMFORMAT is used. If NUMFORMAT has not been set, the default for SQL*PLUS is used.

Data values are printed according to the default format unless a variable has been loaded with a
date reformatted by TO_CHAR.

Any number of options, text, and variables may be used in a single btitle. Each is printed in the
order specified, and each is positioned and formatted as specified by the clauses that precede it.

BUFFER
Generally speaking, a buffer is a scratchpad, usually in the computer's memory, where commands are
staged for editing and execution.

In SQL*PLUS, a buffer is an area in memory for editing SQL commands. See EDIT and SET.

BUFFERS (DATABASE)
Buffers are temporary storage places for database blocks that are currently being accessed and
changed by database users.

BUFFERS (REDO LOG)
Buffers are temporary storage places for redo log entries that are created by transactions within the
database.

C LANGUAGE
C is a programming language popular for its portability to many different types of computers. Oracle
is itself written primarily in C.

CACHES
Caches are temporary holding places for either database data that is currently being accessed or changed
by users or data that Oracle requires to support users.

CACHES 933

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:933

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:53:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CALL
SEE ALSO EXECUTE, Chapter 36
FORMAT
call::=

DESCRIPTION You can use CALL to execute a stored procedure or function from within SQL.
You must have EXECUTE privilege on the procedure or function, or on the package in which the
procedure or function exists.

CALL, RECURSIVE
See RECURSIVE CALL.

CASE
SEE ALSO OTHER FUNCTIONS, DECODE, TRANSLATE, Chapter 17
FORMAT
case_expression::=

simple_case_expression::=

searched_case_expression::=

else_clause::=

934 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:934

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:53:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION CASE supports if-then-else logic within SQL statements. Use WHEN/THEN
clauses to tell the database what to do for each condition. You can use an ELSE clause to handle
exceptions to your WHEN clauses.
EXAMPLE

select distinct
CASE CategoryName
when 'ADULTFIC' then 'Adult Fiction'
when 'ADULTNF' then 'Adult Nonfiction'
when 'ADULTREF' then 'Adult Reference'
when 'CHILDRENFIC' then 'Children Fiction'
when 'CHILDRENNF' then 'Children Nonfiction'
when 'CHILDRENPIC' then 'Children Picturebook'
else CategoryName

end
from BOOKSHELF;

CAST
SEE ALSO NESTED TABLE, Chapter 31
FORMAT

CAST ({ expr | (subquery) | MULTISET (subquery) } AS type_name)

DESCRIPTION You can use CAST to convert one datatype to another. CAST is most commonly
used when working with collectors such as nested tables.

CATSEARCH
CATSEARCH is used for text searches against CTXCAT text indexes created within Oracle Text. See
Chapter 24 for index creation and text search examples. Supported text search operators include
the following:

Operator Description

| Returns a record if either search term has a score that exceeds the threshold.

AND Returns a record if both search terms have a score that exceeds the threshold. This is the
default action.

- Returns rows that contain the term preceding the "-" that do not contain the term following it.

NOT Same as -.

() Specifies the order in which search criteria are evaluated.

" " Encloses phrases

CEIL
SEE ALSO FLOOR, NUMBER FUNCTIONS
FORMAT

CEIL(value)

DESCRIPTION CEIL is the smallest integer higher than or equal to value.

CEIL 935

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:935

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:53:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

EXAMPLE

CEIL(1.3) = 2
CEIL(-2.3) = -2

CHAINED ROW
A chained row is a row that is stored in more than one database block, and therefore has several row
pieces. Long rows (or inline LOBs) whose data is greater than the size of a block always have multiple
row pieces. The ANALYZE command can identify chained rows and can also provide statistics on the
number of chained rows. See ANALYZE.

CHANGE
SEE ALSO APPEND, DEL, EDIT, LIST, Chapter 6
FORMAT

C[HANGE] /old text/new text/

DESCRIPTION CHANGE is a feature of the SQL*PLUS command line editor. It changes old text
to new text in the current line of the current buffer (the line marked with an * in the LIST).

CHANGE ignores case in searching for old text. Three dots are a wild card. If old text is prefixed
with '. . .', everything up to and including the first occurrence of old text is replaced by new text. If old
text is suffixed with '. . .', everything including and after the first occurrence of old text is replaced by
new text. If old text has . . . embedded in it, everything from the part of old text before the dots, through
the part of old text after the dots, is replaced by new text.

The space between the CHANGE and the first / may be omitted; the final delimiter is unnecessary
if no trailing spaces need to be inserted. A delimiter other than / may be used. Any character following
the word CHANGE (other than a space) is assumed to be the delimiter.
EXAMPLES If this is the current line of the current buffer:

where CategoryName = 'ADULTFN'

then this:

C /ADULTTN/ADULTNF

would change the line to this:

where CategoryName = 'ADULTNF'

CHAR DATA TYPE
See DATA TYPES.

CHARACTER FUNCTIONS
SEE ALSO CONVERSION FUNCTIONS, NUMBER FUNCTIONS, OTHER FUNCTIONS, Chapter 7
DESCRIPTION This is an alphabetical list of all current character functions in Oracle’s SQL. Each
of these is listed elsewhere in this reference under its own name, with its proper format and use.

Function Name and Use
string || string

936 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:936

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:53:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

|| concatenates two strings. The | symbol is called a broken vertical bar, although on some computers
it may be a solid bar.

ASCII(string)

ASCII gives the ASCII value of the first character of a string.

CHR(integer)

CHR gives the character with ASCII value equal to a given positive integer.

CONCAT(string1,string2)

CONCAT concatenates two strings. It is equivalent to ||.

INITCAP(string)

This stands for INITial CAPital. It changes the first letter of a word or series of words into uppercase.

INSTR(string, set [, start [,occurrence]])

INSTR finds the location of the beginning of a set of characters IN a STRing.

LENGTH(string)

This tells the LENGTH of a string.

LOWER(string)

LOWER converts every letter in a string to lowercase.

LPAD(string,length [,'set'])

LPAD stands for Left PAD. It makes a string a specific length by adding a specified set of characters
to the left.

LTRIM(string [,'set'])

LTRIM stands for Left TRIM. It trims all the occurrences of any one of a set of characters off of the
left side of a string.

NLS_INITCAP(string[,'NLS_SORT=sort'])

NLS_INITCAP stands for National Language Support Initial Capital. This version of INITCAP uses
the collating sequence sort to do the case conversion.

NLS_LOWER(string[,'NLS_SORT=sort'])

NLS_LOWER stands for National Language Support Lower case. This version of LOWER uses the
collating sequence sort to do the case conversion.

NLS_UPPER(string[,'NLS_SORT=sort'])

NLS_UPPER stands for National Language Support Upper case. This version of UPPER uses the
collating sequence sort to do the case conversion.

NLSSORT(string[,'NLS_SORT=sort'])

Function Name and Use 937

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:937

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:53:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Oracle uses National Language Support SORT. This gives the collating sequence value of the given
string based on the collating sequence sort, or if omitted, the National Language Support option chosen
for the site.

REPLACE(string, if [,then])

REPLACE returns string with every occurrence of if replaced with then (zero or more characters).
If no then string is specified, then all occurrences of if are removed. See TRANSLATE.

RPAD(string,length [,'set'])

RPAD stands for Right PAD. It makes a string a specific length by adding a specified set of characters
to the right.

RTRIM(string [,'set'])

RTRIM stands for Right TRIM. It trims all the occurrences of any one of a set of characters off of
the right side of a string.

SOUNDEX(string)

SOUNDEX converts a string to a code value. Names with similar sounds tend to have the same
code value. You can use SOUNDEX to compare names that might have small spelling differences but
are still the same.

SUBSTR(string, start [,count])

SUBSTRing clips out a piece of a string beginning at start position and counting for count
characters from start.

TRANSLATE(string,if,then)

This TRANSLATEs a string, character by character, based on a positional matching of characters
in the if string with characters in the then string. See REPLACE.

TRIM
([{ { LEADING | TRAILING | BOTH } [trim_character])

| trim_character
} FROM] trim_source)

TRIM removes all the occurrences of any one of a set of characters off of the right side, left side,
or both sides of a string.

UPPER(string)

UPPER converts every letter in a string into uppercase.

USERENV(option)

USERENV returns information about the USER ENVironment, usually for an audit trail. Options
include 'ENTRYID', 'SESSIONID', and 'TERMINAL'. USERENV is still supported but has been replaced
by SYS_CONTEXT's UserEnv namespace.

VSIZE(string)

VSIZE gives the storage size of string in Oracle.

938 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:938

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:53:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHARTOROWID
SEE ALSO CONVERSION FUNCTIONS, ROWIDTOCHAR
FORMAT

CHARTOROWID(string)

DESCRIPTION This stands for CHARacter TO ROW IDentifier. It changes a character string to
act like an internal Oracle row identifier, or ROWID.

CHECKPOINT
A checkpoint is a point in time at which changed blocks of data are written from the SGA to the database.

CHILD
In tree-structured data, a child is a node that is the immediate descendant of another node. The node
that the child descends from is called the parent.

CHR
SEE ALSO ASCII, CHARACTER FUNCTIONS
FORMAT

CHR(integer)

DESCRIPTION CHR will return the character with the ASCII value of integer. (integer means an
integer between 0 and 255, since the ASCII value of a character is an integer between 0 and 255.)
Those between 0 and 127 are well defined. Those above 127 (called the extended ASCII set) tend to
differ by country, application, and computer manufacturer. The letter A, for instance, is equal to the
ASCII number 65, B is 66, C is 67, and so on. The decimal point is 46. A minus sign is 45. The number
0 is 48, 1 is 49, 2 is 50, and so on.
EXAMPLE

select CHR(77), CHR(46), CHR(56) from DUAL;

C C C
- - -
M . 8

CLAUSE
A clause is a major section of a SQL statement and begins with a keyword such as select, insert, update,
delete, from, where, order by, group by, or having.

CLEAR
SEE ALSO BREAK, COLUMN, COMPUTE
FORMAT

CL[EAR] option

DESCRIPTION CLEAR clears the option.
BRE[AKS] clears breaks set by the BREAK command.
BUFF[ER] clears the current buffer.

CLEAR 939

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:939

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:53:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

COL[UMNS] clears options set by the COLUMN command.
COMP[UTES] clears options set by the COMPUTE command.
SCR[EEN] clears the screen.
SQL clears the SQL buffer.
TIMI[NG] deletes all timing areas created by the TIMING command.

EXAMPLES To clear computes, use this:

clear computes

To clear column definitions, use this:

clear columns

CLIENT
Client is a general term for a user, software application, or computer that requires the services, data,
or processing of another application or computer.

CLOB
CLOB is a datatype that supports character large objects. See Chapter 32.

CLOSE
SEE ALSO DECLARE, FETCH, FOR, OPEN, Chapter 27
FORMAT

CLOSE cursor;

DESCRIPTION CLOSE closes the named cursor, and releases its resources to Oracle for use
elsewhere. cursor must be the name of a currently open cursor.

Even though a cursor has been closed, its definition has not been lost. You can issue OPEN cursor
again, so long as the cursor was explicitly declared. A FOR loop will also implicitly OPEN a declared
cursor. See CURSOR FOR LOOP.

CLOSED DATABASE
A closed database is a database that is associated with an instance (the database is mounted) but not
open. Databases must be closed for some database maintenance functions. This can be accomplished
via the SQL statement ALTER DATABASE.

CLUSTER
A cluster is a means of storing together data from multiple tables, when the data in those tables contains
common information and is likely to be accessed concurrently. You can also cluster an individual table.
See CREATE CLUSTER and Chapter 20.

CLUSTER INDEX
A cluster index is one manually created after a cluster has been created and before any DML (select,
insert, update, or delete) statements can operate on the cluster. This index is created on the cluster key
columns with the SQL statement CREATE INDEX. In Oracle, you can define a hash cluster to index on
the primary key. See HASH CLUSTER.

940 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:940

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:53:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CLUSTER KEY
A cluster key is the column or columns that clustered tables have in common, and which is chosen as
the storage/access key. For example, two tables, BOOKSHELF and BOOKSHELF_AUTHOR, might be
clustered on the column Title. A cluster key is the same thing as a CLUSTER COLUMN.

CMDSEP (SQL*PLUS)
See SET.

COALESCE
SEE ALSO DECODE, Chapter 17
FORMAT

COALESCE(value1, value2, ...)

DESCRIPTION COALESCE will return the first non-NULL value encountered in the list of values
provided.

COALESCE (space)
To coalesce space is to unite adjoining free extents into a single extent. For example, if two 100-block
extents are next to each other within a tablespace, then they can be coalesced into a single 200-block
extent. The SMON background process will coalesce free space within tablespaces whose default
pctincrease value is non-zero. You can manually coalesce the free space within a tablespace via the
coalesce option of the alter tablespace command. See ALTER TABLESPACE.

COLLATION
SEE ALSO GROUP BY, INDEX, ORDER BY, Chapter 9
DESCRIPTION The collation or collating sequence is the order in which characters, numbers,
and symbols will be sorted because of an order by or group by clause. These sequences differ based
on the collation sequence of the computer's operating system or the national language. EBCDIC (usually
IBM and compatible mainframes) and ASCII (most other computers) sequences differ significantly. In
spite of these differences, the following rules always apply:

■ A number with a larger value is considered "greater" than a smaller one. All negative numbers
are smaller than all positive numbers. Thus, -10 is smaller than 10; -100 is smaller than -10.

■ A later date is considered greater than an earlier date.

Character strings are compared position by position, starting at the leftmost end of the string, up
to the first character that is different. Whichever string has the "greater" character in that position is
considered the greater string. One character is considered greater than another if it appears after the
other in the computer's collation sequence. Usually this means that a B is greater than an A, but the
value of A compared to a, or compared to the number 1, will differ by computer.

The collation comparison varies slightly depending on whether you are using CHAR or
VARCHAR2 strings.

If two VARCHAR2 strings are identical up to the end of the shorter one, the longer string is considered
greater. If two strings are identical and the same length, they are considered equal.

With CHAR strings, the shorter string is padded with blanks out to the length of the longer string.
If the strings are not identical after this padding, the comparison treats the padded blanks as less than
any other character, resulting in the same truth value as the VARCHAR2 comparison. If the strings are

COLLATION 941

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:941

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:53:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

identical after, but not before the padding, the CHAR comparison would treat them as equal whereas
the VARCHAR2 comparison would not.

In SQL it is important that literal numbers be typed without enclosing single quotes, as '10' would
be considered smaller than '6', since the quotes will cause these to be regarded as character strings
rather than numbers, and the '6' will be seen as greater than the '1' in the first position of '10'.

COLSEP (SQL*PLUS)
See SET.

COLUMN (Form 1-Definition)
A column is a subdivision of a table with a column name and a specific datatype. For example, in a
table of workers, all of the worker's ages would constitute one column. See ROW.

COLUMN (Form 2-SQL*PLUS)
SEE ALSO ALIAS, Chapters 6 and 14
FORMAT

COL[UMN] {column | expression}
[ALI[AS] alias]
[CLE[AR] | DEF[AULT]]
[ENTMAP {ON|OFF}
[FOLD_A[FTER]
[FOLD_B[EFORE]
[FOR[MAT] format]
[HEA[DING] text

[JUS[TIFY] {L[EFT]|C[ENTER]|C[ENTRE]|R[IGHT]}]]
[LIKE {expression | alias}]
[NEWL[INE]]
[NEW_V[ALUE] variable]
[NOPRI[NT]|PRI[NT]]
[NUL[L] text]
[ON | OFF]
[OLD_V[ALUE] variable]
[WRA[PPED]|WOR[D_WRAPPED]|TRU[NCATED]]...

DESCRIPTION COLUMN controls column and column heading formatting. The options are all
cumulative, and may be entered either simultaneously on a single line, or on separate lines at any time;
the only requirement is that the word COLUMN and the column or expression must appear on each
separate line. If one of the options is repeated, the most recent specified will be in effect. COLUMN by
itself displays all the current definitions for all columns. COLU MN with only a column or
expression will show that column's current definition.

column or expression refers to a column or expression used in the select. If an expression is used,
the expression must be entered exactly the same way that it is in the select statement. If the expression
in the select is Amount * Rate, then entering Rate * Amount in a COLUMN command will not work.
If a column or expression is given an alias in the select statement, that alias must be used here.

If you select columns with the same name from different tables (in sequential selects), a COLUMN
command for that column name will apply to both. Avoid this by assigning the columns different aliases

942 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:942

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:53:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

in the select (not with the COLUMN command's alias clause), and entering a COLUMN command for
each column's alias.

ALIAS gives this column a new name, which then may be used to reference the column in BREAK
and COLUMN commands.

CLEAR drops the column definition.
DEFAULT leaves the column defined and ON, but drops any other options.
ENTMAP allows entity mapping to be turned on or off for selected columns in HTML output.
FOLD_A[FTER] and FOLD_B[EFORE] instruct Oracle to fold a single row of output across multiple

rows when printed. You can choose to fold the row either before or after the column.
FORMAT specifies the display format of the column. The format must be a literal like A25 or 990.99.

Without format specified, the column width is the length as defined inthe table.
A LONG column’s width defaults to the value of the SET LONG. Both regular CHAR and LONG

fields can have their width set by a format like FORMAT An, where n is an integer that is the column’s
new width.

A number column’s width defaults to the value of SET NUMWIDTH, but is changed by the width
in a format clause such as FORMAT 999,999.99. These options work with both set numformat and
the column format commands:

Format Result

9999990 The count of nines and zeros determines the maximum digits that can be displayed.

999,999,999.99 Commas and decimals will be placed in the pattern shown.

999990 Displays a zero if the value is zero.

099999 Displays numbers with leading zeros.

$99999 A dollar sign is placed in front of every number.

B99999 The display will be blank if the value is zero.

99999MI If the number is negative, a minus sign follows the number. The default is for the
negative sign to be on left.

S9999 Returns "+" for positive values, "-" for negative values.

99999PR Negative numbers are displayed within < and >.

99D99 Displays the decimal in the position indicated.

9G999 Displays the group separator in the position shown.

C9999 Displays the ISO currency symbol in this position.

L999 Displays the local currency symbol.

, Displays a comma.

. Displays a period.

9.999EEEE The display will be in scientific notation (4 E's are required).

999V99 Multiplies number by 10n, where n is the number of digits to the right of V. 999V99
turns 1234 into 123400.

RN Displays Roman numeral values, for numbers between 1 and 3999.

DATE Displays value as a date in MM/DD/YY format, for NUMBER columns used storing
Julian dates.

COLUMN (Form 2-SQL*PLUS) 943

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:943

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:53:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

HEADING relabels a column heading. The default is the column name or the expression. If text has
blanks or punctuation characters, it must be in single quotes. The HEADSEP character (usually '|') in
text makes SQL*PLUS begin a new line. The COLUMN command will remember the current HEADSEP
character when the column is defined, and continue to use it for this column unless the column is
redefined, even if the HEADSEP character is changed.

JUSTIFY aligns the heading over the column. By default this is RIGHT for number columns and
LEFT for anything else.

LIKE replicates the column definitions of a previously defined column for the current one, where
either the expression or label was used in the other column definition. Only those features of the other
column that have not been explicitly defined in the current column command are copied.

NEWLINE starts a new line before printing the column value.
NEW_VALUE names a variable to hold the column's value for use in the ttitle command. See

Chapter 14 for usage information.
NOPRINT and PRINT turn the column's display off or on.
NULL sets text to be displayed if the column has a NULL value. The default for this is a string of

blanks as wide as the column is defined.
OFF or ON turns all these options for a column off or on without affecting its contents.
OLD_VALUE names a variable to hold the column's value for use in the btitle command. See

Chapter 13 for usage information.
WRAPPED, WORD_WRAPPED, and TRUNCATED control how SQL*PLUS displays a heading or

string value too wide to fit the column. WRAP folds the value to the next line. WORD_WRAP folds
similarly, but breaks on words. TRUNCATED truncates the value to the width of the column definition.

COLUMN CONSTRAINT
A column constraint is an integrity constraint placed on a specific column of a table. See INTEGRITY
CONSTRAINT.

COMMAND
See STATEMENT.

COMMAND LINE
A command line is a line on a computer display where you enter a command.

COMMENT
SEE ALSO DATA DICTIONARY VIEWS, Chapter 37
FORMAT

COMMENT ON
{ TABLE [schema .] { table | view | materialized view }
| COLUMN [schema .] { table . | view . | materialized view . } column
| OPERATOR [schema .] operator
| INDEXTYPE [schema .] indextype
}
IS 'text';

944 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:944

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:53:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION COMMENT inserts the comment text about an object or column into the data
dictionary.

You drop a comment from the database only by setting it to an empty string (set text to '').

COMMIT
To commit means to make changes to data (inserts, updates, and deletes) permanent. Before changes
are stored, both the old and new data exist so that changes can be made, or so that the data can be
restored to its prior state ("rolled back"). When a user enters the Oracle SQL command COMMIT, all
changes from that transaction are made permanent.

COMMIT (Form 1-Embedded SQL)
SEE ALSO ROLLBACK, SAVEPOINT, SET TRANSACTION, Precompiler programmer's guides
FORMAT

EXEC SQL [AT { database| :host variable}] COMMIT [WORK]
[[COMMENT 'text'] [RELEASE]
| FORCE 'text' [, integer]]

DESCRIPTION You use COMMIT to commit work at various stages within a program. Without
the explicit use of COMMIT, an entire program's work will be considered one transaction, and will not
be committed until the program terminates. Any locks obtained will be held until that time, blocking
other users from access. COMMIT should be used as often as logically feasible.

WORK is optional and has no effect on usage; it is provided for ANSI compatibility. AT references
a remote database accessed by the DECLARE DATABASE command. RELEASE disconnects you from
the database, whether remote or local. FORCE manually commits an in-doubt distributed transaction.

COMMIT (Form 2-PL/SQL Statement)
SEE ALSO ROLLBACK, SAVEPOINT
FORMAT

COMMIT [WORK] [COMMENT 'text' | FORCE 'text' [, integer]];

DESCRIPTION COMMIT commits any changes made to the database since the last COMMIT
was executed implicitly or explicitly. WORK is optional and has no effect on usage.

COMMENT associates a text comment with the transaction. The comment can be viewed via the
data dictionary view DBA_2PC_PENDING in the event a distributed transaction fails to complete. FORCE
manually commits an in-doubt distributed transaction.

COMMUNICATIONS PROTOCOL
Communications protocol is any one of a number of standard means of connecting two computers
together so that they can share information. Protocols consist of several layers of both software and
hardware, and may connect homogeneous or heterogeneous computers.

COMMUNICATIONS PROTOCOL 945

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:945

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:53:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

COMPOSE
SEE ALSO CONVERSION FUNCTIONS, Chapter 10
FORMAT

COMPOSE(string)

DESCRIPTION COMPOSE takes as its argument a string in any datatype, and returns a unicode
string in its fully normalized form in the same character set as the input.
EXAMPLE To display an o with an umlaut:

select COMPOSE ('o' || UNISTR('\0308')) from DUAL;

C
-
ö

COMPOSITE KEY
A composite key is a primary or foreign key composed of two or more columns.

COMPOSITE PARTITION
A composite partition involves the use of multiple partition methods, such as a range-partitioned
table in which the range partitions are then hash partitioned. See Chapter 18.

COMPRESSED INDEX
A compressed index is an index for which only enough index information is stored to identify
unique index entries; information that an index stores with the previous or following key is
"compressed" (truncated) and not stored to reduce the storage overhead required by an index.
See also NONCOMPRESSED INDEX.

COMPUTE
SEE ALSO BREAK, GROUP FUNCTIONS
FORMAT

COMP[UTE][AVG|COU[NT]|MAX[IMUM]|MIN[IMUM]|NUM[BER]|STD|SUM|VAR[IANCE]]...
[function LABEL label_name
OF {expression | column | alias} ...
ON {expression | column | alias | REPORT | ROW}...]

DESCRIPTION expression is a column or expression. COMPUTE performs computations on
columns or expressions selected from a table. It works only with the BREAK command.

By default, Oracle will use the function name (SUM, AVG, etc.) as the label for the result in the
query output. LABEL allows you to specify a label_name that overrides the default value.

OF names the column or expression whose value is to be computed. These columns also must
be in the select clause, or the COMPUTE will be ignored.

946 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:946

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:53:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ON coordinates the COMPUTE with the BREAK command. COMPUTE prints the computed value
and restarts the computation when the ON expression's value changes, or when a specified ROW or
REPORT break occurs. See BREAK for coordination details.

COMPUTE by itself displays the computes in effect.
AVG, MAXIMUM, MINIMUM, STD, SUM, and VARIANCE all work on expressions that are

numbers. MAXIMUM and MINIMUM also work on character expressions, but not DATEs. COUNT
and NUMBER work on any expression type.

All of these computes except NUMBER ignore rows with NULL values:

AVG Gives average value

COUNT Gives count of non-NULL values

MAXIMUM Gives maximum value

MINIMUM Gives minimum value

NUMBER Gives count of all rows returned

STD Gives standard deviation

SUM Gives sum of non-NULL values

VARIANCE Gives variance

Successive computes are simply put in order without commas, such as in this case:

compute sum avg max of Amount Rate on report

This will compute the sum, average, and maximum of both Amount and Rate for the entire report.
EXAMPLE To calculate for each Item classification and for the entire report, enter this:

break on Report on Industry skip 1
compute sum of Volume on Industry Report

CONCAT
See SET, ||.

CONCATENATED INDEX (or KEY)
A concatenated index is one that is created on more than one column of a table. It can be used to
guarantee that those columns are unique for every row in the table and to speed access to rows via
those columns. See COMPOSITE KEY.

CONCURRENCY
Concurrency is a general term meaning the access of the same data by multiple users. In database
software, concurrency requires complex software programming to assure that all users see correct
data and that all changes are made in the proper order.

CONCURRENCY 947

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:947

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:53:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CONDITION
A condition is an expression whose value evaluates to either TRUE or FALSE, such as Age > 65.

CONNECT
To connect is to identify yourself to Oracle by your user name and password, in order to access the
database.

CONNECT (Form 1)
SEE ALSO COMMIT, DISCONNECT, Chapter 22

FORMAT

CON[NECT] [{user[/password] [@database] |/} [AS SYSOPER|SYSDBA}]];

DESCRIPTION You must be in SQL*PLUS to use this command, although you don't need to be
logged on to Oracle (see DISCONNECT). CONNECT commits any pending changes, logs you off of
Oracle, and logs on as the specified user. If the password is absent, you are prompted for it. It is not
displayed when you type it in response to a prompt.

@database connects to the named database. It may be on your host, or on another computer
connected via Oracle Net.

CONNECT (Form 2-Embedded SQL)
SEE ALSO COMMIT, DECLARE DATABASE, Chapter 22

FORMAT

EXEC SQL CONNECT
{ :user IDENTIFIED BY :password | :user_password }

[AT { database | :host_variable}]
[USING :connect_string]
[ALTER AUTHORIZATION :new_password
| IN {SYSDBA | SYSOPER } MODE]

DESCRIPTION CONNECT connects a host program to a local or remote database. It may be used
more than once to connect to multiple databases. :user_password is a host variable that contains the
Oracle user name and password separated by a slash (/). Alternatively, :user and :password can be
entered separately by using the second format.

AT is used to name a database other than the default for this user. It is a required clause to
reach any databases other than the user's default database. This name can be used later in other SQL
statements with AT. This database must be first identified with DECLARE DATABASE. USING specifies
an optional Oracle Net string (such as a service name) used during the connect operation. Without the
USING string, you will be connected to the user's default database, regardless of the database named
in the AT line.

948 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:948

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42a.vp
Thursday, July 25, 2002 3:53:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CONNECT BY
SEE ALSO Chapter 13
FORMAT

SELECT expression [,expression]...
FROM [user.]table

WHERE condition
CONNECT BY [PRIOR] expression = [PRIOR] expression
START WITH expression = expression
ORDER BY expression

DESCRIPTION CONNECT BY is an operator used in a select statement to create reports on
inheritance in tree-structured data, such as company organization, family trees, and so on. START
WITH tells where in the tree to begin. These are the rules:

■ The position of PRIOR with respect to the CONNECT BY expressions determines which
expression identifies the root and which identifies the branches of the tree.

■ A where clause will eliminate individuals from the tree, but not their descendants (or
ancestors, depending on the location of PRIOR).

■ A qualification in the CONNECT BY (particularly a not equal instead of the equal sign)
will eliminate both an individual and all of its descendants.

■ CONNECT BY cannot be used with a table join in the where clause.

EXAMPLE

select Cow, Bull, LPAD(' ',6*(Level-1))||Offspring AS Offspring,
Sex, Birthdate

from BREEDING
connect by Offspring = PRIOR Cow
start with Offspring = 'DELLA'
order by Birthdate;

In this example, the following clause:

connect by Offspring = PRIOR Cow

means the offspring is the cow PRIOR to this one.

CONSTRAINT
A rule or restriction concerning a piece of data (such as a NOT NULL restriction on a column) that is
enforced at the data level, rather than the object or application level. See INTEGRITY CONSTRAINT.

constraints
SEE ALSO CREATE TABLE, INTEGRITY CONSTRAINT, Chapter 18, Chapter 20.

constraints 949

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:949

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:47:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

FORMAT
constraints::=

inline_constraint::=

out_of_line_constraint::=

inline_ref_constraint::=

950 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:950

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:47:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

out_of_line_ref_constraint

references_clause::=

constraint_state::=

constraints 951

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:951

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:47:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

using_index_clause::=

global_partitioned_index::=

index_partitioning_clause::=

segment_attributes_clause

physical_attributes_clause::=

952 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:952

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:47:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

exceptions_clause::=

DESCRIPTION constraints are defined with the relational_properties clause of the CREATE TABLE
and ALTER TABLE commands. You use the constraints clauses to create a constraint or to alter an
existing constraint. You can enable and disable constraints. If you disable a constraint and then try to
re-enable it, Oracle will check the data. If the constraint cannot be re-enabled, Oracle can write the
exceptions out to a separate table for review.

For PRIMARY KEY and UNIQUE constraints, Oracle will create indexes. As part of the constraint
clause for those constraints, you can use the USING INDEX clause to specify the tablespace and
storage for the index.

CONTAINS
CONTAINS is used to evaluate text searches that use CONTEXT indexes within Oracle Text. See
Chapter 24. Supported text search operators for CONTAINS are shown in the following table:

Operator Description

OR Returns a record if either search term has a score that exceeds the threshold.

| Same as OR.

AND Returns a record if both search terms have a score that exceeds the threshold.

& Same as AND.

ACCUM Returns a record if the sum of the search terms’ scores exceeds the threshold.

, Same as ACCUM.

MINUS Returns a record if the score of the first search minus the score of the second search exceeds
the threshold.

- Same as MINUS.

* Assigns different weights to the score of the searches.

NEAR The score will be based on how near the search terms are to each other in the searched text.

; Same as NEAR.

{} Encloses reserved words such as AND if they are part of the search term.

% Multiple-character wildcard.

_ Single-character wildcard.

$ Performs stem expansion of the search term prior to performing the search.

? Performs a fuzzy match (allowing for misspellings) of the search term prior to performing
the search.

! Performs a SOUNDEX (phonetic) search.

() Specifies the order in which search criteria are evaluated.

CONTAINS 953

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:953

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:47:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CONTEXT INDEX
Oracle Text supports three types of text indexes; CONTEXT indexes, CTXCAT indexes and CTXRULE
indexes. CONTEXT indexes use the CONTAINS operator and support a wider array of text search
capabilities. CTXCAT indexes support a narrower set of search operators but support the creation of
index sets. CTXRULE indexes are indexes on columns that contain a set of text queries. See Chapter 24
for details.

CONTEXT AREA
A context area is work area in memory where Oracle stores the current SQL statement, and if the
statement is a query, one row of the result. The context area holds the state of a cursor.

CONTROL FILE (DATABASE)
A control file is a small administrative file required by every database, necessary to start and run a
database system. A control file is paired with a database, not with an instance. Multiple identical
control files are preferred to a single file.

CONTROL FILE (SQL*LOADER)
A SQL*Loader control file tells the SQL*Loader executable where to find the data to be loaded, and
how to process the data during the load. Every SQL*Loader session has an associated control file. For
control file syntax, see SQLLDR. For details on the use of SQL*Loader, see Chapter 21.

CONVERSION FUNCTIONS
SEE ALSO CHARACTER FUNCTIONS, NUMBER FUNCTIONS, Chapter 10
DESCRIPTION The following is an alphabetical list of all current conversion and transformation
functions in Oracle’s SQL.

Function Name Definition

ASCIISTR Translates a string in any character set and returns an ASCII string in the
database character set.

BIN_TO_NUM Converts a BINary value TO its NUMerical equivalent.

CAST CASTs one built-in or collection type to another; commonly used with nested
tables and varying arrays.

CHARTOROWID CHARacter TO ROW IDentifier. Changes a character string to act like an
internal Oracle row identifier, or RowID.

COMPOSE Translates a string in any datatype to a unicode string in its fully normalized
form in the same character set as the input.

CONVERT CONVERTs a character string from one national language character set to
another.

DECODE DECODEs a CHAR, VARCHAR2, or NUMBER into any of several different
character strings or NUMBERs, based on value. This is a very powerful if,
then, else function. Chapter 17 is devoted to DECODE.

DECOMPOSE Translates a string in any datatype to a unicode string after canonical
decomposition in the same character set as the input.

954 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:954

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:47:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Function Name Definition

HEXTORAW HEXadecimal TO RAW. Changes a character string of hex numbers into
binary.

NUMTODSINTERVAL Converts a NUMber to an INTERVAL DAY TO SECOND literal.

NUMTOYMINTERVAL Converts a NUMber to an INTERVAL YEAR TO MONTH literal.

RAWTOHEX RAW TO HEXadecimal. Changes a string of binary numbers to a character
string of hex numbers.

RAWTONHEX RAW TO NHEX. Converts raw to an NVARCHAR2 character value containing
its hexadecimal equivalent.

ROWIDTOCHAR ROW Identifier TO CHARacter. Changes an internal Oracle row identifier,
or RowID, to a character string.

ROWIDTONCHAR RAW TO NCHAR. Converts a RowID value to an NVARCHAR2 datatype.

TO_CHAR TO CHARacter. Converts a NUMBER or DATE to a character string.

TO_CLOB TO CLOB. Converts NCLOB values in a LOB column or other character
strings to CLOB values.

TO_DATE TO DATE. Converts a NUMBER, CHAR, or VARCHAR2 to a DATE
(an Oracle datatype).

TO_DSINTERVAL Converts a character string of CHAR, VARCHAR2, NCHAR, or NVARCHAR2
datatype to an INTERVAL DAY TO SECOND type.

TO_LOB TO LOB. Converts a LONG to a LOB as part of an insert as select.

TO_MULTI_BYTE TO MULTI_BYTE. Converts the single-byte characters in a character string
to multibyte characters.

TO_NCHAR TO NCHAR. Converts a character string, NUMBER, or DATE from the
database character set to the national character set.

TO_NCLOB TO NCLOB. Converts CLOB values in a LOB column or other character
strings to NCLOB values.

TO_NUMBER TO NUMBER. Converts a CHAR or VARCHAR2 to a number.

TO_SINGLE_BYTE TO SINGLE BYTE. Converts the multibyte characters in a CHAR or
VARCHAR2 to single bytes.

TO_YMINTERVAL Converts a character string of CHAR, VARCHAR2, NCHAR, or NVARCHAR2
datatype to an INTERVAL YEAR TO MONTH type.

TRANSLATE TRANSLATEs characters in a string into different characters.

UNISTR Converts a string into unicode in the database unicode character set.

CONVERT
SEE ALSO CONVERSION FUNCTIONS
FORMAT

CONVERT(string,[destination_set,[source_set]])

DESCRIPTION CONVERTs the characters in string from one standard bit representation to
another, such as from US7ASCII (the default if either set isn’t entered) to WE8DEC. This is typically

CONVERT 955

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:955

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:47:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

done when data entered into a column on one computer contains characters that can’t be properly
displayed or printed on another computer. CONVERT allows a reasonable translation of one to the
other in most cases. The most common sets include:

F7DEC DEC’s 7-bit ASCII set for France

US7ASCII Standard US 7-bit ASCII set

WE8DEC DEC’s 8-bit ASCII set for Western Europe

WE8HP HP’s 8-bit ASCII set for Western Europe

WE8ISO8859P1 ISO 8859-1 Western Europe 8-bit character set

WE8EBCDIC500
WE8PC850

IBM West European EBCDIC Code Page 500
IBM PC Code Page 850

COPY
SEE ALSO CREATE DATABASE LINK, Chapter 22
FORMAT

COPY [FROM user/password@database]
[TO user/password@database]
{APPEND | CREATE | INSERT | REPLACE}
table [(column [,column]...)]
USING query

DESCRIPTION COPY copies FROM a table TO a table in another computer using Oracle Net.
FROM is the user name, password, and database of the source table, and TO is the destination table.
Either FROM or TO may be omitted, in which case the user’s default database will be used for the
missing clause. The source and destination databases must not be the same, so only one of the from
and to clauses may be absent.

APPEND adds to the destination table; if the table does not exist, it is created. CREATE requires
that the destination table be created; if it already exists, a ‘table already exists’ error occurs. INSERT
adds to the destination table; if the table does not exist, a ‘table does not exist’ error occurs. REPLACE
drops the data in the destination table and replaces it with the data from the source table; if the table
does not exist, it is created.

table is the name of the destination table. column, is the name(s) of the column(s) in the destination
table. If named, the number of columns must be the same as in the query. If no columns are named, the
copied columns will have the same names in the destination table as they had in the source table. query
identifies the source table and determines which rows and columns will be copied from it.

SET LONG (see SET) determines the length of a long field that can be copied. Long columns with
data longer than the value of LONG will be truncated. SET COPYCOMMIT determines how many sets
of rows get copied before a commit. SET ARRAYSIZE determines how many rows are in a set.
EXAMPLE This example copies bookshelf checkout from the EDMESTON database to the database
the local SQL*PLUS user is connected to. The table LOCAL_CHECKOUT is created by the copy. The
columns may be renamed at the destination. Note the use of the dash (-) at the end of each line. This
is required. The command does not end with a semicolon (since it is a SQL*Plus command, not a SQL
command). See the SET command for options related to the COPY command.

copy from PRACTICE/PRACTICE@EDMESTON -
create LOCAL_CHECKOUT (Borrower, Title) -

956 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:956

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:47:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

using select Name, Title -
from BOOKSHELF_CHECKOUT

COPYCOMMIT (SQL*PLUS)
See SET.

COPYTYPECHECK (SQL*PLUS)
See SET.

CORR
SEE ALSO GROUP FUNCTIONS
FORMAT

CORR (expr1 , expr2) [OVER (analytic_clause)]

DESCRIPTION CORR returns the coefficient of correlation of a set of number pairs. Both expr1
and expr2 are number expressions. Oracle applies the function to the set of (expr1 , expr2) after
eliminating the pairs for which either expr1 or expr2 is NULL. Then Oracle makes the following
computation:

COVAR_POP(expr1, expr2) / (STDDEV_POP(expr1) * STDDEV_POP(expr2))

The function returns a value of type NUMBER. If the function is applied to an empty set, it returns NULL.

CORRELATED QUERY
A correlated query is a subquery that is executed repeatedly, once for each value of a candidate row
selected by the main query. The outcome of each execution of the subquery depends on the values of
one or more fields in the candidate row; that is, the subquery is correlated with the main query. See
Chapter 12.

COS
SEE ALSO ACOS, ASIN, ATAN, ATAN2, COSH, EXP, LN, LOG, SIN, SINH, TAN, TANH
FORMAT

COS(value)

DESCRIPTION COS returns the cosine of a value, an angle expressed in radians. You can convert
a degree angle into radians by multiplying it by pi/180.

COSH
SEE ALSO ACOS, ASIN, ATAN, ATAN2, COS, EXP, LN, LOG, SIN, SINH, TAN, TANH
FORMAT

COSH(value)

DESCRIPTION COSH returns the hyperbolic cosine of a value.

COUNT
SEE ALSO GROUP FUNCTIONS, Chapter 8, Chapter 11

COUNT 957

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:957

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:47:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

FORMAT

COUNT ({ * | [DISTINCT | ALL] expr }) [OVER (analytic_clause)]

DESCRIPTION COUNT counts the number of rows where expression is non-NULL, which are
then returned by the query. With DISTINCT, COUNT counts only the distinct non-NULL rows. With *,
it counts all rows, whether NULL or not.

COVAR_POP
SEE ALSO GROUP FUNCTIONS
FORMAT

COVAR_POP (expr1 , expr2) [OVER (analytic_clause)]

DESCRIPTION COVAR_POP returns the population covariance of a set of number pairs. You
can use it as an aggregate or analytic function.

Both expr1 and expr2 are number expressions. Oracle applies the function to the set of (expr1 ,
expr2) pairs after eliminating all pairs for which either expr1 or expr2 is NULL. Then Oracle makes
the following computation:

(SUM(expr1 * expr2) - SUM(expr2) * SUM(expr1) / n) / n

where n is the number of (expr1 , expr2) pairs where neither expr1 nor expr2 is NULL.

COVAR_SAMP
SEE ALSO GROUP FUNCTIONS
FORMAT

COVAR_POP (expr1 , expr2) [OVER (analytic_clause)]

DESCRIPTION COVAR_SAMP returns the sample covariance of a set of number pairs. You can
use it as an aggregate or analytic function.

Both expr1 and expr2 are number expressions. Oracle applies the function to the set of (expr1 ,
expr2) pairs after eliminating all pairs for which either expr1 or expr2 is NULL. Then Oracle makes
the following computation:

(SUM(expr1 * expr2) - SUM(expr1) * SUM(expr2) / n) / (n-1)

where n is the number of (expr1 , expr2) pairs where neither expr1 nor expr2 is NULL.

CREATE CLUSTER
SEE ALSO CREATE INDEX, CREATE TABLE, Chapter 20
FORMAT
create_cluster::=

958 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:958

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:47:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

physical_attributes_clause::=

parallel_clause::=

DESCRIPTION CREATE CLUSTER creates a cluster for one or more tables. Tables are added to
the cluster using CREATE TABLE with the cluster clause. CREATE CLUSTER requires at least one cluster
column from each of the tables. These must have the same datatype and size, but are not required to
have the same name. For the tables in a cluster, rows with the same cluster column values are kept
together on disk in the same area, the same logical block(s). This can improve performance when the
cluster columns are the columns by which the tables are usually joined.

Each distinct value in each cluster column is stored only once, regardless of whether it occurs once
or many times in the tables and rows. This typically can reduce the amount of disk space needed to
store the tables, but each table continues to appear as if it contained all of its own data. Tables with
LONG columns cannot be clustered.

CREATE CLUSTER 959

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:959

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:47:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

cluster is the name created for the cluster. column and datatype follow the method of CREATE TABLE,
except that NULL and NOT NULL cannot be specified. However, in the actual CREATE TABLE statement,
at least one cluster column in a cluster must be NOT NULL. SIZE sets the size in bytes for a logical block
(not a physical block). SPACE is the cluster’s initial disk allocation, as used in CREATE TABLE.

SIZE should be the average amount of space needed to store all the rows from all the clustered
tables that are associated with a single cluster key. A small SIZE value may increase the time needed
to access tables in the cluster, but can reduce disk space usage. SIZE should be a proper divisor of the
physical block size. If not, Oracle will use the next larger divisor. If SIZE exceeds the physical block
size, Oracle will use the physical block size instead.

By default, the cluster is indexed, and you must create an index on the cluster key before putting
any data in the cluster. If you specify the hash cluster form, however, you don’t need to (and can’t)
create an index on the cluster key. Instead, Oracle uses a hash function to store the rows of the table.

You can create your own hash value as a column of the table and use that for hashing with the
HASH IS clause to tell Oracle to use that column as the hash value. Otherwise, Oracle uses an internal
hash function based on the columns of the cluster key. The HASHKEYS clause actually creates the hash
cluster and specifies the number of hash values, rounded to the nearest prime number. The minimum
value is 2.

See the storage_clause entry in the Alphabetical Reference for details on the common storage clause
parameters.

CREATE CONTEXT
SEE ALSO ALTER CONTEXT
FORMAT

CREATE [OR REPLACE] CONTEXT NAMESPACE USING [SCHEMA .] PACKAGE
[INITIALIZED { EXTERNALLY | GLOBALLY }
| ACCESSED GLOBALLY] ;

DESCRIPTION A context is a set of attributes used to secure an application. CREATE CONTEXT
creates a namespace for a context and associates the namespace with the externally created package
that sets the context. To create a context namespace, you must have CREATE ANY CONTEXT system
privilege.

CREATE CONTROLFILE
SEE ALSO ALTER DATABASE, CREATE DATABASE
FORMAT
create_controlfile::=

960 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:960

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:47:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

logfile_clause::=

character_set_clause::=

DESCRIPTION The CREATE CONTROLFILE command re-creates a control file when you have
either lost your current control file to media failure, you want to change the name of your database, or
you want to change one of the options for the log file or a datafile. In general, this command should
only be used by experienced database administrators.

NOTE
Perform a full offline backup all of your database files before using
this command.

The REUSE option lets existing control files be reused rather than giving an error if any exist. The
SET option changes the name of the database, specified by the database clause. The LOGFILE clause
specifies the redo log file groups, all of which must exist. The RESETLOGS versus NORESETLOGS
clause tells Oracle to reset the current logs or not. The DATAFILE line specifies the data files for the
database, all of which must exist.

The MAXLOGFILES option specifies the maximum number of redo log file groups that can be
created. The MAXLOGMEMBERS option specifies the number of copies for a redo log group. The
MAXLOGHISTORY option specifies the number of archived redo log file groups for Real Application
Clusters. The MAXDATAFILES option specifies the maximum number of data files that can ever be
created for the database. The MAXINSTANCES option gives the maximum number of Oracle instances
that can mount and open the database. The ARCHIVELOG and NOARCHIVELOG options turns
archiving of the redo log files on and off, respectively.

CREATE CONTROLFILE 961

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:961

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:47:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The CREATE CONTROLFILE command needed for an existing database can be generated via the
ALTER DATABASE BACKUP CONTROLFILE TO TRACE command.

CREATE DATABASE
SEE ALSO ALTER DATABASE, CREATE CONTROLFILE, CREATE ROLLBACK SEGMENT, CREATE
TABLESPACE, SHUTDOWN, STARTUP, Chapter 40
FORMAT
create_database::=

default_temp_tablespace::=

962 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:962

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:47:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

temp_tablespace_extent::=

undo_tablespace_clause::=

set_time_zone_clause::=

DESCRIPTION database is the database name, and must have eight characters or fewer.
DB_NAME in init.ora contains the default database name. In general, this command should only be
used by experienced database administrators.

NOTE
Using this command in an existing database will erase the specified
datafiles.

file_definition specifies the LOGFILE and DATAFILE names and sizes:

'file' [SIZE integer [K | M] [REUSE]

SIZE is the number of bytes set aside for this file. Suffixing this with K multiplies the value by 1024;
M multiplies it by 1048576. REUSE (without SIZE) means destroy the contents of any file by this name
and associate the name with this database. SIZE with REUSE creates the file if it doesn’t exist, and checks
its size if it does. CONTROLFILE REUSE overwrites the existing control files defined by CONTROL_FILES
parameter in the initialization parameter file.

LOGFILE names the files to be used as redo log files. If this parameter is not used, Oracle creates
two by default. MAXLOGFILES overrides the LOG_FILES initialization parameter, and defines the
maximum number of redo log files that can ever be created for this database. This number cannot be
increased later except by re-creating the control file. Minimum is 2. A high number only makes a
somewhat larger control file.

DATAFILE names the files to be used for the database itself. MAXDATAFILES sets the absolute
upper limit for files that can be created for this database, and overrides the DB_FILES initialization
parameter. A high number only makes a somewhat larger control file.

CREATE DATABASE 963

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:963

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:47:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

When the AUTOEXTEND option is turned ON for a datafile, the datafile will dynamically extend
as needed in increments of NEXT size, to a maximum of MAXSIZE (or UNLIMITED).

MAXINSTANCES overrides the INSTANCES parameter in init.ora and sets the maximum number
of simultaneous instances that can mount and open this database.

ARCHIVELOG and NOARCHIVELOG define the way redo log files are used when the database is
first created. NOARCHIVELOG is the default, and means that redo files will get reused without saving
their contents elsewhere. This provides instance recovery but will not recover from a media failure,
such as a disk crash. ARCHIVELOG forces redo files to be archived (usually to another disk or a tape),
so that you can recover from a media failure. This mode also supports instance recovery. This parameter
can be reset by ALTER DATABASE.

The MAXLOGMEMBERS option specifies the maximum number of copies of a redo log file group.
The MAXLOGHISTORY option specifies the maximum number of archived redo log files, useful only
for the Real Application Cluster when you are archiving log files. The CHARACTER SET option specifies
the character set used to store data, which depends on the operating system.

For more automated handling of undo (rollback) segments, you can specify the UNDO TABLESPACE
clause to allocate a tablespace specifically to hold undo data. The database must be started in Automatic
Undo Management (AUM) mode.

You can use the DEFAULT TEMPORARY TABLESPACE clause to designate a non-SYSTEM tablespace
as the default temporary tablespace for all new users created in the database.

CREATE DATABASE LINK
SEE ALSO CREATE SYNONYM, SELECT, Chapter 22
FORMAT

CREATE [SHARED] [PUBLIC] DATABASE LINK dblink
[CONNECT TO { CURRENT_USER | user IDENTIFIED BY password
[AUTHENTICATED BY user IDENTIFIED BY password] }
| AUTHENTICATED BY user IDENTIFIED BY password]
[USING 'connect_string'];

DESCRIPTION dblink is the name given to the link. connect_string is the definition of the remote
database that can be accessed through Oracle Net and defines the link between a local database and a
username on a remote database. PUBLIC links can only be created by a user with the CREATE PUBLIC
DATABASE LINK system privilege, but are then available to all users except those who have created a
private link with the same name. If PUBLIC isn’t specified, the link is only available to the user who
executed the CREATE DATABASE LINK statement. connect_string is the Oracle Net service name for
the remote database.

Remote tables can be accessed just like local tables, except that the table name must be suffixed by
@link in the from clause of the select statement. Most systems set the maximum number of simultaneous
links to four. The DBA can increase this number with the OPEN_LINKS parameter in init.ora.

Tree-structured queries are limited. They may not use the PRIOR operator except in the connect
by clause. START WITH cannot contain a subquery. CONNECT BY and START WITH cannot use the
function USERENV(‘ENTRYID’), or the pseudo-column RowNum.

To create a database link, you must have CREATE DATABASE LINK privilege in the local database,
and the CREATE SESSION privilege in a remote database. To create a public database link, you must
have CREATE PUBLIC DATABASE LINK system privilege.

964 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:964

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:47:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

If you use the CONNECT TO CURRENT_USER clause, the link will attempt to open a connection
in the remote database using your current username and password. You will therefore need to coordinate
any password changes you make between the local database and the remote database or database
links may stop working.

If you use the shared server architecture, you can create SHARED database links that eliminate the
need for many separate dedicated connections via links. When you create a SHARED link, you must
supply a valid username and password in the remote database to use as an authentication for the
connection.
EXAMPLES The following defines a link named EDMESTON_BOOKS that connects to the
Practice username in the EDMESTON database:

create database link EDMESTON_BOOKS
connect to Practice identified by Practice
using 'EDMESTON';

You now can query Practice’s tables like this:

select Title, Publisher
from BOOKSHELF@EDMESTON_BOOKS;

A synonym could also be created to hide the remoteness of the tables:

create synonym BOOKSHELF for BOOKSHELF@EDMESTON_BOOKS;

CREATE DIMENSION
SEE ALSO ALTER DIMENSION, DROP DIMENSION
FORMAT
create_dimension::=

level_clause::=

hierarchy_clause::=

CREATE DIMENSION 965

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:965

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:47:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

join_clause::=

attribute_clause::=

DESCRIPTION CREATE DIMENSION creates hierarchies among related columns in tables,
for use by the optimizer. The optimizer will use dimension values when determining whether a
materialized view will return the same data as its base table. To create a dimension, you must have
CREATE DIMENSION privilege; to create a dimension in another user’s schema, you must have the
CREATE ANY DIMENSION privilege.

LEVEL defines the level within the dimension. HIERARCHY defines the relationships among the
levels. ATTRIBUTE assigns specific attributes to levels within the dimension. JOIN_KEY defines the
join clauses between the levels.
EXAMPLES For a table named COUNTRY, with columns Country and Continent, and a second
table named CONTINENT, with a column named Continent:

create table CONTINENT (
Continent VARCHAR2(30));

create table COUNTRY (
Country VARCHAR2(30) not null,
Continent VARCHAR2(30));

create dimension GEOGRAPHY
level COUNTRY_ID is COUNTRY.Country
level CONTINENT_ID is CONTINENT.Continent
hierarchy COUNTRY_ROLLUP (

COUNTRY_ID child of
CONTINENT_ID

join key COUNTRY.Continent references CONTINENT_ID);

CREATE DIRECTORY
SEE ALSO BFILE, Chapters 25 and 30
FORMAT

CREATE [OR REPLACE] DIRECTORY directory AS 'path_name';

DESCRIPTION Within Oracle, a “directory” is an alias for an operating system directory. You
must create a directory prior to accessing BFILE datatype values or external tables. See Chapter 25 for
details on the creation and management of external tables.

966 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:966

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:47:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CREATE FUNCTION
SEE ALSO ALTER FUNCTION, BLOCK STRUCTURE, CREATE LIBRARY, CREATE PACKAGE,
CREATE PROCEDURE, DATA TYPES, DROP FUNCTION, Chapters 27, 29 and 36
FORMAT
create_function::=

invoker_rights_clause::=

parallel_enable_clause::=

streaming_clause::=

CREATE FUNCTION 967

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:967

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:47:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

call_spec::=

Java_declaration::=

C_declaration::=

DESCRIPTION function is the name of the function being defined. A function may have parameters,
named arguments of a certain datatype, and every function returns a value of a certain datatype as
specified by the RETURN clause. The PL/SQL block defines the behavior of the function as a series
of declarations, PL/SQL program statements, and exceptions.

The IN qualifier means that you have to specify a value for the parameter when you call the
function, but since you always have to do this for a function, the syntax is optional. In a procedure,
you can have other kinds of parameters. The difference between a function and a procedure is that
a function returns a value to the calling environment.

In order to create a function, you must have the CREATE PROCEDURE system privilege. To create
a function in another user’s account, you must have CREATE ANY PROCEDURE system privilege.

Your function can use C libraries that are stored outside of the database (see CREATE LIBRARY). If
you use Java within your function, you can provide a Java declaration within the LANGUAGE clause.
The invoker_rights clause lets you specify whether the function executes with the privileges of the function
owner (the definer) or the current user (the invoker).

CREATE INDEX
SEE ALSO ANALYZE, ALTER INDEX, DROP INDEX, INTEGRITY CONSTRAINT, STORAGE,
Chapters 18 and 20
FORMAT
create_index::=

968 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:968

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:47:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

cluster_index_clause::=

table_index_clause::=

bitmap_join_index_clause::=

index_expr::=

CREATE INDEX 969

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:969

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:47:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

index_attributes::=

physical_attributes_clause::=

logging_clause::=

key_compression::=

domain_index_clause::=

970 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:970

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:47:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

global_partitioned_index::=

global_partitioning_clause::=

local_partitioned_index::=

on_range_partitioned_table::=

on_list_partitioned_table::=

segment_attributes_clause::=

on_hash_partitioned_table::=

CREATE INDEX 971

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:971

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:47:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

on_comp_partitioned_table::=

index_subpartition_clause::=

parallel_clause::=

DESCRIPTION index is a name you assign to this index. It’s usually a good idea to make it reflect
the table and columns being indexed. table and column(s) are the table and column(s) for which the
index is to be created. A UNIQUE index guarantees that each indexed row is unique on the values of
the index columns. You can use the unique constraint on the columns to automatically create unique
indexes. Specifying multiple columns will create a composite index. ASC and DESC mean ascending
and descending; descending indexes are supported as of Oracle8i. CLUSTER is the name of the cluster
key that is indexed for a cluster. Clusters must have their keys indexed for their associated tables to be
accessed. (See CREATE TABLE for a description of INITRANS and MAXTRANS.) The default for
INITRANS for indexes is 2; MAXTRANS is 255. PCTFREE is the percentage of space to leave free in the
index for new entries and updates. The minimum is zero.

TABLESPACE is the name of the tablespace to which this index is assigned. The physical attributes
section contains subclauses that are described under STORAGE. NOSORT is an option whose primary
value is in reducing the time to create an index if, and only if, the values in the column being indexed
are already in ascending order. It doesn’t harm anything if they later fall out of ascending order, but

972 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:972

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:48:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

NOSORT will only work if they are in order when the index is created. If the rows are not in order,
CREATE INDEX will return an error message, will not damage anything, and will allow you to rerun it
without the NOSORT option.

PARALLEL, along with DEGREE and INSTANCES, specifies the parallel characteristics of the index.
DEGREE specifies the number of query servers to use to create the index; INSTANCES specifies how
the index is to be split among instances of Real Application Clusters for parallel query processing. An
integer n specifies that the index is to be split among the specified number of available instances.

In order to create an index, you must either own the indexed table, have INDEX privilege on the
table, or have CREATE ANY INDEX system privilege. To create a function-based index, you must have
the QUERY REWRITE privilege.

BITMAP creates a bitmap index, which can be useful for columns with few distinct values. The
PARTITION clauses create indexes on partitioned tables.

REVERSE stores the bytes of the indexed value in reverse order. You cannot reverse a bitmap
index.

COMPRESS saves storage space by compressing non-unique non-partitioned indexes. During data
retrieval, the data will be displayed as if it were uncompressed. You can turn off index compression;
re-create the index using the clause NOCOMPRESS.

CREATE INDEXTYPE
FORMAT
create_indextype::=

DESCRIPTION CREATE INDEXTYPE specifies the routines used by a domain index. To create an
indextype, you must have the CREATE INDEXTYPE system privilege. To create an indextype in another
user’s schema, you must have CREATE ANY INDEXTYPE system privilege.

CREATE JAVA
SEE ALSO ALTER JAVA, DROP JAVA, Chapters 34, 35 and 36
FORMAT
create_java::=

CREATE JAVA 973

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:973

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:48:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

invoker_rights_clause::=

DESCRIPTION CREATE JAVA creates a Java source, class, or resource. You must have the CREATE
PROCEDURE system privilege or (to create the object in another user’s schema) CREATE ANY PROCEDURE.
To replace such a schema object in another user’s schema, you must have ALTER ANY PROCEDURE
system privilege.

The JAVA SOURCE, JAVA CLASS, and JAVA RESOURCE clauses load sources, classes, and
resources.

The AUTHID lets you specify whether the function executes with the privileges of the function
owner or the current user.

EXAMPLE The following command creates a Java source:

create java source named "Hello" as
public class Hello (

public static String hello() (
return "Hello World";));

974 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:974

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:48:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CREATE LIBRARY
SEE ALSO CREATE FUNCTION, CREATE PACKAGE BODY, CREATE PROCEDURE, Chapter 29
FORMAT

CREATE [OR REPLACE] LIBRARY [schema .] libname
{ IS | AS } 'filespec' [AGENT 'agent_dblink'];

DESCRIPTION CREATE LIBRARY creates a library object, allowing you to reference an
operating-system shared library, from which SQL and PL/SQL can call external 3GL functions and
procedures. To use the procedures and functions stored in the library, you must have been granted
EXECUTE privilege on the library. Specify the AGENT clause if you want external procedures to be run
from a database link other than the server. Oracle will use the database link specified by agent_dblink
to run external procedures. If you omit this clause, the default agent on the server (extproc) will run
external procedures.

CREATE MATERIALIZED VIEW
SEE ALSO ALTER MATERIALIZED VIEW, CREATE MATERIALIZED VIEW LOG, DROP
MATERIALIZED VIEW, STORAGE, Chapter 23
FORMAT
create_materialized_view::=

CREATE MATERIALIZED VIEW 975

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:975

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:48:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

materialized_view_props::=

prebuilt_table_clause::=

scoped_table_ref_constraint::=

index_org_table_clause::=

key_compression::=

index_org_overflow-clause::=

976 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:976

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:48:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

create_mv_refresh:=

segment_attributes_clause::=

physical_attributes_clause::=

CREATE MATERIALIZED VIEW 977

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:977

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:48:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

logging_clause::=

data_segment_compression::=

column_properties::=

object_type_col_properties::=

substitutable_column_clause::=

nested_table_col_properties::=

978 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:978

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:48:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

varray_col_properties::=

LOB_storage_clause::=

LOB_parameters::=

LOB_partition_storage::=

CREATE MATERIALIZED VIEW 979

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:979

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:48:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

parallel_clause::=

build_clause::=

DESCRIPTION The keyword SNAPSHOT is supported in place of MATERIALIZED VIEW for
backward compatibility.

CREATE MATERIALIZED VIEW creates a materialized view, a table that holds the results of a query,
usually on one or more tables, called master tables. The master tables may be in a local database or in a
remote database. You can have the data refreshed at intervals using the REFRESH clause.

To enable a materialized view for query rewrite, you must have the QUERY REWRITE system
privilege. If the materialized view is based on objects in other schemas, you must have the GLOBAL
QUERY REWRITE privilege.

Materialized views cannot contain LONG columns or reference any objects owned by SYS.
A FAST refresh uses the materialized view log associated with the master table(s) to refresh the

materialized view. A COMPLETE refresh reexecutes the query. A FORCE refresh lets Oracle make the
choice between a FAST or a COMPLETE refresh. Oracle first refreshes the materialized view on the
START WITH date. If you give a NEXT date, Oracle refreshes the materialized view at intervals specified
by the difference between the START WITH and NEXT dates.

A simple materialized view selects data from a single master table using a simple query. A complex
materialized view selects data using a GROUP BY, CONNECT BY, subquery, join, or set operation in the
query. Oracle can do a FAST refresh only on simple materialized views that have materialized view logs.

Because of the local objects which materialized views create, the name of a materialized view
should not exceed 19 characters in length. In order to create a materialized view in your schema, you
must have the CREATE SNAPSHOT or CREATE MATERIALIZED VIEW system privilege. To create a
materialized view in another user’s schema, you must have the CREATE ANY SNAPSHOT or CREATE
ANY MATERIALIZED VIEW system privilege.
EXAMPLE

create materialized view LOCAL_BOOKSHELF
storage (initial 100K next 100K pctincrease 0)
tablespace USERS
refresh force
start with SysDate next SysDate+7
with primary key

980 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:980

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:48:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

as
select * from BOOKSHELF@REMOTE_CONNECT;

CREATE MATERIALIZED VIEW LOG
SEE ALSO ALTER MATERIALIZED VIEW LOG, CREATE MATERIALIZED VIEW, DROP
MATERIALIZED VIEW LOG, STORAGE, Chapter 23
FORMAT
create_materialized_vw_log::=

physical_attributes_clause::=

CREATE MATERIALIZED VIEW LOG 981

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:981

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:48:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

logging_clause::=

parallel_clause::=

new_values_clause::=

DESCRIPTION The keyword SNAPSHOT is supported in place of MATERIALIZED VIEW for
backward compatibility.

CREATE MATERIALIZED VIEW LOG creates a table associated with the master table of a materialized
view that tracks changes to the master table’s data. Oracle uses the materialized view log to FAST
refresh the materialized views of a master table. The storage options specify the storage of the table.
Oracle logs database changes only if there is a simple materialized view based on the master table.

You can have only one log for a given master table, and the log is stored in the same schema as
the master table. In order to create a materialized view log on your own master table, you must have
the CREATE TABLE system privilege. If the master table is in another user’s schema, you must have the
CREATE ANY TABLE and COMMENT ANY TABLE system privileges as well as SELECT privilege on the
master table.

CREATE OPERATOR
FORMAT
create_operator::=

binding_clause::=

982 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:982

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:48:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

implementation_clause::=

context_clause::=

using_function_clause::=

DESCRIPTION CREATE OPERATOR creates a new operator and defines its bindings. You can
reference operators in indextypes and in SQL statements. The operators, in turn, reference functions,
packages, types, and other user-defined objects.

To create an operator, you must have EXECUTE privilege on the functions and operators referenced
by the operator, and CREATE OPERATOR system privilege. If the operator is created in another user’s
schema, you must have CREATE ANY OPERATOR system privilege.

CREATE OUTLINE
SEE ALSO Chapter 38
FORMAT

CREATE [OR REPLACE] [PUBLIC | PRIVATE] OUTLINE [outline]
[FROM [PUBLIC | PRIVATE] source_outline]
[FOR CATEGORY category]
[ON statement];

DESCRIPTION CREATE OUTLINE creates a stored outline, which is a set of hints used to create
the execution plan of the associated query. Later executions of the query will use the same set of hints.
You can group stored outlines into categories.

To create an operator, you must have CREATE ANY OUTLINE system privilege.
EXAMPLE

create outline TEST
for category DEVELOPMENT
on select AuthorName, COUNT(AuthorName) from BOOKSHELF_AUTHOR group by AuthorName;

CREATE OUTLINE 983

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:983

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:48:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CREATE PACKAGE
SEE ALSO ALTER PACKAGE, CREATE FUNCTION, CREATE PACKAGE BODY, CREATE
PROCEDURE, CURSOR, DROP PACKAGE, EXCEPTION, RECORD, TABLE, VARIABLE
DECLARATION, Chapter 29
FORMAT

CREATE [OR REPLACE] PACKAGE [schema .] package
[AUTHID { CURRENT_USER | DEFINER }]
{ IS | AS } pl/sql_package_spec;

DESCRIPTION CREATE PACKAGE sets up the specification for a PL/SQL package, a group of
public procedures, functions, exceptions, variables, constants, and cursors. Adding OR REPLACE
replaces the package specification if it already exists, which invalidates the package and initiates a
recompilation of the package body and any objects that depend on the package specification.

Packaging your procedures and functions lets them share data through variables, constants, and
cursors. It gives you the ability to grant the whole collection at once as part of a role. Oracle accesses
all the elements of a package more efficiently than it would if they were separate. If you change the
package body, which Oracle stores separately from the package specification, you do not have to
recompile anything that uses the package.

In order to create a package, you must have the CREATE PROCEDURE system privilege; to create
a package in another user’s account, you must have the CREATE ANY PROCEDURE system privilege.

The AUTHID clause lets you specify whether the package code executes with the privileges of the
package owner or the user who runs the package’s code.

CREATE PACKAGE BODY
SEE ALSO ALTER PACKAGE, CREATE FUNCTION, CREATE LIBRARY, CREATE PACKAGE,
CREATE PROCEDURE, CURSOR, DROP PACKAGE, EXCEPTION, RECORD, TABLE, VARIABLE
DECLARATION, Chapters 27 and 29
FORMAT

CREATE [OR REPLACE] PACKAGE BODY [schema .] package
{ IS | AS } pl/sql_package_body;

DESCRIPTION CREATE PACKAGE BODY builds the body of a previously specified package
created with CREATE PACKAGE. Adding OR REPLACE replaces the package body if it already exists.
You must have the CREATE PROCEDURE system privilege to create a package body; to create a
package body in another user’s account, you must have CREATE ANY PROCEDURE system privilege.

CREATE PFILE
SEE ALSO CREATE SPFILE, init.ora
FORMAT

CREATE PFILE [= 'pfile_name'] FROM SPFILE [= 'spfile_name'];

DESCRIPTION CREATE PFILE exports a binary server parameter file into a text-initialization
parameter file (init.ora). Creating a text parameter file is a convenient way to get a listing of the current
parameter settings being used by the database, and it lets you edit the file easily in a text editor and
then convert it back into a server parameter file using the CREATE SPFILE statement. You can specify
the name of both the source binary server parameter file and the target text parameter file.

984 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:984

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:48:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

EXAMPLE

create pfile from spfile;

CREATE PROCEDURE
SEE ALSO ALTER PROCEDURE, BLOCK STRUCTURE, CREATE LIBRARY, CREATE FUNCTION,
CREATE PACKAGE, DATA TYPES, DROP PROCEDURE, Chapters 27, 29, and 36
FORMAT
create_procedure::=

invoker_rights_clause::=

call_spec::=

Java_declaration::=

C_declaration::=

CREATE PROCEDURE 985

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:985

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:48:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION CREATE PROCEDURE creates the specification and body of a procedure. A
procedure may have parameters, named arguments of a certain datatype. The PL/SQL block defines
the behavior of the procedure as a series of declarations, PL/SQL program statements, and exceptions.

The IN qualifier means that you have to specify a value for the argument when you call the
procedure. The OUT qualifier means that the procedure passes a value back to the caller through this
argument. The IN OUT qualifier combines the meaning of both IN and OUT-you specify a value, and
the procedure replaces it with a value. If you don’t have any qualifier, the argument defaults to IN. The
difference between a function and a procedure is that a function returns a value to the calling environment
in addition to any arguments that are OUT arguments.

The PL/SQL block can refer to programs in an external C library or to a Java call specification. The
invoker_rights (AUTHID) clause lets you specify whether the procedure executes with the privileges of
the function owner or the user calling the function.

CREATE PROFILE
SEE ALSO ALTER PROFILE, ALTER RESOURCE COST, ALTER SYSTEM, ALTER USER, CREATE
USER, DROP PROFILE, Chapter 19
FORMAT
create_profile::=

resource_parameters::=

986 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:986

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:48:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

password_parameters::=

DESCRIPTION CREATE PROFILE creates a set of limits on the use of database resources. When
you associate the profile with a user with CREATE or ALTER USER, you can control what the user does
via those limits. To use CREATE PROFILE, you must enable resource limits through the initialization
parameter RESOURCE_LIMIT or through the ALTER SYSTEM command.

SESSIONS_PER_USER limits the user to integer concurrent SQL sessions. CPU_PER_ SESSION
limits the CPU time in hundredths of seconds. CPU_PER_CALL limits the CPU time for a parse,
execute, or fetch call in hundredths of seconds. CONNECT_TIME limits elapsed time of a session
in minutes. IDLE_TIME disconnects a user after this number of minutes; this does not apply while
a query is running. LOGICAL_READS_PER_SESSION limits the number of blocks read per session;
LOGICAL_READS_PER_CALL does the same thing for parse, execute, or fetch calls. PRIVATE_SGA
limits the amount of space you can allocate in the SGA as private; the K and M options apply only
to this limit. COMPOSITE_LIMIT limits the total resource cost for a session in service units based on
a weighted sum of CPU, connect time, logical reads, and private SGA resources.

UNLIMITED means there is no limit on a particular resource. DEFAULT picks up the limit from
the DEFAULT profile, which you can change through the ALTER PROFILE command.

If a user exceeds a limit, Oracle aborts and rolls back the transaction, then ends the session. You
must have CREATE PROFILE system privilege in order to create a profile. You associate a profile to a
user with the ALTER USER command.

CREATE ROLE
SEE ALSO ALTER ROLE, ALTER USER, CREATE USER, DROP ROLE, GRANT, REVOKE, ROLE,
SET ROLE, Chapter 19
FORMAT

CREATE ROLE role
[NOT IDENTIFIED
| IDENTIFIED { BY password |

USING [schema .] package | EXTERNALLY | GLOBALLY }];

CREATE ROLE 987

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:987

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:48:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION With CREATE ROLE, you can create a named role or set of privileges. When you
grant the role to a user, you grant him or her all the privileges of that role. You first create the role with
CREATE ROLE, then grant privileges to the role using the GRANT command. When a user wants to
access something that the role allows, he or she enables the role with SET ROLE. Alternatively, the role
can be set as the user’s DEFAULT role via the ALTER USER or CREATE USER command.

If you put password protection on the role, the user who wants to use the privileges must supply the
password in the SET ROLE command to enable the role. The USING package clause lets you create an
application role, which is a role that can be enabled only by applications using an authorized package.
If you do not specify schema, Oracle assumes the package is in your own schema.

CREATE ROLLBACK SEGMENT
SEE ALSO ALTER ROLLBACK SEGMENT, CREATE DATABASE, CREATE TABLESPACE, DROP
ROLLBACK SEGMENT, STORAGE, Chapter 40
FORMAT

CREATE [PUBLIC] ROLLBACK SEGMENT rollback_segment
[{ TABLESPACE tablespace | storage_clause }
[TABLESPACE tablespace | storage_clause]...];

DESCRIPTION rollback_segment is a name assigned to this rollback segment. tablespace is the
name of the tablespace to which this rollback segment is assigned. One tablespace may have multiple
rollback segments.

Storage_clause contains subclauses that are described under STORAGE. If PUBLIC is used, this
rollback segment can be used by any instance that requests it; otherwise it is available only to instances
that named it in their initialization parameter files. See Chapter 40 for details concerning the use and
management of rollback segments.

CREATE SCHEMA
SEE ALSO CREATE TABLE, CREATE VIEW, GRANT
FORMAT

CREATE SCHEMA AUTHORIZATION schema
{ create_table_statement | create_view_statement | grant_statement }
[create_table_statement | create_view_statement | grant_statement]...;

DESCRIPTION The CREATE SCHEMA command creates a collection of tables, views, and privilege
grants as a single transaction. The schema name is the same as your Oracle username. The CREATE
TABLE, CREATE VIEW, and GRANT commands are the standard commands, and the order in which
the commands appear is not important, even if there are internal dependencies.

CREATE SEQUENCE
SEE ALSO ALTER SEQUENCE, AUDIT, DROP SEQUENCE, GRANT, REVOKE, NEXTVAL and
CURRVAL under PSEUDO-COLUMNS, Chapter 20
FORMAT

CREATE SEQUENCE [schema .] sequence
[{ { INCREMENT BY | START WITH } integer
| { MAXVALUE integer | NOMAXVALUE }
| { MINVALUE integer | NOMINVALUE }

988 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:988

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:48:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

| { CYCLE | NOCYCLE }
| { CACHE integer | NOCACHE }
| { ORDER | NOORDER }
}
[{ INCREMENT BY | START WITH } integer
| { MAXVALUE integer | NOMAXVALUE }
| { MINVALUE integer | NOMINVALUE }
| { CYCLE | NOCYCLE }
| { CACHE integer | NOCACHE }
| { ORDER | NOORDER }]...];

DESCRIPTION sequence is the name given to the sequence. The default INCREMENT BY is 1. A
positive number will increment the sequence number in an interval equal to the integer. A negative
number will cause decrement (decrease the value of) the sequence in the same way. START WITH is
the number with which the sequence will begin. The default START WITH is MAXVALUE for descending
sequences and MINVALUE for ascending; use START WITH to override this default.

MINVALUE is the lowest number the sequence will generate. The default is 1 for ascending sequences.
MAXVALUE is the highest number the sequence will generate. For descending sequence the default
is -1. To allow sequences to progress without limitation, specify only MINVALUE for ascending and
MAXVALUE for descending sequences. To stop creating sequence numbers and force an error when
an attempt is made to get a new one, specify a MAXVALUE on an ascending sequence, or a MINVALUE
on a descending sequence, plus NOCYCLE. To restart either type of sequence where its MAXVALUE
or MINVALUE made it begin, specify CYCLE.

CACHE allows a preallocated set of sequence numbers to be kept in memory. The default is 20.
The value set must be less than MAXVALUE minus MINVALUE.

ORDER guarantees that sequence numbers will be assigned to instances requesting them in the
order the requests are received. This is only required in applications using Real Application Clusters.

To create a sequence in your own schema, you must have the CREATE SEQUENCE system privilege;
to create a sequence in another user’s schema, you must have the CREATE ANY SEQUENCE system
privilege.

CREATE SNAPSHOT
See CREATE MATERIALIZED VIEW

CREATE SNAPSHOT LOG
See CREATE MATERIALIZED VIEW LOG

CREATE SPFILE
SEE ALSO CREATE PFILE, init.ora
FORMAT

CREATE SPFILE [= 'spfile_name'] FROM PFILE [= 'pfile_name'];

DESCRIPTION CREATE SPFILE creates a server parameter file from a client-side text-based initialization
parameter file. Server parameter files are binary files that exist only on the server and are called from client
locations to start up the database. Server parameter files let you make persistent changes to individual
parameters; parameter changes made via ALTER SYSTEM commands are retained across database shutdowns
and startups even if no external parameter file is manually updated.

CREATE SPFILE 989

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:989

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:48:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CREATE SYNONYM
SEE ALSO CREATE DATABASE LINK, CREATE TABLE, CREATE VIEW, Chapters 19 and 22
FORMAT

CREATE [PUBLIC] SYNONYM [schema .] synonym
FOR [schema .] object [@ dblink];

DESCRIPTION CREATE SYNONYM creates a synonym for a table, view, sequence, stored procedure,
function, package, materialized view, java class object, or synonym, including those on a remote database.
PUBLIC makes the synonym available to all users, but can only be created by a DBA. Without PUBLIC,
users must prefix the synonym with your user name. synonym is the synonym name. user.table is the
name of the table, view, or synonym to which the synonym refers. You can have a synonym of synonym.
@database_link is a database link to a remote database. The synonym refers to a table in the remote
database as specified by the database link.
EXAMPLE

create synonym LOCAL_BOOKSHELF for BOOKSHELF@REMOTE_CONNECT;

CREATE TABLE
SEE ALSO ALTER TABLE, CREATE CLUSTER, CREATE INDEX, CREATE TABLESPACE, CREATE
TYPE, DATA TYPES, DROP TABLE, INTEGRITY CONSTRAINT, OBJECT NAMES, STORAGE, Chapters 3,
18, 20, 25, 30, 31, and 33
FORMAT
create_table::=

relational_table::=

object_table::=

990 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:990

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:48:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

XMLType_table::=

relational_properties::=

object_table_substitution::=

object_properties::=

CREATE TABLE 991

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:991

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:48:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

OID_clause::=

OID_index_clause::=

physical_properties::=

segment_attributes_clause::=

physical_attributes_clause::=

992 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:992

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:49:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

data_segment_compression::=

table_properties::=

column_properties::=

object_type_col_properties::=

substitutable_column_clause::=

nested_table_col_properties::=

CREATE TABLE 993

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:993

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:49:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

varray_col_properties::=

LOB_storage_clause::=

LOB_parameters::=

994 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:994

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:49:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

logging_clause::=

LOB_partition_storage::=

XMLType_column_properties::=

XMLType_storage::=

XMLSchema_spec::=

row_movement_clause::=

index_org_table_clause::=

CREATE TABLE 995

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:995

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:49:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

mapping_table_clause::=

key_compression::=

index_org_overflow_clause::=

supplemental_logging_props::=

external_table_clause::=

external_data_properties::=

table_partitioning_clauses::=

996 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:996

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:49:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

range_partitioning::=

hash_partitioning::=

list_partitioning::=

composite_partitioning::=

subpartition_by_hash::=

CREATE TABLE 997

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:997

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:49:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

individual_hash_partitions::=

hash_partitions_by_quantity::=

subpartition_by_list::=

subpartition_template::=

range_values_clause::=

list_values_clause::=

998 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:998

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:49:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

table_partition_description::=

partition_level_subpartition::=

subpartition_spec::=

partitioning_storage_clause::=

parallel_clause::=

CREATE TABLE 999

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:999

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:49:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

enable_disable_clause::=

using_index_clause::=

global_partitioned_index::=

global_partitioning_index::=

DESCRIPTION user is the table owner. If the table owner is absent, user defaults to the user issuing
this command. table is the table name, and follows Oracle naming conventions.

column is the name of a column, and datatype is one of the Oracle-supplied datatypes (see DATA
TYPES) or a user-defined type (see CREATE TYPE). DEFAULT specifies a value to be assigned to the

1000 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1000

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:49:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

column if a row is inserted without a value for this column. The value can be a simple literal or the
result of an expression. The expression, however, cannot include a reference to a column, to Level,
or to RowNum.

For an existing abstract datatype, you can create an object table. The following example creates
an object table called ANIMAL, based on the ANIMAL_TY datatype:

create table ANIMAL of ANIMAL_TY;

See Chapter 33 for details on the usage of object tables.
See INTEGRITY CONSTRAINT for a full description of the column and table constraints.
CLUSTER includes this table in the named cluster. The table columns listed must correspond in order

and datatype to the cluster’s cluster columns. The names need not be the same as the corresponding
cluster’s columns, although matching names can help the user to understand what is being done.

INITRANS specifies the initial number of transactions that can update a data block concurrently
(selects are not counted). INITRANS ranges from 1 to 255. 1 is the default. Every transaction takes
space (23 bytes in most systems) in the data block itself until the transaction is completed. When more
than the INITRANS number of transactions are created for the block, space is automatically allocated
for them, up to MAXTRANS.

MAXTRANS specifies the maximum number of transactions that can update a data block concurrently
(selects are not counted). MAXTRANS ranges from 1 to 255. 255 is the default. Every transaction takes
space (23 bytes in most systems) in the data block itself until the transaction is completed. Transactions
queuing up for execution will occupy more and more free space in the block, although usually there is
more free space than is needed for all concurrent transactions.

Whenever Oracle inserts a row into a table, it first looks to see how much space is available in the
current block (the size of a block is operating system dependent-see the Oracle Installation and User’s
Guide for your system). If the size of the row will leave less than PCTFREE percent in the block, it puts
the row in a newly allocated block instead. Default is 10; 0 is the minimum.

PCTUSED defaults to 40. This is the percentage minimum of available space in a block that will
make it a candidate for insertion of new rows. Oracle tracks how much space in a block has been
made available by deletions. If it falls below PCTUSED, Oracle makes the block available for insertions.

STORAGE contains subclauses that are described under STORAGE. TABLESPACE is the name of
the tablespace to which this table is assigned.

The ENABLE and DISABLE clauses enable or disable constraints.
PARALLEL, along with DEGREE and INSTANCES, specifies the parallel characteristics of the table.

DEGREE specifies the number of query servers to use; INSTANCES specifies how the table is to be split
among instances of Real Application Clusters for parallel query processing. An integer n specifies that
the table is to be split among the specified number of available instances.

The PARTITION clauses control how the table’s data is partitioned—by range, by hash, or by a
composite of multiple partition methods. See Chapter 18 for details on partitioning.

A TEMPORARY table contains data that is only visible to the session that creates it. If a temporary
table is defined as GLOBAL, its definition may be seen by all users. Temporary tables may not be
partitioned and cannot support many standard table features (such as varying array datatypes, LOB
datatypes, and index organization). For example, the following command creates a table whose rows
will be deleted at the end of the current session

create global temporary table WORK_SCHEDULE (
StartDate DATE,
EndDate DATE,
PayRate NUMBER)
on commit preserve rows;

CREATE TABLE 1001

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1001

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:49:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The AS clause creates the rows of the new table through the returned query rows. The columns
and types of the query must match those defined in the CREATE TABLE. The query used in the AS
clause may not contain any LONG datatype columns. You can turn off logging during the create table
... as select operation via the NOLOGGING keyword. This option disables the redo log entries that
would normally be written during the population of the new table, thus improving performance while
impacting your ability to recover that data if an instance failure occurs prior to the next backup.

The LOB clause specifies the out-of-line data storage used for internally-stored LOB (BLOB, CLOB,
and NCLOB) data. See Chapter 32 for details on LOB management.

The object table definition section applies to object tables, in which each row has an object ID
(OID). See Chapter 33.

CREATE TABLESPACE
SEE ALSO ALTER TABLESPACE, DROP TABLESPACE, Chapters 20 and 40
FORMAT
create_tablespace::=

1002 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1002

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:49:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

logging_clause::=

data_segment_compression::=

extent_management_clause::=

segment_management_clause::=

DESCRIPTION tablespace is the name of the tablespace, and follows Oracle naming conventions.
The DATAFILE is a file or series of files described according to a file_definition, which specifies the file
names and sizes:

'file' [SIZE integer [K | M] [REUSE]

The file format is operating-system specific. SIZE is the number of bytes set aside for this file.
Suffixing this with K multiplies the value by 1024; M multiplies it by 1048576. DEFAULT STORAGE
defines the default storage for all objects created in this tablespace, unless those defaults are overridden
in the CREATE TABLE command itself. ONLINE, the default, indicates that this tablespace will become
available to users as soon as it is created. OFFLINE prevents access to it until ALTER TABLESPACE
changes it to ONLINE. DBA_TABLESPACES gives the status of all the tablespaces.

SIZE and REUSE together tell Oracle to reuse the file if it already exists (anything it contains will
be wiped out), or create it if it doesn’t already exist. SIZE without REUSE will create a file that does
not exist, but return an error if it does. Without SIZE, the file must already exist.

The MINIMUM EXTENT size parameter specifies the minimum size for extents within the tablespace.
The default is operating system and database block size-specific.

CREATE TABLESPACE 1003

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1003

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:49:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

When turned ON, the AUTOEXTEND option will dynamically extend a datafile as needed in
increments of NEXT size, to a maximum of MAXSIZE (or UNLIMITED). If a tablespace will only be
used for temporary segments created during query processing, you can create it as a TEMPORARY
tablespace. If the tablespace will contain permanent objects (such as tables), then you should use the
default setting of PERMANENT.

EXTENT MANAGEMENT controls the manner in which the extent management data for a tablespace
is recorded. By default, extent usage is LOCAL—the extent location information is stored in a bitmap
within the tablespace’s datafiles.

CREATE TEMPORARY TABLESPACE
SEE ALSO CREATE TABLE, CREATE TABLESPACE
FORMAT
create_temporarary_tablespace::=

temp_tablespace_extent::=

DESCRIPTION CREATE TEMPORARY TABLESPACE creates a tablespace that will be used to
store temporary tables. The temporary tables stored in this tablespace are not the temporary segments
created during sort operations; rather, they are tables created via the create temporary table command.
See CREATE TABLESPACE for the tablespace parameters, and CREATE TABLE for the syntax for
temporary tables.

CREATE TRIGGER
SEE ALSO ALTER TABLE, ALTER TRIGGER, BLOCK STRUCTURE, DROP TRIGGER, Chapters 28
and 30
FORMAT
create_trigger::=

1004 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1004

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:49:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

dml_event_clause::=

referencing_clause::=

CREATE TRIGGER 1005

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1005

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:49:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION CREATE TRIGGER creates and enables a database trigger, a stored procedure
block associated with a table, specified in the on clause, that Oracle automatically executes when the
specified SQL statement executes against the table. You can use triggers to enforce complex constraints
and to propagate changes throughout the database instead of doing this in your applications. That way
you implement the triggered code once instead of having to do it in every application.

The main clause of the CREATE TRIGGER command specifies the SQL operation that triggers the
block (such as delete, insert, or update) and when the trigger fires (BEFORE, AFTER, or INSTEAD OF
executing the triggering operation). If you specify an OF clause on an UPDATE trigger, the trigger fires
only when you update one or more of the specified columns. Note that you can also create triggers
that fire when DDL events occur (including create, alter, and drop) and when specific database events
occur (logons, logoffs, database startups, shutdowns, and server errors).

The REFERENCING clause specifies a correlation name for the table for the OLD and NEW versions
of the table. This lets you use the name when referring to columns to avoid confusion, particularly
when the table name is OLD or NEW. The default names are OLD and NEW.

The FOR EACH ROW clause specifies the trigger to be a row trigger, a trigger fired once for each
row affected by the triggering operation. The WHEN clause restricts the execution of the trigger to
happen only when the condition is met. This condition is a SQL condition, not a PL/SQL condition.

You can disable and enable triggers through the ALTER TRIGGER and ALTER TABLE commands.
If a trigger is disabled, Oracle does not fire the trigger when a potentially triggering operation occurs.
The CREATE TRIGGER command automatically enables the trigger.

To create a trigger on a table you own, you must have the CREATE TRIGGER system privilege. To
create a trigger on another user’s table, you must have the CREATE ANY TRIGGER system privilege.
The user must have been directly granted all privileges necessary to execute the stored procedure.

CREATE TYPE
SEE ALSO CREATE TABLE, CREATE TYPE BODY, Chapters 4, 30, and 31
FORMAT
create_type::=

create_incomplete_type::=

create_object_type::=

1006 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1006

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:49:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

invoker_rights_clause::=

sqlj_object_type::=

sqlj_object_type_attr::=

element_spec::=

inheritance_clauses::=

CREATE TYPE 1007

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1007

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:50:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

subprogram_clauses::=

procedure_spec::=

function_spec::=

constructor_spec::=

map_order_function_spec::=

return_clause::=

1008 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1008

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:50:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

sqlj_object_type_sig::=

pragma_clause::=

call_spec::=

Java_declaration::=

C_declaration::=

create_varray_type::=

CREATE TYPE 1009

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1009

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:50:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

create_nested_table_type::=

DESCRIPTION CREATE TYPE creates an abstract datatype, named varying array (VARRAY), nested
table type, or an incomplete object type. To create or replace a type, you must have CREATE TYPE
privilege. To create a type in another user’s schema, you must have CREATE ANY TYPE system privileges.

When creating an abstract datatype, you can base it on Oracle’s provided datatypes (such as DATE
and NUMBER) and on previously defined abstract datatypes.

An “incomplete” type has a name but no attributes or methods. However, it can be referenced by
other object types, and so can be used to define object types that refer to each other. If you have two
types that refer to each other, you must create one as an incomplete type, then create the second, then
re-create the first with its proper definition.

If you plan to create methods for the type, you need to declare the method names in the type
specification. When naming the methods, restrict their ability to modify the database via the PRAGMA
RESTRICT_REFERENCES clause. The available options are shown in the syntax diagram. At a minimum,
your methods should use the WNDS restriction. See Chapter 30. For details on VARRAYs and nested
tables, see Chapter 31.
EXAMPLES Creating a type that will have associated methods:

create or replace type ANIMAL_TY as object
(Breed VARCHAR2(25),
Name VARCHAR2(25),
BirthDate DATE,

member function AGE (BirthDate IN DATE) return NUMBER,
PRAGMA RESTRICT_REFERENCES(AGE, WNDS));

Creating a varying array:

create or replace type TOOLS_VA as varray(5) of VARCHAR2(25);

Creating a type with no methods:

create type ADDRESS_TY as object
(Street VARCHAR2(50),
City VARCHAR2(25),
State CHAR(2),
Zip NUMBER);

Creating a type that uses another type:

create type PERSON_TY as object
(Name VARCHAR2(25),
Address ADDRESS_TY);

1010 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1010

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:50:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CREATE TYPE BODY
SEE ALSO CREATE FUNCTION, CREATE PROCEDURE, CREATE TYPE, Chapters 4, 25, 29, 30,
and 31
FORMAT
create_type_body::=

procedure_declaration::=

function_declaration::=

constructor_declaration::=

CREATE TYPE BODY 1011

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1011

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:50:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

call_spec::=

Java_declaration::=

C_declaration::=

DESCRIPTION CREATE TYPE BODY specifies the methods to be applied to types created via
CREATE TYPE. You must have the CREATE TYPE privilege in order to create type bodies. To create
a type body in another user’s schema, you must have the CREATE ANY TYPE privilege.

See Chapter 30 for examples of methods.
EXAMPLE

create or replace type body ANIMAL_TY as
member function Age (BirthDate DATE) return NUMBER is
begin

RETURN ROUND(SysDate - BirthDate);
end;

end;

CREATE USER
SEE ALSO ALTER USER, CREATE PROFILE, CREATE ROLE, CREATE TABLESPACE, GRANT,
Chapter 19
FORMAT

CREATE USER user IDENTIFIED
{ BY password | EXTERNALLY | GLOBALLY AS 'external_name' }
[{ DEFAULT TABLESPACE tablespace
| TEMPORARY TABLESPACE tablespace
| QUOTA { integer [K | M] | UNLIMITED } ON tablespace
[QUOTA { integer [K | M] | UNLIMITED } ON tablespace]...

| PROFILE profile
| PASSWORD EXPIRE
| ACCOUNT { LOCK | UNLOCK } }
[DEFAULT TABLESPACE tablespace
| TEMPORARY TABLESPACE tablespace
| QUOTA { integer [K | M] | UNLIMITED } ON tablespace

[QUOTA { integer [K | M] | UNLIMITED } ON tablespace]...
| PROFILE profile

1012 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1012

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:50:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

| PASSWORD EXPIRE
| ACCOUNT { LOCK | UNLOCK }]...] ;

DESCRIPTION CREATE USER creates a user account that lets you log into the database with a
certain set of privileges and storage settings. If you specify a password, you must supply that password
to log on; if you specify the EXTERNALLY option, access is verified through operating system security.
External verification uses the OS_AUTHENT_PREFIX initialization parameter to prefix the operating
system user id, so the user name you specify in CREATE USER should contain that prefix (usually, OPS$).

The DEFAULT TABLESPACE is the tablespace in which the user creates objects. The TEMPORARY
TABLESPACE is the tablespace in which temporary objects are created for the user’s operations.

You can put a QUOTA on either of these tablespaces that limits the amount of space, in bytes
(kilobytes or megabytes for K or M options, respectively), that a user can allocate. The profile clause
assigns a named profile to the user to limit usage of database resources. Oracle assigns the DEFAULT
profile to the user if you don’t specify a profile.

When you first create a user, the user has no privileges. You must use the GRANT command to grant
roles and privileges to the user. You should usually grant CREATE SESSION as a minimal privilege.

For information on password expirations and account locking, see CREATE PROFILE and Chapter 19.

CREATE VIEW
SEE ALSO CREATE SYNONYM, CREATE TABLE, DROP VIEW, RENAME, INTEGRITY CONSTRAINT,
Chapters 18 and 30
FORMAT
create_view::=

object_view_clause::=

CREATE VIEW 1013

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1013

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:50:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

XMLType_view_clause::=

XMLSchema_spec::=

subquery_restriction_clause::=

DESCRIPTION CREATE VIEW defines a view named view. user is the name of the user for whom
the view is created. The OR REPLACE option re-creates the view if it already exists. The FORCE option
creates the view regardless of whether the tables to which the view refers exist or whether the user has
privileges on them. The user still can’t execute the view, but he or she can create it. The NO FORCE
option creates the view only if the base tables exist and the user has privileges on them.

If an alias is specified, the view uses the alias as the name of the corresponding column in the
query. If an alias is not specified, the view inherits the column name from the query; in this case each
column in a query must have a unique name, one that follows normal Oracle naming conventions. It
cannot be an expression. An alias in the query itself also can serve to rename the column.

AS query identifies the columns of tables and other views that are to appear in this view. Its where
clause will determine which rows are to be retrieved.

WITH CHECK OPTION restricts inserts and updates performed through the view to prevent them
from creating rows that the view cannot itself select, based on the where clause of the CREATE VIEW
statement. WITH CHECK OPTION may be used in a view that is based on another view; however, if
the underlying view also has a WITH CHECK OPTION, it is ignored.

constraint is a name given to the CHECK OPTION. constraint is an optional name assigned to this
constraint. Without it, Oracle will assign a name in the form SYS_Cn, where n is an integer. An Oracle-
assigned name will usually change during an import, while a user-assigned name will not change.

update and delete will work on rows in a view if the view is based on a single table and its query
does not contain the group by clause, the distinct clause, group functions, or references to the pseudo-
column RowNum. You may update views containing other pseudo-columns or expressions, as long as
they are not referenced in the update.

1014 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1014

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:50:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

You may insert rows through a view if the view is based on a single table and if its query does not
contain the group by clause, the distinct clause, group functions, references to any pseudo-columns,
or any expressions; rows may also be inserted through a view with more than one table by using
INSTEAD OF triggers. If the view is created WITH READ ONLY, then only selects are allowed against
the view; no data manipulation is allowed.

You can create object views to superimpose abstract datatypes on existing relational tables. See
Chapter 30.

In order to create a view, you must have the CREATE VIEW system privilege. To create a view in
another user’s schema, you must have the CREATE ANY VIEW system privilege.

CREATING A DATABASE
Creating a database is the process of making a database ready for initial use. It includes clearing the
database files and loading initial database tables required by the RDBMS. This is accomplished via the
SQL statement CREATE DATABASE.

CTXCAT INDEX
A CTXCAT text index, available in Oracle Text, supports text queries executed with the CATSEARCH
operator. See Chapter 24 for information on Oracle Text.

CUBE
SEE ALSO GROUPING, ROLLUP, Chapter 13
FORMAT

GROUP BY CUBE (column1, column2)

DESCRIPTION CUBE groups rows based on the values of all possible combinations of expressions
for each row, and returns a single row of summary information for each group. You can use the CUBE
operation to produce cross-tab reports. See Chapter 13.

CUME_DIST
SEE ALSO GROUP FUNCTIONS
FORMAT For aggregates:

CUME_DIST (expr [, expr]...) WITHIN GROUP
(ORDER BY

expr [DESC | ASC] [NULLS { FIRST | LAST }]
[, expr [DESC | ASC] [NULLS { FIRST | LAST }]]...)

For analytics:

CUME_DIST () OVER ([query_partition_clause] order_by_clause)

DESCRIPTION CUME_DIST calculates the cumulative distribution of a value in a group of values.
The range of values returned by CUME_DIST is >0 to <=1. Tie values always evaluate to the same
cumulative distribution value.

CURRENT_DATE
SEE ALSO DATE FUNCTIONS

CURRENT_DATE 1015

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1015

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:50:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

FORMAT

CURRENT_DATE

DESCRIPTION CURRENT_DATE returns the current date in the session time zone, in a value in
the Gregorian calendar of datatype DATE.
EXAMPLE

SELECT CURRENT_DATE FROM DUAL;

CURRENT_TIMESTAMP
SEE ALSO DATE FUNCTIONS
FORMAT

CURRENT_TIMESTAMP [(precision)]

DESCRIPTION CURRENT_TIMESTAMP returns the current date and time in the session time
zone, in a value of datatype TIMESTAMP WITH TIME ZONE. The time zone displacement reflects the
current local time of the SQL session. If you omit precision, the default is 6. The difference between
this function and LOCALTIMESTAMP is that CURRENT_TIMESTAMP returns a TIMESTAMP WITH
TIME ZONE value while LOCALTIMESTAMP returns a TIMESTAMP value.

precision specifies the fractional second precision of the time value returned.
EXAMPLE

select CURRENT_TIMESTAMP from DUAL;

CURRVAL
See PSEUDO-COLUMNS.

CURSOR
Cursor is also a synonym for context area—a work area in memory where Oracle stores the current
SQL statement. For a query, the area in memory also includes column headings and one row retrieved
by the query.

CURSOR-PL/SQL
SEE ALSO CREATE PACKAGE, CREATE PACKAGE BODY, Chapter 27
FORMAT

CURSOR cursor [(parameter datatype[,parameter datatype]...]
[IS query]

DESCRIPTION You can specify a cursor in a PL/SQL package and declare its body. The specification
contains only the list of parameters with their corresponding datatypes, not the IS clause, while the
body contains both. The parameters may appear anywhere in the query that a constant could appear.
You can specify the cursor as a part of the public declarations of the package specification, and then
the cursor body as part of the hidden package body.

1016 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1016

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:50:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CURSOR FOR LOOP
In FOR loops, the loop executes a specified number of times. In a cursor FOR loop, the results of a
query are used to dynamically determine the number of times the loop is executed. In a cursor FOR
loop, the opening, fetching, and closing of cursors is performed implicitly; you do not need to explicitly
code these actions.

The following listing shows a cursor FOR loop that queries the RADIUS_VALS table and inserts
records into the AREAS table.

declare
pi constant NUMBER(9,7) := 3.1415927;
area NUMBER(14,2);
cursor rad_cursor is

select * from RADIUS_VALS;
begin
for rad_val in rad_cursor
loop
area := pi*power(rad_val.radius,2);
insert into AREAS values (rad_val.radius, area);

end loop;
end;

In a cursor FOR loop, there is no open or fetch command. The

for rad_val in rad_cursor

command implicitly opens the rad_cursor cursor and fetches a value into the rad_val variable. Note that
the rad_val variable is not explicitly declared when you use a cursor FOR loop. When there are no more
records in the cursor, the loop is exited and the cursor is closed. In a cursor FOR loop, there is no need
for a close command. See Chapter 27 for further information on cursor management within PL/SQL.

DATA CONTROL LANGUAGE (DCL) STATEMENTS
DCL statements are one category of SQL statements. DCL statements, such as grant, grant select, grant
update, and revoke all, control access to the data and to the database. The other categories are data
definition language (DDL) and data manipulation language (DML) statements.

DATA DEFINITION LANGUAGE (DDL) STATEMENTS
DDL statements are one category of SQL statements. DDL statements define (create) or delete (drop)
database objects. Examples are create view, create table, create index, drop table, create function,
and rename table. Executing any DDL command commits any pending changes to the database. The
other categories of SQL statements are data control language (DCL) and data manipulation language
(DML) statements.

DATA DEFINITION LOCKS
Data definition locks are locks placed on the data dictionary during changes to the structures (definitions)
of database objects (such as tables, indexes, views, and clusters) so that those changes occur with no
negative impact on the database data. There are three kinds of locks: dictionary operation locks, dictionary
definition locks, and table definition locks.

DATA DEFINITION LOCKS 1017

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1017

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:50:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DATA DICTIONARY
The data dictionary is a comprehensive set of tables and views owned by the DBA users SYS and SYSTEM,
which activates when Oracle is initially installed, and is a central source of information for the Oracle
RDBMS itself and for all users of Oracle. The tables are automatically maintained by Oracle, and hold a set
of views and tables containing information about database objects, users, privileges, events, and use. See
Chapter 37.

DATA DICTIONARY VIEWS
SEE ALSO Chapter 37
DESCRIPTION The Oracle data dictionary views are described in Chapter 37. Most of the following
listing, describing the available data dictionary views, was generated by selecting records from the
DICTIONARY view in Oracle, via a non-DBA account. The views are listed here in alphabetical order;
Chapter 37 groups and describes them by function. For details on the use of the DBA views in the data
dictionary, see the Oracle9i DBA Handbook.

TABLE_NAME Comments

ALL_ALL_TABLES Description of all object and relational tables accessible to
the user

ALL_ARGUMENTS Arguments in object accessible to the user

ALL_ASSOCIATIONS All associations available to the user

ALL_AUDIT_POLICIES All fine grained auditing policies in the database

ALL_BASE_TABLE_MVIEWS All materialized views with log(s) in the database that the
user can see

ALL_CATALOG All tables, views, synonyms, sequences accessible to the user

ALL_CLUSTERS Description of clusters accessible to the user

ALL_CLUSTER_HASH_EXPRESSIONS Hash functions for all accessible clusters

ALL_COLL_TYPES Description of named collection types accessible to the user

ALL_COL_COMMENTS Comments on columns of accessible tables and views

ALL_COL_PRIVS Grants on columns for which the user is the grantor,
grantee, owner, or an enabled role or PUBLIC is the grantee

ALL_COL_PRIVS_MADE Grants on columns for which the user is owner or grantor

ALL_COL_PRIVS_RECD Grants on columns for which the user, PUBLIC or enabled
role is the grantee

ALL_CONSTRAINTS Constraint definitions on accessible tables

ALL_CONS_COLUMNS Information about accessible columns in constraint
definitions

ALL_CONTEXT Description of all active context namespaces under the
current session

ALL_DB_LINKS Database links accessible to the user

ALL_DEF_AUDIT_OPTS Auditing options for newly created objects

ALL_DEPENDENCIES Dependencies to and from objects accessible to the user

ALL_DIMENSIONS Description of the dimension objects accessible to the DBA

1018 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1018

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:50:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TABLE_NAME Comments

ALL_DIM_ATTRIBUTES Representation of the relationship between a dimension
level and a functionally dependent column

ALL_DIM_CHILD_OF Representation of a 1:n hierarchical relationship between a
pair of levels in a dimension

ALL_DIM_HIERARCHIES Representation of a dimension hierarchy

ALL_DIM_JOIN_KEY Representation of a join between two dimension tables

ALL_DIM_LEVELS Description of dimension levels visible to DBA

ALL_DIM_LEVEL_KEY Representation of columns of a dimension level

ALL_DIRECTORIES Description of all directories accessible to the user

ALL_ERRORS Current errors on stored objects that user is allowed to create

ALL_EXTERNAL_LOCATIONS Description of the external tables locations accessible to
the user

ALL_EXTERNAL_TABLES Description of the external tables accessible to the user

ALL_HISTOGRAMS Synonym for ALL_TAB_HISTOGRAMS

ALL_INDEXES Descriptions of indexes on tables accessible to the user

ALL_INDEXTYPES All indextypes available to the user

ALL_INDEXTYPE_COMMENTS Comments for user-defined indextypes

ALL_INDEXTYPE_OPERATORS All operators available to the user

ALL_IND_COLUMNS COLUMNs comprising INDEXes on accessible TABLES

ALL_IND_EXPRESSIONS FUNCTIONAL INDEX EXPRESSIONs on accessible TABLES

ALL_IND_PARTITIONS All index partitions

ALL_IND_SUBPARTITIONS All index subpartitions

ALL_INTERNAL_TRIGGERS Description of the internal triggers on the tables accessible
to the user

ALL_JOBS Synonym for USER_JOBS

ALL_JOIN_IND_COLUMNS Join Index columns comprising the join conditions

ALL_LIBRARIES Description of libraries accessible to the user

ALL_LOBS Description of LOBs contained in tables accessible to the user

ALL_LOB_PARTITIONS All LOB partitions

ALL_LOB_SUBPARTITIONS All LOB subpartitions

ALL_LOG_GROUPS Log group definitions on accessible tables

ALL_LOG_GROUP_COLUMNS Information about columns in log group definitions

ALL_METHOD_PARAMS Description of method parameters of types accessible to
the user

ALL_METHOD_RESULTS Description of method results of types accessible to the user

ALL_MVIEWS All materialized views in the database

ALL_MVIEW_AGGREGATES Description of the materialized view aggregates accessible
to the user

ALL_MVIEW_ANALYSIS Description of the materialized views accessible to the user

DATA DICTIONARY VIEWS 1019

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1019

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:50:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TABLE_NAME Comments

ALL_MVIEW_DETAIL_RELATIONS Description of the materialized view detail tables accessible
to the user

ALL_MVIEW_JOINS Description of a join between two columns in the WHERE
clause of a materialized view accessible to the user

ALL_MVIEW_KEYS Description of the columns that appear in the GROUP BY
list of a materialized view accessible to the user

ALL_MVIEW_LOGS All materialized view logs in the database that the user can see

ALL_MVIEW_REFRESH_TIMES Materialized views and their last refresh times for each master
table that the user can look at

ALL_NESTED_TABLES Description of nested tables in tables accessible to the user

ALL_OBJECTS Objects accessible to the user

ALL_OBJECT_TABLES Description of all object tables accessible to the user

ALL_OPANCILLARY All ancillary operators available to the user

ALL_OPARGUMENTS All arguments of the operators available to the user

ALL_OPBINDINGS All binding functions for operators available to the user

ALL_OPERATORS All operators available to the user

ALL_OPERATOR_COMMENTS Comments for user-defined operators

ALL_OUTLINES Synonym for USER_OUTLINES

ALL_OUTLINE_HINTS Synonym for USER_OUTLINE_HINTS

ALL_PARTIAL_DROP_TABS All tables with partially dropped columns accessible to
the user

ALL_PART_COL_STATISTICS Column statistics for partitions

ALL_PART_HISTOGRAMS Histograms for partitions

ALL_PART_INDEXES Partition index definitions

ALL_PART_KEY_COLUMNS Partition key columns

ALL_PART_LOBS Partition LOB details

ALL_PART_TABLES Partitioned table definitions

ALL_PENDING_CONV_TABLES All tables accessible to the user which are not upgraded to
the latest type version

ALL_POLICIES All policies for objects if the user has system privileges or
owns the objects

ALL_POLICY_CONTEXTS All policy groups defined for all tables or views accessible
to the user

ALL_POLICY_GROUPS All policy groups defined for any tables or views accessible
to the user

ALL_PROBE_OBJECTS All probe objects

ALL_PROCEDURES Description of all procedures available to the user

ALL_QUEUES All queues accessible to the user

ALL_QUEUE_TABLES All queue tables accessible to the user

ALL_REFRESH All the refresh groups that the user can touch

1020 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1020

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:50:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TABLE_NAME Comments

ALL_REFRESH_CHILDREN All the objects in refresh groups, where the user can touch
the group

ALL_REFRESH_DEPENDENCIES Description of the detail tables that materialized views
depend on for refresh

ALL_REFS Description of REF columns contained in tables accessible
to the user

ALL_REGISTERED_MVIEWS Remote materialized views of local tables that the user can see

ALL_REGISTERED_SNAPSHOTS Remote snapshots of local tables that the user can see

ALL_REPAUDIT_ATTRIBUTE Information about attributes automatically maintained for
replication

ALL_REPAUDIT_COLUMN Information about columns in all shadow tables for
replicated tables which are accessible to the user

ALL_REPCAT Replication catalog

ALL_REPCATLOG Information about asynchronous administration requests

ALL_REPCOLUMN Replicated top-level columns (table) sorted alphabetically in
ascending order

ALL_REPCOLUMN_GROUP All column groups of replicated tables which are accessible
to the user

ALL_REPCONFLICT All conflicts with available resolutions for user’s replicated tables

ALL_REPDDL Arguments that do not fit in a single repcat log record

ALL_REPFLAVORS Flavors defined for replicated object groups

ALL_REPFLAVOR_COLUMNS Replicated columns in flavors

ALL_REPFLAVOR_OBJECTS Replicated objects in flavors

ALL_REPGENERATED Objects generated to support replication

ALL_REPGENOBJECTS Objects generated to support replication

ALL_REPGROUP Information about replicated object groups

ALL_REPGROUPED_COLUMN Columns in the all column groups of replicated tables
which are accessible to the user

ALL_REPGROUP_PRIVILEGES Information about users who are registered for object group
privileges

ALL_REPKEY_COLUMNS Primary columns for a table using column-level replication

ALL_REPOBJECT Information about replicated objects

ALL_REPPARAMETER_COLUMN All columns used for resolving conflicts in replicated tables
which are accessible to the user

ALL_REPPRIORITY Values and their corresponding priorities in all priority
groups which are accessible to the user

ALL_REPPRIORITY_GROUP Information about all priority groups which are accessible
to the user

ALL_REPPROP Propagation information about replicated objects

ALL_REPRESOLUTION Description of all conflict resolutions for replicated tables
which are accessible to the user

ALL_REPRESOLUTION_METHOD All conflict resolution methods accessible to the user

DATA DICTIONARY VIEWS 1021

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1021

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:50:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TABLE_NAME Comments

ALL_REPRESOLUTION_STATISTICS Statistics for conflict resolutions for replicated tables which
are accessible to the user

ALL_REPRESOL_STATS_CONTROL Information about statistics collection for conflict resolutions
for replicated tables which are accessible to the user

ALL_REPSCHEMA N-way replication information

ALL_REPSITES N-way replication information

ALL_SECONDARY_OBJECTS All secondary objects for domain indexes

ALL_SEQUENCES Description of SEQUENCEs accessible to the user

ALL_SNAPSHOTS Snapshots the user can access

ALL_SNAPSHOT_LOGS All snapshot logs in the database that the user can see

ALL_SNAPSHOT_REFRESH_TIMES Synonym for ALL_MVIEW_REFRESH_TIMES

ALL_SOURCE Current source on stored objects that user is allowed to create

ALL_SOURCE_TABLES Source tables

ALL_SOURCE_TAB_COLUMNS Source columns

ALL_SQLJ_TYPES Description of types accessible to the user

ALL_SQLJ_TYPE_ATTRS Description of attributes of types accessible to the user

ALL_SQLJ_TYPE_METHODS Description of methods of types accessible to the user

ALL_STORED_SETTINGS Parameter settings for objects accessible to the user

ALL_SUBPART_COL_STATISTICS Subpartition statistics

ALL_SUBPART_HISTOGRAMS Subpartition histograms

ALL_SUBPART_KEY_COLUMNS Subpartition keys

ALL_SUBSCRIBED_COLUMNS Columns subscribed to

ALL_SUBSCRIBED_TABLES Tables subscribed to

ALL_SUBSCRIPTIONS All subscriptions

ALL_SUMDELTA Direct path load entries accessible to the user

ALL_SUMMARIES Description of the summaries accessible to the user

ALL_SYNONYMS All synonyms accessible to the user

ALL_TABLES Description of relational tables accessible to the user

ALL_TAB_COLS Columns of user’s tables, views and clusters

ALL_TAB_COLUMNS Columns of user’s tables, views and clusters

ALL_TAB_COL_STATISTICS Columns of user’s tables, views and clusters

ALL_TAB_COMMENTS Comments on tables and views accessible to the user

ALL_TAB_HISTOGRAMS Histograms on columns of all tables visible to user

ALL_TAB_MODIFICATIONS Information regarding modifications to tables

ALL_TAB_PARTITIONS All table partitions

ALL_TAB_PRIVS Grants on objects for which the user is the grantor, grantee,
owner, or an enabled role or PUBLIC is the grantee

ALL_TAB_PRIVS_MADE User’s grants and grants on user’s objects

1022 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1022

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:50:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TABLE_NAME Comments

ALL_TAB_PRIVS_RECD Grants on objects for which the user, PUBLIC or enabled
role is the grantee

ALL_TAB_SUBPARTITIONS All table subpartitions

ALL_TRIGGERS Triggers accessible to the current user

ALL_TRIGGER_COLS Column usage in user’s triggers or in triggers on user’s tables

ALL_TYPES Description of types accessible to the user

ALL_TYPE_ATTRS Description of attributes of types accessible to the user

ALL_TYPE_METHODS Description of methods of types accessible to the user

ALL_TYPE_VERSIONS Description of each type version accessible to the user

ALL_UNUSED_COL_TABS All tables with unused columns accessible to the user

ALL_UPDATABLE_COLUMNS Description of all updatable columns

ALL_USERS Information about all users of the database

ALL_USTATS All statistics

ALL_VARRAYS Description of varrays in tables accessible to the user

ALL_VIEWS Description of views accessible to the user

AUDIT_ACTIONS Description table for audit trail action type codes. Maps
action type numbers to action type names

CAT Synonym for USER_CATALOG

CLU Synonym for USER_CLUSTERS

COLS Synonym for USER_TAB_COLUMNS

COLUMN_PRIVILEGES Grants on columns for which the user is the grantor, grantee,
owner, or an enabled role or PUBLIC is the grantee

DATABASE_COMPATIBLE_LEVEL Database compatible parameter set via init.ora

DBMS_ALERT_INFO

DBMS_LOCK_ALLOCATED

DICT Synonym for DICTIONARY

DICTIONARY Description of data dictionary tables and views

DICT_COLUMNS Description of columns in data dictionary tables and views

DUAL A one-row, one-column table

GLOBAL_NAME Global database name

IND Synonym for USER_INDEXES

INDEX_HISTOGRAM Statistics on keys with repeat count

INDEX_STATS Statistics on the b-tree

NLS_DATABASE_PARAMETERS Permanent NLS parameters of the database

NLS_INSTANCE_PARAMETERS NLS parameters of the instance

NLS_SESSION_PARAMETERS NLS parameters of the user session

OBJ Synonym for USER_OBJECTS

RESOURCE_COST Cost for each resource

ROLE_ROLE_PRIVS Roles which are granted to roles

DATA DICTIONARY VIEWS 1023

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1023

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:50:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TABLE_NAME Comments

ROLE_SYS_PRIVS System privileges granted to roles

ROLE_TAB_PRIVS Table privileges granted to roles

SEQ Synonym for USER_SEQUENCES

SESSION_PRIVS Privileges which the user currently has set

SESSION_ROLES Roles which the user currently has enabled.

SM$VERSION Synonym for SM_$VERSION

SYN Synonym for USER_SYNONYMS

TABLE_PRIVILEGES Grants on objects for which the user is the grantor, grantee,
owner, or an enabled role or PUBLIC is the grantee

TABS Synonym for USER_TABLES

USER_ALL_TABLES Description of all object and relational tables owned by
the user

USER_ARGUMENTS Arguments in object accessible to the user

USER_ASSOCIATIONS All associations defined by the user

USER_AUDIT_OBJECT Audit trail records for statements concerning objects,
specifically: table, cluster, view, index, sequence, [public]
database link, [public] synonym, procedure, trigger,
rollback segment, tablespace, role, user

USER_AUDIT_POLICIES All fine grained auditing policies for objects in user schema

USER_AUDIT_SESSION All audit trail records concerning CONNECT and
DISCONNECT

USER_AUDIT_STATEMENT Audit trail records concerning grant, revoke, audit, noaudit
and alter system

USER_AUDIT_TRAIL Audit trail entries relevant to the user

USER_BASE_TABLE_MVIEWS All materialized views with log(s) owned by the user in the
database

USER_CATALOG Tables, Views, Synonyms and Sequences owned by the user

USER_CLUSTERS Descriptions of user’s own clusters

USER_CLUSTER_HASH_EXPRESSIONS Hash functions for the user’s hash clusters

USER_CLU_COLUMNS Mapping of table columns to cluster columns

USER_COLL_TYPES Description of the user’s own named collection types

USER_COL_COMMENTS Comments on columns of user’s tables and views

USER_COL_PRIVS Grants on columns for which the user is the owner, grantor
or grantee

USER_COL_PRIVS_MADE All grants on columns of objects owned by the user

USER_COL_PRIVS_RECD Grants on columns for which the user is the grantee

USER_CONSTRAINTS Constraint definitions on user’s own tables

USER_CONS_COLUMNS Information about accessible columns in constraint definitions

USER_DB_LINKS Database links owned by the user

USER_DEPENDENCIES Dependencies to and from a user’s objects

USER_DIMENSIONS Description of the dimension objects accessible to the DBA

1024 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1024

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:50:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TABLE_NAME Comments

USER_DIM_ATTRIBUTES Representation of the relationship between a dimension
level and a functionally dependent column

USER_DIM_CHILD_OF Representation of a 1:n hierarchical relationship between
a pair of levels in a dimension

USER_DIM_HIERARCHIES Representation of a dimension hierarchy

USER_DIM_JOIN_KEY Representation of a join between two dimension tables.

USER_DIM_LEVELS Description of dimension levels visible to DBA

USER_DIM_LEVEL_KEY Representations of columns of a dimension level

USER_ERRORS Current errors on stored objects owned by the user

USER_EXTENTS Extents comprising segments owned by the user

USER_EXTERNAL_LOCATIONS Description of the user’s external tables locations

USER_EXTERNAL_TABLES Description of the user’s own external tables

USER_FREE_SPACE Free extents in tablespaces accessible to the user

USER_HISTOGRAMS Synonym for USER_TAB_HISTOGRAMS

USER_INDEXES Description of the user’s own indexes

USER_INDEXTYPES All user indextypes

USER_INDEXTYPE_COMMENTS Comments for user-defined indextypes

USER_INDEXTYPE_OPERATORS All user indextype operators

USER_IND_COLUMNS COLUMNs comprising user’s INDEXes and INDEXes on
user’s TABLES

USER_IND_EXPRESSIONS Functional index expressions in user’s indexes and indexes
on user’s tables

USER_IND_PARTITIONS User index partitions

USER_IND_SUBPARTITIONS The user’s index subpartitions

USER_INTERNAL_TRIGGERS Description of the internal triggers on the user’s own tables

USER_JAVA_POLICY Java security permissions for current user

USER_JOBS All jobs owned by this user

USER_JOIN_IND_COLUMNS Join Index columns comprising the join conditions

USER_LIBRARIES Description of the user’s own libraries

USER_LOBS Description of the user’s own LOBs contained in the user’s
own tables

USER_LOB_PARTITIONS User LOB partitions

USER_LOB_SUBPARTITIONS User LOB subpartitions

USER_LOG_GROUPS Log group definitions on user’s own tables

USER_LOG_GROUP_COLUMNS Information about columns in log group definitions

USER_METHOD_PARAMS Description of method parameters of the user’s own types

USER_METHOD_RESULTS Description of method results of the user’s own types

USER_MVIEWS All materialized views in the database

USER_MVIEW_AGGREGATES Description of the materialized view aggregates created by
the user

DATA DICTIONARY VIEWS 1025

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1025

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:50:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TABLE_NAME Comments

USER_MVIEW_ANALYSIS Description of the materialized views created by the user

USER_MVIEW_DETAIL_RELATIONS Description of the materialized view detail tables of the
materialized views created by the user

USER_MVIEW_JOINS Description of a join between two columns in the WHERE
clause of a materialized view created by the user

USER_MVIEW_KEYS Description of the columns that appear in the GROUP BY
list of a materialized view created by the user

USER_MVIEW_LOGS All materialized view logs owned by the user

USER_MVIEW_REFRESH_TIMES Materialized views and their last refresh times for each
master table that the user can look at

USER_NESTED_TABLES Description of nested tables contained in the user’s own tables

USER_OBJECTS Objects owned by the user

USER_OBJECT_SIZE Sizes, in bytes, of various pl/sql objects

USER_OBJECT_TABLES Description of the user’s own object tables

USER_OBJ_AUDIT_OPTS Auditing options for user’s own tables and views

USER_OPANCILLARY All ancillary operators defined by user

USER_OPARGUMENTS All operator arguments of operators defined by user

USER_OPBINDINGS All binding functions or methods on operators defined by
the user

USER_OPERATORS All user operators

USER_OPERATOR_COMMENTS Comments for user-defined operators

USER_OUTLINES Stored outlines owned by the user

USER_OUTLINE_HINTS Hints stored in outlines owned by the user

USER_PARTIAL_DROP_TABS User tables with unused columns

USER_PART_COL_STATISTICS Partition column statistics

USER_PART_HISTOGRAMS Partition column histograms

USER_PART_INDEXES Index partition definitions

USER_PART_KEY_COLUMNS Partition keys

USER_PART_LOBS Partition LOBs

USER_PART_TABLES Partition table definitions

USER_PASSWORD_LIMITS Display password limits of the user

USER_PENDING_CONV_TABLES All user’s tables which are not upgraded to the latest type
version

USER_POLICIES All row level security policies for tables or views owned by
the user

USER_POLICY_CONTEXTS All policy groups defined for tables or views in current
schema

USER_POLICY_GROUPS All policy groups defined for any tables or views

USER_PROCEDURES Description of the user’s own procedures

USER_PROXIES Description of connections the user is allowed to proxy

1026 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1026

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:50:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TABLE_NAME Comments

USER_QUEUES All queues owned by the user

USER_QUEUE_SCHEDULES User queue schedules

USER_QUEUE_TABLES All queue tables created by the user

USER_REFRESH All the refresh groups

USER_REFRESH_CHILDREN All the objects in refresh groups, where the user owns the
refresh group

USER_REFS Description of the user’s own REF columns contained in the
user’s own tables

USER_REGISTERED_MVIEWS Remote materialized views of local tables currently using
logs owned by the user

USER_REGISTERED_SNAPSHOTS Remote snapshots of local tables currently using logs owned
by the user

USER_REPAUDIT_ATTRIBUTE Information about attributes automatically maintained for
replication

USER_REPAUDIT_COLUMN Information about columns in all shadow tables for user’s
replicated tables

USER_REPCAT Replication catalog

USER_REPCATLOG Information about the current user’s asynchronous
administration requests

USER_REPCOLUMN Replicated columns for the current user’s table in ascending
order

USER_REPCOLUMN_GROUP All column groups of user’s replicated tables

USER_REPCONFLICT Replication conflicts

USER_REPDDL Arguments that do not fit in a single repcat log record

USER_REPFLAVORS Flavors current user created for replicated object groups

USER_REPFLAVOR_COLUMNS Replicated columns from current user’s tables in flavors

USER_REPFLAVOR_OBJECTS Replicated user objects in flavors

USER_REPGENERATED Objects generated for the current user to support replication

USER_REPGENOBJECTS Objects generated for the current user to support replication

USER_REPGROUP Replication information about the current user

USER_REPGROUPED_COLUMN Columns in the all column groups of user’s replicated tables

USER_REPGROUP_PRIVILEGES Information about users who are registered for object group
privileges

USER_REPKEY_COLUMNS Primary columns for a table using column-level replication

USER_REPOBJECT Replication information about the current user’s objects

USER_REPPARAMETER_COLUMN All columns used for resolving conflicts in user’s
replicated tables

USER_REPPRIORITY Values and their corresponding priorities in user’s
priority groups

USER_REPPRIORITY_GROUP Information about user’s priority groups

USER_REPPROP Propagation information about the current user’s objects

DATA DICTIONARY VIEWS 1027

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1027

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:50:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TABLE_NAME Comments

USER_REPRESOLUTION Description of all conflict resolutions for user’s
replicated tables

USER_REPRESOLUTION_METHOD All conflict resolution methods accessible to the user

USER_REPRESOLUTION_STATISTICS Statistics for conflict resolutions for user’s replicated tables

USER_REPRESOL_STATS_CONTROL Information about statistics collection for conflict
resolutions for user’s replicated tables

USER_REPSCHEMA N-way replication information about the current user

USER_REPSITES N-way replication information about the current user

USER_RESOURCE_LIMITS Display resource limit of the user

USER_RESUMABLE Resumable session information for current user

USER_ROLE_PRIVS Roles granted to current user

USER_RSRC_CONSUMER_GROUP_PRIVS Switch privileges for consumer groups for the user

USER_RSRC_MANAGER_SYSTEM_PRIVS System privileges for the resource manager for the user

USER_RULESETS Rulesets owned by the user

USER_SECONDARY_OBJECTS All secondary objects for domain indexes

USER_SEGMENTS Storage allocated for all database segments

USER_SEQUENCES Description of the user’s own SEQUENCEs

USER_SNAPSHOTS Snapshots the user can look at

USER_SNAPSHOT_LOGS All snapshot logs owned by the user

USER_SNAPSHOT_REFRESH_TIMES Synonym for USER_MVIEW_REFRESH_TIMES

USER_SOURCE Source of stored objects accessible to the user

USER_SOURCE_TABLES Source tables

USER_SOURCE_TAB_COLUMNS Source columns

USER_SQLJ_TYPES Description of the user’s own types

USER_SQLJ_TYPE_ATTRS Description of attributes of the user’s own types

USER_SQLJ_TYPE_METHODS Description of methods of the user’s own types

USER_STORED_SETTINGS Parameter settings for objects owned by the user

USER_SUBPART_COL_STATISTICS Subpartition column stats

USER_SUBPART_HISTOGRAMS Subpartition histograms

USER_SUBPART_KEY_COLUMNS Subpartition keys

USER_SUBSCRIBED_COLUMNS Subscribed columns

USER_SUBSCRIBED_TABLES Subscribed tables

USER_SUBSCRIPTIONS User subscriptions

USER_SUMMARIES Description of the summaries created by the user

USER_SYNONYMS The user’s private synonyms

USER_SYS_PRIVS System privileges granted to current user

USER_TABLES Description of the user’s own relational tables

USER_TABLESPACES Description of accessible tablespaces

USER_TAB_COLS Columns of user’s tables, views and clusters

1028 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1028

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:50:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TABLE_NAME Comments

USER_TAB_COLUMNS Columns of user’s tables, views and clusters

USER_TAB_COL_STATISTICS Columns of user’s tables, views and clusters

USER_TAB_COMMENTS Comments on the tables and views owned by the user

USER_TAB_HISTOGRAMS Histograms on columns of user’s tables

USER_TAB_MODIFICATIONS Information regarding modifications to tables

USER_TAB_PARTITIONS User table partitions

USER_TAB_PRIVS Grants on objects for which the user is the owner, grantor
or grantee

USER_TAB_PRIVS_MADE All grants on objects owned by the user

USER_TAB_PRIVS_RECD Grants on objects for which the user is the grantee

USER_TAB_SUBPARTITIONS User table subpartitions

USER_TRANSFORMATIONS User transformations

USER_TRIGGERS Triggers owned by the user

USER_TRIGGER_COLS Column usage in user’s triggers

USER_TS_QUOTAS Tablespace quotas for the user

USER_TYPES Description of the user’s own types

USER_TYPE_ATTRS Description of attributes of the user’s own types

USER_TYPE_METHODS Description of methods of the user’s own types

USER_TYPE_VERSIONS Description of each version of the user’s types

USER_UNUSED_COL_TABS User tables with unused columns

USER_UPDATABLE_COLUMNS Description of updatable columns

USER_USERS Information about the current user

USER_USTATS All statistics on tables or indexes owned by the user

USER_VARRAYS Description of varrays contained in the user’s own tables

USER_VIEWS Description of the user’s own views

V$ACTIVE_INSTANCES Synonym for V_$ACTIVE_INSTANCES

V$ACTIVE_SESS_POOL_MTH Synonym for V_$ACTIVE_SESS_POOL_MTH

V$BH Synonym for V_$BH

V$LOADCSTAT Synonym for V_$LOADCSTAT

V$LOADISTAT Synonym for V_$LOADISTAT

V$LOADPSTAT Synonym for V_$LOADPSTAT

V$LOADTSTAT Synonym for V_$LOADTSTAT

V$LOCK_ACTIVITY Synonym for V_$LOCK_ACTIVITY

V$MAX_ACTIVE_SESS_TARGET_MTH Synonym for V_$MAX_ACTIVE_SESS_TARGET_MTH

V$MLS_PARAMETERS Synonym for V_$MLS_PARAMETERS

V$NLS_PARAMETERS Synonym for V_$NLS_PARAMETERS

V$NLS_VALID_VALUES Synonym for V_$NLS_VALID_VALUES

V$OPTION Synonym for V_$OPTION

DATA DICTIONARY VIEWS 1029

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1029

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:50:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TABLE_NAME Comments

V$PARALLEL_DEGREE_LIMIT_MTH Synonym for V_$PARALLEL_DEGREE_LIMIT_MTH

V$PQ_SESSTAT Synonym for V_$PQ_SESSTAT

V$PQ_TQSTAT Synonym for V_$PQ_TQSTAT

V$QUEUEING_MTH Synonym for V_$QUEUEING_MTH

V$RSRC_CONSUMER_GROUP Synonym for V_$RSRC_CONSUMER_GROUP

V$RSRC_CONSUMER_GROUP_CPU_MTH Synonym for V_$RSRC_CONSUMER_GROUP_CPU_MTH

V$RSRC_PLAN Synonym for V_$RSRC_PLAN

V$RSRC_PLAN_CPU_MTH Synonym for V_$RSRC_PLAN_CPU_MTH

V$SESSION_CONNECT_INFO Synonym for V_$SESSION_CONNECT_INFO

V$SESSION_LONGOPS Synonym for V_$SESSION_LONGOPS

V$TEMPORARY_LOBS Synonym for V_$TEMPORARY_LOBS

V$TIMEZONE_NAMES Synonym for V_$TIMEZONE_NAMES

V$VERSION Synonym for V_$VERSION

DATA INDEPENDENCE
Data independence is the property of well-defined tables that allows the physical and logical structure
of a table to change without affecting applications that access the table.

DATA MANIPULATION LANGUAGE (DML)
STATEMENTS
DML statements are one category of SQL statements. DML statements, such as select, insert, delete,
and update, query and update the actual data. The other categories are data control language (DCL)
and data definition language (DDL) statements.

DATA TYPES
SEE ALSO CHARACTER FUNCTIONS, CONVERSION FUNCTIONS, DATE FUNCTIONS, LIST
FUNCTIONS, NUMBER FUNCTIONS, OTHER FUNCTIONS
DESCRIPTION When a table is created and the columns in it are defined, they must each have a
datatype specified. Oracle’s primary datatypes are VARCHAR2, CHAR, DATE, LONG, LONG RAW,
NUMBER, RAW, and ROWID, but for compatibility with other SQL databases, its create table statements
will accept several versions of these. The following table summarizes the built-in Oracle datatypes:

Datatype Definition

VARCHAR2(size) Variable length character string having a maximum of size bytes (up to
4000).

NVARCHAR2(size) Variable length character string having a maximum of size bytes (up to 4000)
or characters, depending on the choice of national character set.

NUMBER(size,d) For NUMBER column of specified size with d digits after the decimal point.
For example, NUMBER(5,2) could contain nothing larger than 999.99
without an error.

1030 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1030

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:50:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Datatype Definition

LONG Character data of variable size up to 2Gb in length. Only one LONG column
may be defined per table. LONG columns may not be used in subqueries,
functions, expressions, where clauses, or indexes. A table containing a
LONG column may not be clustered.

DATE Valid dates range from January 1, 4712 B.C. to December 31, 9999 A.D.

TIMESTAMP (precision) Date plus time, where precision is the number of digits in the fractional part
of the Seconds field (default is 6).

TIMESTAMP (precision)
WITH TIME ZONE

TIMESTAMP plus time zone displacement value.

TIMESTAMP (precision)
WITH LOCAL TIME ZONE

TIMESTAMP, normalized to local time zone.

INTERVAL YEAR
(precision) TO MONTH

Period of time in years and months, where precision is the number of digits
in the YEAR datetime field (default is 2).

INTERVAL DAY
(day_precision)
TO SECOND
(second_precision)

Period of time in days, hours, minutes, and seconds, where day_precision is
the number of digits in the DAY datetime field (default is 2) and
second_precision is the number of digits in the fractional part of the Seconds
field (default is 6).

RAW(size) Raw binary data, size bytes long. Maximum size is 255 bytes.

LONG RAW Raw binary data; otherwise the same as LONG.

ROWID A value that uniquely identifies a row in an Oracle database. It is returned by
the pseudo-column ROWID.

UROWID (size) Hex string for the logical address of a row in an index-organized table;
maximum size is 4000 bytes.

CHAR(size) Fixed-length character data, size characters long. Maximum size is 2000.
Default is 1 byte. Padded on the right with blanks to full length of size.

NCHAR(size) Multi-byte character set version of CHAR.

CLOB Character large object, up to 4Gb in length.

NCLOB Same as CLOB, but for multi-byte character sets.

BLOB Binary large object, up to 4Gb in length.

BFILE Pointer to a binary operating system file.

DATABASE
Database can have one of two definitions:

■ A set of dictionary tables and user tables that are treated as a unit.

■ One or more operating system files in which Oracle stores tables, views, and other objects;
also, the set of database objects used by a given application.

DATABASE ADMINISTRATOR (DBA)
A DBA is an Oracle user authorized to grant and revoke other users’ access to the system, modify Oracle
options that affect all users, and perform other administrative functions. See Chapter 40.

DATABASE ADMINISTRATOR (DBA) 1031

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1031

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:50:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DATABASE LINK
A database link is an object stored in the local database that identifies a remote database, a communication
path to the remote database, and, optionally, a username and password for it. Once defined, the database
link is used to perform queries on tables in the remote database. See Chapter 22.

DATABASE NAME
A database name is a unique identifier used to name a database. It is assigned in the create database
command or in the initialization parameter file.

DATABASE OBJECT
A database object is something created and stored in a database. Tables, views, synonyms, indexes,
sequences, clusters, and columns are all types of database objects.

DATAFILE
A datafile is any file used to store data in a database. A database is made up of one or more tablespaces,
which in turn are made up of one or more datafiles.

DATATYPE
See DATA TYPES.

DATE
DATE is a standard Oracle datatype to store date and time data. Standard date format is 22-APR-02.
A DATE column may contain a date and time between January 1, 4712 B.C. and December 31, 9999 A.D.

DATE FORMATS
SEE ALSO DATE FUNCTIONS, Chapter 9
DESCRIPTION These date formats are used with both TO_CHAR and TO_DATE:

MM Number of month: 12

RM Roman numeral month: XII

MON Three-letter abbreviation of Month: AUG

MONTH Month fully spelled out: AUGUST

DDD Number of days in year, since Jan 1: 354

DD Number of days in month: 23

D Number of days in week: 6

DY Three-letter abbreviation of day: FRI

DAY Day fully spelled out, padded to 9 characters

YYYY Full four-digit year: 1946

Y,YYY Year, with comma

SYYYY Signed year: 1000 B.C.=-1000

YYY Last three digits of year: 946

1032 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1032

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:50:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

YY Last two digits of year: 46

Y Last one digit of year: 6

IYYY Four-digit year from ISO standard*

IYY Three-digit year from ISO standard

IY Two-digit year from ISO standard

I One-digit year from ISO standard

RR Last two digits of year relative to current date

RRRR Rounded year, accepting either two- or four-digit input

CC Century: (20 for 1999)

SCC Century, with BC dates prefixed with -

YEAR Year spelled out: NINETEEN-FORTY-SIX

SYEAR Year, with - before BC dates

Q Number of quarter: 3

WW Number of weeks in year, where week 1 starts on the first day of the year

IW Weeks in year from ISO standard

W Number of weeks in month where week 1 starts on the first day of the month

J “Julian”—days since December 31, 4712 B.C.: 2422220

HH Hours of day, always 1-12: 11

HH12 Same as HH

HH24 Hours of day, 24-hour clock: 17

MI Minutes of hour: 58

SS Seconds of minute: 43

SSSSS Seconds since midnight, always 0-86399: 43000

FF Fractional seconds as in HH.MI.SS.FF

X Local radix character

/,-:.; Punctuation to be incorporated in display for TO_CHAR or ignored in format for TO_DATE

A.M. Displays A.M. or P.M., depending upon time of day

P.M. Same effect as A.M.

AM or PM Same as A.M. but without periods

B.C. Displays B.C. or A.D., depending upon date

A.D. Same as B.C.

BC or AD Same as B.C. but without periods

E Abbreviated era name, for Asian calendars

EE Full era name, for Asian calendars

TZD Daylight savings time information

TZH Time zone hour

TZM Time zone minute

TZR Time zone region

* ISO is the International Standards Organization, which has a different set of standards for dates than the U.S. formats.

DATE FORMATS 1033

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1033

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:50:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

These date formats work only with TO_CHAR. They do not work with TO_DATE:

“string” string is incorporated in display for TO_CHAR.

Fm Prefix to Month or Day: fmMONTH or fmday. Suppresses padding of Month or Day (defined
earlier) in format. Without fm, all months are displayed at same width. Similarly true for days.
With fm, padding is eliminated. Months and days are only as long as their count of characters.

Fx Format Exact: Specifies exact format matching for the character argument and the date
format model.

TH Suffix to a number: ddTH or DDTH produces 24th or 24TH. Capitalization comes from the
case of the number—DD—not from the case of the TH. Works with any number in a date:
YYYY, DD, MM, HH, MI, SS, and so on.

SP Suffix to a number that forces number to be spelled out: DDSP, DdSP, or ddSP produces THREE,
Three, or three. Capitalization comes from case of number—DD—not from the case of SP.
Works with any number in a date: YYYY, DD, MM, HH, MI, SS, and so on.

SPTH Suffix combination of TH and SP that forces number to be both spelled out and given an ordinal
suffix: Ddspth produces Third. Capitalization comes from case of number—DD—not from the
case of SP. Works with any number in a date: YYYY, DD, MM, HH, MI, SS, and so on.

THSP Same as SPTH.

DATE FUNCTIONS
SEE ALSO DATE FORMATS, Chapter 9
DESCRIPTION This is an alphabetical list of all current date functions in Oracle’s SQL. Each
of these is listed elsewhere in this reference under its own name, with its proper format and use.

■ ADD_MONTHS(date,count) Adds count months to date.

■ CURRENT_DATE Returns the current date in the session’s time zone.

■ CURRENT_TIMESTAMP Returns the current timestamp with the active time zone
information

■ DBTIMEZONE Returns the current database timezone, in UTC format.

■ EXTRACT (datetime) Extracts a portion of a date from a date value – such as extracting
the month value from a date column’s values.

■ FROM_TZ Converts a timestamp value to a timestamp with timezone value.

■ GREATEST(date1,date2,date3,...) Picks latest date from list of dates.

■ LEAST(date1,date2,date3,...) Picks earliest date from list of dates.

■ LAST_DAY(date) Gives date of last day of month that date is in.

■ LOCALTIMESTAMP Returns the local timestamp in the active time zone, with no time
zone information shown.

■ MONTHS_BETWEEN(date2,date1) Gives date2−date1 in months (can be fractional
months).

■ NEW_TIME(date, 'this', 'other') Gives the date (and time) in this time zone. this will be
replaced by a three-letter abbreviation for the current time zone. other will be replaced
by a three-letter abbreviation for the other time zone for which you’d like to know the
time and date.

1034 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1034

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:50:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Time zones are as follows:

AST/ADT Atlantic standard/daylight time

BST/BDT Bering standard/daylight time

CST/CDT Central standard/daylight time

EST/EDT Eastern standard/daylight time

GMT Greenwich mean time

HST/HDT Alaska-Hawaii standard/daylight time

MST/MDT Mountain standard/daylight time

NST Newfoundland standard time

PST/PDT Pacific standard/daylight time

YST/YDT Yukon standard/daylight time

■ NEXT_DAY(date,'day') Gives date of next day after date, where 'day' is 'Monday',
'Tuesday', and so on.

■ NUMTODSINTERVAL(n,'value') Converts a number or expression n to an INTERVAL DAY
TO SECOND literal where value is the unit of n: 'DAY', 'HOUR', 'MINUTE', 'SECOND'.

■ NUMTOYMINTERVAL (n,'value') Converts a number or expression n to an INTERVAL
YEAR TO MONTH literal where value is the unit of n: 'YEAR', 'MONTH'.

■ ROUND(date,'format') Without format specified, rounds a date to 12 A.M. (midnight, the
beginning of that day) if time of date is before noon; otherwise, rounds up to next day. For
use of format for rounding, see ROUND in the Alphabetical Reference.

■ SESSIONTIMEZONE Returns the value of the current session’s timezone.

■ SYS_EXTRACT_UTC(datetime_with_timezone) Extracts the Coordinated Universal Time
(UTC) from a datetime with time zone displacement.

■ SYSTIMESTAMP Returns the system date, including fractional seconds and time zone of
the database.

■ SYSDATE Returns the current date and time.

■ TO_CHAR(date,'format') Reformats date according to format.

■ TO_DATE(string,'format') Converts a string in a given 'format' into an Oracle date. Will
also accept a number instead of a string, with certain limits. 'format' is restricted.

■ TO_DSINTERVAL('value') Converts value of CHAR, VARCHAR2, NCHAR, or NVARCHAR2
datatype to an INTERVAL DAY TO SECOND type.

■ TO_TIMESTAMP('value') converts value of CHAR, VARCHAR2, NCHAR, or NVARCHAR2
datatype to a value of TIMESTAMP datatype.

■ TO_TIMESTAMP_TZ('value') Converts value of CHAR, VARCHAR2, NCHAR, or
NVARCHAR2 datatype to a value of TIMESTAMP WITH TIMEZONE datatype.

■ TO_YMINTERVAL('value') Converts value of CHAR, VARCHAR2, NCHAR, or
NVARCHAR2 datatype to a value of INTERVAL YEAR TO MONTH datatype.

■ TRUNC(date,'format') Without format specified, sets a date to 12 A.M. (midnight, the beginning
of that day). For use of format for truncating, see TRUNC in the Alphabetical Reference.

■ TZ_OFFSET('value') Returns the time zone offset corresponding to the value entered based
on the date the statement is executed.

DATE FUNCTIONS 1035

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1035

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:50:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DBA
See DATABASE ADMINISTRATOR (DBA).

DBTIMEZONE
SEE ALSO DATE FUNCTIONS
FORMAT

DBTIMEZONE

DESCRIPTION DBTIMEZONE returns the value of the database time zone.
EXAMPLE

select DBTIMEZONE from DUAL;

DBWR PROCESS
One of the background processes used by Oracle. The Database Writer process writes new data to
the database. Also referred to as DBWn.

DCL
See DATA CONTROL LANGUAGE (DCL) STATEMENTS.

DDL
See DATA DEFINITION LANGUAGE (DDL) STATEMENTS.

DDL LOCK
When a user executes a DDL command, Oracle locks the objects referred to in the command with
DDL locks. A DDL lock locks objects in the data dictionary. (Contrast this to parse locks, the other
type of dictionary lock.)

DEADLOCK
A deadlock is a rare situation in which two or more user processes of a database cannot complete their
transactions. This occurs because each process is holding a resource that the other process requires
(such as a row in a table) in order to complete. Although these situations occur rarely, Oracle detects
and resolves deadlocks by rolling back the work of one of the processes.

DECLARE
The DECLARE command allows you to declare cursors, variables, and exceptions for use within
PL/SQL blocks. See Chapter 27.

DECLARE CURSOR (Form 1-Embedded SQL)
SEE ALSO CLOSE, DECLARE DATABASE, DECLARE STATEMENT, FETCH, OPEN, PREPARE,
SELECT, SELECT (Embedded SQL), Precompiler Programmer’s Guide
FORMAT

EXEC SQL [AT {database | :host_variable}]
DECLARE cursor CURSOR

FOR {SELECT command | statement}

1036 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1036

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:50:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION The DECLARE CURSOR statement must appear before any SQL that references
this cursor, and must be compiled in the same source as procedures that reference it. Its name must be
unique to the source.

database is the name of a database already declared in a DECLARE DATABASE and used in a SQL
CONNECT; host_variable is a variable with such a name as its value. cursor is the name you assign to
this cursor. SELECT command is a query with no INTO clause. Alternatively, a SQL statement or a
PL/SQL block already declared in a SQL DECLARE STATEMENT statement can be used.

When the FOR UPDATE OF clause is included in the SELECT statement, an update can reference
the cursor with where current of cursor, although the cursor must still be open, and a row must be
present from a FETCH.

DECLARE CURSOR (Form 2-PL/SQL)
SEE ALSO CLOSE, FETCH, OPEN, SELECT. . .INTO, Chapter 27
FORMAT

DECLARE
CURSOR cursor (parameter datatype [,parameter datatype]...)

IS select_statement
[FOR UPDATE OF column [,column]...];

DESCRIPTION A cursor is a work area that Oracle uses to control the row currently being processed.
DECLARE CURSOR names a cursor and declares that it IS (the result of) a certain select_statement. The
select_statement is required, and may not contain an INTO clause. The cursor must be declared. It can
then be OPENed, and rows can then be FETCHed into it. Finally, it can be CLOSEd.

Variables cannot be used directly in the where clause of the select_statement unless they’ve first
been identified as parameters, in a list that precedes the select. Note that DECLARE CURSOR does not
execute the select statement, and the parameters have no values until they are assigned in an OPEN
statement. Parameters have standard object names, and datatypes, including VARCHAR2, CHAR,
NUMBER, DATE, and BOOLEAN, all without size or scale, however.

FOR UPDATE OF is required if you wish to affect the current row in the cursor using either update
or delete commands with the CURRENT OF clause.

DECLARE DATABASE (Embedded SQL)
SEE ALSO COMMIT RELEASE (Embedded SQL), CONNECT (Embedded SQL), Precompiler
Programmer’s Guide
FORMAT

EXEC SQL DECLARE database DATABASE

DESCRIPTION DECLARE DATABASE declares the name of a remote database for use in later AT
clauses of SQL statements, including COMMIT, DECLARE CURSOR, DELETE, INSERT, ROLLBACK,
SELECT, and UPDATE.

DECLARE STATEMENT (Embedded SQL)
SEE ALSO CLOSE, FETCH, OPEN, PREPARE, Precompiler Programmer’s Guide
FORMAT

EXEC SQL [AT {database | :host_variable}]
DECLARE STATEMENT {statement | block_name} STATEMENT

DECLARE STATEMENT (Embedded SQL) 1037

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1037

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:50:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION statement is the name of the statement in a DECLARE CURSOR, and must be
identical to the statement name here. database is the name of a database previously declared with
DECLARE DATABASE; host_variable may contain such a name as its value. This command is only
needed if DECLARE CURSOR will come before a PREPARE. When it is used, it should come prior to
DECLARE, DESCRIBE, OPEN, or PREPARE, and must be compiled in the same source as procedures
that reference it.

DECLARE TABLE
SEE ALSO CREATE TABLE, Precompiler Programmer’s Guide
FORMAT

EXEC SQL DECLARE table TABLE
(column datatype [NULL|NOT NULL],

...);

DESCRIPTION table is the name of the table being declared. column is a column name and
datatype is its datatype. This structure is nearly identical to that of create table, including the use of
NULL and NOT NULL.

You use DECLARE TABLE to tell precompilers to ignore actual Oracle database table definitions
when running with SQLCHECK=FULL. The precompilers will regard the table description here as
relevant to the program and ignore the table definitions in the database. Use this when table definitions
will change, or when a table has not yet been created. If SQLCHECK is not equal to FULL (which
means tables and columns will not be checked against the database anyway), this command is ignored
by the precompiler and becomes simply documentation.
EXAMPLE

EXEC SQL DECLARE COMFORT TABLE (
City VARCHAR2(13) NOT NULL,
SampleDate DATE NOT NULL,
Noon NUMBER(3,1),
Midnight NUMBER(3,1),
Precipitation NUMBER
);

DECODE
SEE ALSO OTHER FUNCTIONS, CASE, TRANSLATE, Chapter 17
FORMAT

DECODE(value,if1,then1[,if2,then2,]... ,else)

DESCRIPTION value represents any column in a table, regardless of datatype, or any result of
a computation, such as one date minus another, a SUBSTR of a character column, one number times
another, and so on. For each row, value is tested. If it equals if1, then the result of the DECODE is
then1; if value equals if2, then the result of the DECODE is then2, and so on, for virtually as many
if/then pairs as you can construct. If value equals none of the ifs, then the result of the DECODE is else.
Each of the ifs, thens, and the else also can be a column or the result of a function or computation.
Chapter 16 is devoted entirely to DECODE.
EXAMPLE

select DISTINCT City,
DECODE(City, 'SAN FRANCISCO', 'CITY BY THE BAY', City)

1038 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1038

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:50:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

from COMFORT;

CITY DECODE(CITY,'SA
------------- ---------------
KEENE KEENE
SAN FRANCISCO CITY BY THE BAY

DECOMPOSE
SEE ALSO CONVERSION FUNCTIONS
FORMAT

DECOMPOSE ('string')

DESCRIPTION DECOMPOSE translates a string in any datatype to a unicode string after
canonical decomposition in the same character set as the input.

DEFAULT
Default is a clause or option value that is used if no alternative is specified. You can specify the default
value for a column in a table via a DEFAULT column constraint.

DEFAULT VALUE
The default value is a value that is used unless a different one is specified or entered.

DEFERRED ROLLBACK SEGMENT
A deferred rollback segment is one containing entries that could not be applied to the tablespace,
because the given tablespace was offline. As soon as the tablespace comes back online, all the entries
are applied.

DEFINE (SQL*PLUS)
See SET.

DEFINE PHASE
The define phase is one phase of executing a SQL query, in which the program defines buffers to hold
the results of a query to be executed.

DEL
SEE ALSO APPEND, CHANGE, EDIT, INPUT, LIST, Chapter 6
FORMAT

DEL

DESCRIPTION DEL deletes the current line of the current buffer. You can delete multiple lines
with a single DEL command.
EXAMPLE

del

deletes the current line in the SQLPLUS buffer.

DEL 1039

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1039

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:50:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

To delete a range of lines with one command, specify the line numbers of the beginning and
ending of the range in the DEL command. The following command would delete lines 2 through 8
in the current buffer.

del 2 8

DELETE (Form 1-PL/SQL)
SEE ALSO DECLARE CURSOR, UPDATE, Chapter 27
DESCRIPTION In PL/SQL, DELETE follows the normal SQL command rules, with these added
features:

■ A PL/SQL function and/or variable can be used in the where clause just as a literal could be.

■ DELETE. . .WHERE CURRENT OF cursor can be used in conjunction with a SELECT FOR
UPDATE to delete the last row FETCHed. The FETCH can either be explicit or implicit from
a FOR LOOP.

■ Like update and insert, the delete command executes only within the SQL cursor. The SQL
cursor’s attributes can be checked for the success of the delete. SQL%ROWCOUNT will
contain the number of rows deleted. If this is 0, none were deleted. (Also, SQL%FOUND
will be FALSE if none were deleted.)

DELETE (Form 2-SQL Command)
SEE ALSO DROP TABLE, FROM, INSERT, SELECT, UPDATE, WHERE, Chapter 15
FORMAT
delete::=

DML_table_expression_clause::=

1040 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1040

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:50:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

subquery_restriction_clause::=

table_collection_expression::=

where_clause::=

returning_clause::=

DESCRIPTION DELETE deletes from table all rows that satisfy condition. The condition may
include a correlated query and use the alias for correlation. If the table is remote, a database link has
to be defined. @link specifies the link. If link is entered, but user is not, the query seeks a table owned
by the same user on the remote database.

When using the DELETE command, you may specify a partition or subpartition. In order to delete
rows from a table, you must have DELETE privileges on the table. If the SQL92_SECURITY initialization
parameter is set to TRUE, then you must also have SELECT privileges if the DELETE refers to columns
in the table itself.
EXAMPLE This example deletes all rows for the city of Keene from the COMFORT table:

delete from COMFORT
where City = 'KEENE';

DELETE (Form 3-Embedded SQL)
FORMAT

EXEC SQL [AT {db_name | :host_variable}] [FOR :host_integer | integer]
DELETE [FROM]
[(subquery)
| [user.] {table | view } [@dblink |PARTITION (partition_name)]]
[alias] [WHERE {condition | CURRENT OF cursor}]
[{ RETURN | RETURNING } expr [, expr]... INTO
:host_variable [[INDICATOR] :ind_variable]
[, :host_variable [[INDICATOR] :ind_variable]]...]

DESCRIPTION This form of the DELETE command allows you to delete rows (from a table, view,
or index-only table) from within a precompiler program.

DELETE (Form 3-Embedded SQL) 1041

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1041

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:50:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DENSE_RANK
SEE ALSO GROUP FUNCTIONS, Chapter 13
FORMAT

DENSE_RANK (expr [, expr]...) WITHIN GROUP
(ORDER BY
expr [DESC | ASC] [NULLS { FIRST | LAST }]
[, expr [DESC | ASC] [NULLS { FIRST | LAST }]]...)

For analytics:

DENSE_RANK () OVER ([query_partition_clause] order_by_clause)

DESCRIPTION DENSE_RANK computes the rank of a row in an ordered group of rows. See
Chapter 13 for related examples.

DEREF
The DEREF operator returns the value of a referenced object. See Chapter 31.

DESCRIBE (Form 1-SQL*PLUS Command)
SEE ALSO CREATE TABLE
FORMAT

DESC[RIBE] [user.]table

DESCRIPTION DESCRIBE displays a specified table’s definition. If user is omitted, SQL*PLUS
displays the table owned by you. The definition includes the table and its columns, with each column’s
name, NULL or NOT NULL status, datatype, and width or precision. DESCRIBE can also be used on
views, synonyms, or function and procedure specifications.
EXAMPLE

describe COMFORT

Name Null? Type
------------------------------- -------- ------------
CITY NOT NULL VARCHAR2(13)
SAMPLEDATE NOT NULL DATE
NOON NUMBER(3,1)
MIDNIGHT NUMBER(3,1)
PRECIPITATION NUMBER

DESCRIBE (Form 2-Embedded SQL)
SEE ALSO PREPARE
FORMAT

EXEC SQL DESCRIBE [BIND VARIABLES FOR
| SELECT LIST FOR]

statement_name INTO descriptor

1042 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1042

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:50:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION The DESCRIBE command initializes a descriptor to hold descriptions of host
variables for a dynamic SQL statement or PL/SQL block. The DESCRIBE command follows the
PREPARE command.

DICTIONARY CACHE
The dictionary cache stores data dictionary information in the SGA. Caching dictionary information
improves performance because the dictionary information is used frequently. The dictionary cache is
part of the Shared SQL Pool.

DICTIONARY LOCKS
A dictionary lock is a shared lock owned by users parsing DML statements, or an exclusive lock owned
by users doing DDL commands, to prevent a table from being altered while the dictionaries are queried.
There may be many such locks concurrently.

DIMENSION
A dimension is a named set of hierarchies among columns of tables. For example, in the geography
dimension, countries are parts of continents, and states are parts of countries. When you define
the dimension relationships, Oracle can use that information when evaluating optimizer choices.
If there are materialized views that contain aggregated data, the optimizer can use the dimension
definitions to determine if the materialized view can be accessed instead of the base table. See
CREATE DIMENSION.

DIRECTORY
A logical name that points to a physical directory, used by BFILE LOBs and external tables. See CREATE
DIRECTORY and Chapter 25.

DISASSOCIATE STATISTICS
SEE ALSO ASSOCIATE STATISTICS
FORMAT

DISASSOCIATE STATISTICS FROM
{ COLUMNS [schema .] table . column [, [schema .] table . column]...
| FUNCTIONS [schema .] function [, [schema .] function]...
| PACKAGES [schema .] package [, [schema .] package]...
| TYPES [schema .] type [, [schema .] type]...
| INDEXES [schema .] index [, [schema .] index]...
| INDEXTYPES [schema .] indextype [, [schema .] indextype]...}
[FORCE];

DESCRIPTION ASSOCIATE STATISTICS associates a set of statistics functions with one or more
columns, standalone functions, packages, types, or indexes. DISASSOCIATE STATISTICS revokes the
associations. You must have ALTER privilege on the base object.

DISCONNECT
SEE ALSO CONNECT, EXIT, QUIT

DISCONNECT 1043

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1043

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:50:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

FORMAT

DISC[ONNECT]

DESCRIPTION DISCONNECT commits pending changes to the database and logs you off of
Oracle. Your SQL*PLUS session remains active and the features of SQL*PLUS continue to function,
but without any connection to the database. You can edit buffers, use your own editor, spool and stop
spooling, or connect to Oracle again, but until a connection is established, no SQL can be executed.

EXIT or QUIT will return you to your host’s operating system. If you are still connected when you
EXIT or QUIT, you will be automatically disconnected and logged off of Oracle.

DISTINCT
Distinct means unique. It is used as a part of select statements and group functions. See GROUP
FUNCTIONS, SELECT.

DISTRIBUTED DATABASE
A distributed database is a collection of databases that can be operated and managed separately and
also share information.

DISTRIBUTED PROCESSING
Distributed processing is performing computation on multiple CPUs to achieve a single result.

DISTRIBUTED QUERY
A distributed query is one that selects data from multiple databases, usually across multiple nodes of
a network.

DML
See DATA MANIPULATION LANGUAGE (DML) STATEMENTS.

DML LOCK
When a user executes a SQL statement, the data to which the statement refers is locked in one of several
lock modes. The user can also lock data explicitly with a LOCK statement.

DROP CLUSTER
SEE ALSO CREATE CLUSTER, DROP TABLE, Chapter 20
FORMAT

DROP CLUSTER [schema .] cluster
[INCLUDING TABLES [CASCADE CONSTRAINTS]];

DESCRIPTION DROP CLUSTER deletes a cluster from the database. You must have DROP
ANY CLUSTER privilege if the cluster is not in your own schema. You cannot drop a cluster that
contains tables. The tables must be dropped first. The INCLUDING TABLES clause will drop all the
clustered tables automatically. The CASCADE CONSTRAINTS option drops all referential integrity
constraints from tables outside the cluster that refer to keys in the clustered tables.

Individual tables cannot be removed from a cluster. To accomplish the same effect, copy the table
under a new name (use CREATE TABLE with AS SELECT), drop the old one (this will remove it from the
cluster), RENAME the copy to the name of the table you dropped, and then issue the appropriate GRANTS,
and create the needed indexes.

1044 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1044

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42b.vp
Friday, July 19, 2002 1:50:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DROP CONTEXT
SEE ALSO CREATE CONTEXT
FORMAT

DROP CONTEXT namespace;

DESCRIPTION DROP CONTEXT deletes a context namespace from the database. You must have
the DROP ANY CONTEXT system privilege.

DROP DATABASE LINK
SEE ALSO CREATE DATABASE LINK, Chapter 22
FORMAT

DROP [PUBLIC] DATABASE LINK link;

DESCRIPTION DROP DATABASE LINK drops a database link you own. For a public link, the
optional PUBLIC keyword must be used, and you must be a DBA to use it. PUBLIC cannot be used
when dropping a private link. link is the name of the link being dropped. You must have DROP
PUBLIC DATABASE LINK system privilege to drop a public database link. You may drop private
database links in your account.
EXAMPLE The following will drop a database link named ADAH_AT_HOME:

drop database link ADAH_AT_HOME;

DROP DIMENSION
SEE ALSO CREATE DIMENSION
FORMAT

DROP DIMENSION [schema .] dimension;

DESCRIPTION DROP DIMENSION drops a dimension you own. You must have DROP ANY
DIMENSION system privilege.
EXAMPLE The following will drop the GEOGRAPHY dimension:

drop dimension GEOGRAPHY;

DROP DIRECTORY
SEE ALSO CREATE DIRECTORY, Chapters 25, 32
FORMAT

DROP DIRECTORY directory_name;

DESCRIPTION DROP DIRECTORY drops an existing directory. You must have DROP ANY
DIRECTORY privilege to drop a directory.

NOTE
Do not drop a directory while its files are in use.

EXAMPLE The following will drop a directory called REVIEWS:

drop directory REVIEWS;

DROP DIRECTORY 1045

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1045

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:20:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DROP FUNCTION
SEE ALSO ALTER FUNCTION, CREATE FUNCTION, Chapter 29
FORMAT

DROP FUNCTION [schema .] function_name;

DESCRIPTION DROP FUNCTION drops the specified function. Oracle invalidates any objects
that depend on or call the function. You must have DROP ANY PROCEDURE system privilege to drop
a function that you do not own.

DROP INDEX
SEE ALSO ALTER INDEX, CREATE INDEX, CREATE TABLE, Chapter 20
FORMAT

DROP INDEX [schema .] index [FORCE];

DESCRIPTION DROP INDEX drops the specified index. You must either own the index or
have DROP ANY INDEX system privilege. FORCE applies only to domain indexes. This clause
drops the domain index even if the indextype routine invocation returns an error or the index is
marked IN PROGRESS.

DROP INDEXTYPE
SEE ALSO CREATE INDEXTYPE
FORMAT

DROP INDEXTYPE [schema .] indextype [FORCE];

DESCRIPTION DROP INDEXTYPE drops the specified indextype and any association with
statistics types. You must have the DROP ANY INDEXTYPE system privilege.

DROP JAVA
SEE ALSO CREATE JAVA, Chapter 36
FORMAT

DROP JAVA { SOURCE | CLASS | RESOURCE } [schema .] object_name;

DESCRIPTION DROP JAVA drops the specified Java class, source, or resource. You must have
the DROP PROCEDURE system privilege. If the object is in another user’s schema, you must have the
DROP ANY PROCEDURE system privilege.

DROP LIBRARY
SEE ALSO CREATE LIBRARY, Chapter 29
FORMAT

DROP LIBRARY library_name;

DESCRIPTION DROP LIBRARY drops the specified library. You must have the DROP ANY
LIBRARY system privilege.

1046 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1046

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:20:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DROP MATERIALIZED VIEW
SEE ALSO ALTER MATERIALIZED VIEW, CREATE MATERIALIZED VIEW, Chapter 23
FORMAT

DROP MATERIALIZED VIEW [schema .] materialized_view;

DESCRIPTION DROP MATERIALIZED VIEW drops the indicated materialized view. You
must either own the materialized view or you must have DROP ANY SNAPSHOT or DROP ANY
MATERIALIZED VIEW system privilege.

The keyword SNAPSHOT is supported in place of MATERIALIZED VIEW for backward
compatibility.

DROP MATERIALIZED VIEW LOG
SEE ALSO ALTER MATERIALIZED VIEW LOG, CREATE MATERIALIZED VIEW LOG, Chapter 23
FORMAT

DROP MATERIALIZED VIEW LOG ON [schema .] table;

DESCRIPTION DROP MATERIALIZED VIEW LOG drops the indicated log table. To drop
a materialized view log, you must have the privileges to drop a table. After dropping the log, any
materialized views on the master table will get complete refreshes, not fast refreshes.

The keyword SNAPSHOT is supported in place of MATERIALIZED VIEW for backward compatibility.

DROP OPERATOR
SEE ALSO ALTER OPERATOR
FORMAT

DROP OPERATOR [schema .] operator [FORCE];

DESCRIPTION DROP OPERATOR drops a user-defined operator. You must either own the
operator or have DROP ANY OPERATOR system privilege. Specify FORCE to drop the operator even
if it is currently being referenced by one or more schema objects (indextypes, packages, functions,
procedures, and so on), and marks those dependent objects INVALID.

DROP OUTLINE
SEE ALSO CREATE OUTLINE
FORMAT

DROP OUTLINE outline;

DESCRIPTION DROP OUTLINE drops a stored outline from the database. You must have the
DROP ANY OUTLINE system privilege. Subsequent executions of SQL statements that used the outline
will have their execution paths evaluated at runtime.

DROP PACKAGE
SEE ALSO ALTER PACKAGE, CREATE PACKAGE, Chapter 29
FORMAT

DROP PACKAGE [BODY] [schema .] package;

DROP PACKAGE 1047

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1047

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:21:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION DROP PACKAGE drops the specified package. Using the optional BODY clause
drops only the body without dropping the package specification. Oracle invalidates any objects that
depend on the package if you drop the package specification but not if you just drop the body. You
must either own the package or have DROP ANY PROCEDURE system privilege.

DROP PROCEDURE
SEE ALSO ALTER PROCEDURE, CREATE PROCEDURE, Chapter 29
FORMAT

DROP PROCEDURE [schema .] procedure;

DESCRIPTION DROP PROCEDURE drops the specified procedure. Oracle invalidates any
objects that depend on or call the procedure. You must either own the procedure or have DROP ANY
PROCEDURE system privilege.

DROP PROFILE
SEE ALSO ALTER PROFILE, CREATE PROFILE, Chapter 19
FORMAT

DROP PROFILE profile [CASCADE];

DESCRIPTION DROP PROFILE drops the specified profile. You must have DROP PROFILE
system privilege.

DROP ROLE
SEE ALSO ALTER ROLE, CREATE ROLE, Chapter 19
FORMAT

DROP ROLE role;

DESCRIPTION DROP ROLE drops the specified role. You must have either been granted the role
WITH ADMIN OPTION or you must have DROP ANY ROLE system privilege.

DROP ROLLBACK SEGMENT
SEE ALSO ALTER ROLLBACK SEGMENT, CREATE ROLLBACK SEGMENT, CREATE TABLESPACE,
SHUTDOWN, STARTUP, Chapter 40
FORMAT

DROP ROLLBACK SEGMENT rollback_segment;

DESCRIPTION rollback_segment is the name of an existing rollback segment to be dropped. The
segment must not be in use when this statement is executed. PUBLIC is required for dropping public
rollback segments.

The Status column of the data dictionary view DBA_ROLLBACK_SEGS can reveal which rollback
segments are in use. If the segment is in use, you can either wait until it no longer is in use,
or SHUTDOWN the database using IMMEDIATE, and then bring it up in EXCLUSIVE mode using
STARTUP. You must have the DROP ROLLBACK SEGMENT system privilege in order to drop a
rollback segment.

1048 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1048

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:21:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DROP SEQUENCE
SEE ALSO ALTER SEQUENCE, CREATE SEQUENCE, Chapter 20
FORMAT

DROP SEQUENCE [schema .] sequence_name;

DESCRIPTION sequence_name is the name of the sequence being dropped. To drop a sequence,
you must either own the sequence or have DROP ANY SEQUENCE system privilege.

DROP SNAPSHOT
See DROP MATERIALIZED VIEW

DROP SNAPSHOT LOG
See DROP MATERIALIZED VIEW LOG

DROP SYNONYM
SEE ALSO CREATE SYNONYM, Chapter 22
FORMAT

DROP [PUBLIC] SYNONYM [schema .] synonym;

DESCRIPTION DROP SYNONYM drops the specified synonym. To drop a public synonym, you
must have DROP ANY PUBLIC SYNONYM system privilege. To drop a private synonym, you must
own the synonym or have DROP ANY SYNONYM system privilege.

DROP TABLE
SEE ALSO ALTER TABLE, CREATE INDEX, CREATE TABLE, DROP CLUSTER, Chapter 18
FORMAT

DROP TABLE [schema .] table [CASCADE CONSTRAINTS];

DESCRIPTION DROP TABLE drops the specified table. To drop a table, you must either own the
table or have DROP ANY TABLE system privilege. Dropping a table also drops indexes and grants
associated with it. Objects built on dropped tables are marked invalid and cease to work.

The CASCADE CONSTRAINTS option drops all referential integrity constraints referring to keys in
the dropped table.

You can drop a cluster and all of its tables by using the INCLUDING TABLES clause on DROP
CLUSTER.

DROP TABLESPACE
SEE ALSO ALTER TABLESPACE, CREATE DATABASE, CREATE TABLESPACE, Chapters 20 and 40.
FORMAT

DROP TABLESPACE tablespace
[INCLUDING CONTENTS [AND DATAFILES] [CASCADE CONSTRAINTS]];

DESCRIPTION tablespace is the name of the tablespace being dropped. The INCLUDING
CONTENTS option allows you to drop a tablespace that contains data. Without INCLUDING

DROP TABLESPACE 1049

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1049

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:21:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CONTENTS, only an empty tablespace can be dropped. Tablespaces should be offline (see ALTER
TABLESPACE) before dropping, or the drop operation will be prevented by any users accessing data,
index, rollback, or temporary segments in the tablespace. You must have DROP TABLESPACE system
privilege to use this command.

DROP TRIGGER
SEE ALSO ALTER TRIGGER, CREATE TRIGGER, Chapters 28 and 30
FORMAT

DROP TRIGGER [schema .] trigger;

DESCRIPTION DROP TRIGGER drops the specified trigger. You must either own the trigger or
you must have the DROP ANY TRIGGER system privilege.

DROP TYPE
SEE ALSO CREATE TYPE, Chapters 4 and 30
FORMAT

DROP TYPE [schema .] type_name [FORCE | VALIDATE];

DESCRIPTION DROP TYPE drops the specification and body of an abstract datatype. You must
either own the type or have DROP ANY TYPE system privilege. You cannot drop a type if a table or
other object references it.

DROP TYPE BODY
SEE ALSO CREATE TYPE, CREATE TYPE BODY, DROP TYPE, Chapter 30
FORMAT

DROP TYPE BODY [schema .] type_name;

DESCRIPTION DROP TYPE BODY drops the body of the specified type. You must either own
the type or have DROP ANY TYPE system privilege.

DROP USER
SEE ALSO ALTER USER, CREATE USER, Chapter 19
FORMAT

DROP USER user [CASCADE];

DESCRIPTION DROP USER drops the specified user. You must have DROP USER system privilege.
The CASCADE option drops all the objects in the user’s schema before dropping the user, and you must
specify CASCADE if the user has any objects in the schema.

DROP VIEW
SEE ALSO CREATE SYNONYM, CREATE TABLE, CREATE VIEW, Chapter 18
FORMAT

DROP VIEW [schema .] view [CASCADE CONSTRAINTS];

1050 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1050

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:21:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION DROP VIEW drops the specified view. The view must either be in your schema
or you must have DROP ANY VIEW system privilege.

DROPJAVA
DROPJAVA is a utility for removing Java classes from the database. See LOADJAVA.

DUAL
SEE ALSO FROM, SELECT, Chapter 9
DESCRIPTION DUAL is a table with only one row and one column in it. Since Oracle’s many
functions work on both columns and literals, it is possible to demonstrate some of its functionality by
using just literals or pseudo-columns. When doing this, the select statement doesn’t care which columns
are in the table, and a single row is more than sufficient to demonstrate a point.
EXAMPLE The following shows the current User and SysDate:

select User, SysDate from DUAL;

DUMP
SEE ALSO RAWTOHEX
FORMAT

DUMP(string [,format [,start [,length]]])

DESCRIPTION DUMP displays the value of string in internal data format, in ASCII, octal, decimal,
hex, or character format. format defaults to ASCII or EBCDIC, depending upon your machine; 8 produces
octal, 10 decimal, 16 hex, and 17 character (the same as ASCII or EBCDIC). start is the beginning position
in the string, and length is the number of characters to display. string can be a literal or an expression.
EXAMPLE The following shows how characters 1 through 8 are represented in hex for just the
City in the first row of the COMFORT table:

select City, dump(City,16,1,8) from COMFORT where rownum < 2;

CITY DUMP(CITY,16,1,8)
------------- --------------------------------------
SAN FRANCISCO Typ=1 Len= 13: 53,41,4e,20,46,52,41,4e

EBCDIC
EBCDIC is an acronym for Extended Binary Coded Decimal Interchange Code—the collation sequence
used by IBM’s mainframe computers and other computers compatible with them.

ECHO (SQL*PLUS)
See SET.

EDIT
SEE ALSO DEFINE, SET, Chapter 6
FORMAT

EDIT [file[.ext]]

EDIT 1051

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1051

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:21:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION EDIT calls an external standard text editor and passes to it the name of the file. If
.ext is omitted, the extension SQL is appended. If file and ext are both omitted, the editor is called and
passed the name of a file (invented by SQLPLUS) that contains the contents of the current buffer. The
local user variable _EDITOR determines which text editor is used by EDIT. _EDITOR can be changed
with DEFINE, and this is usually best done in the LOGIN.SQL file, which is read whenever SQL*PLUS
is invoked.

EDIT will fail if the current buffer is empty and EDIT is called without a file name. You can use the
SET EDITFILE command to set the default name of the file created by the EDIT command.

EMBEDDED (SQL*PLUS)
See SET.

EMPTY_BLOB
SEE ALSO Chapter 32
FORMAT

EMPTY_BLOB()

DESCRIPTION EMPTY_BLOB returns an empty LOB locator that can be used to initialize a LOB
variable or, in an INSERT or UPDATE statement, to initialize a LOB column or attribute to EMPTY.
EMPTY means that the LOB is initialized, but not populated with data.
EXAMPLE

UPDATE BOOK_TEXT set BlobCol = EMPTY_BLOB();

EMPTY_CLOB
SEE ALSO Chapter 32
FORMAT

EMPTY_CLOB()

DESCRIPTION EMPTY_CLOB returns an empty LOB locator that can be used to initialize a LOB
variable or, in an INSERT or UPDATE statement, to initialize a LOB column or attribute to EMPTY.
EMPTY means that the LOB is initialized, but not populated with data.
EXAMPLE

UPDATE BOOK_TEXT set ClobCol = EMPTY_CLOB();

END
SEE ALSO BEGIN, BLOCK STRUCTURE, Chapter 27
FORMAT

END [block label] ;

DESCRIPTION END is unrelated to the END IF and END LOOP statements. See IF and LOOP for
details on either of them.

END is the closing statement of a PL/SQL block’s executable section (and the entire block). If the
block is named at the BEGIN, the name must also follow the word END. At least one executable

1052 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1052

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:21:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

statement is required between BEGIN and END. See BLOCK STRUCTURE and Chapters 27 and 29
for more details.

ENQUEUE
Enqueue is the lock on a given resource. Those waiting for a given resource have not yet gotten the
enqueue. Enqueues exist for many database resources.

ENTITY
An entity is a person, place, or thing represented by a table. In a table, each row represents an occurrence
of that entity.

ENTITY-RELATIONSHIP MODEL
An entity-relationship model is a framework used to model systems for a database. It divides all elements
of a system into two categories: entities or relationships.

EQUI-JOIN
An equi-join is a join in which the join comparison operator is an equality, such as

where BOOKSHELF.Title = BOOKSHELF_CHECKOUT.Title

ESCAPE (SQL*PLUS)
See SET.

EXCEPTION
SEE ALSO BLOCK STRUCTURE, DECLARE EXCEPTION, RAISE, Chapter 27
FORMAT

EXCEPTION
{WHEN {OTHERS | exception [OR exception]...}

THEN statement; [statement;]...}
[WHEN {OTHER | exception [OR exception]...}

THEN statement; [statement;]...]...

DESCRIPTION The EXCEPTION section of a PL/SQL block is where program control is transferred
whenever an exception flag is raised. Exception flags are either user-defined or system exceptions
raised automatically by PL/SQL. See RAISE for details on user-defined exception flags. The system
exception flags are all, in effect, BOOLEAN variables that are either TRUE or FALSE. The WHEN
clause is used to test these. For example, the NOT_LOGGED_ON flag is raised if you attempt to issue
a command to Oracle without being logged on. You do not need to have DECLAREd an exception, or
RAISEd this flag yourself. PL/SQL will do it for you.

When any exception flag is raised, the program immediately halts whatever it was doing and jumps
to the EXCEPTION section of the current block. This section, however, doesn’t know automatically
which exception flag was raised, nor what to do. Therefore, you must code the EXCEPTION section
first to check all of the exception flags that are likely to have occurred, and then give action instructions
for each. This is what the WHEN...THEN logic does. You can use WHEN OTHERS as a catch-all to
handle unanticipated errors for which you have not declared exceptions.

EXCEPTION 1053

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1053

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:21:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

EXAMPLE Here one exception flag is tested in the EXCEPTION section. The ZERO_DIVIDE flag
is raised when any calculation attempts to divide by zero.

declare
pi constant NUMBER(9,7) := 3.1415927;
radius INTEGER(5);
area NUMBER(14,2);
some_variable NUMBER(14,2);

begin
radius := 3;
loop
some_variable := 1/(radius-4);
area := pi*power(radius,2);
insert into AREAS values (radius, area);

radius := radius+1;
exit when area >100;

end loop;
exception
when ZERO_DIVIDE
then insert into AREAS values (0,0);

end;

The system-raised exception flags are:

ACCESS_INTO_NULL Your program attempts to assign values to the attributes of an
uninitialized (atomically null) object.

CASE_NOT_FOUND None of the choices in the WHEN clauses of a CASE statement is
selected, and there is no ELSE clause.

COLLECTION_IS_NULL Your program attempts to apply collection methods other than EXISTS
to an uninitialized (atomically null) nested table or varray, or the
program attempts to assign values to the elements of an uninitialized
nested table or varray.

CURSOR_ALREADY_OPEN Your program attempts to open an already open cursor. A cursor must
be closed before it can be reopened. A cursor FOR loop automatically
opens the cursor to which it refers. So, your program cannot open that
cursor inside the loop.

DUP_VAL_ON_INDEX Your program attempts to store duplicate values in a database column
that is constrained by a unique index.

INVALID_CURSOR Your program attempts an illegal cursor operation such as closing an
unopened cursor.

INVALID_NUMBER In a SQL statement, the conversion of a character string into a number
fails because the string does not represent a valid number. (In procedural
statements, VALUE_ERROR is raised.) This exception is also raised when
the LIMIT-clause expression in a bulk FETCH statement does not evaluate
to a positive number.

LOGIN_DENIED Your program attempts to log on to Oracle with an invalid username
and/or password.

1054 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1054

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:21:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

NO_DATA_FOUND A SELECT INTO statement returns no rows, or your program references
a deleted element in a nested table or an uninitialized element in an
index-by table. SQL aggregate functions such as AVG and SUM always
return a value or a null. So, a SELECT INTO statement that calls an
aggregate function never raises NO_DATA_FOUND. The FETCH
statement is expected to return no rows eventually, so when that
happens, no exception is raised.

NOT_LOGGED_ON Your program issues a database call without being connected to Oracle.

PROGRAM_ERROR PL/SQL has an internal problem.

ROWTYPE_MISMATCH The host cursor variable and PL/SQL cursor variable involved in an
assignment have incompatible return types. For example, when an open
host cursor variable is passed to a stored subprogram, the return types
of the actual and formal parameters must be compatible.

SELF_IS_NULL Your program attempts to call a MEMBER method on a null instance.
That is, the built-in parameter SELF (which is always the first parameter
passed to a MEMBER method) is null.

STORAGE_ERROR PL/SQL runs out of memory or memory has been corrupted.

SUBSCRIPT_BEYOND_COUNT Your program references a nested table or varray element using an
index number larger than the number of elements in the collection.

SUBSCRIPT_OUTSIDE_LIMIT Your program references a nested table or varray element using an
index number (-1 for example) that is outside the legal range.

SYS_INVALID_ROWID The conversion of a character string into a universal rowid fails because
the character string does not represent a valid rowid.

TIMEOUT_ON_RESOURCE A time-out occurs while Oracle is waiting for a resource.

TOO_MANY_ROWS A SELECT INTO statement returns more than one row.

VALUE_ERROR An arithmetic, conversion, truncation, or size-constraint error occurs.
For example, when your program selects a column value into a
character variable, if the value is longer than the declared length of
the variable, PL/SQL aborts the assignment and raises VALUE_ERROR.
In procedural statements, VALUE_ERROR is raised if the conversion
of a character string into a number fails. (In SQL statements,
INVALID_NUMBER is raised.)

ZERO_DIVIDE Your program attempts to divide a number by zero.

The associated Oracle error numbers and SQLCode values are:

Exception Oracle Error # SQLCode

ACCESS_INTO_NULL ORA-06530 -6530

CASE_NOT_FOUND ORA-06592 -6592

COLLECTION_IS_NULL ORA-06531 -6531

CURSOR_ALREADY_OPEN ORA-06511 -6511

DUP_VAL_ON_INDEX ORA-00001 -1

EXCEPTION 1055

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1055

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:21:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Exception Oracle Error # SQLCode

INVALID_CURSOR ORA-01001 -1001

INVALID_NUMBER ORA-01722 -1722

LOGIN_DENIED ORA-01017 -1017

NO_DATA_FOUND ORA-01403 +100

NOT_LOGGED_ON ORA-01012 -1012

PROGRAM_ERROR ORA-06501 -6501

ROWTYPE_MISMATCH ORA-06504 -6504

SELF_IS_NULL ORA-30625 -30625

STORAGE_ERROR ORA-06500 -6500

SUBSCRIPT_BEYOND_COUNT ORA-06533 -6533

SUBSCRIPT_OUTSIDE_LIMIT ORA-06532 -6532

SYS_INVALID_ROWID ORA-01410 -1410

TIMEOUT_ON_RESOURCE ORA-00051 -51

TOO_MANY_ROWS ORA-01422 -1422

VALUE_ERROR ORA-06502 -6502

ZERO_DIVIDE ORA-01476 -1476

OTHERS is the catch-all for any exception flags you did not check for in your EXCEPTION section.
It must always be the last WHEN statement, and must stand alone. It cannot be included with any other
exceptions.

Exception handling, particularly as it relates to exceptions you declare, should really be reserved
for errors that are fatal—that means normal processing should stop.

If an exception flag is raised that is not tested for in the current block, the program will branch to
the EXCEPTION block in the enclosing block, and so on, until either the exception raised is found, or
control falls through to the host program.

EXCEPTION sections can reference variables in the same manner that the execution block can.
That is, they can reference local variables directly, or variables from other blocks by prefixing them
with the other block’s name.

Use caution in testing for certain kinds of exceptions. For instance, if the EXCEPTION section takes
the error message and inserts it into a database table, a NOT_LOGGED_ON exception would put the
EXCEPTION section into an infinite loop. Design the statements that follow THEN not to duplicate the
error that got the program there in the first place. You also may use RAISE without an exception name.
This will automatically pass control to the next outer exception block, or the main program. See RAISE
for further details.

EXCEPTION_INIT
SEE ALSO DECLARE EXCEPTION, EXCEPTION, SQLCODE, Precompiler Programmer’s Guide
FORMAT

PRAGMA EXCEPTION_INIT(exception,integer);

1056 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1056

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:21:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION The standard system exceptions, such as ZERO_DIVIDE, which are referenced
by name, are actually no more than the association of a name with the internal Oracle error number.
There are hundreds of these error numbers, and only the most common have been given names. Any
that are not named will still raise an exception flag and transfer control to the EXCEPTION block, but
they will all be caught by OTHERS, rather than by name.

You can change this by assigning your own names to other Oracle error numbers. EXCEPTION_INIT
allows you to do this. exception is the one-word name you assign to the integer error number (see
Oracle’s Error Messages and Codes Manual for a complete list). integer should be negative if the error
code is negative (true for fatal errors), and exception must follow normal object naming rules.

Note that the format of this command requires the word PRAGMA before EXCEPTION_INIT. A
pragma is an instruction to the PL/SQL compiler, rather than executable code. The pragma must be
in the DECLARE section of a PL/SQL block, and must be preceded by an exception declaration.
EXAMPLE

DECLARE
some_bad_error exception;
pragma exception_init(some_bad_error, -660);

BEGIN
...
EXCEPTION

when some_bad_error
then ...

END;

EXCLUSIVE LOCK
An exclusive lock is one that permits other users to query data, but not change it. It differs from a
SHARE lock because it does not permit another user to place any type of lock on the same data;
several users may place SHARE locks on the same data at the same time.

EXECUTE
SEE ALSO CALL, CREATE PROCEDURE, CREATE FUNCTION, CREATE PACKAGE, CREATE
PACKAGE BODY, GRANT, Chapters 28 and 29
FORMAT

EXECUTE procedural_object_name [arguments];

DESCRIPTION EXECUTE executes a procedure, package, or function. To execute a procedure
within a package, specify both the package name and the procedure name in the execute command,
as shown in the following example. This example executes a procedure named NEW_BOOK, in a
package named BOOKSHELF_PACKAGE; the value ‘TALE OF TWO CITIES’ is passed as input to the
procedure.

execute BOOKSHELF_PACKAGE.NEW_BOOK('TALE OF TWO CITIES');

To execute a procedural object, you must have been granted the EXECUTE privilege on that
object. See GRANT.

EXECUTE (Dynamic Embedded SQL)
SEE ALSO EXECUTE IMMEDIATE, PREPARE, Precompiler Programmer’s Guide

EXECUTE (Dynamic Embedded SQL) 1057

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1057

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:21:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

FORMAT

EXEC SQL [FOR { integer | :array_size }]
EXECUTE statement_id
[USING
{ DESCRIPTOR SQLDA_descriptor
| :host_variable [[INDICATOR] :indicator_variable]

[, :host_variable [[INDICATOR] :indicator_variable]]... }]

DESCRIPTION :integer is a host variable used to limit the number of iterations when the where
clause uses arrays. statement_id is the identifier for a prepared insert, delete, or update statement to be
executed (select is not allowed). USING introduces a list of substitutions into the host variables of the
previously prepared statement.

EXECUTE IMMEDIATE (Dynamic Embedded SQL)
SEE ALSO EXECUTE, PREPARE, Precompiler Programmer’s Guide
FORMAT

EXEC SQL [AT {database | :host_variable}]
EXECUTE IMMEDIATE {:string | literal}

DESCRIPTION database is the name of a database connection other than the default; host_variable
may contain such a name as its value. :string is a host variable string containing a SQL statement. literal
is a character string containing a SQL statement. The EXECUTE IMMEDIATE statement cannot contain
host variable references other than an executable SQL statement in :string. The SQL statement is parsed,
put into executable form, executed, and the executable form is destroyed. It is intended only for
statements to be executed just once. Statements that require multiple executions should use PREPARE
and EXECUTE, as this eliminates the overhead of parsing for each execution.

EXISTS
SEE ALSO ANY, ALL, IN, NOT EXISTS, Chapter 12
FORMAT

select ...
where EXISTS (select...)

DESCRIPTION EXISTS returns true in a where clause if the subquery that follows it returns at
least one row. The select clause in the subquery can be a column, a literal, or an asterisk—it doesn’t
matter. (Convention suggests an asterisk or an ‘x’.)

Many people prefer EXISTS over ANY and ALL because it is easier to remember and understand,
and most formulations of ANY and ALL can be reconstructed using EXISTS.
EXAMPLE The query shown in the following example uses EXISTS to list from the BOOKSHELF
table all Publishers that have had books checked out:

select Publisher
from BOOKSHELF B
where EXISTS

(select 'x' from BOOKSHELF_CHECKOUT
where BOOKSHELF_CHECKOUT.Title = B.Title);

1058 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1058

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:21:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

EXISTSNODE
SEE ALSO Chapter 41
FORMAT

EXISTSNODE (XMLType_instance , Xpath_string)

DESCRIPTION EXISTSNODE determines whether traversal of the document using the path results
in any nodes. It takes as arguments the XMLType instance containing an XML document and a VARCHAR2
string designating a path.

The return value is NUMBER: 0 if no nodes remain after applying the XPath traversal on the document,
>0 if any nodes remain.

EXIT (Form 1-PL/SQL)
SEE ALSO END, LOOP, Chapter 27
FORMAT

EXIT [loop] [WHEN condition];

DESCRIPTION Without any of its options, EXIT simply takes you out of the current loop, and
branches control to the next statement following the loop. If you are in a nested loop, you can exit from
any enclosing loop simply by specifying the loop name. If you specify a condition, you will exit when
the condition evaluates to TRUE. Any cursor within a loop is automatically closed when you EXIT.

EXIT (Form 2-SQL*PLUS)
SEE ALSO COMMIT, DISCONNECT, QUIT, START
FORMAT

{EXIT | QUIT} [SUCCESS|FAILURE|WARNING|integer|variable] [COMMIT|ROLLBACK]

DESCRIPTION EXIT ends a SQL*PLUS session and returns user to the operating system, calling
program, or menu. Unless ROLLBACK is specified, EXIT commits pending changes to the database.
A return code is also returned. SUCCESS, FAILURE, and WARNING have values that are
operating-system specific; FAILURE and WARNING may be the same on some operating systems.

integer is a value you can pass back explicitly as the return code; variable allows you to set this
value dynamically. This can be a user-defined variable, or a system variable, such as sql.sqlcode,
which always contains the sqlcode of the last SQL statement executed, either in SQL*PLUS or an
embedded PL/SQL block.

EXP
SEE ALSO LN, NUMBER FUNCTIONS, Chapter 8
FORMAT

EXP(n)

DESCRIPTION EXP returns e raised to the nth power; e = 2.718281828....

EXPLAIN PLAN
SEE ALSO Chapter 38

EXPLAIN PLAN 1059

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1059

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:22:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

FORMAT

EXPLAIN PLAN [SET STATEMENT_ID = 'name']
[INTO [schema .] table [@ dblink]]
FOR statement;

DESCRIPTION name identifies this plan explanation for this statement when it appears in the
output table, and follows normal object naming conventions. If name is not specified, the STATEMENT_ID
column in the table will be NULL. table is the name of the output table into which the plan explanation
will go. It must be previously created before this procedure can be executed. The start file UTLXPLAN.SQL
contains the format and can be used to create the default table, named PLAN_TABLE. If table is not
specified, EXPLAIN PLAN will use PLAN_TABLE. sql_statement is the simple text of any select, insert,
update, or delete statement you wish to have analyzed for Oracle’s execution plan for it.

EXPORT
Export can have either of two definitions:

■ Export is the Oracle utility used to store Oracle database data in export format files for later
retrieval into an Oracle database via Import.

■ To export is to use the Export utility to write selected table data to an export file.

For information on the Export utility, see the Oracle9i Utilities User’s Guide and Chapter 40.

EXPRESSION
An expression is any form of a column. This could be a literal, a variable, a mathematical computation, a
function, or virtually any combination of functions and columns whose final result is a single value, such
as a string, a number, or a date.

External Table
An external table is a file outside the database that is accessible via SQL commands. See Chapter 25 for
details on the creation and use of external tables.

EXTRACT (datetime)
SEE ALSO DATE FUNCTIONS, Chapter 9
FORMAT

EXTRACT
({ { YEAR

| MONTH
| DAY
| HOUR
| MINUTE
| SECOND }

| { TIMEZONE_HOUR
| TIMEZONE_MINUTE }

| { TIMEZONE_REGION
| TIMEZONE_ABBR
} }

FROM { datetime_value_expression | interval_value_expression })

1060 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1060

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:22:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION EXTRACT extracts and returns the value of a specified datetime field from a
datetime or interval value expression.
EXAMPLE

select BirthDate,
EXTRACT(Month from BirthDate) AS Month

from BIRTHDAY
where FirstName = 'VICTORIA';

BIRTHDATE MONTH
--------- ----------
20-MAY-49 5

EXTRACT (XML)
SEE ALSO Chapter 41
FORMAT

EXTRACT (XMLType_instance , Xpath_string)

DESCRIPTION EXTRACT is similar to the EXISTSNODE function. It applies a VARCHAR2 XPath
string and returns an XMLType instance containing an XML fragment.

FEEDBACK (SQL*PLUS)
See SET.

FETCH
One phase of query execution is the fetch phase, where actual rows of data meeting all search criteria
are retrieved from the database.

FETCH (Form 1-Embedded SQL)
SEE ALSO CLOSE, DECLARE CURSOR, DESCRIBE, INDICATOR VARIABLE, OPEN, PREPARE,
Precompiler Programmer’s Guide
FORMAT

EXEC SQL [FOR { integer | :array_size }]
FETCH { cursor | :cursor_variable }
{ USING DESCRIPTOR SQLDA_descriptor
| INTO :host_variable [[INDICATOR] :indicator_variable]

[, :host_variable [[INDICATOR] :indicator_variable]]... }

DESCRIPTION integer is a host variable that sets the maximum number of rows to fetch into the
output variables. cursor is the name of a cursor previously set up by DECLARE CURSOR. :host_variable
is one or more host variables into which fetched data will be placed. If any of the host variables is an
array, then all of them (in the INTO list) must be arrays. The INDICATOR keyword is optional.

FETCH (Form 2-PL/SQL)
SEE ALSO %FOUND, %ROWTYPE, CLOSE, DECLARE CURSOR, LOOP, OPEN,
SELECT. . .INTO, Chapter 27

FETCH (Form 2-PL/SQL) 1061

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1061

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:22:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

FORMAT

FETCH cursor INTO {record | variable [,variable]...};

DESCRIPTION FETCH gets a row of data. The named cursor’s select statement determines which
columns are retrieved, and its where statement determines which (and how many) rows can be retrieved.
This is called the “active set,” but it is not available to you for processing until you fetch it, row by
row, using the FETCH statement. The FETCH gets a row from the active set and drops the row’s values
into the record (or string of variables), which has been defined in the DECLARE.

If you use the variable list method, each column in the select list of the cursor must have a
corresponding variable, and each of them must have been declared in the DECLARE section. The
datatypes must be the same or compatible.

If you use the record method, the record is DECLAREd using the %ROWTYPE attribute, which
declares the structure of the record to be the same (with the same datatypes) as the column list in the
select. Each variable within this record can then be accessed individually using the record name as a
prefix, and a variable name that is the same as the column name.
EXAMPLE

declare
pi constant NUMBER(9,7) := 3.1415927;
area NUMBER(14,2);
cursor rad_cursor is

select * from RADIUS_VALS;
rad_val rad_cursor%ROWTYPE;

begin
open rad_cursor;
loop
fetch rad_cursor into rad_val;
exit when rad_cursor%NOTFOUND;
area := pi*power(rad_val.radius,2);
insert into AREAS values (rad_val.radius, area);

end loop;
close rad_cursor;

end;

FIELD
In a table, a field is the information stored at the intersection of a row and a column. Field is generally
synonymous with a column, but also can mean an actual column value.

FILE TYPES
Files usually have a name and an extension, for example comfort.tab where comfort is the file name,
and tab is the extension, or file “type.” In SQL*PLUS, start files that are created using EDIT are given
the default extension SQL if no extension is specified. In other words, this:

edit misty

will create or edit a file named misty.sql, while this:

1062 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1062

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:23:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

start misty

will attempt to start a file named misty.sql because no extension was specified. Similarly, this:

spool bellwood

will create an output file named bellwood.lst, because lst is the default extension for spooled files. Of
course, if either edit or spool is followed by both a file name and extension, the given extension will
be used, not the default.

file_specification
SEE ALSO ALTER TABLESPACE, CREATE CONTROLFILE, CREATE DATABASE, CREATE LIBRARY,
CREATE TABLESPACE
FORMAT
file_specification::=

datafile_tempfile_spec::=

redo_log_file_spec::=

autoextend_clause::=

file_specification 1063

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1063

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:23:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

maxsize_clause::=

DESCRIPTION file_specification defines the name, location, and size of a file used by the
database. For example, when you create a tablespace you must specify at least one datafile for the
tablespace to use. file_specification provides the format for the datafile portion of the CREATE
TABLESPACE command.

FIRST
SEE ALSO DENSE_RANK, LAST
FORMAT

aggregate_function KEEP
(DENSE_RANK FIRST ORDER BY
expr [DESC | ASC] [NULLS { FIRST | LAST }]
[, expr [DESC | ASC] [NULLS { FIRST | LAST }]]...

) [OVER query_partitioning_clause]

DESCRIPTION FIRST is both an aggregate and analytic function that operates on a set of values
from a set of rows that rank as the first with respect to a given sorting specification. aggregate_function
is one of the standard numeric grouping functions (such as MIN, MAX, AVG, and STDDEV).

FIRST_VALUE
SEE ALSO LAST_VALUE
FORMAT

FIRST_VALUE (expr) OVER (analytic_clause)

DESCRIPTION FIRST_VALUE is an analytic function. It returns the first value in an ordered set of
values.

FLASHBACK QUERY
A flashback query shows data as it existed prior to a commit. You cannot perform DML while in
flashback query mode. See Chapter 26 for examples and restrictions related to flashback queries.

FLOOR
SEE ALSO CEIL, NUMBER FUNCTIONS, Chapter 8
FORMAT

FLOOR(value)

DESCRIPTION FLOOR is the largest integer smaller than or equal to value.

1064 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1064

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:23:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

EXAMPLE

FLOOR(2) = 2
FLOOR(-2.3) = -3

FLUSH (SQL*PLUS)
See SET.

FOR
See LOOP and CURSOR FOR LOOP.

FOREIGN KEY
A foreign key is one or more columns whose values are based on the primary or candidate key values
from another table.

FORMAT
See BTITLE, CHAR FORMAT, COLUMN, DATE FORMAT, TO_CHAR, TO_DATE, TTITLE.

FORMAT MODEL
A format model is a clause that controls the appearance of numbers, dates, and character strings.
Format models for DATE columns are used in date conversion functions such as TO_CHAR and
TO_DATE.

FREE EXTENTS
Free extents are extents of database blocks that have not been allocated to any table or index segment.
Free extents is another term for free space.

FROM
SEE ALSO DELETE, SELECT, Chapter 3
FORMAT

DELETE FROM [user.]table[@link] [alias]
WHERE condition

SELECT... FROM [user.]table[@link] [, [user.]table[@link]]...

DESCRIPTION table is the name of the table used by delete or select. link is the link to a remote
database. Both delete and select commands require a from clause to define the tables from which
rows will be deleted or selected. If the table is owned by another user, its name must be prefixed by
the owner’s user name.

If the table is remote, a database link has to be defined. @link specifies the link. If link is entered,
but user is not, the query seeks a table owned by the user on the remote database. The condition may
include a correlated query and use the alias for correlation.

FROM_TZ
SEE ALSO TIMESTAMP WITH TIME ZONE, Chapter 9

FROM_TZ 1065

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1065

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:23:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

FORMAT

FROM_TZ (timestamp_value , time_zone_value)

DESCRIPTION FROM_TZ converts a timestamp value at a time zone to a TIMESTAMP WITH
TIME ZONE value. time_zone_value is a character string in the format ‘TZH:TZM’ or a character
expression that returns a string in TZR with optional TZD format.

FULL OUTER JOIN
A full outer join performs an outer join in which both tables are used as the “outer” table in the join.
Thus A FULL OUTER JOIN B returns all rows in common between A and B, all rows from A not
matched in B matched to NULL values, and all rows in B not matched in A matched to NULL values.

FULL TABLE SCAN
A full table scan is a method of data retrieval in which Oracle directly searches in a sequential manner
all the database blocks for a table (rather than using an index), when looking for the specified data. See
Chapter 38.

FUNCTION
A function is a predefined operation, such as “convert to uppercase,” which may be performed by
placing the function’s name and arguments in a SQL statement. See CHARACTER FUNCTIONS,
CONVERSION FUNCTIONS, DATE FUNCTIONS, GROUP FUNCTIONS, LIST FUNCTIONS,
NUMBER FUNCTIONS, and individual functions.

FUZZY MATCH
A fuzzy match is a type of text search that allows for misspellings or variant spellings. See CONTAINS
and Chapter 24.

GET
SEE ALSO EDIT, SAVE
FORMAT

GET file [LIST | NOLIST]

DESCRIPTION GET loads a host system file named file into the current buffer (whether the SQL
buffer or a named buffer). If the file type is not included, GET assumes a file type of SQL. LIST makes
SQL*PLUS list the lines being loaded into the buffer. This is the default. NOLIST gets the file without
listing its contents.
EXAMPLE This example gets a file called work.sql:

get work

GLOBAL INDEX
When a table is partitioned, its data is stored in separate segments. When an index is created on the
partitioned table, the index can be partitioned so that each of the table partitions has a matching index

1066 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1066

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:23:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

partition. If the index partitions do not match the table partitions, then the index is a global index. See
Chapter 18.

GOTO
SEE ALSO BLOCK STRUCTURE, Chapter 27
FORMAT

GOTO label;

DESCRIPTION GOTO transfers control to a section of code preceded by the named label. Such a
label can be used to precede any legitimate statement within an execution block, or within an EXCEPTION
section. There are certain restrictions:

■ A GOTO cannot transfer control to a block enclosed in the current block, or inside of a FOR
LOOP or an IF statement.

■ A GOTO cannot transfer to a label outside of its own block unless it is to a block that encloses
its block.

EXAMPLE Here’s an informal loop built from a GOTO that, without actually knowing ahead of
time what the top number will be, inserts a geometric progression from 1 to about 10,000 into a table:

DECLARE
...

BEGIN
x := 0;
y := 1;
<<alpha>>
x := x + 1;
y := x*y;
insert ...
if y > 10000

then goto beta;
goto alpha;

<<beta>>
exit;

GRANT
SEE ALSO ALTER USER, CREATE USER, PRIVILEGE, REVOKE, ROLE, Chapter 19
FORMAT
grant::=

GRANT 1067

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1067

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:23:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

grant_system_privileges::=

grant_object_privileges::=

on_object_clause::=

grantee_clause::=

1068 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1068

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:23:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION The first form of GRANT extends one or more system privileges to users and roles.
A system privilege is an authorization to perform one of the various data definition or control commands,
such as ALTER SYSTEM, CREATE ROLE, or GRANT itself. See PRIVILEGE for details of these privileges.
A user is created by CREATE USER and is then granted system privileges to enable logging into the
database and other operations. A user without grants is unable to do anything at all in Oracle. A role
is a collection of privileges created by CREATE ROLE. As with a user, a role has no privileges when
created, but gets them through one or more GRANTs. One can grant one role to another role to create
a nested network of roles, which gives the database administrator a great deal of flexibility in managing
the security of the system.

The WITH ADMIN OPTION option lets the granted user or role (the grantee) grant the system privilege
or role to other grantees. The grantee can also alter or drop a role granted WITH ADMIN OPTION.

The second form of the GRANT command grants object privileges, privileges that affect specific
kinds of objects in Oracle databases, to any user or role. object can be a table, view, sequence, procedure,
function, package, materialized view, or a synonym for one of these objects. GRANTs on a synonym
actually become grants on the underlying object that the synonym references. See PRIVILEGE for a
complete list of object privileges and a discussion of which can be granted for the various objects.

If you are granting INSERT, REFERENCES, or UPDATE privileges on a table or view, GRANT can
also specify a list of columns of the table or view to which the GRANT applies. The GRANT applies
only to those columns. If GRANT has no list of columns, the GRANT applies to all columns in the
table or view.

PUBLIC grants the privileges to all users present and future.
The WITH GRANT OPTION passes along the right to grant the granted privileges to another user

or role.

GREATEST
SEE ALSO COLLATION, LEAST, MAX, LIST FUNCTIONS, Chapters 8 and 9
FORMAT

GREATEST(value1, value2, ...)

DESCRIPTION GREATEST chooses the greatest of a list of values. These can be columns, literals,
or expressions, and CHAR, VARCHAR2, NUMBER, or DATE datatypes. A number with a larger value
is considered greater than a smaller one. All negative numbers are smaller than all positive numbers.
Thus, -10 is smaller than 10; -100 is smaller than -10.

A later date is considered greater than an earlier date.
Character strings are compared position by position, starting at the leftmost end of the string, up

to the first character that is different. Whichever string has the greater character in that position is considered
the greater string. One character is considered greater than another if it appears after the other in the
computer’s collation sequence. Usually this means that a B is greater than an A, but the value of A
compared to a, or compared to the number 1, will differ by computer.

If two strings are identical through to the end of the shorter one, the longer string is considered
greater. If two strings are identical and the same length, they are considered equal. In SQL, it is important
that literal numbers be typed without enclosing single quotes, as ‘10’ would be considered smaller
than ‘6’, since the quotes will cause these to be regarded as character strings rather than numbers,
and the ‘6’ will be seen as greater than the 1 in the first position of ‘10’.

GREATEST 1069

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1069

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:23:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Unlike many other Oracle functions and logical operators, the GREATEST and LEAST functions
will not evaluate literal strings that are in date format as dates. In order for LEAST and GREATEST to
work properly, the TO_DATE function must be applied to the literal strings.

GROUP BY
SEE ALSO CUBE, HAVING, ORDER BY, ROLLUP, WHERE, Chapter 11
FORMAT

SELECT expression [,expression]...
GROUP BY expression [,expression]...

HAVING condition
...

DESCRIPTION GROUP BY causes a select to produce one summary row for all selected rows
that have identical values in one or more specified columns or expressions. Each expression in the
select clause must be one of these things:

■ A constant

■ A function without parameters (SysDate, User)

■ A group function like SUM, AVG, MIN, MAX, COUNT

■ Matched identically to an expression in the GROUP BY clause

Columns referenced in the GROUP BY clause need not be in the select clause, though they must
be in the table.

You use HAVING to determine which groups the GROUP BY is to include. A where clause, on
the other hand, determines which rows are to be included in groups.

GROUP BY and HAVING follow WHERE, CONNECT BY, and START WITH. The ORDER BY
clause is executed after the WHERE, GROUP BY, and HAVING clauses (which execute in that order).
It can employ group functions, or columns from the GROUP BY, or a combination. If it uses a group
function, that function operates on the groups, then the ORDER BY sorts the results of the function in
order. If the ORDER BY uses a column from the GROUP BY, it sorts the rows that are returned based
on that column. Group functions and single columns can be combined in the ORDER BY (so long as
the column is in the GROUP BY).

In the ORDER BY clause you can specify a group function and the column it affects even though
they have nothing at all to do with the group functions or columns in the SELECT, GROUP BY, or
HAVING clause. On the other hand, if you specify a column in the ORDER BY that is not part of a
group function, it must be in the GROUP BY clause.
EXAMPLE

select Title, COUNT(*)
from BOOKSHELF_AUTHOR
group by Title

having COUNT(*) > 1;

GROUP FUNCTIONS
SEE ALSO AVG, COUNT, MAX, MIN, NUMBER FUNCTIONS, STDDEV, SUM, VARIANCE,
Chapter 8
DESCRIPTION A GROUP FUNCTION computes a single summary value (such as sum or average)
from the individual number values in a group of values. This is an alphabetical list of all current group

1070 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1070

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:23:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

functions in Oracle’s SQL. Each of these is listed elsewhere in this reference under its own name, with
its proper format and use. Group functions are useful only in queries and subqueries. DISTINCT makes
a group function summarize only distinct (unique) values.
FUNCTION NAME AND USE

AVG gives the average of the values for group of rows.
CORR returns the coefficient of correlation of a set of number pairs
COUNT gives the count of rows for a column, or for a table (with *).
COVAR_POP returns the population covariance of a set of number pairs.
COVAR_SAMP returns the sample covariance of a set of number pairs.
CUME_DIST calculates the cumulative distribution of a value in a group of values.
DENSE_RANK computes the rank of a row in an ordered group of rows.
FIRST operates on a set of values from a set of rows that rank as the first with respect to a given

sorting specification.
FIRST_VALUE returns the first value in an ordered set of values.
GROUP_ID distinguishes duplicate groups resulting from a GROUP BY specification.
GROUPING distinguishes superaggregate rows from regular grouped rows.
GROUPING_ID returns a number corresponding to the GROUPING bit vector associated with a row.
LAST operates on a set of values from a set of rows that rank as the last with respect to a given

sorting specification.
MAX gives the maximum of all values for a group of rows.
MIN gives the minimum of all values for a group of rows.
PERCENT_RANK performs a percent ranking calculation.
PERCENTILE_CONT is a percentile calculation function that assumes a continuous distribution model.
PERCENTILE_DISC is a percentile calculation function that assumes a discrete distribution model.
RANK calculates the rank of a value in a group of values.
REGR functions perform linear regression analysis on a group of values.
STDDEV gives the standard deviation of all values for a group of rows.
STDDEV_POP computes the population standard deviation and returns the square root of the

population variance.
STDDEV_SAMP computes the cumulative sample standard deviation and returns the square root

of the sample variance.
SUM gives the sum of all values for a group of rows.
VAR_POP returns the population variance of a set of numbers after discarding the nulls in this set.
VAR_SAMP returns the sample variance of a set of numbers after discarding the nulls in this set.
VARIANCE gives the variance of all values for a group of rows.

GROUP_ID
SEE ALSO GROUP BY, GROUPING_ID, GROUP FUNCTIONS, Chapter 13
FORMAT

GROUP_ID ()

DESCRIPTION GROUP_ID distinguishes duplicate groups resulting from a GROUP BY
specification.

GROUPING
GROUPING is a function used in conjunction with ROLLUP and CUBE functions to detect NULLs.
See ROLLUP.

GROUPING 1071

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1071

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:23:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

GROUPING_ID
GROUPING_ID returns a number corresponding to the GROUPING bit vector associated with a row.
See ROLLUP, CUBE, and Chapter 13.

HASH CLUSTER
A hash cluster is a cluster stored by a hash key instead of by an index key. A hash key is a value
computed from the key values that represents the location on disk. An index key requires Oracle
to look up the location in the index, while a hash key lets Oracle calculate the location.

HASH JOIN
A hash join is a method of performing a join of two tables. A hash join uses hash algorithms (similar
to those used for hash clusters) to evaluate rows that meet the join criteria. Although they use similar
algorithms, there is no direct relation between hash joins and hash clusters.

HASH PARTITION
In a hash partition, data to be partitioned is processed by a hash algorithm rather than simply being
partitioned by range. Hash partitioning will therefore spread small sets of sequential data over more
partitions than range partitioning. See CREATE TABLE.

HAVING
See GROUP BY.

HEADING (SQL*PLUS)
See SET.

HEADSEP (SQL*PLUS)
See SET.

HELP (SQL*PLUS)
FORMAT

HELP [topic]

DESCRIPTION The HELP command accesses the SQL*PLUS help system. HELP INDEX displays
a list of topics.

HEXADECIMAL NOTATION
Hexadecimal notation is a numbering system with a base of 16 instead of the decimal base of 10. The
numbers 10 through 15 are represented by the letters A through F. This system is often used to display
the internal data stored in a computer.

HEXTORAW
SEE ALSO RAWTOHEX
FORMAT

HEXTORAW(hex_string)

1072 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1072

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:23:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION HEXadecimal TO RAW, HEXTORAW changes a character string of hex numbers
into binary.

HINT
Within a query, you can specify hints that direct the cost-based optimizer in its processing of the query.
To specify a hint, use the following syntax. Immediately after the select keyword, enter the string:

/*+

Next, add the hint, such as

FULL(bookshelf)

Close the hint with the following string:

*/

See Chapter 38 for a description of the available hints and their impact on query processing.

HISTOGRAM
A histogram shows the distribution of data values for a column. The Oracle optimizer can use
histograms to determine the efficiency of indexes for specific data value ranges. See ANALYZE.

HOST (SQL*PLUS)
SEE ALSO $, @, @@, START
FORMAT

HO[ST] host command

DESCRIPTION A host is a computer on which the Oracle RDBMS is running. The HOST command
in SQL*PLUS passes any host command back to the operating system for execution without exiting
SQL*PLUS. SQL*PLUS permits embedding local or PL/SQL variables in the host command string. This
doesn’t work on all hardware or operating systems.

IF
SEE ALSO LOOP, Chapter 27
FORMAT

IF condition
THEN statement; [statement;]...

[ELSIF condition THEN statement; [statement;]...
[ELSIF condition THEN statement; [statement;]...]...]
[ELSE statement; [statement;]...]
END IF;

DESCRIPTION The IF statement will execute one or more statements if condition evaluates to
TRUE, after which the program branches to END IF. If the condition is FALSE, then any number of a
series of optional ELSIF conditions are tested. If any one is TRUE, the associated statements (following
THEN) are executed, and then the program branches to END IF. If none of the ELSIF conditions are
TRUE (and the original IF condition was not TRUE), then the statements following the optional ELSE
are executed. Note that the final ELSE does not have a condition.

IF 1073

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1073

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:23:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

EXAMPLE

declare
pi constant NUMBER(9,7) := 3.1415927;
area NUMBER(14,2);
cursor rad_cursor is
select * from RADIUS_VALS;

rad_val rad_cursor%ROWTYPE;
begin

open rad_cursor;
fetch rad_cursor into rad_val;
area := pi*power(rad_val.radius,2);
if area >30
then
insert into AREAS values (rad_val.radius, area);

end if;
close rad_cursor;

end;

IMPORT
Import is the Oracle utility used to retrieve Oracle database data found in export format files into an
Oracle database. To import is to use the Import utility to move data from an export file into database
table(s). See EXPORT. For details on using Import, see the Oracle9i Utilities Guide and Chapter 40.

IN
SEE ALSO ALL, ANY, LOGICAL OPERATORS, WHERE, Chapter 3
FORMAT

WHERE expression IN ({'string' [,'string']... | select...})

DESCRIPTION IN is equivalent to =ANY. In the first option, IN means the expression is equal
to any member of the following list of literal strings. In the second option, it means the expression is
equal to any value in any row selected from the subquery. The two are logically equivalent, with the
first giving a list made of literal strings, and the second building a list from a query. IN works with
VARCHAR2, CHAR, DATE, and NUMBER datatypes, as well as RowID.

INDEX
Index is a general term for an Oracle/SQL feature used primarily to speed execution and impose
uniqueness upon certain data. In general, indexes provide a faster access method to table data than
doing a full table scan. There are several types of indexes; see CONCATENATED INDEX, COMPRESSED
INDEX, and UNIQUE INDEX. An index has an entry for each value found in the table’s indexed field(s)
(except those with a NULL value) and pointer(s) to the row(s) having that value.

INDEX SEGMENT
The index segment is the storage that is allocated for an index, as compared to storage allocated to the
data in a table.

1074 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1074

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:23:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

INDEX-ORGANIZED TABLE
An index-organized table keeps its data sorted according to the primary key column values for the
table. An index-organized table allows you to store the entire table’s data in an index. A normal index
only stores the indexed columns in the index; an index-organized table stores all of the table’s columns
in the index.

To create an index-organized table, use the organization index clause of the create table
command, as shown in the following example:

create table TROUBLE (
City VARCHAR2(13),
SampleDate DATE,
Noon NUMBER(4,1),
Midnight NUMBER(4,1),
Precipitation NUMBER,
constraint TROUBLE_PK PRIMARY KEY (City, SampleDate))
organization index;

In order to create TROUBLE as an index-organized table, you must create a PRIMARY KEY
constraint on it.

In general, index-organized tables are appropriate for associative tables in many-to-many relationships.
Ideally, an index-organized table will have few (or no) columns that are not part of its primary key.

See Chapter 18 and CREATE TABLE.

INDICATOR VARIABLE
SEE ALSO : (colon, the host variable prefix), Precompiler Programmer’s Guide
FORMAT

:name [INDICATOR] :indicator

DESCRIPTION An indicator variable—used when both name and indicator are host language
variable names—is a data field whose value indicates whether a host variable should be regarded as
NULL. (The INDICATOR keyword is for readability and has no effect.)

name may be any legitimate host variable data name used in the host program and included in the
precompiler’s DECLARE SECTION. indicator is defined in the precompiler’s DECLARE SECTION as a
two-byte integer.

Few procedural languages directly support the idea of a variable with a NULL or unknown value,
although Oracle and SQL do so easily. In order to extend languages for which Oracle has developed
precompilers to support the NULL concept, an indicator variable is associated with the host variable,
almost like a flag, to indicate whether it is NULL. The host variable and its indicator variable may be
referenced and set separately in the host language code, but are always concatenated in SQL or PL/SQL.
EXAMPLE

BEGIN
select Title, AuthorName into :Title, :AuthorName:AuthorNameInd
from BOOKSHELF_AUTHOR;

IF :AuthorName:AuthorNameInd IS NULL

INDICATOR VARIABLE 1075

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1075

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:23:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

THEN :AuthorName:AuthorNameInd := 'No Auth'
END IF;

END;

Note that the test to see if the variable is NULL, and the assignment of ‘No Auth’ to it if it is, are
both done with the concatenated variable name. PL/SQL knows enough to check the indicator in the
first case, and set the variable value in the second case. The two variables together are treated just like
a single Oracle column. These important points must be noted:

■ Within any single PL/SQL block, a host variable must either always stand alone, or always
be concatenated with its indicator variable.

■ An indicator variable cannot be referenced alone within PL/SQL, although it can be in the
host program.

When setting host variables within the host program, but outside of PL/SQL, note these points:

■ Setting the indicator variable equal to -1 will force the concatenated variable to be regarded
within PL/SQL as NULL, both in logic tests and for inserts or updates.

■ Setting the indicator variable greater than or equal to 0 will force the concatenated variable
to be regarded as equal to the value in the host variable, and NOT NULL.

■ PL/SQL tests the value of all indicator variables on entering a block, and sets them on exiting
the block.

When loading concatenated host variables within PL/SQL, via a SQL statement with an INTO
clause, the following rules apply when checking the indicator variable within the host program, but
outside of PL/SQL:

■ The indicator variable will be equal to -1 if the value loaded from the database was NULL.
The value of the host variable is uncertain, and should be treated as such.

■ The indicator variable will be equal to 0 if the value from the database is loaded completely
and correctly into the host variable.

■ The indicator variable will be greater than 0 and equal to the actual length of the data in the
database column if only a portion of it could fit in the host variable. The host variable will
contain a truncated version of what was in the database column.

init.ora
init.ora is a database system parameter file that contains settings and file names used when a system
is started using the CREATE DATABASE, STARTUP, or SHUTDOWN command. In Oracle9i, you can
use an init.ora file or you can create a system parameter file via the CREATE SPFILE command. See
CREATE PFILE and CREATE SPFILE.

INITCAP
SEE ALSO CHARACTER FUNCTIONS, LOWER, UPPER, Chapter 7
FORMAT

INITCAP(string)

DESCRIPTION INITial CAPital changes the first letter of a word or series of words into uppercase. It
also notes the presence of symbols, and will INITCAP any letter that follows a space or a symbol, such
as a comma, period, colon, semicolon, !, @, #, $, and so on.

1076 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1076

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:23:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

EXAMPLE

INITCAP('this.is,an-example of!how@initcap#works')

produces this:

This.Is,An-Example Of!How@Initcap#Works

INNER JOIN
Inner joins return rows based on the key values two tables have in common. They support both the
ON and USING clauses. For example, the following query joins BOOK_ORDER to BOOKSHELF
based on their Title column values:

select BO.Title
from BOOK_ORDER BO inner join BOOKSHELF B
on BO.Title = B.Title;

That query can be rewritten as:

select Title
from BOOK_ORDER BO inner join BOOKSHELF B
using (Title);

INPUT
SEE ALSO APPEND, CHANGE, DEL, EDIT, Chapter 6
FORMAT

I[NPUT] [text]

DESCRIPTION INPUT adds a new line of text after the current line in the current buffer. Using
INPUT by itself allows multiple lines to be keyed in after the current line, which stops when the system
encounters ENTER with nothing else on the line. The space between INPUT and text will not be added
to the line but any additional spaces will be. See DEL for a discussion of current line.

INSERT (Form 1-Embedded SQL)
SEE ALSO EXECUTE, FOR, Precompiler Programmer’s Guide
FORMAT

EXEC SQL [AT { db_name | :host_variable }]
[FOR { :host_integer | integer }]
INSERT INTO
[(subquery)
| [schema.] { table | view }

[@db_link | PARTITION (part_name)]]
[(column) [, (column)]...]
{ VALUES (expr [, expr]...) | subquery }
[{ RETURN | RETURNING } expr [, expr]... INTO
:host_variable [[INDICATOR] :ind_variable]
[, :host_variable [[INDICATOR] :ind_variable]]...]

INSERT (Form 1-Embedded SQL) 1077

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1077

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:23:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION db_name is a database other than the user’s default, and host_variable contains
the name of the database. :host_integer is a host value that limits the number of times the INSERT will
be processed (see FOR). table is any existing table, view, or synonym, and db_link is the name of a
remote database where the table is stored. (See the INSERT Form 3 definition for a discussion of the
VALUES clause, columns, and query.) expression here can be an expression or a host variable in the
form :variable[:indicator].

INSERT (Form 2-PL/SQL)
SEE ALSO SQL CURSOR, Chapter 27
FORMAT

INSERT INTO [user.]table[@db_link] [(column [,column]...)]
VALUES (expression [,expression]...) | query...);

DESCRIPTION PL/SQL’s use of INSERT is identical to its general form (Form 3 in the following
section), with these exceptions:

■ You may use a PL/SQL variable in an expression for the value in the VALUES list.

■ Each variable will be treated in the same way that a constant, with the value of the variable,
would be treated.

■ If you use the query. . . version of the INSERT, you cannot use the INTO clause of the select.

INSERT (Form 3-SQL Command)
SEE ALSO CREATE TABLE, Chapters 4, 15, 30 and 31
FORMAT
insert::=

single_table_insert::=

insert_into_clause::=::=

1078 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1078

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:23:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

values_clause::=

returning_clause::=

multi_table_insert::=

conditional_insert_clause::=

DML_table_expression_clause::=

INSERT (Form 3-SQL Command) 1079

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1079

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:23:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

subquery_restriction_clause::=

table_collection_expression::=

DESCRIPTION INSERT adds one or more new rows to the table or view. The optional schema
must be a user to whose table you have been granted insert authority. table is the table into which
rows are to be inserted. If a list of columns is given, an expression (SQL expression) must be matched
for each of those columns. Any columns not in the list receive the value NULL, and none of them can
be defined NOT NULL or the INSERT will fail. If a list of columns is not given, values must be given
for all columns in the table.

INSERT with a subquery adds as many rows as the query returns, with each query column being
matched, position for position, with columns in the column list. If no column list is given, the tables
must have the same number and type of columns. The USER_TAB_COLUMNS data dictionary view
shows these, as does DESCRIBE in SQL*PLUS.
EXAMPLE The following inserts a row into the COMFORT table:

insert into COMFORT values ('KEENE','23-SEP-01',99.8,82.6,NULL);

The following inserts City, SampleDate (both NOT NULL columns), and Precipitation into
COMFORT:

insert into COMFORT (City, SampleDate, Precipitation) values
('KEENE','22-DEC-01',3.9);

To copy just the data for the city of KEENE into a new table named NEW_HAMPSHIRE, use this:

insert into NEW_HAMPSHIRE
select * from COMFORT
where City = 'KEENE';

See Chapters 4 and 30 for information on inserting rows into tables that use abstract datatypes.
See Chapter 31 for details on inserting rows into nested tables and varying arrays.

INSTANCE
An instance is everything required for Oracle to run: background processes (programs), memory, and
so on. An instance is the means of accessing a database.

INSTANCE IDENTIFIER
An instance identifier is a means of distinguishing one instance from another when multiple instances
exist on one host.

1080 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1080

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:23:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

INSTANCE RECOVERY
Instance recovery is recovery in the event of software or hardware failure. This occurs if the software
aborted abnormally due to a severe bug, deadlock, or destructive interaction between programs. See
also MEDIA RECOVERY.

INSTEAD OF TRIGGER
An INSTEAD OF trigger executes a block of PL/SQL code in place of the transaction that causes the
trigger to be executed. INSTEAD OF triggers are commonly used to redirect transactions against views.
See CREATE TRIGGER and Chapters 28 and 30.

INSTR
SEE ALSO CHARACTER FUNCTIONS, SUBSTR, Chapter 7
FORMAT

INSTR(string,set[,start[,occurrence]])

DESCRIPTION INSTR finds the location of a set of characters in a string, starting at position start
in the string, and looking for the first, second, third, and so on, occurrence of the set. This function will
also work with NUMBER and DATE datatypes. start also can be negative, meaning the search begins
with the characters at the end of the string and searches backward.
EXAMPLE To find the third occurrence of PI in this string, use this:

INSTR('PETER PIPER PICKED A PECK OF PICKLED PEPPERS','PI',1,3)

The result of this function is 30, the location of the third occurrence of ‘PI’.

INTEGRITY CONSTRAINT
An integrity constraint is a rule that restricts the range of valid values for a column. It is placed on a
column when the table is created. For the syntax, see the constraints entry in the Alphabetical
Reference.

If you do not name a constraint, Oracle assigns a name in the form SYS_Cn, where n is an integer.
An Oracle-assigned name will usually change during an import, while a user-assigned name will not
change.

NULL permits NULL values. NOT NULL specifies that every row must have a non-NULL value for
this column.

UNIQUE forces column values to be unique. There can be only one PRIMARY KEY constraint on
a table. If a column is UNIQUE it cannot also be declared the PRIMARY KEY (PRIMARY KEY also
enforces uniqueness). An index enforces the unique or primary key, and the USING INDEX clause and
its options specify the storage characteristics of that index. See CREATE INDEX for more information
on the options.

REFERENCES identifies this column as a foreign key from [user.]table [(column)]. Omitting column
implies that the name in the user.table is the same as the name in this table. Note that when REFERENCES
is used in a table_constraint (described shortly) it must be preceded by FOREIGN KEY. This is not used
here, as only this column is referenced; table_constraint can reference several columns for FOREIGN
KEY. ON DELETE CASCADE instructs Oracle to maintain referential integrity automatically by removing
foreign key rows in the dependent tables if you remove the primary key row in this table.

INTEGRITY CONSTRAINT 1081

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1081

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:23:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHECK assures that the value for this column passes a condition such as this:

Amount number(12,2) CHECK (Amount >= 0)

condition may be any valid expression that tests TRUE or FALSE. It can contain functions, any
columns from this table, and literals.

The EXCEPTIONS INTO clause specifies a table into which Oracle puts information about rows
that violate an enabled integrity constraint. This table must be local.

The DISABLE option lets you disable the integrity constraint when you create it. When the constraint
is disabled, Oracle does not automatically enforce it. You can later enable the constraint with the ENABLE
clause in ALTER TABLE.

You can also create constraints at the table level. Table constraints are identical to column constraints
except that a single constraint can reference multiple columns—for example in declaring a set of three
columns as a primary or foreign key.

INTERSECT
SEE ALSO MINUS, QUERY OPERATORS, UNION, Chapter 12
FORMAT

select...
INTERSECT
select...

DESCRIPTION INTERSECT combines two queries and returns only those rows from the first
select statement that are identical to at least one row from the second select statement. The number of
columns and datatypes must be identical between select statements, although the names of the columns
do not need to be. The data, however, must be identical in the rows produced for the INTERSECTion
to pass them.

INTERVAL DAY TO SECOND
The INTERVAL DAY (day_precision) TO SECOND (second_precision) datatype stores the period of
time in days, hours, minutes, and seconds. You can specify a day_precision as the number of digits in
the DAY datetime field (default is 2) and a second_precision as the number of digits in the fractional
part of the Seconds field (default is 6).

INTERVAL YEAR TO MONTH
The INTERVAL YEAR (precision) TO MONTH datatype stores the period of time in years and months,
where precision is the number of digits in the YEAR datetime field (default is 2).

IS NULL
SEE ALSO LOGICAL OPERATORS, Chapters 3 and 8
FORMAT

WHERE column IS [NOT] NULL

DESCRIPTION IS NULL tests column (or an expression) for the absence of any data. A NULL test
is distinctly different from a test for equality, because NULL means that the value is unknown or irrelevant,
and it therefore cannot be said to be equal to anything, including another NULL.

1082 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1082

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:23:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

JAVA
Java is a programming language originally developed by Sun Microsystems. You can write stored
procedural objects in either PL/SQL or Java. See Chapter 34.

JDBC
JDBC is an acronym for Java Database Connectivity, an industry standard application programming
interface to databases. Oracle supports JDBC connections. See Chapter 35.

JOIN
SEE ALSO SELECT, Chapter 3
FORMAT

WHERE TableA.column = TableB.column

or

FROM TableA INNER JOIN TableB
on TableA.Column = TableB.Column

or

FROM TableA INNER JOIN TableB
using(Column)

or

FROM TableA NATURAL JOIN TableB

DESCRIPTION A join combines columns and data from two or more tables (and in rare cases, of
one table with itself). The tables are all listed in the from clause of the select statement, and the relationship
between the two tables may specified in the where clause, usually by a simple equality, such as this:

where BOOK_ORDER.Title = BOOKSHELF.Title

This is often called an equi-join because it uses the equal sign in the where clause. You could join
tables using other forms of equality, such as >=, <, and so on, but the results are seldom meaningful.
There also are cases in which one or both sides of the equal sign contain an expression, perhaps a
SUBSTR or a combination of columns, which is used for equality with the other side. This is a fairly
common usage.

Joining two tables together without a join clause—either in the from clause or in the where
clause—produces a Cartesian product, which combines every row in one table with every row in
the other table. An 80-row table combined with a 100-row table would produce an 8000-row result
(which is usually quite meaningless).

An outer join is a method for intentionally retrieving selected rows from one table that don’t match
rows in the other table. As of Oracle9i, you can use the ANSI standard outer join syntax options (LEFT
OUTER JOIN, RIGHT OUTER JOIN, and FULL OUTER JOIN). See Chapter 12 for examples of the
syntax for outer joins.

JOIN COLUMN
A join column is a column used to join one table to another. You identify a join column by using it
in a where clause, using clause, or on clause that specifies the relationship between the two tables.

JOIN COLUMN 1083

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1083

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:23:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

JULIAN DATE
Julian dates are a means of converting date data so that every date can be expressed as a unique
integer. Julian dates can be obtained by using the format mask ‘J’ with functions on date data. See
DATE FORMATS.

KERNEL
Kernel is the base Oracle RDBMS program code (a collection of many modules) that can be called by
the background processes.

KEY
A key is a column or columns used to identify rows; it is not the same as an index, although indexes
are often used with such columns. See FOREIGN KEY, PRIMARY KEY, and UNIQUE KEY.

LABEL (PL/SQL)
A label is a word associated with an executable statement, usually for the purpose of being the target
of a GOTO statement.

LAG
SEE ALSO LEAD
FORMAT

LAG (value_expr [, offset] [, default])
OVER ([query_partition_clause] order_by_clause)

DESCRIPTION LAG provides access to more than one row of a table at the same time without
a self-join. Given a series of rows returned from a query and a position of the cursor, LAG provides
access to a row at a given physical offset prior to that position.

LAST
SEE ALSO DENSE_RANK, FIRST
FORMAT

aggregate_function KEEP
(DENSE_RANK LAST ORDER BY
expr [DESC | ASC] [NULLS { FIRST | LAST }]
[, expr [DESC | ASC] [NULLS { FIRST | LAST }]]...

) [OVER query_partitioning_clause]

DESCRIPTION LAST is both an aggregate and analytic function that operates on a set of values
from a set of rows that rank as the last with respect to a given sorting specification. aggregate_function
is one of the standard numeric grouping functions (such as MIN, MAX, AVG, and STDDEV).

LAST_DAY
SEE ALSO ADD_MONTHS, DATE FUNCTIONS, NEXT_DAY, Chapter 9
FORMAT

LAST_DAY (date)

1084 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1084

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:23:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION LAST_DAY gives the date of the last day of the month that date is in.
EXAMPLE This:

LAST_DAY ('05-NOV-01')

produces a result of 30-NOV-01.

LAST_VALUE
SEE ALSO FIRST_VALUE
FORMAT

LAST_VALUE (expr) OVER (analytic_clause)

DESCRIPTION LAST_VALUE is an analytic function. It returns the last value in an ordered set
of values.

LEAD
SEE ALSO LAG
FORMAT

LEAD (value_expr [, offset] [, default])
OVER ([query_partition_clause] order_by_clause)

DESCRIPTION LEAD provides access to more than one row of a table at the same time without
a self-join. Given a series of rows returned from a query and a position of the cursor, LEAD provides
access to a row at a given physical offset beyond that position.

LEAF
In a tree-structured table, a leaf is a row that has no child row.

LEAST
SEE ALSO GREATEST, LIST FUNCTIONS, Chapter 9
FORMAT

LEAST(value1, value2, ...)

DESCRIPTION LEAST is the value of a list of columns, expressions, or values. Values may be
VARCHAR2, CHAR, DATE, or NUMBER datatypes, although LEAST will not properly evaluate literal
dates (such as ‘20-MAY-49’) without the TO_DATE function. See GREATEST for a discussion of
evaluating relative values.

LENGTH
SEE ALSO CHARACTER FUNCTIONS, VSIZE, Chapter 7
FORMAT

LENGTH(string)

DESCRIPTION LENGTH tells the length of a string, a number, date, or expression.

LENGTH 1085

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1085

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:23:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

LEVEL
SEE ALSO CONNECT BY, PSEUDO-COLUMNS, Chapter 13
FORMAT

LEVEL

DESCRIPTION Level is a pseudo-column, used with CONNECT BY, that is equal to 1 for a root
node, 2 for a child of a root, 3 for a child of a child of a root, and so on. Level tells basically how far
down a tree you’ve traveled.

LGWR
LGWR (LoG WRiter process) writes redo log entries from the System Global Area to the online redo logs.
See BACKGROUND PROCESS.

LIBRARY
PL/SQL blocks can reference external subprograms, stored in libraries. See CREATE LIBRARY.

LIKE
SEE ALSO LOGICAL OPERATORS, Chapter 3
FORMAT

WHERE string LIKE string

DESCRIPTION LIKE performs pattern matching. An underline represents exactly one space. A
percent sign represents any number of spaces or characters, including zero. If LIKE uses either the _ or
% in the first position of a comparison (as in the second and third examples following), any index on
the column is ignored.
EXAMPLES

Feature LIKE 'MO%' "Feature begins with the letters MO."
Feature LIKE '_ _I%' "Feature has an I in the third position."
Feature LIKE '%0%0%' "Feature has at least two 0's in it."

LINESIZE (SQL*PLUS)
See SET.

LIST
SEE ALSO APPEND, CHANGE, EDIT, INPUT, RUN, Chapter 6
FORMAT

L[IST] [{start|*} [end|*]]

DESCRIPTION LIST lists lines of the current buffer starting at start and ending at end, both of
which are integers. The end line becomes the current line of the buffer, and is flagged with an asterisk.
LIST without start or end lists all lines. An asterisk in either place will set it to the current line. LIST with a
single number will display just that line, and LIST with just an asterisk will display just the current line.
The space between LIST and start is not necessary but it does help readability.

1086 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1086

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:23:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

EXAMPLE Use this to list the current SQL buffer:

LIST

An asterisk will designate the current line. To list just the second line, use this:

LIST 2

This also makes 2 the current line in the current buffer.

LIST FUNCTIONS
SEE ALSO All other function lists, Chapter 9
DESCRIPTION The following is an alphabetical list of all current list functions in Oracle’s SQL.
Each of these is listed elsewhere in this reference under its own name, with its proper format and use.

This gives the first non-NULL value in the set:

COALESCE(value1, value2, ...)

This gives the greatest value of a list:

GREATEST(value1, value2, ...)

This gives the least value of a list:

LEAST(value1, value2, ...)

LN
SEE ALSO NUMBER FUNCTIONS, Chapter 8
FORMAT

LN(number)

DESCRIPTION LN is the “natural,” or base e, logarithm of a number.

LOADJAVA
LOADJAVA is a utility for loading Java classes, resources, and sources into the database. You must
load your Java classes into the database if you plan to use them in stored procedures. To remove the
Java classes from the database, use the DROPJAVA utility.

LOB
A LOB is a large object. Oracle supports several large object datatypes, including BLOB (binary large
object), CLOB (character large object), and BFILE (binary file, stored outside the database). See Chapter 32
and the LOB clause of CREATE TABLE.

LOBOFFSET (SQL*PLUS)
See SET.

LOCAL DATABASE
The local database is usually a database on your host computer. See REMOTE DATABASE.

LOCAL DATABASE 1087

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1087

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:23:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

LOCAL INDEX
When a table is partitioned, its data is stored in separate tables. When an index is created on the
partitioned table, the index can be partitioned so that each of the table partitions has a matching
index partition. The matching index partitions are called local indexes. See Chapter 18.

LOCALTIMESTAMP
SEE ALSO DATE FUNCTIONS, Chapter 9
FORMAT

LOCALTIMESTAMP [(timestamp_precision)]

DESCRIPTION LOCALTIMESTAMP returns the current date and time in the session time zone
as a value of datatype TIMESTAMP.
EXAMPLE

SELECT LOCALTIMESTAMP FROM DUAL;

LOCALLY MANAGED TABLESPACE
A locally managed tablespace maintains its extent usage information in bitmaps within the tablespace’s
datafiles. By default, tablespaces store their extent usage information in the data dictionary (and are referred
to as “dictionary-managed”). See CREATE TABLESPACE.

LOCK
To lock is to temporarily restrict other users’ access to data. The restriction that is placed on such data
is called “a lock.” Lock modes are SHARE, SHARE UPDATE, EXCLUSIVE, SHARE EXCLUSIVE, ROW
SHARE, and ROW EXCLUSIVE. Not all locks can be acquired in all modes.

LOCK TABLE
SEE ALSO COMMIT, DELETE, INSERT, ROLLBACK, SAVEPOINT, UPDATE
FORMAT

LOCK TABLE
[schema .] { table | view }
[{ PARTITION (partition) | SUBPARTITION (subpartition) }
| @ dblink]
[, [schema .] { table | view }
[{ PARTITION (partition) | SUBPARTITION (subpartition) }
| @ dblink]]...

IN lockmode MODE [NOWAIT];

DESCRIPTION LOCK TABLE locks a table in one of several specified modes, allowing it to be
shared, but without loss of data integrity. Using LOCK TABLE allows you to give other users continued
but restricted access to the table. Regardless of which option you choose, the table will remain in that
lock mode until you commit or rollback your transactions.

Lock modes include ROW SHARE, ROW EXCLUSIVE, SHARE UPDATE, SHARE, SHARE ROW
EXCLUSIVE, and EXCLUSIVE.

EXCLUSIVE locks permit users to query the locked table but not to do anything else. No other user
may lock the table. SHARED locks permit concurrent queries but no updates to the locked table.

1088 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1088

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:23:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

With a ROW SHARE or SHARE UPDATE lock, no user can lock the whole table for exclusive
access, allowing concurrent access for all users to the table. The two types of lock are synonymous,
and SHARE UPDATE exists for compatibility with previous versions of Oracle.

ROW EXCLUSIVE locks are similar to ROW SHARE but they prohibit shared locking, so only one
user may access the table at a time.

If a LOCK TABLE command cannot be completed (usually because someone else has executed a
prior and competing LOCK TABLE of some sort) then your LOCK TABLE will wait until it can complete.
If you wish to avoid this, and simply have control returned to you, use the NOWAIT option. Note that
you can lock specific partitions and subpartitions.

LOG
SEE ALSO NUMBER FUNCTIONS, Chapter 8
FORMAT

LOG(base, number)

DESCRIPTION LOG gives the logarithm of a number for a specified base.
EXAMPLE

LOG(EXP(1),3) = 1.098612 -- log(e) of 3
LOG(10,100) = 2 -- log(10) of 100

LOG WRITER PROCESS (LGWR)
See LGWR.

LOGICAL EXPRESSION
A logical expression is one whose value evaluates to either TRUE or FALSE. It is a synonym for
CONDITION.

LOGICAL OPERATORS
SEE ALSO PRECEDENCE
FORMAT The following lists all current logical operators in Oracle’s SQL. Most of these are listed
elsewhere in this reference under their own names with their proper format and use. All of these operators
work with columns or literals.

Logical Operators that Test a Single Value
= expression is equal to expression
> expression is greater than expression
>= expression is greater than or equal to expression
< expression is less than expression
<= expression is less than or equal to expression
!= expression is not equal to expression
^= expression is not equal to expression
<> expression is not equal to expression

EXISTS (query)
NOT EXISTS (query)

LOGICAL OPERATORS 1089

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1089

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:23:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

LIKE expression
NOT LIKE expression

expression IS NULL
expression IS NOT NULL

Logical Operators that Test More than a Single Value
ANY (expression [,expression]... | query)
ALL (expression [,expression]... | query)

ANY and ALL require an equality operator as a prefix, such as >ANY, =ALL, and so on.

IN (expression [,expression]... | query)
NOT IN (expression [,expression]... | query)

BETWEEN expression AND expression
NOT BETWEEN expression AND expression

Other Logical Operators
+ Addition
- Subtraction
* Multiplication
/ Division
** Exponentiation
|| Concatenation
() Overrides normal precedence rules, or encloses a

subquery
NOT Reverses logical expression
AND Combines logical expressions
OR Combines logical expressions
UNION Combines results of queries
UNION ALL Combines results of queries without eliminating duplicates
INTERSECT Combines results of queries
MINUS Combines results of queries

LOGICAL UNIT OF WORK
See TRANSACTION.

LOGIN ACCOUNT
A login account is a username and password that allows people to use the Oracle RDBMS. This account
is usually separate from your operating system account.

LOBSOURCE (SQL*PLUS)
See SET.

LONG (SQL*PLUS)
See SET.

1090 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1090

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:23:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

LONG DATATYPE
See DATA TYPES.

LONG RAW DATATYPE
A LONG RAW column contains raw binary data, but is otherwise the same as a LONG column. Values
entered into LONG RAW columns must be in hex notation.

LOOP
You can use loops to process multiple records within a single PL/SQL block. PL/SQL supports three
types of loops:

Simple Loops A loop that keeps repeating until an exit or exit when statement is reached within the loop

FOR Loops A loop that repeats a specified number of times

WHILE Loops A loop that repeats until a condition is met

You can use loops to process multiple records from a cursor. The most common cursor loop is a
cursor FOR loop. See CURSOR FOR LOOP and Chapter 27 for details on using loops for both simple
and cursor-based processing logic.

LOWER
SEE ALSO CHARACTER FUNCTIONS, INITCAP, UPPER, Chapter 7
FORMAT

LOWER(string)

DESCRIPTION LOWER converts every letter in a string to lowercase.
EXAMPLE

LOWER('PeninSula') = peninsula

LPAD
SEE ALSO CHARACTER FUNCTIONS, LTRIM, RPAD, RTRIM, Chapter 7
FORMAT

LPAD(string,length [,'set'])

DESCRIPTION Left pad makes a string a certain length by adding a certain set of characters to
the left of the string. If set is not specified, the default pad character is a space.
EXAMPLE

LPAD('>',11,'- ')

produces

- - - - - >

LTRIM
SEE ALSO CHARACTER FUNCTIONS, LPAD, RPAD, RTRIM, Chapter 7

LTRIM 1091

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1091

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:23:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

FORMAT

LTRIM(string [,'set'])

DESCRIPTION Left TRIM trims all the occurrences of any one of a set of characters off of the left
side of a string.
EXAMPLE

LTRIM('NANCY','AN')

produces this:

CY

MAKE_REF
The MAKE_REF function constructs a REF (reference) from the foreign key of a table that references the
base table of an object view. MAKE_REF allows you to construct references superimposed on existing
foreign key relationships. See Chapter 33.

MAIN QUERY
A main query is the outermost or top query in a query containing a subquery. It’s the query whose
columns produce a result.

MAINTENANCE RELEASE
The maintenance release is the second number in Oracle software version numbering. In Oracle
version 9.0.1, the maintenance release is 0.

MATERIALIZED VIEW
You can use materialized views to pre-aggregate data and improve query performance. When you
create a materialized view, Oracle creates a physical table to hold data that would usually be read via
a view. When you create a materialized view, you specify the view’s base query as well as a schedule
for the refreshes of its data. You can then index the materialized view to enhance the performance of
queries against it. As a result, you can provide data to your users in the format they need, indexed
appropriately. See CREATE MATERIALIZED VIEW and Chapter 23.

MATERIALIZED VIEW LOG
When you refresh a materialized view, you can perform a full or incremental refresh. An incremental
refresh, called a “fast” refresh, sends only the DML changes from the master table to the materialized
view. To track changes to the master table for the materialized view, you must create a materialized view
log. The materialized view log must be in the same schema as the master table for the materialized
view. Fast refreshes are not available for complex materialized views. See CREATE MATERIALIZED
VIEW LOG and Chapter 23.

MAX
SEE ALSO COMPUTE, GROUP FUNCTIONS, MIN, Chapter 8
FORMAT

MAX([DISTINCT | ALL] value)

1092 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1092

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:23:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION MAX is the maximum of all values for a group of rows. MAX ignores NULL
values. The DISTINCT option is not meaningful, since the maximum of all values is identical to the
maximum of the distinct values.

MEDIA RECOVERY
Media recovery is recovery in the event of hardware failure, which would prevent reading or writing
of data and thus operation of the database. See also INSTANCE RECOVERY.

METHOD
A method is a block of code. In reference to abstract datatypes, a method is a block of PL/SQL code
used to encapsulate the data access method for an object. Methods are specified as part of the abstract
datatype specification (see CREATE TYPE) and their body is specified as part of the CREATE TYPE
BODY command. Users can execute methods on the datatypes for which the methods are defined.
The constructor method created for each abstract datatype is an example of a method. See Chapter 30
for examples of methods.

In Java, a method is a member of a class. You can call a class method and pass parameters to it for
it to use when executing its commands. See Chapter 30 for examples.

MIN
SEE ALSO COMPUTE, GROUP FUNCTIONS, MAX, Chapter 8
FORMAT

MIN([DISTINCT | ALL] value)

DESCRIPTION MIN is the minimum of all values for a group of rows. MIN ignores NULL values.
The DISTINCT option is not meaningful, since the minimum of all values is identical to the minimum
of the distinct values.

MINUS
SEE ALSO INTERSECT, QUERY OPERATORS, UNION, TEXT SEARCH OPERATORS, Chapters 12
and 24
FORMAT

select
MINUS
select

within Oracle Text queries against CONTEXT indexes:

select column
from TABLE

where CONTAINS(Text,'text MINUS text') >0;

DESCRIPTION MINUS combines two queries. It returns only those rows from the first select
statement that are not produced by the second select statement (the first select MINUS the second
select). The number of columns and datatypes must be identical between select statements, although
the names of the columns do not need to be. The data, however, must be identical in the rows produced
for the MINUS to reject them. See Chapter 12 for a discussion of the important differences and effects
of INTERSECT, MINUS, and UNION.

MINUS 1093

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1093

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:23:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Within text searches against CONTEXT indexes, MINUS tells the text search of two terms to subtract
the score of the second term’s search from the score of the first term’s search before comparing the
result to the threshold score.

MOD
SEE ALSO NUMBER FUNCTIONS, Chapter 8
FORMAT

MOD(value, divisor)

DESCRIPTION MOD divides a value by a divisor, and gives the remainder. MOD(23,6) = 5
means divide 23 by 6. The answer is 3 with 5 left over, so 5 is the result of the modulus. value and
divisor can both be any real number, except that divisor cannot be 0.
EXAMPLES

MOD(100,10) = 0
MOD(22,23) = 22
MOD(10,3) = 1
MOD(-30.23,7) = -2.23
MOD(4.1,.3) = .2

The second example shows what MOD does whenever the divisor is larger than the dividend (the
number being divided). It produces the dividend as a result. Also note this important case:

MOD(value,1) = 0

if value is an integer. This is a good test to see if a number is an integer.

MONTHS_BETWEEN
SEE ALSO ADD_MONTHS, DATE FUNCTIONS, Chapter 9
FORMAT

MONTHS_BETWEEN(date2,date1)

DESCRIPTION MONTHS_BETWEEN gives date2 - date1 in months. The result is usually not an
integer.

MOUNT A DATABASE
To mount a database is to make it available to the database administrator.

MOUNT AND OPEN A DATABASE
To mount and open a database is to make it available to users.

MULTI-THREADED SERVER
See Shared Server.

NATURAL JOIN
A NATURAL JOIN joins two tables based on the key columns they have in common. The syntax is

1094 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1094

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:23:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

FROM TableA NATURAL JOIN TableB

which is equivalent to

FROM TableA, TableB
WHERE TableA.KeyColumn = TableB.KeyColumn

See Chapter 12 for examples of different types of join syntax.

NCHAR
NCHAR is a multibyte version of the CHAR datatype. It stores fixed-length character data up to 2000
bytes in length. See DATA TYPES.

NCHR
SEE ALSO CHR
FORMAT

NCHR(number)

DESCRIPTION NCHR returns the character having the binary equivalent to number in the national
character set.

NCLOB
The NCLOB datatype is the multibyte version of the CLOB datatype. NCLOB stores character large
objects containing UNICODE characters, up to a maximum length of 4GB. See DATA TYPES.

NEAR
SEE ALSO CONTAINS, Chapter 24
DESCRIPTION Within CONTEXT indexes, NEAR indicates that a proximity search should be
executed for the specified text strings. If the search terms are ‘summer’ and ‘lease’, then a proximity
search for the two terms could be

select Text
from SONNET
where CONTAINS(Text,'summer NEAR lease') >0;

When evaluating the text search results, text with the words ‘summer’ and ‘lease’ near each other
in the text will have higher scores than text with the words ‘summer’ and ‘lease’ farther apart.

NESTED TABLE
A nested table is, as its name implies, a table within a table. In this case, it is a table that is represented
as a column within another table. You can have multiple rows in the nested table for each row in the
main table. There is no limit to the number of entries per row. See Chapter 31 for details on creating,
using, and querying nested tables.

NESTING
Nesting is the practice of placing a statement, clause, query, and so on, within another statement, clause,
query, and so on.

NESTING 1095

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1095

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:23:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

NEWPAGE (SQL*PLUS)
See SET.

NEW_TIME
See DATE FUNCTIONS.

NEXT_DAY
See DATE FUNCTIONS.

NEXTVAL
See PSEUDO-COLUMNS.

NLS_CHARSET_DECL_LEN
SEE ALSO NCHAR
FORMAT

NLS_CHARSET_DECL_LEN (byte_count , char_set_id)

DESCRIPTION NLS_CHARSET_DECL_LEN returns the declaration width (in number of characters)
of an NCHAR column.

NLS_CHARSET_ID
SEE ALSO NLS_CHARSET_NAME
FORMAT

NLS_CHARSET_ID (text)

DESCRIPTION NLS_CHARSET_ID returns the character set ID number corresponding to character
set name text.

NLS_CHARSET_NAME
SEE ALSO NLS_CHARSET_ID
FORMAT

NLS_CHARSET_NAME (number)

DESCRIPTION NLS_CHARSET_NAME returns the name of the character set corresponding to
ID number number.

NLS_INITCAP
SEE ALSO CHARACTER FUNCTIONS, INITCAP, Chapter 8
FORMAT

NLS_INITCAP(number[, nls_parameters])

DESCRIPTION NLS_INITCAP is like the INITCAP function except with the addition of a parameter
string. The NLS parameters string, enclosed in single quotation marks, gives a sort sequence for capitalizing

1096 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1096

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:23:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

special linguistic sequences. You would usually use INITCAP with the default sort sequence for the
session, but this function lets you specify the exact sort sequence to use.

NLS_LOWER
SEE ALSO CHARACTER FUNCTIONS, LOWER, Chapter 8
FORMAT

NLS_LOWER(number[, nls_parameters])

DESCRIPTION NLS_LOWER is like the LOWER function except with the addition of a parameter
string. The NLS parameters string, enclosed in single quotation marks, gives a sort sequence for
lowercasing special linguistic sequences. You would usually use LOWER with the default sort sequence
for the session, but this function lets you specify the exact sort sequence to use.

NLSSORT
SEE ALSO Oracle9i Database Administrator’s Guide, Chapter 37
FORMAT

NLSSORT(character[, nls_parameters])

DESCRIPTION National Language Support SORT gives the collating sequence value (an integer)
of the given character based on the National Language Support option chosen for the site. The NLS
parameters string, enclosed in single quotation marks, gives a sort sequence for special linguistic
sequences if you do not want to use the session or database default.

NLS_UPPER
SEE ALSO CHARACTER FUNCTIONS, UPPER, Chapter 8
FORMAT

NLS_UPPER(number[, nls_parameters])

DESCRIPTION NLS_UPPER is like the UPPER function except with the addition of a parameter
string. The NLS parameters string, enclosed in single quotation marks, gives a sort sequence for
capitalizing special linguistic sequences. You would usually use UPPER with the default sort sequence
for the session, but this function lets you specify the exact sort sequence to use.

NOAUDIT
SEE ALSO AUDIT, PRIVILEGE
FORMAT
noaudit::=

NOAUDIT 1097

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1097

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:24:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

sql_statement_clause::=

auditing_by_clause::=

schema_object_clause::=

auditing_on_clause::=

DESCRIPTION NOAUDIT stops auditing of SQL statements being audited as a result of the AUDIT
command. It stops auditing either a statement (see AUDIT) or a statement authorized by a system
privilege (see PRIVILEGE). If there is a BY clause with a list of users, the command stops the auditing of
statements issued by these users. If there is no BY clause, Oracle stops auditing the statements for all
users. The WHENEVER SUCCESSFUL option stops auditing only for those statements that successfully
complete; WHENEVER NOT SUCCESSFUL stops only for those statements that result in an error.

1098 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1098

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:24:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

NOAUDIT also stops the audit for an option of the use of a table, view, or synonym. To stop the
audit of any table, view, or synonym, you must either own them or have DBA authority. option refers
to the options described shortly. user is the username of the object owner. object is a table, view, or
synonym. option specifies what commands the audit should be stopped for. For a table or materialized
view, options are ALTER, AUDIT, COMMENT, DELETE, GRANT, INDEX, INSERT, LOCK, RENAME,
SELECT, and UPDATE. For procedures, functions, types, libraries, and packages, EXECUTE and GRANT
commands can be audited. For directories, AUDIT, GRANT, and READ can be audited. GRANT audits
both GRANT and REVOKE commands. NOAUDIT GRANT stops both of them. ALL stops the audits of
all of these.

ON object names the object being audited, and includes a table, view, or a synonym of a table,
view or sequence.

For views, ALTER and INDEX cannot be used. The default options of a view are created by the
union of the options of each of the underlying tables plus the DEFAULT options.

For synonyms, the options are the same as tables.
For sequences, the options are ALTER, AUDIT, GRANT, and SELECT.
WHENEVER SUCCESSFUL turns off auditing for successful writes to the table. WHENEVER NOT

SUCCESSFUL turns auditing off for unsuccessful writes to the table. Omitting this optional clause turns
off both kinds of auditing.

Both formats commit any pending changes to the database. If remote tables are accessed through a
database link, any auditing on the remote system is based on options set there. Auditing information is
written to a table named SYS.AUD$. See Chapter 37 for details on the auditing views.
EXAMPLES The following stops auditing of all attempts at update or delete on the BOOKSHELF table:

noaudit update, delete on BOOKSHELF;

This stops auditing of all unsuccessful access to BOOKSHELF:

noaudit all on BOOKSHELF whenever not successful;

NODE
Node can be either of two definitions:

■ In a tree-structured table, a node is one row.

■ In a network, a node is the location in the network where a computer is attached.

NOLOGGING
The NOLOGGING clause for object creation (tables, LOBs, indexes, partitions, etc.) specifies that the
creation of the object will not be logged in the online redo log files, and thus will not be recoverable
following a media failure. The object creation is not logged, and neither are certain types of transactions
against the object. NOLOGGING takes the place of the UNRECOVERABLE keyword introduced in
Oracle7.2. See Chapters 21 and 40.

NON-EQUI-JOIN
A non-equi-join is a join condition other than “equals” (=). See EQUI-JOIN.

NOT
SEE ALSO LOGICAL OPERATORS, Chapter 3
DESCRIPTION NOT comes before and reverses the effect of any of these logical operators:
BETWEEN, IN, LIKE, and EXISTS. NOT can also come before NULL, as in IS NOT NULL.

NOT 1099

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1099

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:24:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

NOT EXISTS
SEE ALSO ANY, ALL, EXISTS, IN, Chapter 12
FORMAT

select ...
where NOT EXISTS (select...);

DESCRIPTION NOT EXISTS returns false in a where clause if the subquery that follows it returns
one or more rows. The select clause in the subquery can be a column, a literal, or an asterisk—it doesn’t
matter. The only part that matters is whether the where clause in the subquery will return a row.
EXAMPLE NOT EXISTS is frequently used to determine which records in one table do not have
matching records in another table. See Chapter 12 for examples of the use of NOT EXISTS.

NTILE
SEE ALSO WIDTH_BUCKET
FORMAT

NTILE (expr) OVER ([query_partition_clause] order_by_clause)

DESCRIPTION NTILE is an analytic function. It divides an ordered dataset into a number of
buckets indicated by an expression and assigns the appropriate bucket number to each row. The
buckets are numbered and the expression must resolve to a positive constant for each partition.

NULL (Form 1-PL/SQL)
SEE ALSO BLOCK STRUCTURE
FORMAT

NULL;

DESCRIPTION The NULL statement has nothing to do with NULL values. Its main purpose is to
make a section of code more readable by saying, in effect, “do nothing.” It also provides a means of
having a null block (since PL/SQL requires at least one executable statement between BEGIN and END).
It is usually used as the statement following one (usually the last) of a series of condition tests.
EXAMPLE

IF Age > 65 THEN
...

ELSEIF AGE BETWEEN 21 and 65 THEN
...

ELSE
NULL;

ENDIF;

NULL (Form 2-SQL Column Value)
SEE ALSO CREATE TABLE, GROUP FUNCTIONS, INDICATOR VARIABLE, NVL, Chapter 3
DESCRIPTION A NULL value is one that is unknown, irrelevant, or not meaningful. Any Oracle
datatype can be NULL. That is, any Oracle column in a given row can be without a value (unless the
table was created with NOT NULL for that column). NULL in a NUMBER datatype is not the same as zero.

1100 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1100

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:24:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Few procedural languages directly support the idea of a variable with a NULL or unknown value,
although Oracle and SQL do so easily. In order to extend languages for which Oracle has developed
precompilers to support the NULL concept, an INDICATOR VARIABLE is associated with the host
variable, almost like a flag, to indicate whether it is NULL. The host variable and its indicator variable
may be referenced and set separately in the host language code, but are always concatenated in SQL
or PL/SQL.

You use the NVL function to detect the absence of a value for a column, and convert the NULL
value into a real value of the datatype of the column. For instance, NVL(Name,'NOT KNOWN')
converts a NULL value in the column Name into the words NOT KNOWN. For a non-NULL value
(that is, where a name is present), the NVL function simply returns the name. NVL works similarly
with NUMBERs and DATEs.

Except for COUNT(*) and COMPUTE NUMBER, group functions ignore null values. Other functions
return a null value when a NULL is present in the value or values they are evaluating. Thus, the following
example:

NULL + 1066 is NULL.
LEAST(NULL,'A','Z') is NULL.

Since NULL represents an unknown value, two columns that are each NULL are not equal to each
other. Therefore, the equal sign and other logical operators (except for IS NULL and IS NOT NULL) do
not work with NULL. For example, this:

where Name = NULL

is not a valid where clause. NULL requires the word IS:

where Name IS NULL

During order by sorts, NULL values always come first when the order is ascending, and last when
it is descending.

When NULL values are stored in the database, they are represented with a single byte if they fall
between two columns that have real values, and no bytes if they fall at the end of the row (last in the
column definition in the create table). If some of the columns in a table are likely to often contain
NULL values, those columns can be usefully grouped near the end of the create table column list;
this will save disk space.

NULL values do not appear in indexes, except in the single case where all the values in a cluster
key are NULL.

NULLIF
SEE ALSO COALESCE, DECODE, NULL, Chapter 17
FORMAT

NULLIF (expr1 , expr2)

DESCRIPTION NULLIF compares expr1 and expr2. If they are equal, the function returns NULL.
If they are not equal, the function returns expr1. You cannot specify the literal NULL for expr1.

The NULLIF function is logically equivalent to the following CASE expression:

CASE WHEN expr1 = expr2 THEN NULL
ELSE expr1 END

NULLIF 1101

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1101

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:24:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

NUMBER DATATYPE
A NUMBER datatype is a standard Oracle datatype that may contain a number, with or without a
decimal point and a sign. Valid values are 0, and positive and negative numbers with magnitude
1.0E-130 to 9.99.. E125.

NUMBER FORMATS
SEE ALSO COLUMN, Chapter 14
DESCRIPTION These options work with both set numformat and the column format command:

9999990 The count of nines and zeros determines the maximum digits that can be displayed.

999,999,999.99 Commas and decimals will be placed in the pattern shown.

999990 Displays a zero if the value is zero.

099999 Displays numbers with leading zeros.

$99999 A dollar sign is placed in front of every number.

B99999 The display will be blank if the value is zero. This is the default.

99999MI If the number is negative, a minus sign follows the number. The default is for the negative sign
to be on left.

S9999 Returns “+” for positive values, “-” for negative values

99999PR Negative numbers are displayed within < and >.

99D99 Displays the decimal in the position indicated

9G999 Displays the group separator in the position shown

C9999 Displays the ISO currency symbol in this position

L999 Displays the local currency symbol

, Displays a comma

. Displays a period

9.999EEEE The display will be in scientific notation (4 E’s are required).

999V99 Multiplies number by 10n, where n is the number
of digits to the right of V. 999V99 turns 1234
into 123400.

RN Displays Roman numeral values, for numbers between 1 and 3999

DATE Displays value as a date in MM/DD/YY format, for NUMBER columns used storing Julian dates.

NUMBER FUNCTIONS
This is an ordered list of all current single-value number functions in Oracle’s SQL. Each of these is listed
elsewhere in this reference under its own name, with its proper format and use. Each can be used as a
regular SQL function as well as a PL/SQL function. See GROUP FUNCTIONS and LIST FUNCTIONS.

Function Definition

value1 + value2 Addition

value1 - value2 Subtraction

1102 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1102

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:24:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Function Definition

value1 * value2 Multiplication

value1 / value2 Division

ABS(value) ABSolute value

ACOS(value) Arc COSine of value, in radians

ASIN(value) Arc SINe of value, in radians

ATAN(value) Arc TANgent of value, in radians

BITAND (value1, value2) BITwise AND of value1 and value2, both of which must resolve to nonnegative
integers, and returns an integer

CEIL(value) Numeric CEILing: the smallest integer larger than or equal to value

COS(value) COSine of value

COSH(value) Hyperbolic COSine of value

EXP(value) e raised to value EXPonent

FLOOR(value) Largest integer smaller than or equal to value

LN(value) Natural Logarithm of value

LOG(value) Base 10 LOGarithm of value

MOD(value, divisor) MODulus

NVL(value, substitute) substitute for value if value is NULL

POWER(value, exponent) value raised to an exponent POWER

ROUND(value, precision) ROUNDing of value to precision

SIGN(value) 1 if value is positive, –1 if negative, 0 if zero

SIN(value) SINe of value

SINH(value) Hyperbolic SINe of value

SQRT(value) SQuare RooT of value

TAN(value) TANgent of value

TANH(value) Hyperbolic TANgent of value

TRUNC(value, precision) value TRUNCated to precision

VSIZE(value) Storage SIZE of value in Oracle

NUMTODSINTERVAL
SEE ALSO DATA TYPE, Chapter 10
FORMAT

NUMTODSINTERVAL (n , 'char_expr')

DESCRIPTION NUMTODSINTERVAL converts n to an INTERVAL DAY TO SECOND literal. n
can be a number or an expression resolving to a number. char_expr can be of CHAR, VARCHAR2,
NCHAR, or NVARCHAR2 datatype. The value for char_expr specifies the unit of n and must resolve
to one of the following string values: 'DAY', 'HOUR', 'MINUTE', or 'SECOND'.

NUMTODSINTERVAL 1103

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1103

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:24:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

NUMTOYMINTERVAL
SEE ALSO DATA TYPE, Chapter 10
FORMAT

NUMTOYMINTERVAL (n , 'char_expr')

DESCRIPTION NUMTOYMINTERVAL converts number n to an INTERVAL YEAR TO MONTH
literal. n can be a number or an expression resolving to a number. char_expr can be of CHAR, VARCHAR2,
NCHAR, or NVARCHAR2 datatype. The value for char_expr specifies the unit of n, and must resolve
to either 'YEAR' or 'MONTH'.

NUMWIDTH (SQL*PLUS)
See SET.

NVARCHAR2
NVARCHAR2 is the multibyte equivalent of the VARCHAR2 datatype. Its maximum length is 4000 bytes.
See DATA TYPES.

NVL
SEE ALSO GROUP FUNCTIONS, NULL, OTHER FUNCTIONS, Chapter 8
FORMAT

NVL(value, substitute)

DESCRIPTION If value is NULL, this function returns substitute. If value is not NULL, this function
returns value. value can be any Oracle datatype. Substitute can be a literal, another column, or an
expression, but must be the same datatype as value.

NVL2
SEE ALSO GROUP FUNCTIONS, NULL, OTHER FUNCTIONS, Chapter 8
FORMAT

NVL2 (expr1 , expr2 , expr3)

DESCRIPTION NVL2 is an extended form of NVL. In NVL2, expr1 can never be returned; either
expr2 or expr3 will be returned. If expr1 is not NULL, NVL2 returns expr2. If expr1 is NULL, NVL2
returns expr3. The argument expr1 can have any datatype. The arguments expr2 and expr3 can have
any datatypes except LONG.

OBJECT
An object is a named element in the Oracle database, such as a table, index, synonym, procedure,
or trigger.

OBJECT NAMES
These database objects may be given names: tables, views, synonyms, aliases, columns, indexes, users,
sequences, tablespaces, and so on. The following rules govern naming objects:

■ The name of an object can be from 1 to 30 characters long, except for database names, which
are up to eight characters, and host file names, whose length is operating system dependent.

1104 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1104

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:24:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ A name may not contain a quotation mark.

■ A name must:
Begin with a letter
Contain only the characters A-Z, 0-9, $, #, and _
Not be an Oracle reserved word (see RESERVED WORDS)
Not duplicate the name of another database object owned by the same user

Object names are not case sensitive. Object names should follow a sensible naming convention,
such as is discussed in Chapter 2.

OBJECT TABLE
An object table is a table in which each of its rows is a row object. See Chapter 33 and the CREATE
TABLE command entry.

OBJECT VIEW
An object view superimposes abstract datatypes on existing relational tables. Object views allow you
to access the relational table’s data either via normal SQL commands or via its abstract datatype
structures. Object views provide a technological bridge between relational and object-relational
databases. See Chapters 30 and 33 for examples of object views.

OBJECT-RELATIONAL DATABASE MANAGEMENT
SYSTEM
An object-relational database management system (ORDBMS) supports both relational database
features (such as primary keys and foreign keys) and object-oriented features (such as inheritance
and encapsulation). See Chapter 4 for a description of Oracle’s implementation of an ORDBMS.

OEM
See ORACLE ENTERPRISE MANAGER

OFFLINE BACKUP
An offline backup is a physical backup of the database files while the database is shutdown.

OID
An OID is an object identifier, assigned by Oracle to each object in a database. For example, each row
object within an object table has an OID value assigned to it; the OID is used to resolve references to
the row objects. Oracle does not reuse OID values after an object is dropped. See Chapter 33.

ONLINE BACKUP
Online backup is the ability of Oracle to archive data while the database is still running. The DBA does
not need to shut down the database to archive data. Even data currently being accessed can be archived.

ONLINE REDO LOG
Online redo logs are redo log files that are not yet archived. They may be available to the instance for
recording activity, or have previously been written but are awaiting archiving.

OPEN
SEE ALSO CLOSE, DECLARE CURSOR, FETCH, LOOP, Chapter 27

OPEN 1105

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1105

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:24:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

FORMAT

OPEN cursor [(parameter[,parameter]...]

DESCRIPTION OPEN works in conjunction with DECLARE cursor and FETCH. The DECLARE
cursor sets up a SELECT statement to be executed, and establishes a list of parameters (PL/SQL variables)
that are to be used in its where clause, but it does not execute the query.

OPEN cursor, in effect, executes the query in the named cursor and keeps its results in a staging
area, where they can be called in, a row at a time, with FETCH, and their column values put into local
variables with the INTO clause of the FETCH. If the cursor SELECT statement used parameters, then
their actual values are passed to the SELECT statement in the parameter list of the OPEN. They must
match in number and position and have compatible datatypes.

There is also an alternative method of associating the values in the OPEN with those in the SELECT list:

DECLARE
cursor mycur(Title, Publisher) is select ...

BEGIN
open my_cur(new_book => Title, 'PANDORAS' => Publisher);

Here, new_book, a PL/SQL variable, loaded perhaps from a data entry screen, is pointed to Title,
and therefore loads it with whatever is currently in the variable new_book. Publisher is loaded with
the value ‘PANDORAS’, and these then become the parameters of the cursor my_cur. (See DECLARE
CURSOR for more details on parameters in cursors.)

You also may combine pointed associations with positional ones, but the positional ones must
appear first in the OPEN’s list.

You cannot reopen an open cursor, though you can CLOSE it and reOPEN it, and you cannot use
a cursor for which you have a current OPEN statement in a cursor FOR LOOP.

OPEN CURSOR (Embedded SQL)
SEE ALSO CLOSE, DECLARE CURSOR, FETCH, PREPARE, Precompiler Programmer’s Guide
FORMAT

EXEC SQL [FOR { integer | :array_size }]
OPEN cursor
[USING
{DESCRIPTOR SQLDBA_descriptor
| :variable[[INDICATOR]:indicator_variable
[,:variable[INDICATOR]:indicator_variable]]... }]

DESCRIPTION cursor is the name of a cursor previously named in a DECLARE CURSOR
statement. The optional USING references either the host variable list of variables that are to be
substituted in the statement in the DECLARE CURSOR, based on position (the number and type of
variables must be the same), or a descriptor name that references the result of a previous DESCRIBE.

OPEN cursor allocates a cursor, defines the active set of rows (the host variables are substituted
when the cursor is opened), and positions the cursor just before the first row of the set. No rows are
retrieved until a FETCH is executed. Host variables do not change once they’ve been substituted. To
change them, you must reopen the cursor (you don’t have to CLOSE it first).

OPERATOR
An operator is a character or reserved word used in an expression to perform an operation,
such as addition or comparison, on the elements of the expression. Some examples of operators

1106 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1106

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:24:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

are * (multiplication), > (greater than comparison), and ANY (compares a value to each value
returned by a subquery).

OPS$ LOGINS
OPS$ LOGINS are a type of Oracle username in which OPS$ is prefixed to the user’s operating system
account ID, to simplify logging into Oracle from that ID.

OPTIMIZER
An optimizer is the part of an Oracle kernel that chooses the best way to use the tables and indexes to
complete the request made by a SQL statement. See Chapter 38.

OR
SEE ALSO AND, CONTAINS, Chapters 3 and 24
DESCRIPTION OR combines logical expressions so that the result is true if either logical expression
is true.
EXAMPLE The following will produce data for both KEENE and SAN FRANCISCO:

select * from COMFORT
where City = 'KEENE' OR City = 'SAN FRANCISCO'

Within CONTEXT queries, an OR operator can be used for searches involving multiple search terms.
If either of the search terms is found, and its search score exceeds the specified threshold value, the
text will be returned by the search. See Chapter 24.

ORACLE ENTERPRISE MANAGER
Oracle Enterprise Manager (OEM) is a product from Oracle Corporation. OEM provides a graphical
interface for common DBA tasks, and has add-on features for extended performance tuning and data
management capabilities.

ORACLE REAL APPLICATION CLUSTER
In an Oracle Real Application Cluster (RAC) environment, multiple instances (usually on a cluster of
servers) access a single set of datafiles. RAC provides server failover capability in a high-availability
environment, since users can be directed to multiple servers to access the same data.

ORACLE9i APPLICATION SERVER
Oracle9i Application Server (9iAS) allows developers to access Oracle databases from Web-based
applications. The developers call procedures from within the database. The procedures, in turn,
retrieve or manipulate data, and return results to the developers. See Chapter 39.

ORDBMS
See OBJECT-RELATIONAL DATABASE MANAGEMENT SYSTEM.

ORDER BY
SEE ALSO COLLATION, FROM, GROUP BY, HAVING, SELECT, WHERE

ORDER BY 1107

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1107

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:24:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

FORMAT

ORDER BY { expression [,expression]... |
position [,position]... }
alias [,alias]... }

[ASC | DESC]

DESCRIPTION The ORDER BY clause causes Oracle to sort the results of a query before they are
displayed. This can be done either by expression, which can be a simple column name or a complex
set of functions, an alias (see Note below), or a column position in the select clause (see Note below).
Rows are ordered first by the first expression or position, then by the second, and so on, based on the
collating sequence of the host. If ORDER BY is not specified, the order in which rows are selected from
a table is indeterminate, and may change from one query to the next.

NOTE
Oracle still supports the use of column positions in ORDER BY
clauses, but this feature is no longer part of the SQL standard and is
not guaranteed to be supported in future releases. Use column aliases
instead.

ASC or DESC specifies ascending or descending order, and may follow each expression, position,
or alias in the ORDER BY. NULL values precede ascending and follow descending rows in Oracle.

ORDER BY follows any other clauses except FOR UPDATE OF.
If ORDER BY and DISTINCT are both specified, the ORDER BY clause may only refer to columns

or expressions that are in the SELECT clause.
When the UNION, INTERSECT, or MINUS operator is used, the names of the columns in the first

select may differ from the names in subsequent selects. ORDER BY must use the column name from
the first select.

Only CHAR, VARCHAR2, NUMBER, and DATE datatypes—and the special datatype RowID—can
appear in an ORDER BY.
EXAMPLE

select Title, Publisher from BOOKSHELF
order by Title;

OTHER FUNCTIONS
This is an alphabetical list of all current functions in Oracle’s SQL that do not readily fall into any other
function category. Each of these is listed elsewhere in this reference under its own name, with its proper
format and use.

DUMP(string [,format [,start [,length]]])

DUMP displays the value of string in internal data format, in ASCII, octal, decimal, hex, or
character format.

NVL(value, substitute)

If value is NULL, the NVL function returns substitute. Otherwise it returns value.

NVL2 (expr1 , expr2 , expr3)

1108 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1108

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:24:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

If expr1 is not NULL, NVL2 returns expr2. If expr1 is NULL, NVL2 returns expr3.

VSIZE(expression)

VSIZE tells how many bytes Oracle needs in order to store the expression in its database.

OUTER JOIN
See JOIN for a detailed explanation. As of Oracle9i, you can use the ANSI standard outer join syntax
options (LEFT OUTER JOIN, RIGHT OUTER JOIN, and FULL OUTER JOIN). See Chapter 12 for details
and examples.

PACKAGE
A package is a PL/SQL object that groups PL/SQL types, variables, SQL cursors, exceptions, procedures,
and functions. Each package has a specification and a body. The specification shows the objects you
can access when you use the package. The body fully defines all the objects and can contain additional
objects used only for the internal workings. You can change the body (for example, by adding procedures
to the package) without invalidating any object that uses the package.

See CREATE PACKAGE, CREATE PACKAGE BODY, CURSOR, EXCEPTION, FUNCTION, TABLE
(PL/SQL), RECORD (PL/SQL), PROCEDURE, and Chapter 29.

PAGESIZE (SQL*PLUS)
See SET.

PARAMETER
A parameter is a value, a column name, or an expression, usually following a function or module
name, specifying additional functions or controls that should be observed by the function or module.
See PARAMETERS for an example.

PARAMETERS
SEE ALSO &, &&, ACCEPT, DEFINE, Chapter 16
DESCRIPTION Parameters allow the execution of a start file with values passed on the command
line. These are simply spaced apart following the name of the start file. Within the file they are referenced
by the order in which they appeared on the command line. &1 is the first, &2 the second, and so on.
Aside from this, the rules for use are the same as for variables loaded using DEFINE or ACCEPT, and
they may be used in SQL statements in the same way.

There is one limitation, however. There is no way to pass a multiple word argument to a single
variable. Each variable can take only one word, date, or number. Attempting to solve this by putting
the parameters in quotes on the command line results in the words being concatenated.
EXAMPLE Suppose you have a start file named fred.sql that contains this SQL:

select Title, Publisher
from BOOKSHELF
where Title > &1;

Starting it with this command line:

start fred.sql M

produces a report of all titles that start with a character > 'M'.

PARAMETERS 1109

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1109

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:24:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

PARENT
In tree-structured data, a parent is a node that has another node as a descendent, or child.

PARENT QUERY
The parent query is the outermost query (the one that displays a result) in a main query containing a
subquery. See MAIN QUERY.

PARENTHESES
See LOGICAL OPERATORS and PL/SQL KEY WORDS AND SYMBOLS.

PARSE
Parsing is the mapping of a SQL statement to a cursor. At parse time, several validation checks are
made, such as, do all referenced objects exist, are grants proper, and is statement syntax correct? Also,
decisions regarding execution and optimization are made, such as which indexes will be used.

PASSWORD
A password is a set of characters that you must enter when you connect to the host computer’s operating
system or to an Oracle database. Passwords should be kept confidential.

PASSWORD (SQL*PLUS Command)
SEE ALSO ALTER USER, Chapter 19
FORMAT

PASSW[ORD] [username]

DESCRIPTION You can use the password command in SQL*Plus to change the password on
your account or another account (if you have ALTER ANY USER privilege). If you use the password
command, your new password will not be displayed on the screen as you type. Users with dba
authority can change any user’s password via the password command; other users can change only
their own password.

When you enter the password command, you will be prompted for the old and new passwords.
EXAMPLE

password
Changing password for dora
Old password:
New password:
Retype new password:

When the password has been successfully changed, you will receive the feedback:

Password changed

PARALLEL QUERY OPTION
The Parallel Query Option (PQO) splits a single database task into multiple coordinated tasks, enabling
the task to use multiple processors. For example, a full table scan or a large sort may be parallelized,
enabling multiple processors to take part in the completion of the operation. If there are adequate

1110 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1110

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:24:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

resources available on the server, then the parallelized operation may complete faster than if it ran as
a single task.

The number of parallel query server processes used to execute an operation is called the degree
of parallelism, and is set via the DEGREE parameter of hints. See Chapter 38.

PARTITION
To partition a table is to systematically divide its rows among multiple tables, each with the same
structure. You can direct the database to automatically partition a table and its indexes. See Chapter 18.

PARTITIONED TABLE
A partitioned table is a table whose rows have been partitioned across multiple smaller tables.

PAUSE (Form 1-SQL*PLUS)
See SET.

PAUSE (Form 2-SQL*PLUS)
SEE ALSO ACCEPT, PROMPT, Chapter 6
FORMAT

PAU[SE] [text];

DESCRIPTION PAUSE is similar to PROMPT, except PAUSE first displays an empty line, then a
line containing text, then waits for the user to press RETURN. If text is not entered, PAUSE displays two
empty lines, then waits for user to press RETURN.

NOTE
PAUSE waits for a RETURN from the terminal even if the source of
command input has been redirected to be from a file, which means a
start file with SET TERMOUT OFF could hang, waiting for a RETURN,
with no message as to why it was waiting (or that it was waiting). Use
PAUSE with caution.

EXAMPLE

prompt Report Complete.
pause Press RETURN to continue.

PCTFREE
PCTFREE is a portion of the data block that is not filled by rows as they are inserted into a table, but
is reserved for later updates made to the rows in that block.

PCTUSED
PCTUSED is the percentage of space in a data block which Oracle attempts keep filled. If the percent
used falls below PCTUSED, then block is added to the list of free blocks in the segment. PCTUSED
may be set on a table-by-table basis.

PCTUSED 1111

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1111

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:24:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

PERCENT_RANK
SEE ALSO GROUP FUNCTIONS, Chapter 13
FORMAT For aggregates:

PERCENT_RANK (expr [, expr]...) WITHIN GROUP
(ORDER BY
expr [DESC | ASC] [NULLS { FIRST | LAST }]
[, expr [DESC | ASC] [NULLS { FIRST | LAST }]]...)

For analytics:

PERCENT_RANK () OVER ([query_partition_clause] order_by_clause)

DESCRIPTION As an aggregate function, PERCENT_RANK calculates, for a hypothetical row R
identified by the arguments of the function and a corresponding sort specification, the rank of row R
minus 1 divided by the number of rows in the aggregate group. This calculation is made as if the
hypothetical row R were inserted into the group of rows over which Oracle is to aggregate. The
arguments of the function identify a single hypothetical row within each aggregate group. Therefore,
they must all evaluate to constant expressions within each aggregate group. The constant argument
expressions and the expressions in the ORDER BY clause of the aggregate match by position. Therefore
the number of arguments must be the same and their types must be compatible.

The range of values returned by PERCENT_RANK is 0 to 1, inclusive. The first row in any set has
a PERCENT_RANK of 0.

As an analytic function, for a row R, PERCENT_RANK calculates the rank of R minus 1, divided
by 1 less than the number of rows being evaluated (the entire query result set or a partition).

See Chapter 13 for an example of the use of PERCENT_RANK.

PERCENTILE_CONT
SEE ALSO GROUP FUNCTIONS, PERCENTILE_DISC, Chapter 13
FORMAT

PERCENTILE_CONT (expr) WITHIN GROUP (ORDER BY expr [DESC | ASC])
[OVER (query_partition_clause)]

DESCRIPTION PERCENTILE_CONT is an inverse distribution function that assumes a continuous
distribution model. It takes a percentile value and a sort specification, and returns an interpolated value
that would fall into that percentile value with respect to the sort specification. Nulls are ignored in the
calculation.

The first expr must evaluate to a numeric value between 0 and 1, because it is a percentile value.
This expr must be constant within each aggregation group. The ORDER BY clause takes a single
expression that must be a numeric or datetime value, as these are the types over which Oracle can
perform interpolation.

PERCENTILE_DISC
SEE ALSO GROUP FUNCTIONS, PERCENTILE_CONT, Chapter 13
FORMAT

PERCENTILE_DISC (expr) WITHIN GROUP (ORDER BY expr [DESC | ASC])
[OVER (query_partition_clause)]

1112 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1112

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:24:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION PERCENTILE_DISC is an inverse distribution function that assumes a discrete
distribution model. It takes a percentile value and a sort specification and returns an element from the
set. Nulls are ignored in the calculation.

The first expr must evaluate to a numeric value between 0 and 1, because it is a percentile value.
This expression must be constant within each aggregate group. The ORDER BY clause takes a single
expression that can be of any type that can be sorted.

For a given percentile value P, PERCENTILE_DISC function sorts the values of the expression in
the ORDER BY clause, and returns the one with the smallest CUME_DIST value (with respect to the
same sort specification) that is greater than or equal to P.

PMON PROCESS
The Process MONitor is a background process used for recovery when a process accessing a database
fails. See BACKGROUND PROCESS.

POWER
SEE ALSO SQRT, Chapter 8
FORMAT

POWER(value,exponent)

DESCRIPTION POWER is value raised to an exponent.
EXAMPLE

POWER(2,4) = 16

PRAGMA
A pragma statement is a directive to the compiler, rather than a piece of executable code. Even though
a pragma statement looks like executable code, and appears in a program (such as a PL/SQL block), it
is not actually executable and doesn’t appear as a part of the execution code of that block. Rather, it
gives instructions to the compiler. See EXCEPTION_INIT and Chapter 30.

PRECEDENCE
SEE ALSO LOGICAL OPERATORS, QUERY OPERATORS, Chapter 12
DESCRIPTION The following operators are listed in descending order of precedence. Operators
with equal precedence are on the same line. Operators of equal precedence are evaluated in succession
from left to right. All ANDs are evaluated before any OR. Each of these is listed and described separately
under its own symbol or name in this alphabetical reference.

Operator Function

- SQL*PLUS command continuation. Continues a command on the following line.

& Prefix for parameters in a SQL*PLUS start file. Words are substituted for &1, &2, and so on. See START.

& && Prefix for a substitution in a SQL command in SQL*PLUS. SQL*PLUS will prompt for a value if an
undefined & or && variable is found. && also defines the variable and saves the value; ‘&’ does
not. See & and &&, DEFINE, and ACCEPT.

: Prefix for a host variable in PL/SQL.

PRECEDENCE 1113

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1113

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:24:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Operator Function

. Variable separator, used in SQL*PLUS to separate the variable name from a suffix, so that the suffix
is not considered a part of the variable name.

() Surrounds subqueries or lists of columns.

‘ Surrounds a literal, such as a character string or date constant. To use a ‘ in a string constant, use
two ‘ marks (not a double quotation mark).

“ Surrounds a table or column alias that contains special characters or a space.

“ Surrounds literal text in a date format clause of TO_CHAR.

@ Precedes a database name in a COPY, or a link name in a from clause.

() Overrides normal operator precedence.

+ - Prefix sign (positive or negative) for a number or number expression.

* / Multiplication and division.

+ - Addition and subtraction.

|| Char value concatenation.

NOT Reverses result of an expression.

AND True if both conditions are true.

OR True if either condition is true.

UNION Returns all distinct rows from both of two queries.

INTERSECT Returns all matching distinct rows from two queries.

MINUS Returns all distinct rows in first query that are not in the second.

PRECOMPILER
A precompiler program reads specially structured source code, and writes a modified (precompiled)
source program file that a normal compiler can read.

PREDICATE
The predicate is the where clause and, more explicitly, a selection criteria clause based on one of the
operators (=, !=, IS, IS NOT, >, >=) and containing no AND, OR, or NOT.

PREPARE (Embedded SQL)
SEE ALSO CLOSE, DECLARE, CURSOR, FETCH, OPEN, Precompiler Programmer’s Guide
FORMAT

EXEC SQL [AT { db_name | :host_variable }] PREPARE statement_id
FROM { :host_string | 'text' | select_command }

DESCRIPTION PREPARE parses SQL in the host variable :host_string or the literal text. It assigns
a statement_id as a reference to the SQL. If the statement_id has been used previously, this reference
replaces it. The SQL is a select statement, and may include a for update of clause. :host_string is not
the actual name of the host variable used, but a placeholder. OPEN CURSOR assigns input host variables
in its using clause, and FETCH assigns output host variables in its into clause, based on position. A
statement only needs to be PREPAREd once. It can then be executed multiple times.

1114 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1114

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:24:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

EXAMPLE

query_string : string(1..100)
get(query_string);
EXEC SQL prepare FRED from :query_string;
EXEC SQL execute FRED;

PRIMARY KEY
The primary key is the column(s) used to uniquely identify each row of a table.

PRINT
SEE ALSO BIND VARIABLE, VARIABLE, Chapter 26
FORMAT

PRINT variable1 variable2

DESCRIPTION Displays the current value of the specified variable (which is created via the
VARIABLE command). You can print the current values of multiple variables in a single command.

PRIOR
See CONNECT BY.

PRIVILEGE
A privilege is a permission granted to an Oracle user to execute some action. In Oracle, no user can
execute any action without having the privilege to do so.

There are two kinds of privileges: system privileges and object privileges. System privileges extend
permission to execute various data definition and data control commands such as CREATE TABLE or
ALTER USER, or even to log onto the database. Object privileges extend permission to operate on a
particular named database object.

System privileges in Oracle include CREATE, ALTER, and DROP privileges for the various CREATE,
ALTER, and DROP commands. Privileges with the keyword ANY in them mean that the user can
exercise the privilege on any schema for which the privilege has been granted, not just his or her own
schema. The standard privileges in the list following just give permission to execute the indicated
command, and don’t require further explanation. Some of the privileges aren’t intuitively clear; these
are explained here.

System privileges include:

Privilege Permission to

CLUSTERS

CREATE CLUSTER Create clusters in grantee’s schema.

CREATE ANY CLUSTER Create a cluster in any schema. Behaves similarly to CREATE ANY TABLE.

ALTER ANY CLUSTER Alter clusters in any schema.

DROP ANY CLUSTER Drop clusters in any schema.

CONTEXTS

CREATE ANY CONTEXT Create any context namespace.

PRIVILEGE 1115

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1115

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:24:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Privilege Permission to

DROP ANY CONTEXT Drop any context namespace.

DATABASE

ALTER DATABASE Alter the database.

ALTER SYSTEM Issue ALTER SYSTEM statements.

AUDIT SYSTEM Issue AUDIT sql_statements statements.

DATABASE LINKS

CREATE DATABASE LINK Create private database links in grantee’s schema.

CREATE PUBLIC
DATABASE LINK

Create public database links.

DROP PUBLIC
DATABASE LINK

Drop public database links.

DIMENSIONS

CREATE DIMENSION Create dimensions in the grantee’s schema.

CREATE ANY DIMENSION Create dimensions in any schema.

ALTER ANY DIMENSION Alter dimensions in any schema.

DROP ANY DIMENSION Drop dimensions in any schema.

DIRECTORIES

CREATE ANY DIRECTORY Create directory database objects.

DROP ANY DIRECTORY Drop directory database objects.

INDEXTYPES

CREATE INDEXTYPE Create an indextype in the grantee’s schema.

CREATE ANY INDEXTYPE Create an indextype in any schema.

ALTER ANY INDEXTYPE Modify indextypes in any schema.

DROP ANY INDEXTYPE Drop an indextype in any schema.

EXECUTE ANY INDEXTYPE Reference an indextype in any schema.

INDEXES

CREATE ANY INDEX Create in any schema a domain index or an index on any table in any schema.

ALTER ANY INDEX Alter indexes in any schema.

DROP ANY INDEX Drop indexes in any schema.

LIBRARIES

CREATE LIBRARY Create external procedure/function libraries in grantee’s schema.

CREATE ANY LIBRARY Create external procedure/function libraries in any schema.

DROP ANY LIBRARY Drop external procedure/function libraries in any schema.

1116 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1116

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:24:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Privilege Permission to

MATERIALIZED VIEWS

CREATE
MATERIALIZED VIEW

Create a materialized view in the grantee’s schema.

CREATE ANY
MATERIALIZED VIEW

Create materialized views in any schema.

ALTER ANY
MATERIALIZED VIEW

Alter materialized views in any schema.

DROP ANY
MATERIALIZED VIEW

Drop materialized views in any schema.

QUERY REWRITE Enable rewrite using a materialized view, or create a function-based index, when
that materialized view or index references tables and views that are in the grantee’s
own schema.

GLOBAL QUERY REWRITE Enable rewrite using a materialized view, or create a function-based index, when
that materialized view or index references tables or views in any schema.

ON COMMIT REFRESH Create a refresh-on-commit materialized view on any table in the database.
Alter a refresh-on-demand materialized view on any table in the database to
refresh-on-commit.

OPERATORS

CREATE OPERATOR Create an operator and its bindings in the grantee’s schema.

CREATE ANY OPERATOR Create an operator and its bindings in any schema.

DROP ANY OPERATOR Drop an operator in any schema.

EXECUTE ANY OPERATOR Reference an operator in any schema.

OUTLINES

CREATE ANY OUTLINE Create public outlines that can be used in any schema that uses outlines.

ALTER ANY OUTLINE Modify outlines.

DROP ANY OUTLINE Drop outlines.

SELECT ANY OUTLINE Create a clone private outline from a public outline.

PROCEDURES

CREATE PROCEDURE Create stored procedures, functions, and packages in grantee’s schema.

CREATE ANY PROCEDURE Create stored procedures, functions, and packages in any schema.

ALTER ANY PROCEDURE Alter stored procedures, functions, or packages in any schema.

DROP ANY PROCEDURE Drop stored procedures, functions, or packages in any schema.

EXECUTE ANY PROCEDURE Execute procedures or functions (standalone or packaged).
Reference public package variables in any schema.

PROFILES

CREATE PROFILE Create profiles.

ALTER PROFILE Alter profiles.

DROP PROFILE Drop profiles.

PRIVILEGE 1117

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1117

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:24:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Privilege Permission to

ROLES

CREATE ROLE Create roles.

ALTER ANY ROLE Alter any role in the database.

DROP ANY ROLE Drop roles.

GRANT ANY ROLE Grant any role in the database.

ROLLBACK SEGMENTS

CREATE ROLLBACK
SEGMENT

Create rollback segments.

ALTER ROLLBACK
SEGMENT

Alter rollback segments.

DROP ROLLBACK
SEGMENT

Drop rollback segments.

SEQUENCES

CREATE SEQUENCE Create sequences in grantee’s schema.

CREATE ANY SEQUENCE Create sequences in any schema.

ALTER ANY SEQUENCE Alter any sequence in the database.

DROP ANY SEQUENCE Drop sequences in any schema.

SELECT ANY SEQUENCE Reference sequences in any schema.

SESSIONS

CREATE SESSION Connect to the database.

ALTER RESOURCE COST Set costs for session resources.

ALTER SESSION Issue ALTER SESSION statements.

RESTRICTED SESSION Logon after the instance is started using the SQL*Plus STARTUP RESTRICT statement.

SYNONYMS

CREATE SYNONYM Create synonyms in grantee’s schema.

CREATE ANY SYNONYM Create private synonyms in any schema.

CREATE PUBLIC SYNONYM Create public synonyms.

DROP ANY SYNONYM Drop private synonyms in any schema.

DROP PUBLIC SYNONYM Drop public synonyms.

TABLES

CREATE TABLE Create tables in grantee’s schema.

CREATE ANY TABLE Create tables in any schema. The owner of the schema containing the table must
have space quota on the tablespace to contain the table.

ALTER ANY TABLE Alter any table or view in any schema.

BACKUP ANY TABLE Use the Export utility to incrementally export objects from the schema of other users.

DELETE ANY TABLE Delete rows from tables, table partitions, or views in any schema.

DROP ANY TABLE Drop or truncate tables or table partitions in any schema.

1118 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1118

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:24:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Privilege Permission to

INSERT ANY TABLE Insert rows into tables and views in any schema.

LOCK ANY TABLE Lock tables and views in any schema.

SELECT ANY TABLE Query tables, views, or materialized views in any schema.

UPDATE ANY TABLE Update rows in tables and views in any schema.

TABLESPACES

CREATE TABLESPACE Create tablespaces.

ALTER TABLESPACE Alter tablespaces.

DROP TABLESPACE Drop tablespaces.

MANAGE TABLESPACE Take tablespaces offline and online and begin and end tablespace backups.

UNLIMITED TABLESPACE Use an unlimited amount of any tablespace. This privilege overrides any specific
quotas assigned. If you revoke this privilege from a user, the user’s schema
objects remain but further tablespace allocation is denied unless authorized by
specific tablespace quotas. You cannot grant this system privilege to roles.

TRIGGERS

CREATE TRIGGER Create a database trigger in grantee’s schema.

CREATE ANY TRIGGER Create database triggers in any schema.

ALTER ANY TRIGGER Enable, disable, or compile database triggers in any schema.

DROP ANY TRIGGER Drop database triggers in any schema.

ADMINISTER DATABASE
TRIGGER

Create a trigger on DATABASE. (You must also have the CREATE TRIGGER or
CREATE ANY TRIGGER privilege.)

TYPES

CREATE TYPE Create object types and object type bodies in grantee’s schema.

CREATE ANY TYPE Create object types and object type bodies in any schema.

ALTER ANY TYPE Alter object types in any schema.

DROP ANY TYPE Drop object types and object type bodies in any schema.

EXECUTE ANY TYPE Use and reference object types and collection types in any schema, and invoke
methods of an object type in any schema if you make the grant to a specific user.
If you grant EXECUTE ANY TYPE to a role, users holding the enabled role will not
be able to invoke methods of an object type in any schema.

UNDER ANY TYPE Create subtypes under any nonfinal object types.

USERS

CREATE USER Create users. This privilege also allows the creator to:
Assign quotas on any tablespace
Set default and temporary tablespaces
Assign a profile as part of a CREATE USER statement

ALTER USER Alter any user. This privilege authorizes the grantee to:
Change another user’s password or authentication method
Assign quotas on any tablespace
Set default and temporary tablespaces
Assign a profile and default roles

BECOME USER Become another user. (Required by any user performing a full database import.)

PRIVILEGE 1119

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1119

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:24:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Privilege Permission to

DROP USER Drop users.

VIEWS

CREATE VIEW Create views in grantee’s schema.

CREATE ANY VIEW Create views in any schema.

DROP ANY VIEW Drop views in any schema.

UNDER ANY VIEW Create subviews under any object views.

MISCELLANEOUS

ANALYZE ANY Analyze any table, cluster, or index in any schema.

AUDIT ANY Audit any object in any schema using AUDIT schema_objects statements.

COMMENT ANY TABLE Comment on any table, view, or column in any schema.

EXEMPT ACCESS POLICY Bypass fine-grained access control. This is a very powerful system privilege, as it
lets the grantee bypass application-driven security policies. Database administrators
should use caution when granting this privilege.

FORCE ANY TRANSACTION Force the commit or rollback of any in-doubt distributed transaction in the local
database. Induce the failure of a distributed transaction.

FORCE TRANSACTION Force the commit or rollback of grantee’s in-doubt distributed transactions in the
local database.

GRANT ANY PRIVILEGE Grant any system privilege.

RESUMABLE Enable resumable space allocation.

SELECT ANY DICTIONARY Query any data dictionary object in the SYS schema. This privilege
lets you selectively override the default FALSE setting of the
O7_DICTIONARY_ACCESSIBILITY initialization parameter. This privilege
must be granted individually. It is not included in GRANT ALL PRIVILEGES,
nor can it be granted through a role.

SYSDBA Perform STARTUP and SHUTDOWN operations.
ALTER DATABASE: open, mount, back up, or change character set.
CREATE DATABASE.
ARCHIVELOG and RECOVERY.
CREATE SPFILE.
Includes the RESTRICTED SESSION privilege.

SYSOPER Perform STARTUP and SHUTDOWN operations.
ALTER DATABASE OPEN | MOUNT | BACKUP.
ARCHIVELOG and RECOVERY.
CREATE SPFILE.
Includes the RESTRICTED SESSION privilege.

NOTE
For external tables, the only valid privileges are CREATE ANY TABLE,
ALTER ANY TABLE, DROP ANY TABLE, and SELECT ANY TABLE.

Object privileges apply only to certain kinds of objects. The following table shows the relationships
and the grantable object privileges.

1120 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1120

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:24:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Object
Privilege Table View Sequence

Procedures,
Functions,
Packagesa

Materi-
alized
View Directory Library

User-
defined
Type Operator

Index-
type

ALTER X X

DELETE X X Xb

EXECUTE X X X X X

INDEX X

INSERT X X Xb

ON COMMIT
REFRESH

X

QUERY
REWRITE

X

READ X

REFERENCES X X

SELECT X X X X

UNDER X X

UPDATE X X Xb

WRITE X

aOracle treats a Java class, source, or resource as if it were a procedure for purposes of granting object privileges.
bThe DELETE, INSERT, and UPDATE privileges can be granted only to updatable materialized views.

PRO*C
PRO*C is an extension to C that lets you develop user exits and other programs that access the Oracle
database. A precompiler converts PRO*C code into normal C code, which can then be compiled. See
the Pro*C/C++ Precompiler Programmer’s Guide.

PROCEDURE
A procedure is a set of instructions (usually combining SQL and PL/SQL commands) saved for calling
and repeated execution. See CREATE PROCEDURE.

PRODUCT_USER_PROFILE
A PRODUCT_USER_PROFILE is a SYSTEM table in Oracle used to restrict use of individual Oracle
products, by disabling one or more commands available in the product. See SQL*Plus User’s Guide
and Reference.

PROFILE
A profile is a collection of settings in Oracle that limit database resources. See CREATE PROFILE and
Chapter 19.

PROMPT
SEE ALSO ACCEPT

PROMPT 1121

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1121

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:24:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

FORMAT

PROMPT [text]

DESCRIPTION Displays the text to the user’s screen. If no text is specified, then a blank line will
be displayed. To display a variable, see PRINT.

PSEUDO-COLUMNS
DESCRIPTION A pseudo-column is a “column” that yields a value when selected, but which
is not an actual column of the table. An example is RowID or SysDate. Here are the current Oracle
pseudo-columns:

Pseudo-column Value Returned

sequence.CurrVal Current value for this sequence name.

Level Equal to 1 for a root node, 2 for a child of a root, and so on. Tells basically how far
down a tree you’ve traveled.

sequence.NextVal Next value for this sequence name. Also increments the sequence.

NULL A null value.

RowID Returns the row identifier for a row. Use the RowID in the UPDATE ... WHERE and
SELECT ... FOR UPDATE. This guarantees that only a certain row is updated, and
no others.

RowNum Returns the sequence number in which a row was returned when selected from a table.
The first row RowNum is 1, the second is 2, and so on.

PUBLIC
Public can have either of two definitions:

■ Something public can be visible or available to all users. Synonyms and database links can
be public. In Oracle, a user must have CREATE PUBLIC SYNONYM or CREATE PUBLIC
DATABASE LINK privilege. Users may GRANT PUBLIC access to their own objects.

■ A group to which every database user belongs—the name of that group.

PUBLIC SYNONYM
A public synonym is a synonym for a database object that a user with CREATE PUBLIC SYNONYM
privilege has created for use by all Oracle users.

QUERY
A query is a SQL instruction to retrieve data from one or more tables or views. Queries begin with the
SQL keyword select.

QUERY OPERATORS
The following is an alphabetical list of all current query operators in Oracle’s SQL. Each of these is listed
elsewhere in this reference under its own name, with its proper format and use. See also Chapter 12.

1122 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1122

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:24:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Operator Purpose

UNION Returns all distinct rows from both of two queries

UNION ALL Returns all rows from both of two queries

INTERSECT Returns all matching distinct rows from two queries

MINUS Returns all distinct rows in first query that are not in the second

QUIT
SEE ALSO COMMIT, DISCONNECT, EXIT, SET AUTOCOMMIT, START
FORMAT

QUIT

DESCRIPTION QUIT ends a SQL*PLUS session and returns the user to an operating system,
calling program, or menu.

QUOTA
A quota is a resource limit. Quotas can limit the amount of storage used by each user of the database.
See CREATE USER and ALTER USER.

RAISE
SEE ALSO DECLARE EXCEPTION, EXCEPTION, EXCEPTION_INIT
FORMAT

RAISE [exception]

DESCRIPTION RAISE names the exception flag you want to raise, based on a condition that is
being tested. The exception must either be one you’ve explicitly DECLAREd, or an internal system
exception such as DIVIDE_BY_ZERO (see EXCEPTION for a complete list).

A RAISE statement causes control to be transferred to the EXCEPTION section of the current block,
where you must test to see which exception was raised. If no EXCEPTION section is present, control
is passed to the nearest EXCEPTION section of an enclosing block (basically backward through the
nesting of the blocks). If no logic is found to handle the exception, control is passed from the PL/SQL
to the calling program or environment with an unhandled exception error. (The use of OTHERS can
avoid this. See EXCEPTION.)

RAISE without an explicitly named exception can only be used in one circumstance: within
an EXCEPTION section, in order to force the current exception to be handled by an enclosing block’s
EXCEPTION section, rather than the current one. If, for instance, a NOT_LOGGED_ON error had
occurred, and your local EXCEPTION section says this:

when not_logged_on
then raise;

it would pass control back to the EXCEPTION section of the next enclosing block that had one, or to
the program if none were found. That EXCEPTION block could also test for NOT_LOGGED_ON. The
benefit here is that for a certain class of errors, particularly where the recovery, tracing, or error-logging
steps you want to take may be extensive, you can set every nested block’s EXCEPTION section to
simply hand the EXCEPTION backward to a single spot for disposition.

RAISE 1123

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1123

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42c.vp
Thursday, July 25, 2002 3:24:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

RATIO_TO_REPORT
SEE ALSO GROUP FUNCTIONS
FORMAT

RATIO_TO_REPORT (expr) OVER ([query_partition_clause])

DESCRIPTION RATIO_TO_REPORT is an analytic function. It computes the ratio of a value to
the sum of a set of values. If expr evaluates to NULL, the ratio-to-report value also evaluates to NULL.

RAW DATATYPE
A RAW column contains binary data in whatever form the host computer stores it. Raw columns are
useful for storing binary (non-character) data.

RAWTOHEX
SEE ALSO HEXTORAW
FORMAT

RAWTOHEX(binary_string)

DESCRIPTION RAW TO HEXadecimal changes a string of binary numbers to a character string
of hex numbers.

RAWTONHEX
SEE ALSO RAWTOHEX
FORMAT

RAWTONHEX (raw)

DESCRIPTION RAW TO NHEXadecimal converts raw to an NVARCHAR2 character value
containing its hexadecimal equivalent

RDBMS
See RELATIONAL DATABASE MANAGEMENT SYSTEM.

READ CONSISTENCY
Read consistency is a state that guarantees that all data encountered by a statement/transaction is a
consistent set throughout the duration of the statement/transaction. See SET TRANSACTION.

RECORD
Record is a synonym for row.

RECORD (PL/SQL)
SEE ALSO TABLE (PL/SQL), DATA TYPES
FORMAT

TYPE new_type IS RECORD
(field {type | table.column%TYPE}[NOT NULL]
[,field {type | table.column%TYPE}[NOT NULL]...]);

1124 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1124

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:14:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION A RECORD declaration declares a new type that can then be used to declare
variables of that type. The individual components of the record are fields, and each has its own datatype.
That datatype can either be one of the standard PL/SQL datatypes (including another RECORD but not
a TABLE), or it can be a reference to the type of a particular column in a specific table. Each field also
may have a NOT NULL qualifier that specifies that the field must always have a non-null value.

You can refer to the individual fields in a record using dot notation.

RECORD LOCKING
Record locking protects two users from updating the same row of data at the same time.

RECOVER
SEE ALSO ALTER DATABASE, Chapter 40
FORMAT

RECOVER {general | managed | END BACKUP}

where the general clause has the following syntax:

[AUTOMATIC] [FROM location]
{ {full_database_recovery | partial_database_recovery |LOGFILE filename}
[{TEST | ALLOW integer CORRUPTION } [TEST | ALLOW integer CORRUPTION]...]
|CONTINUE [DEFAULT]|CANCEL}

where the full_database_recovery clause has the following syntax:

[STANDBY] DATABASE
[{UNTIL {CANCEL | TIME date | CHANGE integer} | USING BACKUP CONTROLFILE}
[UNTIL {CANCEL | TIME date | CHANGE integer} | USING BACKUP CONTROLFILE]...]

where the partial_database_recovery clause has the following syntax:

{TABLESPACE tablespace [, tablespace]... | DATAFILE datafilename [, datafilename]...
| STANDBY
{TABLESPACE tablespace [, tablespace]... | DATAFILE datafilename [, datafilename]...}
UNTIL [CONSISTENT] [WITH] CONTROLFILE }

and the managed clause has the following syntax:

MANAGED STANDBY DATABASE
[{NODELAY | [TIMEOUT] integer | CANCEL [IMMEDIATE] [NOWAIT]}
| [DISCONNECT [FROM SESSION]] [FINISH [NOWAIT]]]

DESCRIPTION The RECOVER command, like the RECOVER clause of the ALTER DATABASE
command recovers a database using various options. AUTOMATIC recovery generates the redo log
file names automatically during recovery. The FROM clause specifies the location of the archived redo
log file group and must be a fully qualified filename. The default is set by the initialization parameter
LOG_ARCHIVE_DEST.

The DATABASE option recovers the entire database and is the default. The UNTIL CANCEL alternative
recovers the database until you cancel the recovery with the CANCEL option. The UNTIL TIME
alternative recovers up to a specified date and time. The UNTIL CHANGE alternative recovers up to a
system change number (SCN, a unique number assigned to each transaction) specified by an integer. The
USING BACKUP CONTROLFILE alternative recovers by applying the redo log in a backup control file.

RECOVER 1125

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1125

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:14:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

RECOVERY MANAGER
Recovery Manager (RMAN) is a product from Oracle Corporation. RMAN is used by DBAs to perform
database backups. The information about the backups is stored either in an RMAN repository database
or in the control files of the databases being backed up.

RECSEP (SQL*PLUS)
See SET.

RECSEPCHAR (SQL*PLUS)
See SET.

RECURSIVE CALL
A recursive call is a nested invocation of the RDBMS; for example, auditing information is recorded in
system tables using a recursive call. That is, during a normal database operation, such as an update,
another database operation is executed to write log, auditing, or other vital information about the
normal database operation underway. See CALL, RECURSIVE.

REDO LOG
A redo log is a sequential log of actions in the database. The log always consists of at least two files;
one is optionally being archived while the other is being written. When the one currently being written
fills, the next one is reused.

REDO LOG SEQUENCE NUMBER
The redo log sequence number is a number used to identify a redo log, used when applying the log file
for recovery.

REF
A reference datatype used with object tables. See Chapter 33.

REFERENTIAL INTEGRITY
Referential integrity is the property that guarantees that values from one column depend on values from
another column. This property is enforced through integrity constraints. See INTEGRITY CONSTRAINT.

REFERENTIAL INTEGRITY RULE
A referential integrity rule is an integrity constraint that enforces referential integrity.

REFTOHEX
SEE ALSO Chapter 33
FORMAT

REFTOHEX (expr)

DESCRIPTION REFTOHEX converts argument expr to a character value containing its hexadecimal
equivalent. expr must return a REF.

1126 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1126

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:14:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

REGRESSION FUNCTIONS
As of Oracle9i, Oracle supports the following regression functions: REGR_SLOPE, REGR_INTERCEPT,
REGR_COUNT, REGR_R2, REGR_AVGX, REGR_AVGY, REGR_SXX, REGR_SYY, and REGR_SXY. See
the Oracle SQL Reference Guide for syntax and examples for these analytic functions.

RELATION
See TABLE and Chapter 1.

RELATIONAL DATABASE MANAGEMENT SYSTEM
An RDBMS is a computer program for general-purpose data storage and retrieval that organizes data
into tables consisting of one or more units of information (rows), each containing the same set of data
items (columns). Oracle is a relational database management system.

RELATIONAL OPERATOR
A relational operator is a symbol used in search criteria to indicate a comparison between two values,
such as the equal sign in “where Amount = .10”. Only those rows are returned (fetched) for which the
comparison results in TRUE.

REMARK
SEE ALSO /* */, - -, DOCUMENT, Chapter 6
FORMAT

REM[ARK] text

DESCRIPTION REMARK begins a single line of remarks, usually documentation, in a start file.
It is not interpreted as a command. REMARK cannot appear within a SQL statement.
EXAMPLE

REM Reduce the default column width for this data field:
column ActionDate format a6 trunc

REMOTE COMPUTER
A remote computer refers to any computer in a network other than one’s own host computer.

REMOTE DATABASE
A remote database is one that resides on a remote computer, in particular, one that you use through
a database link.

RENAME
SEE ALSO COPY, CREATE SEQUENCE, CREATE SYNONYM, CREATE TABLE, CREATE VIEW
FORMAT

RENAME old TO new;

DESCRIPTION RENAME changes the name of a table, view, sequence, or synonym from its old
name to a new one. No quotes are used around the names, and the new name must be neither a
reserved word nor the name of an existing object for the user.

RENAME 1127

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1127

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:14:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

EXAMPLE The following changes the BOOKSHELF table to the BOOK table:

rename BOOKSHELF to BOOK;

REPFOOTER
SEE ALSO ACCEPT, BTITLE, DEFINE, PARAMETERS, REPHEADER, Chapter 14
FORMAT

REPF[OOTER] [PAGE][option [text|variable]... | OFF|ON]

DESCRIPTION REPFOOTER (REPort FOOTER) puts a footer (may be multi-line) on the last page
of a report. OFF and ON suppress and restore the display of the text without changing its contents.
REPFOOTER by itself displays the current REPFOOTER options and text or variable. PAGE begins a
new page before printing the specified report footer.

text is a footer you wish to give this report, and variable is a user-defined variable or a system-
maintained variable, including SQL.LNO, the current line number; SQL.PNO, the current page
number; SQL.RELEASE, the current Oracle release number; SQL.SQLCODE, the current error code;
and SQL.USER, the username.

Valid values for option are

■ COL n skips directly to position n from the left margin of the current line.

■ S[KIP] n prints n blank lines. If no n is specified, one blank line is printed. If n is 0, no blank
lines are printed and the current position for printing becomes position 1 of the current line
(leftmost on the page).

■ TAB n skips forward n positions (backward if n is negative).

■ LE[FT], CE[NTER], and R[IGHT] left-justify, center, and right-justify data on the current line.
Any text or variables following these commands are justified as a group, up to the end of the
command, or a LEFT, CENTER, RIGHT, or COL. CENTER and RIGHT use the value set by the
SET LINESIZE command to determine where to place the text or variable.

■ BOLD prints data in bold print. SQL*PLUS represents bold print on your terminal by
repeating the data on three consecutive lines.

■ FORMAT string specifies the format model that will control the format of subsequent text
or variables, and follows the same syntax as FORMAT in a COLUMN command, such as
FORMAT A12 or FORMAT $999,990.99. Each time a FORMAT appears, it supersedes the
previous one that was in effect. If no FORMAT model has been specified, the one set by SET
NUMFORMAT is used. If NUMFORMAT has not been set, the default for SQL*PLUS is used.

Date values are printed according to the default format unless a variable has been loaded with
a date reformatted by TO_CHAR.

REPHEADER
SEE ALSO ACCEPT, BTITLE, DEFINE, PARAMETERS, REPFOOTER, Chapter 14
FORMAT

REPH[EADER] [PAGE] [option [text|variable]... | OFF|ON]

DESCRIPTION REPHEADER (REPort HEADER) puts a header (may be multi-line) on the first page
of a report. OFF and ON suppress and restore the display of the text without changing its contents.

1128 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1128

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:14:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

REPHEADER by itself displays the current REPHEADER options and text or variable. PAGE begins a
new page after printing the report header.

text is a header you wish to give this report, and variable is a user-defined variable or a system-
maintained variable, including SQL.LNO, the current line number; SQL.PNO, the current page number;
SQL.RELEASE, the current Oracle release number; SQL.SQLCODE, the current error code; and SQL.USER,
the username.

Valid values for option are

■ COL n skips directly to position n from the left margin of the current line.

■ S[KIP] n prints n blank lines. If no n is specified, one blank line is printed. If n is 0, no blank
lines are printed and the current position for printing becomes position 1 of the current line
(leftmost on the page).

■ TAB n skips forward n positions (backward if n is negative).

■ LE[FT], CE[NTER], and R[IGHT] left-justify, center, and right-justify data on the current line.
Any text or variables following these commands are justified as a group, up to the end of the
command, or a LEFT, CENTER, RIGHT, or COL. CENTER and RIGHT use the value set by the
SET LINESIZE command to determine where to place the text or variable.

■ BOLD prints data in bold print. SQL*PLUS represents bold print on your terminal by
repeating the data on three consecutive lines.

■ FORMAT string specifies the format model that will control the format of subsequent text
or variables, and follows the same syntax as FORMAT in a COLUMN command, such as
FORMAT A12 or FORMAT $999,990.99. Each time a FORMAT appears, it supersedes the
previous one that was in effect. If no FORMAT model has been specified, the one set by SET
NUMFORMAT is used. If NUMFORMAT has not been set, the default for SQL*PLUS is used.

Date values are printed according to the default format unless a variable has been loaded with
a date reformatted by TO_CHAR.

REPLACE
SEE ALSO CHARACTER FUNCTIONS, TRANSLATE, Chapter 16
FORMAT

REPLACE(string,if,then)

DESCRIPTION REPLACE replaces a character or characters in a string with 0 or more characters.
if is a character or characters. Every time it appears in string, it is replaced by the contents of then.
EXAMPLE

REPLACE('GEORGE','GE',null) = OR
REPLACE('BOB','BO','TA') = TAB

REPLICATION
Replication is the process of copying data from one database to another. The target to which the
replicated data is copied is called the replica. To manage replication, you will need to determine:

■ The location, structure, and ownership of the source data

■ The update frequency of the source data

■ The timeliness requirements for the replica data

REPLICATION 1129

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1129

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:14:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ The volatility of the source data

■ The intended uses of the replica

If the replica will also be able to make changes, and those changes must be propagated back to
the original source database, then you have a multi-master configuration, and you will have to manage
conflict resolution and error handling for the environment. In general, single-site ownership of data
with multiple read-only replicas will be simpler to manage than a multi-master configuration.

See CREATE MATERIALIZED VIEW, CREATE DATABASE LINK

RESERVED WORDS
SEE ALSO OBJECT NAMES
DESCRIPTION A reserved word is one that has a special meaning to SQL, and therefore may not
be used as the name of an object. Contrast this to keyword, which may be used as an object name, but
may become a reserved word in the future. Not every word is reserved in all products, so this list is
structured to show which products reserve which words. In the following table, the entries with *s are
reserved in SQL and in PL/SQL. The entries without *s are reserved only in PL/SQL.

ACCESS ALL* ALTER* AND* ANY*

ARRAY AS* ASC* AT AUDIT

AUTHID AVG BEGIN BETWEEN* BINARY_INTEGER

BODY BOOLEAN BULK BY* CASE

CHAR* CHAR_BASE CHECK* CLOSE CLUSTER*

COALESCE COLLECT COLUMN COMMENT* COMMIT

COMPRESS* CONNECT* CONSTANT CREATE* CURRENT*

CURRVAL CURSOR DATE* DAY DECLARE

DECIMAL* DEFAULT* DELETE* DESC* DISTINCT*

DO DROP* ELSE* ELSIF END

EXCEPTION EXCLUSIVE* EXECUTE EXISTS* EXIT

EXTENDS EXTRACT FALSE FETCH FILE

FLOAT* FOR* FORALL FROM* FUNCTION

GOTO GROUP* HAVING* HEAP HOUR

IDENTIFIED IF IMMEDIATE* IN* INCREMENT

INDEX* INDICATOR INITIAL INSERT* INTEGER*

INTERFACE INTERSECT* INTERVAL INTO* IS*

ISOLATION JAVA LEVEL* LIKE* LIMITED

LOCK* LONG* LOOP MAX MAXEXTENTS

MIN MINUS* MINUTE MLSLABEL* MOD

MODE* MODIFY MONTH NATURAL NATURALN

NEW NEXTVAL NOCOMPRESS NOCOPY NOT*

NOWAIT* NULL* NULLIF NUMBER* NUMBER_BASE

1130 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1130

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:14:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

OCIROWID OF* OFFLINE ON* ONLINE

OPAQUE OPEN OPERATOR OPTION* OR*

ORDER* ORGANIZATION OTHERS OUT PACKAGE

PARTITION PCTFREE* PLS_INTEGER POSITIVE POSITIVEN

PRAGMA PRIOR* PRIVATE PROCEDURE PUBLIC*

RAISE RANGE RAW* REAL RECORD

REF RELEASE RENAME RESOURCE RETURN

REVERSE ROLLBACK ROW* ROWID* ROWNUM*

ROWTYPE SAVEPOINT SECOND SELECT* SEPARATE

SET* SHARE* SMALLINT* SPACE SQL

SQLCODE SQLERRM START* STDDEV SUBTYPE

SUCCESSFUL* SUM SYNONYM* SYSDATE* TABLE*

THEN* TIME TIMESTAMP TIMEZONE_REGION TIMEZONE_ABBR

TIMEZONE_MINUTE TIMEZONE_HOUR TO* TRIGGER* TRUE

TYPE UI UID UNION UNIQUE

UPDATE USER VALIDATE VALUES VARCHAR

VARCHAR2 VIEW WHENEVER WHERE WITH

RESOURCE
Resource is a general term for a logical database object or physical structure that may be locked. Resources
that users can directly lock are rows and tables; resources that the RDBMS can lock are numerous and
include data dictionary tables, caches, and files.

RESOURCE is also the name of a standard role in Oracle. See ROLE.

REVERSE-KEY INDEX
In a reverse-key index, the bytes of the indexed value are reversed prior to being stored in the index.
Thus, values 1234 and 1235 are indexed as if they were 4321 and 5321. As a result of this reversal,
those two values will be stored farther apart. If you are frequently querying the column for an exact
match (column=1234) then a reverse-key index may reduce block contention within your index. If you
are frequently performing range queries (column>1234 or column like '123%') then traditional indexes
should be more appropriate for your needs. See CREATE INDEX.

REVOKE
SEE ALSO DISABLE, ENABLE, GRANT, PRIVILEGE, Chapter 19
FORMAT
revoke::=

REVOKE 1131

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1131

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:14:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

revoke_system_privileges::=

revoke_object_privileges::=

grantee_clause::=

on_object_clause::=

DESCRIPTION The REVOKE command takes privileges and roles away from users or privileges
away from roles. Any system privilege may be revoked; see PRIVILEGE.

If you revoke a privilege from a user, the user can no longer execute the operations allowed by the
privilege. If you revoke a privilege from a role, no user granted the role can execute the allowed operations,
unless they are permitted by another role or directly as a user. If you revoke a privilege from PUBLIC,
no user granted the privilege through PUBLIC can execute the operations allowed by the privilege.

1132 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1132

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:14:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

If you revoke a role from a user, the user can no longer enable the role (see ENABLE) but may
continue exercising the privilege in a current session. If you revoke a role from a role, users granted the
role can no longer enable the role but may continue using the privilege during the current session. If
you revoke a role from PUBLIC, users granted the role through PUBLIC can no longer enable the role.

For object access, the REVOKE command takes object privileges on a specific object away from a
user or role. If a user’s privileges are revoked, the user may not execute the operations allowed by the
privilege on the object. If a role’s privileges are revoked, no user granted the role may execute those
operations unless they are granted through another role or directly to the user. If the PUBLIC’s privileges
are revoked, no user granted the privilege through PUBLIC may execute those operations.

The CASCADE CONSTRAINTS clause drops any referential integrity constraints defined by the
user or by users granted the role. This applies to a REFERENCES privilege.

ROLE
A role is a set of privileges that a user can grant to another user. Oracle has many system-supplied
roles, including CONNECT, RESOURCE, and DBA. You can verify the privileges assigned to the roles
via the ROLE_SYS_PRIVS and DBA_SYS_PRIVS data dictionary views. You should not rely on the
system-provided roles in your application development, since the names and privileges for these roles
may change with future releases of Oracle. See CREATE ROLE for role creation syntax.

See Chapter 19 for examples of creating and using roles.

ROLL FORWARD
Roll forward is the reapplying of changes to the database. You sometimes need it for media recovery
and sometimes for instance recovery. The REDO LOG contains the redo entries used for roll forward.

ROLLBACK
A rollback discards part or all of the work you have done in the current transaction, since the last COMMIT
or SAVEPOINT.

ROLLBACK (Form 1-SQL)
SEE ALSO COMMIT, SET AUTOCOMMIT, Chapter 15
FORMAT

ROLLBACK [WORK] [TO [SAVEPOINT] savepoint | FORCE 'text'];

DESCRIPTION ROLLBACK reverses all changes made to tables in the database since changes
were last committed or rolled back and releases any locks on the tables. An automatic rollback occurs
whenever a transaction is interrupted, such as by an execution error, a power failure, and so on.
ROLLBACK affects not just the last insert, update, or delete statement but any that have occurred since
the last COMMIT. This allows you to treat blocks of work as a whole and only COMMIT when all
of the changes you want are completed.

With SAVEPOINT, ROLLBACK goes to a specific, named place in the sequence of transactions
being processed, the SAVEPOINT. It erases any interim SAVEPOINTs and releases any table or row
locks that occurred after the SAVEPOINT was made.

With FORCE, ROLLBACK manually rolls back an in-doubt transaction identified by the literal
text, which is a local or global transaction ID from the data dictionary view DBA_2PC_PENDING.

ROLLBACK (Form 1-SQL) 1133

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1133

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:14:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

NOTE
If SET AUTOCOMMIT is ON, every insert, update, or delete will
immediately and automatically commit the changes to the database.
Typing the word ROLLBACK will produce a ‘ROLLBACK COMPLETE’
message but it won’t mean anything since ROLLBACK only rolls back
to the last COMMIT.

NOTE
All DDL commands cause a COMMIT.

ROLLBACK (Form 2-Embedded SQL)
SEE ALSO COMMIT, SAVEPOINT, SET TRANSACTION, Precompiler Programmer’s Guide
FORMAT

EXEC SQL [AT {database | :variable }]
ROLLBACK [WORK]
[TO [SAVEPOINT] savepoint] | [FORCE text] | [RELEASE]]

DESCRIPTION ROLLBACK ends the current transaction, reverses any changes resulting from the
current transaction, and releases any locks being held, but does not affect host variables or program
flow. database indicates the name of the database where the ROLLBACK should take effect. Its absence
indicates the default database for the user. SAVEPOINT allows a rollback to a named SAVEPOINT that
has been previously declared. (See SAVEPOINT.)

FORCE manually rolls back an in-doubt transaction specified by a literal text containing the
transaction ID from the DBA_2PC_PENDING data dictionary view. WORK is entirely optional and is
for readability only.

Both ROLLBACK and COMMIT have RELEASE options. RELEASE should be specified by one of them
after the last transaction, otherwise locks put on during the program will block other users. ROLLBACK
occurs automatically (with a RELEASE) if the program abnormally terminates.

ROLLBACK SEGMENT
A rollback segment is a storage space within a tablespace that holds transaction information that is used
to guarantee data integrity during a rollback and to provide read consistency across multiple transactions.
See Chapter 40.

ROLLUP
SEE ALSO GROUPING, CUBE, Chapter 13
FORMAT

GROUP BY ROLLUP(column1, column2)

DESCRIPTION ROLLUP generates subtotals for groups of rows within a query. See Chapter 13.

ROOT
In a table with tree-structured data, the root is the origin of the tree, a row that has no parent, and whose
children, grandchildren, and so on, constitute the entire tree. In a tree-structured query, the root is the
row specified by the START WITH clause.

1134 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1134

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:14:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ROUND (Form 1-for Dates)
SEE ALSO DATE FUNCTIONS, ROUND (NUMBER), TRUNC, Chapter 9
FORMAT

ROUND (date, 'format')

DESCRIPTION ROUND is the rounding of date according to format. Without a format, date is
rounded to the next day if the time is 12:00:00 P.M. (exactly noon) or later, or to today’s date if before
noon; in other words, it is rounded to the nearest day The resulting date has its time set to 12 A.M., the
very first instant of the day.
FORMATS AVAILABLE FOR ROUNDING

Format Meaning

CC,SCC century (rounds up to January 1st of next century, as of midnight exactly on the
morning of January 1st of 1950, 2050, and so on).

SYEAR,SYYY,Y,YY,YYY,YYYY
and YEAR

year (rounds up to January 1st of the next year as of midnight exactly on the
morning of July 1st).

IYYY, IYY, IY, I ISO year

Q quarter (rounds up in the 2nd month of the quarter as of midnight exactly on the
morning of the 16th, regardless of the number of days in the month).

MONTH,MON,MM,RM month (rounds up as of midnight exactly on the morning of the 16th regardless
of the number of days in the month).

WW same day of the week as the first day of the year

IW same day of the week as the first day of the ISO year

W rounds to closest day which is the same day as the first day of the month

DDD,DD,J rounds up to the next day as of noon exactly. This is the same as ROUND with
no format.

DAY,DY,D rounds up to next Sunday (first day of the week) as of noon exactly on
Wednesday.

HH,HH12,HH24 rounds up to the next whole hour as of 30 minutes and 30 seconds after the hour.

MI rounds up to the next whole minute as of 30 seconds of this minute.

When ww and w round, the time of the date being rounded is compared to a date which is set to
12 A.M., the very beginning of the day. The result of ROUND is a new date, which is also set to 12 A.M.

ROUND (Form 2-for Numbers)
SEE ALSO CEIL, FLOOR, NUMBER FUNCTIONS, ROUND (DATE), TRUNC, Chapter 8
FORMAT

ROUND(value,precision)

DESCRIPTION ROUND rounds value to precision. precision is an integer and may be positive,
negative, or zero. A negative integer rounds to the given number of places to the left of the decimal
point, a positive integer rounds to the given number of places to the right of the decimal point.

ROUND (Form 2-for Numbers) 1135

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1135

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:14:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

EXAMPLE

ROUND(123.456,0) = 123
ROUND(123.456,-2) = 100
ROUND(-123.456,2) = -123.46

ROW
Row can have either of two definitions:

■ One set of fields in a table; for example, the fields representing one worker in the table
WORKER.

■ One set of fields in the output of a query. RECORD is a synonym.

ROW HEADER
A row header is the portion of each row that contains information about the row other than row data,
such as the number of row pieces, columns, and so on.

ROW-LEVEL LOCKING
Row-level locking is a type of locking in which updates to data occur through locking rows in a table
and not the entire page.

ROW SEQUENCE NUMBER
A row sequence number is a number assigned to a row as it is inserted into a data block for a table.
This number is also stored as row overhead and forms a part of the ROWID.

ROW_NUMBER
SEE ALSO ROWNUM
FORMAT

ROW_NUMBER () OVER ([query_partition_clause] order_by_clause)

DESCRIPTION ROW_NUMBER is an analytic function. It assigns a unique number to each row
to which it is applied (either each row in the partition or each row returned by the query), in the ordered
sequence of rows specified in the order_by_clause, beginning with 1.

ROWID
ROWID is the logical address of a row, and it is unique within the database.

ROWID can be selected, or used in a where clause, but cannot be changed by an insert, update,
or delete. It is not actually a data column, but merely a logical address, made of the database address
information. ROWID is useful when used in a where clause for rapid updates or deletes of rows.
However, it can change if the table it is in is exported and imported.

The ROWID datatype is a hexadecimal string representing the unique address of a row in a table.
This datatype is primarily used for values returned by the ROWID pseudocolumn.

ROWIDTOCHAR
SEE ALSO CHARTOROWID, CONVERSION FUNCTIONS

1136 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1136

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:14:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

FORMAT

ROWIDTOCHAR(RowId)

DESCRIPTION ROW IDentifier TO CHARacter changes an internal Oracle row identifier, or
RowID, to act like a character string. However, Oracle will do this kind of conversion automatically,
so this function isn’t really needed. It seems to be a debugging tool that has made its way into general
availability.

ROWIDTONCHAR
SEE ALSO CHARTOROWID, ROWIDTOCHAR, CONVERSION FUNCTIONS
FORMAT

ROWIDTONCHAR(RowId)

DESCRIPTION ROW IDentifier TO NCHARacter changes an internal Oracle row identifier, or
RowID, to a NVARCHAR2 datatype.

ROWNUM
SEE ALSO PSEUDO-COLUMNS, Chapter 16
FORMAT

ROWNUM

DESCRIPTION ROWNUM returns the sequence number in which a row was returned when first
selected from a table. The first row has a ROWNUM of 1, the second is 2, and so on. Note, however,
that even a simple order by in the select statement may disorder the ROWNUMs, which are assigned
to the rows before any ordering takes place.

RPAD
SEE ALSO CHARACTER FUNCTIONS, LPAD, LTRIM, RTRIM, TRIM, Chapter 7
FORMAT

RPAD(string,length [,'set'])

DESCRIPTION Right PAD makes a string a certain length by adding a certain set of characters to
the right. If set is not specified, the default pad character is a space.
EXAMPLE

select RPAD('HELLO ',24,'WORLD') from DUAL;

produces this:

HELLO WORLDWORLDWORLDWOR

RTRIM
SEE ALSO CHARACTER FUNCTIONS, LPAD, LTRIM, RPAD, TRIM, Chapter 7
FORMAT

RTRIM(string [,'set'])

RTRIM 1137

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1137

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:14:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION Right TRIM trims all the occurrences of any one of a set of characters off of the
right side of a string.
EXAMPLE

RTRIM('GEORGE','OGRE')

produces nothing, an empty string with zero length! On the other hand, this:

RTRIM('EDYTHE','HET')

produces this:

EDY

RUN
SEE ALSO /, @, @@, EDIT, START
FORMAT

R[UN]

DESCRIPTION RUN displays the SQL command in the SQL buffer, and then executes it. RUN
is similar to the / command, except that the / doesn’t display the SQL first.

SAVE
SEE ALSO EDIT, GET, Chapter 6
FORMAT

SAV[E] file[.ext] [CRE[ATE] | REP[LACE] | APP[END]]

DESCRIPTION SAVE saves the contents of the current buffer into a host file with the name file. If
no file type (extension) is specified, the file type SQL is added to the file name. This default extension
can be changed with SET SUFFIX. SAVE commits pending work to the database.

If the file already exists, the CREATE option will force SAVE to abort and will produce an error
message. The REPLACE option will replace any existing file, or create a new one if none exists.

The APPEND option adds this file to the end of any existing file, or creates a new one if none exists.
EXAMPLE The following saves the contents of the current buffer into a file named lowcost.sql:

save lowcost

SAVEPOINT
SEE ALSO COMMIT, ROLLBACK, SET TRANSACTION
FORMAT

SAVEPOINT savepoint;

DESCRIPTION SAVEPOINT is a point within a transaction to which you may rollback. Savepoints
allow you to ROLLBACK portions of your current transaction. See ROLLBACK.

1138 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1138

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:14:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The first version here is typical of SQL*PLUS. The purpose of SAVEPOINT is to be able to assign
a name to the beginning of a group of SQL statements and later, if necessary, ROLLBACK to that name,
thus undoing the results of just that group. These can be nested or sequenced, allowing great control
over recovery from errors. The idea here is to collect together a series of SQL statements that make
up one logical transaction, and hold the COMMIT until all the steps within it have been completed
successfully. It may be that an attempted step will fail, but you’ll want to be able to try it again without
having to undo everything else prior to it. Here is an example:

insert into COMFORT
values ('WALPOLE', '22-APR-01',50.1, 24.8, 0);

savepoint A;

insert into COMFORT
values ('WALPOLE', '27-MAY-01',63.7, 33.8, 0);

savepoint B;

insert into COMFORT
values ('WALPOLE', '07-AUG-01',83.0, 43.8, 0);

You can rollback just the last insert by returning to savepoint B:

rollback to savepoint B;

This shows that SQL statements, or groups of them, can be collected together and undone in sets
or singly. In a host program, or using PL/SQL or SQL*PLUS, you may want to set up SAVEPOINTs
that you can ROLLBACK to, based on the results of your most recent SQL statement or condition test.
ROLLBACK allows you to return to a specific step where you named a SAVEPOINT.

If a function, a section of logic, or an attempted SQL statement fails, you can return the data in
the database back to the state it was in before the local step began. You can then try it again.

SAVEPOINT names must be unique to a transaction (defined by where it ends, with either a COMMIT
or unconditional ROLLBACK) but do not have to be unique to all of your database objects. You can give a
SAVEPOINT the same name as a table, for instance (this might even result in more understandable code if
the SAVEPOINT had the name of the table being updated). Names for SAVEPOINTs follow object-naming
conventions.

If you give a new SAVEPOINT the same name as a previous one, the new one replaces the earlier one.
The earlier one is lost, and you can no longer roll back to it.

Once a COMMIT or an unconditional ROLLBACK (not to a SAVEPOINT) is issued, all previous
SAVEPOINTs are erased. Recall that all DDL statements (such as DISCONNECT, CREATE TABLE,
CREATE INDEX, and so on) automatically issue an implicit COMMIT, and any severe failure (if the
program terminates abnormally or the computer goes down), will result in an automatic ROLLBACK.

SCAN (SQL*PLUS)
See SET.

SCAN (SQL*PLUS) 1139

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1139

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:14:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SCORE
The SCORE function is used by CONTEXT indexes in Oracle Text to evaluate how well a text string
met the specified search criteria. You can display the score of an individual search; more often, the
score is compared to a threshold value. See Chapter 24.

SEGMENT
A segment is the physical storage for the space allocated to a table, index, or cluster. A table has one
segment that consists of all of its extents. Every index has one segment similarly defined. A cluster has
at least two segments, one for its data and one for its cluster key index.

SEGMENT HEADER BLOCK
The segment header block is the first block in the first extent of a segment.

SELECT (Form 1-SQL)
SEE ALSO COLLATION, CONNECT BY, DELETE, DUAL, FROM, GROUP BY, HAVING, INSERT,
JOIN, LOGICAL OPERATORS, ORDER BY, QUERY OPERATORS, SUBQUERY, SYNTAX OPERATORS,
UPDATE, WHERE
FORMAT
select::=

subquery::=

1140 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1140

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:14:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

subquery_factoring_clause::=

select_list::=

table_reference::=

flashback_clause::=

SELECT (Form 1-SQL) 1141

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1141

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:14:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

query_table_expression::=

sample_clause::=

subquery_restriction_clause::=

table_collection_expression::=

joined_table::=

1142 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1142

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:14:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

join_type::=

hierarchical_query_clause::=

group_by_clause::=

rollup_cube_clause::=

grouping_sets_clause::=

grouping_expression_list::=

SELECT (Form 1-SQL) 1143

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1143

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:14:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

expression_list::=

order_by_clause::=

for_update_clause::=

DESCRIPTION SELECT retrieves rows from one or more tables or views, either as a command, or
as a subquery in another SQL command (within limitations), including select, insert, update, and delete.
ALL means that all rows satisfying the conditions will be returned (this is the default). DISTINCT means
that only rows that are unique will be returned; any duplicates will be weeded out first.

An * (asterisk) by itself results in all columns from all tables in the from clause being displayed. table.*
means that all columns from this table will be displayed. An asterisk by itself cannot be combined with
any other columns, but a table.* can be followed by column names and expressions, including ROWID.

select_list can include any form of a column. This could be a column name, a literal, a mathematical
computation, a function, or several functions combined. The most common version is a simple column
name, or a column name prefixed by a table name or table alias. c_alias is a renaming of the column
or expression. The column alias can be preceded by the word AS. The column alias will become the
column heading in the display, and may be referenced by the column, ttitle, and btitle commands in
SQL*PLUS. The column alias may be used in the order by clause. If it is more than one word, or will
contain characters that are neither numbers nor letters, it must be enclosed in double quotation marks.

1144 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1144

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:14:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

schema, table, and dblink denote the table or view from which the rows will be drawn. schema
and dblink are optional, and their absence makes Oracle default to the current user. However, specifying
the user in a query may reduce Oracle’s overhead and make the query run more quickly. A subquery
can be specified in the FROM clause. Oracle will execute the subquery and the resulting rows will be
treated as if they came from a view.

A table t_alias here will rename the table for this query. This alias, unlike the expression alias, can
be referenced elsewhere within the select statement itself, for instance as a prefix to any column name
coming from that table. In fact, if a table has an alias, the alias must be used whenever a column from
that table has a table name prefix. Tables are typically aliased when two tables with long names are
joined in a query, and many of their columns have the same name, requiring them to be unambiguously
named in the select clause. Aliases are also commonly used in correlated subqueries, and when a
table is being joined to itself.

condition may be any valid expression that tests true or false. It can contain functions, columns
(from these tables), and literals. position allows the order by to identify the expressions based on their
relative position in the select clause, rather than on their names. This is valuable for complicated
expressions. You should discontinue the use of ordinal positions in order by clauses; column aliases
may be used in their place. The current SQL standard does not include support for ordinal positions in
order by clauses, and Oracle may not support them in the future. ASC and DESC specify whether it is
an ascending or descending sequence for each expression in the order by. See COLLATION for a
discussion of what these sequences are.

column is a column in a table listed in the from clause. This cannot be an expression, but must be
a real column name. NOWAIT means that a select for update attempt that encounters a locked row
will terminate and return immediately to the user, rather than wait and attempt to update the row again
in a few moments.

The for update of clause puts locks on the rows that have been selected. select . . . for update of
should be followed immediately by an update. . .where command, or, if you decide not to update
anything, by a COMMIT or ROLLBACK. The for update of also includes the actions of insert and
delete. Once you have locked a row, other users cannot update it until you free it with a COMMIT
command (or AUTOCOMMIT) or ROLLBACK. select . . . for update of cannot include DISTINCT,
GROUP BY, UNION, INTERSECT, MINUS, or any group function, such MIN, MAX, AVG, or COUNT.
The columns named have no effect and are present for compatibility with other dialects of SQL.
Oracle will lock only the tables that appear in the for update clause. If you don’t have an of clause
listing any tables, Oracle will lock all the tables in the from clause for update. All the tables must be
on the same database, and if there are references to a LONG column or a sequence in the select, the
tables must be on the same database as the LONG or the sequence.

If you are querying from a partitioned table, you can list the name of the partition you are querying
as part of the from clause of the query. See Chapter 18.

The other individual clauses in the select statement are all described under their own names
elsewhere in this reference. flashback_clause is available as of Oracle9i Release 2.
OTHER NOTES Clauses must be placed in the order shown, except for these:

■ connect by, start with, group by, and having, which may be in any order in relation to
each other.

■ order by and for update of, which may be in any order in relation to each other.

SELECT (Form 2-Embedded SQL)
SEE ALSO CONNECT, DECLARE CURSOR, DECLARE DATABASE, EXECUTE, FETCH, FOR,
PREPARE, UPDATE (Form 1), WHENEVER, Precompiler Programmer’s Guide

SELECT (Form 2-Embedded SQL) 1145

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1145

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:14:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

FORMAT

EXEC SQL [AT { db_name | :host_variable }]
SELECT select_list INTO
:host_variable [[INDICATOR] :indicator_variable]
[, :host_variable [[INDICATOR] :indicator_variable]]...
FROM table_list [WHERE condition]
{ [START WITH condition] CONNECT BY condition
| CONNECT BY condition [START WITH condition]
| GROUP BY expr [, expr]... [HAVING condition] }
[[START WITH condition] CONNECT BY condition
| CONNECT BY condition [START WITH condition]
| GROUP BY expr [, expr]... [HAVING condition]]...
[WITH READ ONLY | WITH CHECK OPTION]
[{ UNION | UNION ALL | INTERSECT | MINUS } SELECT command]
[ORDER BY

{ expr | position } [ASC | DESC]
[, { expr | position } [ASC | DESC]]...

| FOR UPDATE
[OF [[schema.] { table. | view. | materialized view. }] column
[, OF [[schema.] { table. | view. | materialized view. }] column]...] [NOWAIT]]

[ORDER BY
{ expr | position } [ASC | DESC]
[, { expr | position } [ASC | DESC]]...

| FOR UPDATE
[OF [[schema.] { table. | view. | materialized view. }] column
[, OF [[schema.] { table. | view. | materialized view. }] column]...]
[NOWAIT]]...

DESCRIPTION See the description of the various clauses in SELECT (Form 1). The following are
the elements unique to embedded SQL:

■ AT database, which optionally names a database from a previous CONNECT statement, for
a database name from a previous DECLARE DATABASE statement.

■ INTO :host_variable [,:host_variable] is the list of host variables into which the results of the
select statement will be loaded. If any variable in this list is an array, all of the variables in the
list must be arrays, though they need not all be the same size arrays.

■ The where clause may reference non-array host variables.

■ The select clause may reference host variables anywhere a constant would have been used.

You can use the embedded SQL SELECT with variable arrays to return multiple rows with a single
FETCH. You also can use it to either DECLARE CURSOR or PREPARE statements for use with a later
FETCH, and may include the for update of clause. The later update statement can then reference the
columns named in the for update of using its own current of clause. See DECLARE CURSOR and
UPDATE (Form 2).

If the embedded select returns no rows, SQLCODE is set to +100, and the host variables are left
unchanged. In that case, WHENEVER lets you change the program flow.

All rows that meet the select criteria are locked at the OPEN. COMMIT releases the locks, and no
further FETCHing is permitted. This means you must FETCH and process all of the rows you wish to
update before you issue a COMMIT.

1146 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1146

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:14:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SELECT. . .INTO
SEE ALSO %ROWTYPE, %TYPE, DECLARE VARIABLE, FETCH
FORMAT

SELECT expression [,expression]...
INTO {variable [,variable]... | record}
FROM [user.]table [,[user.]table]...

[where...][group by... [having...]] [order by...];

DESCRIPTION This is not the form of the select statement used in DECLARE CURSOR. This form
utilizes the implicit cursor named SQL, executes within an execution section of a block (between BEGIN
and END), and copies the values from a single row being returned into either a string of named variables,
or a record whose structure is declared by %ROWTYPE to be just like the columns being selected. If
the form that uses variables is used, they must each be DECLAREd and have compatible datatypes with
those being retrieved. The order in which they appear in the into clause must correspond to the order
of the associated columns in the select clause.

This select may be used in a loop with PL/SQL variables appearing in the where clause (or even
acting like constants in the select clause), but each time the select executes it must return only one
row. If it produces more than one row, the TOO_MANY_ROWS exception will be RAISEd, and
SQL%ROWCOUNT will be set to 2 (see EXCEPTION for details). SQL%FOUND will be TRUE.

If it produces no rows, the NO_DATA_FOUND exception is RAISEd, and SQL%ROWCOUNT
will be set to 0. SQL%FOUND will be FALSE.

SEQUENCE
A sequence is a database object used to generate unique integers for use as primary keys. See CREATE
SEQUENCE.

SERVICE NAME
A service name, found in the tnsnames.ora file, is an alias for a database accessed by Oracle Net.
Within the tnsnames.ora file, the service name is mapped to a host, port, and instance. You can
therefore change the service name for a database without changing the database name, and you
can move a database to a different host without changing its service name.

SESSION
The session is the series of events that happens between the time a user connects to SQL and the time
he or she disconnects.

SESSIONTIMEZONE
SEE ALSO Chapter 8
FORMAT

SESSIONTIMEZONE

DESCRIPTION SESSIONTIMEZONE returns the value of the current session’s time zone.
EXAMPLE

select SESSIONTIMEZONE from DUAL;

SESSIONTIMEZONE 1147

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1147

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:14:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SET
SEE ALSO SET TRANSACTION, SHOW, Chapter 6
FORMAT

SET feature value

where feature and value are from the following list. The default values are underlined.
APPI[NFO]{ON|OFF|text} enables the registering of command files via the

DBMS_APPLICATION_INFO package. The registered name appears in the Module column of the
V$SESSION dynamic performance table.

ARRAY[SIZE] {15|n} will set the size of the batch of rows that SQL*PLUS will fetch at one time.
The range is 1 to 5000. Larger values improve the efficiency of queries and subqueries where many
rows will be fetched, but use more memory. Values above 100 generally do not produce much
improvement. ARRAYSIZE has no other effect on the workings of SQL*PLUS.

AUTO[COMMIT]{ON|OFF|IMM[EDIATE]|n} makes SQL immediately commit any pending
changes to the database upon the completion of every SQL command. n allows you to specify the
number of commands after which a commit will occur. OFF stops automatic committing, and you
must instead commit changes intentionally with the COMMIT command. Many commands, such as
QUIT, EXIT, CONNECT, and all DDL commands will cause a COMMIT of any pending changes.

AUTOP[RINT] {ON|OFF} sets whether SQL*Plus automatically displays bind variables used in a
PL/SQL block or EXECUTEd procedure.

AUTORECOVERY [ON|OFF] tells the RECOVER command to automatically apply the default
filenames of archived redo log files needed during recovery.

AUTOT[RACE] {ON|OFF|TRACE[ONLY]} [EXP[LAIN]] [STAT[ISTICS]] allows you to see the
execution path for a query after the query has completed. To see the execution path, you first must
have the PLAN_TABLE table created in your schema (it can be created by running the UTLXPLAN.SQL
file in the /rdbms/admin directory under your Oracle software directory).

BLO[CKTERMINATOR] {.|c} sets the symbol used to denote the end of a PL/SQL block. This
cannot be a letter or a number. To execute the block, use RUN or / (slash).

CMDS[EP] {;|c|ON|OFF} sets the character used to separate multiple SQL*PLUS commands
entered on a line. ON or OFF controls whether multiple commands may be entered on a line.

COLSEP {_|text} sets a value to be printed between columns.
COM[PATIBILITY]{V7|V8|NATIVE} specifies the version of Oracle to which you are currently

connected.
CON[CAT] {.|c|ON|OFF} sets a symbol that may be used to terminate or delimit a user variable

that is followed by a symbol, character, or word that would otherwise be interpreted as a part of the
user variable name. Setting CONCAT ON resets its value to ‘.’.

COPYC[OMMIT] {0|n} commits rows to the destination database on a cycle of n batches of rows
(the number of rows in a batch is SET by ARRAYSIZE). Valid values are 0 to 5000. If value is 0, a
COMMIT will occur only at the end of a copy operation.

COPYTYPECHECK {ON|OFF} enables the suppression of datatype checks when using the COPY
command.

DEF[INE] {&|c|ON|OFF} determines whether SQL*PLUS will look for and substitute commands
for substitution variables and load them with their DEFINEd values.

DESCRIBE [DEPTH {1|n|ALL}][LINENUM {ON|OFF}][INDENT {ON|OFF}] sets the depth of the
level to which you can recursively describe an object. The valid range of the DEPTH clause is from
1 to 50.

1148 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1148

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:14:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ECHO {ON|OFF} ECHO ON makes SQL*PLUS echo (display) commands to the screen as they
execute from a start file. OFF makes SQL*PLUS execute them without displaying them. The results of
the commands, on the other hand, are controlled by TERMOUT.

EDITF[ILE] file_name[.ext] sets the default filename created by the EDIT command.
EMB[EDDED] {ON|OFF} allows a new report in a series of reports to begin anywhere on a page,

just after the previous one ended. OFF forces the new report to start at the top of a new page.
ESC[APE] {\|c|ON|OFF} defines the character you enter as the escape character. OFF undefines

the escape character. ON enables the escape character. ON changes the value of c back to the default
“\”. You can use the escape character before the substitution character (set through SET DEFINE) to
indicate that SQL*Plus should treat the substitution character as an ordinary character rather than as a
request for variable substitution.

FEED[BACK] {6|n|ON|OFF} makes SQL*PLUS show “records selected” after a query if at least n
records are selected. ON or OFF turns this display on or off. SET FEEDBACK to 0 is the same as OFF.

FLAGGER {OFF|ENTRY |INTERMED[IATE]|FULL} sets the FIPS level for SQL92 compliance.
FLU[SH] {ON|OFF} is used when a start file can be run without needing any display or interaction

until it has completed. The OFF lets the operating system avoid sending output to the display. ON
restores output to the user’s display. OFF may improve performance.

HEA[DING] {ON|OFF} suppresses the headings, both text and underlines, that normally appear
above columns. ON allows them to be displayed.

HEADS[EP] {||c|ON|OFF} defines the character you enter as the heading separator character. ON
or OFF turns heading separation on or off.

INSTANCE [instance_path|LOCAL] changes the default instance for your session to the specified
instance path. Using the SET INSTANCE command does not connect to a database. The default
instance is used for commands when no instance is specified.

LIN[ESIZE] {80|n} sets the line width, the total number of characters on a line that can be displayed
before wrapping down to the next line. This number is also used when SQL*PLUS calculates the proper
position for centered or right-aligned titles. The maximum value of n is 999.

LOBOF[FSET] {n|1} sets the starting position from which CLOB and NCLOB data is retrieved and
displayed.

LOGSOURCE [pathname] specifies the location from which archive logs are retrieved during
recovery. The default value is set by the LOG_ARCHIVE_DEST initialization parameter in the Oracle
initialization file. Using the SET LOGSOURCE command without a pathname restores the default
location.

LONG {80|n} is the maximum width for displaying or copying (spooling) LONG, CLOB, and
NCLOB values. n may range from 1 to 2 GB.

LONGC[HUNKSIZE] {80|n} sets the size, in characters, of the increments in which SQL*Plus
retrieves a LONG, CLOB, or NCLOB value.

MARK[UP] HTML [ON|OFF] [HEAD text] [BODY text] [TABLE text] [ENTMAP {ON|OFF}]
[SPOOL {ON|OFF}] [PRE[FORMAT] {ON|OFF}] outputs HTML marked up text. SET MARKUP only
specifies that SQL*Plus output will be HTML encoded. You must use SET MARKUP HTML ON SPOOL
ON and the SQL*Plus SPOOL command to create and name a spool file, and to begin writing HMTL
output to it. SET MARKUP has the same options and behavior as SQLPLUS -MARKUP.

NEWP[AGE] {1|n|NONE} sets the number of blank lines to be printed between the bottom of one
page and the top title of the next. A 0 (zero) sends a form feed at the top of each page. If the output is
being displayed, this will usually clear the screen.

NULL text sets the text that will be substituted when SQL*PLUS discovers null value. NULL without
text displays blanks.

NUMF[ORMAT] format sets the default number format for displaying number data items. See
NUMBER FORMATS for details.

SET 1149

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1149

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:14:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

NUM[WIDTH] {10|n} sets the default width for number displays.
PAGES[IZE] {24|n} sets the number of lines per page.
PAU[SE] {ON|OFF|text} ON makes SQL*PLUS wait for you to press RETURN after it displays each

page of output. OFF means no pause between pages of display. text is the message SQL*PLUS will
display at the bottom of the screen as it waits for you to hit the RETURN key. Pause will wait before the
very first page is displayed; you’ll have to hit RETURN to see it.

RECSEP {WR[APPED]|EA[CH]|OFF}: Each row SQL*PLUS brings back can be separated from other
rows by a character, defined by RECSEPCHAR (see also SET). By default, the character is a space, and
this only happens for records (and therefore columns) that wrap.

RECSEPCHAR works with RECSEP. The default is a space, but you can set it to another symbol if
you wish.

SERVEROUT[PUT] {ON|OFF} [SIZE n] [FOR[MAT] {WRA[PPED] |
WOR[D_WRAPPED]|TRU[NCATED]}] allows you to display the output of PL/SQL procedures (from
the DBMS_OUTPUT package—see the Application Developer’s Guide). WRAPPED,
WORD_WRAPPED, TRUNCATED, and FORMAT determine the formatting of the output text.

SHIFT[INOUT] {VIS[IBLE]|INV[ISIBLE]} allows correct alignment for terminals that display shift
characters. Use VISIBLE for terminals that display shift characters as a visible character (for example,
a space or a colon). INVISIBLE is the opposite and does not display any shift characters.

SHOW[MODE] {ON|OFF} ON makes SQL*PLUS display the old and new settings of a SET feature
and its value when it is changed. OFF stops the display of both of these.

SQLBL[ANKLINES] {ON|OFF} controls whether SQL*Plus allows blank lines within a SQL command
or script. ON interprets blank lines and new lines as part of a SQL command or script. OFF, the default
value, does not allow blank lines or new lines in a SQL command or script.

SQLC[ASE] {MIX[ED]|LO[WER]|UP[PER]} converts all the text, including literals and identifiers,
in either SQL or PL/SQL blocks, before it is executed by Oracle. MIXED leaves case just as it is typed.
LOWER converts everything to lowercase; UPPER converts it all to uppercase.

SQLCO[NTINUE] {> |text} sets the character sequence to be displayed as a prompt for a long line
that must continue on the next line. When you enter a - (hyphen) at the end of a SQL*PLUS command
line, the SQLCONTINUE symbols or text will prompt you from the left of the next screen line.

SQLN[UMBER] {ON|OFF}: If this is ON, then lines of SQL beyond the first one you enter will have
line numbers as prompts. If this is OFF, the SQLPROMPT will appear only on additional lines.

SQLPLUSCOMPAT[IBILITY] {x.y[.z]} sets the behavior or output format of VARIABLE to that of the
release or version specified by x.y[.z]. Where x is the version number, y is the release number, and z is
the update number. In later releases, SQLPLUSCOMPATIBILITY may affect features other than
VARIABLE. Setting the value of SQLPLUSCOMPATIBILITY to a version less than 9.0.0 will result in
VARIABLE definition of NCHAR or NVARCHAR2 datatypes to revert to Oracle8i behavior whereby the
size of the variable is in bytes or characters depending on the chosen national character set.

SQLPRE[FIX] {#|c} sets the SQL*Plus prefix character. While you are entering a SQL command or
PL/SQL block, you can enter a SQL*Plus command on a separate line, prefixed by the SQL*Plus prefix
character. SQL*Plus will execute the command immediately without affecting the SQL command or
PL/SQL block that you are entering. The prefix character must be a non-alphanumeric character.

SQLP[ROMPT] {SQL>|text} sets the SQL*Plus command prompt.
SQLT[ERMINATOR] {;|c|ON|OFF} sets the character used to end and execute SQL commands to c.
SUF[FIX] {SQL|text} sets the default file extension that SQL*Plus uses in commands that refer to

command files. SUFFIX does not control extensions for spool files.
TAB {ON|OFF} determines how SQL*Plus formats white space in terminal output. OFF uses spaces

to format white space in the output. ON uses the TAB character. TAB settings are every eight characters.
TERM[OUT] {ON|OFF}: OFF suppresses the display so that you can spool output from a command

file without seeing the output on the screen. ON displays the output.

1150 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1150

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:14:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TI[ME] {ON|OFF} ON displays the current time before each command prompt. OFF suppresses the
time display.

TIMI[NG] {ON|OFF} ON displays timing statistics on each SQL command or PL/SQL block run. OFF
suppresses timing of each command.

TRIM[OUT] {ON|OFF} ON removes blanks at the end of each line, improving performance
especially when you access SQL*Plus from a slow communications device. OFF allows SQL*Plus
to display trailing blanks.

TRIMS[POOL] {ON|OFF} ON removes blanks at the end of each line. OFF allows SQL*Plus to
include trailing blanks.

UND[ERLINE] {-|c|ON|OFF} sets the character used to underline column headings in SQL*Plus
reports.

VER[IFY] {ON|OFF} controls whether SQL*Plus lists the text of a SQL statement or PL/SQL command
before and after SQL*Plus replaces substitution variables with values. ON lists the text; OFF suppresses
the listing.

WRA[P] {ON|OFF} controls whether SQL*Plus truncates the display of a SELECTed row if it is too
long for the current line width. OFF truncates the SELECTed row; ON allows the SELECTed row to wrap
to the next line.
DESCRIPTION SET turns a SQL*PLUS feature ON or OFF or to a certain value. All of these features
are changed with the SET command and displayed with the SHOW command. SHOW will display a
particular command if its name follows the word SHOW, or all commands if SHOW is entered by itself.

SET CONDITION
Set condition is a logical expression containing a query, for example “Name IN (select. . .)”. The name
derives from the idea that the query condition will produce a set of records.

SET CONSTRAINTS
SEE ALSO INTEGRITY CONSTRAINT
FORMAT

SET { CONSTRAINT | CONSTRAINTS }
{ constraint [, constraint]... | ALL }
{ IMMEDIATE | DEFERRED };

DESCRIPTION SET CONSTRAINTS DEFERRED tells Oracle not to check the validity of a constraint
until the transaction is committed. This allows you to temporarily defer integrity checking of data.
Deferred constraints are usually used when performing DML against multiple related tables when you
cannot guarantee the order of the transactions. You must either own the table modified by the constraint
or you must have SELECT privilege on the table.

The default setting is SET CONSTRAINTS IMMEDIATE, in which case the constraints are checked
as soon as a record is inserted into the table.

SET OPERATOR
The set operator is either UNION, INTERSECT, or MINUS. See also QUERY OPERATORS.

SET ROLE
SEE ALSO ALTER USER, CREATE ROLE, Chapter 19

SET ROLE 1151

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1151

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:14:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

FORMAT

SET ROLE
{ role [IDENTIFIED BY password] [, role [IDENTIFIED BY password]]...
| ALL [EXCEPT role [, role]...]
| NONE };

DESCRIPTION SET ROLE enables or disables roles granted to a user for the current SQL session.
The first option lets the user enable specific roles, optionally giving a password if the role has one (see
CREATE ROLE). The second option lets the user enable ALL roles EXCEPT for specific ones; these roles
must be directly granted to the user, not roles granted through other roles. The ALL option does not
enable roles with passwords. The third option, NONE, disables all roles for the current session.

SET TRANSACTION
SEE ALSO COMMIT, ROLLBACK, SAVEPOINT, TRANSACTION, Chapter 40
FORMAT

SET TRANSACTION
{ { READ { ONLY | WRITE }
| ISOLATION LEVEL { SERIALIZABLE | READ COMMITTED }
| USE ROLLBACK SEGMENT rollback_segment }
[NAME 'test']

| NAME 'test' } ;

DESCRIPTION SET TRANSACTION starts a transaction. The standard SQL transaction guarantees
statement level read consistency, making sure that the data from a query is consistent while the statement
is executing. But some transactions need a stronger guarantee that a series of select statements, accessing
one or more tables, will see a consistent snapshot of all of the data in one instant in time. SET TRANSACTION
READ ONLY specifies this stronger read consistency. No changes to the queried data by other users
will affect the transaction’s view of the data. In a read-only transaction, you can use only the select,
lock table, set role, alter session, and alter system commands.

For transactions that include insert, update, or delete commands, Oracle assigns a rollback segment
to the transaction. SET TRANSACTION USE ROLLBACK SEGMENT specifies that the current transaction
will use a specific rollback segment.

SET TRANSACTION must be the first SQL statement in a transaction. Placing a COMMIT just before
SET TRANSACTION assures that this is true. The COMMIT at the end releases the snapshot of the data.
This is important because Oracle needs to release the resources it has set aside to maintain consistency.

SGA
See System Global Area.

SHARED POOL
An area in the Oracle SGA that contains both the dictionary cache and a shared area for the parsed
versions of all SQL commands within the database. Its size is determined by the SHARED_POOL_SIZE
parameter in the database’s initialization parameter file.

SHARED SERVER
The Oracle Shared Server, formerly known as the multithreaded server (MTS), supports connections to
Oracle via dispatcher processes and shared server processes. Dispatcher processes accept connection

1152 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1152

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:14:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

requests from users, and shared server processes communicate with the database. Shared Server allows
many users to share a small number of shared server processes, potentially reducing the amount of
memory required to support the database’s users. Shared Server is most effective when there are many
users initiating connections, and when the application users frequently interrupt their data input activity.

SHOW
SEE ALSO SET
FORMAT

SHO[W] { option }

option may be any parameter set via the SET command or the following:

system_variable
ALL
BTI[TLE]
ERR[ORS] [{ FUNCTION | PROCEDURE | PACKAGE | PACKAGE BODY |

TRIGGER| VIEW | TYPE | TYPE BODY | DIMENSION | JAVA CLASS } [schema.]name]
LNO
PARAMETERS [parameter_name]
PNO
REL[EASE]
REPF[OOTER]
REPH[EADER]
SGA
SPOO[L]
SQLCODE
TTI[TLE]
USER

DESCRIPTION SHOW displays the value of a feature of SET, or ALL features of SET, or of the other
SQL*PLUS items. More than one of these (including more than one SET feature) can follow the word
SHOW, and each will be displayed on a separate line. The rows returned will be ordered alphabetically.

system_variable is any variable set with the SET command.
BTI[TLE] displays the current btitle definition.
ERR[ORS] shows the latest errors encountered with the compilation of a stored object.
LNO shows the current line number (the line in the current page being displayed).
PARAMETERS shows the setting of a specific parameter, or all if none is specified.
PNO displays the page number.
REL[EASE] gives the release number of this version of Oracle.
REPF[OOTER] shows the report footer.
REPH[EADER] shows the report header.
SGA shows the current memory allocations for the SGA.
SPOO[L] tells whether output is being spooled (ON or OFF). See SPOOL.
SQLCODE shows the error message number of the most recent Oracle error.
TTI[TLE] displays the current ttitle definition.
USER shows the user’s ID.

SHOWMODE (SQL*PLUS)
See SET.

SHOWMODE (SQL*PLUS) 1153

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1153

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:14:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SHUTDOWN
To shut down is to disconnect an instance from the database and terminate the instance. See (and
contrast with) STARTUP. As a Server Manager command, SHUTDOWN’s options are NORMAL,
IMMEDIATE, and ABORT. See Chapter 40.

SIGN
SEE ALSO +, PRECEDENCE, Chapter 8
FORMAT

SIGN(value)

DESCRIPTION It equals 1 if value is positive, -1 if negative, 0 if zero.
EXAMPLE

SIGN(33) = 1
SIGN(-.6) = -1
SIGN(0) = 0

SIN
SEE ALSO ACOS, ASIN, ATAN, ATAN2, COS, COSH, NUMBER FUNCTIONS, SINH, TAN,
Chapter 8
FORMAT

SIN(value)

DESCRIPTION SIN returns the sine of an angle value expressed in radians.
EXAMPLE

select SIN(30*3.141593/180) Sine -- sine of 30 degrees in radians
from DUAL;

SINH
SEE ALSO ACOS, ASIN, ATAN, ATAN2, COS, NUMBER FUNCTIONS, SIN, TAN, Chapter 8
FORMAT

SINH(value)

DESCRIPTION SINH returns the hyperbolic sine of an angle value.

SMON
The System Monitor Process is one of the Oracle background processes used to perform recovery
and clean up unused temporary segments. See BACKGROUND PROCESS.

SNAPSHOT
“Snapshot” is an old name for a materialized view. See Chapter 23, CREATE MATERIALIZED VIEW,
and CREATE MATERIALIZED VIEW LOG.

1154 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1154

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:14:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SNAPSHOT REFRESH GROUP
A snapshot refresh group is a set of local materialized views that are all refreshed as a group. Refresh
groups allow data consistency to be enforced between materialized views. See Chapter 23.

SOUNDEX
SEE ALSO LIKE, Chapters 7 and 24
FORMAT

SOUNDEX(string)

DESCRIPTION SOUNDEX finds words that SOUND like an EXample string. SOUNDEX makes
certain assumptions about how letters and combinations of letters are usually pronounced. The two
words being compared must begin with the same letter. You can perform SOUNDEX searches of
individual words within text strings in CONTEXT indexes.
EXAMPLE

select LastName, FirstName, Phone from ADDRESS
where SOUNDEX(LastName) = SOUNDEX('SEPP');

LASTNAME FIRSTNAME PHONE
------------------------- ------------------------- ------------
SZEP FELICIA 214-522-8383
SEP FELICIA 214-522-8383

SPACE (SQL*PLUS)
See SET.

SPOOL
SEE ALSO SET, Chapter 6
FORMAT

SPO[OL] [file|OFF|OUT];

DESCRIPTION SPOOL starts or stops spooling (copying) of SQL*PLUS output to a host system file
or the system printer. SPOOL file makes SQL*PLUS spool all output to the named file. If the file type is
not specified, SPOOL adds a default, similar to what SAVE does, usually .LST, but with some variation
by host. OFF stops spooling. OUT stops spooling and sends the file to the printer. To spool output to a
file without displaying it, SET TERMOUT OFF in the start file prior to the SQL statement, but before the
SPOOL command. SPOOL by itself shows the name of the current (or most recent) spool file.

SQL
SQL (Structured Query Language) is the ANSI industry-standard language, used to manipulate information
in a relational database and used in Oracle and IBM DB2 relational database management systems.
SQL is formally pronounced “sequel,” although common usage also pronounces it “S.Q.L.”

SQL 1155

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1155

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:14:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL CURSOR
SEE ALSO %FOUND, %ISOPEN, %NOTFOUND, %ROWCOUNT, Chapter 27
DESCRIPTION SQL is the name of the cursor opened implicitly any time the SQL statement
being processed is not part of an explicitly named and opened cursor (see DECLARE). There is only
one of these at any time. The cursor attributes %FOUND and %NOTFOUND can be tested by
checking SQL%FOUND and SQL%NOTFOUND before or after an insert, update, or delete (which
are never associated with an explicit cursor) or a single-row select that happened to be executed
without an explicit cursor.

See %FOUND for details on these tests. See %ROWCOUNT for details on the values this attribute
has under different conditions. SQL%ISOPEN always evaluates to FALSE because Oracle closes the
SQL cursor automatically after executing the SQL statement.

SQL*LOADER
SQL*LOADER is a utility for loading data into an Oracle database. See SQLLDR and Chapter 21.

SQL*PLUS
See SQLPLUS.

SQLCASE (SQL*PLUS)
See SET.

SQLCODE
SEE ALSO EXCEPTION, SQLERRM
FORMAT

variable := SQLCODE

DESCRIPTION SQLCODE is an error function that returns the latest error number, but outside of
an exception handler (see EXCEPTION WHEN) always returns 0. This is because the occurrence of an
exception (that is, when SQLCODE would be nonzero) is expected to immediately transfer control to
the EXCEPTION part of the PL/SQL block. Once there, SQLCODE can be tested for its value, or used
to assign a value to a variable.

SQLCODE cannot be used as a part of a SQL statement (such as to insert the value of the error code
into a error table). However, you can set a variable equal to SQLCODE, and then use the variable in a
SQL statement:

sql_error := sqlcode;
insert into PROBLEMLOG values (sql_error);

SQLCONTINUE (SQL*PLUS)
See SET.

SQLERRM
SEE ALSO EXCEPTION, EXCEPTION_INIT, PRAGMA, SQLCODE
FORMAT

SQLERRM[(integer)]

1156 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1156

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:14:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION Without integer supplied, SQLERRM returns the error message related to the
current SQLCODE. With an integer supplied, it returns the error message related to that integer value.
Like SQLCODE, this function cannot be used directly in a SQL statement, but can be used in an
assignment:

error_message := sqlerrm;

or, to retrieve the error message associated with the error code 1403:

error_message := sqlerrm(1403);

Outside of an exception handler (see SQLCODE), this function without an integer argument will
always return “normal, successful completion.” In an exception handler, you will get one of these
messages:

■ The message associated with an Oracle error.

■ The words “User-defined exception” for an explicitly raised user-exception where you did
not assign a message text.

■ A user-defined message text, loaded using the PRAGMA EXCEPTION_INIT.

SQLJ
SQLJ is a pre-processor that generates JDBC-compatible code. In general, SQLJ code is simpler to write
and debug than JDBC code.

SQLLDR
SEE ALSO Chapter 21
FORMAT Parameters for the SQLLDR command:

Userid Username and password for the load, separated by a slash.

Control Name of the control file.

Log Name of the log file.

Bad Name of the bad file.

Discard Name of the discard file.

Discardmax Maximum number of rows to discard prior to stopping the load. Default is to allow
all discards.

Skip Number of logical rows in the input file to skip prior to starting to load data. Usually
used during re-loads from the same input file following a partial load. Default is 0.

Load Number of logical rows to load. Default is all.

Errors Number of errors to allow. Default is 50.

Rows Number of rows to commit at a time. Use this parameter to break up the transaction
size during the load. Default for conventional path loads is 64, for Direct Path loads
is all rows.

Bindsize Size of conventional path bind array in bytes. Default is operating system-dependent.

Silent Suppress messages during the load.

Direct Use Direct Path loading. Default is FALSE.

SQLLDR 1157

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1157

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:14:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Parfile Name of the parameter file that contains additional load parameter specifications.

Parallel Perform parallel loading. Default is FALSE.

File File to allocate extents from (for parallel loading).

Skip_Unusable_Indexes Allows loads into tables that have indexes in unusable states. Default is FALSE.

Skip_Index_Maintenance Stops index maintenance for Direct Path loads, leaving them in unusable states.
Default is FALSE.

Readsize Size of the Read buffer in bytes; default is 1048576.

External_Table Use external table for load. Default is NOT_USED, other values are
GENERATE_ONLY and EXECUTE.

ColumnArrayRows Number of rows for direct path column array. Default is 5000.

StreamSize Size of direct path stream buffer in bytes. Default is 256000.

Multithreading Use multithreading in direct path

Resumable Enable or disable resumable for current session; default is FALSE.

Resumable_Name Text string used to identify resumable statements.

Resumable_Timeout Wait time, in seconds, for Resumable. Default is 7200.

DESCRIPTION SQL*LOADER loads data from external files into tables in the Oracle database.
See Chapter 21 for examples. The syntax for the control file is:
Options clause::=

Load statement::=

1158 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1158

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:14:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

infile_clause::=

on_file_proc_clause::=

concatenate_clause::=

SQLLDR 1159

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1159

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:14:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

into_table_clause::=

cond_spec::=

1160 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1160

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:14:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

delim_spec::=

full_fieldname::=

termination_spec::=

enclosure_spec::=

OID_spec::=

SID_spec::=

SQLLDR 1161

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1161

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:15:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

field_list::=

d_gen_fld_spec::=

REF_spec::=

1162 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1162

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:15:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

init_spec::=

BFILE_spec::=

filler_fld_spec::=

scalar_fld_spec::=

LOBFILE_spec::=

pos_spec::=

SQLLDR 1163

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1163

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:15:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

datatype_spec::=

col_obj_fld_spec::=

1164 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1164

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:15:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

collection_fld_spec::=

nested_table_spec::=

VARRAY_spec::=

SDF_spec::=

count_spec::=

SQLNUMBER (SQL*PLUS)
See SET.

SQLPLUS
SEE ALSO Chapters 6, 14
FORMAT

SQLPLUS [user[/password][@database] [@file]] [-SILENT] |
[/NOLOG] [-SILENT] | [-?]

DESCRIPTION SQLPLUS starts up SQL*PLUS. Entering both username and password will log you
onto your default database. Entering just your username will cause SQL*PLUS to prompt you for your
password, which will not be displayed as you enter it. Entering @database will connect you to the named

SQLPLUS 1165

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1165

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:15:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

database instead of your default. The @database can be anywhere, so long as the computer you are
logging onto is connected to it through Oracle Net. There must be no space between password and
@database. For more information about Oracle Net, see Chapter 22. @file will run the start file immediately
after SQL*PLUS is loaded. There must be a space before @file. If the username and password are not
entered on the command line with SQLPLUS, they must be the first line in the file. If they are in the file,
and you enter them on the command line, you’ll get an error message but the start file will run correctly
anyway. To put user and password at the top of the file, separate them with a slash (/):

GEORGE/MISTY

/NOLOG makes SQL*PLUS start, but does not log you onto the Oracle database. You must then
use CONNECT to attach to Oracle. (See CONNECT).

-SILENT suppresses all of SQL*PLUS’s screen displays, including the command prompts and even
the SQL*PLUS logon and copyright information. It makes the use of SQL*PLUS by another program
invisible to the program’s user.

-? displays the current version and level number for SQL*PLUS without actually starting it up.
EXAMPLE Normal startup of SQL*PLUS follows:

sqlplus george/misty

To start up on the database EDMESTON, use this:

sqlplus george/misty@EDMESTON

To start the report file REPORT6, which includes the name and password as its first line, use this:

sqlplus @report6

To start the report file REPORT6, which includes the name and password as its first line, on the
database EDMESTON, use this:

sqlplus george/misty@EDMESTON @report6

SQLPREFIX (SQL*PLUS)
See SET.

SQLPROMPT (SQL*PLUS)
See SET.

SQLTERMINATOR (SQL*PLUS)
See SET.

SQRT
SEE ALSO POWER
FORMAT

SQRT(value)

DESCRIPTION SQRT finds the square root of value.

1166 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1166

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:15:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

EXAMPLES

SQRT(64) = 8

The square root of negative numbers is not available in Oracle.

START
SEE ALSO @,@@, ACCEPT, DEFINE, SPOOL, Chapter 6
FORMAT

STA[RT] file [parameter] [parameter]...

DESCRIPTION START executes the contents of the specified start file (so called because it is
started by this command). The file may contain any SQL*PLUS commands. If no file type is specified,
START assumes it is .sql. Any parameters following the file name are substituted into variables in the
start file; the variables must be named &1, &2, &3, and so on, and will receive the parameters in order,
from left to right. Every occurrence in the start file of &1 will get the first parameter. Parameters consisting
of more than one word may be enclosed in single quotes (''); otherwise, parameters are limited to a
single word or number each.
EXAMPLE

start checkout INNUMERACY

where the file checkout.sql contains a variable named &1, into which the string ‘INNUMERACY’ will
be substituted.

STARTUP
Starting up is the process of starting an instance, presumably with the intent of mounting and opening
a database in order to make a database system available for use. See Chapter 40.

STDDEV
SEE ALSO GROUP FUNCTIONS, VARIANCE, Chapter 8
FORMAT

STDDEV([DISTINCT | ALL] value) [OVER (analytic_clause)]

DESCRIPTION STDDEV gives the standard deviation from the norm of values in a group of rows.
It ignores NULL values in its calculation.

STDDEV_POP
SEE ALSO GROUP FUNCTIONS, STTDEV, STDDEV_SAMP
FORMAT

STDDEV_POP (expr) [OVER (analytic_clause)]

DESCRIPTION STDDEV_POP computes the population standard deviation and returns the square
root of the population variance.

STDDEV_SAMP
SEE ALSO GROUP FUNCTIONS, STTDEV, STDDEV_POP

STDDEV_SAMP 1167

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1167

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:15:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

FORMAT

STDDEV_POP (expr) [OVER (analytic_clause)]

DESCRIPTION STDDEV_SAMP computes the cumulative sample standard deviation and returns
the square root of the sample variance.

STORAGE
SEE ALSO BLOCK, CREATE CLUSTER, CREATE INDEX, CREATE ROLLBACK SEGMENT, CREATE
MATERIALIZED VIEW, CREATE MATERIALIZED VIEW LOG, CREATE TABLE, CREATE TABLESPACE,
as well as the ALTER statement for each of these.
FORMAT
storage_clause::=

DESCRIPTION The STORAGE clause is optional in any of the CREATE and ALTER statements
listed under the “See also” section. It is not a SQL statement, and cannot stand alone. In the following

1168 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1168

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:15:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

paragraphs, a block is a database block (see BLOCK) with a size depending on the operating system
and the database initialization parameters.

INITIAL allocates the first extent of space to the object. If INITIAL is not specified, it defaults to
five data blocks. The smallest initial extent you can allocate is two data blocks, and the largest depends
on your operating system. You can express these numbers either as a simple integer or as an integer
followed by K or M to indicate kilobytes or megabytes, respectively.

NEXT is the size of the extent allocated after the initial extent has been filled. If not specified, it
defaults to five data blocks. The smallest next extent you can allocate is one data block, and the largest
depends on the operating system. You can use K and M for kilobytes and megabytes.

PCTINCREASE controls the rate of growth of extents beyond the second. If set to 0, every
additional extent will be the same size as the second extent, specified by NEXT. If PCTINCREASE is
a positive integer, each succeeding extent will be that percentage larger than the previous one. For
example, if PCTINCREASE was 50 (the default, if it is not specified), each additional extent would be
50 percent larger than the previous one. PCTINCREASE cannot be negative. The minimum PCTINCREASE
is 0, and the maximum depends on the operating system. Oracle rounds the extent size up to the next
multiple of the operating system block size.

MINEXTENTS defaults to 1 (or 2 for a rollback segment) if it is not specified, meaning that when
the object is created, only the initial extent is allocated. A number larger than 1 will create that many
total extents (which don’t need to be contiguous on disk, as each extent itself does), and the size of
each of them will be determined by the values set with INITIAL, NEXT, and PCTINCREASE. All of
these will be allocated when the object is created.

MAXEXTENTS sets the limit on the total number of extents that can be allocated. The minimum
limit is 1, with the default and maximum depending on the operating system. You can specify a
MAXEXTENTS value of UNLIMITED.

OPTIMAL sets an optimal size in bytes for a rollback segment. You can use K and M for kilobytes
and megabytes. Oracle will dynamically deallocate extents in the rollback segment to maintain the
optimal size. NULL means that Oracle never deallocates the rollback segment extents, and this is the
default behavior. You must supply a size greater than or equal to the initial space allocated for the
rollback segment by the MINEXTENTS, INITIAL, NEXT, and PCTINCREASE parameters.

FREELIST GROUPS gives the number of groups of free lists, with a default value of 1. This setting
applies to the Real Application Clusters option of Oracle for tables, clusters, or indexes.

FREELISTS sets the number of free lists for each free list group.
BUFFER_POOL sets the buffer pool into which the table’s blocks will be read. By default, all blocks

are read into the DEFAULT pool. You can create separate pools for blocks you want to keep in memory
longer (the KEEP pool) or for those you wish to age out of memory quickly (the RECYCLE pool). See the
Oracle9i DBA Handbook for details.

STORE
SEE ALSO SAVE, START, Chapter 14
FORMAT

STORE SET file[.ext] [CRE[ATE] | REP[LACE] | APP[END]]

DESCRIPTION STORE saves all of your SQLPLUS environment settings to a file.
EXAMPLE The following command saves the current SQLPLUS environment settings to a file named
SETTINGS.SQL.

store settings.sql

STORE 1169

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1169

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:15:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

STRUCTURED QUERY LANGUAGE
See SQL.

SUBPARTITION
A subpartition is a partition of a partition. Typically, a range partition is hash partitioned, creating multiple
hash subpartitions for each of the range partitions. See Chapter 18.

SUBQUERY
A query (that is, a select statement) may be used as a part of another SQL statement (called the parent,
or outer statement), including CREATE TABLE, delete, insert, select, and update, or in the SQL*PLUS
COPY command, in order to define the rows or columns that the parent will use in its execution. The
results of the child query (also called a subquery) are not themselves displayed, but are passed to the
parent SQL statement for its use. The following rules apply:

■ In an update or CREATE TABLE command, the subquery must return one value for each
column to be inserted or updated. The value or values are then used by the parent SQL
statement to insert or update the rows.

■ A subquery cannot contain order by and for update of clauses.

■ A “correlated” subquery is used in the where clause of a select statement, and references an
alias for the table used by the parent select command. It is tested once for each row evaluated
for selection by the parent select statement (a standard subquery evaluated just once for the
parent query). See Chapter 12 for further details.

Other than these restrictions, normal rules for a select statement apply.

SUBSTITUTION
See &, &&, ACCEPT, DEFINE

SUBSTR
SEE ALSO ||, CHARACTER FUNCTIONS, INSTR, Chapter 7
FORMAT

SUBSTR(string, start [,count])

DESCRIPTION SUBSTRing clips out a piece of a string beginning at start and going for count
characters. If count is not specified, the string is clipped from start and goes to the end of the string.
EXAMPLE

SUBSTR('NEWSPAPER',5)

produces this:

PAPER

SUFFIX (SQL*PLUS)
See SET.

1170 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1170

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:15:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SUM
SEE ALSO COMPUTE, GROUP FUNCTIONS, Chapter 8
FORMAT

SUM([DISTINCT | ALL] value) [OVER (analytic_clause)]

DESCRIPTION SUM is the sum of all values for a group of rows. DISTINCT makes SUM add
each unique value to the total only once; this is usually not very meaningful.

SYNONYM
A synonym is a name assigned to a table, view, or sequence that may thereafter be used to refer to it.
If you have access to another user’s table, you may create a synonym for it and refer to it by the synonym
alone, without entering the user’s name as a qualifier. See Chapter 22 and Chapter 37.

SYNTAX
Syntax is a set of rules that determine how to construct a valid statement in a computer language such
as SQL.

SYNTAX OPERATORS
SEE ALSO LOGICAL OPERATORS, PRECEDENCE
DESCRIPTION Syntax operators have the highest precedence of all operators, and may appear
anywhere in a SQL statement. Here they are listed in descending order of precedence. Operators of
equal precedence are evaluated from left to right. Most of these are listed and described separately
under their own symbols.

Operator Function

- SQL*PLUS command continuation. Continues a command on the following line.

& Prefix for parameters in a SQL*PLUS start file. Words are substituted for &1, &2, and so on. See START.

& && Prefix for a substitution variable in a SQL command in SQL*PLUS. SQL*PLUS will prompt for a
value if an undefined & or && variable is found. && also defines the variable and saves the value;
‘&’ does not. See & and &&, DEFINE, and ACCEPT.

: Prefix for a variable in SQL*FORMS and for a host variable in PL/SQL.

. Variable separator, used in SQL*PLUS to separate the variable name from a suffix, so that the suffix
is not considered a part of the variable name, and in SQL between user, table, and column names.

() Surrounds subqueries, lists of columns, or controls precedence.

‘ Surrounds a literal, such as a character string or date constant. To use a ‘ in a string constant, use two ‘
marks (not a double quotation mark).

“ Surrounds a table or column alias that contains special characters or a space.

“ Surrounds literal text in a date format clause of TO_CHAR.

@ Precedes a database name in a COPY, or a link name in a from clause.

SYNTAX OPERATORS 1171

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1171

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:15:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SYS (ORACLE USER)
SYS is one of the DBA users that is created when a database system is installed and initialized (the
other is SYSTEM). SYS owns most of the data dictionary tables, while SYSTEM owns the views created
on those base tables.

SYS_CONNECT_BY_PATH
SEE ALSO CONNECT BY, Chapter 13
FORMAT

SYS_CONNECT_BY_PATH (column, char)

DESCRIPTION SYS_CONNECT_BY_PATH is valid only in hierarchical queries. It returns the path
of a column value from root to node, with column values separated by char for each row returned by
CONNECT BY condition.

SYS_CONTEXT
SEE ALSO CREATE CONTEXT
FORMAT

SYS_CONTEXT (namespace , parameter [, length])

DESCRIPTION SYS_CONTEXT returns the value of parameter associated with the context
namespace.

SYS_DBURIGEN
SEE ALSO Chapter 41
FORMAT

SYS_DBURIGEN
({ column | attribute } [rowid]

[, { column | attribute } [rowid]]...
[, 'text ()'])

DESCRIPTION SYS_DBURIGEN takes as its argument one or more columns or attributes, and
optionally a rowid, and generates a URL of datatype DBUriType to a particular column or row object.
You can then use the URL to retrieve an XML document from the database.

All columns or attributes referenced must reside in the same table. They must perform the function
of a primary key. That is, they need not actually match the primary keys of the table, but they must
reference a unique value. If you specify multiple columns, all but the final column identify the row in
the database, and the last column specified identifies the column within the row.

By default the URL points to a formatted XML document. If you want the URL to point only the text
of the document, specify the optional ‘text()’. (In this XML context, the lowercase ‘text’ is a keyword, not
a syntactic placeholder.)

SYS_EXTRACT_UTC
SEE ALSO Chapter 8
FORMAT

SYS_EXTRACT_UTC (datetime_with_timezone)

1172 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1172

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:15:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION SYS_EXTRACT_UTC extracts the UTC (Coordinated Universal Time) from a datetime
with time zone displacement.

SYS_GUID
FORMAT

SYS_GUID ()

DESCRIPTION SYS_GUID generates and returns a globally unique identifier (RAW value) made
up of 16 bytes. On most platforms, the generated identifier consists of a host identifier and a process or
thread identifier of the process or thread invoking the function, and a nonrepeating value (sequence of
bytes) for that process or thread.

SYS_TYPEID
SEE ALSO Chapter 33
FORMAT

SYS_TYPEID (object_type_value)

DESCRIPTION SYS_TYPEID returns the typeid of the most specific type of the operand. This value
is used primarily to identify the type-discriminant column underlying a substitutable column. For example,
you can use the value returned by SYS_TYPEID to build an index on the type-discriminant column.

SYS_XMLAGG
SEE ALSO SYS_XMLGEN, Chapter 41
FORMAT

SYS_XMLAGG (expr [fmt])

DESCRIPTION SYS_XMLAGG aggregates all of the XML documents or fragments represented
by expr and produces a single XML document. It adds a new enclosing element with a default name
ROWSET. If you want to format the XML document differently, specify fmt, which is an instance of
the SYS.XMLGenFormatType object.

SYS_XMLGEN
SEE ALSO SYS_XMLAGG, Chapter 41
FORMAT

SYS_XMLGEN (expr [fmt])

DESCRIPTION SYS_XMLGEN takes an expression that evaluates to a particular row and column
of the database, and returns an instance of type SYS.XMLType containing an XML document. The expr
can be a scalar value, a user-defined type, or an XMLType instance.

If expr is a scalar value, the function returns an XML element containing the scalar value. If expr is
a type, the function maps the user-defined type attributes to XML elements. If expr is an XMLType instance,
then the function encloses the document in an XML element whose default tag name is ROW.

By default the elements of the XML document match the elements of expr. For example, if expr resolves
to a column name, the enclosing XML element will be the same column name. If you want to format the
XML document differently, specify fmt, which is an instance of the SYS.XMLGenFormatType object.

SYS_XMLGEN 1173

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1173

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:15:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SYSDATE
SEE ALSO Chapter 9
FORMAT

SYSDATE

DESCRIPTION SYSDATE returns the current date and time.
EXAMPLE

select SYSDATE from DUAL;

SYSTEM (ORACLE TABLESPACE)
SYSTEM is the name given to the first tablespace in a database. It contains the data dictionary.

SYSTEM (ORACLE USER)
SYSTEM is one of the DBA users that is created when database system is installed and initialized (the
other is SYS). While SYS owns most of the data dictionary tables, SYSTEM owns the views created on
those base tables.

SYSTEM GLOBAL AREA (SGA)
SGA is a shared storage area in memory that is the center of Oracle activity while the database is
running. The size of the SGA (and performance of the system) depends on the values of the variable
initialization parameters. The SGA provides communication between the user and the background
processes.

SYSTIMESTAMP
SEE ALSO Chapter 9
FORMAT

SYSTIMESTAMP

DESCRIPTION SYSTIMESTAMP returns the current date and time.
EXAMPLE

select SYSTIMESTAMP from DUAL;

TABLE
A table is the basic data storage structure in a relational database management system. A table consists
of one or more units of information (rows), each of which contains the same kinds of values (columns).
See CREATE TABLE.

TABLE-PL/SQL
SEE ALSO DATA TYPES, RECORD (PL/SQL)
FORMAT

TYPE new_type IS TABLE OF
{type | table.column%TYPE}[NOT NULL]
INDEX BY BINARY_INTEGER;

1174 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1174

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:15:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION A TABLE declaration declares a new type that can then be used to declare variables
of that type. A PL/SQL table has one column and an integer key and can have any number of rows.
The datatype of the column can either be one of the standard PL/SQL datatypes (including another
RECORD but not a TABLE), or it can be a reference to the type of a particular column in a specific
database table. Each field may also have a NOT NULL qualifier that specifies that the field must
always have a non-null value.

The index by binary integer clause is required and reminds you that the index is an integer. You
can refer to any row of the table with the index in parentheses.

If you refer to an index to which you have not assigned any data, PL/SQL raises the
NO_DATA_FOUND exception.

TABLE ALIAS
A table alias is a temporary substitute for a table name, defined in the from clause of a select
statement. See AS and Chapter 11.

TABLE CONSTRAINT
A table constraint is an integrity constraint that applies to multiple columns of the same table. See
INTEGRITY CONSTRAINT.

TABLESPACE
A tablespace is a file or set of files that is used to store Oracle data. An Oracle database is composed
of the SYSTEM tablespace and most likely other tablespaces. See Chapters 20 and 40.

TAN
SEE ALSO ACOS, ASIN, ATAN, ATAN2, COS, COSH, NUMBER FUNCTIONS, SIN, TANH, Chapter 8
FORMAT

TAN(value)

DESCRIPTION TAN returns the tangent of an angle value expressed in radians.
EXAMPLE

select TAN(135*3.141593/180) Tan -- tangent of 135 degrees in radians
from DUAL;

TANH
SEE ALSO ACOS, ASIN, ATAN, ATAN2, COS, COSH, NUMBER FUNCTIONS, SIN, TAN, Chapter 8
FORMAT

TANH(value)

DESCRIPTION TANH returns the hyperbolic tangent of an angle value.

TEMPORARY SEGMENT
A temporary segment is a storage space within a tablespace used to hold intermediate results of a SQL
statement. For example, temporary segments are used when sorting large tables. Temporary segments
are usually stored in tablespaces dedicated to them; see CREATE TABLESPACE.

TEMPORARY SEGMENT 1175

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1175

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:15:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TERMINAL NODE
In a tree-structured table, a terminal node is a row that has no child row. It’s the same as LEAF.

TERMOUT (SQL*PLUS)
See SET.

TEXT INDEX
A text index is a set of tables and indexes used by text search programs. Like the index in a book, a text
index contains tables of text entries and their locations. See Chapter 24.

THEME
A theme is a category of a text document. Text entries may contain themes that do not appear as words
within the document. For example, a document about mortgages could have ‘banking’ as one of its
themes even if the word ‘banking’ did not appear in the document. See Chapter 24.

THROW
In Java, programs throw exceptions via the try clause, and process exceptions via the catch and finally
clauses. See Chapter 34.

TIME (SQL*PLUS)
See SET.

TIMESTAMP
The TIMESTAMP (fractional_seconds_precision) datatype records year, month, and day values
of date, as well as hour, minute, and second values of time, where fractional_seconds_precision
is the number of digits in the fractional part of the SECOND datetime field. Accepted values of
fractional_seconds_precision are 0 to 9. The default is 6. See DATA TYPES and Chapter 9.

TIMESTAMP WITH TIME ZONE
The TIMESTAMP (fractional_seconds_precision) WITH TIME ZONE datatype records year, month,
and day values of date, as well as hour, minute, and second values of time, where
fractional_seconds_precision is the number of digits in the fractional part of the SECOND datetime
field. Accepted values of fractional_seconds_precision are 0 to 9. The default is 6.

TIMESTAMP WITH LOCAL TIME ZONE
The TIMESTAMP (fractional_seconds_precision) WITH LOCAL TIME ZONE datatype records the
TIMESTAMP WITH TIME ZONE values, normalized to the database time zone when the data is stored.
When the data is retrieved, users see the data in the session time zone.

TIMING (Form 1-SQL*PLUS)
See SET.

TIMING (Form 2-SQL*PLUS)
SEE ALSO CLEAR, SET

1176 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1176

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:15:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

FORMAT

TIMI[NG] [START area | STOP | SHOW];

DESCRIPTION TIMING keeps track of elapsed time from START to STOP by area name. START
opens a timing area and makes area its title. area must be a single word. Several areas may exist at
once. The most recently created one is the current timing area until it is deleted, when the previously
created one becomes current. Timing areas are, in effect, nested. The most recently created will always
show the least amount of time, because the elapsed time of those before it will be, by definition, longer.
Total time for any timing area is its own net time plus those of all the timing areas that followed it.

SHOW gives the current timing area’s name and elapsed time.
STOP gives the current timing area’s name and elapsed time, deletes the area, and makes the one

previous to it (if there was one) the current timing area. See the SQL*Plus User’s Guide and Reference
for your host operating system for details on the precise meaning of time on your machine.
EXAMPLE To create a timing area named 1, you enter this:

timing start 1

To see the current area name and time, but allow it to continue running, enter the following:

timing show

To see the current timing area’s name and accumulated time, stop it, and make the previous one
current, use this:

timing stop

TO_CHAR (character formats)
SEE ALSO TO_CHAR (date and number formats)
FORMAT

TO_CHAR (nchar | clob | nclob)

DESCRIPTION The TO_CHAR (character) function converts NCHAR, NVARCHAR2, CLOB, or
NCLOB data to the database character set.
EXAMPLE

SELECT TO_CHAR(Title) FROM BOOKSHELF;

TO_CHAR (date and number formats)
SEE ALSO DATE FORMATS, DATE FUNCTIONS, NUMBER FORMATS, TO_DATE, Chapter 9
FORMAT

TO_CHAR(date,'format')
TO_CHAR(number,'format')

DESCRIPTION TO_CHAR reformats number or date according to format. date must be a column
defined as an Oracle DATE datatype. It cannot be a string even if it is in the default date format of
DD-MON-YY. The only way to use a string in which date appears in the TO_CHAR function is to
enclose it within a TO_DATE function. The formats possible for this function are numerous. They are
listed under NUMBER FORMATS and DATE FORMATS.

TO_CHAR (date and number formats) 1177

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1177

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:15:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

EXAMPLE Note the format in the following example. This is necessary in SQL*PLUS to avoid the
current default date width produced by TO_CHAR, which is about 100 characters wide:

column Formatted format a30 word_wrapped heading 'Formatted'

select BirthDate, TO_CHAR(BirthDate,'MM/DD/YY') Formatted
from BIRTHDAY
where FirstName = 'VICTORIA';

BIRTHDATE Formatted
--------- ------------------------------
20-MAY-49 05/20/49

TO_CLOB
SEE ALSO Chapters 18 and 32
FORMAT

TO_CLOB (lob_column | char)

DESCRIPTION TO_CLOB converts NCLOB values in a LOB column or other character strings to
CLOB values. char can be any of the datatypes CHAR, VARCHAR2, NCHAR, NVARCHAR2, CLOB,
or NCLOB. Oracle executes this function by converting the underlying LOB data from the national
character set to the database character set. Note that LONG values can be converted directly to CLOB
columns via ALTER TABLE.

TO_DATE
SEE ALSO DATE FORMATS, DATE FUNCTIONS, TO_CHAR, Chapter 8
FORMAT

TO_DATE(string,'format')

DESCRIPTION TO_DATE converts a string in a given format into an Oracle date. It also will accept
a number instead of a string, with certain limits. string is a literal string, a literal number, or a database
column containing a string or a number. In every case but one, the format must correspond to that which
is described by the format. Only if a string is in the format 'DD-MON-YY' can the format be omitted.
Note that format is restricted. See DATE FORMATS for a list of acceptable formats for TO_DATE.
EXAMPLE

select TO_DATE('02/22/02','MM/DD/YY') from DUAL;

TO_DATE('

22-FEB-02

TO_DSINTERVAL
SEE ALSO DATA TYPES
FORMAT

TO_DSINTERVAL (char ['nlsparam'])

1178 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1178

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:15:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION TO_DSINTERVAL converts a character string of CHAR, VARCHAR2,
NCHAR, or NVARCHAR2 datatype to an INTERVAL DAY TO SECOND type. char is the
character string to be converted. The only valid NLS parameter you can specify in this function is
NLS_NUMERIC_CHARACTERS. This argument can have the form: NLS_NUMERIC_CHARACTERS =
“dg” where d and g represent the decimal character and group separator respectively.

TO_LOB
SEE ALSO INSERT, Chapter 32
FORMAT

TO_LOB(long_column)

DESCRIPTION TO_LOB converts LONG values in long_column to LOB values. You can apply
this function only to a LONG column, and only in the select list of a subquery in an insert command.

TO_MULTI_BYTE
SEE ALSO CONVERSION FUNCTIONS, Chapter 10
FORMAT

TO_MULTI_BYTE(string)

DESCRIPTION TO_MULTI_BYTE converts the single-byte characters in a character string to their
multi-byte equivalents. If a character has no multi-byte equivalent, the function returns the character
unconverted.

TO_NCHAR (character)
SEE ALSO CONVERSION FUNCTIONS, TRANSLATE …USING
FORMAT

TO_NCHAR ({char | clob | nclob} [, fmt [, 'nlsparam']])

DESCRIPTION TO_NCHAR (character) converts a character string, CLOB, or NCLOB from the
database character set to the national character set. This function is equivalent to the TRANSLATE ...
USING function with a USING clause in the national character set.

TO_NCHAR(datetime)
SEE ALSO CONVERSION FUNCTIONS
FORMAT

TO_NCHAR ({ datetime | interval } [, fmt [, 'nlsparam']])

DESCRIPTION TO_NCHAR (datetime) converts a character string of DATE, TIMESTAMP,
TIMESTAMP WITH TIME ZONE, TIMESTAMP WITH LOCAL TIME ZONE, INTERVAL MONTH TO
YEAR, or INTERVAL DAY TO SECOND datatype from the database character set to the national
character set.

TO_NCHAR(number)
SEE ALSO CONVERSION FUNCTIONS

TO_NCHAR(number) 1179

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1179

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:15:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

FORMAT

TO_NCHAR (n [, fmt [, 'nlsparam']])

DESCRIPTION TO_NCHAR (number) converts a number to a string in the NVARCHAR2
character set. The optional fmt and nlsparam corresponding to n can be of DATE, TIMESTAMP,
TIMESTAMP WITH TIME ZONE, TIMESTAMP WITH LOCAL TIME ZONE, INTERVAL MONTH TO
YEAR, or INTERVAL DAY TO SECOND datatype.

TO_NCLOB
SEE ALSO CONVERSION FUNCTIONS, Chapter 32
FORMAT

TO_NCLOB (lob_column | char)

DESCRIPTION TO_NCLOB converts CLOB values in a LOB column or other character strings to
NCLOB values. char can be any of the datatypes CHAR, VARCHAR2, NCHAR, NVARCHAR2, CLOB,
or NCLOB. Oracle implements this function by converting the character set of the LOB column from
the database character set to the national character set.

TO_NUMBER
SEE ALSO CONVERSION FUNCTIONS, Chapter 10
FORMAT

TO_NUMBER(string [, fmt [, 'nlsparam']])

DESCRIPTION TO_NUMBER converts a character string to a number datatype. It requires that
the characters in the string be a properly formatted number with only the characters 0-9, -, +, and .
included. This function is largely unnecessary due to automatic data conversion done by Oracle,
except when used for a character column containing numbers in an order by or a comparison.
EXAMPLE

TO_NUMBER('333.46')

TO_SINGLE_BYTE
SEE ALSO CONVERSION FUNCTIONS, Chapter 10
FORMAT

TO_SINGLE_BYTE(string)

DESCRIPTION TO_SINGLE_BYTE converts the multi-byte characters in a character string to their
single-byte equivalents. If a multi-byte character has no single-byte equivalent, the function returns the
character unconverted.

TO_TIMESTAMP
SEE ALSO CONVERSION FUNCTIONS, TO_CHAR, TIMESTAMP, TO_TIMESTAMP_TZ
FORMAT

TO_TIMESTAMP (char [, fmt ['nlsparam']])

1180 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1180

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:15:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION TO_TIMESTAMP converts char of CHAR, VARCHAR2, NCHAR, or NVARCHAR2
datatype to a value of TIMESTAMP datatype, using a fmt format if char is not in the default format
of the TIMESTAMP datatype. The optional nlsparam has the same purpose in this function as in the
TO_CHAR function for date conversion.

TO_TIMESTAMP_TZ
SEE ALSO CONVERSION FUNCTIONS, TO_TIMESTAMP, TIMESTAMP WITH TIME ZONE
FORMAT

TO_TIMESTAMP_TZ (char [, fmt ['nlsparam']])

DESCRIPTION TO_TIMESTAMP_TZ converts char of CHAR, VARCHAR2, NCHAR, or NVARCHAR2
datatype to a value of TIMESTAMP WITH TIME ZONE datatype.

TO_YMINTERVAL
SEE ALSO CONVERSION FUNCTIONS, INTERVAL YEAR TO MONTH
FORMAT

TO_YMINTERVAL (char)

DESCRIPTION TO_YMINTERVAL converts a character string of CHAR, VARCHAR2, NCHAR, or
NVARCHAR2 datatype to an INTERVAL YEAR TO MONTH type, where char is the character string to
be converted.

TRANSACTION
A transaction is a sequence of SQL statements that Oracle treats as a single unit. The set of changes is
made permanent with the COMMIT statement. Part or all of a transaction can be undone with the
ROLLBACK statement.

Oracle manages transactions both with locking (see LOCK) and a multiversion consistency model,
which essentially behaves as though each transaction had its own copy of the database—that is, that
there are multiple, overlapping versions of the database in existence at any given time. A transaction
starts with the execution of the first SQL statement in the transaction and ends with either the COMMIT
or ROLLBACK statement. By default, Oracle guarantees that a transaction has statement-level read
consistency, which means that when you execute a query, the data stays the same while Oracle is
gathering and returning it. But if a transaction has multiple queries, each query is consistent but not
with each other. If you want to be able to maintain a consistent view of the data throughout such
a transaction, the transaction needs to have transaction-level read consistency, which guarantees that
the transaction will not see the effects of the committing of other transactions. This read-only transaction,
started with SET TRANSACTION READ ONLY, can only execute queries and certain control commands
(see SET TRANSACTION).

TRANSACTION PROCESSING
Transaction processing is a form of processing oriented toward logical units of work, rather than separate
and individual changes, in order to keep the database consistent.

TRANSLATE
SEE ALSO REPLACE, Chapter 10

TRANSLATE 1181

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1181

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:15:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

FORMAT

TRANSLATE(string,from,to)

DESCRIPTION TRANSLATE looks at each character in string, and then checks from to see if that
character is there. If it is, TRANSLATE notes the position in from where it found the character, and then
looks at the same position in to. Whatever character it finds there, it substitutes for the character in string.
EXAMPLE

select TRANSLATE('I LOVE MY OLD THESAURUS','AEIOUY','123456')
from DUAL;

TRANSLATE('ILOVEMYOLDTH

3 L4V2 M6 4LD TH2S15R5S

TRANSLATE … USING
SEE ALSO CONVERSION FUNCTIONS, CONVERT, TO_NCHAR, UNISTR
FORMAT

TRANSLATE (text USING { CHAR_CS | NCHAR_CS })

DESCRIPTION TRANSLATE ... USING converts text into the character set specified for conversions
between the database character set and the national character set. The text argument is the expression
to be converted.

Specifying the USING CHAR_CS argument converts text into the database character set. The output
datatype is VARCHAR2.

Specifying the USING NCHAR_CS argument converts text into the national character set. The output
datatype is NVARCHAR2.

This function is similar to the Oracle CONVERT function, but must be used instead of CONVERT if
either the input or the output datatype is being used as NCHAR or NVARCHAR2. If the input contains
UCS2 codepoints or backslash characters (\), use the UNISTR function.

TRANSPORTABLE TABLESPACE
A transportable tablespace is a tablespace that can be “unplugged” from one database and “plugged
into” another. To be transportable, a tablespace—or a set of tablespaces—must be self-contained. The
tablespace set cannot contain any objects that refer to objects in other tablespaces. Thus, if you transport
a tablespace containing indexes, you must move the tablespace containing the indexes’ base tables as
part of the same transportable tablespace set. The better you have organized and distributed your objects
among tablespaces, the easier it is to generate a self-contained set of tablespaces to transport.

To transport tablespaces, you need to generate a tablespace set, copy or move that tablespace set to
the new database, and plug the set into the new database. The databases must be on the same operating
system, with the same version of Oracle and character set.
GENERATING A TRANSPORTABLE TABLESPACE SET A transportable tablespace set contains
all of the datafiles for the tablespaces being moved, along with an export of the metadata for those
tablespaces. You can optionally choose whether to include referential integrity constraints as part of
the transportable tablespace set. If you choose to use referential integrity constraints, the transportable
tablespace set will increase to include the tables required to maintain the key relationships. Referential
integrity is optional because you may have the same codes tables in multiple databases. For example,
you may be planning to move a tablespace from your test database to your production database. If you

1182 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1182

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:15:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

have a COUNTRY table in the test database, then you may already have an identical COUNTRY table
in the production database. Since the codes tables are identical in the two databases, you do not need
to transport that portion of the referential integrity constraints. You could transport the tablespace and
then re-enable the referential integrity in the target database once the tablespace has been moved,
simplifying the creation of the transportable tablespace set.

To determine if a tablespace set is self-contained, execute the TRANSPORT_SET_CHECK procedure
of the DBMS_TTS package. This procedure takes two input parameters: the set of tablespaces and a
Boolean flag set to TRUE if you want referential integrity constraints to be considered. In the following
example, referential integrity constraints are not considered for the combination of the AGG_DATA
and AGG_INDEXES tablespaces:

execute DBMS_TTS.TRANSPORT_SET_CHECK('AGG_DATA,AGG_INDEXES','FALSE');

If there are any self-containment violations in the specified set, Oracle will populate the
TRANSPORT_SET_VIOLATIONS data dictionary view. If there are no violations, the view will
be empty.

Once you have selected a self-contained set of tablespaces, make the tablespaces read only, as
shown here:

alter tablespace AGG_DATA read only;
alter tablespace AGG_INDEXES read only;

Next, export the metadata for the tablespaces, using the TRANSPORT_TABLESPACES and
TABLESPACES Export parameters:

exp TRANSPORT_TABLESPACE=Y TABLESPACES=(AGG_DATA,AGG_INDEXES) CONSTRAINTS=N
GRANTS=Y TRIGGERS=N

As shown in the example, you can specify whether triggers, constraints, and grants are exported
along with the tablespace metadata. You should also note the names of the accounts that own objects
in the transportable tablespace set. You can now copy the tablespaces’ datafiles to a separate area. If
needed, you can put the tablespaces back into read-write mode in their current database. After you
have generated the transportable tablespace set, you can move its files (including the export) to an area
that the target database can access.
PLUGGING IN THE TRANSPORTABLE TABLESPACE SET Once the transportable tablespace
set has been moved to an area accessible to the target database, you can plug the set into the target
database. First, use Import to import the exported metadata:

imp TRANSPORT_TABLESPACE=Y DATAFILES=(agg_data.dbf, agg_indexes.dbf)

In the import, you specify the datafiles that are part of the transportable tablespace set. You can
optionally specify the tablespaces (via the TABLESPACES parameter) and the object owners (via the
OWNERS parameter).

After the import completes, all tablespaces in the transportable tablespace set are left in read-only
mode. You can issue the ALTER TABLESPACE READ WRITE command in the target database to place
the new tablespaces in read-write mode.

alter tablespace AGG_DATA read write;
alter tablespace AGG_INDEXES read write;

Note that you cannot change the ownership of the objects being transported.
Transportable tablespaces support very fast movement of large datasets. In a data warehouse,

you could use transportable tablespaces to publish aggregations from core warehouse to data mart,

TRANSPORTABLE TABLESPACE 1183

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1183

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:15:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

or from the data marts to a global data warehouse. Any read-only data can be quickly distributed
to multiple databases—instead of sending SQL scripts, you can send datafiles and exported
metadata. This modified data movement process may greatly simplify your procedures for managing
remote databases, remote data marts, and large data movement operations.

TREAT
SEE ALSO DEREF, REF, Chapter 33
FORMAT

TREAT (expr AS [REF] [schema.] type)

DESCRIPTION TREAT changes the declared type of an expression.
If the declared type of expr is source_type, then type must be some supertype or subtype of

source_type. If the most specific type of expr is type (or some subtype of type), then TREAT returns
expr. If the most specific type of expr is not type (or some subtype of type), then TREAT returns NULL.

If the declared type of expr is REF source_type, then type must be some subtype or supertype of
source_type. If the most specific type of DEREF(expr) is type (or a subtype of type), TREAT returns expr.
If the most specific type of DEREF(expr) is not type (or a subtype of type), then TREAT returns NULL.

TREE-STRUCTURED QUERY
A tree-structured query is one whose result shows hierarchical relationships among rows in a table.
See CONNECT BY.

TRIGGER
A database trigger is a stored procedure associated with a table that Oracle automatically executes on
one or more specified events (BEFORE, AFTER, or INSTEAD OF an insert, update, or delete) affecting
the table. Triggers can execute for the table as a whole or for each affected row in the table. See
Chapter 28 for a full discussion of triggers and examples, and CREATE TRIGGER in this Alphabetical
Reference for syntax.

TRIM
SEE ALSO LTRIM, RTRIM, Chapter 7
FORMAT

TRIM
([{ { LEADING | TRAILING | BOTH } [trim_character])

| trim_character
} FROM] trim_source)

DESCRIPTION TRIM enables you to trim leading or trailing characters (or both) from a character
string. If trim_character or trim_source is a character literal, you must enclose it in single quotes.

If you specify LEADING, Oracle removes any leading characters equal to trim_character. If you
specify TRAILING, Oracle removes any trailing characters equal to trim_character. If you specify
BOTH or none of the three, Oracle removes leading and trailing characters equal to trim_character.

If you specify only trim_source, Oracle removes leading and trailing blank spaces. If either
trim_source or trim_character is a NULL value, then the TRIM function returns a NULL.

1184 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1184

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:15:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

EXAMPLE

select TRIM('"' from Title) from MAGAZINE;
select TRIM(leading '"' from Title) from MAGAZINE;
select TRIM(trailing '"' from Title) from MAGAZINE;

TRIMOUT (SQL*PLUS)
See SET.

TRUNC (Form 1-for Dates)
SEE ALSO COLUMN, DATE FUNCTIONS, TRUNC (Form 2 - for Numbers), Chapter 9
FORMAT

TRUNC(date,'format')

DESCRIPTION TRUNC is the truncating of date according to format. Without a format, date is
truncated to 12 A.M. (midnight) in the morning, with the first moment of the new day, today’s date, for
any time up to and including 11:59:59 P.M. (just before midnight). See DATE FORMATS for that valid
date format values.

The result of TRUNC is always a date with its time set to 12 A.M., the first moment of the day.

TRUNC (Form 2-for Numbers)
SEE ALSO COLUMN, NUMBER FUNCTIONS, TRUNC (Form 1-for Dates), Chapter 8
FORMAT

TRUNC(value,precision)

DESCRIPTION TRUNC is value truncated to precision.
EXAMPLES

TRUNC(123.45,0) = 123
TRUNC(123.45,-1) = 120
TRUNC(123.45,-2) = 100

TRUNCATE
SEE ALSO CREATE CLUSTER, DELETE, DROP TABLE, TRIGGER, Chapter 18
FORMAT

TRUNCATE
{ TABLE [schema .] table [{ PRESERVE | PURGE } MATERIALIZED VIEW LOG]
| CLUSTER [schema .] cluster }
[{ DROP | REUSE } STORAGE];

DESCRIPTION TRUNCATE removes all the rows from a table or cluster. You can only truncate
an indexed cluster, not a hash cluster (see CREATE CLUSTER). If you add the DROP STORAGE option,
TRUNCATE will deallocate the space from the deleted rows; if you add the REUSE STORAGE option,
TRUNCATE will leave the space allocated for new rows in the table. DROP STORAGE is the default.

TRUNCATE 1185

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1185

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:15:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The TRUNCATE command is faster than a DELETE command because it generates no rollback
information, does not fire any DELETE triggers (and therefore must be used with caution), and does not
record any information in a materialized view log. In addition, using TRUNCATE does not invalidate
the objects depending on the deleted rows or the privileges on the table.

NOTE
You cannot roll back a TRUNCATE statement.

TTITLE
SEE ALSO ACCEPT, BTITLE, DEFINE, PARAMETERS, REPFOOTER, REPHEADER, Chapter 14
FORMAT

TTI[TLE] [option [text|variable]... | OFF | ON]

DESCRIPTION TTITLE (Top TITLE) puts a title (may be multiline) at the top of each page of a
report. OFF and ON suppress and restore the display of the text without changing its contents. TTITLE
by itself displays the current TTITLE options and text or variable.

text is a title you wish to give this report, and variable is a user-defined variable or a system-
maintained variable, including SQL.LNO, the current line number; SQL.PNO, the current page
number; SQL.RELEASE, the current Oracle release number; SQL.SQLCODE, the current error code;
and SQL.USER, the username.

SQL*PLUS uses ttitle in the new form if the first word after ttitle is a valid option. The valid
options are

■ COL n skips directly to position n from the left margin of the current line.

■ S[KIP] n prints n blank lines. If no n is specified, one blank line is printed. If n is 0, no blank
lines are printed and the current position for printing becomes position 1 of the current line
(leftmost on the page).

■ TAB n skips forward n positions (backward if n is negative).

■ BOLD prints the output data in bold print.

■ LE[FT], CE[NTER], and R[IGHT]. left-justify, center, and right-justify data on the current line.
Any text or variables following these commands are justified as a group, up to the end of the
command, or a LEFT, CENTER, RIGHT, or COL. CENTER and RIGHT use the value set by the
SET LINESIZE command to determine where to place the text or variable.

■ FORMAT string specifies the format model that will control the format of subsequent text
or variables, and follows the same syntax as FORMAT in a COLUMN command, such as
FORMAT A12 or FORMAT $999,990.99. Each time a FORMAT appears, it supersedes the
previous one that was in effect. If no FORMAT model has been specified, the one set by SET
NUMFORMAT is used. If NUMFORMAT has not been set, the default for SQL*PLUS is used.

Date values are printed according to the default format unless a variable has been loaded with a
date reformatted by TO_CHAR.

Any number of options, pieces of text, and variables may be used in a single ttitle. Each is printed
in the order specified, and each is positioned and formatted as specified by the clauses that precede it.

TUPLE
TUPLE is a synonym for row. It rhymes with “couple.”

1186 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1186

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:15:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TWO-PHASE COMMIT
Oracle manages distributed transactions with a special feature called two-phase commit. Two-phase
commit guarantees that a transaction is valid at all sites by the time it commits or rolls back. All sites
either commit or roll back together, no matter what errors occur in the network or on the machines
tied together by the network. You don’t need to do anything special to have your applications use a
two-phase commit.

TYPE
See ABSTRACT DATATYPE and CREATE TYPE.

TYPE (Embedded SQL)
SEE ALSO Precompiler Programmer’s Guide
FORMAT

EXEC SQL TYPE type IS datatype

DESCRIPTION PL/SQL lets you assign an Oracle external datatype to a user-defined datatype.
The datatype may include a length, precision, or scale. This external datatype is equivalenced to the
user-defined type and assigned to all host variables assigned to the type. For a list of external datatypes,
see Precompiler Programmer’s Guide.

TYPE BODY
See ABSTRACT DATATYPE, CREATE TYPE, and METHOD.

TZ_OFFSET
SEE ALSO SESSIONTIMEZONE, DBTIMEZONE
FORMAT

TZ_OFFSET
({ 'time_zone_name'

| '{ + | - } hh : mi'
| SESSIONTIMEZONE
| DBTMEZONE
})

DESCRIPTION TZ_OFFSET returns the time zone offset corresponding to the value entered based
on the date the statement is executed. You can enter a valid time zone name, a time zone offset from
UTC (which simply returns itself), or the keyword SESSIONTIMEZONE or DBTIMEZONE. For a listing
of valid values, query the TZNAME column of the V$TIMEZONE_NAMES dynamic performance view.

UID
SEE ALSO SESSION
FORMAT

UID

DESCRIPTION UID returns an integer that uniquely identifies the session user (the user who
logged on).

UID 1187

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1187

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:15:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

UNDEFINE
SEE ALSO ACCEPT, DEFINE, PARAMETERS, Chapters 14 and 16
FORMAT

UNDEF[INE] variable

DESCRIPTION UNDEFINE deletes the definition of a user variable that has been defined by
ACCEPT, DEFINE, or as a parameter to the START command. You can undefine the current values
of multiple variables in a single command. The format is shown in the following listing:

undefine variable1 variable2 ...

EXAMPLE To undefine a variable named Total, use this:

undefine Total

UNDERLINE (SQL*PLUS)
See SET.

UNDO SEGEMENT
As of Oracle9i, you can use automatic undo management to provide read consistency in place of
rollback segments. If you use this option, Oracle will maintain undo segments to track changes and
provide rollback capabilities. See ROLLBACK SEGMENT and Chapter 40.

UNION
SEE ALSO INTERSECT, MINUS, QUERY OPERATORS, Chapter 12
FORMAT

select...
UNION [ALL]

select...

DESCRIPTION UNION combines two queries. It returns all distinct rows for both select statements,
or, when ALL is specified, all rows regardless of duplication. The number of columns and datatypes
must be identical between select statements, although the names of the columns do not need to be.
See Chapter 12 for a discussion of the important differences and effects of INTERSECT, UNION, and
MINUS, and the role that precedence plays in the results.

UNISTR
SEE ALSO CONVERSION FUNCTIONS, CONVERT, TRANSLATE…USING
FORMAT

UNISTR ('string')

DESCRIPTION UNISTR takes as its argument a string in any character set and returns it in unicode
in the database unicode character set. To include UCS2 codepoint characters in the string, use the
escape backslash (\) followed by the next number. To include the backslash itself, precede it with
another backslash (\\).

This function is similar to the TRANSLATE ... USING function, except that UNISTR offers the
escape character for UCS2 codepoints and backslash characters.

1188 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1188

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:15:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

UNIQUE INDEX
A unique index is an index that imposes uniqueness on each value it indexes. The index may be one
single column or concatenated (multiple columns). See INTEGRITY CONSTRAINT.

UNIQUE KEY
A unique key is one or more columns that must be unique for each row of the table. See KEY, PRIMARY
KEY, and INTEGRITY CONSTRAINT.

UNIT OF WORK
In Oracle, a transaction is equivalent to a logical unit of work, which includes all SQL statements since
you either logged on, last committed, or last rolled back your work. Thus, a transaction can encompass
numerous SQL statements, or only one.

UPDATE (Form 1-Embedded SQL)
SEE ALSO EXECUTE IMMEDIATE, FOR, PREPARE, SELECT (Form 2), Precompiler Programmer’s
Guide
FORMAT

EXEC SQL [AT { dbname | :host_variable }]
[FOR { :host_integer | integer }]
UPDATE
[(subquery)
| [schema .] { table | view } [@db_link | PARTITION (part_name)]]
SET
{ column = { expr | (subquery_2) }
| (column [, column]...) = (subquery_1) }
[, { column = { expr | (subquery_2) }

| (column [, column]...) = (subquery_1) }]...
[WHERE { condition | CURRENT OF cursor }]
[{ RETURN | RETURNING } expr [, expr]... INTO
:host_variable [[INDICATOR] :ind_variable]
[, :host_variable [[INDICATOR] :ind_variable]]...]

DESCRIPTION See the description of the various clauses in UPDATE (Form 3). The elements
unique to Embedded SQL follow:

■ AT dbname, which optionally names a database from a previous CONNECT statement for
a database name from a previous DECLARE DATABASE statement.

■ FOR :host_integer, which sets the maximum number of rows that can be fetched. integer
is a named host variable.

■ expr may include a host :variable[:indicator].

■ The WHERE clause may include host variables or arrays.

■ CURRENT OF updates the last row fetched for the named cursor. However, the cursor must
be open and positioned on the row. If it isn’t, the CURRENT OF, which is a part of the WHERE
clause, causes the WHERE to find no rows, and none will be updated. The cursor must have
previously been named in a DECLARE CURSOR statement with a SELECT. . .FOR UPDATE OF.

UPDATE (Form 1-Embedded SQL) 1189

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1189

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:15:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

If any host variable in either the SET or WHERE is an array, then all host variables in both must be
arrays, though they do not all need to be the same size arrays. If they are arrays, UPDATE is executed
once for each set of components in the array, and may update zero or more rows. The maximum
number depends on either the size of the smallest array, or the integer value in the FOR clause, if one
is specified. See FOR for additional details.

UPDATE (Form 2-PL/SQL)
SEE ALSO DECLARE CURSOR, SUBQUERY
FORMAT

UPDATE [user.]table[@dblink]
SET { column = expression | column = (select expression...)
[[,column = expression]... |
[,column = (select

expression...)]...] |
(column [,column]...) = (subquery)}
[WHERE {condition | CURRENT OF cursor}];

DESCRIPTION UPDATE in PL/SQL works identically to the normal SQL UPDATE statement, with
the exception of the alternative where clause WHERE CURRENT OF cursor. In this instance, the update
statement affects just the single row currently in the cursor as a result of the last FETCH. The cursor
select statement must have included the words FOR UPDATE.

Like insert, delete, and select. . .into, the update statement always uses the implicit cursor named
SQL. This is never declared (although the select. . .for update statement must be DECLAREd in a cursor
for WHERE CURRENT OF cursor to be used). Its attributes are set as follows:

■ SQL%ISOPEN is irrelevant.

■ SQL%FOUND is TRUE if one or more rows is updated, FALSE if no rows are updated.
SQL%NOTFOUND is the opposite of SQL%FOUND.

■ SQL%ROWCOUNT is the number of rows updated.

UPDATE (Form 3-SQL Command)
SEE ALSO DELETE, INSERT, SELECT, SUBQUERY, WHERE, Chapter 15
FORMAT
update::=

1190 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1190

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:15:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DML_table_expression_clause::=

subquery_restriction_clause::=

table_collection_expression::=

update_set_clause::=

UPDATE (Form 3-SQL Command) 1191

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1191

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:15:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

where_clause::=

returning_clause::=

DESCRIPTION UPDATE updates (changes) the values in the listed columns in the specified table.
The where clause may contain a correlated subquery. A subquery may select from the table that is
being updated, although it must return just one row. Without a where clause, all rows will be updated.
With a where clause, only those rows it selects will be updated. The expressions are evaluated as the
command is executed, and their results replace the current values for the columns in the row(s).

A subquery must select the same number of columns (with compatible datatypes) as are in parentheses
on the left side of the set clause. Columns that are set to equal an expression may precede columns in
parentheses set equal to a subquery, all within a single update statement.
EXAMPLE To set NULL all Publisher values:

update BOOKSHELF set Publisher = NULL ;

The following will update the city of Walpole in the COMFORT table, setting the precipitation
for all Walpole rows to NULL, the noon temperature equal to that in Manchester, and the midnight
temperature equal to the noon temperature minus 10 degrees.

update COMFORT set Precipitation = NULL,
(Noon, Midnight) =

(select Temperature, Temperature - 10
from WEATHER

where City = 'MANCHESTER')
where City = 'WALPOLE';

UPPER
SEE ALSO LOWER, Chapter 7
FORMAT

UPPER(string)

DESCRIPTION UPPER converts every letter in a string into uppercase.
EXAMPLE

upper('Look what you''ve done!')

produces this:

LOOK WHAT YOU'VE DONE!

1192 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1192

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:15:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

UROWID
UROWID is the datatype for index-organized tables’ primary keys, also known as a Universal RowID.
The maximum and default size is 4000 bytes. See DATA TYPES and CREATE TABLE.

USED EXTENTS
Used extents are those that either have been allocated to a data (table) segment—and thus have data in
them—or have been reserved for data.

USER
SEE ALSO UID
FORMAT

USER

DESCRIPTION User is the name by which the current user is known to Oracle. User is a function,
and as such can be queried in any SELECT statement.
EXAMPLE

select USER from DUAL;

USER VARIABLES
See ACCEPT, DEFINE, PARAMETERS

USERENV
SEE ALSO CHARACTER FUNCTIONS
FORMAT

USERENV(option)

DESCRIPTION USERENV is a legacy function, replaced by SYS_CONTEXT’s UserEnv
namespace. The options and their return values are:

'CLIENT_INFO' CLIENT_INFO returns up to 64 bytes of user session information that can be stored by an
application using the DBMS_APPLICATION_INFO package.

'ENTRYID' ENTRYID returns available auditing entry identifier. You cannot use this attribute in distributed
SQL statements. To use this keyword in USERENV, the initialization parameter AUDIT_TRAIL
must be set to true.

'INSTANCE' INSTANCE returns the instance identification number of the current instance.

'ISDBA' ISDBA returns ‘TRUE’ if the user has been authenticated as having DBA privileges either through
the operating system or through a password file.

'LANG' LANG returns the ISO abbreviation for the language name, a shorter form than the existing
‘LANGUAGE’ parameter.

'LANGUAGE' LANGUAGE returns the language and territory currently used by your session along with the
database character set in this form:
language_territory.characterset

USERENV 1193

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1193

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:15:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

'SESSIONID' SESSIONID returns your auditing session identifier. You cannot use this attribute in distributed
SQL statements.

'TERMINAL' TERMINAL returns the operating system identifier for your current session’s terminal. In distributed
SQL statements, this attribute returns the identifier for your local session. In a distributed
environment, this is supported only for remote SELECT statements, not for remote INSERT,
UPDATE, or DELETE operations.

USERNAME
Username is a word that identifies you as an authorized user of your host computer’s operating system
or of Oracle. Associated with each username is a password.

VALUE
SEE ALSO DEREF, REF, Chapter 33
FORMAT

VALUE (correlation_variable)

DESCRIPTION In a SQL statement, VALUE takes as its argument a correlation variable (table
alias) associated with a row of an object table and returns object instances stored in the object table.
The type of the object instances is the same type as the object table. See Chapter 33.

VAR (Embedded SQL)
SEE ALSO See SELECT (Form 2), VARIABLE DECLARATION.
FORMAT

EXEC SQL VAR host_variable
{ IS dtyp [({ length | precision, scale })]

[CONVBUFSZ [IS] (size)]
| CONVBUFSZ [IS] (size) }

DESCRIPTION PL/SQL lets you override the default datatype assignment of a variable via the
VAR command. Once a variable has been declared, it uses the datatype assigned to it in the declare
command. VAR allows you to change the datatype of a declared variable within a PL/SQL block.

VAR_POP
SEE ALSO GROUPING FUNCTIONS, VAR_SAMP, VARIANCE
FORMAT

VAR_POP (expr) [OVER (analytic_clause)]

DESCRIPTION VAR_POP returns the population variance of a set of numbers after discarding the
NULLs in this set.

VAR_SAMP
SEE ALSO GROUPING FUNCTIONS, VAR_POP, VARIANCE
FORMAT

VAR_SAMP (expr) [OVER (analytic_clause)]

1194 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1194

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:15:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION VAR_SAMP returns the sample variance of a set of numbers after discarding the
NULLs in this set.

VARCHAR2
See DATA TYPES.

VARIABLE
SEE ALSO PRINT
FORMAT

VAR[IABLE] [variable_name {NUMBER|CHAR|CHAR (n)}]

DESCRIPTION VARIABLE declares a bind variable which can be referenced in PL/SQL. Each
variable is assigned a variable_name and a type (NUMBER or CHAR). For CHAR variables, a maximum
length (n) can be specified.
EXAMPLES In the following example, a variable named bal is created and is set equal to the
result of a function.

variable bal NUMBER
begin
:bal := LATE_FEE('DORAH TALBOT');

end;

VARIABLE DECLARATION (PL/SQL)
FORMAT

variable [CONSTANT]
{type | identifier%TYPE | [user.]table%ROWTYPE}
[NOT NULL]
[{DEFAULT | :=} expression];

DESCRIPTION PL/SQL lets you declare variables in a PL/SQL block. If you declare the variable to
be CONSTANT, you must initialize the variable with a value in the declaration and you cannot assign
a new value to the variable.

The type of the variable can be a PL/SQL type (see DATA TYPES), the type of another PL/SQL
variable or database column given by an identifier, or a ROWTYPE (see %ROWTYPE) that lets you
refer to a record corresponding to a database table.

If you add NOT NULL to the declaration, you cannot assign a NULL to the variable and you must
initialize the variable. The initialization (following a DEFAULT or assignment :=) expression is any
valid PL/SQL expression that results in a value of the type declared.

VARIANCE
SEE ALSO ACCEPT, COMPUTE, DEFINE, GROUP FUNCTIONS, PARAMETERS, STDDEV,
VAR_POP, VAR_SAMP, Chapter 8
FORMAT

VARIANCE ([DISTINCT | ALL] expr) [OVER (analytic_clause)]

VARIANCE 1195

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1195

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:16:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION VARIANCE gives the variance of all values for a group of rows. Like other group
functions, VARIANCE ignores NULL values.

VARRAY
VARRAY is a clause within the CREATE TYPE command that tells the database the limit to the number
of entries within the varying array. See Chapter 31 for detailed examples of varying arrays. See CREATE
TYPE for syntax information.

VARYING ARRAY
A varying array is a collector—for a single row in a table, it can contain multiple entries. The maximum
number of varying array entries per row is set when the varying array is created (via CREATE TYPE).
See Chapter 31.

VERIFY (SQL*PLUS)
See SET.

VERSION NUMBER
The version number is the primary identifying number of Oracle software. In Oracle9i Release 9.0.1.0,
9 is the version number.

VIEW
A view is a database object that is a logical representation of a table. It is derived from a table but has
no storage of its own and often may be used in the same manner as a table. See CREATE VIEW and
Chapter 18.

VIRTUAL COLUMN
A virtual column is a column in a query result whose value is calculated from the value(s) of other
column(s).

VSIZE
SEE ALSO CHARACTER FUNCTIONS, LENGTH, NUMBER FUNCTIONS, Chapter 8
FORMAT

VSIZE(value)

DESCRIPTION VSIZE is the storage size of value in Oracle. For character columns, VSIZE is the
same as LENGTH. For numbers it is usually smaller than the apparent length, because less space is
required to store numbers in the database.
EXAMPLES

VSIZE(12.345) = 4

WALKING A TREE
Walking a tree is the process of visiting each node of a tree in turn. See CONNECT BY.

1196 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1196

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:16:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

WHENEVER
SEE ALSO EXECUTE, FETCH
FORMAT

EXEC SQL WHENEVER {NOT FOUND | SQLERROR | SQL WARNING}
{CONTINUE |
GOTO label |
STOP |
DO routine |
DO BREAK |
DO CONTINUE}

DESCRIPTION WHENEVER is not an executable SQL statement, but rather an instruction to the
Oracle language processor to embed an “IF condition THEN GOTO label “ statement after every SQL
statement to follow. As each SQL statement executes, its results are tested to see if they meet the
condition. If they do, the program branches to the label.

WHENEVER may be used with CONTINUE or a different label for each of the three possible
conditions. Each of these will be in effect for all subsequent SQL statements. A new WHENEVER with
one of these conditions will completely replace its predecessor for all subsequent SQL statements.

The NOT FOUND condition is raised any time SQLCODE is 100, meaning, for instance, that a
FETCH failed to return any rows (this includes subqueries in insert statements).

SQLERROR occurs whenever SQLCODE is less than 0. These are typically fatal errors and require
serious error handling.

SQLWARNING occurs when a nonfatal “error” occurs. These include truncation of character
strings being loaded into host variables, a select list of columns that doesn’t match the INTO list of host
variables, and delete or update statements without where clauses.

Usually initial branching, continuation, stopping, or routine execution is set up at the very beginning
of a program, before any executable SQL statements. However, within particular blocks of logic in the
body of the program, any or all of these could be replaced depending upon local needs. Note that
WHENEVER knows nothing about the host languages scoping rules, calls, or branching. From the
moment a WHENEVER is asserted, its rules remain in effect until another WHENEVER (with the same
condition) replaces it. On the other hand, your program must obey language scoping rules with regard
to the GOTO and label.

The STOP option stops program execution; the DO option calls a host language routine of some
kind, the syntax of which depends on your host language. DO BREAK performs a break from a loop;
DO CONTINUE performs a continue statement from a loop when the condition is met.

Lastly, in an error-handling routine, particularly one that may contain SQL statements, WHENEVER
SQLERROR should probably contain CONTINUE or STOP or should call an exit routine in order to
avoid an infinite loop back into the same error-handling routine.

WHENEVER OSERROR
SEE ALSO WHENEVER SQLERROR
FORMAT

WHENEVER OSERROR
{EXIT [SUCCESS|FAILURE|n|variable|:BindVariable] [COMMIT|ROLLBACK]
|CONTINUE [COMMIT|ROLLBACK|NONE]}

WHENEVER OSERROR 1197

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1197

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:16:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION WHENEVER OSERROR handles processing logic within SQL*PLUS if an operating
system error occurs. EXIT directs SQL*PLUS to exit, and CONTINUE turns off EXIT. COMMIT tells
SQL*PLUS to issue a COMMIT prior to exiting, and ROLLBACK tells it to issue a ROLLBACK before
exiting. The default behavior is NONE.

WHENEVER SQLERROR
SEE ALSO WHENEVER OSERROR
FORMAT

WHENEVER SQLERROR
{EXIT [SUCCESS|FAILURE|WARNING|n|variable|:BindVariable]
[COMMIT|ROLLBACK]|CONTINUE [COMMIT|ROLLBACK|NONE]}

DESCRIPTION WHENEVER SQLERROR handles processing logic within SQL*PLUS if a SQL
command or a PL/SQL block encounters an error. EXIT directs SQL*PLUS to exit, and CONTINUE
turns off EXIT. COMMIT tells SQL*PLUS to issue a COMMIT prior to exiting, and ROLLBACK tells it
to issue a ROLLBACK before exiting. The default behavior is NONE.

NOTE
SQL and PL/SQL errors initiate WHENEVER SQLERROR processing.
SQL*Plus errors do not.

You may place WHENEVER SQLERROR in a start file in front of as many SQL statements as you
wish. Each WHENEVER SQLERROR will supersede the one before, and will remain in effect until it is
itself superseded.
EXAMPLE When the CREATE TABLE in the following example fails because the literal KEENE is
not enclosed in single quotation marks, the subsequent UPDATE and SELECT will never even execute.
The WHENEVER SQLERROR will exit SQL*PLUS immediately, and pass the SQL.SQLCODE back to
the host:

WHENEVER SQLERROR EXIT SQL.SQLCODE;

create table KEENE as
select * from COMFORT
where City = KEENE;

update KEENE set Noon = 75;

select * from KEENE;

WHERE
SEE ALSO DELETE, LOGICAL OPERATORS, PRECEDENCE, SELECT, SYNTAX OPERATORS,
UPDATE
FORMAT

DELETE FROM [user.]table ...
[WHERE condition]

1198 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1198

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:16:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SELECT ...
[WHERE condition]

UPDATE [user.]table [alias] ...
[WHERE condition]

DESCRIPTION WHERE defines those logical conditions that will control which rows a select
statement will return, a delete statement will delete, or an update statement will update.

A condition may be defined in one of several ways:

■ A comparison between expressions (=, >, !=, and so on).

■ A comparison between an expression and a query.

■ A comparison between a list of expressions and a list of expressions from a query.

■ A comparison between an expression and ANY or ALL members of a list or between
an expression and the values brought back from a query.

■ A test to see if an expression is IN or NOT IN a list, or the results of a query.

■ A test for being BETWEEN or NOT BETWEEN one value and another.

■ A test to see if an expression IS NULL or IS NOT NULL.

■ A test to see if there EXISTS (or NOT EXISTS) any results for a query.

■ A combination of any of the above, using the conjunctions AND and OR.

EXAMPLES

where Section >ANY ('A','C','D');
where City !=ALL (select City from LOCATION);
where Section IN ('A','C','D');
where City NOT IN (select City from LOCATION);
where Page BETWEEN 4 and 7;
where Skill IS NULL;
where EXISTS (select * from WORKER where Age > 90);
where Section = 'A' or Section = 'B' and Page = 1;

WHILE (PL/SQL)
See LOOP, Chapter 27

WIDTH_BUCKET
SEE ALSO NTILE
FORMAT

WIDTH_BUCKET (expr , min_value , max_value , num_buckets)

DESCRIPTION WIDTH_BUCKET constructs equiwidth histograms, in which the histogram range
is divided into intervals that have identical size. (Compare this function with NTILE, which creates
equiheight histograms.) Ideally each bucket is a “closed-open” interval of the real number line. For a
given expression, WIDTH_BUCKET returns the bucket number into which the value of this expression
would fall after being evaluated. expr is the expression (a number or datetime value) for which the
histogram is being created. If expr evaluates to NULL, the expression returns NULL. min_value and

WIDTH_BUCKET 1199

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1199

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:16:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

max_value are expressions that resolve to the end points of the acceptable range for expr. Both of
these expressions must also evaluate to number or datetime values, and neither can evaluate to NULL.
num_buckets is an expression that resolves to a constant indicating the number of buckets. This expression
must evaluate to a positive integer.

WRAP (SQL*PLUS)
See SET.

WRAPPING
Wrapping is moving the end of a heading or title, or the contents of a column, down to a new line when
it is too long to fit on one line. (Contrast with TRUNCATE.) See COLUMN.

XML
XML (eXtensible Markup Language) is a standardized syntax for describing hierarchical data. XML provides
a universal format for structured documents and data. Its tag-based syntax gives it the flexibility to handle
complex data. Whereas HTML tells a Web browser how to present data, XML tells applications what
the data means. See Chapter 41 for examples.

XMLType
XMLType is a datatype available as of Oracle9i to store and query XML data in the database. As a
type, XMLType has member functions to access, extract, and query XML data using a class of operations
known as Xpath expressions. The SYS_XMLGEN, SYS_XMLAGG, and DBMS_XMLGEN packages
create XMLType values from existing object-relational data. When you designate a column as using
the XMLType datatype, Oracle will internally store the data in a CLOB datatype.

The following listing shows the creation of a table using the XMLType:

datatype:

create table MY_XML_TABLE
(Key1 NUMBER,
Xml_Column SYS.XMLTYPE);

insert into MY_XML_TABLE (Key1, Xml_Column)
values (1, SYS.XMLTYPE.CREATEXML
('<book>
<title>Complete Reference</title>
<chapter num= "43">

<title>Ending</title>
<text>This is the end of the book.</text>

</chapter>
</book>'));

You can retrieve the data from the XMLType column via the GETCLOBVAL method:

select M.Xml_Column.GETCLOBVAL() as XML_Data
from MY_XML_TABLE M
where Key1 = 1;

See Chapter 41 for additional details on XMLType and its related methods.

1200 Part VII: Alphabetical Reference

ORACLE Series TIGHT / Oracle9i: The Complete Reference / Loney, Koch / 222521-1 / Chapter 1
Blind Folio 1:1200

P:\010Comp\Oracle8\521-1\CD\Ventura\ch42d.vp
Thursday, July 25, 2002 3:16:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

	Introduction
	Copyright ii
	Dedication iii
	About the Authors iv
	Contents at a Glance v
	Acknowledgments vii
	Preface ix
	The Intriguing History of This Book ix

	Introduction xiii
	How This Book Is Organized xiv
	Style Conventions Used in This Book xv

	PART I - Critical Database Concepts
	Chapter 1 - Sharing Knowledge and Success 3
	The Cooperative Approach 5
	Everyone Has ﬁDataﬂ 6
	The Familiar Language of Oracle 6
	Tables of Information 7
	Structured Query Language 8
	A Simple Oracle Query 9
	Why It Is Called ﬁRelationalﬂ 10

	Some Common, Everyday Examples 12

	Chapter 2 - The Dangers in a Relational Database 15
	Is It Really as Easy as They Say? 16
	What Are the Risks? 16
	The Importance of the New Vision 17
	Changing Environments 17

	Codes, Abbreviations, and Naming Standards 18
	Why Are Codes Used Instead of English? 18
	The Benefit of User Feedback 19

	How to Reduce the Confusion 19
	Normalization 20
	English Names for Tables and Columns 25
	English Words for the Data 26

	Capitalization in Names and Data 27
	Normalizing Names 27
	Good Design Has a Human Touch 28
	Understanding the Application Tasks 28
	Outline of Tasks 30

	Understanding the Data 32
	The Atomic Data Models 33
	The Atomic Business Model 33
	The Business Model 33
	Data Entry 34
	Query and Reporting 34

	Toward Object Name Normalization 35
	Level-Name Integrity 35
	Foreign Keys 36
	Singular Names 36
	Brevity 37
	Object Name Thesaurus 37

	Intelligent Keys and Column Values 37
	The Commandments 38
	The Ten Commandments of Humane Design 38

	Chapter 3 - The Basic Parts of Speech in SQL 41
	Style 43
	Creating the NEWSPAPER Table 44
	Using SQL to select Data from Tables 44
	select, from, where, and order by 48
	Logic and Value 50
	Single-Value Tests 50
	LIKE 54
	Simple Tests Against a List of Values 56
	Combining Logic 58

	Another Use for where: Subqueries 59
	Single Values from a Subquery 60
	Lists of Values from a Subquery 61

	Combining Tables 63
	Creating a View 65
	Expanding the View 67

	Chapter 4 - The Basics of Object-Relational Databases 69
	Do I Have to Use Objects? 70
	Why Should I Use Objects? 70
	Everybody Has Objects 71
	Abstract Datatypes 72
	Nested Tables 72
	Varying Arrays 72
	Large Objects 73
	References 73
	Object Views 73
	Naming Conventions for Objects 74

	A Common Object Example 74
	The Structure of a Simple Object 75
	Inserting Records into CUSTOMER 78
	Selecting from Abstract Datatypes 78

	Object-Oriented Analysis and Design 81
	Going Forward 82

	Chapter 5 - Introduction to Web-Enabled Databases 83
	Where Does SQL Fit In? 86
	Where Does Java Fit In? 86
	Where Does Oracle Portal Fit In? 87

	PART II - SQL and SQL*PLUS
	Chapter 6 - Basic SQL*PLUS Reports and Commands 91
	Building a Simple Report 94
	remark 97
	set headsep 97
	ttitle and btitle 97
	column 98
	break on 99
	compute avg 99
	set linesize 100
	set pagesize 101
	set newpage 101
	spool 101
	/* */ 103
	Some Clarification on Column Headings 103

	Other Features 104
	Command Line Editor 104
	set pause 107
	save 107
	store 108
	Editing 108
	host 109
	Adding SQLPLUS Commands 109
	start 110

	Checking the SQLPLUS Environment 110
	Building Blocks 112

	Chapter 7 - Getting Text Information and Changing It 113
	Datatypes 114
	What Is a String? 114
	Notation 115
	Concatenation (||) 117
	How to Cut and Paste Strings 118
	RPAD and LPAD 119
	LTRIM, RTRIM, and TRIM 120
	Combining Two Functions 121
	Using the TRIM Function 123
	Adding One More Function 124
	LOWER, UPPER, and INITCAP 124
	LENGTH 126
	SUBSTR 126
	INSTR 130
	ASCII and CHR 135

	order by and where with String Functions 135
	SOUNDEX 137
	National Language Support 139

	Review 139

	Chapter 8 - Playing the Numbers 141
	The Three Classes of Number Functions 142
	Notation 142
	Single-Value Functions 145
	Addition, Subtraction, Multiplication, and Division (+, -, *, and /) 146
	NULL 146
	NVL: NULL-Value Substitution 147
	ABS: Absolute Value 148
	CEIL 148
	FLOOR 148
	MOD 149
	POWER 149
	SQRT: Square Root 149
	EXP, LN, and LOG 150
	ROUND and TRUNC 150
	SIGN 152
	SIN, SINH, COS, COSH, TAN, TANH, ACOS, ATAN, ATAN2, and ASIN 152

	Group-Value Functions 152
	NULLs in Group-Value Functions 153
	Examples of Single- and Group-Value Functions 154
	AVG, COUNT, MAX, MIN, and SUM 155
	Combining Group-Value and Single-Value Functions 155
	STDDEV and VARIANCE 157
	DISTINCT in Group Functions 158

	List Functions 159
	Finding Rows with MAX or MIN 160
	Precedence and Parentheses 162
	Review 163

	Chapter 9 - Dates: Then, Now, and the Difference 165
	Date Arithmetic 166
	SYSDATE, CURRENT_DATE, and SYSTIMESTAMP 166
	The Difference Between Two Dates 167
	Adding Months 170
	Subtracting Months 171
	GREATEST and LEAST 171
	NEXT_DAY 172
	LAST_DAY 174
	MONTHS_BETWEEN Two Dates 174
	Combining Date Functions 175

	ROUND and TRUNC in Date Calculations 176
	TO_DATE and TO_CHAR Formatting 177
	The Most Common TO_CHAR Error 184
	NEW_TIME: Switching Time Zones 184
	TO_DATE Calculations 185

	Dates in where Clauses 188
	Dealing with Multiple Centuries 189
	Using the EXTRACT Function 190
	Using the TIMESTAMP Datatypes 190

	Chapter 10 - Conversion and Transformation Functions 193
	Elementary Conversion Functions 196
	Automatic Conversion of Datatypes 198
	A Warning About Automatic Conversion 201

	Specialized Conversion Functions 201
	Transformation Functions 202
	TRANSLATE 202
	DECODE 203

	Review 204

	Chapter 11 - Grouping Things Together 205
	The Use of group by and having 206
	Adding an order by 208
	Order of Execution 209

	Views of Groups 210
	Renaming Columns with Aliases 211

	The Power of Views of Groups 213
	order by in views 214
	Logic in the having Clause 215
	order by with Columns and Group Functions 216
	Join Columns 217

	Review 217

	Chapter 12 - When One Query Depends upon Another 219
	Advanced Subqueries 220
	Correlated Subqueries 221
	Coordinating Logical Tests 222
	Using EXISTS and Its Correlated Subquery 223

	Outer Joins 225
	Pre-Oracle9i Syntax for Outer Joins 225
	Oracle9i Syntax for Outer Joins 227
	Replacing NOT IN with an Outer Join 229
	Replacing NOT IN with NOT EXISTS 230

	NATURAL and INNER Joins 231
	UNION, INTERSECT, and MINUS 232
	IN Subqueries 235
	Restrictions on UNION, INTERSECT, and MINUS 236

	Chapter 13 - Some Complex Possibilities 237
	Complex Groupings 238
	Using Temporary Tables 239
	Using ROLLUP, GROUPING, and CUBE 240
	Family Trees and connect by 244
	Excluding Individuals and Branches 248
	Traveling Toward the Roots 250
	The Basic Rules 252

	Chapter 14 - Building a Report in SQL*PLUS 255
	Advanced Formatting 256
	break on 256
	Order of Columns in break on 260
	break on Row 260
	Adding Views 261
	Columns Used with ttitle and btitle 261
	More on break on and compute 265

	set termout off and set termout on 270
	Variables in SQLPLUS 270
	Other Places to Use Variables 273

	Numeric Formatting 273
	Using mask.sql 274
	show all and spooling 275
	Folding onto New Lines 275
	fold_after and fold_before 276

	Additional Reporting Controls 277

	Chapter 15 - Changing Data: insert, update, merge, and delete 279
	insert 280
	Inserting a Time 281
	insert with select 281
	Using the APPEND Hint to Improve insert Performance 282

	rollback, commit, and autocommit 283
	Using savepoints 284
	Implicit commit 285
	Auto rollback 285

	Multitable Inserts 285
	delete 290
	update 291
	update with Embedded select 292
	update with NULL 293

	Using the merge Command 294

	Chapter 16 - Advanced Use of Functions and Variables 297
	Functions in order by 298
	Bar Charts and Graphs 298
	Using TRANSLATE 300
	Eliminating Characters 301

	Complex Cut and Paste 302
	Counting String Occurrences Within Larger Strings 307
	Additional Facts About Variables 308
	Related set Commands 309

	Chapter 17 - DECODE and CASE: if, then, and else in SQL 311
	if, then, else 312
	Replacing Values via DECODE 315
	DECODE within DECODE 316
	Greater Than and Less Than in DECODE 319
	Using CASE 321

	Chapter 18 - Creating, Dropping, and Altering Tables and Views 325
	Creating a Table 326
	Character Width and NUMBER Precision 327
	Rounding During Insertion 329
	Constraints in create table 331
	Designating Index Tablespaces 332
	Naming Constraints 334

	Dropping Tables 334
	Altering Tables 335
	The Rules for Adding or Modifying a Column 337
	Dropping a Column 338

	Creating a View 339
	Stability of a View 340
	order by in Views 341
	Creating a Read-Only View 341

	Creating a Table from a Table 342
	Creating an Index-Organized Table 344
	Using Partitioned Tables 345
	Creating a Partitioned Table 345
	List Partitioning 348
	Indexing Partitions 348
	Managing Partitioned Tables 349
	Querying Directly from Partitions 349

	Online Redefinition of Tables 350

	Chapter 19 - By What Authority? 355
	Users, Roles, and Privileges 356
	Creating a User 356
	Password Management 357
	Three Standard Roles 361
	Format for the grant Command 362
	Revoking Privileges 362

	What Users Can Grant 363
	Moving to Another User with connect 365
	create synonym 368
	Using Ungranted Privileges 368
	Passing on Privileges 368
	Creating a Role 370
	Granting Privileges to a Role 370
	Granting a Role to Another Role 371
	Adding a Password to a Role 372
	Removing a Password from a Role 372
	Enabling and Disabling Roles 373
	Revoking Privileges from a Role 374
	Dropping a Role 374
	Granting UPDATE to Specific Columns 374
	Revoking Object Privileges 374
	Security by User 375
	Granting Access to the Public 376

	Granting Limited Resources 377
	Advanced Options 377

	Chapter 20 - Changing the Oracle Surroundings 379
	Indexes 380
	Creating an Index 381
	Enforcing Uniqueness 381
	Creating a Bitmap Index 382
	When to Create an Index 383
	Variety in Indexed Columns 383
	How Many Indexes to Use on a Table 384
	Placing an Index in the Database 384
	Rebuilding an Index 385
	Function-based Indexes 385

	Tablespaces and the Structure of the Database 386
	create tablespace 387
	Temporary Tablespaces 388

	Rollback Segments and System-Managed Undo 388
	How the Database Uses Rollback Segments 389
	Using Undo Tablespaces 389

	Clusters 389
	Sequences 391

	Chapter 21 - Using SQL*Loader to Load Data 393
	The Control File 394
	Loading Variable-Length Data 395

	Starting the Load 396
	Logical and Physical Records 400

	Control File Syntax Notes 401
	Managing Data Loads 402
	Repeating Data Loads 403

	Tuning Data Loads 404
	Direct Path Loading 405

	Additional Oracle9i Enhancements 406

	Chapter 22 - Accessing Remote Data 409
	Database Links 410
	How a Database Link Works 410
	Using a Database Link for Remote Queries 411
	Using a Database Link for Synonyms and Views 412
	Using a Database Link for Remote Updates 413
	Syntax for Database Links 414

	Using Synonyms for Location Transparency 417
	Using the User Pseudo-column in Views 418
	Dynamic Links: Using the SQLPLUS copy Command 420
	Connecting to a Remote Database 421

	Chapter 23 - Using Materialized Views 423
	Functionality 424
	Required System Privileges 424
	Required Table Privileges 425
	Read-Only vs. Updatable 425
	create materialized view Syntax 426
	RowID vs. Primary Key-Based Materialized Views 430
	Underlying Objects Created 430
	Using Materialized Views to Alter Query Execution Paths 431

	Refreshing Materialized Views 432
	What Kind of Refreshes Can Be Performed? 432
	Automatic Refreshes 435
	Manual Refreshes 436

	create materialized view log Syntax 443
	Required System Privileges 444
	Local and Remote Objects Created 444

	Altering Materialized Views and Logs 444
	Dropping Materialized Views and Logs 445

	Chapter 24 - Using Oracle Text for Text Searches 447
	Adding Text to the Database 448
	Text Queries and Text Indexes 449
	Text Queries 450
	Available Text Query Expressions 451
	Searching for an Exact Match of a Word 451
	Searching for an Exact Match of Multiple Words 452
	Searching for an Exact Match of a Phrase 456
	Searches for Words That Are Near Each Other 456
	Using Wildcards During Searches 457
	Searching for Words That Share the Same Stem 458
	Searching for Fuzzy Matches 459
	Searches for Words That Sound Like Other Words 459
	Using the ABOUT Operator 461
	Index Synchronization 462

	Index Sets 462

	Chapter 25 - Using External Tables 465
	Accessing the External Data 466
	Creating an External Table 467
	External Table Creation Options 470

	Limitations, Benefits, and Potential Uses of External Tables 476

	Chapter 26 - Using Flashback Queries 479
	Time-based Flashback Example 480
	Saving the Data 482
	Limitations of Time-Based Flashbacks 483

	SCN-based Flashback Example 484

	PART III - PL/SQL
	Chapter 27 - An Introduction to PL/SQL 489
	PL/SQL Overview 490
	Declarations Section 491
	Executable Commands Section 494
	Conditional Logic 496
	Loops 497
	CASE Statements 505

	Exception Handling Section 506

	Chapter 28 - Triggers 509
	Required System Privileges 510
	Required Table Privileges 510
	Types of Triggers 510
	Row-Level Triggers 511
	Statement-Level Triggers 511
	BEFORE and AFTER Triggers 511
	INSTEAD OF Triggers 511
	Schema Triggers 512
	Database-Level Triggers 512

	Trigger Syntax 512
	Combining DML Trigger Types 514
	Setting Inserted Values 516
	Maintaining Duplicated Data 516
	Customizing Error Conditions 518
	Calling Procedures Within Triggers 520
	Naming Triggers 520
	Creating DDL Event Triggers 520
	Creating Database Event Triggers 527

	Enabling and Disabling Triggers 527
	Replacing Triggers 528
	Dropping Triggers 528

	Chapter 29 - Procedures, Functions, and Packages 529
	Required System Privileges 530
	Executing Procedures 530

	Required Table Privileges 532
	Procedures vs. Functions 532
	Procedures vs. Packages 532
	create procedure Syntax 533
	create function Syntax 535
	Referencing Remote Tables in Procedures 537
	Debugging Procedures 538
	Creating Your Own Functions 539
	Customizing Error Conditions 540
	Naming Procedures and Functions 542

	create package Syntax 542
	Initializing Packages 544

	Viewing Source Code for Procedural Objects 545
	Compiling Procedures, Functions, and Packages 546
	Replacing Procedures, Functions, and Packages 547
	Dropping Procedures, Functions, and Packages 547

	PART IV - Object-Relational Databases
	Chapter 30 - Implementing Types, Object Views, and Methods 551
	Revisiting Abstract Datatypes 552
	Security for Abstract Datatypes 552
	Indexing Abstract Datatype Attributes 556

	Implementing Object Views 557
	Manipulating Data via Object Views 560
	Using INSTEAD OF Triggers 561

	Methods 563
	Syntax for Creating Methods 564
	Managing Methods 566

	Chapter 31 - Collectors (Nested Tables and Varying Arrays) 567
	Varying Arrays 568
	Creating a Varying Array 568
	Describing the Varying Array 569
	Inserting Records into the Varying Array 570
	Selecting Data from Varying Arrays 571

	Nested Tables 574
	Inserting Records into a Nested Table 575
	Querying Nested Tables 576

	Management Issues for Nested Tables and Varying Arrays 578
	Managing Large Collections 579
	Variability in Collectors 579
	Location of the Data 580

	Chapter 32 - Using Large Objects 581
	Available Datatypes 582
	Specifying Storage for LOB Data 583
	Manipulating and Selecting LOB Values 585
	Initializing Values 585
	insert with Subqueries 587
	Updating LOB Values 588
	Using String Functions to Manipulate LOB Values 588
	Using DBMS_LOB to Manipulate LOB Values 589
	Deleting LOBS 605

	Chapter 33 - Advanced Object-Oriented Concepts 607
	Row Objects vs. Column Objects 608
	Object Tables and OIDs 608
	Inserting Rows into Object Tables 609
	Selecting Values from Object Tables 610
	Updates and Deletes from Object Tables 611
	The REF Function 611
	Using the DEREF Function 612
	The VALUE Function 615
	Invalid References 616

	Object Views with REFs 616
	A Quick Review of Object Views 616
	Object Views Involving References 617

	Object PL/SQL 621
	Objects in the Database 623

	PART V - Java in Oracle
	Chapter 34 - An Introduction to Java 627
	Java vs. PL/SQL: An Overview 628
	Getting Started 629
	Declarations 629
	Executable Commands 630
	Conditional Logic 631
	Loops 635
	Exception Handling 637
	Reserved Words 638

	Classes 639

	Chapter 35 - JDBC and SQLJ Programming 645
	Getting Started 646
	Additional Steps for NT Users 646
	Testing Your Connection 647

	Using the JDBC Classes 648
	Using JDBC for Data Manipulation 651

	SQLJ 655
	Additional Setup Steps for SQLJ 655
	Testing Your SQLJ Configuration 656

	Using the SQLJ Classes 657
	Using SQLJ for Data Manipulation 659

	Chapter 36 - Java Stored Procedures 663
	Loading the Class into the Database 665
	How to Access the Class 668
	Where to Perform Commands 669

	PART VI - Hitchhiker's Guides
	Chapter 37 - The Hitchhiker's Guide to the Oracle9i Data Dictionary 673
	A Note About Nomenclature 674
	The Road Maps: DICTIONARY (DICT) and DICT_COLUMNS 675
	Things You Select from: Tables (and Columns), Views, Synonyms, and Sequences 676
	Catalog: USER_CATALOG (CAT) 676
	Objects: USER_OBJECTS (OBJ) 677
	Tables: USER_TABLES (TABS) 678
	Columns: USER_TAB_COLUMNS (COLS) 679
	Views: USER_VIEWS 681
	Synonyms: USER_SYNONYMS (SYN) 684
	Sequences: USER_SEQUENCES (SEQ) 684

	Constraints and Comments 685
	Constraints: USER_CONSTRAINTS 685
	Constraint Columns: USER_CONS_COLUMNS 687
	Constraint Exceptions: EXCEPTIONS 688
	Table Comments: USER_TAB_COMMENTS 689
	Column Comments: USER_COL_COMMENTS 690

	Indexes and Clusters 690
	Indexes: USER_INDEXES (IND) 690
	Indexed Columns: USER_IND_COLUMNS 692
	Clusters: USER_CLUSTERS (CLU) 693
	Cluster Columns: USER_CLU_COLUMNS 694

	Abstract Datatypes, ORDBMS-Related Structures, and LOBs 694
	Abstract Datatypes: USER_TYPES 695
	LOBs: USER_LOBS 697

	Database Links and Materialized Views 698
	Database Links: USER_DB_LINKS 698
	Materialized Views 698
	Materialized View Logs: USER_MVIEW_LOGS 701

	Triggers, Procedures, Functions, and Packages 701
	Triggers: USER_TRIGGERS 701
	Procedures, Functions, and Packages: USER_SOURCE 702

	Dimensions 704
	Space Allocation and Usage, Including Partitions and Subpartitions 705
	Tablespaces: USER_TABLESPACES 705
	Space Quotas: USER_TS_QUOTAS 706
	Segments and Extents: USER_SEGMENTS and USER_EXTENTS 707
	Partitions and Subpartitions 708
	Free Space: USER_FREE_SPACE 711

	Users and Privileges 711
	Users: USER_USERS 711
	Resource Limits: USER_RESOURCE_LIMITS 711
	Table Privileges: USER_TAB_PRIVS 712
	System Privileges: USER_SYS_PRIVS 712

	Roles 713
	Auditing 714
	Miscellaneous 716
	Monitoring: The V$ Dynamic Performance Tables 716
	CHAINED_ROWS 716
	PLAN_TABLE 717
	Interdependencies: USER_DEPENDENCIES and IDEPTREE 717
	DBA-Only Views 718
	Oracle Label Security 718
	SQL*Loader Direct Load Views 718
	National Language Support (NLS) Views 719
	Libraries 719
	Heterogeneous Services 719
	Indextypes and Operators 719
	Outlines 719

	Chapter 38 - The Hitchhiker's Guide to the Oracle Optimizer 721
	Which Optimizer? 722
	Operations That Access Tables 723
	TABLE ACCESS FULL 723
	TABLE ACCESS BY ROWID 724
	Related Hints 725

	Operations That Use Indexes 725
	INDEX UNIQUE SCAN 726
	INDEX RANGE SCAN 727
	When Indexes Are Used 727
	Combining Output from Multiple Index Scans 731
	Related Hints 733
	Additional Tuning Issues for Indexes 733

	Operations That Manipulate Data Sets 734
	Ordering Rows 734
	Grouping Rows 735
	Operations Using RowNum 736
	UNION, MINUS, and INTERSECT 737
	Selecting Rows for Update 741
	Selecting from Views 741
	Selecting from Subqueries 743
	Additional Tuning Issues 744

	Operations That Perform Joins 744
	How Oracle Handles Joins of More than Two Tables 745
	MERGE JOIN 745
	NESTED LOOPS 747
	HASH JOIN 749
	Processing Outer Joins 750
	Related Hints 750
	Additional Tuning Issues 754

	Displaying the Execution Path 755
	Using set autotrace on 755
	Using explain plan 759

	Miscellaneous Operations 763
	Filtering Rows 763
	Queries That Use connect by Clauses 763
	Queries That Use Sequences 765
	Queries That Use Database Links 765
	Queries That Use Clusters 766
	Related Hints 766
	Additional Tuning Issues 767

	Review 768

	Chapter 39 - The Hitchhiker's Guide to Oracle9iAS 769
	Communication Services 772
	Communication Services-Powered by Apache 772
	Communication Services-IIS 774

	Content Management Services 775
	Oracle Internet File System 775

	Ultra Search 776
	Business Logic Services 776
	Oracle Business Components for Java 777
	Oracle PL/SQL 777
	Oracle Forms Services 777

	Presentation Services 777
	Apache JServ 778
	OracleJSP (JavaServer Pages) 778
	Oracle PL/SQL Server Pages (PSP) 779
	Perl Interpreter 779

	Business Intelligence Services 779
	Oracle Reports Services 779
	Oracle Discoverer 4i Viewer/Oracle9iAS Discoverer 780

	Portal Services 780
	Oracle Portal 780
	Portal-to-Go 780
	9i Dynamic Services 781

	Developer's Toolkits 781
	Oracle Java Messaging Service (JMS) Toolkit 781
	Oracle SQLJ 782
	Oracle XML Developer's Kit 782
	Oracle LDAP Developer's Kit 782

	Caching Services 783
	Oracle Database Cache 783
	Oracle Web Cache 784
	Oracle9iAS Clickstream Analysis 785

	System Services 786
	Oracle Enterprise Manager 786
	Oracle Advanced Security 786

	Database Services 787
	iSQL*Plus 787

	Starting, Stopping, and Restarting iAS (Apache) 787

	Chapter 40 - The Hitchhiker's Guide to Database Administration 791
	Creating a Database 792
	Using the Oracle Enterprise Manager 792

	Starting and Stopping the Database 793
	Sizing and Managing Memory Areas 794
	The Initialization Parameter File 796

	Allocating and Managing Space for the Objects 796
	Implications of the storage Clause 797
	Table Segments 799
	Index Segments 800
	Rollback Segments and System-Managed Undo 800
	Temporary Segments 801
	Free Space 802
	Sizing Database Objects 803

	Creating and Managing Rollback Segments 807
	Activating Rollback Segments 807
	How to Determine the Maximum Size of a Rollback Segment 808
	Monitoring an Undo Tablespace 809
	How to Assign Transactions to Specific Rollback Segments 809

	Performing Backups 810
	Export and Import 810
	Export 811
	Import 817
	Offline Backups 820
	Online Backups 822
	Recovery Manager 825

	Where to Go from Here 826

	Chapter 41 - The Hitchhiker's Guide to XML in Oracle 827

	PART VII - Alphabetical Reference
	What This Alphabetical Reference Includes 844
	What This Alphabetical Reference Does Not Include 844
	General Format of Entries 844
	RPAD 844
	The Sections of Each Entry 844
	Other Formatting Guidelines 845
	Other Elements of a Listing 846

	The Order of the Keywords 846
	Symbols 846
	_ (Underscore) 847
	_EDITOR 847
	! (Exclamation Mark) 847
	" (Double Quotation Mark) 848
	# (Pound Sign) 848
	$ (Dollar Sign) 848
	? (Question Mark) 849
	% (Percent) 849
	%FOUND 849
	%ISOPEN 850
	%NOTFOUND 850
	%ROWCOUNT 850
	%ROWTYPE 850
	%TYPE 851
	& or && (Ampersand or Double Ampersand) 851
	' (Single Quotation Mark) 851
	() (Parentheses) 852
	* (Multiplication) 852
	** (Exponentiation) 852
	+ (Addition) 852
	- (Subtraction [Form 1]) 853
	- (Hyphen [Form 2]) 853
	- (Comment) 853
	. (Period or Dot [Form 1]) 853
	. (Period or Dot [Form 2]) 854
	.. (To) 854
	/ (Division [Form 1]) 854
	/ (Slash [Form 2]) 854
	/* */ (Comment) 854
	: (Colon, Host Variable Prefix) 855
	:= (Set Equal To) 855
	; (Semicolon) 855
	< < > > (PL/SQL Label Name Delimiter) 856
	@ ("At" Sign [Form 1]) 856
	@ ("At" Sign [Form 2]) 856
	@@ (Double "At" Sign) 856
	{} (Curly Braces) 856
	| (Vertical Bar) 857
	|| (Concatenation) 857
	ABS (Absolute Value) 857
	ABSTRACT DATATYPE 858
	ACCEPT 858
	ACCUMULATE 858
	ACOS 858
	ADD_MONTHS 859
	ALIAS 859
	ALL 859
	ALLOCATE (Embedded SQL) 860
	ALTER CLUSTER 860
	ALTER DATABASE 862
	ALTER DIMENSION 870
	ALTER FUNCTION 871
	ALTER INDEX 871
	ALTER INDEXTYPE 876
	ALTER JAVA 876
	ALTER MATERIALIZED VIEW 877
	ALTER MATERIALIZED VIEW LOG 882
	ALTER OUTLINE 883
	ALTER PACKAGE 884
	ALTER PROCEDURE 884
	ALTER PROFILE 884
	ALTER RESOURCE COST 886
	ALTER ROLE 886
	ALTER ROLLBACK SEGMENT 886
	ALTER SEQUENCE 887
	ALTER SESSION 888
	ALTER SNAPSHOT 888
	ALTER SNAPSHOT LOG 889
	ALTER SYSTEM 889
	ALTER TABLE 891
	ALTER TABLESPACE 911
	ALTER TRIGGER 913
	ALTER TYPE 914
	ALTER USER 916
	ALTER VIEW 918
	ANALYZE 918
	AND 920
	ANSI 920
	ANY 920
	APPEND 921
	APPLICATION 921
	ARCH PROCESS 922
	ARCHIVE 922
	ARCHIVE LOG 922
	ARGUMENT 922
	ARRAY PROCESSING 922
	ARRAYSIZE (SQL*PLUS) 922
	AS 922
	ASCII 923
	ASCIISTR 923
	ASIN 923
	ASSOCIATE STATISTICS 923
	ATAN 925
	ATAN2 925
	ATTRIBUTE 925
	AUDIT 925
	AUDIT TRAIL 928
	AUDITING 928
	AUTOCOMMIT 928
	AUTORECOVERY (SQL*PLUS) 929
	AVG 929
	B-TREE 929
	BACKGROUND PROCESS 929
	BEGIN 929
	BETWEEN 929
	BFILE 929
	BFILENAME 930
	BIN_TO_NUM 930
	BIND VARIABLE 930
	BITAND 930
	BITMAP INDEX 930
	BLOB 930
	BLOCK 931
	BLOCK STRUCTURE 931
	BRANCH 932
	BREAK 932
	BTITLE (bottom title) 932
	BUFFER 933
	BUFFERS (DATABASE) 933
	BUFFERS (REDO LOG) 933
	C LANGUAGE 933
	CACHES 933
	CALL 934
	CALL, RECURSIVE 934
	CASE 934
	CAST 935
	CATSEARCH 935
	CEIL 935
	CHAINED ROW 936
	CHANGE 936
	CHAR DATA TYPE 936
	CHARACTER FUNCTIONS 936
	Function Name and Use 936
	CHARTOROWID 939
	CHECKPOINT 939
	CHILD 939
	CHR 939
	CLAUSE 939
	CLEAR 939
	CLIENT 940
	CLOB 940
	CLOSE 940
	CLOSED DATABASE 940
	CLUSTER 940
	CLUSTER INDEX 940
	CLUSTER KEY 941
	CMDSEP (SQL*PLUS) 941
	COALESCE 941
	COALESCE (space) 941
	COLLATION 941
	COLSEP (SQL*PLUS) 942
	COLUMN (Form 1-Definition) 942
	COLUMN (Form 2-SQL*PLUS) 942
	COLUMN CONSTRAINT 944
	COMMAND 944
	COMMAND LINE 944
	COMMENT 944
	COMMIT 945
	COMMIT (Form 1-Embedded SQL) 945
	COMMIT (Form 2-PL/SQL Statement) 945
	COMMUNICATIONS PROTOCOL 945
	COMPOSE 946
	COMPOSITE KEY 946
	COMPOSITE PARTITION 946
	COMPRESSED INDEX 946
	COMPUTE 946
	CONCAT 947
	CONCATENATED INDEX (or KEY) 947
	CONCURRENCY 947
	CONDITION 948
	CONNECT 948
	CONNECT (Form 1) 948
	CONNECT (Form 2-Embedded SQL) 948
	CONNECT BY 949
	CONSTRAINT 949
	constraints 949
	CONTAINS 953
	CONTEXT INDEX 954
	CONTEXT AREA 954
	CONTROL FILE (DATABASE) 954
	CONTROL FILE (SQL*LOADER) 954
	CONVERSION FUNCTIONS 954
	CONVERT 955
	COPY 956
	COPYCOMMIT (SQL*PLUS) 957
	COPYTYPECHECK (SQL*PLUS) 957
	CORR 957
	CORRELATED QUERY 957
	COS 957
	COSH 957
	COUNT 957
	COVAR_POP 958
	COVAR_SAMP 958
	CREATE CLUSTER 958
	CREATE CONTEXT 960
	CREATE CONTROLFILE 960
	CREATE DATABASE 962
	CREATE DATABASE LINK 964
	CREATE DIMENSION 965
	CREATE DIRECTORY 966
	CREATE FUNCTION 967
	CREATE INDEX 968
	CREATE INDEXTYPE 973
	CREATE JAVA 973
	CREATE LIBRARY 975
	CREATE MATERIALIZED VIEW 975
	CREATE MATERIALIZED VIEW LOG 981
	CREATE OPERATOR 982
	CREATE OUTLINE 983
	CREATE PACKAGE 984
	CREATE PACKAGE BODY 984
	CREATE PFILE 984
	CREATE PROCEDURE 985
	CREATE PROFILE 986
	CREATE ROLE 987
	CREATE ROLLBACK SEGMENT 988
	CREATE SCHEMA 988
	CREATE SEQUENCE 988
	CREATE SNAPSHOT 989
	CREATE SNAPSHOT LOG 989
	CREATE SPFILE 989
	CREATE SYNONYM 990
	CREATE TABLE 990
	CREATE TABLESPACE 1002
	CREATE TEMPORARY TABLESPACE 1004
	CREATE TRIGGER 1004
	CREATE TYPE 1006
	CREATE TYPE BODY 1011
	CREATE USER 1012
	CREATE VIEW 1013
	CREATING A DATABASE 1015
	CTXCAT INDEX 1015
	CUBE 1015
	CUME_DIST 1015
	CURRENT_DATE 1015
	CURRENT_TIMESTAMP 1016
	CURRVAL 1016
	CURSOR 1016
	CURSOR-PL/SQL 1016
	CURSOR FOR LOOP 1017
	DATA CONTROL LANGUAGE (DCL) STATEMENTS 1017
	DATA DEFINITION LANGUAGE (DDL) STATEMENTS 1017
	DATA DEFINITION LOCKS 1017
	DATA DICTIONARY 1018
	DATA DICTIONARY VIEWS 1018
	DATA INDEPENDENCE 1030
	DATA MANIPULATION LANGUAGE (DML) STATEMENTS 1030
	DATA TYPES 1030
	DATABASE 1031
	DATABASE ADMINISTRATOR (DBA) 1031
	DATABASE LINK 1032
	DATABASE NAME 1032
	DATABASE OBJECT 1032
	DATAFILE 1032
	DATATYPE 1032
	DATE 1032
	DATE FORMATS 1032
	DATE FUNCTIONS 1034
	DBA 1036
	DBTIMEZONE 1036
	DBWR PROCESS 1036
	DCL 1036
	DDL 1036
	DDL LOCK 1036
	DEADLOCK 1036
	DECLARE 1036
	DECLARE CURSOR (Form 1-Embedded SQL) 1036
	DECLARE CURSOR (Form 2-PL/SQL) 1037
	DECLARE DATABASE (Embedded SQL) 1037
	DECLARE STATEMENT (Embedded SQL) 1037
	DECLARE TABLE 1038
	DECODE 1038
	DECOMPOSE 1039
	DEFAULT 1039
	DEFAULT VALUE 1039
	DEFERRED ROLLBACK SEGMENT 1039
	DEFINE (SQL*PLUS) 1039
	DEFINE PHASE 1039
	DEL 1039
	DELETE (Form 1-PL/SQL) 1040
	DELETE (Form 2-SQL Command) 1040
	DELETE (Form 3-Embedded SQL) 1041
	DENSE_RANK 1042
	DEREF 1042
	DESCRIBE (Form 1-SQL*PLUS Command) 1042
	DESCRIBE (Form 2-Embedded SQL) 1042
	DICTIONARY CACHE 1043
	DICTIONARY LOCKS 1043
	DIMENSION 1043
	DIRECTORY 1043
	DISASSOCIATE STATISTICS 1043
	DISCONNECT 1043
	DISTINCT 1044
	DISTRIBUTED DATABASE 1044
	DISTRIBUTED PROCESSING 1044
	DISTRIBUTED QUERY 1044
	DML 1044
	DML LOCK 1044
	DROP CLUSTER 1044
	DROP CONTEXT 1045
	DROP DATABASE LINK 1045
	DROP DIMENSION 1045
	DROP DIRECTORY 1045
	DROP FUNCTION 1046
	DROP INDEX 1046
	DROP INDEXTYPE 1046
	DROP JAVA 1046
	DROP LIBRARY 1046
	DROP MATERIALIZED VIEW 1047
	DROP MATERIALIZED VIEW LOG 1047
	DROP OPERATOR 1047
	DROP OUTLINE 1047
	DROP PACKAGE 1047
	DROP PROCEDURE 1048
	DROP PROFILE 1048
	DROP ROLE 1048
	DROP ROLLBACK SEGMENT 1048
	DROP SEQUENCE 1049
	DROP SNAPSHOT 1049
	DROP SNAPSHOT LOG 1049
	DROP SYNONYM 1049
	DROP TABLE 1049
	DROP TABLESPACE 1049
	DROP TRIGGER 1050
	DROP TYPE 1050
	DROP TYPE BODY 1050
	DROP USER 1050
	DROP VIEW 1050
	DROPJAVA 1051
	DUAL 1051
	DUMP 1051
	EBCDIC 1051
	ECHO (SQL*PLUS) 1051
	EDIT 1051
	EMBEDDED (SQL*PLUS) 1052
	EMPTY_BLOB 1052
	EMPTY_CLOB 1052
	END 1052
	ENQUEUE 1053
	ENTITY 1053
	ENTITY-RELATIONSHIP MODEL 1053
	EQUI-JOIN 1053
	ESCAPE (SQL*PLUS) 1053
	EXCEPTION 1053
	EXCEPTION_INIT 1056
	EXCLUSIVE LOCK 1057
	EXECUTE 1057
	EXECUTE (Dynamic Embedded SQL) 1057
	EXECUTE IMMEDIATE (Dynamic Embedded SQL) 1058
	EXISTS 1058
	EXISTSNODE 1059
	EXIT (Form 1-PL/SQL) 1059
	EXIT (Form 2-SQL*PLUS) 1059
	EXP 1059
	EXPLAIN PLAN 1059
	EXPORT 1060
	EXPRESSION 1060
	External Table 1060
	EXTRACT (datetime) 1060
	EXTRACT (XML) 1061
	FEEDBACK (SQL*PLUS) 1061
	FETCH 1061
	FETCH (Form 1-Embedded SQL) 1061
	FETCH (Form 2-PL/SQL) 1061
	FIELD 1062
	FILE TYPES 1062
	file_specification 1063
	FIRST 1064
	FIRST_VALUE 1064
	FLASHBACK QUERY 1064
	FLOOR 1064
	FLUSH (SQL*PLUS) 1065
	FOR 1065
	FOREIGN KEY 1065
	FORMAT 1065
	FORMAT MODEL 1065
	FREE EXTENTS 1065
	FROM 1065
	FROM_TZ 1065
	FULL OUTER JOIN 1066
	FULL TABLE SCAN 1066
	FUNCTION 1066
	FUZZY MATCH 1066
	GET 1066
	GLOBAL INDEX 1066
	GOTO 1067
	GRANT 1067
	GREATEST 1069
	GROUP BY 1070
	GROUP FUNCTIONS 1070
	GROUP_ID 1071
	GROUPING 1071
	GROUPING_ID 1072
	HASH CLUSTER 1072
	HASH JOIN 1072
	HASH PARTITION 1072
	HAVING 1072
	HEADING (SQL*PLUS) 1072
	HEADSEP (SQL*PLUS) 1072
	HELP (SQL*PLUS) 1072
	HEXADECIMAL NOTATION 1072
	HEXTORAW 1072
	HINT 1073
	HISTOGRAM 1073
	HOST (SQL*PLUS) 1073
	IF 1073
	IMPORT 1074
	IN 1074
	INDEX 1074
	INDEX SEGMENT 1074
	INDEX-ORGANIZED TABLE 1075
	INDICATOR VARIABLE 1075
	init.ora 1076
	INITCAP 1076
	INNER JOIN 1077
	INPUT 1077
	INSERT (Form 1-Embedded SQL) 1077
	INSERT (Form 2-PL/SQL) 1078
	INSERT (Form 3-SQL Command) 1078
	INSTANCE 1080
	INSTANCE IDENTIFIER 1080
	INSTANCE RECOVERY 1081
	INSTEAD OF TRIGGER 1081
	INSTR 1081
	INTEGRITY CONSTRAINT 1081
	INTERSECT 1082
	INTERVAL DAY TO SECOND 1082
	INTERVAL YEAR TO MONTH 1082
	IS NULL 1082
	JAVA 1083
	JDBC 1083
	JOIN 1083
	JOIN COLUMN 1083
	JULIAN DATE 1084
	KERNEL 1084
	KEY 1084
	LABEL (PL/SQL) 1084
	LAG 1084
	LAST 1084
	LAST_DAY 1084
	LAST_VALUE 1085
	LEAD 1085
	LEAF 1085
	LEAST 1085
	LENGTH 1085
	LEVEL 1086
	LGWR 1086
	LIBRARY 1086
	LIKE 1086
	LINESIZE (SQL*PLUS) 1086
	LIST 1086
	LIST FUNCTIONS 1087
	LN 1087
	LOADJAVA 1087
	LOB 1087
	LOBOFFSET (SQL*PLUS) 1087
	LOCAL DATABASE 1087
	LOCAL INDEX 1088
	LOCALTIMESTAMP 1088
	LOCALLY MANAGED TABLESPACE 1088
	LOCK 1088
	LOCK TABLE 1088
	LOG 1089
	LOG WRITER PROCESS (LGWR) 1089
	LOGICAL EXPRESSION 1089
	LOGICAL OPERATORS 1089
	LOGICAL UNIT OF WORK 1090
	LOGIN ACCOUNT 1090
	LOBSOURCE (SQL*PLUS) 1090
	LONG (SQL*PLUS) 1090
	LONG DATATYPE 1091
	LONG RAW DATATYPE 1091
	LOOP 1091
	LOWER 1091
	LPAD 1091
	LTRIM 1091
	MAKE_REF 1092
	MAIN QUERY 1092
	MAINTENANCE RELEASE 1092
	MATERIALIZED VIEW 1092
	MATERIALIZED VIEW LOG 1092
	MAX 1092
	MEDIA RECOVERY 1093
	METHOD 1093
	MIN 1093
	MINUS 1093
	MOD 1094
	MONTHS_BETWEEN 1094
	MOUNT A DATABASE 1094
	MOUNT AND OPEN A DATABASE 1094
	MULTI-THREADED SERVER 1094
	NATURAL JOIN 1094
	NCHAR 1095
	NCHR 1095
	NCLOB 1095
	NEAR 1095
	NESTED TABLE 1095
	NESTING 1095
	NEWPAGE (SQL*PLUS) 1096
	NEW_TIME 1096
	NEXT_DAY 1096
	NEXTVAL 1096
	NLS_CHARSET_DECL_LEN 1096
	NLS_CHARSET_ID 1096
	NLS_CHARSET_NAME 1096
	NLS_INITCAP 1096
	NLS_LOWER 1097
	NLSSORT 1097
	NLS_UPPER 1097
	NOAUDIT 1097
	NODE 1099
	NOLOGGING 1099
	NON-EQUI-JOIN 1099
	NOT 1099
	NOT EXISTS 1100
	NTILE 1100
	NULL (Form 1-PL/SQL) 1100
	NULL (Form 2-SQL Column Value) 1100
	NULLIF 1101
	NUMBER DATATYPE 1102
	NUMBER FORMATS 1102
	NUMBER FUNCTIONS 1102
	NUMTODSINTERVAL 1103
	NUMTOYMINTERVAL 1104
	NUMWIDTH (SQL*PLUS) 1104
	NVARCHAR2 1104
	NVL 1104
	NVL2 1104
	OBJECT 1104
	OBJECT NAMES 1104
	OBJECT TABLE 1105
	OBJECT VIEW 1105
	OBJECT-RELATIONAL DATABASE MANAGEMENT SYSTEM 1105
	OEM 1105
	OFFLINE BACKUP 1105
	OID 1105
	ONLINE BACKUP 1105
	ONLINE REDO LOG 1105
	OPEN 1105
	OPEN CURSOR (Embedded SQL) 1106
	OPERATOR 1106
	OPS$ LOGINS 1107
	OPTIMIZER 1107
	OR 1107
	ORACLE ENTERPRISE MANAGER 1107
	ORACLE REAL APPLICATION CLUSTER 1107
	ORACLE9i APPLICATION SERVER 1107
	ORDBMS 1107
	ORDER BY 1107
	OTHER FUNCTIONS 1108
	OUTER JOIN 1109
	PACKAGE 1109
	PAGESIZE (SQL*PLUS) 1109
	PARAMETER 1109
	PARAMETERS 1109
	PARENT 1110
	PARENT QUERY 1110
	PARENTHESES 1110
	PARSE 1110
	PASSWORD 1110
	PASSWORD (SQL*PLUS Command) 1110
	PARALLEL QUERY OPTION 1110
	PARTITION 1111
	PARTITIONED TABLE 1111
	PAUSE (Form 1-SQL*PLUS) 1111
	PAUSE (Form 2-SQL*PLUS) 1111
	PCTFREE 1111
	PCTUSED 1111
	PERCENT_RANK 1112
	PERCENTILE_CONT 1112
	PERCENTILE_DISC 1112
	PMON PROCESS 1113
	POWER 1113
	PRAGMA 1113
	PRECEDENCE 1113
	PRECOMPILER 1114
	PREDICATE 1114
	PREPARE (Embedded SQL) 1114
	PRIMARY KEY 1115
	PRINT 1115
	PRIOR 1115
	PRIVILEGE 1115
	PRO*C 1121
	PROCEDURE 1121
	PRODUCT_USER_PROFILE 1121
	PROFILE 1121
	PROMPT 1121
	PSEUDO-COLUMNS 1122
	PUBLIC 1122
	PUBLIC SYNONYM 1122
	QUERY 1122
	QUERY OPERATORS 1122
	QUIT 1123
	QUOTA 1123
	RAISE 1123
	RATIO_TO_REPORT 1124
	RAW DATATYPE 1124
	RAWTOHEX 1124
	RAWTONHEX 1124
	RDBMS 1124
	READ CONSISTENCY 1124
	RECORD 1124
	RECORD (PL/SQL) 1124
	RECORD LOCKING 1125
	RECOVER 1125
	RECOVERY MANAGER 1126
	RECSEP (SQL*PLUS) 1126
	RECSEPCHAR (SQL*PLUS) 1126
	RECURSIVE CALL 1126
	REDO LOG 1126
	REDO LOG SEQUENCE NUMBER 1126
	REF 1126
	REFERENTIAL INTEGRITY 1126
	REFERENTIAL INTEGRITY RULE 1126
	REFTOHEX 1126
	REGRESSION FUNCTIONS 1127
	RELATION 1127
	RELATIONAL DATABASE MANAGEMENT SYSTEM 1127
	RELATIONAL OPERATOR 1127
	REMARK 1127
	REMOTE COMPUTER 1127
	REMOTE DATABASE 1127
	RENAME 1127
	REPFOOTER 1128
	REPHEADER 1128
	REPLACE 1129
	REPLICATION 1129
	RESERVED WORDS 1130
	RESOURCE 1131
	REVERSE-KEY INDEX 1131
	REVOKE 1131
	ROLE 1133
	ROLL FORWARD 1133
	ROLLBACK 1133
	ROLLBACK (Form 1-SQL) 1133
	ROLLBACK (Form 2-Embedded SQL) 1134
	ROLLBACK SEGMENT 1134
	ROLLUP 1134
	ROOT 1134
	ROUND (Form 1-for Dates) 1135
	ROUND (Form 2-for Numbers) 1135
	ROW 1136
	ROW HEADER 1136
	ROW-LEVEL LOCKING 1136
	ROW SEQUENCE NUMBER 1136
	ROW_NUMBER 1136
	ROWID 1136
	ROWIDTOCHAR 1136
	ROWIDTONCHAR 1137
	ROWNUM 1137
	RPAD 1137
	RTRIM 1137
	RUN 1138
	SAVE 1138
	SAVEPOINT 1138
	SCAN (SQL*PLUS) 1139
	SCORE 1140
	SEGMENT 1140
	SEGMENT HEADER BLOCK 1140
	SELECT (Form 1-SQL) 1140
	SELECT (Form 2-Embedded SQL) 1145
	SELECT. . .INTO 1147
	SEQUENCE 1147
	SERVICE NAME 1147
	SESSION 1147
	SESSIONTIMEZONE 1147
	SET 1148
	SET CONDITION 1151
	SET CONSTRAINTS 1151
	SET OPERATOR 1151
	SET ROLE 1151
	SET TRANSACTION 1152
	SGA 1152
	SHARED POOL 1152
	SHARED SERVER 1152
	SHOW 1153
	SHOWMODE (SQL*PLUS) 1153
	SHUTDOWN 1154
	SIGN 1154
	SIN 1154
	SINH 1154
	SMON 1154
	SNAPSHOT 1154
	SNAPSHOT REFRESH GROUP 1155
	SOUNDEX 1155
	SPACE (SQL*PLUS) 1155
	SPOOL 1155
	SQL 1155
	SQL CURSOR 1156
	SQL*LOADER 1156
	SQL*PLUS 1156
	SQLCASE (SQL*PLUS) 1156
	SQLCODE 1156
	SQLCONTINUE (SQL*PLUS) 1156
	SQLERRM 1156
	SQLJ 1157
	SQLLDR 1157
	SQLNUMBER (SQL*PLUS) 1165
	SQLPLUS 1165
	SQLPREFIX (SQL*PLUS) 1166
	SQLPROMPT (SQL*PLUS) 1166
	SQLTERMINATOR (SQL*PLUS) 1166
	SQRT 1166
	START 1167
	STARTUP 1167
	STDDEV 1167
	STDDEV_POP 1167
	STDDEV_SAMP 1167
	STORAGE 1168
	STORE 1169
	STRUCTURED QUERY LANGUAGE 1170
	SUBPARTITION 1170
	SUBQUERY 1170
	SUBSTITUTION 1170
	SUBSTR 1170
	SUFFIX (SQL*PLUS) 1170
	SUM 1171
	SYNONYM 1171
	SYNTAX 1171
	SYNTAX OPERATORS 1171
	SYS (ORACLE USER) 1172
	SYS_CONNECT_BY_PATH 1172
	SYS_CONTEXT 1172
	SYS_DBURIGEN 1172
	SYS_EXTRACT_UTC 1172
	SYS_GUID 1173
	SYS_TYPEID 1173
	SYS_XMLAGG 1173
	SYS_XMLGEN 1173
	SYSDATE 1174
	SYSTEM (ORACLE TABLESPACE) 1174
	SYSTEM (ORACLE USER) 1174
	SYSTEM GLOBAL AREA (SGA) 1174
	SYSTIMESTAMP 1174
	TABLE 1174
	TABLE-PL/SQL 1174
	TABLE ALIAS 1175
	TABLE CONSTRAINT 1175
	TABLESPACE 1175
	TAN 1175
	TANH 1175
	TEMPORARY SEGMENT 1175
	TERMINAL NODE 1176
	TERMOUT (SQL*PLUS) 1176
	TEXT INDEX 1176
	THEME 1176
	THROW 1176
	TIME (SQL*PLUS) 1176
	TIMESTAMP 1176
	TIMESTAMP WITH TIME ZONE 1176
	TIMESTAMP WITH LOCAL TIME ZONE 1176
	TIMING (Form 1-SQL*PLUS) 1176
	TIMING (Form 2-SQL*PLUS) 1176
	TO_CHAR (character formats) 1177
	TO_CHAR (date and number formats) 1177
	TO_CLOB 1178
	TO_DATE 1178
	TO_DSINTERVAL 1178
	TO_LOB 1179
	TO_MULTI_BYTE 1179
	TO_NCHAR (character) 1179
	TO_NCHAR(datetime) 1179
	TO_NCHAR(number) 1179
	TO_NCLOB 1180
	TO_NUMBER 1180
	TO_SINGLE_BYTE 1180
	TO_TIMESTAMP 1180
	TO_TIMESTAMP_TZ 1181
	TO_YMINTERVAL 1181
	TRANSACTION 1181
	TRANSACTION PROCESSING 1181
	TRANSLATE 1181
	TRANSLATE – USING 1182
	TRANSPORTABLE TABLESPACE 1182
	TREAT 1184
	TREE-STRUCTURED QUERY 1184
	TRIGGER 1184
	TRIM 1184
	TRIMOUT (SQL*PLUS) 1185
	TRUNC (Form 1-for Dates) 1185
	TRUNC (Form 2-for Numbers) 1185
	TRUNCATE 1185
	TTITLE 1186
	TUPLE 1186
	TWO-PHASE COMMIT 1187
	TYPE 1187
	TYPE (Embedded SQL) 1187
	TYPE BODY 1187
	TZ_OFFSET 1187
	UID 1187
	UNDEFINE 1188
	UNDERLINE (SQL*PLUS) 1188
	UNDO SEGEMENT 1188
	UNION 1188
	UNISTR 1188
	UNIQUE INDEX 1189
	UNIQUE KEY 1189
	UNIT OF WORK 1189
	UPDATE (Form 1-Embedded SQL) 1189
	UPDATE (Form 2-PL/SQL) 1190
	UPDATE (Form 3-SQL Command) 1190
	UPPER 1192
	UROWID 1193
	USED EXTENTS 1193
	USER 1193
	USER VARIABLES 1193
	USERENV 1193
	USERNAME 1194
	VALUE 1194
	VAR (Embedded SQL) 1194
	VAR_POP 1194
	VAR_SAMP 1194
	VARCHAR2 1195
	VARIABLE 1195
	VARIABLE DECLARATION (PL/SQL) 1195
	VARIANCE 1195
	VARRAY 1196
	VARYING ARRAY 1196
	VERIFY (SQL*PLUS) 1196
	VERSION NUMBER 1196
	VIEW 1196
	VIRTUAL COLUMN 1196
	VSIZE 1196
	WALKING A TREE 1196
	WHENEVER 1197
	WHENEVER OSERROR 1197
	WHENEVER SQLERROR 1198
	WHERE 1198
	WHILE (PL/SQL) 1199
	WIDTH_BUCKET 1199
	WRAP (SQL*PLUS) 1200
	WRAPPING 1200
	XML 1200
	XMLType 1200

