

Scripting in Java™

Languages, Frameworks, and Patterns

This page intentionally left blank

Scripting in Java™

Languages, Frameworks, and Patterns

Dejan Bosanac

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the pub-
lisher was aware of a trademark claim, the designations have been printed with initial
capital letters or in all capitals.
The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.
The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers
and content particular to your business, training goals, marketing focus, and branding
interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:
International Sales
international@pearsoned.com

Visit us on the Web: www.awprofessional.com
Library of Congress Cataloging-in-Publication Data

Bosanac, Dejan.
Scripting in java : languages, frameworks, and patterns / Dejan Bosanac.

p. cm.
ISBN 0-321-32193-6 (pbk. : alk. paper) 1. Java (Computer program language)

2. Programming languages (Electronic computers) I. Title.

QA76.73.J38B6715 2007
005.13’3—dc22

2007017654

Copyright © 2008 Pearson Education, Inc.
All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibit-
ed reproduction, storage in a retrieval system, or transmission in any form or by any
means, electronic, mechanical, photocopying, recording, or likewise. For information
regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-321-32193-0
ISBN-10: 0-321-32193-6
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, IN.
First printing August 2007

EDITOR-IN-CHIEF
Mark Taub

ACQUISITIONS
EDITOR
Greg Doench

DEVELOPMENT
EDITOR
Audrey Doyle

MANAGING EDITOR
Gina Kanouse

PROJECT EDITOR
Anne Goebel

COPY EDITOR
Geneil Breeze

INDEXER
Brad Herriman

PROOFREADER
Water Crest
Publishing, Inc.

PUBLISHING
COORDINATOR
Michelle Housley

COVER DESIGNER
Chuti Prasertsith

COMPOSITION
Bumpy Design

http://www.awprofessional.com/safarienabled
www.awprofessional.com

DDEDICEDICAATIONTION

To Ivana, for being so lovely

This page intentionally left blank

CCONTENTSONTENTS
PREFACE XVII

PART I 1

CHAPTER 1 INTRODUCTION TO SCRIPTING 3

BACKGROUND 4

DEFINITION OF A SCRIPTING LANGUAGE 8
COMPILERS VERSUS INTERPRETERS 8

SOURCE CODE IN PRODUCTION 12

TYPING STRATEGIES 13

DATA STRUCTURES 17

CODE AS DATA 19

SUMMARY 23

SCRIPTING LANGUAGES AND VIRTUAL MACHINES 24

A COMPARISON OF SCRIPTING AND SYSTEM PROGRAMMING 26
RUNTIME PERFORMANCE 26

DEVELOPMENT SPEED 28

ROBUSTNESS 29

MAINTENANCE 32

EXTREME PROGRAMMING 33

THE HYBRID APPROACH 35

A CASE FOR SCRIPTING 37

CONCLUSION 38

CHAPTER 2 APPROPRIATE APPLICATIONS FOR
SCRIPTING LANGUAGES 39

WIRING 40
UNIX SHELL LANGUAGES 41

PERL 43

TCL 43

PROTOTYPING 44
PYTHON 47

CUSTOMIZATION 49
VISUAL BASIC FOR APPLICATIONS (VBA) 50

SOFTWARE DEVELOPMENT SUPPORT 51
PROJECT BUILDING 51

TESTING 53

ADMINISTRATION AND MANAGEMENT 55

USER INTERFACE PROGRAMMING 58
TK 58

USE CASES 59
WEB APPLICATIONS 59

SCRIPTING AND UNIX 68

SCRIPTING IN GAMES 68

ADDITIONAL CHARACTERISTICS 69
EMBEDDABLE 70

EXTENSIBLE 70

EASY TO LEARN AND USE 71

CONCLUSION 72

PART II 75

CHAPTER 3 SCRIPTING LANGUAGES INSIDE THE JVM 77

UNDER THE HOOD 80

SCRIPTING LANGUAGE CONCEPTS 82

BEANSHELL 83
GETTING STARTED 83

BASIC SYNTAX 86

LOOSELY TYPED SYNTAX 87

VIII CONTENTS

SYNTAX FLAVORS 88

COMMANDS 91

METHODS 91

OBJECTS 92

IMPLEMENTING INTERFACES 93

EMBEDDING WITH JAVA 94

JYTHON 98
GETTING STARTED 98

BASIC SYNTAX 101

WORKING WITH JAVA 103

IMPLEMENTING INTERFACES 105

EXCEPTION HANDLING 107

EMBEDDING WITH JAVA 108

CONCLUSION 109

RHINO 110
GETTING STARTED 110

WORKING WITH JAVA 111

IMPLEMENTING INTERFACES 112

JAVAADAPTER 114

EMBEDDING WITH JAVA 114

HOST OBJECTS 117

CONCLUSION 120

GROOVY 120

OTHER SCRIPTING LANGUAGES 122
JRUBY 122

TCL/JAVA 122

JUDOSCRIPT 122

OBJECTSCRIPT 123

CONCLUSION 123

CONTENTS IX

CHAPTER 4 GROOVY 125

WHY GROOVY? 126

INSTALLATION 127

RUNNING GROOVY SCRIPTS 127
USING THE INTERACTIVE SHELL 127

USING THE INTERACTIVE CONSOLE 128

EVALUATING THE SCRIPT FILE 129

COMPILING GROOVY SCRIPTS 130
DEPENDENCIES 131

CLASSPATH 131

ANT TASK 132

SCRIPT STRUCTURE 133
COMMAND-LINE ARGUMENTS 136

LANGUAGE SYNTAX 137
JAVA COMPATIBILITY 137

STATEMENTS 138

LOOSE TYPING 138

TYPE JUGGLING 140

STRINGS 143

GSTRINGS 145

REGULAR EXPRESSIONS 146

COLLECTIONS 148

LOGICAL BRANCHING 154

LOOPING 156

CLASSES 159

OPERATOR OVERLOADING 162

GROOVYBEANS 165

CLOSURES 168

SYSTEM OPERATIONS 178
FILES 178

PROCESSES 182

X CONTENTS

EMBEDDING WITH JAVA 184

SECURITY 190

CONCLUSION 194

CHAPTER 5 ADVANCED GROOVY PROGRAMMING 195

GROOVYSQL 196
groovy.sql.Sql 198

groovy.sql.DataSet 209

GROOVLETS 212

GROOVY TEMPLATES 220

GROOVYMARKUP 223
groovy.xml.MarkupBuilder 224

groovy.util.NodeBuilder 227

groovy.xml.SaxBuilder 230

groovy.xml.DomBuilder 232

groovy.xml.Namespace 234

groovy.util.BuilderSupport 235

GROOVY AND SWING 236
TableLayout 239

TableModel 241

CONCLUSION 243

CHAPTER 6 BEAN SCRIPTING FRAMEWORK 245

INTRODUCTION TO THE BEAN SCRIPTING FRAMEWORK 246

GETTING STARTED 247

BASIC CONCEPTS 248
ARCHITECTURE 248

REGISTRATION OF SCRIPTING LANGUAGES 249

MANAGER AND ENGINE INITIALIZATION 252

WORKING WITH SCRIPTS 253

WORKING WITH SCRIPT FILES 257

CONTENTS XI

METHODS AND FUNCTIONS 259
call() 259

apply() 263

DATA BINDING 264
REGISTERING BEANS 265

DECLARING BEANS 268

COMPILATION 270

APPLICATIONS 275
JSP 275

XALAN-J (XSLT) 280

CONCLUSION 288

PART III 289

CHAPTER 7 PRACTICAL SCRIPTING IN JAVA 291

UNIT TESTING 292
JUNIT BASICS 293

THE GroovyTestCase CLASS 296

ASSERTION METHODS 297

TEST SUITES 300

SCRIPTS AS UNIT TEST CASES 303

SUMMARY 304

INTERACTIVE DEBUGGING 304

BUILD TOOLS (ANT SCRIPTING) 309
BSF SUPPORT 313

GROOVYMARKUP (ANTBUILDER) 316

SUMMARY 322

SHELL SCRIPTING 323
CLASSPATH 324

EXAMPLE 325

ADMINISTRATION AND MANAGEMENT 328

CONCLUSION 334

XII CONTENTS

CHAPTER 8 SCRIPTING PATTERNS 335

SCRIPTED COMPONENTS PATTERN 337
PROBLEM 337

SOLUTION 338

CONSEQUENCES 339

SAMPLE CODE 340

RELATED PATTERNS 341

MEDIATOR PATTERN (GLUE CODE PATTERN) 341
PROBLEM 341

SOLUTION 342

CONSEQUENCES 345

SAMPLE CODE 345

RELATED PATTERNS 354

SCRIPT OBJECT FACTORY PATTERN 354
PROBLEM 355

SOLUTION 355

CONSEQUENCES 356

SAMPLE CODE 356

RELATED PATTERNS 359

OBSERVER (BROADCASTERS) PATTERN 359
PROBLEM 359

SOLUTION 360

CONSEQUENCES 362

SAMPLE CODE 362

RELATED PATTERNS 369

EXTENSION POINT PATTERN 369
PROBLEM 369

SOLUTION 370

CONSEQUENCES 370

SAMPLE CODE 371

RELATED PATTERNS 374

CONTENTS XIII

ACTIVE FILE PATTERN 375
PROBLEM 375

SOLUTION 375

CONSEQUENCES 375

SAMPLE CODE 376

CONCLUSION 380

PART IV 383

CHAPTER 9 SCRIPTING API 385

MOTIVATION AND HISTORY 386

INTRODUCTION 388

GETTING STARTED 390

ARCHITECTURE 391

DISCOVERY MECHANISM 391

ENGINE METADATA 393

CREATING AND REGISTERING SCRIPTING ENGINES 395
CREATION METHODS 396

REGISTRATION METHODS 399

EVALUATION 400

ScriptException 403

BINDING 404
ENGINE SCOPE 405

GLOBAL SCOPE 411

SCRIPT CONTEXT 416

CODE GENERATION 428
OUTPUT STATEMENT 429

METHOD CALL SYNTAX 429

PROGRAM 431

ADDITIONAL ENGINE INTERFACES 432
INVOCABLE 432

COMPILABLE 437

XIV CONTENTS

THREADING 440

DYNAMIC BINDINGS 442

CONCLUSION 445

CHAPTER 10 WEB SCRIPTING FRAMEWORK 447

ARCHITECTURE 448
CONTEXT 448

SERVLET 449

INTERACTION 451

GETTING STARTED 453

CONFIGURATION 456
DISABLE SCRIPTING 456

SCRIPT DIRECTORY 457

SCRIPT METHODS 458

ALLOW LANGUAGES 459

DISPLAY RESULT 460

BINDINGS 462
APPLICATION 462

REQUEST 464

RESPONSE 468

SERVLET 468

INCLUDE METHOD 469

FORWARD METHOD 471

SESSION SHARING 473

LANGUAGE TAGS 478

THREADING ISSUES 481

ARCHITECTURAL CHALLENGES 482
INTEGRATION OF JAVA AND PHP APPLICATIONS 482

JAVA BUSINESS LOGIC IN PHP WEB APPLICATIONS 484

PHP VIEWS IN JAVA WEB APPLICATIONS 487

CONCLUSION 488

CONTENTS XV

PART V 489

APPENDIX A GROOVY INSTALLATION 491

DOWNLOAD INSTRUCTIONS 491

INSTALLING GROOVY 492

CONFIGURING GROOVY 492

TESTING GROOVY 492

APPENDIX B GROOVY IDE SUPPORT 495

INSTALLATION 495

USAGE 497

APPENDIX C INSTALLING JSR 223 499

REQUIREMENTS 500

INSTALLATION 500

INDEX 503

XVI CONTENTS

PPREFREFAACECE
Java is an excellent object-oriented programming language. It has provided many
benefits to software developers, including a good object-oriented approach, implic-
it memory management, and dynamic linking, among others. These language char-
acteristics are one of the main reasons for Java’s popularity and wide acceptance.

But Java is much more than a programming language; it’s a whole develop-
ment platform. This means that it comes with a runtime environment (JRE), which
provides the virtual machine, and the standardized application programming inter-
faces (APIs) that help developers accomplish most of their desired tasks. The main
advantages of this integrated runtime environment are its true platform independ-
ence and simplification of software development.

On the other hand, scripting languages have played an important role in the
information technology infrastructure for many years. They have been used for all
kinds of tasks, ranging from job automation to prototyping and implementation of
complex software projects.

Therefore, we can conclude that the Java development platform can also bene-
fit from scripting concepts and languages. Java developers can use scripting lan-
guages in areas proven to be most suitable for this technology. This synergy of the
Java platform and scripting languages, as we will see, adds an extra quality to the
overall software development process.

In this book, I describe the concepts behind scripting languages, summarize
solutions available to Java developers, and explore use cases and design patterns
for applying scripting languages in Java applications.

How This Book Is Organized

This book consists of five logical parts.

Part I

The first part of the book comprises two chapters that describe scripting languages
in general:

■ Chapter 1, “Introduction to Scripting”—Here I define the basic character-
istics of scripting languages and compare them to system programming
languages.

XVIII PREFACE

■ Chapter 2, “Appropriate Applications for Scripting Languages”—In this
chapter, I explain the role of traditional (native) scripting languages in the
overall information technology infrastructure. I also discuss tasks for
which scripting languages have been used in various systems over time.

Part II

After discussing the basic concepts and uses of scripting languages, we are ready
to focus on real technologies and solutions for the Java platform. This part of the
book contains the following chapters:

■ Chapter 3, “Scripting Languages Inside the JVM”—I begin this chapter by
covering the basic elements of the Java platform and explaining where
scripting languages fit into it. After that, I describe the main features of
three popular scripting languages available for the Java Virtual Machine
(JVM)—BeanShell, JavaScript, and Python—and how they can be used to
interact with Java applications. At the end of this chapter, I describe other
solutions available for Java developers.

■ Chapter 4, “Groovy”—Here I discuss the Groovy scripting language in
detail. I cover its Java-like syntax and all the scripting concepts built into
this language, and I discuss Groovy’s integration with Java, as well as
some security-related issues.

■ Chapter 5, “Advanced Groovy Programming”—In this chapter, I cover
some of the Groovy extensions that can aid in day-to-day programming
tasks. I also explain how Java programmers can access databases, create
and process XML documents, and easily create simple Web applications
and swing user interfaces, using the scripting-specific features in Groovy
covered in Chapter 4.

■ Chapter 6, “Bean Scripting Framework”—In this chapter, I describe the
general Java scripting framework. In addition to explaining how to imple-
ment general support in your project for any compliant scripting language,
I also discuss some basic abstractions implemented in the Bean Scripting
Framework (BSF) and show some examples of successful uses.

Part III

This part of the book focuses primarily on the use of scripting languages in real
Java projects:

■ Chapter 7, “Practical Scripting in Java”—Here I cover topics related to the
use of scripting for everyday programming tasks, such as unit testing,
interactive debugging, and project building, among others.

■ Chapter 8, “Scripting Patterns”—In this chapter, I discuss Java application
design patterns that involve scripting languages. I show how you can use
scripts to implement some parts of traditional design patterns and intro-
duce some new design patterns specific only to the scripting environment.
I also discuss the pros and cons of these design patterns, as well as their
purpose.

Part IV

In the final part of this book, I cover the “Scripting for the Java Platform” specifi-
cation, which was created according to the Java Specification Request (JSR) 223.
Specifically, I cover two APIs defined by the specification:

■ Chapter 9, “Scripting API”—Here I cover the Scripting API, the standard-
ized general scripting framework for the Java platform. The purpose of this
framework is the same as that of the Bean Scripting Framework, but the
Scripting API brings many new features that the modern scripting frame-
work needs. The Scripting API is a standard part of the Java platform with
the release of Mustang (Java SE 6).

■ Chapter 10, “Web Scripting Framework”—In this chapter, I discuss the
Web Scripting Framework, a framework built on top of the Scripting API
and created to enable scripting languages to generate Web content inside a
servlet container. I explain how native scripting languages, such as PHP,
can be synergized with the Java platform to bring more flexibility in Web
application development.

Part V

At the end of the book, you can find a section comprising three appendixes. The
main purpose of these appendixes is to provide the technical details about installa-
tion and use of certain technologies described in the book:

■ Appendix A, “Groovy Installation”—In this appendix, I describe how to
install, build, and configure the Groovy scripting language. A working
installation of the Groovy interpreter is needed to run the code samples
from the text.

PREFACE XIX

■ Appendix B, “Groovy IDE Support”—In this appendix, I provide instruc-
tions on how to install general Groovy support for Integrated Development
Environments (IDEs).

■ Appendix C, “Installing JSR 223”—Here I describe how to install the refer-
ence implementation (RI) of the JSR 223, which is needed to run examples
from Chapter 10.

I hope you’ll enjoy reading the book.

About the Web Site

This book is extended with a Web site at www.scriptinginjava.net where you can
find the following:

■ Source codes of all examples shown in the book available for download

■ Book news, updates, and additions

■ News and information related to this field of software development

XX PREFACE

www.scriptinginjava.net

AACKNOCKNOWLEDGMENTSWLEDGMENTS
I would like to thank my family, friends, and colleagues for endless patience and
support during the writing of this book. I’m also grateful to the people from
Addison-Wesley for believing in this material and making an excellent atmosphere
to work in, especially my editors, Greg Doench and Ann Sellers. I would also like
to thank all technical reviewers, especially George Jempty, Kevin Davis, and Rich
Rosen. They have provided valuable feedback and helped me keep my focus when I
was stranded. Without Audrey Doyle, this material would be much harder to read.
Thank you for helping me shape the manuscript.

Finally, this book wouldn’t be possible without all developers contributing
their time to projects covered by this material.

AABOUTBOUT THETHE AAUTHORUTHOR
Dejan Bosanac is a professional software developer and technology consultant. He
is focused on the integration and interoperability of different technologies, espe-
cially ones related to Java and the Web. Dejan spent a number of years in develop-
ment of complex software projects, ranging from highly trafficked Web sites to
enterprise applications, and was a member of the JSR 223 Expert Group.

PART I

CHAPTER 1 Introduction to Scripting

CHAPTER 2 Appropriate Applications for Scripting
Languages

This page intentionally left blank

The main topic of this book is the synergy of scripting
technologies and the Java platform. I describe projects

Java developers can use to create a more powerful develop-
ment environment, and some of the practices that make
scripting useful.

Before I start to discuss the application of scripting in
the Java world, I summarize some of the theory behind
scripting in general and its use in information technology
infrastructure. This is the topic of the first two chapters of
the book, and it gives us a better perspective of scripting
technology as well as how this technology can be useful
within the Java platform.

To begin, we must define what scripting languages are
and describe their characteristics. Their characteristics
greatly determine the roles in which they could (should) be
used. In this chapter, I explain what the term scripting lan-
guage means and discuss their basic characteristics.

At the end of this chapter, I discuss the differences
between scripting and system-programming languages and
how these differences make them suitable for certain roles
in development.

IINTRNTRODUCTIONODUCTION TOTO
SSCRIPTINGCRIPTING

CHAPTER 1

Background

The definition of a scripting language is fuzzy and sometimes
inconsistent with how scripting languages are used in the real
world, so it is a good idea to summarize some of the basic con-
cepts about programming and computing in general. This sum-
mary provides a foundation necessary to define scripting
languages and discuss their characteristics.

Let’s start from the beginning. Processors execute machine
instructions, which operate on data either in the processors’ reg-
isters or in external memory. Put simply, a machine instruction
is made up of a sequence of binary digits (0s and 1s) and is
specific to the particular processor on which it runs. Machine
instructions consist of the operation code telling the processor
what operation it should perform, and operands representing
the data on which the operation should be performed.

For example, consider the simple operation of adding a
value contained in one register to the value contained in
another. Now let’s imagine a simple processor with an 8-bit
instruction set, where the first 5 bits represent the operation
code (say, 00111 for register value addition), and the registers
are addressed by a 3-bit pattern. We can write this simple
example as follows:

00111 001 010

In this example, I used 001 and 010 to address registers
number one and two (R1 and R2, respectively) of the processor.

This basic method of computing has been well known for
decades, and I’m sure you are familiar with it. Various kinds of
processors have different strategies regarding how their instruc-
tion sets should look (RISC or CISC architecture), but from the
software developer’s point of view, the only important fact is
the processor is capable of executing only binary instructions.
No matter what programming language is used, the resulting
application is a sequence of machine instructions executed by
the processor.

4 SCRIPTING IN JAVA

What has been changing over time is how people create the
order in which the machine instructions are executed. This
ordered sequence of machine instructions is called a computer
program. As hardware is becoming more affordable and more
powerful, users’ expectations rise. The whole purpose of soft-
ware development as a science discipline is to provide mecha-
nisms enabling developers to craft more complex applications
with the same (or even less) effort as before.

A specific processor’s instruction set is called its machine
language. Machine languages are classified as first-generation
programming languages. Programs written in this way are usu-
ally very fast because they are optimized for the particular
processor’s architecture. But despite this benefit, it is hard (if
not impossible) for humans to write large and secure applica-
tions in machine languages because humans are not good at
dealing with large sequences of 0s and 1s.

In an attempt to solve this problem, developers began creat-
ing symbols for certain binary patterns, and with this, assembly
languages were introduced. Assembly languages are second-
generation programming languages. The instructions in assembly
languages are just one level above machine instructions, in that
they replace binary digits with easy-to-remember keywords
such as ADD, SUB, and so on. As such, you can rewrite the pre-
ceding simple instruction example in assembly language as
follows:

ADD R1, R2

In this example, the ADD keyword represents the operation
code of the instruction, and R1 and R2 define the registers
involved in the operation. Even if you observe just this simple
example, it is obvious assembly languages made programs eas-
ier for humans to read and thus enabled creation of more com-
plex applications.

Although they are much more human-oriented, however,
second-generation languages do not extend processor capabili-
ties by any means.

CHAPTER 1 5

Enter high-level languages, which allow developers to
express themselves in higher-level, semantic forms. As you
might have guessed, these languages are referred to as third-
generation programming languages. High-level languages pro-
vide various powerful loops, data structures, objects, and so on,
making it much easier to craft many applications with them.

Over time, a diverse array of high-level programming lan-
guages were introduced, and their characteristics varied a great
deal. Some of these characteristics categorize programming lan-
guages as scripting (or dynamic) languages, as we see in the
coming sections.

Also, there is a difference in how programming languages
are executed on the host machine. Usually, compilers translate
high-level language constructs into machine instructions that
reside in memory. Although programs written in this way ini-
tially were slightly less efficient than programs written in
assembly language because of early compilers’ inability to use
system resources efficiently, as time passed compilers and
machines improved, making system-programming languages
superior to assembly languages. Eventually, high-level lan-
guages became popular in a wide range of development areas,
from business applications and games to communications soft-
ware and operating system implementations.

But there is another way to transform high-level semantic
constructs into machine instructions, and that is to interpret
them as they are executed. This way, your applications reside in
scripts, in their original form, and the constructs are trans-
formed at runtime by a program called an interpreter. Basically,
you are executing the interpreter that reads statements of your
application and then executes them. Called scripting or dynamic
languages, such languages offer an even higher level of abstrac-
tion than that offered by system-programming languages, and
we discuss them in detail later in this chapter.

Languages with these characteristics are a natural fit for
certain tasks, such as process automation, system administra-
tion, and gluing existing software components together; in
short, anywhere the strict syntax and constraints introduced by
system-programming languages were getting in the way

6 SCRIPTING IN JAVA

between developers and their jobs. A description of the usual
roles of scripting languages is a focus of Chapter 2, “Appropri-
ate Applications for Scripting Languages.”

But what does all this have to do with you as a Java devel-
oper? To answer this question, let’s first briefly summarize the
history of the Java platform. As platforms became more diverse,
it became increasingly difficult for developers to write software
that can run on the majority of available systems. This is when
Sun Microsystems developed Java, which offers “write once, run
anywhere” simplicity.

The main idea behind the Java platform was to implement a
virtual processor as a software component, called a virtual
machine. When we have such a virtual machine, we can write
and compile the code for that processor, instead of the specific
hardware platform or operating system. The output of this com-
pilation process is called bytecode, and it practically represents
the machine code of the targeted virtual machine. When the
application is executed, the virtual machine is started, and the
bytecode is interpreted. It is obvious an application developed
in this way can run on any platform with an appropriate virtual
machine installed. This approach to software development
found many interesting uses.

The main motivation for the invention of the Java platform
was to create an environment for the development of easy,
portable, network-aware client software. But mostly due to per-
formance penalties introduced by the virtual machine, Java is
now best suited in the area of server software development. It is
clear as personal computers increase in speed, more desktop
applications are being written in Java. This trend only continues.

One of the basic requirements of a scripting language is to
have an interpreter or some kind of virtual machine. The Java
platform comes with the Java Virtual Machine (JVM), which
enables it to be a host to various scripting languages. There is a
growing interest in this area today in the Java community. Few
projects exist that are trying to provide Java developers with
the same power developers of traditional scripting languages
have. Also, there is a way to execute your existing application
written in a dynamic language such as Python inside the JVM
and integrate it with another Java application or module.

CHAPTER 1 7

This is what we discuss in this book. We take a scripting
approach to programming, while discussing all the strengths
and weaknesses of this approach, how to best use scripts in an
application architecture, and what tools are available today
inside the JVM.

Definition of a Scripting Language

There are many definitions of the term scripting language, and
every definition you can find does not fully match some of the
languages known to be representatives of scripting languages.
Some people categorize languages by their purpose and others
by their features and the concepts they introduce. In this chap-
ter, we discuss all the characteristics defining a scripting lan-
guage. In Chapter 2, we categorize scripting languages based on
their role in the development process.

Compilers Versus Interpreters

Strictly speaking, an interpreter is a computer program that
executes other high-level programs line by line. Languages exe-
cuted only by interpreters are called interpreted languages.

To better understand the differences between compilers and
interpreters, let’s take a brief look at compiler architecture (see
Figure 1.1).

As you can see in Figure 1.1, translating source code to
machine code involves several steps:

1. First, the source code (which is in textual form) is read
character by character. The scanner groups individual
characters into valid language constructs (such as vari-
ables, reserved words, and so on), called tokens.

2. The tokens are passed to the parser, which checks that
the correct language syntax is being used in the pro-
gram. In this step, the program is converted to its parse
tree representation.

3. Semantic analysis performs type checking. Type check-
ing validates that all variables, functions, and so on, in

8 SCRIPTING IN JAVA

the source program have been used consistently with
their definitions. The result of this phase is intermediate
representation (IR) code.

4. Next, the optimizer (optionally) tries to make equivalent
but improved IR code.

5. In the final step, the code generator creates target
machine code from the optimized IR code. The gener-
ated machine code is written as an object file.

CHAPTER 1 9

Scanner
(Lexical analyzer)

Parser
(Syntax analyzer)

Symbol
table

Tokens
Semantical

analyzer

Optimizer

Parse tree

Intermediate
representation

Code generator

Intermediate
representation

Target machine
code

FIGURE 1.1 Compiler architecture

To create one executable file, a linking phase is necessary.
The linker takes several object files and libraries, resolves all
external references, and creates one executable object file.
When such a compiled program is executed, it has complete
control of its execution.

Unlike compilers, interpreters handle programs as data that
can be manipulated in any suitable way (see Figure 1.2).

FIGURE 1.2 Interpreter architecture

As you can see in Figure 1.2, the interpreter, not the user
program, controls program execution. Thus, we can say the user
program is passive in this case. So, to run an interpreted pro-
gram on a host, both the source code and a suitable interpreter
must be available. The presence of the program source (script) is
the reason why some developers associate interpreted languages
with scripting languages. In the same manner, compiled lan-
guages are usually associated with system-programming
languages.

Interpreters usually support two modes of operation. In the
first mode, the script file (with the source code) is passed to the
interpreter. This is the most common way of distributing
scripted programs. In the second, the interpreter is run in inter-
active mode. This mode enables the developer to enter program
statements line by line, seeing the result of the execution after
every statement. Source code is not saved to the file. This mode
is important for initial system debugging, as we see later in the
book.

In the following sections, I provide more details on the
strengths and weaknesses of using compilers and interpreters.
For now, here are some clear drawbacks of both approaches
important for our further discussion:

■ It is obvious compiled programs usually run faster than
interpreted ones. This is because with compiled pro-
grams, no high-level code analysis is being done during
runtime.

10 SCRIPTING IN JAVA

Interpreter Output

Source code Data

■ An interpreter enables the modification of a user pro-
gram as it runs, which enables interactive debugging
capability. In general, interpreted programs are much
easier to debug because most interpreters point directly
to errors in the source code.

■ Interpreters introduce a certain level of machine inde-
pendence because no specific machine code is generated.

■ The important thing from a scripting point of view, as
we see in a moment, is interpreters allow the variable
type to change dynamically. Because the user program
is reexamined constantly during execution, variables do
not need to have fixed types. This is much harder to
accomplish with compilers because semantic analysis is
done at compile time.

From this list, we can conclude interpreters are better suited
for the development process, and compiled programs are better
suited for production use. Because of this, for some languages,
you can find both an interpreter and a compiler. This means
you can reap all the benefits of interpreters in the development
phase and then compile a final version of the program for a
specific platform to gain better performance.

Many of today’s interpreted languages are not interpreted
purely. Rather, they use a hybrid compiler-interpreter approach,
as shown in Figure 1.3.

CHAPTER 1 11

CompilerSource code

InterpreterExternal libraries

Intermediate language
code

Result

FIGURE 1.3 Hybrid compiler-interpreter architecture

In this model, the source code is first compiled to some
intermediate code (such as Java bytecode), which is then inter-
preted. This intermediate code is usually designed to be very
compact (it has been compressed and optimized). Also, this lan-
guage is not tied to any specific machine. It is designed for
some kind of virtual machine, which could be implemented in
software. Basically, the virtual machine represents some kind of
processor, whereas this intermediate code (bytecode) could be
seen as a machine language for this processor.

This hybrid approach is a compromise between pure
interpreted and compiled languages, due to the following
characteristics:

■ Because the bytecode is optimized and compact, inter-
preting overhead is minimized compared with purely
interpreted languages.

■ The platform independence of interpreted languages is
inherited from purely interpreted languages because the
intermediate code could be executed on any host with a
suitable virtual machine.

Lately, just-in-time compiler technology has been intro-
duced, which allows developers to compile bytecode to
machine-specific code to gain performance similar to compiled
languages. I mention this technology throughout the book,
where applicable.

Source Code in Production

As some people have pointed out, you should use a scripting
language to write user-readable and modifiable programs that
perform simple operations and control the execution of other
programs. In this scenario, source code should be available in
the production system at runtime, so programs are delivered not
in object code, but in plain text files (scripts) in their original
source. From our previous discussion of interpreters, it is obvi-
ous this holds true for purely interpreted languages. Because
scripting languages are interpreted, we can say this rule applies
to them as well. But because some of them use a hybrid
compilation-interpretation strategy, it is possible to deliver the

12 SCRIPTING IN JAVA

program in intermediate bytecode form. The presence of the
bytecode improves execution speed because no compilation
process is required. The usual approach is to deliver necessary
libraries in the bytecode and not the program itself. This way,
execution speed is improved, and the program source is still
readable in production. Some of the compiler-interpreter lan-
guages cache in the file the bytecode for the script on its first
execution. On every following script execution, if the source
hasn’t been changed, the interpreter uses the cached bytecode,
improving the startup speed required to execute the script.

As such, the presence of source code in the production
environment is one of the characteristics of scripting languages,
although you can omit it for performance reasons or if you
want to keep your source code secret.

Typing Strategies

Before I start a discussion on typing strategies implemented in
different programming languages, I have to explain what types
are.

There is no simple way to explain what typing is because
its definition depends on the context in which it is used. Also, a
whole branch of mathematics is dedicated to this issue. It is
called type theory, and its proponents have the following say-
ing, which emphasizes their attitude toward the importance of
this topic:

Design the type system correctly, and the language will design
itself.

To put it simply, types are metadata that describe the data
stored in some variable. Types specify what values can be
stored in certain variables, as well as the operations that can be
performed on them.

Type constraints determine how we can handle and operate
a certain variable. For example, what happens when you add
the values of one variable to those of another depends on
whether the variables are integers, floats, Booleans, or strings.
A programming language’s type system could classify the value

CHAPTER 1 13

hello as a string and the value 7 as a number. Whether you
can mix strings with numbers in this language depends on the
language’s type policy.

Some types are native (or primitive), meaning they are built
into the language. The usual representatives of this type category
are Booleans, integers, floats, characters, and even strings in
some languages. These types have no visible internal structure.

Other types are composite, and are constructed of primitive
types. In this category, we have structures and various so-called
container types, such as lists, maps, and sets. In some lan-
guages, string is defined as a list of characters, so it can be
categorized as a composite type.

In object-oriented languages, developers got the opportunity
to create their own types, also known as classes. This type cate-
gory is called user-defined types. The big difference between
structures and classes is with classes, you define not just the
structure of your complex data, but also the behavior and possi-
ble operations you can perform with it. This categorizes every
class as a single type, where structures (in C, for example) are
one type.

Type systems provide the following major benefits:

■ Safety—Type systems are designed to catch the majority
of type-misuse mistakes made by developers. In other
words, types make it practically impossible to code
some operations that cannot be valid in a certain
context.

■ Optimization—As I already mentioned, languages that
employ static typing result in programs with better-
optimized machine code. That is because early type
checks provide useful information to the compiler, mak-
ing it easier to allocate optimized space in memory for
a certain variable. For example, there is a great differ-
ence in memory usage when you are dealing with a
Boolean variable versus a variable containing some
random text.

■ Abstraction—Types allow developers to make better
abstractions in their code, enabling them to think about
programs at a higher level of abstraction, not bothering

14 SCRIPTING IN JAVA

with low-level implementation of those types. The most
obvious example of this is in the way developers deal
with strings. It is much more useful to think of a string
as a text value rather than as a byte array.

■ Modularity—Types allow developers to create application
programming interfaces (APIs) for the subsystems used
to build applications. Typing localizes the definitions
required for interoperability of subsystems and prevents
inconsistencies when those subsystems communicate.

■ Documentation—Use of types in languages can improve
the overall documentation of the code. For example, a
declaration that some method’s arguments are of a spe-
cific type documents how that method can be used. The
same is true for return values of methods and variables.

Now that we know the basic concepts of types and typing
systems, we can discuss the type strategies implemented in vari-
ous languages. We also discuss how the choice of implemented
typing system defines languages as either scripting (dynamic) or
static.

DYNAMIC TYPING

The type-checking process verifies that the constraints intro-
duced by types are being respected. System-programming lan-
guages traditionally used to do type checking at compile time.
This is referred to as static typing.

Scripting languages force another approach to typing. With
this approach, type checking is done at runtime. One obvious
consequence of runtime checking is all errors caused by inap-
propriate use of a type are triggered at runtime. Consider the
following example:

x = 7
y = “hello world”
z = x + y

This code snippet defines an integer variable, x, and a string
variable, y, and then tries to assign a value for the z variable
that is the sum of the x and y values. If the language has not

CHAPTER 1 15

defined an operator, +, for these two types, different things hap-
pen depending on whether the language is statically or dynami-
cally typed. If the language was statically typed, this problem
would be discovered at compile time, so the developer would be
notified of it and forced to fix it before even being able to run
the program. If the language was dynamically typed, the pro-
gram would be executable, but when it tried to execute this
problematic line, a runtime error would be triggered.

Dynamic typing usually allows a variable to change type
during program execution. For example, the following code
would generate a compile-time error in most statically typed
programming languages:

x = 7
x = “Hello world”

On the other hand, this code would be legal in a purely
dynamic typing language. This is simply because the type is not
being misused here.

Dynamic typing is usually implemented by tagging the
variables. For example, in our previous code snippet, the value
of variable x after the first line would be internally represented
as a pair (7, number). After the second line, the value would be
internally represented as a pair (“Hello world”, string).
When the operation is executed on the variable, the type is
checked and a runtime error is triggered if the misuse is discov-
ered. Because no misuse is detected in the previous example, the
code snippet runs without raising any errors.

I comprehensively discuss the pros and cons of these
approaches later in this chapter, but for now, it is important to
note a key benefit of dynamic typing from the developer’s point
of view. Programs written in dynamically typed languages tend
to be much shorter than equivalent solutions written in stati-
cally typed languages. This is an implication of the fact that
developers have much more freedom in terms of expressing
their ideas when they are not constrained by a strict type
system.

16 SCRIPTING IN JAVA

WEAK TYPING

There is yet another categorization of programming-language
typing strategy. Some languages raise an error when a program-
mer tries to execute an operation on variables whose types are
not suitable for that operation (type misuse). These languages
are called strongly typed languages. On the other hand, weakly
typed languages implicitly cast (convert) a variable to a suitable
type before the operation takes place.

To clarify this, let’s take a look at our first example of sum-
ming a number and string variable. In a strongly typed envi-
ronment, which most system-programming languages deploy,
this operation results in a compile-time error if no operator is
defined for these types. In a weakly typed language, the integer
value usually would be converted to its string representative (7
in this case) and concatenated to the other string value (suppos-
ing that the + operator represents string concatenation in this
case). The result would be a z variable with the “7HelloWorld”
value and the string type.

Most scripting languages tend to be dynamic and weakly
typed, but not all of them use these policies. For example,
Python, a popular scripting language, employs dynamic typing,
but it is strongly typed. We discuss in more detail the strengths
and weaknesses of these typing approaches, and how they can
fit into the overall system architecture, later in this chapter and
in Chapter 2.

Data Structures

For successful completion of common programming tasks,
developers usually need to use different complex data struc-
tures. The presence of language mechanisms for easy handling
of complex data structures is in direct connection to developers’
efficiency.

Scripting languages generally provide more powerful and
flexible built-in data types than traditional system-program-
ming languages. It is natural to see data structures such as lists,
sets, maps, and so on, as native data types in such languages.

CHAPTER 1 17

Of course, it is possible to implement an arbitrary data
structure in any language, but the point is these data structures
are embedded natively in language syntax making them much
easier to learn and use. Also, without this standard implementa-
tion, novice developers are often tempted to create their own
solution that is usually not robust enough for production use.

As an example, let’s look at Python, a popular dynamic
language with lists and maps (also called dictionaries) as its
native language type. You can use these structures with other
language constructs, such as a for loop, for instance. Look at
the following example of defining and iterating a simple list:

list = [“Mike”, “Joe”, “Bruce”]
for item in list :

print item

As you can see, the Python code used in this example to
define a list is short and natural. But more important is the for
loop, which is designed to naturally traverse this kind of data.
Both of these features make for a comfortable programming
environment and thus save some time for developers.

Java developers may argue that Java collections provide the
same capability, but prior to J2SE 1.5, the equivalent Java code
would look like this:

String[] arr = new String[]{“Mike”, “Joe”, “Bruce”};
List list = Arrays.asList(arr);
for (Iterator it = list.iterator(); it.hasNext();) {

System.out.println(it.next());
}

Even for this simple example, the Java code is almost twice
as long as and is much harder to read than the equivalent
Python code. In J2SE 1.5, Java got some features that brought
it closer to these scripting concepts. With the more flexible for
loop, you could rewrite the preceding example as follows:

String[] arr = new String[]{“Mike”, “Joe”, “Bruce”};
List list = Arrays.asList(arr);
for (String item : list) {

System.out.println(item);
}

18 SCRIPTING IN JAVA

With this in mind, we can conclude data structures are an
important part of programming, and therefore native language
support for commonly used structures could improve develop-
ers’ productivity. Many scripting languages come with flexible,
built-in data structures, which is one of the reasons why they
are often categorized as “human-oriented.”

Code as Data

The code and data in compiled system programming languages
are two distinct concepts. Scripting languages, however, attempt
to make them more similar. As I said earlier, programs (code) in
scripting languages are kept in plain text form. Language inter-
preters naturally treat them as ordinary strings.

EVALUATION

It is not unusual for the commands (built-in functions) in
scripting languages to evaluate a string (data) as language
expression (code). For example, in Python, you can use the
eval() function for this purpose:

x = 9
eval(“print x + 7”)

This code prints 16 on execution, meaning the value of the
variable x is embedded into the string, which is evaluated as a
regular Python program.

More important is the fact that scripted programs can gen-
erate new programs and execute them “on the fly”. Look at the
following Python example:

temp = open(“temp.py”, “w”)
temp.write(“print x + 7”)
temp.close()
x = 9
execfile(“temp.py”)

In this example, we created a file called temp.py, and we
wrote a Python expression in it. At the end of the snippet, the
execfile() command executed the file, at which point 16 was
displayed on the console.

CHAPTER 1 19

This concept is natural to interpreted languages because the
interpreter is already running on the given host executing the
current script. Evaluation of the script generated at runtime is
not different from evaluation of other regular programs. On the
other hand, for compiled languages this could be a challenging
task. That is because a compile/link phase is introduced during
conversion of the source code to the executable program. With
interpreted languages, the interpreter must be present in the
production environment, and with compiled languages, the
compiler (and linker) is usually not part of the production
environment.

CLOSURES

Scripting languages also introduce a mechanism for passing
blocks of code as method arguments. This mechanism is called a
closure. A good way to demonstrate closures is to use methods
to select items in a list that meet certain criteria.

Imagine a list of integer values. We want to select only
those values greater than some threshold value. In Ruby, a
scripting language that supports closures, we can write some-
thing like this:

threshold = 10
newList = orig.select {|item| item > threshold}

The select() method of the collection object accepts a
closure, defined between the {}, as an argument. If parameters
must be passed, they can be defined between the ||. In this
example, the select() method iterates over the collection,
passing each item to the closure (as an item parameter) and
returning a collection of items for which the closure returned
true.

Another thing worth noting in this example is closures can
refer to variables visible in the scope in which the closure is
created. That’s why we could use the global threshold value in
the closure.

Closures in scripting languages are not different from any
other data type, meaning methods can accept them as param-
eters and return them as results.

20 SCRIPTING IN JAVA

FUNCTIONS AS METHOD ARGUMENTS

Many scripting languages, even object-oriented ones, introduce
standalone functions as so-called “first-class language citizens.”
Even if you do not have true support for closures, you can pass
your functions as method arguments.

The Python language, for example, defines a filter()
function that accepts a list and the function to be executed on
every item in the list:

def over(item) :
threshold = 10
return item > threshold

newList = filter(over, orig)

In this example, we defined the over() function, which
basically does the same job as our closure from the previous
example. Next, we called the filter() function and passed the
over() function as the second argument. Even though this
mechanism is not as convenient as closures are, it serves its
purpose well (and that is to pass blocks of code as data around
the application).

Of course, you can achieve similar functionality in other
nonscripting languages. For example, Java developers have the
concept of anonymous inner classes serving the same purpose.
Let’s implement a similar solution using this approach:

package net.scriptinginjava.ch1;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Iterator;
import java.util.List;

interface IFilter {
public boolean filter(Integer item);

}

public class Filter {

private static List select(List list, IFilter filter) {
List result = new ArrayList();
for (Iterator it = list.iterator(); it.hasNext();) {

Integer item = (Integer)it.next();
if (filter.filter(item)) {

CHAPTER 1 21

result.add(item);
}

}
return result;

}

public static void main(String[] args) {
Integer[] arr = new Integer[]{

new Integer(5),
new Integer(7),
new Integer(13),
new Integer(32)

};
List orig = Arrays.asList(arr);
List newList = select(orig,

new IFilter() {
private Integer threshold

= new Integer(10);
public boolean filter(Integer item) {

return item.compareTo(threshold) > 0;
}

}
);
System.out.println(newList);

}

}

22 SCRIPTING IN JAVA

NOTE

Some closure propo-
nents say that the
existence of this
“named” interface
breaks the anony-
mous concept at the
beginning.

First we defined the IFilter interface with a filter()
method that returns a Boolean value indicating whether the
condition is satisfied.

Our Filter class contains a select() method equal to the
methods we saw in the earlier Ruby and Python examples. It
accepts a list to be handled and the implementation of the
IFilter interface that filters the values we want in our new
list. At the end, we implement the IFilter interface as the
anonymous inner class in the select() method call.

As a result, the program prints this result list to the screen:

[13, 32]

From this example, we can see even though a similar con-
cept is possible in system-programming languages, the syntax is
much more complex. This is an important difference because
the natural syntax for some functionality leads to its frequent
use, in practice. Closures have simple syntax for passing the

code around the application. That is why you see closures used
more often in languages that naturally support them than you
see similar structures in other languages (anonymous inner
classes in Java, for example).

Hopefully, closures will be added in Java SE 7, which
will move Java one step closer to the flexibility of scripting
languages.

Summary

In this section of the chapter, I discussed some basic functional
characteristics of scripting languages. Many experts tend to cat-
egorize a language as scripting or system programming, not by
these functional characteristics but by the programming style
and the role the language plays in the system. However, these
two categorizations are not independent, so to understand how
scripting can fit into your development process, it is important
to know the functional characteristics of the scripting language
and the implications of its design. The differences between
system-programming and scripting languages are described
later in this chapter, helping us to understand how these two
approaches can work together to create systems that feature the
strengths of both programming styles.

It is important to note that the characteristics we’ve dis-
cussed thus far are not independent among each other. For
example, whether to use static or dynamic typing depends on
when the type checking is done. It is hard to implement dynamic
typing in a strictly compiled environment. Thus, interpreter and
dynamic typing somehow fit naturally together and are usually
employed in scripting environments. The same is true for the
compiler and static typing found in system-programming
environments.

The similar is true for the generation and execution of other
programs, which is a natural thing to do in interpreted environ-
ments and is not very easy (and thus is rarely done) in compiled
environments.

To summarize, these characteristics are usually found in
scripting programming environments. Not all languages support
all the features described earlier, which is a decision driven by

CHAPTER 1 23

the primary domain for which the language is used. For exam-
ple, although Python is a dynamic language, it introduces
strong typing, making it more resistible to type misuse and
more convenient for development of larger applications.

These characteristics should serve only as a marker when
exploring certain languages and their possible use in your
development process. More important is the language’s pro-
gramming style, a topic we discuss shortly.

Scripting Languages
and Virtual Machines

A recent trend in programming language design is the presence
of a virtual machine as one of the vital elements of program-
ming platforms. One of the main elements of the Java Runtime
Environment (JRE) is the virtual machine that interprets byte-
code and serves as a layer between the application and operat-
ing systems. A virtual machine serves as a layer between the
application and operating systems in Microsoft’s .NET platform
as well.

Let’s now summarize briefly how the JRE works. Java pro-
grams contained in java extension source files are compiled to
bytecode (files with a class extension). As I said earlier, the
purpose of bytecode is to provide a compact format for interme-
diate code and support for platform independence. The JVM is a
virtual processor, and like all other processors, it interprets
code—bytecode in this case. This is a short description of the
JRE, but it is needed for our further discussion. You can find a
more comprehensive description at the beginning of Chapter 3,
“Scripting Languages Inside the JVM.”

Following this, we can say Java is a hybrid compiled-inter-
preted language. But even with this model, Java cannot be
characterized as a scripting language because it lacks all the
other features mentioned earlier.

At this point, you are probably asking what this discussion
has to do with scripting languages. The point is many modern
scripting languages follow the same hybrid concept. Although
programs are distributed in script form and are interpreted at

24 SCRIPTING IN JAVA

runtime, the things going on in the background are pretty much
the same.

Let’s look at Python, for example. The Python interpreter
consists of a compiler that compiles source code to the interme-
diate bytecode, and the Python Virtual Machine (PVM) that
interprets this code. This process is being done in the back-
ground, leaving the impression that the pure Python source
code has been interpreted. If the Python interpreter has write
privileges on the host system, it caches the generated bytecode
in files with a pyc extension (the py extension is used for the
scripts or source code). If that script had not been modified
since its previous execution, the compilation process would be
skipped and the virtual machine could start interpreting the
bytecode at once. This could greatly improve the Python script’s
startup speed. Even if the Python interpreter has no write privi-
leges on the system and the bytecode was not written in files,
this compilation process would still be performed. In this case,
the bytecode would be kept in memory.

From this discussion, we can conclude virtual machines are
one of the standard parts of modern scripting languages. So our
original dilemma remains. Should we use languages that
enforce a certain programming paradigm, and if so, how do we
use them? The dynamic and weak typing, closures, complex
built-in data structures, and so on, could be implemented in a
runtime environment with the virtual machine.

There is nothing to restrict the use of a dynamic (scripting)
language on the virtual machines designed for languages such
as Java and C#. As long as we implement the compiler appro-
priate for the target virtual machine’s intermediate bytecode,
we will receive all the features of the scripting language in this
environment. Doing this, we could benefit from the strengths of
both the system-programming approach of Java, and the script-
ing programming model in our software development process.

We focus on projects that bring scripting languages closer
to the Java platform later in this book. Also, we discuss where
it’s appropriate to apply the scripting style of development with
traditional Java programming. Before we cover these topics,
though, let’s take a look at how scripting and system program-
ming compare.

CHAPTER 1 25

NOTE

Python programs
can be distributed in
bytecode format,
keeping the source
code out of the
production
environment.

A Comparison of Scripting and
System Programming

Every decision made during the language design process is
directly related to the programming style used in that language
and its usability in the development process.

In this section, I do not intend to imply one style is better
than the other is. Instead, my objective is to summarize the
strengths and weaknesses of both approaches so that we can
proceed to Chapter 2, where I discuss how best to incorporate
them into the development process.

Runtime Performance

It is clear programs written in system-programming languages
have better runtime performance than equivalent scripts in most
cases, for a few reasons:

■ The most obvious reason is the runtime presence of the
interpreter in scripting languages. Source code analysis
and transformation during runtime introduces addi-
tional overhead in terms of program execution.

■ Another factor influencing runtime performance is
typing. Because system-programming languages force
strong static typing, machine code created by the com-
piler is more compact and optimized for the target
machine.

The fact that the script could be compiled to intermediate
bytecode makes these interpreter performance penalties more
acceptable. But the machine code is definitely more optimized
than the intermediate code.

We have to take another point of view when talking about
runtime performance, however. Many people approach runtime
performance by asking which solution is faster. The more
important question, which is often neglected, is whether a par-
ticular solution is fast enough.

You must take into consideration the tradeoffs between
the benefits and the runtime performance that each approach

26 SCRIPTING IN JAVA

provides when you are thinking about applying a certain tech-
nology in your project. If the solution brings quality to your
development process and still is fast enough, you should con-
sider using it.

A recent development trend supports this point of view.
Many experts state you should not analyze performance with-
out comparing it to measurements and goals. This leads to
debate concerning whether to perform premature or prudent
optimization. The latter approach assumes you have a flexible
system, and only after you’ve conducted the performance tests
and found the system bottlenecks should you optimize those
parts of your code.

Deciding whether scripting is suitable for some tasks in
your development process must be driven by the same question.
For instance, say you need to load a large amount of data from
a file, and developing a system-programming solution to
accomplish the task would take twice as long as developing a
scripting approach. If both the system-programming and script-
ing solutions need 1 second to load the data and the interpreter
required an additional 0.1 second to compile the script to the
bytecode, you should consider scripting to be a fast enough
solution for this task. As we see in a moment, scripts are much
faster to write (because of the higher level of abstraction they
introduce), and the end users of your project probably wouldn’t
even notice the performance advantage of the system-
programming solution that took twice as much time to develop.

If we take another point of view, we can conclude the
startup cost of executing programs written in dynamic lan-
guages could be close to their compiled alternatives. The first
important thing to note is the fact that bytecode is usually
smaller than its equivalent machine code. Experts who support
this point of view stress that processors have increased in speed
much faster than disks have. This leads to the thinking that the
in-memory operations of the just-in-time compilers (compiling
the bytecode to the machine code) are not much more expen-
sive than the operation of loading the large sequence of
machine code from the disk into memory.

To summarize, it is clear system-programming languages
are faster than scripting languages. But if you don’t need to be

CHAPTER 1 27

restricted by only one programming language, you should ask
yourself another question: What is the best tool for this task? If
the development speed is more important and the runtime per-
formance of the scripting solution is acceptable, there is your
answer.

Development Speed

I already mentioned dynamic languages lead to faster develop-
ment processes. A few facts support this assertion.

For one, a statement in a system-programming language
executes about five machine instructions. However, a statement
in a scripting language executes hundreds or even thousands
of instructions. Certainly, this increase is partially due to the
presence of the interpreter, but more important is the fact that
primitive operations in scripting languages have greater func-
tionality. For example, operations for matching certain patterns
in text with regular expressions are as easy to perform as multi-
plying two integers.

These more powerful statements and built-in data structures
lead to a higher level of abstraction that language can provide,
as well as much shorter code.

Of course, dynamic typing plays an important role here too.
The need to define each variable explicitly with its type requires
a lot of typing, and this is time consuming from a developer’s
perspective. This higher level of abstraction and dynamic typing
allows developers to spend more time writing the actual business
logic of the application than dealing with the language issues.

Another thing speeding up the scripting development
process is the lack of a compile (and linking) phase. Compila-
tion of large programs could be time consuming. Every change
in a program written in a system-programming language
requires a new compile/link process, which could slow down
development a great deal. In scripting, on the other hand,
immediately after the code is written or changed, it can be exe-
cuted (interpreted), leaving more time for the developer to actu-
ally write the code.

As you can see, all the things that increase runtime per-
formance, such as compilation and static typing, tend to slow

28 SCRIPTING IN JAVA

down development and increase the amount of time needed to
build the solution. That is why you hear scripting languages are
more human oriented than machine oriented (which isn’t the
case with system-programming languages).

To emphasize this point further, here is a snippet from
David Ascher’s article titled “Dynamic Languages—ready for the
next challenges, by design” (www.activestate.com/Company/
NewsRoom/whitepapers_ADL.plex), which reflects the paradigm
of scripting language design:

The driving forces for the creation of each major dynamic lan-
guage centered on making tasks easier for people, with raw
computer performance a secondary concern. As the language
implementations have matured, they have enabled programmers
to build very efficient software, but that was never their primary
focus. Getting the job done fast is typically prioritized above
getting the job done so that it runs faster. This approach makes
sense when one considers that many programs are run only
periodically, and take effectively no time to execute, but can take
days, weeks, or months to write. When considering networked
applications, where network latency or database accesses tend to
be the bottlenecks, the folly of hyper-optimizing the execution
time of the wrong parts of the program is even clearer. A
notable consequence of this difference in priority is seen in the
different types of competition among languages. While system
languages compete like CPU manufacturers on performance
measured by numeric benchmarks such as LINPACK, dynamic
languages compete, less formally, on productivity arguments
and, through an indirect measure of productivity, on how “fun”
a language is. It is apparently widely believed that fun lan-
guages correspond to more productive programmers—a hypothe-
sis that would be interesting to test.

Robustness

Many proponents of the system-programming approach say
dynamic typing introduces more bugs in programs because
there is no type checking at compile time. From this point of
view, it is always good to detect programming errors as soon as

CHAPTER 1 29

www.activestate.com/Company/NewsRoom/whitepapers_ADL.plex
www.activestate.com/Company/NewsRoom/whitepapers_ADL.plex

possible. This is certainly true, but as we discuss in a moment,
static typing introduces some drawbacks, and programs written
in dynamically typed languages could be as solid as programs
written in purely statically typed environments. This way of
thinking leads to the theory that dynamically typed languages
are good for building prototypes quickly, but they are not
robust enough for industrial-strength systems.

On the other side stand proponents of dynamic typing.
From that point of view, type errors are just one source of bugs
in an application, and programs free of type-error problems are
not guaranteed to be free of bugs. Their attitude is static typing
leads to code much longer and much harder to maintain. Also,
static typing requires the developer to spend more of his time
and energy working around the limitations of that kind of
typing.

Another implication we can glean from this is the impor-
tance of testing. Because a successful compilation does not
guarantee your program will behave correctly, appropriate test-
ing must be done in both environments. Or as best-selling Java
author Bruce Eckel wrote in his book Thinking in Java (Prentice
Hall):

If it’s not tested, it’s broken.

Because dynamic typing allows you to implement function-
ality faster, more time remains for testing. Those fine-grained
tests could include testing program behavior for type misuse.

Despite all the hype about type checking, type errors are
not common in practice, and they are discovered quickly in the
development process. Look at the most obvious example. With
no types declared for method parameters, you could easily find
yourself calling a method with the wrong order of parameters.
But these kinds of errors are obvious and are detected immedi-
ately the next time the script is executed. It is highly unlikely
this kind of error would make it to distribution if it was tested
appropriately.

Another extreme point of view says even statically typed
languages are not typed. To clarify this statement, look at the
following Java code:

30 SCRIPTING IN JAVA

List list = new ArrayList();
list.add(new String(“Hello”));
list.add(new Integer(77));

Iterator it = list.iterator();
while (it.hasNext()) {

String item = (String)it.next();
}

This code snippet would be compiled with no errors, but at
execution time, it would throw a java.lang.ClassCastExcep-
tion. This is a classic example of a runtime type error. So what
is the problem?

The problem is objects lose their type information when
they are going through more-generic structures. In Java, all
objects in the container are of type java.lang.Object, and
they must be converted to the appropriate type (class) as soon
as they are released from the container. This is when inappro-
priate object casting could result in runtime type errors. Because
many objects in the application are actually contained in a
more-generic structure, this is not an irrelevant issue.

Of course, there is a workaround for this problem in stati-
cally typed languages. One solution recently introduced in Java
is called generics. With generics, you would write the preceding
example as follows:

List list<String> = new ArrayList<String>();
list.add(new String(“Hello”));
list.add(new Integer(77));

Iterator<String> it = list.iterator();
while (it.hasNext()) {

String item = it.next();
}

This way, you are telling the compiler only String objects
can be placed in this container. An attempt to add an Integer
object would result in a compilation error. This is a solution to
this problem, but like all workarounds, it is not a natural
approach.

The fact that scripting programs are smaller and more read-
able by humans makes them more suitable for code review by a

CHAPTER 1 31

development team, which is one more way to ensure your appli-
cation is correct. Guido van Rossum, the creator of the Python
language, supported this view when he was asked in an inter-
view whether he would fly an airplane controlled by software
written in Python (www.artima.com/intv/strongweakP.html):

You’ll never get all the bugs out. Making the code easier to read
and write, and more transparent to the team of human readers
who will review the source code, may be much more valuable
than the narrow-focused type checking that some other compiler
offers. There have been reported anecdotes about spacecraft or
aircraft crashing because of type-related software bugs, where
the compilers weren’t enough to save you from the problems.

This discussion is intended just to emphasize one thing:
Type errors are just one kind of bug in a program. Early type
checking is a good thing, but it is certainly not enough, so con-
ducting appropriate quality assurance procedures (including unit
testing) is the only way to build stable and robust systems.

Many huge projects written purely in Python prove the fact
that modern scripting languages are ready for building large
and stable applications.

Maintenance

A few aspects of scripting make programs written in scripting
languages easier to maintain.

The first important aspect is the fact that programs written in
scripting languages are shorter than their system-programming
equivalents, due to the natural integration of complex data
types, more powerful statements, and dynamic typing. Simple
logic dictates it is easier to debug and add additional features to
a shorter program than to a longer one, regardless of what pro-
gramming language it was written in. Here’s a more descriptive
discussion on this topic, taken from the aforementioned Guido
van Rossum interview (www.artima.com/intv/speed.html):

This is all very informal, but I heard someone say a good pro-
grammer can reasonably maintain about 20,000 lines of code.

32 SCRIPTING IN JAVA

www.artima.com/intv/strongweakP.html
www.artima.com/intv/speed.html

Whether that is 20,000 lines of assembler, C, or some high-level
language doesn’t matter. It’s still 20,000 lines. If your language
requires fewer lines to express the same ideas, you can spend
more time on stuff that otherwise would go beyond those
20,000 lines.

A 20,000-line Python program would probably be a 100,000-
line Java or C++ program. It might be a 200,000-line C pro-
gram, because C offers you even less structure. Looking for a
bug or making a systematic change is much more work in a
100,000-line program than in a 20,000-line program. For
smaller scales, it works in the same way. A 500-line program
feels much different than a 10,000-line program.

The counterargument to this is the claim that static typing
also represents a kind of code documentation. Having every
variable, method argument, and return result in a defined type
makes code more readable. Although this is a valid claim when
it comes to method and property declarations, it certainly is not
important to document every temporary variable. Also, in
almost every programming language you can find a mechanism
and tools used to document your code. For example, Java
developers usually use the Javadoc tool (http://java.sun.com/
j2se/javadoc/) to generate HTML documentation from specially
formatted comments in source code. This kind of documentation
is more comprehensive and could be used both in scripting and
in system-programming languages.

Also, almost every dynamically typed language permits
explicit type declaration but does not force it. Every scripting
developer is free to choose where explicit type declarations
should be used and where they are sufficient. This could result
in both a rapid development environment and readable, docu-
mented code.

Extreme Programming

In the past few years, many organizations adopted extreme pro-
gramming as their software development methodology. The two
basic principles of extreme programming are test-driven devel-
opment (TDD) and refactoring.

CHAPTER 1 33

http://java.sun.com/j2se/javadoc/
http://java.sun.com/j2se/javadoc/

You can view the TDD technique as a kind of revolution
in the way people create programs. Instead of performing the
following:

1. Write the code.

2. Test it if appropriate.

The TDD cycle incorporates these steps:

1. Write the test for certain program functionality.

2. Write enough code to get it to fail (API).

3. Run the test and watch it fail.

4. Write the whole functionality.

5. Run the code and watch all tests pass.

On top of this development cycle, the extreme programming
methodology introduces refactoring as a technique for code
improvement and maintenance. Refactoring is the technique of
restructuring the existing code body without changing its exter-
nal behavior. The idea of refactoring is to keep the code design
clean, avoid code duplication, and improve bad design. These
changes should be small because that way, it is likely we will
not break the existing functionality.

After code refactoring, we have to run all the tests again to
make sure the program is still behaving according to its design.

I already stated tests are one way to improve our programs’
robustness and to prevent type errors in dynamically typed
languages. From the refactoring point of view, interpreted lan-
guages offer benefits because they skip the compilation process
during development. For applications developed using the
system-programming language, after every small change (refac-
toring), you have to do compilation and run tests. Both of these
operations could be time consuming on a large code base, so
the fact that compilation could be omitted means we can save
some time.

Dynamic typing is a real advance in terms of refactoring.
Usually, because of laziness or a lack of the big picture, a devel-
oper defines a method with as narrow an argument type as he
needs at that moment. To reuse that method later, we have to

34 SCRIPTING IN JAVA

change the argument type to some more general or complex
structure. If this type is a concrete type or does not share the
same interface as the one we used previously, we are in trouble.
Not only do we have to change that method definition, but also
the types of all variables passed to that method as the particular
argument. In dynamically typed languages, this problem does
not exist. All you need to do is change the method to handle
this more general type.

We could amortize these problems in system programming
environments with good refactoring tools, which exist for most
IDEs today. Again, the real benefit is speed of development.
Because scripting languages enable developers to write code
faster, they have more time to do appropriate unit testing and
to write stub classes. A higher level of abstraction and a
dynamic nature make scripted programs more convenient to
change, so we can say they naturally fit the extreme program-
ming methodology.

The Hybrid Approach

As we learned earlier in this chapter, neither system-
programming nor scripting languages are ideal tools for all
development tasks. System-programming languages have good
runtime performance, but developing certain functionality
and being able to modify that functionality later takes time.
Scripting languages, on the other hand, are the opposite. Their
flexible and dynamic nature makes them an excellent develop-
ment environment, but at the cost of runtime performance.

So the real question is not whether you should use a certain
system-programming or scripting language for all your devel-
opment tasks, but where and how each approach fits into your
project. Considering today’s diverse array of programming plat-
forms and the many ways in which you can integrate them,
there is no excuse for a programmer to be stuck with only one
programming language. Knowing at least two languages could
help you have a better perspective of the task at hand, and the
appropriate tool for that task.

CHAPTER 1 35

You can find a more illustrative description of this
principle in Bill Venners’s article, “The Best Tool for the Job”
(www.artima.com/commentary/langtool.html):

To me, attempting to use one language for every programming
task is like attempting to use one tool for every carpentry task.
You may really like screwdrivers, and your screwdriver may
work great for a job like inserting screws into wood. But what if
you’re handed a nail? You could conceivably use the butt of the
screwdriver’s handle and pound that nail into the wood. The
trouble is, a) you are likely to put an eye out, and b) you won’t
be as productive pounding in that nail with a screwdriver as
you would with a hammer.

Because learning a new programming language requires so
much time and effort, most programmers find it impractical to
learn many languages well. But I think most programmers could
learn two languages well. If you program primarily in a systems
language, find a scripting language that suits you and learn it
well enough to use it regularly. I have found that having both a
systems and a scripting language in the toolbox is a powerful
combination. You can apply the most appropriate tool to the
programming job at hand.

So if we agree system-programming and scripting lan-
guages should be used together for different tasks in project
development, two more questions arise. The first, and the most
important one, is what tasks are suitable for a certain tool.

The second question concerns what additional characteris-
tics scripting languages should have to fit these development
roles.

Let’s try to answer these two questions by elaborating on
the most common roles (and characteristics) scripting languages
had in the past. This gives us a clear vision of how we can
apply them to the development challenges in Java projects
today, which is the topic of later chapters.

36 SCRIPTING IN JAVA

www.artima.com/commentary/langtool.html

A Case for Scripting

To end our discussion of this topic, I quote John K. Ousterhout,
the creator of the Tcl scripting language. In one of his articles
(www.tcl.tk/doc/scripting.html), he wrote the following words:

In deciding whether to use a scripting language or a system
programming language for a particular task, consider the fol-
lowing questions:

Is the application’s main task to connect together pre-existing
components?

Will the application manipulate a variety of different kinds of
things?

Does the application include a graphical user interface?

Does the application do a lot of string manipulation?

Will the application’s functions evolve rapidly over time?

Does the application need to be extensible?

“Yes” answers to these questions suggest that a scripting lan-
guage will work well for the application. On the other hand,
“yes” answers to the following questions suggest that an appli-
cation is better suited to a system programming language:

Does the application implement complex algorithms or data
structures?

Does the application manipulate large datasets (e.g., all the
pixels in an image) so that execution speed is critical?

Are the application’s functions well-defined and changing
slowly?

You could translate Ousterhout’s comments as follows:
Dynamic languages are well suited for implementing application
parts not defined clearly at the time of development, for wiring
(gluing) existing components in a loosely coupled manner, and
for implementing all those parts that have to be flexible and
changeable over time. System languages, on the other hand, are

CHAPTER 1 37

www.tcl.tk/doc/scripting.html

a good fit for implementing complex algorithms and data struc-
tures, and for all those components that are well defined and
probably won’t be modified extensively in the future.

Conclusion

In this chapter, I explained what scripting languages are and
discussed some basic features found in such environments.
After that, I compared those features to system-programming
languages in some key development areas. Next, I expressed the
need for software developers to master at least one representa-
tive of both system-programming and scripting languages. And
finally, I briefly described suitable tasks for both of these
approaches.

Before we proceed to particular technologies that enable
usage of scripting languages in Java applications, we focus in
more detail on the traditional roles of scripting languages. This
is the topic of Chapter 2, and it helps us to better understand
scripting and how it can be useful in the overall system
infrastructure.

38 SCRIPTING IN JAVA

Now that we know the basic characteristics of scripting
languages, as well as the advantages and drawbacks of

their use in the software development process, we can pro-
ceed to a discussion of their use for particular development
tasks. We discuss some common scripting language use
cases and their traditional roles in development.

This discussion finishes our theoretical introduction to
scripting, which is meant to give us a better perspective of
how Java projects can benefit from scripting languages.
Starting with Chapter 3, “Scripting Languages Inside the
JVM,” we can fully focus on particular projects and solu-
tions related to the Java platform and Java projects.

Let’s now cover some examples of common scripting
deployment in an information technology infrastructure.

AAPPRPPROPRIAOPRIATETE
AAPPLICPPLICAATIONSTIONS
FORFOR SSCRIPTINGCRIPTING
LLANGUAANGUAGESGES

CHAPTER 2

Wiring

Component-based development (CBD) is usually considered a
natural evolution of object-oriented programming. In this sce-
nario, software components can be treated as black boxes that
provide services to other components. They also require services
from other components. An example of a component-based
architecture for Java is the Enterprise JavaBeans (EJB)
specification.

People often confuse component-based development with
object-oriented technology (OOT) because both of them advo-
cate a separation of the abstraction’s interface and its imple-
mentation in the software design. Although this paradigm is
common for both of these approaches, a few differences are
worth noting. In object-oriented programming, this separation
is encouraged, but solutions developed with OOP languages can
ignore this separation. Component-based development goes a
step further, enforcing this separation. So, with this approach,
it is guaranteed all components will have defined interfaces for
communication with other components found in the system.
Another difference is CBD tends to be programming language
neutral.

UNIX programming philosophy advocates UNIX programs
be written as “components.” Do not confuse this with compo-
nent-based development. We discuss Unix programming philos-
ophy and the importance of scripting in such environments in
more detail later in this chapter. For now, let’s clarify why UNIX
programs can be considered a kind of component.

UNIX programs are written to be small, to do one thing
well, and to be easily connected with other programs. They use
text streams as a general-purpose interface. Doug McIlroy, the
inventor of UNIX pipes, which is described in the following sec-
tion, and one of the founders of the UNIX tradition, summa-
rized UNIX philosophy as follows:

This is the UNIX philosophy:

Write programs that do one thing and do it well.

40 SCRIPTING IN JAVA

Write programs to work together.

Write programs to handle text streams, because that is a univer-
sal interface.

Usually, people abbreviate this principle as follows:

Do one thing, do it well.

So from McIlroy’s point of view, many UNIX programs can
be treated as components. They are usually called filter pro-
grams (or just filters).

What is the role of scripting in such an environment?
Scripting languages are often referred to as glue languages.
Many experts treat them as languages best suited for manipula-
tion and wiring of preexisting components, where the best tools
for building these components are system-programming lan-
guages. It does not matter whether these components are mod-
ules built in an object-oriented language (such as Java), fully
featured components (EJBs, for example), libraries of functions
written in C, or even UNIX programs. Because scripting lan-
guages tend to be dynamically typed, it is easier to use various
components and handle them according to the application’s
need.

A variety of scripting languages are commonly used for
component gluing purposes. Among the more popular are UNIX
shell languages, Perl, and Tcl.

UNIX Shell Languages

The first UNIX shell (sh) was written in the 1970s, but many
variations (csh, zsh, bash, and so on) have emerged since then.
The primary purpose of a shell is to let the user type interactive
commands, but it also can be used to create new applications
from existing applications. One of the crucial prerequisites for
this kind of software development was the existence of a spe-
cific programming culture on the UNIX platforms. UNIX devel-
opers were focused on creating simple filter programs instead of
creating complex monolithic applications.

CHAPTER 2 41

In UNIX, you use pipes to redirect the output from one pro-
gram to the input of another program. You mark pipes with the
| symbol. To demonstrate how to use a shell to glue existing
applications together, let’s look at the following example:

cat test.txt | grep java | wc -l

In this simple shell command, we used three UNIX filter
programs:

■ cat, which reads files (or standard input devices) as its
input and prints them on its output

■ grep, which reads its input and prints only lines match-
ing a certain text pattern

■ wc, which reads its input and prints a number of lines
as its output

The previous command does the following:

■ Reads the content of the test.txt file (cat test.txt)

■ Redirects that content to the grep command, filtering
only lines containing the word java

■ Passes the filtered content to the wc program, which
prints the number of lines containing the word java to
standard output (the console)

For the test.txt file with the following content, the exam-
ple shell script prints 2 on execution (because the word java
appears on two different lines):

java is a popular programming
language.
java is
object-oriented

This example showed us how a shell could be used to create
entirely new functionalities by combining the existing ones, and
how easily it can be done.

42 SCRIPTING IN JAVA

Perl

Perl is a programming language created by Larry Wall in the
late 1980s to enhance the UNIX shell and combine the features
of many UNIX scripting tools. It is often referred to as “shell on
steroids.”

Perl introduced some new concepts, such as:

■ Powerful data types—These include dynamic arrays and
hashes, among other things.

■ Modularity—Perl introduced the concept of modules,
and today a large community of developers is dedicated
to writing open source modules to solve different
domain problems. This collection of modules and docu-
mentation is known as CPAN (Comprehensive Perl
Archive Network). You can find more information on
CPAN at www.cpan.org/.

■ Built-in functionalities, such as regular expressions—
These functionalities help developers to cope with
everyday programming tasks. For example, regular
expressions are powerful tools when it comes to text
manipulation.

■ Platform independence—Unlike shell scripts tied to
UNIX, Perl scripts can also be evaluated on other
platforms.

Perl is widely adopted in the system administration domain
for automating tasks and (as a shell) for development of more
complex applications using simple filter programs. Perl also has
been used on the Internet to replace C when writing CGI scripts.
You can find more details on using Perl for these tasks in the
following sections.

Tcl

The Tool Command Language (Tcl) is a small language inter-
preter designed to be easily embedded and extended. Tcl has a
simple syntax, where every line represents a command in the
following format:

command argument1 argument2 . . .

CHAPTER 2 43

www.cpan.org/

For example, in the following line:

expr 15 + 17

expr is the command, and 15, 17, and + are considered
arguments.

Tcl features such important control structures as if and
while as well as a way to define procedures. It is a string-
oriented language, meaning a string is the only simple data type
available. Languages with this characteristic are usually called
typeless programming languages. In addition to the string data
type, two data structures are available in Tcl: lists and associa-
tive arrays (maps). This is basically all you have to know to start
writing Tcl scripts, and that is its main strength: simplicity.

The real advantage of Tcl is its architecture, which allows it
to be easily extended and embedded into system-programming
environments. Commands, which are an essential part of this
language, can be written in C or C++. This allows you to use Tcl
as a command language that drives components written in
lower-level programming languages.

We cover other interesting uses of this language in the fol-
lowing sections.

Prototyping

Development organizations take different approaches to the
software development process. One often-used development
process is the prototyping model. This process consists of a
finite number of cycles that include the following steps:

■ Requirements collection and analysis—This is the ini-
tial task common in every development process. Its pri-
mary goal is to understand what functionalities the end
user needs and how the application fits in its working
environment. The essential task of this step is to define
the problem the software has to solve.

■ Prototyping—After requirements are collected and ana-
lyzed, the mock-up (prototype) of the project is created.

44 SCRIPTING IN JAVA

The prototype is the system capturing essential func-
tionalities of the target system.

■ User evaluation—The prototype is then returned to the
users for evaluation. The users are often not capable of
expressing all the functionalities they need at first, and
as the prototype is being evaluated, new requirements
could arise. The cycle repeats after this step, leading to
prototypes of desired functionalities that are more
complete.

The prototypes in this process have a few important roles:

■ They help find the requirements early.

■ By evaluating these prototypes, users complete their
knowledge of software requirements, which helps them
to better understand the final solution.

■ These prototypes can be used to train users before the
production system is delivered.

Among the key benefits the prototyping model introduces
in development are the following:

■ Misunderstandings between end users and software
developers are exposed early in the process.

■ Missing functionalities are detected early in the process.

■ Confusing and complex functionality is detected early
in the process.

■ A “working” system is available early, which could be
used for various tasks, from defining system specifica-
tions to user training.

Two general approaches to prototyping, both leading to
different results, are throwaway prototyping and evolutionary
prototyping.

Throwaway prototyping is used to create and validate sys-
tem requirements. The prototype is used, along with an initial
specification for the creation of a definite system specification.
After the prototype is finished, it is usually rewritten to improve
the architecture (leading to better maintainability) and perform-
ance. Figure 2.1 illustrates the throwaway prototyping process.

CHAPTER 2 45

FIGURE 2.1 Throwaway prototyping

In some cases, users are satisfied with the prototype and
want to use it as a final system. Although this is not considered
a good idea, it is possible to implement all missing features, do
performance tuning, and ship the final prototype as the produc-
tion system. This is called evolutionary prototyping, illustrated
in Figure 2.2.

46 SCRIPTING IN JAVA

Outline
requirements

Develop
system

Validate
system

Develop
prototype

Final
system

Evaluate
prototype

Specify
system

Outline
requirements

Final
system

Develop
prototype

Use
prototype

System finished
Yes

No

FIGURE 2.2 Evolutionary prototyping

The evolutionary prototyping model, however, has a few
weaknesses. First, the system architecture is usually corrupted,
which makes further maintenance difficult. The second weak-
ness is a lack of the skills necessary to implement the process in
development organizations.

The prototyping model is best suited for use in projects
where precise system requirements cannot be specified in
advance. For example, if you want to create another word
processor or spreadsheet application, you don’t really need a
prototype. You know what functionalities you want to have,
how the user interface should look, and the design patterns to
use. But in case you don’t know how your final product should
look, you can use prototyping to explore that topic further or to
help you develop a final solution.

Component-based development suits the prototyping philos-
ophy very well. If you have reusable components, you can build
a prototype quickly by gluing existing components together.

High-level dynamic languages are often considered one of
the possible tools suitable for prototyping. Because performance
is not crucial in this process, rapid development and ease of
refactoring are arguments on the scripting side. Scripting lan-
guages such as Perl, Python, Tcl, and SmallTalk are often
referred to as ideal tools for system prototyping.

Python

Python is a powerful interpreted programming language. In
addition to its easy syntax, it provides a mechanism allowing
for rapid creation of larger software projects. Python has a
dynamic nature—that is, it features dynamic typing—but it is
still strongly typed, which is not common to other scripting
languages.

Besides built-in, higher-level data structures, Python offers
full support for object-oriented programming and modules that
enforces code reuse and good architecture in a dynamic and
high-level abstraction environment. Python also has mecha-
nisms for exception handling, such as those seen in C++ and
Java, which you can use to develop more robust scripts.

Like Tcl, Python also provides an API that allows developers
to write modules in languages such as C and C++ and thus
extend the language. The Python interpreter could also be
embedded into applications written in system-programming
languages, and thus provide a programming interface necessary

CHAPTER 2 47

to extend those applications. These features make Python suit-
able for system prototyping. After creating a successful proto-
type, you can rewrite performance-critical modules in a
lower-level abstraction language. The final solution would have
better overall performance and could be suitable for production,
but in the process of its creation, a scripting language as a pro-
totyping tool could be of great help.

Python has been used successfully in many live projects.
You can find an example of one such project in Guido van
Rossum’s interview (www.artima.com/intv/speed.html), a portion
of which is reprinted here:

Yahoo Mail started out as a successful Python application.
Again, because the developers used Python, they could respond
quickly to the user feedback. And that’s an application that
almost everybody can use. They saw many things wrong with
their application, and they responded to that quickly and added
new features. Because they were doing something new, they
didn’t know exactly what people would need from an email Web
application. It is different from a program that has your email
on your computer. Access times are different. All sorts of things
are different. So they were learning about what those differences
were. And again, I think Yahoo may now have replaced all the
Python code with C++ or some other language, but the Python
prototype was essential in order to get there.

I would like to finish this section with a quotation from
Frederick P. Brooks, who wrote the following words in his book
The Mythical Man-Month: Essays on Software Engineering:

The question, therefore, is not whether to build a pilot system
and throw it away. You will do that. The question is whether to
plan in advance to build a throwaway, or to promise to deliver
the throwaway to customers.

This statement emphasizes the importance of the prototyp-
ing techniques in modern software development, and as we
have seen, scripting languages play an important role in that
process.

48 SCRIPTING IN JAVA

www.artima.com/intv/speed.html

Customization

Many software projects need to be customizable by end users or
developers outside the original development team. Various
macros, plug-ins, and extensions are available for many popular
applications and platforms. The purpose of these plug-ins and
extension points varies. For example, they can help users auto-
mate frequently used tasks by combining several lower-level
tasks, or they can help change the behavior of applications so
that users can customize them to suit their needs.

Various mechanisms are available for providing these plug-
ins and extensions in some applications. The most common
approach is to expose the public application programming
interface (API). This API contains functions, objects, and data
structures you can use to create extensions. Next, the applica-
tion provides mechanisms you can use to register these exten-
sions and map them to certain actions.

In projects that were built in a system-programming lan-
guage, APIs are generally targeted to the same technology used
to develop certain applications (such as C++, for example). The
problem with this approach is complexity. End users are rarely
experienced programmers, so making them learn the concepts
of a complex programming language will not usually give satis-
fying results.

The idea of a public API could be supported with an
embedded language easy to learn and use. Scripting languages
are just the right solution for this problem. Because they have
a higher level of abstraction, scripting languages are more
human-oriented. The concepts of a scripting language are easier
to understand than are the details of a lower-level formal lan-
guage. This makes scripting languages suitable for nonprogram-
mers and a good tool for customizing software applications.

The specialized languages software vendors use for these
tasks are usually called macro languages. Macro languages tend
to be simple and easy to use, but using general-purpose script-
ing languages for these tasks instead has its own benefits, as we
will see in a moment. Allowing a user to customize different
software packages with one general-purpose scripting language
can make the customization process even easier.

CHAPTER 2 49

There are many examples of how scripting languages are
used for writing software add-ons and macros. For example,
Adobe uses JavaScript as a macro language in many of its
products. Visual Basic and JScript (Microsoft’s derivation of
JavaScript) are widely supported on Windows platforms and
applications. In addition, Tcl and Python interpreters can be
embedded as libraries in C, C++, and Java applications. This
feature, along with the capability to write commands (or mod-
ules in Python) using these system languages, makes them a
suitable tool for extension, configuration, and management of
software applications.

Visual Basic for Applications (VBA)

Microsoft has gone a step further than other software vendors
by creating a special dialect of Visual Basic just for program-
ming its Office package, other Microsoft applications, and the
applications from other vendors (such as AutoCAD).

This language is called Visual Basic for Applications (VBA).
The idea behind VBA is whole applications represented as easily
manipulated objects (components). A basic abstraction made in
this case is every application is composed of its content and
functionality. Content refers to the documents the application is
handling, such as spreadsheets in Excel. Functionality represents
actions that the application can perform on the content. With
VBA, you can easily access any document and work with ele-
ments in that document, such as spreadsheet cells.

For example, the following code snippet:

Application.Workbooks(“test.xls”).Worksheets(“Orders”)
.Range(“C4”).Value = 3

shows how you can change the cell value in the Excel environ-
ment with just one line of code. An additional feature enables
users to record their actions in a VBA script. You could use this
feature to create stub scripts which could be modified later.

So, with VBA, we have a programming platform made of
Windows applications. This is an important fact because by
allowing nonprofessional programmers to easily customize their

50 SCRIPTING IN JAVA

applications, the whole platform becomes a much more flexible
workplace.

Software Development Support

Even if you are using a system-programming language as your
main development tool for your projects, you could use script-
ing languages to automate and speed up tasks that are an
essential part of your development process.

In this section, we focus on two longtime examples of such
uses of scripting in the software development process.

Project Building

In an environment that uses compiled languages, writing source
code is just one step in the software development process. As I
already said, developers need to compile the source code and
optionally link object files to create executable applications.

If you try to perform this process manually, you will usually
end up frustrated and looking for ways to automate it. Every-
one who has ever tried to build a Java project is familiar with
Ant (ant.apache.org). We discuss Ant later in this section, but
now, let’s look at another similar tool used long before Ant was
created and is still heavily used today. It is the GNU Make tool
(www.gnu.org/software/make/), which is conceptually the same
as Ant, but with a few differences.

The Make tool is best known as a build tool for C programs
on Linux, but it can be used for many different tasks. The prob-
lem of compiling large programs is you have to execute repeat-
edly (usually enormously long) lines to invoke the compiler,
copy resources, package the distribution, and so on. The first
obvious solution is to create a shell script that automates this
task, which is certainly a step forward in the right direction.
However, it has its problems:

■ The free form of such scripts makes them hard for other
developers to maintain.

■ Large projects take a lot of time to compile, so compil-
ing them from scratch is not time effective.

CHAPTER 2 51

www.gnu.org/software/make/

The Make program enables developers to define rules to be
used during the build process, and to define dependencies
between resources. Rules are defined as a collection of com-
mands to be executed. The syntax of build files also provides
basic programming concepts, such as loops and variables. Users
with more sophisticated requirements could use shell scripting
to achieve the desired behavior of their rules. This way, the first
problem is solved, and the script (usually called Makefile and
located in the source directory or directories) has a well-defined
form used for just this purpose. Some experts tend to call this
language a compilation language. It certainly helps in standard-
izing the building process and makes maintenance of build
scripts easier.

Additionally, these Makefiles could be generated and exe-
cuted from other scripts because this behavior is a fundamental
scripting property, and thus automate this process even more.
Other scripting tools are also designed to help developers auto-
mate the building process, but they are outside the scope of this
book.

The second problem is solved by the Make program itself.
It compares the timestamps of object files with the timestamps
of their appropriate source files. It also checks dependencies
among resources, and only sources modified from the last build
(and resources depending on that source) are compiled again.

In the early days of Java development, Make was used to
build Java programs too. Here is a brief Ant history, taken from
http://ant.apache.org/faq.html#history, which might clarify this
topic a little further:

Initially, Ant was part of the Tomcat code base, when it was
donated to the Apache Software Foundation. It was created by
James Duncan Davidson, who is also the original author of
Tomcat. Ant was there to build Tomcat, nothing else.

Soon thereafter, several open source Java projects realized that
Ant could solve the problems they had with Makefiles. Starting
with the projects hosted at Jakarta and the old Java Apache
project, Ant spread like a virus and is now the build tool of
choice for a lot of projects.

52 SCRIPTING IN JAVA

http://ant.apache.org/faq.html#history

Ant uses XML to define targets (rules), and you can extend
it using tasks written in Java. Ant introduced many benefits to
Java developers; the most important benefit was it is truly plat-
form independent. Even if you could write (to some point)
portable Makefiles, that usually doesn’t happen, so the user is
left changing the script to some extent to successfully build the
project.

Even though XML build files are common in the vast
majority of Java projects today, many people disagree they are
the best solution. Some find their syntax hard to write and read,
and some need additional flexibility.

In the current trend of increased scripting popularity for the
Java platform, a few solutions exist that synergize scripting and
Ant. These solutions could help you write more readable and
flexible build files suitable for large and complex projects. We
discuss these solutions in Chapter 7, “Practical Scripting in Java.”

Testing

We have already discussed the test-driven development princi-
ple of extreme programming methodology. Now let’s focus on
unit testing and what benefits it brings to the software develop-
ment process.

A unit test is a snippet of code written by a developer that
proves that certain functionality is behaving as planned in a
few common usage scenarios. Unit tests have multiple purposes
in the software development process. The most obvious role
comes from its definition: to test certain functionality. But
although the software is working at this moment, we must be
confident our code will still be working properly a year from
now, after many modifications would probably have been made
on the code base. Andy Hunt and Dave Thomas, the authors of
the book Pragmatic Unit Testing in Java with JUnit, described
this with the following metaphor:

You don’t test a bridge by driving a single car over it right down
the middle lane on a clear, calm day. That’s not sufficient. Sim-
ilarly, beyond ensuring that the code does what you want, you
need to ensure that the code does what you want all of the time,

CHAPTER 2 53

even when the winds are high, the parameters are suspect, the
disk is full, and the network is sluggish.

Unit tests have one more important task, to document our
code. We are all familiar with the JavaDocs used to generate
documentation of our code using special comment tags.
Although this kind of documentation works, it is static, mean-
ing it only shows classes, methods, arguments, and so on, and
includes descriptive text to explain what they are used for. You
can rarely find examples of how certain methods should be
used. Another way is to conduct test cases, which in a certain
way show how to use certain objects or methods. From test
cases, developers who are new to a project can also learn the
boundary values that can be passed and what is critical in cer-
tain code libraries.

If we conduct unit testing procedures, we will certainly end
up spending a lot of time writing tests for our products. Because
we have to spend time testing all the functionalities (or at least
the major ones) of the application, we will have less time to
contribute to the project itself.

Recent trends show many organizations use scripting lan-
guages to implement test cases. If a scripting language for a
technology you are using is available and can be embedded
easily, you can save a lot of time writing unit tests in that lan-
guage. As I already said, scripts are shorter and faster to write,
so the amount of time needed to write a test case and imple-
ment its functionality is going to improve a great deal. A draw-
back of using scripting languages for this task is test case
execution takes longer than with its system-programming
equivalent, but still, the overall time and effort involved in unit
testing is usually shorter in the first case.

Thus far, we have been discussing unit testing, but it is not
the only testing methodology you can use to ensure the quality
of the product you’ll be delivering to your customers. One inter-
esting testing field is graphical user interface testing. Many tools
are available enabling quality assurance personnel to record
their actions in a script they can run later to make sure the
application (or at least the user interface) is behaving correctly.
Scripts can also be generated or modified manually. This cus-
tomization introduces additional flexibility in the testing process.

54 SCRIPTING IN JAVA

Many vendors of such tools have implemented their own
domain-specific languages. This usually is not the best idea.
As Bret Pettichord, software testing expert and consultant,
explains in one of his articles (www.stickyminds.com/
sitewide.asp?ObjectId=2326&ObjectType=COL&Function=
edetail), many issues could arise from such a decision:

Most test tools come bundled with vendor-specific scripting lan-
guages that I call vendorscripts. They are hard to learn, weakly
implemented, and most important, they discourage collaboration
between testers and developers. Testers deserve full-featured,
standardized languages for their test development.

…Because a vendorscript is a specialized language, developers
are less likely to know it and little inclined to learn it. I fre-
quently counsel testers and developers to work together on test
automation projects. There are many reasons why this is a pro-
ductive collaboration, but vendorscripts get in the way. They
split testers from developers and from each other into tool-
specific language isolation. This reduces the opportunities to
share, collaborate, and improve the craft.

We have enough trouble bringing developers and testers together
in the testing process. The last thing we need is an inherent
obstacle from the get-go in our testing tools. Ask a developer to
learn Visual Basic? No problem. They can always use that
knowledge in the future. Ask a developer to learn a specialized
language unique to one tool? You’re dreaming. You may already
be having trouble getting the developer to pay attention to test-
ing, and now you’re asking for more.

Administration and Management

The process of system administration is often related to the
process of automation. Common tasks are usually executed
periodically and are not easy to do manually. Such tasks could
include the deletion of expired users and making various
reports using data the system collected during runtime, among
others.

CHAPTER 2 55

www.stickyminds.com/sitewide.asp?ObjectId=2326&ObjectType=COL&Function=edetail
www.stickyminds.com/sitewide.asp?ObjectId=2326&ObjectType=COL&Function=edetail
www.stickyminds.com/sitewide.asp?ObjectId=2326&ObjectType=COL&Function=edetail

The following often-cited system administrators’ saying
provides the best explanation of this relationship between sys-
tem administration and automation:

No simple sysadmin task is fun more than twice.

So if you find yourself doing simple manual tasks repeat-
edly, it is time for you to try automating these tasks.

How quickly these tasks perform is not crucial because they
are executed periodically and mostly at times when the system is
idle (or at least is not being used heavily). Also, system adminis-
tration tasks usually require only a small set of steps, so the
detailed design does not play an important role.

Scripts are an ideal tool for this kind of task automation.
They are easy to write and change, and the performance they
provide is generally good for these tasks. As Chad Dickerson,
then InfoWorld CTO, wrote in his “Tools for the Short Hike”
article (www.infoworld.com/article/03/02/21/
08connection_1.html):

When you’re going on a one-mile hike, you shouldn’t weigh
yourself down with a full set of silverware, a saw, scissors, and
an inflatable boat just in case you run into a raging river. You
take a light backpack, a bottle of water, and a Swiss Army knife.

This thought reflects the essence of small tasks that should
be executed only once, or periodically.

A shell can be helpful for writing simple tasks, such as
wrapping a few commands, parsing arguments, and thus creat-
ing a new command that does just what you need. But for sys-
tem administration, Perl is known as a master tool. Because of
the large number of modules available for use with Perl, Perl
administrators can create scripts that are network or database
aware. This is far harder to attain with plain shell scripting. This
makes Perl an excellent language for remote administration of
various hosts, which is usually done in large enterprises and
service providers.

For successful automation of system administration tasks,
scripting languages are usually used together with some kind of
scheduler. The scheduler is a program usually written in a

56 SCRIPTING IN JAVA

www.infoworld.com/article/03/02/21/08connection_1.html
www.infoworld.com/article/03/02/21/08connection_1.html

system-programming language and capable of executing other
programs and scripts at precisely specified time intervals. These
two components, scripts and schedulers, provide a foundation
necessary for successful system administration. It is a good
example of practical usage of programs written both in system-
programming and scripting languages for system development.

On UNIX systems, you can often find a combination of the
Cron system scheduler and scripts written in shell, Perl, or
Python. They provide a powerful environment for all kinds of
administration tasks and are one of the reasons why this plat-
form is popular and widely used.

Even if you think that you, as a Java developer, do not
need to care about system administration and that this topic is
not relevant, let me reassure you that although system adminis-
tration is usually mentioned in the context of operating sys-
tems, these general practices could be applied to any application
(as a system).

For example, say you are developing a highly trafficked
Web site in Java. Users could publicly register to the site, but if
their accounts are inactive for more than 30 days, they are
deleted to free their usernames for other customers. This means
every day you have to search for users whose accounts have
been idle for a specified amount of time and delete those
accounts. This is a classic example of administration tasks
found in your Java applications. You can find problems such as
these at any step of the application development and mainte-
nance process, from generating heavy reports and compacting
data in databases to sending notification e-mails to your clients.

To accomplish this task, would you use a fully featured EJB
component, or would you write a five-line script? I would
attack it with a script written in a language I could embed into
Java and schedule with a Java scheduler. This would save time,
could be modified without redeploying the whole system, and
would not affect the overall stability of the system.

The rule is simple:

■ Do it once manually.

■ Write a script in a language of your choice.

■ Schedule it if it tends to be a repetitive action.

CHAPTER 2 57

We cover this topic in detail, and provide concrete examples
of a solution for Java systems, in Chapter 7.

User Interface Programming

Development of an application’s graphical user interface (GUI)
is certainly an important task for a vast majority of applica-
tions. The problem with GUI programming, however, is it
requires too much work in terms of setting widget properties.
Thus, GUI programming is considered a boring task by many
software developers. User interfaces are also the target of fre-
quent changes, which makes them difficult to maintain in hard-
coded system programming environments.

User interface widgets are components suitable for manipu-
lation by scripting technology. Using scripting for GUI program-
ming leads to faster development and shorter solutions easier to
maintain.

The problem with the scripting approach is, as always, run-
time performance. The performances are good enough for com-
mon user interfaces and applications, but if you are thinking of
providing a more graphics-intensive interface, you should prob-
ably look for some alternative solution written entirely in a
system-programming language.

Tk

Tk is an extension of the Tcl language, which allows GUI pro-
gramming in an X Windows (a UNIX Windows management
system) system. This extension provides Tcl with commands
used for manipulation of basic graphical elements needed for
building the user interface.

Let’s take a look at a simple example:

button .hello -text Hello -command {puts stdout “Hello,
World!”}

pack .hello

This two-line script shows how easy it is to use Tk to create
user interfaces.

58 SCRIPTING IN JAVA

The button command creates a button named .hello (the
first argument), with “Hello” text on it (the second argument),
and specifies the action (print “Hello, World!” on standard out-
put) to be taken when the user presses the button (the third
argument). After that, with the pack command, we map the
button on the screen.

You can use any valid Tcl command in this scenario, so you
can create commands that actually drive application logic or
use built-in modules and extensions to do various tasks.

Tk is now available as a module for other scripting lan-
guages including Perl and Python.

As you can see from this discussion of applications for
scripting languages, there is a broad range of use cases where
scripting is considered to be an ideal tool for the job.

To complete our theoretical knowledge of scripting lan-
guages, we should explore some of the specific development
domains where this technology has been proven to be of great
help to developers. This is the topic of the following section,
and after reading it, you should have a clear picture of where in
your projects to use scripting and what benefits and drawbacks
to expect.

Use Cases

Now that you understand the typical roles of a scripting lan-
guage, we briefly discuss specific domains where these tech-
nologies have enjoyed remarkable success. Of course, we cannot
cover them all in this book, but here are a few examples
demonstrating success in the field.

Web Applications

Aiming to make the Web more dynamic, scripting languages
have gained popularity again. To understand the role of script-
ing languages in Web application development, let’s go one step
back.

As stated on the official W3 Consortium Web site
(www.w3.org/), the World Wide Web (WWW) is a “distributed
heterogeneous collaborative multimedia information system.”

CHAPTER 2 59

www.w3.org/

In simpler terms, it is an Internet-based network allowing
users from one computer to access information on another com-
puter in a consistent and simple way. For that purpose, the W3
project has defined a few concepts and protocols to make it
work.

The first important concept is hypertext. Hypertext is text
with links to other texts, which allow the user to browse
through the documents in an easy and natural way. Each docu-
ment has a unified resource locator (URL) attached to it, which
is the networkwide address of the document. The URL’s format
is one of the fundamental W3 protocols.

The second concept of the WWW is its client-server archi-
tecture. To allow consistent and easy access to documents, the
user uses a thin client to request a document from the server.
This leads to another protocol, called the HyperText Transfer
Protocol (HTTP), designed to provide a fast, stateless, and exten-
sible way to transfer documents between the server and the
client.

The final concept introduced is the Hypertext Markup
Language (HTML) protocol, which provides a consistent way to
structure documents. HTML is the language used for writing
hypertext documents. A hypertext document writer defines the
document structure, such as the title, body, headings, and so on,
and links to other documents by inserting links into them.

The Web community adopted these concepts quickly, and
this became one of the crucial reasons for the Internet’s
popularity.

This architecture was ideal for serving static content, or
static documents. The next step was to enable Web servers to
serve dynamic content to users. Take a Web site that serves the
news to clients as an example. Instead of making new static
HTML documents for every bit of news coming into the news
desk, people wanted a site that could dynamically create the
document with all recent headlines (usually stored in the data-
base). This is how the dynamic Web or Web application was
introduced.

In the early days of Web application development, the Com-
mon Gateway Interface (CGI) standard played a crucial role. CGI

60 SCRIPTING IN JAVA

is a standard for interfacing external applications with a Web
server. When the Web server receives a request for certain docu-
ments, it executes the external program, and the program’s
output is returned to the user. Initially the C programming lan-
guage was mainly used to write CGI programs. This tended to
be a painful thing to do because the program deals with a lot of
string manipulation and returns well-structured HTML docu-
ments as a result. Because of these facts, many developers tried
to find the solution in scripting.

Today, several scripting languages play an important role in
Web development. Among the more popular are Perl, PHP, ASP,
and JavaScript.

PERL

Because of its advanced text-processing features, Perl has
become the de facto language for writing CGI scripts. All the
advantages of scripting languages we discussed in Chapter 1,
“Introduction to Scripting,” were responsible for the wide
acceptance of CGI scripts more than CGI programs. The prob-
lems attacked in those days were small automation tasks, so
there was no need for a more robust infrastructure. Also, the
presence of the source code, short code solutions, and flexibility
made scripts easier to debug, change, and maintain.

All this made scripting an important topic in the early days
of Web application development. Tim O’Reilly, the founder of
O’Reilly Media, and Ben Smith wrote the following thoughts in
their article, “The Importance of Perl” (http://perl.oreilly.com/
news/importance_0498.html), emphasizing the role of Perl in
the Internet architecture:

Despite all the press attention to Java and ActiveX, the real job
of “activating the Internet” belongs to Perl, a language that is
all but invisible to the world of professional technology analysts
but looms large in the mind of anyone—webmaster, system
administrator, or programmer—whose daily work involves build-
ing custom web applications or gluing together programs for
purposes their designers had not quite foreseen. As Hassan
Schroeder, Sun’s first webmaster, remarked: “Perl is the duct
tape of the Internet.”

CHAPTER 2 61

http://perl.oreilly.com/news/importance_0498.html
http://perl.oreilly.com/news/importance_0498.html

As Web applications attracted the interest of a wide devel-
oper community, a few weaknesses of the CGI concept needed
to be improved upon. Two of the most important weaknesses
were:

■ Performance—CGI was designed to enable Web servers
to communicate with external programs. It was not
designed for building dynamic Web pages. So every
request passed through this interface starts a new
process for a program to run. Starting a process on a
system consumes both time and resources, so the num-
ber of requests the server can handle simultaneously is
limited. The same is true if you use a scripting language
because a separate interpreter is run for every request.

■ Embedding—For the same reason, CGI programs
(scripts) are not naturally embedded in Web servers. So
any useful data structure within a Web server cannot be
used in a script. For example, a Web application cannot
use a Web server’s log to write messages.

A few solutions to the CGI performance problem are
available. One popular solution for the Apache Web server is
mod_perl. This module provides a persistent Perl interpreter for
Apache Web servers. This approach avoids the runtime penalties
of starting up an independent interpreter for every request and
enables the creation of Apache modules in Perl.

PHP
The problems with using CGI as a tool for creating Web appli-
cations, covered in the section on Perl, opened space for new
languages. PHP (a recursive acronym for PHP: Hypertext Pre-
processor) is one such language. Although PHP is referred to as
general-purpose scripting language, it gained its popularity as a
language for rapid development of Web applications.

Besides the fact it can be embedded in various Web servers,
which solves the problems with CGI, its strongest weapon is
PHP scripts are embedded in the HTML. Even with Perl, which
has advanced string manipulation characteristics, creating
HTML output could be a hard task. PHP takes a different

62 SCRIPTING IN JAVA

approach; scripts look like ordinary HTML pages, where the PHP
code is escaped with a special PHP tag.

Take the following page, for example:

<html>
<head>
<title>PHP Test</title>
</head>
<body>
<? echo ‘<p>Hello World</p>’; ?>
</body>
</html>

In the preceding example, PHP code is embedded into the
page within the <? and ?> markers, which are the start and the
end markers of the PHP tag. So what happens when the Web
server serves a page like this one?

If the page is saved with a .php extension (or some other
extension associated with the PHP interpreter), the Web server
calls the PHP interpreter before it returns the page. The inter-
preter processes only the code within the PHP tag and replaces
the tag with the result of the code execution (this is done for all
tags found within the page). Then the modified page is returned
to the client. As such, the preceding example page would look
like this:

<html>
<head>
<title>PHP Test</title>
</head>
<body>
<p>Hello World</p>
</body>
</html>

Embedding a scripting language in HTML pages represented
a crucial shift in Web application development. From this point
on, it was easy to get designers and programmers to work
together. Designers can work directly on the layout of HTML
documents, while programmers can embed necessary logic in
those documents.

Many development organizations adopted this style of Web
application development, and PHP became one of the most

CHAPTER 2 63

popular tools for creating small and midsize Web solutions.
However, a few additional factors were crucial to ensure PHP’s
continued popularity:

■ Support for many types of databases.

■ Support for a wide range of network protocols, such as
IMAP, POP3, SNMP, HTTP, and so on.

■ A syntax similar to that of C and Perl.

■ Support of object-oriented programming, which would
allow better organization of back-end programming and
business logic modules. PHP’s object model was limited
and did not allow developers to follow an object-
oriented approach to software development. In PHP 5,
this model is improved, opening new possibilities for
developers.

You can see PHP is widely adopted, by reading the PHP
usage report generated by Netcraft (www.netcraft.com) and
accessible at http://www.php.net/usage.php. According to an
April 2007 survey, 20,016,421 domains and 1,208,663 IP
addresses were hosting PHP.

Another example showing that PHP is ready for large,
highly trafficked site development is the fact that Yahoo!
decided to replace its proprietary server-side scripting language,
called Yscript, with PHP. The main reason was the maintenance
cost of its proprietary solution—or, as Yahoo! Engineer, Michael
Radwin, said in his often-cited (http://news.com.com/
2100-1023-963937.html) PHPCon 2002 conference presentation:

(Yahoo) is a cheap company. (It) can’t afford to waste engineer-
ing resources.

ASP
Active Server Pages (ASP) is Microsoft’s Web development plat-
form, and it has goals similar to those of PHP. ASP uses special
tags (<% and %>) to insert scripting snippets into HTML pages.
The default language for ASP development is VBScript, but you
can use other languages such as JScript.

64 SCRIPTING IN JAVA

www.netcraft.com
http://www.php.net/usage.php
http://news.com.com/2100-1023-963937.html
http://news.com.com/2100-1023-963937.html

A comparison of PHP and ASP reveals the following
differences:

■ Performance—PHP is faster than ASP. ASP supports
multiple programming languages, and the ASP lan-
guage compiler runs in a separate process. This makes
ASP slower than PHP in terms of handling requests.

■ Platform independence—ASP runs only on Microsoft
Windows-based Web servers, whereas you can deploy
PHP on practically any platform. This makes the choice
of finding an appropriate Web-hosting provider that
suits your needs much harder if you’re an ASP
developer.

■ Security—Because many security problems were found
for the Internet Information Server (IIS), a Web server
primarily used to host ASP applications, there is an
attitude that the PHP-Apache environment is more
secure.

JAVASCRIPT

One more scripting language plays an important role in Web
development. Until now, we have talked about server-side prob-
lems and solutions, but neither Perl nor PHP is the most widely
used scripting language for Web development.

We have already seen some interesting applications of
JavaScript in software development, but JavaScript found its
most important role as a language for client-side scripting in
Web applications. We can freely say JavaScript is the most
widely used language for this development domain.

Let’s go through a short history of JavaScript to see why
and how it got this title. In 1995, Netscape added Java support
for its Navigator Web browser. The idea was to create a new
language making this Java support more accessible to non-Java
programmers, and a scripting language was the ideal solution.
First, the language was called LiveScript, but due to marketing
reasons, it soon was renamed JavaScript. This new name would
prove to be the source of much confusion in the days to come
because it has nothing to do with the Java platform.

CHAPTER 2 65

Although its primary goal was to control Java applets,
JavaScript was adopted as a language for a different purpose.
Web developers and designers found it most convenient for
making HTML more dynamic.

HTML is a static document, and with Web applications’
rising popularity, developers needed a way to make graphical
user interfaces out of HTML pages. The missing link was how
to handle user events (such as mouse events) on the client side
(in the HTML page itself). JavaScript was the ideal solution.
Because it could be embedded in HTML pages just as plain text
(no bytecode or compilation was needed), it attracted many Web
developers.

Another common application is client-side data validation.
In an era of low Internet transfer rates, any request to the server
was thought of as expensive, so JavaScript was used for form
validation in the browser, making it more comfortable for
clients. In this way, Web applications were made much more
user-friendly and more similar to standard desktop applications.

The next big thing was the introduction of the Dynamic
Hypertext Markup Language (DHTML), which was designed to
make HTML more dynamic and to give developers the ability to
manipulate any page element. Its purpose was to enable users to
integrate HTML, Cascading Style Sheets (CSS), and JavaScript as
a universal technology for building user interfaces for Web
applications. But then, something went wrong.

The trouble started with the so-called “browsers war.” An
incompatible proprietary document object model and DHTML
made writing cross-browser-compatible software practically
impossible. That was the reason why many companies only
used plain HTML for their Web user interfaces in those days. It
also made space for new technologies for interactive Web pages,
such as Macromedia’s Flash.

These days JavaScript is again in the focus of Web develop-
ers. Today, this is because of the AJAX (Asynchronous
JavaScript And XML) technique used to create more interactive
Web applications. The problem with standard Web application
development is that display of every page results in a separate
HTTP request to the server. You cannot transfer data from the

66 SCRIPTING IN JAVA

server to the client browser without reloading the whole page.
This is slow for most of the interactive applications, leading to
the “static” nature of Web applications. Now, developers can use
JavaScript code in their pages to exchange data with the server
through XMLHttpRequest objects asynchronously. This tech-
nique has proved to be ideal for many applications, and thus we
witness a large development effort in this area.

All in all, JavaScript, although not its primary goal, is
referred to as one of the crucial languages for Web application
development.

SUMMARY

As we have seen, in Web application development, developers
use scripting languages today more than ever before. But Java
is also present in this field of development, and we can see
many frameworks and technologies created for easier develop-
ment of Web solutions on this platform. Because Java is a dis-
tributed programming language, it is convenient for the
development of large Web solutions. PHP is used much more
often in small and medium-size sites because it is easy to learn
and enables rapid development.

Where Java and PHP converge is the Java Specification
Request (JSR) 223 (www.jcp.org/en/jsr/detail?id=223), which
aims to develop the general framework for integration of native
scripting languages in Java. Because of its popularity, PHP is
chosen by the expert group as a reference language for this
specification.

This mixing of PHP and Java enables a lot of great things
for Web developers, including complete transfer of applications
from one language to another, using Java modules from within
PHP and vice versa, integrating applications written in these
technologies, and using PHP as a general-purpose scripting lan-
guage in a Java environment. This is important because many
Web developers and designers know only PHP, so this frame-
work can be their door to the Java world. Java projects could
also benefit from PHP in many areas, one of which is the use of
PHP as a template language instead of JSP and Velocity, but I
am sure many interesting applications are yet to be found.

CHAPTER 2 67

www.jcp.org/en/jsr/detail?id=223

Scripting and UNIX

Scripting is at home on the UNIX platform. System administra-
tors, software developers, and users are using it on various
occasions, as we have seen in the preceding sections. Some of
the major scripting language representatives were born in the
UNIX environment, and because they brought many benefits to
various user groups, they are widely adopted and used.

In the Linux and open source era, scripting has an important
role too. Nikolai Bezroukov wrote the following words in his
book Portraits of Open Source Pioneers (www.softpanorama.org/
People/index.shtml):

I believe that scripting languages represent the most important
branch of open source development. First of all the key assump-
tion behind open source is that the source of the program
should be readable and modifiable. This is simply not true for a
complex 10K lines C or C++ program. So expressiveness of the
language and its level are very important factors, that are com-
monly overlooked. I strongly believe that these languages will be
mainstream industrial languages in the coming years.

We can freely say scripting is an important part of the
UNIX platform and of the open source movement in general.

Scripting in Games

Scripting languages play an important role in the field of game
development, and they have been used in various forms for
many years now. Today’s game developers are using it to
extend their game engines and to enable easier modification of
their games. What kind of modifications scripting languages
enable depends on the specific game genre and vendor. They
vary from scenery generation for adventure games to user inter-
face programming and action handling in action games.

Also, there is no rule regarding which language is found in
certain products. Some companies find it most suitable to build
a custom solution, and others use general-purpose scripting lan-
guages such as Python and Lua in their development process.

68 SCRIPTING IN JAVA

www.softpanorama.org/People/index.shtml
www.softpanorama.org/People/index.shtml

SCUMM
The most popular in-house scripting solution for game develop-
ment is the SCUMM engine, developed at LucasArts.

Back in the 1980s, programmers at LucasArts started to
work on a new graphics adventure game called Maniac Man-
sion. Instead of writing a complicated game engine specific to
this game, they decided to write a generic engine for it. They
called it SCUMM (Script Creation Utility for Maniac Mansion).
The SCUMM engine interprets the bytecode generated by com-
piling suitable scripts. This concept proved successful, so many
games from the same company were released with the same
engine.

The use of custom-made scripting languages has its draw-
backs, however. First, it is expensive to develop and maintain
such a solution. Also, this approach requires your users and
developers to learn another programming language just for cus-
tomizing and extending this application (or this kind of
application).

This is why some organizations are using general-purpose
scripting languages such as Lua and Python for their production
needs.

In conclusion, games are complex to develop, and lessons
learned in this industry could be used to create complex soft-
ware for any other domain. Engines (such as 3D rendering
engines), where speed is everything, are implemented in lower-
level system-programming languages such as C++. This engine
is then exposed to scripts that can easily drive the engine,
which presents a new approach to programming specific game
features.

Additional Characteristics

Chapter 1 discussed some of the basic characteristics of script-
ing languages, such as dynamic typing and the existence of an
interpreter. These are some fundamental technical issues related
to scripting in general. But from all the roles and use cases we
covered in this chapter, we can conclude that scripting languages

CHAPTER 2 69

have a few more characteristics equally important in terms of
their successful use. In this section, we cover some of their most
important nontechnical characteristics.

Embeddable

Many experts state one of the most important capabilities of a
scripting language is embedding the language in a variety of
environments. An entire solution rarely would be implemented
from scratch using a scripting language, so it is necessary to
provide a mechanism for evaluating scripts from other environ-
ments. Interpreters for some of the languages we covered earlier
in the chapter, such as Tcl and Python, come as libraries for
system programming languages (such as C). A similar approach
is taken with Java, as we will see in the following chapters.

This pertains to general-purpose scripting languages, so
what about domain-specific languages such as PHP? Of course,
the same is true here. Languages used for development of Web
applications, for example, must provide a mechanism enabling
them to be embedded into a targeted Web server as well as into
HTML documents. This is also valid for languages used in other
environments, such as testing tools, applications, and so on.

To conclude, the capability to embed a scripting language is
crucial to its successful deployment in certain environments.

Extensible

As I said, many experts refer to scripting languages as the layer
of glue that drives components written in a system program-
ming language. To be successful at this task, scripting lan-
guages have to provide an interface to components written in
that language. Besides this interface, many languages provide
the mechanism to write their built-in components in a system
programming language. This is usually referred to as being
extensible.

Extensibility helps us to use those languages in various
roles, such as prototyping. Imagine, for example, you prototype
with a scripting language and you want to turn that prototype
into a shippable product. Often, you can find some modules that

70 SCRIPTING IN JAVA

do not have performance good enough for system production.
Here is where you can rewrite bottleneck modules to provide
better runtime characteristics in the language, with a lower level
of abstraction and strong typing, and thus optimize your product.

Easy to Learn and Use

Perhaps this is one of the most important reasons why scripting
languages have been widely accepted. Because they have a
higher level of abstraction (in other words, because they are
much more human-oriented), it is easy to learn the basic con-
cepts of most scripting languages today.

Why is this important? If a language’s syntax is simple,
professional developers can learn the language in a matter of
hours, after which they can develop solutions quickly. This
moderate learning curve and rapid development are the main
reasons why scripting languages are popular among profes-
sional programmers.

But that is not all. Nonprofessional programmers and hob-
byists can easily understand the concepts of scripting lan-
guages, so they can use them to customize applications or build
simple solutions for in-house use. Look, for example, at the
Web application domain. Many designers are willing to learn
JavaScript or PHP (ASP), so that they can work more closely
with developers or make their Web site designs more dynamic.

The simplicity of some scripting languages makes them
ideal for teaching basic programming concepts. It is not
unusual to see introductory programming courses that cover
scripting languages rather than some pseudolanguage. The con-
cepts of system-programming languages such as C, C++, and
even Java are too complex to be presented in these courses.
Topics such as pointers and memory management are not suit-
able for these courses, either; explaining the basics of looping,
data types, and data structures is easier to do in a higher-level
programming language.

There are examples of successful uses of dynamic languages
in more advanced programming classes, however. As Ronald
Loui, Associate Professor of Computer Science at Washington
University in St. Louis, wrote (http://www.cs.wustl.edu/~loui/
sigplan):

CHAPTER 2 71

http://www.cs.wustl.edu/~loui/sigplan
http://www.cs.wustl.edu/~loui/sigplan

Most people are surprised when I tell them what language we
use in our undergraduate AI programming class. That’s under-
standable. We use GAWK. GAWK, Gnu’s version of Aho, Wein-
berger, and Kernighan’s old pattern scanning language, isn’t
even viewed as a programming language by most people. Like
PERL and TCL, most prefer to view it as a “scripting language.”
It has no objects; it is not functional; it does no built-in logic
programming. Their surprise turns to puzzlement when I confide
that (a) while the students are allowed to use any language they
want; (b) with a single exception, the best work consistently
results from those working in GAWK. (Footnote: The exception
was a PASCAL programmer who is now an NSF graduate fellow
getting a Ph.D. in mathematics at Harvard.) Programmers in C,
C++, and LISP haven’t even been close (we have not seen work
in PROLOG or JAVA).

From all this, we can conclude scripting (higher-level of
abstraction) languages have an important role in computer sci-
ence education.

Conclusion

In this chapter, we discussed some of most popular and widely
used scripting languages and their applications over the years.
We did this so that we could understand how they fit into the
information infrastructure and how Java projects can benefit
from them.

With the increased awareness of scripting in the Java com-
munity, many languages we discussed have interpreters written
in Java, and some new dynamic languages were created to
merge useful features of their ancestors and to adapt the syntax
to Java developers.

The fact that dynamic languages will be a hot topic in the
Java community in the future is almost certain. Even Sun
Microsystems, the company mainly responsible for the future of
the Java platform, took a few steps in that direction.

In the next three chapters, we discuss some dynamic lan-
guages for the Java platform. We do not cover all languages in

72 SCRIPTING IN JAVA

this book because this is a wide topic. But we discuss some of
the programming concepts already introduced and the mecha-
nisms for embedding them into Java projects.

After that, we focus on how to employ these languages for
tasks we described, and explore some patterns for their success-
ful use.

CHAPTER 2 73

This page intentionally left blank

PART II

CHAPTER 3 Scripting Languages Inside the JVM

CHAPTER 4 Groovy

CHAPTER 5 Advanced Groovy Programming

CHAPTER 6 Bean Scripting Framework

This page intentionally left blank

Since its initial commercial release in 1995, Java has
become a widely adopted development platform. It orig-

inally was designed as a tool for building client applications
that could be easily delivered over a network and run on
any platform. But during the dot-com boom, Java won over
another industry area: server-side development, Web appli-
cations, and enterprise systems.

A few features of the Java language played a vital role
in developers’ fast adoption of Java. The first feature, of
course, was Java’s true cross-platform portability. This
enabled a unique approach to development, regardless of
the platform (or platforms) used in production. A second
feature was language support for threading. Java released
developers from the burden of having to work with differ-
ent threading APIs for every operating system available. A
third feature was Java’s built-in standard implementation of
sockets, which enabled development of network-aware
applications, making it easier to build distributed systems.

SSCRIPTINGCRIPTING
LLANGUAANGUAGESGES
IINSIDENSIDE THETHE JVMJVM

CHAPTER 3

But the real advantage of Java was its simplicity, which
eliminated a lot of the pain developers had suffered through
when using C++. Java is much simpler than C++. In applica-
tions developed with C++, explicit memory management caused
many bugs. Explicit memory management gives a lot of power
to programmers, but also makes it easy for programmers to
crash their systems, especially in large and complex applica-
tions. When developing in Java, you don’t have to worry about
pointers, memory space allocations, and similar issues. The Java
Virtual Machine (JVM) does that job for you.

In the same way implicit memory management caused Java
programs to be less likely to crash because of inappropriate
memory handling, implementation of the garbage collector in
the JVM solved most of the memory-leakage problems. No
longer do you need to make explicit destructor calls when an
object is no longer needed. The garbage collector (gc) deletes
unreferenced objects and frees memory in the background, leav-
ing developers to think only about the real business logic of the
application.

Java’s object-oriented approach was also a big plus. Java
has elevated interfaces to first-class status and defined a single
inheritance model for classes with the java.lang.Object class
as a root. Interfaces are collections of methods and constants
defining an abstraction. One interface can be implemented sev-
eral times by different classes, and wherever that interface is
expected in the code, any implementation class can be submit-
ted. On the other hand, a class can comprise just one parent
class (and implement as many interfaces as it wants). This so-
called single inheritance model, when powered with interfaces,
enables much better designed systems.

Another advantage of Java was dynamic linking. When you
compile your Java source files, you don’t get one big, exe-
cutable file with all the necessary libraries linked in. You get
one .class file for every source (.java) file. Those files can be
further packed into JAR archives. The class files are not inde-
pendent, by any means, but they do create an interconnected
net. The point is the decision of what class will be used (loaded)
in the application is made at runtime. Your Java application

78 SCRIPTING IN JAVA

does not have to know exactly which class (that implements a
certain interface, for example) will be used at runtime. This
makes Java applications extremely modular.

Because a virtual machine represents an additional layer in
the overall application architecture, Java applications are usu-
ally slower than respective programs written in purely compiled
languages, such as C++. But as computers are becoming faster
and include more resources (such as memory, for example), the
speed disadvantage of Java applications is no longer a key
issue. On the other hand, as applications grow larger and more
complex, code maintainability and robustness are being
stressed. Because of all these features, Java is the dominant
development platform in many areas today.

Java’s popularity, combined with the open source develop-
ment trend, led to the large number of Java frameworks, APIs,
containers, and so on, existing today. This is exactly the
domain of software development that is an excellent fit for a
system-programming language such as Java.

The problem in Java development today is it is too hard
and complex to glue these components together. When you
start planning your future Java project today, start with a list of
libraries you want to include. After this, start planning which
modules your development team needs to build. Finally, after all
the modules are available, put everything together.

The actual business logic that wires modules together, along
with the user interface if it is present, is the part of an applica-
tion changed most often during the development process. Mod-
ules’ interfaces are rarely changed, but the wiring and behavior
of new modules often are changed. For these tasks, where flexi-
bility is crucial, Java is not efficient because it has a strict syn-
tax and does not offer the comfort of scripting languages.
Scripts are easy to develop and change, and they require much
less code to do this wiring.

Even if Java is the best system-programming language
available, there are many places in your system (as we see in
Chapter 7, “Practical Scripting in Java,” and Chapter 8, “Script-
ing Patterns”) where scripting and Java will work well together.
Scripting can make your systems flexible and easy to maintain,

CHAPTER 3 79

and it can help you do some of the things taking you away
from writing actual application code (such as unit testing,
debugging, and project building) faster. Scripting also provides
you with the ability to do small tasks in a matter of moments.

In this chapter, I walk you through some of the basic Java
platform concepts. We see how these concepts enable the
Java platform to host different scripting languages. After that,
I introduce three popular scripting solutions for the JVM:
BeanShell, Jython, and Rhino. Next, I briefly describe some of
the most important characteristics of the Groovy programming
language. At the end of this chapter, I provide a list of other
scripting solutions available for the JVM, along with a brief
description.

Under the Hood

Before we start to talk about scripting languages, their features,
and applications, it would be good to summarize important
information regarding the Java platform and discuss what is
really going on under the hood.

The Java architecture consists of four different elements (see
Figure 3.1):

■ Java programming language

■ Java class file format

■ Java Virtual Machine (JVM)

■ Java application programming interface (API)

The Java programming language is what we all refer to as
Java. It is a programming language with all the features
described earlier.

To execute source code written in Java, a Java compiler has
to compile it. This results in Java class files. Class files play one
of the most important roles in the Java architecture. The format
of these files defines a binary form of Java programs, which
contains the bytecode executed in the JVM. Java class files
are designed to be compact and, most important, platform
independent.

80 SCRIPTING IN JAVA

CHAPTER 3 81

MyApp.java Helper.java

Source files (.java)

Java runtime environment

Some.java

MyApp.class Helper.class

Class files (.class)

Some.class
Java compiler

Object.class String.class

Java API

Class loader

Execution engine

Java virtual machine

FIGURE 3.1 Java architecture

Classes (located in local class files or somewhere on the net-
work) are then loaded into the JVM for execution. The JVM is
an abstract computer whose machine language is the bytecode
contained in the class files. Both the bytecode and the JVM are
defined by a specification that must be fully implemented by all
vendors to have cross-platform compatibility. The JVM has two
essential parts: the class loader and the execution engine.

The class loader loads the bytecode from the class files and
passes it to the execution engine. There are two types of class
loaders: the bootstrap class loader and user-defined class

loaders. A part of the JVM, the bootstrap class loader is a sys-
tem default class loader. User-defined class loaders are class
loaders we can write ourselves in Java and then instantiate as
we can any other Java object. This means we can have multiple
class loaders at the same time in our applications. This class-
loading mechanism makes the Java platform highly flexible.

The execution engine is the core of the JVM. It is an inter-
preter of the Java bytecode. The bytecode loaded by the class
loader is passed to the execution engine for execution. Usually,
the bytecode will be interpreted, but an implementation can also
use the just-in-time compiling technique to convert the bytecode
to native machine code and then execute that native code.

The last essential part of the Java platform is the Java API,
which contains classes that implement basic aspects (such as
strings and iterators) and allow flexible use of system resources
(through files, sockets, and so on). Also, the Java API is
designed to be platform agnostic from the point of view of Java
developers. For example, if your application has to work with
files, you will write the same Java code regardless of whether
the application will be run on the UNIX or Windows platform.

The Java API, along with the JVM, forms the Java runtime
environment (JRE) (as Figure 3.1 shows). At the very least, your
host requires the Java runtime environment to run Java
applications.

Scripting Language Concepts

From our discussion thus far, we can conclude Java is only one
of the programming languages you can use in the JRE. Here are
the steps you should take to enable another type of (scripting)
language to be used inside the JVM:

1. Implement an interpreter for the specified programming
language that runs inside the JVM. The purpose of this
interpreter is to parse the language syntax and generate
the Java bytecode of parsed scripts.

2. Create a specialized class loader to load parsed scripts.
These scripts are loaded as regular Java classes in the
JVM. Also, this class loader has to enable scripts to use
the Java API and user-defined Java classes.

82 SCRIPTING IN JAVA

Another approach people use when working with other lan-
guages is to create a compiler that converts source files into
Java class files. When you have a valid class file, there is no
trace of how it was created. Classes created by a compiler are
the same as classes created by compiling Java source files, and
thus they can be used in the same way.

These two approaches are not exclusive, so many scripting
languages available today allow you to both interpret your
scripts and compile them to the Java bytecode. Usually you per-
form compilation to gain better performance because you will
be able to skip the interpreting phase. But the interpreting phase
has its place in the development process as well. Its biggest
benefit is it enables you to modify scripts easily, without having
to compile their source repeatedly.

This is the topic of later chapters. For now, we focus on
available scripting alternatives for the Java platform. We briefly
cover their features so that you can choose the scripting alter-
native that best fits your needs. In Chapter 4, “Groovy,” and
Chapter 5, “Advanced Groovy Programming,” we dig into the
Groovy scripting language in more detail.

BeanShell

BeanShell (www.beanshell.org) is the first scripting language
to introduce the Java syntax. You can think of it as a small,
embeddable Java source interpreter. Beyond that, it also extends
the Java syntax and introduces some concepts common to
scripting languages.

Getting Started

To start playing with BeanShell, you have to complete a few
simple steps:

1. Download the latest version of BeanShell from
www.beanshell.org. Notice that it is distributed as a sin-
gle JAR file that is about 250KB in size. This makes it
the smallest of all scripting languages available for the
JVM because all other solutions that we cover are larger

CHAPTER 3 83

www.beanshell.org
www.beanshell.org

84 SCRIPTING IN JAVA

than 600KB. This is a good thing to know because it
could drive your decision regarding which language to
embed in your application.

2. Put the downloaded file somewhere in your classpath,
and the installation process is complete. For example,
on UNIX systems, type something like this in the shell:

export CLASSPATH=$CLASSPATH:/path_to_jar_location/
bsh-xx.jar

Note that path_to_jar_location is an actual directory
containing the downloaded JAR, and xx in the JAR
name is the version of the BeanShell distribution (for
example, /opt/bsh-2.0b4.jar).

You can run BeanShell in several modes, depending on your
intentions. For instance, interactive mode is primarily intended
for experimentation with scripts and debugging Java applica-
tions. This is one of the most popular uses of BeanShell. If you
just run the BeanShell JAR with:

java -jar bsh-2.0b4.jar

you will get a graphical desktop (BeanShell GUI) similar to the
one shown in Figure 3.2.

FIGURE 3.2 BeanShell GUI

In this console, you can evaluate your code line by line, as
well as open and save scripts to files.

Choosing the Workspace Editor File menu item runs the editor
with basic script manipulation features, such as saving the cur-
rent script or opening an existing script for modification (see
Figure 3.3).

CHAPTER 3 85

NOTE

If you want to redi-
rect standard input
and output streams
to this console,
select the Capture
System in/out/err
item from the File
menu.

FIGURE 3.3 Workspace editor

This editor is useful if you want to run certain scripts more
than once. To evaluate a script, just choose the Eval in Work-
space item from the Evaluate menu of the editor.

This BeanShell desktop is not a replacement for a fully fea-
tured IDE. It is only a kind of shell with extra features.

Note that implementation of this BeanShell GUI is handled
with the bsh.Console class. Alternatively, you can start it with:

java bsh.Console

if the BeanShell is in your classpath.

The bsh.Interpreter class implements the BeanShell
interpreter. This class contains the main() method, so if you
want a textual interactive console, run it with:

java bsh.Interpreter

After this, you can evaluate your statements and exit the
interpreter by pressing CTRL-C:

BeanShell 2.0b2 - by Pat Niemeyer (pat@pat.net)
bsh % System.out.println(“Hello world!”);
Hello world!
bsh %

If the filename is passed to the interpreter, the script defined
in that file will be evaluated:

java bsh.Interpreter hello.bsh

Optionally, you can pass arguments to that script by
appending them to the end of the command line.

Basic Syntax

BeanShell scripts understand Java statements and expressions
(methods and classes are discussed in the following sections),
which makes them a natural tool for wiring existing Java
classes and APIs. For example, look at the following code
snippet:

Vector vec = new Vector();

for (int i = 0; i < 10; i++) {
Integer elem = new Integer(i);
vec.add(elem);

}

Iterator it = vec.iterator();

while(it.hasNext()) {
System.out.println(it.next());

}

As you can see, this looks like standard Java code. The
main difference is that you can evaluate this BeanShell script,
whereas the equivalent Java class would raise compilation
errors. Two crucial factors enable this behavior.

First, BeanShell scripts do not require a class definition and
a main() method. Also, some core and extension Java packages

86 SCRIPTING IN JAVA

are imported by default, which eliminates many of the import
statements. We return to this subject in a later discussion on
classpath manipulation in BeanShell, in one of the following
sections.

Loosely Typed Syntax

BeanShell shows its “scripting nature” when it comes to the
type system. In the earlier example, we declared types for all
variables used in the script. BeanShell supports loose typing by
allowing you to define variables without an explicit type decla-
ration. The interpreter determines the type at runtime. So, we
can rewrite the earlier example in the following manner:

vec = new Vector();

for (i = 0; i < 10; i++) {
elem = new Integer(i);
vec.add(elem);

}

it = vec.iterator();

while(it.hasNext()) {
System.out.println(it.next());

}

Even if it does not look like a big deal in this simple demo
script, loose typing can save you some time during development
and can make for a comfortable development environment.
Typeless variables can hold any object and primitive value.
Variables can even change their type in case they are assigned
values of different types.

Loose typing works even in try/catch expressions, so you
can freely write something like this to catch exceptions:

try {
...

} catch (e) {
e.printStackTrace();

}

CHAPTER 3 87

Syntax Flavors

Besides loose typing, BeanShell provides a few Java syntax
enhancements designed to save you some typing.

JAVABEANS

The first enhancement is the way in which you can access Java-
Bean properties. Now you don’t have to use getter and setter
methods. BeanShell maps the property name to the adequate
method:

file = new File(“test.txt”);
print (file.name); // file.getName()
file.lastModified = new Date().getTime();
// file.setLastModified(new Date().getTime())
print (file.directory); // file.isDirectory()

As you noticed in this example, the same syntax stands for
boolean properties as well. If there is an ambiguity between
this mapping and the actual field name, the field name will be
used. In these cases, you can use curly braces to enforce use of
properties:

file = new File(“test.txt”);
print (file{“name”});
file{“lastModified”} = new Date().getTime();
print (file{“directory”});

You also can use this handy syntax with maps and hash
tables:

map = new HashMap();
map{“title”} = “Java”;
print(map{“title”});

THE for LOOP

A few Java syntax modifications introduced in Java 1.5 have
been present in BeanShell for years. One of those is the modi-
fied for loop used to iterate over collections and arrays:

// Collection

list = new ArrayList();

88 SCRIPTING IN JAVA

list.add(“Mike”);
list.add(“Joe”);
list.add(“Brus”);

for (String item : list) {
print(item);

}

// Array

users = new String[] {“Mike”, “Joe”, “Brus”};

for (item : users) {
print(item);

}

// Iterator

for (String item : list.iterator()) {
print(item);

}

// String

name = “Dejan”;
for (ch : name) {

print(ch);
}

As you can see, besides collections and arrays, this for
loop can be used on Iterator and String objects as well.

AUTOBOXING

The term autoboxing refers to the automatic conversion of primi-
tive Java types (for example, int and boolean) to their corre-
sponding Java wrapper classes (for example, java.lang.Integer
and java.lang.Boolean). This feature was first introduced in the
J2SE 1.5 (Tiger) platform, and it relieved programmers from much
of the tedious work of “boxing” and “unboxing” between wrap-
per classes and primitive types.

Look at the following Java code, which I wrote prior to the
introduction of autoboxing:

Integer i = new Integer(12);
int j = 15
if (j > i.intValue())

System.out.println(“j > i”);
else

System.out.println(“j > i”);

CHAPTER 3 89

With autoboxing, the equivalent Java code looks much
more natural:

Integer i = 12;
int j = 15
if (j > i)

System.out.println(“j > i”);
else

System.out.println(“j > i”);

BeanShell had this feature a long time before Java did. Take
a look at the following example:

Vector v = new Vector();
v.put(1);
int x = v.getFirstElement();

As you can see, we can use primitive int values when we
are working with Java collections. Although this has been sup-
ported in Java since the 1.5 release, BeanShell allows us to use
this feature in older Java runtime environments. Autoboxing
can save you a lot of unnecessary typing of type conversion
code.

THE switch-case STATEMENT

Besides the for loop, the switch-case statement has been
extended to support testing of regular Java objects. The
equals() method is used to evaluate a condition:

file = new File(“test.txt”);

switch (file.toString()) {
case “test.csv” : print(“Comma separated”);

break;
case “test.txt” : print(“Plain text”);

break;
default : print(“Unknown”);

}

This kind of switch statement eases testing on different
values for nonprimitive values and eliminates multiple, hard-to-
read if-else statements.

90 SCRIPTING IN JAVA

Commands

Every scripting language tries to make developers’ lives as sim-
ple as possible and enable them to achieve more with less code.
In that manner, BeanShell defines built-in commands to ease
some of the most common development tasks.

You are probably aware of how much time you lose every
time you want to display something on standard output:

System.out.println(someVariable);

The preceding code requires too much typing for such a
task.

BeanShell defines the print() command for this task, so
you can use this in your scripts instead of the
System.out.println() method:

print(someVariable);

My intent is just to let you know about this feature, so I
will not describe every command that BeanShell offers. You can
find a list of commands along with their descriptions in the
comprehensive user manual on the BeanShell.org Web site.

Methods

BeanShell allows you to encapsulate often-used code in meth-
ods. These methods are not defined inside a class declaration,
and as such, they are called loosely defined (or standalone)
methods.

double calculateTotal (double subtotal, double tax) {
return sub * (1 + tax);

}

print(calculateTotal(100, 0.2));

add(first, second) {
return first + second;

}

print(add(100, 120));
print(add(“Demo “, “String”));

CHAPTER 3 91

As you can see in the preceding code, you can define meth-
ods without type declarations for arguments and the return
value. But you also can enforce types where they are needed. In
case you don’t define types, the BeanShell interpreter performs
type checking and appropriate conversions at runtime.

Objects

BeanShell is designed as a simple language for performing
small dynamic tasks. People often use it to write small, unstruc-
tured scripts quickly. With that in mind, we can understand
why this language does not have full support for Java objects.
Instead, it provides a mechanism that is often seen in other
scripting languages, called a method closure. Methods can be
nested, in that you can define a method inside another method.
If the method returns a special value called this, the result will
be treated as an object reference. Look at the following script,
for example:

invoice() {
double subtotal;
double tax;
double total;

recalculate() {
total = subtotal * (1 + tax);
return total;

}

return this;
}

inv = invoice();
inv.subtotal = 100;
inv.tax = 0.2;
print(inv.recalculate());

In this code example, we defined the invoice() method
closure with the recalculate() inner method. Note the last
statement in the invoice() method. It tells us that this is not
an ordinary method and that after we call it, we can access its
content (variables and methods) the same way we would access
objects.

The code after the method definition shows us how to
access variables and call methods for this kind of “object.”

92 SCRIPTING IN JAVA

Implementing Interfaces

Even though BeanShell does not support Java classes, you can
still implement Java interfaces with BeanShell. You do this with
standard Java anonymous inner classes. A common example of
this kind of task is implementation of ActionListener inter-
faces in Swing applications written in BeanShell:

buttonHandler = new ActionListener() {
actionPerformed(event) {

print(“Thank you”);
}

};

button = new JButton(“Click me!”);
button.addActionListener(buttonHandler);
frame(button);

In this example, we defined the buttonHandler variable
and assigned an implementation of the ActionListener inter-
face to it. This object could be regularly passed around the
script wherever this interface is expected.

Another approach that you can take is it to define stand-
alone methods directly in your script and pass this as a refer-
ence to the script. As such, you could write the previous
example like this:

actionPerformed(event) {
print(“Thank you”);

}

button = new JButton(“Click me!”);
button.addActionListener(this);
frame(button);

One more interesting thing about working with Java inter-
faces and BeanShell is that you don’t have to implement all the
methods defined in the particular interface. Let’s demonstrate
this with a simple example:

package net.scriptinginjava.ch3;

public interface IInvoice {

public double recalculate();
public void cancel();

}

CHAPTER 3 93

This is a simple Java interface with two methods defined.
Now, let’s implement it with the following BeanShell script:

import net.scriptinginjava.ch3.IInvoice;

inv = new IInvoice() {
double recalculate() {

return 250;
}

};

print(inv.recalculate());
//inv.cancel();

As you can see, we implemented only one of two methods
defined in the interface. This is legal, and we can use this
method without any implications. But if you uncomment the
last line (a call to the unimplemented method), you will get
java.lang.reflect.UndeclaredThrowableException.

If you want to avoid this behavior, you can implement the
invoke(name, args) method, which intercepts all calls to
unimplemented methods.

Embedding with Java

Probably one of the main reasons that you want to deal with
scripting is to enable your Java classes to evaluate some scripts.
As we see in Chapter 6, “Bean Scripting Framework,” and Chap-
ter 9, “Scripting API,” Apache’s Bean Scripting Framework
(BSF) project and Scripting API (included in JDK 6) are general-
purpose frameworks that you can use for this task. But every
language that we describe in this chapter has its own mecha-
nism for the same job.

As you can probably guess, the bsh.Interpreter class
accomplishes this job for BeanShell. Let’s make a simple script
called name.bsh, with the following code:

result = “Hello “ + name;
System.out.println(result);
name;

This script defines the result variable and prints it on
standard output. Now, we want to write the Java class that will
set a value for the name variable and evaluate this script:

94 SCRIPTING IN JAVA

package net.scriptinginjava.ch3;

import java.io.IOException;

import bsh.EvalError;
import bsh.Interpreter;
import bsh.ParseException;
import bsh.TargetError;

public class Name {

public static void main(String[] args) {
try {

Interpreter in = new Interpreter();
in.set(“name”, “Dejan”);
String ret =(String)in.source(

“net/scriptinginjava/ch3/name.bsh”
);
System.out.println(ret);
System.out.println(in.get(“result”));

} catch (ParseException pe) {
pe.printStackTrace();

} catch (TargetError te) {
System.out.println(te.getErrorLineNumber()

+ “ “ + te.getErrorText());
} catch (EvalError ee) {

ee.printStackTrace();
} catch (IOException ioe) {

ioe.printStackTrace();
}

}
}

The procedure is straightforward:

1. Instantiate the Interpreter class.

2. Set mappings for variables using the set() method.

3. Call the source() method with the name of the script
file to evaluate it.

After script evaluation, you can access all variables defined
in the script using the get() method. Also, the script()
method returns the value of the last statement of the evaluated
script. In this example, we have set the last statement of our
script to be the name variable, just to demonstrate this behavior.

The earlier code should print the following result on stan-
dard output:

Hello Dejan
Dejan
Hello Dejan

CHAPTER 3 95

We can learn a few more things from this example. For
instance, the source() method throws an EvalError exception,
which indicates an error in script evaluation. This exception
defines the following methods:

■ String getErrorText()

■ int getErrorLineNumber()

■ String getErrorSourceFile()

These methods can help you to find where the error was
encountered. Also, there are two subclasses of the EvalError
class:

■ ParseException—Indicates that the particular script
could not be parsed

■ TargetError—Indicates that the particular script was
parsed correctly and threw an exception during its
execution

With these classes in hand, you have a better idea of which
error was thrown and why, so you can implement better error
handling in your projects.

Besides the source() method, you can use the eval()
method to evaluate scripts. In the case of the eval() method,
scripts are embedded directly in your Java code. Instead of
accepting a filename, this method accepts a String variable
with the actual BeanShell code that should be executed. The
following example is equivalent to the previous Java example,
but now we use the eval() method instead of source():

package net.scriptinginjava.ch3;

import bsh.EvalError;
import bsh.Interpreter;
import bsh.ParseException;
import bsh.TargetError;

public class NameEval {

public static void main(String[] args) {
try {

Interpreter in = new Interpreter();
in.set(“name”, “Dejan”);
String ret = (String)in.eval(

“result = \”Hello \” + name;”
+ “System.out.println(result);”

96 SCRIPTING IN JAVA

+ “name;”
);
System.out.println(ret);
System.out.println(in.get(“result”));

} catch (ParseException pe) {
pe.printStackTrace();

} catch (TargetError te) {
System.out.println(te.getErrorLineNumber()
+ “ “ + te.getErrorText());

} catch (EvalError ee) {
ee.printStackTrace();

}
}

}

As we said earlier, you can use BeanShell to implement
Java interfaces. Then you can load those implementations into
Java programs and use them as you would any other regular
Java object. To demonstrate this, first we write a simple script
that implements our previously defined IInvoice interface:

double recalculate() {
return 250;

}

cancel () {
//Do nothing

}

Now we can use the getInterface() interpreter method to
instantiate this script as an object of a desired interface:

package net.scriptinginjava.ch3;

import bsh.Interpreter;

public class InterfaceTest {

public static void main(String[] args) {
try {
Interpreter in = new Interpreter();
in.source(
“net/scriptinginjava/ch3/invImplementation.bsh”

);
IInvoice inv =
(IInvoice)in.getInterface(IInvoice.class);

System.out.println(inv.recalculate());
} catch (Exception e) {
e.printStackTrace();

}
}

}

CHAPTER 3 97

This by no means covers BeanShell in its entirety. Rather,
we have seen some basic principles of programming in this lan-
guage. Also, we have explored how you can embed it into
existing Java code and APIs. With its Java syntax, this lan-
guage is ideal for Java developers who need a small, modest,
and natural scripting solution.

You can find more information on BeanShell in the com-
prehensive manual on its official site, www.beanshell.org.

Jython

Jython is an implementation of the Python language specifica-
tion in Java. It leverages Python syntax inside the JVM.
Because Python is a programming language specification and
Jython is its implementation in Java, I use the term Python
when I talk about the programming language in general, and
the term Jython in cases where I talk about specifics of the
Jython project.

Python is a high-level, interpreted, object-oriented scripting
language. Python has a large community of developers who like
its syntax and “feel.” They find themselves more productive
when developing in Python than with system-programming
languages such as Java.

In this section, we do not focus on the Python language.
Instead, we describe how Jython works with the Java platform.
For a complete reference of the Python language, consult an
appropriate book, such as Learn to Program Using Python
(Addison-Wesley, www.awprofessional.com/title/0201709384).

Getting Started

To start playing with Jython, you need to download it from its
official site, www.jython.org. Notice that it is distributed as a
single Java class file. This class is an installer that guides you
through the installation process (see Figure 3.4).

98 SCRIPTING IN JAVA

www.beanshell.org
www.awprofessional.com/title/0201709384
www.jython.org

FIGURE 3.4 Jython installer

After the installation process is complete, you will probably
want to add Jython to your CLASSPATH and PATH environment
variables. On UNIX systems, you need to type something like
the following (supposing that Jython is installed in the
/opt/jython-2.1 directory):

$ export CLASSPATH=$CLASSPATH:/opt/jython-2.1/jython.jar
$ export PATH=$PATH:/opt/jython-2.1

You can use Jython in various ways. For instance, you can
start it as an interactive interpreter. To do that, just type jython
on the command line:

Jython 2.1 on java1.4.1 (JIT: null)
Type “copyright”, “credits” or “license” for more
information.
>>> print “Hello world”
Hello world
>>>

Now, you can evaluate Python statements and expressions
line by line. As I already said, this mode is ideal for experi-
menting with new libraries, debugging, and other similar tasks.

CHAPTER 3 99

In another mode, Jython works as an interpreter of script
files. If you pass the filename to the jython command, it will
be read and evaluated:

$ jython hello.py

The interesting thing about this is that you can use Jython
to run applications from JAR files. For example:

$ jython -jar test.jar

searches for the __run__.py script in the test.jar archive and
evaluates it. This could be a useful option if you want to use
Jython to start your applications. I discuss this application of
scripting languages in more detail in Chapter 7.

As I said, some scripting languages offer the capability to
compile scripts to Java class files. Jython is one of them, and
you can use the jythonc command to achieve this. To demon-
strate this, we need a simple “hello world” Python script
(hello.py):

print “Hello world!”

Now let’s compile it with the following:

jythonc hello.py

After this compilation process is complete, notice the new
jpywork directory under the current working directory. This
directory contains the results of the compilation process. As you
can see, the process is not direct. Instead, the py file is trans-
lated to the java file first, and then the Java source file is com-
piled with the standard javac compiler. Thus, you can find the
hello.java file in this directory. Table 3.1 contains some of the
switches usually used with jythonc.

100 SCRIPTING IN JAVA

Table 3.1 jythonc switches
Short Version Long Version Description

-p package —package package All compiled code is put in the specified package.

-j jar —jar jar Create a JAR archive of the compiled code.

-d —deep Compile all dependencies.

-c —core Include core Jython libraries.

-a —all Include all Jython libraries.

-A packages —addpackages packages Include Java dependencies.

-w dir —workdir dir The (working) output directory for a compiler
(./jpywork by default).

CHAPTER 3 101

Basic Syntax

Let’s now explore values that Python syntax can bring to Java
developers. First, dynamic typing is something common to all
scripting (dynamic) languages. Python is no exception. Declara-
tion of variables (and their types) before their use is mandatory.
Also, they can change their types during program execution,
but Python will not automatically cast variable types where it is
appropriate. The following are legal calls in Python:

a = “Hello world”
a = 2
a += 1.34

print a

These calls print 3.34 as a result. But you cannot, for
example, mix strings and numbers in this way. If you comment
the second line of the preceding script:

a = “Hello world”
#a = 2
a += 1.34

print a

an exception is raised:

Hello world!
Traceback (innermost last):
File “hello.py”, line 5, in ?

TypeError: __add__ nor __radd__ defined for these operands

These examples tell us that Python is a strongly typed lan-
guage (such as Java) but also that it allows dynamic typing.

Another common characteristic of scripting languages is
natural support for some complex data types. In Python, we can
find maps and lists more closely integrated with the language:

// List example

list = [“mike”, “joe”, “brus”]

print list[1];

// Map example

author = {“firstname” : “Dejan”, “lastname” : “Bosanac”}

print author[“firstname”]

Python also provides a more flexible for loop to ease itera-
tion over collections:

list = [“mike”, “joe”, “brus”]

for item in list :
print item

The next big shift for scripting languages was the paradigm
that code and data are interchangeable. In Python, you can
freely pass around methods, classes, and modules. Look at the
following code snippet, for example:

def upper(line) :
print line.upper()

def someFunc(filename, function) :
file = open(filename, ‘r’)
lines = file.readlines(100)
for line in lines :

function(line)
file.close()

someFunc(‘test.txt’, upper)

We defined two functions here. As you can see, functions
are defined using the def keyword followed by the function
name, arguments (in brackets), and a colon (:) character. The
first function, upper(), is a simple function that prints an

102 SCRIPTING IN JAVA

uppercase string on standard output. The second function,
someFunc(), opens a file with the given name, reads it, and
then applies a function (which is passed as its second argument)
on each line. As you can see, we passed the upper() function
to it, so this script prints the uppercase content of the test.txt
file.

Working with Java

As you can see from the basic features covered thus far, Python
implements most of the concepts described in Chapter 1, “Intro-
duction to Scripting.” Let’s now focus on how we can use
Python and Java together.

For starters, we want to import some existing Java classes
for use in scripts. Python programs are packed into modules,
which are similar to Java packages. Thus, we can use Python’s
import statement to include Java classes and packages. How-
ever, there are some differences between the import statements
in Python and those in Java.

First, to import all classes from a package, you have to refer
to the package name. In Python, you would type the following:

import java.lang

In Java, you would type the following:

import java.lang.*;

Another interesting difference is that when you import a
package, all subpackages are imported as well.

You can also create an alias to a package to save some time
when you refer to classes from that package. For example, after
the statement import sun.net.www.http as http, you will
refer to the HttpClient class as http.HttpClient instead of
as sun.net.www.http.HttpClient.

You can also import only one class of interest from the
package by using the from-import statement, as shown here:

from java.util import Date

CHAPTER 3 103

Now that we have all the classes we need in the script, we
can create objects. When we have imported classes directly with
the from-import statement, we can use them without referring
to their package names:

from java.util import Date
now = Date()
print now

But if we imported the whole package, we must write the
whole class name (including the package name):

import java.util
now = java.util.Date()
print now

Package aliases are handy in these situations and save a lot
of typing.

Python also enables import statements to appear anywhere
in the script. Look, for example, at the following code snippet:

message = “It’s now “
from java.util import Date
now = new Date()
print message + now.toString()

After we create an object, we are free to call its methods
and access its fields just as we would do in Java. However, it’s
important to note the following issues.

First, problems related to the method overloading mecha-
nism could arise. Python does not support method overloading,
so if the Java class has overloaded methods, we can have a
problem on our hands. When this situation is encountered,
Jython first tries to get the method with the same number of
parameters as there are in the call. If there is only one such
method, it will be called, and the case will be closed. But in
case there is more than one signature of the method with the
same number of arguments of different types, Jython will try to
find the one that is closest to the arguments in the call. Because
this is not guaranteed to be the method that you wanted to call,

104 SCRIPTING IN JAVA

NOTE

We had to call the
toString()
method explicitly to
convert the Date
object to String.
This is because of
Python’s strong typ-
ing nature.

NOTE

Note that in Python
no new keyword is
required for creating
objects.

you can help Jython by passing arguments with the explicit
Java type.

For example, java.lang.Integer has the compareTo()
method, which takes either another Integer or any Object as a
parameter. To be sure that the method with an Integer argu-
ment is called, we should call it:

i.compareTo(Integer(x))

where i is an Integer object.

Another thing that we should mention about method calls
is something we have already seen in BeanShell. Getter and
setter methods can be omitted, and properties can be reached
directly:

from java.io import File
from java.util import Date
file = File(“test.txt”)
print file.name
print file.directory

Implementing Interfaces

Before we start to talk about how to implement Java interfaces
with Jython, we must briefly go through Python’s class philoso-
phy. Classes are defined similar to loose methods, but with the
class keyword instead of def.

As was the case with standalone methods, class methods are
defined using the def keyword. The only difference between
standalone methods and class methods is that the latter must
have at least one argument, usually called self, that points to
the object itself (it is similar to the this keyword in Java). Take
a look at the following example:

class MyClass :
i = 5

def multiply(self, x) :
return self.i * x

test = MyClass()
print test.multiply(6)

CHAPTER 3 105

We defined a class named MyClass with the multiply()
method, which takes one argument (even if it has two argu-
ments in its definition).

You can define the class constructor as a special method
called __init__:

class MyClass :
i = 5

def __init__(self, i) :
self.i = i

def multiply(self, x) :
return self.i * x

test = MyClass(6)
print test.multiply(6)

Python supports multiple-inheritance in a limited form. The
syntax is:

class DerivedClass (BaseClass1, BaseClass2, . . .) :

Of course, the single inheritance model is supported as well.
It is achieved by specifying just one class, within parentheses.
Let’s write a simple class derived from the previously defined
MyClass:

class MyClass :
i = 5

def __init__(self, i) :
self.i = i

def multiply(self, x) :
return self.i * x

class Another (MyClass) :
def add(self, x) :

return self.i + x

test = Another(6)
print test.add(6)

Now that we know the basics of how classes work in
Python, we can talk about subclassing Java classes and imple-
menting Java interfaces. It doesn’t matter to Jython whether it

106 SCRIPTING IN JAVA

is a Python class or a Java class (or interface). Take a look at
the following code, for example:

from java.awt import *

class MyListener (event.ActionListener):
def actionPerformed(self, event) :

print “Thank you”

f = Frame(title=”Jython”, size=(200,100))
b = Button(“Click me”)
b.addActionListener(MyListener())
f.add(b)
f.show()

Here, we first defined the MyListener class that implements
the java.awt.ActionListener Java interface. After this, we
passed an instance of this class to the addActionListener-
Method() method of the java.awt.Button object, just as we
would do with an appropriate Java object.

Exception Handling

Exception handling is an important aspect of computer pro-
gramming. The exception handling mechanism implemented in
Python is practically the same as that in Java. This makes it
even easier to mix Java and Python code.

This syntax, which you are probably used to in Java:

try {
throw new Exception(“Test exception”);

} catch (Exception e) {
System.out.println(e.getMessage());

}

is equivalent to the following Python code:

try :
raise Exception, ‘Test Exception’

except Exception, e :
print e

Also, there is nothing to stop you from catching Java
exceptions in this way. For example, the following is completely
valid:

CHAPTER 3 107

from java.io import File, FileReader, IOException
try :

file = File(‘test1.txt’, ‘r’)
reader = FileReader(file)
line = reader.readln()

except IOException, ioe :
print ioe

And of course, when you are implementing a Java interface
in Jython, you can throw (raise) Java exceptions from method
implementations.

Embedding with Java

As mentioned earlier, you can compile Python scripts to Java
classes by using the jythonc tool. In addition, Python scripts
can be directly interpreted from Java classes. Some example
Java code is:

package net.scriptinginjava.ch3.jython;

import org.python.core.PyException;
import org.python.util.PythonInterpreter;

public class Name {

public static void main(String args[]) {
try {

PythonInterpreter in = new PythonInterpreter();
in.set(“name”, “Dejan”);
in.execfile(
“net/scriptinginjava/ch3/jython/name.py”

);
System.out.println(in.get(“result”));

} catch (PyException pe) {
System.out.println(
pe.value.__tojava__(Exception.class)

);
}

}

}

The principle is practically the same as with the BeanShell
example. You should create an instance of the PythonInter-
preter class. Then you can use the set() and get() methods
to do mapping between Java and Python variables. Finally, you
can evaluate scripts by using the execfile() method.

108 SCRIPTING IN JAVA

For the Python script name.py, defined as follows:

from java.lang import Exception

result = “Hello “ + name
print result
#raise Exception, “Bu!”

this Java program would print “Hello Dejan” twice: once from
the script and once from the Java class after the evaluation.

To catch any exception thrown by the script you should test
on org.python.core.PyException. You can uncomment the
last line of the script to simulate this condition.

PythonInterpreter is also capable of interpreting Python
code in the form of Java strings. For this, you should use the
exec() or eval() method. The following program produces the
same result as the one from our previous example (if you use it
with an appropriate script):

package net.scriptinginjava.ch3.jython;

import org.python.util.PythonInterpreter;

public class NameExec {

public static void main(String[] args) {
PythonInterpreter in = new PythonInterpreter();
in.set(“name”, “Dejan”);
in.exec(“result = \”Hello \” + name”);
in.exec(“print result”);
System.out.println(in.get(“result”));

}

}

Conclusion

Python is indeed a powerful and beautiful scripting language.
But it has more features than we could cover here, and if you
don’t mind learning another scripting language, Python should
be on your to-do list. Then you can use it inside the JVM
through the Jython project, just as I have explained here. Of
course, for those who want to stick to the Java syntax, there are
other scripting solutions, such as BeanShell and Groovy.

CHAPTER 3 109

Rhino

Back in the 1990s, Netscape was working on the Javagator proj-
ect, a version of Navigator written entirely in Java. As part of
the project, Netscape developed a Java implementation of the
JavaScript interpreter known as Rhino. This project outlived the
original Javagator project, and Netscape released it to
Mozilla.org in 1998.

Most people use JavaScript to enable dynamic client behav-
ior in HTML pages or make asynchronous calls to the Web
server (Ajax). However, this language is based on the ECMA-
262 Standard (www.ecma-international.org/publications/
standards/Ecma-262.htm) and is defined as a “general-purpose
cross-platform scripting language.” As such, you can use
JavaScript for other tasks. Rhino is an exact implementation of
JavaScript’s core specification, pulled out of the HTML context.

Many Web developers are familiar with JavaScript, so the
following information can be a good introduction to Java and
Java scripting.

Getting Started

You can download Rhino from its Mozilla project Web page
(www.mozilla.org/rhino/). Rhino is located in the js.jar file of
the distribution, and all you have to do is to put it in your
classpath:

$ export CLASSPATH=$CLASSPATH:/opt/rhino/js.jar

The preceding code is an example of how to install Rhino
on a UNIX system if Rhino is extracted in the /opt/rhino
directory.

The interpreter shell is located in the
org.mozilla.javascript.tools.shell.Main class, and you
can start it with the following command:

java org.mozilla.javascript.tools.shell.Main

110 SCRIPTING IN JAVA

www.ecma-international.org/publications/standards/Ecma-262.htm
www.ecma-international.org/publications/standards/Ecma-262.htm
www.mozilla.org/rhino/

This could be also achieved by executing the js.jar file:

java -jar /opt/rhino/js.jar

When started, the interpreter can be used to evaluate the
JavaScript code, as shown in the following code:

Rhino 1.5 release 5 2004 03 25
js> print(“Hello world!”)
Hello world!
js>

As is the case with all other languages, this shell is capable
of evaluating script files. For that, you should supply the file-
name as a command-line argument:

java org.mozilla.javascript.tools.shell.Main hello.js

You also can compile scripts to Java classes by using the
org.mozilla.javascript.tools.jsc.Main class:

$ java org.mozilla.javascript.tools.jsc.Main hello.js
$ java hello
Hello world!

Unlike Jython, Rhino does not create an intermediate Java
source file. Instead, it directly compiles the script to the appro-
priate Java class file (hello.class in this case).

Working with Java

We do not cover the concepts of the JavaScript language here
because it is beyond the scope of this book, and a lot of mate-
rial already is available on this topic. Instead, we focus on its
integration with Java and the Rhino project.

To provide access to Java classes, Rhino defines Packages,
a top-level variable that contains all packages in the classpath.
So, you can reach all classes by referencing their full package
names:

f = new Packages.java.io.File(“test.txt”)

CHAPTER 3 111

Only the java package is contained as a top-level variable,
so instead of the previous statement, you can use the following:

f = new java.io.File(“test.txt”)

This can be hard to type, but the importPackage() func-
tion can simplify things. The purpose of this function is similar
to that of Java’s import statement:

importPackage(java.io)
f = new File(“test.txt”)

In this example, we imported the java.io package. As a
result, we can access classes from this package by using only
their names (without a package reference).

Problems could arise if you try to import the java.lang
package, due to name collisions between Java classes and corre-
sponding JavaScript classes, such as Object, Boolean, String,
and so on, so you should avoid importing this package if
possible.

After you create an object, you can call its methods and
access its fields:

importPackage(java.io)
f = new File(“test.txt”)
print(f.name)

Note that in the previous example, f.name represents an
abbreviation for f.getName(). The purpose of this is to simplify
working with JavaBeans, as we already discussed in the sections
on BeanShell and Jython.

As is the case with Jython, when it comes to calls to over-
loaded Java methods, Rhino chooses the most appropriate one
at runtime, according to the type of the passed arguments.

Implementing Interfaces

Rhino enables developers to implement Java interfaces or sub-
class Java classes with JavaScript code. Let’s now rewrite in
JavaScript the examples that we used in the BeanShell and
Jython sections.

112 SCRIPTING IN JAVA

importPackage(java.awt);
importPackage(java.awt.event);

MyListener = {
actionPerformed : function(event) {

print(“Thank you”)
}

}

f = new Frame(“JS frame”)
f.setSize(200, 100)
b = new Button(“Click me!”)
b.addActionListener(new ActionListener(MyListener))
f.add(b)
f.show()

This example script implemented a JavaScript class with the
actionPerformed()method, which accepts one argument. Then
we passed an instance of this class to the addActionListener()
method of the java.awt.Button class. Note the syntax of that
call; in Java, it is not legal to instantiate interfaces, so this call
(new ActionListener) triggers a compilation error. In Rhino,
however, this is the way to create objects of a desired interface,
providing an object that implements that interface as an argu-
ment. So, the following statement

new ActionListener(MyListener)

creates an instance of the MyListener class and casts it to the
ActionListener interface.

We can now elaborate on this example. Because JavaScript
functions are first-class language citizens, you can pass them
around as method arguments. Rhino additionally allows you to
use functions to implement interfaces, in case an interface
defines just one method:

importPackage(java.awt);
importPackage(java.awt.event);

function doIt() {
print(“Thank you”)

}

f = new Frame(“JS frame”)
f.setSize(200, 100)
b = new Button(“Click me!”)
b.addActionListener(doIt)
f.add(b)
f.show()

CHAPTER 3 113

In the previous example, we defined the doIt()function
and passed it to the addActionListener() method. This sim-
plifies implementation of simple interfaces a great deal.

JavaAdapter

An alternative approach to instantiating JavaScript classes as
Java objects is to use the constructor of the JavaAdapter class.
Instead of writing:

listener = new java.awt.ActionListener(MyListener)

you can do something like this:

listener = new JavaAdapter(java.awt.ActionListener,
MyListener)

This approach is useful when you want your JavaScript
class to implement more than one Java interface or inherit some
class in addition. For example, this statement:

listener = new JavaAdapter(java.awt.ActionListener
, java.lang.Runnable
, MyListener)

creates an object that extends the java.awt.ActionListener
and java.lang.Runnable interfaces.

Embedding with Java

As you might expect, Rhino also enables Java applications to
evaluate JavaScript scripts. To demonstrate this functionality,
let’s first define a simple JavaScript file (name.js):

result = “Hello “ + name

This script defines only the result variable consisting of a
string and the name variable that we pass from our Java appli-
cation. Now take a look at the following Java code evaluating
this script:

114 SCRIPTING IN JAVA

package net.scriptinginjava.ch3.rhino;

import java.io.FileReader;
import java.io.IOException;

import org.mozilla.javascript.Context;
import org.mozilla.javascript.JavaScriptException;
import org.mozilla.javascript.Scriptable;

public class Name {

public static void main(String[] args) {
try {

Context cx = Context.enter();
Scriptable scope = cx.initStandardObjects();
scope.put(“name”, scope, “Dejan”);
FileReader script = new FileReader(

“net/scriptinginjava/ch3/rhino/name.js”
);
Object result = cx.evaluateReader(

scope, script,”<cmd>”, 1, null
);
System.out.println(result);
System.out.println(scope.get(“result”, scope));

} catch (IOException ioe) {
ioe.printStackTrace();

} catch (JavaScriptException jse) {
jse.printStackTrace();

} finally {
Context.exit();

}
}

}

Before executing the script, a Context object must be asso-
ciated with the current thread. You do this with the enter()
static method.

The JavaScript language defines three types of objects. The
first type is built-in (standard) objects such as String and
Boolean. The second type is host objects that are specific to a
runtime environment (we return to these objects in the next
section). The third type is user-defined objects. To allow our
scripts to use standard JavaScript objects, we have to call the
initStandardObjects() method. This method returns a
ScriptableObject instance that you can use to bind variables
to scripts. You should use the get() and set() methods of the
ScriptableObject class to make these bindings.

Scripts are evaluated by using either the evaluateReader()
or evaluateString() method. You use the evaluateReader()

CHAPTER 3 115

method to evaluate code from the appropriate java.io.Reader
object (we used java.io.FileReader in the earlier example).
You use the evaluateString() method to evaluate code con-
tained in String variables. If we had used this method in our
example, the earlier call would look like this:

Object result = cx.evaluateString(
Scope
,”result = \”Hello \” + name”
,”<cmd>”, 1, null

);

Both of these methods return a value of the last statement
in the evaluated script. In our example, it is the value of the
result variable.

When this program is executed, the following text is printed
on standard output:

Hello Dejan
Hello Dejan

The first line represents a result of the evaluateReader()
(or evaluateString()) function, and the second line represents
a value of the result variable obtained from the binding con-
text. Obviously, these two lines are identical.

You should release every context associated with the thread
after use. To handle this, we put the exit() method call of the
Context class in the finally block.

In addition to these standard embedding operations, Rhino
provides some extra features for Java developers. The first fea-
ture worth mentioning is the capability to call JavaScript func-
tions from Java code.

Consider the following script, for example:

function hello(name) {
return “Hello “ + name

}

This script defines a single hello() function. Let’s now call
it from the Java program:

116 SCRIPTING IN JAVA

package net.scriptinginjava.ch3.rhino;

import java.io.FileReader;
import java.io.IOException;

import org.mozilla.javascript.Context;
import org.mozilla.javascript.Function;
import org.mozilla.javascript.JavaScriptException;
import org.mozilla.javascript.Scriptable;

public class Func {

public static void main(String[] args) {
try {

Context cx = Context.enter();
Scriptable scope = cx.initStandardObjects();
FileReader script =
new FileReader(
“net/scriptinginjava/ch3/rhino/func.js”

);
cx.evaluateReader(scope, script,”<cmd>”, 1, null);
Object func = scope.get(“hello”, scope);
if (func instanceof Function) {

Object funcArgs[] = {“Dejan”};
Object result = ((Function)func).call(

cx, scope, scope, funcArgs
);
System.out.println(result);

}
} catch (IOException ioe) {

ioe.printStackTrace();
} catch (JavaScriptException jse) {

jse.printStackTrace();
} finally {

Context.exit();
}

}
}

Because functions are first-class language citizens, we can
obtain them with the get() method, just as we would with
any other Object. JavaScript functions are instances of the
org.mozilla.javascript.Function class that defines the
call() method for their execution. Arguments are passed as
an array of objects, and that is all we need to know to call
JavaScript functions.

Host Objects

As already discussed, host objects are specific to a certain envi-
ronment. For example, the Document and Window objects that

CHAPTER 3 117

you usually find in HTML pages are host objects. Rhino enables
you to implement host objects in Java and use them in your
scripts.

To demonstrate this process, we go through an imaginary
implementation of the HTML form object. We do not implement
it for real, but instead, just show the basic principle of how it
can be done.

We want to enable Rhino to evaluate scripts like this one:

f = new form();
f.method
f.method = “POST”
f.method
f.reset()
f.submit()

Because form is not a standard JavaScript object, we have
to implement it and define it within the runtime environment:

package net.scriptinginjava.ch3.rhino;

import org.mozilla.javascript.ScriptableObject;

public class Form extends ScriptableObject {

private String method = “GET”;

public Form() {

}

public String getClassName() {
return “form”;

}

public void jsConstructor() {
System.out.println(“Creating form”);

}

public void jsFunction_submit() {
System.out.println(“Submitting form”);

}

public void jsFunction_reset() {
System.out.println(“Resetting form”);

}

public String jsGet_method() {
System.out.println(method);
return method;

}

118 SCRIPTING IN JAVA

public void jsSet_method(String method) {
this.method = method;

}
}

Every JavaScript object implementation must implement the
org.mozilla.javascript.Scriptable interface. The usual
approach, however, is to extend the abstract org.mozilla.
javascript.ScriptableObject class that implements this
interface. We have chosen this approach for our example. The
only abstract method of this class is getClassName(), which
returns a name of this class. This name is used to reference the
class in JavaScript. Also, we have to define a zero-argument
constructor to enable object creation.

Methods whose names start with the js prefix represent
methods and properties that you can use from scripts. Here are
some rules to follow regarding these method names:

■ jsConstructor represents a JavaScript constructor
for this class. Here, we defined a zero-argument
constructor, so you could create this object with:
f = new form();

■ Methods that start with the jsFunction_ prefix are
method definitions. The jsFunction_reset() Java
method enables calls to the reset() method in
JavaScript.

■ Object properties are defined with the jsGet_ and
jsSet_ prefixed methods. The first method enables you
to get a value of the specified property, and the second
method enables you to set it (in JavaScript, of course).

All we need to do now to finish our example is to bind this
host object to the context and call our script:

package net.scriptinginjava.ch3.rhino;

import java.io.FileReader;

import org.mozilla.javascript.Context;
import org.mozilla.javascript.Scriptable;
import org.mozilla.javascript.ScriptableObject;

public class FormTest {

CHAPTER 3 119

public static void main(String[] args) {
try {

Context cx = Context.enter();
Scriptable scope = cx.initStandardObjects();
ScriptableObject.defineClass(scope,
Form.class);

FileReader script =
new FileReader(
“net/scriptinginjava/ch3/rhino/form.js”

);
cx.evaluateReader(scope, script,”<cmd>”, 1, null);

} catch (Exception e) {
e.printStackTrace();

} finally {
Context.exit();

}
}

}

This example is almost the same as our introductory embed-
ding example. Note that we used the defineClass() method
call that defines the Form class as the JavaScript host object.

As a result, this program prints the following output:

Creating form
GET
POST
Resetting form
Submitting form

These lines are printed from the appropriate methods of the
Form class.

Conclusion

JavaScript is a popular programming language used mostly for
manipulation of HTML objects. People are used to its syntax,
and a lot of good literature is available, which makes it even
easier to learn. These are just some of the reasons you might
consider Rhino as a scripting solution for your projects.

Groovy

Groovy (http://groovy.codehaus.org) is a scripting language for
the JVM with Java-like syntax. Because we cover it in detail in

120 SCRIPTING IN JAVA

http://groovy.codehaus.org

the next two chapters, here we describe only the basic benefits
that it brings to developers.

Groovy is also a subject of standardization by the Java
Community Process (JCP) under the Java Specification Request
241 (www.jcp.org/en/jsr/detail?id=241). This expert group tries
to standardize the Groovy language to enable various vendor
implementations. Groovy is not targeted for any platform in
particular; just as a standard scripting language solution for
Java developers.

Groovy uses Java syntax, but on top of that, it provides
some concepts that are borrowed from Python, Ruby, and
SmallTalk. For starters, it supports weak typing, where variables
do not have to be defined before the first use and no type dec-
larations should be made. Next, Groovy compiles directly to the
Java bytecode. Unlike Jython, no intermediate .java files are
made.

Unlike BeanShell, Groovy scripts can implement real Java
classes and of course subclass existing ones (or implement
interfaces). Also, you can load a script as an interface imple-
mentation and use it as a regular Java object in your Java
application.

Groovy provides native language support for maps and lists,
which is similar to Python’s syntax. And as is the case with all
the other languages talked about in this chapter, Groovy simpli-
fies JavaBeans by deprecating getter and setter methods. Fur-
thermore, the Java syntax is enhanced with more powerful
loops, switch statements, autoboxing, and operator overloading.

Because it is under heavy development, Groovy already
offers many extensions that could ease many day-to-day devel-
opment tasks. You can find extensions that can help you work
with servlets, SQL, XML, and so on.

Overall, Groovy provides Java-like syntax empowered with
proven scripting concepts, full access to the Java platform, and
many extensions, which simplifies programming some of the
more advanced tasks. All these features make Groovy a power-
ful programming environment.

For more details on Groovy, refer to Chapters 4 and 5.

CHAPTER 3 121

www.jcp.org/en/jsr/detail?id=241

Other Scripting Languages

In addition to the languages we’ve discussed thus far, many other
projects exist that enable some kind of scripting for the JVM.
Some of them represent an implementation of existing languages,
and others implement completely new concepts. We could not
cover all of them in this book, but here are brief descriptions in
case you want to try them within the Java context.

JRuby

JRuby (http://jruby.codehaus.org/) is a Java implementation of a
Ruby interpreter. Ruby (http://ruby-lang.org) is a pure object-
oriented scripting language. It has a simple syntax and is often
thought of as a competitor to Perl and Python.

Ruby appeared on the radar of the Web developer commu-
nity with the Ruby on Rails project (www.rubyonrails.com/). It is
a powerful framework for the development of Web applications.

Since late 2006, JRuby is officially backed by Sun
Microsystems due to Web developers’ increased interest in the
Ruby on Rails Web framework and huge development possibili-
ties of integrating it into the Java platform. I see it as a grow-
ing trend in this field of development and a technology that
deserves a special consideration and appropriate covering
material.

Tcl/Java

The Tcl/Java (http://tcljava.sourceforge.net/) project integrates
Java with the Tcl scripting language. It consists of two distinct
packages: Tcl Blend, which uses JNI to enable Tcl scripts to
access Java objects, and Jacl, which is a Java implementation
of a Tcl interpreter.

JudoScript

JudoScript (www.judoscript.com/judo.html) is a functional
scripting language. It uses a JavaScript-like syntax and pro-
gramming model, but on top of that, it provides domain-
specific functional support. This programming philosophy

122 SCRIPTING IN JAVA

www.rubyonrails.com/
www.judoscript.com/judo.html
http://jruby.codehaus.org/
http://ruby-lang.org
http://tcljava.sourceforge.net/

enables users to specify what they want to do rather than how
they want to do it.

ObjectScript

ObjectScript (http://objectscript.sourceforge.net/) is another
Java-like scripting language. It has syntax that is easy to learn
and use. It also has some advanced features, such as exception
handling and support for threading.

Conclusion

In this chapter, we learned the basic principles behind imple-
mentations of scripting languages for the JVM. Also, we cov-
ered some of the most popular scripting languages. Although
we didn’t discuss their syntax and modules, we did focus on
how they integrate with the Java platform.

In the following two chapters, we cover Groovy in detail.
Chapter 4 contains details about Groovy’s syntax, Java integra-
tion, and some security-related issues. Chapter 5 focuses on
Groovy extensions that you can use to integrate it with other
technologies, such as Java servlets, relational databases, XML,
and so on.

CHAPTER 3 123

http://objectscript.sourceforge.net/

This page intentionally left blank

In the “Groovy” section of Chapter 3, “Scripting Languages
Inside the JVM,” we listed some of the basic concepts that
Groovy introduces. In this chapter, we take a closer look
at Groovy. This chapter covers the following topics:

■ The process of running and compiling Groovy
scripts.

■ How Groovy implements some of the scripting con-
cepts with Java-like syntax.

■ Other benefits that Groovy has to offer developers.

■ How Groovy can be integrated with Java. In this
section of the chapter, we see how we can evaluate
Groovy scripts from Java applications and how to
implement Java interfaces in Groovy.

■ Security issues related to integration of Groovy and
Java.

We cover advanced Groovy programming and describe
extensions available for the Groovy language in Chapter 5,
“Advanced Groovy Programming.”

GGRROOOOVYVY

CHAPTER 4

Why Groovy?

The questions developers often ask are

■ Why do we need another scripting language?

■ What benefits does Groovy bring that make it a better
solution than Jython or BeanShell?

In this section, I answer these questions, but as always, you
should find your own way to compare these technologies and
choose the one that fits your development needs best.

Groovy’s most important characteristic is its Java-like syn-
tax. In Chapter 1, “Introduction to Scripting,” we discussed the
need for developers to have a solid knowledge of at least two
programming languages, one system-programming language
and one scripting language. To use Jython for everyday pro-
gramming tasks, Java developers should learn Python well. I do
not discuss Python syntax here, and I really think it’s a great
programming language, but Python syntax could be a hard
catch for Java developers. This fact could make Java developers
more reluctant to learn and try to experiment with Jython,
which could result in them rejecting the whole scripting concept
altogether. Also, using Java and Jython together everyday
requires a lot of mental shifts between these two completely dif-
ferent language syntaxes, which can result in slower develop-
ment and the introduction of new bugs. So the point is this: If
Groovy could implement all the language concepts Jython
offers, in syntax close to that used by Java developers, it would
make it easier for them to learn and use.

BeanShell, on the other hand, has Java-like syntax but is
designed to be a small and natural scripting solution in Java.
For example, BeanShell does not enable you to define classes,
so the only way to implement the Java interface with it is by
using anonymous inner classes. This is fine for some applica-
tions, but developers who need a fully featured, object-oriented
scripting language can find that in Groovy.

126 SCRIPTING IN JAVA

Installation

If you have not installed Groovy on your development platform
yet, and you want to run examples while you are reading the
material in this chapter, now is a good time to do it.

You can find more information on installing Groovy in
Appendix A, “Groovy Installation,” or on Groovy’s Web site,
http://groovy.codehaus.org.

Running Groovy Scripts

You can run Groovy scripts in a number of different ways:

■ Using an interactive command-line shell

■ Using an interactive console

■ Evaluating a script file

■ Compiling a Groovy script into a Java class file

I discuss the first three methods in the remainder of this
section and cover how to compile a Groovy script into a Java
class file in the next section.

Using the Interactive Shell

One way to use Groovy is through the interactive shell. It works
like any other shell, and you start it by typing the following on
the command line:

$ groovysh

You enter the script, which is basically the set of state-
ments, line by line, pressing the Enter key at the end of each
line. The script is evaluated after you type the go or execute
command, and the result is displayed in the following rows. The
prompt for entering statements of the next script is displayed
below the result.

After you have finished with your work in the shell, type
either the exit or the quit command to return to your operat-
ing system.

CHAPTER 4 127

http://groovy.codehaus.org

Listing 4.1 shows an example of using the Groovy shell. In
this listing, we execute two one-line scripts and then exit the
shell.

Listing 4.1 Groovy Shell
$ groovysh
Let’s get Groovy!
================
Version: 1.0-beta-5 JVM: 1.5.0_08-b03
Type ‘exit’ to terminate the shell
Type ‘help’ for command help

1> println “Execute me!”
2> go
Execute me!

1> println “Once more!”
2> go
Once more!

1> exit
$

In addition to go, execute, and exit, there are a few more
useful commands that could help you to successfully finish
your tasks:

■ help—Displays the help screen, along with a short
description of all the commands available in the shell

■ discard—Discards the current script

■ display—Displays all statements of the current script:

1> println “Line one”
2> println “Line two”
3> display
1> println “Line one”
2> println “Line two”
3>

■ explain—Displays the parse tree for the current script

Using the Interactive Console

If you prefer using the graphical user interface, you can also
use Groovy’s Swing-based console (see Figure 4.1).

128 SCRIPTING IN JAVA

NOTE

In the rest of this
chapter, the result
is bolded for the
examples that are
written in the shell,
just as in the pre-
ceding example. It
should help to make
code samples more
readable.

CHAPTER 4 129

FIGURE 4.1 Groovy interactive console

Although the Groovy interactive console is still pretty mod-
est in terms of functionality, it does offer you the ability to save
your script after evaluation or to open the script that you were
working on before. To run a console, type the following in the
command prompt:

$ groovyConsole

Evaluating the Script File

As with all other scripting languages, use the shell and console
only for the simplest tasks. The usual procedure is to create a
file that contains a script so that you can evaluate it more than
once.

It is common for Groovy scripts to have a .groovy exten-
sion, but that is not necessary. After you have created a script
file such as this first.groovy example file:

println “Hello world!”

you can execute it by typing:

$ groovy first.groovy

You can pass any number of parameters to your script by
writing them after the script name:

$ groovy first.groovy test 123

130 SCRIPTING IN JAVA

NOTE

These methods for running Groovy scripts are certainly useful, but most Java programmers
are tied to IDEs such as the open source Eclipse (http://www.eclipse.org) project.

It is important to allow Java developers to write, execute, and debug Groovy scripts in their
environment of choice. Thus, on the official Groovy site, you can find a Groovy plug-in for
some of the most popular IDEs today. You can find more details on how to install Groovy
support for every unsupported Java editor (or IDE) in Appendix B, “Groovy IDE Support.”

Compiling Groovy Scripts

Another useful Groovy feature is the ability to compile Groovy
scripts directly into Java classes. This could be valuable in situ-
ations where the Groovy script is used to prototype some fea-
tures. After the prototype is accepted, the script could be
compiled to an equivalent Java class to improve the overall per-
formance of the solution (you can find more information on
this topic, along with some concrete examples, in Chapter 8,
“Scripting Patterns”).

To compile a Groovy script from the command line, just
use the groovyc compiler (it is similar to the standard javac
compiler):

groovyc first.groovy

This creates the first.class file in the same directory (you
can explicitly change the destination of the generated Java class
with the -d switch).

The generated Java class has the same name as the original
script and preserves its original functionality. The difference is
now it can be integrated directly in your Java application (or
executed using the java command). In this way, we can improve
the performance of scripts because there are no runtime penalties
of interpreter startup and script evaluation.

http://www.eclipse.org

Dependencies

Groovy depends on the ASM library (the Java bytecode manipu-
lation framework, http://asm.objectweb.org/). So if you want to
execute the class generated by compiling the Groovy script, the
appropriate versions of the groovy.jar and asm.jar files must
be in the classpath. These JAR files are located in the lib/
directory of the Groovy distribution. The command line that
executes the earlier first.class file could look like this:

java -classpath \
$GROOVY_HOME/groovy.jar:$GROOVY_HOME/lib/asm.jar:. \
first

The following shows up on the display as a result of the
execution:

Hello world!

Classpath

In addition to the groovy and asm JAR files, your scripts usu-
ally need access to other Java APIs and libraries. Most com-
monly you need the JDBC driver (if you want to issue some
database queries), but it can be any existing Java library as
well. These APIs should be defined somewhere in your class-
path, just as they would be for the regular Java applications.
There are three ways to set the classpath for Groovy. The first
two in the following list are well known from Java, and the
third is Groovy specific:

■ classpath (or cp) switch in the command line—This
approach passes the -classpath (or -cp) switch to the
groovyc command.

groovyc -cp /home/dejanb/quartz.jar first.groovy

■ CLASSPATH environment variable—Groovy uses the
classpath defined with the CLASSPATH environment
variable, just like Java does. To set the CLASSPATH

CHAPTER 4 131

http://asm.objectweb.org/

132 SCRIPTING IN JAVA

variable for UNIX-like systems, use export
CLASSPATH=/home/dejanb/quartz.jar. For Windows
platforms, use set CLASSPATH=C:\dejanb\
quartz.jar.

■ ~/groovy/.lib/ directory—For easier configuration on
UNIX-like platforms, you can omit the first two meth-
ods and just put all the JAR files used by your scripts in
the ~/groovy/.lib/ directory. Groovy looks up these
JAR files in that directory and puts them in the class-
path for you.

Ant Task

Because the Ant project (http://ant.apache.org/) is the most pop-
ular building tool for Java, a <groovyc> Ant task is available
that you can use to compile Groovy scripts. Its syntax is similar
to that of the <javac> task, commonly used for compilation of
Java source files.

Listing 4.2 shows the <groovyc> task definition and usage
in the build.xml Ant files.

Listing 4.2 Compiling Groovy Scripts with Ant
<project name=”groovy project” default=”compile”>

<path id=”lib”>
<fileset dir=”/opt/groovy/lib/” />

</path>

<taskdef
name=”groovyc”
classname=”org.codehaus.groovy.ant.Groovyc”
classpathref=”lib”

/>

<target name=”compile”>
<groovyc destdir=”.” srcdir=”.” listfiles=”true”>

<classpath refid=”lib”/>
</groovyc>

</target>
</project>

First, we defined the classpath and included all the JAR files
from the $GROOVY_HOME/lib directory. Strictly speaking, we
could include just the appropriate groovy and asm JAR files,

http://ant.apache.org/

but by doing it the way we’ve done it here, we can be sure we
have all the libraries we will ever need in the future. You should
change the dir value in the <fileset> tag to the value of the
$GROOVY_HOME environment variable on your system.

Next, the Groovy task is defined with the <taskdef> tag.
As you can see, implementation of this task can be found in the
org.codehaus.groovy.ant.Groovyc class. After these initial-
ization steps are made, the use of the <groovyc> task is
straightforward. Specify a directory that contains your Groovy
scripts (srcdir), a directory where the compiled classes will be
generated (destdir), and a classpath to be used (classpath).
If you create the build.xml file in this way, go to the folder
where your first.groovy file resides and type the following in
the command line (of course, Ant should be properly installed):

ant

You should get the following message on the console:

Buildfile: build.xml

compile:
[groovyc] Compiling 1 source file to /home/dejanb/scripts
[groovyc] /home/dejanb/scripts/first.groovy

BUILD SUCCESSFUL
Total time: 3 seconds

Afterward, you should find the first.class file in the
same directory.

Script Structure

Now that we have covered the basics of how to configure
Groovy and run the scripts, it’s time to dive into the language
details. For starters, let’s focus on the possible structures that
Groovy scripts can have. As I already explained, Groovy’s lan-
guage syntax is close to that of Java and is readable by any
Java programmer. So, one way to write the scripts is to encap-
sulate your code into classes, just as we do with our Java
applications.

CHAPTER 4 133

The first thing that differentiates Groovy scripts from Java
source files is statements and methods not associated with any
class can be defined in the script. These kinds of methods (and
statements) are usually called standalone or loose methods.

For example, take a look at Listing 4.3 (structure.groovy).

Listing 4.3 Groovy Script Structure
class Hello {

public static String hello() {
return “Hello”;

}

}

class World {
public static String world() {

return “world”;
}

}

println Hello.hello() + “ “ + World.world() +
termination();

def termination() {
return “!”;

}

This script contains two class definitions: one statement
definition and one function definition. After running the script,
the statement is executed, and the Hello world! message is
printed on the screen.

The new keyword, def, is introduced for defining standalone
methods. Also, another thing you can learn from this example is
methods (and variables) do not have to be defined before their
initial use. As you can see, we used the termination() method
before it was defined.

It is interesting to see what would happen after compiling
the script that contains class definitions and standalone method
declarations. First of all, a class with the same name as the
script would be generated. This class would contain all the loose
code in the script. All loose statements are grouped in the
run() method, which is invoked from that class’s main()
method. The standalone methods are represented as static

134 SCRIPTING IN JAVA

methods of the generated class; thus, they can be invoked from
other Java classes in the standard fashion.

Groovy classes are not different from Java classes by any
means, so every class would be compiled to the separate file
with the .class extension. The file would be named after the
class.

According to this discussion, we expect three .class files
to appear (structure.class, hello.class, and world.class)
if we compile the structure.groovy script.

This discussion has one important implication, however; if
you define the class that has the same name as the script, you
cannot write loose statements outside that class. For example, if
the definition of the Invoice class is written in the
Invoice.groovy file, like this:

class Invoice {

public recalculate() {
// … do something

}

}

it is compiled without errors, and the Invoice.class file is
created. But if we try to add some extra code outside the class,
like this:

class Invoice {

public recalculate() {
// … do something

}

}

inv = new Invoice()
inv.recalculate()

a duplicate class declaration error arises. The error is
caused by name collision because the Groovy compiler tries to
generate two Invoice classes: one with the loose statements in
the script and another for the Invoice class itself.

CHAPTER 4 135

This does not occur often because scripts tend to be either
class definitions or executable code in loose statements. How-
ever, if it does occur, you can solve the problem simply by col-
lecting the loose statements in the main() method of the class,
just as in Java:

class Invoice {

public recalculate() {
// … do something

}

static main(args) {
inv = new Invoice()
inv.recalculate()

}

}

There is, of course, another possible situation where we
have the class definition with the main() method, loose state-
ments in the script, and no name collision. If this were the case,
loose statements would be executed.

Command-Line Arguments

Proper handling of arguments passed to the program is one of
the main programming tasks. The command-line arguments
passed to the script are mapped to the args variable, and they
can be used directly in the script. This variable is equivalent to
the argument of the main() method in Java classes.

Listing 4.4 shows an example of handling command-line
arguments.

Listing 4.4 Handling Command-Line Arguments in Groovy
if (args.size() != 2)

println “Usage: groovy first.groovy arg1 arg2”
else

println args[0] + “ “ + args[1]

In this example, we first test whether two arguments are
present. If they are not present, we print the appropriate mes-
sage, or print their values otherwise.

136 SCRIPTING IN JAVA

Language Syntax

In this section, we dig deeper into Groovy language syntax. We
see differences between Java and Groovy syntax and how
Groovy implements some of the scripting language concepts in
the Java fashion.

Java Compatibility

To begin, it is important to understand that Groovy is not
backward compatible with Java. You can call Java code from
Groovy and vice versa, but if you try to rename .java files to
.groovy, you will probably have problems evaluating the files.

The most obvious example of this incompatibility is the
lack of the standard for loop implementation in Groovy. Let’s
take the following Java code (wrong.java) as an example:

class Wrong {

public static void main(String[] args) {
for (int i=0; i < 10; i++) {

System.out.println(i);
}

}

}

This code is regularly compiled and executed in Java, but if
you try to make a Groovy script out of it:

$ cp wrong.java wrong.groovy
$ groovy wrong.groovy

you will get an exception.

The important point to take away from this discussion is
that you should not expect existing Java code to be valid
Groovy code. Total backward compatibility with Java is the
long-term Groovy goal, but until this occurs, check your Java
code to make sure you can use it with the Groovy interpreter.

CHAPTER 4 137

Statements

The first visible difference between Groovy code and Java code
is that statements do not have to end with a semicolon. You
have to use semicolons only to write several statements in one
line. Of course, you can end every statement with a semicolon if
you want. This feature does not stop you from spanning state-
ments in multiple lines for better readability.

println “Statement without semicolon”
println “Statement with semicolon”;
print “Statement one! “; print “Statement two”

Some other programming languages make semicolons
optional as well, and this has been a controversial topic for a
long time. On one side are people who claim omitting semi-
colons saves you some typing and that this allows you to write
code faster, but others say semicolons make code more readable
and easier to debug. In the end, it boils down to what you’re
used to, and because you are probably going to use Groovy
together with Java (where semicolons are required), it is not
likely that you are going to change your habits.

Loose Typing

As mentioned in Chapter 1, dynamic typing is one of the most
important characteristics of scripting languages. To briefly sum-
marize, dynamic typing does not force you to define the type
for variables and properties, or for method arguments and
return values. Types are automatically determined at the
moment the value is assigned. They also could be changed later
on, when the new value is assigned (or returned). We also intro-
duced the term weak typing, which means variables are cast to
the most suitable type before an operation takes place. Groovy
implements both of these principles.

Take Listing 4.5 as an example.

Listing 4.5 Loose Typing
i = 10
println “i has type of “ + i.getClass()
s = “This is text”
println “s has type of “ + s.getClass()

138 SCRIPTING IN JAVA

i +=s
println i
println “now i has type of “ + i.getClass()

The code in Listing 4.5 prints the following:

i has type of class java.lang.Integer
s has type of class java.lang.String
10This is text
now i has type of class java.lang.String

The variable i was automatically converted to the String
type before the += operator was applied. If that conversion is
not done, a groovy.lang.MissingPropertyException is
thrown.

Dynamic typing shows its real strength when it is used
with the method overloading and polymorphism principles.
These are two of the most important principles of object-
oriented programming.

Method overloading means we can have more methods of
the same name in one class. These methods must have different
parameter types so that the compiler can determine which
method should be called. Briefly, polymorphism refers to the
capability that one interface has many implementations.

In a strongly typed language, such as Java, you must define
a common interface for objects that shares some of the proper-
ties and overload methods to handle different interfaces. In a
scripting language such as Groovy, this is not necessary.

Look at Listing 4.6, for example.

Listing 4.6 Dynamic Typing and Polymorphism
class Car {

public horsePower
public color

}

class Shirt {
public size
public color

}

def printColor(item) {

CHAPTER 4 139

Listing 4.5 Continued

println “Item has “ + item.color + “ color”
}

car = new Car(color:”red”)
shirt = new Shirt(color:”blue”)
printColor(car)
printColor(shirt)

Here is the result of Listing 4.6’s execution:

Item has red color
Item has blue color

Note that the printColor() function can work with any
class that has the color property, and basically, we didn’t have
to define a common interface (or parent class) for the Car and
Shirt classes to be able to handle both of them with one
method. If the object does not have a color property, a
groovy.lang.MissingPropertyException is thrown. Of
course, this is not a call for avoiding the inheritance entirely,
but just an example of how to do things that could not be done
in Java.

Type Juggling

In Chapter 3, I explained the term autoboxing and how you can
use it in Java and BeanShell. This feature is also supported in
Groovy. Take, for example, the script in Listing 4.7.

Listing 4.7 Autoboxing
i = 12
System.out.println(i.getClass())

j = 12.0
System.out.println(j.getClass())

z = true
System.out.println(z.getClass())

This script prints the following:

class java.lang.Integer
class java.math.BigDecimal
class java.lang.Boolean

140 SCRIPTING IN JAVA

Listing 4.6 Continued

As we can see, Groovy treats everything as an object, which
avoids tedious and hard-to-read casting between primitives and
wrapper classes. Integral numerical literals are converted to the
smallest type they fit in (java.lang.Integer in the preceding
example).

The more interesting thing in the preceding example is
that literals with decimal points are represented as the
java.math.BigDecimal class and not as the java.lang.Float
or java.lang.Double class. This is done to avoid problems
with range, precision, and rounding of float and double values.
With this so-called “least surprising” approach to literal math,
you can avoid situations that could be unpleasant in Java. To
demonstrate these problems, let’s take a look at the following
code:

public class Numbers {

public static void main(String[] args) {
System.out.println((2.11 + 0.11 == 2.22));
System.out.println(2.11 + 0.11);

}
}

This code prints the following:

false
2.2199999999999998

In Groovy, the equivalent script prints true because arbi-
trary precision arithmetic is used. If you want to explicitly use
doubles or floats, you can always instance them directly, as
follows:

j = new Double(“12.0”)
z = 12.0D

println z.class

The preceding example prints the following:

class java.lang.Double

CHAPTER 4 141

You can see from the script that you can specify types
using a suffix character. In this case, D is used to denote
java.lang.Double. Table 4.1 provides a complete suffix
definition.

Table 4.1 Suffix Definition
Suffix Type

G java.math.BigInteger

L java.lang.Long

I java.lang.Integer

G java.math.BigDecimal

D java.lang.Double

F java.lang.Float

As you can see in Table 4.1, the G suffix is used for both
the BigInteger and BigDecimal types, and which one is used
depends on the actual value of the variable.

All the Java syntax for defining octals, hexadecimals, and
numbers with exponents works in Groovy, too.

Arithmetic operations in Groovy tend to preserve floating-
point numbers introduced in the operation. In other words,
floats and doubles are not converted in java.math.BigDecimal
during the operation.

Table 4.2 shows the result type of arithmetic operations for
various operand types, excluding division operation.

142 SCRIPTING IN JAVA

Table 4.2 Arithmetic Operations Type Conversion
BigDecimal BigInteger Double Float Long Integer

BigDecimal BigDecimal BigDecimal Double Double BigDecimal BigDecimal

BigInteger BigDecimal BigInteger Double Double BigInteger BigInteger

Double Double Double Double Double Double Double

Float Double Double Double Double Double Double

Long BigDecimal BigInteger Double Double Long Long

Integer BigDecimal BigInteger Double Double Long Integer

Based on this table, we can expect that the following script:

i = 10.1F
j = 12.2D

z = i + j
println z.class

prints:

class java.lang.Double

Division has a special status, and it returns java.lang.
Double if one of the operands is either java.lang.Float or
java.lang.Double. In any other case, the result type is
java.math.BigDecimal. If no scale is defined for operands,
10 is used as a default, and the result is normalized.

The BigDecimal arithmetic enables you to use fractions in
Groovy naturally, as in the following example:

groovy> 1/2 + 1/3
0.8333333333
groovy> (1/2) / (1/4)
2
groovy> 1/2 * 2
1.0

Strings

As mentioned earlier, strings are one of the most important data
types in scripting languages. So Groovy, as expected, treats
strings in this manner and adds new capabilities to them.

To begin, you can define strings in Groovy using both sin-
gle quote and double quote characters:

println “The ‘blue’ color is selected”
println ‘The “blue” color is selected’

The preceding code provides the following output:

The ‘blue’ color is selected
The “blue” color is selected

CHAPTER 4 143

We can see that text quotations are now much easier to
produce. If you are used to defining strings only with double
quotes (or just with quotes), and you still want an easy way to
escape those characters, you can use the following syntax:

println ‘’’The ‘blue’ color is selected’’’
println “””The “blue” color is selected”””

This example produces the same output as the preceding
example.

Strings in Groovy can also span multiple lines, so you can
replace the following Java-like syntax:

String query = “SELECT * FROM “
+”table WHERE “
+”field=’value’ “;

System.out.println(query);

with this more-elegant solution:

query = “SELECT * FROM \
table WHERE \
field = ‘value’”

println query

The script prints the following:

SELECT * FROM
table WHERE
field = ‘value’

We can see that the output retained the line breaks. Note
that to enable Groovy to join multiple lines, you have to end
each line with a backslash (\).

Another way to work with large strings and multiple lines
is by using triple-quote syntax explained earlier. This is shown
in Listing 4.8.

Listing 4.8 Triple-Quote Syntax
header = “””
<html>
<head>

<title>Title</title>

144 SCRIPTING IN JAVA

CHAPTER 4 145

Listing 4.8 Continued
</head>
<body color=”#FFFFF” font=’Helvetica’>

Hello!
</body>
</html>
“””

println header

Listing 4.8 shows us that with triple-quote syntax, we don’t
have to think about quotations because we used both single and
double quotes. In Listing 4.8, the actual value of the header
variable is marked in italics.

GStrings

Groovy also utilizes its own class, groovy.lang.GString,
which enables you to embed expressions into a string. This
enables GString objects to perform template processing and
variable substitutions innately. The syntax for embedded
expressions is ${expression}, like the syntax used in the
UNIX/Linux shell and in the Java Standard Tag Library (JSTL)
expression language employed in Java Server Pages 2.0. All this
further simplifies string manipulation in Groovy. GStrings are
demonstrated in Listing 4.9.

Listing 4.9 GStrings
table = “users”
value = 10
query = “SELECT * FROM ${table} WHERE value = ${value}”
println query

When executed, the preceding script prints the following:

SELECT * FROM users WHERE value = 10

The expression could be any valid Groovy expression, not
just the simple value. So the following code

table = “users”
value = null
query = “SELECT * FROM ${table} \

${(value == null) ? “” : “WHERE value =
${value}”}”
println query

would print the same output as the code from Listing 4.9, if the
value variable was set to the value 10. But it would print:

SELECT * FROM users

if the value variable hadn’t been defined (or was set to the
null value).

The GString class uses the “lazy expression evaluation”
method. In other words, expressions are not evaluated until
the string value of the object is needed. At that moment, the
toString() method is called an object, which evaluates expres-
sions and returns the string value. So from a developer’s point
of view, GString objects behave in the same way as regular
strings. The only difference is their capability to embed source
code directly into the value.

Regular Expressions

Regular expressions (regex) are a powerful tool for manipulating
text and are used heavily in scripting languages. Regular
expressions are used to match certain patterns in text. In addi-
tion, we can replace those patterns with new values. They have
a wide range of uses, such as data validation and searching.

Since Java 1.4 Standard Edition (J2SE 1.4), regular expres-
sions have been an integral part of the Java platform. I briefly
go through regular expressions implementation in Java and
then look at what Groovy has to offer on top of that.

Java regular expressions implementation is located in the
java.util.regex package. Let’s start with an example of using
regular expressions in Java:

Pattern p = Pattern.compile(“(ab)*”);
Matcher m = p.matcher(“ababababab”);
if (m.matches()) {

System.out.println(“Data is valid”);
} else {

System.out.println(“Data is not valid”);
}

146 SCRIPTING IN JAVA

The first thing to do in Java is compile a pattern and store
it in the object of the Pattern class. We do not dig deeper into
pattern syntax; you are advised to check with the appropriate
literature if you are interested in that topic. The pattern we use
in these examples simply matches the text that contains one or
more ab literals in it. After that, we create the Matcher object
containing the actual text we want to check against in the pat-
tern. The matches() method of the Matcher object returns a
boolean value indicating whether the text matched the given
pattern. Because the text matches the pattern in this example,
the earlier code snippet prints the following:

Data is valid

Of course, you can play with this example by changing the
pattern and text, and see how the result depends on those
changes.

Groovy treats regular expressions as an integral part of the
language and introduces Perl-like syntax for handling them.
Listing 4.10 is the Groovy alternative for the preceding example.

Listing 4.10 Regular Expressions
p = ~”(ab)*”
m = “abababab” =~ p
if (m.matches())

println “Data is valid”
else

println “Data is not valid”

As we can see, the following rules apply in Groovy:

■ ~”pattern”—Creates the Pattern object. It is used to
replace Pattern.compile(“pattern”).

■ “text” =~ pattern—Creates the Matcher object. It is
equivalent to pattern.matcher(“text”).

You can also use more compact syntax for creating the
Matcher object, such as the following:

m = “abababab” =~ “(ab”*”

where =~ is a replacement for
Pattern.compile(“pattern”).matcher(“text”). This is

CHAPTER 4 147

convenient in cases where you don’t need to use one Pattern
on many Matcher objects.

When created, the Matcher object can be used in the stan-
dard Java manner. For example, we can use it to replace every
subsequence of the input sequence that matches the pattern
with the replacement string:

m = “abab” =~ “(ab)*”
println m.replaceAll(“cd”)

The preceding example replaces all the ab literals in the text
with the cd literals and prints the modified text on the screen:

cdcd

Although the Matcher object is valuable for various tasks,
regular expressions are commonly used just to validate some
data. For example, we could check whether the user has entered
an e-mail address in the correct format. For such validations,
Groovy introduces the ==~ operator, which returns a Boolean
value equivalent to the following Java code:

Pattern.compile(“pattern”).matcher(“text”).matches()

So, our beginning example could be rewritten as follows:

if (“abababab” ==~ “(ab)*”)
println “Data is valid”

else
println “Data is not valid”

Collections

Collections represent objects that group multiple objects
together into a single instance. Java collections are powerful,
but they are treated as ordinary objects. This means that cum-
bersome code is required for their manipulation. Collections
handling is one of the essential programming tasks, and
therefore scripting languages tend to have language support for

148 SCRIPTING IN JAVA

CHAPTER 4 149

different kinds of collections. Groovy follows this trend, so it
has rich syntax to deal with all kinds of different methods for
object grouping.

LISTS

Lists are ordered collections of elements associated with an inte-
ger index. When using lists, the programmer has precise control
over the position of the element in the collection. Java uses the
java.util.List interface for this collection type, which
defines methods for basic list manipulation.

Groovy lists are also an implementation of the
java.util.List interface. List creation is easy and similar to
creating arrays in Java. Just write comma-separated values in
the square brackets, as follows:

class Car {
String model

}

list = [‘groovy’, 2, new Car(model:”VW”)]
println list.get(2).model
println list[1]

As you can see, to access a particular element of the list,
you could use Java syntax and call the get() method with the
element’s index as an argument. Another (more scripting ori-
ented) way is to type the index of the element in the square
brackets. When evaluated, this script prints the following output:

VW
2

The empty lists could be created using the [] expression.
Just as with the [] operator used to access the list element with
a certain index, Groovy adds the << operator to simplify the
addition of new elements in the list. Let’s examine the following
example:

groovy> list = []
[]
groovy> list.add(7)
[7]
groovy> list << 12
[7, 12]

The previous script creates an empty list and then adds two
elements into it. One is added in the standard Java manner (the
add() method) and the other using the << operator.

Groovy also extends the java.util.List interface with
methods and operators, making list handling easier. Listing 4.11
demonstrates this feature.

Listing 4.11 Lists
groovy> list = [0,2,4,6]
[0,2,4,6]
groovy> list += [0,1,3,5,7]
[0,2,4,6,0,1,3,5,7]
groovy> list -= [0,1]
[2,4,6,3,5,7]
groovy> list.sort()
[2,3,4,5,6,7]
groovy> list.reverse()
[7,6,5,4,3,2]
groovy> list << 7
[7,6,5,4,3,2,7]
groovy> list.count(7)
2
groovy> “${list.min()} - ${list.max()}”
2 – 7
groovy> list.intersect([4,6,8])
[4,6]
groovy> list.join(‘-‘)
7-6-5-4-3-2-7

As we can see in Listing 4.11, the following methods and
operators have been added to the java.util.List interface:

■ + (plus sign)—Creates the union of two lists. Note that
duplicated elements are not removed after this operation.

■ - (minus sign)—Removes all elements specified in the
list on the right side of the operator.

■ sort—Sorts the list. This method could accept the
java.util.Comparator or groovy.lang.Closure
object as a parameter. We return to this topic after
introducing closures in Groovy, later in this chapter.

■ reverse—Reverses the list ordering.

■ count—Returns the number of occurrences for a given
element.

■ min/max—Returns the minimal (or the maximal) element
of the list. As with the sort() method, this method

150 SCRIPTING IN JAVA

could accept the arbitrary Comparator or Closure
object.

■ intersect—Returns a list of common elements for two
lists.

■ join—Returns the string value of the list elements con-
catenated with the given string.

RANGES

Another new feature in Groovy collections processing is the use
of ranges, which can be very useful in everyday programming
tasks. Ranges are basically lists of sequential values. You can
declare both inclusive and exclusive ranges with the following
syntax:

groovy> inclusive = 7..19
7..19
groovy> exclusive = 7..<19
7..18

As you can see, the .. expression is used to create the
range with the last boundary value included. On the other hand,
if you use the ..< expression, the last boundary value is not
included in the range.

Ranges are implemented as a java.util.ArrayList
class, but if Integer objects are used for boundaries, the
groovy.lang.IntRange class is used. This class is the light-
weight implementation of the java.util.List interface that
holds only the boundary values. All other elements are calcu-
lated at runtime according to their indexes. You can define
range with objects of any type, but they make sense only when
these objects implement the java.lang.Comparable interface.

A few methods also are added to the ranges that make them
easier and more natural to handle. They are demonstrated in
Listing 4.12.

Listing 4.12 Ranges
groovy> inclusive = 5..10
5..10
groovy> inclusive.getFrom()
5

CHAPTER 4 151

152 SCRIPTING IN JAVA

Listing 4.12 Continued
groovy> inclusive.getTo()
10
groovy> inclusive.contains(7)
true

These methods are as follows:

■ getFrom()—Gets the starting boundary of the range

■ getTo()—Gets the ending boundary of the range

■ contains()—Checks whether the given element is in
the range

Ranges play an important role in Groovy programming
philosophy. We see their real power in the “Looping” section
later in this chapter. For now, let’s take a look at an interesting
use of ranges for slicing lists and strings:

groovy> list = [“groovy”, “python”, “beanshell”, “ruby”]
[“groovy”, “python”, “beanshell”, “ruby”]
groovy> sublist = list[1..2]
[“python”, “beanshell”]
groovy> lang = sublist[1]
“beanshell”
groovy> lang[4..8]
“shell”

In this example, we began by creating a list of four string
elements. After that, we created a sublist containing the two
middle elements using the range syntax. Finally, we sliced one
element (of the string type) with ranges too, and showed that
strings could be seen as a list of characters.

MAPS

Maps, though not strictly considered collections in the mathe-
matical sense, are often associated with collections processing
in languages such as Java. In lists, elements of the collection
are associated with a numeric position; in maps, elements are
accessed by names, also known as keys. Maps in Groovy are
instances of the java.util.Hashmap class. As with lists, maps
in Groovy have powerful syntax enhancements that make them
easier to use.

groovy> book = [“name” : “Scripting in Java”
, “author” : “Dejan Bosanac”]

[“name”:”Scripting in Java”, “author”:”Dejan Bosanac”]
groovy> book.get(“name”)
“Scripting in Java”
groovy> book[“author”]
“Dejan Bosanac”
groovy> book.topic = “Java”
“Java”
groovy> book
[“name”:”Scripting in Java”, “topic”:”Java”
, “author”:”Dejan Bosanac”]

As we can see in the preceding code, maps also are created
using square-bracket syntax. The only difference between maps
and lists is that with maps, elements are provided with their
keys and values separated by colons. Also, as the preceding
example shows, a map element can be accessed in one of three
ways:

■ Using the Java syntax (the get() and put() methods)

■ Using the list syntax (the [] operator)

■ Using the JavaBean syntax (the . operator)

An empty map is created using the [:] expression, as
shown in Listing 4.13.

Listing 4.13 Maps
groovy> book = [:]
[:]
groovy> book.name = “Scripting in Java”
“Scripting in Java”
groovy> book[“topic”] = “Java”
“Java”
groovy> book.put(“author”, “Dejan Bosanac”)
null
groovy> book
[“name”:”Scripting in Java”, “topic”:”Java”
, “author”:”Dejan Bosanac”]

The preceding example uses a string variable as the key
type for the map. Of course, any object could be used as a key,
but to comply with the JavaBean syntax, keys should always be
strings. If we tried to use the JavaBean syntax on the map with
nonstring keys, an exception is thrown:

CHAPTER 4 153

groovy> testMap = [1 : “first”, 55 : “second”]
[1:”first”, 55:”second”]
groovy> testMap.get(1)
“first”
groovy> testMap[55]
“second”
groovy> testMap.55
No signature of method java.util.HashMap.doCall() is
applicable
for argument types: (java.math.BigDecimal) values: [0.55]

Logical Branching

As shown in the following example, Groovy supports an
if-else structure and a ternary operator in the same way
Java does, so we do not describe them in more detail.

x = true

if (x)
println “x is true”

else
println “x is false”

println “x is “ + (x == true ? “true” : “false”)

The new thing that Groovy has to offer developers is a
modified and more powerful switch-case structure. Let’s take a
look at an example (see Listing 4.14).

154 SCRIPTING IN JAVA

Listing 4.14 switch-case Structure
switch (x) {

case ~”\\d{5}” : println “it’s a zip code”
break

case [“Groovy”, “Java”] : println “it’s a programming language”
break

case String : println “it’s a java.lang.String”
break

case 150 : println “it’s a 150$”
break

case 100..200 : println “it’s between 100$ and 200$”
break

default : println “unknown”

}

As we can see in Listing 4.14, Groovy can compare a
switch variable with the following criteria:

■ Class name

■ Regular expressions

■ Membership in the collection

■ Exact value

You can try to “feed” this script with different values for
the variable x, and see what happens:

x = “any string”
x = 90210
x = “Groovy”
x = 150
x = 180

The real improvement in Groovy is that the switch-case
structure behavior is extensible. It is important to understand the
structure’s underlying mechanism to be able to customize it to
your needs. When code such as the following is being executed:

switch (switchValue) {
caseValue : //action

}

Groovy calls the isCase(Object obj) method on the
caseValue object with switchValue as an argument, like this:

caseValue.isCase(switchValue)

The isCase() method is overloaded for many classes by
default. For example, for the java.lang.Class type, it looks
like this:

public boolean isCase(switchValue) {
return switchValue instanceof this.class

}

If no isCase() method is found, a default one is called.
The default isCase() method implementation simply calls the
equals(Object obj) method on the switch value.

CHAPTER 4 155

In this light, let’s take a look at Listing 4.15.

Listing 4.15 Extending the switch-case Mechanism
class Dog {

public isCase(switchValue) {
if ([“labrador”, “shepherd”]

.contains(switchValue))
return true

else
return false

}
}

def testAnimal(animal) {
doggy = new Dog()
switch (animal) {

case doggy : println “${animal} is a dog”
break

default : println “${animal} is not a dog”
}

}

testAnimal(“labrador”)
testAnimal(“piggy”)

The script in Listing 4.15 prints the following sentences:

labrador is a dog
piggy is not a dog

We defined a Dog class with its own isCase() method that
returns true if the switch value is a string contained in the list
of dog breeds. In the testAnimal() method, the string has been
tested with this overloaded isCase() method.

As we have seen, the switch-case structure extension
could be useful for handling specific data types.

Looping

As is the case with logical branching, the while and do-while
loops are backward compatible with Java, so a detailed expla-
nation is not required. Here is a simple script that demonstrates
these loops:

x = 0
y = 10

156 SCRIPTING IN JAVA

while (x++ < 10) {
println y--

}

x = 0
y = 10

do {
println y--

} while (++x < 10)

Things are somewhat different with the for loop. As men-
tioned previously, Groovy still lacks support for the standard
Java for loop, which is one of the things that break backward
compatibility. Instead, it has a flavored for loop that more nat-
urally fits different types. The use of this loop for various tasks
is demonstrated in Listing 4.16.

Listing 4.16 for Loop
println “iterate over a range”
x = 0
for (i in 0..9) {

print i
}

println “\n iterate over a list”
x = 0
for (i in [0, 1, 2, 3, 4]) {

print i
}

println “\n iterate over an array”
array = (0..4).toArray()
x = 0
for (i in array) {

print i
}

println “\n iterate over a map”
map = [‘abc’:1, ‘def’:2, ‘xyz’:3]
x = 0
for (e in map) {

print e.value
}

println “\n iterate over values in a map”
x = 0
for (v in map.values()) {

print v
}

println “\n iterate over the characters in a string”
text = “abc”

CHAPTER 4 157

158 SCRIPTING IN JAVA

Listing 4.16 Continued
list = []
for (c in text) {

print c + “ “
}

Listing 4.16 prints the following output:

iterate over a range
0123456789
iterate over a list
01234
iterate over an array
01234
iterate over a map
132
iterate over values in a map
132
iterate over the characters in a string
a b c

As you can see, the syntax of this for loop is:

for (var in structure) {
do something ...

}

where var is an element of the structure, which can be merely
any structure in Groovy (including strings).

The syntax of this loop is similar to that for the for loop
introduced in Java 1.5:

List<String> values = new ArrayList<String>();
names.add(“a”);
names.add(“b”);
names.add(“c”);

for (String value: values)
System.out.println(value);

The only difference is that Java’s : character is replaced
with the in keyword in Groovy. Also, because Java is statically
typed, the element definition in the loop contains the element’s
type.

Classes

Classes in Groovy are similar to Java classes; after all, they are
compiled to Java classes at the bytecode level. Still, there are a
few differences that save on typing and add more flexibility.

Following its loose typing philosophy, Groovy does not
force you to define types for properties, method arguments, and
return values. If the type is not specified, the
java.lang.Object class is used at the bytecode level.

Also, you don’t need to define access modifiers for class
members. If no access modifier is specified, Groovy assumes
protected access level.

Because both type definition and access modifier are
optional, you have to use the def keyword for class members
lacking both of these properties.

Now take a look at Listing 4.17.

Listing 4.17 Classes
Class Book {

def title
String author
public Book(title) {

this.title = title;
}

boolean order(int qty, Reseller) {
true

}

def title() {
“Book title”

}
}

The Groovy code in Listing 4.17 is compiled to the follow-
ing Java code:

class Book {
public Object title;
public String author;

public Book(Object title) {
this.title = title;

}

public Object order(int qty, Object reseller) {

CHAPTER 4 159

return true;
}
public Object title() {

return “Book title”;
}

}

Notice that the return statement at the end of the method
is also optional. The value of the last statement would be auto-
matically returned if that line were reached. Of course, if you
want to return from some other point in your method, you use
the return keyword.

Parentheses around parameters in method calls are optional
for all methods except constructor calls:

book = new Book(“Scripting in Java”)
// mandatory parentheses in the constructor calls
book.order 5, “BookReseller inc.” // without parentheses
book.order(5, “Books Ltd.”) // with parentheses

This is true as long as the method has at least one param-
eter because the method call could be mistaken for the class’s
property otherwise. This issue is demonstrated in the following
code snippet:

book.title // gets property value
book.title() // calls the method

Standalone methods, defined with the def keyword, follow
the same rules as class methods for issues described earlier. As
mentioned previously, they are basically static methods of the
class named as our script.

The same discussion about the optional return keyword and
parentheses stands as for the optional semicolons mentioned
previously. Altering coding habits probably requires more work
for Java developers than what it’s worth in terms of benefits
gained from added features. However, it is important to know
them so that you can deal with someone else’s Groovy code.

Groovy shows its dynamic nature once again in the way it
handles calls to an unimplemented class method. All objects
defined in Groovy implement a groovy.lang.GroovyObject

160 SCRIPTING IN JAVA

interface, which helps them to be executed in the Java environ-
ment. This interface has defined the following method:

Object invokeMethod(String name, Object args)

This method is invoked every time a call to some method is
made. You can override this method to extend your class’s
functionality and intercept calls to its methods, as shown in
Listing 4.18.

CHAPTER 4 161

Listing 4.18 Intercepting Method Calls
class MyClass {

public String callMe(String arg) {
return arg.toUpperCase()

}

public invokeMethod(String name, Object arguments) {

if (name == “me”) name = “callMe”

try {
return metaClass.invokeMethod(this, name, arguments)

} catch (MissingMethodException e) {
return “Method ${name}:${arguments} is not defined \

for this class”
}

}
}

o = new MyClass()

println o.callMe(“Some String”)
println o.callMe(“Some String”, “Some Other String”)
println o.me(“Some String”)

The code in Listing 4.18 intercepted a call to a me() method
and called the callMe() method instead. Also, the call to the
callMe() method with two parameters returns a string result
instead of throwing a MissingMethodException. The result of
this script’s execution is as follows:

SOME STRING
Method callMe:[Some String, Some Other String] is not
defined
for this class
SOME STRING

Operator Overloading

To support scripting syntax better, Groovy provides the operator
overloading mechanism. We have already seen some examples
of the operator overloading mechanism in the “Collections” sec-
tion earlier in this chapter. It means that you can use some of
the standard operators, such as + or -, with your classes. These
operators are mapped to method calls of objects. So, for exam-
ple, the following:

a+b

is mapped to the actual call:

a.plus(b)

The purpose of operator overloading is to make your scripts
more readable and to save you some typing.

There are a few operator types you can use:

■ Arithmetic operators—Used to execute arithmetic oper-
ations on objects

■ Index operators—Used to access elements in collections
of objects

■ Shift operators—Used to manipulate data by shifting

■ Comparison operators—Used to compare objects

Table 4.3 describes all operators currently supported by
Groovy syntax.

Table 4.3 Operator Overloading
Operator Method

Arithmetic operators

a + b a.plus(b)

a - b a.minus(b)

a * b a.multiply(b)

a / b a.divide(b)

162 SCRIPTING IN JAVA

Indexing operators

a++ or ++a a.next()

a— or —a a.previous()

a[b] a.getAt(b)

a[b] = c a.putAt(b, c)

Shift operators

a << b a.leftShift(b)

Comparison operators

a == b a.equals(b)

a != b ! a.equals(b)

a === b a == b in Java (a and b refer to

same object instance)

a <=> b a.compareTo(b)

a > b a.compareTo(b) > 0

a >= b a.compareTo(b) >= 0

a < b a.compareTo(b) < 0

a <= b a.compareTo(b) <= 0

These operators are already implemented in many Groovy
data structures, such as collections and numbers. For example,
the last two calls in Listing 4.19 are basically the same.

Listing 4.19 Operators
groovy> list = [0, 3, 5, 7]
groovy> list.getAt(2)
5
groovy> list[2]
5

Another important thing is comparison operators handle
null values gracefully. In other words, if one (or both) values
are null, no java.lang.NullPointerException is thrown:

groovy> first = null
groovy> second = “test value”
groovy> if (first == second)
groovy> println “they are equal”
groovy> else

CHAPTER 4 163

Table 4.3 Continued
Operator Method

groovy> println “they are not equal”
groovy> go
they are not equal

When you are working with numbers, values are converted
to the largest numeric type before the comparison is made. This
feature enables developers to compare different number types;
the only thing that matters in this comparison is their values:

groovy> Double first = 123.50
groovy> Integer second = 250
groovy> if (first > second)
groovy> println first
groovy> else
groovy> println second
groovy> go
250

The benefits of the operator overloading mechanism can be
used with custom classes. Look at the code in Listing 4.20.

Listing 4.20 Operator Overloading
class Item {
}

class Basket {
Item items

public plus (Item item) {
println “Adding item”
// adds item to the basket and recalculates it

}
}

basket = new Basket()
item = new Item()
basket + item

The plus() method is added to the Basket class, and
after that, the + operator is available. This can be done with
any operator on any class. Note that the equals(Object obj)
method is defined in the java.lang.Object class, so operators
that map to it can be used on any object by default. Also,
the compareTo(Object obj) method is defined in the
java.lang.Comparable interface, so it is advisable to imple-
ment this interface for objects that have to work with compari-
son operators.

164 SCRIPTING IN JAVA

GroovyBeans

Groovy introduces a few changes in JavaBeans syntax. All
changes are aimed to help developers code their solutions faster.

PROPERTIES

The first major difference is properties and methods are public
by default and are not protected (see Listing 4.21).

Listing 4.21 GroovyBeans
class Car {

String model
String color
private Integer id
Integer year

private setYear(Integer year) {
this.year = year

}
}

At the virtual machine level, things are more complicated.
Groovy compiles public properties to private properties with
public accessor methods (getter/setter). Protected properties are
also compiled to private properties but with protected accessor
methods. For private properties, no getter/setter methods are
created on the bytecode level.

If we follow this concept, our Car class definition in the
preceding code is equivalent to the following JavaBeans
definition:

class Car {
private String model;
private String color;
private Integer id;
private Integer year;

public String getModel() {
return this.model;

}

public String getColor() {
return this.color;

}

public Integer getYear() {
return this.year;

}

CHAPTER 4 165

public void setModel(String model) {
this.model = model;

}

public void setColor(String color) {
this.color = color;

}

private void setYear(Integer year) {
this.year = year

}
}

Obviously, Groovy’s solution is more elegant and faster to
implement. If you need more control of the class’s property
behavior (for example, to create a read-only property), you can
achieve it by explicitly declaring the suitable accessor methods.
Look at the read-only property year in our Car example. We
specified that the setYear() method is private and thus over-
loaded the auto-generated public version of this method. In this
way, we created the read-only property.

NAMED PARAMETERS

Another type-saving feature in Groovy is named parameters.
GroovyBeans can be constructed by passing property names
and values separated by a colon character in the constructor
call. For example, we can create an instance of the Car class
defined earlier with the following statement:

car = new Car(model:”BMW”, color:”black”)

This statement is compiled to the code that has an empty
constructor call and appropriate setter method calls. Thus, it is
equivalent to the following Java code:

Car car = new Car();
car.setModel(“BMW”);
car.setColor(“black”);

The named parameters mechanism could also be used for
methods that accept map objects as a parameter:

def mtd(dog) {
println dog.name
println dog.breed

166 SCRIPTING IN JAVA

}

mtd(name : “Lina”, breed : “Labrador”)
mtd([“name” : “Lina”, “breed” : “Labrador”])
//the same as above

This approach is applicable only to maps that have string
keys, and as you can see, it is just a shorter way to define that
kind of map.

OBJECT NAVIGATION

You can access GroovyBeans’ properties in the same way as if
they were public fields, so the following statement

car.name

is equivalent to this JavaBeans call:

car.getName()

More complex object navigation works in the same way;
just use the dot (.) character to specify a desired property:

class Car {
Manufacturer man
String model

}

class Manufacturer {
String name
String country

}

man = new Manufacturer(name:”BMW”, country:”Germany”);
car = new Car(man:man, model:”316i”)

println “Car origin is in ${car.man.country}”

This method of object navigation works fine unless some
property in the chain is not defined. If such a condition is met,
as in the following example:

car = new Car(model:”320i”)
println “Car origin is in ${car.man.country}”

a java.lang.NullPointerException is thrown.

CHAPTER 4 167

SAFE NAVIGATION

To avoid NullPointerExceptions while navigating Groovy-
Beans, you can use Groovy’s safe navigation syntax.

To safely navigate through beans, just use the ?. operator
rather than the . operator. In normal circumstances, you do not
see any difference, but if some property in the chain is not
defined, the null value is returned (instead of throwing the
NullPointerException). Look at Listing 4.22, for example.

Listing 4.22 Safe Navigation
car = new Car(model:”320i”)
println “Car origin is in ${car?.man?.country}”

In this case, the null value is returned, and there is no fear
of java.lang.NullPointerException.

Whether to traverse your objects using the standard
GroovyBean syntax or the safe navigation syntax is a design
decision based on the following question: Should we handle the
null pointer error at this point (in which case, we would use the
GroovyBean syntax inside the appropriate try/catch block), or
should we just ignore it (in which case, we should use the safe
navigation syntax)?

Closures

We discussed closures in Chapter 1, where we also saw the ben-
efits they introduce in the development process. Groovy sup-
ports closure syntax similar to that found in the Ruby
programming language, and that is certainly one of the most
important Groovy features. Let’s look at a few examples of
using closure in Groovy.

logo = {
print “Closures “
println “rule!”

}

logo.call()
logo()

168 SCRIPTING IN JAVA

The preceding example shows how to define and call a sim-
ple closure. We created a logo closure, and all we had to do
was write statements inside the curly braces. The closure can be
called by executing a call() method on it, or by calling it as a
regular standalone method.

You can also pass parameters to closures. If only one
parameter is passed, the closure’s definition remains the same,
and that parameter is mapped to the it variable. This is demon-
strated in the following example:

groovy> discount = { it * 0.8}
groovy> discount(200)
160.0

The syntax for closures that accept more than one param-
eter is different:

{ comma-separated-parameter-list -> statements }

Let’s discuss this on a real example:

groovy> totalPrice = {subtotal, tax, discount ->
groovy> taxDiscount = subtotal * discount
groovy> taxDiscount * (1 + tax)
groovy> }
groovy> totalPrice(100, 0.2, 0.3)
36.0

Here, we defined a closure that accepts three parameters
(subtotal, tax, and discount) and called it afterward. The
only difference is that now we have a comma-separated list of
parameters at the beginning of the closure (separated from the
rest of the statements by the -> character).

If you pass the wrong number of parameters to the closure,
an IncorrectClosureArgumentException is thrown. This is
not the case with the it variable, which is assumed to have a
null value in that case.

Thus far, we have seen how to define and execute closures,
and you are probably wondering how it is different from
loosely defined methods. A big difference is that closures are
basically classes that extend the groovy.lang.Closure class.

CHAPTER 4 169

Closures’ statements are collected in a call() method, which is
(as we have seen) one way to execute them. Because they are
classes, they can be passed around as arguments to other meth-
ods. So basically, we are now able to pass code snippets around
our application. Let’s further elaborate on this using the code in
Listing 4.23.

Listing 4.23 Closures
class Handler {

def action
def handle(object) {

action(object)
}

}

log = {object -> println “Action occurred: ${object}”}
save = {object ->

// ... save object to the database
println “Object saved to the database: ${object}”

}

logHandler = new Handler(action:log)
saveHandler = new Handler(action:save)

obj = “Status changed”
logHandler.handle(obj)
saveHandler.handle(obj)

This script prints the following result:

Action occurred: Status changed
Object saved to the database: Status changed

In the Handler class, an action property is defined that
contains a closure with the explicit code to be executed. The
code could be different on an object basis and not only on a
class basis, which is the case with inheritance. After that, we
defined two closures, one that only logs the object (in this sim-
ple example on the screen) and one that saves the object in the
database. Handler objects are instanced with an action param-
eter, and we actually changed their behavior without making
any subclasses. As in the discussion on loose methods, this is
more suitable for simple problem solutions, and you should still
hang on the inheritance where you find it appropriate.

170 SCRIPTING IN JAVA

One thing that differentiates closures from anonymous
inner classes in Java is the variables’ scope. In Groovy, vari-
ables defined in the context where a closure is created could be
used and modified inside that closure. Also, any variable
defined within a closure is visible in the surrounding context.
Take a look at the following code snippet for a demonstration
of this concept:

tax = 0.2
cl = {

if (tax == 0.2) {
tax += 0.1
discount = 0.2

} else {
discount = 0.3

}
}

cl()
println tax
println discount

A global tax variable is used in the closure, and its value
has been changed. Also, we accessed the discount variable
defined in the closure. The result of this script execution is as
follows:

0.3
0.2

Closures show their real power when they are integrated
with collections. Lists and maps in Groovy have additional
methods that accept closure arguments. Their purpose is to be
used as a replacement for Java’s way of iterating collections.
As mentioned earlier, strings in Groovy can be used as lists of
characters, so the methods described in the following subsec-
tions apply to them as well.

each

This method iterates through the collection supplying the exe-
cutable code in the form of a closure, which is executed on the
each element of the collection. This is the literal alternative to
the java.util.Iterator class. Listing 4.24 shows an example.

CHAPTER 4 171

Listing 4.24 The each() Method
groovy> sum = 0
groovy> list = [3,5,7,9]
groovy> list.each{ sum += it }
groovy> sum
24

groovy> bookDef = “”
groovy> book = [“name” : “Scripting in Java”, “topic” : “Java”]
groovy> book.each{ bookDef += “${it.key}: ${it.value}\n” }
groovy> bookDef
name: Scripting in Java
topic: Java

groovy> value = “Groovy rulez!”
groovy> newValue = “”
groovy> value.each{ newValue += it.toUpperCase() }
groovy> newValue
GROOVY RULEZ!

groovy> fact=1
groovy> range = 1..7
groovy> range.each { fact *= it }
groovy> fact
5040

172 SCRIPTING IN JAVA

Listing 4.24 demonstrates how to use the each() method on
lists, maps, strings, and ranges.

CURLY BRACES

When you are passing a closure to a method, the starting curly brace ({) must be in the
same line as the method call. So, for example, the following snippet is not valid Groovy
code:

[1,2,3].each
{

println it
}

However, if you want to specify the starting curly brace on a separate line, you can use the
following syntax:

[1,2,3].each(
{

println it
}
)

collect

The collect() method transforms elements of a collection
using the given closure (see Listing 4.25).

Listing 4.25 The collect() Method
groovy> list = [1,2,3,4,5]
groovy> doubles = list.collect{ it * 2}
[2,4,6,8,10]

You cannot achieve the same behavior with the each()
method because it does not change the original collection. The
collect() method returns a new collection containing the
modified items.

inject

If you need to pass the result from the previous iteration to the
next one, use the inject() method, as shown in Listing 4.26.

Listing 4.26 The inject() Method
list = [3,5,7,9]
list.inject(0) { prevItem, item ->

println “${prevItem} - ${item}”
return item

}

This script prints the following result:

0 - 3
3 - 5
5 - 7
7 - 9

As you can see, the syntax of the inject() method is dif-
ferent from the syntax of the previously described methods:

Collection.inject(firstInjectValue) {
injectedValue, collectionItem ->

// closure code
}

To better understand this injection syntax, let’s rewrite the
preceding example as follows:

CHAPTER 4 173

list = [3,5,7,9]
closure = {prevItem, item ->

println “${prevItem} - ${item}”
item

}
list.inject(0, closure)

We see that that the inject() method basically accepts two
parameters: the injection value used in the first iteration and
the closure to be used. The closure must define two parameters
as well: The first one is for the value injected from the previous
iteration, and the second one is for the collection item. Note
that the closure has to return a value injected in the next itera-
tion. Otherwise, the null value is assumed.

find

To find the first occurrence of a collection’s item that meets a
certain criterion, we can use the find() method. Take Listing
4.27, for example.

Listing 4.27 The find() Method
list = [3,5,7,9]
found = list.find{ it > 5 }
println found

The code in Listing 4.27 prints the value 7. Note that the
closure must return true to make a match. If no item matches
the given criteria, the null value is returned.

findAll

Unlike the find() method that returns only the first item, the
findAll() method returns a collection of all items meeting the
criteria defined by a closure. In Listing 4.28, I changed the
example shown in Listing 4.27 to use the findAll() method.

Listing 4.28 The findAll() Method
list = [3,5,7,9]
found = list.findAll{ it > 5 }
println found

The code in Listing 4.28 prints the following:

[7,9]

174 SCRIPTING IN JAVA

The same restrictions on the closure’s return value stand as
for the find() method.

every

This method checks whether every item of the collection meets
the criteria given by a closure. The method returns a Boolean
value, which indicates whether we have a match on all the
items. Listing 4.29 shows an example.

Listing 4.29 The every() Method
groovy> list = [3,5,7,9]
groovy> found = list.every{ it > 5 }
false

any

As its name implies, the any() method returns a boolean value
indicating whether any of the items meet the criteria (see List-
ing 4.30).

Listing 4.30 The any() Method
groovy> list = [3,5,7,9]
groovy> found = list.any{ it > 5 }
true

As I said for the find() and findAll() methods, closures
in the every() and any() methods should return a Boolean
value for these methods to make any sense. If the value is not
of a Boolean type, type conversion will be used, and the
Boolean value will be evaluated.

Another thing that closures provide is an improved way of
dealing with complex try/catch/finally structures. With
closures, it is easy to write code that properly handles resources
and exceptions. For example, new methods have been added to
standard Java classes that handle files, processes, and database
connections. When they are used in Groovy, you don’t have to
worry about closing resources. We examine these methods next,
but before we do, it is a good idea to see the principles of their
implementation. These principles can be used to adapt almost

CHAPTER 4 175

any Java library that works with resources to Groovy’s pro-
gramming philosophy. Let’s say that we have a class in a library
that has something to do with resources:

class Resource {

public Resource(String resourceName)
throws ResourceException {
// open the resource

}

public Object read() throws ResourceException {
// return data or false as the end marker

}

public void close() throws ResourceException {
// close the resource

}
}

Typical Java code that opens, reads, and closes the resource
looks like this:

Resource res = new Resource(“someName”);

try {
while (result = res.read()) {

println(result);
}

} catch (ResourceException e) {
e.printStackTrace();

} finally {
try {

res.close();
} catch (ResourceException e) {
}

}

This is a somewhat clumsy solution, especially when your
application handles a lot of resources. A common solution is to
make a wrapper class that does the work for you. Listing 4.31
shows the new read() method that has been added to the orig-
inal class and enables easy resource processing with closures.

Listing 4.31 Resource Handling with Closures
class Resource {

public Resource(String resourceName)
throws ResourceException {
// open the resource

176 SCRIPTING IN JAVA

CHAPTER 4 177

Listing 4.31 Continued
}

public Object read() throws ResourceException {
// return data or false as the end marker

}

public void read(String resourceName, Closure closure)
throws ResourceException {
open(resourceName);
try {

while (result = res.read()) {
closure.call(result);

}
} catch (ResourceException e) {

throw e;
} finally {

try {
close();

} catch (ResourceException e) {
}

}
}

public void close() throws ResourceException {
// close the resource

}
}

Now all that the programmer needs to do to achieve the
same functionality as the preceding Java solution is the
following:

new Resource(“someName”).read {
println it;

}

Exception handling, resource opening, and closing have
been moved to the read() method that accepts a closure
parameter. This is a common philosophy that has been used
often in Groovy. It makes Groovy scripts more readable, but
also makes them quicker and easier to write.

The preceding method is applicable when you have a library
source, but if you want to extend a closed library or Java’s
built-in classes, you must use a different approach, which we
cover later in this chapter.

System Operations

Closure support has been added to standard Java classes that
operate on files and processes. These modifications are visible
from Groovy as new methods (functionalities) added to base
Java classes. In this section, we go through these methods and
see some examples of how you can use files and processes in
Groovy, and how closures can help simplify some of these tasks.

Files

The java.io.File class has been extended with a few methods
that accept closure parameters and simplify file operations.
These methods are implemented according to the principles for
handling resources and exceptions described in the previous
section. Let’s go through some examples.

getText

This method returns the entire contents of the file as a string. It
is useful for handling text files.

import java.io.File

text = new File(“foo.txt”).getText()
print text

As you can see, no Reader object instances, no closing
statements, and no exception handling are required. All we
have to do is write just the business logic of the script, and
Groovy takes care of the rest.

Of course, if the file is not found, or some other exception
occurs, the script throws a java.io.FileNotFoundException.
You can handle exceptions on your own, but you still don’t
have to worry about resources. Take Listing 4.32, for example.

Listing 4.32 The getText() Method
import java.io.File

try {
text = new File(“foo1.txt”).getText()
print text

178 SCRIPTING IN JAVA

} catch (Exception e) {
println e.getMessage()

}

Listing 4.32 prints the following if foo1.txt file could not
be found in the current directory:

java.io.FileNotFoundException:
foo1.txt (No such file or directory)

eachLine

Listing 4.33 shows how to open and read every line of the file.
Particularly, the closure passed to this method prints every line
of the file in uppercase.

Listing 4.33 The eachLine() Method
import java.io.File

new File(“foo.txt”).eachLine { println it.toUpperCase() }

readLines

This method, shown in Listing 4.34, has the same purpose as the
eachLine() method, but instead of taking closure as an argu-
ment, it returns lines of the file in the list.

Listing 4.34 The readLines() Method
import java.io.File

lineList = new File(‘foo.txt’).readLines()
lineList.each {

println it.toUpperCase()
}

We can use some of the methods for list handling to operate
on loaded data. In this example, we used the each() method
and created the equivalent functionality as in the preceding
eachLine() example.

CHAPTER 4 179

Listing 4.32 Continued

splitEachLine

Groovy tends to make common tasks as simple as possible. In
that context, the java.io.File class has an additional method
used for working with comma-separated files (the other charac-
ters can be used as separators as well). This method enables you
to handle CSV files with just a few lines of code. Take a look at
Listing 4.35.

Listing 4.35 The splitEachLine() Method
import java.io.File

new File(‘foo.csv’).splitEachLine(‘,’) {
it.each{

println “name=${it[0]} balance=${it[1]}”
// ... save into database

}
}

If we feed this script with the following foo.csv file:

dejan,200
joe,100
mike,500

it prints text similar to the following:

name=dejan balance=200
name=joe balance=100
name=mike balance=500

Here we parsed the comma-separated file with just two lines
of code. We finish this example in Chapter 5, after we cover the
GroovySQL extension. We use data parsed from this file and
insert that into the database.

eachByte

When you are dealing with binary files, you need access to
the file on the byte level. This method is equivalent to the
eachLine() method, except that it passes each byte to the
closure for manipulation (see Listing 4.36).

180 SCRIPTING IN JAVA

Listing 4.36 The eachByte() Method
import java.io.File

new File(“foo.txt”).eachByte { print it }

readBytes

As with the eachByte()method, readBytes() is equivalent to
readLines()on the byte level, as shown in Listing 4.37.

Listing 4.37 The readBytes() Method
lineList = new File(‘foo.txt’).readBytes()
lineList.each {

print it
}

write

Listing 4.38 shows how to write text to the file.

Listing 4.38 The write() Method
new File(‘foo.txt’).write(“testing testing”);

new File(‘foo.txt’).write(“””
This is
just a test file
to play with
“””);

In this example, we used triple-quote syntax explained in
one of the previous sections. You can see how triple-quote syn-
tax can ease the task of writing multiple-line strings in the file.
Instead of formatting the text manually, all you have to do is
define multiple-line strings inside of the appropriate markers.

Be careful with this method because it overwrites the con-
tents of the file.

append

The append() method adds specified text to the end of the file.
Other than that, it behaves exactly the same as the previously
described write() method (see Listing 4.39).

CHAPTER 4 181

Listing 4.39 The append() Method
new File(‘foo.txt’).append(“””
testing testing
“””);

eachFile

Because the java.io.File class is used to represent directories
as well, this method is used for processing all files in the direc-
tory. Each file in the directory is passed to the closure argu-
ment. Listing 4.40 prints them all on the screen.

Listing 4.40 The eachFile() Method
import java.io.File

new File(‘.’).eachFile {
println it.getText()

}

eachFileRecurse

This method is different from the previous one, only because it
traverses directories recursively. Listing 4.41 shows an example
of this method.

Listing 4.41 The eachFileRecurse() Method
import java.io.File

new File(‘.’).eachFileRecurse {
println it.getText()

}

If you want to handle files using reader and writer objects,
as in Java, you can find some helper methods in Groovy that
help you to obtain them. For more information on these meth-
ods, see the Groovy JDK reference (http://groovy.codehaus.org/
groovy-jdk.html).

Processes

Groovy also provides closer integration with the native system
processes. This integration is made by an additional execute()
method of the string class:

182 SCRIPTING IN JAVA

http://groovy.codehaus.org/groovy-jdk.html
http://groovy.codehaus.org/groovy-jdk.html

process = “ls -l”.execute()
println process.text

The method returns the java.lang.Process class (just like
Java’s Runtime.exec() method). The Process class has also
been extended with the getText()method, used to obtain the
text from the output stream:

process = “ls -e”.execute()
error = process.err
if (process.waitFor() != 0)

error.eachLine {
println it

}
else

println process.text

The Process class adds a few more methods that serve just
as an abbreviation to the existing Java’s class methods:

■ getIn()—The abbreviated form of getInputStream()

■ getOut()—The abbreviated form of getOutputStream()

■ getErr()—The abbreviated form of getErrorStream()

One more process method worth noting is the
waitForOrKill() method, which waits for the process to
finish in a given number of milliseconds, or kills it. Listing 4.42
kills the process if it does not finish in one second.

Listing 4.42 Process Handling
process = “ls -e”.execute()
error = process.err
if (process.waitForOrKill(1000) != 0)

error.eachLine {
println it

}
else

println process.text

This method could be useful because a flaw in the
java.lang.Process design does not guarantee that the
waitFor() method will ever end.

CHAPTER 4 183

Embedding with Java

Now that we have covered the basics of the Groovy program-
ming language and saw how we can use existing Java classes
in Groovy scripts, we should focus on Java’s side of the story.
This section explains how to work with Groovy scripts from
Java code. Apache’s Bean Scripting Framework (BSF) project
and Scripting API (included in JDK 6), general frameworks for
embedding various Java-enabled scripting languages, are cov-
ered in Chapter 6, “Bean Scripting Framework” and Chapter 9,
“Scripting API,” respectively. You can use these frameworks for
embedding Groovy (and languages covered in Chapter 3) with
your application, but Groovy offers a closer integration of
scripts and Java code. This section covers this “native” Groovy
integration in the Java environment.

Groovy provides the groovy.lang.GroovyShell class that
represents a shell capable of various operations on scripts. List-
ing 4.43 provides an example.

184 SCRIPTING IN JAVA

Listing 4.43 Evaluating Groovy Scripts from Java
import groovy.lang.GroovyShell;

import java.io.IOException;

import org.codehaus.groovy.control.CompilationFailedException;

public class GroovyShellTest {

public static void main(String[] args) {
GroovyShell shell = new GroovyShell();
try {

Object result = shell.evaluate(
“x =1; y =2; return x+y “

);
System.out.println(result);

} catch (CompilationFailedException cfe){
System.out.println(“Syntax not correct “ + cfe);

} catch (IOException ioe){
}

}
}

As you can see, the evaluate() method is used to actually
execute the Groovy code and return the result to Java. Two
exceptions could be thrown by this method:

■ org.codehaus.groovy.control.Compilation

FailedException, which indicates errors in the source
code compilation

■ java.io.IOException, which indicates a generic error
during script evaluation

Besides the actual scripting code, the evaluate() method
accepts java.io.File and java.io.InputStream parameters,
so that you can use it to evaluate scripts contained in files or
some other resources. Note that appropriate groovy and asm
JAR files have to be in the classpath to successfully run this
example.

The groovy.lang.GroovyShell class can also be used to
invoke other scripts from Groovy itself:

import java.io.File

shell = new GroovyShell()
shell.run(new File(“argTest.groovy”), [“arg1”, “arg2”])

This is not a particularly elegant solution, and one expects
to have an easy mechanism for including and evaluating other
scripts (such as the mechanisms you can find in most other
scripting languages). For that purpose, Groovy defines a special
evaluate() command. Look at the following example:

import java.io.File

evaluate(new File(“argTest.groovy”), [“arg1”, “arg2”])

This script produces the same result as the preceding
example through a more natural mechanism. Besides files,
the evaluate() command can also take a string (containing
Groovy statements) for an argument.

Usually you want to pass some variables to the script that
has to be evaluated. The groovy.lang.Binding class is used
for this variable binding task between two environments. To put
it simply, this class is used to pass variables in and out of the
script’s scope, as shown in Listing 4.44.

CHAPTER 4 185

Listing 4.44 Binding
import groovy.lang.Binding;
import groovy.lang.GroovyShell;

import java.io.File;
import java.io.IOException;

import org.codehaus.groovy.control.CompilationFailedException;

public class GroovyShellTest {

public static void main(String[] args) {
Binding binding = new Binding();
binding.setVariable(“name”, “Groovy”);
binding.setVariable(“type”, “Scripting”);
GroovyShell shell = new GroovyShell(binding);
try {

Object result = shell.evaluate(new File(“test.groovy”));
System.out.println(result);

} catch (CompilationFailedException e1) {
System.out.println(“Syntax not correct”);

} catch (IOException e3) {
}
System.out.println(“Platform: “

+ binding.getVariable(“platform”));
}

}

186 SCRIPTING IN JAVA

The preceding code makes name and type variables avail-
able in the test.groovy script. Also, after the script has been
evaluated, it gets the value of the platform variable from it.
For a test.groovy script that looks like this:

platform = “All”

“Language description
Name: ${name}
Type: ${type}
“

the example Java program prints the following result:

Language description
Name: Groovy
Type: Scripting

Platform: All

As you can see, the return value of the script is the value of
the last line evaluated. As in methods, the return keyword is

optional, but you can use it if you want. After the return key-
word is reached, no other statements are evaluated:

if (name == ‘Groovy’)
return ‘All’

else
return ‘Unix’

println “The End”

As I said, all Groovy scripts could be compiled to Java
classes with the groovyc compiler, and then they could be used
in Java programs like standard classes.

Now, let’s see how we can use methods and classes defined
in Groovy scripts without explicitly compiling them to the byte-
code. This approach is useful in the development process, when
changes in the source are frequent and you need a rapid devel-
opment environment.

The groovy.lang.GroovyClassLoader class is a special-
ized class loader that enables Groovy scripts to be loaded as
Java classes. Listing 4.45 provides an example of its use.

CHAPTER 4 187

Listing 4.45 Loading Groovy Scripts as Java Classes
import groovy.lang.GroovyClassLoader;
import groovy.lang.GroovyObject;

import java.io.File;

public class EmbeddingTest {

public static void main(String[] args) {
GroovyClassLoader loader = new GroovyClassLoader();
GroovyObject groovyObject = null;
try {

Class clazz =
loader.parseClass(new File(“test.groovy”));

groovyObject = (GroovyObject) clazz.newInstance();
} catch (Exception e) {

e.printStackTrace();
}
Object[] arg = {};

System.out.println(
groovyObject.invokeMethod(“testMethod”, arg)

);
}

}

As mentioned earlier, every object defined in Groovy imple-
ments a groovy.lang.GroovyObject interface. This is also
true for scripts themselves, so you can use the parseClass()
method of the GroovyClassLoader object to get the script as a
class. Then we can make a new instance of that class and call
the invokeMethod() method to execute any loosely defined
method in the script. The code in Listing 4.45 calls the
testMethod() function (with no arguments) defined in the
test.groovy script:

def testMethod() {
return “Test”

}

And it prints the following text on execution:

Test

Normally you want to implement the Java interface in
Groovy and use that implementation back in the Java applica-
tion. This approach enables you to have a design-through-
interfaces approach in your development, but also enables you to
use flexible scripting programming for interface implementation.

Let’s start by writing the IInvoice.java interface:

public interface IInvoice {

public double getTotal();

public double getSubtotal();

public void setSubtotal(double subtotal);

public void recalculate();

public void applyTax(int customerid);

}

The next step is to write the implementation class in
Groovy:

import IInvoice

class Invoice implements IInvoice {

188 SCRIPTING IN JAVA

double subtotal
double total
double tax

Invoice(Double subtotal) {
this.subtotal = subtotal

}

void applyTax(int customerid) {
if (customerid < 1000)

tax = 0.2
else

tax = 0.3
}

void recalculate() {
total = subtotal * (1 + tax)

}

}

Note that we must define types for all arguments and return
values. If we don’t, the arguments and return values are
assumed to be java.lang.Object, which does not comply with
our interface. Also, getter/setter methods do not have to be
explicitly defined because of the GroovyBeans feature (see List-
ing 4.46).

CHAPTER 4 189

Listing 4.46 Implementing Java Interfaces in Groovy
import groovy.lang.GroovyClassLoader;

import java.io.File;
import java.lang.reflect.Constructor;

public class InvoiceTest {

public static void main(String[] args) {
GroovyClassLoader loader = new GroovyClassLoader();
try {

Class clazz =
loader.parseClass(new File(“Invoice.groovy”));

Constructor constr =
clazz.getConstructor(new Class[] {Double.class});

IInvoice inv =
(IInvoice)constr.newInstance(

new Object[] {new Double(123.0)}
);

inv.applyTax(200);
inv.recalculate();
System.out.println(inv.getTotal());

} catch (Exception e) {
e.printStackTrace();

}
}

}

Listing 4.46 is similar to the code used to invoke the stand-
alone method defined in the script. The only difference is that
we converted our object to the desired interface (IInvoice in
this case). After that, the inv object can be treated as a regular
Java object. After the prototype phase is over, we can compile
the script using the groovyc compiler and create a new object
in standard Java fashion:

IInvoice inv = new Invoice()

Security

Security issues are commonly intended for two groups of peo-
ple. The first group comprises users (or system administrators)
who want to execute scripts that are not verified and that could
compromise system resources. The second group comprises
developers who want to provide extension points in their appli-
cations. In this case, you probably want to restrict the script’s
access to certain packages and some system resources.

Groovy is integrated with the Java security model. Because
the Java security model is a wide topic, I do not cover it in
detail, and you are advised to find more information in outside
literature.

As mentioned earlier, there are three ways to execute
Groovy scripts: Compile them to Java classes using the groovyc
compiler, evaluate them from a script file, or evaluate embedded
expressions represented as Java strings. When the first approach
is used, the generated code can be loaded using one of the
existing secure class loaders, and there are no further security
considerations.

More often, you will evaluate scripts compiled and loaded
during runtime. Let’s walk through a simple example of setting
security constraints when this approach is used. In Listing 4.47,
we restrict scripts evaluated from the Java application and grant
them only read permission to the user.home system property.

190 SCRIPTING IN JAVA

Listing 4.47 Security Example
package net.scriptinginjava.ch4;

import groovy.lang.GroovyClassLoader;
import groovy.lang.GroovyCodeSource;
import groovy.lang.GroovyObject;

import java.io.File;

public class SecTest {

public static void main(String[] args) {
GroovyClassLoader loader = new GroovyClassLoader();
GroovyObject groovyObject = null;
try {

GroovyCodeSource gcs =
new GroovyCodeSource(new File(“D:/sec.groovy”));

Class clazz = loader.parseClass(gcs);

groovyObject = (GroovyObject) clazz.newInstance();
} catch (Exception e) {

e.printStackTrace();
}

Object[] arg = {};
groovyObject.invokeMethod(“run”, arg);

}

CHAPTER 4 191

This Java code executes the Groovy script just as we did it
earlier. There are no additional security constraints in the code
itself. Now imagine the Windows platform, where this class (and
the whole Java application) is located on the C:\ partition. On
the other hand, untrusted scripts are located on the D:\ partition.

We need a simple policy file that defines desired restrictions
(for example, C:\my.policy). Listing 4.48 provides an example.

Listing 4.48 Security Policy
grant codeBase “file:/C:/-” {
permission java.security.AllPermission;

};

grant codeBase “file:/D:/-” {
permission java.util.PropertyPermission “user.home”, “read”;
permission java.lang.RuntimePermission “accessDeclaredMembers”;

};

We have granted all permissions to the code executed from
the C:\ partition, or rather, to our Java application. Scripts
have been granted only the permission to read the user.home
system property. We had to grant the accessDeclaredMembers
runtime permission because Groovy scripts use reflection heav-
ily. This permission should be granted to all Groovy scripts.

If we now define the malicious sec.groovy script as

System.setProperty(“user.home”, “abc”)
println System.getProperty(“user.home”)

and execute the SecTest Java application with the command

java chapter5.SecTest

the script prints the following output:

abc

In this case, we didn’t define any policy manager or policy
file to be used, so no security constraints were applied to the
script. But if the application is run with the command line, like
this:

java -Djava.security.manager \
-Djava.security.policy=C:\my.policy \
chapter5.SecTest

you should expect a java.security.AccessControlExcep-
tion to be thrown:

java.security.AccessControlException: access denied
(java.util.PropertyPermission user.home write)
. . .

To test whether the read permission is valid, just comment
the first line of the script:

//System.setProperty(“user.home”, “abc”)
println System.getProperty(“user.home”)

192 SCRIPTING IN JAVA

Now run the SecTest application again. You should expect
output similar to this:

C:\Documents and Settings\Dejan

When the script is executed from the file,
GroovyClassLoader sets the codebase to the file’s URL
(D:\groovy.sec in this example) so that the appropriate
security permission can be applied.

In the last case, scripts are defined as strings directly in the
Java source. In this case, GroovyClassLoader cannot automati-
cally determine which codebase to use (see Listing 4.49).

CHAPTER 4 193

Listing 4.49 Evaluating Inline Scripts Under Security Policy
package net.scriptinginjava.ch4;

import groovy.lang.GroovyClassLoader;
import groovy.lang.GroovyCodeSource;
import groovy.lang.GroovyObject;

import java.io.File;

public class SecTest1 {

public static void main(String[] args) {
try {

GroovyClassLoader loader = new GroovyClassLoader();
String scriptText = “println “

+ “System.getProperty(\”user.home\”)”;
GroovyCodeSource gcs =

new GroovyCodeSource(
scriptText, “test”, “D:/script”

);
Class clazz = loader.parseClass(gcs);
GroovyObject groovyObject =

(GroovyObject) clazz.newInstance();
Object[] arg = {};
groovyObject.invokeMethod(“run”, arg);

} catch (Exception e) {
e.printStackTrace();

}
}

}

The GroovyCodeSource class is used to generate the class
from the Groovy source with the specific security policy. With
it, we generated a class from the scriptText string variable

named test and run under the D:\script codebase. The code-
base does not have to be a valid URL, but we used this one so
that the same policy file (my.policy) could be applied. If you
run the application with the following command line:

java -Djava.security.manager \
-Djava.security.policy=C:\my.policy \
chapter5.SecTest1

the application prints out the current user’s home directory. You
can experiment and change the definition of the scriptText
variable to this:

String scriptText =
“println System.setProperty(\”user.home\”, \”abc\”)”;

Now, the same AccessControlException is thrown, which
means that the code is executed under the expected codebase.

Conclusion

In this chapter, we covered the basic syntax of the Groovy pro-
gramming language. We saw that this language introduces some
important scripting concepts, and its syntax is still close to that
of Java. This should guarantee a moderate learning curve for
every Java developer.

In Chapter 5, we cover advanced Groovy programming
techniques and extensions that could leverage your day-to-day
programming tasks.

194 SCRIPTING IN JAVA

Now that we know how to write and run Groovy scripts,
it is time to discuss Groovy extensions and see how we

can benefit from them. In Groovy scripts, you can use any
Java library and API. However, Groovy offers a few exten-
sions that adapt some of the most popular Java APIs to a
scripting programming paradigm. Just as with the classes
that handle files and processes, we can find closure support
for classes that handle database connections, XML parsing,
servlets, and so on.

In this chapter, we cover the following topics:

■ How to work with databases in a “Groovy” way
(GroovySQL)

■ How you can use Groovy to write servlets
(GroovyServlet)

■ Template processing in Groovy (GroovyTemplate)

■ Groovy’s support for markup languages
(GroovyMarkup)

■ How to use Groovy for rapid creation of user inter-
faces (SwingBuilder)

AADDVVANCEDANCED
GGRROOOOVYVY
PPRROGRAMMINGOGRAMMING

CHAPTER 5

GroovySQL

You have probably heard about various database tools for Java,
such as Object-Relational Mapping (ORM) tools and tools that
enable use of the Database Access Object (DAO) design para-
digm. Groovy adds different values for working with databases,
relying on closures and GStrings.

First, let’s briefly summarize database-related concepts in
Java. For Java applications, a database is abstracted with a Java
Database Connectivity (JDBC) driver. JDBC is the standard Java
API for database access, and it guarantees cross-database acces-
sibility in Java. Every database vendor has to provide a suitable
JDBC driver for its server. When the driver is initialized, we can
create a connection to the database. A connection object is
responsible for transaction handling and is used to issue queries
to the database. Queries are used to get certain data from the
database but also to insert, update, and delete data. All rela-
tional databases support Standard Query Language (SQL) as the
language used to communicate with databases. SQL is the sim-
ple formal language you can use to define data structures and
manipulate data. I briefly explain all Java database-related con-
cepts as we use them, which should be enough to help you
understand the material in this section. However, if you need
more information on this topic, consult the appropriate
literature.

SQL support in Groovy is located in the groovy.sql pack-
age. The most important class found there is groovy.sql.Sql.
You use this class to handle the crucial part of database-related
work, such as connection handling and database querying. If
you have modest requirements for database access, this class is
all you need to finish the work. Let’s go through an example
and create a simple database to play with.

Relational databases store data in tables, where each table is
a collection of rows, and each row in a table contains the same
fields. Our database has only one simple table, users, where
each row contains data for one specific user (ID, username, and
balance in the fields with the appropriate names). You can ini-
tialize this example database with the following SQL script
(groovy.sql):

196 SCRIPTING IN JAVA

-- Uncomment the following lines if you would like to execute
-- this script in MySQL

--create database groovy;
--
--connect groovy;

create table users (
id integer not null auto_increment,
username varchar(128),
balance float,

primary key(id)
);

insert into users (username, balance) values (‘mike’, 250.00);
insert into users (username, balance) values (‘joe’, 123.50);

CHAPTER 5 197

I wrote the examples in this chapter for the MySQL
(www.mysql.com) database server, but any relational database
server with the appropriate JDBC driver can be used. If you
have the MySQL server installed and you want to use it to run
examples from this chapter, type the following on the command
line (make sure you uncomment lines that create and connect to
the database):

$ mysql -u root < groovy.sql

After this, the users table is created in the groovy data-
base. The initialization script inserted two demo users in this
database, so we have a table that looks like this:

ID Username Balance

1 Mike 250.00

2 Joe 123.50

Now let’s write a Groovy script that prints all usernames
from this table (see Listing 5.1).

Listing 5.1 GroovySQL Example
import groovy.sql.Sql

sql = Sql.newInstance(“jdbc:mysql://localhost/groovy”, “com.mysql.jdbc.Driver”)

sql.eachRow(“SELECT * FROM users”) {
println it.username

}

www.mysql.com

For the database we initialized earlier, the preceding script
would print the following:

mike
joe

As you can see, this simple task has a simple solution. First,
we used the static newInstance()method to create a new
groovy.sql.Sql object. Two parameters are needed for this
task:

■ The JDBC URL, which is the platform-independent way
of addressing a database. This URL has the following
format:

jdbc:[subprotocol]:[server]/[databaseName]

In our case, the following URL

jdbc:mysql://localhost/groovy

means that we want to access a MySQL groovy data-
base on the local host.

■ The class name of the JDBC driver, which has to be
present in the classpath.

After that, we called the eachRow() method, which takes
two arguments: A String argument that represents a query to
be issued, and a closure that is executed on every row of the
result. Database operations cannot be simpler than this, and as
we can see, the application developer is not responsible for con-
nection handling anymore because the Sql class handles all
that work. All you should focus on is the business logic defined
in the closure argument.

Now we dig deeper into the groovy.sql.Sql class and
explore all the possibilities it offers through some examples.

groovy.sql.Sql

As mentioned earlier, groovy.sql.Sql is the most important
class of the GroovySQL module. In this section, we see how we
can initialize this class, use it to issue database queries, and
work with some advanced concepts, such as prepared state-
ments, stored procedures, and transactions.

198 SCRIPTING IN JAVA

OBJECT CREATION

As Listing 5.1 showed, one way to obtain an instance of the
Sql object is through the newInstance() method. This method
has several signatures, and they accept different parameters,
allowing developers to use this method according to their needs
and habits. Listing 5.2 shows different calls to this method.

CHAPTER 5 199

Listing 5.2 SQL Object Creation Alternatives
import groovy.sql.Sql
import java.util.Properties

sql1 = Sql.newInstance(“jdbc:mysql://localhost/groovy”
, “com.mysql.jdbc.Driver”)

sql2 = Sql.newInstance(“jdbc:mysql://localhost/groovy”, “root”, “”
, “com.mysql.jdbc.Driver”)

Properties properties = new Properties()
properties.put(“username”, “root”)
properties.put(“password”, “”)
sql3 = Sql.newInstance(“jdbc:mysql://localhost/groovy”, properties

, “com.mysql.jdbc.Driver”)

The username and password of the database account could
be passed to the newInstance() method as arguments, or along
with other properties using the java.util.Properties object.

The JDBC driver class name can also be defined using the
loadDriver() method, in which case it should not be passed to
the newInstance() method (see Listing 5.3).

Listing 5.3 The Sql.loadDriver() Method
import groovy.sql.Sql
import java.util.Properties

Sql.loadDriver(“com.mysql.jdbc.Driver”)

sql1 = Sql.newInstance(“jdbc:mysql://localhost/groovy”)

sql1 = Sql.newInstance(“jdbc:mysql://localhost/groovy”, “root”
, “”)

Properties properties = new Properties()
properties.put(“username”, “root”)
properties.put(“password”, “”)
sql3 = Sql.newInstance(“jdbc:mysql://localhost/groovy”

, properties)

In all these cases, the appropriate JDBC driver must be in
the classpath.

Another method for obtaining an instance of the Sql
class is through its constructor. This approach is more suitable
in cases when you want to work with existing java.sql.
Connection objects. A common example is a script that is part
of a larger Java application using some kind of connection
pool. Database connections are an expensive commodity, and
are usually cached in some kind of pool so that they can be
shared. The connection is then pulled out of the pool and
passed to the script.

Listing 5.4 represents a somewhat simplified scenario where
the Java class initiates a connection, calls the Groovy script to
do database-related work, and gets the results from it.

200 SCRIPTING IN JAVA

Listing 5.4 Initializing the Sql Object with a Connection—Java Class
import groovy.lang.Binding;
import groovy.lang.GroovyShell;

import java.io.File;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;

public class JDBCExample {

public static void main(String args[]) {
Connection con = null;

try {
Class.forName(“com.mysql.jdbc.Driver”).newInstance();
con = DriverManager.getConnection(

“jdbc:mysql://localhost/groovy”,
“root”, “”

);

Binding binding = new Binding();
binding.setVariable(“connection”, con);
GroovyShell shell = new GroovyShell(binding);
String returnValue = (String)shell.evaluate(

new File(“jdbc_example.groovy”)
);

System.out.println(“Return value=” + returnValue);
System.out.println(binding.getVariable(“result”));

} catch(Exception e) {
System.err.println(“Exception: “ + e.getMessage());

} finally {
try {

if(con != null)
con.close();

} catch(SQLException e) {}
}

}
}

CHAPTER 5 201

Listing 5.4 Continued

The jdbc_example.groovy script could look like that
shown in Listing 5.5.

Listing 5.5 Initializing the Sql Object with a Connection—
Groovy Script
import groovy.sql.Sql

if (connection == null) {
result = null
return “No valid connection provided”

}

sql = new Sql(connection)
result = “Usernames\n————-\n”
sql.eachRow(“SELECT * FROM users”) {

result += “${it.username}\n”
}

return “Success”

If we now execute the Java program from Listing 5.4, we
should get the following result:

Return value=Success
Usernames
————-
mike
joe

The DataSource class was introduced in the JDBC 2.0
Optional Package. Its purpose is to provide an easier and more
generic means for obtaining a Connection object. This class is
often used with the Java Naming and Directory Interface (JNDI),
which provides a global memory to store and look up configu-
ration objects. In a typical scenario, an application uses JNDI to
look up a DataSource object and use that object to create a
connection.

If you use JNDI and DataSources, you can pass an instance
of the javax.sql.DataSource class to the groovy.sql.Sql

NOTE

Note that the
returned result indi-
cates the status of
the script execution.
Actual database
data was bound to
the result variable.

constructor. In this case, the example application from Listing
5.4 could be changed so that it uses a JNDI lookup for a data-
source and passes it to the script, which then initiates an Sql
object with it. The Groovy script could also be used to look up
an appropriate DataSource object (see Listing 5.6).

Listing 5.6 Creating an Sql Object with DataSource
import javax.sql.DataSource
import groovy.sql.Sql

InitialContext ctx = new InitialContext()

DataSource ds = (DataSource) ctx.lookup(“jdbc/MySQLDB”)

Sql = new Sql(ds)

DATABASE QUERIES

As you probably know, the SQL language provides an interface
between developers and relational databases. A developer
selects, inserts, updates, and deletes data in a database by issu-
ing queries written in SQL.

Let’s now focus on details of how the groovy.sql.Sql
class could be used to issue database queries in an easy way.

eachRow. As we saw in our starting example, the
eachRow() method is used to issue SELECT queries to the data-
base. Besides regular strings, the groovy.lang.GString object
can be used to define queries. GStrings, as we saw in Chapter 4,
“Groovy,” are used to make it easier to embed Groovy expres-
sions into texts. Listing 5.7 provides an example.

202 SCRIPTING IN JAVA

Listing 5.7 The eachRow() Method and GString Query Parameters
import groovy.sql.Sql
import java.util.Properties

balance = 200

sql = Sql.newInstance(“jdbc:mysql://localhost/groovy”
, “com.mysql.jdbc.Driver”)

sql.eachRow(“SELECT * FROM users WHERE balance > ${balance}”) {
println it.username

}

This modified version of the starting example selects only
users with a balance above some threshold value (200 in this
case). It prints the following:

mike

because this is the only user who matches this criterion.

The important thing to learn from this example is that we
can embed values directly into the query string.

One more way to embed variables into the query is to use
lists, as shown in Listing 5.8.

Listing 5.8 The eachRow() Method and List Query Parameters
import groovy.sql.Sql
import java.util.Properties

balance = 200

sql = Sql.newInstance(“jdbc:mysql://localhost/groovy”
, “com.mysql.jdbc.Driver”)

params = [100, 200]

sql.eachRow(“SELECT * FROM users \
WHERE balance > ? AND balance < ?”

, params) {
println it.username + “ “ + it[2]

}

If a list is passed to the method, each ? character would be
replaced with the next element of the list, going from left to
right. So this method actually issues the following query:

SELECT * FROM users WHERE balance > 100 AND balance < 200

As this example shows, you could access columns in the
result using both the GroovyBeans syntax (referencing the col-
umn name) and the list syntax (referencing the column index).
This example prints the following:

joe 123.5

CHAPTER 5 203

executeUpdate. To update, delete, or insert database data,
the executeUpdate() method is used. Now it’s time to finish
the example from Chapter 4 that handles comma-separated
value (CSV) files (see Listing 5.9).

204 SCRIPTING IN JAVA

Listing 5.9 The executeUpdate() Method and CSV Files
import java.io.File
import groovy.sql.Sql

sql = Sql.newInstance(“jdbc:mysql://localhost/groovy”
, “com.mysql.jdbc.Driver”)

new File(‘foo.csv’).splitEachLine(‘,’) {
it.each{

println “name=${it[0]} balance=${it[1]}”
result = sql.executeUpdate(

“INSERT INTO users (username, balance) \
VALUES (${it[0]},${it[1]})”

)
println “${result} line has been added”

}
}

As mentioned earlier, the splitEachLine() method would
return a list of the lines with another list for the values of each
line. Now the executeUpdate() method is used to issue the
INSERT queries to the database. For the foo.cvs file, that looks
like this:

dejan,320.00
alex,640.23

The script would issue the following queries:

INSERT INTO users (username, balance) VALUES (‘dejan’, 320.00)
INSERT INTO users (username, balance) VALUES (‘alex’, 640.23)

This method returns a number of modified rows, which are
then printed on the console window:

name=dejan balance=320.00
1 lines has been added
name=alex balance=640.23
1 lines has been added

In this example, we used the executeUpdate() method
with the groovy.lang.GString argument. The same argument
signatures that apply for the eachRow() method stand here too.
Because the it closure variable is already a list, we could use
more convenient syntax to issue queries:

result = sql.executeUpdate(
“INSERT INTO users (username, balance) values (?, ?)”
, it

)

execute. In situations when you are not sure whether the
query is of the SELECT or the INSERT/UPDATE/DELETE type, you
should use the execute() method, just as with the plain JDBC
calls. This method returns true when the query has selected
some values from the database, and false otherwise. See List-
ing 5.10 for an example.

CHAPTER 5 205

Listing 5.10 The execute() Method
import groovy.sql.Sql

sql = Sql.newInstance(“jdbc:mysql://localhost/groovy”
, “com.mysql.jdbc.Driver”)

queries = [
“INSERT INTO users (username, balance) values (‘mod’, 112.0)”,
“SELECT * FROM users WHERE username = ‘mod’”
]

queries.each {
result = sql.execute(it)
if (!result)

println “${sql.getUpdateCount()} line has been modified”
else

println “Selected results”
}

As you can see, you can use the getUpdateCount() method
to retrieve the number of modified rows in the second case, but
unfortunately there is no method for obtaining the result set for
the SELECT type of queries. So the script prints the following
text:

1 line has been modified
Selected results

This is an unpleasant surprise, which could restrict efficient
use of this method. Hopefully, this problem will be corrected
soon.

PREPARED STATEMENTS

When a list is passed to one of these methods, a prepared state-
ment is compiled and executed on the database. In any other
case, a regular SQL statement is executed.

Prepared statements represent the ability to compile the SQL
statement once and then to use it many times with different
parameters. With prepared statements, you place a placeholder
(a ? character) in your SQL statements and then supply the
value for it before you execute the statement. With this
approach, you can gain both performance and security advan-
tages over plain SQL statements.

Let’s see how they can improve the security of our applica-
tion. Prepared statements separate SQL logic from data. When
using the plain SQL statement, you have to be careful to verify
the data received from the user because malicious data can
change your statement’s logic. Take, for example, a case where
you have to execute the following query to log in the user:

SELECT * FROM users WHERE username = ‘${username}’
AND password = ‘${password}’

The user supplies the username and password variables. If
he enters the value admin’ -- for the username variable and
123 for the password, the actual query that would be executed is

SELECT * FROM users WHERE username = ‘admin’
-- AND password = ‘123’

Because -- designates the beginning of a comment in SQL,
the query becomes simply

SELECT * FROM users WHERE username = ‘admin’

and the user has been granted the administration privileges to
the application. You can prevent this behavior with appropriate

206 SCRIPTING IN JAVA

argument escaping, but the point is that this kind of attack does
not affect the prepared statements because their logic cannot be
changed after they have been compiled. This kind of attack is
called an SQL injection attack, and using the lists to pass
parameters to queries can prevent them from occurring.

STORED PROCEDURES

Stored procedures provide a way to move certain parts of the
application logic to the database server. Basically, they are a set
of SQL statements powered with basic control and flow state-
ments. Stored procedures are stored on the database server,
which means they can improve the performance of tasks that do
a lot of database work. Most of the database servers available
today support stored procedures, but their syntax and capabili-
ties may vary a great deal. Because of that, you have to be
careful how you use them in cases where you want to create a
database-independent solution.

The call() method is used to execute stored procedures on
the database server. The same problem exists as with the exe-
cute() method—in other words, only the updates can be per-
formed, and there is no way to get the results from the
procedure at the moment.

Now let’s see one simple use case for stored procedures.
This example is written for MySQL Server 5.0 (note that stored
procedures in MySQL are not supported for versions prior to
this one). Also, stored procedure syntax is different from one
vendor to the next, so before you try to execute this example
on your database server, consult the server’s documentation. To
begin, we create a simple stored procedure called simpleproc
that increases by 10% the balance for all users with a balance
above some limit (see Listing 5.11).

Listing 5.11 Stored Procedure
delimiter //

CREATE PROCEDURE simpleproc (IN above INT)
BEGIN

UPDATE users SET balance = balance * 1.1
WHERE balance > above;

END//

CHAPTER 5 207

The script that actually calls this procedure is similar to all
the previous examples in this section (see Listing 5.12).

Listing 5.12 Stored Procedure Call
import groovy.sql.Sql
import java.util.Properties

sql = Sql.newInstance(“jdbc:mysql://localhost/groovy”
, “com.mysql.jdbc.Driver”)

sql.call(“{call simpleproc(?)}”, [500])

The script calls the procedure with an input parameter value
of 500. As with other methods, parameters can be passed using
a GString or a list (as in this example).

TRANSACTIONS

Database transactions are an important data management con-
cept. You should use transactions in cases when you want every
query from a set of SQL statements to be executed, or when you
want none of them to be executed (a property called atomicity).
When we start a database transaction, no results are reflected to
the database data until we commit it. If we roll back a transac-
tion, results of that transaction’s SQL statements execution are
dropped.

The groovy.sql.Sql class supports transaction handling,
but there is one important issue to take care of. JDBC connec-
tions are created in the autocommit mode by default. That
means the transaction is committed after every query, and we
have no control over a transaction’s behavior. So to use trans-
actions with the Sql class, we have to explicitly turn off this
feature. Look at Listing 5.13.

Listing 5.13 Transactions
import groovy.sql.Sql

sql = Sql.newInstance(“jdbc:mysql://localhost/groovy”
, “com.mysql.jdbc.Driver”)

sql.getConnection().setAutoCommit(false)
sql.executeUpdate(“INSERT INTO users (username, balance) \

VALUES (‘Mitch’, 212)”
)

sql.rollback()

208 SCRIPTING IN JAVA

In this example, we set the autocommit property of the
Connection object to false, executed the query, and rolled
back the transaction. As a result, no data is inserted into the
database.

groovy.sql.DataSet

This class is an extension of the groovy.sql.Sql class, and it
could be interesting to developers who don’t want to mess with
SQL. It provides the basic interface for handling database tables,
which is more than enough for basic operations on a single
table. Listing 5.14 provides an example.

Listing 5.14 Introductory DataSet Example
import groovy.sql.Sql

sql = Sql.newInstance(“jdbc:mysql://localhost/groovy”
, “com.mysql.jdbc.Driver”)

users = sql.dataSet(‘users’)
users.add(username : “Eric”, balance: 255.00)

Listing 5.14 adds a row in the users table with the values
“Eric” and 255 for the username and balance columns,
respectively. This example is equivalent to the following Groovy
script:

import groovy.sql.Sql

sql = Sql.newInstance(“jdbc:mysql://localhost/groovy”
, “com.mysql.jdbc.Driver”)

sql.executeUpdate(“INSERT INTO users (username, balance) \
VALUES (‘Eric’, 255.00)”)

However, as we see, the developer does not have to define
the SQL query with the groovy.sql.DataSet class. Datasets are
definitely an interesting option for junior developers who are not
familiar with the SQL language, and for senior developers per-
forming various tasks on a single table (such as saving a map
into the table without explicit conversion to the SQL query).

CHAPTER 5 209

OBJECT CREATION

The DataSet object could be created by supplying a String
parameter to the dataSet() method of the groovy.sql.Sql
class (as we saw in Listing 5.14). Alternatively, the
java.lang.Class parameter could be passed. If this were the
case, the name of the class (without the package name) would
be used for table identification. The name of the class is lower-
cased before the use. So, if you have defined the Users class,
for example, you could create a DataSet object for the users
table with the following code snippet:

usersClass = new Users()
users = sql.dataSet(usersClass.getClass())

Or, with just this:

users = sql.dataSet(net.scriptinginjava.ch5.Users)

Another approach for creating datasets is to use their con-
structors. The method signatures are the same as in the earlier
examples; just the appropriate groovy.sql.Sql object should
be passed:

users = new DataSet(sql, “users”)
users1 = new DataSet(sql, net.scriptinginjava.ch5.Users)

If you want to use this approach, it is often useful to have
the Users class extend groovy.sql.DataSet. That way, you
can have the Users class defined like this:

package net.scriptinginjava.ch5;

import groovy.sql.Sql;

public class Users extends groovy.sql.DataSet {

public Users(Sql sql) {
super(sql, Users.class);

}

}

210 SCRIPTING IN JAVA

And you can initialize it with the following code:

Sql sql = Sql.newInstance(
“jdbc:mysql://localhost/groovy”

, “com.mysql.jdbc.Driver”);
Users users = new Users(sql);

WORKING WITH DATASETS

In Listing 5.14, we showed how data from the map can be
inserted into a database table. A few additional helper methods
in this class enable easy data manipulation without using any
SQL.

The each() method is a substitute for the eachRow()
method of the groovy.sql.Sql class. Listing 5.15 provides an
example.

Listing 5.15 The each() Method
import groovy.sql.Sql

sql = Sql.newInstance(“jdbc:mysql://localhost/groovy”
, “com.mysql.jdbc.Driver”)

users = sql.dataSet(‘users’)

users.each() {
println “${it.username} ${it.balance}”

}
println users.getSql()

Because this class operates on one table (the whole table, by
default) no queries should be passed. The closure argument
would be applied to every row in the table. You can get the
actual query that has been executed with the getSql() method,
which in this case would return the following:

select * from users

If you need a subset of table data, you can use one of two
methods: createView() or findAll(). These methods do the
same thing. Listing 5.16 is an example of the findAll()
method.

CHAPTER 5 211

Listing 5.16 The findAll() Method
import groovy.sql.Sql

sql = Sql.newInstance(“jdbc:mysql://localhost/groovy”
, “com.mysql.jdbc.Driver”)

users = sql.dataSet(‘users’)
topUsers = users.findAll{ it.balance > 300 }

topUsers.each() {
println “${it.username} ${it.balance}”

}

println topUsers.getSql()

Listing 5.16 selects all users from the users table who have
a balance above 300.

As I mentioned, datasets are handy for simple tasks and for
developers who are not used to SQL yet.

Groovlets

The Servlet API provides a method for building Web applica-
tions in Java. As for other Java technologies presented in this
chapter, I do not cover this topic in detail, but give only the
basic information needed to introduce you to the concept.

To provide an interaction with the servlets-enabled Web
server (servlet container), the Servlet API defines the
javax.servlet.Servlet interface. You can use implementa-
tions of this interface to write Java code executed at users’
requests. For that purpose, this interface defines the following
method:

public void service(ServletRequest request
, ServletResponse response)

throws ServletException, IOException

This method is called by a servlet container. The request
parameter represents an object that contains data specific to a
certain HTTP request. On the other hand, the response object is
used to pass data back to the user.

We have to initialize and register a servlet inside the
servlet container, if we want to use it. We do this in the

212 SCRIPTING IN JAVA

WEB-INF/web.xml file of the Web application, as we see in
a moment.

To run code examples from this section, you need a servlet
container. The process of installing the Jetty (http://jetty.mort-
bay.org) servlet container is described in the “Jetty” sidebar, but
you can use any appropriate container of your choice.

CHAPTER 5 213

JETTY

If you decide to use the Jetty servlet container to run the code examples in this section,
you need to install Jetty on your system. To do so, follow these steps:

1. Download Jetty from http://jetty.mortbay.org.

2. Extract the archive in the local directory (for example, /opt/jetty on UNIX sys-
tems or C:\jetty on Windows platforms).

3. Set the JETTY_HOME environment variable to point to this directory (for example,
export JETTY_HOME=/opt/jetty).

4. To run the server, go to the JETTY_HOME directory and type java -jar start.jar.

5. To stop the server, go to the JETTY_HOME directory and type java -jar stop.jar.

This demo is a simple Web application that consists of only
one Groovy script (Groovlet) and the necessary files used to
build and deploy the application (see Figure 5.1).

FIGURE 5.1 Web application structure

A specialized servlet that compiles and executes Groovy
scripts is located in the groovy.servlet.GroovyServlet class.
To use this servlet you have to register it in the WEB-
INF/web.xml configuration file of your application. Also, you
need to ensure all URLs with the .groovy extension (or any

http://jetty.mortbay.org
http://jetty.mortbay.org
http://jetty.mortbay.org

other extension of your choice) are processed by this servlet.
The web.xml file could look like the one in Listing 5.17.

214 SCRIPTING IN JAVA

Listing 5.17 Groovlet Deployment Descriptor
<?xml version=”1.0” encoding=”ISO-8859-1”?>

<!DOCTYPE web-app
PUBLIC “-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN”
“http://java.sun.com/j2ee/dtds/web-app_2_2.dtd”>

<web-app>
<servlet>
<servlet-name>Groovy</servlet-name>
<servlet-class>groovy.servlet.GroovyServlet</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>Groovy</servlet-name>
<url-pattern>*.groovy</url-pattern>
</servlet-mapping>
</web-app>

In this configuration, the GroovyServlet handles all
Groovy scripts and compiles them at the time of first execution.
The generated bytecode will be cached and executed on every
future call. If that script’s code changes, it will be recompiled.
Because of this compilation process, the appropriate groovy and
asm JAR files must be included in the classpath. You can dis-
tribute them with your Web application in the WEB-INF/lib
directory. On the other hand, if you want to enable Groovlets
for every application of your server, just copy them to the
appropriate container directory (JETTY_HOME/ext in the case of
Jetty).

After this, you can put Groovy scripts anywhere around
your application, and they will be evaluated.

As with other servlet extensions, Groovlets provide direct
mapping of important servlet context variables to scripts, so the
following variables are available in them:

■ out—An output writer used to send results back to the
client’s browser. This variable is actually returned by the
getWriter() method of the HttpServletResponse
class.

■ request—The actual HttpServletRequest object.

■ session—Represents a session object from the request.
It is an instance of the HttpSession class returned by
the getSession(true) call of the request object from
above.

■ application—An instance of the
javax.servlet.ServletContext class.

Now, let’s write an example script.

import java.util.Date

if (session == null) {
session = request.getSession(true);

}

if (session.counter == null) {
session.counter = 1

}

println “””
<html>

<head>
<title>Groovy Servlet</title>

</head>
<body>

Hello, ${request.remoteHost}: ${session.counter}! ${new
Date()}

</body>
</html>
“””
session.counter = session.counter + 1

This example shows how to use the implicit variables men-
tioned earlier. But more importantly, it shows the real value of
Groovy’s string enhancements, explained in Chapter 4. You can
define the entire HTML content of the page as a string with
embedded values. Groovlets and Groovy strings create a power-
ful environment for generating dynamic Web content, but as we
see in a moment, templates have their benefits, and Groovy
supports them too.

Now it is time to deploy our application. We use Ant as a
build tool and define both build.properties and build.xml
files.

build.dir=build
src.dir=src

CHAPTER 5 215

Directory that contains Groovlets
groovy.dir=${src.dir}/groovy

Directory that contains web.xml
web.dir=${src.dir}/web

Path to WAR that will be produced
war.file=${build.dir}/${ant.project.name}.war

Where the WAR should be deployed
webapps.dir=${env.JETTY_HOME}/webapps

JARs that must be in the WAR
asm.jar=${env.GROOVY_HOME}/lib/asm-1.4.1.jar
groovy.jar=${env.GROOVY_HOME}/lib/groovy-1.0-beta-6.jar

The build.properties file defines the basic variables
needed for the building process, such as the location and name
of the Web application archive, the deployment directory, and
so on. You need to adapt this file to your local configuration:

<project name=”groovlet” default=”deploy”>
<property environment=”env”/>
<property file=”build.properties”/>

<target name=”prepare”>
<mkdir dir=”${build.dir}”/>

</target>

<target name=”war” depends=”prepare”
description=”creates WAR file”>
<war destfile=”${war.file}”

webxml=”${web.dir}/web.xml”>
<fileset dir=”${groovy.dir}”/>
<lib file=”${groovy.jar}”/>
<lib file=”${asm.jar}”/>

</war>
</target>

<target name=”deploy” depends=”war”
description=”deploys WAR file”>
<delete dir=”${webapps.dir}/${ant.project.name}”/>
<delete file=”${webapps.dir}/${war.file}”/>
<copy file=”${war.file}” todir=”${webapps.dir}”/>

</target>

</project>

This XML file contains a few basic tasks usually used for
this kind of application. To deploy the project, go to the appli-
cation’s root directory and type the following:

ant

216 SCRIPTING IN JAVA

If everything was set right, the application should be
deployed to your server. To test your Groovlet, point your Web
browser to the appropriate location, such as:

http://localhost:8080/groovlet/first.groovy

You should get a response like the one shown in Figure 5.2.

CHAPTER 5 217

FIGURE 5.2 Groovlet response

Now that we have our application up and running, we can
experiment further with it. As I mentioned, Groovy scripts do not
have to have the .groovy extension, nor can GroovyServlet
handle only files with that extension. To demonstrate this, we can
rename the first.groovy script to first.page and change the
appropriate line in the web.xml to the following:

<url-pattern>*.page</url-pattern>

If we now redeploy our application, the script can be
accessed via the following URL:

http://localhost:8080/groovlet/first.page

In this way, you can hide the technology used to implement
the application (Groovy in our case).

Besides the basic context variables mapped directly to the
script, all arguments passed with the request are bound to script
variables as well. We can modify the example shown in Listing
5.7 that gets all users with a balance above some threshold

http://localhost:8080/groovlet/first.page

value. We provide this script with the ability to be evaluated
using the Web browser and return the result formatted as an
HTML document (see Listing 5.18).

Listing 5.18 Groovlet Example
import groovy.sql.Sql
import java.util.Properties

if (above == null) {
throw new Exception(‘above variable must be submitted’)

}

sql = Sql.newInstance(“jdbc:mysql://localhost/groovy”
, “com.mysql.jdbc.Driver”)

out.println(“””
<html>
<head>
<title>Groovy Servlet</title>
</head>
<body>
<table>
EOS)

sql.eachRow(“SELECT * FROM users WHERE balance > ${above}”) {
out.println(“<tr><td>${it.username}</td></tr>\n”)

}

out.println(“””
</table>
</body>
</html>
EOS)

Here, we check whether the above variable has been set,
and if it has, the HTML document with the users’ information is
displayed. So if you go to the following URL:

http://localhost:8080/groovlet/balance.page?above=500

you receive your desired results (see Figure 5.3).

If you don’t submit the above parameter, and instead sub-
mit something like this:

http://localhost:8080/groovlet/balance.page

you get an “Internal server error” page (HTTP status code 500)
similar to the one shown in Figure 5.4.

218 SCRIPTING IN JAVA

FIGURE 5.3 Groovlet response for valid URL

CHAPTER 5 219

FIGURE 5.4 Groovlet response for invalid URL

This is general GroovyServlet behavior, which returns the
status code 500 if any exception is thrown during the script
evaluation. A status code of 400 is returned if requested script is
not found.

We come back to this example in the “GroovyMarkup” sec-
tion later in this chapter and enable this Groovlet to return an
XML result. That way, we create a simple Web service solution
with Groovy.

Because many Model/View/Controller (MVC) frameworks
are available to Java developers (for example, Spring; go to
www.springframework.org for more information) that provide a
powerful environment for development of Web applications in
Java, I don’t recommend that you use Groovlets to develop
these kinds of applications from scratch. Instead, use it to lever-
age your efforts where you find it appropriate.

www.springframework.org

Groovy Templates

Template engines can ease the task of formatting and reusing
large chunks of text. Template engines are often used in the
Web development environment. Usually, your Web application
has to execute some code, which can retrieve data from the
database, for example, and create an HTML document that the
Web server returns to the user. To facilitate this task of HTML
document creation, Java developers use various template
engines, such as JSP and Velocity. These tools allow you to cre-
ate a file (template) with placeholders where your data is sup-
plied. These placeholders can also contain the code that is
executed when the template is evaluated. After the template has
been evaluated, the placeholders are substituted with the data
values, and the code execution results. That way, we have cre-
ated a new document from a template.

One additional important use of template engines is the sep-
aration of the application’s business logic and data presentation.
Take the last balance.page Groovlet, for example. To begin, we
have both aspects here. The code that checks whether needed
parameters were submitted and then gets data from the data-
base represents the business logic. But also, this data is format-
ted using GStrings and is sent back to the browser. A better
solution, as we see in a moment, is to create two files: the script
that contains only the business logic and the template that for-
mats data supplied by the script. This way, we have a separation
of these concerns, and both designers and developers can work
on the files they’re interested in.

You can find template support for Groovy in the
groovy.text package. This package contains the abstract
groovy.text.TemplateEngine class and the groovy.text.
Template interface. They make it possible to plug any template
engine into Groovy (such as Velocity or Freemarker). No matter
what engine is used, the API for the Groovy developer remains
the same.

Besides that, Groovy offers a template engine implementa-
tion located in the groovy.text.SimpleTemplateEngine class.
This engine provides syntax similar to JSP 2.0 and supports the
following expressions for embedding into the template:

220 SCRIPTING IN JAVA

■ <% statements %>—Executes any valid Groovy
statements

■ <%= expression %>—Embeds a Groovy expression
into the template

■ ${expression}—The alternative way to embed an
expression into a template

Let’s now rewrite the balance.page Groovlet with template
support (balance_new.page; see Listing 5.19).

CHAPTER 5 221

Listing 5.19 Groovy Template Support
import groovy.sql.Sql
import groovy.text.Template
import groovy.text.TemplateEngine
import groovy.text.SimpleTemplateEngine
import java.io.File

if (above == null) {
throw new Exception(‘above variable must be submitted’)

}

sql = Sql.newInstance(“jdbc:mysql://localhost/groovy”
, “com.mysql.jdbc.Driver”)

users = []

sql.eachRow(“SELECT * FROM users WHERE balance > ${above}”) {
users << it.username

}

TemplateEngine engine = new SimpleTemplateEngine()
Template template = engine.createTemplate(

new File(application.getRealPath(“/balance_new.template”))
)
result = template.make(title:”New Balance page”, users:users

, footer:”©Groovy Templates”)

result.writeTo(out)

As we see, the Groovlet now contains just the application
code. It checks whether parameters have been supplied, makes a
connection to the database, and gets the results. After this, a
template is loaded and evaluated.

The groovy.text.TemplateEngine abstract class has a
createTemplate() method that accepts either a File, URL,
String, or Reader class instance. In this example, we provided
a balance_new.template file located in the root directory of

the Web application. We used the application context variable
to get the actual path to the file.

In the groovy.text.Template interface, there are two sig-
natures for the make() method. If you don’t pass arguments to
it, the make() method just evaluates the template and returns
the object that implements the groovy.lang.Writable inter-
face. You can bind variables to the template by passing a map
to the make() method. In this example, we provided the title
variable (title), the list of users (users), and the text to be
printed as the page footer (footer).

The groovy.lang.Writable interface defines the
writeTo(java.io.Writer writer) method used to write itself
to the given writer. This interface is used for objects capable of
writing themselves to the textual stream, in a more efficient
way than just creating their string representation using the
toString() method.

Now let’s look at the balance_new.template (see Listing
5.20).

Listing 5.20 Template Example
<html>
<head>
<title><%= title %></title>
</head>
<body>
<table>
<%
users.each {

out.println “<tr><td>${it}</td></tr>”
}
%>
</table>
${footer}
</body>
</html>

This template, as is the case with any other template, con-
tains just the data to be printed and expressions defined by the
syntax explained earlier.

If you try to execute this Groovlet via the following URL:

http://localhost:8080/groovlet/balance_new.page?above=500

expect to get a result similar to that generated by the example
shown in Listing 5.18. But now, the code is organized better, the

222 SCRIPTING IN JAVA

template can be reused among scripts, and junior developers or
web designers can change templates without affecting the appli-
cation’s behavior.

One more application for which templates are commonly
used is sending HTML-formatted e-mails from standalone appli-
cations. I leave you this as an exercise, using techniques you
have learned thus far.

GroovyMarkup

We live in a markup world, and markup languages are being
used in nearly every Java application. The most popular markup
languages used today are XHTML and XML. XML is particularly
popular and is used for various tasks from data transfer among
applications to data storage in human-readable form.

This capability is crucial to the existence of many Java
tools whose purpose is to provide Java programmers with the
ability to manipulate markup (especially XML) documents.
These tools range from standard XML parsers that implement a
Simple API for XML (SAX) or DOM interface, to libraries that
enable higher-level mapping between Java objects and XML
documents, such as Castor (www.castor.org) and JAXB
(http://java.sun.com/xml/jaxb/). These technologies are used
heavily, so Groovy tries to make it easy for developers to use
them. Groovy introduces a different paradigm from the libraries
usually seen in Java applications.

Groovy uses closures and named parameters to create a uni-
versal syntax for manipulation of markup data. You then can
use this syntax with various builder objects to make a represen-
tation of your object’s structure in a desired markup format.

Many builder classes are included in Groovy by default,
such as the following:

■ MarkupBuilder—Serializes your objects to XML and
XHTML

■ SaxBuilder—Can be used with existing SAX handlers

■ DOMBuilder—Creates and parses DOM documents

CHAPTER 5 223

www.castor.org
http://java.sun.com/xml/jaxb/

Also, GroovyMarkup syntax has been proven valuable for
manipulation of domain-specific object structures, such as Ant
files and Swing user interfaces. For these purposes, you can find
the following builder classes in Groovy:

■ AntBuilder—Used to create Ant build files

■ SwingBuilder—Used to create Swing user interfaces

In this section, we cover GroovyMarkup syntax and all the
builders currently supported. Also, we explain the basic princi-
ples of builder classes and write a simple builder.

groovy.xml.MarkupBuilder

This class is used to generate XML or XHTML markup docu-
ments. Listing 5.21 generates a simple XML document and
prints it to the standard output.

Listing 5.21 Introductory MarkupBuilder Example
import groovy.xml.MarkupBuilder

xml = new MarkupBuilder()

xml.users() {
user(name:’dejanb’, balance:200)
user(“mike”)

}

This script produces the following output:

<users>
<user name=’dejanb’ balance=’200’ />
<user>mike</user>

</users>

As you can see, the syntax for generating XML documents
is simple. A call to the method of the MarkupBuilder class pro-
duces the tag with the same name. If you supply a Map argu-
ment to that call, its elements represent arguments of that tag.
If an Object argument is passed, it is used as a value for the
tag. Theoretically, you could generate tags that have both argu-
ments and values. The child tags are generated in the closure
argument of the current tag.

224 SCRIPTING IN JAVA

In addition to easy XML generation, the real beauty of this
approach is you can have any valid Groovy code inside these
closures. To demonstrate this, let’s create an example that
includes all the Groovy extensions we have learned thus far.
Listing 5.22 is an extension of the balance_new.page Groovlet
(created in Listing 5.19) that can return both XML and XHTML
content.

CHAPTER 5 225

Listing 5.22 Advanced Groovy Programming Example
import groovy.sql.Sql
import groovy.text.Template
import groovy.text.TemplateEngine
import groovy.text.SimpleTemplateEngine
import groovy.xml.MarkupBuilder
import java.io.File

if (above == null) {
throw new Exception(‘above variable must be submitted’)

}

sql = Sql.newInstance(“jdbc:mysql://localhost/groovy”
, “com.mysql.jdbc.Driver”)

users = []

sql.eachRow(“SELECT * FROM users WHERE balance > ${above}”) {
users << it.username

}

if (type == ‘xml’) {
xml = new MarkupBuilder(out)
xml.users([‘above’:above]) {

users.each() {
xml.user(it)

}
}

} else {
TemplateEngine engine = new SimpleTemplateEngine()
Template template = engine.createTemplate(new File(

application.getRealPath(“/balance_new.template”)
))
result = template.make(title:”New Balance page”

, users:users, footer:”©Groovy Templates”)
result.writeTo(out)

}

Here, we have added just a few lines of code and enabled
our Groovlet for XML-via-HTTP Web services. Standard calls to
the script result in the same output as before, but if you submit
a type parameter with the xml value, such as

http://localhost:8080/groovlet/balance_new.html
?above=500&type=xml

an XML document like the following is returned to the user via
HTTP. This is a quick and easy way to create a simple Web
service.

<users above=’500’>
<user>alex</user>
<user>eric</user>

</users>

Note also that no explicit print call should be made to
these objects. If the object was created with an empty construc-
tor, it would be printed on standard output after the last closure
was executed. If you want a different stream to be used, create
the object with that stream as the constructor’s argument. This
was the case with the xml object created with the out construc-
tor argument in the earlier example.

Because XHTML is sometimes thought of as a sublanguage
of XML, there is nothing to stop us from using the Markup-
Builder class to create XHTML documents as well. Take a look
at Listing 5.23, for example.

Listing 5.23 XHTML Markup Example
import groovy.xml.MarkupBuilder

users = [“mike”, “joe”]

doc = new MarkupBuilder()
doc.html() {

head() {
title(“New Balance page”)

}
body() {

table() {
users.each() { user |

doc.tr() {
doc.td(user)

}
}

}
}

}

The code in Listing 5.23 produces the same output as the
template used in the balance_new.page Groovlet. I find tem-
plates to be a generally more efficient way to generate HTML
because they are more natural and easier to maintain. The

226 SCRIPTING IN JAVA

MarkupBuilder class could find its place in the automatic
HTML generation of Content Management Systems (CMS).

groovy.util.NodeBuilder

This class is used to create generic treelike structures of arbi-
trary objects, as shown in Listing 5.24.

Listing 5.24 NodeBuilder Example
import groovy.util.NodeBuilder

someBuilder = new NodeBuilder()

root = someBuilder.users([“balance”:100]) {
user(“mike”)
user(“joe”)

}

println root

As you can see, the syntax for all builders is the same.
The difference is that this builder returns an instance of the
groovy.util.Node class that represents the root of the created
structure. In this example, we printed this node and the result is
as follows:

users[attributes={balance=100}; value=[user[attributes={};
value=mike], user[attributes={}; value=joe]]]

The Node class provides a few methods you can use to get a
certain child node or to iterate through nodes:

users = root.get(“user”)

users.each() {
println “${it.name()} ${it.value()}”

}

The get() method returns all children nodes with the given
name. In this example, it returns two user nodes defined earlier.
With the name() and value() methods, you can obtain the
name and value of the given node. So, this code snippet would
print the following:

user mike
user joe

CHAPTER 5 227

The great thing about nodes is they can also be accessed
using pathlike syntax, so you can also write the preceding
example in this way:

users = root.user

users.each() {
println “${it.name()} ${it.value()}”

}

You can get attributes using the attributes() method,
which returns a map of attributes. Also, you can use the
attribute(String name) method to get one specified argu-
ment. Another way to obtain an argument is to use the get()
method and provide the @ character before the argument’s
name, as in the following example:

root.attributes().each {
println it

}

println root.attribute(“balance”)
println root.get(“@balance”)

This code snippet prints the value of the balance attribute
of the root node:

100
100

You can also traverse nodes in various ways. To better
understand the methods used for traversing nodes, let’s define a
more complex tree:

builder = new NodeBuilder()

root = builder.users() {
user([“username”:”mike”]) {

order([“item”:”DVD”])
order([“item”:”Book”])

}
user([“username”:”joe”]) {

order([“item”:”Book”])
order([“item”:”CD”])

}
}

228 SCRIPTING IN JAVA

The depthFirst() method returns the list of nodes, with
child nodes placed before other nodes in the same level. So, the
following example:

root.depthFirst().each() {
println “${it.name()} ${it.attributes()}”

}

prints

users [:]
user [username:mike]
order [item:DVD]
order [item:Book]
user [username:joe]
order [item:Book]
order [item:CD]

On the other hand, the breadthFirst() method returns the
list of nodes, but they are ordered by their level in the hierar-
chy. So, all nodes of a certain level are placed before nodes of
the following level in the hierarchy. The following code snippet:

root.breadthFirst().each() {
println “${it.name()} ${it.attributes()}”

}

prints:

users [:]
user [username:mike]
user [username:joe]
order [item:DVD]
order [item:Book]
order [item:Book]
order [item:CD]

You can also traverse through a node’s children using the
standard Java iterator:

it = root.iterator()
while (it.hasNext()) {

println it.next()
}

CHAPTER 5 229

groovy.xml.SaxBuilder

SAX is a popular event-based interface for XML parsers. The
principle of SAX is simple. To use this API, all you do is

■ Write your handler with methods that can be called
when a certain event occurs during parsing.

■ Register your handler to the parser.

■ Start parsing a document.

The MarkupBuilder described earlier can create the XML
document and print it out to the writer defined in the construc-
tor. The SaxBuilder is created to enable the use of existing
SAX handlers on XML documents created with GroovyMarkup
syntax.

For this demo, we need an XML parser. We could use
Xerces (http://xml.apache.org/xerces2-j/), which is Apache’s
XML parser implementation supporting both SAX and DOM
interfaces. Let’s create a simple handler for the purpose of the
SaxBuilder demonstration (see Listing 5.25).

Listing 5.25 SAX Handler Example
package net.scriptinginjava.ch5;

import org.xml.sax.Attributes;
import org.xml.sax.helpers.DefaultHandler;

public class SaxHandler extends DefaultHandler {

public void startDocument() {
System.out.println(“Start document”);

}

public void endDocument() {
System.out.println(“End document”);

}

public void startElement(String uri, String name,
String qName, Attributes atts) {

if (“”.equals(uri))
System.out.println(“Start element: “ + qName);

else
System.out.println(

“Start element: {“ + uri + “}” + name
);

}

public void endElement(String uri, String name
, String qName) {

230 SCRIPTING IN JAVA

http://xml.apache.org/xerces2-j/

if (“”.equals(uri))
System.out.println(“End element: “ + qName);

else
System.out.println(

“End element: {“ + uri + “}” + name
);

}

}

This handler just prints the note on standard output when a
certain event occurs. Events that trigger this handler are the
starting and ending tags for the document and elements being
parsed.

Now let’s write a script that uses this handler to process our
XML document (see Listing 5.26).

Listing 5.26 SaxBuilder
import groovy.xml.SAXBuilder
import net.scriptinginjava.ch5.SaxHandler

builder = new SAXBuilder(new SaxHandler())

builder.users([‘above’:500]) {
user(“Dejan”)
user(“Mike”)

}

This builder is the same as the MarkupBuilder, except
it’s in the constructor. SaxBuilder is initialized with the
org.xml.sax.ContentHandler interface implementation which
is the SaxHandler class defined earlier. As a result, this script
prints out the following result:

Start element: users
Start element: user
End element: user
Start element: user
End element: user
End element: users

Note that SaxBuilder does not trigger the startDocument()
and endDocument() events.

CHAPTER 5 231

Listing 5.25 Continued

groovy.xml.DomBuilder

You can also use Groovy’s markup syntax with DOM docu-
ments. A DomBuilder class enables the parsing and creation of
DOM documents. After a document is created, you can use it in
a standard manner and even access data using the pathlike syn-
tax. Listing 5.27 provides an example.

Listing 5.27 Parsing Documents with DomBuilder
import groovy.xml.DOMBuilder
import java.io.StringReader
import groovy.xml.dom.DOMCategory
import org.apache.xalan.serialize.SerializerToXML

xml = new StringReader(“<html><head><title class=’mytitle’> \
Test</title></head><body><p class=’mystyle’> \
This is a test.</p></body></html>”
)
doc = DOMBuilder.parse(xml)
root = doc.documentElement

elem = DOMCategory.get(root, “head”)
SerializerToXML ser = new SerializerToXML()
ser.init(System.out, null)
ser.serialize(elem)

println “”

use (DOMCategory) {
println root.head

}

In this example, we created a new document using the
StringReader class. Then we parsed it with the
DOMBuilder.parse() method. This parse() method expects
the Reader argument so that it can be used to parse files too.

xml = new FileReader(“test.html”)

The preceding code line gets data from the test.html file
and parses it with the DOMBuilder. After parsing is done, we
have an instance of the org.w3c.dom.Document class, which we
can use just as we would in Java. The interesting thing in this
example is the use of the groovy.xml.dom.DOMCategory class,
which is the helper class used for accessing the document’s ele-
ments. The get() method used earlier is an actual replacement

232 SCRIPTING IN JAVA

for the following code snippet, and it is used to find the ele-
ment with the given name:

NodeList nodeList = root.getChildNodes()
for (node in nodeList) {

if (node instanceof Element) {
Element child = (Element) node
child.hasChildNodes()
if(child.getTagName().equals(“head”)) {

elem = child
break

}
}

}

Now, we can go one step further and apply the use()
method (added to the Object class in Groovy) and access the
nodes with the pathlike syntax. The example shown in Listing
5.27 prints the following:

<head><title class=”mytitle”>Test</title></head>
<head><title class=”mytitle”>Test</title></head>

As you can see, no serializer should be created in the clo-
sure passed to the use() method to print a node on the display.

Along with parsing existing documents, you can use the
DOMBuilder markup class to create these documents as well, as
shown in Listing 5.28.

Listing 5.28 Creating Documents with DomBuilder
import groovy.xml.DOMBuilder
import groovy.xml.dom.DOMCategory

builder = DOMBuilder.newInstance()
root = builder.html {

head {
title(class:”mytitle”, “Test”)

}
body {

p (class:”mystyle”, “This is a test.”)
}

}

use (DOMCategory) {
println root.head

}

CHAPTER 5 233

This example creates a document identical to the document
parsed in Listing 5.27. Also, it uses the DOMCategory class to
serialize the head node.

groovy.xml.Namespace

Often you want to create XML documents with namespaces to
avoid name collisions of elements and attributes. To achieve
this in Groovy, use the groovy.xml.Namespace builder, as
shown in Listing 5.29.

Listing 5.29 Namespace Example
import groovy.xml.*
import groovy.xml.dom.*

builder = DOMBuilder.newInstance()
htmlBuilder = new Namespace(

builder, “http://www.w3.org/TR/REC-html40”, “html”
)

root = htmlBuilder.html {
head {

title(class:”mytitle”, “Test”)
}
body {

p (class:”mystyle”, “This is a test.”)
}

}

use (DOMCategory) {
println root

}

The Namespace builder takes the parent builder, namespace
URL, and namespace prefix to be used as the constructor’s argu-
ments. In this example, we defined the Namespace builder on
top of the DOMBuilder and created the XHTML document. This
script produces the following output:

<html:hmtl>
<html:head>
<html:title class=”mytitle”>Test</html:title>
</html:head>
<html:body>
<html:p class=”mystyle”>This is a test.</html:p>
</html:body>
</html:hmtl>

Each tag now has the prefix (html:) added before the tag
name.

234 SCRIPTING IN JAVA

groovy.util.BuilderSupport

All the builders described thus far extend the
groovy.util.BuilderSupport abstract class. This class defines
a default implementation for most of the methods. It also
defines the following abstract methods:

protected abstract
void setParent(Object parent, Object child);
protected abstract
Object createNode(Object name);
protected abstract
Object createNode(Object name, Object value);
protected abstract
Object createNode(Object name, Map attributes);
protected abstract
Object createNode(Object name, Map attributes
, Object value);

If you want to define a custom builder that enables markup
syntax for your object structure, extend this class and imple-
ment these methods. Let’s now write a simple builder to demon-
strate this process (see Listing 5.30).

CHAPTER 5 235

Listing 5.30 Custom BuilderSupport Implementation (BuilderSupport.groovy)
package net.scriptinginjava.ch5

import groovy.util.BuilderSupport

class CustomBuilder extends BuilderSupport {

IndentPrinter out

public CustomBuilder() {
this.out = new IndentPrinter()

}

protected void setParent(Object parent, Object child) {
}

protected Object createNode(Object name) {
out.println “[${name}]”
return name

}

protected Object createNode(Object name, Object value) {
out.println “[${name} = ${value}]”
return name

}

protected Object createNode(Object name, Map attributes) {
out.println “[${name} (${attributes})]”

return name
}

protected Object createNode(Object name, Map attributes
, Object value) {

out.println “[${name} (${attributes}) = ${value}]”
return name

}

public static void main(String[] args) {
builder = new CustomBuilder()
builder.html() {

head() {
title(“CustomBuilder”)

}
body(class:”bodyStyle”) {

p(“Custom builder made this”)
}

}
}

}

236 SCRIPTING IN JAVA

Listing 5.30 Continued

The BuilderSupport class has its own implementation of
the invokeMethod() method, which calls the appropriate
createNode() method signature. The name of the called
method is passed as a name argument, and the map is passed as
the attributes argument. Any other object passed to these
methods is mapped to the value argument. Based on the num-
ber of method arguments, the appropriate signature of the
createNode() method is called. If closure were passed, it would
be used to create child nodes. Knowing this, we can assume our
example prints the following result on the console window:

[html]
[head]
[title = CustomBuilder]
[body ([class:bodyStyle])]
[p = Custom builder made this]

Groovy and Swing

Swing refers to the Java library of GUI controls, such as but-
tons, check boxes, and so on. This API has been an integral part
of the Java 2 platform since its initial release, and it has been

widely used for the creation of graphical user interfaces for
Java applications. In Chapter 2, “Appropriate Applications for
Scripting Languages,” we discussed issues related to GUI pro-
gramming. Also, we saw how scripting languages can be used
for this task. In this section, we see how the SwingBuilder
markup class can be used for building Swing user interfaces
with Groovy. Also, we compare this technique with traditional
Java solutions.

Flexibility of scripting languages, such as Groovy, is impor-
tant for building user interfaces. For that purpose, Groovy offers
the SwingBuilder markup class, which enables much faster
creation of Swing user interfaces than Java. Let’s start with a
simple example (see Listing 5.31).

CHAPTER 5 237

Listing 5.31 SwingBuilder
import groovy.swing.SwingBuilder
import javax.swing.*
import java.awt.*

builder = new SwingBuilder()

frame = builder.frame(title:’Update balance’, size:[200,100]) {
panel(layout: new FlowLayout()) {

label(text:”dejan”)
textField(text:”500”, preferredSize:[100,20]

, horizontalAlignment:SwingConstants.CENTER)
button(text:”Update”, actionPerformed: { update() })

}
}

def update() {
pane = builder.optionPane(

message:’User data has been updated’
)
dialog = pane.createDialog(frame, ‘Success’)
dialog.show()

}

frame.show()

When evaluated, this script shows a window like the one in
Figure 5.5.

As you can see from this example, you can create Swing
interfaces using the GroovyMarkup syntax in just a few lines
of code. The SwingBuilder class has methods mapped to stan-
dard Swing components, so the frame() method creates the
javax.swing.Jframe component, the panel() method

FIGURE 5.5 Update
Balance window

javax.swing.JPanel, and so on. These methods accept the Map
parameter, which defines the components’ attributes. If a closure
argument is passed for container components, components
defined in the closure are created inside that container. Of
course, these closures can contain any valid Groovy code (for
example, the code that gets data from the database). The
java.awt.event.ActionListener classes are replaced with
closures contained in the actionPerformed parameter. In the
example, the button component executes the loosely defined
update() method when it is clicked.

Comparing Listing 5.31 with the following equivalent code
in Java, we can estimate how much time the SwingBuilder
class could save for desktop application development:

238 SCRIPTING IN JAVA

package net.scriptinginjava.ch5;

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class gui {

private static JFrame frame;

public static void main(String[] args) {
frame = new JFrame(“Update balance”);
frame.getContentPane().setLayout(new FlowLayout());
frame.setSize(200, 100);

JLabel label = new JLabel(“dejan”);
frame.getContentPane().add(label);

JTextField text = new JTextField();
text.setPreferredSize(new Dimension(100, 20));
text.setHorizontalAlignment(SwingConstants.CENTER);
text.setText(“500”);
frame.getContentPane().add(text);

JButton button = new JButton(“Update”);
button.addActionListener(

new ActionListener() {
public void actionPerformed(ActionEvent av) {

gui.update();
}

}
);
frame.getContentPane().add(button);
frame.show();

}

public static void update() {

JOptionPane pane = new JOptionPane(
“User data has been updated”

);
JDialog dialog = pane.createDialog(frame, “Success”);
dialog.show();

}

}

CHAPTER 5 239

It is obvious that the Java code is not only twice as long as
the Groovy code, but also it is harder to read and maintain.

TableLayout

In addition to the standard Swing components, you can find the
TableLayout component in the groovy.swing.impl package,
as shown in Listing 5.32.

Listing 5.32 TableLayout
import groovy.swing.SwingBuilder
import groovy.sql.Sql

sql = Sql.newInstance(“jdbc:mysql://localhost/groovy”
, “com.mysql.jdbc.Driver”)

builder = new SwingBuilder()

frame = builder.frame(title:’TableLayout Demo’
, location:[200,200]
, size:[300,200]

) {
menuBar {

menu(text:’Help’) {
menuItem() {

action(name:’About’, closure:{ showAbout() })
}

}
}

tableLayout {
tr {

td {
label(text:”username”)

}
td {

label(text:”balance”)
}

}
sql.eachRow(“SELECT * FROM users \

WHERE balance > 500”) { row |
builder.tr {

builder.td(colfill:true) {
textField(text:row.username)

}
builder.td(colfill:true) {

textField(text:
(new Float(row.balance)).toString())

}
}

}

tr {
td(colspan:2, align:’center’) {

button(text:’OK’)
}

}
}

}

frame.show()

def showAbout() {
pane = builder.optionPane(message:’Scripting in Java demo’)
dialog = pane.createDialog(frame, ‘About’)
dialog.show()

}

240 SCRIPTING IN JAVA

Listing 5.32 Continued

Listing 5.32 results in a window (see Figure 5.6) listing all
users with a balance over 500.

FIGURE 5.6 TableLayout Demo window

With the TableLayout component, the process of creating
Swing user interfaces is practically the same as that for generat-
ing HTML pages with groovy.xml.MarkupBuilder. It is an
interesting option for developers with a Web application back-
ground who are more familiar with HTML than with the Swing-
programming paradigm.

Listing 5.32 also shows how to create menus for the frame
window. The syntax is intuitive, and the only thing that needs
explanation is the action() method. It accepts the name of the
menu item and the closure that is executed when a user clicks a

menu item. In this example, closure just calls the showAbout()
loosely coupled method that displays an appropriate dialog.

TableModel

If you have ever tried to use the javax.swing.JTable, you
have probably experienced all the flexibility and complexity of
this class. The usual approach is to create an implementation of
the javax.swing.table.TableModel interface that provides an
interface used to obtain data by the JTable class. Groovy offers
its own TableModel implementation that handles data. This
helper class can ease data manipulation tasks with Swing tables
in Groovy. Listing 5.33 provides an example.

CHAPTER 5 241

Listing 5.33 TableModel
import groovy.swing.SwingBuilder
import java.awt.BorderLayout
import javax.swing.BorderFactory
import groovy.sql.Sql

users = []
sql = Sql.newInstance(“jdbc:mysql://localhost/groovy”

, “com.mysql.jdbc.Driver”)
sql.eachRow(“SELECT * FROM users WHERE balance > 500”) {

users << [‘userid’ : it.userid, ‘username’ : it.username
, ‘balance’ : it.balance]

}

updateBalance = {row, value |
sql.executeUpdate(

“UPDATE users SET balance = ${value}
WHERE userid = ${row.userid}”

)
row.balance = value

}

builder = new SwingBuilder()

frame = builder.frame(title:’TableModel Demo’, location:[200,200]
, size:[300,200]) {

panel(layout:new BorderLayout()) {
scrollPane(constraints:BorderLayout.CENTER) {

table() {
tableModel(list:users) {

closureColumn(header:’Id’
, read:{row| return row.userid}

)
closureColumn(header:’Username’

, read:{row| return row.username}
)
closureColumn(header:’Balance’

, read:{row| return row.balance}

, write:updateBalance
)

}
}

}
}

}

frame.show()

242 SCRIPTING IN JAVA

Listing 5.33 Continued

This example results in a table with users who have a bal-
ance over 500 and offers the ability to change the balance (see
Figure 5.7).

FIGURE 5.7 TableModel example

First, we defined the users list containing a map for each
table row. The table model is defined with the tableModel()
method within the table() closure. This model is initialized
with the previously generated list of users. For each column dis-
played, a closureColumn() method is defined, which accepts a
map parameter with the following data:

■ header—The column caption.

■ read—The closure for populating the table. It accepts a
Map parameter that represents one member defined in
the list (users in this example).

■ write—An optional closure for updating data in the
structure. If the write parameter is not defined, the col-
umn is treated as read-only. In this example, we defined
only the Balance column with the write parameter, so
only this column can be edited. The updateBalance
closure has been passed as the value for this parameter.

The write closure has to accept two parameters. The
first is the map that contains old data from the row,
and the second is the new value specified for the field.
This particular closure updates users’ data in the data-
base. Note that because the TableModel implements the
MVC pattern, the row parameter has to be updated also
to be displayed properly in the table after the operation.

Conclusion

Thus far, we have covered the basic theory of scripting lan-
guages and have seen some of the most important scripting lan-
guages available for the Java platform. Also, we have covered
the Groovy programming language in detail, including the
scripting concepts implemented by this language and the
advanced techniques and extensions it brings.

After this introduction in scripting concepts and languages,
the following chapters explain where we can apply them in
Java projects and what benefits this brings.

But first, in Chapter 6, “Bean Scripting Framework,” we dig
into another Java library that plays an important role in the
story of scripting in Java—the Bean Scripting Framework (BSF),
one of the Apache Jakarta Projects. We discuss its purpose and
architecture, and look at some code samples.

CHAPTER 5 243

This page intentionally left blank

In Chapter 2, “Appropriate Applications for Scripting Lan-
guages,” we discussed the importance of being able to

embed scripting languages into your programming environ-
ment. In the chapters that followed, we described mecha-
nisms built into the BeanShell, Jython, Rhino, and Groovy
scripting languages that enable them to integrate with the
Java platform. Although these mechanisms are a natural
solution if you want to support only one of these scripting
languages, things can get messy if you try to use more than
one in your application. Some projects need a general
scripting environment in which all languages are treated
equally and can be used through the same API. That envi-
ronment is the Bean Scripting Framework.

BBEANEAN SSCRIPTINGCRIPTING
FFRAMEWRAMEWORKORK

CHAPTER 6

Introduction to the Bean Scripting
Framework

The Bean Scripting Framework (BSF) is the general Java script-
ing framework. It is a library, or set of Java classes, that pro-
vides a unique API to various script language interpreters (or
engines). The BSF supports all languages whose interpreters are
implemented in Java. Integration with other, so-called native,
engines is also possible through Java Native Interface (JNI)
technology.

The BSF provides mechanisms that allow you to evaluate
scripts from Java applications. It also serves as an object reg-
istry that exposes Java objects for their use in scripts. Java
applications can use the BSF to extend or implement some of
their functionalities using script languages. This integration
with the BSF is language neutral, which means the developer
can use any of the supported scripting engines through the
same interface. Later, the developer can replace scripted parts of
the application with the implementation in another language,
without having to modify the Java source code.

In this chapter, we cover the features of the BSF API that
you can use in every Java application. After we explain these
basic concepts implemented in the BSF, we present some exam-
ples of how you can use the framework to extend some existing
Java platform technologies. These examples cover two interest-
ing applications for scripting in the Java platform:

■ Writing JavaServer Pages (JSP) in languages other than
Java

■ Using scripting languages for writing extensions that
can be used in XSLT transformations

After reading this chapter, you will have a better picture of
how to use the BSF in your projects. The examples also show
you how to create scripting support for existing Java
technologies.

In the following chapters, we use the BSF to demonstrate
more advanced scripting techniques and concepts.

246 SCRIPTING IN JAVA

Finally, in Chapter 9, “Scripting API,” I describe API, which
provides similar functionalities as BSF, and as an integral part
of JDK 6, successfully succeeds it.

CHAPTER 6 247

BSF HISTORY

The BSF started in 1999 as an IBM research project. The initial goal of this project was to
provide access to JavaBeans from scripting languages. Later, BSF development was moved
to the IBM AlphaWorks site, which handles IBM’s technologies in early development phases
(visit www.alphaworks.ibm.com/tech/bsf to learn more).

Soon after, the project was moved to IBM’s DeveloperWorks site and became an open source
project. Finally, in 2002, IBM donated the BSF to the Apache Software Foundation. At this
time, all future development on the BSF will continue as part of Jakarta.

This short history is important because the package name of this project changed during the
transition from IBM to ASF. Prior to version 2.3, the package name of the BSF project was
com.ibm.bsf. From this version on, it is org.apache.bsf, so you have to check which ver-
sion of BSF is supported by the technology (or project) you are working with to use the
appropriate distribution.

Getting Started

To start using the BSF, you have to download the bsf.jar file
and include it in your classpath.

Unfortunately, IBM moved download links from its sites for
BSF versions prior to version 2.3. If you need to work with one
of these versions, search for the library inside the product that
bundles it or some general Java-code repository.

Newer versions, with the new package name
(org.apache.bsf), are distributed through Apache’s Jakarta
Web site, http://jakarta.apache.org/bsf/.

Throughout the rest of this chapter, I refer to this newer
package name, but all concepts presented are also valid in dis-
tributions with the older package name.

NOTE

From version 2.4 on, BSF uses Jakarta Commons Logging project for its logging needs
(http://jakarta.apache.org/commons/logging/). If you use BSF version 2.4 or later, be sure
to include an appropriate version of the commons-logging library to be able to run examples
from this chapter.

www.alphaworks.ibm.com/tech/bsf
http://jakarta.apache.org/bsf/
http://jakarta.apache.org/commons/logging/

Basic Concepts

In this section, I discuss the basic architecture of the BSF
library. I also describe the principles you must follow to work
with different scripting languages through the unique program-
ming interface.

Architecture

The BSFManager class and the BSFEngine interface represent
fundamental abstractions in the BSF (see Figure 6.1).

248 SCRIPTING IN JAVA

BSFEngine

Scripting engine

BSFEngine

Scripting engine

BSFEngine

Scripting engine

Application

BSFManager

FIGURE 6.1 BSF architecture

The BSFManager class is the main feature of this library. It
serves as the registry of available scripting engines (interpreters)
and is probably the only class that you will use in your Java
code.

As we have seen so far, successful integration of certain
scripting languages into the Java environment requires an inter-
preter written in the Java programming language. So naturally,

a general scripting framework such as the BSF should offer a
facade for these interpreters. The BSFEngine interface answers
this need directly. It represents a view to the scripting language
interpreter from the Java application. Basic operations on a
scripting language interpreter that this interface permits are
mapped to its methods. So naturally, every scripting language
that wants to comply with the BSF API must implement this
interface and map its methods to calls of the appropriate engine
implementation.

Registration of Scripting Languages

As we said, the BSFManager class represents a central repository
of available engines. So to make a certain scripting language
accessible through the BSF you have to register it first within
the BSFManager class. This means you have to register the
BSFEngine interface implementations because they are engine
abstractions in this library.

Many of the scripting languages available for Java are reg-
istered by default. For some of them, you can find the imple-
mentation of the BSFEngine class included within the BSF
distribution. The following is a list of scripting languages cur-
rently fully integrated with the BSF:

■ JavaScript (using Rhino ECMAScript, from the Mozilla
project)

■ Python (using either Jython or JPython)

■ Tcl (using Jacl)

■ NetRexx (an extension of the IBM REXX scripting lan-
guage in Java)

■ XSLT Stylesheets (as a component of the Apache XML
projects Xalan and Xerces)

Other languages provide their own implementation of the
BSFEngine interface, but they are still automatically registered
to the manager. Those languages are the following:

■ Java (using BeanShell, from the BeanShell project)

■ JRuby

■ JudoScript

■ ObjectScript

CHAPTER 6 249

If you want to use some of these automatically registered
languages, all you have to do is to put the appropriate inter-
preter implementation in the classpath. No additional registra-
tion steps are necessary.

Even though the BSF project keeps the list of compatible
languages fairly up-to-date, you might find that the language
of your choice is not automatically registered. In those cases,
you need to register the implementation of the BSFEngine
interface by yourself. For example, Groovy is a younger project
than the BSF, and the BSF didn’t support Groovy until the
release of BSF version 2.3.0-rc2. So, if you intend to use it with
versions prior to this one, you need to register it manually.

You do this through the static registerScriptingLanguage()
method of the BSFManager class:

public static void registerScriptingEngine(
String language

, String engineClassName
, String[] extensions
)

The following parameters are passed to this method:

■ language—The name of the language. This parameter is
used later to associate the scripting engine to scripts of
the language that it evaluates.

■ engineClassName—The fully qualified name of the class
that implements the BSFEngine interface.

■ extensions—An array of file extensions mapped to this
language. You can use this helper parameter to find the
scripting engine that should process a script file. The
extension parameter should be null if this mapping is
not necessary.

Following this method signature (and its description), we
can register the Groovy engine using the following code:

BSFManager.registerScriptingEngine(
“groovy”

, “org.codehaus.groovy.bsf.GroovyEngine”
, new String[] { “groovy”, “gy” }

);

250 SCRIPTING IN JAVA

With this call, we registered the org.codehaus.groovy.
bsf.GroovyEngine class as the language engine for the Groovy
language, whose scripts can have groovy or gy extensions.

Manual registration is not always encouraged, especially in
situations where you don’t want your project to depend on the
chosen scripting language or on the BSF distribution that is
used—in other words, when you want to have a general-purpose
scripting framework.

Unfortunately, the list of registered scripting languages is
static and hard-coded, so changing it introduces certain impli-
cations. You can find the list of supported languages in the
org.apache.bsf.Languages.properties property file located
in the BSF JAR file. To change this list, you have to obtain the
BSF’s source code and rebuild the project. This approach has its
drawbacks. One drawback is the fact that maintaining the exter-
nal project’s source increases software management complexity.
As such, when you want to upgrade to the next version of the
BSF library, these changes could be lost, which could introduce
new bugs in your system.

Still, I document this process for those who choose this
path anyway. To add the Groovy language to the BSF’s list
of default-registered languages, you have to locate the
Languages.properties file in the org.apache.bsf package of
the BSF source code. Next, you have to add the line in that file
that defines a desired language. For example, you can register
the Groovy programming language by appending the following
line in that properties file:

groovy = org.codehaus.groovy.bsf.GroovyEngine, groovy|gy

As you can see, the syntax is straightforward. The language
name serves as the key of the property. In the value, we have
the name of the class that implements the BSFEngine interface,
and optionally, file extensions that the engine processes. Note
that extensions are separated with the | character.

If you included the BSF in your project’s source code, your
job is done. The next time you rebuild the project, the modified

CHAPTER 6 251

Language.properties file will be used, and the language will
be registered.

If you want to use the BSF packaged as a JAR file, you
have to rebuild the project by executing the dist task of the
BSF’s build.xml file:

ant dist

This creates the bsf.jar file, located in the dist folder of
the BSF source code distribution.

Finally, you probably want to make sure the language is
appropriately registered to the manager. To do this, use the
static isLanguageRegistered() method of the BSFManager
class. The following code snippet demonstrates this method:

if (BSFManager.isLanguageRegistered(“groovy”)) {
System.out.println(

“You are free to use Groovy with BSF!”
);

} else {
System.out.println(

“Sorry, you have to register Groovy first!”
);

}

Again, although this method works, you need to be careful
if you decide to use this approach to add scripting language
support in the BSF. From a maintenance point of view, doing
this from your Java application is a cleaner solution.

Manager and Engine Initialization

After we have made sure that all the languages we’re interested
in are registered to the manager, we are ready to start exploring
this library. As Figure 6.1 pointed out, we need an instance of
the BSFManager class in our application. Usually there is just
one instance of this class in the whole application. The
BSFManager is instantiated simply by calling its empty con-
structor. For instance:

BSFManager manager = new BSFManager();

252 SCRIPTING IN JAVA

While it is initializing, the manager processes the
Languages.properties file (described earlier) and registers all
languages found in it.

So right after this constructor call, we can get the engine of
the desired scripting language. To do so, you have to call the
loadScriptingEngine() method of the manager and pass the
name of the language that you want to use:

BSFEngine groovyEngine =
manager.loadScriptingEngine (“groovy”);

Now that we know the basics of the BSFManager class, we
are ready to explore the functionalities of the BSFEngine inter-
face and see what it can do for us.

Working with Scripts

The basic task that the BSFEngine interface provides is the abil-
ity to execute scripts. However, this interface allows us to per-
form this task in two ways. The BSFEngine interface enables
developers to

■ Evaluate a script and get the result of its execution.

■ Execute a script (no result is returned to the
application).

The BSF library makes a distinction between these two
operations. When we expect that the script returns a result of its
execution, this process is called evaluation. Otherwise, it is
called execution. Some other libraries and classes that serve the
same purpose as BSFEngine do not make this distinction
between script evaluation and execution. In those libraries, if
you are not interested in the result of the evaluation, you can
just ignore it. As we see in the coming sections, the same prin-
ciple can be used in BSF as well.

Let’s explore these methods in more detail so that we can
see the crucial differences between them.

eval()

The eval() method is used to evaluate an expression of some
scripting language. It has the following signature:

CHAPTER 6 253

public Object eval(
String source

, int lineNo
, int columnNo
, Object expression

) throws BSFException;

The first three arguments passed to this method are contex-
tual. They provide information about the context in which this
expression has to be evaluated. Of course, whether they are used
depends on the capabilities of the underlying interpreter. The
actual expression is passed as the last expression variable. Usu-
ally, the expression is of the String type, but more flexibility is
achieved by declaring it as an Object. To understand this more
clearly, let’s look at the following Java program in Listing 6.1.

Listing 6.1 The BSFEngine.eval() Method Example
package net.scriptinginjava.ch6;

import org.apache.bsf.BSFEngine;
import org.apache.bsf.BSFException;
import org.apache.bsf.BSFManager;

public class Test {

public static void main(String[] args) {
BSFManager.registerScriptingEngine(

“groovy”,
“org.codehaus.groovy.bsf.GroovyEngine”,
new String[] {“groovy”}

);
BSFManager manager = new BSFManager();
try {

BSFEngine engine =
manager.loadScriptingEngine(“groovy”);

Object result =
engine.eval(“test.groovy”, 1, 1, “2+3”);

System.out.println(result);
} catch (BSFException bsfe) {

System.out.println(bsfe.getReason());
}

}
}

In this example, we combined all the previously described
steps:

1. We registered the engine of the Groovy scripting
language.

254 SCRIPTING IN JAVA

2. We created the BSFManager instance.

3. We obtained the Groovy engine abstraction.

4. We evaluated the expression.

As a result of these steps, the example evaluates the simple
Groovy expression 2 + 3 and prints the value 5 (of course) on
standard output.

You can replace the code marked in bold in Listing 6.1 with
a more elegant solution:

Object result = manager.eval(
“groovy”, “test.groovy”, 1, 1, “2+3”

);

The BSFManager class has methods that are practically
equivalent to the method definitions found in the BSFEngine
interface. The only difference is that the first (extra) parameter,
marked as bold in the above code snippet, should be the name
of the targeted language so that the manager knows which
engine it should use. That is why I said earlier that you will
probably use only the manager class in your application. For
most of the common uses of this library, the manager class can
handle practically all the tasks that you need.

One more thing that you can learn from this example is
how to use BSFException. This is the only exception that BSF
throws, and it could indicate various problems in script evalua-
tion. The actual reason why the exception is thrown is located
in the reason property of this class. It is an integer code, whose
meaning you can find in the following BSFException fields:

public static int REASON_INVALID_ARGUMENT = 0
public static int REASON_IO_ERROR = 10
public static int REASON_UNKNOWN_LANGUAGE = 20
public static int REASON_EXECUTION_ERROR = 100
public static int REASON_UNSUPPORTED_FEATURE = 499
public static int REASON_OTHER_ERROR = 500

The field names are descriptive enough and do not require
additional explanation. You can use this error code to refine
your error handling further. For example, you can use the fol-
lowing code in the catch block in Listing 6.2.

CHAPTER 6 255

Listing 6.2 BSF Exception Handling
if (bsfe.getReason() == BSFException.REASON_EXECUTION_ERROR) {

System.out.println(“Script execution error”);
} else {

System.out.println(“General error”);
}

256 SCRIPTING IN JAVA

Listing 6.2 separates error handing in cases where the script
throws an exception from other exceptions that the BSF library
could throw (such as an attempt to use an unknown language).
This is the most common scenario in BSFException handling.
Exceptions thrown by the script could be interpreted as applica-
tion logic exceptions. They will probably be handled differently
from exceptions with other error codes that represent infrastruc-
ture exceptions in this case.

exec()

The exec() method is used to execute a script using the appro-
priate BSFEngine interface implementation. The signature of
this method is similar to that for the eval() method:

public void exec(
String source

, int lineNo
, int columnNo
, Object script

) throws BSFException;

Notice that the exec() and eval() methods are different
only in the fact that the eval() method returns the result of the
script execution. These two method signatures support our dis-
cussion of differences between script execution and evaluation
that the BSF authors implemented in this library.

Now that you know all these facts, you can expect that the
code in Listing 6.3 is equal in functionality to the code from
Listing 6.1.

NOTE

You can pass script
variable values back
to the Java applica-
tion even if you are
using the exec()
method. But you
need to use the
variable binding
mechanism for that
task. We discuss this
mechanism in the
following sections.

Listing 6.3 The BSFEngine.exec() Method Example
BSFManager manager = new BSFManager();
try {

manager.exec(“groovy”, “test.groovy”, 1, 1 ,”println 2+3”);
} catch (BSFException bsfe) {

bsfe.printStackTrace();
}

The only difference is that now there is no return value,
and the result is printed directly from the script.

To demonstrate further the similarity between these two
methods, we dig into the source of the BSF library. The BSF
provides the org.apache.bsf.util.BSFEngineImpl class that
represents a default abstract implementation of the BSFEngine
interface. Most of the engine implementations for supported
languages extend this class and thus share the common func-
tionalities, such as the exec() method behavior.

In this default implementation, the exec() method is imple-
mented by simply calling the eval() method and ignoring the
return result:

public void exec(
String source, int lineNo,
int columnNo, Object script)

throws BSFException {
eval(source, lineNo, columnNo, script);

}

Because this method is not overloaded in most scripting
engine implementations, we can conclude that there are no dif-
ferences (in performance or anything else) between the eval
and exec methods. So, the only question is do you need the
result of the script execution (in which case you should use the
eval() method) or not (when you should use the exec()
method)? And even if you don’t need the result, you can always
use the eval() method and ignore the return value. By doing
so, you will have a cleaner perspective of the API and one less
thing to think about.

Working with Script Files

The methods covered in the previous section accept scripts in
the form of Java objects, and as we said, they are usually
strings. Usually you need to evaluate scripts defined in files.
Even though BSFEngine does not have methods that allow you
to execute a script file directly, some helper classes and methods
are available that can help you with this task. Let’s go through

CHAPTER 6 257

an example and define a simple Groovy script (for example,
net/scriptinginjava/ch6/first.groovy) for starters:

println “Hello world”

Now let’s write the Java application that executes this script
file, using the helper methods defined in the BSF API (see List-
ing 6.4).

258 SCRIPTING IN JAVA

Listing 6.4 Executing a Script File
package net.scriptinginjava.ch6;

import java.io.FileReader;
import java.io.IOException;

import org.apache.bsf.BSFException;
import org.apache.bsf.BSFManager;
import org.apache.bsf.util.IOUtils;

public class FilesTest {

public static void main(String[] args) {
BSFManager.registerScriptingEngine(

“groovy”,
“org.codehaus.groovy.bsf.GroovyEngine”,
new String[] { “groovy”, “gy” }

);
BSFManager manager = new BSFManager();
String fileName = “net/scriptinginjava/ch6/first.groovy”;
try {

String language =
BSFManager.getLangFromFilename(fileName);

String script =
IOUtils.getStringFromReader(

new FileReader(fileName)
);

manager.exec(language, fileName, 0, 0, script);
} catch (BSFException bsfe) {

bsfe.printStackTrace();
} catch (IOException ioe) {

ioe.printStackTrace();
}

}
}

The org.apache.bsf.util.IOUtils class is a collection
of methods that can help you with the input/output operations.
Currently it only contains the getStringFromReader() method,
which you can use to load the script file into a String variable.

Another helper method that we used in this example is the
getLangFromFilename() static method of the BSFManager
class. We used this method to determine which language inter-
preter should be used according to the filename that is passed
as an argument. Remember that we supplied file extensions in
the engine registration process. Those extensions are mapped to
the appropriate engine, and this method uses this information to
obtain the appropriate language name. After we have a lan-
guage name, we can pass it to the exec() method.

The program in Listing 6.4 executes our demo script and
prints the following to standard output:

Hello world

It would be better (and cleaner) if the exec() and eval()
methods had signatures that accept Reader objects and wrap
this code for you, but currently you have to be satisfied with
this solution.

Methods and Functions

In addition to executing plain scripts, you can use BSFEngine
to call functions and methods defined in a script. BSFEngine
supports two kinds of method calls:

■ A call to a method or function defined in the script. By
the term function, I mean standalone methods defined
directly in the context of the script. By the term
method, I mean only methods defined within classes.

■ A call to an anonymous function (or a closure, as we
referred to it in previous chapters).

Let’s take a closer look at these functionalities.

call()

This method is used to make a method or a function call:

public Object call(Object object, String name
, Object[] args) throws BSFException;

CHAPTER 6 259

You can use the call() method with both object-oriented
and structured programming languages. In object-oriented lan-
guages, the object argument determines an object whose
method we want to call. If you want to call a standalone
method or a function in a language that supports this feature,
such as Python, you should pass the null value for this param-
eter. Arguments of the method call are passed as an array of
objects in the args parameter.

Whether a certain language supports function calls, object
method calls, or both, depends on the call() method imple-
mentation in the appropriate BSFEngine. At the time of this
writing, the Jython engine supports function and method calls,
the Groovy engine supports only method calls, and the Rhino
engine supports only function calls. Be sure to check whether
the desired functionality is implemented correctly for languages
that you are planning to support before you rely on it.

Let’s demonstrate function and method calls with two sim-
ple examples. In the first example, we define a Python script
that contains a function definition (call.py):

def testFunc(name) :
return “Hello “ + name

Now, let’s call this function from the Java application using
the BSF API (see Listing 6.5).

260 SCRIPTING IN JAVA

Listing 6.5 The Function Call Example
package net.scriptinginjava.ch6;

import java.io.FileReader;
import java.io.IOException;

import org.apache.bsf.BSFEngine;
import org.apache.bsf.BSFException;
import org.apache.bsf.BSFManager;
import org.apache.bsf.util.IOUtils;

public class CallTest {

public static void main(String[] args) {
BSFManager manager = new BSFManager();
String fileName = “net/scriptinginjava/ch6/call.py”;
try {

String language =
BSFManager.getLangFromFilename(fileName);

String script = IOUtils.getStringFromReader(

new FileReader(fileName)
);
BSFEngine engine =

manager.loadScriptingEngine(language);
engine.exec(fileName, 0, 0, script);
Object result = engine.call(

null, “testFunc”, new Object[] {“Dejan”}
);
System.out.println(result);

} catch (BSFException bsfe) {
bsfe.printStackTrace();

} catch (IOException ioe) {
ioe.printStackTrace();

}
}

}

CHAPTER 6 261

Listing 6.5 Continued

First, we had to execute the script to make the testFunc
function available in the interpreter. For that purpose, we used
the exec() method described earlier. After this, we can use the
call() method to invoke this function.

When executed, this program prints the value returned from
the function:

Hello Dejan

To demonstrate how to make a method call through the BSF
API, we define a class in the Groovy script:

class Test {

def hello(name) {
return “Hello “ + name;

}

}

return new Test();

The Test class has only one method, called hello, which
accepts one parameter. This method is the same in functionality
as the previously used Python function.

Notice that the script returns an instance of this class. This
is a necessary step because we need an instance of the object on

which we want to execute the method call, because we pass it
to the call() method call.

The Java program that calls the hello method of the Test
class instance is pretty much the same as that in Listing 6.5 (see
Listing 6.6).

262 SCRIPTING IN JAVA

Listing 6.6 The Method Call Example
package net.scriptinginjava.ch6;

import java.io.FileReader;
import java.io.IOException;

import org.apache.bsf.BSFEngine;
import org.apache.bsf.BSFException;
import org.apache.bsf.BSFManager;
import org.apache.bsf.util.IOUtils;

public class CallTest1 {

public static void main(String[] args) {
BSFManager.registerScriptingEngine(“groovy”,

“org.codehaus.groovy.bsf.GroovyEngine”,
new String[] { “groovy” });

BSFManager manager = new BSFManager();
String fileName = “net/scriptinginjava/ch6/obj.groovy”;
try {

String language =
BSFManager.getLangFromFilename(fileName);

String script = IOUtils.getStringFromReader(
new FileReader(fileName)

);
BSFEngine engine =

manager.loadScriptingEngine(language);
Object hello = engine.eval(fileName, 0, 0, script);
Object result = engine.call(hello, “hello”,

new Object[] { “Dejan” });
System.out.println(result);

} catch (BSFException bsfe) {
bsfe.printStackTrace();

} catch (IOException ioe) {
ioe.printStackTrace();

}
}

}

In Listing 6.6, we used the eval() method to obtain the
instance of the Test class. That instance was then passed to the
call() method, along with the method name we want to exe-
cute. Of course, we provided the arguments to this method call
in the same way we did earlier.

apply()

The apply() method is used to call anonymous functions
(closures) in languages that support them. The signature of this
method is:

public Object apply(
String source, int lineNo

, int columnNo, Object funcBody
, Vector paramNames, Vector arguments

) throws BSFException;

This method is not widely supported among scripting
engines, and it would probably end with the call to the eval()
method (with sufficient parameters being ignored). A default
implementation of this method in the BSFEngineImpl class is
shown in the following code:

public Object apply(
String source, int lineNo,
int columnNo, Object funcBody,
Vector paramNames, Vector arguments)

throws BSFException {
return eval(source, lineNo, columnNo, funcBody);

}

The Groovy BSF engine implementation overrides the
apply() method and thus supports the execution of closures
using this method.

To demonstrate the apply() method, we create a script that
defines a closure and returns it as a result of the execution:

hello = {
return “Hello “ + it;

}

return hello;

Now we can use the apply() method to call this closure
from the Java application (see Listing 6.7).

Listing 6.7 The BSFEngine.apply() Method Example
package net.scriptinginjava.ch6;

import java.io.FileReader;

CHAPTER 6 263

import java.io.IOException;
import java.util.Vector;

import org.apache.bsf.BSFEngine;
import org.apache.bsf.BSFException;
import org.apache.bsf.BSFManager;
import org.apache.bsf.util.IOUtils;

public class ApplyTest {

public static void main(String[] args) {
BSFManager.registerScriptingEngine(“groovy”,

“org.codehaus.groovy.bsf.GroovyEngine”,
new String[] { “groovy” });

BSFManager manager = new BSFManager();
String fileName = “net/scriptinginjava/ch6/apply.groovy”;
try {

String language =
BSFManager.getLangFromFilename(fileName);

String script = IOUtils.getStringFromReader(
new FileReader(fileName)

);
BSFEngine engine =

manager.loadScriptingEngine(language);
Vector arguments = new Vector();
arguments.add(“Dejan”);
Object result = engine.apply(

fileName, 0, 0, script, null, arguments
);
System.out.println(result);

} catch (BSFException bsfe) {
bsfe.printStackTrace();

} catch (IOException ioe) {
ioe.printStackTrace();

}
}

}

264 SCRIPTING IN JAVA

Listing 6.7 Continued

If the result of the script evaluation is a closure (as it is in
this case), the Groovy engine calls it. Otherwise, it just returns
the result of the execution.

Data Binding

So far, we have seen how we can work with scripts of various
scripting languages in a uniform way. But to make the methods
described earlier useful, we need to provide a context in which
scripts are executed. In other words, we need a mechanism that
enables us to pass data between the Java application and scripts.

As we saw earlier, all interpreters available for the Java
platform provide this functionality, so it is natural to expect
that the BSF will provide a uniform API to bind data to various
scripting engines.

In addition to being a scripting engine repository, the
BSFManager class also represents a repository of objects shared
between the Java application and scripts. In the following sec-
tions, we discuss two mechanisms that you can use to bind data
to the scripting engines’ context.

Registering Beans

To support this new role, the BSFManager class must define
methods used to manipulate objects in this repository. These
methods are as follows:

■ void registerBean(String beanName, Object

bean)—This method puts a bean in the object repository
and thus makes it available for scripts and the
application.

■ Object lookupBean(String beanName)—This method
is used to obtain the previously registered object from
the repository. If that bean with the specified name is
not located in the repository, a null value is returned.

■ void unregisterBean(String beanName)—This
method is used to remove the previously registered bean
from the repository. If that bean does not exist, this
method does not throw any exceptions. It just does
nothing.

These methods are used in Java applications to handle
data in the object repository. But to have a fully functional
mechanism for data sharing, we need to provide the same
mechanism for scripts too. For this purpose, the BSF defines
the org.apache.bsf.util.BSFFunction class. This class pro-
vides a subset of the BSFManager functionalities. The three
methods I just described are among them. An instance of this
class is mapped automatically to the bsf variable of the script-
ing engine context, when the scripting engine is loading.

CHAPTER 6 265

This leads us to conclude that in every script, we can use
the registerBean(), lookupBean(), and unregisterBean()
methods of the bsf variable to manipulate data in the object
repository.

In the rest of this section, we implement a simple example
that demonstrates this bean registration process. First, we define
a JavaBean class that we want to share between our Java appli-
cation and scripts. Next, we create a Java application that regis-
ters a bean instance to the BSF object repository. Finally, we see
how we can write scripts that can use this object.

To demonstrate the bean registration process, we define a
simple JavaBean (see Listing 6.8). Instances of this bean are
shared between the Java application and scripts evaluated by it.

Listing 6.8 Register Bean Example—JavaBean Definition
package net.scriptinginjava.ch6;

public class Name {

String firstName;
String lastName;

public Name(String firstName, String lastName) {
this.firstName = firstName;
this.lastName = lastName;

}

public String getFirstName() {
return firstName;

}

public void setFirstName(String firstName) {
this.firstName = firstName;

}

public String getLastName() {
return lastName;

}

public void setLastName(String lastName) {
this.lastName = lastName;

}
}

Let’s now elaborate on the bean registration mechanism
through a simple example. The Java application in Listing 6.9
instantiates a bean and uses the BeanManager object to register
it to the repository.

266 SCRIPTING IN JAVA

Listing 6.9 Register Bean Example—Java Application
package net.scriptinginjava.ch6;

import java.io.FileReader;
import java.io.IOException;

import org.apache.bsf.BSFException;
import org.apache.bsf.BSFManager;
import org.apache.bsf.util.IOUtils;

public class Bind {

public static void main(String[] args) {
BSFManager.registerScriptingEngine(

“groovy”,
“org.codehaus.groovy.bsf.GroovyEngine”,
new String[] {“groovy”}

);
BSFManager manager = new BSFManager();
try {

Name name = new Name(“Dejan”, “Bosanac”);
manager.registerBean(“name”, name);
String fileName = “net/scriptinginjava/ch6/bind.groovy”;
String language =

BSFManager.getLangFromFilename(fileName);
String script = IOUtils.getStringFromReader(

new FileReader(fileName)
);
manager.exec(language, fileName, 0, 0, script);
name = (Name)manager.lookupBean(“name”);
System.out.println(“Hello “ + name.getFirstName());

} catch (BSFException bsfe) {
bsfe.printStackTrace();

} catch (IOException ioe) {
ioe.printStackTrace();

}
}

}

CHAPTER 6 267

In this Java example, we created a bean called name and
then registered it with the manager (under the same name). As a
result, the script evaluated by the manager can access the name
object. Next, we executed the bind.groovy script and printed a
line with the new value of the firstName property of the name
bean.

Now take a look at Listing 6.10.

Listing 6.10 Register Bean Example—Script
import net.scriptinginjava.ch6.Name

name = bsf.lookupBean(“name”)
println “Hello “ + name.firstName
bsf.registerBean(“name”, new Name(“Mike”, “Johnson”))

If we create a bind.groovy script like the one in Listing
6.10, the Java application prints the following result:

Hello Dejan
Hello Mike

As you can see, we used the bsf script variable to access
the bean repository. After the bean is fetched from the reposi-
tory, we can use it as a regular object created in the script. The
example also showed us how to use the registerBean()
method to make objects created in the script available to the
Java application. In this example, we used it to override the
already registered bean, but of course, you can use it to register
new beans to the repository as well.

This example showed us how we can use the bsf script
variable to access and modify the object repository from the
script. This is an important aspect of the scripting framework
because evaluating scripts without the proper context is not
useful.

Declaring Beans

The process of registering a bean to a script has one drawback.
You have to write the scripts with the bsf variable in mind if
they need to access objects provided by the Java application.
This is not a problem if your scripts are tightly coupled to your
application, but if you wanted to use general-purpose scripts,
you would probably have to modify them to suit this library.

Luckily, the BSF provides a mechanism that enables us to
register Java objects directly to the scripting engine’s context.
This means that these objects can be used directly in the script,
just like the bsf variable described earlier. This mechanism is
called bean declaration and is similar to the principles already
explained.

Java objects are declared with the declareBean()
method, which has just a slightly different signature from the
registerBean() method. Listing 6.11 is a modified version of
Listing 6.10. I first demonstrate the declareBean() method
here and then explain differences right after.

268 SCRIPTING IN JAVA

Listing 6.11 Declare Bean Example—Java Application
package net.scriptinginjava.ch6;

import java.io.FileReader;
import java.io.IOException;

import org.apache.bsf.BSFException;
import org.apache.bsf.BSFManager;
import org.apache.bsf.util.IOUtils;

public class Declare {

public static void main(String[] args) {
BSFManager.registerScriptingEngine(

“groovy”,
“org.codehaus.groovy.bsf.GroovyEngine”,
new String[] {“groovy”}

);
BSFManager manager = new BSFManager();
try {

Name name = new Name(“Dejan”, “Bosanac”);
manager.declareBean(“name”, name, name.getClass());
String fileName = “net/scriptinginjava/ch6/bind.groovy”;
String language =

BSFManager.getLangFromFilename(fileName);
String script = IOUtils.getStringFromReader(

new FileReader(fileName)
);
manager.exec(language, fileName, 0, 0, script);
name = (Name)manager.lookupBean(“name”);
System.out.println(“Hello “ + name.getFirstName());

} catch (BSFException bsfe) {
bsfe.printStackTrace();

} catch (IOException ioe) {
ioe.printStackTrace();

}
}

}

CHAPTER 6 269

As we can see, the declareBean() method accepts the third
parameter that represents a class of the declared bean. In this
example, we passed name.getClass(), which gets the class of
our bean.

Declared beans are registered to the same object repository,
so they can be accessed using the lookup method. With this in
mind, this program should behave in the same way as our pre-
ceding example. The difference is that now we can access the
name variable directly. So if we change the previously used
script as shown in Listing 6.12, it does not raise any errors.

Listing 6.12 Declare Bean Example—Script
import net.scriptinginjava.ch6.Name

//name = bsf.lookupBean(“name”)
println “Hello “ + name.firstName
bsf.registerBean(“name”, new Name(“Mike”, “Johnson”))

As you can see, we commented the lookupBean() method
call, because the name variable is now directly accessible in the
script.

Changes in the declared bean’s value do not affect the man-
ager’s object repository. So to pass the new value back to the
Java application, register the bean from the script again.

Compilation

In previous chapters, we saw that scripts in some scripting
languages can be compiled directly to the Java bytecode. The
BSF does not provide an interface for this direct compilation
to the bytecode. Instead, it provides a special class,
org.apache.bsf.util.CodeBuffer, which you can use to
store Java code generated in the “compilation” process.
Although this feature is limited in its functionality, I document
it here for your reference.

The idea is to create a source code of the Java class that has
one service method. This service method, called exec() by
default, should contain the Java code that is equivalent in func-
tionality to the script that we want to compile.

Three methods serving this purpose are defined in the BSF-
Manager class:

■ compileExpr()—Used to compile a script that returns a
result

■ compileScript()—Used to compile a script that does
not return a result

■ compileApply()—Used to compile an anonymous
function

Although these methods are not widely used and supported,
I demonstrate how to use them. The common application code
for script compilation could look like that shown in Listing 6.13.

270 SCRIPTING IN JAVA

CHAPTER 6 271

Listing 6.13 Compile Example
package net.scriptinginjava.ch6;

import java.io.FileWriter;
import java.io.IOException;
import java.io.PrintWriter;

import org.apache.bsf.BSFException;
import org.apache.bsf.BSFManager;
import org.apache.bsf.util.CodeBuffer;

public class Compile {

public static void main(String[] args) {

BSFManager manager = new BSFManager();
CodeBuffer cb = new CodeBuffer();
try {

manager.compileExpr(
“jython”, “hello”, 0, 0, “4+5”, cb

);
cb.setClassName(“Hello”);
cb.setPackageName(“net.scriptinginjava.ch6”);
FileWriter out =

new FileWriter(
“net/scriptinginjava/ch6/Hello.java”

);
PrintWriter pw = new PrintWriter(out);
cb.print(pw, true);

} catch (BSFException bsfe) {
bsfe.printStackTrace();

} catch (IOException ioe) {
ioe.printStackTrace();

}
}

}

Here, we created a new instance of the CodeBuffer class,
compiled an expression, and stored the result in it. As you can
see, you can use the CodeBuffer object to generate the Java
source file (in the appropriate package).

But now, things are getting tricky. Let’s look at the gener-
ated source code in Listing 6.14.

Listing 6.14 Compile Example—Result
package net.scriptinginjava.ch6;
public class Hello
{

org.apache.bsf.BSFManager
bsf = new org.apache.bsf.BSFManager();

public java.lang.Object exec()

throws org.apache.bsf.BSFException
{

return bsf.eval(“jython”, request.getRequestURI(), 0, 0,
“4+5”
);

}
}

272 SCRIPTING IN JAVA

Listing 6.14 Continued

A default implementation of the compileExpr() method is
located in the org.apache.bsf.util.BSFEngineImpl class.
Almost all languages leave this default implementation, which
for some reason tries to use the request variable that is related
to the servlet environment. This means you cannot use this
default implementation in your standalone applications.

We can solve this problem by writing our own engine class
and overriding the compileExpr() method, as shown in Listing
6.15.

Listing 6.15 Customized compileExpr() Method
package net.scriptinginjava.ch6;

import org.apache.bsf.BSFException;
import org.apache.bsf.BSFManager;
import org.apache.bsf.engines.jython.JythonEngine;
import org.apache.bsf.util.CodeBuffer;
import org.apache.bsf.util.ObjInfo;
import org.apache.bsf.util.StringUtils;

public class MyEngine extends JythonEngine {

public void compileExpr(String source, int lineNo
, int columnNo, Object expr, CodeBuffer cb)
throws BSFException {

ObjInfo bsfInfo = cb.getSymbol(“bsf”);

if (bsfInfo == null) {
bsfInfo = new ObjInfo(BSFManager.class, “bsf”);
cb.addFieldDeclaration(

“org.apache.bsf.BSFManager bsf = “
+ “new org.apache.bsf.BSFManager();”);

cb.putSymbol(“bsf”, bsfInfo);
}

String evalString = bsfInfo.objName
+ “.eval(\”” + lang + “\”, “;

evalString += “\”” + source + “\”, “
+ lineNo + “, “ + columnNo;

evalString += “,” + StringUtils.lineSeparator;

evalString += StringUtils.getSafeString(expr.toString())
+ “)”;

ObjInfo oldRet = cb.getFinalServiceMethodStatement();

if (oldRet != null && oldRet.isExecutable()) {
cb.addServiceMethodStatement(oldRet.objName + “;”);

}

cb.setFinalServiceMethodStatement(
new ObjInfo(Object.class, evalString)

);

cb.addServiceMethodException(
“org.apache.bsf.BSFException”

);
}

}

CHAPTER 6 273

Listing 6.15 Continued

Now we can use this extended Jython engine to compile
scripts not bound to the servlet context (see Listing 6.16).

Listing 6.16 Modified Compile Example
package net.scriptinginjava.ch6;

import java.io.FileWriter;
import java.io.IOException;
import java.io.PrintWriter;

import org.apache.bsf.BSFException;
import org.apache.bsf.BSFManager;
import org.apache.bsf.util.CodeBuffer;

public class Compile {

public static void main(String[] args) {
BSFManager.registerScriptingEngine(

“jython”,
“net.scriptinginjava.ch6.MyEngine”,
null

);

BSFManager manager = new BSFManager();
CodeBuffer cb = new CodeBuffer();
try {

manager.compileExpr(
“jython”, “hello”, 0, 0, “4+5”, cb

);
cb.setClassName(“Hello”);
cb.setPackageName(“net.scriptinginjava.ch6”);
FileWriter out =

new FileWriter(
“net/scriptinginjava/ch6/Hello.java”

);
PrintWriter pw = new PrintWriter(out);
cb.print(pw, true);

} catch (BSFException bsfe) {
bsfe.printStackTrace();

} catch (IOException ioe) {
ioe.printStackTrace();

}
}

}

If we run the previous Java application in Listing 6.16, we
get the following Java file, shown in Listing 6.17.

Listing 6.17 Modified Compile Example—Result
package net.scriptinginjava.ch6;

public class Hello
{

org.apache.bsf.BSFManager
bsf = new org.apache.bsf.BSFManager();

public java.lang.Object exec()
throws org.apache.bsf.BSFException

{

return bsf.eval(“jython”, “hello”, 0, 0,
“4+5”
);

}
}

A simple example application that uses this generated code
could look like the code shown in Listing 6.18.

Listing 6.18 Compiled Script Usage Example
package net.scriptinginjava.ch6;

import org.apache.bsf.BSFException;

public class CompileTest {

public static void main(String[] args) {
Hello hello = new Hello();
try {

System.out.println(hello.exec());
} catch (BSFException bsfe) {

bsfe.printStackTrace();
}

}
}

274 SCRIPTING IN JAVA

Listing 6.16 Continued

Although we solved the problem, we can see that this
default implementation of the compile() method is not partic-
ularly useful. It just creates a wrapper class around the BSF
methods. It would be more useful if some real mapping between
scripting and Java code were done, or even better, if the script’s
compilation to the bytecode was supported.

Applications

A library such as the BSF has many useful applications in proj-
ects that want to use scripting languages. I cover some of these
use cases in the following chapters. In this section, I describe two
interesting applications bundled with the BSF distribution. They
help us to learn how to benefit from libraries such as the BSF
and give us some ideas of where we can use similar techniques.

This section describes how to use different scripting lan-
guages, through the BSF API, together with the JSP and XSLT
technologies.

JSP

If you have ever tried to develop a Web application in Java,
you are certainly familiar with JavaServer Pages (JSP). JSP is a
technology that provides a simplified way to create dynamic
Web content in Java Web applications. Its principle is similar to
the concepts of PHP and ASP, in that it is designed to enable
you to embed dynamic expressions into HTML documents.

There are three main JSP scripting elements: expressions,
scriptlets, and tags.

Expressions are used to insert a Java value directly into an
HTML document. Their syntax is as follows:

<%= java expression %>

When a JSP expression like this one is found in a docu-
ment, its value is evaluated, converted into a string, and
embedded into the resulting document. For example, the follow-
ing code embeds the current time in the document:

<%= new java.util.Date() %>

CHAPTER 6 275

Scriptlets, on the other hand, are used to handle more com-
plex programming tasks than just embedding simple values.
Their syntax is as follows:

<% java code %>

Scriptlets can contain any valid Java code. The predefined
out variable is used to embed values into the document. Look
at the following example:

<%
java.util.List users = new java.util.ArrayList();
users.add(“Mike”);
users.add(“Joe”);
for (

java.util.Iterator it = users.iterator();
it.hasNext();
) {
out.println(it.next() + “
”);

}
%>

This scriptlet defines a list and then embeds its elements
into the document (one element per line).

Finally, JSP tags represent the mechanism used for easy
encapsulation and reuse of common functionalities. Their syntax
is similar to that of XML. For example, we can use the standard
JSP include tag to include another page in the current document:

<jsp:include page=”header.jsp”/>

Knowing all this, we can create a simple Web application
that consists of a single JSP page. First, we need a servlet con-
tainer in which we can run this example. We can use the same
one that we used for the Groovlet example in Chapter 5,
“Advanced Groovy Programming.”

In this application, we need only a basic WEB-INF/web.xml
file, which could look like this:

276 SCRIPTING IN JAVA

<!DOCTYPE web-app PUBLIC “-//Sun Microsystems, Inc.//DTD Web
Application 2.3//EN” “http://java.sun.com/dtd/web-app_2_3.dtd”>

<web-app>
<display-name>Scripting in Java</display-name>

</web-app>

No special configuration is needed at this point. Next, we
create an index.jsp file in the root folder of our application.
This page includes all the JSP features that we described earlier
(see Listing 6.19).

CHAPTER 6 277

Listing 6.19 Introductory JSP Example
<jsp:include page=”header.jsp”/>
Hello!

Current time: <%= new java.util.Date() %>

Logged in users:

<%
java.util.List users = new java.util.ArrayList();
users.add(“Mike”);
users.add(“Joe”);
for (java.util.Iterator it = users.iterator(); it.hasNext();) {

out.println(it.next() + “
”);
}

%>

<jsp:include page=”footer.jsp”/>

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0 Transitional//EN”>

<html>
<head>

<title>Welcome</title>
</head>

<body>

Also, we need to create the header file for this page:

And we need to create the footer file for this page:

© Scripting in Java
</body>
</html>

If we now deploy this application (under the bsfjsp con-
text path) and run it by visiting the appropriate URL, such as
http://localhost:8080/bsfjsp/, we can expect that the browser
will show us a page similar to the one shown in Figure 6.2.

As we have seen so far, JSP pages provide a way to write
expressions and scriptlets using the Java programming lan-
guage. The BSF project provides JSP tags that enable you to use
any of the supported scripting languages for the same task.

FIGURE 6.2 JSP example

First, we have to set up support for BSF in our Web appli-
cation. To do this you have to copy the appropriate bsf.jar
file in the WEB-INF/lib folder of your application. Next, we
need a Tag Library Descriptor (TLD) file to register desired tags
in our application. This descriptor is part of the Jakarta Taglibs
project (http://jakarta.apache.org/taglibs/). To run examples
from this section, you need to download the Jakarta Taglibs
project and copy an appropriate descriptor file to the WEB-INF/
folder of your Web application (rename it to bsf.tld if neces-
sary). To be able to use it, we need to register this tag library.
To do that, we modify our web.xml file to something like this:

278 SCRIPTING IN JAVA

<!DOCTYPE web-app PUBLIC “-//Sun Microsystems, Inc.//DTD Web
Application 2.3//EN” “http://java.sun.com/dtd/web-app_2_3.dtd”>

<web-app>
<display-name>Scripting in Java</display-name>

<taglib>
<taglib-uri>

http://jakarta.apache.org/taglibs/bsf-2.0
</taglib-uri>
<taglib-location>/WEB-INF/bsf.tld</taglib-location>

</taglib>

</web-app>

http://jakarta.apache.org/taglibs/

Now let’s write a new JSP page (index_new.jsp) that uses
Jython to implement the same functionality as our introductory
JSP example. Of course, we have to put the appropriate
jython.jar file in the WEB-INF/lib directory as well, if we
want to use this interpreter (see Listing 6.20).

Listing 6.20 BSF JSP Example
<%@ taglib uri=http://jakarta.apache.org/taglibs/bsf-2.0
prefix=”bsf” %>

<jsp:include page=”header.jsp”/>
<bsf:scriptlet language=”jython”>
from time import *;
</bsf:scriptlet>
Hello!

Current time:
<bsf:expression language=”jython”>

strftime(‘%x %X %Z’)
</bsf:expression>

Logged in users:

<bsf:scriptlet language=”jython”>
users = [“Mike”, “Joe”]
for user in users:

out.print(user + “
”)
</bsf:scriptlet>

<jsp:include page=”footer.jsp”/>

The difference is that here we used scriptlet and
expression tags defined in the BSF tag library instead of built-
in JSP scriptlets and expressions. Both tags require a parameter
named language that specifies which scripting language is used
inside the tag. As you might assume, the difference between
these two tags is that the expression tag evaluates the script
and embeds its return result in the document. The scriptlet
tag, on the other hand, uses the out variable as the writer
object to the document.

In this particular example, we first included the BSF tag
library defined in the WEB-INF/web.xml file. Next, we used the
scriptlet to import all functions from Jython’s time module. The
following expression used the strftime() function from that
module to format the current date and print it in the document.
The last expression in the page demonstrates the use of Jython
for defining and traversing lists in JSP pages. Note the use of
the out variable for the purpose explained earlier.

CHAPTER 6 279

If we now run this new JSP page by visiting http://
localhost:8080/bsfjsp/index_new.jsp, we can expect the same
result as in the original JSP example.

Xalan-J (XSLT)

The Extensible Stylesheet Language Transformation (XSLT) and
XML Path Language (XPath) provide an implementation of the
tree-oriented transformation language. You can use them to
transform XML documents from one form to another, and to
create HTML or text documents from them.

Xalan-J (http://xml.apache.org/xalan-j/) is an Apache XML
project that implements the XSLT processor in Java. It’s primar-
ily designed for use as the XSLT processor in Java projects, but
you can use it as the command-line tool as well.

To use Xalan-J, you have to put the appropriate versions of
the xalan.jar, xml-apis.jar and xercesImpl.jar files in
your project’s classpath.

Let’s start this section with a simple example that demon-
strates the use of the XSLT and Xalan-J technologies to create
an HTML representation of data defined in the XML document.
This example is part of the official Xalan-J samples distributed
with the library.

First, we have to define an XML document (namelist.xml):

<?xml version=”1.0”?>
<doc>
<name first=”Sanjiva” last=”Weerawarana”/>
<name first=”Joseph” last=”Kesselman”/>
<name first=”Stephen” last=”Auriemma”/>
<name first=”Igor” last=”Belakovskiy”/>
<name first=”David” last=”Marston”/>
<name first=”David” last=”Bertoni”/>
<name first=”Donald” last=”Leslie”/>
<name first=”Emily” last=”Farmer”/>
<name first=”Myriam” last=”Midy”/>
<name first=”Paul” last=”Dick”/>
<name first=”Scott” last=”Boag”/>
<name first=”Shane” last=”Curcuru”/>
<name first=”Marcia” last=”Hoffman”/>
<name first=”Noah” last=”Mendelsohn”/>
<name first=”Alex” last=”Morrow”/>

</doc>

280 SCRIPTING IN JAVA

http://xml.apache.org/xalan-j/

We can think of this file as being an XML representation of
our customer database. To create an HTML representation of
this data, we need to create a simple XSLT transformation
(namelist.xsl), as shown in Listing 6.21.

CHAPTER 6 281

Listing 6.21 Simple XSLT Transformation
<?xml version=”1.0”?>
<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”

xmlns:xalan=”http://xml.apache.org/xalan”
version=”1.0”>

<xsl:template match=”/”>
<HTML>

<H1>XSLT Example</H1>
<p>

Here are the names in alphabetical order by last name:
</p>
<xsl:for-each select=”doc/name”>

<xsl:sort select=”@last”/>
<xsl:sort select=”@first”/>
<p>
<xsl:value-of select=”@last”/>
<xsl:text>, </xsl:text>
<xsl:value-of select=”@first”/>
</p>

</xsl:for-each>
</HTML>

</xsl:template>

</xsl:stylesheet>

We do not describe XSLT transformations in detail here,
because this is not related to the topic of this book. You are
advised to consult the appropriate literature on this topic if you
need more information about XSLT. Briefly, this transformation
traverses all name tags under the doc tag and creates an HTML
document with the first and last attributes of every such tag.

Now we can apply this transformation to our document. I
said that you could use Xalan-J as the command-line processor,
so if you type

java org.apache.xalan.xslt.Process -IN namelist.xml \
-XSL namelist.xsl -OUT namelist.html

you should find the namelist.html document with the follow-
ing content:

<HTML xmlns:xalan=”http://xml.apache.org/xalan”>
<H1>XSLT Example</H1>
<p>Here are the names in alphabetical order by last name:</p>
<p>Auriemma, Stephen</p>
<p>Belakovskiy, Igor</p>
<p>Bertoni, David</p>
<p>Boag, Scott</p>
<p>Curcuru, Shane</p>
<p>Dick, Paul</p>
<p>Farmer, Emily</p>
<p>Hoffman, Marcia</p>
<p>Kesselman, Joseph</p>
<p>Leslie, Donald</p>
<p>Marston, David</p>
<p>Mendelsohn, Noah</p>
<p>Midy, Myriam</p>
<p>Morrow, Alex</p>
<p>Weerawarana, Sanjiva</p>
</HTML>

282 SCRIPTING IN JAVA

Of course, Xalan-J (with all its necessary libraries) must be
present in your classpath to execute this task successfully.

For those who need more functionality, Xalan-J supports
the creation and use of extension elements and functions in the
transformation files. We extend the example in Listing 6.21 by
implementing a counter that prints the ordering number in front
of customers’ names.

Let’s take a look at the modified transformation file
(javanumlist.xls) first, shown in Listing 6.22.

Listing 6.22 Extended XSLT Example
<?xml version=”1.0”?>
<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”

xmlns:xalan=”http://xml.apache.org/xalan”
xmlns:counter=”MyCounter”
extension-element-prefixes=”counter”
version=”1.0”>

<xalan:component prefix=”counter”
elements=”init incr” functions=”read”>

<xalan:script lang=”javaclass” src=”MyCounter”/>
</xalan:component>

<xsl:template match=”/”>
<HTML>

<H1>Java Example</H1>
<counter:init name=”index” value=”1”/>
<p>

Here are the names in alphabetical order by last name:
</p>
<xsl:for-each select=”doc/name”>

<xsl:sort select=”@last”/>
<xsl:sort select=”@first”/>
<p>
<xsl:text>[</xsl:text>
<xsl:value-of select=”counter:read(‘index’)”/>
<xsl:text>]. </xsl:text>
<xsl:value-of select=”@last”/>
<xsl:text>, </xsl:text>
<xsl:value-of select=”@first”/>
</p>
<counter:incr name=”index”/>

</xsl:for-each>
</HTML>

</xsl:template>

</xsl:stylesheet>

CHAPTER 6 283

Listing 6.22 Continued

I added the code snippets marked in bold in Listing 6.22 to
register and use the Java class as an XSLT extension. With these
fragments, we have registered the extension component with the
counter prefix and defined that it has two elements (init and
incr) and one function (read). Also, we can see that this exten-
sion is implemented with the Java class named MyCounter.

The MyCounter class could look like the one shown in List-
ing 6.23.

Listing 6.23 Xalan-J Extension Example
import java.util.Hashtable;

public class MyCounter {
static Hashtable counters = new Hashtable ();

public void init(
org.apache.xalan.extensions.XSLProcessorContext context

, org.w3c.dom.Element elem) {
String name = elem.getAttribute(“name”);
String value = elem.getAttribute(“value”);
int val;
try
{

val = Integer.parseInt (value);
}
catch (NumberFormatException e)
{

e.printStackTrace ();
val = 0;

}
counters.put (name, new Integer (val));

}

public int read(String name)
{

Integer cval = (Integer)counters.get(name);
return (cval == null) ? 0 : cval.intValue();

}

public void incr(
org.apache.xalan.extensions.XSLProcessorContext context

, org.w3c.dom.Element elem) {
String name = elem.getAttribute(“name”);
Integer cval = (Integer) counters.get(name);
int nval = (cval == null) ? 0 : (cval.intValue () + 1);
counters.put (name, new Integer (nval));

}
}

284 SCRIPTING IN JAVA

Listing 6.23 Continued

As you can see, this class is responsible for manipulation of
multiple counters, which are accessed by their names. Extension
functions and elements used in the transformation are defined
as methods of this class.

Elements must follow a strictly defined method signature.
They accept the org.apache.xalan.extensions.XSLProces-
sorContext class instance as the first parameter and the
org.w3c.dom.Element object as the second parameter. The
Element parameter contains values passed as the attributes of
the element tag in the transformation file. In our example, the
init and incr elements are used to initialize and increment the
counter. The particular counter to be used is defined by the
name parameter passed to the methods.

Functions, on the other hand, can have any signature, and
as you can see, they can return the value embedded into the
document. The syntax for calling the function is, of course, dif-
ferent from the one used for elements. Listing 6.23 defines the
read function that is used to return the current value of the
counter of our interest.

After this analysis, we can conclude that the preceding
transformation first initializes a counter named index to the
value of 1 by calling the init element. Next, in each iteration,
it prints its current value (using the read function) and incre-
ments it (with the incr element).

The result of applying this transformation to the XML docu-
ment defined earlier:

java org.apache.xalan.xslt.Process -IN namelist.xml \
-XSL javanamelist.xsl -OUT javanamelist.html

results in an HTML document that is slightly different from the
one created in the first example (javanamelist.html):

CHAPTER 6 285

<HTML xmlns:xalan=”http://xml.apache.org/xalan”>
<H1>JavaScript Example.</H1>
<p>Here are the names in alphabetical order by last name:</p>
<p>[1]. Auriemma, Stephen</p>
<p>[2]. Belakovskiy, Igor</p>
<p>[3]. Bertoni, David</p>
<p>[4]. Boag, Scott</p>
<p>[5]. Curcuru, Shane</p>
<p>[6]. Dick, Paul</p>
<p>[7]. Farmer, Emily</p>
<p>[8]. Hoffman, Marcia</p>
<p>[9]. Kesselman, Joseph</p>
<p>[10]. Leslie, Donald</p>
<p>[11]. Marston, David</p>
<p>[12]. Mendelsohn, Noah</p>
<p>[13]. Midy, Myriam</p>
<p>[14]. Morrow, Alex</p>
<p>[15]. Weerawarana, Sanjiva</p>
</HTML>

As you can see, we used the Xalan-J extension mechanism
to add ordering numbers in front of customer names.

Here we have seen how to use Java to extend basic XSLT
functionality. Some may find that writing a new Java class for
these small extensions is inflexible and overwhelming. Scripting
snippets, on the other hand, could be a good fit for this task.
You can integrate them easily into XSLT documents because the
transformation files are also kept in plain text form. The Xalan-
J project provides the ability to embed scripts into the transfor-
mation files through its integration with the BSF library. In the
following example, we see how to use JavaScript snippets to
write transformation extensions better suited to this purpose.

The transformation shown in Listing 6.24 is equivalent in
functionality with Listing 6.22 (javascriptnumlist.xsl).

Listing 6.24 Xalan-J BSF Example
<?xml version=”1.0”?>
<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”

xmlns:xalan=”http://xml.apache.org/xalan”
xmlns:counter=”MyCounter”

extension-element-prefixes=”counter”
version=”1.0”>

<xalan:component prefix=”counter”
elements=”init incr” functions=”read”>

<xalan:script lang=”javascript”>
var counters = new Array();

function init (xslproc, elem) {
name = elem.getAttribute (“name”);
value = parseInt(elem.getAttribute (“value”));
counters[name] = value;
return null;

}

function read (name) {
return “” + (counters[name]);

}

function incr (xslproc, elem)
{

name = elem.getAttribute (“name”);
counters[name]++;
return null;

}
</xalan:script>

</xalan:component>

<xsl:template match=”/”>
<HTML>

<H1>JavaScript Example.</H1>
<counter:init name=”index” value=”1”/>
<p>

Here are the names in alphabetical order by last name:
</p>
<xsl:for-each select=”doc/name”>

<xsl:sort select=”@last”/>
<xsl:sort select=”@first”/>
<p>
<xsl:text>[</xsl:text>
<xsl:value-of select=”counter:read(‘index’)”/>
<xsl:text>]. </xsl:text>
<xsl:value-of select=”@last”/>
<xsl:text>, </xsl:text>
<xsl:value-of select=”@first”/>
</p>
<counter:incr name=”index”/>

</xsl:for-each>
</HTML>

</xsl:template>

</xsl:stylesheet>

286 SCRIPTING IN JAVA

Listing 6.24 Continued

The only difference is the fact that, in this example, the
entire extended functionality is embedded directly into the
XSLT document. I used JavaScript here, but we could also use
any of other languages supported by the BSF. With this
approach, no separate Java class is needed, and both functions
and elements are defined as script functions directly within the
transformation file. The same restriction for the method signa-
tures of defined elements applies here too.

ISSUES

Although this method works, you should take care of a few
additional considerations if you are planning to use the BSF
with Xalan-J.

First, due to historical reasons, Xalan-J still uses the old
package name for BSF classes (com.ibm.bsf). So it is best to
use the BSF library distributed with Xalan-J (you can find it in
the bin directory).

Next, version 2.2 of the Xalan-J project is bundled with
version 1.4 of the Sun JDK. That version of Xalan-J does not
support the script extensions we have just described. To use the
newer version of Xalan-J with JDK 1.4, prepend the appropriate
JAR files to the boot classpath. One way to achieve this is to
use the -Xbootclasspath/p switch of the java command:

java \
-Xbootclasspath/p:C:\xalan-j\bin\xalan.jar;\
C:\xalan-j\bin\xml-apis.jar;C:\xalan-j\bin\xercesImpl.jar \
org.apache.xalan.xslt.Process -IN namelist.xml \
-XSL jsnamelist.xsl -OUT jsnamelist.html

Also worth noting is the fact that version 1_5R5 of the
Rhino interpreter has a bug that throws an exception if you try
to use it with Xalan-J. If you experience this problem, try to
use it with some other version of Rhino.

CHAPTER 6 287

Conclusion

In this chapter, we covered the BSF library architecture, which
provides a unique interface to various scripting engines. We
learned how we could use it in our Java applications and saw
some of its use cases. In the following chapters, we discuss
some successful deployments of the BSF library for various
tasks related to Java development.

But first, in Chapter 7, “Practical Scripting in Java,” we
focus on applying the technologies and concepts that we have
learned thus far. We dig through some practical tasks that we
could simplify by using scripting languages appropriately.

288 SCRIPTING IN JAVA

PART III

CHAPTER 7 Practical Scripting in Java

CHAPTER 8 Scripting Patterns

This page intentionally left blank

Earlier in the book, we discussed the roles that scripting
languages played (and still do play) in various systems.

In this chapter, we see how scripting languages and tech-
nologies covered in the previous chapters can be used in
those roles. This chapter does not focus on best practices for
extending and implementing application functionalities
with scripting languages; we cover that, along with script-
ing patterns and the use of scripting languages in system
architecture, in Chapter 8, “Scripting Patterns.” Instead, in
this chapter, we focus on using scripting languages for tasks
that are a part of every development process. Specifically,
we see the benefits (and limitations) of writing unit tests in
Groovy. Along with unit testing, this chapter focuses on
using scripting languages for the following applications:

■ Interactive debugging

■ Writing Ant build files

■ UNIX shell scripting and creating application
startup scripts

■ Administration and management of Java (and
other) systems

PPRARACTICCTICALAL
SSCRIPTINGCRIPTING
ININ JJAAVVAA

CHAPTER 7

Unit Testing

In today’s era of extreme programming and unit testing, devel-
opers spend a lot of time writing test cases. In fact, you could
consider unit testing one of the main tasks directly related to
the success of a software project. Unit testing also consumes a
lot of development time, so we need to think about how we can
perform this task both quickly and satisfactorily.

Using scripting languages to write unit tests brings multiple
benefits, all of which reduce the amount of time needed to gain
the same advantages as we do with Java-written test cases.
Powerful data structures, for example, provide an easy way to
define test data. Consider the native support for lists and maps,
easy manipulation of regular expressions, and other aspects of
Groovy and how it can help you test your application.

A main drawback of the decision to use scripting languages
for testing purposes is that it takes more time to execute such
tests. This is related to the general characteristics of scripting
and programming languages, as we saw in Chapter 1, “Intro-
duction to Scripting.” But because test execution is usually not
a time-critical operation, we can conclude that scripting lan-
guages can be a better choice than system-programming ones
in many cases. Many organizations, for example, use a continu-
ous integration technique that suggests batch execution of tests
many times a day. Martin Fowler and Matthew Foemmel, well-
known software experts, explained it this way (www.martin-
fowler.com/articles/continuousIntegration.html):

An important part of any software development process is get-
ting reliable builds of the software. Despite its importance, we
are often surprised when this isn’t done. We stress a fully auto-
mated and reproducible build, including testing, that runs many
times a day. This allows each developer to integrate daily, thus
reducing integration problems.

If we operate in an environment like that which Fowler and
Foemmel describe, it is obvious that the amount of time it takes
to execute tests is not that crucial. Still, we would like to
improve our development speed by writing those tests faster.

292 SCRIPTING IN JAVA

www.martinfowler.com/articles/continuousIntegration.html
www.martinfowler.com/articles/continuousIntegration.html

Many modern Java IDEs do a great job of helping developers be
efficient when unit testing, so it may look like there are no
additional benefits to gain from using scripting languages in
this field.

But as with other concepts that we describe in the remain-
der of this book, there is no need to be strict when choosing
scripting over the system-programming approach. These tech-
nologies play well together, and it is up to you to decide which
one to use for your particular task.

Another issue related to the acceptance of scripting lan-
guages for Java code testing is the fact that Java developers have
a lot of experience with current Java unit-testing tools, such as
JUnit. But it is important to note that concepts that we present in
this chapter do not collide with the basic principles built into
JUnit. As mentioned, you can think of the scripting concepts that
I am going to talk about as just a natural extension to JUnit that
introduces greater flexibility where you need it. Of course, per-
formance penalties must be paid, so it is up to you to decide
whether scripting is beneficial in your environment.

Groovy is an excellent tool for unit testing of Java code. It
has the Java syntax, it has all the benefits of a scripting lan-
guage, and it provides a natural integration with JUnit (the
unit-testing framework for Java; see www.junit.org for more
information). In the rest of this section, I recap the basics of
JUnit and then discuss how Groovy can fit into your unit-test-
ing process. To run examples from this section, you need to
download JUnit and include it in the classpath.

JUnit Basics

To begin, let’s summarize the basic principles used in JUnit. You
write unit tests by extending the junit.framework.TestCase
class. You use the setUp() method of this class to prepare the
necessary resources for the test (for example, to open a network
connection). Accordingly, you should use the tearDown()
method to clean up used resources (to close the network con-
nection opened by the setUp() method). These two methods are
called before and after tests are executed. Actual tests are
located in methods whose names start with the test keyword.

CHAPTER 7 293

www.junit.org

The TestCase class provides a few methods that you can use to
verify that test variables have expected values and to mark the
current test as failed.

Listing 7.1 demonstrates one simple test case.

294 SCRIPTING IN JAVA

Listing 7.1 JUnit Example
package net.scriptinginjava.ch7;

import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;

import junit.framework.TestCase;

public class MyTest extends TestCase {

List testList;

public void setUp() {
testList = new ArrayList();
testList.add(new Integer(1));
testList.add(new Integer(3));
testList.add(new Integer(5));
testList.add(new Integer(7));

}

public void testInit() {
assertEquals(4, testList.size());

}

public void testIteration() {
for (Iterator it = testList.iterator(); it.hasNext();) {

if (((Integer)it.next()).intValue() > 5) {
fail(“Element greater than 5 found!”);

}
}

}

public static void main(String[] args) {
junit.textui.TestRunner.run(MyTest.class);

}
}

In this example, the setUp() method is used to create a list
of four elements. The actual test methods (testInit() and
testIteration()) are used to check whether this list has four
elements as expected and whether there are elements greater
than 5.

Here you can see the use of the assertEquals() method,
whose purpose is to verify that two values are identical. Also,
we used the fail() method to mark the second test as failed if

a certain condition is met. In our example, the testIteration
test will fail because we defined the element with a value of 7
in the test list.

To run this test case without defining a test suite (we discuss
test suites in a moment), we need to define the main() method
for our test case class. The main() method calls the static run()
method of the junit.textui.TestRunner class. The class of the
test case is provided as an argument to this method.

Now we can run the test case with the following command
(JUnit must be in the classpath):

java net.scriptinginjava.ch7.MyTest

If you want to avoid the main() method in the test class,
you can execute the test case with the following command:

java junit.textui.TestRunner net.scriptinginjava.ch7.MyTest

In both cases, we can expect the following output:

..F
Time: 0.02
There was 1 failure:
1) testIteration(chapter7.MyTest)
junit.framework.AssertionFailedError:
Element greater than 5 found!
at net.scriptinginjava.ch7.MyTest.testIteration(
MyTest.java:28

)
at sun.reflect.NativeMethodAccessorImpl.invoke0(

Native Method
)
at sun.reflect.NativeMethodAccessorImpl.invoke(

Unknown Source
)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(
Unknown Source

)
at net.scriptinginjava.ch7.MyTest.main(
MyTest.java:34

)

FAILURES!!!
Tests run: 2, Failures: 1, Errors: 0

As mentioned, the testIteration test will fail when it
reaches the element with a value of 7.

CHAPTER 7 295

NOTE

JUnit also provides
other test runner
classes that you can
use to view results
in a graphical user
interface, for exam-
ple, but this textual
one is the most
appropriate for dis-
playing results in
this book.

The GroovyTestCase Class

Now let’s see how we can write an equivalent test in Groovy, as
Groovy comes with a groovy.util.GroovyTestCase class that
extends JUnit’s standard TestCase class. This class provides
Groovy integration with JUnit and adds more functionality to
the original TestCase class.

Let’s write a test case that is equivalent to the earlier one
and see GroovyTestCase in action (see Listing 7.2).

Listing 7.2 GroovyTestCase Example
package net.scriptinginjava.ch7;

public class MyGroovyTest extends GroovyTestCase {

List testList;

public void setUp() {
testList = [1,3,5,7]

}

public void testInit() {
assertEquals(4, testList.size());

}

public void testIteration() {
if (testList.any {it > 5}) {

fail(“Element greater than 5 found!”);
}

}
}

The first thing you will notice is that this solution is much
shorter and simpler than the original test case written in Java.
We can see that the same functionality provided by JUnit can
be used in these tests too. In addition, we can now use closures,
native support for lists, and all the other features that Groovy
has to offer.

You might also notice that we didn’t define the main()
method for this class. The GroovyTestCase class handles that
task, so running these tests is as simple as running any other
Groovy script:

groovy net/scriptinginjava/ch7/MyGroovyTest.groovy

296 SCRIPTING IN JAVA

The result that we get this time is similar to the one pro-
duced by the pure Java solution:

..F
Time: 0.13
There was 1 failure:
1) testIteration(net.scriptinginjava.ch7.MyGroovyTest)
junit.framework.AssertionFailedError:
Element greater than 5 found!
at sun.reflect.NativeMethodAccessorImpl.invoke0(
Native Method

)
at sun.reflect.NativeMethodAccessorImpl.invoke(
NativeMethodAccessorImpl.java:39

)

...

org.codehaus.classworlds.Launcher.launchStandard(
Launcher.java:410

)
at org.codehaus.classworlds.Launcher.launch(
Launcher.java:344

)
at org.codehaus.classworlds.Launcher.main(
Launcher.java:461

)

FAILURES!!!
Tests run: 2, Failures: 1, Errors: 0

The important thing to notice is the execution time, which
even for this simple example is considerably longer than that
for the previous Java example. But this is the cost of flexibility
and faster implementation. It is up to you to estimate the
impact of both factors on your project and to decide the most
appropriate method of unit testing in your application.

Assertion Methods

In our examples thus far, we used the assertEquals() method
to check whether objects have expected values. In addition to
this method, JUnit provides a few similar useful methods:

■ assertFalse()—Asserts that supplied condition is
false

■ assertTrue()—Asserts that supplied condition is true

■ assertNull()—Asserts that supplied object is null

■ assertNotNull()—Asserts that supplied object is not
null

CHAPTER 7 297

■ assertSame()—Asserts that two supplied objects refer
to the same object

■ assertNotSame()—Asserts that two supplied objects do
not refer to the same object

In addition to these regular assertion methods, the
GroovyTestCase class provides a few more methods that could
be valuable in certain situations. Most of them are intended for
testing Java arrays. In the following subsections, we discuss
these methods and provide examples of how they’re used.

assertLength()

You can use the assertLength() method to assert that an
array has the expected length, as shown in Listing 7.3.

Listing 7.3 A GroovyTestCase.assertLength() Method
Example

void testLength() {
assertLength(15, “ScriptingInJava”.toCharArray())

}

This method is applicable to arrays of chars (char[]), prim-
itive integers (int[]), and objects (Object[]).

assertArrayEquals()

As its name implies, this method is used to assert that two
arrays are equal (see Listing 7.4).

Listing 7.4 A GroovyTestCase.assertArrayEquals() Method
Example

void testArray() {
array1 = new Integer[] {1,3,5,7}
array2 = new Integer[] {1,3,5,7}
assertArrayEquals(array1, array2)

}

You can use it only on arrays of objects (Objects[]). This
method simply calls the assertEquals() JUnit method on
every corresponding index element of two arrays.

298 SCRIPTING IN JAVA

assertContains()

The assertContains() method is used to assert that a certain
element is in the array (see Listing 7.5).

Listing 7.5 A GroovyTestCase.assertContains() Method
Example

void testContains() {
char c = ‘J’;
assertContains(c, “ScriptingInJava”.toCharArray());

}

It is applicable to arrays of char and int types (char[]
and int[], respectively).

assertToString()

This method asserts that the value of the toString() method
call on the given object matches the given text string (see List-
ing 7.6).

Listing 7.6 A GroovyTestCase.assertToString() Method
Example

void testToString() {
f = new java.io.File(“test.groovy”);
assertToString(f, “test.groovy”);

}

assertScript()

The assertScript() method asserts that the given script runs
without any exceptions (see Listing 7.7).

Listing 7.7 A GroovyTestCase.assertScript() Method
Example

void testScript() {
assertScript(“println 3”);

}

shouldFail()

This method is somewhat different from the preceding methods.
It asserts that a given closure throws an exception when it is
evaluated (see Listing 7.8).

CHAPTER 7 299

Listing 7.8 A GroovyTestCase.shouldFail() Method
Example

void testFail() {
cl = {

println 3
throw new java.io.IOException()

}
shouldFail(cl)

}

You can also call this method with two parameters. When
you call it in this way, its first parameter should be the class of
the exception that is expected:

void testFailIO() {
cl = {

println 3
throw new java.io.IOException()

}
shouldFail(java.io.IOException, cl)

}

These methods can come in handy in certain situations. You
can play with the examples provided here to see how they
behave in different contexts.

Test Suites

The unit-testing methods that we have covered to this point
work if all the tests are located in one class (script). However,
many times our tests are spread out in different classes for dif-
ferent modules.

To run all these tests at once, we need a TestSuite class
that contains a collection of tests to run. Listing 7.9 is an
example of a test suite that contains all the tests from the
MyTest class defined at the beginning of this section.

Listing 7.9 TestSuite Example
package net.scriptinginjava.ch7;

import junit.framework.Test;
import junit.framework.TestSuite;
import junit.textui.TestRunner;

public class MySuite {

300 SCRIPTING IN JAVA

public static Test suite() {

TestSuite suite = new TestSuite();
suite.addTestSuite(MyTest.class);

// add more tests here

return suite;
}

public static void main(String[] args) {
TestRunner.run(suite());

}
}

As you can see, an instance of junit.framework.
TestSuite can be passed to the run() method of the
TestRunner class, at which point, all tests defined in that
suite will be executed.

Because we defined the main() method in this class, we
can execute it with the following command:

java net.scriptinginjava.ch7.MySuite

When executed, the TestRunner class searches for the
appropriate suite() method and executes all the tests defined
in it. So we can execute the suite defined earlier with the fol-
lowing command as well:

java junit.textui.TestRunner \
net.scriptinginjava.ch7.MySuite

The result of this suite’s execution is equivalent to the exe-
cution of the single test case defined in it.

If you wrote your tests partially in Java and partially in
Groovy, you cannot use the standard TestSuite class to run all
of them. Groovy provides the groovy.util.GroovyTestSuite
class that you can use to run test cases written both in Java and
in Groovy (see Listing 7.10).

Listing 7.10 GroovyTestSuite Example
package net.scriptinginjava.ch7;

import groovy.util.GroovyTestSuite;

CHAPTER 7 301

Listing 7.9 Continued

302 SCRIPTING IN JAVA

Listing 7.10 Continued
import junit.framework.Test;
import junit.textui.TestRunner;

public class MyGroovySuite {

public static Test suite() throws Exception {

GroovyTestSuite suite = new GroovyTestSuite();
suite.addTestSuite(MyTest.class);
suite.addTestSuite(

suite.compile(
“net/scriptinginjava/ch7/MyGroovyTest.groovy”

)
);

// add more tests here

return suite;
}

public static void main(String[] args) throws Exception {
TestRunner.run(suite());

}
}

The only difference from the example in Listing 7.9 is that
now we have defined our suite as an instance of the
GroovyTestSuite class, and we added tests defined in the
Groovy script. We used the compile() helper method of this
class to load the script as a class.

All other issues related to the junit.framework.TestSuite
class are valid here too. So, if we run our new suite with the
following command:

java net.scriptinginjava.ch7.MyGroovySuite

we should expect a result similar to this one:

..F..F
Time: 0.15
There were 2 failures:
1) testIteration(net.scriptinginjava.ch7.MyTest)
junit.framework.AssertionFailedError:
Element greater than 5 found!
at net.scriptinginjava.ch7.MyTest.testIteration(
MyTest.java:28

)
at sun.reflect.NativeMethodAccessorImpl.invoke0(
Native Method

)
at sun.reflect.NativeMethodAccessorImpl.invoke(

NativeMethodAccessorImpl.java:39
)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(
DelegatingMethodAccessorImpl.java:25

)
at chapter7.MyGroovySuite.main(MyGroovySuite.java:21)

2) testIteration(net.scriptinginjava.ch7.MyGroovyTest)
junit.framework.AssertionFailedError:
Element greater than 5 found!
at gjdk.net.scriptinginjava.ch7.MyGroovyTest_GroovyReflector.invoke(
MyGroovyTest_GroovyReflector.java

)

FAILURES!!!
Tests run: 4, Failures: 2, Errors: 0

CHAPTER 7 303

Because we have two identical test cases defined, there are
two failures (one in each case).

Scripts as Unit Test Cases

Besides integration with JUnit, you can use Groovy to write
tests as regular scripts. Groovy defines the assert command
that you can use for this purpose. This method is demonstrated
in the following code snippet (testScript.groovy):

testList = [1,3,5,7]
assert testList.size() == 4

As you can see, this simple script could serve as a unit test.
The only limitation is that there is only one signature of this
method (which was not the case with assert methods described
earlier), but for simple use cases, this is more than enough.

To demonstrate what happens in a case of unexpected
value, let’s modify the original script as follows:

testList = [1,3,5,7]
assert testList.size() == 3

If you now run it with:

groovy testScript.groovy

you get the following error on the screen:

Caught: java.lang.AssertionError: Expression:
(testList.size() == 3)
at testScript.run(testScript.groovy:2)
at testScript.main(testScript.groovy)

Summary

As you saw in this section, using scripting for conducting unit
tests provides greater flexibility and enables you to write tests
faster. However, these tests take more time to execute. Whether
your project benefits from this technique primarily depends on
the development process you’re using.

Interactive Debugging

As mentioned, unit testing has changed the traditional process
of software development, as developers now write test cases
first and implement the functionality afterward. Even though
most of the functionality in our applications is covered by
appropriate test cases, there are situations where interactive
shells could still be helpful.

In the process of writing your classes, regardless of whether
you have written tests for them, you often need to check
whether a certain code snippet (or subfunctionality) behaves
properly, or you need to do some fine-tuning. Sometimes it is
too time consuming to run tests just for these purposes, and
sometimes it is just not possible (or not worthwhile) to do it.

In such situations, Java programmers are forced to make
their classes executable (by defining the main() method in
them), perform some initial testing (debugging), and then delete
that code after they are sure that they can proceed.

Using a main() method for initial testing and debugging is
neither natural nor efficient. Also, this kind of debugging usu-
ally lasts longer than you would like and could result in forgot-
ten main() methods that should not exist in your application.

304 SCRIPTING IN JAVA

A much more appropriate way to perform initial testing
and debugging is by using interactive shells and scripting
languages. While you are implementing a certain functionality,
you can use the interactive shell (available for every scripting
language covered in the book thus far) for a quick test of your
class’s behavior for some test values. In that way, you can work
around certain problems and doubts that you have in your
design.

Let’s demonstrate this on a simple example. Imagine that
we have to write a User class with a setEmail() method. This
method should throw an Exception if the submitted email
address is not in a valid format. There are numerous ways to
verify that an email address is valid, but let’s say that we want
to use a regular expression for this task.

First, not many people can write a nontrivial regular
expression correctly in their first attempt. Even if you can find
an off-the-shelf solution on the Internet, test it (and adapt it to
your needs) before making it an integral part of your
application.

So, before we start coding our business logic class, we want
to write a regular expression that we can use. Even if most of
you are thinking of unit tests right now, a much better solution
is available for you to use for this task. Unit tests are important
for checking basic functionalities and boundary value behaviors,
and to provide a mechanism for ensuring that this functionality
does not break in a year or two. But it is not convenient to use
unit tests as a tool for writing, checking, and fine-tuning regular
expressions.

Imagine, for example, that we have come up with the fol-
lowing regular expression as a solution for email address
verification:

^[a-zA-Z][\\w\\.-]*[a-zA-Z0-9]@[a-zA-Z0-9][\\w\\.-]
[a-zA-Z0-9]\\.[a-zA-Z][a-zA-Z\\.][a-zA-Z]$

Many people create a dummy class or a dummy main()
method in an existing class just as a helper tool for playing
with the regular expression. For example, let’s see what happens
if we use a local e-mail address (without a domain):

CHAPTER 7 305

NOTE

You should not con-
sider this as a
replacement for unit
testing, and it
should not interfere
with that process by
any means. It is just
an additional tool
for developers that
should enable them
to create more-
robust solutions
faster.

public static void main(String[] args)
throws Exception {

if (Pattern.matches(
“^[a-zA-Z][\\w\\.-]*[a-zA-Z0-9]@”

+ “[a-zA-Z0-9][\\w\\.-]”
+ “*[a-zA-Z0-9]\\.[a-zA-Z][a-zA-Z\\.]*[a-zA-Z]$”
, “dejan”)) {

System.out.println(“true”);
} else {

System.out.println(“false”);
}

}

As you can see, this simple method just prints true or
false indicating whether the test value matches the pattern. If
the class with this main method is run in this case, it prints the
following:

false

This means that this regular expression does not accept
users on the local host. In our example, we assume that this is
desirable behavior. If it wasn’t, we would be forced to dig into
the expression and try to fix the problem. Then we would have
to run the application repeatedly until it worked. We would
repeat this process for all the cases that are of interest to us.

As mentioned, however, this approach is not flexible
enough, and we should not use it for these purposes. Instead,
let’s now try to use Groovy’s interactive shell to perform initial
testing of the regular expression. We can just run the interactive
shell by using the groovysh command and start playing (see
Listing 7.11).

306 SCRIPTING IN JAVA

Listing 7.11 Interactive Debugging with the Groovy Shell
$ groovysh
Let’s get Groovy!
================
Version: 1.0-beta-8 JVM: 1.5.0_01-b08
Type ‘exit’ to terminate the shell
Type ‘help’ for command help
Type ‘go’ to execute the statements

groovy> p = “^[a-zA-Z][\\w\\.-]*[a-zA-Z0-9]@[a-zA-Z0-9][\\w\\.-]
[a-zA-Z0-9]\\.[a-zA-Z][a-zA-Z\\.][a-zA-Z]$”
groovy> println “dejan” ==~ p

groovy> go
false

groovy>

CHAPTER 7 307

Listing 7.11 Continued

It’s easy to try out other test values. Let’s try the valid
e-mail address, for example:

groovy> println “dejan@nighttale.net” ==~ p
groovy> go
true

As we can see, the regular expression seems to work fine in
this case. We can now play further, by passing an address with a
wrong domain name:

groovy> println “dejan@nighttale” ==~ p
groovy> go
false

This also fails. We can proceed like this until we are sure that
this regular expression is the right solution for us.

An interactive shell in combination with Groovy’s support
for Perl-like syntax regular expressions helps us to write and test
regular expressions much faster. There is no need to recompile
the class and run it for every little change in the expression. The
Groovy shell keeps a history of recently used statements, so you
can easily return to the expression and make all your desired
changes.

Now that we have an initial version of the regular expres-
sion, we can write our User class as follows:

package net.scriptinginjava.ch7;

import java.util.regex.Matcher;
import java.util.regex.Pattern;

public class User {

Pattern emailPattern = Pattern.compile(
“^[a-zA-Z][\\w\\.-]*[a-zA-Z0-9]@[a-zA-Z0-9][\\w\\.-]

+ “*[a-zA-Z0-9]\\.[a-zA-Z][a-zA-Z\\.]*[a-zA-Z]$”);

String email;

public void setEmail(String email) throws Exception {
Matcher matcher = emailPattern.matcher(email);
if (!matcher.matches()) {

throw new Exception(
“Not valid email address: “ + email

);
}
this.email = email;

}

}

Of course, we still have to write the appropriate unit tests
for this method and cover all the necessary cases of its use
(some of the techniques presented in the “Unit Testing” section
earlier in the chapter could be used for this task). The interac-
tive shell just helped us to get going, create an expression that
compiles, and do the desired job at first glance.

Naturally, we could write test cases for the setEmail()
method first and use them to build the complex regular expres-
sion. But it would take much more time to get the initial behav-
ior used in the application. Also, we can use the shell to prove
some concept before we even can be sure that it could be used
in our project. Only when we have settled that the concept is
correct can we start planning a testing strategy and implemen-
tation details.

Another situation where BeanShell and Groovy could be
particularly helpful is the design of complex algorithms and
code snippets. Again, it is usually not convenient to do such
things in the targeted class. Instead, you could move such snip-
pets to the script (since the language syntax is pretty much the
same), and you could work to prove your concepts there more
easily. When they are good enough, you can return them to the
Java class and expose them to unit testing.

The final use of interactive shells discussed in this section is
exploration of new APIs. In the Java community today, there
are many open source projects, and you often need to evaluate
them to see whether they match your requirements. In other
cases, you just want to get a feeling for the API, such as which
classes are there and how they are used. Again, interactive

308 SCRIPTING IN JAVA

shells (and similar tools) give you all the freedom you need to
play with new libraries while you are reading the documenta-
tion. Very quickly, you can put up some basic examples and get
a feeling for the API. After this first learning phase, continue to
think of how you can integrate the API into your project.

In this section, I covered only a few simple examples of the
use of interactive shells in the development process. You might
feel that these issues are not that important in these modern
days of extreme programming, but the next time you find your-
self in a situation similar to one I described, try using an inter-
active shell. I think it will become one of your new habits.

Build Tools (Ant Scripting)

In Chapter 2, “Appropriate Applications for Scripting Lan-
guages,” we concluded that a build tool such as Make is essen-
tial for successful project deployment. We also said that Ant,
due to its advantages, is the number one build tool for Java
projects.

Before we go into more detail on Ant, let’s do a quick
overview. Tasks, such as <javac>, which compiles Java source
files, are implemented as Java classes. The developer, or any
other person responsible for project deployment, creates an
XML file (usually called build.xml) in which he composes
those tasks and adapts them to the desired environment. In the
following code, you can find a typical example of these XML
definition files:

<project name=”MyProject” default=”deploy” basedir=”.”>

<property name=”src” value=”src” />
<property name=”build” value=”classes” />
<property name=”jar.name” value=”my.jar” />
<path id=”lib”>

<pathelement path=”${basedir}/”/>
<fileset dir=”${basedir}/lib”/>

</path>
<pathconvert property=”cpath” targetos=”unix”
refid=”lib” />
<pathconvert property=”manifest.cpath”

refid=”lib” pathsep=” “
/>
<property name=”build.compiler” value=”modern”/>

CHAPTER 7 309

NOTE

If you don’t already
have it, you can
obtain Ant from the
Apache software
foundation site
(http://ant.apache.
org/). There you can
also find installation
instructions for vari-
ous platforms.

http://ant.apache.org/
http://ant.apache.org/

<property name=”main.class” value=”Test”/>

<target name=”clean”>
<delete dir=”${build}” />

</target>

<target name=”prepare”>
<mkdir dir=”${build}” />

</target>

<target name=”compile” depends=”prepare”>
<javac srcdir=”${src}” destdir=”${build}”

classpath=”${cpath}” deprecation=”on”
/>
<copy todir=”${build}”>

<fileset dir=”${src}”>
<exclude name=”**/*.java”/>

</fileset>
</copy>

</target>

<target name=”deploy” depends=”compile”>
<jar jarfile=”lib/${jar.name}”>

<fileset dir=”${build}”/>
<manifest>

<attribute name=”Main-Class”
value=”${main.class}”/>

<attribute name=”Class-Path”
value=”${manifest.cpath}” />

</manifest>
</jar>
<delete dir=”${build}” />

</target>
</project>

Here is how this XML file is structured:

■ The <project> tag is the root tag of these build files.
Its attributes can define the project name, the location
of the project on the filesystem, and the default target
(more on this in a second).

■ With the <property> and similar tags, you can define
the parameters of your project, such as the location of
the source files within it.

■ <target> tags are used to define the actual actions that
we want to take in the build process. In this example,
we have targets such as “compile the project” (target
compile) or “create a JAR distribution of the project”
(target deploy, which is a default target for this project).

310 SCRIPTING IN JAVA

When you run Ant, it looks for the build.xml file in the
current folder (or one specified with the -buildfile switch). If
no target is specified, the default one is executed.

So if you type:

ant

you can expect output similar to the following:

Buildfile: build.xml

prepare:

compile:
[javac] Compiling 1 source file to

C:\eclipse\workspace\Book\chapter7\classes

deploy:
[jar] Building jar:

C:\eclipse\workspace\Book\chapter7\lib\my.jar
[delete] Deleting directory

C:\eclipse\workspace\Book\chapter7\classes

BUILD SUCCESSFUL
Total time: 4 seconds

This approach is usually good enough for simple projects,
but it is also the task where a scripting language would be a
good solution. Some people feel constrained by XML and need
more flexibility; others just don’t like to “program” using XML’s
angle bracket syntax. Even James Duncan Davidson, the creator
of Ant, wrote (http://x180.net/Articles/Java/AntAndXML.html):

In retrospect, and many years later, XML probably wasn’t as
good a choice [for writing Ant build files] as it seemed at the
time. I have now seen build files that are hundreds, and even
thousands, of lines long and, at those sizes, it turns out that
XML isn’t quite as friendly a format to edit as I had hoped for.
As well, when you mix XML and the interesting reflection-based
internals of Ant that provide easy extensibility with your own
tasks, you end up with an environment which gives you quite a
bit of the power and flexibility of a scripting language—but with
a whole lot of headache in trying to express that flexibility with
angle brackets.

CHAPTER 7 311

http://x180.net/Articles/Java/AntAndXML.html

…

If I knew then what I know now, I would have tried using a
real scripting language, such as JavaScript via the Rhino com-
ponent or Python via JPython, with bindings to Java objects
which implemented the functionality expressed in today’s tasks.
Then, there would be a first class way to express logic and we
wouldn’t be stuck with XML as a format that is too bulky for
the way that people really want to use the tool.

You can use scripting languages in two different places to
make Ant more flexible. The first is the programming logic.
Even though you can use conditional logic in Ant, it is cumber-
some to write conditions (or any other nontrivial logic) using
XML syntax. Consider the following example:

<if>
<!— “if” evaluates this element —>
<bool>

<and>
<available file=”build.xml”/>
<available file=”run.xml”/>

</and>
</bool>

<!— if true, then tasks listed here will execute —>
<echo>build.xml and run.xml are available</echo>

<!—
if false, then tasks inside the “else” will execute

—>
<else>

<echo>
didn’t find one or both of build.xml and
run.xml

</echo>
</else>

</if>

This example shows how even a simple if-else condi-
tional structure could be cumbersome to write in XML. So if
you ever feel the need for looping, recursive processing of some
data, and other programming elements in your build process,
scripting languages could help you. Of course, you could always
write an Ant extension and try to use it for that purpose, but as
we saw in the preceding example, such a solution is not natural
or easy to use. Because it’s easy to embed scripting languages

312 SCRIPTING IN JAVA

into XML documents and scripting languages naturally support
programming structures, you have much more flexibility if you
use a scripting language.

Another way you can use scripting languages with Ant is
for extending its functionality. Without scripting languages, the
only way to extend Ant’s build process is through custom tasks.
These tasks, as we said, are implemented as Java classes. This
approach is not flexible enough to support all situations.

In this section, we cover two approaches for integrating Ant
and scripting languages:

■ Support for the BSF that enables you to write and eval-
uate scriptlets in build files

■ Groovy’s AntBuilder markup class that you can use to
define build files with GroovyMarkup syntax

BSF Support

In Chapter 6, “Bean Scripting Framework,” we saw how to inte-
grate the BSF and technologies such as JSP and XSLT. You use
a similar principle to integrate the BSF library with Ant. You
can embed script expressions into XML build files and evaluate
them when you’re building your project.

To use the BSF, you have to provide the appropriate JARs
for Ant to use. Those JARs are the appropriate version of
bsf.jar and an implementation of the scripting engine you are
going to use. Prior to version 1.6, Ant used IBM’s version of the
BSF. Apache’s version is used from BSF version 1.6 and on.
Refer back to Chapter 6 for more information on how to obtain
these versions of the BSF.

These external libraries can be supplied in one of two ways:

■ They can be placed in the $ANT_HOME/lib folder where
they are picked up by Ant automatically.

■ They can be made available through the system
CLASSPATH environment variable.

We are going to use the JavaScript language in the exam-
ples in this section. Therefore, the appropriate bsf.jar and

CHAPTER 7 313

js.jar files should be placed in the $ANT_HOME/lib folder.
Again, if you are using BSF version 2.4 or later, you also have
to put commons-logging.jar in this folder too.

You define scripting elements in the build files within the
<script> tag (see Listing 7.12).

314 SCRIPTING IN JAVA

Listing 7.12 Ant BSF Support Example
<project name=”MyProject” default=”hello”>

<target name=”hello”>
<script language=”javascript”>

<![CDATA[
importPackage(java.lang, java.util, java.io);
System.out.println(“Hello World”);

]]>
</script>

</target>
</project>

In Listing 7.12, we defined a simple build file that consists
of only one default target, named hello. Inside this target, we
defined our script. The language that we are going to use is
defined with the language attribute of the <script> tag, just as
it was with the BSF integrations we did earlier. Actual state-
ments of the script are defined inside the following element:

<![CDATA[script definition]]>

You can also use the src attribute to specify the location of
the external script as a file:

<script language=”javascript” src=”script.js”>

In our simple example, we imported some Java libraries and
printed the welcome message on the screen.

If you run this build file by typing:

ant

on the command line, you should get the following result:

Buildfile: build.xml

hello:

[script] Hello World

BUILD SUCCESSFUL
Total time: 0 seconds

Even though you can probably find useful applications of
general scripting support in build files, the context of the Ant
project is what can give you the real power.

To understand this better, let’s examine Listing 7.13.

CHAPTER 7 315

Listing 7.13 Advanced Ant BSF Support Example
<project name=”MyProject” default=”hello”>

<property name=”srcdir” value=”src”/>

<target name=”hello”>
<script language=”javascript”>

<![CDATA[
importPackage(java.lang, java.util, java.io);
importPackage(Packages.org.apache.tools.ant);
importPackage(

Packages.org.apache.tools.ant.taskdefs
);

System.out.println(“srcdir=”
+ self.getProject().getProperty(“srcdir”));

System.out.println(“This project has the “
+ “following targets defined:”);

tar = MyProject.targets.keys();
while (tar.hasMoreElements()) {

System.out.println(tar.nextElement());
}
call.execute();

]]>
</script>

</target>

<target name=”call”>
<echo message=”Call”/>

</target>
</project>

First, we need to import the appropriate Ant packages
(org.apache.tools.ant and org.apache.tools.ant.taskdefs)
to use Ant’s API in the script. Now let’s see which variables are
available to us.

The self variable represents an instance of the actual
<script> task. This task is implemented with the
org.apache.tools.ant.taskdefs.optional.Script class,
which extends the standard Ant’s org.apache.tools.ant.Task.

You can use the getProject() method to obtain a reference to
the current project (org.apache.tools.ant.Project), and you
can use the getProperty() method of the Project class to get
the value of the property defined in the file. In this example, we
printed the value of the srcdir property defined earlier in the
file.

Besides the self variable, you can use variables named
after the project and targets defined in it. Thus, we can use
the MyProject, hello, and call variables in the script. The
MyProject variable, named after the project, is equivalent to
the one obtained with the self.getProject() call. The
hello and call variables are instances of the org.apache.
tools.ant.Target class. We can execute another target
defined in the file simply by calling the execute() method of
the appropriate variable. In this example, we executed the call
target at the end of the script.

If we run Ant with this build file, we should expect the fol-
lowing result to show up:

Buildfile: build.xml

hello:
[script] srcdir=src
[script] This project has the following targets defined:
[script] hello
[script] call

[echo] Call

BUILD SUCCESSFUL
Total time: 0 seconds

BSF support for Ant makes build files more “programma-
ble.” Also, you can extend the build files via inline scripts
(without having to write a separate Java class for every required
extension).

GroovyMarkup (AntBuilder)

BSF support gives us more flexibility in writing build files. But
scripting languages are still used for writing just small fractions
of such files. Those who would like to avoid XML in general

316 SCRIPTING IN JAVA

NOTE

We do not cover
Ant’s API in more
detail here. You can-
not find Ant’s API
documentation on
the Apache Web
site, but it is
included with all the
distributions under
the $ANT_HOME/
docs/manual/api
folder.

and use a real scripting language can find a solution in
Groovy’s AntBuilder class.

In Chapter 5, “Advanced Groovy Programming,” we saw
how to use GroovyMarkup syntax to create and process treelike
structures with closures and named parameters. Because Ant
build files, like every other XML-like structure, are classic tree-
like structures, they are suitable for this type of processing.

In Listing 7.14, you can find an alternative representation
of the build file example defined at the beginning of this
section.

CHAPTER 7 317

Listing 7.14 AntBuilder Example
import org.apache.tools.ant.Task

class SimpleBuild {

def ant = new AntBuilder()

def name = “MyProject”
def defaultTask = “deploy”
def basedir = “C:\\eclipse\\workspace\\Book\\chapter7”
def src = basedir + “\\src”
def build = basedir + “\\classes”
def jarName = “my.jar”
def mainClass = “net.nighttale.SampleClass”
def classpath = ant.path(id:”lib”) {

pathelement(path:”${basedir}/”)
fileset(dir:”${basedir}/lib”)

}

def clean() {
ant.delete(dir:”${build}”)

}

def prepare() {
ant.mkdir(dir:”${build}”)

}

def compile() {
prepare()
ant.javac(

srcdir:”${src}”, destdir:”${build}”,
classpath:”${classpath}”,deprecation:”on”

)
ant.copy(todir:”${build}”) {

fileset (dir:”${src}”) {
exclude(name:”**/*.java”)

}
}

}

def deploy() {
compile()
ant.jar(jarfile:”lib/${jarName}”) {

fileset(dir:”${build}”)
manifest {

attribute(name:”Main-Class”, value:”${mainClass}”)
}

}
ant.delete(dir:”${build}”)

}

static void main(args) {
def b = new SimpleBuild()
b.run(args)

}

void run(args) {
if (args.size() > 0) {

defaultTask = args[0]
}
invokeMethod(defaultTask, null)

}
}

318 SCRIPTING IN JAVA

Listing 7.14 Continued

As you can see, no XML is used here. We have defined a
Groovy class with an ant property (which is an instance of the
AntBuilder class). This property allows us to execute Ant tasks
in the Groovy fashion. Parameters are passed as named param-
eters, so the following call:

ant.delete(dir:”${build}”)

is equivalent to the following task:

<delete dir=”${build}” />

Subtasks are defined within the closure of the current task.
Thus, the following call:

ant.copy(todir:”${build}”) {
fileset (dir:”${src}”) {

exclude(name:”**/*.java”)
}

}

is equivalent to this task definition:

<copy todir=”${build}”>
<fileset dir=”${src}”>

<exclude name=”**/*.java”/>
</fileset>

</copy>

We have defined targets as methods of this class, and Ant’s
properties are now properties of the class.

All that is left to do now is to write the main() method that
calls the appropriate target (method of the class), and we have a
fully functional build script.

If you run this script with the following command:

groovy SimpleBuild.groovy

you can expect the following output (which is similar to the
output produced by the equivalent XML build file from the
beginning of this section):

[mkdir] Created dir:
/office/work/int/users/dejanb/temp/classes

[javac] Compiling 1 source file to
/office/work/int/users/dejanb/temp/classes

[copy] Copying 1 file to
/office/work/int/users/dejanb/temp/classes

[jar] Building jar:
/home/office/work/int/users/dejanb/temp/lib/my.jar

[delete] Deleting directory
/office/work/int/users/dejanb/temp/classes

The real power of this approach is in the fact that you can
use any Groovy statement in build files like this. Calls to Ant
tasks are just one Groovy feature you can use.

Let’s demonstrate this with a simple example. If you have
ever worked on a Web application development project in Java,
you know how convenient it is to be able to manage your Web
server (servlet container) during the deployment process.

Tomcat (http://jakarta.apache.org/tomcat/), Apache’s imple-
mentation of the servlet container, provides Ant tasks that you
can use to install, start, and stop your Web application. You do
this through the manager application that you can access via
HTTP. All you need is the URL, username, and password for the
manager application, and the path to your Web application. Ant
tasks form HTTP requests to the application and process
returned results.

CHAPTER 7 319

http://jakarta.apache.org/tomcat/

The typical build file (written using AntBuilder) that uses
these tasks could look like that shown in Listing 7.15.

320 SCRIPTING IN JAVA

Listing 7.15 Advanced AntBuilder Example
import org.apache.catalina.ant.*
import org.apache.tools.ant.Task

class Build {
def ant = new AntBuilder()

def url = “http://localhost:8080/manager”
def username = “admin”
def password = “tomcat”
def path = “/testapp”

def Build() {
ant.taskdef(name: “list”

, classname: “org.apache.catalina.ant.ListTask”)
ant.taskdef(name: “start”

, classname: “org.apache.catalina.ant.StartTask”)
ant.taskdef(name: “stop”

, classname: “org.apache.catalina.ant.StopTask”)
}

static void main(args) {
build = new Build()
build.all()

}

def start() {
ant.start(url: “${url}”, username: “${username}”

, password: “${password}”, path: “${path}”)
}

def stop() {
ant.stop(url: “${url}”, username: “${username}”

, password: “${password}”, path: “${path}”)
}

def deploy() {
// build and deploy

}

def all() {
stop()
deploy()
start()
}

def list() {
ant.list(url: “${url}”, username: “${username}”

, password: “${password}”)
}

}

First, we have to define the tasks we are going to use.
These tasks are implemented with classes located in the
org.apache.catalina.ant package. After that, we are free to
create targets (methods) that are simply going to call these
tasks.

You might have noticed the all() method that stops the
application, rebuilds it, and then starts it again. Basically, this is
just a higher-level task that groups more tasks in a common
routine. But because this is the operation most frequently used
in the Web application development process, it is practical and
useful for a developer. Thus, it is set to be our default task in
this build file.

The preceding all() method works fine, until your applica-
tion is not running for some reason. Usually this occurs because
your previous deployment failed due to an error. In that case,
the stop() task fails with the following error:

[stop] OK - Stopped application at context path /testapp
[start] OK - Started application at context path /testapp

[stop] FAIL - Encountered exception
java.lang.IllegalStateException: standardHost.stop
/testapp:
LifecycleException: Container StandardContext[/testapp]
has not been started

Because of this, the default method is not working in the
desired way, and we have to call the deploy and start tasks
manually. For this reason, we cannot use this task to start a
Web application from scratch (or after an unsuccessful deploy-
ment). It would be much more convenient if we could use this
default task regardless of whether the application is running.
Unfortunately, we can do nothing to customize this behavior if
we are using XML build files.

But because Groovy provides a real programming environ-
ment, we can deal with this issue in a more flexible manner.
For example, we can catch this error, handle it, and proceed
with the rest of the tasks as normal.

The following code snippet contains the modified all()
method that catches errors that can occur while the application
is being stopped:

CHAPTER 7 321

def all() {
try {

stop()
} catch (BuildException ise) {

println “Application has not been started”
}
deploy()
start()

}

If we now run the all task when the application is not run-
ning, we get output similar to that shown in the following code:

[stop] FAIL - Encountered exception
java.lang.IllegalStateException: standardHost.stop
/testapp:
LifecycleException: Container StandardContext[/testapp]
has not been started
Application has not been started

[start] OK - Started application at context path /testapp

As you can see, we caught the exception, and because this
is not a fatal error, we proceeded further with application
deployment.

A similar approach is built into the Rake (http://rake.ruby-
forge.org/) tool. Rake is a build tool similar to the make program
that we briefly described in Chapter 2. The only difference is
that Rake uses the Ruby scripting language to declare tasks and
dependencies, which provides much more flexibility to the build
process.

Summary

In this section, we covered two approaches that you can use to
make the project-building process more dynamic. With one
approach, we can define and execute scriptable elements inside
the XML definition file. The other approach avoids XML com-
pletely and uses the Groovy programming language as a build
tool.

Knowing these methods can be useful in situations when
you find yourself limited by the original Ant’s functionality.
Which approach you use, and how you use it, depends, of
course, on your requirements and preferences.

322 SCRIPTING IN JAVA

NOTE

We cannot perform
this kind of error
handling with Ant
itself, and this is
just a simple exam-
ple of the new pos-
sibilities that
scripted build files
can bring to you.

http://rake.rubyforge.org/
http://rake.rubyforge.org/

Shell Scripting

A shell is a sort of interface to the UNIX operating system.
Although it is primarily used as a command interpreter, it is
considered a programming language as well.

In Chapter 2, we saw how we could compose an application
of filter programs using pipes. To make those programs
reusable, we need a mechanism to create a script and make it
executable. For these purposes, the UNIX shell allows the cre-
ation of so-called interpreter files.

An interpreter file begins with a line that has the following
form:

#!path_to_interpreter [argument]

path_to_interpreter represents an interpreter used to
process the rest of the file. Note that only one argument can be
optionally passed to the interpreter. In the following code, you
can see an example of the shell script that executes a Java
application:

#!/bin/bash

java -cp /home/dejanb/application.jar Main

Here, the /bin/bash shell interpreter is used to process the
file. This simple script just executes the java command (with
the provided classpath and class that contains the application).

Suppose that we named this script file run. To make it exe-
cutable, we must have permission to execute it:

$ chmod +x run

Now we can run it by typing the following in the command
line:

$./run

CHAPTER 7 323

NOTE

In case you are using
the Windows plat-
form, you can set a
UNIX-like environ-
ment with Cygwin
(www.cygwin.com/).
It allows you to run
examples described
in this section.

www.cygwin.com/

We can use the same principle to make our script files (writ-
ten in Groovy, BeanShell, or any other scripting language)
executable on the UNIX platform. Suppose, for example, that
Groovy is installed in the /opt/groovy folder. You can create a
UNIX executable script file in Groovy like this:

#!/opt/groovy/bin/groovy

println “Hello world”

Now make it executable (the script filename is assumed to
be run):

chmod +x run

You can now run it like an ordinary UNIX shell script:

./run

Classpath

If you use the preceding approach, you might encounter a prob-
lem, however: You cannot change the classpath for the script in
the first line. Remember the syntax that is used to specify the
interpreter; it accepts only one argument, and there is no way
to specify the switch for the interpreter.

The script uses the global classpath set by the CLASSPATH
environment variable. With BeanShell, you can deal with this
problem in another way. BeanShell scripts are loaded by a spe-
cial class loader, which provides the addClassPath() and
setClassPath() commands that can be used to modify the
classpath directly from the script. For example, the following
line includes the specified JAR file in the classpath, and we are
free to use classes defined in it further on:

addClassPath(“/home/dejanb/application.jar”);

With this approach, your scripts’ users don’t have to config-
ure the classpath manually; you can do that work for them.

324 SCRIPTING IN JAVA

Example

Making UNIX executable scripts with languages that can inter-
act with existing Java modules could be useful for many appli-
cations. In this section, we discuss one scenario where you can
simplify your application using the BeanShell.

Many developers tend to think that only one programming
language is more than enough for all types of problems. In
many development areas, however, that approach is simply not
possible. One obvious example is a standalone Java application
that should be used in the UNIX environment.

In this example, we create a simple application stub, just to
make sure that all the necessary application elements are pres-
ent. The application just starts an XML-RPC server and makes a
connection to the database. It is a typical configuration of the
Java server application. The XML-RPC - XML Remote Procedure
Call (www.xmlrpc.org) protocol is just one of the ways to
expose your application’s API to other applications via the
Internet. We’re using it here just as an example. A Java applica-
tion with a similar architecture could use REST, SOAP, or any
other of the available mechanisms for the same purpose. Even
servlet containers (such as Jetty or Tomcat) could represent this
kind of application, and you could apply a similar architecture,
problem, and solution to them too.

Let’s see what sort of Java application handles this task. The
first important element is the configuration file. Two of the
most common solutions for the configuration files are the prop-
erty files and the XML configuration files. Here, we are going to
use the standard Java property file format that holds a simple
mapping between the property and its value in the text file. In
the following listing, you can see how this configuration file
looks for our application (myApp.properties):

jdbcDriver = com.mysql.jdbc.Driver
jdbcUrl = jdbc:mysql://localhost/groovy
jdbcUsername = root
jdbcPassword =

xmlRpcPort = 8888

CHAPTER 7 325

NOTE

I’ve omitted the
actual logic of the
application because
it is not important
for this topic.

www.xmlrpc.org

This file contains a configuration for a JDBC database con-
nection, and the port number on which the XML-RPC server
listens.

Next, we need a class that loads this configuration file and
initialize necessary objects. This is the main class of the appli-
cation, the one started through its main() method.

326 SCRIPTING IN JAVA

import java.io.FileInputStream;
import java.sql.Connection;
import java.sql.DriverManager;
import java.util.Properties;

import org.apache.xmlrpc.WebServer;

public class MyApp {

public static void main(String[] args) throws Exception {
//load properties
Properties props = new Properties();
FileInputStream propFile =

new FileInputStream(“myApp.properties”);
props.load(propFile);
// initialize XML-RPC server
int port =

new Integer(
props.getProperty(“xmlRpcPort”)

).intValue();
WebServer server = new WebServer(port);
//add handlers here
server.start();
//initialize JDBC connection (or pool)
Class.forName(props.getProperty(“jdbcDriver”));
Connection con =

DriverManager.getConnection(props.getProperty(“jdbcUrl”),
props.getProperty(“jdbcUsername”),
props.getProperty(“jdbcPassword”));

//create business logic objects

}
}

Now we need to provide an easy way to start this applica-
tion. In an environment where users are not familiar with Java,
it is hard to expect them to set the classpath properly, and it is
even harder to expect them to start it directly with the java
command:

java -cp “classes/:lib/xmlrpc-1.2-b1.jar:\
lib/mysql-connector-java-3.1.4-beta-bin.jar” MyApp

A common solution is to create a shell script that sets the
classpath and run the application:

#!/bin/bash

java -cp “classes/:lib/xmlrpc-1.2-b1.jar:\
lib/mysql-connector-java-3.1.4-beta-bin.jar” MyApp

As you can see, even if you want to use only Java to create
your application, you can end up using scripting for some of its
parts.

Now look at the BeanShell script in Listing 7.16.

Listing 7.16 Shell Scripting Example
#!/opt/java/bin/java bsh.Interpreter
addClassPath(“lib/mysql-connector-java-3.1.4-beta-bin.jar”);
addClassPath(“lib/xmlrpc-1.2-b1.jar”);
import java.io.FileInputStream;
import java.sql.Connection;
import java.sql.DriverManager;

import org.apache.xmlrpc.WebServer;

//configuration
jdbcDriver = “com.mysql.jdbc.Driver”;
jdbcUrl = “jdbc:mysql://localhost/groovy”;
jdbcUsername = “root”;
jdbcPassword = “”;

xmlRpcPort = 8888;

//application
WebServer server = new WebServer(xmlRpcPort);
server.start();
//initialize JDBC connection (or pool)
Class.forName(jdbcDriver);
Connection con = DriverManager.getConnection(jdbcUrl

, jdbcUsername, jdbcPassword);
//create business logic objects

This simple script replaces all three of the elements in the
typical Java server application that would run on a UNIX-like
operating system. First, we made this script executable and set
the classpath according to our needs. Next, we have the config-
uration section, which is practically a replacement of the prop-
erties file used in the preceding example. Finally, we have the
application initialization logic that uses variables set in the con-
figuration section and initializes components of the application.

CHAPTER 7 327

As you have probably noticed, this solution is both simpler and
easier to write and maintain than the previous one.

Administration and Management

Every system, regardless of whether it is a UNIX server or a
Java Web application, needs to be maintained. For UNIX
servers, system administrators found scripting languages were
an ideal tool for automating tasks that needed to be executed.
In Chapter 2, we discussed use of schedulers together with
scripting languages to accomplish these tasks successfully.

In this section, we implement the solution to the adminis-
tration problem set in Chapter 2. To summarize:

■ We are developing a highly trafficked Web site in Java.

■ Data on the users of the Web site is stored in the data-
base, in the login table, with the following structure:

create table login (
userid int NOT NULL auto_increment,
username varchar(32) not null,
password varchar(32) not null,
last_login date not null,
status varchar(16) not null default ‘ACTIVE’,

primary key(userid)
);

As you can see, besides the regular types of fields usu-
ally stored in this kind of table, this table contains the
last_login field, which indicates the last date when
the user logged on to the system.

■ After a while, you get the request from your customer
(a Web site owner) who wants to periodically delete
users who haven’t logged in for a month.

The same question from Chapter 2 stands. What shall we
use to solve this problem: an EJB component or a five-line
script?

Let’s try to use the second approach and see what benefits it
can bring. First, we need to create a script to perform this task.
I decided to use Groovy and its GroovySQL module, so here is
my script (see Listing 7.17).

328 SCRIPTING IN JAVA

Listing 7.17 Administration Script Example
import groovy.sql.Sql
import java.util.Calendar

if (args.length != 0)
days = args[0]

sql = Sql.newInstance(“jdbc:mysql://localhost/webapp”
, “com.mysql.jdbc.Driver”)

Calendar now = Calendar.getInstance()

now.add(Calendar.DAY_OF_MONTH, -new Integer(days))

sql.executeUpdate(“UPDATE login SET status = ‘DELETED’ \
WHERE status =’ACTIVE’ AND last_login < ?”

, [now.time])

println “${sql.updateCount} user(s) have been marked as deleted”

CHAPTER 7 329

You could execute this script on its own or from some Java
application. In the first case, the days variable is set from an
argument passed to the script. If that script is embedded in the
application, this variable is bounded to the script.

Now we can proceed, and run the script manually from time
to time and delete users that match the criteria:

groovy /opt/scripts/users_delete.groovy 30

The script should print the number of deleted users on the
screen:

3 user(s) have been marked as deleted

This was simple, and as you can see, it does not interfere
with the application in any way. The changes in the script do
not require the application to be redeployed, and because this is
a simple task, there is no need for robust transaction manage-
ment or any of the other tools that are needed for building a
robust Web application.

As mentioned in Chapter 2, no administration task is fun to
perform more than twice, so the next natural step is to try to
automate this task. For that, we need to use an appropriate
scheduler, and because we are building a Java solution, we are

going to use a scheduler we can integrate with it. Many Java
schedulers are available today, but unfortunately, I didn’t find
any that support script execution scheduling. So this is a good
opportunity to see how we can customize a scheduler to support
scripting. You can use a principle similar to this one for any
other Java application or library.

In this example, we are going to use the Quartz scheduler
(www.opensymphony.com/quartz/), which is a solid solution. We
are not going to discuss it in more detail than is necessary to
understand what we are trying to accomplish here. For more
details about Quartz, consult its documentation.

Quartz provides the org.quartz.Job interface that is used
to make Java components executable by the scheduler. This
simple interface is an implementation of the command pattern:

package org.quartz;

public interface Job {

public void execute(JobExecutionContext context)
throws JobExecutionException;

}

To create BSF support for Quartz, we need to create an
instance of the BSFManager class and implement the execute()
method, which evaluates the desired script. As you can see from
the definition of the interface, parameters to the job are passed
using the org.quartz.JobExecutionContext class. Because
we want to execute the script file, we force the filename
parameter to be passed to the job required.

In Listing 7.18, you can find an implementation of a Quartz
job that is capable of executing script files (in any language
supported by the BSF).

Listing 7.18 The Script Job Example
package net.scriptinginjava.ch7;

import java.io.FileReader;
import java.util.Iterator;

import org.apache.bsf.BSFManager;
import org.apache.bsf.util.IOUtils;
import org.quartz.JobDataMap;

330 SCRIPTING IN JAVA

www.opensymphony.com/quartz/

import org.quartz.JobExecutionContext;
import org.quartz.JobExecutionException;
import org.quartz.Job;

public class ScriptJob implements Job {

BSFManager manager = new BSFManager();

public ScriptJob() {
BSFManager.registerScriptingEngine(

“groovy”,
“org.codehaus.groovy.bsf.GroovyEngine”
, new String[] { “groovy”, “gy” }

);
}

public void execute(JobExecutionContext context)
throws JobExecutionException {
JobDataMap dataMap = context.getJobDetail()

.getJobDataMap();
String fileName = dataMap.getString(“filename”);
if (fileName == null)

throw new JobExecutionException(
“Script file must be defined”

);

try {
Iterator it =

context.getJobDetail().getJobDataMap().keySet()
.iterator();

while (it.hasNext()) {
Object key = it.next();
Object value = dataMap.get(key);
manager.declareBean(

(String) key, value, value.getClass());
}

String language =
BSFManager.getLangFromFilename(fileName);

String script =
IOUtils.getStringFromReader(

new FileReader(fileName)
);

manager.exec(language, fileName, 0, 0, script);
} catch (Exception e) {

throw new JobExecutionException(e);
}

}

}

CHAPTER 7 331

Listing 7.18 Continued

In the constructor of the ScriptJob class, we registered the
Groovy programming language. We did this just to be sure that
the language is registered in case someone wants to use this
class with BSF version 2.2 or older.

In the execute() method, we first check whether the
filename attribute has been set. Next, we iterate through all
the attributes that are set for the job, and we bind them to the
scripting engine. Finally, we load the script from the file and
evaluate it.

Now that we have a scheduler capable of evaluating script
files, we can configure it to run our users_delete.groovy
script. Quartz enables us to define the job configuration in the
XML file. The XML file (jobs.xml) in Listing 7.19 instructs the
scheduler to execute the /opt/scripts/users_delete.groovy
script file every first of the month, at midnight. The value for
the days variable passed to the script is set to 30, which means
it deletes all users that are inactive for more than 30 days.

332 SCRIPTING IN JAVA

Listing 7.19 Quartz Scheduler Configuration Example
<?xml version=’1.0’ encoding=’utf-8’?>

<quartz xmlns=”http://www.quartzscheduler.org/ns/quartz”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:schemaLocation=”
http://www.quartzscheduler.org/ns/quartz
http://www.quartzscheduler.org/ns/quartz/
job_scheduling_data_1_1.xsd”

version=”1.1”>

<job>
<job-detail>

<name>deleteUsers</name>
<group>adminJobs</group>
<job-class>net.scriptinginjava.ch7.ScriptJob</job-class>

<job-data-map allows-transient-data=”true”>

<entry>
<key>filename</key>
<value>/opt/scripts/users_delete.groovy</value>

</entry>

<entry>
<key>days</key>
<value>30</value>

</entry>

</job-data-map>
</job-detail>
<trigger>

<cron>
<name>deleteUsers</name>

<group>adminJobs</group>
<job-name>deleteUsers</job-name>
<job-group>adminJobs</job-group>
<cron-expression>0 0 1 * * *</cron-expression>

</cron>
</trigger>

</job>

</quartz>

CHAPTER 7 333

Listing 7.19 Continued

Now it’s time to start the scheduler. In our real Web appli-
cation, we would do this through the specialized servlet located
in the org.quartz.ee.servlet.QuartzInitializerServlet
class. Here, we create a simple class that initializes and starts a
scheduler:

package net.scriptinginjava.ch7;

import org.quartz.Scheduler;
import org.quartz.SchedulerFactory;

public class Start {

public static void main(String[] args) throws Exception {
SchedulerFactory schedFact =

new org.quartz.impl.StdSchedulerFactory();
Scheduler sched = schedFact.getScheduler();
sched.start();

}

}

In this example, we created a new instance of the scheduler
factory and obtained the default scheduler from it.

Regardless of whether you are going to use it in a stand-
alone or a Web environment, the Quartz scheduler needs a
quartz.properties file for proper configuration:

Configure Main Scheduler Properties

org.quartz.scheduler.instanceName = TestScheduler
org.quartz.scheduler.instanceId = AUTO

Configure ThreadPool

org.quartz.threadPool.class =
org.quartz.simpl.SimpleThreadPool
org.quartz.threadPool.threadCount = 3

org.quartz.threadPool.threadPriority = 5

Configure JobStore

org.quartz.jobStore.misfireThreshold = 60000

org.quartz.jobStore.class = org.quartz.simpl.RAMJobStore

Configure Plugins

org.quartz.plugin.jobInitializer.class =
org.quartz.plugins.xml.JobInitializationPlugin
org.quartz.plugin.jobInitializer.fileName = jobs.xml
org.quartz.plugin.jobInitializer.overWriteExistingJobs =
true
org.quartz.plugin.jobInitializer.failOnFileNotFound = true
org.quartz.plugin.jobInitializer.validating = false
org.quartz.plugin.jobInitializer.validatingSchema = true
org.quartz.plugin.jobInitializer.scanInterval = 10

Among other settings, here you can instruct the scheduler
to use the jobs.xml file from earlier. The file is scanned for
changes every 10 seconds, and its configuration is updated
accordingly.

Here we have created a simple environment in which we
can easily schedule scripts to be executed in precisely specified
time intervals. An environment like this could be valuable for
quick creation of the various kinds of reports and administra-
tion tasks needed in Java applications (similar to the one I
described here).

Conclusion

In Chapter 2, we covered the use of scripting languages for var-
ious tasks in the development and maintenance of the informa-
tion infrastructure. In this chapter, we saw how we could apply
that knowledge in Java-related projects.

Chapter 8 focuses on the successful use of scripting in the
applications architecture. We cover some of the design patterns
that employ scripting languages to make software projects more
flexible and easier to build and maintain.

334 SCRIPTING IN JAVA

Knowledge of a particular programming language (or
programming platform) is usually not enough to build

a successful software project. Also required is a solid under-
standing of the project architecture. Before coding a project
with a graphical user interface, every developer must ask
himself the same questions—among them, how he is going
to build the user interface, and how he is going to refresh it
when application data changes. Knowing the answers to
such project architecture questions up front enables soft-
ware architects and developers to solve the recurring archi-
tectural problems they encounter with every new project.

Over time, developers began collecting these recurring
software design challenges and documenting their solutions.
This description of a recurring software design problem
along with its solution is called a design pattern.

As design patterns began to increase in complexity,
developers introduced a unique format for presenting them.
This unique format is useful because it encourages a well-
defined structure that emphasizes all the relevant aspects of
the pattern and helps developers to understand it in a mini-
mum of time. Today, every design pattern description con-
sists of the following four basic elements:

SSCRIPTINGCRIPTING
PPAATTERNSTTERNS

CHAPTER 8

■ Name—Helps to create a commonly understood design
vocabulary by using known terms to describe recurring
problems and their well-understood solutions.

■ Problem—Describes a particular recurring problem that
a pattern tries to solve. It also defines a context in
which a problem exists.

■ Solution—Describes elements and their relationships
that lead to efficient design, which solves the problem.

■ Consequences—Describe the impacts of applying the
pattern in the system. They contain results and trade-
offs introduced by the solution.

We follow this format to document the patterns presented in
this chapter because it is widely accepted by the programming
community.

Software design patterns became popular in the 1990s with
the book Design Patterns: Elements of Reusable Object-Oriented
Software (Addison-Wesley Professional Computing Series). Writ-
ten by a group of authors known as the “Gang of Four” (GoF),
the book focuses on object-oriented programming design and is
a good introduction to object-oriented design and design pat-
terns. Over time, many authors created patterns for specific
development areas (such as J2EE platform patterns), with the
same goal of documenting solutions for recurring problems in
software architecture.

This chapter does not cover the basic set of design patterns;
for more information on that topic, consult the aforementioned
Design Patterns book. Instead, we extend some of the well-
known design patterns and see how the script-programming
paradigm fits in. We also introduce a few new patterns specific
to systems that are fully or partially developed using scripting
languages.

I start by explaining the existing patterns and providing an
example of each in Java. After this basic introduction, I discuss
elements that can employ scripts and look at the benefits and
drawbacks of the scripting approach. We use the Groovy pro-
gramming language to code scripted parts of our patterns.

Table 8.1 lists the patterns we cover in this chapter, along
with a short description of the problems they solve.

336 SCRIPTING IN JAVA

Table 8.1 Scripting Patterns
Pattern Description

Scripted Components How to compose an application out of reusable components (written in
a system-programming language) with scripts

Mediator (Glue Code) How to create flexible many-to-one relationships among components

Script Object Factory How to improve the runtime performance of scripting solutions in the
production environment

Observer (Broadcasters) How to create flexible one-to-many relationships among components

Extension Point How to extend components’ behavior with simple-to-write scripts

Active File How to use scripting to store both data and the code that handles that
data in the file

CHAPTER 8 337

Scripted Components Pattern

This pattern explains how to compose an application out of
reusable components (written in a system-programming lan-
guage) with scripts.

Problem

Component-oriented software design introduces reusable com-
ponents that are context free and that rely as little as possible
on other components in the system. They are designed to play a
specific role in systems and to be independent of the application
context. As such, developers can reuse them among different
projects.

The term component can mean different things, depending
on the context in which it is used. Sometimes authors treat a
single class implemented in a system-programming language as
the component. In other cases, this term refers to a whole sub-
system with a unified interface (API) to the rest of the system.

Enterprise JavaBeans (EJBs), which were introduced in the
J2EE specification, are another example of software compo-
nents. Every EJB component consists of a few interfaces to the
container and classes that implement their business logic. Such
components are then deployed to the application container
(server), which manages them and is responsible for their life
cycle.

It doesn’t matter whether you are going to work in an envi-
ronment that will force you to compose applications out of
well-defined components, or whether you are going to follow
those practices yourself. In either case, the component-oriented
architecture separates the development process into the follow-
ing two phases:

■ Designing and implementing the components

■ Creating an application by composing the components

The goal of the Scripted Components design pattern is to
easily compose applications from components. In many organi-
zations, senior developers are responsible for component design
tasks, and inexperienced (junior) programmers usually assemble
applications out of those components. In those situations, we
need to provide mechanisms for easy manipulation of software
components, which leads to flexible systems and rapid
development.

Software architects could also define another goal for their
projects. They may want to be able to rearrange and adapt com-
ponents at runtime. This ability generally introduces greater
flexibility of the whole architecture and makes further changes
less painful.

Solution

In the first two chapters of this book, we compared scripting
and system-programming languages. In that discussion, I said
that system-programming languages are a good tool for imple-
menting system components. This statement is true, mostly
because system-programming languages offer good runtime
performance and a well-defined structure that forces developers
to strictly implement defined interfaces.

Although system-programming languages are good for
implementing system components, scripting languages are an
excellent solution for implementing the glue code, whose main
responsibility is to wire components together and to mediate in
their communication. Developers use scripting languages for
this task for several reasons. One of the reasons developers cite
most often is that scripting languages have an easy-to-learn

338 SCRIPTING IN JAVA

syntax that enables inexperienced programmers to assemble
applications quickly out of well-defined existing components.
Gluing the components also requires less code in scripting, thus
making it easy for other developers to understand and maintain
the application.

Another reason for their wide adoption is that script devel-
opment skips the compilation phase. This means you can mod-
ify the component wiring without having to rebuild the whole
project (you can even modify it during runtime).

Because this book focuses on the Java platform, we can
treat Java libraries (APIs) as software components for the pur-
poses of our discussion. One of the major advantages of the
Java platform is actually the existence of these libraries (most
of them created by the open source community). The wide
range of projects available to Java developers for almost any
problem domain makes application development much easier.
Usually all you have to do is just pick the desired APIs (and
frameworks) and glue them together.

That is where the scripting languages covered in this book
come into play. You can use them to flexibly compose applica-
tions out of preexisting components. With their dynamic typing,
powerful data structures, and other characteristics, they are a
much better choice than Java for component composition and
initialization.

Also, if the scripting paradigm is adopted by a development
organization, senior developers could be involved in the devel-
opment, testing, and improvement of components (both open
source and those that are built in-house). Junior developers,
meanwhile, could be involved in implementing the client’s
requirements. Senior developers also could benefit from script-
ing, meaning that they can finish component composition tasks
faster.

Consequences

This pattern has the following consequences:

■ It encourages a component-oriented system
architecture.

CHAPTER 8 339

■ It introduces greater flexibility in adapting and arrang-
ing system components.

■ It introduces an additional performance overhead in the
application because the gluing part of the application
will be interpreted, which is certainly slower than exe-
cuting compiled code with equivalent functionality.

Sample Code

As an example of this design pattern, we can use the sample
code discussed back in Chapter 7, “Practical Scripting in Java,”
when we were talking about UNIX scripting with BeanShell (see
Listing 8.1).

340 SCRIPTING IN JAVA

Listing 8.1 Scripted Component Pattern Example
#!/opt/java/bin/java bsh.Interpreter
addClassPath(“lib/mysql-connector-java-3.1.4-beta-bin.jar”);
addClassPath(“lib/xmlrpc-1.2-b1.jar”);
import java.io.FileInputStream;
import java.sql.Connection;
import java.sql.DriverManager;

import org.apache.xmlrpc.WebServer;

//configuration
jdbcDriver = “com.mysql.jdbc.Driver”;
jdbcUrl = “jdbc:mysql://localhost/groovy”;
jdbcUsername = “root”;
jdbcPassword = “”;

xmlRpcPort = 8888;

//application
WebServer server = new WebServer(xmlRpcPort);
server.start();
//initialize JDBC connection (or pool)
Class.forName(jdbcDriver);
Connection con = DriverManager.getConnection(

jdbcUrl, jdbcUsername, jdbcPassword
);
//create business logic objects

As discussed in Chapter 7, we can think of the XML-RPC
library and the JDBC driver as components. These components
encapsulate some of the fundamental logic of our application.
Beside components, we need code that will arrange components
to gain the appropriate application behavior. We often refer to
this code as an application because we look at the components

as black boxes with the specified functionality. In Listing 8.1,
an application is practically a BeanShell script that configures,
initializes, and composes these components.

The fact that we wrote this script to be executable on UNIX
platforms is not crucial for this pattern. We could have used
any scripting language (that can use Java classes) and run the
script using its interpreter. The point here is that we arranged
the compiled components using the scripting language of our
choice.

Related Patterns

The Scripted Components pattern encourages us to initialize and
configure our components using scripting languages. If you
need these components to be interconnected, see the sections on
the Mediator and Observer patterns.

Mediator Pattern (Glue Code Pattern)

This pattern explains how to create flexible many-to-one rela-
tionships among components.

Problem

The Mediator pattern discussed in this section is an extension of
the original Mediator pattern, one of the patterns from the orig-
inal set discussed in the GoF book. This modified pattern is
often referred to as the Glue Code pattern in the scripting com-
munity. The original Mediator pattern encourages a component-
oriented architecture that is flexible and easily adapted to
different applications. It helps developers to centralize complex
relationships between objects and thus simplify modification of
system behavior.

To understand the benefits of the Mediator pattern, it helps
to put the problem it solves into context. A complex system
contains many components and, usually, many more intercon-
nections among them. The first idea that comes to a developer’s
mind is to make every component (object) responsible for its
connections toward other components in the system. In such a
design approach, it is likely that every component will end up

CHAPTER 8 341

in relation with all the other components that it is using. As a
result, the reusability of that component will be lost because it
is tightly coupled to the context of the application in which it is
used. Furthermore, an effort to change the system behavior
could be tedious because it is distributed among many compo-
nents (in other words, all over the application).

A common example of this problem in action concerns the
construction of complex graphical user interfaces. A complex
user interface consists of many widgets, including buttons, list
boxes, text fields, and so on, which are often heavily intercon-
nected. Actions performed on one widget usually lead to a
changed state (a change in values) on another widget.

For example, say we have to create a dialog box that con-
sists of a list box, text field, and button. The dialog box has to
satisfy requirements that are usually found in these kinds of UI
widgets: When the list box item is selected, it should be dis-
played in the text field, and when certain items are selected, the
button must be disabled.

Without an appropriate mediator, a list box must have a ref-
erence to these two components. Now let’s say that we want to
add another widget to the dialog. If both the list box and the but-
ton must interact with the new widget, we have to add another
widget reference to these components. Also, their logic will
change to support actions that involve this newly added widget.

This example illustrates that every change in the user inter-
face requires a change in many components. Such a design
leads to tightly coupled components and hard-to-change sys-
tems that behave much like a monolithic system. Another prob-
lem is that the behavior of the dialog box is distributed among
its components, making it more likely that we will forget to
change some of them. Thus, there is a higher probability of
introducing new bugs into the system.

Solution

The original Mediator pattern solves this problem by encapsu-
lating the collective behavior of a group of components into a
separate object (component). All other components reference
only the mediator that is responsible for all the interactions in
the group of objects.

342 SCRIPTING IN JAVA

To begin, let’s discuss the original Mediator pattern and
then see how scripting can be used in its context. To demon-
strate this pattern’s elements, and how they collaborate, we use
a dialog box example similar to the one I just described. The
dialog will be used for choosing a desired font. It consists of a
list box, with all the currently available fonts in the system, and
a label that displays sample text in a selected font.

The Mediator pattern suggests that we keep a list box and
the label components separate, and that we create an additional
class that will encapsulate the actual dialog logic. Previously, we
had a list box that was responsible for setting the font of the
label component directly. Now, it will notify the mediator object
that its value changed, and the mediator will react to that event
by changing the font of the text displayed in the label.

Figure 8.1 shows an interaction diagram for all components
included in the font dialog. In this diagram, you can see that

CHAPTER 8 343

Client FontDialog Select box Label

getSelectedValue()

showDialog()

setFont()

widgetChanged()

FIGURE 8.1 Mediator pattern example—interaction diagram

the FontDialog component is a mediator between a list box
and a label. The list box notifies the font dialog of a change,
and it exposes a method that the mediator will use to identify
the change and get the new value (the font name in this case).
Then the font dialog takes an appropriate action on the other
component by setting a chosen font.

Because we centralized behavior of the dialog box, it is
much easier now to add another component to the dialog. The
list box and label component remain untouched, and we have
only to adjust the font dialog component (the mediator).

In a programming environment that uses scripting lan-
guages, you can modify the original Mediator pattern to achieve
greater flexibility. In some literature that covers design patterns
for scripting languages, authors refer to this extended Mediator
pattern as the Glue Code pattern.

On top of the original Mediator pattern, the Glue Code pat-
tern suggests that you use scripts to configure the components’
behavior. Again, as in the original pattern, the components are
initialized with the appropriate mediator, and that is the only
component that they are aware of. In the Glue Code pattern, the
mediator is a script that is executed when the action occurs.

Traditionally, the Glue Code pattern was implemented by
putting into the component a reference to the script interpreter
and the script location. The component would then evaluate the
script or call a function defined in one. Which action it took
usually depended on the particular language and environment
being used. As in the original Mediator pattern, the component
had to pass itself to the mediator so that it could identify what
future action to take. If the mediator was a plain script, the
component would bind itself to the scripting engine. If the
mediator behavior was encapsulated in a function, the compo-
nent would pass itself as an argument.

Nowadays, however, many scripting languages that can be
integrated into the Java platform are capable of implementing
Java interfaces with scripts. This means the mediator can be
defined by the interface, and we can provide its implementation
in the script.

With this in mind, the Glue Code pattern differs from the
original Mediator pattern only in the way in which the mediator

344 SCRIPTING IN JAVA

class is loaded. In the Mediator pattern, the client instantiates
the mediator directly, using its constructor. In “script-aware”
Glue Code pattern, the client loads the class using the language
interpreter, as we saw in previous chapters.

In the sample code that demonstrates this pattern, which is
provided later in this section, we force the second approach
(implementation of a mediator as a Java interface in Groovy),
because it is a more natural solution for the Java environment.

Consequences

The original Mediator pattern has the following consequences.

■ It localizes behavior that otherwise would be distributed
among several objects.

■ It emphasizes the reusability of components because
they are decoupled and all application-specific logic is
located in the mediator.

■ It simplifies object interaction because it replaces many-
to-many relationships with one-to-many interactions.

■ It centralizes control in such a way that the complexity
of the component interaction is traded for the complex-
ity of the mediator.

All these consequences apply to the Glue Code pattern too.
Additionally, the Glue Code pattern introduces the following
consequences.

■ The behavior of the component and its interaction with
other components is not fixed and can be changed dur-
ing runtime.

■ Because low-level components are wired using a script,
this pattern introduces additional runtime overhead.

Sample Code

We begin by demonstrating an implementation of the Mediator
pattern in Java. Then, we modify that example to adapt it to the
scripting environment. In that way, we can see the differences
between the Mediator and Glue Code approaches and be better
able to determine how to apply them in different contexts.

CHAPTER 8 345

The most common example of the Mediator pattern (even in
the GoF book) is the implementation of a complex dialog box.
In this section, we create the simple dialog box described ear-
lier. Note that Java’s Swing and AWT packages implement other
patterns that we could use for this task, but here we will force
the Mediator pattern for demonstration purposes.

First, we create an interface for our mediator component.
This interface will be implemented with the Java class in the
Mediator pattern approach. In the Glue Code solution that fol-
lows, we will implement it with the Groovy script (see Listing
8.2).

Listing 8.2 Mediator Interface
package net.scriptinginjava.ch8.mediator;

public interface DialogDirector {

public void widgetChanged(Widget widget);

public void showDialog();

}

The interface contains two methods:

■ The showDialog() method is used by the client, and its
purpose is to initialize and show the dialog box.

■ The widgetChanged() method is crucial. It is called
every time the widget changes its value, and as you can
see, the widget is passed as an argument to this method.
The widgetChange() method contains the complete
logic of the dialog box.

Because our widgets have to be aware of the mediator, we
will create an abstract Widget class that will be a wrapper
around the standard Swing components (see Listing 8.3).

Listing 8.3 Mediator-Aware Widget Abstraction
package net.scriptinginjava.ch8.mediator;

import javax.swing.JComponent;

public abstract class Widget {

DialogDirector director;

346 SCRIPTING IN JAVA

public Widget(DialogDirector director) {
this.director = director;

}

public void changed() {
director.widgetChanged(this);

}

public abstract JComponent getComponent();

}

This class contains an instance of the DialogDirector
interface implementation, which is passed as an argument to the
constructor. The changed() method calls the widgetChanged()
method of the mediator, with itself as an argument. Every com-
ponent that extends this class is responsible for calling this
method when changing its state. The abstract getComponent()
method is a helper method that the mediator can use to access
Swing components.

Now we can implement the label and list box components
that we will use in the dialog box (and throughout the applica-
tion), as shown in Listing 8.4 and Listing 8.5.

Listing 8.4 Label Widget
package net.scriptinginjava.ch8.mediator;

import javax.swing.JComponent;
import javax.swing.JLabel;

public class Label extends Widget {

private JLabel label;

public Label(DialogDirector director, String text) {
super(director);
label = new JLabel(text);

}

public JComponent getComponent() {
return this.label;

}
}

The Label component is simple because it does not actively
participate in the interaction. We have just wrapped the
javax.swing.JLabel class in our Widget abstract class defined
earlier (see Listing 8.3).

CHAPTER 8 347

Listing 8.3 Continued

Listing 8.5 List Box Widget
package net.scriptinginjava.ch8.mediator;

import java.awt.Font;
import java.awt.GraphicsEnvironment;

import javax.swing.JComponent;
import javax.swing.JList;
import javax.swing.event.ListSelectionEvent;
import javax.swing.event.ListSelectionListener;

public class FontListBox extends Widget
implements ListSelectionListener {

private JList fonts = new JList();

public FontListBox(DialogDirector director) {
super(director);
Font[] allFonts =

GraphicsEnvironment
.getLocalGraphicsEnvironment()

.getAllFonts();
String[] fontNames = new String[allFonts.length];
for (int i=0; i< allFonts.length; i++) {

fontNames[i] = allFonts[i].getName();
}
fonts.setListData(fontNames);
fonts.addListSelectionListener(this);

}

public JComponent getComponent() {
return fonts;

}

public void valueChanged(ListSelectionEvent e) {
changed();

}
}

The Label component is more complicated because it
has to notify the mediator that the user selected a certain
item. Besides the Widget class, it also implements the
javax.swing.event.ListSelectionListener interface. This
interface is registered with the actual JList component as its
list selection listener. The valueChanged() method (defined in
this interface) is called every time a user selects a certain item.
This method simply calls the changed() method defined in the
Widget superclass, and further notifies a director (through the
widgetChanged() method) that the event has occurred.

Now it is time to implement the mediator. It, of course,
implements the DialogDirector interface. This class also

348 SCRIPTING IN JAVA

extends the javax.swing.JFrame class because it represents a
dialog box that holds other components (see Listing 8.6).

CHAPTER 8 349

Listing 8.6 Mediator Implementation
package net.scriptinginjava.ch8.mediator;

import java.awt.Dimension;
import java.awt.FlowLayout;
import java.awt.Font;

import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JList;
import javax.swing.JScrollPane;

public class FontDialog extends JFrame
implements DialogDirector {

Label sample;
FontListBox fontList;
JScrollPane listScroller;

public FontDialog() {
setTitle(“Font dialog”);
getContentPane().setLayout(new FlowLayout());
setSize(400, 200);

fontList = new FontListBox(this);
listScroller = new JScrollPane(fontList.getComponent());
listScroller.setPreferredSize(new Dimension(250, 80));
getContentPane().add(listScroller);

sample = new Label(this, “Sample text”);
getContentPane().add(sample.getComponent());

}

public void widgetChanged(Widget widget) {

if (widget == fontList) {
String fontName =

(String)(
(JList)widget.getComponent()

).getSelectedValue();
Font font = new Font(fontName, Font.PLAIN, 12);
JLabel sampleText = (JLabel)sample.getComponent();
sampleText.setFont(font);

}

}

public void showDialog() {
show();

}

}

In the constructor of the FontDialog class, we initialized
the label and list components. Note that both components are
initialized with the instance of the FontDialog class. The
showDialog() method just calls the show() method of the
JFrame parent class, which makes it visible on the screen.

As mentioned earlier, all the code used to glue components
together is located in the widgetChanged() method. In this
simple example, the method checks whether the component in
the argument is the fontlist component defined in the dialog.
If it is, the mediator gets the selected font name and changes
the font of the sample label component. With this approach,
the list box and label components are not aware of each other,
and coordination of their communication is done through the
widgetChanged() method of the DialogDirector interface.

At the end, we implement the client that will use this dialog
box (see Listing 8.7).

Listing 8.7 Mediator Client
package net.scriptinginjava.ch8.mediator;

import java.awt.FlowLayout;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

import javax.swing.JButton;
import javax.swing.JFrame;

public class App implements ActionListener {

public void actionPerformed(ActionEvent e) {
FontDialog fontDialog = new FontDialog();
fontDialog.showDialog();

}

public static void main(String[] args) {

JFrame frame = new JFrame(“Application”);
frame.getContentPane().setLayout(new FlowLayout());
frame.setSize(100, 75);

JButton button = new JButton(“Select font”);
button.addActionListener(new App());
frame.add(button);
frame.show();

}
}

350 SCRIPTING IN JAVA

This simple client shows the frame with the button (see
Figure 8.2).

When the button is clicked, the font dialog box appears
(see Figure 8.3).

You can try to select a certain font from the list and see
how it affects the text in the label (see Figure 8.4).

CHAPTER 8 351

FIGURE 8.2 Application frame

FIGURE 8.3 Font dialog

FIGURE 8.4 Font selected in the dialog

Note that the font dialog is instanced directly as a regular
class through its constructor.

Now it is time to introduce scripting to this example.
Because Groovy’s syntax is close to Java’s (refer to Chapter 4,
“Groovy,” for more details), we can rename FontDialog.java
to FontDialogScript.groovy (because there are no incompati-
bilities) and thus convert the Mediator pattern to the Glue Code
pattern.

Of course, first we must change how the font dialog in the
client is initialized to support this Groovy implementation (see
Listing 8.8).

352 SCRIPTING IN JAVA

Listing 8.8 Glue Code Client
package net.scriptinginjava.ch8.mediator;

import groovy.lang.GroovyClassLoader;

import java.awt.FlowLayout;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.io.File;
import java.lang.reflect.Constructor;

import javax.swing.JButton;
import javax.swing.JFrame;

public class ScriptApp implements ActionListener {

public void actionPerformed(ActionEvent e) {
GroovyClassLoader loader = new GroovyClassLoader();
try {

Class mediatorClass = loader.parseClass(
new File(

“net/scriptinginjava/ch8/mediator/”
+ “FontDialogScript.groovy”

)
);
Constructor mediatorConstructor =

mediatorClass.getConstructor(new Class[]{});
DialogDirector fontDialog =

(DialogDirector) mediatorConstructor.newInstance(
new Object[] {}

);
fontDialog.showDialog();

} catch (Exception ex) {
ex.printStackTrace();

}

}

public static void main(String[] args) {

JFrame frame = new JFrame(“Application”);
frame.getContentPane().setLayout(new FlowLayout());
frame.setSize(100, 75);

JButton button = new JButton(“Select font”);
button.addActionListener(new ScriptApp());
frame.add(button);
frame.show();

}
}

We used a groovy.lang.GroovyClassLoader class to parse
the script and initialize a Java object from it (we discussed this
technique in Chapter 4). Other than that, the whole application
remains absolutely the same as before. If we start it, we will get
the same client (with the same behavior) as that shown in Fig-
ure 8.2.

The big difference is that now we can change the behavior
of the mediator at runtime. For example, you can modify the
script in the following fashion (while the application is run-
ning), as shown in Listing 8.9.

CHAPTER 8 353

Listing 8.9 Modified Mediator Component
package net.scriptinginjava.ch8.mediator;

import java.awt.Dimension;
import java.awt.GridLayout;
import java.awt.Font;

import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JList;
import javax.swing.JScrollPane;

public class FontDialogScript extends JFrame
implements DialogDirector {

Label sample;
FontListBox fontList;
JScrollPane listScroller;

public FontDialogScript() {
setTitle(“Font dialog”);
getContentPane().setLayout(new GridLayout());
setSize(400, 200);

fontList = new FontListBox(this);
listScroller = new JScrollPane(fontList.getComponent());
listScroller.setPreferredSize(new Dimension(250, 80));
getContentPane().add(listScroller);

sample = new Label(this, “Sample text”);
getContentPane().add(sample.getComponent());

}

public void widgetChanged(Widget widget) {

if (widget == fontList) {
String fontName =

(String)(
(JList)widget.getComponent()

).getSelectedValue();

Font font = new Font(fontName, Font.PLAIN, 12);
JLabel sampleText = (JLabel)sample.getComponent();
sampleText.setFont(font);

}

}

public void showDialog() {
show();

}

}

354 SCRIPTING IN JAVA

Listing 8.9 Continued

If you now click the button that shows a dialog, you get a
somewhat modified dialog box (see Figure 8.5).

FIGURE 8.5 Modified Font dialog

This approach obviously could be useful in the development
process because we can model the behavior of the mediator com-
ponent (that contains the complete application segment logic)
without having to recompile or even restart the application.

Related Patterns

As noted earlier, because low-level components are wired using
the script, this pattern introduces an additional runtime over-
head. You can solve this problem using the Script Object Fac-
tory pattern, described in the following section.

Script Object Factory Pattern

This pattern explains how to improve the runtime performance
of scripting solutions in the production environment.

Problem

As discussed in Chapters 4 and 5, you can use some scripting
languages to implement Java interfaces. But although that is a
valuable technique during development, it incurs a performance
overhead because the interpreted implementation is slower than
the compiled one in most cases. We can avoid that overhead if
we compile scripts to Java classes when producing our system.

Refer back to the example that we implemented for the
Mediator pattern. We used Groovy to implement the mediator
component in a more flexible way. That technique enabled us to
modify the behavior of our component while the application
was running, and thus increased our development speed. The
price we pay for that flexibility, however, is an additional per-
formance overhead.

After we have our component modeled out, we want to
avoid this performance overhead, and so we might want to use
the component’s compiled version. The Script Object Factory pat-
tern helps us to develop systems in which we can easily switch
between scripted and compiled component implementations.

Solution

The Script Object Factory pattern is an extension of the original
GoF Factory Method pattern. The Factory Method pattern
encourages us not to instantiate objects directly but to use a
method of a factory object for this job. With this approach,
deciding which concrete object will be created depends on the
subclass of the factory object. Also, the type of object that will
be created might depend on the value of some application
parameter.

The Factory Method pattern will help us to achieve our
goal. We will use an application parameter (which we can
obtain from the configuration file, for example) to decide
whether an object will be loaded from the script or as a com-
piled class.

So during development, this method will be instructed to
evaluate scripts, and our application will be easily changeable.
However, we will set the Factory method to instantiate objects

CHAPTER 8 355

directly from the compiled scripts during system deployment. In
this way, we can achieve both the flexibility of development
with a scripting language and the performance of a pure Java
solution.

Consequences

The original Factory Method pattern has the following
consequences:

■ The client is not bound to the application-specific
classes. With the Factory Method, the client deals only
with the appropriate interface.

■ Object creation with this method is more flexible than it
is through direct instantiation.

The Script Object Factory pattern additionally introduces
the following:

■ It introduces all the benefits of rapid application devel-
opment with scripting languages, such as runtime mod-
ification of component behavior.

■ It provides the component’s system-programming lan-
guage performance in the production environment.

■ It hides the actual details of object creation.

Sample Code

To demonstrate this technique, we use the font dialog manager
that we used when discussing the Mediator pattern. All we have
to do is to modify our client class. We make it able to use both
scripted and compiled versions of the mediator component. The
parameter given in the property file (app.properties in this
application) defines which version it should use.

To start, we have to be sure that a compiled script (a class)
is available for the application. For that purpose, we have to
modify the Ant target responsible for compiling the sources of
our application (the compile target in this example; see Listing
8.10).

356 SCRIPTING IN JAVA

Listing 8.10 Ant Task That Compiles All Scripts Inside the Project
<project name=”groovy project” default=”compile”>

<taskdef
name=”groovyc”
classname=”org.codehaus.groovy.ant.Groovyc”

/>

<target name=”compile”>
<javac srcdir=”.” destdir=”/dev/project/classes”/>

<groovyc
srcdir=”.”
destdir=”/dev/project/classes”
classpath=”/dev/project/classes”
listfiles=”true”

/>
</target>

</project>

As you can see, we added a definition of the groovyc task
and used it, along with the javac task, to compile all the Groovy
source files it finds in the source directory (and its subdirecto-
ries). In this way, we are sure that other classes in our application
can reach the compiled script.

Now we need a mechanism to determine whether to use the
scripted or compiled version of the mediator. As I said, we use
the property value to configure this application’s behavior. In this
case, the property file is simple and contains just one value:

debug = true

If the value of the debug property is true, the client will try
to load the class by evaluating the script file. Otherwise, it will
use a precompiled class, which was created by compiling the
script in the project’s building process (see Listing 8.11).

CHAPTER 8 357

Listing 8.11 Scripted Object Factory Pattern Example
package net.scriptinginjava.ch8.mediator;

import groovy.lang.GroovyClassLoader;

import java.awt.FlowLayout;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.io.File;
import java.io.FileInputStream;
import java.lang.reflect.Constructor;
import java.util.Properties;

import javax.swing.JButton;

import javax.swing.JFrame;

public class ScriptApp implements ActionListener {

private Properties props = new Properties();

public ScriptApp() throws Exception {
FileInputStream propFile = new FileInputStream(

“app.properties”
);
props.load(propFile);

}

public void actionPerformed(ActionEvent e) {
try {

DialogDirector fontDialog = getFontDialog();
fontDialog.showDialog();

} catch (Exception ex) {
ex.printStackTrace();

}
}

public static void main(String[] args) throws Exception {

JFrame frame = new JFrame(“Application”);
frame.getContentPane().setLayout(new FlowLayout());
frame.setSize(100, 75);

JButton button = new JButton(“Select font”);
button.addActionListener(new ScriptApp());
frame.add(button);
frame.show();

}

public DialogDirector getFontDialog() throws Exception {
String debug = props.getProperty(“debug”);
if (Boolean.parseBoolean(debug)) {

GroovyClassLoader loader = new GroovyClassLoader();
Class clazz = loader.parseClass(

new File(
“net/scriptinginjava/ch8/”

+ “mediator/FontDialogScript.groovy”
)

);
Constructor constr = clazz.getConstructor(

new Class[]{}
);
DialogDirector fontDialog =

(DialogDirector)constr.newInstance(
new Object[] {}

);
System.out.println(“script”);
return fontDialog;

} else {
System.out.println(“byte”);
return new FontDialogScript();

}

}
}

358 SCRIPTING IN JAVA

Listing 8.11 Continued

In its constructor, our client loads properties from the
app.properties file. If you set the value of the debug property
to true, you can modify the behavior of the FontDialogScript
mediator class at runtime. You can do this by changing the
appropriate script, just as we did in the Mediator pattern exam-
ple. After we have an acceptable behavior (or the application is
about to be shipped to the client), there is no need to pay this
performance overhead anymore. We can change the value of
the debug property (to false), recompile the project, maybe
pack it in a JAR file, and deploy it. It now performs like a stan-
dard Java application, and the customer should not notice any
performance differences.

Related Patterns

The benefit that we gathered with this pattern is additional flex-
ibility in the development phase of our application, but without
the performance penalties paid in the production of such a
solution. As such, it could be used with practically every script-
ing pattern that encourages implementation of Java interfaces
with scripts. In this section, we have seen how we can use it
together with the Mediator pattern. I will leave it to you as an
exercise to try modifying the Observer pattern example, which
we see in the following section, to use the Script Object Factory
pattern as well.

Observer (Broadcasters) Pattern

This pattern explains how to create flexible one-to-many rela-
tionships among components.

Problem

Earlier in this chapter, I explained how you could adapt the
Mediator pattern to the scripting environment. In this section,
we do the same with the original GoF Observer pattern. Some
authors who document patterns for scripting languages call this
extension the Broadcasters pattern.

CHAPTER 8 359

With the Mediator pattern, we solved the problem of many-
to-one interconnections among system components. In many
situations, you will find it necessary to enable a component to
notify other system components when a certain event triggers.
The intent of the original Observer pattern is to define mecha-
nisms that we can use to create these one-to-many kinds of
relationships among components (objects).

An example of the Observer pattern can be found, again,
in the development of complex graphical user interfaces. Many
development toolkits (frameworks) that exist today encourage
developers to separate application data from their presentation
in the user interface. This separation introduces many benefits
in terms of system development. First, it allows us to apply dif-
ferent views to the same data easily. We can use the same data
objects to initialize different views, and thus we can create new
views quickly. Also, without data objects being tightly coupled
to their views (and application logic in general), it becomes
much easier to reuse these data objects among different
projects.

To explain how the Observer pattern works, I use an imagi-
nary business application. This business application has a dialog
box in it that shows the price and the tax value of an item in
stock. That dialog box must have two label fields, one for the
total price and another for the tax part of the price. If the price
of the item changes, both fields must be updated. Our task is to
provide a flexible mechanism for that operation.

Solution

To achieve this separation, the Observer pattern defines two
kinds of components:

■ The subject component can have many observers. In our
introductory example, the Price object could be seen
as the subject.

■ Observer components are interested in receiving infor-
mation when the subject changes its state. In the pre-
ceding example, the dialog labels could be modeled as
the observers.

360 SCRIPTING IN JAVA

To explain the object structure in the Observer pattern in
more detail, we discuss its implementation in Java.

In the java.util package, you can find the Observable
class and the Observer interface, which define abstractions
necessary for implementation of this pattern. The Observable
class provides mechanisms for registration and notification of
the registered Observers. The notification takes place when the
Observable object (the subject) changes its state. This class has
to be extended by all subjects, such as the Price class in the
introductory example.

To enable registration to the subject (the Observable
object), all observers (such as labels in the price example) must
implement the Observer interface. This interface defines only
one method that is used for notification purposes, as we will see
in a moment. The structure diagram of these classes is shown in
Figure 8.6.

CHAPTER 8 361

java.util.Observable

+addObserver()()
+deleteObserver()
+setChanged()
+notifyObservers()

<<interface>>
java.util.Observer

+update()
0…*

-observers

for all o in observers {
 o->update()
}

ConcreteSubject ConcreteObserver

+update()

Obtain state of the subject
and act according to it

-subject

FIGURE 8.6 Observer pattern in Java

To achieve greater flexibility, the Broadcasters pattern
encourages the use of scripts for implementation of observers.
With this approach, we have scripts (rather than compiled com-
ponents) that the subject registers and evaluates when a certain
event occurs (or when it changes its state).

A traditional approach is to place a reference to the lan-
guage interpreter and register scripts (through their location) to
the subject. But of course, as was the case with the Mediator
pattern, in the Java platform (and associated scripting lan-
guages), we can implement observers as Java classes in a script-
ing language that supports this functionality. In that way, we
have both the good object-oriented design of Java systems and
the additional flexibility of scripting.

Consequences

The Observer pattern introduces the following consequences.

■ Broadcast communication—The subject does not care
how many observers are currently registered. Observers
can be added or removed at any time, and it is the
observers’ responsibility to decide whether they will
react to a certain notification.

■ Unexpected updates—Because observers are not aware
of each other, changing a subject in the update process
could result in unexpected update phases that are hard
to track down.

Additionally, the Broadcasters pattern implies the following

■ The behavior of observers can be easily modified with-
out the need to rebuild the whole project. It can even be
done at runtime.

■ This pattern introduces additional runtime performance
overhead because observers are interpreted every time
an event occurs.

Sample Code

Let’s start again with an implementation of our introductory
example in Java (using the Observer pattern). Then we make the

362 SCRIPTING IN JAVA

necessary changes to enable the use of scripting languages
(Groovy in this case) to implement our observers.

First, we create the subject component. As we already said,
we have to extend the java.util.Observable class to enable
multiple observers to be registered to the component (see Listing
8.12).

Listing 8.12 Subject Component
package net.scriptinginjava.ch8.observer;

import java.util.Observable;

public class Price extends Observable {

Float price;

public Float getPrice() {
return price;

}

public void setPrice(Float price) {
this.price = price;
this.setChanged();
this.notifyObservers();

}

public void increase() {
setPrice(new Float(price.floatValue() + 1.0));

}
}

This simple price object is just a wrapper around the
float value for the price. You can see that we used two addi-
tional methods (inherited from the Observable class) in the
setPrice() method. Those methods are used to notify regis-
tered observers that the price value has been changed.

The setChanged() method marks that the subject’s state
has been changed. The notifyObservers() method notifies all
observers if the subject is marked as changed (we see how it
does this in a moment).

Now that we have the subject, it is time to create the
observers. First, we create an abstract Label class that will be
a parent to all of our observer labels (see Listing 8.13).

CHAPTER 8 363

Listing 8.13 Observer Label Widget
package net.scriptinginjava.ch8.observer;

import java.util.Observer;

import javax.swing.JLabel;

public abstract class Label extends JLabel implements Observer {

public Label(String text) {
super(text);

}
}

364 SCRIPTING IN JAVA

The Observable interface defines only one method:

public void update(Observable o, Object arg);

That method must be implemented by all ancestors of this
abstract Label. The update() method is called by the subject in
the updateObservers() method. As you can see, the subject
itself is passed to the observer.

If the object is passed to the subject’s updateObservers()
method, it will be passed as the second argument of the
update() method of the registered observers. This additional
object could help the observer to discover what has been
changed in the subject. In this simple example, we don’t need
this extra object, because the price has only one field that could
be changed.

Now we can implement observer labels (see Listing 8.14).

Listing 8.14 Price Observer Label Widget
package net.scriptinginjava.ch8.observer;

import java.util.Observable;

public class PriceLabel extends Label {

public PriceLabel(String text) {
super(text);

}

public void update(Observable o, Object arg) {
this.setText(((Price)o).getPrice().toString());

}
}

The PriceLabel class shows the total amount of the sub-
ject’s Price object. On every Price change, the update()
method is called, and the text in the label is updated according
to this change (see Listing 8.15).

CHAPTER 8 365

Listing 8.15 Tax Observer Label Widget
package net.scriptinginjava.ch8.observer;

import java.math.BigDecimal;
import java.util.Observable;

public class TaxLabel extends Label {

private double tax = 0.175;

public TaxLabel(String text) {
super(text);

}

public void update(Observable o, Object arg) {
double VAT = ((Price)o).getPrice().floatValue() * tax;
int decimalPlace = 2;
BigDecimal bd = new BigDecimal(VAT);
bd = bd.setScale(decimalPlace,BigDecimal.ROUND_HALF_UP);
VAT = bd.doubleValue();
this.setText(new Double(VAT).toString());

}
}

The TaxLabel class in this code is pretty much the same as
the one in Listing 8.14. The only difference is that this label dis-
plays only the portion of the total price amount (17.5% in this
example). The additional code is used to round the float value
and to display only two decimal places.

The point here is that both labels are going to change their
text when the price changes its value. But for that to happen,
we have to instantiate all necessary objects first and then regis-
ter these observers to the Price subject (see Listing 8.16).

Listing 8.16 Observer Client
package net.scriptinginjava.ch8.observer;

import java.awt.FlowLayout;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

import javax.swing.JButton;
import javax.swing.JFrame;

366 SCRIPTING IN JAVA

Listing 8.16 Continued
public class ObserverApp implements ActionListener {

Price price;
PriceLabel priceLabel;
TaxLabel taxLabel;

ObserverApp() {

JFrame frame = new JFrame(“Application”);
frame.getContentPane().setLayout(

new FlowLayout()
);
frame.setSize(150, 100);

JButton button = new JButton(“Increase Price”);
button.addActionListener(this);
frame.add(button);

price = new Price();
priceLabel = new PriceLabel(“0”);
taxLabel = new TaxLabel(“0”);

price.addObserver(priceLabel);
price.addObserver(taxLabel);

price.setPrice(new Float(50.00));

frame.add(priceLabel);
frame.add(taxLabel);

frame.show();

}

public static void main(String[] args) {

new ObserverApp();

}

public void actionPerformed(ActionEvent e) {

price.increase();

}
}

This application creates a frame with two labels
(PriceLabel and TaxLabel) and a button. Note the code
marked in bold in Listing 8.16. That code snippet instantiates a
subject and two observers. It also registers those observers using
the addObserver() method. This method is defined in the
Observable class (extended by all subjects).

Of course, the Observable class defines some additional
methods intended for observer handling. So, for example, the
deleteObserver() and deleteObservers() methods are
used to deregister observers from the subject. Also, with the
countObservers() method, you can get the actual number of
registered observers for a certain subject.

When the application is started, a frame like the one shown
in Figure 8.7 appears.

CHAPTER 8 367

FIGURE 8.7 Observer example

Every time you click the button, the price will be increased
(see the increase() method of the Price class). You can see
that both labels are updated correctly through their update()
methods (see Figure 8.8).

FIGURE 8.8 Observer example—price modified

To demonstrate the Broadcasters pattern, we can rename
the TaxLabel.java file as TaxLabel.groovy and use it as a
scripted component. Remember that you should check that the
Java class is valid Groovy code before trying to use it in this
way. In this example, there is nothing to stop us from using
the previously defined Java class as the Groovy code.

We can now change our application to use a scripted
observer for this purpose (see Listing 8.17).

Listing 8.17 Broadcasters Example
package net.scriptinginjava.ch8.observer;

import groovy.lang.GroovyClassLoader;

import java.awt.FlowLayout;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.io.File;
import java.lang.reflect.Constructor;

import javax.swing.JButton;
import javax.swing.JFrame;

public class ScriptApp implements ActionListener {

Price price;
PriceLabel priceLabel;
Label taxLabel;

ScriptApp() throws Exception {

JFrame frame = new JFrame(“Application”);
frame.getContentPane().setLayout(new FlowLayout());
frame.setSize(150, 100);

JButton button = new JButton(“Increase Price”);
button.addActionListener(this);
frame.add(button);

price = new Price();
priceLabel = new PriceLabel(“0”);

GroovyClassLoader loader = new GroovyClassLoader();
Class observerClass = loader.parseClass(

new File(
“net/scriptinginjava/ch8/”

+ “observer/TaxLabel.groovy”
)

);
Constructor observerConstructor =

observerClass.getConstructor(
new Class[]{String.class}

);
taxLabel = (Label)observerConstructor.newInstance(

new Object[] {“0”}
);

frame.add(priceLabel);
frame.add(taxLabel);

price.addObserver(priceLabel);
price.addObserver(taxLabel);

price.setPrice(new Float(50.00));

frame.show();

}

public static void main(String[] args) throws Exception {

368 SCRIPTING IN JAVA

Listing 8.17 Continued

new ScriptApp();

}

public void actionPerformed(ActionEvent e) {

price.increase();

}
}

CHAPTER 8 369

Listing 8.17 Continued

NOTE

I left the second
observer as the
plain Java class for
better readability of
the example code.

The only difference is that now the taxLabel observer is
evaluated and loaded from the Groovy script. This means it
could be changed while the application is running, and that
those changes will be reflected in the application. Because the
main logic is located in the observers (when this pattern is
used), we have achieved our goal of creating a flexible develop-
ment environment in which the behavior is changeable during
runtime.

Related Patterns

This pattern introduces an additional runtime performance over-
head because observers are interpreted every time the event
occurs. This problem could be solved with the Script Object
Factory pattern.

Extension Point Pattern

This pattern explains how to extend components’ behavior with
simple-to-write scripts.

Problem

In Chapter 2, “Appropriate Applications for Scripting Lan-
guages,” we discussed how important it is to be able to embed
the scripting interpreter in a surrounding system-programming
environment, such as JVM. One crucial reason for this is to
enable developers to customize and extend the behavior of their
components with scripts.

In our discussion of the Mediator and Observer patterns, I
said that there are two ways in which we can make Java com-
ponents use scripts. The first way, which we used in those
examples, is to implement Java interfaces in scripting languages
such as Groovy. The classes can easily be loaded through the
specialized class loader that comes with the appropriate script
engine. After those classes are loaded, they can be used further
on, just as though they were regular Java classes. This method
is important when you want to use a design-through-interface
approach to constructing your system, and when you want to
be able to modify the implementations of your interfaces during
runtime.

The second approach, which is covered in the Extension
Point pattern, is to let the component evaluate scripts from its
methods. In this way, we can define the extension points of our
components, and we can inject scripts into these points that can
modify the behavior and the state of the component.

Solution

For the second approach to work, the component has to hold an
instance of the language interpreter, instead of loading a class
from the script file. We also have to provide the mechanism for
setting the resource from which the script will be loaded.

Additionally, the component creator has to bind the compo-
nent to the script to provide the component’s context to script
developers. Of course, other application classes could be bound
to the script to make a richer context for its execution.

Consequences

This pattern introduces the following consequences.

■ Inexperienced programmers can easily customize the
component’s behavior because the syntax of most
scripting languages is easy to learn.

■ System architects and component writers have to take
special care regarding security. Security permissions
must be defined for the script to prevent malicious
activities from occurring. You can find more informa-
tion about security for Groovy scripts in Chapter 4.

370 SCRIPTING IN JAVA

Sample Code

To demonstrate this pattern, we use a component whose behav-
ior is extensible through Groovy scripts. Take a look at Listing
8.18.

CHAPTER 8 371

Listing 8.18 Extension Point Example
package net.scriptinginjava.ch8;

import groovy.lang.Binding;
import groovy.lang.GroovyShell;

import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.IOException;
import java.io.PrintWriter;
import java.io.StringWriter;

public class Component {

private String script;
private String someProperty;

public String getScript() {
return script;

}
public void setScript(String script) {

this.script = script;
}

public void doSomeAction() throws Exception {
if (script != null) {

Binding binding = new Binding();
binding.setVariable(“comp”, this);
GroovyShell shell = new GroovyShell(binding);
shell.evaluate(script);

}

// ... continue
}

public String getSomeProperty() {
return someProperty;

}

public void setSomeProperty(String property) {
this.someProperty = property;

}

public static void main(String[] args) throws Exception {
Component component = new Component();
component.setScript(“println ‘Hello world!’”);
component.doSomeAction();

}
}

The Component class contains the script property, along
with its getter and setter methods. Also, we defined the
doSomeAction() method that should contain some business
logic for this component. As you can see, this method evaluates
the script, located in the property (if it has been set), before it
proceeds to other logic. Note that the component is passed to
the scripting engine context as the comp variable, so the script
could use it to get or set some data. For example, it can work
with the someProperty property defined in the component.

In this example, we just set the following simple script to be
executed:

print “Hello world!”

As a result of its execution, you can expect that the follow-
ing text will appear on the screen:

Hello world!

We can make this example more flexible if we enable com-
ponent users to define scripts in the file (see Listing 8.19).

372 SCRIPTING IN JAVA

Listing 8.19 Modified Extension Point Example
package net.scriptinginjava.ch8;

import groovy.lang.Binding;
import groovy.lang.GroovyShell;

import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.IOException;
import java.io.PrintWriter;
import java.io.StringWriter;

public class Component {

private String script;
private String someProperty;

public String getScript() {
return script;

}
public void setScript(String script) {

this.script = script;
}

public void setScript(File file) throws IOException {
BufferedReader bufIn = new BufferedReader(

new FileReader(file)
);
StringWriter swOut = new StringWriter();
PrintWriter pwOut = new PrintWriter(swOut);
String tempLine;

while ((tempLine = bufIn.readLine()) != null) {
pwOut.println(tempLine);

}

pwOut.flush();
setScript(swOut.toString());

}

public void doSomeAction() throws Exception {
if (script != null) {

Binding binding = new Binding();
binding.setVariable(“comp”, this);
GroovyShell shell = new GroovyShell(binding);
shell.evaluate(script);

}

// ... continue the work
System.out.println(someProperty);

}

public String getSomeProperty() {
return someProperty;

}

public void setSomeProperty(String property) {
this.someProperty = property;

}

public static void main(String[] args) throws Exception {
Component component = new Component();
component.setScript(

new File(
“net/scriptinginjava/ch8/componentInit.groovy”

)
);
component.doSomeAction();

}
}

CHAPTER 8 373

Listing 8.19 Continued

We added the setScript() method that reads the
submitted file and initializes the script property with its
content. The code of this method is practically the same as
that defined in the getStringFromReader() method of the
org.apache.bsf.util.IOUtils class that we used in our BSF
examples in Chapter 6, “Bean Scripting Framework.”

In the main() method, we initialized the component
with the componentInit.groovy file rather than the simple
string script from Listing 8.18. Note, for example, that the
componentInit.groovy file contains the code shown in the
following code snippet:

println “Hello world!”
comp.someProperty = “value”

We used the comp variable in the script, which represents an
instance of the component that evaluated the script. We also set
the value for the someProperty property. Because we print its
value in the doSomeAction() method, you can expect the fol-
lowing result to show up after executing this example:

Hello world!
value

The first line is printed from the script, and the second one
is printed from the component’s doSomeAction() method after
the script has been evaluated.

You could also use this pattern with various Inversion of
Control (IoC) containers, such as Spring (www.springframework
.org), to initialize and extend the component behavior.

To summarize, this is one of the scripting patterns that is
the basis for other patterns you can apply in the scripting envi-
ronment. Its alternative is to implement Java classes in the
scripting language of your choice and load them at runtime.
Which method you use depends a great deal on your project’s
requirements and your personal affinities.

Related Patterns

You can use this pattern for implementing various scripting pat-
terns. For example, you can use it to implement the Mediator
and Observer patterns. This pattern also enables you to create
various kinds of scripting interceptors.

374 SCRIPTING IN JAVA

www.springframework.org
www.springframework.org

Active File Pattern

This pattern explains how to use scripting to store both data
and the code that handles that data in the file.

Problem

In recent years, we have witnessed a great general effort made
to connect applications and systems built on different platforms
and technologies. Such efforts placed great emphasis on the for-
mat of the data being transferred between systems.

The most important characteristic of those data formats is
that they should be easily read and parsed in both scripting and
system-programming languages. Because of that, XML is now
the most widely accepted data format used for this purpose.

But in some situations, developers need even more flexibil-
ity, such as the ability to represent the same data in various for-
mats or to perform certain data transformations before
processing.

Solution

In Chapter 1, “Introduction to Scripting,” I mentioned that code
and data are interchangeable in most scripting languages. With
this in mind, we can force our scripting application not only to
store data in the file but also to create an executable script that
contains both data and code. By applying the Active File pat-
tern, we can actually run a script that can format data accord-
ing to our needs (or do any other data transformation that we
need at the moment).

Consequences

The Active File pattern introduces the following consequences.

■ The application must embed a scripting interpreter to
process data files like these.

■ The file format could be too tightly coupled to the
application. A developer could be tempted to use a data

CHAPTER 8 375

format optimized for the specific problem. Instead, it is
better to use widely used data formats, such as XML or
CSV, for example, and thus enable data processing in
other applications.

■ Security must be taken into consideration when you are
deciding whether to use this pattern. Because the appli-
cation is executing a script that could possibly contain
malicious code, a developer must accept scripts only
from trusted sources and create a solution that would
prevent any illegal activities by the script.

Sample Code

To demonstrate this pattern, let’s consider the following exam-
ple. We want to save a list of users, with their account balances,
from our database into a file. Additionally, we want this data to
be used in three formats:

■ XML—As noted earlier, this is the most convenient
format for processing data using some arbitrary
application.

■ CSV (comma-separated values)—This is convenient for
importing data into various applications, such as
spreadsheet applications, for example.

■ SQL—You could use this to import data into a relational
database for further processing.

Now take a look at the Groovy script (active.groovy)
shown in Listing 8.20.

376 SCRIPTING IN JAVA

Listing 8.20 Active File Example
builder = new NodeBuilder()

// data

root = builder.users() {
user(username:”mike”, balance:100)
user(username:”joe”, balance:120)

}

// code

users = root.get(“user”);

def exportAsSQL(users) {
users.each() {

println “””INSERT INTO USERS (username, balance) \
VALUES (‘${it.attribute(“username”)}’
, ${it.attribute(“balance”)});”””;

}
}

def exportAsCSV(users) {
users.each() {

println “””${it.attribute(“username”)} \
,${it.attribute(“balance”)} “””;

}
}

def exportAsXML(users) {
println “<users>”;
users.each() {

println “””<user \
username = “${it.attribute(“username”)}”> \
${it.attribute(“balance”)}</user>”””;

}
println “</users>”;

}

if (args.size() == 0)
action = “csv”

else
action = args[0]

switch (action) {
case “sql” : exportAsSQL(users)

break;
case “xml” : exportAsXML(users)

break;
default : exportAsCSV(users)

}

CHAPTER 8 377

Listing 8.20 Continued

At the beginning of the script, we defined the data in a
neutral treelike structure. We used Groovy’s groovy.util.
NodeBuilder class for this task (see Chapter 5, “Advanced
Groovy Programming,” for more details about this class).

The rest of the file contains the code that can format
this data in one of the three formats we specified earlier. For
that purpose, we defined three functions: exportAsSQL(),
exportAsXML(), and exportAsCSV(). Which one is called
depends on the first command-line argument that is passed to
the script. If no arguments are passed, the CSV format will be
assumed.

So if you run the script with the following command:

groovy active.groovy

the exportAsCSV() method will be called, and you will get the
following output on the console:

mike,100
joe,120

You would get the same result if you ran the script with the
following command:

groovy active.groovy csv

If you like to get data in XML format, just run the same
script and pass xml as an argument to it:

groovy active.groovy xml

The result will look like this:

<users>
<user username = “mike”>100</user>
<user username = “joe”>120</user>
</users>

At the end, this script call

groovy active.groovy sql

will result in the following output:

INSERT INTO USERS (username, balance) VALUES (‘mike’, 100
);
INSERT INTO USERS (username, balance) VALUES (‘joe’, 120
);

The next natural question is can we easily make this kind of
active file with Groovy? Fortunately, the answer is yes. We use
Groovy templates, described in Chapter 5, to do this. We can
start by creating a template, as shown in Listing 8.21.

378 SCRIPTING IN JAVA

Listing 8.21 Active File Template
builder = new NodeBuilder()

root = builder.users() {
<%

users.each() {
out.println(“user(username:’${it.username}’ \

, balance:${it.balance})”);
}

%>
}

users = root.get(“user”);

def exportAsSQL(users) {
users.each() {

println “””INSERT INTO USERS (username, balance) \
VALUES (‘\${it.attribute(“username”)}’ \
, \${it.attribute(“balance”)});”””;

}
}

def exportAsCSV(users) {
users.each() {

println “””\${it.attribute(“username”)} \
,\${it.attribute(“balance”)} “””;

}
}

def exportAsXML(users) {
println “<users>”;
users.each() {

println “””<user username = \
“\${it.attribute(“username”)}”> \
\${it.attribute(“balance”)}</user>”””;

}
println “</users>”;

}

if (args.size() == 0)
action = “csv”

else
action = args[0]

switch (action) {
case “sql” : exportAsSQL(users)

break;
case “xml” : exportAsXML(users)

break;
default : exportAsCSV(users)

}

CHAPTER 8 379

As you can see, this template is practically the same as the
active file we want to create. The only difference is the code
that is marked in bold. That code uses the list named users to
populate concrete data into the file.

All that we need now is a Groovy script that will get data
from the source (a relational database, for example) and make
an active file from this template (see Listing 8.22).

Listing 8.22 Active File Generator
import groovy.sql.Sql
import groovy.text.Template
import groovy.text.TemplateEngine
import groovy.text.SimpleTemplateEngine
import java.io.File
import java.io.FileWriter

sql = Sql.newInstance(“jdbc:mysql://localhost/groovy”
, “com.mysql.jdbc.Driver”)

users = []

sql.eachRow(“SELECT * FROM users”) {
users << it

}

TemplateEngine engine = new SimpleTemplateEngine()
Template template = engine.createTemplate(

new File(“net\\scriptinginjava\\ch8\\activeTemplate”)
)
result = template.make(users:users)

fileWriter = new FileWriter(“activetest.groovy”)
result.writeTo(fileWriter)

In this Groovy script, we used GroovySQL to get all the
user data from our users table. We created a list named users
from it and passed it to the template. As a result, we created an
activetest.groovy script that is equivalent in behavior to the
active file described at the beginning of this section.

This pattern gave us an opportunity to store data with addi-
tional logic that could be used to easily represent that data in
various forms. The client could also use this logic to make vari-
ous transformations on this data.

Conclusion

This chapter provided some useful patterns for mixing Java and
scripting code. The patterns presented here by no means repre-
sent all the possible solutions to this type of problem. Instead,
they represent a small set of useful ideas that are applicable in

380 SCRIPTING IN JAVA

this context. Many other patterns are a natural extension of the
ones presented in this chapter.

This material should be just an entry point to this topic,
and I hope that it will prompt you to create more patterns that
could be useful in this domain of software development. You
can find some additional scripting patterns in Nat Pryce’s col-
lection, which he has posted on his Web site, www.doc.ic.ac.uk/
~np2/patterns/scripting/.

Before we move on to the next chapter, I want to say a
few words about another side to design patterns. Pattern critics
often point out that inexperienced developers could fall into the
pattern trap. This term is used to describe a situation where a
developer tries to implement as many patterns as possible in his
application, regardless of whether they are really applicable in
the context he is working in.

You need to satisfy three criteria to be successful in using a
pattern to solve a certain problem:

■ Understand the problem.

■ Understand the pattern.

■ Understand how the pattern solves the problem.

Although this seems natural, be sure that all three criteria
are satisfied before you apply a pattern. Using a pattern just for
the sake of saying that you did could, in the end, produce more
problems than it solves.

CHAPTER 8 381

www.doc.ic.ac.uk/~np2/patterns/scripting/
www.doc.ic.ac.uk/~np2/patterns/scripting/

This page intentionally left blank

PART IV

CHAPTER 9 Scripting API

CHAPTER 10 Web Scripting Framework

This page intentionally left blank

Back in Chapter 6, “Bean Scripting Framework,” I
described the BSF library and explained the need for a

general scripting framework like it. Although the BSF is a
solid and stable project that serves its purpose well, the
Java community needs a solution that better suits modern
scripting languages and integrates more easily with native
interpreters. In this chapter, I describe the Scripting API, a
specification that arose from the Java Community Process
(JCP) to create a standard Java scripting framework for the
Java platform.

Here, we explore the motivation behind this API and its
abstractions. We also walk through numerous examples that
show us how to use these abstractions to solve everyday
programming problems.

SSCRIPTINGCRIPTING APIAPI

CHAPTER 9

Motivation and History

In Chapter 2, “Appropriate Applications for Scripting Lan-
guages,” I talked about the use of scripting languages for devel-
oping dynamic Web applications. I cited PHP as one of the most
popular languages for that task. Proof of its popularity exists in
the crucial role it plays in the LAMP (Linux, Apache, MySQL,
PHP) platform. The combination of these four technologies was
proven by many successful deployments to be a stable and
powerful platform for building dynamic Web applications.

PHP has a large community of software developers and has
become a de facto choice for implementation of small and mid-
size Web solutions. The main advantage of PHP is its easy-to-
learn syntax and concepts, which allow even novice
programmers a moderate learning curve. Also, its architecture is
flexible enough to enable the creation of a large number of lan-
guage extensions that allow application developers to do almost
anything they can think of.

Over time, PHP projects have grown larger, and people have
wanted to develop more complex applications with it. However,
PHP was not originally designed for such tasks. It has a page-
centric architecture, and until Version 5, it had limited support
for object-oriented programming. Furthermore, there is no
application container in PHP, so all variables are bound to
request or session scopes. This lack of an application container
implies the lack of system support for transaction management,
caching, software components, and all the other things develop-
ers of enterprise applications are used to having.

As applications get larger and more complex, scalability
becomes a new issue. PHP is not as scalable as other enterprise
development tools are, and there is no easy and standard way
to cluster it for better performance.

For all these reasons, PHP applications (with respectable
exceptions) remained dominant primarily in the area of small
and midsize dynamic Web applications, with modest applica-
tions in enterprise development.

Java, on the other hand, had a different development path.
It was originally designed as an object-oriented language for

386 SCRIPTING IN JAVA

developing client applications that could be easily transferred
through a network. Because of good language concepts and true
platform independency, many people saw tremendous possibili-
ties for Java. Thus, three Java platforms emerged:

■ J2SE—This is the Java Standard Edition, which contains
core functionality for development of client and server
applications (including Web applications).

■ J2ME—This is the Java Micro Edition, which is targeted
for development of embedded applications for mobile
phones and similar devices.

■ J2EE—This is the Java Enterprise Edition, which defines
a standard for development of large, component-based
enterprise applications.

Java quickly became a popular language of choice for
development of enterprise and Web applications. All the fea-
tures that PHP does not include are available to Java developers
through the Servlet specification and the Enterprise Edition.
Application servers that comply with the J2EE specification
implement support for software components (EJBs), declarative
transaction management, declarative security, integration with
legacy systems, and many other features needed in this problem
domain. Also, Java is much more suitable for clustering and
distributed computing than scripting languages that are tightly
coupled to the Web server environment. All this makes Java a
good choice as a development platform for large and complex
server applications.

The main problem with this platform was its complexity
and the fact that Java development is time consuming. Even if
we take an ordinary Web application that does not use J2EE
features, a developer needs to know many technologies (such as
JSP, the Servlet specification, XML, and so on) just to begin
development. And after development begins, it takes much more
time to produce desired functionalities than it would with the
LAMP platform.

Many frameworks that force the Model-View-Controller
(MVC) pattern, template engines, Object Relational mapping
tools, IoC containers, and similar technologies emerged to

CHAPTER 9 387

address this problem. Nevertheless, the aforementioned com-
plexity, and the fact that some projects missed their deadlines,
remained the major drawback of the Java platform.

Considering the large community of PHP developers and the
huge code base of Web solutions for many problem domains on
the one hand, and the power of the Java platform (with its
community backed by large corporations) on the other, it is not
surprising that ideas and initiatives for integrating these two
platforms were born at Sun Microsystems (Java’s side) and Zend
Technologies (the PHP company).

Prior to the availability of the Scripting API, solutions for
integrating Java and PHP applications were, to put it mildly,
modest. PHP has a mechanism that you can use to integrate it
into a servlet container using the SAPI module and to expose
the Java Virtual Machine (JVM) to applications, but this solu-
tion was not reliable enough for use in mission-critical tasks.
There is no support for this extension and no accurate docu-
mentation. The PHP manual that covers Java integration
(www.php.net/manual/en/ref.java.php) describes this problem
well:

This extension is EXPERIMENTAL. Use this extension at your
own risk.

Another way to perform this integration is through Web
services and the XML-RPC protocol. This approach works great
in some applications, but it is not applicable in all cases. Also,
performance issues of the protocol make this solution unaccept-
able in many cases.

The Scripting API fills this gap by providing a standard
solution for integrating scripting engines and the JVM. Also,
the fact that this API is an integral part of the Java platform
should guarantee its wide acceptance among developers.

Introduction

The initiative for bringing Java and PHP together is in the Java
Specification Request 223 (JSR 223; www.jcp.org/en/jsr/
detail?id=223). It was originally called “Scripting Pages in Java

388 SCRIPTING IN JAVA

www.php.net/manual/en/ref.java.php
www.jcp.org/en/jsr/detail?id=223
www.jcp.org/en/jsr/detail?id=223

Web Applications” and its goal was to provide a standard way
to generate Web content in scripting languages. PHP was cho-
sen as a reference scripting language for this specification.

Unlike other technologies already covered in this book, this
specification was not focused only on scripting languages that
have interpreters implemented in Java. Integration of those lan-
guages is much easier to achieve than it is with native scripting
languages, such as PHP.

So to meet the original specification’s goal, it was necessary
to create a framework, similar to the BSF (described in Chapter
6), that provides common abstractions (interfaces and classes)
that you can use to integrate Java and arbitrary scripting
languages.

Therefore, the specification was renamed to “Scripting for
the Java Platform,” and its original goal was extended with the
specification of such an API. So, the specification contained two
main elements:

■ General Scripting API—This is a framework that allows
you to embed scripting engines (both Java and native
ones) into Java applications. One of the main design
goals of this API was to provide backward compatibility
with existing frameworks, such as the BSF, to make
transition of projects and adoption by developers as
easy as possible.

■ Web Scripting API—This uses the Scripting API to
allow you to embed scripting engines into servlet con-
tainers. The framework allows pages written in scripting
languages, such as PHP, to be included in Java Web
applications. It also defines mechanisms for resource
sharing among scripts and other elements of Web appli-
cations (servlets, JSP pages, and so on).

The Web Scripting API is removed from the final version of
the specification because it will be subject to further develop-
ment. But still, we describe it in this book because its concepts
represent the basics of Java and scripting integration in the
Web environment. This API could be a starting point for any
future work in this field.

CHAPTER 9 389

The specification does not define the syntax that the script-
ing language should implement to use Java objects. Instead, it
includes a discussion of “Java Language Bindings,” which cov-
ers mechanisms that you can use by specification implementa-
tions to map script method calls to Java object method calls. It
also defines a mechanism for conversion of values between
Java objects and scripting language variables.

This chapter covers the Scripting API. I describe all the con-
cepts and abstractions that it introduces through appropriate
examples and highlight some of the differences between this
API and the BSF.

Chapter 10, “Web Scripting Framework,” covers the Web
Scripting Framework and its applicability in day-to-day devel-
opment tasks.

Getting Started

The Scripting API’s interfaces and classes are located in the
javax.script package, and the Web Scripting Framework files
are in the javax.script.http package. The Scripting API
(javax.script package) is an integral part of the Java Stan-
dard Edition with the Mustang release (J2SE 6.0) onward.

If you want to use the Scripting API with Java releases
prior to this one, you can find instructions on how to obtain
and install the Reference Implementation (RI) of this specifica-
tion in Appendix C, “Installing JSR 223.” Note that the API
included in Java 6 JDK and the Reference Implementation dif-
fers in some segments. In this chapter, we use a strictly JDK 6
compatible API, so if you want to run examples, you need to
install Java JDK 6 or newer.

Sun Java SE 6 JDK includes scripting engine support for
JavaScript Rhino implementation described in Chapter 3,
“Scripting Languages Inside the JVM.” In the RI, you can find
implementations of PHP, Rhino, and Groovy scripting engines.
Finally, there is a Scripting project (https://scripting.dev.java.net/)
whose purpose is to provide engine implementations for most
scripting languages available today. There you should start
looking for engine implementation for your favorite scripting

390 SCRIPTING IN JAVA

https://scripting.dev.java.net/

language. In this chapter, examples are written mostly in
JavaScript, but there are a few Groovy examples too. So, if you
want to run these examples, make sure that you obtain the
Scripting project distribution and include the Groovy engine
implementation in the classpath.

Architecture

I already said that one of the main design goals of this API was
to provide backward compatibility with existing interfaces used
for this kind of task. (By existing interfaces, I mean the inter-
faces provided by the scripting engine implementations covered
in Chapters 3 and 4, and the BSF API, which is the general-
purpose library that has been used until now, described in
Chapter 6.)

One more important design goal of this API is portability. It
is meant to be a standard API for embedding all kinds of script-
ing languages. Scripting languages vary a great deal in terms of
the functionalities they provide. This API tends to cover all the
features that a certain scripting engine can provide, but at the
same time, it must enable simple engines, with just basic func-
tionalities, to comply with the API.

Therefore, the Scripting API provides application developers
the ability to determine features that are implemented in certain
scripting engines at runtime. In that way, developers can adjust
their code for specific cases, or fail correctly if the scripting
engine does not implement certain optional features. We see
how these portability goals are implemented later in this
chapter.

First, I discuss the abstractions and concepts defined in the
API and explain their purpose through examples.

Discovery Mechanism

As in our discussion of the BSF API, I start by explaining the
javax.script.ScriptEngineManager class. The purpose of
this class is similar to that of the BSFManager class: It serves as
the general registry of available scripting engines.

CHAPTER 9 391

BSF has a simple static language discovery mechanism used
to get all languages currently registered with the manager. It
performs this task through the Languages.properties file
located in the root library package.

The Scripting API approaches this problem differently. It is
based on the service provider mechanism described in the Jar
File Specification. According to this specification, the service is
a set of interfaces and (possibly abstract) classes. The service
provider represents an implementation of the service (an imple-
mentation of its interfaces and abstract classes).

This mechanism should allow you to make service providers
available to the application dynamically, by adding them to the
classpath. For that purpose, the Jar File Specification specifies
that files located in the META-INF/services folder of the JAR
archives should be used as the service providers’ configuration
files. Furthermore, the configuration files should be named after
the service interfaces (or abstract classes) they implement, and
the name must include the service package as well. Finally, the
files should contain a newline-separated list of particular classes
that implement that service.

As we see in a moment, scripting engines are
created through the factory method defined in the
javax.script.ScriptEngineFactory interface. So the
ScriptEngineManager class searches through all the JAR
files in the application’s classpath and registers engine
factories that are found in the META-INF/services/
javax.script.ScriptEngineFactory files of those archives.
You can find an example of this file in the JDK’s
lib/resources.jar file. It looks like this:

#script engines supported

com.sun.script.javascript.RhinoScriptEngineFactory
#javascript

As you can see, only one implementation of the
ScriptEngineFactory interface (in other words, one service
provider) is defined in this JAR file. By its name and comments,
we can tell that it is the factory for the engine of the JavaScript

392 SCRIPTING IN JAVA

language. Now we can write an example that prints names of
all registered languages (see Listing 9.1).

Listing 9.1 Discovery Mechanism
package net.scriptinginjava.ch9;

import javax.script.ScriptEngineFactory;
import javax.script.ScriptEngineManager;

public class ManagerTest {

public static void main(String[] args) {

ScriptEngineManager manager =
new ScriptEngineManager();

List<ScriptEngineFactory> factories =
manager.getEngineFactories();

System.out.println(“Available languages:”);
for (ScriptEngineFactory factory: factories) {

System.out.println(factory.getLanguageName());
}

}
}

Now if we execute this code sample, it should produce the
following output:

Available languages:
ECMAScript

When instantiated, the manager looks for all engine factory
implementations so that the getEngineFactories() method
will return them in a list. The getLanguageName() method of
the factory object, as I explain in more detail in the following
sections, returns the name of the language for which it creates
engine objects.

Engine Metadata

As you saw in the preceding section, engine metadata is not
defined in the discovery mechanism configuration files, as was
the case in the BSF. Therefore, the Scripting API defines meth-
ods in the ScriptEngineFactory interface that is used to
describe engines created by that factory.

CHAPTER 9 393

In Listing 9.1, we used the getLanguageName() method of
the ScriptEngineFactory interface that returns the name of
the language that factory produces. Listing 9.2 demonstrates the
rest of these metadata methods. (I explain them afterward.)

394 SCRIPTING IN JAVA

Listing 9.2 Engine Metadata
package net.scriptinginjava.ch9;

import java.util.List;

import javax.script.ScriptEngineFactory;
import javax.script.ScriptEngineManager;

public class InfoTest {

public static void main(String[] args) {
ScriptEngineManager manager = new ScriptEngineManager();
ScriptEngineFactory factory =

manager.getEngineByName(“js”).getFactory();
System.out.println(“JS engine metadata”);
System.out.println(

“Engine name: “ + factory.getEngineName()
);
System.out.println(

“Engine version: “ + factory.getEngineVersion()
);
System.out.println(

“Language name: “ + factory.getLanguageName()
);
System.out.println(

“Language version: “ + factory.getLanguageVersion()
);
List<String> extensions = factory.getExtensions();
System.out.print(“Language extensions: “);
for(String extension: extensions) {

System.out.print(extension + “ “);
}
System.out.println();
System.out.print(“Language mime types: “);
List<String> mimeTypes = factory.getMimeTypes();
for (String mimeType: mimeTypes) {

System.out.print(mimeType + “ “);
}
System.out.println();
List<String> names = factory.getNames();
System.out.print(“Engine names: “);
for (String name: names) {

System.out.print(name + “ “);
}
System.out.println();

}
}

If we run this application against the JavaScript engine
included in the JDK 6, we get the following output:

JS engine metadata
Engine name: Mozilla Rhino
Engine version: 1.6 release 2
Language name: ECMAScript
Language version: 1.6
Language extensions: js
Language mime types: application/javascript
application/ecmascript text/javascript text/ecmascript

Engine names: js rhino JavaScript javascript ECMAScript
ecmascript

The first four methods provide information about the names
and versions of the language and the particular engine. You can
use them to take appropriate action according to certain engine
and language implementations.

The last three methods return lists that specify extensions,
mime types, and names associated with the scripting language
and engine.

Creating and Registering
Scripting Engines

Just as in the BSF, the Scripting API defines an abstraction for
scripting language interpreters. It defines this abstraction in the
javax.script.ScriptEngine interface. We come back to this
interface and related abstractions later in this chapter. First, we
have to determine how we can create instances of particular
classes that implement this interface.

I said that you can use the factory method of the
ScriptEngineFactory interface to create an instance of the
language interpreter (engine) for a desired language. Listing 9.3
demonstrates one approach that you can take to create a
ScriptEngine instance through this method.

Listing 9.3 A getScriptEngine() Method Example
package net.scriptinginjava.ch9;

import java.util.List;

import javax.script.ScriptEngine;

CHAPTER 9 395

import javax.script.ScriptEngineFactory;
import javax.script.ScriptEngineManager;

public class CreateTest {

public static void main(String[] args) {
ScriptEngineManager manager = new ScriptEngineManager();
List<ScriptEngineFactory> factories =

manager.getEngineFactories();
ScriptEngine engine = null;
for (ScriptEngineFactory factory: factories) {

if (factory.getLanguageName()
.equalsIgnoreCase(“EcmaScript”)

) {
engine = factory.getScriptEngine();
break;

}
}

if (engine != null) {
System.out.println(“JS engine implemented by: “

+ engine.getClass());
} else {

System.out.println(“No engine found for JS”);
}

}
}

396 SCRIPTING IN JAVA

Listing 9.3 Continued

In Listing 9.3, we loop through all the engines registered
with the manager. If we find the scripting factory whose lan-
guage name metadata equals ECMAScript—the ECMAScript
engine, in other words—we will create an instance of that
engine using the getScriptEngine() factory method. The
example should print the following text on output if it is used
with the Scripting API distributed with JDK 6:

JS engine implemented by: class
com.sun.script.javascript.RhinoScriptEngine

Creation Methods

The previous lookup mechanism is not particularly
convenient, so the specification adds a few methods to the
ScriptEngineManager class for tasks like this. There are three
ways to select an appropriate engine:

■ By its name

■ By its associated filename extension

■ By its associated MIME type

To this end, three methods are defined:

■ getEngineByName()

■ getEngineByExtension()

■ getEngineByMimeType()

getEngineByName()

This method is used to look through the available engine facto-
ries and create the appropriate engine if the factory for the
specified language is found. So the code in Listing 9.4 is almost
entirely equal in functionality to the example shown in Listing
9.3 (the difference is that this method will look up through all
engine names, not only the main one).

CHAPTER 9 397

Listing 9.4 A getEngineByName() Method Example
package net.scriptinginjava.ch9;

import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;

public class ByNameTest {

public static void main(String[] args) {
ScriptEngineManager manager = new ScriptEngineManager();
ScriptEngine engine = manager.getEngineByName(“js”);
if (engine != null) {

System.out.println(“JS engine implemented by: “
+ engine.getClass()

);
} else {

System.out.println(“No engine found for JS”);
}

}
}

After executing Listing 9.4, you will get the same result
as before. The only difference is that this manager’s lookup
method sets the context of the created engine (but that is the
topic of later sections in this chapter). For now, suffice it to
say that this is the case for all the lookup methods of the
ScriptEngineManager class.

getEngineByExtension()

This method is used to look up the factory that creates the
scripting engine capable of handling files with the given exten-
sion. If no such factory exists, it will return a null value. Look
at Listing 9.5.

398 SCRIPTING IN JAVA

Listing 9.5 A getEngineByExtension() Method Example
package net.scriptinginjava.ch9;

import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;

public class ByExtensionTest {

public static void main(String[] args) {
ScriptEngineManager manager = new ScriptEngineManager();
ScriptEngine engine =

manager.getEngineByExtension(“js”);
if (engine != null) {

System.out.println(“js files are handled by: “
+ engine.getClass() + “ engine”

);
} else {

System.out.println(
“No engine found for .js extension”

);
}

}
}

We created a scripting engine implementation that can
handle .js file extension scripts. This method could be helpful
when you want to allow support for arbitrary scripting lan-
guage files in your product.

getEngineByMimeType()

Because this library is also meant to be useful in a Web context,
this method is used to make it easier to look up engines that
can handle a certain mime type. It has practically the same syn-
tax as the methods described in Listing 9.4 and Listing 9.5. So, I
will skip its basic example and demonstrate this method later in
the chapter through the advanced example.

Registration Methods

Along with these methods come supplementary methods used to
register the engine factory, which handles a certain language,
extension, or mime type. These methods are as follows:

■ registerEngineName()

■ registerEngineExtension()

■ registerEngineMimeType()

I demonstrate these methods by registering the
com.sun.script.javascript.RhinoScriptEngine engine to
handle all the text/xml mime types (see Listing 9.6).

CHAPTER 9 399

Listing 9.6 Register Engine Example
package net.scriptinginjava.ch9;

import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;

import com.sun.script.javascript.RhinoScriptEngineFactory;

public class RegisterTest {

public static void main(String[] args) {
ScriptEngineManager manager = new ScriptEngineManager();
manager.registerEngineMimeType(“text/xml”

, new RhinoScriptEngineFactory());
ScriptEngine engine =

manager.getEngineByMimeType(“text/xml”);

if (engine != null) {
System.out.println(

“XML resources will be handled by: “
+ engine.getClass() + “ engine”

);
} else {

System.out.println(
“No engine found for handling XML resources”

);
}

}
}

The call to these register methods will overload any such
association found during the discovery mechanism.

Evaluation

Now that we know how to create an instance of the scripting
engine for the desired language, it’s time to see what it can do
for us. The most important thing is surely the evaluation of
scripts. This is done through the eval() method of the
ScriptEngine interface, as shown in Listing 9.7.

400 SCRIPTING IN JAVA

Listing 9.7 Evaluating Script Contained in a String
package net.scriptinginjava.ch9;

import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;
import javax.script.ScriptException;

public class EvalTest {

public static void main(String[] args) {
ScriptEngineManager manager = new ScriptEngineManager();
ScriptEngine engine = manager.getEngineByName(“js”);
if (engine != null) {

try {
engine.eval(“println(‘Hello world!’)”);

} catch (ScriptException se) {
System.out.println(se.getMessage());

}
}

}
}

In Listing 9.7, we instanced the manager, used it to create a
Rhino engine, and evaluated the simple statement that prints
the following text on standard output:

Hello world!

As you probably noticed, the eval() method that we used
in Listing 9.7 takes a script as a String argument. One of the
features of the Scripting API that is missing in the BSF is an
eval() method that accepts a Reader argument. This method
signature is used to evaluate scripts defined in files, streams,
and other resources. There is no need anymore for the helper
method to achieve this functionality.

To demonstrate this method, let’s define a simple JavaScript
script named hello.js:

println(‘Hello world!’);

Now, we can evaluate it with the Java program shown in
Listing 9.8.

CHAPTER 9 401

Listing 9.8 Evaluating Script Contained in a File
package net.scriptinginjava.ch9;

import java.io.FileReader;
import java.io. FileNotFoundException;

import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;
import javax.script.ScriptException;

public class EvalReaderTest {

public static void main(String[] args) {
ScriptEngineManager manager = new ScriptEngineManager();
ScriptEngine engine = manager.getEngineByName(“js”);
if (engine != null) {

try {
engine.eval(

new FileReader(
“net/scriptinginjava/ch9/hello.js”

)
);

} catch (ScriptException se) {
System.out.println(se.getMessage());

} catch (FileNotFoundException fnfe) {
fnfe.printStackTrace();

}
}

}
}

In Listing 9.8, we created a java.io.FileReader object for
the script file and simply passed it to the eval() method. Of
course, we had to catch java.io.FileNotFoundException
because the FileReader constructor can throw it.

You may recall from our discussion in Chapter 6, “Bean
Scripting Framework,” that the BSF API has distinct methods
for evaluating scripts that return values and for those that
don’t. The Scripting API does not make that distinction. The
eval() method that I described here returns an Object result.

That result is the returned value from the script, if that scripting
language supports that functionality and that script has
returned some value, or the null value otherwise.

I demonstrate this functionality with the following script
(return.js):

value = “JavaScript”
println(“Returning value: “ + value)
value

The script is simple. It prints out a line and returns a
JavaScript value. Note that the value of the last line is
returned by the script (in this case, it is the value variable).
Now let’s evaluate this script and handle the returned value
(see Listing 9.9).

402 SCRIPTING IN JAVA

Listing 9.9 Handling Script Evaluation Result
package net.scriptinginjava.ch9;

import java.io.FileNotFoundException;
import java.io.FileReader;

import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;
import javax.script.ScriptException;

public class ReturnTest {

public static void main(String[] args) {
ScriptEngineManager manager = new ScriptEngineManager();
ScriptEngine engine = manager.getEngineByName(“js”);
if (engine != null) {

try {
Object result = engine.eval(

new FileReader(
“net/scriptinginjava/ch9/return.js”

)
);
System.out.println(“Returned value: “ + result);

} catch (ScriptException se) {
System.out.println(se.getMessage());

} catch (FileNotFoundException fnfe) {
fnfe.printStackTrace();

}
}

}
}

As you can see, the only thing different in Listing 9.9 com-
pared to Listing 9.8 is that now we collect the value returned by
the eval() method and handle it further.

After execution, this Java program is expected to print the
following text on standard output:

Returning value: JavaScript
Returned value: JavaScript

By specifying only one method for script evaluation,
regardless of whether it should return a value, the Scripting API
is made cleaner and easier to use.

ScriptException

You have probably noticed that the eval() method throws
a javax.script.ScriptException. Like many other
libraries that deal with scripting languages and interpreters,
ScriptException has properties that can store some additional
information about the error that occurred. The properties are the
following:

■ message—Can contain the message thrown by the lan-
guage interpreter, which describes the error

■ filename—Can contain the name of the file in which the
script is located (if it is applicable)

■ lineNumber—Can further narrow the location of the error
by specifying the line number in the script

■ columnNumber—Again, if populated, indicates the column
number of the line where the error has occurred

Listing 9.10 demonstrates the possible use of these
properties.

Listing 9.10 Handling ScriptException
package net.scriptinginjava.ch9;

import java.io.FileNotFoundException;
import java.io.FileReader;

import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;

CHAPTER 9 403

import javax.script.ScriptException;

public class ExceptionTest {

public static void main(String[] args) {
ScriptEngineManager manager = new ScriptEngineManager();
ScriptEngine engine = manager.getEngineByName(“js”);
if (engine != null) {

try {
engine.eval(

new FileReader(
“net/scriptinginjava/ch9/error.js”

)
);

} catch (ScriptException se) {
System.out.println(

se.getMessage()
+ “ in file “ + se.getFileName()
+ “ on line “ + se.getLineNumber()
+ “ in column “ + se.getColumnNumber()

);
} catch (FileNotFoundException fnfe) {

fnfe.printStackTrace();
}

}
}

}

404 SCRIPTING IN JAVA

Listing 9.10 Continued

Whether these properties will be populated depends on the
scripting language engine implementation. The specification
does not force engine implementations to do this, so you can’t
rely on them, but they could be valuable for debugging
purposes.

Binding

For a framework like this, a crucial task is sharing data between
host (Java) applications and scripting engines (scripts), so we
are going to give it the attention it deserves.

We saw that the BSF library has implemented a simple,
plain model of variable binding, meaning that shared variables
are registered with the engine manager and then they are acces-
sible by all engines created by that manager. The only decision
you can make is whether you are going to register a variable
when it is accessible through the central object repository, or
declare it when it is mapped directly to the script variable. There

is no way to bind variables only to a certain engine, or to
group them according to their purpose.

The Scripting API, on the other hand, is more careful in this
area. Every script is executed in its context, which contains
variables accessible by the script and some other state objects
that are explained later in this chapter. The difference is that
now those variables are grouped in namespaces or scopes.
Namespaces are basically key/value pairs that bind variable
values to their keys.

This abstraction is described by the javax.script.
Bindings interface. This interface is an extension of the
java.util.Map<java.lang.String, java.lang.Object>

collection interface, which exactly matches the nature of
namespaces.

I said that variables are grouped in namespaces (scopes), so
the context in which a script is executed contains more than
one namespace. The script context abstraction is defined in the
javax.script.ScriptContext interface. One way you can
think of this interface is as a set of namespaces exposed to the
script through its scripting engine.

This specification defines two namespaces:

■ Engine scope—The engine scope namespace holds the
engine-specific data binding. Variables that are bound
to one engine’s scope are not visible in another engine,
and vice versa.

■ Global scope—The global scope namespace holds the
manager’s (or the application’s) specific state. All vari-
ables bound to this scope are accessible by all engines
created by that manager.

Now that you have a basic introduction to the binding con-
cepts of the Scripting API, we will discuss all its elements in
more detail, and through examples.

Engine Scope

As we discussed, the engine scope holds variable binding that is
specific to a certain script engine. Other script engines created

CHAPTER 9 405

by the same manager cannot access this data. The host applica-
tion’s Java objects that are put in this scope are visible like
variables in the script.

Let’s take, for example, the following JavaScript script:

println(“Hello “ + name);

We want to execute this script using the Scripting API, but
we also want to define the value for the name variable first. We
can use the Java application in Listing 9.11 for this task.

406 SCRIPTING IN JAVA

Listing 9.11 Binding Example
package net.scriptinginjava.ch9;

import java.io.FileReader;

import javax.script.ScriptContext;
import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;
import javax.script.SimpleBindings;

public class BindingsTest {

public static void main(String[] args) throws Exception {
ScriptEngineManager manager = new ScriptEngineManager();
ScriptEngine engine = manager.getEngineByName(“js”);
SimpleBindings bindings = new SimpleBindings();
bindings.put(“name”, “Dejan”);
engine.setBindings(bindings

, ScriptContext.ENGINE_SCOPE);
engine.eval(

new FileReader(
“net/scriptinginjava/ch9/bindings.js”

)
);

}
}

The code marked in bold in Listing 9.11 creates the desired
data binding to the scripting engine’s scope. First, we created an
instance of the SimpleBindings class, which is the implemen-
tation of the Bindings interface. Because the Bindings inter-
face is an extension of the java.util.Map interface, we used
the put() method to create an association between the name
key and its value. Finally, this binding is registered to the

scripting engine’s context by the setBindings() method. The
second argument in this method is actually the int type key
that is used for accessing a desired namespace in the set of
namespaces contained in the context.

If we execute this Java application, the String object with
the value Dejan that is put in the engine’s scope will be
mapped to the name JavaScript variable. As a result, the evalu-
ated script prints the following text on standard output:

Hello Dejan

OVERRIDING THE ENGINE SCOPE

The engine’s scope can also be passed through the eval()
method as the second argument, as shown in Listing 9.12.

CHAPTER 9 407

Listing 9.12 Overriding the Engine Scope
package net.scriptinginjava.ch9;

import java.io.FileReader;

import javax.script.ScriptContext;
import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;
import javax.script.SimpleBindings;

public class BindingsTest1 {

public static void main(String[] args) throws Exception {
ScriptEngineManager manager = new ScriptEngineManager();
ScriptEngine engine = manager.getEngineByName(“js”);

SimpleBindings bindings = new SimpleBindings();
bindings.put(“name”, “Dejan”);

engine.setBindings(bindings, ScriptContext.ENGINE_SCOPE);

SimpleBindings evalBindings = new SimpleBindings();
evalBindings.put(“name”, “Joe”);

engine.eval(
new FileReader(

“net/scriptinginjava/ch9/bindings.js”
)

, evalBindings
);

}
}

In this example, we created a script engine and initialized
its namespace in the same way we did in Listing 9.11. But here,
we created another namespace instance and passed it to the
eval() method. By doing this, we have overridden the original
engine’s scope during script execution.

As a result, the script prints out the following text, instead
of the text printed in the Listing 9.11:

Hello Joe

The original engine scope is not altered, and its mappings
are not changed by the script execution.

ADVANCED EXAMPLE

Consider the following application requirement; we need an
easy way to define and change a mathematical formula in the
Java application. Let’s assume now, for simplicity, that the for-
mula takes only one variable (named x). The result should be
passed back to the application in a variable named result.

We implement this requirement by allowing formulas to be
written in an arbitrary scripting language. Then, we use the
Scripting API to evaluate those formulas. Along with this exam-
ple, I demonstrate a few more features related to the engine
scope.

Let’s say that the expression.js script is used for the for-
mula definition and that it looks like the following one.

result = 10 * Math.log(Math.pow(x,2));

Now look at the Java application shown in Listing 9.13.

408 SCRIPTING IN JAVA

Listing 9.13 Advanced Binding Example—Java Application
package net.scriptinginjava.ch9;

import java.io.FileReader;

import javax.script.Bindings;
import javax.script.ScriptContext;
import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;

public class Expression {

public static void main(String[] args) throws Exception {
ScriptEngineManager manager = new ScriptEngineManager();
ScriptEngine engine = manager.getEngineByName(“js”);
engine.put(“x”, new Integer(5));
engine.eval(

new FileReader(
“net/scriptinginjava/ch9/expression.js”

)
);
System.out.println(engine.get(“result”));

}
}

CHAPTER 9 409

Listing 9.13 Continued

At first glance, this script looks the same as our previous
examples, but a few things are worth explaining in more detail.
First, you can see the use of the put() and get() methods
defined in the ScriptEngine interface. These methods are just
shortcuts for variable binding to the engine scope. So basically,
the following statement

engine.put(“x”, new Integer(5));

is equal to this:

engine.getBindings(ScriptContext.ENGINE_SCOPE)
.put(“x”, new Integer(5));

And the following

engine.get(“x”)

is just a shortcut for this statement:

engine.getBindings(ScriptContext.ENGINE_SCOPE).get(“x”)

If this Java program is executed, the value 5 will be passed
to the mathematical formula defined in the JavaScript script,
and the following result value will be printed:

32.18875824868201

We can learn one more interesting thing from this example.
We can see that the result variable was registered in the
engine scope from the script, without first being bound from the
application. This means every variable initialized in the script
will be available for the host application. The state saved in the
engine scope is then passed to the next script that is executed
with the same engine.

RESERVED KEYS

Aside from key/value pairs that represent bindings between
scripts and application variables, a few keys have special mean-
ings. Table 9.1 lists the reserved keys and their properties, and
explains what the values mean.

410 SCRIPTING IN JAVA

Table 9.1 Reserved Keys
Key Property Meaning of Value

javax.script.argv javax.script.ScriptEngine.ARGV An object array used to
pass command-line
arguments to the script,
where it is appropriate

javax.script.filename javax.script.ScriptEngine.FILENAME The resource or filename
of the current script

javax.script.engine javax.script.ScriptEngine.ENGINE The name of the current
script engine, as defined
by the corresponding
ScriptEngineFactory

javax.script.engine_ javax.script.ScriptEngine. The version of the script
version ENGINE_VERSION engine that is used to

evaluate the script

javax.script.language javax.script.ScriptEngine.LANGUAGE The name of the language
supported by the script
engine that is used to
execute the script

javax.script.language_ javax.script.ScriptEngine. The scripting language
version LANGUAGE_VERSION version

Script engine implementation is not required to provide
mappings to all of these keys. Also, the engine could define
some additional reserved keys that are meaningful to it, in

which case you should consult its documentation. However,
you should avoid using keys that start with javax.script
because they are reserved for usage in future versions of the
specification.

In Table 9.1, you can also see that these values are defined
in the ScriptEngine class as constant fields. Knowing all of
this, we can write the Java program shown in Listing 9.14.

CHAPTER 9 411

Listing 9.14 Reserved Keys
package net.scriptinginjava.ch9;

import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;

public class ParameterTest {

public static void main(String[] args) {
ScriptEngineManager manager = new ScriptEngineManager();
ScriptEngine engine = manager.getEngineByName(“js”);
System.out.println(

engine.getFactory().getLanguageName()
);
System.out.println(

engine.getFactory().getParameter(
ScriptEngine.LANGUAGE

)
);
System.out.println(engine.get(ScriptEngine.LANGUAGE));

}
}

The first two bolded statements should return the same
value. But as I said, the binding in the engine scope is optional,
so the third method in this case will return the null value.

Global Scope

As already stated, the global scope is related to the
ScriptEngineManager. All bindings made in it are available to
all scripting engines created by that manager.

Let’s demonstrate the differences between engine and global
scope with a simple example. The following Groovy script just
prints two variables on standard output (global.groovy):

println host;
println engine;

NOTE

To run this example,
you need to have a
Groovy engine in
your classpath.

Here is the equivalent script written in JavaScript
(global.js):

println(host);
println(engine);

Now look at the Java application shown in Listing 9.15.

412 SCRIPTING IN JAVA

Listing 9.15 Global Scope Example
package net.scriptinginjava.ch9;

import java.io.FileReader;

import javax.script.Bindings;
import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;

public class GlobalTest {

public static void main(String[] args) throws Exception {
ScriptEngineManager manager = new ScriptEngineManager();

Bindings bindings = manager.getBindings();
bindings.put(“host”, “GlobalTest application”);

ScriptEngine engine1 =
manager.getEngineByName(“groovy”);

ScriptEngine engine2 =
manager.getEngineByName(“js”);

engine1.put(“engine”, “First engine”);
engine1.eval(

new FileReader(
“net/scriptinginjava/ch9/global.groovy”

)
);

engine2.put(“engine”, “Second engine”);
engine2.eval(

new FileReader(
“net/scriptinginjava/ch9/global.js”

)
);

}
}

In this program, we first initialized a script engine manager,
as we did in all of our previous examples. Next, we used the
getBindings() method to get the manager’s namespace—in
other words, the global scope. We set the value for the host
variable in this scope. Finally, we initialized two engines,

Groovy and JavaScript, set different values for the engine vari-
ables in the engine scopes of those two engines, and evaluated
the previously defined scripts.

As a result, we have the following text on standard output:

GlobalTest application
First engine
GlobalTest application
Second engine

We can see that the global scope in each engine is the
same. That scope is set in the engine when the manager initial-
izes it through one of the getEngineByXXX() methods. On the
other hand, both engines have their own engine scopes, which
are entirely independent.

OVERRIDING VARIABLES OF THE GLOBAL SCOPE

If the same value is defined in the global and engine scopes,
engine scope binding will override the global scope (see
Listing 9.16).

CHAPTER 9 413

Listing 9.16 Variables Overriding—An Example
package net.scriptinginjava.ch9;

import java.io.FileReader;

import javax.script.Bindings;
import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;

public class OverrideTest {

public static void main(String[] args) throws Exception {
ScriptEngineManager manager = new ScriptEngineManager();

manager.put(“host”, “GlobalTest application”);

ScriptEngine engine1
= manager.getEngineByName(“groovy”);

ScriptEngine engine2
= manager.getEngineByName(“js”);

engine1.put(“engine”, “First engine”);
engine1.eval(

new FileReader(
“net/scriptinginjava/ch9/global.groovy”

)
);

engine2.put(“engine”, “Second engine”);
engine2.put(“host”, “Overridden value”);
engine2.eval(

new FileReader(
“net/scriptinginjava/ch9/global.js”

)
);

}
}

414 SCRIPTING IN JAVA

Listing 9.16 Continued

In this example, we put the value for the host key in the
engine scope of the second engine. When executed, the Java
application produces the following output:

GlobalTest application
First engine
Overridden value
Second engine

As you can see, the value of the host variable binding is
changed.

SHORTCUT METHODS

As was the case with the engine scope and the ScriptEngine
interface, the ScriptEngineManager class provides methods
that you can use to put and get values in the global scope (see
Listing 9.17).

Listing 9.17 ScriptEngineManager’s Shortcut Methods
package net.scriptinginjava.ch9;

import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;

public class CreateGlobalTest {

public static void main(String[] args) throws Exception {
ScriptEngineManager manager = new ScriptEngineManager();
manager.put(“name”, “Dejan”);

ScriptEngine engine = manager.getEngineByName(“js”);
engine.eval(“println(name)”);

}
}

Listing 9.17 prints out the following on standard output:

Dejan

In Listing 9.17, the put() and get() methods are shortcuts
to the put() and get() methods of the global scope.

GLOBAL SCOPE INITIALIZATION

An important role of the script engine manager is to initialize
the global scope in engines it creates. In all engines created
using the script engine manager’s getEngineByXXX() methods,
their namespace is set as a global scope of the engine.

Of course, you can always instantiate the engine directly
through its constructor, but then the global scope is not initial-
ized, and you are responsible for that task too. Take the Java
program in Listing 9.18, for example.

CHAPTER 9 415

Listing 9.18 Global Scope Initialization
package net.scriptinginjava.ch9;

import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;

import com.sun.script.javascript.RhinoScriptEngine;

public class CreateGlobalTest {

public static void main(String[] args) throws Exception {
ScriptEngineManager manager = new ScriptEngineManager();
manager.put(“name”, “Dejan”);

ScriptEngine engine = new RhinoScriptEngine();
engine.eval(“println(name)”);

}
}

In Listing 9.18, we created a manager instance and put
mapping in its global scope namespace. After that, we created
an instance of the RhinoScriptEngine class directly (the bold
code). At the end, we evaluated the script that uses the name
variable expected in the global scope. Because this engine is not
instantiated through the manager, its global scope is not initial-
ized, and the program will throw the following exception:

sun.org.mozilla.javascript.internal.EcmaError:
ReferenceError: “name” is not defined.
(<Unknown source>#1) in <Unknown source>

at line number 1

We could, of course, initialize the global scope through the
engine’s setBindings() method in this case. This approach is
well suited if you are going to use only one engine in your proj-
ect. If the engine should be defined dynamically according to the
file extension, language name, or mime type of the resource, you
should certainly use the manager’s lookup methods.

Script Context

Thus far, we have seen how global and engine scopes differ and
what purpose they can have in our script-aware Java applica-
tions. These two scopes are an integral part of one more general
structure that represents the state of the script engine. This
abstraction is defined in the javax.script.ScriptContext
interface.

NAMESPACES

ScriptContext is the set of namespaces that represent the state
of the script engine. These namespaces are also available to the
scripts executed in a particular engine.

We already saw this in our examples of global and engine
scopes. These two scopes are part of the context defined for the
current script engine. We could perform various operations on
it, such as modifying it, replacing a certain namespace, or even
replacing the whole engine’s context. Listing 9.19 demonstrates
methods that we could use for operations on the engine’s
context.

416 SCRIPTING IN JAVA

Listing 9.19 Namespace Example
package net.scriptinginjava.ch9;

import java.io.FileReader;

import javax.script.SimpleScriptContext;
import javax.script.Bindings;
import javax.script.ScriptContext;
import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;

import javax.script.SimpleBindings;

public class ContextTest {

public static void main(String[] args) throws Exception {
ScriptEngineManager manager = new ScriptEngineManager();
ScriptEngine engine = manager.getEngineByName(“js”);

Bindings globalNS = new SimpleBindings();
globalNS.put(“host”, “ContextTest application”);

Bindings engineNS = new SimpleBindings();
engineNS.put(“engine”, “Context demo engine”);

SimpleScriptContext context = new SimpleScriptContext();
context.setBindings(globalNS

, ScriptContext.GLOBAL_SCOPE);
context.setBindings(engineNS

, ScriptContext.ENGINE_SCOPE);

engine.setContext(context);
engine.eval(

new FileReader(“net/scriptinginjava/ch9/global.js”)
);

}
}

CHAPTER 9 417

Listing 9.19 Continued

The specification defines the javax.script.
SimpleScriptContext class, which is a default implementation
of the javax.script.ScriptContext interface. In Listing 9.19,
we created an instance of the SimpleScriptContext class.
Next, we set two namespaces in it: one global scope and one
engine scope. At the end, we set the context instance in our
engine and evaluated a script. The script we used is the one
from the example that shows the difference between global and
engine scopes. It is a simple JavaScript code that prints out the
values of the host and engine variables. When executed, this
Java program prints the following result on standard output:

ContextTest application
Context demo engine

This simple example demonstrates that the global and
engine scopes we used earlier, directly through methods of
the ScriptEngineManager and ScriptEngine abstractions,
are contained in the ScriptContext state of the engine. We

also saw that you can manipulate the engine’s namespaces
through their context, if you find it more appropriate in certain
situations.

You can also pass the ScriptContext to the
ScriptEngine’s eval() method. By doing this, the context of
the engine is overridden with the submitted context. This is
demonstrated in Listing 9.20.

418 SCRIPTING IN JAVA

Listing 9.20 Evaluating a Script in the Script Context
package net.scriptinginjava.ch9;

import java.io.FileReader;

import javax.script.SimpleScriptContext;
import javax.script.Bindings;
import javax.script.ScriptContext;
import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;
import javax.script.SimpleBindings;

public class ExecutionContextTest {

public static void main(String[] args) throws Exception {
ScriptEngineManager manager = new ScriptEngineManager();
manager.put(“host”, “Test host”);
ScriptEngine engine = manager.getEngineByName(“js”);
engine.put(“engine”, “Test engine”);

Bindings globalNS = new SimpleBindings();
globalNS.put(“host”, “ContextTest application”);

Bindings engineNS = new SimpleBindings();
engineNS.put(“engine”, “Context demo engine”);

SimpleScriptContext context = new SimpleScriptContext();
context.setBindings(globalNS

, ScriptContext.GLOBAL_SCOPE);
context.setBindings(engineNS

, ScriptContext.ENGINE_SCOPE);

System.out.println(“— original context —”);
engine.eval(

new FileReader(“net/scriptinginjava/ch9/global.js”)
);
System.out.println(“— modified context —”);
engine.eval(

new FileReader(“net/scriptinginjava/ch9/global.js”)
, context

);
}

}

Here, we initialized the engine with its context, through the
put() methods of the manager and the engine itself. Next, we
created a SimpleScriptContext instance as in the previous
example. Finally, we executed the same script twice. First we
did it using the eval() method, as we did in all our previous
examples. This eval() method used the engine’s original con-
text. In the second eval() call, we passed the context that we
created independently of the engine (and manager). As a result,
we can expect the following output from the application:

— original context —
Test host
Test engine
— modified context —
ContextTest application
Context demo engine

As you can see, the second call used the provided context.
It is important to note that this provided context does not
replace the original context; it is just used as the state in this
particular call. Also, the original engine’s context cannot be
changed by the script execution, as it can in the case of normal
calls.

ATTRIBUTES

The ScriptContext interface and its SimpleScriptContext
implementation define some additional methods that we can use
for binding tasks both in Java applications and in scripts.

As we already saw, objects with the same name can be
defined in more than one namespace (scope). Because the
engine context holds all the namespaces, there has to be a way
to prioritize them. Namespaces are mapped to int-valued keys,
when they are put in the context. We have used two keys thus
far:

■ ScriptContext.ENGINE_SCOPE, with a value of 100
that represents the namespace defined on the engine’s
level

■ ScriptContext.GLOBAL_SCOPE, with a value of 200
that represents the namespace defined on the manager’s
level

CHAPTER 9 419

As we see in a moment, application developers can also
define other scopes of interest.

The value of the key is the priority of the scope in the con-
text. The lower the value, the higher priority the scope has.

The getAttributesScope() method of the ScriptContext
interface returns the lowest scope in which an attribute is
defined (see Listing 9.21).

420 SCRIPTING IN JAVA

Listing 9.21 Determining the Attribute’s Scope
package net.scriptinginjava.ch9;

import javax.script.ScriptContext;
import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;

public class AttributeTest {

public static void main(String[] args) throws Exception {
ScriptEngineManager manager = new ScriptEngineManager();

manager.put(“host”, “GlobalTest application”);

ScriptEngine engine = manager.getEngineByName(“js”);

engine.put(“engine”, “Second engine”);
engine.put(“host”, “Overridden value”);

int scope = engine.getContext()
.getAttributesScope(“host”);

switch (scope) {
case ScriptContext.GLOBAL_SCOPE :

System.out.println(“It is in the global scope”);
break;

case ScriptContext.ENGINE_SCOPE :
System.out.println(“It is in the engine scope”);
break;

default :
System.out.println(“Scope unknown”);

}

}
}

In this example, we initialized the engine and its state.
Notice that the host variable is defined both in global and in
engine scopes. So if you run the application, you will get the
following message:

It is in the engine scope

You get this message because the engine scope has a lower
priority than the global scope. You can try to experiment and
comment the definition of the host variable in the engine
scope. The result shows that the variable is now defined in the
global scope.

The getAttributesScope()method could be used
by the Object getAttribute(String name) method
of the ScriptContext interface implementation. This
getAttribute() method returns the value of the attribute
defined in the lowest scope (or null if the attribute with that
name is not defined in any of the context’s scopes).

You can also pass the desired scope as the second argument
to the getAttribute() method to specify the exact namespace
you want to use. The setAttribute() method signatures
matches the appropriate getAttribute() method signatures.
These methods are demonstrated in Listing 9.22.

CHAPTER 9 421

Listing 9.22 Obtaining an Attribute from the Desired Scope
package net.scriptinginjava.ch9;

import javax.script.ScriptContext;
import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;

public class AttributeTest1 {

public static void main(String[] args) throws Exception {
ScriptEngineManager manager = new ScriptEngineManager();

manager.put(“host”, “GlobalTest application”);

ScriptEngine engine = manager.getEngineByName(“js”);

engine.put(“engine”, “Second engine”);
engine.put(“host”, “Overridden value”);

System.out.println(
engine.getContext().getAttribute(

“host”, ScriptContext.GLOBAL_SCOPE
)

);
System.out.println(

engine.getContext().getAttribute(“host”)
);

}
}

The application’s execution result is as follows:

GlobalTest application
Overridden value

This occurs because the first method looks up the host
variable in the global scope, and the second one gets the value
from the engine scope because it has a lower key value.

The global context also is important for scripts that are
evaluated. Besides variable values mapped to script variables,
the context script variable represents the global context and
can be used for its manipulation (see Listing 9.23).

Listing 9.23 Modifying Attributes in script—Script
context.setAttribute(“engineKey”

, “engine scope variable, set in script”
, 100

);
globalKey = “global scope variable, changed in script”;

The script in Listing 9.23 sets the value for the engineKey
attribute in the engine scope (namespace key value 100) and the
globalKey in the global scope (by changing the value of the
script variable). Consider now the Java program shown in List-
ing 9.24, which evaluates this script.

422 SCRIPTING IN JAVA

Listing 9.24 Modifying Attributes in script—Java Application
package net.scriptinginjava.ch9;

import java.io.FileReader;

import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;

public class GlobalPutTest {

public static void main(String[] args) throws Exception {
ScriptEngineManager manager = new ScriptEngineManager();
manager.put(

“globalKey”
, “global scope, set in application”

);
ScriptEngine engine = manager.getEngineByName(“groovy”);
System.out.println(manager.get(“globalKey”));
engine.eval(

new FileReader(“net/scriptinginjava/ch9/put.groovy”)
);

System.out.println(manager.get(“globalKey”));
System.out.println(engine.get(“engineKey”));

}
}

CHAPTER 9 423

Listing 9.24 Continued

The application prints the following output:

global scope variable, set in application
global scope variable, changed in script
engine scope variable, set in script

The first line is printed from the Java application before the
script has been evaluated. The value printed is the value of the
globalKey attribute set by the application itself. Next, the script
is evaluated and the script changes the value of the global
globalKey attribute. The value set by the script is printed by
the application after the evaluation. Finally, the value of the
engineKey attribute set in the script is printed.

Although you will probably use only the get() and put()
methods of the manager and engine objects in most cases, it is
good to be aware of these additional capabilities of the Script-
ing API for variable value binding.

CUSTOM NAMESPACES

As I explained earlier in this chapter, the script context is a set
of namespaces (scopes). Thus far, I have described techniques
for dealing with just two of them: engine scope and global
scope. In some applications, you need to create custom scopes
for data binding. For example, in the following chapter, we dis-
cuss the Web Scripting Framework (the javax.script.http
package) that is created using this Scripting API.

Web applications have three more scopes of interest: the
request scope, session scope, and application scope. In this sec-
tion, I cover the steps you need to take to create contexts with
custom scopes for your project.

A default implementation of the ScriptContext interface is
the javax.script.SimpleScriptContext class. This class is
used by default in all script engine implementations.

The only issue with this class is that it is capable only of
mapping namespaces with key values that represent engine and
global scopes (values 100 and 200, respectively). This is
expected, because the Scripting API’s specification defines just
these two scopes as required. So if you try to add a namespace
in SimpleScriptContext with a key that does not have one of
these two specified values, you’ll get a java.lang.
IllegalArgumentException exception.

This behavior is demonstrated in Listing 9.25.

424 SCRIPTING IN JAVA

Listing 9.25 Defining a Custom Namespace
package net.scriptinginjava.ch9;

import javax.script.Bindings;
import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;
import javax.script.SimpleBindings;

public class CustomTest {

public static void main(String[] args) {
ScriptEngineManager manager = new ScriptEngineManager();

Bindings customNS = new SimpleBindings();

ScriptEngine engine = manager.getEngineByName(“js”);
ScriptContext context = new SimpleScriptContext();
context.setBindings(customNS, 1000);

}
}

Here, we created a new SimpleScriptContext class
instance and tried to set the namespace with the key value
1000. As a result, the application throws the following
exception:

java.lang.IllegalArgumentException: Invalid scope value.

To create and use custom scopes, we have to create a spe-
cialized context interface implementation. You can find one
example of such an implementation in Listing 9.26.

Listing 9.26 Custom Application Context
package net.scriptinginjava.ch9;

import javax.script.SimpleScriptContext;
import javax.script.Bindings;

public class ApplicationContext extends SimpleScriptContext {

public static final int APPLICATION_SCOPE = 1000;

protected Bindings applicationScope;

public void setBindings(Bindings bindings, int scope) {
if (scope == APPLICATION_SCOPE)

applicationScope = bindings;
else

super.setBindings(bindings, scope);
}

public Bindings getBindings(int scope) {
if (scope == APPLICATION_SCOPE)

return applicationScope;
else

return super.getBindings(scope);
}

public void setAttribute(java.lang.String name
, java.lang.Object value, int scope) {
if (scope == APPLICATION_SCOPE)

applicationScope.put(name, value);
else

super.setAttribute(name, value, scope);
}

public Object getAttribute(String name, int scope) {
if (scope == APPLICATION_SCOPE)

return applicationScope.get(name);
else

return super.getAttribute(name, scope);
}

public Object getAttribute(String name) {
Object retVal = super.getAttribute(name);
if (retVal != null)

return retVal;
else

return applicationScope.get(name);
}

public int getAttributesScope(String name) {
int scope = super.getAttributesScope(name);
if (scope != -1)

return scope;
else {

if (applicationScope.get(name) != null)
return APPLICATION_SCOPE;

else
return -1;

}
}

public Object removeAttribute(String name, int scope) {
if (scope == APPLICATION_SCOPE)

return applicationScope.remove(name);

CHAPTER 9 425

Listing 9.26 Continued

else
return super.removeAttribute(name, scope);

}
}

426 SCRIPTING IN JAVA

Listing 9.26 Continued

Here, we defined an ApplicationContext class that
extends a default SimpleScriptContext implementation. We
have overridden all methods that have something to do with
setting and obtaining attributes and thus allowed additional
scope (with the key value 1000) to be used in the application.

Now we can write a Java application that uses this new
script context implementation and the appropriate script (see
Listing 9.27).

Listing 9.27 Using Custom Application Context
package net.scriptinginjava.ch9;

import javax.script.Bindings;
import javax.script.ScriptContext;
import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;
import javax.script.SimpleBindings;

public class NewCustomTest {

public static void main(String[] args) {
ScriptEngineManager manager = new ScriptEngineManager();
manager.put(“global”, “global value”);

Bindings customNS = new SimpleBindings();
customNS.put(“key”, “value”);

ScriptEngine engine = manager.getEngineByName(“groovy”);
ScriptContext context = new ApplicationContext();
context.setBindings(customNS

, ApplicationContext.APPLICATION_SCOPE
);
context.setBindings(

engine.getBindings(ScriptContext.GLOBAL_SCOPE)
, ScriptContext.GLOBAL_SCOPE

);
engine.setContext(context);
engine.eval(

new FileReader(
“net/scriptinginjava/ch9/global.groovy”

)
);

}

Here, we have an ApplicationContext instance, and we
initialized it with the manager’s global scope. We also created a
SimpleBindings object and set it to be an application scope of
our context. Finally, we set it to be an engine’s context and
evaluated the Groovy script. The Groovy script that demon-
strates this context could look like this:

println “””${context.getAttribute(“key”)} –\
${context.getAttributesScope(“key”)}”””
println “””${context.getAttribute(“global”)} –\
${context.getAttributesScope(“global”)}”””

The script just prints out the values for the key and global
attributes, and the scopes in which they are found. As a result,
we have the following output:

value - 1000
global value - 200

This output indicates that the key attribute is in our custom
application scope, and the global attribute is located in the
engine’s global scope.

READERS AND WRITERS

In addition to taking care of the namespaces available to the
script engine, the script context also manages reader and
writer objects that evaluated scripts use for input and output
operations.

For example, say you want to redirect the standard output
of your script to some file on your system. You can do it by
using the setWriter() method of the ScriptContext instance
of your engine, as shown in Listing 9.28.

Listing 9.28 Custom Engine Writer Example
package net.scriptinginjava.ch9;

import java.io.FileReader;
import java.io.FileWriter;

import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;

CHAPTER 9 427

public class ContextWriterTest {

public static void main(String[] args) throws Exception {
ScriptEngineManager manager = new ScriptEngineManager();
ScriptEngine engine = manager.getEngineByName(“groovy”);
engine.getContext().setWriter(

new FileWriter(“C:\\out.log”)
);
engine.eval(

new FileReader(
“net/scriptinginjava/ch9/write.groovy”

)
);
engine.getContext().getWriter().close();

}
}

428 SCRIPTING IN JAVA

Listing 9.28 Continued

In this example, we redirected the output of the evaluated script
to the file named C:\out.log. If we evaluate the following
script with the program in Listing 9.28, you can expect that the
text printed with the println Groovy command will be written
in the specified file:

println(“””This text should be written to the file \
, not console”””);

In the same manner, you can redirect the script’s standard
input and standard error streams using the setReader() and
setErrorWriter() methods, respectively. Of course, you could
use other resources with their reader and writer objects, instead
of files.

Code Generation

You are meant to use the Scripting API as a general scripting
framework that enables a unique interface to various engines.
Thus, it provides some basic script generation methods. I men-
tioned earlier that the ScriptEngineFactory interface provides
basic metadata that describes certain engine implementations.
Besides that interface, three additional mechanisms—
getOutputStatement(), getMethodSyntaxCall(), and
getProgram()—could help application developers to create
basic script constructs that are usually found in programming
languages. In this section, I walk you through these mechanisms.

Output Statement

Probably the most frequently used statements in scripting lan-
guages are those that print values to standard output. Even
though their names vary—some are called print(), some
echo(), and so on—their purpose and syntax are almost
identical.

The getOutputStatement() method of the
ScriptEngineFactory interface is used to format the string
passed as an argument to the statement that prints it in a given
scripting language. Let’s demonstrate this method with a simple
example, shown in Listing 9.29.

CHAPTER 9 429

Listing 9.29 Output Statement
package net.scriptinginjava.ch9;

import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;

public class OutputTest {

public static void main(String[] args) {
ScriptEngineManager manager = new ScriptEngineManager();
ScriptEngine engine = manager.getEngineByName(“js”);
String testValue = “Hello world”;
String statement =

engine.getFactory().getOutputStatement(testValue);
System.out.println(statement);

}
}

The value of the statement variable after the call to the
getOutputStatement() method is as follows:

print(“Hello world”)

In this example, we just printed this value for demonstra-
tion purposes, but as we see later in this section, you can evalu-
ate it as a part of a larger script.

Method Call Syntax

Another often-used operation is execution of the objects’ meth-
ods. The Scripting API provides the getMethodCallSyntax()

method, defined in the ScriptEngineFactory interface, which
generates a statement that you can use to invoke the method of
a Java object.

In this case, the syntax of these calls could vary a great
deal among languages, even though the basic principle is the
same. For example, variables in PHP start with a $, and instead
of a . character for method invocation, the -> operator is used.

So, the following syntax in PHP:

$obj->method($arg1, $arg2)

is the same as this syntax in JavaScript:

obj.method(arg1, arg2)

Listing 9.30 demonstrates how we can use the Scripting API
to create a JavaScript method call from this example.

430 SCRIPTING IN JAVA

Listing 9.30 Method Call Syntax
package net.scriptinginjava.ch9;

import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;

public class MethodSyntaxTest {

public static void main(String[] args) {
ScriptEngineManager manager = new ScriptEngineManager();
ScriptEngine engine = manager.getEngineByName(“js”);
String statement =

engine.getFactory().getMethodCallSyntax(
“obj”, “method”, new String[] {“arg1”, “arg2”}

);
System.out.println(statement);

}
}

In Listing 9.30, we demonstrated the syntax of the
getMethodCallSyntax() method. The first argument is the
name of the object (variable) whose method we want to invoke.
The second argument represents the name of the method, and
the last one is an array of strings representing arguments that
should be passed to the method call.

The value of the statement variable after the
getMethodCallSyntax() method is called is the

obj.method(arg1,arg2)

In this example, we just printed it to standard output, but a
statement like this one would usually be used to create more
complex scripts.

Program

Besides generating single statements, the Scripting API provides
the String getProgram(String...) method, which is used to
arrange into a script a series of statements given in the form of
an array of String arguments.

PHP scripts, for example, consist of statements that are
delineated by semicolons and enclosed in a <? . . . ?>
block, while JavaScript scripts are just statements delineated by
semicolons as shown in Listing 9.31.

CHAPTER 9 431

Listing 9.31 Program Example
package net.scriptinginjava.ch9;

import javax.script.ScriptEngine;
import javax.script.ScriptEngineFactory;
import javax.script.ScriptEngineManager;

public class ProgramTest {

public static void main(String[] args) {
ScriptEngineManager manager = new ScriptEngineManager();
ScriptEngine engine = manager.getEngineByName(“js”);
ScriptEngineFactory factory = engine.getFactory();
String methodCall =

factory.getMethodCallSyntax(
“scriptObject”, “scriptMethod”

, new String[] {“arg1”, “arg2”}
);

String output = factory.getOutputStatement(“Hello”);
String script =

factory.getProgram(
new String[] {methodCall, output}

);
System.out.println(script);

}
}

In Listing 9.31, we used all three of the “code generation”
methods covered in this section. First, we created a method object
call that produced the scriptObject.scriptMethod(arg1,arg2)
statement. Next, we created an output statement,
print(“Hello”), and then those two statements were separated
with the ; char. As a result, we get the following script:

scriptObject.scriptMethod(arg1,arg2);print(“Hello”);

You can evaluate the script using the eval() method, for
example, or save it in a file for later use.

Additional Engine Interfaces

Thus far, we have seen how we can use the Scripting API to
evaluate scripts and how the data binding mechanism works in
this library. The general idea used in this API is to have most of
the basic functionalities that the scripting engine should imple-
ment defined in the ScriptEngine interface. Every additional
requirement, such as invocation of functions or compilation of
scripts to Java bytecode, is defined in a separate interface. This
design approach guarantees a minimum number of changes to
these interfaces in the future and ensures that engines with
minimal functionalities comply with the specification.

In this section, I cover two additional interfaces that script-
ing engines could implement to provide more functionality to
users:

■ javax.script.Invocable—Implemented by engines that
can invoke functions defined in scripts

■ javax.script.Compilable—Implemented by engines that
can compile scripts to bytecode

Invocable

In our discussion of the BSF API, we saw that another impor-
tant task of scripting frameworks is the invocation of functions
defined in scripts. For that purpose, the Scripting API defines a
javax.script.Invocable interface.

432 SCRIPTING IN JAVA

FUNCTIONS

Let’s start exploring the Invocable interface, through concrete
examples. Recall the example shown in Listing 9.13, in which
we defined a mathematical formula in a script and evaluated it
with the Java application. Now, we are going to expand on this
example. To begin, we are going to define the formula as the
script function (procedure):

def expression(x) {
return 10 * Math.log(Math.pow(x,2));

}

The function is called expression, and it takes one argu-
ment, named x. The return value is, of course, the value of the
expression for the given argument. Now let’s use the Scripting
API to evaluate expressions using this function (see Listing 9.32).

CHAPTER 9 433

Listing 9.32 Invocable Example
package net.scriptinginjava.ch9;

import java.io.FileReader;

import javax.script.Invocable;
import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;

public class FunctionTest {

public static void main(String[] args) throws Exception {
ScriptEngineManager manager = new ScriptEngineManager();
ScriptEngine engine = manager.getEngineByName(“groovy”);
if (engine instanceof Invocable) {

engine.eval(
new FileReader(

“net/scriptinginjava/ch9/function.groovy”
)

);
Object result =

((Invocable)engine).invokeFunction(
“expression”, new Object[]{new Integer(5)}

);
System.out.println(result);

} else {
System.out.println(

“The engine is not able to invoke functions”
);

}
}

}

The first important thing we have to do is to ensure that the
engine implementation we are going to use can invoke function
calls. To do this, we need to know whether the engine is an
instance of the Invocable interface because this guarantees
such capability.

If this condition is met, we have to evaluate the script using
the eval() method of the ScriptEngine interface, and finally,
invoke the function using the invokeFunction() method of the
Invocable interface.

The invokeFunction() method accepts two arguments.
The first argument is the name of the function that should be
invoked, and the second one is an array of objects that repre-
sents the parameter list to be passed to the function. In this
case, we provided just one integer argument with a value of 5.
The invokeFunction() method returns an object that repre-
sents the return value of the function. This example prints the
same result as the original demo that only evaluated this
expression.

METHODS

You also could use the Invocable interface to invoke methods
on the objects defined in the script. Let’s continue to work on
the mathematical formula example, by converting our function
into a method of a class named MathUtil:

class MathUtil {

def expression(x) {
return 10 * Math.log(Math.pow(x,2));

}

}

mathUtil = new MathUtil();

In this Groovy script, we defined the MathUtil class and
created an instance of it named mathUtil. Now we can use the
invokeMethod() method to invoke the expression method of
the mathUtil object (see Listing 9.33).

434 SCRIPTING IN JAVA

Listing 9.33 Method Call
package net.scriptinginjava.ch9;

import java.io.FileReader;

import javax.script.Invocable;
import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;

public class MethodTest {

public static void main(String[] args) throws Exception {
ScriptEngineManager manager = new ScriptEngineManager();
ScriptEngine engine = manager.getEngineByName(“groovy”);
if (engine instanceof Invocable) {

engine.eval(
new FileReader(

“net/scriptinginjava/ch9/method.groovy”
)

);
Object result =

((Invocable)engine).invokeMethod(
engine.get(“mathUtil”)

, “expression”
, new Object[]{new Integer(5)}

);
System.out.println(result);

} else {
System.out.println(

“The engine is not able to invoke methods”
);

}
}

}

CHAPTER 9 435

The only difference between the invokeFunction() and
invokeMethod() methods is that the later method has one more
argument. It is the script object whose method we want to be
invoked. This object is defined in the engine’s scope, so we used
the get() method to get the reference to it.

INTERFACES

As we have seen throughout this book, another important role
of scripting languages is the implementation of Java interfaces.
The Scripting API defines the getInterface() method in the
Invocable interface for this purpose.

To demonstrate this behavior, let’s start by defining a Java
interface that holds an expression method definition (the one
that will be implemented in the script):

package net.scriptinginjava.ch9;

public interface MathUtil {

public Double expression(Integer x);

}

Because the Scripting API enables you to implement Java
interfaces by implementing their methods as the script’s func-
tions and procedures, we can use the script that we already
wrote for the function call example. Just to recall, that script
could look like this:

function expression(x) {
return 10 * log(pow(x,2));

}

The signature of this Groovy function matches the signature
of the expression method of the MathUtil interface, and
because it is the only method defined in that interface, we can
say that this script complies with the interface. Now let’s
instantiate it as a Java object (see Listing 9.34).

436 SCRIPTING IN JAVA

Listing 9.34 Interfaces
package net.scriptinginjava.ch9;

import java.io.FileReader;

import javax.script.Invocable;
import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;

public class InterfaceTest {

public static void main(String[] args) throws Exception {
ScriptEngineManager manager = new ScriptEngineManager();
ScriptEngine engine = manager.getEngineByName(“groovy”);
if (engine instanceof Invocable) {

engine.eval(
new FileReader(

“net/scriptinginjava/ch9/function.groovy”
)

);
MathUtil math =

((Invocable)engine).getInterface(MathUtil.class);
System.out.println(math.expression(new Integer(5)));

} else {
System.out.println(

“The engine is not able to invoke functions”
);

}
}

}

CHAPTER 9 437

Listing 9.34 Continued

The application takes all the standard steps that we already
saw in this chapter’s examples. After we checked that the
engine implements the desired interface and evaluated the
script, we called the getInterface() method. This method
takes an interface class as an argument and returns an object
that complies with the interface. After this call, the returned
objects can be used as regular Java objects.

Compilable

One of the areas where the BSF did not meet expectations is
support for compilation of scripts to the intermediate code. As
I mentioned in the introductory chapters of this book, many
script languages internally compile scripts to some intermediate
language that is faster to interpret than the original source.
Some of them are capable of storing and re-executing the inter-
mediate code.

The Scripting API provides a standard solution to this task
for engine implementations that need it. Just as was the case
with invocation of functions and methods, the API defines a
separate interface that needs to be implemented by engines with
this functionality. This interface is javax.script.Compilable,
and I demonstrate it by an example.

To begin, let’s define a simple Groovy script:

println “Hello”

I chose Groovy because it supports script compilation to the
Java bytecode. Practically all Java-enabled scripting languages
provide this functionality.

Now let’s see how we can compile and execute this Groovy
script and what benefits this approach introduces (see Listing
9.35).

Listing 9.35 Compilable
package net.scriptinginjava.ch9;

import java.io.FileReader;

import javax.script.Compilable;
import javax.script.CompiledScript;
import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;

public class CompilableTest {

public static void main(String[] args) throws Exception {

ScriptEngineManager manager = new ScriptEngineManager();
ScriptEngine engine = manager.getEngineByName(“groovy”);
FileReader source =

new FileReader(
“net/scriptinginjava/ch9/compile.groovy”

);

if (engine instanceof Compilable) {
CompiledScript bin =

((Compilable)engine).compile(source);
long start = System.currentTimeMillis();
bin.eval();
System.out.println(

“Script execution time: “
+ (System.currentTimeMillis() - start) + “ ms”

);
}

}
}

438 SCRIPTING IN JAVA

First, we have to check whether the current script engine
supports this functionality. This is not necessary if we are going
to use only one (or a few) script engines that will be statically
bound, but it is necessary if we are planning to use the man-
ager’s discovery mechanism to prevent a casting exception in
our application.

The Compilable interface defines the compile() method
with two signatures. The signature you will use depends on
whether you are going to provide the script’s source as a
String or Reader object. In this example, we provided the
FileReader object instance that points to the file containing
the script’s source.

The compile() method returns an instance of the
javax.script.CompiledScript class. Extensions of this class
store the script’s intermediate code and provide methods for its
execution. The CompiledScript class works with the Java class
format as intermediate code, but its extensions that are imple-
mented by different script engines could also handle Java class
files or a language-specific intermediate code format.

Regardless of which intermediate format is used, the eval()
method, defined by the CompiledScript class and its exten-
sions, is used to execute that code.

For demonstration purposes, I put checkpoints in the code
so that we can measure how long it takes for such a compiled
script to execute. The following output shows one possible
result:

Hello
Script execution time: 160 ms

To compare the execution of compiled scripts with that of
regular scripts, you can run the following Java program:

CHAPTER 9 439

package net.scriptinginjava.ch9;

import java.io.FileReader;

import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;

public class Compilable1Test {

public static void main(String[] args) throws Exception {

ScriptEngineManager manager = new ScriptEngineManager();
ScriptEngine engine = manager.getEngineByName(“groovy”);
FileReader source =

new FileReader(
“net/scriptinginjava/ch9/compile.groovy”

);

long start = System.currentTimeMillis();
engine.eval(source);
System.out.println(

“Script execution time: “
+ (System.currentTimeMillis() - start) + “ ms”);

}
}

The matching result now looks like this:

Hello
Script execution time: 1793 ms

It is obvious that for the Groovy scripting language,
this difference is relevant, even for the simplest scripts. If per-
formance is an issue in your project, you can try to use the
Compilable interface and implement the mechanism that will
recompile the script every time it changes.

The last issue related to compiled scripts is how to provide
the context for compiled scripts such as this one. First, compiled
scripts are executed in the instance of the engine that compiled
them. You can obtain a reference to that engine by using the
getEngine() method defined in the CompiledScript class.

On top of that, the eval() method defined in this class
accepts the Bindings or ScriptContext objects as arguments.
By providing these arguments, we can modify the context in
which the (compiled, in this case) script will be executed. These
mechanisms are the same as the ones we used in the standard
script evaluation.

Threading

Earlier in this chapter, we discussed engine metadata and how
you can use ScriptEngineFactory interface implementations
to obtain that information for a particular engine. There is one
property that I didn’t mention there because it deserves special
treatment.

In the Java environment, it is important to know whether a
certain object is thread safe—in other words, whether it can be
used safely in a multithreaded environment. The same is true
for the ScriptEngine interface implementations. The important
information for application developers is whether they can eval-
uate scripts concurrently on multiple threads, and what happens
with the engine’s context in that case.

This information is defined with the THREADING parameter
of the engine’s corresponding ScriptEngineFactory object.

440 SCRIPTING IN JAVA

The application defines the following meanings for the return
values.

■ null—The engine implementation is not thread safe and
cannot be used to execute scripts concurrently on mul-
tiple threads.

■ MULTITHREADED—The engine is thread safe, and it can be
used in a multithreaded environment. The only catch is
that the evaluation of one script may influence scripts
in other threads. This means changes to the symbols’
values affect other scripts that use those symbols.

■ THREAD-ISOLATED—The engine satisfies the requirements
of MULTITHREADED engines but guarantees that symbol
value changes will not affect scripts executing in other
threads.

■ STATELESS—The engine satisfies the requirements of the
THREAD-ISOLATED engines. On top of that, script execu-
tion does not alter the engine’s scope.

Let’s now see how engines found in the JDK behave in a
multithreaded environment (see Listing 9.36).

CHAPTER 9 441

Listing 9.36 Threading
package net.scriptinginjava.ch9;

import java.util.List;

import javax.script.ScriptEngineFactory;
import javax.script.ScriptEngineManager;

public class ThreadTest {

public static void main(String[] args) {
ScriptEngineManager manager = new ScriptEngineManager();
List<ScriptEngineFactory> factories =

manager.getEngineFactories();
for (ScriptEngineFactory factory: factories) {

System.out.println(
factory.getLanguageName()

+ “ - “
+ factory.getParameter(“THREADING”)

);
}

}
}

Listing 9.36 loops through all the engines found by the dis-
covery mechanism and prints their language name and thread-
ing capabilities. For engines included in Java SE 6, the program
would print the following result:

ECMA Script - MULTITHREADED

As you can see, the Rhino engine is thread safe.

Dynamic Bindings

Earlier in this chapter, we saw how the data-binding mechanism
works and how Java objects can be used in scripts. That bind-
ing, when the engine is embedded in the host Java application,
is called programmatic binding.

Another sort of binding is needed for full integration of
Java and scripting languages. It is called dynamic binding, and
it represents the ability of scripting languages to use Java
classes and objects when they are not executed through the
appropriate ScriptEngine interface implementation. Groovy
and Rhino naturally support this functionality because their
interpreters are implemented in Java. We discussed principles
that are used in these languages in Chapters 3 and 4. Thus, we
focus on PHP here and discuss how we can integrate native
PHP applications with Java.

To be able to use Java from PHP scripts, we have to config-
ure PHP properly. I do not cover the installation and configura-
tion details of PHP here. If you are not familiar with those
subjects, consult the PHP manual (www.php.net/manual/en/)
before proceeding further with this section.

An example configuration in the php.ini file (PHP config-
uration file) for the Java support could look like Listing 9.37.

442 SCRIPTING IN JAVA

Listing 9.37 Example php.ini Configuration
[java]

java.home=C:\java\jdk1.5.0_01\jre
java.library.path=C:\dev\jsr223\php5\lib\php
java.share_php_session=0
java.debug_print=0
java.class.path=”C:\dev\jsr223\php5\lib\php\script.jar”
java.library=C:\java\jdk1.5.0_01\jre\bin\client\jvm.dll

www.php.net/manual/en/

Make sure that you put a configuration similar to this one
in the appropriate php.ini file on your system. As you can
see, through these few initialization properties, you set the
location of the Java runtime (java.home) and classpath
(java.class.path) that will be used to look up the Java
classes.

Now we are ready to write a PHP script that uses the Java
runtime and custom Java libraries. Let’s start with a simple
example (see Listing 9.38).

Listing 9.38 Dynamic Binding—Java Objects
<?

$javadate = new Java(“java.util.Date”);
$date = $javadate->toString();
echo($date);

?>

As you can see, Java classes are created using the Java
PHP built-in class. The constructor of this class takes the full
name of the class as its first argument. Parameters that have to
be passed to the constructor (if any) are passed as arguments to
the Java constructor call. After that object is created, you can
use it in standard PHP fashion. If you run this script, in a prop-
erly configured environment, by typing $ php java.php, on
standard output, you get a result similar to the following:

Content-type: text/html
X-Powered-By: PHP/5.0.1

Fri Apr 29 12:31:49 CEST 2005

In this simple example, we created a java.util.Date class
instance and invoked the toString() method.

Similarly, we can work with Java classes and static meth-
ods. Look at Listing 9.39.

Listing 9.39 Dynamic Binding—Java Classes
<?

$thread_class = new JavaClass(“java.lang.Thread”);
$thread_object = $thread_class->currentThread();

CHAPTER 9 443

echo “Start: “ . date(‘s’) . “\n”;
$thread_class->sleep(1000);
echo “Checkpoint: “ . date(‘s’) . “\n”;
$thread_object->sleep(1000);
echo “End: “ . date(‘s’) . “\n”;

?>

Here, an instance of the Java class is created through the
JavaClass constructor call. On this instance, we can make calls
to the class’s static methods. In this example, we called the
currentThread() static method and obtained an instance of
the java.lang.Thread class. Next, we invoked the sleep()
method to pause execution of the current thread. Note that we
did this twice. Once we called it as a static method of the
Thread class. The second call was on an object as a regular
method call. Both calls are regular. We added the code that
prints the current second between these calls, so if you run this
example by typing $ php thread.php, you can expect a result
similar to the following to show up on your screen:

Content-type: text/html
X-Powered-By: PHP/5.0.1

Start: 04
Checkpoint: 05
End: 06

Dynamic bindings are as important as programmatic bind-
ings for many real-life development problems. For scripting lan-
guages whose interpreters are implemented in Java, this is sort
of a natural thing to do. On the other hand, for native scripting
languages such as PHP, this could be tricky to achieve. Engine
developers should take care of many issues, such as member
selection, argument conversion, and overloaded method resolu-
tion. These issues are beyond the scope of this book, and you
are advised to read the Scripting API specification for more
details on this topic.

444 SCRIPTING IN JAVA

Listing 9.39 Continued

Conclusion

The Scripting API is definitely an evolutionary step in scripting
framework design. This was expected because it is based on
experience taken from APIs such as the BSF and native integra-
tion mechanisms provided by languages such as Groovy and
BeanShell.

Table 9.2 summarizes the differences between the BSF and
Scripting API that I described throughout this chapter.

CHAPTER 9 445

Table 9.2 Differences Between BSF and Scripting API
Feature BSF Scripting API

Discovery mechanism Static, using the Dynamic, using the JAR service
Languages.properties file mechanism that enables a flexible
located in the distribution way to register new engine

implementations

Evaluation Two methods, differing in A single method, leading to a
terms of whether the script cleaner API
returns a result

Binding Plain, no support for separating Layered into scopes
variables according to their
purpose

Work with script files Enabled through utility classes Defined in the engine’s interface

Method invocation Implemented in the engine’s Implemented in optional interfaces,
and script compilation interface resulting in a better separation of

functionalities

As we discussed in this chapter, the Scripting API has a
clean design and separation of concerns, which guarantees a
moderate learning curve for developers with experience in simi-
lar libraries and for those who are new in this field of develop-
ment. This API also addressed a few issues related to threading
that make it more suitable for implementation of support for
native script languages (those that do not have an interpreter
implemented in Java).

All these features, and the fact that the Scripting API is
included in the Java 6 Standard Edition release onward, make
this API a perfect choice as your general scripting framework
in Java.

This page intentionally left blank

As we already discussed, the initial purpose of the Java
Specification Request 223 (JSR 223) was to enable

native scripting languages (with PHP as a reference) to gen-
erate Web content inside servlet containers. For that pur-
pose, as we have seen, the Scripting API was created as a
general framework for integration of scripting interpreters
(both native and Java interpreters) and Java applications.

On top of the Scripting API, the Web Scripting Frame-
work was created to address this initial intention. This
framework is packaged in the javax.script.http package.
Although it is removed from the final version of the specifi-
cation, it represents a valuable source of ideas on which
future work will be based. To run examples presented in
this chapter, you need to download and install a reference
implementation of the specification as described in Appen-
dix C, “Installing JSR 223.”

In this chapter, we discuss the basic abstractions in the
Web Scripting Framework. I also explain how to configure
your Java Web application so that part of it can be imple-
mented in a language such as PHP. You can also use the
techniques I present here to integrate Java and PHP Web
applications. We discuss that topic in more detail through-
out the chapter.

WWEBEB SSCRIPTINGCRIPTING
FFRAMEWRAMEWORKORK

CHAPTER 10

Architecture

To begin, let’s see what interfaces and classes comprise this
framework. After this brief review of abstractions, it will be
much easier to discuss how we can use them.

Context

In Chapter 9, “Scripting API,” we discussed the
javax.script.ScriptContext interface and its default
javax.script.SimpleScriptContext implementation. We
also saw how we can extend these abstractions to adapt them
to certain environments.

The javax.script.http.HttpScriptContext interface is
an extension of the ScriptContext abstraction, suited to the
Web environment. The ScriptContext abstraction represents a
set of namespaces, with two basic namespaces defined: engine
and global. In the Web environment, however, scripting engines
need a few more scopes. Scripts executed in the Web environ-
ment deal with attributes defined in the following three addi-
tional scopes:

■ Request scope—This holds attributes mapped to a cer-
tain HTTP request. Every URL request by the client’s
browser is essentially one HTTP request. All attributes
passed with that request, using, for example, GET or
POST methods, must be available to the scripting
engine. Those variables are available in the request
scope defined by the public static final int
REQUEST_SCOPE = 0; key.

Later in this chapter, we see how we can use these vari-
ables in scripts, and I explain in more detail a mecha-
nism behind these bindings.

■ Session scope—This holds attributes mapped to a certain
client’s session. Because the HTTP protocol is stateless,
Web applications preserve their states by using sessions
bound to a certain user. This data resides on the server
side, inside the servlet container. We will not delve into
the session mechanism now, and you are advised to

448 SCRIPTING IN JAVA

find more information about it in the appropriate litera-
ture. For our purposes here, it is important to know that
attributes defined in the client’s session are available to
the scripting engine (and to scripts evaluated with it) in
the HttpScriptContext’s session scope. This scope is
defined with the public static final int
SESSION_SCOPE = 150; key.

■ Application scope—Besides requests and sessions that
define the Web application context in terms of the
user’s data, scripting engines need to have access to the
servlet container environment. The application scope
holds attributes that define the properties of a particular
servlet container. For example, scripts can have differ-
ent code paths depending on whether the underlying
container supports this feature. This scope is defined by
the public static final int APPLICATION_SCOPE
= 175; key.

As you can see, first an attribute is looked up in the request
scope. Next, the session scope is searched, and finally the
lookup is done in the application scope. Although these three
scopes are mandatory, some implementations can add more
scopes.

Besides this task of providing additional scopes to scripting
engines, this interface also represents a bridge between scripting
languages and a servlet container. Thus, it must provide a
mechanism for configuring a framework’s behavior in a certain
container or Web application. We see how this mechanism
works in the coming sections.

Servlet

Another key abstraction of this framework is the
javax.script.http.HttpScriptServlet abstract class. You
should map this servlet to handle URLs related to scripts, such
as URLs with the .php extension.

This abstract servlet uses a supplied scripting engine to exe-
cute a script in the provided HTTP script context. Therefore, it
defines abstract methods used to manipulate these abstractions.

CHAPTER 10 449

CONTEXT

The HttpScriptServlet class extensions should implement the
following method:

public abstract HttpScriptContext getContext(
HttpServletRequest request, HttpServletResponse response

) throws ServletException;

This method is used to create the context and make the
bindings defined earlier. As you can see, the context is created
for every client’s request because a request scope needs to be
initialized. This initialization is done through the following
method of the HttpScriptContext interface implementations:

public void initialize(
Servlet servlet, HttpServletRequest request

, HttpServletResponse response
) throws ServletException;

SCOPES

Context is initialized with the request and response objects that
abstract the HTTP requests and responses. Knowing this, we can
conclude that a call to the following method of the context
object:

getAttribute(key, REQUEST_SCOPE)

returns the same value as the following method for every key:

request.getAttribute(key)

Appropriately, the following method:

getAttribute(key, SESSION_SCOPE)

returns the same result as this one does:

request.getSession().getAttribute(key)

450 SCRIPTING IN JAVA

And of course, this method:

getAttribute(key, APPLICATION_SCOPE)

returns the value of the following method call:

servlet.getServletConfig().getServletContext()
.getAttribute(key)

ENGINES

Extensions of the HttpScriptServlet class must also hold
instances of script engines that will be used to process requests.
These engines are exposed to the context by the getEngine()
and releaseEngine() methods. The getEngine() method has
the following signature:

public abstract ScriptEngine getEngine(
HttpServletRequest request

);

It is used to look up the appropriate engine to handle a
request. It performs this lookup according to the mapping in the
appropriate configuration file, as we will see in a moment.

The releaseEngine() method is called to indicate that a
certain engine is no longer in use. This is important for thread-
ing issues, which we cover later in this chapter. The
releaseEngine() method has the following signature:

public abstract void releaseEngine(ScriptEngine engine);

Interaction

The reference implementation of the Web Scripting Framework
contains default implementations of the HttpScriptContext
and HttpScriptServlet abstractions. So, the
javax.script.http.GenericHttpScriptContext context is
used along with the com.sun.script.http.ScriptServlet
servlet.

CHAPTER 10 451

The interaction diagram in Figure 10.1 shows the somewhat
simplified code path that is executed for one HTTP request.

452 SCRIPTING IN JAVA

Servlet Container HttpScriptServlet HttpServletContext ScriptEngine

getContext()

service()

getEngine()

eval()

releaseEngine()

initialize()

FIGURE 10.1 Web Scripting Framework request handling

As you can see from the interaction diagram in Figure 10.1,
the client’s requests are handled by the service() method
(defined in the javax.servlet.Servlet interface). This
method is implemented in the HttpScriptServlet abstract
class, but it could be overloaded in its extensions. A default
implementation calls the getContext() method that initializes
the HttpScriptContext interface implementation.

After this step, an appropriate engine is pulled out accord-
ing to the request (usually by the URL extension), and the
appropriate script is evaluated in the previously initialized
context. At the end, the engine is released, and the control is
returned to the servlet container.

Getting Started

Now that we know the basic abstractions of this framework,
and how they interact, I can go further and explain some con-
figuration details and practical examples. To start, we have to
enable support for the Web Scripting Framework in a servlet
container or a particular Web application. This assumes that we
have to register an instance of the HttpScriptServlet imple-
mentation inside the container and map it to handle desired
URLs. There are two places where we can do this:

■ We can define a servlet on the container level and make
it available to all applications deployed in it. This con-
figuration is server dependent, and you should consult
your container’s documentation for further details. For
Tomcat, this is done in the $TOMCAT_HOME/conf/
web.xml file.

■ On the other hand, we can enable scripting on an appli-
cation basis by registering an HttpScriptServlet
implementation in the appropriate WEB-INF/web.xml
file (the Web application deployment descriptor). In the
rest of this chapter, we assume this approach and apply
all further discussion of configuration details to the
appropriate WEB-INF/web.xml descriptor.

In both cases, the appropriate packages must be available in
the classpath. Generally, you’ll need JSR 223 reference imple-
mentation (script.jar), JARs needed to properly run scripts of
the desired scripting language that you want to use, and the
appropriate script engine implementation. If you installed JSR
223 reference implementation by the Appendix C instructions,
your Tomcat installation should be properly configured to run
examples from this chapter.

CHAPTER 10 453

There are two ways to achieve this. You can do it by
placing the appropriate JARs in the WEB-INF/lib folder and
making the folder available to a certain Web application, or by
placing them in the container’s classpath and making them
available to all Web applications. Which approach you should
take depends on whether you will make scripting generally
available in the container.

Now look at the web.xml Web application descriptor
shown in Listing 10.1, which is the entry to our sample Web
application.

454 SCRIPTING IN JAVA

Listing 10.1 Sample Web Application Descriptor
<?xml version=”1.0” encoding=”ISO-8859-1”?>

<!DOCTYPE web-app
PUBLIC “-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN”
“http://java.sun.com/j2ee/dtds/web-app_2_2.dtd”>

<web-app>

<display-name>Scripting Web Application</display-name>
<description>

Demonstrates Web Scripting Framework (javax.script package)
</description>

<servlet>
<servlet-name>ScriptServlet</servlet-name>
<servlet-class>

com.sun.script.http.ScriptServlet
</servlet-class>

</servlet>

<servlet-mapping>
<servlet-name>ScriptServlet</servlet-name>
<url-pattern>*.php</url-pattern>

</servlet-mapping>

<welcome-file-list>
<welcome-file>index.php</welcome-file>

</welcome-file-list>

</web-app>

Here, we defined a servlet named ScriptServlet and
implemented it through a default HttpScriptServlet exten-
sion class. Next, we mapped all URLs with the php extension
(PHP scripts) to be handled by this servlet. That is basically it;
we have enabled PHP scripts (or generally speaking, scripts
written in any supported scripting language) to be executed
inside our Java servlet container.

Now let’s create a PHP script to test this configuration:

<html>
<head>

<title>
Web Scripting Framework

</title>
</head>
<body>
Hello world

Current time:
<?

echo date(‘Y-m-d H:i:s’);
?>
</body>
</html>

This simple script contains HTML page formatting and simple
embedded PHP code that just prints the current date and time.

Suppose, for example, that our Web application is deployed
on the /script path and that the script is named index.php
and is located in the application’s context root. If this were the
case, it would be reachable via the following URL:

http://localhost:8080/script/index.php

The resulting output would be similar to that shown in
Figure 10.2.

CHAPTER 10 455

FIGURE 10.2 The result of execution of a PHP file in a servlet
container

As you can see, the PHP script is executed in the same way
as JSP pages or another application’s servlets would be. With
this configuration, we have extended the basic functionality of
our servlet container.

Configuration

As we have seen thus far, there is no need for any additional
configuration besides the standard servlet definition and map-
ping to enable Web Scripting Framework support in a servlet
container or Web application. However, you can adapt it further
through additional configuration parameters. Those parameters
are related to the HttpScriptContext interface implementation
and are defined as application context parameters using the
<context-param> tags in the appropriate descriptor. In the fol-
lowing sections, I describe some parameters defined by the
specification.

Disable Scripting

Even if we have the HttpScriptServlet implementation
defined and mapped to handle certain URLs in a servlet con-
tainer, we can disable scripting in some Web applications. We
can do this through the script-disable Web application con-
text parameter.

If you add the following snippet to the WEB-INF/web.xml
descriptor from the previous example:

<context-param>
<param-name>script-disable</param-name>
<param-value>true</param-value>

</context-param>

and you try to execute the same URL:

http://localhost:8080/script/index.php

the server will return a response with the status code 403
(defined by the HttpServletResponse.SC_FORBIDDEN field),
indicating that such an action is not permitted on the server.

456 SCRIPTING IN JAVA

This parameter is not valuable in situations where scripting
is enabled on an application basis because in that case you con-
trol whether you will set that support in your application. But
in situations where scripting is enabled for the whole container
(as in an ISP hosted environment), you might need this param-
eter to disable scripting and thus prevent any possible malicious
actions from occurring.

All the parameters that we cover in this section represent
a configuration of the HttpScriptContext interface implemen-
tation. Initialization of this abstraction is done using the
initialize() method, and values can be obtained by the
appropriate methods. For example, the service() method of
the HttpScriptServlet class uses the disableScript()
method of the HttpScriptContext object to check the value of
this configuration parameter and take the appropriate action.

Script Directory

By default, script resources are located, as are any other Web
resources, in a Web application. That means paths to script files
will be resolved starting from the root context of the Web
application.

For example, suppose that our Web application is deployed
to the Tomcat servlet container that is installed in the
/opt/tomcat directory. Usually, Web applications are installed
in the /opt/tomcat/webapps folder. Our application, as I
already said, is installed in the script/ context, so its context
root will be the /opt/tomcat/webapps/script/ directory.
Thus, in our example, the following URL executes a script
located in the /opt/tomcat/webapps/script/index.php file:

http://localhost:8080/script/index.php

The same mapping rules apply for all resources, including
JSP and static HTML pages.

You might want to change these mapping rules, for what-
ever reason. For example, maybe you already have installed a
PHP Web application in another folder, or you want to use
security permissions on Groovy scripts.

CHAPTER 10 457

If you want to change the directory location that contains
all the scripts that can be evaluated in the Web application, you
should use the script-directory context configuration
parameter:

<context-param>
<param-name>script-directory</param-name>
<param-value>/opt/script/</param-value>

</context-param>

The previous example sets the script-directory param-
eter to the /opt/script directory, so now our example URL
evaluates the /opt/script/index.php file.

If the specified directory does not exist or is inaccessible for
any reason, the server will return a response with the status code
404 defined with the HttpServletResponse.SC_NOT_FOUND
field.

Script Methods

Another parameter that we can control through these context
configuration parameters is a list of HTTP methods that can be
handled by scripts in a Web application. For example, you
might want to allow scripts to handle only requests submitted
using the POST method. For that purpose, you could use the
configuration detail shown in the following code snippet:

<context-param>
<param-name>script-methods</param-name>
<param-value>POST</param-value>

</context-param>

As you can see, the script-methods parameter is used to
control this behavior. Allowed methods are submitted as a
comma-delimited list of HTTP request methods.

If a URL that is mapped to the HttpScriptServlet
is requested using a method that is not supported, the
server will return a response with the status code 405
(HttpServletResponse.SC_METHOD_NOT_ALLOWED). If this
parameter is not defined, scripts can handle GET and POST
methods. This is equivalent to the following configuration:

458 SCRIPTING IN JAVA

<context-param>
<param-name>script-methods</param-name>
<param-value>GET,POST</param-value>

</context-param>

Allow Languages

If there is no specific configuration, HttpScriptServlet could
evaluate scripts in any language registered with its manager. To
restrict the framework to work only with a subset of those lan-
guages, you should pass their names as the comma-separated
list to the allow-languages configuration parameter. Names
must match one of the values returned by the getNames()
method of the appropriate ScriptEngineFactory class. An
attempt to evaluate a script mapped to a language that is
not allowed results in a response with the status code 403
(HttpServletResponse.SC_FORBIDDEN) returned to the client.

If we add the following configuration snippet to our exam-
ple web.xml file and try to execute the example PHP script, the
browser will indicate that the specified resource is forbidden:

<context-param>
<param-name>allow-languages</param-name>
<param-value>groovy</param-value>

</context-param>

The following configuration allows both Groovy and PHP
(and only these two) language scripts to be executed:

<context-param>
<param-name>allow-languages</param-name>
<param-value>groovy,php</param-value>

</context-param>

Of course, to be able to run Groovy scripts, you have to
make an appropriate mapping to the ScriptServlet.

<servlet-mapping>
<servlet-name>ScriptServlet</servlet-name>
<url-pattern>*.groovy</url-pattern>

</servlet-mapping>

CHAPTER 10 459

Display Result

Some scripting languages are naturally embeddable into HTML
pages (such as PHP, for example); others are not designed in
that fashion. Later in this chapter, I address this issue in more
detail, and we see how we can adapt general scripting lan-
guages to the Web environment. For now, let’s focus on one
more mechanism that could be helpful when using general-
purpose scripting languages with the Web Scripting Framework.

You can generate Web content in languages that are not
HTML embeddable in two ways. The first way is to use the lan-
guage’s print statement because the standard output will be
flushed back to the client’s browser. The second approach,
which we discuss here, is to use a result of the script’s evalua-
tion as the content that should be returned to the client.

Consider the following Groovy script:

return “””
<html>
<head>

<title>Display result example</title>
</head>
<body>
This is a Groovy page that demonstrates the
<i>script-display-results</i> configuration property
</body>
</html>
“””

Now if we visit the following URL, a page like the one in
Figure 10.3 will show up.

http://localhost:8080/script/groovy/display.groovy

As you have probably noticed, our script does not print any
output. It simply returns a string value defined using the triple-
quote syntax explained in Chapter 4, “Groovy.” This is default
behavior for the Web Scripting Framework; a result returned
from the script evaluation (if any) will be embedded into the
response (see Figure 10.3).

460 SCRIPTING IN JAVA

FIGURE 10.3 Display result enabled

In certain situations, however, we might want to prevent
such behavior from occurring. For example, we might be using
scripts developed for other environments and purposes. In those
situations, there is probably no need to embed return values
into the content.

To control this behavior, you can use the
script-display-results configuration parameter:

<context-param>
<param-name>script-display-results</param-name>
<param-value>false</param-value>

</context-param>

The default value of this configuration parameter is true,
which means return values will be embedded into responses. If
you put the preceding configuration snippet into your web.xml
Web application deployment descriptor, you will explicitly for-
bid this behavior from occurring.

The resulting page for this configuration looks like the one
shown in Figure 10.4.

CHAPTER 10 461

FIGURE 10.4 Display result disabled

Bindings

In the Scripting API discussion in Chapter 9, I explained
how a context (an implementation of the ScriptContext
interface) is mapped to the context script variable. I also
said that in a servlet environment, scripting engines use the
HttpScriptContext interface as a key abstraction to represent
the script execution context. So it is natural to expect that
script coders have the context variable available in their
scripts. This variable is used to access attributes in the global
and engine scopes, just as was the case with standalone script
engines. This context also can be used to access attributes in
the request, session, and application scopes. In other words, we
can use these attributes to access states bound to a particular
HTTP request, HTTP session, and servlet container in which the
script is executed.

Let’s walk through some examples and see how we can use
these attributes.

Application

As I said, the application context is used to enable script
engines to use attributes set by the servlet container in which

462 SCRIPTING IN JAVA

it executes scripts. What attributes will be set depends on the
particular servlet container we use. For example, the Apache
Tomcat container enables Web application developers to get a
list of welcome files by using the org.apache.catalina.
WELCOME_FILES attribute.

Suppose that in our web.xml configuration file, we have the
following configuration snippet:

<welcome-file-list>
<welcome-file>index.php</welcome-file>
<welcome-file>index.html</welcome-file>
<welcome-file>index.jsp</welcome-file>

</welcome-file-list>

This means when the user hits a URL that refers to a direc-
tory, the container looks for a file defined in this configuration
tag. If the file is found in the directory, it will be processed, and
the result will be returned to the user. If no welcome files are
found, the container will display a directory listing or return the
404 status code, depending on how it is configured.

Now look at the PHP script in Listing 10.2, which can
access this configuration parameter if, of course, it is executed
in the Tomcat servlet container.

Listing 10.2 Accessing Application Context
<html>
<body>
Welcome files:
<hr>
<?

$welcome = $context->getAttribute(
“org.apache.catalina.WELCOME_FILES”

, $context->APPLICATION_SCOPE
);
foreach ($welcome as $file) {

echo $file . “
”;
}

?>
</body>
</html>

This example is simple and straightforward. We used the
getAttribute() method of the HttpScriptContext imple-
mentation and fetched a desired attribute. Because this attribute
is a list, it was converted to the PHP array. Then we traversed it
and printed out all its members.

CHAPTER 10 463

If we now run this script by visiting the following URL, we
will get a page like the one shown in Figure 10.5.

http://localhost:8080/script/application/application.php

464 SCRIPTING IN JAVA

FIGURE 10.5 Welcome file list

Use of these servlet container attributes is not common in
standard Web application development because these attributes
are highly container dependent. But it can be useful in situa-
tions when your project is tied to a specific container and you
need to act differently according to some of the configuration
parameters. You also could use them for storing applicationwide
attributes from scripts (however, an alternative storage approach
is the use of servlet context initialization parameters, as we see
in a moment).

Request

In the same manner as I just explained, we can access request
attributes from scripts executed in the Web Scripting Frame-
work. However, this approach is not flexible enough for Web
application developers because, besides the attributes, they usu-
ally need access to other request information, such as the
request URI, for example.

For that purpose, the javax.servlet.http.
HttpServletRequest Java object, which stores all the neces-
sary information on the particular request, is mapped to the
request variable of the engine scope. In this way, all request
details are available to script developers.

Let’s go through a simple example and see how we can use
this functionality to process HTML forms. First, we create a sim-
ple form (see Listing 10.3).

CHAPTER 10 465

Listing 10.3 HTTP Request Handling—HTML Form
<html>
<body>
<form name=”request” action=”action.php”>

<table>
<tr>

<td colspan=”2”>Form</td>
</tr>
<tr>

<td>Username</td>
<td><input type=”text” name=”username”> </td>

</tr>
<tr>

<td>Password</td>
<td><input type=”password” name=”password”></td>

</tr>
<tr>

<td colspan=”2”><input type=”submit” value=”Login”></td>
</tr>
</table>

</form>
</body>
</html>

You could use a form such as this to log users onto your
Web site. It consists of two fields, username and password, and
a submit button. If you go to the following URL, a form similar
to the one in Figure 10.6 will show up.

http://localhost:8080/script/request/login.jsp

As you can see from the script’s source, the action URL for
this form is the action.php script. Our example script that
processes a request and parameters submitted through the form
is shown in Listing 10.4.

FIGURE 10.6 Form

Listing 10.4 HTTP Request Handling—PHP Script
<table border =”1”>
<tr>

<td colspan=”2”>Request parameters</td>
</tr>
<tr>

<td>URI</td>
<td><? echo $request->getRequestURI(); ?></td>

</tr>
</table>
<p>
<table border =”1”>
<tr>

<td colspan=”2”>Submitted attributes</td>
</tr>
<tr>

<td>Username</td>
<td><? echo $_GET[“username”] ?> </td>

</tr>
<tr>

<td>Password</td>
<td>

<?
import_request_variables(“gp”);
echo $password;

?>

</td>
</tr>
</table>

466 SCRIPTING IN JAVA

We can learn a few interesting things from this example.
First, we used the request variable to access the request servlet
object in the way that I explained at the beginning of this sec-
tion. We called the getRequestURI() method to obtain the URI
of this request (the part from the protocol name, up to the
query string).

Next, we see that the reference implementation maps
request variables to the standard PHP $_GET and $_POST vari-
ables. These variables are commonly used in PHP for these pur-
poses, so this mapping makes servlet containers an even more
natural environment for PHP developers.

Finally, after the import_request_variables() PHP func-
tion is called, we can use request attributes as PHP variables
directly.

Now, if we fill in the form and click the Submit button, this
PHP script will be executed and a page similar to the one
shown in Figure 10.7 will be displayed.

CHAPTER 10 467

FIGURE 10.7 Action PHP script

As we saw in this example, the Web Scripting Framework
created an environment where scripts written in scripting lan-
guages could be used similarly to JSP pages. Also, the frame-
work could be further expanded to support specific language
features and thus provide an easy transition for developers
coming from those backgrounds.

Response

In a similar manner to the one I described in the “Request”
section earlier in the chapter, we can use the response servlet
object as a script variable. For example, we can use it to set a
custom status code for our response.

For instance, let’s extend the example shown in Listing 10.4
and return the status code 403 (forbidden access) if the user
doesn’t provide his username or password. For that purpose, we
add the following code snippet at the beginning of our preced-
ing example:

<?
import_request_variables(“gp”);
if ($username == ‘’ || $password == ‘’) {

$response->sendError($response->SC_FORBIDDEN);
}

?>

Here, we tested the username and password request
attributes, and if any of them is empty, we used the response
servlet object to send a response with the appropriate status.
For that purpose, we used the sendError() method and
the SC_FORBIDDEN field of the javax.servlet.http.
HttpServletResponse interface implementation in the
appropriate servlet container.

Servlet

For even more script programming convenience, the servlet
object itself is bound to the engine scope. This means we can
freely use its methods for various tasks. We can, for example,
use the log() method and log a message directly in the
servlet’s log file. Let’s demonstrate this functionality by extend-
ing our previous response example (we add the line marked as
bold):

<?
import_request_variables(“gP”);
if ($username == ‘’ || $password == ‘’) {

$servlet->log(“credentials are not provided”);
$response->sendError($response->SC_FORBIDDEN);

}
?>

468 SCRIPTING IN JAVA

Now, if the user does not provide his username or password,
the message will be logged to the servlet log, and the status
code 403 (forbidden) will be returned. The location of the log
file depends on the container and Web application configura-
tion. For the Tomcat server, it is usually located in the $TOM-
CAT_HOME/logs directory. If you now submit the form with
either the username or the password field left blank and you
look at the appropriate log file, you should see a message simi-
lar to the following:

2005-05-07 02:15:25 StandardContext[/script]ScriptServlet:
credentials are not provided

In a similar manner, we can access other public methods of
the javax.servlet.http.HttpServlet class and get initializa-
tion parameters, information, and so on.

Include Method

To enable a fully operable Web development environment,
we have to enable script developers to include other resources
contained in the Web server. For this task, the
javax.script.HttpScriptContext interface defines the
include() method.

This method accepts a string parameter that represents a
relative URL path to the resource that has to be included. If the
path starts with the / character, the absolute URL is calculated
from the context root of that application. In any other case, the
absolute URL will be calculated (relative to the URL of the
script). This is the same rule as the one used in the include()
method of the javax.servlet.jsp.PageContext class. This
class plays a similar role in the JSP environment as the
HttpScriptContext interface in the Web Scripting Framework.

Now, we can use this knowledge to create the following
example. Imagine that you have a Web application created with
JSP technology. This application has a unified header and footer
for all pages. The header is defined in the _header.jsp file and
is included at the beginning of every page.

CHAPTER 10 469

<html>
<head>

<title>Include demo</title>
</head>
<body>
<table width=”80%”>

<tr>
<td align=”left”>

Scripting in Java
</td>
<td align=”right”>

<%= new java.util.Date() %>
</td>

</tr>
</table>
<hr>
<table width=”80%”>

In the same manner, the footer is defined in the
_footer.php file and is included at the end of each page.

</table>
<hr>
<table width=”80%”>
© Dejan Bosanac
</table>

Now, we want to add a PHP script and make it an integral
part of this application. We also want to preserve the original
header and footer. To achieve all this, we can use the previously
described include() method to include the _header.jsp and
_footer.jsp files in this script, as shown in Listing 10.5.

Listing 10.5 Including Resources
<?

$context->include(‘./_header.jsp’);
?>
Page content
<?

$context->include(‘./_footer.jsp’);
?>

As I already said, the HttpScriptContext object is bound
to the engine scope’s context variable. So, in this example, we
included the header and footer files that are located in the same
directory as our script.

470 SCRIPTING IN JAVA

If you run this example by visiting the following URL, you
can expect to see the page shown in Figure 10.8.

http://localhost:8080/script/forward/include.php

CHAPTER 10 471

FIGURE 10.8 Include demo

Forward Method

Besides including other resources, Web developers often need to
redirect, or forward, a request to another resource. For that pur-
pose, the HttpScriptContext interface defines the forward()
method.

As with the include() method, the forward() method
takes a relative URL path as an argument. The rules used for
calculating an absolute URL of the target resource are also the
same as those for the include() method.

As an example of the forward() method, we can use our
login form again, as shown in Listing 10.6.

Listing 10.6 Request Forwarding
<?

import_request_variables(“gP”);
if ($username == ‘’ & $password == ‘’) {

$servlet->log(“credentials are not provided”);
$context->forward(“login.jsp”);

}
?>

Now, instead of sending a response with the status code 403
to the user, we redirected the user to the login.jsp page and
showed him the login form again.

Now, let’s take a minute to understand the differences
between the include() and forward() methods because they
can be confusing for developers new to Web applications.

When the include() method is used, the output generated
before the method call is flushed to the browser. Also, the con-
trol is returned to the script after the external resource is
processed. So if we define a simple index.jsp resource like
this:

Included text

and then create the following script:

Text before

<?

$context->include(‘index.jsp’);
?>

Text after

we will have output similar to that shown in Figure 10.9 as a
result of the script evaluation.

472 SCRIPTING IN JAVA

FIGURE 10.9 Include

However, the content generated before the forward()
method call is discarded, and the control is not given back to
the original script. So if we change the preceding example to
use the forward() method instead:

Text before

<?

$context->forward(‘index.jsp’);
?>

Text after

we will get the result shown in Figure 10.10.

CHAPTER 10 473

FIGURE 10.10 Forward

Developers need to know this difference to make the right
choice for their solutions.

Session Sharing

User session handling is a crucial task in dynamic Web applica-
tion development. Because the HTTP protocol is stateless, a Web
server (or a servlet container in our case) cannot save user-
related data between two requests. Every request is completely
independent of the previous one, so the session mechanism was
developed to fill this gap.

Before we discuss the session handling mechanism imple-
mented in the Web Scripting Framework, let’s talk about how
sessions work. Session data is stored on the server side, inside
the Web server. Two approaches are commonly used to map a
session to a user.

The first approach is to send a cookie to the user. That
cookie has a reserved name (that could be configured in the
server) and contains a unique session identifier for that user.
The second approach is to send this unique session ID as a
request parameter. You would usually do this to support
browsers that don’t support cookies for whatever reason. Which
of these two methods you use usually depends on how the
server is configured.

When the user submits a request to the Web server, the Web
server looks up the session ID, and if it finds it, the session data
is mapped to that request. From that point on, the servlets and
scripts in the Web application can use sessions to store data
that has to be persistent among several requests.

The most common use of sessions is for user authentication
purposes, so our example will handle that case. Imagine that
you have a Java Web application and you want to integrate
some PHP code in it. Suppose that user sessions will be initial-
ized in the Java part of the application and that the data should
be accessible in PHP scripts as well.

The first thing we have to do is create a simple login form,
as shown in Listing 10.7.

474 SCRIPTING IN JAVA

Listing 10.7 Session Handling—Login Form (form.jsp)
<form name=”request” action=”login”>

<table border =”1”>
<tr>

<td colspan=”2”>Form</td>
</tr>
<tr>

<td>Username</td>
<td><input type=”text” name=”username”> </td>

</tr>
<tr>

<td>Password</td>
<td><input type=”password” name=”password”></td>

</tr>
<tr>

<td colspan=”2”><input type=”submit” value=”Login”></td>

</tr>
</table>

</form>

CHAPTER 10 475

Listing 10.7 Continued

This form is practically the same as the forms we used in
our preceding examples. The only thing that is important to
note is the action URL because we will map that URL to our
login servlet.

Now let’s create a servlet that handles login operations in
the application (see Listing 10.8).

Listing 10.8 Session Handling—Login Servlet
package net.scriptinginjava.ch10.web;

import java.io.IOException;

import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class LoginServlet extends HttpServlet {

protected void service(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException {

String username = request.getParameter(“username”);
String password = request.getParameter(“password”);

if (username.equals(“”) || password.equals(“”)) {
response.setStatus(HttpServletResponse.SC_FORBIDDEN);
return;

}

// check user credentials in the database

request.getSession().setAttribute(“user”, username);
response.sendRedirect(“index.php”);

}
}

This servlet is simple, and we use it here only for demon-
stration purposes. First, we obtained the username and
password parameters from the request (submitted from the
form). If these parameters are not found, we will return the

status code that indicates that access to the resource is forbid-
den. We used this approach in all our previous examples, but in
a real application, you more likely will redirect your client to
the page with an appropriate message.

After parameter checking is done, we have to check whether
the user has submitted valid credentials. This code is purposely
omitted because it is not important for our example, and the
specific implementation depends highly on the technology you
are going to use in your project.

After the validation is finished, we start the user session
and set the username as a user parameter. Finally, we redirect
the user to the index.php page, and because it has the .php
extension, it is processed with our ScriptServlet defined in
our previous examples.

To run this example, we have to compile this servlet first.
For that we need to have Servlet API in the classpath. You
can usually find it in the servlet container you are using. For
example, in Tomcat you can find an appropriate JAR in the
common/lib/ folder. When compiled, this class should be placed
in the WEB-INF/classes/net/nighttale/ch10/web folder of
our application, so that server could use it.

Now we have to map this servlet to process the URL defined
in the form’s action parameter. We do this by putting the fol-
lowing code snippet into the Web application deployment
descriptor (web.xml):

<servlet>
<servlet-name>LoginServlet</servlet-name>
<servlet-class>

net.scriptinginjava.ch10.web.LoginServlet
</servlet-class>

</servlet>

<servlet-mapping>
<servlet-name>LoginServlet</servlet-name>
<url-pattern>/session/login</url-pattern>

</servlet-mapping>

Now we can write the index.php script and see how we
can use session data in scripts (see Listing 10.9).

476 SCRIPTING IN JAVA

NOTE

The session exam-
ples are placed in
the session sub-
folder, so this path
info must be present
in the url-pattern
configuration
parameter.

Listing 10.9 Session Handling—PHP Script
<?

$username = $request->getSession()->getAttribute(“user”);

// $username = $_SESSION[“user”];
// not currently implemented

if ($username == “”) {
$context->forward(“form.jsp”);

}
?>

Hello <?= $username ?>

Because the javax.servlet.http.HttpServletRequest
object is mapped to the request script variable, we can use it
in a standard Java fashion. To get an instance of the
javax.servlet.http.HttpSession object, we have to call the
getSession() request method. The getAttribute() method of
the session object returns the appropriate attribute.

After we fetch the user attribute, we should test whether it
has been set. If it hasn’t, it means the user is not logged in, and
we have to redirect him back to the login form. We show him
the welcome message, otherwise.

Unfortunately, the session object is currently not mapped to
the $_SESSION PHP variable, which is the place where PHP
developers usually look for session attributes. This would
increase portability a great deal, and it will probably be the
subject of future improvements.

In some situations, you may want to forbid scripts from
accessing session data. You would typically do this because of
some security concerns that you might want to apply in your
system. You should use the script-use-session context con-
figuration parameter to control this property. Here is an exam-
ple configuration snippet:

<context-param>
<param-name>script-use-session</param-name>
<param-value>false</param-value>

</context-param>

The default value of this property is true, which means the
scripts can use session objects freely. If the value is set to

CHAPTER 10 477

NOTE

In this simple exam-
ple, we used a sim-
ple string value, but
as we know, we
could share any Java
object in this way
between the servlet
container and
scripts.

false, all methods that work with the HttpSession objects will
be forbidden. This means

■ The getSession() method will return null for every
request.

■ The getAttribute() method of the
HttpScriptContext objects will always return null
for SESSION_SCOPE attributes.

■ The setAttribute() method of the
HttpScriptContext objects will throw an
IllegalArgumentException for SESSION_SCOPE
attributes.

Language Tags

We wrote most of our examples thus far in the PHP program-
ming language. As we know, this language is naturally embed-
ded into HTML pages. This means scripts are embedded into
HTML pages within <? . . . ?> blocks, so when the server
handles a resource, it extracts those blocks and evaluates them
using the appropriate scripting engine. The content generated
by the script is then put back into the HTML page, and the page
is returned to the client.

This is important for Web developers because it eases con-
tent generation a great deal. Prior to this approach, develop-
ment of dynamic Web applications was related to execution of
programs (or scripts) that used their print statements to generate
all the content shown on a page. This can be a cumbersome
thing to do because pages are mostly static, with only some
dynamic elements. Consider, for example, a page’s header and
footer. Logo information and copyright notices are not likely to
be dynamic, so making them a part of the script that will be
evaluated makes the solution harder to create, read, and
maintain.

Also, usually different parties are involved in the applica-
tion’s development. The two most common roles are those of
Web designers, who are responsible for the page design and the
overall look of the application, and Web programmers, who

478 SCRIPTING IN JAVA

create application logic and work on pages in other ways. The
existence of tags allows a good separation of concerns so that
both designers and developers can work on the same resources
without interfering with each other’s work.

JSP is one of the technologies that solve the same problem
for Java Web application developers. It allows Java code to be
embedded into HTML pages and executed the moment that page
is requested.

This works fine for PHP and other technologies created for
Web development, but not all scripting languages were origi-
nally designed for this environment. So, to use them efficiently
for generating Web content, we need a mechanism that makes
them embeddable into HTML pages.

The mechanism shown here is not part of the official Web
Scripting Framework specification. It is implemented in its ref-
erence implementation and could be useful for full Web support
of a wide range of scripting languages.

Imagine that you want to use Groovy along with the Web
Scripting Framework to create a simple page for your Web proj-
ect. With all we have learned thus far, we would probably end
up with a script that looks like the one in Listing 10.10.

Listing 10.10 Language Tags—Original Groovy Script
println “Hello world
”
println “Current time: “

date = new java.util.Date()
print date

This simple script prints two static text lines (marked in
bold) and then dynamically inserts the current date (Java
object). If you visit the following URL, you should get a page
similar to the one shown in Figure 10.11.

http://localhost:8080/script/groovy/index.groovy

The problem with this approach is that this script is not
very readable for a Web designer. Imagine that a Web designer
needs to put a header and formatting details into this page.

CHAPTER 10 479

Making him write println statements, worry about proper
escaping, and so on, makes this process longer and much more
prone to errors.

480 SCRIPTING IN JAVA

FIGURE 10.11 Untagged Groovy script

We need a way to define Groovy scriptlets within tags
and leave all other content static. For that purpose, the
com.sun.script.http.ScriptServlet implementation of the
HttpScriptServlet interface (a reference implementation)
defines another configuration parameter that we can use.

The script-blocks servlet initialization parameter takes
a comma-separated list of languages, whose resources will
be treated as HTML pages, with scriptlets defined inside the
<% . . . %> tag blocks.

Listing 10.11 shows an example configuration of
ScriptServlet.

Listing 10.11 Language Tags—Configuration
<servlet>

<servlet-name>ScriptServlet</servlet-name>
<servlet-class>

com.sun.script.http.ScriptServlet
</servlet-class>
<init-param>

<param-name>script-blocks</param-name>
<param-value>js,groovy</param-value>

</init-param>
</servlet>

As you can see, we instructed a servlet to treat JavaScript
and Groovy resources as regular Web pages. The same rules
as those for the context initialization parameter named
allow-languages apply here, concerning names of languages
that we will use.

Now, we can modify the script shown in Listing 10.10 to
make it a more natural fit for the Web Scripting Framework (see
Listing 10.12).

Listing 10.12 Language Tags—Groovy Script
Hello world

Current time:
<%

date = new java.util.Date()
print date

%>

The behavior of the script remains the same. The only dif-
ference is that static content is now separated from scriptlets,
which makes development and maintenance much easier to
organize.

Threading Issues

In the servlet container, script engines used to handle script
resources work in a multithreaded environment. This means
scripts are executed concurrently on different threads.

In Chapter 9, we discussed various approaches to threading
that scripting engine implementations could take. We also saw
how we can find out what threading capabilities a certain
scripting engine implements, by making the following call on
the engine’s factory objects:

ScriptEngineInfo.getParameter(“THREADING”)

We have seen that in the Web Scripting Framework a lot of
important data, such as request and session parameters, is
bound to the engine scope. With this in mind, we know that
only script engines that satisfy the THREAD-ISOLATED concur-
rency requirement can be used freely in this environment. This

CHAPTER 10 481

is simply because this requirement guarantees that engine scope
will stay unchanged between two evaluations of the script,
which is of course necessary to preserve consistency of a certain
request state.

The script engine that will be used to handle a URL
mapped to the script resource is obtained by the ScriptEngine
getEngine(HttpServletRequest request) method defined in
the javax.script.http.HttpScriptServlet interface.

Implementations of this interface must ensure that a script-
ing engine returned by this method is either THREAD-ISOLATED
or that it currently does not execute any requests to preserve
consistency in the Web application.

Architectural Challenges

Thus far, we learned the basic concepts built into the Web
Scripting Framework. Now let’s discuss where this technology
would be most useful in practice. You can use the Web Script-
ing Framework in three areas of Web development:

■ Integration of Java and PHP applications

■ Migration of PHP application business logic to Java

■ Use of PHP (or some other scripting language) as a view
technology in your Java Web application

In this section, we examine these three use cases and dis-
cuss the implications they introduce.

Integration of Java and PHP Applications

First, many of you might ask why we would ever need to inte-
grate Web applications created using different technologies.
Although doing so is not a necessity, it could be convenient in
many cases. For example, imagine that you are building a Web
site portal using a content management system (CMS) product.
Also, your customer wants to have a forum, blog, and who
knows what else on that site.

One path that you can take is to develop all these compo-
nents by yourself using the same technology. In this situation,

482 SCRIPTING IN JAVA

there are no integration issues, but the development costs (and
time) would be much greater than they would if you used a
variety of different technologies, each one developed to handle
a specific task.

The second approach is to look for products (Web applica-
tions) that implement the components that you need. They
could be either commercial products or open source projects.
It depends completely on your requirements and on whether a
certain product fulfills those requirements. Of course, if you
want to create a pure Java (or pure PHP) solution, you have to
consider the technology that lies behind the project that you
want to incorporate.

Now that you have this standardized framework for integra-
tion of what today are the two most popular technologies for
Web development, you have a much wider choice of projects
that you can use. For example, you may find that CMS written
in PHP suits your needs best, while you want to pick a Java
project for a forum software. This broad array of choices can
affect the overall quality of your final solution.

For successful integration of Web applications written for
different environments, the crucial issue is sharing of session
data. Prior to the Web Scripting Framework, sharing data
between Java and PHP was possible, but it was much more
complicated than it is today. One of the solutions was to imple-
ment your own session mechanisms for both Java and PHP Web
servers and make them use the same data structures (such as
files or databases, for example). Then you would be able to
install some parts of your application on the servlet container
and other parts on the Web server that would run a PHP inter-
preter (Apache Web server in most cases). Still, this solution is
not as simple as it might look at first glance, and the mainte-
nance of such a site would require administration of two Web
servers rather than one.

The Web Scripting Framework has solved this problem in a
much more natural way. Because now PHP scripts are evaluated
in the servlet container environment and session data is bound
to the engine, there is no need for solution developers to think
about replacing a crucial part of their infrastructure software.

CHAPTER 10 483

Even with all the concepts introduced by this framework,
you still have to customize certain projects to make them inte-
grate. The most common areas you would have to customize are
the login and authentication code because these code parts are
responsible for making a unique session across the applications.

Although these issues are beyond the scope of this book, we
can freely say that the Web Scripting Framework is a great leap
forward in terms of making these integrations possible, and that
it will be the subject of future research.

Java Business Logic in PHP Web Applications

PHP and scripting concepts in general are excellent tools for
rapid prototyping of Web applications. Thus, many developers
use these tools to start a project and to implement initial
requirements quickly.

As the project grows and becomes more heavily loaded,
developers might find it appropriate to move some of the busi-
ness logic code to the Java platform. This could benefit the
project in general in many ways. Because Java is not tied to the
Web server, architects and developers have a much wider range
of solutions available to improve the scalability of the project.

Here, we discuss some of the issues related to moving part
of a PHP project to Java. First, we assume that the PHP project
was developed using the MVC (Model-View-Controller) design
pattern. This means the business logic is clearly separated from
the presentation, and no business code is present in presenta-
tion templates. (We will not discuss the MVC pattern in more
detail here; you are advised to consult the appropriate literature
for more information on that topic.) If the project does not
apply the MVC pattern, our first step will be to refactor it
toward this architecture.

Let’s suppose we have the PHP class shown in Listing
10.13, and we want to replace it with its equivalent Java
implementation.

Listing 10.13 PHP to Java—PHP Class
<?

class User {

484 SCRIPTING IN JAVA

var $username;
var $password;

function verifyPassword($password) {
if ($password == $this->password)

return true;
else

return false;
}

}

?>

The class is pretty simple. We have two properties and a
verifyPassword() method. This method checks whether the
submitted password is the same as the password field of the
object.

Now let’s suppose we have a factory class that is responsi-
ble for making instances of the User class. With this approach,
the code for creating object instances is located in one place. As
we see in a moment, a solution such the one shown in Listing
10.14 leads to much easier refactorings.

Listing 10.14 PHP to Java—Factory Class
<?

class UserService {

function findUserByUsername($username) {
$user = new User();
$user->username = $username;
$user->password = $username;
return $user;

}
}

?>

The UserService class has a findUserByUsername()
method, which in our example simply returns a User class
instance. In a real application, this method would probably look
for the user based on the given username in a database or some
other repository (LDAP, for example). The username and pass-
word properties would also be populated with the appropriate
fields of the database record. For the demonstration purposes of

CHAPTER 10 485

Listing 10.13 Continued

this example, this simplified implementation is more than
enough.

Finally, we need code that uses these “infrastructure”
objects. Let’s say you are creating the login functionality for
your Web site, as shown in Listing 10.15.

486 SCRIPTING IN JAVA

Listing 10.15 PHP to Java—Client Code
$user = UserService::findUserByUsername($username);

if ($user == null) {
// reload the form and show the appropriate message

}

if (!$user->verifyPassword($password)) {
// reload the form and show the appropriate message

}

// proceed with login action

The code in Listing 10.15 looks for the existence of the user
with the provided username. If it does not find this user, the
login form is reloaded, and the appropriate message is dis-
played. Next, we check whether the submitted password
matches the user’s password. The form is reloaded if the pass-
word does not match. Otherwise, we proceed to other actions
that are needed to finish the login.

Now let’s implement the Java equivalent of the User class
(see Listing 10.16).

Listing 10.16 PHP to Java—Java Class
package net.scriptinginjava.ch10.domain;

public class User {

public String username;
public String password;

public boolean verifyPassword(String password) {
if (this.password == password)

return true;
else

return false;
}

}

The class implementation is straightforward and pretty self-
explanatory, so we skip to the next step to finish the transition
(see Listing 10.17).

CHAPTER 10 487

Listing 10.17 PHP to Java—Modified Factory Class
<?
class UserService {

function findUserByUsername($username) {
$user = new Java(“net.scriptinginjava.ch10.domain.User”);
$user->username = $username;
return $user;

}
}
?>

As you can see, we changed only one line of the
UserService class and substituted the PHP class with the Java
implementation. From now on, the User class can use all the
benefits of the Java platform and products made for it.

You can benefit from Java classes in your PHP Web appli-
cations in one more case. The life cycle of a PHP script is
tightly coupled to handling a single HTTP request. In such an
environment, it is hard to implement logic that needs some
threading or scheduling capabilities. Now, you can delegate
these tasks to Java threads and schedulers, and thus take more
control over that process.

PHP Views in Java Web Applications

In the previous section, we saw how PHP Web applications can
benefit from the Java platform. Now we discuss possible uses of
PHP in Java Web applications.

Most Java Web applications are built using some of the
available MVC frameworks, such as

■ The Spring framework (www.springframework.org)

■ Struts (http://struts.apache.org)

■ WebWork (www.opensymphony.com/webwork/)

In all these frameworks, the view is usually created using
some of the template engines available today. We discussed the

www.springframework.org
www.opensymphony.com/webwork/
http://struts.apache.org

template mechanism back in Chapter 5, “Advanced Groovy Pro-
gramming,” where we saw some benefits of its introduction in
the project. The Java community has a wide range of template
languages available for developers to use. The most frequently
used engines today are certainly the following:

■ Velocity (http://jakarta.apache.org/velocity/)

■ FreeMarker (http://freemarker.sourceforge.net/)

If you are working on a team that has a good PHP back-
ground and you are starting a Java Web project, you may con-
sider using PHP as a template language for the project. Java
Web applications introduce many technologies that a team has
to cope with, such as the MVC framework, Object Relational
mapping framework, and so on. By using PHP as a template
language for the project, you can put off (or at least delay) hav-
ing to learn one more technology at the start. The team’s solid
PHP background could speed up development and make them
feel at home.

Particular solutions for creating PHP as a view technology
in Java Web applications are currently beyond the scope of
this book and will be the subject of future research and
enhancements.

Conclusion

Throughout this chapter, we discussed the basic concepts of the
Web Scripting Framework. We also learned about some basic
ideas concerning the integration of two distinctive platforms,
Java and PHP, by using the Scripting API and the Web Script-
ing Framework. We looked at it from both sides and emphasized
the benefits of solutions in various environments.

Still, this is a relatively new topic, and I expect that many
new projects and papers will target this field in the near future.

488 SCRIPTING IN JAVA

http://jakarta.apache.org/velocity/
http://freemarker.sourceforge.net/

PART V

APPENDIX A Groovy Installation

APPENDIX B Groovy IDE Support

APPENDIX C Installing JSR 223

This page intentionally left blank

This appendix contains information necessary for suc-
cessfully installing and configuring Groovy in your

development environment. The first step is to download
Groovy as a distribution, or to get the Groovy source code
if you want to build it.

Download Instructions

The official Groovy site is located at http://groovy.
codehaus.org. You can download the latest distribution by
following the Download link on the home page, or by visit-
ing http://dist.codehaus.org/groovy/distributions/. This URL
contains both the source code and the binary distributions.

If you just want to embed Groovy in your application,
you do not need the whole environment. The JAR (Java
Archive) files with the Groovy implementation are located
at http://dist.codehaus.org/groovy/jars/.

GGRROOOOVYVY
IINSTNSTALLAALLATIONTION

APPENDIX A

http://groovy.codehaus.org
http://groovy.codehaus.org
http://dist.codehaus.org/groovy/distributions/
http://dist.codehaus.org/groovy/jars/

Installing Groovy

If you have downloaded the binary distribution, the installation
procedure consists of unpacking the distribution archive.

Configuring Groovy

The steps needed for Groovy configuration are simple and
straightforward:

1. Set the GROOVY_HOME environment variable to point to
the Groovy installation—for example:

Unix: export GROOVY_HOME=/opt/groovy
Windows: set GROOVY_HOME=C:\groovy

2. Add the $GROOVY_HOME/bin directory to your PATH
environment variable:

Unix: export PATH=$PATH:$GROOVY_HOME/bin
Windows: set PATH=$PATH;$GROOVY_HOME\bin

Testing Groovy

At this point, you should be ready to test the Groovy installa-
tion and write the “Hello world” script. Run the interactive
Groovy shell by typing the following in the command line:

groovysh

You should get something similar to this on your display,
depending on the versions of Groovy and Java that are installed
on your system:

Let’s get Groovy!
================
Version: 1.0-JSR-06 JVM: 1.5.0_08-b03
Type ‘exit’ to terminate the shell
Type ‘help’ for command help
Type ‘go’ to execute the statements

groovy>

492 SCRIPTING IN JAVA

In this interpreter, you can write Groovy statements and
execute them with go or execute commands. Now type:

groovy> println “Hello world!”
groovy> go

You should get the following text displayed on the screen
as a result of statement’s execution:

Hello world!

If you want to exit the interactive shell, just type:

exit

If you finished this little test without any errors, your
Groovy environment is successfully installed.

APPENDIX A 493

This page intentionally left blank

This appendix contains instructions on how to install
general Groovy support for any Java editor or IDE. Most

of the IDEs today either have built-in Groovy support or
support it through the plug-in mechanism. For more infor-
mation on this topic, consult the official Groovy Web site.
The installation of general-purpose IDE support is demon-
strated for the Eclipse platform.

Installation

As Groovy (and scripting in general) is becoming more pop-
ular among Java programmers, I am sure that all vendors
and projects that build environments and editors for Java
developers will support these technologies. But even if you
cannot find the appropriate plug-in for your IDE (or editor),
there is a way to evaluate Groovy scripts in any environ-
ment that can run Java classes. For that purpose, you
should use the groovy.lang.GroovyShell class. For the
first.groovy script example, the call would be

java groovy.lang.GroovyShell first.groovy test 123

GGRROOOOVYVY IDEIDE
SSUPPORTUPPORT

APPENDIX B

I demonstrate this technique within the Eclipse platform.
You should take similar steps in other environments to enable the
groovy.lang.GroovyShell class to execute your Groovy scripts.

1. Select the Run option from Run menu, which starts a
Run configuration manager.

2. Click the New button.

3. Enter groovy.lang.GroovyShell as the Main class (see
Figure B.1). It is assumed that you have a Groovy JAR
in the classpath of your project.

496 SCRIPTING IN JAVA

NOTE

To execute this
class, the appropri-
ate groovy and
asm JARs must be in
the classpath. These
JARs are located in
the lib/ directory
of the Groovy distri-
bution. You can find
more information on
this subject in the
“Dependencies” sec-
tion in Chapter 4,
“Groovy.”

FIGURE B.1 Run configuration manager in Eclipse

4. In the Arguments tab, enter the ${resource_loc}
${string_prompt} value in the Program Arguments
section. It passes the absolute path of the selected script
and prompts a dialog for entering arguments to be
passed (see Figure B.2).

5. In the Classpath tab, add the appropriate groovy, asm,
antlr, and commons-cli JARs to the classpath.

FIGURE B.2 Arguments tab

6. If you want to display this configuration in the
Favorites menu, go to the Common tab and check the
Run option. Save the changes that you made by click-
ing the Apply button and then close the configuration
manager.

Usage

To run the script, follow these steps:

1. Select the script in the Navigator window.

2. Choose the created GroovyShell configuration from the
Run menu (see Figure B.3).

3. Enter the arguments to be passed to the script.

You should be able to see the results in the console window.

APPENDIX B 497

FIGURE B.3
Running the script

This page intentionally left blank

This appendix contains instructions for successfully
installing and configuring the Scripting API reference

implementation (JSR 223 RI). You can find more details on
the specification in Chapters 9, “Scripting API,” and 10,
“Web Scripting Framework.”

IINSTNSTALLINGALLING
JSR 223JSR 223

APPENDIX C

Requirements

First, you need to download the Reference Implementation (RI)
of the specification. You can do it by visiting http://jcp.org/
aboutJava/communityprocess/pr/jsr223/index.html.

The RI is installed using the install script, which is written
in Perl. So if you don’t have the Perl interpreter (version 5.6.1)
installed on your host, it’s time to install it. You can find the
Perl interpreter installation for various platforms at Active-
State’s Web site, http://activestate.com/Products/ActivePerl/.

JSR 223 contains the Web Scripting Framework API specifi-
cation. The RI of this API is targeted for the Apache Tomcat
servlet container. If you want to use it and try out examples
from Chapter 10, you have to have Tomcat installed before try-
ing to set up JSR 223 RI. The JSR was developed using Tomcat
version 5.0.19, so it is recommended that you use this version
for running the examples. The RI should work with other 5.x
family versions of Tomcat (and its successors), but this is not
guaranteed. You can download the 5.0.19 version of Tomcat
from http://archive.apache.org/dist/tomcat/tomcat-
5/archive/v5.0.19/bin/.

Installation

As I already said, you install the RI using the Perl script. To
start this process, just type the following in the directory that
contains files from the RI’s archive:

$ perl setup.pl

500 SCRIPTING IN JAVA

NOTE

Since the public review draft (which includes this reference implementation), there were
some minor changes in the API, such as class and method name changes and explicit usage
of Java SE 5 features. Examples in Chapter 9 are adjusted to these changes, so some of the
examples might not work with this implementation. Please refer to the final version of the
specification (http://jcp.org/aboutJava/communityprocess/pfd/jsr223/index.html) for
more details.

http://jcp.org/aboutJava/communityprocess/pfd/jsr223/index.html
http://jcp.org/aboutJava/communityprocess/pr/jsr223/index.html
http://jcp.org/aboutJava/communityprocess/pr/jsr223/index.html
http://activestate.com/Products/ActivePerl/
http://archive.apache.org/dist/tomcat/tomcat-5/archive/v5.0.19/bin/
http://archive.apache.org/dist/tomcat/tomcat-5/archive/v5.0.19/bin/

During installation, you are asked to enter locations for the
JSR files and the Tomcat installation. The installer does every-
thing else. The resulting output should be similar to the
following:

APPENDIX C 501

Enter the jsr223 install location : [C:/jsr223] C:\dev\jsr223
Do you have tomcat installed (y/n)? [n] y

Enter the installed Tomcat location (): C:\dev\tomcat5

Installing JSR223 on C:\dev\jsr223

7 File(s) copied
0 File(s) copied
130 File(s) copied
1 File(s) copied

Installing PHP on C:\dev\jsr223/php5

7 File(s) copied

Configuring Tomcat

Stopping Tomcat
5 File(s) copied
Generated startupjsr.bat successfully
C:\dev\tomcat5/bin/startup.bat Modified
No change in Configuration file C:\dev\tomcat5/conf/web.xml
Modifying C:\dev\tomcat5/conf/server.xml
File C:\dev\tomcat5/conf/server.xml is backed up to
C:\dev\tomcat5/conf/server.xml.bak1
New configured tomcat will run only when started
using command line startup.bat

As you can see, the script changed Tomcat’s configuration
files, so you need to be sure that the configuration remained
valid. If you encounter problems, you can always restore
backup files and try again on the fresh installation of Tomcat
5.0.19.

After the install process is finished, you can test the
installation:

Do you want to Test Tomcat for jsr223 (y/n)? [n]
Enter the tomcat port number : : [8080]

If no errors occurred during configuration testing, you
should get output similar to this:

502 SCRIPTING IN JAVA

Testing Tomcat for localhost:8080

Stopping Tomcat
Starting Tomcat
Sleeping for 20 second to wait for Tomcat to start up

+++++++++ homepage : WORKED ++++++++++++++

+++++++++ php test page : WORKED ++++++++++++++

+++++++++ javascript test page : WORKED ++++++++++++++

Stopping Tomcat
Press Return to Continue :
Samples are copied in C:\dev\jsr223/samples directory

Installation Complete

As you can see, samples are copied to the samples/ folder
of the RI install folder.

INDEX

A
Accessing Application Context listing

(10.2), 463
Active File Example listing (8.20), 376
Active File Generator listing (8.22), 380
active file pattern, 375

consequences, 375
problem, 375
sample code, 376-380
solution, 375

Active File Template listing (8.21), 379
ADD keyword, 5
addClassPath() method, 324
administration

scripting, 328-334
scripting languages, 55-58

Administration Script Example
listing (7.17), 329

Advanced Ant BSF Support Example
listing (7.13), 315

Advanced AntBuilder Example
listing (7.15), 320

Advanced Binding Example—Java
Application listing (9.13), 408

Advanced Groovy Programming Example
listing (5.22), 225

AJAX (Asynchronous JavaScript And
XML), 66

Ant build tools, 309-322

Ant BSF Support Example
listing (7.12), 314

Ant task, Groovy, 132-133
Ant Task That Compiles All Scripts Inside

the Project listing (8.10), 357
AntBuilder Example listing (7.14), 317
any() method, Groovy, 175-177
any() Method listing (4.30), 175
Apache Web servers, 62

BSF (Bean Scripting Framework), 94
APIs (application programming

interfaces), 49
Java, 80-82

append() method, Groovy, 181-182
append() Method listing (4.39), 182
application scope, Web environments, 449
application variable (Groovlet), 215
applications

BSF (Bean Scripting Framework), 275
JSP (JavaServer Pages), 275-280
Xalan-J (XSLT), 280-287

Java, 79
web applications, 59, 61-67

ASP (Active Server Pages), 64
games, 68-69
JavaScript, 65-67
Perl, 61-62
PHP, 62-64
UNIX, 68

apply() method, 263-264
architecture

BSF (Bean Scripting Framework),
248-249

compilers, 9
hybrid compiler-interpreters, 11
interpreters, 10
Java, 80-82
Scripting API, 391
Web Scripting Framework, 448,

482-488
context, 448-449
interaction, 451-453
servlet, 449-451

arguments, command-line arguments,
Groovy, 136

Ascher, David, 29
ASP (Active Server Pages), 64
assembly languages, 5
assertArrayEquals() method, 298
assertContains() method, 299
assertEquals() method, 294
assertion methods, unit testing, 297-300
assertLength() method, 298
assertScript() method, 299
assertToString() method, 299
attributes, script context, 419-423
autoboxing

BeanShell, 89-90
Groovy, 140

Autoboxing listing (4.7), 140
AutoCAD, 50

B
basic syntax

BeanShell, 86-87
Python, 101-103

Bean Scripting Framework (BSF). See BSF
(Bean Scripting Framework)

beans, BSF (Bean Scripting Framework)
declaring, 268-270
registering, 265-268

504 INDEX

BeanShell, 80, 83-98, 126
commands, 91
downloading, 83
GUI (graphical user interface), 84
Java, embedding with, 94-98
manual, 98
methods, 91-92
modes, 84
objects, 92
running, 84
scripting

autoboxing, 89-90
basic syntax, 86-87
for loop, 88-89
interface implementation, 93-94
JavaBeans, 88
loosely typed syntax, 87
switch-case statement, 90

Workspace Editor, 85
“Best Tool for the Job, The”, 36
Bezroukov, Nikolai, 68
binding, 186

dynamic binding, 442
programmatic binding, 442
Scripting API, 404-411

dynamic binding, 442-444
engine scope, 405-411
global scope, 411-416
script context, 416-428

Binding Example listing (9.11), 406
Binding listing (4.44), 186
bindings, Web Scripting Framework, 462

application, 462-464
request handling, 464-467
response, 468
servlet, 468-469

bootstrap class loaders (JVM), 81
Broadcasters Example listing (8.17), 367
broadcasters pattern, 359

consequences, 362
problem, 359-360
related patterns, 369

sample code, 362-369
solution, 360-362

BSF (Bean Scripting Framework), 94,
245-246
Ant scripting, 313-316
applications, 275

JSP (JavaServer Pages), 275-280
Xalan-J (XSLT), 280-287

architecture, 248-249
beans

declaring, 268-270
registering, 265-268

compilation, 270-275
data binding, 264-270
downloading, 247
engine initialization, 252
exception handling, 255
functions, 259-264
manager initialization, 252
methods, 259-264
origins of, 247
script files, executing, 257-259
Scripting API, compared, 445
scripting language registration, 249-252
scripts, 253-257

BSF Exception Handling listing (6.2), 256
BSF JSP Example listing (6.20), 279
BSFEngine.apply() Method Example

listing (6.7), 263
BSFEngine.eval() Method Example

listing (6.1), 254
BSFEngine.exec() Method Example

listing (6.3), 256
BuilderSupport, Groovy, 235-236
building tools, Ant scripting, 309-322
built-in functions, 19
bytecode, 7

C
C++, Java, compared, 78
call() method, 169, 260
Cascading Style Sheets (CSS), 66
CBD (component-based development), 40

INDEX 505

changed() method, 347
class files, Java, 80
class loaders (JVM), 81

bootstrap class loaders, 81
user-defined class loaders, 82

classes, 14
Groovy, 159-161
JavaAdapter class, 114

Classes listing (4.17), 159
classpaths, Groovy, setting, 131-132
closures

Groovy, 168-177
curly braces, 172
resource handling, 176-177

method closure, 92
methods, curly braces, 172
scripting language, 20

Closures listing (4.23), 170
code. See also listings; scripts

active file pattern, 376-380
as data, 19-23
bytecode, 7
development speed, 28-29
extension point pattern, 371-374
mediator scripting pattern, 345-354
observer pattern, 362-369
operation code, 4
runtime performance, 26-28
script object factory pattern, 356-359
scripted components pattern, 340-341
source code, production environment,

12-13
code generation, Scripting API, 428

method call syntax, 429-431
output statement, 429
programs, 431-432

collect() method, Groovy, 173
collect() Method listing (4.25), 173
collections, Groovy, 148

lists, 149-151
maps, 152-153
ranges, 151-152

command-line arguments, Groovy, 136
commands, 19

BeanShell, 91
compatibility, Java and Groovy, 137
Compilable interface, 437-440
Compilable listing (9.35), 438
compilation, BSF (Bean Scripting

Framework), 270-275
compilation languages, 52
Compile Example listing (6.13), 271
Compile Example—Result listing (6.14), 271
compile() method, 275
Compiled Script Usage Example

listing (6.18), 274
compileExpr() method, 272
compilers, 6

architecture, 9
hybrid compiler-interpreters, 11
interpreters, compared, 8-12

compiling scripts, Groovy, 130-133
Compiling Groovy Scripts with Ant

listing (4.2), 132
component-based development (CBD), 40
components pattern (scripting), 337

consequences, 339
problem, 337-338
related patterns, 341
sample code, 340-341
solution, 338-339

composite types, programming
languages, 14

computer programs, 5
configuration

Groovy, 492
Web Scripting Framework, 456-462

consequences
active file pattern, 375
extension point pattern, 370
mediator scripting pattern, 345
observer pattern, 362
script object factory pattern, 356
scripted components pattern, 339

506 INDEX

context, Web Scripting Framework
architecture, 448-449

Creating an Sql Object with DataSource
listing (5.6), 202

Creating Documents with DomBuilder
listing (5.28), 233

cross-platform portability, Java, 77
CSS (Cascading Style Sheets), 66
curly braces, closures, methods, 172
currentThread() method, 444
Custom Application Context

listing (9.26), 424
Custom BuilderSupport Implementation

(BuilderSupport.java) listing (5.30), 235
Custom Engine Writer Example

listing (9.28), 427
custom namespaces, 423-427
Customized compileExpr() Method

listing (6.15), 272
Cygwin, 323

D
DAO (Database Access Object) design

paradigm, 196
data binding, BSF (Bean Scripting

Framework), 264-270
data structures, scripting languages, 17-19
Database Access Object (DAO) design

paradigm, 196
database queries, GroovySQL, 202-205
databases, transactions, GroovySQL,

208-209
datasets, GroovySQL, 209-212
Davidson, James Duncan, 52, 311
debugging, interactive debugging,

304-309
Declare Bean Example—Java Application

listing (6.11), 269
Declare Bean Example—Script

listing (6.12), 270
declareBean() method, 268-269
declaring beans, BSF (Bean Scripting

Framework), 268-270

Defining a Custom Namespace
listing (9.25), 424

dependencies, Groovy, 131
design patterns, scripting, 335-337

active file pattern, 375-380
extension point pattern, 369-374
mediator pattern, 341-354
observer pattern, 359-369
script object factory pattern, 354-359
scripted components pattern, 337-341

Design Patterns, 336
Determining the Attribute’s Scope

listing (9.21), 420
development, CBD (component-based

development), 40
development speed, code, 28-29
DHTML (Dynamic Hypertext Markup

Language), 66
Dickerson, Chad, 56
disabling scripting, Web Scripting

Framework, 456-457
discovery mechanism, Scripting API,

391-393
Discovery Mechanism listing (9.1), 393
DomBuilder, Groovy, 232-233
doSomeAction() method, 374
downloading

BeanShell, 83
BSF (Bean Scripting Framework), 247
Groovy, 491
Jython, 98
Rhino, 110

dynamic binding, 442, Scripting API,
442-444

Dynamic Binding—Java Classes
listing (9.39), 443

Dynamic Binding—Java Objects
listing (9.38), 443

Dynamic Hypertext Markup Language
(DHTML), 66

dynamic languages, 6
“Dynamic Languages—Ready for the Next

Challenges, by Design,” 29

INDEX 507

dynamic linking, Java, 78
dynamic typing, 15-16

Groovy, 139-140
Dynamic Typing and Polymorphism

listing (4.6), 139

E
each() method, GroovySQL, 171-172, 211
each() Method listing (4.24), 172
each() Method listing (5.15), 211
eachByte() method, Groovy, 180-181
eachByte() Method listing (4.36), 181
eachFile() method, Groovy, 182
eachFile() Method listing (4.40), 182
eachFileRecurse() method, Groovy, 182
eachFileRecurse() Method

listing (4.41), 182
eachLine() method, Groovy, 179
eachLine() Method listing (4.33), 179
eachRow() method, GroovySQL, 202-203
eachRow() Method and GString Query

Parameters listing (5.7), 202
eachRow() Method and List Query

Parameters listing (5.8), 203
Eckel, Bruce, 30
Eclipse IDE, 130
embedding

BeanShell with Java, 94-98
Groovy, 184-190
Pyhton with Java, 108-109
Rhino with Java, 114-120
scripting languages, 70

engine initialization, BSF (Bean Scripting
Framework), 252

engine interfaces, Scripting API, 432
Compilable interface, 437-440
Incovable interface, 432-437

engine metadata, Scripting API, 393-395
Engine Metadata listing (9.2), 394
engine readers, 427-428
engine scope

binding, Scripting API, 405-411
overriding, 407-409

engine writers, 427-428
eval() method, 19, 96, 400-404
evaluate() method, 184
evaluating scripts, Scripting API, 400-404
Evaluating a Script in the Script Context

listing (9.20), 418
Evaluating Groovy Scripts from Java

listing (4.43), 184
Evaluating Inline Scripts Under Security

Policy listing (4.49), 193
Evaluating Script Contained in a File

listing (9.8), 401
Evaluating Script Contained in a String

listing (9.7), 400
every() method, Groovy, 175
every() Method listing (4.29), 175
evolutionary prototyping, 46
Example php.ini Configuration

listing (9.37), 442
exception handling

BSF (Bean Scripting Framework), 255
Python, 107-108

exec() method, 270
execute() method, GroovySQL, 205-206
execute() Method listing (5.10), 205
executeUpdate() method, GroovySQL,

204-205
executeUpdate() Method and CSV Files

listing (5.9), 204
executing script files, BSF (Bean Scripting

Framework), 257, 259
Executing a Script File listing (6.4), 258
execution engine (JVM), 81-82
explicit memory management, 78
exportAsCSV() method, 377
exportAsSQL() method, 377
exportAsXML() method, 377
expressions, regular expressions, Groovy,

146-148
Extended XSLT Example listing (6.22), 282
Extending the switch-case Mechanism

listing (4.15), 156

508 INDEX

extensibility, scripting language, 70-71
Extensible Stylesheet Language

Transformation (XSLT), 280
Extension Point Example

listing (8.18), 371
extension point pattern, 369

consequences, 370
problem, 369
related patterns, 374
sample code, 371-374
solution, 370

extreme programming, 33-35

F
fail() method, 294
files, system operations, Groovy, 178-182
filter() function, 21
filter() method, 22
filters, 41
find() method, Groovy, 174
find() Method listing (4.27), 174
findAll() method, Groovy, 174-175
findAll() method, GroovySQL, 211-212
findAll() Method listing (4.28), 174
findAll() Method listing (5.16), 212
Foemmel, Matthew, 292
Font dialog box, 351
for loop

BeanShell, 88-89
Groovy, 157

for Loop listing (4.16), 157
forward() method, Web Scripting

Framework, 471-473
Fowler, Martin, 292
frame() method, 237
Function Call Example listing (6.5), 260
functions

as method arguments, 21-23
BSF (Bean Scripting Framework),

259-264
built-in functions, 19
eval(), 19
filter(), 21

Incovable interface, 433-434
over(), 21
printColor(), 140
someFunc(), 103
upper(), 102

G
games, scripting in, 68-69
garbage collector (JVM), 78
General Scripting API, 389
generating code, Scripting API, 428-432
generics, Java, 31
get() method, 95
getBindings() method, 412
getComponent() method, 347
getEngineByExtension() method, 398
getEngineByExtension() Method Example

listing (9.5), 398
getEngineByMimeType() method, 398
getEngineByName() method, 397
getEngineByName() Method Example

listing (9.4), 397
getInterface() method, 97
getLanguageName() method, 394
getMethodCallSyntax() method, 429-431
getOutputStatement() method, 429
getScriptEngine() method, 395-396
getScriptEngine() Method Example

listing (9.3), 395
getter/setter methods, 165
getText() Method listing (4.32), 178
getText() method, Groovy, 178
global scope

binding, Scripting API, 411-416
initialization, 415-416
variables, overriding, 413-414

Global Scope Example listing (9.15), 412
Global Scope Initialization

listing (9.18), 415
Glue Code Client listing (8.8), 352
glue code pattern, 341

consequences, 345
problem, 341-342

INDEX 509

related patterns, 354
sample code, 345-354
solution, 342-345

glue languages, 41
graphical user interfaces (GUIs). See GUIs

(graphical user interfaces)
Groovlet Deployment Descriptor

listing (5.17), 214
Groovlet Example listing (5.18), 218
Groovlets, 212-219

variables, 214
Groovy programming language, 80,

120-121, 125, 194-195
advantages of, 126
Ant task, 132-133
any() method, 175-177
autoboxing, 140
BuilderSupport, 235-236
classes, 159-161
classpaths, setting, 131-132
closures, 168-177

curly braces, 172
resource handling, 176-177

collect() method, 173
collections, 148

lists, 149-151
maps, 152-153
ranges, 151-152

configuring, 492
DomBuilder, 232-233
downloading, 491
dynamic typing, 139-140
each() method, 171-172
every() method, 175
find() method, 174
findAll() method, 174-175
Groovlets, 212-219

variables, 214
GroovyBeans, 165

named parameters, 166-167
object navigation, 167
properties, 165-166
safe navigation, 168

GroovySQL, 196-212
database queries, 202-205
datasets, 209-212
each() method, 211
eachRow() method, 202-203
execute() method, 205-206
executeUpdate() method, 204-205
findAll() method, 211-212
object creation, 199-207
prepared statements, 206-207
Sql.loadDriver() method, 199-200
stored procedures, 207-208
transactions, 208-209

IDE support, 495-497
inject() method, 173-174
installing, 127, 491-492
interactive console, 128-129
interactive shell, 127-128
JAR (Java Archive) files, 491
Java

compatibility with, 137
embedding with, 184-190
statements, 138

language syntax, 137-177
triple-quote syntax, 144-145

logical branching, 154-156
looping, 156-158
loose typing, 138-140
Markup syntax, 223-236
NamespaceBuilder, 234
NodeBuilder, 227-229
operator overloading, 162-164
polymorphism, 139-140
regular expressions, 146-148
SaxBuilder, 230-231
script files, evaluating, 129-130
scripts

command-line arguments, 136
compiling, 130-133
dependencies, 131
running, 127-130
structure, 133, 135-136

510 INDEX

security, 190-194
strings, 143-145

GStrings, 145-146
Swing user interfaces, 236-243
switch-case structure, 154-156
system operations, 178

files, 178-182
processes, 182-183

templates, 220-223
testing, 492-493
type juggling, 140-143

Groovy Script Structure listing (4.3), 134
Groovy Shell listing (4.1), 128
Groovy Template Support

listing (5.19), 221
GroovyBeans, 165

named parameters, 166-167
object navigation, 167
properties, 165-166
safe navigation, 168

GroovyBeans listing (4.21), 165
GroovySQL, 196-212

datasets, 209-212
each() method, 211
eachRow() method, 202-203
execute() method, 205-206
executeUpdate() method, 204-205
findAll() method, 211-212
objects, creation, 199-207
prepared statements, 206-207
queries, database queries, 202-205
Sql.loadDriver() method, 199-200
stored procedures, 207-208
transactions, 208-209

GroovySQL Example listing (5.1), 197
GroovyTestCase class, unit testing,

296-300
GroovyTestCase Example listing (7.2), 296
GroovyTestCase.assertArrayEquals()

Method Example listing (7.4), 298
GroovyTestCase.assertContains() Method

Example listing (7.5), 299

GroovyTestCase.assertLength() Method
Example listing (7.3), 298

GroovyTestCase.assertScript() Method
Example listing (7.7), 299

GroovyTestCase.assertToString() Method
Example listing (7.6), 299

GroovyTestCase.shouldFail() Method
Example listing (7.8), 300

GroovyTestSuite Example
listing (7.10), 301

GStrings, Groovy, 145-146
GStrings listing (4.9), 145
GUIs (graphical user interfaces), 58

BeanShell, 84

H
handling

command-line arguments, Groovy, 136
script evaluation results, 402
ScriptException, 403-404
sessions, Web Scripting Framework,

473-478
Handling Command-Line Arguments in

Groovy listing (4.4), 136
Handling Script Evaluation Result

listing (9.9), 402
Handling ScriptException

listing (9.10), 403
high-level languages, 6
HTML (Hypertext Markup Language), 60

CSS (Cascading Style Sheets), 66
DHTML (Dynamic Hypertext Markup

Language), 66
HTTP (HyperText Transfer Protocol), 60
HTTP request handling, Web Scripting

Framework, 464-467
HTTP Request Handling—HTML Form

listing (10.3), 465
HTTP Request Handling—PHP Script

listing (10.4), 466
Hunt, Andy, 53
hybrid compiler-interpreters, 11
hypertext, 60

INDEX 511

I
IDEs, 130

Groovy, support for, 495-497
Implementing Java Interfaces in Groovy

listing (4.46), 189
implicit memory management, 78
include() method, Web Scripting

Framework, 469-471
Including Resources listing (10.5), 470
Incovable interface, 432

functions, 433-434
interfaces, 435-437
methods, 434-437

initialization
engines, BSF (Bean Scripting

Framework), 252
global scope, 415-416
managers, BSF (Bean Scripting

Framework), 252
Sql object with connection, 200-201

Initializing the Sql Object with a Connec-
tion—Groovy Script listing (5.5), 201

Initializing the Sql Object with a Connec-
tion—Java Class listing (5.4), 200

inject() method, Groovy, 173-174
inject() Method listing (4.26), 173
installation

Groovy, 127, 491-492
JSR 223 RI (Reference Implementation),

499-502
Jython, 99

interaction, Web Scripting Framework
architecture, 451-453

interactive console (Groovy), scripts,
running, 128-129

interactive debugging, 304-309
Interactive Debugging with the Groovy

Shell listing (7.11), 306
interactive mode, BeanShell, 84
interactive shell (Groovy), scripts, running,

127-128
Intercepting Method Calls

listing (4.18), 161

interfaces
Compilable interface, 437-440
engine interfaces, Scripting API,

432-440
implementing

BeanShell, 93-94
Python, 105-107
Rhino, 112-114

Incovable interface, 435-437
Interfaces listing (9.34), 436
interpreters, 6

architecture, 10
compilers, compared, 8-12
hybrid interpreter-compilers, 11

Introductory DataSet Example
listing (5.14), 209

Introductory JSP Example
listing (6.19), 277

Introductory MarkupBuilder Example
listing (5.21), 224

Invocable Example listing (9.32), 433
invoice() method, 92
invokeFunction() method, 434
isCase() method, 155-156

J
Jacl, 122
Jakarta Commons Logging project, 247
JAR (Java Archive) files, Groovy, 491
Java

API (application programming
interface), 80-82

applications
planning, 79
speed issues, 79

architecture, 80-82
BeanShell, embedding with, 94-98
C++, compared, 78
class files, 80
commercial release of, 77
cross-platform portability, 77
dynamic linking, 78
generics, 31

512 INDEX

Groovy
compatibility with, 137
embedding with, 184-190

implicit memory management, 78
JVM (Java Virtual Machine), 78-82

BeanShell, 83-98
class loaders, 81-82
execution engine, 81-82
garbage collector, 78
Jython, 98-109
other programming languages,

82-83
Python, 98-109
Rhino, 110-120

popularity of, 79
programming

administration, 328-334
Ant scripting, 309-322
interactive debugging, 304-309
management, 328-334
shell scripting, 323-328
unit testing, 292-304

programming language, 80
Python

embedding with, 108-109
scripting in, 103-105

Rhino
embedding with, 114-120
scripting in, 111-112

single inheritance model, 78
treading, 77

Java Community Process (JCP), 121, 385
Java Database Connectivity (JDBC)

driver, 196
Java Runtime Environment (JRE), 24
Java Specification Request (JSR), 67
Java Specification Request 241, 121
Java Virtual Machine (JVM). See JVM

(Java Virtual Machine)
JavaAdapter class, Rhino, 114
JavaBeans, BeanShell, 88
Javagator project, Netscape Navigator, 110

JavaScript, web applications, 65-67
JCP (Java Community Process), 121, 385
JDBC (Java Database Connectivity)

driver, 196
Jetty servlet, 213
JRE (Java Runtime Environment), 24
JRuby, 122
JSP (Java Server Pages), BSF (Bean

Scripting Framework), 275-280
JSR (Java Specification Request), 67
JSR 223 RI (Reference Implementation),

installing, 499-502
JudoScript, 122
JUnit, 293-295
JUnit Example listing (7.1), 294
JVM (Java Virtual Machine), 7, 24-25,

78-82
BeanShell, scripting in, 83-98
class loaders, 81

bootstrap class loaders, 81
user-defined class loaders, 82

execution engine, 81-82
garbage collector, 78
Jython, scripting in, 98-109
other programming languages, using in,

82-83
Python, scripting in, 98-109
Rhino, scripting in, 110-120

Jython, 80, 98-109, 126
downloading, 98
installing, 99
switches, 101

K-L
keys, reversed keys, 410-411
keywords (ADD), 5

Label Widget listing (8.4), 347
LAMP (Linux, Apache, MySQL, PHP), 386
language syntax, Groovy, 137-177

triple-quote syntax, 144-145
language tags, Web Scripting Framework,

478-481

INDEX 513

Language Tags—Configuration
listing (10.11), 480

Language Tags—Groovy Script
listing (10.12), 481

Language Tags—Original Groovy Script
listing (10.10), 479

languages
compilation languages, 52
programming languages

assembly languages, 5
code as data, 19-23
compilers, 6
data structures, 17-19
Groovy programming language, 80,

120-121
high-level languages, 6
JRuby, 122
JudoScript, 122
ObjectScript, 123
OOP (object-oriented programming)

languages, 40
third-generation programming

languages, 6
typing, 13-17

scripting languages, 4-24
administration, 55-58
closures, 20
compilers, 8-12
customization, 49-51
embedding, 70
extensiblity, 70-71
Groovy, 194
interpreters, 8-12
Java, 80-82
learnability, 71-72
management, 55-58
method arguments, 21-23
Perl, 43
prototyping models, 44-48
Python, 18
software development support,

51-55

source code, 12-13
Tcl (Tool Command Language),

37-44
Tcl/Java, 122
UNIX shell languages, 41-42
user interface programming, 58-59
virtual machines, 24-25
web applications, 59-69
wiring, 40-44

Web Scripting Framework,
allowing, 459

Linux, Apache, MySQL, PHP (LAMP), 386
List Box Widget listing (8.5), 348
listings

4.1 (Groovy Shell), 128
4.2 (Compiling Groovy Scripts with

Ant), 132
4.3 (Groovy Script Structure), 134
4.4 (Handling Command-Line

Arguments in Groovy), 136
4.5 (Loose Typing), 138
4.6 (Dynamic Typing and

Polymorphism), 139
4.7 (Autoboxing), 140
4.8 (Triple-Quote Syntax), 144
4.9 (GStrings), 145
4.10 (Regular Expressions), 147
4.11 (Lists), 150
4.12 (Ranges), 151
4.13 (Maps), 153
4.14 (switch-case Structure), 154
4.15 (Extending the switch-case

Mechanism), 156
4.16 (for Loop), 157
4.17 (Classes), 159
4.18 (Intercepting Method Calls), 161
4.19 (Operators), 163
4.20 (Operator Overloading), 164
4.21 (GroovyBeans), 165
4.22 (Safe Navigation), 168
4.23 (Closures), 170
4.24 {each() Method}, 172

514 INDEX

4.25 {collect() Method}, 173
4.26 {inject() Method}, 173
4.27 {find() Method}, 174
4.28 {findAll() Method}, 174
4.29 {every() Method}, 175
4.30 {any() Method}, 175
4.31 (Resource Handling with

Closures), 176
4.32 {getText() Method}, 178
4.33 {eachLine() Method}, 179
4.34 {readLines() Method}, 179
4.35 {splitEachLine() Method}, 180
4.36 {eachByte() Method}, 181
4.37 {readBytes() Method}, 181
4.38 {write() Method}, 181
4.39 {append() Method}, 182
4.40 {eachFile() Method}, 182
4.41 {eachFileRecurse() Method}, 182
4.42 (Process Handling), 183
4.43 (Evaluating Groovy Scripts from

Java), 184
4.44 (Binding), 186
4.45 (Loading Groovy Scripts as Java

Classes), 187
4.46 (Implementing Java Interfaces in

Groovy), 189
4.47 (Security Example), 191
4.48 (Security Policy), 191
4.49 (Evaluating Inline Scripts Under

Security Policy), 193
5.1 (GroovySQL Example), 197
5.2 (SQL Object Creation

Alternatives), 199
5.3 {Sql.loadDriver() Method}, 199
5.4 (Initializing the Sql Object with a

Connection—Java Class), 200
5.5 (Initializing the Sql Object with a

Connection—Groovy Script), 201
5.6 (Creating an Sql Object with

DataSource), 202
5.7 {eachRow() Method and GString

Query Parameters}, 202

5.8 {eachRow() Method and List Query
Parameters}, 203

5.9 {executeUpdate() Method and CSV
Files}, 204

5.10 {execute() Method}, 205
5.11 (Stored Procedure), 207
5.12 (Stored Procedure Call), 208
5.13 (Transactions), 208
5.14 (Introductory DataSet

Example), 209
5.15 {each() Method}, 211
5.16 {findAll() Method}, 212
5.17 (Groovlet Deployment

Descriptor), 214
5.18 (Groovlet Example), 218
5.19 (Groovy Template Support), 221
5.20 (Template Example), 222
5.21 (Introductory MarkupBuilder

Example), 224
5.22 (Advanced Groovy Programming

Example), 225
5.23 (XHTML Markup Example), 226
5.24 (NodeBuilder Example), 227
5.25 (SAX Handler Example), 230
5.26 (SaxBuilder), 231
5.27 (Parsing Documents with

DomBuilder), 232
5.28 (Creating Documents with

DomBuilder), 233
5.29 (Namespace Example), 234
5.30 {Custom BuilderSupport Implemen-

tation (BuilderSupport.java)}, 235
5.31 (SwingBuilder), 237
5.32 (TableLayout), 239
5.33 (TableModel), 241
6.1 {BSFEngine.eval() Method

Example}, 254
6.2 (BSF Exception Handling), 256
6.3 {BSFEngine.exec() Method

Example}, 256
6.4 (Executing a Script File), 258
6.5 (Function Call Example), 260

INDEX 515

6.6 (Method Call Example), 262
6.7 {BSFEngine.apply() Method

Example}, 263
6.8 (Register Bean Example—JavaBean

Definition), 266
6.9 (Register Bean Example—Java

Application), 267
6.10 (Register Bean Example—Script),

267
6.11 (Declare Bean Example—Java

Application), 269
6.12 (Declare Bean Example—Script),

270
6.13 (Compile Example), 271
6.14 (Compile Example—Result), 271
6.15 {Customized compileExpr()

Method}, 272
6.16 (Modified Compile Example), 273
6.17 (Modified Compile Example—

Result), 274
6.18 (Compiled Script Usage

Example), 274
6.19 (Introductory JSP Example), 277
6.20 (BSF JSP Example), 279
6.21 (Simple XSLT Transformation), 281
6.22 (Extended XSLT Example), 282
6.23 (Xalan-J Extension Example), 283
6.24 (Xalan-J BSF Example), 285
7.1 (JUnit Example), 294
7.2 (GroovyTestCase Example), 296
7.3 {GroovyTestCase.assertLength()

Method Example}, 298
7.4 (GroovyTestCase.assertArrayEquals()

Method Example), 298
7.5 {GroovyTestCase.assertContains()

Method Example}, 299
7.6 {GroovyTestCase.assertToString()

Method Example}, 299
7.7 {GroovyTestCase.assertScript()

Method Example}, 299
7.8 {GroovyTestCase.shouldFail()

Method Example}, 300

7.9 (TestSuite Example), 300
7.10 (GroovyTestSuite Example), 301
7.11 (Interactive Debugging with the

Groovy Shell), 306
7.12 (Ant BSF Support Example), 314
7.13 (Advanced Ant BSF Support

Example), 315
7.14 (AntBuilder Example), 317
7.15 (Advanced AntBuilder

Example), 320
7.16 (Shell Scripting Example), 327
7.17 (Administration Script

Example), 329
7.18 (Script Job Example), 330
7.19 (Quartz Scheduler Configuration

Example), 332
8.1 (Scripted Component Pattern

Example), 340
8.2 (Mediator Interface), 346
8.3 (Mediator-Aware Widget

Abstraction), 346
8.4 (Label Widget), 347
8.5 (List Box Widget), 348
8.6 (Mediator Implementation), 349
8.7 (Mediator Client), 350
8.8 (Glue Code Client), 352
8.9 (Modified Mediator

Component), 353
8.10 (Ant Task That Compiles All Scripts

Inside the Project), 357
8.11 (Scripted Object Factory Pattern

Example), 357
8.12 (Subject Component), 363
8.13 (Observer Label Widget), 364
8.14 (Price Observer Label Widget), 364
8.15 (Tax Observer Label Widget), 365
8.16 (Observer Client), 365
8.17 (Broadcasters Example), 367
8.18 (Extension Point Example), 371
8.19 (Modified Extension Point

Example), 372
8.20 (Active File Example), 376

516 INDEX

8.21 (Active File Template), 379
8.22 (Active File Generator), 380
9.1 (Discovery Mechanism), 393
9.2 (Engine Metadata), 394
9.3 {getScriptEngine() Method

Example}, 395
9.4 {getEngineByName() Method

Example}, 397
9.5 {getEngineByExtension() Method

Example}, 398
9.6 (Register Engine Example), 399
9.7 (Evaluating Script Contained in a

String), 400
9.8 (Evaluating Script Contained in a

File), 401
9.9 (Handling Script Evaluation

Result), 402
9.10 (Handling ScriptException), 403
9.11 (Binding Example), 406
9.12 (Overriding the Engine Scope), 407
9.13 (Advanced Binding Example—Java

Application), 408
9.14 (Reserved Keys), 411
9.15 (Global Scope Example), 412
9.16 (Variables Overriding—An

Example), 413
9.17 (ScriptEngineManager’s Shortcut

Methods), 414
9.18 (Global Scope Initialization), 415
9.19 (Namespace Example), 416
9.20 (Evaluating a Script in the Script

Context), 418
9.21 (Determining the Attribute’s

Scope), 420
9.22 (Obtaining an Attribute from the

Desired Scope), 421
9.23 (Modifying Attributes in script—

Script), 422
9.24 (Modifying Attributes in script—

Java Application), 422
9.25 (Defining a Custom

Namespace), 424

9.26 (Custom Application Context), 424
9.27 (Using Custom Application

Context), 426
9.28 (Custom Engine Writer

Example), 427
9.29 (Output Statement), 429
9.30 (Method Call Syntax), 430
9.31 (Program Example), 431
9.32 (Invocable Example), 433
9.33 (Method Call), 435
9.34 (Interfaces), 436
9.35 (Compilable), 438
9.36 (Threading), 441
9.37 (Example php.ini

Configuration), 442
9.38 (Dynamic Binding—Java

Objects), 443
9.39 (Dynamic Binding—Java

Classes), 443
10.1 (Sample Web Application

Descriptor), 454
10.2 (Accessing Application

Context), 463
10.3 (HTTP Request Handling—HTML

Form), 465
10.4 (HTTP Request Handling—PHP

Script), 466
10.5 (Including Resources), 470
10.6 (Request Forwarding), 471
10.7 {Session Handling—Login Form

(form.jsp)}, 474
10.8 (Session Handling—Login

Servlet), 475
10.9 (Session Handling—PHP

Script), 477
10.10 (Language Tags—Original Groovy

Script), 479
10.11 (Language Tags—Configuration),

480
10.12 (Language Tags—Groovy

Script), 481
10.13 (PHP to Java—PHP Class), 484

INDEX 517

10.14 (PHP to Java—Factory Class), 485
10.15 (PHP to Java—Client Code), 486
10.16 (PHP to Java—Java Class), 486
10.17 (PHP to Java—Modified Factory

Class), 487
lists, Groovy, 149-151
Lists listing (4.11), 150
LiveScript, 65
Loading Groovy Scripts as Java Classes

listing (4.45), 187
logical branching, Groovy, 154-156
lookupBean() method, 266
looping, Groovy, 156-158
loops, for loop, BeanShell, 88-89
loose methods, 134
loose typing, Groovy, 138-140
Loose Typing listing (4.5), 138
loosely defined methods, 91
loosely typed syntax, BeanShell, 87
Loui, Ronald, 71
LucasArts, 69

M
machine instructions, 4-5
machine language, 5
main() method, 134, 295, 304
Make tool, 51
make() method, 222
Makefiles, 52
management, scripting, 55-58, 328-334
manager initialization, BSF (Bean

Scripting Framework), 252
manuals, BeanShell, 98
maps, Groovy, 152-153
Maps listing (4.13), 153
Markup syntax, Groovy, 223-236
McIlroy, Doug, 40
Mediator Client listing (8.7), 350
Mediator Implementation listing (8.6), 349
Mediator Interface listing (8.2), 346
mediator scripting pattern, 341

consequences, 345
problem, 341-342

related patterns, 354
sample code, 345-354
solution, 342-345

Mediator-Aware Widget Abstraction
listing (8.3), 346

metadata, engine metadata, Scripting API,
393, 395

method arguments, functions as, 21, 23
Method Call Example listing (6.6), 262
Method Call listing (9.33), 435
Method Call Syntax listing (9.30), 430
method closure, 92
method code syntax, Scripting API,

429-431
method overloading, 139
methods

addClassPath(), 324
any() method, 175-177
append(), 181
apply(), 263-264
assertArrayEquals(), 298
assertContains(), 299
assertEquals(), 294
assertLength(), 298
assertScript(), 299
assertToString(), 299
BeanShell, 91-92
BSF (Bean Scripting Framework),

259-264
call(), 169, 260
changed(), 347
closures, curly braces, 172
collect() method, 173
compile(), 275
compileExpr(), 272
currentThread(), 444
declareBean(), 268-269
doSomeAction(), 374
each(), 211
each() method, 171-172
eachByte(), 180
eachFile(), 182

518 INDEX

eachFileRecurse(), 182
eachLine(), 179
eachRow(), 202-203
eval(), 96, 400-404
evaluate(), 184
every() method, 175
exec(), 270
execute(), 205-206
executeUpdate(), 204-205
exportAsCSV(), 377
exportAsSQL(), 377
exportAsXML(), 377
fail(), 294
filter(), 22
find() method, 174
findAll(), 211-212
findAll() method, 174-175
forward() method, 471-473
frame(), 237
get(), 95
getBindings(), 412
getComponent(), 347
getEngineByExtension(), 398
getEngineByMimeType(), 398
getEngineByName(), 397
getInterface(), 97
getLanguageName(), 394
getMethodCallSyntax(), 429-431
getOutputStatement(), 429
getScriptEngine(), 395-396
getter/setter methods, 165
getText(), 178
include() method, 469-471
Incovable interface, 434-437
inject() method, 173-174
invoice(), 92
invokeFunction(), 434
isCase(), 155-156
lookupBean(), 266
loosely defined methods, 91
main(), 134, 295, 304
make(), 222

method closure, 92
method overloading, 139
notifyObservers(), 363
panel(), 237
put(), 406
readBytes(), 181
readLines(), 179
registerBean(), 266, 268
registerEngineExtension(), 399
registerEngineMimeType(), 399
registerEngineName(), 399
run(), 134
script(), 95
select(), 22
sendError(), 468
set(), 95
setBindings(), 407
setChanged(), 363
setClassPath(), 324
setEmail(), 308
setPrice(), 363
setUp(), 294
shouldFail(), 299
show(), 350
showDialog(), 346, 350
sleep(), 444
source(), 95-96
splitEachLine(), 180
Sql.loadDriver(), 199-200
standalone methods, 134
termination(), 134
testAnimal(), 156
testInit(), 294
testIteration(), 294
unregisterBean(), 266
update(), 238, 364
valueChanged(), 348
waitFor(), 183
widgetChanged(), 346, 348, 350
write(), 181

modes, BeanShell, 84
Modified Compile Example

listing (6.16), 273

INDEX 519

Modified Compile Example—Result
listing (6.17), 274

Modified Extension Point Example
listing (8.19), 372

Modified Mediator Component
listing (8.9), 353

Modifying Attributes in script—Java
Application listing (9.24), 422

Modifying Attributes in script—Script
listing (9.23), 422

mod_perl, 62
Mythical Man-Month: Essays on Software

Engineering, The, 48

N
named parameters, GroovyBeans, 166-167
Namespace Example listing (5.29), 234
Namespace Example listing (9.19), 416
NamespaceBuilder, Groovy, 234
Namespaces, 234

custom namespaces, 423-427
script context, 416-419

native types, programming languages, 14
navigation

objects, GroovyBeans, 167
save navigation, GroovyBeans, 168

Netscape Navigator, Javagator project, 110
NodeBuilder, Groovy, 227-229
NodeBuilder Example listing (5.24), 227
notifyObservers() method, 363

O
O’Reilly, Tim, 61
object-oriented programming (OOP)

languages, 40
object-oriented technology (OOT), 40
Object-Relational Mapping (ORM)

tools, 196
objects

BeanShell, 92
creating, GroovySQL, 199-207
GroovyBeans, navigation, 167
GString objects, Groovy, 145-146

ObjectScript, 123
Observer Client listing (8.16), 365
Observer Label Widget listing (8.13), 364
observer pattern, 359

consequences, 362
problem, 359-360
related patterns, 369
sample code, 362-369
solution, 360-362

Obtaining an Attribute from the Desired
Scope listing (9.22), 421

OOP (object-oriented programming)
language, 40

OOT (object-oriented technology), 40
operators, overloading, Groovy, 162-164
operands, 4
operartion code, 4
Operator Overloading listing (4.20), 164
Operators listing (4.19), 163
ORM (Object-Relational Mapping)

tools, 196
Ousterhout, John K., 37
out variable (Groovlet), 214
Output Statement listing (9.29), 429
output statements, Scripting API, 429
over() function, 21
overloading operators, Groovy, 162-164
overloading methods, 139
overriding

engine scope, 407-409
variables, global scope, 413-414

Overriding the Engine Scope
listing (9.12), 407

P
panel() method, 237
parameters, named parameters,

GroovyBeans, 166-167
Parsing Documents with DomBuilder

listing (5.27), 232
patterns, scripting, 335-337

active file pattern, 375-380
extension point pattern, 369-374

520 INDEX

mediator pattern, 341-354
observer pattern, 359-369
script object factory pattern, 354-359
scripted components pattern, 337-341

Perl programming language, 43
web applications, 61-62

Pettichord, Bret, 55
PHP, 386

classes, 484
client code, 486
factory class, 486-487
web applications, 62-64

PHP to Java—Client Code
listing (10.15), 486

PHP to Java—Factory Class
listing (10.14), 485

PHP to Java—Java Class
listing (10.16), 486

PHP to Java—Modified Factory Class
listing (10.17), 487

PHP to Java—PHP Class
listing (10.13), 484

polymorphism, 139
Groovy, 139-140

Portraits of Open Source Pioneers, 68
Pragmatic Unit Testing in Java with

JUnit, 53
prepared statements, GroovySQL, 206-207
Price Observer Label Widget

listing (8.14), 364
primitive types, programming

languages, 14
print() command (BeanShell), 91
printColor() function, 140
problems

active file pattern, 375
extension point pattern, 369
mediator scripting pattern, 341-342
observer pattern, 359-360
script object factory pattern, 355
scripted components pattern, 337-338

procedures, stored procedures, GroovySQL,
207-208

Process Handling listing (4.42), 183
processes, system operations, Groovy,

182-183
processors

machine instructions, execution of, 4
machine language, 5

production environment, source code,
12-13

Program Example listing (9.31), 431
programmatic binding, 442
programming. See also scripting

extreme programming, 33-35
Java

administration, 328-334
Ant scripting, 309-322
interactive debugging, 304-309
management, 328-334
shell scripting, 323-328
unit testing, 292-304

UNIX, 40
user interface programming, 58-59

programming languages. See also scripting
languages
assembly languages, 5
BeanShell, 83-98, 126
compilers, 6
Groovy, 80, 120-121, 125, 194-195

advantages of, 126
configuring, 492
downloading, 491
Groovlets, 212-219
GroovySQL, 196-212
IDE support, 495-497
installing, 127, 491-492
Markup syntax, 223-236
Swing user interfaces, 236-243
templates, 220-223
testing, 492-493

high-level languages, 6
Java, 80
JRuby, 122
JudoScript, 122

INDEX 521

JVM (Java Virtual Machine), using in,
82-83

Jython, 98-109, 126
ObjectScript, 123
OOP (object-oriented programming)

languages, 40
Python, 98-109, 126
Rhino, 110-114, 116-120
second-generation programming

languages, 5
Tcl/Java, 122
third-generation programming

languages, 6
typing, 13, 15

composite types, 14
dynamic typing, 15-16
native types, 14
user-defined types, 14
weak typing, 17

programs
computer programs, 5
Scripting API, 431-432

project building, scripting languages,
51-53

properties, GroovyBeans, 165-166
prototyping models, 44-48

evolutionary prototyping, 46
Python, 47-48
throwaway prototyping, 45-46

put() method, 406
Python scripting language, 18, 47-48,

98-109, 126
Java, embedding with, 108-109
scripting

basic syntax, 101-103
exception handling, 107-108
in Java, 103-105
interface implementation, 105-107

Q-R
Quartz scheduler, 330-334
Quartz Scheduler Configuration Example

listing (7.19), 332

queries, database queries, GroovySQL,
202-205

ranges, Groovy, 151-152
Ranges listing (4.12), 151
readBytes() method, Groovy, 181
readBytes() Method listing (4.37), 181
readers, 427-428
readLines() method, Groovy, 179
readLines() Method listing (4.34), 179
refactoring, 33
Register Bean Example—Java Application

listing (6.9), 267
Register Bean Example—JavaBean

Definition listing (6.8), 266
Register Bean Example—Script

listing (6.10), 267
Register Engine Example listing (9.6), 399
registerBean() method, 266, 268
registerEngineExtension() method, 399
registerEngineMimeType() method, 399
registerEngineName() method, 399
registering

beans, BSF (Bean Scripting Framework),
265-268

scripting engines, Scripting API, 399
scripting languages, BSF (Bean

Scripting Framework), 249-252
regular expressions (regex), Groovy,

146-148
Regular Expressions listing (4.10), 147
request forwarding, Web Scripting

Framework, 471-473
Request Forwarding listing (10.6), 471
request handling, Web Scripting

Framework, 464-467
request scope, Web environments, 448
request variable (Groovlet), 214
Reserved Keys listing (9.14), 411
resource handling, closures, Groovy,

176-177
Resource Handling with Closures

listing (4.31), 176

522 INDEX

responses, Web Scripting Framework, 468
results, Web Scripting Framework,

displaying, 460-462
reversed keys, 410-411
Rhino, 80, 110-120

downloading, 110
Java, embedding with, 114-120
scripting

in Java, 111-112
interface implementation, 112-114
JavaAdapter class, 114

RI (Reference Implementation)
JSR 223 RI, installing, 499-502

robustness, scripting languages, 29-32
run() method, 134
running

BeanShell, 84
scripts, Groovy, 127-130

runtime performance, code, 26-28

S
safe navigation, GroovyBeans, 168
Safe Navigation listing (4.22), 168
Sample Web Application Descriptor

listing (10.1), 454
SAX Handler Example listing (5.25), 230
SaxBuilder, Groovy, 230-231
SaxBuilder listing (5.26), 231
script context

attributes, 419-423
binding, Scripting API, 416-428
namespaces, 416-419

script directory, Web Scripting Framework,
457-458

script files
BSF (Bean Scripting Framework),

executing, 257-259
Groovy, evaluating, 129-130

Script Job Example listing (7.18), 330
script methods, Web Scripting

Framework, 458

script object factory pattern, 354
consequences, 356
problem, 355
related patterns, 359
sample code, 356-359
solution, 355

script() method, 95
Scripted Component Pattern Example

listing (8.1), 340
scripted components pattern, 337

consequences, 339
problem, 337-338
related patterns, 341
sample code, 340-341
solution, 338-339

Scripted Object Factory Pattern Example
listing (8.11), 357

ScriptEngineManager class, shortcut
methods, 414-415

ScriptEngineManager’s Shortcut Methods
listing (9.17), 414

ScriptException, handling, 403-404
scripting. See also programming

administration, 328-334
BeanShell, 83-98

autoboxing, 89-90
basic syntax, 86-87
commands, 91
embedding, 94-98
for loop, 88-89
interface implementation, 93-94
JavaBeans, 88
loosely typed syntax, 87
methods, 91-92
objects, 92
switch-case statement, 90
Workspace Editor, 85

design patterns, 335-337
active file pattern, 375-380
extension point pattern, 369-374
mediator pattern, 341-354
observer pattern, 359-369

INDEX 523

script object factory pattern,
354-359

scripted components pattern,
337-341

Jython, 98-109
management, 328-334
Python, 98-109

basic syntax, 101-103
embedding, 108-109
exception handling, 107-108
in Java, 103-105
interface implementation, 105-107

Rhino, 110-120
embedding, 114-120
in Java, 111-112
interface implementation, 112-114
JavaAdapter class, 114

shell scripting, 323-328
system programming, 26-35

hybrids, 35-36
Web Scripting Framework, disabling,

456-457
Scripting API, 94, 385, 388-391

architecture, 391
binding, 404-411

dynamic binding, 442-444
engine scope, 405-411
global scope, 411-416
script context, 416-428

BSF, compared, 445
code generation, 428

method call syntax, 429-431
output statement, 429
programs, 431-432

discovery mechanism, 391-393
engine interfaces, 432

Compilable interface, 437-440
Incovable interface, 432-437

engine metadata, 393, 395
General Scripting API, 389
origins of, 386-388
script, evaluating, 400-404

scripting engines
creating, 395-398
registering, 399

threading, 440-442
Web Scripting API, 389
Web Scripting Framework, 447,

453-456
architecture, 448-453, 482-488
bindings, 462-469
configuring, 456-462
forward() method, 471-473
include() method, 469-471
language tags, 478-481
session handling, 473-478
threading, 481-482

scripting engines
creating, Scripting API, 395-398
registering, Scripting API, 399

scripting environments, BSF (Bean
Scripting Framework), 245-246
applications, 275-285, 287
architecture, 248-249
bean declaration, 268-270
bean registration, 265-268
compilation, 270-275
data binding, 264-270
downloading, 247
engine initialization, 252
exception handling, 255
functions, 259-264
manager initialization, 252
methods, 259-264
origins of, 247
script files, 257-259
scripting language registration, 249-252
scripts, 253-257

scripting languages, 4-24. See also
programming languages
administration, 55-58
BeanShell, 83-98, 126
closures, 20
code as data, 19-23

524 INDEX

compilers, 8-12
customization, 49-51
data structures, 17-19
embedding, 70
extensiblity, 70-71
functions, as method arguments, 21-23
Groovy, 120-121, 125, 194-195

advantages of, 126
configuring, 492
downloading, 491
Groovlets, 212-219
GroovySQL, 196-212
IDE support, 495-497
installing, 127, 491-492
Markup syntax, 223-236
Swing user interfaces, 236-243
templates, 220-223
testing, 492-493

interpreters, 8-12
Java

API (application programming
interface), 80-82

architecture, 80-82
class files, 80
JVM (Java Virtual Machine), 80-82
programming language, 80

JRuby, 122
JudoScript, 122
JVM (Java Virtual Machine), using in,

82-83
Jython, 98-109, 126
learnability, 71-72
management, 55-58
ObjectScript, 123
Perl, 43
prototyping models, 44-48

evolutionary prototyping, 46
Pyhton, 47-48
throwaway prototyping, 45-46

Pyhton, 126
Python, 18, 98-109
registering, BSF (Bean Scripting

Framework), 249-252

Rhino, 110-114, 116-120
software development support, 51-55

project building, 51-53
testing, 53, 55

source code, production environment,
12-13

Tcl (Tool Command Language), 37-38,
43-44

Tcl/Java, 122
typing, 13, 15

composite types, 14
dynamic typing, 15-16
native types, 14
user-defined types, 14
weak typing, 17

UNIX shell languages, 41
user interface programming, 58-59
virtual machines, 24-25
web applications, 59, 61-67

ASP (Activer Server Pages), 64
games, 68-69
JavaScript, 65-67
Perl, 61-62
PHP, 62-64
UNIX, 68

wiring, 40-44
UNIX shell languages, 42

scripts
evaluating, Scripting API, 400-404
Groovy

command-line arguments, 136
compiling, 130-133
dependencies, 131
running, 127-130
structure, 133-136

unit testing, 303-304
working with, BSF (Bean Scripting

Framework), 253-257
SCUMM (Script Creation Utility for Maniac

Mansion), 69
second-generation programming

languages, 5

INDEX 525

security, Groovy, 190-194
Security Example listing (4.47), 191
Security Policy listing (4.48), 191
select() method, 22
sendError() method, 468
servers, web servers, Apache Web

server, 62
servlets, Web Scripting Framework

architecture, 449-451
session handling, Web Scripting

Framework, 473-478
Session Handling—Login Form (form.jsp)

listing (10.7), 474
Session Handling—Login Servlet

listing (10.8), 475
Session Handling—PHP Script

listing (10.9), 477
session scope, Web environments, 448
session variable (Groovlet), 215
set() method, 95
setBindings() method, 407
setChanged() method, 363
setClassPath() method, 324
setEmail() method, 308
setPrice() method, 363
setting classpaths, Groovy, 131-132
setUp() method, 294
shell languages, UNIX, 41-42
shell scripting, 323-328
Shell Scripting Example listing (7.16), 327
shortcut methods, ScriptEngineManager

class, 414-415
shouldFail() method, 299
show() method, 350
showDialog() method, 346, 350
Simple XSLT Transformation

listing (6.21), 281
single inheritance model, Java, 78
sleep() method, 444
Smith, Ben, 61

software development support, scripting
languages, 51-55
project building, 51-53
testing, 53-55

solutions
active file pattern, 375
extension point pattern, 370
mediator scripting pattern, 342-345
observer pattern, 360-362
script object factory pattern, 355
scripted components pattern, 338-339

someFunc() function, 103
source code, production environment,

12-13
source() method, 95-96
splitEachLine() method, Groovy, 180
splitEachLine() Method listing (4.35), 180
SQL Object Creation Alternatives

listing (5.2), 199
Sql.loadDriver() method, GroovySQL,

199-200
Sql.loadDriver() Method listing (5.3), 199
standalone methods, 91, 134
statements

Groovy, 138
prepared statements, GroovySQL,

206-207
switch-case statement, BeanShell, 90

Stored Procedure Call listing (5.12), 208
Stored Procedure listing (5.11), 207
stored procedures, GroovySQL, 207-208
strings, Groovy, 143-145

GStrings, 145-146
strongly typed languages, 17
structure, scripts, Groovy, 133, 135-136
Subject Component listing (8.12), 363
Swing user interfaces

TableLayout component, 239-240
TableModel component, 241-243

SwingBuilder, Groovy, 236-243
SwingBuilder listing (5.31), 237
switch-case statement, BeanShell, 90

526 INDEX

switch-case structure, Groovy, 154-156
switch-case Structure listing (4.14), 154
switches, jythonc, 101
syntax

BeanShell
autoboxing, 89-90
basic syntax, 86-87
for loop, 88-89
JavaBeans, 88
loosely typed syntax, 87
switch-case statement, 90

Groovy, 137-177
Python, basic syntax, 101-103

system operations, Groovy, 178
files, 178-182
processes, 182-183

system programming, scripting
compared, 26-35
hybrids, 35-36

T
TableLayout component (Swing), 239-240
TableLayout listing (5.32), 239
TableModel component (Swing), 241-243
TableModel listing (5.33), 241
Tag Library Descriptor (TLD) file, 278
tags, language tags, Web Scripting

Framework, 478-481
Tax Observer Label Widget listing (8.15),

365
Tcl (Tool Command Language), 37-38,

43-44
Tk extension, 58-59

Tcl Blend, 122
Tcl/Java, 122
TDD (test-driven development), 33
Template Example listing (5.20), 222
templates, Groovy templates, 220-223
termination() method, 134
test suites, unit testing, 300-303
test-driven development (TDD), 33
testAnimal() method, 156

testing
Groovy, 492-493
scripting languages, 53-55

testInit() method, 294
testIteration() method, 294
TestSuite Example listing (7.9), 300
Thinking in Java, 30
third-generation programming

languages, 6
Thomas, Dave, 53
threading

Java, 77
Scripting API, 440-442
Web Scripting Framework, 481-482

Threading listing (9.36), 441
throwaway prototyping, 45-46
Tk extension (Tcl), 58-59
TLD (Tag Library Descriptor) file, 278
Tool Command Language (Tcl). See Tcl

(Tool Command Language)
transactions, GroovySQL, 208-209
Transactions listing (5.13), 208
triple-quote syntax, Groovy, 144-145
Triple-Quote Syntax listing (4.8), 144
type juggling, Groovy, 140-143
type theory, 13
types, classes, 14
typing

dynamic typing, Groovy, 139-140
loose typing, Groovy, 138-140
programming languages, 13, 15

composite types, 14
dynamic typing, 15-16
native types, 14
user-defined types, 14
weak typing, 17, 138

U
unified resource locators (URLs), 60
unit testing, 292-293

assertion methods, 297-300
GroovyTestCase class, 296-297
JUnit, 293-295

INDEX 527

scripts, 303-304
test suites, 300-303

UNIX
programming, 40
scripting, 68
shell languages, 41-42

unregisterBean() method, 266
update() method, 238, 364
updateObservers() method, 364
upper() function, 102
URLs (unified resource locators), 60
user interface programming, 58-59
user manuals, BeanShell, 98
user-defined class loaders (JVM), 82
user-defined types, programming

languages, 14
Using Custom Application Context

listing (9.27), 426

V
valueChanged() method, 348
van Rossum, Guido, 32, 48
variables

global scope, overriding, 413-414
Groovlets, 214

Variables Overriding—An Example
listing (9.16), 413

VBA (Visual Basic for Applications), 50-51
Venners, Bill, 36
virtual machines, 7

scripting languages, 24-25
Visual Basic for Applications (VBA), 50-51

W
waitFor() method, 183
weak typing, 17, 138
weakly typed languages, 17
web applications, 59, 61-67

ASP (Activer Server Pages), 64
games, 68-69
JavaScript, 65-67
Perl, 61-62

PHP, 62-64
UNIX, 68

Web Scripting API, 389
Web Scripting Framework, 447, 453-456

architecture, 448, 482-488
context, 448-449
interaction, 451-453
servlet, 449-451

bindings, 462
application, 462-464
request handling, 464-467
response, 468
servlet, 468-469

configuring, 456-462
forward() method, 471-473
include() method, 469-471
language tags, 478-481
languages, allowing, 459
results, displaying, 460-462
script directory, 457-458
script methods, 458
scripting, disabling, 456-457
session handling, 473-478
threading, 481-482

web servers, Apache Web servers, 62
widgetChanged() method, 346, 348, 350

528 INDEX

wiring scripting languages, 40-44
Perl, 43
Tcl (Tool Command Language), 43-44
UNIX shell languages, 41-42

Workspace Editor, BeanShell, 85
write() method, Groovy, 181
write() Method listing (4.38), 181
writers, engine writers, 427-428
WWW (World Wide Web), 59

HTML (Hypertext Markup Language), 60
HTTP (HyperText Transfer Protocol), 60
hypertext, 60
URLs (unified resource locators), 60

X–Z
Xalan-J (XSLT), BSF (Bean Scripting

Framework), 280-287
Xalan-J BSF Example listing (6.24), 285
Xalan-J Extension Example

listing (6.23), 283
XHTML Markup Example

listing (5.23), 226
XPath (XML Path Language), 280
XSLT (Extensible Stylesheet Language

Transformation), 280

If you are interested in writing a book or reviewing
manuscripts prior to publication, please write to us at:

Editorial Department
Addison-Wesley Professional
75 Arlington Street, Suite 300
Boston, MA 02116 USA
Email: AWPro@aw.com

Visit us on the Web: http://www.awprofessional.com

You may be eligible to receive:

• Advance notice of forthcoming editions of the book

• Related book recommendations

• Chapter excerpts and supplements of forthcoming titles

• Information about special contests and promotions

throughout the year

• Notices and reminders about author appearances,

tradeshows, and online chats with special guests

at www.awprofessional.com/register

www.awprofessional.com/register
http://www.awprofessional.com

	Scripting in java
	CONTENTS
	PREFACE
	PART I
	CHAPTER 1 INTRODUCTION TO SCRIPTING
	BACKGROUND
	DEFINITION OF A SCRIPTING LANGUAGE
	SCRIPTING LANGUAGES AND VIRTUAL MACHINES
	A COMPARISON OF SCRIPTING AND SYSTEM PROGRAMMING
	THE HYBRID APPROACH
	A CASE FOR SCRIPTING
	CONCLUSION

	CHAPTER 2 APPROPRIATE APPLICATIONS FOR SCRIPTING LANGUAGES
	WIRING
	PROTOTYPING
	CUSTOMIZATION
	SOFTWARE DEVELOPMENT SUPPORT
	ADMINISTRATION AND MANAGEMENT
	USER INTERFACE PROGRAMMING
	USE CASES
	ADDITIONAL CHARACTERISTICS
	CONCLUSION

	PART II
	CHAPTER 3 SCRIPTING LANGUAGES INSIDE THE JVM
	UNDER THE HOOD
	SCRIPTING LANGUAGE CONCEPTS
	BEANSHELL
	JYTHON
	RHINO
	GROOVY
	OTHER SCRIPTING LANGUAGES
	CONCLUSION

	CHAPTER 4 GROOVY
	WHY GROOVY?
	INSTALLATION
	RUNNING GROOVY SCRIPTS
	COMPILING GROOVY SCRIPTS
	SCRIPT STRUCTURE
	LANGUAGE SYNTAX
	SYSTEM OPERATIONS
	EMBEDDING WITH JAVA
	SECURITY
	CONCLUSION

	CHAPTER 5 ADVANCED GROOVY PROGRAMMING
	GROOVYSQL
	GROOVLETS
	GROOVY TEMPLATES
	GROOVYMARKUP
	GROOVY AND SWING
	CONCLUSION

	CHAPTER 6 BEAN SCRIPTING FRAMEWORK
	INTRODUCTION TO THE BEAN SCRIPTING FRAMEWORK
	GETTING STARTED
	BASIC CONCEPTS
	WORKING WITH SCRIPT FILES
	METHODS AND FUNCTIONS
	DATA BINDING
	COMPILATION
	APPLICATIONS
	CONCLUSION

	PART III
	CHAPTER 7 PRACTICAL SCRIPTING IN JAVA
	UNIT TESTING
	INTERACTIVE DEBUGGING
	BUILD TOOLS (ANT SCRIPTING)
	SHELL SCRIPTING
	ADMINISTRATION AND MANAGEMENT
	CONCLUSION

	CHAPTER 8 SCRIPTING PATTERNS
	SCRIPTED COMPONENTS PATTERN
	MEDIATOR PATTERN (GLUE CODE PATTERN)
	SCRIPT OBJECT FACTORY PATTERN
	OBSERVER (BROADCASTERS) PATTERN
	EXTENSION POINT PATTERN
	ACTIVE FILE PATTERN
	CONCLUSION

	PART IV
	CHAPTER 9 SCRIPTING API
	MOTIVATION AND HISTORY
	INTRODUCTION
	GETTING STARTED
	ARCHITECTURE
	DISCOVERY MECHANISM
	ENGINE METADATA
	CREATING AND REGISTERING SCRIPTING ENGINES
	EVALUATION
	ScriptException
	BINDING
	CODE GENERATION
	ADDITIONAL ENGINE INTERFACES
	THREADING
	DYNAMIC BINDINGS
	CONCLUSION

	CHAPTER 10 WEB SCRIPTING FRAMEWORK
	ARCHITECTURE
	GETTING STARTED
	CONFIGURATION
	BINDINGS
	INCLUDE METHOD
	FORWARD METHOD
	SESSION SHARING
	LANGUAGE TAGS
	THREADING ISSUES
	ARCHITECTURAL CHALLENGES
	CONCLUSION

	PART V
	APPENDIX A: GROOVY INSTALLATION
	DOWNLOAD INSTRUCTIONS
	INSTALLING GROOVY
	CONFIGURING GROOVY
	TESTING GROOVY

	APPENDIX B: GROOVY IDE SUPPORT
	INSTALLATION
	USAGE

	APPENDIX C: INSTALLING JSR 223
	REQUIREMENTS
	INSTALLATION

	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K-L
	M
	N
	O
	P
	Q-R
	S
	T
	U
	V
	W
	X–Z

