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PREFACE

Our understanding of the fundamental processes of the natural world is based
to a large extent on partial differential equations. Examples are the vibrations
of solids, the flow of fluids, the diffusion of chemicals, the spread of heat,
the structure of molecules, the interactions of photons and electrons, and the
radiation of electromagnetic waves. Partial differential equations also play a
central role in modern mathematics, especially in geometry and analysis. The
availability of powerful computers is gradually shifting the emphasis in partial
differential equations away from the analytical computation of solutions and
toward both their numerical analysis and the qualitative theory.

This book provides an introduction to the basic properties of partial dif-
ferential equations (PDEs) and to the techniques that have proved useful in
analyzing them. My purpose is to provide for the student a broad perspective
on the subject, to illustrate the rich variety of phenomena encompassed by
it, and to impart a working knowledge of the most important techniques of
analysis of the solutions of the equations.

One of the most important techniques is the method of separation of
variables. Many textbooks heavily emphasize this technique to the point of
excluding other points of view. The problem with that approach is that only
certain kinds of partial differential equations can be solved by it, whereas
others cannot. In this book it plays a very important but not an overriding
role. Other texts, which bring in relatively advanced theoretical ideas, require
too much mathematical knowledge for the typical undergraduate student. I
have tried to minimize the advanced concepts and the mathematical jargon
in this book. However, because partial differential equations is a subject at
the forefront of research in modern science, I have not hesitated to mention
advanced ideas as further topics for the ambitious student to pursue.

This is an undergraduate textbook. It is designed for juniors and seniors
who are science, engineering, or mathematics majors. Graduate students, es-
pecially in the sciences, could surely learn from it, but it is in no way conceived
of as a graduate text.

The main prerequisite is a solid knowledge of calculus, especially mul-
tivariate. The other prerequisites are small amounts of ordinary differential
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vi PREFACE

equations and of linear algebra, each much less than a semester’s worth. How-
ever, since the subject of partial differential equations is by its very nature not
an easy one, I have recommended to my own students that they should already
have taken full courses in these two subjects.

The presentation is based on the following principles. Motivate with
physics but then do mathematics. Focus on the three classical equations:
All the important ideas can be understood in terms of them. Do one spa-
tial dimension before going on to two and three dimensions with their more
complicated geometries. Do problems without boundaries before bringing in
boundary conditions. (By the end of Chapter 2, the student will already have
an intuitive and analytical understanding of simple wave and diffusion phe-
nomena.) Do not hesitate to present some facts without proofs, but provide the
most critical proofs. Provide introductions to a variety of important advanced
topics.

There is plenty of material in this book for a year-long course. A quarter
course, or a fairly relaxed semester course, would cover the starred sections
of Chapters 1 to 6. A more ambitious semester course could supplement the
basic starred sections in various ways. The unstarred sections in Chapters 1
to 6 could be covered as desired. A computational emphasis following the
starred sections would be provided by the numerical analysis of Chapter 8. To
resume separation of variables after Chapter 6, one would take up Chapter 10.
For physics majors one could do some combination of Chapters 9, 12, 13, and
14. A traditional course on boundary value problems would cover Chapters
1, 4, 5, 6, and 10.

Each chapter is divided into sections, denoted A.B. An equation num-
bered (A.B.C) refers to equation (C) in section A.B. A reference to equation
(C) refers to the equation in the same section. A similar system is used for
numbering theorems and exercises. The references are indicated by brackets,
like [AS].

The help of my colleagues is gratefully acknowledged. I especially thank
Yue Liu and Brian Loe for their extensive help with the exercises, as well as
Costas Dafermos, Bob Glassey, Jerry Goldstein, Manos Grillakis, Yan Guo,
Chris Jones, Keith Lewis, Gustavo Perla Menzala, and Bob Seeley for their
suggestions and corrections.

Walter A. Strauss



PREFACE TO
SECOND EDITION

In the years since the first edition came out, partial differential equations has
become yet more prominent, both as a model for scientific theories and within
mathematics itself. In this second edition I have added 30 new exercises. Fur-
thermore, this edition is accompanied by a solutions manual that has answers
to about half of the exercises worked out in detail. I have added a new section
on water waves as well as new material and explanatory comments in many
places. Corrections have been made wherever necessary.

I would like to take this opportunity to thank all the people who have
pointed out errors in the first edition or made useful suggestions, includ-
ing Andrew Bernoff, Rustum Choksi, Adrian Constantin, Leonid Dickey,
Julio Dix, Craig Evans, A. M. Fink, Robert Glassey, Jerome Goldstein, Leon
Greenberg, Chris Hunter, Eva Kallin, Jim Kelliher, Jeng-Eng Lin, Howard
Liu, Jeff Nunemacher, Vassilis Papanicolaou, Mary Pugh, Stan Richardson,
Stuart Rogers, Paul Sacks, Naoki Saito, Stephen Simons, Catherine Sulem,
David Wagner, David Weinberg, and Nick Zakrasek. My warmest thanks go
to Julie and Steve Levandosky who, besides being my co-authors on the so-
lutions manual, provided many suggestions and much insight regarding the
text itself.
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1

WHERE PDEs
COME FROM

After thinking about the meaning of a partial differential equation, we will
flex our mathematical muscles by solving a few of them. Then we will see
how naturally they arise in the physical sciences. The physics will motivate
the formulation of boundary conditions and initial conditions.

1.1 WHAT IS A PARTIAL DIFFERENTIAL EQUATION?

The key defining property of a partial differential equation (PDE) is that there
is more than one independent variable x, y, . . . . There is a dependent variable
that is an unknown function of these variables u(x, y, . . . ). We will often
denote its derivatives by subscripts; thus ∂u/∂x = ux , and so on. A PDE is an
identity that relates the independent variables, the dependent variable u, and
the partial derivatives of u. It can be written as

F(x, y, u(x, y), ux (x, y), uy(x, y)) = F(x, y, u, ux , uy) = 0. (1)

This is the most general PDE in two independent variables of first order. The
order of an equation is the highest derivative that appears. The most general
second-order PDE in two independent variables is

F(x, y, u, ux , uy, uxx , uxy, uyy) = 0. (2)

A solution of a PDE is a function u(x, y, . . . ) that satisfies the equation
identically, at least in some region of the x, y, . . . variables.

When solving an ordinary differential equation (ODE), one sometimes
reverses the roles of the independent and the dependent variables—for in-

stance, for the separable ODE
du

dx
= u3. For PDEs, the distinction between

the independent variables and the dependent variable (the unknown) is always
maintained.

1



2 CHAPTER 1 WHERE PDEs COME FROM

Some examples of PDEs (all of which occur in physical theory) are:

1. ux + uy = 0 (transport)
2. ux + yuy = 0 (transport)
3. ux + uuy = 0 (shock wave)
4. uxx + uyy = 0 (Laplace’s equation)

5. utt − uxx + u3 = 0 (wave with interaction)
6. ut + uux + uxxx = 0 (dispersive wave)
7. utt + uxxxx = 0 (vibrating bar)

8. ut − iuxx = 0 (i = √−1) (quantum mechanics)

Each of these has two independent variables, written either as x and y or
as x and t. Examples 1 to 3 have order one; 4, 5, and 8 have order two; 6 has
order three; and 7 has order four. Examples 3, 5, and 6 are distinguished from
the others in that they are not “linear.” We shall now explain this concept.

Linearity means the following. Write the equation in the form lu = 0,
wherel is an operator. That is, if v is any function,lv is a new function. For
instance, l = ∂/∂x is the operator that takes v into its partial derivative vx .
In Example 2, the operator l is l = ∂/∂x + y∂/∂y. (lu = ux + yuy.) The
definition we want for linearity is

l(u + v) = lu + lv l(cu) = clu (3)

for any functions u, v and any constant c. Whenever (3) holds (for all choices
of u, v, and c), l is called linear operator. The equation

lu = 0 (4)

is called linear if l is a linear operator. Equation (4) is called a homogeneous
linear equation. The equation

lu = g, (5)

where g �= 0 is a given function of the independent variables, is called an
inhomogeneous linear equation. For instance, the equation

(cos xy2)ux − y2uy = tan(x2 + y2) (6)

is an inhomogeneous linear equation.
As you can easily verify, five of the eight equations above are linear

as well as homogeneous. Example 5, on the other hand, is not linear because
although (u + v)xx = uxx + vxx and (u + v)t t = utt + vt t satisfy property (3),
the cubic term does not:

(u + v)3 = u3 + 3u2v + 3uv2 + v3 �= u3 + v3.
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The advantage of linearity for the equation lu = 0 is that if u and v are
both solutions, so is (u + v). If u1, . . . , un are all solutions, so is any linear
combination

c1u1(x) + · · · + cnun(x) =
n∑

j=1

c j uj (x) (cj = constants).

(This is sometimes called the superposition principle.) Another consequence
of linearity is that if you add a homogeneous solution [a solution of (4)] to an
inhomogeneous solution [a solution of (5)], you get an inhomogeneous solu-
tion. (Why?) The mathematical structure that deals with linear combinations
and linear operators is the vector space. Exercises 5–10 are review problems
on vector spaces.

We’ll study, almost exclusively, linear systems with constant coefficients.
Recall that for ODEs you get linear combinations. The coefficients are the
arbitrary constants. For an ODE of order m, you get m arbitrary constants.

Let’s look at some PDEs.

Example 1.

Find all u(x, y) satisfying the equation uxx = 0. Well, we can integrate
once to get ux = constant. But that’s not really right since there’s another
variable y. What we really get is ux(x, y) = f (y), where f (y) is arbitrary.
Do it again to get u(x, y) = f (y)x + g(y). This is the solution formula.
Note that there are two arbitrary functions in the solution. We see this
as well in the next two examples. �

Example 2.

Solve the PDE uxx + u = 0. Again, it’s really an ODE with an extra
variable y. We know how to solve the ODE, so the solution is

u = f (y) cos x + g(y) sin x,

where again f (y) and g(y) are two arbitrary functions of y. You can easily
check this formula by differentiating twice to verify that uxx = −u. �

Example 3.

Solve the PDE uxy = 0. This isn’t too hard either. First let’s integrate in
x, regarding y as fixed. So we get

uy(x, y) = f (y).

Next let’s integrate in y regarding x as fixed. We get the solution

u(x, y) = F(y) + G(x),

where F ′ = f. �
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Moral A PDE has arbitrary functions in its solution. In these examples the
arbitrary functions are functions of one variable that combine to produce a
function u(x, y) of two variables which is only partly arbitrary.

A function of two variables contains immensely more information than
a function of only one variable. Geometrically, it is obvious that a surface
{u = f (x, y)}, the graph of a function of two variables, is a much more com-
plicated object than a curve {u = f (x)}, the graph of a function of one variable.

To illustrate this, we can ask how a computer would record a function
u = f (x). Suppose that we choose 100 points to describe it using equally spaced
values of x : x1, x2, x3, . . . , x100. We could write them down in a column, and
next to each xj we could write the corresponding value uj = f (xj ). Now how
about a function u = f (x, y)? Suppose that we choose 100 equally spaced
values of x and also of y: x1, x2, x3, . . . ,x100 and y1, y2, y3, . . . , y100. Each
pair xi , y j provides a value uij = f (xi , y j ), so there will be 1002 = 10,000
lines of the form

xi y j uij

required to describe the function! (If we had a prearranged system, we would
need to record only the values uij.) A function of three variables described
discretely by 100 values in each variable would require a million numbers!

To understand this book what do you have to know from calculus? Cer-
tainly all the basic facts about partial derivatives and multiple integrals. For
a brief discussion of such topics, see the Appendix. Here are a few things to
keep in mind, some of which may be new to you.

1. Derivatives are local. For instance, to calculate the derivative
(∂u/∂x)(x0, t0) at a particular point, you need to know just the values
of u(x, t0) for x near x0, since the derivative is the limit as x → x0.

2. Mixed derivatives are equal: uxy = uyx . (We assume throughout this book,
unless stated otherwise, that all derivatives exist and are continuous.)

3. The chain rule is used frequently in PDEs; for instance,

∂

∂x
[ f (g(x, t))] = f ′(g(x, t)) · ∂g

∂x
(x, t).

4. For the integrals of derivatives, the reader should learn or review Green’s
theorem and the divergence theorem. (See the end of Section A.3 in the
Appendix.)

5. Derivatives of integrals like I (t) = ∫ b(t)
a(t) f (x, t) dx (see Section A.3).

6. Jacobians (change of variable in a double integral) (see Section A.1).
7. Infinite series of functions and their differentiation (see Section A.2).
8. Directional derivatives (see Section A.1).
9. We’ll often reduce PDEs to ODEs, so we must know how to solve simple

ODEs. But we won’t need to know anything about tricky ODEs.
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EXERCISES

1. Verify the linearity and nonlinearity of the eight examples of PDEs given
in the text, by checking whether or not equations (3) are valid.

2. Which of the following operators are linear?
(a) lu = ux + xuy
(b) lu = ux + uuy

(c) lu = ux + u2
y

(d) lu = ux + uy + 1
(e) lu = √

1 + x2 (cos y)ux + uyxy − [arctan(x/y)]u
3. For each of the following equations, state the order and whether it

is nonlinear, linear inhomogeneous, or linear homogeneous; provide
reasons.
(a) ut − uxx + 1 = 0
(b) ut − uxx + xu = 0
(c) ut − uxxt + uux = 0
(d) utt − uxx + x2 = 0
(e) iut − uxx + u/x = 0
(f) ux (1 + u2

x )
−1/2 + uy(1 + u2

y)
−1/2 = 0

(g) ux + eyuy = 0
(h) ut + uxxxx + √

1 + u = 0
4. Show that the difference of two solutions of an inhomogeneous linear

equation lu = g with the same g is a solution of the homogeneous
equation lu = 0.

5. Which of the following collections of 3-vectors [a, b, c] are vector
spaces? Provide reasons.
(a) The vectors with b = 0.
(b) The vectors with b = 1.
(c) The vectors with ab = 0.
(d) All the linear combinations of the two vectors [1, 1, 0] and [2, 0, 1].
(e) All the vectors such that c − a = 2b.

6. Are the three vectors [1, 2, 3], [−2, 0, 1], and [1, 10, 17] linearly depen-
dent or independent? Do they span all vectors or not?

7. Are the functions 1 + x, 1 − x, and 1 + x + x2 linearly dependent or
independent? Why?

8. Find a vector that, together with the vectors [1, 1, 1] and [1, 2, 1], forms
a basis of R

3.
9. Show that the functions (c1 + c2 sin2x + c3 cos2x) form a vector space.

Find a basis of it. What is its dimension?
10. Show that the solutions of the differential equation u′′′ − 3u′′ + 4u = 0

form a vector space. Find a basis of it.
11. Verify that u(x, y) = f (x)g(y) is a solution of the PDE uuxy = ux uy for

all pairs of (differentiable) functions f and g of one variable.
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12. Verify by direct substitution that

un(x, y) = sin nx sinh ny

is a solution of uxx + uyy = 0 for every n > 0.

1.2 FIRST-ORDER LINEAR EQUATIONS

We begin our study of PDEs by solving some simple ones. The solution is
quite geometric in spirit.

The simplest possible PDE is ∂u/∂x = 0 [where u = u(x, y)]. Its general
solution is u = f (y), where f is any function of one variable. For instance,
u = y2 − y and u = ey cos y are two solutions. Because the solutions don’t
depend on x, they are constant on the lines y = constant in the xy plane.

THE CONSTANT COEFFICIENT EQUATION

Let us solve

aux + buy = 0, (1)

where a and b are constants not both zero.

Geometric Method The quantity aux + buy is the directional derivative of
u in the direction of the vector V = (a, b) = ai + bj. It must always be zero.
This means that u(x, y) must be constant in the direction of V. The vector
(b, −a) is orthogonal to V. The lines parallel to V (see Figure 1) have the
equations bx – ay = constant. (They are called the characteristic lines.) The
solution is constant on each such line. Therefore, u(x, y) depends on bx – ay
only. Thus the solution is

u(x, y) = f (bx − ay), (2)

where f is any function of one variable. Let’s explain this conclusion more
explicitly. On the line bx – ay = c, the solution u has a constant value. Call

Figure 1
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Figure 2

this value f (c). Then u(x, y) = f (c) = f (bx − ay). Since c is arbitrary, we
have formula (2) for all values of x and y. In xyu space the solution defines
a surface that is made up of parallel horizontal straight lines like a sheet of
corrugated iron.

Coordinate Method Change variables (or “make a change of coordinates”;
Figure 2) to

x ′ = ax + by y′ = bx − ay. (3)

Replace all x and y derivatives by x′ and y′ derivatives. By the chain rule,

ux = ∂u

∂x
= ∂u

∂x ′
∂x ′

∂x
+ ∂u

∂y′
∂y′

∂x
= aux ′ + buy′

and

uy = ∂u

∂y
= ∂u

∂y′
∂y′

∂y
+ ∂u

∂x ′
∂x ′

∂y
= bux ′ − auy′ .

Hence aux + buy = a(aux ′ + buy′) + b(bux ′ − auy′) = (a2 + b2)ux ′ . So,
since a2 + b2 �= 0, the equation takes the form ux ′ = 0 in the new (primed)
variables. Thus the solution is u = f (y′) = f (bx − ay), with f an arbitrary
function of one variable. This is exactly the same answer as before!

Example 1.

Solve the PDE 4ux − 3uy = 0, together with the auxiliary condition
that u(0, y) = y3. By (2) we have u(x, y) = f (−3x − 4y). This is
the general solution of the PDE. Setting x = 0 yields the equation
y3 = f (−4y). Letting w = −4y yields f (w) = −w3/64. Therefore,
u(x, y) = (3x + 4y)3/64.

Solutions can usually be checked much easier than they
can be derived. We check this solution by simple differen-
tiation: ux = 9(3x + 4y)2/64 and uy = 12(3x + 4y)2/64 so that
4ux − 3uy = 0. Furthermore, u(0, y) = (3 · 0 + 4y)3/64 = y3. �
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THE VARIABLE COEFFICIENT EQUATION

The equation

ux + yuy = 0 (4)

is linear and homogeneous but has a variable coefficient (y). We shall illustrate
for equation (4) how to use the geometric method somewhat like Example 1.

The PDE (4) itself asserts that the directional derivative in the direction
of the vector (1, y) is zero. The curves in the xy plane with (1, y) as tangent
vectors have slopes y (see Figure 3). Their equations are

dy

dx
= y

1
(5)

This ODE has the solutions
y = Cex . (6)

These curves are called the characteristic curves of the PDE (4). As C is
changed, the curves fill out the xy plane perfectly without intersecting. On
each of the curves u(x, y) is a constant because

d

dx
u(x, Cex ) = ∂u

∂x
+ Cex ∂u

∂y
= ux + yuy = 0.

Thus u(x,Cex ) = u(0, Ce0) = u(0, C) is independent of x. Putting y = Cex

and C = e−x y, we have

u(x, y) = u(0, e−xy).

It follows that

u(x, y) = f (e−xy) (7)

is the general solution of this PDE, where again f is an arbitrary function
of only a single variable. This is easily checked by differentiation using
the chain rule (see Exercise 4). Geometrically, the “picture” of the solution
u(x, y) is that it is constant on each characteristic curve in Figure 3.

Figure 3
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Example 2.

Find the solution of (4) that satisfies the auxiliary condition u(0, y) = y3.
Indeed, putting x = 0 in (7), we get y3 = f (e−0 y), so that f (y) = y3.
Therefore, u(x, y) = (e−x y)3 = e−3x y3. �

Example 3.

Solve the PDE

ux + 2xy2uy = 0. (8)

The characteristic curves satisfy the ODE dy/dx = 2xy2/1 = 2xy2.
To solve the ODE, we separate variables: dy/y2 = 2x dx ; hence
−1/y = x2 − C , so that

y = (C − x2)
−1

. (9)

These curves are the characteristics. Again, u(x, y) is a constant on each
such curve. (Check it by writing it out.) So u(x, y) = f (C), where f is an
arbitrary function. Therefore, the general solution of (8) is obtained by
solving (9) for C. That is,

u(x, y) = f

(
x2 + 1

y

)
. (10)

Again this is easily checked by differentiation, using the chain
rule: ux = 2x · f ′(x2 + 1/y) and uy = −(1/y2) · f ′(x2 + 1/y), whence
ux + 2xy2uy = 0. �

In summary, the geometric method works nicely for any PDE of the form
a(x, y)ux + b(x, y)uy = 0. It reduces the solution of the PDE to the solution
of the ODE dy/dx = b(x, y)/a(x, y). If the ODE can be solved, so can the
PDE. Every solution of the PDE is constant on the solution curves of the ODE.

Moral Solutions of PDEs generally depend on arbitrary functions (instead
of arbitrary constants). You need an auxiliary condition if you want to deter-
mine a unique solution. Such conditions are usually called initial or boundary
conditions. We shall encounter these conditions throughout the book.

EXERCISES

1. Solve the first-order equation 2ut + 3ux = 0 with the auxiliary condition
u = sin x when t = 0.

2. Solve the equation 3uy + uxy = 0. (Hint : Let v = uy.)
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3. Solve the equation (1 + x2)ux + uy = 0. Sketch some of the character-
istic curves.

4. Check that (7) indeed solves (4).
5. Solve the equation xux + yuy = 0.
6. Solve the equation

√
1 − x2ux + uy = 0 with the condition u(0, y) = y.

7. (a) Solve the equation yux + xuy = 0 with u(0, y) = e−y2
.

(b) In which region of the xy plane is the solution uniquely determined?
8. Solve aux + buy + cu = 0.
9. Solve the equation ux + uy = 1.

10. Solve ux + uy + u = ex+2y with u(x, 0) = 0.
11. Solve aux + buy = f (x, y), where f (x, y) is a given function. If a �= 0,

write the solution in the form

u(x, y) = (a2 + b2)
−1/2

∫
L

f ds + g(bx − ay),

where g is an arbitrary function of one variable, L is the characteristic
line segment from the y axis to the point (x, y), and the integral is a line
integral. (Hint: Use the coordinate method.)

12. Show that the new coordinate axes defined by (3) are orthogonal.
13. Use the coordinate method to solve the equation

ux + 2uy + (2x − y)u = 2x2 + 3xy − 2y2.

1.3 FLOWS, VIBRATIONS, AND DIFFUSIONS

The subject of PDEs was practically a branch of physics until the twentieth
century. In this section we present a series of examples of PDEs as they occur
in physics. They provide the basic motivation for all the PDE problems we
study in the rest of the book. We shall see that most often in physical problems
the independent variables are those of space x, y, z, and time t.

Example 1. Simple Transport
Consider a fluid, water, say, flowing at a constant rate c along a horizontal
pipe of fixed cross section in the positive x direction. A substance, say
a pollutant, is suspended in the water. Let u(x, t) be its concentration in
grams/centimeter at time t. Then

ut + cux = 0. (1)

(That is, the rate of change ut of concentration is proportional to the
gradient ux. Diffusion is assumed to be negligible.) Solving this equation
as in Section 1.2, we find that the concentration is a function of (x – ct)
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Figure 1

only. This means that the substance is transported to the right at a fixed
speed c. Each individual particle moves to the right at speed c; that
is, in the xt plane, it moves precisely along a characteristic line (see
Figure 1). �

Derivation of Equation (1). The amount of pollutant in the interval
[0, b] at the time t is M = ∫ b

0 u(x, t) dx , in grams, say. At the later time t + h,
the same molecules of pollutant have moved to the right by c · h centimeters.
Hence

M =
∫ b

0
u(x, t)dx =

∫ b+ch

ch
u(x, t + h) dx .

Differentiating with respect to b, we get

u(b, t) = u(b + ch, t + h).

Differentiating with respect to h and putting h = 0, we get

0 = cux (b, t) + ut (b, t),

which is equation (1). �

Example 2. Vibrating String
Consider a flexible, elastic homogenous string or thread of length l,
which undergoes relatively small transverse vibrations. For instance, it
could be a guitar string or a plucked violin string. At a given instant
t, the string might look as shown in Figure 2. Assume that it remains
in a plane. Let u(x, t) be its displacement from equilibrium position at
time t and position x. Because the string is perfectly flexible, the tension
(force) is directed tangentially along the string (Figure 3). Let T(x, t) be
the magnitude of this tension vector. Let ρ be the density (mass per unit
length) of the string. It is a constant because the string is homogeneous.
We shall write down Newton’s law for the part of the string between
any two points at x = x0 and x = x1. The slope of the string at x1 is

Figure 2
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Figure 3

ux(x1, t). Newton’s law F = ma in its longitudinal (x) and transverse (u)
components is

T√
1 + u2

x

∣∣∣∣
x1

x0

= 0 (longitudinal)

T ux√
1 + u2

x

∣∣∣∣
x1

x0

=
∫ x1

x0

ρutt dx (transverse)

The right sides are the components of the mass times the acceleration
integrated over the piece of string. Since we have assumed that the
motion is purely transverse, there is no longitudinal motion.

Now we also assume that the motion is small—more specifically,
that |ux | is quite small. Then

√
1 + u2

x may be replaced by 1. This is
justified by the Taylor expansion, actually the binomial expansion,√

1 + u2
x = 1 + 1

2 u2
x + · · ·

where the dots represent higher powers of ux. If ux is small, it makes
sense to drop the even smaller quantity u2

x and its higher powers. With
the square roots replaced by 1, the first equation then says that T is
constant along the string. Let us assume that T is independent of t as
well as x. The second equation, differentiated, says that

(Tux )x = ρutt .

That is,

utt = c2uxx where c =
√

T

ρ
. (2)

This is the wave equation. At this point it is not clear why c is defined
in this manner, but shortly we’ll see that c is the wave speed. �
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There are many variations of this equation:

(i) If significant air resistance r is present, we have an extra term pro-
portional to the speed ut, thus:

utt − c2uxx + rut = 0 where r > 0. (3)

(ii) If there is a transverse elastic force, we have an extra term propor-
tional to the displacement u, as in a coiled spring, thus:

utt − c2uxx + ku = 0 where k > 0. (4)

(iii) If there is an externally applied force, it appears as an extra term,
thus:

utt − c2uxx = f (x, t), (5)

which makes the equation inhomogeneous.

Our derivation of the wave equation has been quick but not too precise. A
much more careful derivation can be made, which makes precise the physical
and mathematical assumptions [We, Chap. 1].

The same wave equation or a variation of it describes many other wavelike
phenomena, such as the vibrations of an elastic bar, the sound waves in a pipe,
and the long water waves in a straight canal. Another example is the equation
for the electrical current in a transmission line,

uxx = CLutt + (CR + GL)ut + GRu,

where C is the capacitance per unit length, G the leakage resistance per unit
length, R the resistance per unit length, and L the self-inductance per unit
length.

Example 3. Vibrating Drumhead
The two-dimensional version of a string is an elastic, flexible, homo-
geneous drumhead, that is, a membrane stretched over a frame. Say
the frame lies in the xy plane (see Figure 4), u(x, y, t) is the vertical

Figure 4
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displacement, and there is no horizontal motion. The horizontal com-
ponents of Newton’s law again give constant tension T . Let D be any
domain in the xy plane, say a circle or a rectangle. Let bdy D be its
boundary curve. We use reasoning similar to the one-dimensional case.
The vertical component gives (approximately)

F =
∫

bdy D
T

∂u

∂n
ds =

∫∫
D

ρutt dx dy = ma,

where the left side is the total force acting on the piece D of the mem-
brane, and where ∂u/∂n = n · ∇u is the directional derivative in the
outward normal direction, n being the unit outward normal vector on
bdy D. By Green’s theorem (see Section A.3 in the Appendix), this can
be rewritten as ∫∫

D

∇ · (T ∇u) dx dy =
∫∫

D

ρutt dx dy.

Since D is arbitrary, we deduce from the second vanishing theorem in
Section A.1 that ρutt = ∇ · (T ∇u). Since T is constant, we get

utt = c2∇ · (∇u) ≡ c2(uxx + uyy), (6)

where c = √
T/ρ as before and ∇ · (∇u) = div grad u = uxx + uyy is

known as the two-dimensional laplacian. Equation (6) is the two-
dimensional wave equation. �

The pattern is now clear. Simple three-dimensional vibrations obey the
equation

utt = c2(uxx + uyy + uzz). (7)

The operator l = ∂2/∂x2 + ∂2/∂y2 + ∂/∂z2 is called the three-dimensional
laplacian operator, usually denoted by � or ∇2. Physical examples described
by the three-dimensional wave equation or a variation of it include the vi-
brations of an elastic solid, sound waves in air, electromagnetic waves (light,
radar, etc.), linearized supersonic airflow, free mesons in nuclear physics, and
seismic waves propagating through the earth.

Example 4. Diffusion
Let us imagine a motionless liquid filling a straight tube or pipe and
a chemical substance, say a dye, which is diffusing through the liquid.
Simple diffusion is characterized by the following law. [It is not to
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Figure 5

be confused with convection (transport), which refers to currents in
the liquid.] The dye moves from regions of higher concentration to
regions of lower concentration. The rate of motion is proportional to the
concentration gradient. (This is known as Fick’s law of diffusion.) Let
u(x, t) be the concentration (mass per unit length) of the dye at position
x of the pipe at time t.

In the section of pipe from x0 to x1 (see Figure 5), the mass of dye is

M(t) =
∫ x1

x0

u(x, t) dx, so
dM

dt
=

∫ x1

x0

ut (x, t) dx .

The mass in this section of pipe cannot change except by flowing in or
out of its ends. By Fick’s law,

dM

dt
= flow in − flow out = kux (x1, t) − kux (x0, t),

where k is a proportionality constant. Therefore, those two expressions
are equal: ∫ x1

x0

ut (x, t) dx = kux (x1, t) − kux (x0, t).

Differentiating with respect to x1, we get

ut = kuxx . (8)

This is the diffusion equation.
In three dimensions we have∫∫∫

D

ut dx dy dz =
∫∫
bdy D

k(n · ∇u) d S,

where D is any solid domain and bdy D is its bounding surface. By the
divergence theorem (using the arbitrariness of D as in Example 3), we
get the three-dimensional diffusion equation

ut = k(uxx + uyy + uzz) = k �u. (9)

If there is an external source (or a “sink”) of the dye, and if the rate
k of diffusion is a variable, we get the more general inhomogeneous
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equation

ut = ∇ · (k ∇u) + f (x, t).

The same equation describes the conduction of heat, brownian motion,
diffusion models of population dynamics, and many other phenomena.

�

Example 5. Heat Flow
We let u(x, y, z, t) be the temperature and let H(t) be the amount of heat
(in calories, say) contained in a region D. Then

H (t) =
∫∫∫

D

cρu dx dy dz,

where c is the “specific heat” of the material and ρ is its density (mass
per unit volume). The change in heat is

dH

dt
=

∫∫∫
D

cρut dx dy dz.

Fourier’s law says that heat flows from hot to cold regions proportion-
ately to the temperature gradient. But heat cannot be lost from D except
by leaving it through the boundary. This is the law of conservation of
energy. Therefore, the change of heat energy in D also equals the heat
flux across the boundary,

dH

dt
=

∫∫
bdy D

κ(n · ∇u) dS,

where κ is a proportionality factor (the “heat conductivity”). By the
divergence theorem,∫∫∫

D

cρ
∂u

∂t
dx dy dz =

∫∫∫
D

∇ · (κ ∇u) dx dy dz

and we get the heat equation

cρ
∂u

∂t
= ∇ · (κ ∇u). (10)

If c,ρ, andκ are constants, it is exactly the same as the diffusion equation!
�

Example 6. Stationary Waves and Diffusions
Consider any of the four preceding examples in a situation where the
physical state does not change with time. Then ut = utt = 0. So both
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the wave and the diffusion equations reduce to

�u = uxx + uyy + uzz = 0. (11)

This is called the Laplace equation. Its solutions are called harmonic
functions. For example, consider a hot object that is constantly heated
in an oven. The heat is not expected to be evenly distributed throughout
the oven. The temperature of the object eventually reaches a steady (or
equilibrium) state. This is a harmonic function u(x, y, z). (Of course, if
the heat were being supplied evenly in all directions, the steady state
would be u ≡ constant.) In the one-dimensional case (e.g., a laterally
insulated thin rod that exchanges heat with its environment only through
its ends), we would have u a function of x only. So the Laplace equation
would reduce simply to uxx = 0. Hence u = c1x + c2. The two- and
three-dimensional cases are much more interesting (see Chapter 6 for
the solutions). �

Example 7. The Hydrogen Atom
This is an electron moving around a proton. Let m be the mass of the
electron, e its charge, and h Planck’s constant divided by 2π . Let the
origin of coordinates (x, y, z) be at the proton and let r = (x2 + y2 + z2)1/2

be the spherical coordinate. Then the motion of the electron is given by
a “wave function” u(x, y, z, t) which satisfies Schrödinger’s equation

−ihut = h2

2m
�u + e2

r
u (12)

in all of space −∞ < x,y,z < +∞. Furthermore, we are supposed to
have

∫∫∫ |u|2dx dy dz = 1 (integral over all space). Note that i = √−1
and u is complex-valued. The coefficient function e2/r is called the po-
tential. For any other atom with a single electron, such as a helium ion,
e2 is replaced by Ze2, where Z is the atomic number. �

What does this mean physically? In quantum mechanics quantities cannot
be measured exactly but only with a certain probability. The wave function
u(x, y, z, t) represents a possible state of the electron. If D is any region in xyz
space, then ∫∫∫

D

|u|2 dx dy dz

is the probability of finding the electron in the region D at the time t. The
expected z coordinate of the position of the electron at the time t is the value
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of the integral

∫∫∫
z|u(x, y, z, t)|2 dx dy dz;

similarly for the x and y coordinates. The expected z coordinate of the mo-
mentum is ∫∫∫

−ih
∂u

∂z
(x, y, z, t) · ū(x, y, z, t) dx dy dz,

where ū is the complex conjugate of u. All other observable quantities are
given by operators A, which act on functions. The expected value of the
observable A equals

∫∫∫
Au(x, y, z, t) · ū(x, y, z, t) dx dy dz.

Thus the position is given by the operator Au = xu, where x = x i + yj + zk,
and the momentum is given by the operator Au = −ih∇u.

Schrödinger’s equation is most easily regarded simply as an axiom that
leads to the correct physical conclusions, rather than as an equation that can
be derived from simpler principles. It explains why atoms are stable and don’t
collapse. It explains the energy levels of the electron in the hydrogen atom
observed by Bohr. In principle, elaborations of it explain the structure of all
atoms and molecules and so all of chemistry! With many particles, the wave
function u depends on time t and all the coordinates of all the particles and so
is a function of a large number of variables. The Schrödinger equation then
becomes

−ihut =
n∑

i=1

h2

2mi
(uxi xi + uyi yi + uzi zi ) + V (x1, . . . , zn)u

for n particles, where the potential function V depends on all the 3n coor-
dinates. Except for the hydrogen and helium atoms (the latter having two
electrons), the mathematical analysis is impossible to carry out completely
and cannot be calculated even with the help of the modern computer. Nev-
ertheless, with the use of various approximations, many of the facts about
more complicated atoms and the chemical binding of molecules can be
understood. �

This has been a brief introduction to the sources of PDEs in physical
problems. Many realistic situations lead to much more complicated PDEs.
See Chapter 13 for some additional examples.
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EXERCISES

1. Carefully derive the equation of a string in a medium in which the resis-
tance is proportional to the velocity.

2. A flexible chain of length l is hanging from one end x = 0 but oscillates
horizontally. Let the x axis point downward and the u axis point to the
right. Assume that the force of gravity at each point of the chain equals the
weight of the part of the chain below the point and is directed tangentially
along the chain. Assume that the oscillations are small. Find the PDE
satisfied by the chain.

3. On the sides of a thin rod, heat exchange takes place (obeying New-
ton’s law of cooling—flux proportional to temperature difference) with
a medium of constant temperature T0. What is the equation satisfied by
the temperature u(x, t), neglecting its variation across the rod?

4. Suppose that some particles which are suspended in a liquid medium
would be pulled down at the constant velocity V > 0 by gravity in the
absence of diffusion. Taking account of the diffusion, find the equation
for the concentration of particles. Assume homogeneity in the horizontal
directions x and y. Let the z axis point upwards.

5. Derive the equation of one-dimensional diffusion in a medium that is
moving along the x axis to the right at constant speed V .

6. Consider heat flow in a long circular cylinder where the temperature
depends only on t and on the distance r to the axis of the cylinder. Here
r =

√
x2 + y2 is the cylindrical coordinate. From the three-dimensional

heat equation derive the equation ut = k(urr + ur/r ).
7. Solve Exercise 6 in a ball except that the temperature depends

only on the spherical coordinate
√

x2 + y2 + z2. Derive the equation
ut = k(urr + 2ur/r ).

8. For the hydrogen atom, if
∫ |u|2 dx = 1 at t = 0, show that the same is

true at all later times. (Hint: Differentiate the integral with respect to t,
taking care about the solution being complex valued. Assume that u and
∇u → 0 fast enough as |x| → ∞.)

9. This is an exercise on the divergence theorem

∫∫∫
D

∇ · F dx =
∫∫
bdy D

F · n d S,

valid for any bounded domain D in space with boundary surface
bdy D and unit outward normal vector n. If you never learned it,
see Section A.3. It is crucial that D be bounded As an exercise,
verify it in the following case by calculating both sides separately:
F = r2x, x = x i + yj + zk, r2 = x2 + y2 + z2, and D = the ball of ra-
dius a and center at the origin.
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10. If f(x) is continuous and |f(x)| ≤ 1/(|x|3 + 1) for all x, show that∫∫∫
all space

∇ · f dx = 0.

(Hint: Take D to be a large ball, apply the divergence theorem, and let
its radius tend to infinity.)

11. If curl v = 0 in all of three-dimensional space, show that there exists a
scalar function φ(x, y, z) such that v = grad φ.

1.4 INITIAL AND BOUNDARY CONDITIONS

Because PDEs typically have so many solutions, as we saw in Section 1.2,
we single out one solution by imposing auxiliary conditions. We attempt to
formulate the conditions so as to specify a unique solution. These conditions
are motivated by the physics and they come in two varieties, initial conditions
and boundary conditions.

An initial condition specifies the physical state at a particular time t0. For
the diffusion equation the initial condition is

u(x, t0) = φ(x), (1)

where φ(x) = φ(x, y, z) is a given function. For a diffusing substance, φ(x)
is the initial concentration. For heat flow, φ(x) is the initial temperature. For
the Schrödinger equation, too, (1) is the usual initial condition.

For the wave equation there is a pair of initial conditions

u(x, t0) = φ(x) and
∂u

∂t
(x, t0) = ψ(x), (2)

where φ(x) is the initial position and ψ(x) is the initial velocity. It is clear on
physical grounds that both of them must be specified in order to determine
the position u(x, t) at later times. (We shall also prove this mathematically.)

�

In each physical problem we have seen that there is a domain D in which
the PDE is valid. For the vibrating string, D is the interval 0 < x < l, so
the boundary of D consists only of the two points x = 0 and x = l. For the
drumhead, the domain is a plane region and its boundary is a closed curve.
For the diffusing chemical substance, D is the container holding the liquid, so
its boundary is a surface S = bdy D. For the hydrogen atom, the domain is all
of space, so it has no boundary.

It is clear, again from our physical intuition, that it is necessary to specify
some boundary condition if the solution is to be determined. The three most
important kinds of boundary conditions are:

(D) u is specified (“Dirichlet condition”)
(N) the normal derivative ∂u/∂n is specified (“Neumann condition”)
(R) ∂u/∂n + au is specified (“Robin condition”)
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Figure 1

where a is a given function of x, y, z, and t. Each is to hold for all t and for x =
(x, y, z) belonging to bdy D. Usually, we write (D), (N), and (R) as equations.
For instance, (N) is written as the equation

∂u

∂n
= g(x, t) (3)

where g is a given function that could be called the boundary datum. Any
of these boundary conditions is called homogeneous if the specified function
g(x, t) vanishes (equals zero). Otherwise, it is called inhomogenous. As usual,
n = (n1, n2, n3) denotes the unit normal vector on bdy D, which points out-
ward from D (see Figure 1). Also, ∂u/∂n ≡ n · ∇u denotes the directional
derivative of u in the outward normal direction.

In one-dimensional problems where D is just an interval 0 < x < l, the
boundary consists of just the two endpoints, and these boundary conditions
take the simple form

(D) u(0, t) = g(t) and u(l, t) = h(t)

(N)
∂u

∂x
(0, t) = g(t) and

∂u

∂x
(l, t) = h(t)

and similarly for the Robin condition. �

Following are some illustrations of physical problems corresponding to
these boundary conditions.

THE VIBRATING STRING

If the string is held fixed at both ends, as for a violin string, we have the
homogeneous Dirichlet conditions u(0, t) = u(l, t) = 0.

Imagine, on the other hand, that one end of the string is free to move
transversally without any resistance (say, along a frictionless track); then
there is no tension T at that end, so ux = 0. This is a Neumann condition.

Third, the Robin condition would be the correct one if one were to imagine
that an end of the string were free to move along a track but were attached to
a coiled spring or rubber band (obeying Hooke’s law) which tended to pull it
back to equilibrium position. In that case the string would exchange some of
its energy with the coiled spring.

Finally, if an end of the string were simply moved in a specified way, we
would have an inhomogeneous Dirichlet condition at that end.
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DIFFUSION

If the diffusing substance is enclosed in a container D so that none can escape
or enter, then the concentration gradient in the normal direction must vanish,
by Fick’s law (see Exercise 2). Thus ∂u/∂n = 0 on S = bdy D, which is the
Neumann condition.

If, on the other hand, the container is permeable and is so constructed that
any substance that escapes to the boundary of the container is immediately
washed away, then we have u = 0 on S.

HEAT

Heat conduction is described by the diffusion equation with u(x, t) = temper-
ature. If the object D through which the heat is flowing is perfectly insulated,
then no heat flows across the boundary and we have the Neumann condition
∂u/∂n = 0 (see Exercise 2).

On the other hand, if the object were immersed in a large reservoir of
specified temperature g(t) and there were perfect thermal conduction, then
we’d have the Dirichlet condition u = g(t) on bdy D.

Suppose that we had a uniform rod insulated along its length 0 ≤ x ≤ l,
whose end at x = l were immersed in the reservoir of temperature g(t). If heat
were exchanged between the end and the reservoir so as to obey Newton’s
law of cooling, then

∂u

∂x
(l, t) = −a[u(l, t) − g(t)],

where a > 0. Heat from the hot rod radiates into the cool reservoir. This is an
inhomogeneous Robin condition.

LIGHT

Light is an electromagnetic field and as such is described by Maxwell’s equa-
tions (see Chapter 13). Each component of the electric and magnetic field
satisfies the wave equation. It is through the boundary conditions that the
various components are related to each other. (They are “coupled.”) Imagine,
for example, light reflecting off a ball with a mirrored surface. This is a scat-
tering problem. The domain D where the light is propagating is the exterior
of the ball. Certain boundary conditions then are satisfied by the electromag-
netic field components. When polarization effects are not being studied, some
scientists use the wave equation with homogeneous Dirichlet or Neumann
conditions as a considerably simplified model of such a situation.

SOUND

Our ears detect small disturbances in the air. The disturbances are described
by the equations of gas dynamics, which form a system of nonlinear equations
with velocity v and density ρ as the unknowns. But small disturbances are
described quite well by the so-called linearized equations, which are a lot
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simpler; namely,

∂v
∂t

+ c2
0

ρ0
grad ρ = 0 (4)

∂ρ

∂t
+ ρ0 div v = 0 (5)

(four scalar equations altogether). Here ρ0 is the density and c0 is the speed
of sound in still air.

Assume now that the curl of v is zero; this means that there are no sound
“eddies” and the velocity v is irrotational. It follows that ρ and all three
components of v satisfy the wave equation:

∂2v
∂t2

= c2
0 �v and

∂2ρ

∂t2
= c2

0 �ρ. (6)

The interested reader will find a derivation of these equations in Section 13.2.
Now if we are describing sound propagation in a closed, sound-insulated

room D with rigid walls, say a concert hall, then the air molecules at the wall
can only move parallel to the boundary, so that no sound can travel in a normal
direction to the boundary. So v · n = 0 on bdy D. Since curl v = 0, there is
a standard fact in vector calculus (Exercise 1.3.11) which says that there is
a “potential” function ψ such that v = −grad ψ . The potential also satisfies
the wave equation ∂2ψ/∂t2 = c2

0 �ψ , and the boundary condition for it is
−v · n = n · grad ψ = 0 or Neumann’s condition for ψ .

At an open window of the room D, the atmospheric pressure is a constant
and there is no difference of pressure across the window. The pressure p is
proportional to the density ρ, for small disturbances of the air. Thus ρ is a
constant at the window, which means that ρ satisfies the Dirichlet boundary
condition ρ = ρ0.

At a soft wall, such as an elastic membrane covering an open window, the
pressure difference p − p0 across the membrane is proportional to the normal
velocity v · n, namely

p − p0 = Z v · n,

where Z is called the acoustic impedance of the wall. (A rigid wall has a very
large impedance and an open window has zero impedance.) Now p − p0 is in
turn proportional to ρ − ρ0 for small disturbances. Thus the system of four
equations (4),(5) satisfies the boundary condition

v · n = a(ρ − ρ0),

where a is a constant proportional to 1/Z. (See [MI] for further discussion.)
�

A different kind of boundary condition in the case of the wave equation
is

∂u

∂n
+ b

∂u

∂t
= 0. (7)
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Figure 2

This condition means that energy is radiated to (b > 0) or absorbed from
(b < 0) the exterior through the boundary. For instance, a vibrating string
whose ends are immersed in a viscous liquid would satisfy (7) with b > 0
since energy is radiated to the liquid.

CONDITIONS AT INFINITY

In case the domain D is unbounded, the physics usually provides conditions
at infinity. These can be tricky. An example is Schrödinger’s equation, where
the domain D is all of space, and we require that f |u|2 dx = 1. The finiteness
of this integral means, in effect, that u “vanishes at infinity.”

A second example is afforded by the scattering of acoustic or electro-
magnetic waves. If we want to study sound or light waves that are radiating
outward (to infinity), the appropriate condition at infinity is “Sommerfeld’s
outgoing radiation condition”

lim
r→∞r

(
∂u

∂r
− ∂u

∂t

)
= 0, (8)

where r = |x| is the spherical coordinate. (In a given mathematical context
this limit would be made more precise.) (See Section 13.3.)

JUMP CONDITIONS

These occur when the domain D has two parts, D = D1 ∪ D2 (see Figure 2),
with different physical properties. An example is heat conduction, where D1
and D2 consist of two different materials (see Exercise 6).

EXERCISES

1. By trial and error, find a solution of the diffusion equation ut = uxx with
the initial condition u(x, 0) = x2.

2. (a) Show that the temperature of a metal rod, insulated at the end x = 0,
satisfies the boundary condition ∂u/∂x = 0. (Use Fourier’s law.)

(b) Do the same for the diffusion of gas along a tube that is closed off at
the end x = 0. (Use Fick’s law.)
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(c) Show that the three-dimensional version of (a) (insulated solid) or (b)
(impermeable container) leads to the boundary condition ∂u/∂n = 0.

3. A homogeneous body occupying the solid region D is completely insu-
lated. Its initial temperature is f (x). Find the steady-state temperature that
it reaches after a long time. (Hint: No heat is gained or lost.)

4. A rod occupying the interval 0 ≤ x ≤ l is subject to the heat source
f (x) = 0 for 0 < x < l

2 , and f (x) = H for l
2 < x < l where H > 0. The

rod has physical constants c = ρ = κ = 1, and its ends are kept at zero
temperature.
(a) Find the steady-state temperature of the rod.
(b) Which point is the hottest, and what is the temperature there?

5. In Exercise 1.3.4, find the boundary condition if the particles lie above an
impermeable horizontal plane z = a.

6. Two homogeneous rods have the same cross section, specific heat c, and
density ρ but different heat conductivities κ1 and κ2 and lengths L1 and
L2. Let k j = κ j/cρ be their diffusion constants. They are welded together
so that the temperature u and the heat flux κux at the weld are continuous.
The left-hand rod has its left end maintained at temperature zero. The
right-hand rod has its right end maintained at temperature T degrees.
(a) Find the equilibrium temperature distribution in the composite rod.
(b) Sketch it as a function of x in case k1 = 2, k2 = 1, L1 = 3, L2 = 2,

and T = 10. (This exercise requires a lot of elementary algebra, but
it’s worth it.)

7. In linearized gas dynamics (sound), verify the following.
(a) If curl v = 0 at t = 0, then curl v = 0 at all later times.
(b) Each component of v and ρ satifies the wave equation.

1.5 WELL-POSED PROBLEMS

Well-posed problems consist of a PDE in a domain together with a set of
initial and/or boundary conditions (or other auxiliary conditions) that enjoy
the following fundamental properties:

(i) Existence: There exists at least one solution u(x, t) satisfying all
these conditions.

(ii) Uniqueness: There is at most one solution.
(iii) Stability: The unique solution u(x, t) depends in a stable manner on

the data of the problem. This means that if the data are changed a
little, the corresponding solution changes only a little.

For a physical problem modeled by a PDE, the scientist normally tries to
formulate physically realistic auxiliary conditions which all together make a
well-posed problem. The mathematician tries to prove that a given problem
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is or is not well-posed. If too few auxiliary conditions are imposed, then
there may be more than one solution (nonuniqueness) and the problem is
called underdetermined. If, on the other hand, there are too many auxiliary
conditions, there may be no solution at all (nonexistence) and the problem is
called overdetermined.

The stability property (iii) is normally required in models of physical
problems. This is because you could never measure the data with mathemat-
ical precision but only up to some number of decimal places. You cannot
distinguish a set of data from a tiny perturbation of it. The solution ought not
be significantly affected by such tiny perturbations, so it should change very
little.

Let us take an example. We know that a vibrating string with an external
force, whose ends are moved in a specified way, satisfies the problem

T utt − ρuxx = f (x, t)
u(x, 0) = φ(x) ut (x, 0) = ψ(x)
u(0, t) = g(t) u(L , t) = h(t)

(1)

for 0 < x < L. The data for this problem consist of the five functions
f (x, t), φ(x), ψ(x), g(t), and h(t). Existence and uniqueness would mean
that there is exactly one solution u(x, t) for arbitrary (differentiable) func-
tions f, φ, ψ, g, h. Stability would mean that if any of these five functions are
slightly perturbed, then u is also changed only slightly. To make this precise
requires a definition of the “nearness” of functions. Mathematically, this re-
quires the concept of a “distance”, “metric”, “norm”, or “topology” in function
space and will be discussed in the context of specific examples (see Sections
2.3, 3.4, or 5.5). Problem (1) is indeed well-posed if we make the appropriate
choice of “nearness.”

As a second example, consider the diffusion equation. Given an initial
condition u(x, 0) = f (x), we expect a unique solution, in fact, well-posedness,
for t> 0. But consider the backwards problem! Given f (x), find u(x, t) for t < 0.
What past behavior could have led up to the concentration f (x) at time 0? Any
chemist knows that diffusion is a smoothing process since the concentration
of a substance tends to flatten out. Going backward (“antidiffusion”), the
situation becomes more and more chaotic. Therefore, you would not expect
well-posedness of the backward-in-time problem for the diffusion equation.

As a third example, consider solving a matrix equation instead of a PDE:
namely, Au = b, where A is an m × n matrix and b is a given m-vector. The
“data” of this problem comprise the vector b. If m > n, there are more rows
than columns and the system is overdetermined. This means that no solution
can exist for certain vectors b; that is, you don’t necessarily have existence. If,
on the other hand, n > m, there are more columns than rows and the system
is underdetermined. This means that there are lots of solutions for certain
vectors b; that is, you can’t have uniqueness.

Now suppose that m = n but A is a singular matrix; that is, det A = 0
or A has no inverse. Then the problem is still ill-posed (neither existence nor
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uniqueness). It is also unstable. To illustrate the instability further, consider a
nonsingular matrix A with one very small eigenvalue. The solution is unique
but if b is slightly perturbed, then the error will be greatly magnified in the
solution u. Such a matrix, in the context of scientific computation, is called
ill-conditioned. The ill-conditioning comes from the instability of the matrix
equation with a singular matrix.

As a fourth example, consider Laplace’s equation uxx + uyy = 0 in the
region D = {−∞ < x < ∞, 0 < y < ∞}. It is not a well-posed problem to
specify both u and uy on the boundary of D, for the following reason. It has
the solutions

un(x, y) = 1

n
e−√

nsin nx sinh ny. (2)

Notice that they have boundary data un(x, 0) = 0 and ∂un/∂y(x, 0) =
e−√

n sin nx , which tends to zero as n → ∞. But for y �= 0 the solutions
un(x, y) do not tend to zero as n → ∞. Thus the stability condition (iii) is
violated.

EXERCISES

1. Consider the problem

d2u

dx2
+ u = 0

u(0) = 0 and u(L) = 0,

consisting of an ODE and a pair of boundary conditions. Clearly, the
function u(x) ≡ 0 is a solution. Is this solution unique, or not? Does the
answer depend on L?

2. Consider the problem

u′′(x) + u′(x) = f (x)

u′(0) = u(0) = 1
2 [u′(l) + u(l)],

with f (x) a given function.
(a) Is the solution unique? Explain.
(b) Does a solution necessarily exist, or is there a condition that f (x)

must satisfy for existence? Explain.
3. Solve the boundary problem u′′ = 0 for 0 < x < 1 with u′(0) + ku(0) = 0

and u′(1) ± ku(1) = 0. Do the + and − cases separately. What is special
about the case k = 2?

4. Consider the Neumann problem

�u = f (x, y, z) in D
∂u

∂n
= 0 on bdy D.
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(a) What can we surely add to any solution to get another solution? So
we don’t have uniqueness.

(b) Use the divergence theorem and the PDE to show that∫∫∫
D

f (x, y, z) dx dy dz = 0

is a necessary condition for the Neumann problem to have a solution.
(c) Can you give a physical interpretation of part (a) and/or (b) for either

heat flow or diffusion?
5. Consider the equation

ux + yuy = 0

with the boundary condition u(x, 0) = φ(x).
(a) For φ(x) ≡ x , show that no solution exists.
(b) For φ(x) ≡ 1, show that there are many solutions.

6. Solve the equation ux + 2xy2uy = 0.

1.6 TYPES OF SECOND-ORDER EQUATIONS

In this section we show how the Laplace, wave, and diffusion equations
are in some sense typical among all second-order PDEs. However, these
three equations are quite different from each other. It is natural that the
Laplace equation uxx + uyy = 0 and the wave equation uxx − uyy = 0 should
have very different properties. After all, the algebraic equation x2 + y2 = 1
represents a circle, whereas the equation x2 − y2 = 1 represents a hyperbola.
The parabola is somehow in between.

In general, let’s consider the PDE

a11uxx + 2a12uxy + a22uyy + a1ux + a2uy + a0u = 0. (1)

This is a linear equation of order two in two variables with six real constant
coefficients. (The factor 2 is introduced for convenience.)

Theorem 1. By a linear transformation of the independent variables, the
equation can be reduced to one of three forms, as follows.

(i) Elliptic case: If a2
12 < a11a22, it is reducible to

uxx + uyy + · · · = 0

(where · · · denotes terms of order 1 or 0).
(ii) Hyperbolic case: If a2

12 > a11a22, it is reducible to

uxx − uyy + · · · = 0.
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(iii) Parabolic case: If a2
12 = a11a22, it is reducible to

uxx + · · · = 0

(unless a11 = a12 = a22 = 0).

The proof is easy and is just like the analysis of conic sections in analytic
geometry as either ellipses, hyperbolas, or parabolas. For simplicity, let’s
suppose that a11 = 1 and a1 = a2 = a0 = 0. By completing the square, we
can then write (1) as

(∂x + a12∂y)2u + (
a22 − a2

12

)
∂2

y u = 0 (2)

(where we use the operator notation ∂x = ∂/∂x, ∂2
y = ∂2/∂y2, etc.). In the el-

liptic case, a2
12 < a22. Let b = (a22 − a2

12)
1/2

> 0. Introduce the new variables
ξ and η by

x = ξ, y = a12ξ + bη. (3)

Then ∂ξ = 1 · ∂x + a12∂y, ∂η = 0 · ∂x + b∂y , so that the equation becomes

∂2
ξ u + ∂2

ηu = 0, (4)

which is Laplace’s. The procedure is similar in the other cases. �

Example 1.

Classify each of the equations
(a) uxx − 5uxy = 0.
(b) 4uxx − 12uxy + 9uyy + uy = 0.
(c) 4uxx + 6uxy + 9uyy = 0.

Indeed, we check the sign of the “discriminant” d = a2
12 − a11a22. For

(a) we have d = (−5/2)2 − (1)(0) = 25/4 > 0, so it is hyperbolic.
For (b), we have d = (−6)2 − (4)(9) = 36 − 36 = 0, so it is parabolic.
For (c), we have d = 32 − (4)(9) = 9 − 36 < 0, so it is elliptic. �

The same analysis can be done in any number of variables, using a bit of
linear algebra. Suppose that there are n variables, denoted x1, x2 . . . , xn , and
the equation is

n∑
i, j=1

aijuxi x j +
n∑

i=1

ai uxi + a0u = 0, (5)

with real constants aij, ai , and a0. Since the mixed derivatives are equal, we
may as well assume that aij = aji. Let x = (x1, . . . , xn). Consider any linear
change of independent variables:

(ξ1, . . . , ξn) = ξ = Bx,

where B is an n × n matrix. That is,

ξk =
∑

m

bkm xm . (6)
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Convert to the new variables using the chain rule:

∂

∂xi
=

∑
k

∂ξk

∂xi

∂

∂ξk

and

uxi x j =
(∑

k

bki
∂

∂ξk

)(∑
l

bl j
∂

∂ξl

)
u.

Therefore the PDE is converted to∑
i, j

aijuxi x j =
∑
k,l

(∑
i, j

bki aijbl j

)
uξkξl . (7)

(Watch out that on the left side u is considered as a function of x, whereas on
the right side it is considered as a function of ξ.) So you get a second-order
equation in the new variables ξ, but with the new coefficient matrix given
within the parentheses. That is, the new matrix is

BAtB,

where A = (aij) is the original coefficient matrix, the matrix B = (bij) defines
the transformation, and tB = (bji) is its transpose.

Now a theorem of linear algebra says that for any symmetric real matrix
A, there is a rotation B (an orthogonal matrix with determinant 1) such that
BAtB is the diagonal matrix

BAtB = D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

d1

d2

·
·

·
dn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (8)

The real numbers d1, . . . , dn are the eigenvalues of A. Finally, a change of
scale would convert D into a diagonal matrix with each of the d’s equal to
+1, −1, or 0. (This is what we did, in effect, early in this section for the case
n = 2.)

Thus any PDE of the form (5) can be converted by means of a linear
change of variables into a PDE with a diagonal coefficient matrix.

Definition. The PDE (5) is called elliptic if all the eigenvalues
d1, . . . , dn are positive or all are negative. [This is equivalent to saying that the
original coefficient matrix A (or −A) is positive definite.] The PDE is called
hyperbolic if none of the d1, . . . , dn vanish and one of them has the opposite
sign from the (n − 1) others. If none vanish, but at least two of them are
positive and at least two are negative, it is called ultrahyperbolic. If exactly
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one of the eigenvalues is zero and all the others have the same sign, the PDE
is called parabolic.

Ultrahyperbolic equations occur quite rarely in physics and mathematics,
so we shall not discuss them further. Just as each of the three conic sections
has quite distinct properties (boundedness, shape, asymptotes), so do each of
the three main types of PDEs. �

More generally, if the coefficients are variable, that is, the aij are functions
of x, the equation may be elliptic in one region and hyperbolic in another.

Example 2.

Find the regions in the xy plane where the equation

yuxx − 2uxy + xuyy = 0

is elliptic, hyperbolic, or parabolic. Indeed, d = (−1)2 − (y)(x) =
1 − xy. So the equation is parabolic on the hyperbola (xy = 1), elliptic
in the two convex regions (xy > 1), and hyperbolic in the connected
region (xy < 1). �

If the equation is nonlinear, the regions of ellipticity (and so on) may
depend on which solution we are considering. Sometimes nonlinear transfor-
mations, instead of linear transformations such as B above, are important. But
this is a complicated subject that is poorly understood.

EXERCISES

1. What is the type of each of the following equations?
(a) uxx − uxy + 2uy + uyy − 3uyx + 4u = 0.
(b) 9uxx + 6uxy + uyy + ux = 0.

2. Find the regions in the xy plane where the equation

(1 + x)uxx + 2xyuxy − y2uyy = 0

is elliptic, hyperbolic, or parabolic. Sketch them.
3. Among all the equations of the form (1), show that the only ones that

are unchanged under all rotations (rotationally invariant) have the form
a(uxx + uyy) + bu = 0.

4. What is the type of the equation

uxx − 4uxy + 4uyy = 0?

Show by direct substitution that u(x, y) = f (y + 2x) + xg(y + 2x) is a
solution for arbitrary functions f and g.

5. Reduce the elliptic equation

uxx + 3uyy − 2ux + 24uy + 5u = 0
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to the form vxx + vyy + cv = 0 by a change of dependent variable
u = veαx+βy and then a change of scale y′ = γ y.

6. Consider the equation 3uy + uxy = 0.
(a) What is its type?
(b) Find the general solution. (Hint: Substitute v = uy .)
(c) With the auxiliary conditions u(x, 0) = e−3x and uy(x, 0) = 0, does

a solution exist? Is it unique?
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WAVES AND
DIFFUSIONS

In this chapter we study the wave and diffusion equations on the whole real line
−∞ < x < +∞. Real physical situations are usually on finite intervals. We
are justified in taking x on the whole real line for two reasons. Physically
speaking, if you are sitting far away from the boundary, it will take a certain
time for the boundary to have a substantial effect on you, and until that time
the solutions we obtain in this chapter are valid. Mathematically speaking,
the absence of a boundary is a big simplification. The most fundamental
properties of the PDEs can be found most easily without the complications of
boundary conditions. That is the purpose of this chapter. We begin with the
wave equation.

2.1 THE WAVE EQUATION

We write the wave equation as

utt = c2uxx for −∞ < x < +∞. (1)

(Physically, you can imagine a very long string.) This is the simplest second-
order equation. The reason is that the operator factors nicely:

utt − c2uxx =
(

∂

∂t
− c

∂

∂x

)(
∂

∂t
+ c

∂

∂x

)
u = 0. (2)

This means that, starting from a function u(x, t), you compute ut + cux , call
the result v, then you compute vt − cvx , and you ought to get the zero function.
The general solution is

u(x, t) = f (x + ct) + g(x − ct) (3)

33
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where f and g are two arbitrary (twice differentiable) functions of a single
variable.

Proof. Because of (2), if we let v = ut + cux , we must have vt − cvx = 0.
Thus we have two first-order equations

vt − cvx = 0 (4a)

and

ut + cux = v. (4b)

These two first-order equations are equivalent to (1) itself. Let’s solve them
one at a time. As we know from Section 1.2, equation (4a) has the solution
v(x, t) = h(x + ct) , where h is any function.

So we must solve the other equation, which now takes the form

ut + cux = h(x + ct) (4c)

for the unknown function u(x, t). It is easy to check directly by differentiation
that one solution is u(x, t) = f (x + ct), where f ′(s) = h(s)/2c. [A prime (′)
denotes the derivative of a function of one variable.] To the solution f (x + ct)
we can add g(x − ct) to get another solution (since the equation is linear).
The most general solution of (4b) in fact turns out to be a particular solution
plus any solution of the homogeneous equation; that is,

u(x, t) = f (x + ct) + g(x − ct),

as asserted by the theorem. The complete justification is left to be worked out
in Exercise 4.

A different method to derive the solution formula (3) is to introduce the
characteristic coordinates

ξ = x + ct η = x − ct .

By the chain rule, we have ∂x = ∂ξ + ∂η and ∂t = c∂ξ + c∂η. Therefore,
∂t − c∂x = −2c∂η and ∂t + c∂x = 2c∂ξ . So equation (1) takes the form

(∂t − c∂x )(∂t + c∂x )u = (−2c∂ξ )(2c∂η)u = 0,

which means that uξη = 0 since c �= 0. The solution of this transformed equa-
tion is

u = f (ξ ) + g(η)

(see Section 1.1), which agrees exactly with the previous answer (3). �

The wave equation has a nice simple geometry. There are two families
of characteristic lines, x ± ct = constant, as indicated in Figure 1. The most
general solution is the sum of two functions. One, g(x − ct), is a wave of
arbitrary shape traveling to the right at speed c. The other, f (x + ct), is another
shape traveling to the left at speed c. A “movie” of g(x − ct) is sketched in
Figure 1 of Section 1.3.
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Figure 1

INITIAL VALUE PROBLEM

The initial-value problem is to solve the wave equation

utt = c2uxx for −∞ < x < +∞ (1)

with the initial conditions

u(x, 0) = φ(x) ut (x, 0) = ψ(x), (5)

where φ and ψ are arbitrary functions of x. There is one, and only one, solution
of this problem. For instance, if φ(x) = sin x and ψ(x) = 0, then u(x, t) = sin x
cos ct.

The solution of (1),(5) is easily found from the general formula (3). First,
setting t = 0 in (3), we get

φ(x) = f (x) + g(x). (6)

Then, using the chain rule, we differentiate (3) with respect to t and put t = 0
to get

ψ(x) = c f ′(x) − cg′(x). (7)

Let’s regard (6) and (7) as two equations for the two unknown functions
f and g. To solve them, it is convenient temporarily to change the name of
the variable to some neutral name; we change the name of x to s. Now we
differentiate (6) and divide (7) by c to get

φ′ = f ′ + g′ and
1

c
ψ = f ′ − g′.

Adding and subtracting the last pair of equations gives us

f ′ = 1

2

(
φ′ + ψ

c

)
and g′ = 1

2

(
φ′ − ψ

c

)
.

Integrating, we get

f (s) = 1

2
φ(s) + 1

2c

∫ s

0
ψ + A
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and

g(s) = 1

2
φ(s) − 1

2c

∫ s

0
ψ + B,

where A and B are constants. Because of (6), we have A + B = 0. This tells
us what f and g are in the general formula (3). Substituting s = x + ct into
the formula for f and s = x − ct into that of g, we get

u(x, t) = 1

2
φ(x + ct) + 1

2c

∫ x+ct

0
ψ + 1

2
φ(x − ct) − 1

2c

∫ x−ct

0
ψ.

This simplifies to

u(x, t) = 1

2
[φ(x + ct) + φ(x − ct)] + 1

2c

∫ x+ct

x−ct
ψ(s) ds. (8)

This is the solution formula for the initial-value problem, due to
d’Alembert in 1746. Assuming φ to have a continuous second derivative
(written φ ∈ C2) and ψ to have a continuous first derivative (ψ ∈ C1), we
see from (8) that u itself has continuous second partial derivatives in x and t
(u ∈ C2). Then (8) is a bona fide solution of (1) and (5). You may check this
directly by differentiation and by setting t = 0.

Example 1.

For φ(x) ≡ 0 and ψ(x) = cos x , the solution is u(x, t) = (1/2c)
[sin(x + ct) − sin(x − ct)] = (1/c) cos x sin ct . Checking this result
directly, we have utt = −c cos x sin ct, uxx = −(1/c) cos x sin ct, so that
utt = c2uxx. The initial condition is easily checked. �

Example 2. The Plucked String
For a vibrating string the speed is c = √

T/ρ. Consider an infinitely
long string with initial position

φ(x) =
⎧⎨
⎩b − b|x |

a
for |x | < a

0 for |x | > a
(9)

and initial velocity ψ(x) ≡ 0 for all x. This is a “three-finger” pluck, with
all three fingers removed at once. A “movie” of this solution u(x, t) =
1
2 [φ(x + ct) + φ(x − ct)] is shown in Figure 2. (Even though this solu-
tion is not twice differentiable, it can be shown to be a “weak” solution,
as discussed later in Section 12.1.)

Each of these pictures is the sum of two triangle functions, one
moving to the right and one to the left, as is clear graphically. To write
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down the formulas that correspond to the pictures requires a lot more
work. The formulas depend on the relationships among the five numbers
0, ±a, x ± ct. For instance, let t = a/2c. Then x ± ct = x ± a/2. First, if
x < −3a/2, then x ± a/2 < −a and u(x, t) ≡ 0. Second, if −3a/2 <
x < −a/2, then

u(x, t) = 1

2
φ

(
x + 1

2
a

)
= 1

2

(
b − b|x + 1

2a|
a

)
= 3b

4
+ bx

2a
.

Third, if |x| < a/2, then

u(x, t) = 1

2

[
φ

(
x + 1

2
a

)
+ φ

(
x − 1

2
a

)]

= 1

2

[
b − b

(
x + 1

2a
)

a
+ b − b

(
1
2a − x

)
a

]

= 1

2
b

and so on [see Figure 2]. �

Figure 2
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EXERCISES

1. Solve utt = c2uxx , u(x, 0) = ex , ut (x, 0) = sin x .

2. Solve utt = c2uxx , u(x, 0) = log(1 + x2), ut (x, 0) = 4 + x .

3. The midpoint of a piano string of tension T , density ρ, and length l is hit
by a hammer whose head diameter is 2a. A flea is sitting at a distance
l/4 from one end. (Assume that a < l/4; otherwise, poor flea!) How long
does it take for the disturbance to reach the flea?

4. Justify the conclusion at the beginning of Section 2.1 that every solution
of the wave equation has the form f (x + ct) + g(x − ct).

5. (The hammer blow) Let φ(x) ≡ 0 and ψ(x) = 1 for |x | < a and
ψ(x) = 0 for |x | ≥ a. Sketch the string profile (u versus x) at each of
the successive instants t = a/2c, a/c, 3a/2c, 2a/c, and 5a/c. [Hint:
Calculate

u(x, t) = 1

2c

∫ x+ct

x−ct
ψ(s) ds = 1

2c
{length of (x− ct, x + ct) ∩ (−a, a)}.

Then u(x, a/2c) = (1/2c) {length of (x − a/2, x + a/2) ∩ (−a, a)}.
This takes on different values for |x | < a/2, for a/2 < x < 3a/2, and
for x > 3a/2. Continue in this manner for each case.]

6. In Exercise 5, find the greatest displacement, maxx u(x, t), as a function
of t.

7. If both φ and ψ are odd functions of x, show that the solution u(x, t) of
the wave equation is also odd in x for all t.

8. A spherical wave is a solution of the three-dimensional wave equation
of the form u(r, t), where r is the distance to the origin (the spherical
coordinate). The wave equation takes the form

utt = c2

(
urr + 2

r
ur

)
(“spherical wave equation”).

(a) Change variables v = ru to get the equation for v: vt t = c2vrr .
(b) Solve for v using (3) and thereby solve the spherical wave equat-

ion.
(c) Use (8) to solve it with initial conditions u(r, 0) = φ(r ),

ut (r, 0) = ψ(r ), taking both φ(r) and ψ(r) to be even functions
of r.

9. Solve uxx − 3uxt − 4utt = 0, u(x, 0) = x2, ut (x, 0) = ex . (Hint: Fac-
tor the operator as we did for the wave equation.)

10. Solve uxx + uxt − 20utt = 0, u(x, 0) = φ(x), ut (x, 0) = ψ(x).
11. Find the general solution of 3utt + 10uxt + 3uxx = sin(x + t).
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Figure 1

2.2 CAUSALITY AND ENERGY

CAUSALITY

We have just learned that the effect of an initial position φ(x) is a pair of waves
traveling in either direction at speed c and at half the original amplitude. The
effect of an initial velocity ψ is a wave spreading out at speed ≤c in both
directions (see Exercise 2.1.5 for an example). So part of the wave may lag
behind (if there is an initial velocity), but no part goes faster than speed c.
The last assertion is called the principle of causality. It can be visualized in
the xt plane in Figure 1.

An initial condition (position or velocity or both) at the point (x0, 0)
can affect the solution for t > 0 only in the shaded sector, which is called
the domain of influence of the point (x0, 0). As a consequence, if φ and ψ
vanish for |x | > R, then u(x, t) = 0 for |x | > R + ct . In words, the domain
of influence of an interval (|x | ≤ R) is a sector (|x | ≤ R + ct).

An “inverse” way to express causality is the following. Fix a point (x, t)
for t > 0 (see Figure 2). How is the number u(x, t) synthesized from the initial
data φ, ψ? It depends only on the values of φ at the two points x ± ct , and
it depends only on the values of ψ within the interval [x − ct, x + ct]. We
therefore say that the interval (x − ct, x + ct) is the interval of dependence
of the point (x, t) on t = 0. Sometimes we call the entire shaded triangle �
the domain of dependence or the past history of the point (x, t). The domain
of dependence is bounded by the pair of characteristic lines that pass through
(x, t).

Figure 2
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ENERGY

Imagine an infinite string with constants ρ and T . Then ρutt = T uxx for
−∞ < x < +∞. From physics we know that the kinetic energy is 1

2 mv2,
which in our case takes the form KE = 1

2ρ
∫

u2
t dx . This integral, and the

following ones, are evaluated from −∞ to +∞. To be sure that the integral
converges, we assume that φ(x) and ψ(x) vanish outside an interval {|x | ≤ R}.
As mentioned above, u(x, t) [and therefore ut(x, t)] vanish for |x | > R + ct .
Differentiating the kinetic energy, we can pass the derivative under the integral
sign (see Section A.3) to get

dKE

dt
= ρ

∫
ut utt dx .

Then we substitute the PDE ρutt = T uxx and integrate by parts to get

dKE

dt
= T

∫
ut uxx dx = Tut ux − T

∫
utx ux dx .

The term Tutux is evaluated at x = ±∞ and so it vanishes. But the final term
is a pure derivative since utx ux = ( 1

2 u2
x )

t
. Therefore,

dKE

dt
= − d

dt

∫
1

2
Tu2

x dx .

Let PE = 1
2 T

∫
u2

x dx and let E = KE + PE. Then dKE/dt = −dPE/dt , or
dE/dt = 0. Thus

E = 1
2

∫ +∞

−∞

(
ρu2

t + Tu2
x

)
dx (1)

is a constant independent of t. This is the law of conservation of energy.
In physics courses we learn that PE has the interpretation of the potential

energy. The only thing we need mathematically is the total energy E. The
conservation of energy is one of the most basic facts about the wave equation.
Sometimes the definition of E is modified by a constant factor, but that does
not affect its conservation. Notice that the energy is necessarily positive. The
energy can also be used to derive causality (as will be done in Section 9.1).

Example 1.

The plucked string, Example 2 of Section 2.1, has the energy

E = 1

2
T
∫

φ2
x dx = 1

2
T

(
b

a

)2

2a = Tb2

a
. �

In electromagnetic theory the equations are Maxwell’s. Each component
of the electric and magnetic fields satisfies the (three-dimensional) wave equa-
tion, where c is the speed of light. The principle of causality, discussed above,
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is the cornerstone of the theory of relativity. It means that a signal located at
the position x0 at the instant t0 cannot move faster than the speed of light. The
domain of influence of (x0, t0) consists of all the points that can be reached by
a signal of speed c starting from the point x0 at the time t0. It turns out that the
solutions of the three-dimensional wave equation always travel at speeds ex-
actly equal to c and never slower. Therefore, the causality principle is sharper
in three dimensions than in one. This sharp form is called Huygens’s principle
(see Chapter 9).

Flatland is an imaginary two-dimensional world. You can think of yourself
as a waterbug confined to the surface of a pond. You wouldn’t want to live there
because Huygens’s principle is not valid in two dimensions (see Section 9.2).
Each sound you make would automatically mix with the “echoes” of your
previous sounds. And each view would be mixed fuzzily with the previous
views. Three is the best of all possible dimensions.

EXERCISES

1. Use the energy conservation of the wave equation to prove that the only
solution with φ ≡ 0 and ψ ≡ 0 is u ≡ 0. (Hint: Use the first vanishing
theorem in Section A.1.)

2. For a solution u(x, t) of the wave equation with ρ = T = c = 1, the energy
density is defined as e = 1

2 (u2
t + u2

x ) and the momentum density as p =
utux.
(a) Show that ∂e/∂t = ∂p/∂x and ∂p/∂t = ∂e/∂x .
(b) Show that both e(x, t) and p(x, t) also satisfy the wave equation.

3. Show that the wave equation has the following invariance properties.
(a) Any translate u(x − y, t), where y is fixed, is also a solution.
(b) Any derivative, say ux, of a solution is also a solution.
(c) The dilated function u(ax, at) is also a solution, for any constant a.

4. If u(x, t) satisfies the wave equation utt = uxx, prove the identity

u(x + h, t + k) + u(x − h, t − k) = u(x + k, t + h) + u(x − k, t − h)

for all x, t, h, and k. Sketch the quadrilateral Q whose vertices are the
arguments in the identity.

5. For the damped string, equation (1.3.3), show that the energy decreases.
6. Prove that, among all possible dimensions, only in three dimensions can

one have distortionless spherical wave propagation with attenuation. This
means the following. A spherical wave in n-dimensional space satisfies
the PDE

utt = c2

(
urr + n − 1

r
ur

)
,

where r is the spherical coordinate. Consider such a wave that has
the special form u(r, t) = α(r ) f (t − β(r )), where α(r) is called the
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attenuation and β(r) the delay. The question is whether such solutions
exist for “arbitrary” functions f.
(a) Plug the special form into the PDE to get an ODE for f .
(b) Set the coefficients of f ′′, f ′, and f equal to zero.
(c) Solve the ODEs to see that n = 1 or n = 3 (unless u ≡ 0).
(d) If n = 1, show that α(r) is a constant (so that “there is no attenuation”).

(T. Morley, American Mathematical Monthly, Vol. 27, pp. 69–71, 1985)

2.3 THE DIFFUSION EQUATION

In this section we begin a study of the one-dimensional diffusion equation

ut = kuxx . (1)

Diffusions are very different from waves, and this is reflected in the mathe-
matical properties of the equations. Because (1) is harder to solve than the
wave equation, we begin this section with a general discussion of some of the
properties of diffusions. We begin with the maximum principle, from which
we’ll deduce the uniqueness of an initial-boundary problem. We postpone un-
til the next section the derivation of the solution formula for (1) on the whole
real line.

Maximum Principle. If u(x, t) satisfies the diffusion equation in a rectangle
(say, 0 ≤ x ≤ l, 0 ≤ t ≤ T ) in space-time, then the maximum value of u(x, t)
is assumed either initially (t = 0) or on the lateral sides (x = 0 or x = l) (see
Figure 1).

In fact, there is a stronger version of the maximum principle which asserts
that the maximum cannot be assumed anywhere inside the rectangle but only
on the bottom or the lateral sides (unless u is a constant). The corners are
allowed.

The minimum value has the same property; it too can be attained only on
the bottom or the lateral sides. To prove the minimum principle, just apply
the maximum principle to [−u(x, t)].

These principles have a natural interpretation in terms of diffusion or heat
flow. If you have a rod with no internal heat source, the hottest spot and the

Figure 1
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coldest spot can occur only initially or at one of the two ends of the rod. Thus
a hot spot at time zero will cool off (unless heat is fed into the rod at an end).
You can burn one of its ends but the maximum temperature will always be
at the hot end, so that it will be cooler away from that end. Similarly, if you
have a substance diffusing along a tube, its highest concentration can occur
only initially or at one of the ends of the tube.

If we draw a “movie” of the solution, the maximum drops down while the
minimum comes up. So the differential equation tends to smooth the solution
out. (This is very different from the behavior of the wave equation!)

Proof of the Maximum Principle. We’ll prove only the weaker version.
(Surprisingly, its strong form is much more difficult to prove.) For the strong
version, see [PW]. The idea of the proof is to use the fact, from calculus, that
at an interior maximum the first derivatives vanish and the second derivatives
satisfy inequalities such as uxx ≤ 0. If we knew that uxx �= 0 at the maximum
(which we do not), then we’d have uxx < 0 as well as ut = 0, so that ut �= kuxx .
This contradiction would show that the maximum could only be somewhere
on the boundary of the rectangle. However, because uxx could in fact be
equal to zero, we need to play a mathematical game to make the argument
work.

So let M denote the maximum value of u(x, t) on the three sides t = 0,
x = 0, and x = l. (Recall that any continuous function on any bounded closed
set is bounded and assumes its maximum on that set.) We must show that
u(x, t) ≤ M throughout the rectangle R.

Let ε be a positive constant and let v(x, t) = u(x, t) + εx2. Our goal
is to show that v(x, t) ≤ M + εl2 throughout R. Once this is accomplished,
we’ll have u(x, t) ≤ M + ε(l2 − x2). This conclusion is true for any ε > 0.
Therefore, u(x, t) ≤ M throughout R, which is what we are trying to prove.

Now from the definition of v, it is clear that v(x, t) ≤ M + εl2 on t = 0,
on x = 0, and on x = l. This function v satisfies

vt − kvxx = ut − k(u + εx2)xx = ut − kuxx − 2εk = −2εk < 0, (2)

which is the “diffusion inequality.” Now suppose that v(x, t) attains its maxi-
mum at an interior point (x0, t0). That is, 0 < x0 < l, 0 < t0 < T . By ordinary
calculus, we know that vt = 0 and vxx ≤ 0 at (x0, t0). This contradicts the
diffusion inequality (2). So there can’t be an interior maximum. Suppose now
that v(x, t) has a maximum (in the closed rectangle) at a point on the top edge
{t0 = T and 0 < x < l}. Then vx (x0, t0) = 0 and vxx(x0, t0) ≤ 0, as before.
Furthermore, because v(x0, t0) is bigger than v(x0, t0 − δ), we have

vt (x0, t0) = lim
v(x0, t0) − v(x0, t0 − δ)

δ
≥ 0

as δ → 0 through positive values. (This is not an equality because the maxi-
mum is only “one-sided” in the variable t.) We again reach a contradiction to
the diffusion inequality.
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But v(x, t) does have a maximum somewhere in the closed rectangle
0 ≤ x ≤ l, 0 ≤ t ≤ T . This maximum must be on the bottom or sides. There-
fore v(x, t) ≤ M + εl2 throughout R. This proves the maximum principle (in
its weaker version).

UNIQUENESS

The maximum principle can be used to give a proof of uniqueness for the
Dirichlet problem for the diffusion equation. That is, there is at most one
solution of

ut − kuxx = f (x, t) for 0 < x < l and t > 0
u(x, 0) = φ(x)
u(0, t) = g(t) u(l, t) = h(t)

(3)

for four given functions f , φ, g, and h. Uniqueness means that any solution
is determined completely by its initial and boundary conditions. Indeed, let
u1(x, t) and u2(x, t) be two solutions of (3). Let w = u1 − u2 be their differ-
ence. Then wt − kwxx = 0, w(x, 0) = 0, w(0, t) = 0, w(l, t) = 0. Let T >
0. By the maximum principle, w(x, t) has its maximum for the rectangle on its
bottom or sides—exactly where it vanishes. So w(x, t) ≤ 0. The same type
of argument for the minimum shows that w(x, t) ≥ 0. Therefore, w(x, t) ≡ 0,
so that u1(x, t) ≡ u2(x, t) for all t ≥ 0.

Here is a second proof of uniqueness for problem (3), by a very different
technique, the energy method. Multiplying the equation for w = u1 − u2 by
w itself, we can write

0 = 0 · w = (wt − kwxx)(w) = (
1
2 w2

)
t
+ (−kwx w)x + kw2

x .

(Verify this by carrying out the derivatives on the right side.) Upon integrating
over the interval 0 < x < l, we get

0 =
∫ l

0

(
1
2 w2

)
t
dx − kwx w

∣∣∣∣
x=l

x=0

+ k
∫ l

0
w2

x dx .

Because of the boundary conditions (w = 0 at x = 0, l),

d

dt

∫ l

0

1

2
[w(x, t)]2 dx = −k

∫ l

0
[wx (x, t)]2 dx ≤ 0,

where the time derivative has been pulled out of the x integral (see Section
A.3). Therefore,

∫
w2 dx is decreasing, so∫ l

0
[w(x, t)]2 dx ≤

∫ l

0
[w(x, 0)]2 dx (4)

for t ≥ 0. The right side of (4) vanishes because the initial conditions of u
and v are the same, so that

∫
[w(x, t)]2 dx = 0 for all t > 0. So w ≡ 0 and

u1 ≡ u2 for all t ≥ 0.
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STABILITY

This is the third ingredient of well-posedness (see Section 1.5). It means
that the initial and boundary conditions are correctly formulated. The energy
method leads to the following form of stability of problem (3), in case h = g
= f = 0. Let u1(x, 0) = φ1(x) and u2(x, 0) = φ2(x). Then w = u1 − u2 is the
solution with the initial datum φ1 − φ2. So from (4) we have∫ l

0
[u1(x, t) − u2(x, t)]2 dx ≤

∫ l

0
[φ1(x) − φ2(x)]2 dx . (5)

On the right side is a quantity that measures the nearness of the initial data for
two solutions, and on the left we measure the nearness of the solutions at any
later time. Thus, if we start nearby (at t = 0), we stay nearby. This is exactly
the meaning of stability in the “square integral” sense (see Sections 1.5 and
5.4).

The maximum principle also proves the stability, but with a different way
to measure nearness. Consider two solutions of (3) in a rectangle. We then
have w ≡ u1 − u2 = 0 on the lateral sides of the rectangle and w = φ1 − φ2
on the bottom. The maximum principle asserts that throughout the rectangle

u1(x, t) − u2(x, t) ≤ max|φ1 − φ2|.
The “minimum” principle says that

u1(x, t) − u2(x, t) ≥ − max|φ1 − φ2|.
Therefore,

max
0≤x≤l

|u1(x, t) − u2(x, t)| ≤ max
0≤x≤l

|φ1(x) − φ2(x)|, (6)

valid for all t > 0. Equation (6) is in the same spirit as (5), but with a quite
different method of measuring the nearness of functions. It is called stability
in the “uniform” sense.

EXERCISES

1. Consider the solution 1 − x2 − 2kt of the diffusion equation. Find
the locations of its maximum and its minimum in the closed rectangle
{0 ≤ x ≤ 1, 0 ≤ t ≤ T }.

2. Consider a solution of the diffusion equation ut = uxx in {0 ≤ x ≤ l,
0 ≤ t < ∞}.
(a) Let M(T) = the maximum of u(x, t) in the closed rectangle {0 ≤ x

≤ l, 0 ≤ t ≤ T }. Does M(T) increase or decrease as a function of T?
(b) Let m(T) = the minimum of u(x, t) in the closed rectangle {0 ≤ x ≤ l,

0 ≤ t ≤ T }. Does m(T) increase or decrease as a function of T?
3. Consider the diffusion equation ut = uxx in the interval (0, 1) with u(0, t) =

u(1, t) = 0 and u(x, 0) = 1 − x2. Note that this initial function does not
satisfy the boundary condition at the left end, but that the solution will
satisfy it for all t > 0.
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(a) Show that u(x, t) > 0 at all interior points 0 < x < 1, 0 < t < ∞.
(b) For each t > 0, let μ(t) = the maximum of u(x, t) over 0 ≤ x ≤ 1.

Show that μ(t) is a decreasing (i.e., nonincreasing) function of t.
(Hint: Let the maximum occur at the point X(t), so that μ(t) =
u(X(t), t). Differentiate μ(t), assuming that X(t) is differentiable.)

(c) Draw a rough sketch of what you think the solution looks like (u
versus x) at a few times. (If you have appropriate software available,
compute it.)

4. Consider the diffusion equation ut = uxx in {0 < x < 1, 0 < t < ∞} with
u(0, t) = u(1, t) = 0 and u(x, 0) = 4x(1 − x).
(a) Show that 0 < u(x, t) < 1 for all t > 0 and 0 < x < 1.
(b) Show that u(x, t) = u(1 − x, t) for all t ≥ 0 and 0 ≤ x ≤ 1.
(c) Use the energy method to show that

∫ 1
0 u2 dx is a strictly decreasing

function of t.
5. The purpose of this exercise is to show that the maximum principle is not

true for the equation ut = xuxx, which has a variable coefficient.
(a) Verify that u = −2xt − x2 is a solution. Find the location of its

maximum in the closed rectangle {−2 ≤ x ≤ 2, 0 ≤ t ≤ 1}.
(b) Where precisely does our proof of the maximum principle break

down for this equation?
6. Prove the comparison principle for the diffusion equation: If u and v are

two solutions, and if u ≤ v for t = 0, for x = 0, and for x = l, then u ≤ v
for 0 ≤ t < ∞, 0 ≤ x ≤ l.

7. (a) More generally, if ut − kuxx = f, vt − kvxx = g, f ≤ g, and u ≤ v
at x = 0, x = l and t = 0, prove that u ≤ v for 0 ≤ x ≤ l, 0 ≤ t < ∞.

(b) If vt − vxx ≥ sin x for 0 ≤ x ≤ π, 0 < t < ∞, and if v(0, t) ≥ 0,
v(π, t) ≥ 0 and v(x, 0) ≥ sin x , use part (a) to show that v(x, t) ≥
(1 − e−t ) sin x .

8. Consider the diffusion equation on (0, l) with the Robin boundary condi-
tions ux (0, t) − a0u(0, t) = 0 and ux (l, t) + alu(l, t) = 0. If a0 > 0 and
al > 0, use the energy method to show that the endpoints contribute to
the decrease of

∫ l
0 u2(x, t) dx . (This is interpreted to mean that part of

the “energy” is lost at the boundary, so we call the boundary conditions
“radiating” or “dissipative.”)

2.4 DIFFUSION ON THE WHOLE LINE

Our purpose in this section is to solve the problem

ut = kuxx (−∞ < x < ∞, 0 < t < ∞) (1)
u(x, 0) = φ(x). (2)
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As with the wave equation, the problem on the infinite line has a certain
“purity”, which makes it easier to solve than the finite-interval problem. (The
effects of boundaries will be discussed in the next several chapters.) Also as
with the wave equation, we will end up with an explicit formula. But it will
be derived by a method very different from the methods used before. (The
characteristics for the diffusion equation are just the lines t = constant and
play no major role in the analysis.) Because the solution of (1) is not easy to
derive, we first set the stage by making some general comments.

Our method is to solve it for a particular φ(x) and then build the general
solution from this particular one. We’ll use five basic invariance properties
of the diffusion equation (1).

(a) The translate u(x − y, t) of any solution u(x, t) is another solution,
for any fixed y.

(b) Any derivative (ux or ut or uxx, etc.) of a solution is again a solution.
(c) A linear combination of solutions of (1) is again a solution of (1).

(This is just linearity.)
(d) An integral of solutions is again a solution. Thus if S(x, t) is a solution

of (1), then so is S(x − y, t) and so is

v(x, t) =
∫ ∞

−∞
S(x − y, t)g(y) dy

for any function g(y), as long as this improper integral converges
appropriately. (We’ll worry about convergence later.) In fact, (d) is
just a limiting form of (c).

(e) If u(x, t) is a solution of (1), so is the dilated function
u(

√
a x, at), for any a > 0. Prove this by the chain rule:

Let v(x, t) = u(
√

a x, at). Then vt = [∂(at)/∂t]ut = aut and vx =
[∂(

√
a x)/∂x]ux = √

a ux and vxx = √
a · √

a uxx = a uxx.

Our goal is to find a particular solution of (1) and then to construct all the
other solutions using property (d). The particular solution we will look for is
the one, denoted Q(x, t), which satisfies the special initial condition

Q(x, 0) = 1 for x > 0 Q(x, 0) = 0 for x < 0. (3)

The reason for this choice is that this initial condition does not change under
dilation. We’ll find Q in three steps.

Step 1 We’ll look for Q(x, t) of the special form

Q(x, t) = g(p) where p = x√
4kt

(4)
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and g is a function of only one variable (to be determined). (The
√

4k factor
is included only to simplify a later formula.)

Why do we expect Q to have this special form? Because property (e) says
that equation (1) doesn’t “see” the dilation x → √

a x, t → at . Clearly, (3)
doesn’t change at all under the dilation. So Q(x, t), which is defined by condi-
tions (1) and (3), ought not see the dilation either. How could that happen? In
only one way: if Q depends on x and t solely through the combination x/

√
t .

For the dilation takes x/
√

t into
√

ax/
√

at = x/
√

t . Thus let p = x/
√

4kt
and look for Q which satisfies (1) and (3) and has the form (4).
Step 2 Using (4), we convert (1) into an ODE for g by use of the chain rule:

Qt = dg

dp

∂p

∂t
= − 1

2t

x√
4kt

g′(p)

Qx = dg

dp

∂p

∂x
= 1√

4kt
g′(p)

Qxx = d Qx

dp

∂p

∂x
= 1

4kt
g′′(p)

0 = Qt − k Qxx = 1

t

[
−1

2
pg′(p) − 1

4
g′′(p)

]
.

Thus

g′′ + 2pg′ = 0.

This ODE is easily solved using the integrating factor exp
∫

2p dp = exp(p2).
We get g′(p) = c1 exp(−p2) and

Q(x, t) = g(p) = c1

∫
e−p2

dp + c2.

Step 3 We find a completely explicit formula for Q. We’ve just shown that

Q(x, t) = c1

∫ x/
√

4kt

0
e−p2

dp + c2.

This formula is valid only for t > 0. Now use (3), expressed as a limit as
follows.

If x > 0, 1 = lim
t↘0

Q = c1

∫ +∞

0
e−p2

dp + c2 = c1

√
π

2
+ c2.

If x < 0, 0 = lim
t↘0

Q = c1

∫ −∞

0
e−p2

dp + c2 = −c1

√
π

2
+ c2.
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See Exercise 6. Here lim
t↘0

means limit from the right. This determines the

coefficients c1 = 1/
√

π and c2 = 1
2 . Therefore, Q is the function

Q(x, t) = 1

2
+ 1√

π

∫ x/
√

4kt

0
e−p2

dp (5)

for t > 0. Notice that it does indeed satisfy (1), (3), and (4).
Step 4 Having found Q, we now define S = ∂Q/∂x. (The explicit formula
for S will be written below.) By property (b), S is also a solution of (1). Given
any function φ, we also define

u(x, t) =
∫ ∞

−∞
S(x − y, t)φ(y) dy for t > 0. (6)

By property (d), u is another solution of (1). We claim that u is the unique
solution of (1), (2). To verify the validity of (2), we write

u(x, t) =
∫ ∞

−∞

∂ Q

∂x
(x − y, t)φ(y) dy

= −
∫ ∞

−∞

∂

∂y
[Q(x − y, t)]φ(y) dy

= +
∫ ∞

−∞
Q(x − y, t)φ′(y) dy − Q(x − y, t)φ(y)

∣∣∣∣
y=+∞

y=−∞

upon integrating by parts. We assume these limits vanish. In particular, let’s
temporarily assume that φ(y) itself equals zero for |y| large. Therefore,

u(x, 0) =
∫ ∞

−∞
Q(x − y, 0)φ′(y) dy

=
∫ x

−∞
φ′(y) dy = φ

∣∣∣∣
x

−∞
= φ(x)

because of the initial condition for Q and the assumption that φ(−∞) = 0.
This is the initial condition (2). We conclude that (6) is our solution formula,
where

S = ∂ Q

∂x
= 1

2
√

πkt
e−x2/4kt for t > 0. (7)

That is,

u(x, t) = 1√
4πkt

∫ ∞

−∞
e−(x−y)2/4ktφ(y) dy. (8)
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Figure 1

S(x, t) is known as the source function, Green’s function, fundamental solution,
gaussian, or propagator of the diffusion equation, or simply the diffusion
kernel. It gives the solution of (1),(2) with any initial datum φ. The formula
only gives the solution for t > 0. When t = 0 it makes no sense. �

The source function S(x, t) is defined for all real x and for all t > 0. S(x, t)
is positive and is even in x [S(−x, t) = S(x, t)]. It looks like Figure 1 for
various values of t. For large t, it is very spread out. For small t, it is a very
tall thin spike (a “delta function”) of height (4πkt)−1/2. The area under its
graph is ∫ ∞

−∞
S(x, t) dx = 1√

π

∫ ∞

−∞
e−q2

dq = 1

by substituting q = x/
√

4kt , dq = (dx)/
√

4kt (see Exercise 7). Now look
more carefully at the sketch of S(x, t) for a very small t. If we cut out the tall
spike, the rest of S(x, t) is very small. Thus

max
|x |>δ

S(x, t) → 0 as t → 0 (9)

Notice that the value of the solution u(x, t) given by (6) is a kind of
weighted average of the initial values around the point x. Indeed, we can
write

u(x, t) =
∫ ∞

−∞
S(x − y, t)φ(y) dy �

∑
t

S(x − yi , t)φ(yi )�yi
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approximately. This is the average of the solutions S(x − yi, t) with the weights
φ(yi). For very small t, the source function is a spike so that the formula
exaggerates the values of φ near x. For any t > 0 the solution is a spread-out
version of the initial values at t = 0.

Here’s the physical interpretation. Consider diffusion. S(x − y, t) repre-
sents the result of a unit mass (say, 1 gram) of substance located at time zero
exactly at the position y which is diffusing (spreading out) as time advances.
For any initial distribution of concentration, the amount of substance initially
in the interval �y spreads out in time and contributes approximately the term
S(x − yi , t)φ(yi )�yi . All these contributions are added up to get the whole
distribution of matter. Now consider heat flow. S(x − y, t) represents the result
of a “hot spot” at y at time 0. The hot spot is cooling off and spreading its heat
along the rod.

Another physical interpretation is brownian motion, where particles
move randomly in space. For simplicity, we assume that the motion is one-
dimensional; that is, the particles move along a tube. Then the probability that
a particle which begins at position x ends up in the interval (a, b) at time t is
precisely

∫ b
a S(x − y, t) dy for some constant k, where S is defined in (7). In

other words, if we let u(x, t) be the probability density (probability per unit
length) and if the initial probability density is φ(x), then the probability at
all later times is given by formula (6). That is, u(x, t) satisfies the diffusion
equation.

It is usually impossible to evaluate integral (8) completely in terms of
elementary functions. Answers to particular problems, that is, to particular
initial data φ(x), are sometimes expressible in terms of the error function of
statistics,

erf(x) = 2√
π

∫ x

0
e−p2

dp. (10)

Notice that erf(0) = 0. By Exercise 6, lim
x→+∞ erf(x) = 1.

Example 1.

From (5) we can write Q(x, t) in terms of erf as

Q(x, t) = 1

2
+ 1

2
erf

(
x√
4kt

)
. �

Example 2.

Solve the diffusion equation with the initial condition u(x, 0) = e−x . To
do so, we simply plug this into the general formula (8):

u(x, t) = 1√
4πkt

∫ ∞

−∞
e−(x−y)2/4kt e−ydy.
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This is one of the few fortunate examples that can be integrated. The
exponent is

− x2 − 2xy + y2 + 4kty

4kt
.

Completing the square in the y variable, it is

− (y + 2kt − x)2

4kt
+ kt − x .

We let p = (y + 2kt − x)/
√

4kt so that dp = dy/
√

4kt . Then

u(x, t) = ekt−x
∫ ∞

−∞
e−p2 dp√

π
= ekt−x .

By the maximum principle, a solution in a bounded interval can-
not grow in time. However, this particular solution grows, rather than
decays, in time. The reason is that the left side of the rod is initially
very hot [u(x, 0) → +∞ as x → −∞] and the heat gradually diffuses
throughout the rod. �

EXERCISES

1. Solve the diffusion equation with the initial condition

φ(x) = 1 for |x | < l and φ(x) = 0 for |x | > l.

Write your answer in terms of erf(x).
2. Do the same for φ(x) = 1 for x > 0 and φ(x) = 3 for x < 0.
3. Use (8) to solve the diffusion equation if φ(x) = e3x . (You may also use

Exercises 6 and 7 below.)
4. Solve the diffusion equation if φ(x) = e−x for x > 0 and φ(x) = 0 for

x < 0.
5. Prove properties (a) to (e) of the diffusion equation (1).
6. Compute

∫ ∞
0 e−x2

dx . (Hint: This is a function that cannot be integrated
by formula. So use the following trick. Transform the double integral∫ ∞

0 e−x2
dx · ∫ ∞

0 e−y2
dy into polar coordinates and you’ll end up with a

function that can be integrated easily.)
7. Use Exercise 6 to show that

∫ ∞
−∞ e−p2

dp = √
π . Then substitute

p = x/
√

4kt to show that∫ ∞

−∞
S(x, t) dx = 1.

8. Show that for any fixed δ > 0 (no matter how small),

max
δ≤|x |<∞

S(x, t) → 0 as t → 0.
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[This means that the tail of S(x, t) is “uniformly small”.]
9. Solve the diffusion equation ut = kuxx with the initial condition

u(x, 0) = x2 by the following special method. First show that uxxx
satisfies the diffusion equation with zero initial condition. There-
fore, by uniqueness, uxxx ≡ 0. Integrating this result thrice, obtain
u(x, t) = A(t)x2 + B(t)x + C(t). Finally, it’s easy to solve for A, B,
and C by plugging into the original problem.

10. (a) Solve Exercise 9 using the general formula discussed in the
text. This expresses u(x, t) as a certain integral. Substitute p =
(x − y)/

√
4kt in this integral.

(b) Since the solution is unique, the resulting formula must agree with
the answer to Exercise 9. Deduce the value of∫ ∞

−∞
p2e−p2

dp.

11. (a) Consider the diffusion equation on the whole line with the usual
initial condition u(x, 0) = φ(x). If φ(x) is an odd function, show
that the solution u(x, t) is also an odd function of x. (Hint: Consider
u(−x, t) + u(x, t) and use the uniqueness.)

(b) Show that the same is true if “odd” is replaced by “even.”
(c) Show that the analogous statements are true for the wave equation.

12. The purpose of this exercise is to calculate Q(x, t) approximately for
large t. Recall that Q(x, t) is the temperature of an infinite rod that is
initially at temperature 1 for x > 0, and 0 for x < 0.
(a) Express Q(x, t) in terms of erf.
(b) Find the Taylor series of erf(x) around x = 0. (Hint: Expand ez,

substitute z = −y2, and integrate term by term.)
(c) Use the first two nonzero terms in this Taylor expansion to find an

approximate formula for Q(x, t).
(d) Why is this formula a good approximation for x fixed and t large?

13. Prove from first principles that Q(x, t) must have the form (4), as follows.
(a) Assuming uniqueness show that Q(x, t) = Q(

√
a x, at). This

identity is valid for all a > 0, all t > 0, and all x.
(b) Choose a = 1/(4kt).

14. Let φ(x) be a continuous function such that |φ(x)| ≤ Ceax2
. Show that

formula (8) for the solution of the diffusion equation makes sense for 0
< t < 1/(4ak), but not necessarily for larger t.

15. Prove the uniqueness of the diffusion problem with Neumann boundary
conditions:

ut − kuxx = f (x, t) for 0 < x < l, t > 0 u(x, 0) = φ(x)
ux (0, t) = g(t) ux (l, t) = h(t)

by the energy method.
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16. Solve the diffusion equation with constant dissipation:

ut − kuxx + bu = 0 for −∞ < x < ∞ with u(x, 0) = φ(x),

where b > 0 is a constant. (Hint: Make the change of variables u(x, t) =
e−btv(x, t).)

17. Solve the diffusion equation with variable dissipation:

ut − kuxx + bt2u = 0 for −∞ < x < ∞ with u(x, 0) = φ(x),

where b > 0 is a constant. (Hint: The solutions of the ODE
wt + bt2w = 0 are Ce−bt3/3. So make the change of variables
u(x, t) = e−bt3/3v(x, t) and derive an equation for v.)

18. Solve the heat equation with convection:

ut − kuxx + V ux = 0 for −∞ < x < ∞ with u(x, 0) = φ(x),

where V is a constant. (Hint: Go to a moving frame of reference by
substituting y = x − Vt.)

19. (a) Show that S2(x, y, t) = S(x, t)S(y, t) satisfies the diffusion equa-
tion St = k(Sxx + Syy).

(b) Deduce that S2(x, y, t) is the source function for two-dimensional
diffusions.

2.5 COMPARISON OF WAVES AND DIFFUSIONS

We have seen that the basic property of waves is that information gets trans-
ported in both directions at a finite speed. The basic property of diffusions
is that the initial disturbance gets spread out in a smooth fashion and grad-
ually disappears. The fundamental properties of these two equations can be
summarized in the following table.

Property Waves Diffusions
(i) Speed of propagation? Finite (≤c) Infinite

(ii) Singularities for t > 0? Transported
along
characteristics
(speed = c)

Lost immediately

(iii) Well-posed for t > 0? Yes Yes (at least for bounded solutions)

(iv) Well-posed for t < 0? Yes No

(v) Maximum principle No Yes

(vi) Behavior as t → +∞? Energy is
constant so does
not decay

Decays to zero (if φ integrable)

(vii) Information Transported Lost gradually
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For the wave equation we have seen most of these properties already. That
there is no maximum principle is easy to see. Generally speaking, the wave
equation just moves information along the characteristic lines. In more than
one dimension we’ll see that it spreads information in expanding circles or
spheres.

For the diffusion equation we discuss property (ii), that singularities are
immediately lost, in Section 3.5. The solution is differentiable to all orders
even if the initial data are not. Properties (iii), (v), and (vi) have been shown
already. The fact that information is gradually lost [property (vii)] is clear
from the graph of a typical solution, for instance, from S(x, t).

As for property (i) for the diffusion equation, notice from formula (2.4.8)
that the value of u(x, t) depends on the values of the initial datum φ(y) for
all y, where −∞ < y < ∞. Conversely, the value of φ at a point x0 has an
immediate effect everywhere (for t > 0), even though most of its effect is
only for a short time near x0. Therefore, the speed of propagation is infinite.
Exercise 2(b) shows that solutions of the diffusion equation can travel at
any speed. This is in stark contrast to the wave equation (and all hyperbolic
equations).

As for (iv), there are several ways to see that the diffusion equation is not
well-posed for t < 0 (“backward in time”). One way is the following. Let

un(x, t) = 1

n
sin nx e−n2kt . (1)

You can check that this satisfies the diffusion equation for all x, t. Also,
un(x, 0) = n−1 sin nx → 0 uniformly as n → ∞. But consider any t < 0, say
t = −1. Then un(x, −1) = n−1 sin nx e+kn2 → ±∞ uniformly as n → ∞
except for a few x. Thus un is close to the zero solution at time t = 0 but not
at time t = −1. This violates the stability, in the uniform sense at least.

Another way is to let u(x, t) = S(x, t + 1). This is a solu-
tion of the diffusion equation ut = kuxx for t > −1, −∞ < x < ∞. But
u(0, t) → ∞ as t ↘ −1, as we saw above. So we cannot solve backwards
in time with the perfectly nice-looking initial data (4πk)−1e−x2/4.

Besides, any physicist knows that heat flow, brownian motion, and so on,
are irreversible processes. Going backward leads to chaos.

EXERCISES

1. Show that there is no maximum principle for the wave equation.
2. Consider a traveling wave u(x, t) = f (x − at) where f is a given function

of one variable.
(a) If it is a solution of the wave equation, show that the speed must be

a = ±c (unless f is a linear function).
(b) If it is a solution of the diffusion equation, find f and show that the

speed a is arbitrary.
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3. Let u satisfy the diffusion equation ut = 1
2 uxx. Let

v(x, t) = 1√
t
ex2/2tv

(
x

t
,

1

t

)
.

Show that v satisfies the “backward” diffusion equation vt = − 1
2vxx

for t > 0.
4. Here is a direct relationship between the wave and diffusion equations.

Let u(x, t) solve the wave equation on the whole line with bounded second
derivatives. Let

v(x, t) = c√
4πkt

∫ ∞

−∞
e−s2c2/4kt u (x, s) ds.

(a) Show that v(x, t) solves the diffusion equation!
(b) Show that limt→0 v(x, t) = u(x, 0).

(Hint: (a) Write the formula as v(x, t) = ∫ ∞
−∞ H (s, t)u(x, s) ds, where

H(x, t) solves the diffusion equation with constant k/c2 for t > 0. Then
differentiate v(x, t) using Section A.3. (b) Use the fact that H(s, t) is
essentially the source function of the diffusion equation with the spatial
variable s.)



3

REFLECTIONS AND
SOURCES

In this chapter we solve the simplest reflection problems, when there is only a
single point of reflection at one end of a semi-infinite line. In Chapter 4 we shall
begin a systematic study of more complicated reflection problems. In Sections
3.3 and 3.4 we solve problems with sources: that is, the inhomogeneous wave
and diffusion equations. Finally, in Section 3.5 we analyze the solution of the
diffusion equation more carefully.

3.1 DIFFUSION ON THE HALF-LINE

Let’s take the domain to be D = the half-line (0, ∞) and take the Dirichlet
boundary condition at the single endpoint x = 0. So the problem is

vt − kvxx = 0 in {0 < x < ∞, 0 < t < ∞},
v(x, 0) = φ(x) for t = 0
v(0, t) = 0 for x = 0

(1)

The PDE is supposed to be satisfied in the open region {0 < x < ∞,
0 < t < ∞}. If it exists, we know that the solution v(x, t) of this problem
is unique because of our discussion in Section 2.3. It can be interpreted, for
instance, as the temperature in a very long rod with one end immersed in a
reservoir of temperature zero and with insulated sides.

We are looking for a solution formula analogous to (2.4.8). In fact, we
shall reduce our new problem to our old one. Our method uses the idea of an
odd function. Any function ψ(x) that satisfies ψ(−x) ≡ −ψ(+x) is called
an odd function. Its graph y = ψ(x) is symmetric with respect to the origin

57
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Figure 1

(see Figure 1). Automatically (by putting x = 0 in the definition), ψ(0) = 0.
For a detailed discussion of odd and even functions, see Section 5.2.

Now the initial datum φ(x) of our problem is defined only for x ≥ 0. Let
φodd be the unique odd extension of φ to the whole line. That is,

φodd(x) =

⎧⎪⎨
⎪⎩

φ(x) for x > 0
−φ(−x) for x < 0

0 for x = 0.

(2)

The extension concept too is discussed in Section 5.2.
Let u(x, t) be the solution of

ut − kuxx = 0
u(x, 0) = φodd(x)

(3)

for the whole line −∞ < x < ∞, 0 < t < ∞. According to Section 2.3, it is
given by the formula

u(x, t) =
∫ ∞

−∞
S(x − y, t)φodd(y)dy. (4)

Its “restriction,”

v(x, t) = u(x, t) for x > 0, (5)

will be the unique solution of our new problem (1). There is no difference at
all between v and u except that the negative values of x are not considered
when discussing v.

Why is v(x, t) the solution of (1)? Notice first that u(x, t) must also be an
odd function of x (see Exercise 2.4.11). That is, u(−x, t) = −u(x, t). Putting
x = 0, it is clear that u(0, t) = 0. So the boundary condition v(0, t) = 0 is
automatically satisfied! Furthermore, v solves the PDE as well as the initial
condition for x > 0, simply because it is equal to u for x > 0 and u satisfies
the same PDE for all x and the same initial condition for x > 0.

The explicit formula for v(x, t) is easily deduced from (4) and (5). From
(4) and (2) we have

u(x, t) =
∫ ∞

0
S(x − y, t)φ(y)dy−

∫ 0

−∞
S(x − y, t)φ(−y)dy.
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Changing the variable −y to +y in the second integral, we get

u(x, t) =
∫ ∞

0
[S(x − y, t) − S(x + y, t)] φ(y) dy.

(Notice the change in the limits of integration.) Hence for 0 < x < ∞,
0 < t < ∞, we have

v(x, t) = 1√
4πkt

∫ ∞

0
[e−(x−y)2/4kt − e−(x+y)2/4kt ] φ(y) dy. (6)

This is the complete solution formula for (1).
We have just carried out the method of odd extensions or reflection method,

so called because the graph of φodd(x) is the reflection of the graph of φ(x)
across the origin.

Example 1.

Solve (1) with φ(x) ≡ 1. The solution is given by formula (6). This case
can be simplified as follows. Let p = (x − y)/

√
4kt in the first integral

and q = (x + y)/
√

4kt in the second integral. Then

u(x, t) =
∫ x/

√
4kt

−∞
e−p2

dp/
√

π −
∫ +∞

x/
√

4kt
e−q2

dq/
√

π

=
[

1

2
+ 1

2
erf

(
x√
4kt

)]
−

[
1

2
− 1

2
erf

(
x√
4kt

)]

= erf

(
x√
4kt

)
. �

Now let’s play the same game with the Neumann problem

wt − kwxx = 0 for 0 < x < ∞, 0 < t < ∞
w(x, 0) = φ(x)

wx (0, t) = 0.

(7)

In this case the reflection method is to use even, rather than odd, extensions.
An even function is a function ψ such that ψ(−x) = +ψ(x). If ψ is an even
function, then differentiation shows that its derivative is an odd function. So
automatically its slope at the origin is zero: ψ ′(0) = 0. If φ(x) is defined only
on the half-line, its even extension is defined to be

φeven(x) =
{

φ(x) for x ≥ 0

+φ(−x) for x ≤ 0
(8)
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By the same reasoning as we used above, we end up with an explicit formula
for w(x, t). It is

w(x, t) = 1√
4πkt

∫ ∞

0
[e−(x−y)2/4kt + e−(x+y)2/4kt ] φ(y) dy. (9)

This is carried out in Exercise 3. Notice that the only difference between (6)
and (9) is a single minus sign!

Example 2.

Solve (7) with φ(x) = 1. This is the same as Example 1 except for the
single sign. So we can copy from that example:

u(x, t) =
[

1

2
+ 1

2
erf

( x

4kt

)]
+

[
1

2
− 1

2
erf

( x

4kt

)]
= 1.

(That was stupid: We could have guessed it!) �

EXERCISES

1. Solve ut = kuxx; u(x, 0) = e−x ; u(0, t) = 0 on the half-line 0 < x < ∞.
2. Solve ut = kuxx; u(x, 0) = 0; u(0, t) = 1 on the half-line 0 < x < ∞.
3. Derive the solution formula for the half-line Neumann prob-

lem wt − kwxx = 0 for 0 < x < ∞, 0 < t < ∞; wx (0, t) = 0; w(x, 0) =
φ(x).

4. Consider the following problem with a Robin boundary condition:

DE: ut = kuxx on the half-line 0 < x < ∞
(and 0 < t < ∞)

IC: u(x, 0) = x for t = 0 and 0 < x < ∞
BC: ux (0, t) − 2u(0, t) = 0 for x = 0.

(∗)

The purpose of this exercise is to verify the solution formula for (∗). Let
f (x) = x for x > 0, let f (x) = x + 1 − e2x for x < 0, and let

v(x, t) = 1√
4πkt

∫ ∞

−∞
e−(x−y)2/4kt f (y)dy.

(a) What PDE and initial condition does v(x, t) satisfy for
−∞ < x < ∞?

(b) Let w = vx − 2v. What PDE and initial condition does w(x, t) satisfy
for −∞ < x < ∞?

(c) Show that f ′(x) − 2 f (x) is an odd function (for x �= 0).
(d) Use Exercise 2.4.11 to show that w is an odd function of x.
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(e) Deduce that v(x, t) satisfies (∗) for x > 0. Assuming uniqueness,
deduce that the solution of (∗) is given by

u(x, t) = 1√
4πkt

∫ ∞

−∞
e−(x−y)2/4kt f (y)dy.

5. (a) Use the method of Exercise 4 to solve the Robin problem:

DE: ut = kuxx on the half-line 0 < x < ∞
(and 0 < t < ∞)

IC: u(x, 0) = x for t = 0 and 0 < x < ∞
BC: ux (0, t) − hu(0, t) = 0 for x = 0,

where h is a constant.
(b) Generalize the method to the case of general initial data φ(x).

3.2 REFLECTIONS OF WAVES

Now we try the same kind of problem for the wave equation as we did in
Section 3.1 for the diffusion equation. We again begin with the Dirichlet
problem on the half-line (0, ∞). Thus the problem is

DE : vt t − c2vxx = 0 for 0 < x < ∞
and −∞ < t < ∞

IC : v(x, 0) = φ(x), vt (x, 0) = ψ(x) for t = 0
and 0 < x < ∞

BC : v(0, t) = 0 for x = 0
and −∞ < t < ∞.

(1)

The reflection method is carried out in the same way as in Section 3.1. Con-
sider the odd extensions of both of the initial functions to the whole line,
φodd(x) and ψodd(x). Let u(x, t) be the solution of the initial-value problem on
(−∞, ∞) with the initial data φodd and ψodd. Then u(x, t) is once again an odd
function of x (see Exercise 2.1.7). Therefore, u(0, t) = 0, so that the boundary
condition is satisfied automatically. Define v(x, t) = u(x, t) for 0 < x < ∞
[the restriction of u to the half-line]. Then v(x, t) is precisely the solution we
are looking for. From the formula in Section 2.1, we have for x ≥ 0,

v(x, t) = u(x, t) = 1

2
[φodd(x + ct) + φodd(x − ct)] + 1

2c

∫ x+ct

x−ct
ψodd(y)dy.

Let’s “unwind” this formula, recalling the meaning of the odd extensions.
First we notice that for x > c|t | only positive arguments occur in the formula,
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Figure 1

so that u(x, t) is given by the usual formula:

v(x, t) = 1

2
[φ(x + ct) + φ(x − ct)] + 1

2c

∫ x+ct

x−ct
ψ(y) dy

for x > c|t |.
(2)

But in the other region 0 < x < c|t |, we have φodd(x − ct) = −φ(ct − x),
and so on, so that

v(x, t) = 1

2
[φ(x +ct)−φ(ct − x)]+ 1

2c

∫ x+ct

0
ψ(y)dy + 1

2c

∫ 0

x−ct
[−ψ(−y)]dy.

Notice the switch in signs! In the last term we change variables y → −y to
get 1/2c

∫ ct+x
ct−x ψ(y)dy. Therefore,

v(x, t) = 1

2
[φ(ct + x) − φ(ct − x)] + 1

2c

∫ ct+x

ct−x
ψ(y) dy (3)

for 0 < x < c|t |. The complete solution is given by the pair of formulas (2)
and (3). The two regions are sketched in Figure 1 for t > 0.

Graphically, the result can be interpreted as follows. Draw the backward
characteristics from the point (x, t). In case (x, t) is in the region x < ct, one of
the characteristics hits the t axis (x = 0) before it hits the x axis, as indicated
in Figure 2. The formula (3) shows that the reflection induces a change of

Figure 2
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sign. The value of v(x, t) now depends on the values of φ at the pair of points
ct ± x and on the values of ψ in the short interval between these points. Note
that the other values of ψ have canceled out. The shaded area D in Figure 2
is called the domain of dependence of the point (x, t).

The case of the Neumann problem is left as an exercise.

THE FINITE INTERVAL

Now let’s consider the guitar string with fixed ends:

vt t = c2vxx v(x, 0) = φ(x) vt (x, 0) = ψ(x) for 0 < x < l,
(4)

v(0, t) = v(l, t) = 0.

This problem is much more difficult because a typical wave will bounce back
and forth an infinite number of times. Nevertheless, let’s use the method of
reflection. This is a bit tricky, so you are invited to skip the rest of this section
if you wish.

The initial data φ(x) and ψ(x) are now given only for 0 < x < l. We extend
them to the whole line to be “odd” with respect to both x = 0 and x = l:

φext(−x) = −φext(x) and φext(2l − x) = −φext(x).

The simplest way to do this is to define

φext(x) =

⎧⎪⎨
⎪⎩

φ(x) for 0 < x < l
−φ(−x) for −l < x < 0
extended to be of period 2l.

See Figure 3 for an example. And see Section 5.2 for further discussion.
“Period 2l” means that φext(x + 2l) = φext(x) for all x. We do exactly the
same for ψ(x) (defined for 0 < x < l) to get ψext(x) defined for −∞ < x <
∞.

Now let u(x, t) be the solution of the infinite line problem with the extended
initial data. Let v be the restriction of u to the interval (0, l). Thus v(x, t) is

Figure 3
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Figure 4

given by the formula

v(x, t) = 1

2
φext(x + ct) + 1

2
φext(x − ct) + 1

2c

∫ x+ct

x−ct
ψext(s)ds (5)

for 0 ≤ x ≤ l. This simple formula contains all the information we need. But
to see it explicitly we must unwind the definitions of φext and ψext. This will
give a resulting formula which appears quite complicated because it includes
a precise description of all the reflections of the wave at both of the boundary
points x = 0 and x = l.

The way to understand the explicit result we are about to get is by draw-
ing a space-time diagram (Figure 4). From the point (x, t), we draw the two
characteristic lines and reflect them each time they hit the boundary. We keep
track of the change of sign at each reflection. We illustrate the result in Figure
4 for the case of a typical point (x, t). We also illustrate in Figure 5 the def-
inition of the extended function φext(x). (The same picture is valid for ψext.)
For instance, for the point (x, t) as drawn in Figures 4 and 5, we have

φext(x + ct) = −φ(4l − x − ct) and φext(x − ct) = +φ(x − ct + 2l).

The minus coefficient on −φ(−x − ct + 4l) comes from the odd number of
reflections (= 3). The plus coefficient on φ(x − ct + 2l) comes from the even

Figure 5
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number of reflections (= 2). Therefore, the general formula (5) reduces to

v(x, t) = 1

2
φ(x − ct + 2l) − 1

2
φ(4l − x − ct)

+ 1

2c

[∫ −l

x−ct
ψ(y + 2l) dy +

∫ 0

−l
−ψ(−y) dy

+
∫ 1

0
ψ(y) dy +

∫ 2l

l
−ψ(−y + 2l) dy

+
∫ 3l

2l
ψ(y − 2l) dy +

∫ x+ct

3l
−ψ(−y + 4l) dy

]
But notice that there is an exact cancellation of the four middle integrals, as
we see by changing y → −y and y − 2l → −y + 2l. So, changing variables
in the two remaining integrals, the formula simplifies to

v(x, t) = 1

2
φ(x − ct + 2l) − 1

2
φ(4l − x − ct)

+ 1

2c

∫ l

x−ct+2l
ψ(s) ds + 1

2c

∫ 4l−x−ct

l
ψ(s) ds.

Therefore, we end up with the formula

v(x, t) = 1

2
φ(x − ct + 2l) − 1

2
φ(4l − x − ct) +

∫ 4l−x−ct

x−ct+2l
ψ(s)

ds

2c
(6)

at the point (x, t) illustrated, which has three reflections on one end and two
on the other. Formula (6) is valid only for such points.

Figure 6
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The solution formula at any other point (x, t) is characterized by the num-
ber of reflections at each end (x = 0, l). This divides the space-time picture
into diamond-shaped regions as illustrated in Figure 6. Within each diamond
the solution v(x, t) is given by a different formula. Further examples may be
found in the exercises.

The formulas explain in detail how the solution looks. However, the
method is impossible to generalize to two- or three-dimensional problems,
nor does it work for the diffusion equation at all. Also, it is very complicated!
Therefore, in Chapter 4 we shall introduce a completely different method
(Fourier’s) for solving problems on a finite interval.

EXERCISES

1. Solve the Neumann problem for the wave equation on the half-line 0 <
x < ∞.

2. The longitudinal vibrations of a semi-infinite flexible rod satisfy the
wave equation utt = c2uxx for x > 0. Assume that the end x = 0 is free
(ux = 0); it is initially at rest but has a constant initial velocity V for
a < x < 2a and has zero initial velocity elsewhere. Plot u versus x at the
times t = 0, a/c, 3a/2c, 2a/c, and 3a/c.

3. A wave f (x + ct) travels along a semi-infinite string (0 < x < ∞) for
t < 0. Find the vibrations u(x, t) of the string for t > 0 if the end x = 0
is fixed.

4. Repeat Exercise 3 if the end is free.
5. Solve utt = 4uxx for 0 < x < ∞, u(0, t) = 0, u(x, 0) ≡ 1, ut (x, 0) ≡ 0

using the reflection method. This solution has a singularity; find its lo-
cation.

6. Solve utt = c2uxx in 0 < x < ∞, 0 ≤ t < ∞, u(x, 0) = 0, ut (x, 0) =V ,

ut (0, t) + aux (0, t) = 0,

where V , a, and c are positive constants and a > c.
7. (a) Show that φodd(x) = (sign x)φ(|x|).

(b) Show thatφext(x)=φodd(x−2l[x/2l]), where [·] denotes the greatest
integer function.

(c) Show that

φext(x) =

⎧⎪⎨
⎪⎩

φ
(

x −
[ x

l

]
l
)

if
[ x

l

]
even

−φ
(
−x −

[ x

l

]
l − l

)
if
[ x

l

]
odd.

8. For the wave equation in a finite interval (0, l) with Dirichlet conditions,
explain the solution formula within each diamond-shaped region.
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9. (a) Find u( 2
3 , 2) if utt = uxx in 0 < x < 1, u(x, 0) = x2(1 − x),

ut (x, 0) = (1 − x)2, u(0, t) = u(1, t) = 0.
(b) Find u( 1

4 ,
7
2 ).

10. Solve utt = 9uxx in 0 < x < π/2, u(x, 0) = cos x, ut (x, 0) = 0,
ux (0, t) = 0, u(π/2, t) = 0.

11. Solve utt = c2uxx in 0 < x < l, u(x, 0) = 0, ut (x, 0) = x, u(0, t) =
u(l, t) = 0.

3.3 DIFFUSION WITH A SOURCE

In this section we solve the inhomogeneous diffusion equation on the whole
line,

ut − kuxx = f (x, t) (−∞ < x < ∞, 0 < t < ∞)
u(x, 0) = φ(x)

(1)

with f (x, t) and φ(x) arbitrary given functions. For instance, if u(x, t) represents
the temperature of a rod, then φ(x) is the initial temperature distribution and
f (x, t) is a source (or sink) of heat provided to the rod at later times.

We will show that the solution of (1) is

u(x, t) =
∫ ∞

−∞
S(x − y, t)φ(y) dy

+
∫ t

0

∫ ∞

−∞
S(x − y, t − s) f (y, s) dy ds. (2)

Notice that there is the usual term involving the initial data φ and another term
involving the source f . Both terms involve the source function S.

Let’s begin by explaining where (2) comes from. Later we will actually
prove the validity of the formula. (If a strictly mathematical proof is satisfac-
tory to you, this paragraph and the next two can be skipped.) Our explanation
is an analogy. The simplest analogy is the ODE

du

dt
+ Au(t) = f (t), u(0) = φ, (3)

where A is a constant. Using the integrating factor etA, the solution is

u(t) = e−tAφ +
∫ t

0
e(s−t)A f (s) ds. (4)

A more elaborate analogy is the following. Let’s suppose that φ is an
n-vector, u(t) is an n-vector function of time, and A is a fixed n × n matrix.
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Then (3) is a coupled system of n linear ODEs. In case f (t) ≡ 0, the solution
of (3) is given as u(t) = S(t)φ, where S(t) is the matrix S(t) = e−tA. So in case
f (t) �= 0, an integrating factor for (3) is S(−t) = etA. Now we multiply (3) on
the left by this integrating factor to get

d

dt
[S(−t)u(t)] = S(−t)

du

dt
+ S(−t)Au(t) = S(−t) f (t).

Integrating from 0 to t, we get

S(−t)u(t) − φ =
∫ t

0
S(−s) f (s) ds.

Multiplying this by S(t), we end up with the solution formula

u(t) = S(t)φ +
∫ t

0
S(t − s) f (s) ds. (5)

The first term in (5) represents the solution of the homogeneous equation,
the second the effect of the source f(t). For a single equation, of course, (5)
reduces to (4). �

Now let’s return to the original diffusion problem (1). There is an analogy
between (2) and (5) which we now explain. The solution of (1) will have two
terms. The first one will be the solution of the homogeneous problem, already
solved in Section 2.4, namely∫ ∞

−∞
S(x − y, t)φ(y) dy = (s(t)φ)(x). (6)

S(x − y, t) is the source function given by the formula (2.4.7). Here we are
usings(t) to denote the source operator, which transforms any function φ to
the new function given by the integral in (6). (Remember: Operators transform
functions into functions.) We can now guess what the whole solution to (1)
must be. In analogy to formula (5), we guess that the solution of (1) is

u(t) = s(t)φ +
∫ t

0
s(t − s) f (s) ds. (7)

Formula (7) is exactly the same as (2):

u(x, t) =
∫ ∞

−∞
S(x − y, t)φ(y) dy

+
∫ t

0

∫ ∞

−∞
S(x − y, t − s) f (y, s) dy ds. (2)

The method we have just used to find formula (2) is the operator method.

Proof of (2). All we have to do is verify that the function u(x, t), which
is defined by (2), in fact satisfies the PDE and IC (1). Since the solution of
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(1) is unique, we would then know that u(x, t) is that unique solution. For
simplicity, we may as well let φ ≡ 0, since we understand the φ term already.

We first verify the PDE. Differentiating (2), assuming φ ≡ 0 and using
the rule for differentiating integrals in Section A.3, we have

∂u

∂t
= ∂

∂t

∫ t

0

∫ ∞

−∞
S(x − y, t − s) f (y, s) dy ds

=
∫ t

0

∫ ∞

−∞

∂S

∂t
(x − y, t − s) f (y, s) dy ds

+ lim
s→t

∫ ∞

−∞
S(x − y, t − s) f (y, s) dy,

taking special care due to the singularity of S(x − y, t − s) at t − s = 0. Using
the fact that S(x − y, t − s) satisfies the diffusion equation, we get

∂u

∂t
=

∫ t

0

∫ ∞

−∞
k
∂2S

∂x2
(x − y, t − s) f (y, s) dy ds

+ lim
ε→0

∫ ∞

−∞
S(x − y, ε) f (y, t) dy.

Pulling the spatial derivative outside the integral and using the initial condition
satisfied by S, we get

∂u

∂t
= k

∂2

∂x2

∫ t

0

∫ ∞

−∞
S(x − y, t − s) f (y, s) dy ds + f (x, t)

= k
∂2u

∂x2 + f (x, t).

This identity is exactly the PDE (1). Second, we verify the initial condition.
Letting t → 0, the first term in (2) tends to φ(x) because of the initial condition
of S. The second term is an integral from 0 to 0. Therefore,

lim
t→0

u(x, t) = φ(x) +
∫ 0

0
· · · = φ(x).

This proves that (2) is the unique solution. �

Remembering that S(x, t) is the gaussian distribution (2.4.7), the formula
(2) takes the explicit form

u(x, t) =
∫ t

0

∫ ∞

−∞
S(x − y, t − s) f (y, s) dy ds

=
∫ t

0

∫ ∞

−∞

1√
4πk(t − s)

e−(x−y)2/4k(t−s) f (y, s) dy ds. (8)

in the case that φ ≡ 0.
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SOURCE ON A HALF-LINE

For inhomogeneous diffusion on the half-line we can use the method of re-
flection just as in Section 3.1 (see Exercise 1).

Now consider the more complicated problem of a boundary source h(t)
on the half-line; that is,

vt − kvxx = f (x, t) for 0 < x < ∞, 0 < t < ∞
v(0, t) = h(t) (9)
v(x, 0) = φ(x).

We may use the following subtraction device to reduce (9) to a simpler prob-
lem. Let V (x, t) = v(x, t) − h(t). Then V(x, t) will satisfy

Vt − kVxx = f (x, t) − h′(t) for 0 < x < ∞, 0 < t < ∞
V (0, t) = 0 (10)
V (x, 0) = φ(x) − h(0).

To verify (10), just subtract! This new problem has a homogeneous boundary
condition to which we can apply the method of reflection. Once we find V ,
we recover v by v(x, t) = V (x, t) + h(t). This simple subtraction device is
often used to reduce one linear problem to another.

The domain of independent variables (x, t) in this case is a quarter-plane
with specified conditions on both of its half-lines. If they do not agree at
the corner [i.e., if φ(0) �= h(0)], then the solution is discontinuous there (but
continuous everywhere else). This is physically sensible. Think for instance,
of suddenly at t = 0 sticking a hot iron bar into a cold bath.

For the inhomogeneous Neumann problem on the half-line,

wt − kwxx = f (x, t) for 0 < x < ∞, 0 < t < ∞
wx(0, t) = h(t) (11)
w(x, 0) = φ(x),

we would subtract off the function xh(t). That is, W(x, t) = w(x, t) − xh(t).
Differentiation implies that Wx(0, t) = 0. Some of these problems are worked
out in the exercises.

EXERCISES

1. Solve the inhomogeneous diffusion equation on the half-line with Dirich-
let boundary condition:

ut − kuxx = f (x, t) (0 < x < ∞, 0 < t < ∞)
u(0, t) = 0 u(x, 0) = φ(x)

using the method of reflection.
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2. Solve the completely inhomogeneous diffusion problem on the half-line

vt − kvxx = f (x, t) for 0 < x < ∞, 0 < t < ∞
v(0, t) = h(t) v(x, 0) = φ(x),

by carrying out the subtraction method begun in the text.
3. Solve the inhomogeneous Neumann diffusion problem on the half-line

wt − kwxx = 0 for 0 < x < ∞, 0 < t < ∞
wx (0, t) = h(t) w(x, 0) = φ(x),

by the subtraction method indicated in the text.

3.4 WAVES WITH A SOURCE

The purpose of this section is to solve

utt − c2uxx = f (x, t) (1)

on the whole line, together with the usual initial conditions

u(x, 0) = φ(x)
ut (x, 0) = ψ(x)

(2)

where f (x, t) is a given function. For instance, f (x, t) could be interpreted as
an external force acting on an infinitely long vibrating string.

Because L = ∂2
t − c2∂2

x is a linear operator, the solution will be the sum
of three terms, one for φ, one for ψ , and one for f . The first two terms are
given already in Section 2.1 and we must find the third term. We’ll derive the
following formula.

Theorem 1. The unique solution of (1),(2) is

u(x, t) = 1

2
[φ(x + ct) + φ(x − ct)] + 1

2c

∫ x+ct

x−ct
ψ + 1

2c

∫∫
�

f (3)

where � is the characteristic triangle (see Figure 1).
The double integral in (3) is equal to the iterated integral∫ t

0

∫ x+c(t−s)

x−c(t−s)
f (y, s) dy ds.

We will give three different derivations of this formula! But first, let’s note
what the formula says. It says that the effect of a force f on u(x, t) is obtained
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Figure 1

by simply integrating f over the past history of the point (x, t) back to the
initial time t = 0. This is yet another example of the causality principle.

WELL-POSEDNESS

We first show that the problem (1),(2) is well-posed in the sense of Sec-
tion 1.5. The well-posedness has three ingredients, as follows. Existence
is clear, given that the formula (3) itself is an explicit solution. If φ has a
continuous second derivative, ψ has a continuous first derivative, and f is
continuous, then the formula (3) yields a function u with continuous second
partials that satisfies the equation. Uniqueness means that there are no other
solutions of (1),(2). This will follow from any one of the derivations given
below.

Third, we claim that the problem (1),(2) is stable in the sense of Section
1.5. This means that if the data (φ, ψ , f ) change a little, then u also changes
only a little. To make this precise, we need a way to measure the “nearness”
of functions, that is, a metric or norm on function spaces. We will illustrate
this concept using the uniform norms:

‖w‖ = max−∞<x<∞ |w(x)|

and

‖w‖T = max
−∞<x<∞, 0≤t≤T

|w(x, t)|.

Here T is fixed. Suppose that u1(x, t) is the solution with data
(φ1(x), ψ1(x), f1(x, t)) and u2(x, t) is the solution with data
(φ2(x), ψ2(x), f2(x, t)) (six given functions). We have the same formula (3)
satisfied by u1 and by u2 except for the different data. We subtract the two
formulas. We let u = u1 − u2. Since the area of � equals ct2, we have from
(3) the inequality

|u(x, t)| ≤ max|φ| + 1

2c
· max|ψ | · 2ct + 1

2c
· max| f | · ct2

= max|φ| + t · max|ψ | + t2

2
· max| f |.
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Therefore,

‖u1 − u2‖T ≤ ‖φ1 − φ2‖ + T ‖ψ1 − ψ2‖ + T 2

2
‖ f1 − f2‖T . (4)

So if ||φ1 − φ2|| < δ, ||ψ1 − ψ2|| < δ, and || f1 − f2||T < δ, where δ is small,
then

‖u1 − u2‖T < δ(1 + T + T 2) ≤ ε

provided that δ ≤ ε/(1 + T + T 2). Since ε is arbitrarily small, this argument
proves the well-posedness of the problem (1),(2) with respect to the uniform
norm.

PROOF OF THEOREM 1

Method of Characteristic Coordinates We introduce the usual character-
istic coordinates ξ = x + ct, η = x − ct , (see Figure 2). As in Section 2.1,
we have

Lu ≡ utt − c2uxx = −4c2uξη = f

(
ξ + η

2
,
ξ − η

2c

)
.

We integrate this equation with respect to η, leaving ξ as a constant. Thus
uξ = −(1/4c2)

∫ η f dη. Then we integrate with respect to ξ to get

u = − 1

4c2

∫ ξ ∫ η

f dη dξ (5)

The lower limits of integration here are arbitrary: They correspond to constants
of integration. The calculation is much easier to understand if we fix a point
P0 with coordinates x0, t0 and

ξ0 = x0 + ct0 η0 = x0 − ct0.

Figure 2
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Figure 3

We evaluate (5) at P0 and make a particular choice of the lower limits. Thus

u(P0) = − 1

4c2

∫ ξ0

η0

∫ η0

ξ

f

(
ξ + η

2
,
ξ − η

2c

)
dη dξ

= + 1

4c2

∫ ξ0

η0

∫ ξ

η0

f

(
ξ + η

2
,
ξ − η

2c

)
dη dξ

(6)

is a particular solution. As Figure 3 indicates, η now represents a variable
going along a line segment to the base η = ξ of the triangle � from the left-
hand edge η = η0, while ξ runs from the left-hand corner to the right-hand
edge. Thus we have integrated over the whole triangle �.

The iterated integral, however, is not exactly the double integral over �
because the coordinate axes are not orthogonal. The original axes (x and t) are
orthogonal, so we make a change of variables back to x and t. This amounts
to substituting back

x = ξ + η

2
t = ξ − η

2c
. (7)

A little square in Figure 4 goes into a parallelogram in Figure 5. The change
in its area is measured by the jacobian determinant J (see Section A.1). Since

Figure 4
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Figure 5

our change of variable is a linear transformation, the jacobian is just the
determinant of its coefficient matrix:

J =

∣∣∣∣∣∣∣det

⎛
⎜⎝

∂ξ

∂x

∂ξ

∂t
∂η

∂x

∂η

∂t

⎞
⎟⎠
∣∣∣∣∣∣∣ =

∣∣∣∣∣det

(
1 c
1 −c

)∣∣∣∣∣ = 2c.

Thus dη dξ = J dx dt = 2c dx dt. Therefore, the rule for changing vari-
ables in a multiple integral (the jacobian theorem) then gives

u(P0) = 1

4c2

∫∫
�

f (x, t)J dx dt. (8)

This is precisely Theorem 1. The formula can also be written as the iterated
integral in x and t:

u(x0, t0) = 1

2c

∫ t0

0

∫ x0+c(t0−t)

x0−c(t0−t)
f (x, t) dx dt, (9)

integrating first over the horizontal line segments in Figure 5 and then verti-
cally.

A variant of the method of characteristic coordinates is to write (1) as the
system of two equations

ut + cux = v vt − cvx = f,

the first equation being the definition of v, as in Section 2.1. If we first solve
the second equation, then v is a line integral of f over a characteristic line
segment x + ct = constant. The first equation then gives u(x, t) by sweeping
out these line segments over the characteristic triangle �. To carry out this
variant is a little tricky, however, and we leave it as an exercise.
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Figure 6

Method Using Green’s Theorem In this method we integrate f over the
past history triangle �. Thus∫∫

�

f dx dt =
∫∫

�

(utt − c2uxx) dx dt . (10)

But Green’s theorem says that∫∫
�

(Px − Qt ) dx dt =
∫

bdy
P dt + Q dx

for any functions P and Q, where the line integral on the boundary is taken
counterclockwise (see Section A.3). Thus we get∫∫

�

f dx dt =
∫

L0+L1+L2

(−c2ux dt − ut dx). (11)

This is the sum of three line integrals over straight line segments (see Figure
6). We evaluate each piece separately. On L0, dt = 0 and ut (x, 0) = ψ(x),
so that ∫

L0

= −
∫ x0+ct0

x0−ct0

ψ(x) dx .

On L1, x + ct = x0 + ct0, so that dx + c dt = 0, whence −c2ux dt−
ut dx = cux dx + cut dt = c du. (We’re in luck!) Thus∫

L1

= c
∫

L1

du = cu(x0, t0) − cφ(x0 + ct0).

In the same way,∫
L2

= −c
∫

L2

du = −cφ(x0 − ct0) + cu(x0, t0).

Adding these three results, we get∫∫
�

f dx dt = 2cu(x0, t0)− c[φ(x0 + ct0) + φ(x0 −ct0)]−
∫ x0+ct0

x0−ct0

ψ(x) dx .
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Thus

u(x0, t0) = 1

2c

∫∫
�

f dx dt + 1

2
[φ(x0 + ct0) + φ(x0 − ct0)]

+ 1

2c

∫ x0+ct0

x0−ct0

ψ(x) dx,

(12)

which is the same as before.

Operator Method This is how we solved the diffusion equation with a
source. Let’s try it out on the wave equation. The ODE analog is the equation,

d2u

dt2
+ A2u(t) = f (t), u(0) = φ,

du

dt
(0) = ψ. (13)

We could think of A2 as a positive constant (or even a positive square matrix.)
The solution of (13) is

u(t) = S′(t)φ + S(t)ψ +
∫ t

0
S(t − s) f (s) ds, (14)

where

S(t) = A−1 sin tA and S′(t) = cos tA. (15)

The key to understanding formula (14) is that S(t)ψ is the solution of problem
(13) in the case that φ = 0 and f = 0.

Let’s return to the PDE

utt − c2uxx = f (x, t) u(x, 0) = φ(x) ut (x, 0) = ψ(x). (16)

The basic operator ought to be given by the ψ term. That is,

s(t)ψ = 1

2c

∫ x+ct

x−ct
ψ(y) dy = v(x, t), (17)

where v(x, t) solves vt t − c2vxx = 0, v(x, 0) = 0, vt (x, 0) = ψ(x). s(t) is
the source operator. By (14) we would expect the φ term to be (∂/∂t)s(t)φ.
In fact,

∂

∂t
s(t)φ = ∂

∂t

1

2c

∫ x+ct

x−ct
φ(y) dy

= 1

2c
[cφ(x + ct) − (−c)φ(x − ct)] ,

in agreement with our old formula (2.1.8)! So we must be on the right track.
Let’s now take the f term; that is, φ = ψ = 0. By analogy with the last

term in (14), the solution ought to be

u(t) =
∫ t

0
s(t − s) f (s) ds.
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That is, using (17),

u(x, t) =
∫ t

0

[
1

2c

∫ x+c(t−s)

x−c(t−s)
f (y, s) dy

]
ds = 1

2c

∫∫
�

f dx dt.

This is once again the same result!
The moral of the operator method is that if you can solve the homogeneous

equation, you can also solve the inhomogeneous equation. This is sometimes
known as Duhamel’s principle.

SOURCE ON A HALF-LINE

The solution of the general inhomogeneous problem on a half-line

DE: vt t − c2vxx = f (x, t) in 0 < x < ∞
IC: v(x, 0) = φ(x) vt (x, 0) = ψ(x)

BC: v(0, t) = h(t)

(18)

is the sum of four terms, one for each data function φ, ψ , f , and h. For x >
ct > 0, the solution has precisely the same form as in (3), with the backward
triangle � as the domain of dependence. For 0 < x < ct, however, it is given
by

v(x, t) = φ term + ψ term + h
(

t − x
c

)
+ 1

2c

∫∫
D

f (19)

where t − x/c is the reflection point and D is the shaded region in Figure
3.2.2. The only caveat is that the given conditions had better coincide at the
origin. That is, we require that φ(0) = h(0) and ψ(0) = h′(0). If this were
not assumed, there would be a singularity on the characteristic line emanating
from the corner.

Let’s derive the boundary term h(t − x/c) for x < ct. To accomplish
this, it is convenient to assume that φ = ψ = f = 0. We shall derive
the solution from scratch using the fact that v(x, t) must take the form
v(x, t) = j(x + ct) + g(x − ct). From the initial conditions (φ = ψ = 0),
we find that j(s) = g(s) = 0 for s > 0. From the boundary condition we have
h(t) = v(0, t) = g(−ct) for t > 0. Thus g(s) = h(−s/c) for s<0. Therefore, if
x< ct, t >0, we have v(x, t) = 0 + h(−[x − ct]/c) = h(t − x/c).

FINITE INTERVAL

For a finite interval (0, l) with inhomogeneous boundary conditions v(0, t) =
h(t), v(l, t) = k(t), we get the whole series of terms

v(x, t) = h
(

t − x

c

)
− h

(
t + x − 2l

c

)
+ h

(
t − x + 2l

c

)
+ · · ·

+ k

(
t + x − l

c

)
− k

(
t − x + l

c

)
+ k

(
t + x − 3l

c

)
+ · · ·

(see Exercise 15 and Figure 3.2.4).
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EXERCISES

1. Solve utt = c2uxx + xt, u(x, 0) = 0, ut (x, 0) = 0.

2. Solve utt = c2uxx + eax , u(x, 0) = 0, ut (x, 0) = 0.

3. Solve utt = c2uxx + cos x, u(x, 0) = sin x, ut (x, 0) = 1 + x .

4. Show that the solution of the inhomogeneous wave equation

utt = c2uxx + f, u(x, 0) = φ(x), ut (x, 0) = ψ(x),

is the sum of three terms, one each for f , φ, and ψ .
5. Let f (x, t) be any function and let u(x, t) = (1/2c)

∫∫
�

f , where � is the
triangle of dependence. Verify directly by differentiation that

utt = c2uxx + f and u(x, 0) ≡ ut (x, 0) ≡ 0.

(Hint: Begin by writing the formula as the iterated integral

u(x, t) = 1

2c

∫ t

0

∫ x+ct−cs

x−ct+cs
f (y, s) dy ds

and differentiate with care using the rule in the Appendix. This exercise
is not easy.)

6. Derive the formula for the inhomogeneous wave equation in yet another
way.
(a) Write it as the system

ut + cux = v, vt − cvx = f.

(b) Solve the first equation for u in terms of v as

u(x, t) =
∫ t

0
v(x − ct + cs, s) ds.

(c) Similarly, solve the second equation for v in terms of f .
(d) Substitute part (c) into part (b) and write as an iterated integral.

7. Let A be a positive-definite n × n matrix. Let

S(t) =
∞∑

m=0

(−1)m A2mt2m+1

(2m + 1)!
.

(a) Show that this series of matrices converges uniformly for bounded
t and its sum S(t) solves the problem S′′(t) + A2S(t) = 0, S(0) =
0, S′(0) = I, where I is the identity matrix. Therefore, it makes
sense to denote S(t) as A−1 sin tA and to denote its derivative S′(t)
as cos(tA).

(b) Show that the solution of (13) is (14).
8. Show that the source operator for the wave equation solves the problem

st t − c2sxx = 0, s(0) = 0, st (0) = I,

where I is the identity operator.
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9. Let u(t) = ∫ t
0 s(t − s) f (s) ds. Using only Exercise 8, show that u solves

the inhomogeneous wave equation with zero initial data.
10. Use any method to show that u = 1/(2c)

∫∫
D f solves the inhomoge-

neous wave equation on the half-line with zero initial and boundary
data, where D is the domain of dependence for the half-line.

11. Show by direct substitution that u(x, t) = h(t − x/c) for x < ct and
u(x, t) = 0 for x ≥ ct solves the wave equation on the half-line (0, ∞)
with zero initial data and boundary condition u(0, t) = h(t).

12. Derive the solution of the fully inhomogeneous wave equation on the
half-line

vt t − c2vxx = f (x, t) in 0 < x < ∞
v(x, 0) = φ(x), vt (x, 0) = ψ(x)

v(0, t) = h(t),

by means of the method using Green’s theorem. (Hint: Integrate over
the domain of dependence.)

13. Solve utt = c2uxx for 0 < x < ∞,
u(0, t) = t2, u(x, 0) = x, ut (x, 0) = 0.

14. Solve the homogeneous wave equation on the half-line (0, ∞) with zero
initial data and with the Neumann boundary condition ux (0, t) = k(t).
Use any method you wish.

15. Derive the solution of the wave equation in a finite interval with inho-
mogeneous boundary conditions v(0, t) = h(t), v(l, t) = k(t), and with
φ = ψ = f = 0.

3.5 DIFFUSION REVISITED

In this section we make a careful mathematical analysis of the solution of
the diffusion equation that we found in Section 2.4. (On the other hand, the
formula for the solution of the wave equation is so much simpler that it doesn’t
require a special justification.)

The solution formula for the diffusion equation is an example of a con-
volution, the convolution of φ with S (at a fixed t). It is

u(x, t) =
∫ ∞

−∞
S(x − y, t) φ(y) dy =

∫ ∞

−∞
S(z, t) φ(x − z) dz, (1)

where S(z, t) = 1/
√

4πkt e−z2/4kt . If we introduce the variable p = z/
√

kt,
it takes the equivalent form

u(x, t) = 1√
4π

∫ ∞

−∞
e−p2

/
4φ(x − p

√
kt) dp. (2)

Now we are prepared to state a precise theorem.
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Theorem 1. Let φ(x) be a bounded continuous function for −∞ < x <
∞. Then the formula (2) defines an infinitely differentiable function u(x, t)
for −∞ < x < ∞, 0 < t < ∞, which satisfies the equation ut = kuxx and
limt↘0 u(x, t) = φ(x) for each x.

Proof. The integral converges easily because

|u(x, t)| ≤ 1√
4π

(max|φ|)
∫ ∞

−∞
e−p2

/
4 dp = max|φ|.

(This inequality is related to the maximum principle.) Thus the integral con-
verges uniformly and absolutely. Let us show that ∂u/∂x exists. It equals∫

(∂S/∂x)(x − y, t)φ(y) dy provided that this new integral also converges
absolutely. Now∫ ∞

−∞

∂S

∂x
(x − y, t)φ(y) dy = − 1√

4πkt

∫ ∞

−∞

x − y

2kt
e−(x−y)2

/
4ktφ(y) dy

= c√
t

∫ ∞

−∞
pe−p2

/
4φ(x − p

√
kt) dp

≤ c√
t

(max |φ|)
∫ ∞

−∞
|p| e−p2

/
4 dp,

where c is a constant. The last integral is finite. So this integral also converges
uniformly and absolutely. Therefore, ux = ∂u/∂x exists and is given by this
formula. All derivatives of all orders (ut , uxt , uxx, utt , . . .) work the same way
because each differentiation brings down a power of p so that we end up
with convergent integrals like

∫
pne−p2/4 dp. So u(x, t) is differentiable to all

orders. Since S(x, t) satisfies the diffusion equation for t > 0, so does u(x, t).
It remains to prove the initial condition. It has to be understood in a

limiting sense because the formula itself has meaning only for t > 0. Because
the integral of S is 1, we have

u(x, t) − φ(x) =
∫ ∞

−∞
S(x − y, t) [φ(y) − φ(x)] dy

= 1√
4π

∫ ∞

−∞
e−p2

/
4[φ(x − p

√
kt) − φ(x)] dp.

For fixed x we must show that this tends to zero as t → 0. The idea is that for
p
√

t small, the continuity of φ makes the integral small; while for p
√

t not
small, p is large and the exponential factor is small.

To carry out this idea, let ε > 0. Let δ > 0 be so small that

max
|y−x |≤δ

|φ(y) − φ(x)| <
ε

2
.
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This can be done because φ is continuous at x. We break up the integral into
the part where |p| < δ/

√
kt and the part where |p| ≥ δ/

√
kt . The first part is∣∣∣∣

∫
|p|<δ/

√
kt

∣∣∣∣ ≤
(

1√
4π

∫
e−p2

/
4dp

)
· max

|y−x |≤δ
|φ(y) − φ(x)|

< 1 · ε

2
= ε

2
.

The second part is∣∣∣∣
∫

|p|≥δ/
√

kt

∣∣∣∣ ≤ 1√
4π

· 2(max |φ|) ·
∫

|p|≥δ/
√

kt
e−p2/4dp <

ε

2

by choosing t sufficiently small, since the integral
∫ ∞
−∞ e−p2/4 dp converges

and δ is fixed. (That is, the “tails”
∫
|p|≥N e−p2/4 dp are as small as we wish if

N = δ/
√

kt is large enough.) Therefore,

|u(x, t) − φ(x)| < 1
2ε + 1

2ε = ε

provided that t is small enough. This means exactly that u(x, t) → φ(x) as
t → 0. �

Corollary. The solution has all derivatives of all orders for t > 0, even if φ
is not differentiable. We can say therefore that all solutions become smooth
as soon as diffusion takes effect. There are no singularities, in sharp contrast
to the wave equation.

Proof. We use formula (1)

u(x, t) =
∫ ∞

−∞
S(x − y, t)φ(y) dy

together with the rule for differentiation under an integral sign, Theorem 2 in
Section A.3.

Piecewise Continuous Initial Data. Notice that the continuity of φ(x) was
used in only one part of the proof. With an appropriate change we can allow
φ(x) to have a jump discontinuity. [Consider, for instance, the initial data for
Q(x, t).]

A function φ(x) is said to have a jump at x0 if both the limit of φ(x)
as x → x0 from the right exists [denoted φ(x0+)] and the limit from the left
[denoted φ(x0 −)] exists but these two limits are not equal. A function is called
piecewise continuous if in each finite interval it has only a finite number of
jumps and it is continuous at all other points. This concept is discussed in
more detail in Section 5.2.
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Theorem 2. Let φ(x) be a bounded function that is piecewise continuous.
Then (1) is an infinitely differentiable solution for t > 0 and

lim
t↘0

u(x, t) = 1
2 [φ(x+) + φ(x−)]

for all x. At every point of continuity this limit equals φ(x).

Proof. The idea is the same as before. The only difference is to split the
integrals into p > 0 and p < 0. We need to show that

1√
4π

∫ ±∞

0
e−p2/4φ(x +

√
kt p) dp → ±1

2
φ (x±).

The details are left as an exercise. �

EXERCISES

1. Prove that if φ is any piecewise continuous function, then

1√
4π

∫ ±∞

0
e−p2/4φ(x +

√
kt p) dp → ±1

2
φ (x±) as t ↘0.

2. Use Exercise 1 to prove Theorem 2.



4

BOUNDARY
PROBLEMS

In this chapter we finally come to the physically realistic case of a finite
interval 0 < x < l. The methods we introduce will frequently be used in the
rest of this book.

4.1 SEPARATION OF VARIABLES, THE
DIRICHLET CONDITION

We first consider the homogeneous Dirichlet conditions for the wave equation:

utt = c2uxx for 0 < x < l (1)
u(0, t) = 0 = u(l, t) (2)

with some initial conditions

u(x, 0) = φ(x) ut (x, 0) = ψ(x). (3)

The method we shall use consists of building up the general solution as a linear
combination of special ones that are easy to find. (Once before, in Section
2.4, we followed this program, but with different building blocks.)

A separated solution is a solution of (1) and (2) of the form

u(x, t) = X (x)T (t). (4)

(It is important to distinguish between the independent variable written as a
lowercase letter and the function written as a capital letter.) Our first goal is
to look for as many separated solutions as possible.

84
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Plugging the form (4) into the wave equation (1), we get

X (x)T ′′(t) = c2 X ′′(x)T (t)

or, dividing by −c2 XT ,

− T ′′

c2T
= − X ′′

X
= λ.

This defines a quantity λ, which must be a constant. (Proof: ∂λ/∂x = 0 and
∂λ/∂t = 0, so λ is a constant. Alternatively, we can argue that λ doesn’t
depend on x because of the first expression and doesn’t depend on t because
of the second expression, so that it doesn’t depend on any variable.) We will
show at the end of this section that λ > 0. (This is the reason for introducing
the minus signs the way we did.)

So let λ = β2, where β > 0. Then the equations above are a pair of
separate (!) ordinary differential equations for X(x) and T(t):

X ′′ + β2 X = 0 and T ′′ + c2β2T = 0. (5)

These ODEs are easy to solve. The solutions have the form

X (x) = C cos βx + D sin βx (6)

T (t) = A cos βct + B sin βct, (7)

where A, B, C, and D are constants.
The second step is to impose the boundary conditions (2) on the separated

solution. They simply require that X(0) = 0 = X(l). Thus

0 = X (0) = C and 0 = X (l) = D sin βl.

Surely we are not interested in the obvious solution C = D = 0. So we must
have βl = nπ , a root of the sine function. That is,

λn =
(nπ

l

)2
, Xn(x) = sin

nπx

l
(n = 1, 2, 3, . . .) (8)

are distinct solutions. Each sine function may be multiplied by an arbitrary
constant.

Therefore, there are an infinite (!) number of separated solutions of (1)
and (2), one for each n. They are

un(x, t) =
(

An cos
nπct

l
+ Bn sin

nπct

l

)
sin

nπx

l

(n = 1, 2, 3, . . . ), where An and Bn are arbitrary constants. The sum of solutions
is again a solution, so any finite sum

u(x, t) =
∑

n

(
An cos

nπct

l
+ Bn sin

nπct

l

)
sin

nπx

l
(9)

is also a solution of (1) and (2).
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Formula (9) solves (3) as well as (1) and (2), provided that

φ(x) =
∑

n

An sin
nπx

l
(10)

and

ψ(x) =
∑

n

nπc

l
Bn sin

nπx

l
. (11)

Thus for any initial data of this form, the problem (1), (2), and (3) has a simple
explicit solution.

But such data (10) and (11) clearly are very special. So let’s try (following
Fourier in 1827) to take infinite sums. Then we ask what kind of data pairs
φ(x), ψ(x) can be expanded as in (10), (11) for some choice of coefficients An,
Bn? This question was the source of great disputes for half a century around
1800, but the final result of the disputes was very simple: Practically any (!)
function φ(x) on the interval (0, l) can be expanded in an infinite series (10).
We will show this in Chapter 5. It will have to involve technical questions
of convergence and differentiability of infinite series like (9). The series in
(10) is called a Fourier sine series on (0, l). But for the time being let’s not
worry about these mathematical points. Let’s just forge ahead to see what
their implications are.

First of all, (11) is the same kind of series for ψ(x) as (10) is for φ(x).
What we’ve shown is simply that if (10), (11) are true, then the infinite series
(9) ought to be the solution of the whole problem (1), (2), (3).

A sketch of the first few functions sin(πx/ l), sin(2πx/ l), . . . is shown
in Figure 1. The functions cos(nπct/ l) and sin(nπct/ l) which describe the

Figure 1
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behavior in time have a similar form. The coefficients of t inside the sines
and cosines, namely nπc/ l, are called the frequencies. (In some texts, the
frequency is defined as nc/2l.)

If we return to the violin string that originally led us to the problem (1),
(2), (3), we find that the frequencies are

nπ
√

T

l
√

ρ
for n = 1, 2, 3, . . . (12)

The “fundamental” note of the string is the smallest of these, π
√

T /(l
√

ρ). The
“overtones” are exactly the double, the triple, and so on, of the fundamental!
The discovery by Euler in 1749 that the musical notes have such a simple
mathematical description created a sensation. It took over half a century to
resolve the ensuing controversy over the relationship between the infinite
series (9) and d’Alembert’s solution in Section 2.1. �

The analogous problem for diffusion is

DE: ut = kuxx (0 < x < l, 0 < t < ∞) (13)
BC: u(0, t) = u(l, t) = 0 (14)
lC: u(x, 0) = φ(x). (15)

To solve it, we separate the variables u = T(t)X(x) as before. This time we get

T ′

kT
= X ′′

X
= −λ = constant.

Therefore, T(t) satisfies the equation T ′ = −λkT , whose solution is T (t) =
Ae−λkt . Furthermore,

−X ′′ = λX in 0 < x < l with X (0) = X (l) = 0. (16)

This is precisely the same problem for X(x) as before and so has the same
solutions. Because of the form of T(t),

u(x, t) =
∞∑

n=1

Ane−(nπ/ l)2kt sin
nπx

l
(17)

is the solution of (13)–(15) provided that

φ(x) =
∞∑

n=1

An sin
nπx

l
. (18)

Once again, our solution is expressible for each t as a Fourier sine series in x
provided that the initial data are.
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For example, consider the diffusion of a substance in a tube of length l.
Each end of the tube opens up into a very large empty vessel. So the concen-
tration u(x, t) at each end is essentially zero. Given an initial concentration
φ(x) in the tube, the concentration at all later times is given by formula (17).
Notice that as t → ∞, each term in (17) goes to zero. Thus the substance
gradually empties out into the two vessels and less and less remains in the
tube. �

The numbers λn = (nπ/l)2 are called eigenvalues and the functions
Xn(x) = sin(nπx/ l) are called eigenfunctions. The reason for this termi-
nology is as follows. They satisfy the conditions

− d2

dx2
X = λX, X (0) = X (l) = 0. (19)

This is an ODE with conditions at two points. Let A denote the operator
−d2/dx2, which acts on the functions that satisfy the Dirichlet boundary con-
ditions. The differential equation has the form AX = λX . An eigenfunction
is a solution X �≡ 0 of this equation and an eigenvalue is a number λ for which
there exists a solution X �≡ 0.

This situation is analogous to the more familiar case of an N × N matrix
A. A vector X that satisfies AX = λX with X �≡ 0 is called an eigenvector and
λ is called an eigenvalue. For an N × N matrix there are at most N eigenvalues.
But for the differential operator that we are interested in, there are an infinite
number of eigenvalues π2/ l2, 4π2/ l2, 9π2/ l2, . . . . Thus you might say that
we are dealing with infinite-dimensional linear algebra!

In physics and engineering the eigenfunctions are called normal modes
because they are the natural shapes of solutions that persist for all time.

Why are all the eigenvalues of this problem positive? We assumed this in
the discussion above, but now let’s prove it. First, couldλ=0 be an eigenvalue?
This would mean that X ′′ = 0, so that X (x) = C + Dx . But X (0) = X (l) = 0
implies that C = D = 0, so that X (x) ≡ 0. Therefore, zero is not an eigen-
value.

Next, could there be negative eigenvalues? If λ < 0, let’s write it as
λ = −γ 2. Then X ′′ = γ 2 X , so that X (x) = C cosh γ x + D sinh γ x . Then
0 = X (0) = C and 0 = X (l) = D sinh γ l. Hence D = 0 since sinh γ l �= 0.

Finally, let λ be any complex number. Let γ be either one of the two square
roots of −λ; the other one is −γ . Then

X (x) = Ceγ x + De−γ x ,

where we are using the complex exponential function (see Section 5.2).
The boundary conditions yield 0 = X (0) = C + D and 0 = Ceγ l + De−γ l .
Therefore e2γ l = 1. By a well-known property of the complex exponential
function, this implies that Re(γ ) = 0 and 2l Im(γ ) = 2πn for some integer n.
Hence γ = nπ i/ l and λ = −γ 2 = n2π2/ l2, which is real and positive. Thus
the only eigenvalues λ of our problem (16) are positive numbers; in fact, they
are (π/ l)2, (2π/ l)2, . . . .
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EXERCISES

1. (a) Use the Fourier expansion to explain why the note produced by a
violin string rises sharply by one octave when the string is clamped
exactly at its midpoint.

(b) Explain why the note rises when the string is tightened.
2. Consider a metal rod (0 < x < l), insulated along its sides but not at its

ends, which is initially at temperature = 1. Suddenly both ends are plunged
into a bath of temperature = 0. Write the differential equation, boundary
conditions, and initial condition. Write the formula for the temperature
u(x, t) at later times. In this problem, assume the infinite series expansion

1 = 4

π

(
sin

πx

l
+ 1

3
sin

3πx

l
+ 1

5
sin

5πx

l
+ · · ·

)

3. A quantum-mechanical particle on the line with an infinite potential out-
side the interval (0, l) (“particle in a box”) is given by Schrödinger’s
equation ut = iuxx on (0, l) with Dirichlet conditions at the ends. Separate
the variables and use (8) to find its representation as a series.

4. Consider waves in a resistant medium that satisfy the problem

utt = c2uxx − rut for 0 < x < l
u = 0 at both ends

u(x, 0) = φ(x) ut (x, 0) = ψ(x),

where r is a constant, 0 < r < 2πc/ l. Write down the series expansion
of the solution.

5. Do the same for 2πc/ l < r < 4πc/ l.
6. Separate the variables for the equation tut = uxx + 2u with the boundary

conditions u(0, t) = u(π, t) = 0. Show that there are an infinite number
of solutions that satisfy the initial condition u(x, 0) = 0. So uniqueness
is false for this equation!

4.2 THE NEUMANN CONDITION

The same method works for both the Neumann and Robin boundary conditions
(BCs). In the former case, (4.1.2) is replaced by ux (0, t) = ux (l, t) = 0. Then
the eigenfunctions are the solutions X(x) of

−X ′′ = λX, X ′(0) = X ′(l) = 0, (1)

other than the trivial solution X (x) ≡ 0.
As before, let’s first search for the positive eigenvalues λ = β2 > 0. As

in (4.1.6), X (x) = C cos βx + D sin βx , so that

X ′(x) = −Cβ sin βx + Dβ cos βx .
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The boundary conditions (1) mean first that 0 = X ′(0) = Dβ, so that D = 0,
and second that

0 = X ′(l) = −Cβ sin βl.

Since we don’t want C = 0, we must have sin βl = 0. Thus β = π/ l, 2π/ l,
3π/ l, . . . . Therefore, we have the

Eigenvalues:
(π

l

)2
,

(
2π

l

)2

, · · · (2)

Eigenfunctions: Xn(x) = cos
nπx

l
(n = 1, 2, . . .) (3)

Next let’s check whether zero is an eigenvalue. Set λ = 0 in the ODE (1).
Then X ′′ = 0, so that X (x) = C + Dx and X ′(x) ≡ D. The Neumann bound-
ary conditions are both satisfied if D = 0. C can be any number. Therefore,
λ = 0 is an eigenvalue, and any constant function is its eigenfunction.

If λ < 0 or if λ is complex (nonreal), it can be shown directly, as in the
Dirichlet case, that there is no eigenfunction. (Another proof will be given in
Section 5.3.) Therefore, the list of all the eigenvalues is

λn =
(nπ

l

)2
for n = 0, 1, 2, 3, . . . . (4)

Note that n = 0 is included among them!
So, for instance, the diffusion equation with the Neumann BCs has the

solution

u(x, t) = 1

2
A0 +

∞∑
n=1

Ane−(nπ/ l)2kt cos
nπx

l
. (5)

This solution requires the initial data to have the “Fourier cosine expansion”

φ(x) = 1

2
A0 +

∞∑
n=1

An cos
nπx

l
. (6)

All the coefficients A0, A1, A2, . . . are just constants. The first term in (5) and
(6), which comes from the eigenvalue λ = 0, is written separately in the form
1
2 A0 just for later convenience. (The reader is asked to bear with this ridiculous
factor 1

2 until Section 5.1 when its convenience will become apparent.)
What is the behavior of u(x, t) as t → +∞? Since all but the first term in

(5) contains an exponentially decaying factor, the solution decays quite fast to
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the first term 1
2 A0, which is just a constant. Since these boundary conditions

correspond to insulation at both ends, this agrees perfectly with our intuition
of Section 2.5 that the solution “spreads out.” This is the eventual behavior
if we wait long enough. (To actually prove that the limit as t → ∞ is given
term by term in (5) requires the use of one of the convergence theorems in
Section A.2. We omit this verification here.)

Consider now the wave equation with the Neumann BCs. The eigenvalue
λ = 0 then leads to X(x) = constant and to the differential equation T ′′(t) =
λc2T (t) = 0, which has the solution T (t) = A + Bt . Therefore, the wave
equation with Neumann BCs has the solutions

u(x, t) = 1

2
A0 + 1

2
B0t

+
∞∑

n=1

(
An cos

nπct

l
+ Bn sin

nπct

l

)
cos

nπx

l
. (7)

(Again, the factor 1
2 will be justified later.) Then the initial data must satisfy

φ(x) = 1

2
A0 +

∞∑
n=1

An cos
nπx

l
(8)

and

ψ(x) = 1

2
B0 +

∞∑
n=1

nπc

l
Bn cos

nπx

l
. (9)

Equation (9) comes from first differentiating (7) with respect to t and then
setting t = 0. �

A “mixed” boundary condition would be Dirichlet at one end and Neu-
mann at the other. For instance, in case the BCs are u(0, t) = ux (l, t) = 0, the
eigenvalue problem is

−X ′′ = λX X (0) = X ′(l) = 0. (10)

The eigenvalues then turn out to be (n + 1
2 )

2
π2/ l2 and the eigenfunctions

sin[(n + 1
2 )πx/ l] for n = 0, 1, 2, . . . (see Exercises 1 and 2). For a discussion

of boundary conditions in the context of musical instruments, see [HJ].
For another example, consider the Schrödinger equation ut = iuxx in

(0, l) with the Neumann BCs ux (0, t) = ux (l, t) = 0 and initial condition
u(x, 0) = φ(x). Separation of variables leads to the equation

T ′

iT
= X ′′

X
= −λ = constant,
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so that T (t) = e−iλt and X(x) satisfies exactly the same problem (1) as before.
Therefore, the solution is

u(x, t) = 1

2
A0 +

∞∑
n=1

Ane−i(nπ/ l)2t cos
nπx

l
.

The initial condition requires the cosine expansion (6).

EXERCISES

1. Solve the diffusion problem ut = kuxx in 0 < x < l, with the mixed
boundary conditions u(0, t) = ux (l, t) = 0.

2. Consider the equation utt = c2uxx for 0 < x < l, with the boundary con-
ditions ux (0, t) = 0, u(l, t) = 0 (Neumann at the left, Dirichlet at the
right).
(a) Show that the eigenfunctions are cos[(n + 1

2 )πx/ l].
(b) Write the series expansion for a solution u(x, t).

3. Solve the Schrödinger equation ut = ikuxx for real k in the interval
0 < x < l with the boundary conditions ux (0, t) = 0, u(l, t) = 0.

4. Consider diffusion inside an enclosed circular tube. Let its length (circum-
ference) be 2l. Let x denote the arc length parameter where −l ≤ x ≤ l.
Then the concentration of the diffusing substance satisfies

ut = kuxx for − l ≤ x ≤ l

u(−l, t) = u(l, t) and ux (−l, t) = ux (l, t).

These are called periodic boundary conditions.
(a) Show that the eigenvalues are λ = (nπ/ l)2 for n = 0, 1, 2, 3, . . . .
(b) Show that the concentration is

u(x, t) = 1

2
A0 +

∞∑
n=1

(
An cos

nπx

l
+ Bn sin

nπx

l

)
e−n2π2kt/ l2

.

4.3 THE ROBIN CONDITION

We continue the method of separation of variables for the case of the Robin
condition. The Robin condition means that we are solving −X ′′ = λX with
the boundary conditions

X ′ − a0 X = 0 at x = 0 (1)
X ′ + al X = 0 at x = l. (2)

The two constants a0 and al should be considered as given.
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The physical reason they are written with opposite signs is that they
correspond to radiation of energy if a0 and al are positive, absorption of
energy if a0 and al are negative, and insulation if a0 = al = 0. This is the
interpretation for a heat problem: See the discussion in Section 1.4 or Exercise
2.3.8. For the case of the vibrating string, the interpretation is that the string
shares its energy with the endpoints if a0 and al are positive, whereas the
string gains some energy from the endpoints if a0 and al are negative: See
Exercise 11.

The mathematical reason for writing the constants in this way is that
the unit outward normal n for the interval 0 ≤ x ≤ l points to the left at
x = 0 (n = −1) and to the right at x = l (n = +1). Therefore, we expect that
the nature of the eigenfunctions might depend on the signs of the two constants
in opposite ways.

POSITIVE EIGENVALUES

Our task now is to solve the ODE −X ′′ = λX with the boundary conditions
(1), (2). First let’s look for the positive eigenvalues

λ = β2 > 0.

As usual, the solution of the ODE is

X (x) = C cos βx + D sin βx (3)

so that

X ′(x) ± aX (x) = (β D ± aC) cos βx + (−βC ± aD) sin βx .

At the left end x = 0 we require that

0 = X ′(0) − a0 X (0) = β D − a0C. (4)

So we can solve for D in terms of C. At the right end x = l we require that

0 = (β D + alC) cos βl + (−βC + al D) sin βl. (5)

Messy as they may look, equations (4) and (5) are easily solved since they are
equivalent to the matrix equation( −a0 β

al cos βl − β sin βl β cos βl + al sin βl

)(
C
D

)
=

( 0
0

)
. (6)

Therefore, substituting for D, we have

0 = (a0C + alC) cos βl +
(

−βC + ala0C

β

)
sin βl. (7)

We don’t want the trivial solution C = 0. We divide by C cos βl and multiply
by β to get

(
β2 − a0al

)
tan βl = (a0 + al)β. (8)
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Any root β > 0 of this “algebraic” equation would give us an eigenvalue
λ = β2.

What would be the corresponding eigenfunction? It would be the above
X(x) with the required relation between C and D, namely,

X (x) = C

(
cos βx + a0

β
sin βx

)
(9)

for any C �= 0. By the way, because we divided by cos βl, there is the excep-
tional case when cos βl = 0; it would mean by (7) that β = √

a0al .
Our next task is to solve (8) for β. This is not so easy, as there is no

simple formula. One way is to calculate the roots numerically, say by New-
ton’s method. Another way is by graphical analysis, which, instead of precise
numerical values, will provide a lot of qualitative information. This is what
we’ll do. It’s here where the nature of a0 and al come into play. Let us rewrite
the eigenvalue equation (8) as

tan βl = (a0 + al)β

β2 − a0al
. (10)

Our method is to sketch the graphs of the tangent function y = tan βl and the
rational function y = (a0 + al)β/(β2 − a0al) as functions of β > 0 and to
find their points of intersection. What the rational function looks like depends
on the constants a0 and al.

Case 1 In Figure 1 is pictured the case of radiation at both ends: a0 > 0 and
al > 0. Each of the points of intersection (for β > 0) provides an eigenvalue
λn = β2

n . The results depend very much on the a0 and al. The exceptional situ-
ation mentioned above, when cos βl = 0 and β = √

a0al , will occur when the
graphs of the tangent function and the rational function “intersect at infinity.”

No matter what they are, as long as they are both positive, the graph clearly
shows that

n2 π2

l2
< λn < (n + 1)2 π2

l2
(n = 0, 1, 2, 3, . . .) . (11)

Furthermore,

lim
n→∞ βn − n

π

l
= 0, (12)

which means that the larger eigenvalues get relatively closer and closer to
n2π2/l2 (see Exercise 19). You may compare this to the case a0 = al = 0, the
Neumann problem, where they are all exactly equal to n2π2/l2.
Case 2 The case of absorption at x = 0 and radiation at x = l, but more
radiation than absorption, is given by the conditions

a0 < 0, al > 0, a0 + al > 0. (13)
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Figure 1

Then the graph looks like Figure 2 or 3, depending on the relative sizes of
a0 and al. Once again we see that (11) and (12) hold, except that in Figure 2
there is no eigenvalue λ0 in the interval (0, π2/l2).

There is an eigenvalue in the interval (0, π2/l2) only if the rational curve
crosses the first branch of the tangent curve. Since the rational curve has
only a single maximum, this crossing can happen only if the slope of the
rational curve is greater than the slope of the tangent curve at the origin. Let’s

Figure 2
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Figure 3

calculate these two slopes. A direct calculation shows that the slope dy/dβ
of the rational curve at the origin is

a0 + al

−a0al
= al − |a0|

al |a0| > 0

because of (13). On the other hand, the slope of the tangent curve y = tan lβ
at the origin is l sec2(l0) = l. Thus we reach the following conclusion. In case

a0 + al > −a0all (14)

(which means “much more radiation than absorption”), the rational curve
will start out at the origin with a greater slope than the tangent curve and the
two graphs must intersect at a point in the interval (0, π/2l). Therefore, we
conclude that in Case 2 there is an eigenvalue 0 < λ0 < (π/2l)2 if and only
if (14) holds.

Other cases, for instance absorption at both ends, may be found in the
exercises, especially Exercise 8.

ZERO EIGENVALUE

In Exercise 2 it is shown that there is a zero eigenvalue if and only if

a0 + al = −a0all. (15)

Notice that (15) can happen only if a0 or al is negative and the interval has
exactly a certain length or else a0 = al = 0.

NEGATIVE EIGENVALUE

Now let’s investigate the possibility of a negative eigenvalue. This is a very
important question; see the discussion at the end of this section. To avoid
dealing with imaginary numbers, we set

λ = −γ 2 < 0
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and write the solution of the differential equation as

X (x) = C cosh γ x + D sinh γ x .

(An alternative form, which we used at the end of Section 4.1, is Aeγ x +
Be−γ x .) The boundary conditions, much as before, lead to the eigenvalue
equation

tanh γ l = − (a0 + al) γ

γ 2 + a0al
. (16)

(Verify it!) So we look for intersections of these two graphs [on the two sides
of (16)] for γ > 0. Any such point of intersection would provide a negative
eigenvalue λ = −γ 2 and a corresponding eigenfunction

X (x) = cosh γ x + a0

γ
sinh γ x . (17)

Several different cases are illustrated in Figure 4. Thus in Case 1, of radiation
at both ends, when a0 and al are both positive, there is no intersection and so
no negative eigenvalue.

Case 2, the situation with more radiation than absorption (a0 < 0, al > 0,
a0 + al > 0), is illustrated by the two solid (14) and dashed (18) curves.
There is either one intersection or none, depending on the slopes at the origin.
The slope of the tanh curve is l, while the slope of the rational curve is

Figure 4
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−(a0 + al)/(a0a1) > 0. If the last expression is smaller than l, there is an
intersection; otherwise, there isn’t. So our conclusion in Case 2 is as follows.

Let a0 < 0 and al > −a0. If

a0 + al < −a0all, (18)

then there exists exactly one negative eigenvalue, which we’ll call λ0 < 0. If
(14) holds, then there is no negative eigenvalue. Notice how the “missing”
positive eigenvalue λ0 in case (18) now makes its appearance as a nega-
tive eigenvalue! Furthermore, the zero eigenvalue is the borderline case (15);
therefore, we use the notation λ0 = 0 in the case of (15).

SUMMARY

We summarize the various cases as follows:

Case 1: Only positive eigenvalues.
Case 2 with (14): Only positive eigenvalues.
Case 2 with (15): Zero is an eigenvalue, all the rest are positive.
Case 2 with (18): One negative eigenvalue, all the rest are positive.

Exercise 8 provides a complete summary of all the other cases.
In any case, that is, for any values for a0 and al, there are no complex,

nonreal, eigenvalues. This fact can be shown directly as before but will also be
shown by a general, more satisfying, argument in Section 5.3. Furthermore,
there are always an infinite number of positive eigenvalues, as is clear from
(10). In fact, the tangent function has an infinite number of branches. The
rational function on the right side of (10) always goes from the origin to the β
axis as β → ∞ and so must cross each branch of the tangent except possibly
the first one.

For all these problems it is critically important to find all the eigenvalues.
If even one of them were missing, there would be initial data for which we
could not solve the diffusion or wave equations. This will become clearer in
Chapter 5. Exactly how we enumerate the eigenvalues, that is, whether we call
the first one λ0 or λ1 or λ5 or λ−2, is not important. It is convenient, however,
to number them in a consistent way. In the examples presented above we have
numbered them in a way that neatly exhibits their dependence on a0 and al.

What Is the Grand Conclusion for the Robin BCs? As before, we
have an expansion

u(x, t) =
∑

n

Tn(t)Xn(x), (19)
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where Xn(x) are the eigenfunctions and where

Tn(t) =
{

Ane−λnkt for diffusions
An cos(

√
λn ct) + Bn sin(

√
λn ct) for waves.

(20)

Example 1.

Let a0 < 0 < a0 + al < −a0all, which is Case 2 with (18). Then the
grand conclusion takes the following explicit form. As we showed above,
in this case there is exactly one negative eigenvalue λ0 = −γ 2

0 < 0 as
well as a sequence of positive ones λn = +β2

n > 0 for n = 1, 2, 3, . . . .
The complete solution of the diffusion problem

ut = kuxx for 0 < x < l, 0 < t < ∞
ux − a0u = 0 for x = 0, ux + alu = 0 for x = l

u = φ for t = 0

therefore is

u(x, t) = A0e+γ 2
0 kt

(
cosh γ0x + a0

γ0
sinh γ0x

)

+
∞∑

n=1

Ane−β2
n kt

(
cos βnx + a0

βn
sin βnx

)
. (21)

This conclusion (21) has the following physical interpretation if,
say, u(x, t) is the temperature in a rod of length l. We have taken the
case when energy is supplied at x = 0 (absorption of energy by the rod,
heat flux goes into the rod at its left end) and when energy is radiated
from the right end (the heat flux goes out). For a given length l and a
given radiation al > 0, there is a negative eigenvalue (λ0 = −γ 2

0 ) if and
only if the absorption is great enough [|a0| > al/(1 + all)]. Such a large
absorption coefficient allows the temperature to build up to large values,
as we see from the expansion (21). In fact, all the terms get smaller as
time goes on, except the first one, which grows exponentially due to the
factor e+γ 2

0 kt . So the rod gets hotter and hotter (unless A0 = 0, which
could only happen for very special initial data).

If, on the other hand, the absorption is relatively small [that is,
|a0| < al/(1 + all)], then all the eigenvalues are positive and the tem-
perature will remain bounded and will eventually decay to zero. Other
interpretations of this sort are left for the exercises. �

For the wave equation, a negative eigenvalue λ0 = −γ 2
0 would also

lead to exponential growth because the expansion for u(x, t) would
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contain the term

(A0eγ0ct + B0e−γ0ct )X0 (x).

This term comes from the usual equation −T ′′ = λc2T = −(γ0c)2T for the
temporal part of a separated solution (see Exercise 10).

EXERCISES

1. Find the eigenvalues graphically for the boundary conditions

X (0) = 0, X ′(l) + a X (l) = 0.

Assume that a �= 0.
2. Consider the eigenvalue problem with Robin BCs at both ends:

−X ′′ = λX
X ′(0) − a0 X (0) = 0, X ′(l) + al X (l) = 0.

(a) Show that λ = 0 is an eigenvalue if and only if a0 + al = −a0all.
(b) Find the eigenfunctions corresponding to the zero eigenvalue. (Hint:

First solve the ODE for X(x). The solutions are not sines or cosines.)
3. Derive the eigenvalue equation (16) for the negative eigenvalues

λ = −γ 2 and the formula (17) for the eigenfunctions.
4. Consider the Robin eigenvalue problem. If

a0 < 0, al < 0 and − a0 − al < a0all,

show that there are two negative eigenvalues. This case may be called
“substantial absorption at both ends.” (Hint: Show that the rational curve
y = −(a0 + al)γ /(γ 2 + a0al) has a single maximum and crosses the
line y = 1 in two places. Deduce that it crosses the tanh curve in two
places.)

5. In Exercise 4 (substantial absorption at both ends) show graphically that
there are an infinite number of positive eigenvalues. Show graphically
that they satisfy (11) and (12).

6. If a0 = al = a in the Robin problem, show that:
(a) There are no negative eigenvalues if a ≥ 0, there is one if

−2/ l < a < 0, and there are two if a < −2/ l.
(b) Zero is an eigenvalue if and only if a = 0 or a = −2/ l.

7. If a0 = al = a, show that as a → +∞, the eigenvalues tend to the eigen-
values of the Dirichlet problem. That is,

lim
a→∞

{
βn(a) − (n + 1) π

l

}
= 0,

where λn(a) = [βn(a)]2 is the (n + l)st eigenvalue.



4.3 THE ROBIN CONDITION 101

8. Consider again Robin BCs at both ends for arbitrary a0 and al.
(a) In the a0al plane sketch the hyperbola a0 + al = −a0all. Indicate

the asymptotes. For (a0, al) on this hyperbola, zero is an eigenvalue,
according to Exercise 2(a).

(b) Show that the hyperbola separates the whole plane into three re-
gions, depending on whether there are two, one, or no negative
eigenvalues.

(c) Label the directions of increasing absorption and radiation on each
axis. Label the point corresponding to Neumann BCs.

(d) Where in the plane do the Dirichlet BCs belong?
9. On the interval 0 ≤ x ≤ 1 of length one, consider the eigenvalue problem

−X ′′ = λX
X ′(0) + X (0) = 0 and X (1) = 0

(absorption at one end and zero at the other).
(a) Find an eigenfunction with eigenvalue zero. Call it X0(x).
(b) Find an equation for the positive eigenvalues λ = β2.
(c) Show graphically from part (b) that there are an infinite number of

positive eigenvalues.
(d) Is there a negative eigenvalue?

10. Solve the wave equation with Robin boundary conditions under the as-
sumption that (18) holds.

11. (a) Prove that the (total) energy is conserved for the wave equation with
Dirichlet BCs, where the energy is defined to be

E = 1
2

∫ l

0

(
c−2u2

t + u2
x

)
dx .

(Compare this definition with Section 2.2.)
(b) Do the same for the Neumann BCs.
(c) For the Robin BCs, show that

ER = 1
2

∫ l

0

(
c−2u2

t + u2
x

)
dx + 1

2al[u(l, t)]2 + 1
2a0[u(0, t)]2

is conserved. Thus, while the total energy ER is still a constant,
some of the internal energy is “lost” to the boundary if a0 and al are
positive and “gained” from the boundary if a0 and al are negative.

12. Consider the unusual eigenvalue problem

−vxx = λv for 0 < x < l

vx (0) = vx (l) = v(l) − v(0)

l
.

(a) Show that λ = 0 is a double eigenvalue.
(b) Get an equation for the positive eigenvalues λ > 0.
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(c) Letting γ = 1
2 l

√
λ, reduce the equation in part (b) to the equation

γ sin γ cos γ = sin2 γ.

(d) Use part (c) to find half of the eigenvalues explicitly and half of
them graphically.

(e) Assuming that all the eigenvalues are nonnegative, make a list of
all the eigenfunctions.

(f) Solve the problem ut = kuxx for 0 < x < l, with the BCs given
above, and with u(x, 0) = φ(x).

(g) Show that, as t → ∞, lim u(x, t) = A + Bx for some constants
A, B, assuming that you can take limits term by term.

13. Consider a string that is fixed at the end x = 0 and is free at the end x = l
except that a load (weight) of given mass is attached to the right end.
(a) Show that it satisfies the problem

utt = c2uxx for 0 < x < l

u(0, t) = 0 utt (l, t) = −kux (l, t)

for some constant k.
(b) What is the eigenvalue problem in this case?
(c) Find the equation for the positive eigenvalues and find the eigen-

functions.
14. Solve the eigenvalue problem x2u′′ + 3xu′ + λu = 0 for 1 < x < e,

with u(1) = u(e) = 0. Assume that λ > 1. (Hint: Look for solutions
of the form u = xm .)

15. Find the equation for the eigenvalues λ of the problem

(κ(x)X ′)′ + λρ(x)X = 0 for 0 < x < l with X (0) = X (l) = 0,

whereκ(x) = κ2
1 for x < a, κ(x) = κ2

2 for x > a, ρ(x) = ρ2
1 for x < a,

and ρ(x) = ρ2
2 for x > a. All these constants are positive and 0 < a < l.

16. Find the positive eigenvalues and the corresponding eigenfunctions of
the fourth-order operator +d4/dx4 with the four boundary conditions

X (0) = X (l) = X ′′(0) = X ′′(l) = 0.

17. Solve the fourth-order eigenvalue problem X ′′′′ = λX in 0 < x < l, with
the four boundary conditions

X (0) = X ′(0) = X (l) = X ′(l) = 0,

where λ > 0. (Hint: First solve the fourth-order ODE.)
18. A tuning fork may be regarded as a pair of vibrating flexible bars with

a certain degree of stiffness. Each such bar is clamped at one end and
is approximately modeled by the fourth-order PDE utt + c2uxxxx = 0.
It has initial conditions as for the wave equation. Let’s say that
on the end x = 0 it is clamped (fixed), meaning that it satisfies
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u(0, t) = ux (0, t) = 0. On the other end x = l it is free, meaning that it
satisfies uxx(l, t) = uxxx (l, t) = 0. Thus there are a total of four boundary
conditions, two at each end.
(a) Separate the time and space variables to get the eigenvalue problem

X ′′′′ = λX .
(b) Show that zero is not an eigenvalue.
(c) Assuming that all the eigenvalues are positive, write them as λ = β4

and find the equation for β.
(d) Find the frequencies of vibration.
(e) Compare your answer in part (d) with the overtones of the vibrating

string by looking at the ratio β2
2/β2

1 . Explain why you hear an almost
pure tone when you listen to a tuning fork.

19. Show that in Case 1 (radiation at both ends)

lim
n→∞

[
λn − n2π2

l2

]
= 2

l
(a0 + al) .



5

FOURIER SERIES

Our first goal in this key chapter is to find the coefficients in a Fourier series. In
Section 5.3 we introduce the idea of orthogonality of functions and we show
how the different varieties of Fourier series can be treated in a unified fashion.
In Section 5.4 we state the basic completeness (convergence) theorems. Proofs
are given in Section 5.5. The final section is devoted to the treatment of
inhomogeneous boundary conditions. Joseph Fourier developed his ideas on
the convergence of trigonometric series while studying heat flow. His 1807
paper was rejected by other scientists as too imprecise and was not published
until 1822.

5.1 THE COEFFICIENTS

In Chapter 4 we have found Fourier series of several types. How do we find the
coefficients? Luckily, there is a very beautiful, conceptual formula for them.

Let us begin with the Fourier sine series

φ(x) =
∞∑

n=1

An sin
nπx

l
(1)

in the interval (0, l). [It turns out that this infinite series converges to φ(x)
for 0 < x < l, but let’s postpone further discussion of the delicate question of
convergence for the time being.] The first problem we tackle is to try to find
the coefficients An if φ(x) is a given function. The key observation is that the
sine functions have the wonderful property that

∫ l

0
sin

nπx

l
sin

mπx

l
dx = 0 if m �= n, (2)

104
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m and n being positive integers. This can be verified directly by integration.
[Historically, (1) was first discovered by a horrible expansion in Taylor series!]

Proof of (2). We use the trig identity

sin a sin b = 1
2 cos(a − b) − 1

2 cos(a + b).

Therefore, the integral equals

l

2(m − n)π
sin

(m − n)πx

l

∣∣∣∣
l

0

− [same with (m + n)]

if m �= n. This is a linear combination of sin(m ± n)π and sin 0, and so it
vanishes. �

The far-reaching implications of this observation are astounding. Let’s fix
m, multiply (1) by sin(mπx/ l), and integrate the series (1) term by term to
get ∫ l

0
φ(x) sin

mπx

l
dx =

∫ l

0

∞∑
n=1

An sin
nπx

l
sin

mπx

l
dx

=
∞∑

n=1

An

∫ l

0
sin

nπx

l
sin

mπx

l
dx .

All but one term in this sum vanishes, namely the one with n = m (n just being
a “dummy” index that takes on all integer values ≥1). Therefore, we are left
with the single term

Am

∫ l

0
sin2 mπx

l
dx, (3)

which equals 1
2 lAm by explicit integration. Therefore,

Am = 2

l

∫ l

0
φ(x) sin

mπx

l
dx . (4)

This is the famous formula for the Fourier coefficients in the series (1). That
is, if φ(x) has an expansion (1), then the coefficients must be given by (4).

These are the only possible coefficients in (1). However, the basic question
still remains whether (1) is in fact valid with these values of the coefficients.
This is a question of convergence, and we postpone it until Section 5.4.

APPLICATION TO DIFFUSIONS AND WAVES

Going back to the diffusion equation with Dirichlet boundary conditions, the
formula (4) provides the final ingredient in the solution formula for arbitrary
initial data φ(x).
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As for the wave equation with Dirichlet conditions, the initial data consist
of a pair of functions φ(x) and ψ(x) with expansions (4.1.10) and (4.1.11).
The coefficients Am in (4.1.9) are given by (4), while for the same reason the
coefficients Bm are given by the similar formula

mπc

l
Bm = 2

l

∫ l

0
ψ(x) sin

mπx

l
dx . (5)

FOURIER COSINE SERIES

Next let’s take the case of the cosine series, which corresponds to the Neumann
boundary conditions on (0, l). We write it as

φ(x) = 1

2
A0 +

∞∑
n=1

An cos
nπx

l
. (6)

Again we can verify the magical fact that

∫ l

0
cos

nπx

l
cos

mπx

l
dx = 0 if m �= n

where m and n are nonnegative integers. (Verify it!) By exactly the same
method as above, but with sines replaced by cosines, we get

∫ l

0
φ(x) cos

mπx

l
dx = Am

∫ l

0
cos2 mπx

l
dx = 1

2
lAm

if m �= 0. For the case m = 0, we have

∫ l

0
φ(x) · 1 dx = 1

2
A0

∫ l

0
12 dx = 1

2
lA0.

Therefore, for all nonnegative integers m, we have the formula for the coeffi-
cients of the cosine series

Am = 2

l

∫ l

0
φ(x) cos

mπx

l
dx . (7)

[This is the reason for putting the 1
2 in front of the constant term in (6).]
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FULL FOURIER SERIES

The full Fourier series, or simply the Fourier series, of φ(x) on the interval
−l < x < l, is defined as

φ(x) = 1

2
A0 +

∞∑
n=1

(
An cos

nπx

l
+ Bn sin

nπx

l

)
. (8)

Watch out: The interval is twice as long! The eigenfunctions now are all the
functions {1, cos(nπx/ l), sin(nπx/ l)}, where n = 1, 2, 3, . . . . Again we have
the same wonderful coincidence: Multiply any two different eigenfunctions
and integrate over the interval and you get zero! That is,

∫ l

−l
cos

nπx

l
sin

mπx

l
dx = 0 for all n, m

∫ l

−l
cos

nπx

l
cos

mπx

l
dx = 0 for n �= m

∫ l

−l
sin

nπx

l
sin

mπx

l
dx = 0 for n �= m

∫ l

−l
1 · cos

nπx

l
dx = 0 =

∫ l

−l
1 · sin

mπx

l
dx.

Therefore, the same procedure will work to find the coefficients. We also
calculate the integrals of the squares

∫ l

−l
cos2 nπx

l
dx = l =

∫ l

−l
sin2 nπx

l
dx and

∫ l

−l
12 dx = 2l.

(Verify these integrals too!) Then we end up with the formulas

An = 1

l

∫ l

−l
φ(x) cos

nπx

l
dx (n = 0, 1, 2, . . .) (9)

Bn = 1

l

∫ l

−l
φ(x) sin

nπx

l
dx (n = 1, 2, 3, . . .) (10)

for the coefficients of the full Fourier series. Note that these formulas are not
exactly the same as (4) and (7).
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Figure 1

Example 1.

Let φ(x) ≡ 1 in the interval [0, l]. It has a Fourier sine series with
coefficients

Am = 2

l

∫ l

0
sin

mπx

l
dx = − 2

mπ
cos

mπx

l

∣∣∣∣
l

0

= 2

mπ
(1 − cos mπ ) = 2

mπ
[1 − (−1)m].

Thus Am = 4/mπ if m is odd, and Am = 0 if m is even. Thus

1 = 4

π

(
sin

πx

l
+ 1

3
sin

3πx

l
+ 1

5
sin

5πx

l
+ · · ·

)
(11)

in (0, l). (The factor 4/π is pulled out just for notational convenience.)
See Figure 1 for a sketch of the first few partial sums. �

Example 2.

The same function φ(x) ≡ 1 has a Fourier cosine series with coefficients

Am = 2

l

∫ l

0
cos

mπx

l
dx = 2

mπ
sin

mπx

l

∣∣∣∣
l

0

= 2

mπ
(sin mπ − sin 0) = 0 for m �= 0.

So there is only one nonzero coefficient, namely, the one for m = 0. The
Fourier cosine series is therefore trivial:

1 = 1 + 0 cos
πx

l
+ 0 cos

2πx

l
+ · · · .
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This is perfectly natural since the sum 1 = 1 + 0 + 0 + 0 + · · · is ob-
vious and the Fourier cosine expansion is unique. �

Example 3.

Letφ(x)≡ x in the interval (0, l). Its Fourier sine series has the coefficients

Am = 2

l

∫ l

0
x sin

mπx

l
dx

= − 2x

mπ
cos

mπx

l
+ 2l

m2π2
sin

mπx

l

∣∣∣∣
l

0

= − 2l

mπ
cos mπ + 2l

m2π2
sin mπ = (−1)m+1 2l

mπ
.

Thus in (0, l) we have

x = 2l

π

(
sin

πx

l
− 1

2
sin

2πx

l
+ 1

3
sin

3πx

l
− · · ·

)
. (12)

�

Example 4.

Let φ(x) ≡ x in the interval [0, l]. Its Fourier cosine series has the
coefficients

A0 = 2

l

∫ l

0
x dx = l

Am = 2

l

∫ l

0
x cos

mπx

l
dx

= 2x

mπ
sin

mπx

l
+ 2l

m2π2
cos

mπx

l

∣∣∣∣
l

0

= 2l

mπ
sin mπ + 2l

m2π2
(cos mπ − 1) = 2l

m2π2
[(−1)m − 1]

= −4l

m2π2
for m odd, and 0 for m even.

Thus in (0, l) we have

x = l

2
− 4l

π2

(
cos

πx

l
+ 1

9
cos

3πx

l
+ 1

25
cos

5πx

l
+ · · ·

)
. (13)

�
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Example 5.

Let φ(x) ≡ x in the interval [−l, l]. Its full Fourier series has the coeffi-
cients

A0 = 1

l

∫ l

−l
x dx = 0

Am = 1

l

∫ l

−l
x cos

mπx

l
dx

= x

mπ
sin

mπx

l
+ l

m2π2
cos

mπx

l

∣∣∣∣
l

−l

= l

m2π2
(cos mπ − cos(−mπ )) = 0

Bm = 1

l

∫ l

−l
x sin

mπx

l
dx

= −x

mπ
cos

mπx

l
+ l

m2π2
sin

mπx

l

∣∣∣∣
l

−l

= −l

mπ
cos mπ + −l

mπ
cos(−mπ ) = (−1)m+1 2l

mπ
.

This gives us exactly the same series as (12), except that it is supposed
to be valid in (−l, l), which is not a surprising result because both sides
of (12) are odd. �

Example 6.

Solve the problem

utt = c2uxx

u(0, t) = u(l, t) = 0
u(x, 0) = x, ut (x, 0) = 0.

From Section 4.1 we know that u(x, t) has an expansion

u(x, t) =
∞∑

n=1

(
An cos

nπct

l
+ Bn sin

nπct

l

)
sin

nπx

l
.

Differentiating with respect to time yields

ut (x, t) =
∞∑

n=1

nπc

l

(
−An sin

nπct

l
+ Bn cos

nπct

l

)
sin

nπx

l
.
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Setting t = 0, we have

0 =
∞∑

n=1

nπc

l
Bn sin

nπx

l

so that all the Bn = 0. Setting t = 0 in the expansion of u(x, t), we have

x =
∞∑

n=1

An sin
nπx

l
.

This is exactly the series of Example 3. Therefore, the complete solution
is

u(x, t) = 2l

π

∞∑
n=1

(−1)n+1

n
sin

nπx

l
cos

nπct

l
. �

EXERCISES

1. In the expansion 1 = ∑
n odd (4/nπ ) sin nπ, valid for 0 < x < π, put

x = π/4 to calculate the sum(
1 − 1

5 + 1
9 − 1

13 + · · ·) + (
1
3 − 1

7 + 1
11 − 1

15 + · · ·)
= 1 + 1

3 − 1
5 − 1

7 + 1
9 + · · ·

(Hint: Since each of the series converges, they can be combined as
indicated. However, they cannot be arbitrarily rearranged because they
are only conditionally, not absolutely, convergent.)

2. Let φ(x) ≡ x2 for 0 ≤ x ≤ 1 = l.
(a) Calculate its Fourier sine series.
(b) Calculate its Fourier cosine series.

3. Consider the function φ(x) ≡ x on (0, l). On the same graph, sketch the
following functions.
(a) The sum of the first three (nonzero) terms of its Fourier sine series.
(b) The sum of the first three (nonzero) terms of its Fourier cosine

series.
4. Find the Fourier cosine series of the function |sin x | in the interval

(−π, π ). Use it to find the sums

∞∑
n=1

1

4n2 − 1
and

∞∑
n=1

(−1)n

4n2 − 1
.

5. Given the Fourier sine series of φ(x) ≡ x on (0, l). Assume that the series
can be integrated term by term, a fact that will be shown later.
(a) Find the Fourier cosine series of the function x2/2. Find the constant

of integration that will be the first term in the cosine series.



112 CHAPTER 5 FOURIER SERIES

(b) Then by setting x = 0 in your result, find the sum of the series

∞∑
n=1

(−1)n+1

n2
.

6. (a) By the same method, find the sine series of x3.
(b) Find the cosine series of x4.

7. Put x = 0 in Exercise 6(b) to deduce the sum of the series

∞∑
1

(−1)n

n4
.

8. A rod has length l = 1 and constant k = 1. Its temperature satisfies
the heat equation. Its left end is held at temperature 0, its right end at
temperature 1. Initially (at t = 0) the temperature is given by

φ(x) =
⎧⎨
⎩

5x

2
for 0 < x < 2

3

3 − 2x for 2
3 < x < 1.

Find the solution, including the coefficients. (Hint: First find the equilib-
rium solution U(x), and then solve the heat equation with initial condition
u(x, 0) = φ(x) − U (x).)

9. Solve utt = c2uxx for 0 < x < π , with the boundary conditions ux (0, t) =
ux (π, t) = 0 and the initial conditions u(x, 0) = 0, ut (x, 0) = cos2x .
(Hint: See (4.2.7).)

10. A string (of tension T and density ρ) with fixed ends at x = 0 and
x = l is hit by a hammer so that u(x, 0) = 0, and ∂u/∂t(x, 0) = V
in [−δ + 1

2 l, δ + 1
2 l] and ∂u/∂t(x, 0) = 0 elsewhere. Find the solution

explicitly in series form. Find the energy

En(h) = 1

2

∫ l

0

[
ρ

(
∂h

∂t

)2

+ T

(
∂h

∂x

)2
]

dx

of the nth harmonic h = hn. Conclude that if δ is small (a concentrated
blow), each of the first few overtones has almost as much energy as the
fundamental. We could say that the tone is saturated with overtones.

11. On a string with fixed ends, show that if the center of a hammer blow is
exactly at a node of the nth harmonic (a place where the nth eigenfunction
vanishes), the nth overtone is absent from the solution.
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5.2 EVEN, ODD, PERIODIC, AND COMPLEX
FUNCTIONS

Each of the three kinds of Fourier series (sine, cosine, and full) of any given
function φ(x) is now determined by the formula for its coefficients given in
Section 5.1. We shall see shortly that almost any function φ(x) defined on the
interval (0, l) is the sum of its Fourier sine series and is also the sum of its
Fourier cosine series. Almost any function defined on the interval (−l, l) is
the sum of its full Fourier series. Each of these series converges inside the
interval, but not necessarily at the endpoints.

The concepts of oddness, evenness, and periodicity are closely related to
the three kinds of Fourier series.

A function φ(x) that is defined for −∞ < x < ∞ is called periodic if
there is a number p > 0 such that

φ(x + p) = φ(x) for all x . (1)

A number p for which this is true is called a period of φ(x). The graph of
the function repeats forever horizontally. For instance, cos x has period 2π ,
cos λx has period 2π/λ, and tan x has period π. Note that if φ(x) has period
p, then φ(x + np) = φ(x) for all x and for all integers n. (Why?) The sum of
two functions of period p has period p. Notice that if φ(x) has period p, then∫ a+p

a φ(x) dx does not depend on a. (Why?)
For instance, the function cos(mx) + sin 2mx is the sum of functions of

periods 2π/m and π/m and therefore itself has period 2π/m, the larger of
the two.

If a function is defined only on an interval of length p, it can be extended
in only one way to a function of period p. The situation we care about for
Fourier series is that of a function defined on the interval −l < x < l. Its
periodic extension is

φper(x) = φ(x − 2lm) for − l + 2lm < x < +l + 2lm (2)

for all integers m. This definition does not specify what the periodic extension
is at the endpoints x = l + 2lm. In fact, the extension has jumps at these points
unless the one-sided limits are equal: φ(l−) = φ(−l+) (see Figure 1). (See
Section A.1 for the definition of one-sided limits.)

Since each term in the full Fourier series (5.1.8) has period 2l, its sum
(if it converges) also has to have period 2l. Therefore, the full Fourier series
can be regarded either as an expansion of an arbitrary function on the interval

Figure 1
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(−l, l) or as an expansion of a periodic function of period 2l defined on the
whole line −∞ < x < +∞. �

An even function is a function that satisfies the equation

φ(−x) = φ(x). (3)

That just means that its graph y = φ(x) is symmetric with respect to the y axis.
Thus the left and right halves of the graph are mirror images of each other.
To make sense out of (3), we require that φ(x) be defined on some interval
(−l, +l) which is symmetric around x = 0.

An odd function is a function that satisfies the equation

φ(−x) = −φ(x). (4)

That just means that its graph y = φ(x) is symmetric with respect to the
origin. To make sense out of (4), we again require that φ(x) be defined on
some interval (−l, +l) which is symmetric around x = 0.

A monomial xn is an even function if n is even and is an odd function if n
is odd. The functions cos x, cosh x, and any function of x2 are even functions.
The functions sin x, tan x, and sinh x are odd functions. In fact, the products
of functions follow the usual rules: even × even = even, odd × odd = even,
odd × even = odd. The sum of two odd functions is again odd, and the sum
of two evens is even.

But the sum of an even and an odd function can be anything. Proof: Let
f (x) be any function at all defined on (−l, l). Letφ(x) = 1

2 [ f (x) + f (−x)] and
ψ(x) = 1

2 [ f (x) − f (−x)]. Then we easily check that f (x) = φ(x) + ψ(x),
that φ(x) is even and that ψ(x) is odd. The functions φ and ψ are called the
even and odd parts of f , respectively. For instance, cosh and sinh are the even
and odd parts of exp since: ex = cosh x + sinh x. If p(x) is any polynomial,
its even part is the sum of its even terms, and its odd part is the sum of its odd
terms.

Integration and differentiation change the parity (evenness or oddness) of
a function. That is, if φ(x) is even, then both dφ/dx and

∫ x
0 φ(s) ds are odd.

If φ(x) is odd, then the derivative and integral are even. (Note that the lower
limit of integration is at the origin.)

The graph of an odd function φ(x) must pass through the origin since φ(0)
= 0 follows directly from (4) by putting x = 0. The graph of an even function
φ(x) must cross the y axis horizontally, φ′(x) = 0, since the derivative is odd
(provided the derivative exists).

Example 1.

tan x is the product of an odd function (sin x) and an even function (1/cos
x), both of period 2π . Therefore tan x is an odd and periodic function.
But notice that its smallest period is π , not 2π . Its derivative sec2x is
necessarily even and periodic; it has period π . The dilated function tan
ax is also odd and periodic and has period π/a for any a > 0. �
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Definite integrals around symmetric intervals have the useful properties:∫ l

−l
(odd) dx = 0 and

∫ l

−l
(even) dx = 2

∫ l

0
(even) dx . (5)

Given any function defined on the interval (0, l), it can be extended in
only one way to be even or odd. The even extension of φ(x) is defined as

φeven(x) =
{

φ(x) for 0 < x < l
φ(−x) for −l < x < 0.

(6)

This is just the mirror image. The even extension is not necessarily defined at
the origin.

Its odd extension is

φodd(x) =

⎧⎪⎨
⎪⎩

φ(x) for 0 < x < l
−φ(−x) for −l < x < 0
0 for x = 0.

(7)

This is its image through the origin.

FOURIER SERIES AND BOUNDARY CONDITIONS

Now let’s return to the Fourier sine series. Each of its terms, sin(nπx/ l),
is an odd function. Therefore, its sum (if it converges) also has to be odd.
Furthermore, each of its terms has period 2l, so that the same has to be true of
its sum. Therefore, the Fourier sine series can be regarded as an expansion
of an arbitrary function that is odd and has period 2l defined on the whole
line −∞ < x < +∞.

Similarly, since all the cosine functions are even, the Fourier cosine series
can be regarded as an expansion of an arbitrary function which is even and
has period 2l defined on the whole line −∞ < x < ∞.

From what we saw in Section 5.1, these concepts therefore have the
following relationship to boundary conditions:

u(0, t) = u(l, t) = 0: Dirichlet BCs correspond to the odd extension. (8)
ux (0, t) = ux (l, t) = 0: Neumann BCs correspond to the even extension. (9)

u(l, t) = u(−l, t), ux (l, t) = ux (−l, t): Periodic BCs correspond
to the periodic extension. (10)

THE COMPLEX FORM OF THE FULL FOURIER SERIES

The eigenfunctions of −d2/dx2 on (−l, l) with the periodic boundary con-
ditions are sin(nπx/ l) and cos(nπx/ l). But recall the DeMoivre formulas,
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which express the sine and cosine in terms of the complex exponentials:

sin θ = eiθ − e−iθ

2i
and cos θ = eiθ + e−iθ

2
. (11)

Therefore, instead of sine and cosine, we could use e+inπx/ l and e−inπx/ l as an
alternative pair. But watch out: They’re complex! If we do that, the collection
of trigonometric functions {sin nθ , cos nθ} is replaced by the collection of
complex exponentials

{1, e+iπx/ l, e+i2πx/ l, . . . , e−iπx/ l, e−i2πx/ l, . . .}.
In other words, we get {einπx/ l}, where n is any positive or negative integer.

We should therefore be able to write the full Fourier series in the complex
form

φ(x) =
∞∑

n=−∞
cneinπx/ l . (12)

This is the sum of two infinite series, one going from n = 0 to +∞ and one
going from n = −1 to −∞. The magical fact in this case is∫ l

−l
einπx/ le−imπx/ ldx =

∫ l

−l
ei(n−m)πx/ ldx

= l

iπ (n − m)
[ei(n−m)π − ei(m−n)π ]

= l

iπ (n − m)
[(−1)n−m − (−1)m−n] = 0

provided that n �= m. Notice the extra minus sign in the second exponent of
the first integral. When n = m, we have∫ l

−l
ei(n−n)πx/ ldx =

∫ l

−l
1 dx = 2l.

It follows by the method of Section 5.1 that the coefficients are given by the
formula

cn = 1

2l

∫ l

−l
φ(x) e−inπx/ ldx . (13)

The complex form is sometimes more convenient in calculations than the real
form with sines and cosines. But it really is just the same series written in a
different form.
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EXERCISES

1. For each of the following functions, state whether it is even or odd or
periodic. If periodic, what is its smallest period?
(a) sin ax (a > 0)
(b) eax (a > 0)
(c) xm (m = integer)
(d) tan x2

(e) |sin(x/b)| (b > 0)
(f) x cos ax (a > 0)

2. Show that cos x + cos αx is periodic if α is a rational number. What is
its period?

3. Prove property (5) concerning the integrals of even and odd functions.
4. (a) Use (5) to prove that if φ(x) is an odd function, its full Fourier series

on (−l, l) has only sine terms.
(b) Also, if φ(x) is an even function, its full Fourier series on (−l, l)

has only cosine terms. (Hint: Don’t use the series directly. Use the
formulas for the coefficients to show that every second coefficient
vanishes.)

5. Show that the Fourier sine series on (0, l) can be derived from the full
Fourier series on (−l, l) as follows. Let φ(x) be any (continuous) function
on (0, l). Let φ̃(x) be its odd extension. Write the full series for φ̃(x) on
(−l, l). [Assume that its sum is φ̃(x).] By Exercise 4, this series has only
sine terms. Simply restrict your attention to 0 < x < l to get the sine
series for φ(x).

6. Show that the cosine series on (0, l) can be derived from the full series
on (−l, l) by using the even extension of a function.

7. Show how the full Fourier series on (−l, l) can be derived from the full
series on (−π, π ) by changing variables w = (π/ l)x . (This is called a
change of scale; it means that one unit along the x axis becomes π/ l
units along the w axis.)

8. (a) Prove that differentiation switches even functions to odd ones, and
odd functions to even ones.

(b) Prove the same for integration provided that we ignore the constant
of integration.

9. Let φ(x) be a function of period π . If φ(x) = �∞
n=1an sin nx for all x,

find the odd coefficients.
10. (a) Let φ(x) be a continuous function on (0, l). Under what conditions

is its odd extension also a continuous function?
(b) Let φ(x) be a differentiable function on (0, l). Under what conditions

is its odd extension also a differentiable function?
(c) Same as part (a) for the even extension.
(d) Same as part (b) for the even extension.
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11. Find the full Fourier series of ex on (−l, l) in its real and complex forms.
(Hint: It is convenient to find the complex form first.)

12. Repeat Exercise 11 for cosh x. (Hint: Use the preceding result.)
13. Repeat Exercise 11 for sin x. Assume that l is not an integer multiple of

π. (Hint: First find the series for eix).
14. Repeat Exercise 11 for |x |.
15. Without any computation, predict which of the Fourier coefficients of

|sin x | on the interval (−π, π ) must vanish.
16. Use the De Moivre formulas (11) to derive the standard formulas for

cos(θ + φ) and sin(θ + φ).
17. Show that a complex-valued function f (x) is real-valued if and only if

its complex Fourier coefficients satisfy cn = c−n , where denotes the
complex conjugate.

5.3 ORTHOGONALITY AND GENERAL FOURIER SERIES

Let us try to understand what makes the beautiful method of Fourier series
work. For the present let’s stick with real functions. If f (x) and g(x) are two
real-valued continuous functions defined on an interval a ≤ x ≤ b, we define
their inner product to be the integral of their product:

( f, g) ≡
∫ b

a
f (x)g(x) dx . (1)

It is a real number. We’ll call f (x) and g(x) orthogonal if (f , g) = 0. (This
terminology is supposed to be analogous to the case of ordinary vectors and
their inner or dot product.) Notice that no function is orthogonal to itself
except f (x) ≡ 0. The key observation in each case discussed in Section 5.1 is
that every eigenfunction is orthogonal to every other eigenfunction. Now
we will explain why this fortuitous coincidence is in fact no accident.

We are studying the operator A = −d2/dx2 with some boundary con-
ditions (either Dirichlet or Neumann or . . . ). Let X1(x) and X2(x) be two
different eigenfunctions. Thus

−X ′′
1 = −d2 X1

dx2
= λ1 X1

(2)

−X ′′
2 = −d2 X2

dx2
= λ2 X2,

where both functions satisfy the boundary conditions. Let’s assume that
λ1 �= λ2. We now verify the identity

−X ′′
1 X2 + X1 X ′′

2 = (−X ′
1 X2 + X1 X ′

2)′.
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(Work out the right side using the product rule and two of the terms will
cancel.) We integrate to get∫ b

a

(−X ′′
1 X2 + X1 X ′′

2

)
dx = (−X ′

1 X2 + X1 X ′
2

)∣∣∣∣
b

a

. (3)

This is sometimes called Green’s second identity. If you wished, you could
also think of it as the result of two integrations by parts.

On the left side of (3) we now use the differential equations (2). On the
right side we use the boundary conditions to reach the following conclusions:

Case 1: Dirichlet. This means that both functions vanish at both ends:
X1(a) = X1(b) = X2(a) = X2(b) = 0. So the right side of (3) is zero.
Case 2: Neumann. The first derivatives vanish at both ends. It is once again
zero.
Case 3: Periodic. Xj (a) = Xj (b), X ′

j (a) = X ′
j (b) for both j = 1, 2. Again

you get zero!
Case 4: Robin. Again you get zero! See Exercise 8.

Thus in all four cases, (3) reduces to

(λ1 − λ2)
∫ b

a
X1 X2 dx = 0. (3a)

Therefore, X1 and X2 are orthogonal! This completely explains why Fourier’s
method works (at least if λ1 �= λ2)!

The right side of (3) isn’t always zero. For example, consider the different
boundary conditions: X (a) = X (b), X ′(a) = 2X ′(b). Then the right side of
(3) is X ′

1(b)X2(b) − X1(b)X ′
2(b), which is not zero. So the method doesn’t

always work; the boundary conditions have to be right.

SYMMETRIC BOUNDARY CONDITIONS

So now let us envision any pair of boundary conditions

α1 X (a) + β1 X (b) + γ1 X ′(a) + δ1 X ′(b) = 0
α2 X (a) + β2 X (b) + γ2 X ′(a) + δ2 X ′(b) = 0

(4)

involving eight real constants. (Each of the examples above corresponds to
a choice of these constants.) Such a set of boundary conditions is called
symmetric if

f ′(x)g(x) − f (x)g′(x)
∣∣∣x=b

x=a
= 0 (5)

for any pair of functions f (x) and g(x) both of which satisfy the pair of boundary
conditions (4). As we indicated above, each of the four standard boundary
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conditions (Dirichlet, etc.) is symmetric, but our fifth example is not. The most
important thing to keep in mind is that all the standard boundary conditions
are symmetric.

Green’s second identity (3) then implies the following theorem. By an
eigenfunction we now mean a solution of −X ′′ = λX that satisfies (4).

Theorem 1. If you have symmetric boundary conditions, then any two
eigenfunctions that correspond to distinct eigenvalues are orthogonal. There-
fore, if any function is expanded in a series of these eigenfunctions, the coef-
ficients are determined.

Proof. Take two different eigenfunctions X1(x) and X2(x) with λ1 �= λ2.
We write Green’s second identity (3). Because the boundary conditions are
symmetric, the right side of (3) vanishes. Because of the different equations,
the identity takes the form (3a), and the orthogonality is proven.

If Xn(x) now denotes the eigenfunction with eigenvalue λn and if

φ(x) =
∑

n

An Xn(x) (6)

is a convergent series, where the An are constants, then

(φ, Xm) =
(∑

n

An Xn, Xm

)
=

∑
n

An(Xn, Xm) = Am(Xm, Xm)

by the orthogonality. So if we denote cm = (Xm, Xm), we have

Am = (φ, Xm)

cm
(7)

as the formula for the coefficients. �

Two words of caution. First, we have so far avoided all questions of con-
vergence. Second, if there are two eigenfunctions, say X1(x) and X2(x), but
their eigenvalues are the same, λ1 = λ2, then they don’t have to be orthogo-
nal. But if they aren’t orthogonal, they can be made so by the Gram–Schmidt
orthogonalization procedure (see Exercise 10). For instance, in the case of pe-
riodic boundary conditions the two eigenfunctions sin(nπx/l) and cos(nπx/l)
are orthogonal on (−l, l), even though they have the same eigenvalue (nπ/l)2.
But the two eigenfunctions sin(nπx/l) and [cos(nπx/l) + sin(nπx/l)] are not
orthogonal.
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COMPLEX EIGENVALUES

What about complex eigenvalues λ and complex-valued eigenfunctions X(x)?
If f (x) and g(x) are two complex-valued functions, we define the inner product
on (a, b) as

( f, g) =
∫ b

a
f (x)g(x) dx . (8)

The bar denotes the complex conjugate. The two functions are called orthog-
onal if (f , g) = 0. (This is exactly what is customary for ordinary complex
vectors.)

Now suppose that you have the boundary conditions (4) with eight real
constants. They are called symmetric (or hermitian) if

f ′(x) g(x) − f (x)g′(x)
∣∣∣b
a

= 0 (9)

for all f , g satisfying the BCs. Then Theorem 1 is true for complex functions
without any change at all. But we also have the following important fact.

Theorem 2. Under the same conditions as Theorem 1, all the eigenvalues
are real numbers. Furthermore, all the eigenfunctions can be chosen to be real
valued.

(This could be compared with the discussion at the end of Section 4.1,
where complex eigenvalues were discussed explicitly.)

Proof. Let λ be an eigenvalue, possibly complex. Let X(x) be its eigen-
function, also possibly complex. Then −X ′′ = λX plus BCs. Take the com-
plex conjugate of this equation; thus −X ′′ = λ X plus BCs. So λ is also an
eigenvalue. Now use Green’s second identity with the functions X and X .
Thus ∫ b

a
(−X ′′ X + X X ′′) dx = (−X ′ X + X X ′)

∣∣∣∣
b

a

= 0

since the BCs are symmetric. So

(
λ − λ

) ∫ b

a
X X dx = 0

But X X = |X |2 ≥ 0 and X(x) is not allowed to be the zero function. So the
integral cannot vanish. Therefore, λ − λ = 0, which means exactly that λ is
real.

Next, let’s reconsider the same problem −X ′′ = λX together with (4),
knowing that λ is real. If X(x) is complex, we write it as X (x) = Y (x) + i Z (x),
where Y(x) and Z(x) are real. Then −Y ′′ − iZ′′ = λY + iλZ . Equating the real
and imaginary parts, we see that −Y ′′ = λY and − Z ′′ = λZ . The boundary
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conditions still hold for both Y and Z because the eight constants in (4) are real
numbers. So the real eigenvalue λ has the real eigenfunctions Y and Z. We
could therefore say that X and X are replaceable by the Y and Z. The linear
combinations aX + bX are the same as the linear combinations cY + d Z ,
where a and b are somehow related to c and d. This completes the proof of
Theorem 2. �

NEGATIVE EIGENVALUES

We have seen that most of the eigenvalues turn out to be positive. An important
question is whether all of them are positive. Here is a sufficient condition.

Theorem 3. Assume the same conditions as in Theorem 1. If

f (x) f ′(x)

∣∣∣∣
x=b

x=a

≤ 0 (10)

for all (real-valued) functions f (x) satisfying the BCs, then there is no negative
eigenvalue.

This theorem is proved in Exercise 13. It is easy to verify that (10) is
valid for Dirichlet, Neumann, and periodic boundary conditions, so that in
these cases there are no negative eigenvalues (see Exercise 11). However, as
we have already seen in Section 4.3, it could not be valid for certain Robin
boundary conditions.

We have already noticed the close analogy of our analysis with linear
algebra. Not only are functions acting as if they were vectors, but the operator
−d2/dx2 is acting like a matrix; in fact, it is a linear transformation. Theorems
1 and 2 are like the corresponding theorems about real symmetric matrices.
For instance, if A is a real symmetric matrix and f and g are vectors, then
(Af , g)= (f , Ag). In our present case, A is a differential operator with symmetric
BCs and f and g are functions. The same identity (Af , g) = (f , Ag) holds in our
case [see (3)]. The two main differences from matrix theory are, first, that our
vector space is infinite dimensional, and second, that the boundary conditions
must comprise part of the definition of our linear transformation.

EXERCISES

1. (a) Find the real vectors that are orthogonal to the given vectors [1, 1, 1]
and [1, −1, 0].

(b) Choosing an answer to (a), expand the vector [2, −3, 5] as a linear
combination of these three mutually orthogonal vectors.

2. (a) On the interval [−1, 1], show that the function x is orthogonal to
the constant functions.

(b) Find a quadratic polynomial that is orthogonal to both 1 and x.
(c) Find a cubic polynomial that is orthogonal to all quadratics. (These

are the first few Legendre polynomials.)
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3. Consider utt = c2uxx for 0 < x < l, with the boundary conditions u(0, t)
= 0, ux(l, t) = 0 and the initial conditions u(x, 0) = x, ut (x, 0) = 0.
Find the solution explicitly in series form.

4. Consider the problem ut = kuxx for 0 < x < l, with the boundary con-
ditions u(0, t) = U, ux (l, t) = 0, and the initial condition u(x, 0) = 0,
where U is a constant.
(a) Find the solution in series form. (Hint: Consider u(x, t) − U .)
(b) Using a direct argument, show that the series converges for t > 0.
(c) If ε is a given margin of error, estimate how long a time is required

for the value u(l, t) at the endpoint to be approximated by the con-
stant U within the error ε. (Hint: It is an alternating series with first
term U, so that the error is less than the next term.)

5. (a) Show that the boundary conditions u(0, t) = 0, ux (l, t) = 0 lead to
the eigenfunctions (sin(πx/2l), sin(3πx/2l), sin(5πx/2l), . . .).

(b) If φ(x) is any function on (0, l), derive the expansion

φ(x) =
∞∑

n=0

Cnsin

{(
n + 1

2

)
πx

l

}
(0 < x < l)

by the following method. Extend φ(x) to the function φ̃ defined by
φ̃(x) = φ(x) for 0 ≤ x ≤ l and φ̃(x) = φ(2l − x) for l ≤ x ≤ 2l.
(This means that you are extending it evenly across x = l.) Write
the Fourier sine series for φ̃(x) on the interval (0, 2l) and write the
formula for the coefficients.

(c) Show that every second coefficient vanishes.
(d) Rewrite the formula for Cn as an integral of the original function

φ(x) on the interval (0, l).
6. Find the complex eigenvalues of the first-derivative operator d/dx subject

to the single boundary condition X(0) = X(1). Are the eigenfunctions
orthogonal on the interval (0, 1)?

7. Show by direct integration that the eigenfunctions associated with the
Robin BCs, namely,

φn(x) = cos βnx + a0

βn
sin βnx where λn = β2

n ,

are mutually orthogonal on 0 ≤ x ≤ l, where βn are the positive roots of
(4.3.8).

8. Show directly that (−X ′
1 X2 + X1 X ′

2)|ba = 0 if both X1 and X2 satisfy the
same Robin boundary condition at x = a and the same Robin boundary
condition at x = b.

9. Show that the boundary conditions

X (b) = αX (a) + β X ′(a) and X ′(b) = γ X (a) + δX ′(a)

on an interval a ≤ x ≤ b are symmetric if and only if αδ − βγ = 1.
10. (The Gram–Schmidt orthogonalization procedure) If X1, X2, . . . is any

sequence (finite or infinite) of linearly independent vectors in any vector
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space with an inner product, it can be replaced by a sequence of linear
combinations that are mutually orthogonal. The idea is that at each step
one subtracts off the components parallel to the previous vectors. The
procedure is as follows. First, we let Z1 = X1/‖X1‖. Second, we define

Y2 = X2 − (X2, Z1)Z1 and Z2 = Y2

‖Y2‖ .

Third, we define

Y3 = X3 − (X3, Z2)Z2 − (X3, Z1)Z1 and Z3 = Y3

‖Y3‖ ,

and so on.
(a) Show that all the vectors Z1, Z2, Z3, . . . are orthogonal to each other.
(b) Apply the procedure to the pair of functions cos x + cos 2x and

3 cos x − 4 cos 2x in the interval (0, π ) to get an orthogonal pair.
11. (a) Show that the condition f (x) f ′(x)|b

a ≤ 0 is valid for any function
f (x) that satisfies Dirichlet, Neumann, or periodic boundary condi-
tions.

(b) Show that it is also valid for Robin BCs provided that the constants
a0 and al are positive.

12. Prove Green’s first identity: For every pair of functions f (x), g(x) on
(a, b), ∫ b

a
f ′′(x)g(x) dx = −

∫ b

a
f ′(x)g′(x) dx + f ′g

∣∣∣∣
b

a

.

13. Use Green’s first identity to prove Theorem 3. (Hint: Substitute f (x) =
X(x) = g(x), a real eigenfunction.)

14. What do the terms in the series
π

4
= sin 1 + 1

3
sin 3 + 1

5
sin 5 + · · ·

look like? Make a graph of sin n for n = 1, 2, 3, 4, . . . , 20 without drawing
the intervening curve; that is, just plot the 20 points. Use a calculator;
remember that we are using radians. In some sense the numbers sin n
are randomly located in the interval (−1, 1). There is a great deal of
“random cancellation” in the series.

15. Use the same idea as in Exercises 12 and 13 to show that none of the
eigenvalues of the fourth-order operator +d4/dx4 with the boundary
conditions X (0) = X (l) = X ′′(0) = X ′′(l) = 0 are negative. �

5.4 COMPLETENESS

In this section we state the basic theorems about the convergence of Fourier se-
ries. We discuss three senses of convergence of functions. The basic theorems
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(Theorems 2, 3, and 4) state sufficient conditions on a function f (x) that its
Fourier series converge to it in these three senses. Most of the proofs are diffi-
cult, however, and we omit them for now. At the end of the section we discuss
the mean-square convergence in greater detail and use it to define the notion
of completeness.

Consider the eigenvalue problem

X ′′ + λX = 0 in (a, b) with any symmetric BC. (1)

By Theorem 5.3.2, we know that all the eigenvalues λ are real.

Theorem 1. There are an infinite number of eigenvalues. They form a
sequence λn → +∞.

For a proof of Theorem 1, see Chapter 11 or [CL]. We may assume that
the eigenfunctions Xn(x) are pairwise orthogonal and real valued (see Section
5.3). For instance, if k linearly independent eigenfunctions correspond to the
same eigenvalue λn, then they can be rechosen to be orthogonal and real, and
the sequence may be numbered so that λn is repeated k times. Thus we may
list the eigenvalues as

λ1 ≤ λ2 ≤ λ3 ≤ · · · → +∞ (2)

with the corresponding eigenfunctions

X1, X2, X3, . . . , (3)

which are pairwise orthogonal. Some interesting examples were found in
Section 4.3.

For any function f (x) on (a, b), its Fourier coefficients are defined as

An = ( f, Xn)

(Xn, Xn)
=

∫ b
a f (x)Xn(x) dx∫ b

a |Xn(x)|2 dx
. (4)

Its Fourier series is the series �n An Xn(x).
In this section we present three convergence theorems. Just to convince

the skeptic that convergence theorems are more than a pedantic exercise, we
mention the curious fact that there exists an integrable function f (x) whose
Fourier series diverges at every point x! There even exists a continuous func-
tion whose Fourier series diverges at many points! See [Zy] for proofs.

To set the stage we need to introduce various notions of convergence. This
is a good point for the reader to review the basic facts about infinite series
(outlined in Section A.2).

THREE NOTIONS OF CONVERGENCE

Definition. We say that an infinite series �∞
n=1 fn(x) converges to f (x)

pointwise in (a, b) if it converges to f (x) for each a < x < b. That is, for each
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a < x < b we have∣∣∣∣∣ f (x) −
N∑

n=1

fn(x)

∣∣∣∣∣ → 0 as N → ∞. (5)

Definition. We say that the series converges uniformly to f (x) in [a, b] if

max
a≤x≤b

∣∣∣∣∣ f (x) −
N∑

n=1

fn(x)

∣∣∣∣∣ → 0 as N → ∞. (6)

(Note that the endpoints are included in this definition.) That is, you take the
biggest difference over all the x’s and then take the limit.

The two preceding concepts of convergence are also discussed in Section
A.2. A third important concept is the following one.

Definition. We say the series converges in the mean-square (or L2) sense
to f (x) in (a, b) if∫ b

a

∣∣∣∣∣ f (x) −
N∑

n=1

fn(x)

∣∣∣∣∣
2

dx → 0 as N → ∞. (7)

Thus we take the integral instead of the maximum. (The terminology L2 refers
to the square inside the integral.)

Notice that uniform convergence is stronger than both pointwise and L2

convergence (see Exercise 2.) Figure 1 illustrates a typical uniformly conver-
gent series by graphing both f (x) and a partial sum for large N.

Example 1.

Let fn(x) = (1 − x)xn−1 on the interval 0 < x < 1. Then the series is
“telescoping.” The partial sums are

N∑
n=1

fn(x) =
N∑
1

(xn−1 − xn) =1 − x N → 1 as N → ∞

Figure 1
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Figure 2

because x < 1. This convergence is valid for each x. Thus∑∞
n=1 fn(x) = 1 pointwise. In words, the series converges pointwise

to the function f (x) ≡ 1.
But the convergence is not uniform because max [1 − (1 − x N )] =

max x N = 1 for every N. However, it does converge in mean-square
since ∫ 1

0

∣∣x N
∣∣2 dx = 1

2N + 1
→ 0.

Figure 2 is a sketch of a few partial sums of Example 1. �

Example 2.

Let

fn(x) = n

1 + n2x2
− n − 1

1 + (n − 1)2x2

in the interval 0 < x < l. This series also telescopes so that

N∑
n=1

fn(x) = N

1 + N 2x2
= 1

N [(1/N 2) + x2]
→ 0 as N → ∞ if x > 0.

So the series converges pointwise to the sum f (x) ≡ 0.
On the other hand,∫ l

0

[
N∑

n=1

fn(x)

]2

dx =
∫ l

0

N 2

(1 + N 2x2)2
dx

= N
∫ Nl

0

1

(1 + y2)2
dy → +∞ (where y = Nx)
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because ∫ Nl

0

1

(1 + y2)2
dy →

∫ ∞

0

1

(1 + y2)2
dy.

So the series does not converge in the mean-square sense. Also, it does
not converge uniformly because

max
(0, l)

1

1 + N 2x2
= N ,

which obviously does not tend to zero as N → ∞. �

CONVERGENCE THEOREMS

Now let f (x) be any function defined on a ≤ x ≤ b. Consider the Fourier series
for the problem (1) with any given boundary conditions that are symmetric. We
now state a convergence theorem for each of the three modes of convergence.
They are partly proved in the next section.

Theorem 2. Uniform Convergence The Fourier series � An Xn(x) con-
verges to f (x) uniformly on [a, b] provided that

(i) f (x), f ′(x), and f ′′(x) exist and are continuous for a ≤ x ≤ b and
(ii) f (x) satisfies the given boundary conditions.
Theorem 2 assures us of a very good kind of convergence provided that

the conditions on f (x) and its derivatives are met. For the classical Fourier
series (full, sine, and cosine), it is not required that f ′′(x) exist.

Theorem 3. L2 Convergence The Fourier series converges to f (x) in
the mean-square sense in (a, b) provided only that f (x) is any function for
which ∫ b

a
| f (x)|2 dx is finite. (8)

Theorem 3 assures us of a certain kind of convergence under a very weak
assumption on f (x). [We could even use the very general Lebesgue inte-
gral here instead of the standard (Riemann) integral encountered in calculus
courses. In fact, the Lebesgue integral was invented in order that Theorem 3
be true for the most general possible functions.]

Third, we present a theorem that is intermediate as regards the hypotheses
on f (x). It requires two more definitions. A function f (x) has a jump discon-
tinuity at a point x = c if the one-sided limits f (c+) and f (c−) exist but are not
equal. [It doesn’t matter what f (c) happens to be or even whether f (c) is defined
or not.] The value of the jump discontinuity is the number f (c+) − f (c−).
See Figure 3 for a function with two jumps.

A function f (x) is called piecewise continuous on an interval [a, b] if it
is continuous at all but a finite number of points and has jump discontinuities
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Figure 3

at those points. Another way to say this is that at every point in the inter-
val (including the endpoints) the one-sided limits f (c+) and f (c−) exist;
and except at a finite number of points they are equal. For these definitions,
see also Section A.1. A typical piecewise continuous function is sketched in
Figure 3. The function Q(x, 0) in Section 2.4 is an example of a piecewise
continuous function.

Theorem 4. Pointwise Convergence of Classical Fourier Series
(i) The classical Fourier series (full or sine or cosine) converges to f (x)

pointwise on (a, b) provided that f (x) is a continuous function on
a ≤ x ≤ b and f ′(x) is piecewise continuous on a ≤ x ≤ b.

(ii) More generally, if f (x) itself is only piecewise continuous on a ≤
x ≤ b and f ′(x) is also piecewise continuous on a ≤ x ≤ b, then the
classical Fourier series converges at every point x(−∞ < x < ∞).
The sum is∑

n

An Xn(x) = 1
2 [ f (x+) + f (x−)] for all a < x < b. (9)

The sum is 1
2 [ fext(x+) + fext(x−)] for all −∞ < x < ∞, where

fext(x) is the extended function (periodic, odd periodic, or even pe-
riodic).

Thus at a jump discontinuity the series converges to the average of the
limits from the right and from the left. In the case of the Fourier sine (or
cosine) series on (0, l), the extended function fext(x) is the odd (or even)
function of period 2l. For the full series on (−l, l), it is the periodic extension.
The extension is piecewise continuous with a piecewise continuous derivative
on (−∞, ∞).

It is convenient to restate Theorem 4 directly for functions that are al-
ready defined on the whole line. By considering the periodic, even, and odd
extensions of functions, Theorem 4 is equivalent to the following statement.

Theorem 4∞. If f (x) is a function of period 2l on the line for which
f (x) and f ′(x) are piecewise continuous, then the classical full Fourier series
converges to 1

2 [ f (x+) + f (x−)] for −∞ < x < ∞.
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The Fourier series of a continuous but nondifferentiable function f (x) is
not guaranteed to converge pointwise. By Theorem 3 it must converge to f (x)
in the L2 sense. If we wanted to be sure of its pointwise convergence, we
would have to know something about its derivative f ′(x).

Example 3.

The Fourier sine series of the function f (x) ≡ 1 on the interval (0, π ) is∑
n odd

4

nπ
sin nx . (10)

Although it converges at each point, this series does not converge uni-
formly on [0, π ]. One reason is that the series equals zero at both end-
points (0 and π ) but the function is 1 there. Condition (ii) of Theorem 2 is
not satisfied: the boundary conditions are Dirichlet and the function f (x)
does not vanish at the endpoints. However, Theorem 4(i) is applicable,
so that the series does converge pointwise to f (x). Thus (10) must sum
to 1 for every 0 < x < π . For instance, we get a true equation if we put
x = π/2:

1 = f
(π

2

)
=

∑
n odd

4

nπ
(−1)(n−1)/2 = 4

π

∞∑
m=0

(−1)m

2m + 1
.

Therefore, we get the convergent series
π

4
= 1 − 1

3
+ 1

5
− 1

7
+ 1

9
− 1

11
+ · · · .

Noting that 0 < 1 < π , we may put x = 1 to get the convergent series

π

4
= sin 1 + 1

3
sin 3 + 1

5
sin 5 + · · · .

Other amusing series are obtainable in this way. �

Another important question, especially for our purposes, is whether a
Fourier series can be differentiated term by term. Take the case of (10). On
the left side the derivative is zero. On the right side we ought to get the series.

4

π

∑
n odd

cos nx . (11)

But this is clearly divergent because the terms don’t even tend to zero as
n → ∞ (the nth term test for divergence)! So in this example you cannot dif-
ferentiate term by term. For a more general viewpoint, however, see Example
8 in Section 12.1.

Differentiation of a Fourier series is a delicate matter. But integration term
by term is not delicate and is usually valid (see Exercise 11).

The proofs of Theorems 1 to 4 are lengthy and will be postponed to the
next section and to Chapter 11. For complete proofs of Theorems 2 and 3, see
Section 7.4 of [CL]. For complete proofs of the classical cases of Theorems 2,
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3, and 4, see [DM] or [CH]. Of the three convergence theorems, Theorem 3
is the easiest one to apply because f ′(x) does not have to exist and f (x) itself
does not even have to be continuous. We now pursue a set of ideas that is
related to Theorem 3 and is important in quantum mechanics.

THE L2 THEORY

The main idea is to regard orthogonality as if it were a geometric property.
We have already defined the inner product on (a, b) as

( f, g) =
∫ b

a
f (x)g(x) dx .

[In case the functions are real valued, we just ignore the complex conjugate
( ).] We now define the L2 norm of f as

‖ f ‖ = ( f, f )1/2 =
[∫ b

a
| f (x)|2 dx

]1/2
.

The quantity

‖ f − g‖ =
[∫ b

a
| f (x) − g(x)|2 dx

]1/2
(12)

is a measurement of the “distance” between two functions f and g. It is some-
times called the L2 metric. The concept of a metric was first mentioned in
Section 1.5; the L2 metric is the nicest one.

Theorem 3 can be restated as follows. If {Xn} are the eigenfunctions
associated with a set of symmetric BCs and if ‖ f ‖ < ∞, then∥∥∥∥∥ f −

∑
n≤N

An Xn

∥∥∥∥∥ → 0 as N → ∞. (13)

That is, the partial sums get nearer and nearer to f .

Theorem 5. Least-Square Approximation Let {Xn} be any orthogo-
nal set of functions. Let ‖ f ‖ < ∞. Let N be a fixed positive integer. Among
all possible choices of N constants c1, c2, . . . , cN , the choice that minimizes

∥∥∥∥∥ f −
N∑

n=1

cn Xn

∥∥∥∥∥
is c1 = A1, . . . , cn = An.

(These are the Fourier coefficients! It means that the linear combination of
X1, . . . , Xn which approximates f most closely is the Fourier combination!)
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Proof. For the sake of simplicity we assume in this proof that f (x) and all
the Xn(x) are real valued. Denote the error (remainder) by

EN =
∥∥∥∥∥ f −

∑
n≤N

cn Xn

∥∥∥∥∥
2

=
∫ b

a

∣∣∣∣∣ f (x) −
∑
n≤N

cn Xn(x)

∣∣∣∣∣
2

dx . (14)

Expanding the square, we have (assuming the functions are real valued)

EN =
∫ b

a
| f (x)|2 dx − 2

∑
n≤N

cn

∫ b

a
f (x)Xn(x) dx

+
∑

n

∑
m

cncm

∫ b

a
Xn(x)Xm(x) dx .

Because of orthogonality, the last integral vanishes except for n = m. So the
double sum reduces to �c2

n

∫ |Xn|2 dx . Let us write this in the norm notation:

EN = ‖ f ‖2 − 2
∑
n≤N

cn ( f, Xn) +
∑
n≤N

c2
n ‖Xn‖2 .

We may “complete the square”:

EN =
∑
n≤N

‖Xn‖2

[
cn − ( f, Xn)

‖Xn‖2

]2

+ ‖ f ‖2 −
∑
n≤N

( f, Xn)2

‖Xn‖2 . (15)

Now the coefficients cn appear in only one place, inside the squared term. The
expression is clearly smallest if the squared term vanishes. That is,

cn = ( f, Xn)

‖Xn‖2 ≡ An,

which proves Theorem 5. �

The completion of the square has further consequences. Let’s choose the
cn to be the Fourier coefficients: cn = An . The last expression (15) for the
error EN becomes

0 ≤ EN = ‖ f ‖2 −
∑
n≤N

( f, Xn)2

‖Xn‖2 = ‖ f ‖2 −
∑
n≤N

A2
n ‖Xn‖2. (16)

Because this is positive, we have∑
n≤N

A2
n

∫ b

a
|Xn(x)|2 dx ≤

∫ b

a
| f (x)|2 dx . (17)

On the left side we have the partial sums of a series of positive terms with
bounded partial sums. Therefore, the corresponding infinite series converges
and its sum satisfies

∞∑
n=1

A2
n

∫ b

a
|Xn(x)|2 dx ≤

∫ b

a
| f (x)|2 dx . (18)
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This is known as Bessel’s inequality. It is valid as long as the integral of | f |2
is finite.

Theorem 6. The Fourier series of f (x) converges to f (x) in the mean-square
sense if and only if

∞∑
n=1

|An|2
∫ b

a
|Xn(x)|2 dx =

∫ b

a
| f (x)|2 dx (19)

(i.e., if and only if you have equality).

Proof. Mean-square convergence means that the remainder EN → 0. But
from (16) this means that �n≤N |An|2‖Xn‖2 → ‖ f ‖2, which in turn means
(19), known as Parseval’s equality.

Definition. The infinite orthogonal set of functions {X1(x), X2(x), . . .} is
called complete if Parseval’s equality (19) is true for all f with

∫ b
a | f |2 dx < ∞.

Theorem 3 asserts that the set of eigenfunctions coming from (1) is always
complete. Thus we have the following conclusion.

Corollary 7. If
∫ b

a | f (x)|2dx is finite, then the Parseval equality (19) is true.

Example 4.

Consider once again the Fourier series (10). Parseval’s equality asserts
that

∑
n odd

(
4

nπ

)2 ∫ π

0
sin2nx dx =

∫ π

0
12 dx .

This means that

∑
n odd

(
4

nπ

)2
π

2
= π.

In other words,

∑
n odd

1

n2
= 1 + 1

9
+ 1

25
+ 1

49
+ · · · = π2

8
,

another interesting numerical series. �

For a full discussion of completeness using the concept of the Lebesgue
integral, see [LL] for instance.
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EXERCISES

1. �∞
n=0(−1)nx2n is a geometric series.

(a) Does it converge pointwise in the interval −1 < x < 1?
(b) Does it converge uniformly in the interval −1 < x < 1?
(c) Does it converge in the L2 sense in the interval −1 < x < 1?

(Hint: You can compute its partial sums explicitly.)
2. Consider any series of functions on any finite interval. Show that if it

converges uniformly, then it also converges in the L2 sense and in the
pointwise sense.

3. Let γn be a sequence of constants tending to ∞. Let fn(x) be the sequence
of functions defined as follows: fn

(
1
2

) = 0, fn(x) = γn in the interval
[ 1

2 − 1
n , 1

2 ), let fn(x) = −γn in the interval ( 1
2 ,

1
2 + 1

n ] and let fn(x) = 0
elsewhere. Show that:
(a) fn(x) → 0 pointwise.
(b) The convergence is not uniform.
(c) fn(x) → 0 in the L2 sense if γn = n1/3.
(d) fn(x) does not converge in the L2 sense if γn = n.

4. Let

gn(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 in the interval

[
1

4
− 1

n2
,

1

4
+ 1

n2

)
for odd n

1 in the interval

[
3

4
− 1

n2
,

3

4
+ 1

n2

)
for even n

0 for all other x .

Show that gn(x) → 0 in the L2 sense but that gn(x) does not tend to zero
in the pointwise sense.

5. Let φ(x) = 0 for 0 < x < 1 and φ(x) = 1 for 1 < x < 3.
(a) Find the first four nonzero terms of its Fourier cosine series explic-

itly.
(b) For each x (0 ≤ x ≤ 3), what is the sum of this series?
(c) Does it converge to φ(x) in the L2 sense? Why?
(d) Put x = 0 to find the sum

1 + 1

2
− 1

4
− 1

5
+ 1

7
+ 1

8
− 1

10
− 1

11
+ · · · .

6. Find the sine series of the function cos x on the interval (0, π ). For each
x satisfying −π ≤ x ≤ π , what is the sum of the series?

7. Let

φ(x) =
{

−1 − x for − 1 < x < 0

+1 − x for 0 < x < 1.
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(a) Find the full Fourier series of φ(x) in the interval (−1, 1).
(b) Find the first three nonzero terms explicitly.
(c) Does it converge in the mean square sense?
(d) Does it converge pointwise?
(e) Does it converge uniformly to φ(x) in the interval (−1, 1)?

8. Consider the Fourier sine series of each of the following functions. In this
exercise do not compute the coefficients but use the general convergence
theorems (Theorems 2, 3, and 4) to discuss the convergence of each of
the series in the pointwise, uniform, and L2 senses.
(a) f (x) = x3 on (0, l).
(b) f (x) = lx − x2 on (0, l).
(c) f (x) = x−2 on (0, l).

9. Let f (x) be a function on (−l, l) that has a continuous derivative and
satisfies the periodic BCs. Let an and bn be the Fourier coefficients of
f (x), and let a′

n and b′
n be the Fourier coefficients of its derivative f ′(x).

Show that

a′
n = nπbn

l
and b′

n = −nπan

l
for n �= 0.

(Hint: Write the formulas for a′
n and b′

n and integrate by parts.) This
means that the Fourier series of f ′(x) is what you’d obtain as if you
differentiated term by term. It does not mean that the differentiated series
converges.

10. Deduce from Exercise 9 that there is a constant k so that

|an| + |bn| ≤ k

n
for all n.

11. (Term by term integration)
(a) If f (x) is a piecewise continuous function in [−l, l], show that its

indefinite integral F(x) = ∫ x
−l f (s) ds has a full Fourier series that

converges pointwise.
(b) Write this convergent series for f (x) explicitly in terms of the Fourier

coefficients a0, an, bn of f (x).
(Hint: Apply a convergence theorem. Write the formulas for the
coefficients and integrate by parts.)

12. Start with the Fourier sine series of f (x) = x on the interval (0, l). Apply
Parseval’s equality. Find the sum �∞

n=11/n2.
13. Start with the Fourier cosine series of f (x) = x2 on the interval (0, l).

Apply Parseval’s equality. Find the sum �∞
n=11/n4.

14. Find the sum �∞
n=11/n6.

15. Let φ(x) ≡ 1 for 0 < x < π . Expand

1 =
∞∑

n=0

Bn cos
[(

n + 1
2

)
x
]
.
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(a) Find Bn.
(b) Let −2π < x < 2π . For which such x does this series converge?

For each such x, what is the sum of the series? [Hint: Think of
extending φ(x) beyond the interval (0, π ).]

(c) Apply Parseval’s equality to this series. Use it to calculate the sum

1 + 1

32
+ 1

52
+ · · · .

16. Let φ(x) = |x | in (−π, π ). If we approximate it by the function

f (x) = 1
2a0 + a1 cos x + b1 sin x + a2 cos 2x + b2 sin 2x,

what choice of coefficients will minimize the L2 error?
17. Modify the proofs of Theorems 5 and 6 for the case of complex-valued

functions.
18. Consider a solution of the wave equation with c = 1 on [0, l] with

homogeneous Dirichlet or Neumann boundary conditions.
(a) Show that its energy E = 1

2

∫ l
0 (u2

t + u2
x ) dx is a constant.

(b) Let En(t) be the energy of its nth harmonic (the nth term in the
expansion). Show that E = �En . (Hint: Use the orthogonality. As-
sume that you can integrate term by term.)

19. Here is a general method to calculate the normalizing constants. Let
X (x, λ) be a family of real solutions of the ODE −X ′′ = λX which
depends in a smooth manner on λ as well as on x.
(a) Find the ODE satisfied by ∂ X/∂λ.
(b) Apply Green’s second identity to the pair of functions X and ∂ X/∂λ

in order to obtain a formula for
∫ b

a X2dx in terms of the boundary
values.

(c) As an example, use the result of part (b) and the Dirichlet boundary
conditions to compute

∫ l
0 sin2(mπx/ l) dx .

20. Use the method of Exercise 19 to compute the normalizing constants∫ l
0 X2 dx in the case of the Robin boundary conditions.

5.5 COMPLETENESS AND THE GIBBS PHENOMENON

Our purpose here is to prove the pointwise convergence of the classical full
Fourier series. This will lead to the celebrated Gibbs phenomenon for jump
discontinuities.

We may as well take the whole-line case, Theorem 4∞ of Section 5.4.
To avoid technicalities, let us begin with a C1 function f (x) on the whole line
of period 2l. (A C1 function is a function that has a continuous derivative in
(−∞, ∞); see Section A.1.) We also assume that l = π, which can easily be
arranged through a change of scale (see Exercise 5.2.7).
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Thus the Fourier series is

f (x) = 1
2 A0 +

∞∑
n=1

(An cos nx + Bn sin nx) (1)

with the coefficients

An =
∫ π

−π

f (y) cos ny
dy

π
(n = 0, 1, 2, . . .)

Bn =
∫ π

−π

f (y) sin ny
dy

π
(n = 1, 2, . . .).

The Nth partial sum of the series is

SN (x) = 1
2 A0 +

N∑
n=1

(An cos nx + Bn sin nx). (2)

We want to prove that SN (x) converges to f (x) as N → ∞. Pointwise con-
vergence means that x is kept fixed as we take the limit.

The first step of the proof is to stick the formulas for the coefficients into
the partial sum and rearrange the terms. Doing this, we get

SN (x) =
∫ π

−π

[
1 + 2

N∑
n=1

(cos ny cos nx + sin ny sin nx)

]
f (y)

dy

2π
.

Inside the parentheses is the cosine of a difference of angles, so we can
summarize the formula as

SN (x) =
∫ π

−π

KN (x − y) f (y)
dy

2π
, (3)

where

KN (θ ) = 1 + 2
N∑

n=1

cos nθ. (4)

The second step is to study the properties of this function, called the
Dirichlet kernel. Notice that KN (θ ) has period 2π and that∫ π

−π

KN (θ )
dθ

2π
= 1 + 0 + 0 + · · · + 0 = 1.

It is a remarkable fact that the series for KN can be summed! In fact,

KN (θ ) = sin
(
N + 1

2

)
θ

sin 1
2θ

. (5)
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Figure 1

Proof of (5). The easiest proof is by complexification. By De Moivre’s
formula for complex exponentials,

KN (θ ) = 1 +
N∑

n=1
(einθ + e−inθ ) =

N∑
n=−N

einθ

= e−iNθ + · · · + 1 + · · · + eiNθ .

This is a finite geometric series with the first term e−iNθ , the ratio eiθ , and the
last term eiNθ . So it adds up to

KN (θ ) = e−iNθ − ei(N+1)θ

1 − eiθ

= e−i(N+ 1
2 )θ − e+i(N+ 1

2 )θ

−e
1
2 iθ + e− 1

2 iθ

= sin
[(

N + 1
2

)
θ
]

sin 1
2θ

. �

Figure 1 is a sketch of KN (θ ). (It looks somewhat like the diffusion kernel,
the source function of Section 2.4, except for its oscillatory tail.)

The third step is to combine (3) with (5). Letting θ = y − x and using the
evenness of KN , formula (3) takes the form

SN (x) =
∫ π

−π

KN (θ ) f (x + θ )
dθ

2π
.

The interval of integration really ought to be [x − π, x + π ], but since both
KN and f have period 2π , any interval of length 2π will do. Next we subtract
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the constant f (x) = f (x) · 1 and use formula (5) to get

SN (x) − f (x) =
∫ π

−π

KN (θ ) [ f (x + θ ) − f (x)]
dθ

2π

or

SN (x) − f (x) =
∫ π

−π

g(θ ) sin
[(

N + 1
2

)
θ
] dθ

2π
, (6)

where

g(θ ) = f (x + θ ) − f (x)

sin 1
2θ

(7)

Remember that x remains fixed. All we have to show is that the integral (6)
tends to zero as N → ∞.

That is the fourth step. We notice that the functions

φN (θ ) = sin
[(

N + 1
2

)
θ
]

(N = 1, 2, 3, . . .) (8)

form an orthogonal set on the interval (0, π ) because they correspond to mixed
boundary conditions (see Exercise 5.3.5). Hence they are also orthogonal on
the interval (−π, π ). Therefore, Bessel’s inequality (5.4.18) is valid:

∞∑
N=1

|(g, φN )|2
‖φN‖2

≤ ‖g‖2. (9)

By direct calculation, ||φN ||2 = π . If ||g|| < ∞, the series (9) is convergent
and its terms tend to zero. So (g, φN ) → 0, which says exactly that the integral
in (6) tends to zero.

The final step is to check that ||g|| < ∞. We have

‖g‖2 =
∫ π

−π

[ f (x + θ ) − f (x)]2

sin2 1
2θ

dθ.

Since the numerator is continuous, the only possible difficulty could occur
where the sine vanishes, namely at θ = 0. At that point,

lim
θ→0

g(θ ) = lim
θ→0

f (x + θ ) − f (x)

θ
· θ

sin 1
2θ

= 2 f ′(x) (11)

by L’Hôpital’s rule [since f (x) is differentiable]. Therefore, g(θ ) is everywhere
continuous, so that the integral ||g|| is finite. This completes the proof of
pointwise convergence of the Fourier series of any C1 function. �

PROOF FOR DISCONTINUOUS FUNCTIONS

If the periodic function f (x) itself is only piecewise continuous and f ′(x)
is also piecewise continuous on −∞ < x < ∞, we want to prove that
the Fourier series converges and that its sum is 1

2 [ f (x+) + f (x−)] (see
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Theorem 5.4.4∞). This means that we assume that f (x) and f ′(x) are contin-
uous except at a finite number of points, and at those points they have jump
discontinuities.

The proof begins as before. However, we modify the third step, replacing
(6) by

SN (x) − 1

2
[ f (x+) + f (x−)] =

∫ π

0
KN (θ )[ f (x + θ ) − f (x+)]

dθ

2π

+
∫ 0

−π

KN (θ)[ f (x + θ) − f (x−)]
dθ

2π

=
∫ π

0
g+(θ ) sin

[(
N + 1

2

)
θ
]

dθ

+
∫ 0

−π

g−(θ ) sin
[(

N + 1
2

)
θ
]

dθ (12)

by (5), where

g±(θ ) = f (x + θ ) − f (x±)

sin 1
2θ

. (13)

The fourth step is to observe that the functions
sin[(N + 1

2 )θ ] (N = 1, 2, 3, . . .) form an orthogonal set on the interval
(−π, 0), as well as on the interval (−0, π ). Using Bessel’s inequality as
before, we deduce (see Exercise 8) that both of the integrals in (12) tend to
zero as N → ∞ provided that

∫ π

0 |g+(θ )|2 dθ and
∫ 0
−π

|g−(θ )|2 dθ are finite.
That is the fifth step. The only possible reason for the divergence of these

integrals would come from the vanishing of sin 1
2θ at θ = 0. Now the one-

sided limit of g+(θ ) is

lim
θ↘0

g+(θ ) = lim
θ↘0

f (x + θ ) − f (x+)

θ
· θ

sin
(

1
2θ

) = 2 f ′(x+) (14)

if x is a point where the one-sided derivative f ′(x+) exists. If f ′(x+)
does not exist (e.g., f itself might have a jump at the point x), then
f still is differentiable at nearby points. By the mean value theorem,
[ f (x + θ ) − f (x+)]/θ = f ′(θ∗) for some point θ∗ between x and x + θ .
Since the derivative is bounded, it follows that [ f (x + θ ) − f (x)]/θ is
bounded as well for θ small and positive. So g+(θ ) is bounded and the integral∫ π

0 |g+(θ )|2 dθ is finite. It works the same way for g−(θ). �

PROOF OF UNIFORM CONVERGENCE

This is Theorem 5.4.2, for the case of classical Fourier series. We assume
again that f (x) and f ′(x) are continuous functions of period 2π . The idea
of this proof is quite different from the preceding one. The main point is to
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show that the coefficients go to zero pretty fast. Let An and Bn be the Fourier
coefficients of f (x) and let A′

n and B ′
n denote the Fourier coefficients of f ′(x).

We integrate by parts to get

An =
∫ π

−π

f (x) cos nx
dx

π

= 1

nπ
f (x) sin nx

∣∣∣∣
π

−π

−
∫ π

−π

f ′(x) sin nx
dx

nπ
,

so that

An = −1

n
B ′

n for �= 0. (15)

We have just used the periodicity of f (x). Similarly,

Bn = 1

n
A′

n. (16)

On the other hand, we know from Bessel’s inequality [for the derivative f ′(x)]
that the infinite series

∞∑
n=1

(|A′
n|2 + |B ′

n|2
)

< ∞.

Therefore,
∞∑

n=1

(|An cos nx | + |Bn sin nx |) ≤
∞∑

n=1

(|An| + |Bn|)

=
∞∑

n=1

1

n

(|B ′
n| + |A′

n|
)

≤
( ∞∑

n=1

1

n2

)1/2 [ ∞∑
n=1

2
(|A′

n|2+|B ′
n|2

)]1/2

<∞.

Here we have used Schwarz’s inequality (see Exercise 5). The result means
that the Fourier series converges absolutely.

We already know (from Theorem 5.4.4∞) that the sum of the Fourier
series is indeed f (x). So, again denoting by SN(x) the partial sum (2), we can
write

max| f (x) − SN (x)| ≤ max
∞∑

n=N+1

|An cos nx + Bn sin nx |

≤
∞∑

n=N+1

(|An| + |Bn|) < ∞. (17)
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The last sum is the tail of a convergent series of numbers so that it tends to zero
as N → ∞. Therefore, the Fourier series converges to f (x) both absolutely
and uniformly. �

This proof is also valid if f (x) is continuous but f ′(x) is merely piecewise
continuous. An example is f (x) = |x |.

THE GIBBS PHENOMENON

The Gibbs phenomenon is what happens to Fourier series at jump discontinu-
ities. For a function with a jump, the partial sum SN(x) approximates the jump
as in Figure 2 for a large value of N. Gibbs showed that SN(x) always differs
from f (x) near the jump by an “overshoot” of about 9 percent. The width of
the overshoot goes to zero as N → ∞ while the extra height remains at 9
percent (top and bottom). Thus

lim
N→∞

max|SN (x) − f (x)| �= 0, (18)

although SN(x) − f (x) does tend to zero for each x where f (x) does not jump.
We now verify the Gibbs phenomenon for an example. Let’s take the

simplest odd function with a jump of unity; that is,

f (x) =
{

1
2 for 0 < x < π

− 1
2 for −π < x < 0,

Figure 2
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which has the Fourier series

∞∑
n odd=1

2

nπ
sin nπ.

Figure 2 is a sketch of the partial sum S16(x). By (3) and (5), the partial sums
are

SN (x) =
(∫ π

0
−

∫ 0

−π

)
KN (x − y)

dy

4π

=
(∫ π

0
−

∫ 0

−π

)
sin

[(
N + 1

2

)
(x − y)

]
sin

[
1
2 (x − y)

] dy

4π
.

Let M = N + 1
2 . In the first integral let θ = M(x − y). In the second integral

let θ = M(y − x). These changes of variables yield

SN (x) =
(∫ Mx

M(x−π )
−

∫ −Mx

−M(x+π )

)
sin θ

2M sin (θ/2M)

dθ

2π

=
(∫ Mx

−Mx
−

∫ −Mπ+Mx

−Mπ−Mx

)
sin θ

2M sin (θ/2M)

dθ

2π

=
(∫ Mx

−Mx
−

∫ Mπ+Mx

Mπ−Mx

)
sin θ

2M sin (θ/2M)

dθ

2π
, (19)

where we changed θ to −θ in the last step, the integrand being an even
function.

We are interested in what happens near the jump, that is, where x is small.
Remember that M is large. We will see that in (19) the first integral is the larger
one because of the small denominator sin(θ/2M). Where is the first integral
in (19) maximized? Setting its derivative equal to zero, it is maximized where
sin Mx = 0. So we set x = π/M . Then (19) becomes

SN

( π

M

)
=

(∫ π

−π

−
∫ Mπ+π

Mπ−π

)
sin θ

2M sin (θ/2M)

dθ

2π
. (20)

Inside the second integral in (20) the argument θ/2M is bounded both
above and below, as follows:

π

4
<

[
1 − 1

M

]
π

2
≤ θ

2M
≤

[
1 + 1

M

]
π

2
<

3π

4
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for M > 2. Hence sin(θ/2M) > 1/
√

2, so that the second integral in (20) is
less than ∫ Mπ+π

Mπ−π

1 ·
[

2M√
2

]−1 dθ

2π
= 1√

2M
,

which tends to zero as M → ∞.
On the other hand, inside the first integral in (20) we have |θ | ≤ π and

2M sin
θ

2M
→ θ uniformly in −π ≤ θ ≤ π as M → ∞.

Hence, taking the limit in (20) as M → ∞, we get

SN

( π

M

)
→

∫ π

−π

sin θ

θ

dθ

2π
� 0.59. (21)

This is Gibbs’s 9 percent overshoot (of the unit jump value).

FOURIER SERIES SOLUTIONS

You could object, and you would be right, that we never showed that the
Fourier series solutions actually solve the PDEs. Let’s take a basic example
to justify this final step. Consider the wave equation with Dirichlet boundary
conditions and with initial conditions u(x, 0) = φ(x), ut (x, 0) = ψ(x) as in
Section 4.1. The solution is supposed to be given by (4.1.9):

u(x, t) =
∑

n

(
An cos

nπct

l
+ Bn sin

nπct

l

)
sin

nπx

l
. (22)

However, we know that term-by-term differentiation of a Fourier series is not
always valid (see Example 3, Section 5.4), so we cannot simply verify by
direct differentiation that (22) is a solution.

Instead, let φext and ψext denote the odd 2l-periodic extensions of φ and
ψ . Let us assume that φ and ψ are continuous with piecewise continuous
derivatives. We know that the function

u(x, t) = 1

2
[φext (x + ct) + φext (x − ct)] + 1

2c

∫ x+ct

x−ct
ψext (s) ds (23)

solves the wave equation with u(x, 0) = φext(x), ut (x, 0) = ψext(x) for all
−∞ < x < ∞. (Actually, it is a weak solution—see Section 12.1—but if
we assume that φext and ψext are twice differentiable, it is an ordinary twice-
differentiable solution.) Since φext and ψext agree with φ and ψ on the interval
(0, l), u satisfies the correct initial conditions on (0, l). Since φext and ψext are
odd, it follows that u(x, t) is also odd, so that u(0, t) = u(l, t) = 0, which is
the correct boundary condition.

By Theorem 5.4.4(i), the Fourier sine series of φext and ψext, given by
(4.1.10) and (4.1.11), converge pointwise. Substituting these series into (23),
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we get

u(x, t) = 1

2

∞∑
n=1

An

(
sin

nπ (x + ct)

l
+ sin

nπ (x − ct)

l

)

+ 1

2c

∞∑
n=1

∫ x+ct

x−ct
Bn

nπc

l
sin

nπs

l
ds. (24)

This series converges pointwise because term-by-term integration of a Fourier
series is always valid, by Exercise 5.4.11. Now we use standard trigonometric
identities and carry out the integrals explicitly. We get

u(x, t) =
∑

n

(
An sin

nπx

l
cos

nπct

l
+ Bn sin

nπx

l
sin

nπct

l

)
. (25)

This is precisely (22).

EXERCISES

1. Sketch the graph of the Dirichlet kernel

KN (θ ) = sin
(
N + 1

2

)
θ

sin 1
2θ

in case N = 10. Use a computer graphics program if you wish.
2. Prove the Schwarz inequality (for any pair of functions):

|( f, g)| ≤ ‖ f ‖ · ‖g‖.
(Hint: Consider the expression || f + tg||2, where t is a scalar. This ex-
pression is a quadratic polynomial of t. Find the value of t where it is a
minimum. Play around and the Schwarz inequality will pop out.)

3. Prove the inequality l
∫ l

0 ( f ′(x))2dx ≥ [ f (l) − f (0)]2 for any real func-
tion f (x) whose derivative f ′(x) is continuous. [Hint: Use Schwarz’s
inequality with the pair f ′(x) and 1.]

4. (a) Solve the problem ut = kuxx for 0 < x < l, u(x, 0) = φ(x), with
the unusual boundary conditions

ux (0, t) = ux (l, t) = u(l, t) − u(0, t)

l
.

Assume that there are no negative eigenvalues. (Hint: See Exercise
4.3.12.)

(b) Show that as t → ∞,

lim u(x, t) = A + Bx,

assuming that you can take limits term by term.
(c) Use Green’s first identity and Exercise 3 to show that there are no

negative eigenvalues.



146 CHAPTER 5 FOURIER SERIES

(d) Find A and B. (Hint: A + Bx is the beginning of the series. Take
the inner product of the series for φ(x) with each of the functions 1
and x. Make use of the orthogonality.)

5. Prove the Schwarz inequality for infinite series:∑
anbn ≤

(∑
a2

n

)1/2 (∑
b2

n

)1/2
.

(Hint: See the hint in Exercise 2. Prove it first for finite series (ordinary
sums) and then pass to the limit.)

6. Consider the diffusion equation on [0, l] with Dirichlet boundary con-
ditions and any continuous function as initial condition. Show from the
series expansion that the solution is infinitely differentiable for t > 0.
(Hint: Use the general theorem at the end of Section A.2 on the differ-
entiability of series, together with the fact that the exponentials are very
small for large n. See Section 3.5 for an analogous situation.)

7. Let
∫ π

−π
[| f (x)|2 + |g(x)|2] dx be finite, where g(x) = f (x)/(eix − 1).

Let cn be the coefficients of the full complex Fourier series of f (x). Show
that �N

n=−N cn → 0 as N → ∞.
8. Prove that both integrals in (12) tend to zero.
9. Fill in the missing steps in the proof of uniform convergence.

10. Prove the theorem on uniform convergence for the case of the Fourier
sine series and for the Fourier cosine series.

11. Prove that the classical full Fourier series of f (x) converges uniformly
to f (x) if merely f (x) is continuous of period 2π and its derivative
f ′(x) is piecewise continuous. (Hint: Modify the discussion of uniform
convergence in this section.)

12. Show that if f (x) is a C1 function in [−π, π ] that satisfies the periodic
BC and if

∫ π

−π
f (x)dx = 0, then

∫ π

−π
| f |2 dx ≤ ∫ π

−π
| f ′|2 dx . (Hint: Use

Parseval’s equality.)
13. A very slick proof of the pointwise convergence of Fourier series, due

to P. Chernoff (American Mathematical Monthly, May 1980), goes as
follows.
(a) Let f (x) be a C1 function of period 2π . First show that we may as

well assume that f (0) = 0 and we need only show that the Fourier
series converges to zero at x = 0.

(b) Let g(x) = f (x)/(eix − 1). Show that g(x) is a continuous function.
(c) Let Cn be the (complex) Fourier coefficients of f (x) and Dn the

coefficients of g(x). Show that Dn → 0.
(d) Show that Cn = Dn−1 − Dn so that the series �Cn is telescoping.
(e) Deduce that the Fourier series of f (x) at x = 0 converges to zero.

14. Prove the validity of the Fourier series solution of the diffusion equation
on (0, l) with ux (x, 0) = ux (x, l) = 0, u(x, 0) = φ(x), where φ(x) is
continuous with a piecewise continuous derivative. That is, prove that
the series truly converges to the solution.

15. Carry out the step going from (24) to (25).
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5.6 INHOMOGENEOUS BOUNDARY CONDITIONS

In this section we consider problems with sources given at the boundary. We
shall see that naive use of the separation of variables technique will not work.

Let’s begin with the diffusion equation with sources at both endpoints.

ut = kuxx 0 < x < l, t > 0
u(0, t) = h(t) u(l, t) = j(t) (1)

u (x, 0) ≡ 0.

A separated solution u = X (x)T (t) just will not fit the boundary conditions.
So we try a slightly different approach.

EXPANSION METHOD

We already know that for the corresponding homogeneous problem the correct
expansion is the Fourier sine series. For each t, we certainly can expand

u(x, t) =
∞∑

n=1

un(t) sin
nπx

l
(2)

for some coefficients un(t), because the completeness theorems guarantee
that any function in (0, l) can be so expanded. The coefficients are necessarily
given by

un(t) = 2

l

∫ l

0
u(x, t) sin

nπx

l
dx . (3)

You may object that each term in the series vanishes at both endpoints and
thereby violates the boundary conditions. The answer is that we simply do not
insist that the series converge at the endpoints but only inside the interval. In
fact, we are exactly in the situation of Theorems 3 and 4 but not of Theorem
2 of Section 5.4.

Now differentiating the series (2) term by term, we get

0 = ut − kuxx =
∑[

dun

dt
+ kun(t)

(nπ

l

)2
]

sin
nπx

l
.

So the PDE seems to require that dun/dt + kλnun = 0, so that un(t) =
Anekλn t . There is no way for this to fit the boundary conditions. Our method
fails! What’s the moral? It is that you can’t differentiate term by term. See
Example 3 in Section 5.4 for the dangers of differentiation.

Let’s start over again but avoid direct differentiation of the Fourier series.
The expansion (2) with the coefficients (3) must be valid, by the completeness
theorem 5.4.3, say, provided that u(x, t) is a continuous function. Clearly, the
initial condition requires that un(0) = 0. If the derivatives of u(x, t) are also
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continuous, let’s expand them, too. Thus

∂u

∂t
=

∞∑
n=1

vn(t) sin
nπx

l
(4)

with

vn(t) = 2

l

∫ l

0

∂u

∂t
sin

nπx

l
dx = dun

dt
. (5)

The last equality is valid since we can differentiate under an integral sign if
the new integrand is continuous (see Section A.3). We also expand

∂2u

∂x2
=

∞∑
n=1

wn(t) sin
nπx

l
(6)

with the coefficients

wn(t) = 2

l

∫ l

0

∂2u

∂x2
sin

nπx

l
dx . (7)

By Green’s second identity (5.3.3) the last expression equals

−2

l

∫ l

0

(nπ

l

)2
u(x, t) sin

nπx

l
dx + 2

l

(
ux sin

nπx

l
− nπ

l
u cos

nπx

l

) ∣∣∣∣
l

0

.

Here come the boundary conditions. The sine factor vanishes at both ends.
The last term will involve the boundary conditions. Thus

wn(t) = −λnun(t) − 2nπl−2(−1)n j(t) + 2nπl−2h(t), (8)

where λn = (nπ/ l)2. Now by (5) and (7) the PDE requires

vn(t) − kwn(t) = 2

l

∫ l

0
(ut − kuxx) sin

nπx

l
dx =

∫ l

0
0 = 0.

So from (5) and (8) we deduce that un(t) satisfies

dun

dt
= k{−λnun(t) − 2nπl−2[(−1)n j(t) − h(t)]}. (9)

This is just an ordinary differential equation, to be solved together with the
initial condition un(0) = 0 from (1). The solution of (9) is

un(t) = Ce−λnkt − 2nπl−2k
∫ t

0
e−λnk(t−s)[(−1)n j(s) − h(s)] ds. (10)
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As a second case, let’s solve the inhomogeneous wave problem

utt − c2uxx = f (x, t)
u(0, t) = h(t) u(l, t) = k(t)

u(x, 0) = φ(x) ut (x, 0) = ψ(x).

(11)

Again we expand everything in the eigenfunctions of the corresponding ho-
mogeneous problem:

u(x, t) =
∞∑

n=1

un(t) sin
nπx

l
,

utt (x, t) with coefficients vn(t), uxx(x, t) with coefficients wn(t), f (x, t) with
coefficients fn(t), φ(x) with coefficients φn , and ψ(x) with coefficients ψn .
Then

vn(t) = 2

l

∫ l

0

∂2u

∂t2
sin

nπx

l
dx = d2un

dt2

and, just as before,

wn(t) = 2

l

∫ l

0

∂2u

∂x2
sin

nπx

l
dx

= −λnun(t) + 2nπl−2[h(t) − (−1)nk(t)].

From the PDE we also have

vn(t) − c2wn(t) = 2

l

∫ l

0
(utt − c2uxx) sin

nπx

l
dx = fn(t).

Therefore,

d2un

dt2
+ c2λnun(t) = −2nπl−2

[
(−1)nk(t) − h(t)

] + fn(t) (12)

with the initial conditions

un(0) = φn u′
n(0) = ψn.

The solution can be written explicitly (see Exercise 11).

METHOD OF SHIFTING THE DATA

By subtraction, the data can be shifted from the boundary to another spot in the
problem. The boundary conditions can be made homogeneous by subtracting
any known function that satisfies them. Thus for the problem (11) treated
above, the function

u(x, t) =
(

1 − x

l

)
h(t) + x

l
k(t)
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obviously satisfies the BCs. If we let

v(x, t) = u(x, t) −u(x, t),

then v(x, t) satisfies the same problem but with zero boundary data, with
initial data φ(x) −u(x, 0) and ψ(x) −ut (x, 0), and with right-hand side f
replaced by f −ut t .

The boundary condition and the differential equation can simultaneously
be made homogeneous by subtracting any known function that satisfies them.
One case when this can surely be accomplished is the case of “stationary
data” when h, k, and f (x) all are independent of time. Then it is easy to find
a solution of

−c2uxx = f (x) u(0) = h u (l) = k.

Then v(x, t) = u(x, t) −u(x) solves the problem with zero boundary data,
zero right-hand side, and initial data φ(x) −u(x) and ψ(x).

For another example, take problem (11) for a simple periodic case:

f (x, t) = F(x) cos ωt h(t) = H cos ωt k(t) = K cos ωt,

that is, with the same time behavior in all the data. We wish to subtract a
solution of

ut t − c2uxx = F(x) cos ωt
u(0, t) = H cos ωt u(l, t) = K cos ωt.

A good guess is that u should have the form u(x, t) = u0(x) cos ωt . This
will happen if u0(x) satisfies

−ω2u0 − c2u
′′
0 = F(x) u0(0) = H u0(l) = K . �

There is also the method of Laplace transforms, which can be found in
Section 12.5.

EXERCISES

1. (a) Solve as a series the equation ut = uxx in (0, 1) with ux (0, t) = 0,
u(1, t) = 1, and u(x, 0) = x2. Compute the first two coefficients
explicitly.

(b) What is the equilibrium state (the term that does not tend to zero)?
2. For problem (1), complete the calculation of the series in case j(t) = 0

and h(t) = et .
3. Repeat problem (1) for the case of Neumann BCs.
4. Solve utt = c2uxx + k for 0 < x < l, with the boundary conditions

u(0, t) = 0, ux (l, t) = 0 and the initial conditions u(x, 0) = 0,
ut(x, 0) = V . Here k and V are constants.

5. Solve utt = c2uxx + et sin5x for 0 < x < π, with u(0, t) = u(π, t) = 0
and the initial conditions u(x, 0) = 0, ut (x, 0) = sin3x .
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6. Solve utt = c2uxx + g(x)sinωt for 0 < x < l, with u = 0 at both ends
and u = ut = 0 when t = 0. For which values of ω can resonance occur?
(Resonance means growth in time.)

7. Repeat Exercise 6 for the damped wave equation utt = c2uxx − rut+
g(x)sinωt , where r is a positive constant.

8. Solve ut = kuxx in (0, l), with u(0, t) = 0, u(l, t) = At, u(x, 0) = 0,
where A is a constant.

9. Use the method of subtraction to solve utt = 9uxx for 0 ≤ x ≤ 1 = l,
with u(0, t) = h, u(1, t) = k, where h and k are given constants, and
u(x, 0) = 0, ut (x, 0) = 0.

10. Find the temperature of a metal rod that is in the shape of a solid circular
cone with cross-sectional area A(x) = b(1 − x/ l)2 for 0 ≤ x ≤ l, where
b is a constant. Assume that the rod is made of a uniform material, is
insulated on its sides, is maintained at zero temperature on its flat end (x =
0), and has an unspecified initial temperature distribution φ(x). Assume
that the temperature is independent of y and z. [Hint: Derive the PDE
(1 − x/ l)2ut = k{(1 − x/ l)2ux}x . Separate variables u = T (t)X (x) and
then substitute v(x) = (1 − x/ l)X (x).]

11. Write out the solution of problem (11) explicitly, starting from the dis-
cussion in Section 5.6.

12. Carry out the solution of (11) in the case that

f (x, t) = F(x)cosωt h(t) = H cosωt k(t) = K cosωt.

13. If friction is present, the wave equation takes the form

utt − c2uxx = −rut ,

where the resistance r > 0 is a constant. Consider a periodic source at
one end: u(0, t) = 0, u(l, t) = Aeiωt .
(a) Show that the PDE and the BC are satisfied by

u(x, t) = Aeiωt sin βx

sin βl
, where β2c2 = ω2 − irω.

(b) No matter what the IC, u(x, 0) and ut (x, 0), are, show that u(x, t)
is the asymptotic form of the solution u(x, t) as t → ∞.

(c) Show that you can get resonance as r → 0 if ω = mπc/ l for some
integer m.

(d) Show that friction can prevent resonance from occurring.



6

HARMONIC
FUNCTIONS

This chapter is devoted to the Laplace equation. We introduce two of its
important properties, the maximum principle and the rotational invariance.
Then we solve the equation in series form in rectangles, circles, and related
shapes. The case of a circle leads to the beautiful Poisson formula.

6.1 LAPLACE’S EQUATION

If a diffusion or wave process is stationary (independent of time), then ut ≡ 0
and utt ≡ 0. Therefore, both the diffusion and the wave equations reduce to
the Laplace equation:

uxx = 0 in one dimension
∇ · ∇u = �u = uxx + uyy = 0 in two dimensions

∇ · ∇u = �u = uxx + uyy + uzz = 0 in three dimensions

A solution of the Laplace equation is called a harmonic function.
In one dimension, we have simply uxx = 0, so the only harmonic functions

in one dimension are u(x) = A + Bx . But this is so simple that it hardly gives
us a clue to what happens in higher dimensions.

The inhomogeneous version of Laplace’s equation

�u = f (1)

with f a given function, is called Poisson’s equation.
Besides stationary diffusions and waves, some other instances of

Laplace’s and Poisson’s equations include the following.

152
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1. Electrostatics. From Maxwell’s equations, one has curl E = 0 and div E =
4πρ, where ρ is the charge density. The first equation implies E = −grad
φ for a scalar function φ (called the electric potential). Therefore,

�φ = div(grad φ) = −div E = −4πρ,

which is Poisson’s equation (with f = −4πρ).
2. Steady fluid flow. Assume that the flow is irrotational (no eddies) so that

curl v = 0, where v = v(x, y, z) is the velocity at the position (x, y, z),
assumed independent of time. Assume that the fluid is incompressible
(e.g., water) and that there are no sources or sinks. Then div v = 0.
Hence v = −grad φ for some φ (called the velocity potential) and �φ =
−div v = 0, which is Laplace’s equation.

3. Analytic functions of a complex variable. Write z = x + iy and

f (z) = u(z) + iv(z) = u(x + iy) + iv(x + iy),

where u and v are real-valued functions. An analytic function is one that
is expressible as a power series in z. This means that the powers are not
xmyn but zn = (x + iy)n . Thus

f (z) =
∞∑

n =0

anzn

(an complex constants). That is,

u(x + iy) + iv(x + iy) =
∞∑

n =0

an(x + iy)n.

Formal differentiation of this series shows that
∂u

∂x
= ∂v

∂y
and

∂u

∂y
= −∂v

∂x

(see Exercise 1). These are the Cauchy–Riemann equations. If we differ-
entiate them, we find that

uxx = vyx = vxy = −uyy,

so that Δu = 0. Similarly Δv = 0, where � is the two-dimensional
laplacian. Thus the real and imaginary parts of an analytic function are
harmonic.

4. Brownian motion. Imagine brownian motion in a container D. This means
that particles inside D move completely randomly until they hit the bound-
ary, when they stop. Divide the boundary arbitrarily into two pieces, C1
and C2 (see Figure 1). Let u(x, y, z) be the probability that a particle that
begins at the point (x, y, z) stops at some point of C1. Then it can be
deduced that

Δu = 0 in D
u = 1 on C1 u = 0 on C2.

Thus u is the solution of a Dirichlet problem.
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Figure 1

As we discussed in Section 1.4, the basic mathematical problem is to
solve Laplace’s or Poisson’s equation in a given domain D with a condition
on bdy D:

�u = f in D

u = h or
∂u

∂n
= h or

∂u

∂n
+ au = h on bdy D.

In one dimension the only connected domain is an interval {a ≤ x ≤ b}. We
will see that what is interesting about the two- and three-dimensional cases is
the geometry.

MAXIMUM PRINCIPLE

We begin our analysis with the maximum principle, which is easier for
Laplace’s equation than for the diffusion equation. By an open set we mean a
set that includes none of its boundary points (see Section A.1).

Maximum Principle. Let D be a connected bounded open set (in ei-
ther two- or three-dimensional space). Let either u(x, y) or u(x, y, z) be a
harmonic function in D that is continuous on D = D ∪ (bdy D). Then the
maximum and the minimum values of u are attained on bdy D and nowhere
inside (unless u ≡ constant).

In other words, a harmonic function is its biggest somewhere on the
boundary and its smallest somewhere else on the boundary.

To understand the maximum principle, let us use the vector shorthand
x = (x, y) in two dimensions or x = (x, y, z) in three dimensions. Also, the
radial coordinate is written as |x| = (x2 + y2)

1/2
or |x| = (x2 + y2 + z2)

1/2
.

The maximum principle asserts that there exist points xM and xm on bdy D
such that

u(xm) ≤ u(x) ≤ u(xM) (2)
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Figure 2

for all x ∈ D (see Figure 2). Also, there are no points inside D with this
property (unless u ≡ constant). There could be several such points on the
boundary.

The idea of the maximum principle is as follows, in two dimen-
sions, say. At a maximum point inside D, if there were one, we’d have
uxx ≤ 0 and uyy ≤ 0. (This is the second derivative test of calculus.) So
uxx + uyy ≤ 0. At most maximum points, uxx < 0 and uyy < 0. So we’d get
a contradiction to Laplace’s equation. However, since it is possible that
uxx = 0 = uyy at a maximum point, we have to work a little harder to get
a proof.

Here we go. Let ε > 0. Let v(x) = u(x) + ε|x|2. Then, still in two dimen-
sions, say,

�v = �u + ε�(x2 + y2) = 0 + 4ε > 0 in D.

But �v = vxx + vyy ≤ 0 at an interior maximum point, by the second deriva-
tive test in calculus! Therefore, v(x) has no interior maximum in D.

Now v(x), being a continuous function, has to have a maximum some-
where in the closure D = D ∪ bdy D. Say that the maximum of v(x) is
attained at x0 ∈ bdy D. Then, for all x ∈ D,

u(x) ≤ v(x) ≤ v(x0) = u(x0) + ε|x0|2 ≤ max
bdy D

u + εl2,

where l is the greatest distance from bdy D to the origin. Since this is true for
any ε > 0, we have

u(x) ≤ max
bdy D

u for all x ∈ D. (3)

Now this maximum is attained at some point xM ∈ bdy D. So u(x) ≤ u(xM)
for all x ∈ D, which is the desired conclusion.

The existence of a minimum point xm is similarly demonstrated. (The
absence of such points inside D will be proved by a different method in
Section 6.3.) �

UNIQUENESS OF THE DIRICHLET PROBLEM

To prove the uniqueness, suppose that

�u = f in D �v = f in D
u = h on bdy D v = h on bdy D.
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We want to show that u ≡ v in D. So we simply subtract equations and let
w = u − v. Then �w = 0 in D and w = 0 on bdy D. By the maximum principle

0 = w(xm) ≤ w(x) ≤ w(xM) = 0 for all x ∈ D.

Therefore, both the maximum and minimum of w(x) are zero. This means that
w ≡ 0 and u ≡ v.

INVARIANCE IN TWO DIMENSIONS

The Laplace equation is invariant under all rigid motions. A rigid motion in
the plane consists of translations and rotations. A translation in the plane is a
transformation

x ′ = x + a y′ = y + b.

Invariance under translations means simply that uxx + uyy = ux ′x ′ + uy′ y′ .
A rotation in the plane through the angle α is given by

x ′ = x cos α + y sin α

y′ = −x sin α + y cos α.
(4)

By the chain rule we calculate

ux = ux ′ cos α − uy′ sin α

uy = ux ′ sin α + uy′ cos α

uxx = (ux ′ cos α − uy′ sin α)x ′ cos α − (ux ′ cos α − uy′ sin α)y′ sin α

uyy = (ux ′ sin α + uy′ cos α)x ′ sin α + (ux ′ sin α + uy′ cos α)y′ cos α.

Adding, we have

uxx + uyy = (ux ′x ′ + uy′ y′)(cos2α + sin2α) + ux ′ y′ · (0)
= ux ′x ′ + uy′ y′ .

This proves the invariance of the Laplace operator. In engineering the laplacian
� is a model for isotropic physical situations, in which there is no preferred
direction.

The rotational invariance suggests that the two-dimensional laplacian

�2 = ∂2

∂x2
+ ∂2

∂y2

should take a particularly simple form in polar coordinates. The transforma-
tion

x = r cos θ y = r sin θ
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has the jacobian matrix

j =

⎛
⎜⎜⎝

∂x

∂r

∂y

∂r
∂x

∂θ

∂y

∂θ

⎞
⎟⎟⎠ =

(
cos θ sin θ

−r sin θ r cos θ

)

with the inverse matrix

j
−1 =

⎛
⎜⎜⎝

∂r

∂x

∂θ

∂x
∂r

∂y

∂θ

∂y

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

cos θ
−sin θ

r

sin θ
cos θ

r

⎞
⎟⎟⎠.

(Beware, however, that ∂r/∂x �= (∂x/∂r )−1.) So by the chain rule we have

∂

∂x
= cos θ

∂

∂r
− sin θ

r

∂

∂θ
,

∂

∂y
= sin θ

∂

∂r
+ cos θ

r

∂

∂θ
.

These operators are squared to give

∂2

∂x2
=

[
cos θ

∂

∂r
− sin θ

r

∂

∂θ

]2

= cos2 θ
∂2

∂r2
− 2

(
sin θ cos θ

r

)
∂2

∂r∂θ

+ sin2 θ

r2

∂2

∂θ2
+ 2 sin θ cos θ

r2

∂

∂θ
+ sin2 θ

r

∂

∂r
∂2

∂y2
=

(
sin θ

∂

∂r
+ cos θ

r

∂

∂θ

)2

= sin2 θ
∂2

∂r2
+ 2

(
sin θ cos θ

r

)
∂2

∂r∂θ

+ cos2 θ

r2

∂2

∂θ2
− 2 sin θ cos θ

r2

∂

∂θ
+ cos2 θ

r

∂

∂r
.

(The last two terms come from differentiation of the coefficients.) Adding
these operators, we get (lo and behold!)

�2 = ∂2

∂x2
+ ∂2

∂y2
= ∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂θ2
. (5)

It is also natural to look for special harmonic functions that themselves
are rotationally invariant. In two dimensions this means that we use polar
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coordinates (r, θ ) and look for solutions depending only on r. Thus by (5)

0 = uxx + uyy = urr + 1

r
ur

if u does not depend on θ . This ordinary differential equation is easy to solve:

(rur )r = 0, rur = c1, u = c1log r + c2.

The function log r will play a central role later.

INVARIANCE IN THREE DIMENSIONS

The three-dimensional laplacian is invariant under all rigid motions in space.
To demonstrate its rotational invariance we repeat the preceding proof using
vector-matrix notation. Any rotation in three dimensions is given by

x′ = Bx,

where B is an orthogonal matrix (tBB = BtB = I ). The laplacian is �u =
�3

i=1 uii = �3
i, j=1 δijuij where the subscripts on u denote partial derivatives.

Therefore,

�u =
∑
k,l

(∑
i, j

bkiδijblj

)
uk ′l ′ =

∑
k,l

δkl uk ′l ′

=
∑

k

uk ′k ′

because the new coefficient matrix is∑
i, j

bkiδijblj =
∑

i

bki bli = (BtB)kl = δkl .

So in the primed coordinates �u takes the usual form

�u = ux ′x ′ + uy′ y′ + uz′z′ .

For the three-dimensional laplacian

�3 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

it is natural to use spherical coordinates (r, θ, φ) (see Figure 3). We’ll use the
notation

r =
√

x2 + y2 + z2 = √
s2 + z2

s =
√

x2 + y2

x = s cos φ z = r cos θ

y = s sin φ s = r sin θ.

(Watch out: In some calculus books the letters φ and θ are switched.) The
calculation, which is a little tricky, is organized as follows. The chain of
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Figure 3

variables is (x, y, z) → (s, φ, z) → (r, θ, φ). By the two-dimensional Laplace
calculation, we have both

uzz + uss = urr + 1

r
ur + 1

r2
uθθ

and

uxx + uyy = uss + 1

s
us + 1

s2
uφφ.

We add these two equations, and cancel uss, to get

�3 = uxx + uyy + uzz

= urr + 1

r
ur + 1

r2
uθθ + 1

s
us + 1

s2
uφφ.

In the last term we substitute s2 = r2sin2θ and in the next-to-last term

us = ∂u

∂s
= ur

∂r

∂s
+ uθ

∂θ

∂s
+ uφ

∂φ

∂s

= ur · s

r
+ uθ · cos θ

r
+ uφ · 0.

This leaves us with

�3u = urr + 2

r
ur + 1

r2

[
uθθ + (cot θ )uθ + 1

sin2θ
uφφ

]
, (6)

which may also be written as

�3 = ∂2

∂r2
+ 2

r

∂

∂r
+ 1

r2sin θ

∂

∂θ
sin θ

∂

∂θ
+ 1

r2sin2θ

∂2

∂φ2
. (7)

Finally, let’s look for the special harmonic functions in three dimensions
which don’t change under rotations, that is, which depend only on r. By (7)
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they satisfy the ODE

0 = �3u = urr + 2

r
ur .

So (r2ur )r = 0. It has the solutions r2ur = c1. That is, u = −c1r−1 + c2. This
important harmonic function

1
r

= (x2 + y2 + z2)
−1/2

is the analog of the special two-dimensional function log(x2 + y2)
1/2

found
before. Strictly speaking, neither function is finite at the origin. In electrostat-
ics the function u(x) = r−1 turns out to be the electrostatic potential when a
unit charge is placed at the origin. For further discussion, see Section 12.2.

EXERCISES

1. Show that a function which is a power series in the complex variable
x + iy must satisfy the Cauchy–Riemann equations and therefore
Laplace’s equation.

2. Find the solutions that depend only on r of the equation uxx + uyy +
uzz = k2u, where k is a positive constant. (Hint: Substitute u = v/r .)

3. Find the solutions that depend only on r of the equation uxx + uyy =
k2u, where k is a positive constant. (Hint: Look up Bessel’s differential
equation in [MF] or in Section 10.5.)

4. Solve uxx + uyy + uzz = 0 in the spherical shell 0 < a < r < b with the
boundary conditions u = A on r = a and u = B on r = b, where A and
B are constants. (Hint: Look for a solution depending only on r.)

5. Solve uxx + uyy = 1 in r < a with u(x, y) vanishing on r = a.
6. Solve uxx + uyy = 1 in the annulus a < r < b with u(x, y) vanishing on

both parts of the boundary r = a and r = b.
7. Solve uxx + uyy + uzz = 1 in the spherical shell a < r < b with

u(x, y, z) vanishing on both the inner and outer boundaries.
8. Solve uxx + uyy + uzz = 1 in the spherical shell a < r < b with u = 0

on r = a and ∂u/∂r = 0 on r = b. Then let a → 0 in your answer and
interpret the result.

9. A spherical shell with inner radius 1 and outer radius 2 has a steady-state
temperature distribution. Its inner boundary is held at 100◦C. Its outer
boundary satisfies ∂u/∂r = −γ < 0, where γ is a constant.
(a) Find the temperature. (Hint: The temperature depends only on the

radius.)
(b) What are the hottest and coldest temperatures?
(c) Can you choose γ so that the temperature on its outer boundary is

20◦C?
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10. Prove the uniqueness of the Dirichlet problem �u = f in D, u = g
on bdy D by the energy method. That is, after subtracting two solutions
w = u − v, multiply the Laplace equation for w by w itself and use the
divergence theorem.

11. Show that there is no solution of

�u = f in D,
∂u

∂n
= g on bdy D

in three dimensions, unless∫∫∫
D

f dx dy dz =
∫∫

bdy(D)

g dS.

(Hint: Integrate the equation.) Also show the analogue in one and two
dimensions.

12. Check the validity of the maximum principle for the harmonic func-
tion (1 − x2 − y2)/(1 − 2x + x2 + y2) in the disk D = {x2 + y2 ≤ 1}.
Explain.

13. A function u(x) is subharmonic in D if �u ≥ 0 in D. Prove that its
maximum value is attained on bdy D. [Note that this is not true for the
minimum value.]

6.2 RECTANGLES AND CUBES

Special geometries can be solved by separating the variables. The general
procedure is the same as in Chapter 4.

(i) Look for separated solutions of the PDE.
(ii) Put in the homogeneous boundary conditions to get the eigenvalues.

This is the step that requires the special geometry.
(iii) Sum the series.
(iv) Put in the inhomogeneous initial or boundary conditions.

It is important to do it in this order: homogeneous BC first, inhomogeneous
BC last.

We begin with

�2u = uxx + uyy = 0 in D, (1)

where D is the rectangle {0 < x < a, 0 < y < b} on each of whose sides one
of the standard boundary conditions is prescribed (inhomogeneous Dirichlet,
Neumann, or Robin).
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Figure 1

Example 1.

Solve (1) with the boundary conditions indicated in Figure 1. If we call
the solution u with data (g, h, j, k), then u = u1 + u2 + u3 + u4 where
u1 has data (g, 0, 0, 0), u2 has data (0, h, 0, 0), and so on. For simplicity,
let’s assume that h = 0, j = 0, and k = 0, so that we have Figure 2. Now
we separate variables u(x, y) = X (x) · Y (y). We get

X ′′

X
+ Y ′′

Y
= 0.

Hence there is a constant λ such that X ′′ + λX = 0 for 0 ≤ x ≤ a
and Y ′′ − λY = 0 for 0 ≤ y ≤ b. Thus X (x) satisfies a homogeneous
one-dimensional problem which we well know how to solve: X (0) =
X ′(a) = 0. The solutions are

β2
n = λn =

(
n + 1

2

)2
π2

a2
(n = 0, 1, 2, 3, . . .) (2)

Xn(x) = sin
(n + 1

2 )πx

a
. (3)

Next we look at the y variable. We have

Y ′′ − λY = 0 with Y ′(0) + Y (0) = 0.

(We shall save the inhomogeneous BCs for the last step.) From the
previous part, we know that λ = λn > 0 for some n. The Y equation has
exponential solutions. As usual it is convenient to write them as

Y (y) = A cosh βn y + B sinh βn y.

Figure 2
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So 0 = Y ′(0) + Y (0) = Bβn + A. Without losing any information we
may pick B = −1, so that A = βn . Then

Y (y) = βn cosh βn y − sinh βn y. (4)

Because we’re in the rectangle, this function is bounded. Therefore, the
sum

u(x, y) =
∞∑

n =0

An sin βnx (βn cosh βn y − sinhβn y) (5)

is a harmonic function in D that satisfies all three homogeneous BCs.
The remaining BC is u(x, b) = g(x). It requires that

g(x) =
∞∑

n =0

An(βn cosh βnb − sinh βnb) · sin βnx

for 0 < x < a. This is simply a Fourier series in the eigenfunctions
sin βnx .

By Chapter 5, the coefficients are given by the formula

An = 2

a
(βn cosh βnb − sinh βnb)−1

∫ a

0
g(x) sin βnx dx . (6)

�

Example 2.

The same method works for a three-dimensional box {0 < x < a,
0 < y < b, 0 < z < c} with boundary conditions on the six sides. Take
Dirichlet conditions on a cube:

�3u = uxx + uyy + uzz = 0 in D

D = {0 < x < π, 0 < y < π, 0 < z < π}
u(π, y, z) = g(y, z)

u(0, y, z) = u(x, 0, z) = u(x, π, z) = u(x, y, 0) = u(x, y, π ) = 0.

To solve this problem we separate variables and use the five homoge-
neous boundary conditions:

u = X (x)Y (y)Z (z),
X ′′

X
+ Y ′′

Y
+ Z ′′

Z
= 0

X (0) = Y (0) = Z (0) = Y (π ) = Z (π ) = 0.
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Each quotient X ′′/X , Y ′′/Y , and Z ′′/Z must be a constant. In the familiar
way, we find

Y (y) = sin my (m = 1, 2, . . .)

and

Z (z) = sin nz (n = 1, 2, . . .),

so that

X ′′ = (m2 + n2)X, X (0) = 0.

Therefore,

X (x) = A sinh(
√

m2 + n2 x).

Summing up, our complete solution is

u(x, y, z) =
∞∑

n=1

∞∑
m=1

Amn sinh(
√

m2 + n2 x) sin my sin nz. (7)

Finally, we plug in our inhomogeneous condition at x = π:

g(y, z) =
∑∑

Amn sinh(
√

m2 + n2 π ) sin my sin nz.

This is a double Fourier sine series in the variables y and z! Its theory is
similar to that of the single series. In fact, the eigenfunctions {sin my ·
sin nz} are mutually orthogonal on the square {0 < y < π , 0 < z < π}
(see Exercise 2). Their normalizing constants are∫ π

0

∫ π

0
(sin my sin nz)2 dy dz = π2

4
.

Therefore,

Amn = 4

π2 sinh(
√

m2 + n2 π )

∫ π

0

∫ π

0
g(y, z) sin my sin nz dy dz. (8)

Hence the solutions can be expressed as the doubly infinite series (7)
with the coefficients Amn. The complete solution to Example 2 is (7) and
(8). With such a series, as with a double integral, one has to be careful
about the order of summation, although in most cases any order will
give the correct answer. �

EXERCISES

1. Solve uxx + uyy = 0 in the rectangle 0 < x < a, 0 < y < b with the
following boundary conditions:

ux = −a on x = 0 ux = 0 on x = a
uy = b on y = 0 uy = 0 on y = b.



6.3 POISSON’S FORMULA 165

(Hint: Note that the necessary condition of Exercise 6.1.11 is satisfied. A
shortcut is to guess that the solution might be a quadratic polynomial in
x and y.)

2. Prove that the eigenfunctions {sin my sin nz} are orthogonal on the square
{0 < y < π , 0 < z < π}.

3. Find the harmonic function u(x, y) in the square D = {0 < x < π , 0 < y
< π} with the boundary conditions:

uy = 0 for y = 0 and for y = π, u = 0 for x = 0 and
u = cos2 y = 1

2 (1 + cos 2y) for x = π.

4. Find the harmonic function in the square {0 < x < 1, 0 < y < 1} with the
boundary conditions u(x, 0) = x, u(x, 1) = 0, ux(0, y) = 0, ux(1, y) = y2.

5. Solve Example 1 in the case b = 1, g(x) = h(x) = k(x) = 0 but j(x) an
arbitrary function.

6. Solve the following Neumann problem in the cube {0 < x < 1, 0 < y < 1,
0 < z < 1}: �u = 0 with uz(x, y, 1) = g(x, y) and homogeneous Neumann
conditions on the other five faces, where g(x, y) is an arbitrary function
with zero average.

7. (a) Find the harmonic function in the semi-infinite strip {0 ≤ x ≤ π ,
0 ≤ y < ∞} that satisfies the “boundary conditions”:

u(0, y) = u(π, y) = 0, u(x, 0) = h(x), lim
y→∞u(x, y) = 0.

(b) What would go awry if we omitted the condition at infinity?

6.3 POISSON’S FORMULA

A much more interesting case is the Dirichlet problem for a circle. The ro-
tational invariance of � provides a hint that the circle is a natural shape for
harmonic functions.

Let’s consider the problem

uxx + uyy = 0 for x2 + y2 < a2 (1)

u = h(θ ) for x2 + y2 = a2 (2)

with radius a and any boundary data h(θ ).
Our method, naturally, is to separate variables in polar coordinates: u =

R(r) �(θ) (see Figure 1). From (6.1.5) we can write

0 = uxx + uyy = urr + 1

r
ur + 1

r2
uθθ

= R′′� + 1

r
R′� + 1

r2
R�′′.
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Figure 1

Dividing by R� and multiplying by r2, we find that

�′′ + λ� = 0 (3)

r2R′′ + rR′ − λR = 0. (4)

These are ordinary differential equations, easily solved. What boundary con-
ditions do we associate with them?

For �(θ ) we naturally require periodic BCs:

�(θ + 2π ) = �(θ ) for −∞ < θ < ∞. (5)

Thus

λ = n2 and �(θ ) = A cos nθ + B sin nθ (n = 1, 2, . . .). (6)

There is also the solution λ = 0 with �(θ ) = A.
The equation for R is also easy to solve because it is of the Euler type

with solutions of the form R(r) = rα. Since λ = n2 it reduces to

α(α − 1)rα + αrα − n2rα = 0 (7)

whence α = ± n. Thus R(r) = Crn + Dr−n and we have the separated solutions

u =
(

Crn + D

rn

)
(A cos nθ + B sin nθ) (8)

for n = 1, 2, 3, . . . . In case n = 0, we need a second linearly independent
solution of (4) (besides R = constant). It is R = log r, as one learns in ODE
courses. So we also have the solutions

u = C + D log r. (9)

(They are the same ones we observed back at the beginning of the chapter.)
All of the solutions (8) and (9) we have found are harmonic functions in

the disk D, except that half of them are infinite at the origin (r = 0). But we
haven’t yet used any boundary condition at all in the r variable. The interval
is 0 < r < a. At r = 0 some of the solutions (r−n and log r) are infinite: We
reject them. The requirement that they are finite is the “boundary condition”
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at r = 0. Summing the remaining solutions, we have

u = 1
2 A0 +

∞∑
n=1

rn(An cos nθ + Bn sin nθ ). (10)

Finally, we use the inhomogeneous BCs at r = a. Setting r = a in the
series above, we require that

h(θ ) = 1
2 A0 +

∞∑
n=1

an(An cos nθ + Bn sin nθ ).

This is precisely the full Fourier series for h(θ ), so we know that

An = 1

πan

∫ 2π

0
h(φ) cos nφ dφ (11)

Bn = 1

πan

∫ 2π

0
h(φ) sin nφ dφ. (12)

Equations (10) to (12) constitute the full solution of our problem. �

Now comes an amazing fact. The series (10) can be summed explicitly!
In fact, let’s plug (11) and (12) directly into (10) to get

u(r, θ ) =
∫ 2π

0
h(φ)

dφ

2π

+
∞∑

n=1

rn

πan

∫ 2π

0
h(φ){cos nφ cos nθ + sin nφ sin nθ} dφ

=
∫ 2π

0
h(φ)

{
1 + 2

∞∑
n=1

( r

a

)n
cos n(θ − φ)

}
dφ

2π
.

The term in braces is exactly the series we summed before in Section 5.5 by
writing it as a geometric series of complex numbers; namely,

1 +
∞∑

n=1

( r

a

)n
ein(θ−φ) +

∞∑
n=1

( r

a

)n
e−in(θ−φ)

= 1 + rei(θ−φ)

a − rei(θ−φ)
+ re−i(θ−φ)

a − re−i(θ−φ)

= a2 − r2

a2 − 2ar cos(θ − φ) + r2
.
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Figure 2

Therefore,

u(r, θ) = (a2 − r2)
∫ 2π

0

h(φ)

a2 − 2ar cos(θ − φ) + r2

dφ

2π
. (13)

This single formula (13), known as Poisson’s formula, replaces the triple of
formulas (10)−(12). It expresses any harmonic function inside a circle in
terms of its boundary values.

The Poisson formula can be written in a more geometric way as follows.
Write x = (x, y) as a point with polar coordinates (r, θ ) (see Figure 2). We
could also think of x as the vector from the origin 0 to the point (x, y). Let x′
be a point on the boundary.

x: polar coordinates (r, θ )
x′: polar coordinates (a, φ).

The origin and the points x and x′ form a triangle with sides r = |x|, a = |x′|,
and |x − x′|. By the law of cosines

|x − x′|2 = a2 + r2 − 2ar cos(θ − φ).

The arc length element on the circumference is ds′ = a dφ. Therefore, Pois-
son’s formula takes the alternative form

u(x) = a2 − |x|2
2πa

∫
|x′|=a

u(x′)
|x − x′|2 ds′ (14)

for x ∈ D, where we write u(x′) = h(φ). This is a line integral with respect to
arc length ds′ = a dφ, since s′ = aφ for a circle. For instance, in electrostatics
this formula (14) expresses the value of the electric potential due to a given
distribution of charges on a cylinder that are uniform along the length of the
cylinder.
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A careful mathematical statement of Poisson’s formula is as follows. Its
proof is given below, just prior to the exercises.

Theorem 1. Let h(φ) = u(x′) be any continuous function on the circle
C = bdy D. Then the Poisson formula (13), or (14), provides the only harmonic
function in D for which

lim
x→x0

u(x) = h(x0) for all x0 ∈ C. (15)

This means that u(x) is a continuous function on D = D ∪ C . It is also dif-
ferentiable to all orders inside D.

The Poisson formula has several important consequences. The key one is
the following.

MEAN VALUE PROPERTY

Let u be a harmonic function in a disk D, continuous in its closure D. Then
the value of u at the center of D equals the average of u on its circumference.

Proof. Choose coordinates with the origin 0 at the center of the circle.
Put x = 0 in Poisson’s formula (14), or else put r = 0 in (13). Then

u(0) = a2

2πa

∫
|x′|=a

u(x′)
a2

ds′.

This is the average of u on the circumference |x′| = a.

MAXIMUM PRINCIPLE

This was stated and partly proved in Section 6.1. Here is a complete proof of its
strong form. Let u(x) be harmonic in D. The maximum is attained somewhere
(by the continuity of u on D), say at xM ∈ D. We have to show that xM �∈ D
unless u ≡ constant. By definition of M, we know that

u(x) ≤ u(xM) = M for all x ∈ D.

We draw a circle around xM entirely contained in D (see Figure 3). By the
mean value property, u(xM) is equal to its average around the circumference.
Since the average is no greater than the maximum, we have the string of
inequalities

M = u(xM) = average on circle ≤ M.

Therefore, u(x) = M for all x on the circumference. This is true for any such
circle. So u(x) = M for all x in the diagonally shaded region (see Figure 3).
Now we repeat the argument with a different center. We can fill the whole
domain up with circles. In this way, using the assumption that D is connected,
we deduce that u(x) ≡ M throughout D. So u ≡ constant.
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Figure 3

DIFFERENTIABILITY

Let u be a harmonic function in any open set D of the plane. Then u(x) = u(x, y)
possesses all partial derivatives of all orders in D.

This means that ∂u/∂x, ∂u/∂y, ∂2u/∂x2, ∂2u/∂x∂y, ∂100u/∂x100, and so
on, exist automatically. Let’s show this first for the case where D is a disk with
its center at the origin. Look at Poisson’s formula in its second form (14). The
integrand is differentiable to all orders for x ∈ D. Note that x′ ∈ bdy D so that
x �= x′. By the theorem about differentiating integrals (Section A.3), we can
differentiate under the integral sign. So u(x) is differentiable to any order in
D.

Second, let D be any domain at all, and let x0 ∈ D. Let B be a disk contained
in D with center at x0. We just showed that u(x) is differentiable inside B, and
hence at x0. But x0 is an arbitrary point in D. So u is differentiable (to all
orders) at all points of D.

This differentiability property is similar to the one we saw in Section 3.5
for the one-dimensional diffusion equation, but of course it is not at all true
for the wave equation.

PROOF OF THE LIMIT (15)

We begin the proof by writing (13) in the form

u(r, θ ) =
∫ 2π

0
P(r, θ − φ) h(φ)

dφ

2π
(16)

for r < a, where

P(r, θ ) = a2 − r2

a2 − 2ar cos θ + r2
= 1 + 2

∞∑
n=1

( r

a

)n
cos nθ (17)

is the Poisson kernel. Note that P has the following three properties.

(i) P(r, θ) > 0 for r < a. This property follows from the observation
that a2 − 2ar cos θ + r2 ≥ a2 − 2ar + r2 = (a − r )2 > 0.
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(ii) ∫ 2π

0
P(r, θ )

dθ

2π
= 1.

This property follows from the second part of (17) because∫ 2π

0 cos nθ dθ = 0 for n = 1, 2, . . . .

(iii) P(r, θ ) is a harmonic function inside the circle. This property follows
from the fact that each term (r/a)n cos nθ in the series is harmonic
and therefore so is the sum.

Now we can differentiate under the integral sign (as in Appendix A.3) to
get

urr + 1

r
ur + 1

r2
uθθ =

∫ 2π

0

(
Prr + 1

r
Pr + 1

r2
Pθθ

)
(r, θ − φ) h(φ)

dφ

2π

=
∫ 2π

0
0 · h(φ) dφ = 0

for r < a. So u is harmonic in D.
So it remains to prove (15). To do that, fix an angle θ0 and consider a

radius r near a. Then we will estimate the difference

u(r, θ0) − h(θ0) =
∫ 2π

0
P(r, θ0 − φ)[h(φ) − h(θ0)]

dφ

2π
(18)

by Property (ii) of P. But P(r, θ ) is concentrated near θ = 0. This is true in
the precise sense that, for δ ≤ θ ≤ 2π − δ,

|P(r, θ )| = a2 − r2

a2 − 2ar cos θ + r2
= a2 − r2

(a − r )2 + 4ar sin2(θ/2)
< ε (19)

for r sufficiently close to a. Precisely, for each (small) δ > 0 and each (small)
ε > 0, (19) is true for r sufficiently close to a. Now from Property (i), (18),
and (19), we have

|u(r, θ0) − h(θ0)| ≤
∫ θ0+δ

θ0−δ

P(r, θ0 − φ) ε
dφ

2π
+ ε

∫
|φ−θ0|>δ

|h(φ) − h(θ0)|dφ

2π

(20)

for r sufficiently close to a. The ε in the first integral came from the continuity
of h. In fact, there is some δ > 0 such that |h(φ) − h(θ0)| < ε for |φ − θ0| < δ.
Since the function |h| ≤ H for some constant H, and in view of Property (ii),
we deduce from (20) that

|u(r, θ0) − h(θ0)| ≤ (1 + 2H )ε

provided r is sufficiently close to a. This is relation (15).
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EXERCISES

1. Suppose that u is a harmonic function in the disk D = {r < 2} and that u =
3 sin 2θ + 1 for r = 2. Without finding the solution, answer the following
questions.
(a) Find the maximum value of u in D.
(b) Calculate the value of u at the origin.

2. Solve uxx + uyy = 0 in the disk {r < a} with the boundary condition

u = 1 + 3 sin θ on r = a.

3. Same for the boundary condition u = sin3 θ . (Hint: Use the identity
sin 3θ = 3 sin θ − 4 sin3θ .)

4. Show that P(r, θ ) is a harmonic function in D by using polar coordinates.
That is, use (6.1.5) on the first expression in (17).

6.4 CIRCLES, WEDGES, AND ANNULI

The technique of separating variables in polar coordinates works for domains
whose boundaries are made up of concentric circles and rays. The purpose of
this section is to present several examples of this type. In each case we get the
expansion as an infinite series. (But summing the series to get a Poisson-type
formula is more difficult and works only in special cases.) The geometries we
treat here are

A wedge: {0 < θ < θ0, 0 < r < a}
An annulus: {0 < a < r < b}
The exterior of a circle: {a < r < ∞}

We could do Dirichlet, Neumann, or Robin boundary conditions. This leaves
us with a lot of possible examples!

Example 1. The Wedge
Let us take the wedge with three sides θ = 0, θ = β, and r = a and solve
the Laplace equation with the homogeneous Dirichlet condition on the
straight sides and the inhomogeneous Neumann condition on the curved
side (see Figure 1). That is, using the notation u = u(r, θ ), the BCs are

u(r, 0) = 0 = u(r, β),
∂u

∂r
(a, θ ) = h(θ ). (1)

The separation-of-variables technique works just as for the circle,
namely,

�′′ + λ� = 0, r2R′′ + rR′ − λR = 0.
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Figure 1

So the homogeneous conditions lead to

�′′ + λ� = 0, �(0) = �(β) = 0. (2)

This is our standard eigenvalue problem, which has the solutions

λ =
(

nπ

β

)2

, �(θ ) = sin
nπθ

β
(3)

As in Section 6.3, the radial equation

r2R′′ + rR′ − λR = 0 (4)

is an ODE with the solutions R(r ) = rα, where α2 − λ = 0 or α =
±√

λ = ±nπ/β. The negative exponent is rejected again because we
are looking for a solution u(r, θ ) that is continuous in the wedge as well
as its boundary: the function r−nπ/β is infinite at the origin (which is a
boundary point of the wedge). Thus we end up with the series

u(r, θ ) =
∞∑

n=1

An rnπ/β sin
nπθ

β
. (5)

Finally, the inhomogeneous boundary condition requires that

h(θ ) =
∞∑

n=1

An
nπ

β
a−1+nπ/β sin

nπθ

β
.

This is just a Fourier sine series in the interval [0, β], so its coefficients
are given by the formula

An = a1−nπ/β 2

nπ

∫ β

0
h(θ ) sin

nπθ

β
dθ. (6)

The complete solution is given by (5) and (6). �
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Figure 2

Example 2. The Annulus
The Dirichlet problem for an annulus (see Figure 2) is

uxx + uyy = 0 in 0 < a2 < x2 + y2 < b2

u = g(θ ) for x2 + y2 = a2

u = h(θ ) for x2 + y2 = b2

The separated solutions are just the same as for a circle except that
we don’t throw out the functions r−n and log r, as these functions are
perfectly finite within the annulus. So the solution is

u(r, θ ) = 1
2 (C0 + D0 log r ) +

∞∑
n=1

(Cnrn + Dnr−n) cos nθ

+ (Anrn + Bnr−n) sin nθ.

(7)

The coefficients are determined by setting r = a and r = b (see Exercise
3). �

Example 3. The Exterior of a Circle
The Dirichlet problem for the exterior of a circle (see Figure 3) is

uxx + uyy = 0 for x2 + y2 > a2

u = h(θ ) for x2 + y2 = a2

u bounded as x2 + y2 → ∞.

We follow the same reasoning as in the interior case. But now, instead
of finiteness at the origin, we have imposed boundedness at infinity.
Therefore, r+n is excluded and r−n is retained. So we have

u(r, θ ) = 1
2 A0 +

∞∑
n=1

r−n(An cos nθ + Bn sin nθ ). (8)
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Figure 3

The boundary condition means

h(θ ) = 1
2 A0 +

∑
a−n(An cos nθ + Bn sin nθ ),

so that

An = an

π

∫ π

−π

h(θ ) cos nθ dθ

and

Bn = an

π

∫ π

−π

h(θ ) sin nθ dθ.

This is the complete solution but it is one of the rare cases when the
series can actually be summed. Comparing it with the interior case, we
see that the only difference between the two sets of formulas is that r
and a are replaced by r−1 and a−1. Therefore, we get Poisson’s formula
with only this alteration. The result can be written as

u(r, θ ) = (r2 − a2)
∫ 2π

0

h(φ)

a2 − 2ar cos(θ − φ) + r2

dφ

2π
(9)

for r > a. �

These three examples illustrate the technique of separating variables in
polar coordinates. A number of other examples are given in the exercises.
What is the most general domain that can be treated by this method?

EXERCISES

1. Solve uxx + uyy = 0 in the exterior {r > a} of a disk, with the boundary
condition u = 1 + 3 sin θ on r = a, and the condition at infinity that u
be bounded as r → ∞.
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2. Solve uxx + uyy = 0 in the disk r < a with the boundary condition

∂u

∂r
− hu = f (θ ),

where f (θ ) is an arbitrary function. Write the answer in terms of the
Fourier coefficients of f (θ ).

3. Determine the coefficients in the annulus problem of the text.
4. Derive Poisson’s formula (9) for the exterior of a circle.
5. (a) Find the steady-state temperature distribution inside an annular

plate {1 < r < 2}, whose outer edge (r = 2) is insulated, and on
whose inner edge (r = 1) the temperature is maintained as sin2 θ .
(Find explicitly all the coefficients, etc.)

(b) Same, except u = 0 on the outer edge.
6. Find the harmonic function u in the semidisk {r < 1, 0 < θ < π} with

u vanishing on the diameter (θ = 0, π ) and

u = π sin θ − sin 2θ on r = 1.

7. Solve the problem uxx + uyy = 0 in D, with u = 0 on the two straight
sides, and u = h(θ ) on the arc, where D is the wedge of Figure 1, that
is, a sector of angle β cut out of a disk of radius a. Write the solution as
a series, but don’t attempt to sum it.

8. An annular plate with inner radius a and outer radius b is held at tem-
perature B at its outer boundary and satisfies the boundary condition
∂u/∂r = A at its inner boundary, where A and B are constants. Find the
temperature if it is at a steady state. (Hint: It satisfies the two-dimensional
Laplace equation and depends only on r.)

9. Solve uxx + uyy = 0 in the wedge r < a, 0 < θ < β with the BCs

u = θ on r = a, u = 0 on θ = 0, and u = β on θ = β.

(Hint: Look for a function independent of r.)
10. Solve uxx + uyy = 0 in the quarter-disk {x2 + y2 < a2, x > 0, y > 0}

with the following BCs:

u = 0 on x = 0 and on y = 0 and
∂u

∂r
= 1 on r = a.

Write the answer as an infinite series and write the first two nonzero
terms explicitly.

11. Prove the uniqueness of the Robin problem

�u = f in D,
∂u

∂n
+ au = h on bdy D,

where D is any domain in three dimensions and where a is a positive
constant.
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12. (a) Prove the following still stronger form of the maximum principle,
called the Hopf form of the maximum principle. If u(x) is a non-
constant harmonic function in a connected plane domain D with
a smooth boundary that has a maximum at x0 (necessarily on the
boundary by the strong maximum principle), then ∂u/∂n > 0 at x0
where n is the unit outward normal vector. (This is difficult: see
[PW] or [Ev].)

(b) Use part (a) to deduce the uniqueness of the Neumann problem in
a connected domain, up to constants.

13. Solve uxx + uyy = 0 in the region {α < θ < β, a < r < b} with the
boundary conditions u = 0 on the two sides θ = α and θ = β, u = g(θ )
on the arc r = a, and u = h(θ ) on the arc r = b.

14. Answer the last question in the text.
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GREEN’S IDENTITIES
AND GREEN’S
FUNCTIONS

The Green’s identities for the laplacian lead directly to the maximum principle
and to Dirichlet’s principle about minimizing the energy. The Green’s function
is a kind of universal solution for harmonic functions in a domain. All other
harmonic functions can be expressed in terms of it. Combined with the method
of reflection, the Green’s function leads in a very direct way to the solution
of boundary problems in special geometries. George Green was interested in
the new phenomena of electricity and magnetism in the early 19th century.

7.1 GREEN’S FIRST IDENTITY

NOTATION

In this chapter the divergence theorem and vector notation will be used ex-
tensively. Recall the notation (in three dimensions)

grad f = ∇ f = the vector ( fx, fy, fz)

div F = ∇ · F = ∂ F1

∂x
+ ∂ F2

∂y
+ ∂ F3

∂z
,

where F = (F1, F2, F3) is a vector field. Also,

�u = div grad u = ∇ · ∇u = uxx + uyy + uzz

|∇u|2 = |grad u|2 = u2
x + u2

y + u2
z .

Watch out which way you draw the triangle: in physics texts one often finds
the laplacian ∇ · ∇ written as ∇2, but we write it as �.

178
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We will write almost everything in this chapter for the three-dimensional
case. (However, using two dimensions is okay, too, even n dimensions.) Thus
we write ∫∫∫

D

· · · dx =
∫∫∫

D

· · · dx dy dz

if D is a three-dimensional region (a solid), and∫∫
bdy D

· · · d S =
∫∫

S

· · · d S,

where S = bdy D is the bounding surface for the solid region D. Here dS
indicates the usual surface integral, as in the calculus.

Our basic tool in this chapter will be the divergence theorem:

∫∫∫
D

div F dx =
∫∫
bdy D

F · n d S, (1)

where F is any vector function, D is a bounded solid region, and n is the unit
outer normal on bdy D (see Figure 1) (see Section A.3).

GREEN’S FIRST IDENTITY

We start from the product rule

(vux )x = vx ux + vuxx

and the same with y and z derivatives. Summing, this leads to the identity

∇ · (v∇u) = ∇v · ∇u + v�u.

Figure 1
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Then we integrate and use the divergence theorem on the left side to get

∫∫
bdy D

v
∂u

∂n
d S =

∫∫∫
D

∇v · ∇u dx +
∫∫∫

D

v�u dx, (G1)

where ∂u/∂n = n · ∇u is the directional derivative in the outward normal
direction. This is Green’s first identity. It is valid for any solid region D and
any pair of functions u and v. For example, we could take v ≡ 1 to get∫∫

bdy D

∂u

∂n
d S =

∫∫∫
D

�u dx. (2)

As an immediate application of (2), consider the Neumann problem in
any domain D. That is, ⎧⎨

⎩
�u = f (x) in D
∂u

∂n
= h(x) on bdy D.

(3)

By (2) we have ∫∫
bdy D

h d S =
∫∫∫

D

f dx. (4)

It follows that the data (f and h) are not arbitrary but are required to satisfy
condition (4). Otherwise, there is no solution. In that sense the Neumann
problem (3) is not completely well-posed. On the other hand, one can show
that if (4) is satisfied, then (3) does have a solution—so the situation is not
too bad.

What about uniqueness in problem (3)? Well, you could add any constant
to any solution of (3) and still get a solution. So problem (3) lacks uniqueness
as well as existence.

MEAN VALUE PROPERTY

In three dimensions the mean value property states that the average value of
any harmonic function over any sphere equals its value at the center. To prove
this statement, let D be a ball, {|x| < a}, say; that is, {x2 + y2 + z2 < a2}.
Then bdy D is the sphere (surface) {|x| = a}. Let �u = 0 in any region that
contains D and bdy D. For a sphere, n points directly away from the origin,
so that

∂u

∂n
= n · ∇u = x

r
· ∇u = x

r
ux + y

r
uy + z

r
uz = ∂u

∂r
,
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where r = (x2 + y2 + z2)
1/2 = |x| is the spherical coordinate, the distance of

the point (x, y, z) from the center 0 of the sphere. Therefore, (2) becomes∫∫
bdy D

∂u

∂r
d S = 0. (5)

Let’s write this integral in spherical coordinates, (r, θ, φ). Explicitly, (5) takes
the form ∫ 2π

0

∫ π

0
ur (a, θ, φ) a2sin θ dθ dφ = 0

since r = a on bdy D. We divide this by the constant 4πa2 (the area of bdy
D). This result is valid for all a > 0, so that we can think of a as a variable and
call it r. Then we pull ∂/∂r outside the integral (see Section A.3), obtaining

∂

∂r

[
1

4π

∫ 2π

0

∫ π

0
u(r, θ, φ) sin θ dθ dφ

]
= 0.

Thus

1

4π

∫ 2π

0

∫ π

0
u(r, θ, φ) sin θ dθ dφ

is independent of r. This expression is precisely the average value of u on the
sphere {|x| = r}. In particular, if we let r → 0, we get

1

4π

∫ 2π

0

∫ π

0
u(0) sin θ dθ dφ = u(0).

That is,

1

area of S

∫∫
S

u d S = u(0). (6)

This proves the mean value property in three dimensions.
Actually, the same idea works in n dimensions. For n = 2 recall that we

found another proof in Section 6.3 by a completely different method.

MAXIMUM PRINCIPLE

Exactly as in two dimensions in Section 6.3, we deduce from the mean value
property the maximum principle.

If D is any solid region, a nonconstant harmonic function in D cannot
take its maximum value inside D, but only on bdy D.

It can also be shown that the outward normal derivative ∂u/∂n is strictly
positive at a maximum point: ∂u/∂n > 0 there. The last assertion is called the
Hopf maximum principle. For a proof, see [PW].
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UNIQUENESS OF DIRICHLET’S PROBLEM

We gave one proof in Section 6.1 using the maximum principle. Now we
give another proof by the energy method. If we have two harmonic functions
u1 and u2 with the same boundary data, then their difference u = u1 − u2
is harmonic and has zero boundary data. We go back to (G1) and substitute
v = u. Since u is harmonic, we have �u = 0 and∫∫

bdy D

u
∂u

∂n
d S =

∫∫∫
D

|∇u|2 dx. (7)

Since u=0 on bdy D, the left side of (7) vanishes. Therefore,
∫∫∫

D |∇u|2dx = 0.
By the first vanishing theorem in Section A.1, it follows that |∇u|2 ≡ 0in D.
Now a function with vanishing gradient must be a constant (provided that D
is connected). So u(x) ≡ C throughout D. But u vanishes somewhere (on bdy
D), so C must be 0. Thus u(x) ≡ 0 in D. This proves the uniqueness of the
Dirichlet problem.

Uniqueness of Neumann’s problem: If �u = 0 in D and ∂u/∂n = 0 on
bdy D, then u is a constant in D (see Exercise 2).

DIRICHLET’S PRINCIPLE

This is an important mathematical theorem based on the physical idea of
energy. It states that among all the functions w(x) in D that satisfy the Dirichlet
boundary condition

w = h(x) on bdy D, (8)

the lowest energy occurs for the harmonic function satisfying (8).
In the present context the energy is defined as

E[w] = 1
2

∫∫∫
D

|∇w |2 dx. (9)

This is the pure potential energy, there being no kinetic energy because there
is no motion. Now it is a general principle in physics that any system prefers
to go to the state of lowest energy, called the ground state. Thus the harmonic
function is the preferred physical stationary state. Mathematically, Dirichlet’s
principle can be stated precisely as follows:

Let u(x) be the unique harmonic function in D that satisfies (8). Let w(x)
be any function in D that satisfies (8). Then

E[w] ≥ E[u]. (10)
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To prove Dirichlet’s principle, we let v = u − w and expand the square
in the integral

E[w] = 1
2

∫∫∫
D

|∇(u − v)|2 dx

= E[u] −
∫∫∫

D

∇u · ∇v dx + E[v].
(11)

Next we apply Green’s first identity (G1) to the pair of functions u and v. In
(G1) two of the three terms are zero because v = 0 on bdy D and �u = 0 in
D. Therefore, the middle term in (11) is also zero. Thus

E[w] = E[u] + E[v].

Since it is obvious that E[v] ≥ 0, we deduce that E[w] ≥ E[u]. This means
that the energy is smallest when w = u. This proves Dirichlet’s principle.

An alternative proof goes as follows. Let u(x) be a function that satisfies
(8) and minimizes the energy (9). Let v(x) be any function that vanishes on
bdy D. Then u + εv satisfies the boundary condition (8). So if the energy is
smallest for the function u, we have

E[u] ≤ E[u + εv] = E[u] − ε

∫∫∫
D

�u v dx + ε2 E[v] (12)

for any constant ε. The minimum occurs for ε = 0. By calculus,∫∫∫
D

�u v dx = 0. (13)

This is valid for practically all functions v in D. Let D′ be any strict subdomain
of D; that is, D′ ⊂ D. Let v(x) ≡ 1 for x ∈ D′ and v(x) ≡ 0 for x ∈ D − D′. In
(13) we choose this functionv. (Because thisv is not smooth, an approximation
argument is required that is omitted here.) Then (13) takes the form∫∫∫

D′
�u dx = 0 for all D′.

By the second vanishing theorem in Section A.1, it follows that �u = 0 in
D. Thus u(x) is a harmonic function. By uniqueness, it is the only function
satisfying (8) that can minimize the energy.

EXERCISES

1. Derive the three-dimensional maximum principle from the mean value
property.
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2. Prove the uniqueness up to constants of the Neumann problem using the
energy method.

3. Prove the uniqueness of the Robin problem ∂u/∂n + a(x)u(x) = h(x)
provided that a(x) > 0 on the boundary.

4. Generalize the energy method to prove uniqueness for the diffusion
equation with Dirichlet boundary conditions in three dimensions.

5. Prove Dirichlet’s principle for the Neumann boundary condition. It as-
serts that among all real-valued functions w(x) on D the quantity

E[w] = 1
2

∫∫∫
D

|∇w |2 dx −
∫∫
bdy D

hw d S

is the smallest for w = u, where u is the solution of the Neumann problem

−�u = 0 in D,
∂u

∂n
= h(x) on bdy D.

It is required to assume that the average of the given function h(x) is zero
(by Exercise 6.1.11).

Notice three features of this principle:
(i) There is no constraint at all on the trial functions w(x).

(ii) The function h(x) appears in the energy.
(iii) The functional E[w] does not change if a constant is added to w(x).
(Hint: Follow the method in Section 7.1.)

6. Let A and B be two disjoint bounded spatial domains, and let D be their
exterior. So bdy D = bdy A ∪ bdy B. Consider a harmonic function u(x)
in D that tends to zero at infinity, which is constant on bdy A and constant
on bdy B, and which satisfies∫∫

bdy A

∂u

∂n
d S = Q > 0 and

∫∫
bdy B

∂u

∂n
d S = 0.

[Interpretation: The harmonic function u(x) is the electrostatic potential
of two conductors, A and B; Q is the charge on A, while B is uncharged.]
(a) Show that the solution is unique. (Hint: Use the Hopf maximum

principle.)
(b) Show that u ≥ 0 in D. [Hint: If not, then u(x) has a negative mini-

mum. Use the Hopf principle again.]
(c) Show that u > 0 in D.

7. (Rayleigh-Ritz approximation to the harmonic function u in D with u = h
on bdy D.) Let w0, w1, . . . , wn be arbitrary functions such that w0 = h
on bdy D and w1 = · · · = wn = 0 on bdy D. The problem is to find
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constants c1, . . . , cn so that

w0 + c1w1 + · · · + cnwn has the least possible energy.

Show that the constants must solve the linear system

n∑
k=1

(∇wj , ∇wk)ck = −(∇w0, ∇wj ) for j = 1, 2, . . . , n.

8. Consider the problem uxx + uyy = 0 in the triangle {x > 0, y > 0,
3x + y < 3} with the boundary conditions

u(x, 0) = 0 u(0, y) = y(3 − y) u(x, 3 − 3x) = 0

Choose w0 = y(3 − 3x − y) and w1 = xy(3 − 3x − y). Find the Rayleigh–
Ritz approximation w0 + c1w1 to u. That is, use Exercise 7 to find the
constant c1.

9. Repeat Exercise 8 with the same choice of w0 and w1 and with w2 =
x2y(3 − 3x − y). That is, find the Rayleigh–Ritz approximation w0 +
c1w1 + c2w2 to u.

10. Let u(x, y) be the harmonic function in the unit disk with the boundary
values u(x, y) = x2 on {x2 + y2 = 1}. Find its Rayleigh–Ritz approxi-
mation of the form x2 + c1(1 − x2 − y2).

7.2 GREEN’S SECOND IDENTITY

Green’s second identity is the higher-dimensional version of the identity
(5.3.3). It leads to a basic representation formula for harmonic functions that
we require in the next section.

The middle term in (G1) does not change if u and v are switched. So if
we write (G1) for the pair u and v, and again for the pair v and u, and then
subtract, we get

∫∫∫
D

(u �v − v �u) dx =
∫∫
bdy D

(
u

∂v

∂n
− v

∂u

∂n

)
d S. (G2)

This is Green’s second identity. Just like (G1), it is valid for any pair of
functions u and v.

It leads to the following natural definition. A boundary condition is called
symmetric for the operator � if the right side of (G2) vanishes for all pairs of
functions u, v that satisfy the boundary condition. Each of the three classical
boundary conditions (Dirichlet, Neumann, and Robin) is symmetric.
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REPRESENTATION FORMULA

This formula represents any harmonic function as an integral over the bound-
ary. It states the following: If �u = 0 in D, then

u(x0) =
∫∫
bdy D

[
−u(x)

∂

∂n

(
1

|x − x0|
)

+ 1

|x − x0|
∂u

∂n

]
d S

4π (1)

What is involved here is the same fundamental radial solution r−1 that we
found in Section 6.1, but translated by the vector x0.

Proof of (1). The representation formula (1) is the special case of (G2)
with the choice v(x) = (−4π |x − x0|)−1. Clearly, the right side of (G2) agrees
with (1). Also, �u = 0 and �v = 0, which kills the left side of (G2). So where
does the left side of (1) come from? From the fact that the function v(x) is
infinite at the point x0. Therefore, it is forbidden to apply (G2) in the whole
domain D. So let’s take a pair of scissors and cut out a small ball around x0.
Let Dε be the region D with this ball (of radius ε and center x0) excised (see
Figure 1).

For simplicity let x0 be the origin. Then v(x) = −1/(4πr ), where r =
(x2 + y2 + z2)

1/2 = |x|. Writing down (G2) with this choice of v, we have,
since �u = 0 = �v in Dε,

−
∫∫

bdy Dε

[
u · ∂

∂n

(
1

r

)
− ∂u

∂n
· 1

r

]
d S = 0.

But bdy Dε consists of two parts: the original boundary bdy D and the sphere
{r = ε}. On the sphere, ∂/∂n = −∂/∂r . Thus the surface integral breaks into
two pieces,

−
∫∫
bdy D

[
u · ∂

∂n

(
1

r

)
− ∂u

∂n
· 1

r

]
d S = −

∫∫
r=ε

[
u · ∂

∂r

(
1

r

)
− ∂u

∂r
· 1

r

]
d S. (2)

Figure 1
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This identity (2) is valid for any small ε > 0. Our representation formula (1)
would follow provided that we could show that the right side of (2) tended to
4πu(0) as ε → 0.

Now, on the little spherical surface {r = ε}, we have

∂

∂r

(
1

r

)
= − 1

r2
= − 1

ε2
,

so that the right side of (2) equals

1

ε2

∫∫
r=ε

u d S + 1

ε

∫∫
r=ε

∂u

∂r
d S = 4πu + 4πε

∂u

∂r
, (3)

where u denotes the average value of u(x) on the sphere |x| = r = ε, and
∂u/∂r denotes the average value of ∂u/∂n on this sphere. As ε → 0, the
expression (3) approaches

4πu(0) + 4π · 0 · ∂u

∂r
(0) = 4πu(0) (4)

because u is continuous and ∂u/∂r is bounded. Thus (2) turns into (1), and
this completes the proof.

The corresponding formula in two dimensions is

u(x0) = 1

2π

∫
bdy D

[
u(x)

∂

∂n
(log|x − x0|) − ∂u

∂n
log|x − x0|

]
ds (5)

whenever �u = 0 in a plane domain D and x0 is a point within D. The right
side is a line integral over the boundary curve with respect to arc length. Log
denotes the natural logarithm and ds the arc length on the bounding curve.

EXERCISES

1. Derive the representation formula for harmonic functions (7.2.5) in two
dimensions.

2. Let φ(x) be any C2 function defined on all of three-dimensional space that
vanishes outside some sphere. Show that

φ(0) = −
∫∫∫

1

|x|�φ(x)
dx
4π

.

The integration is taken over the region where φ(x) is not zero.
3. Give yet another derivation of the mean value property in three dimen-

sions by choosing D to be a ball and x0 its center in the representation
formula (1).
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7.3 GREEN’S FUNCTIONS

We now use Green’s identities to study the Dirichlet problem. The repre-
sentation formula (7.2.1) used exactly two properties of the function v(x) =
(−4π |x − x0|)−1: that it is harmonic except at x0 and that it has a certain
singularity there. Our goal is to modify this function so that one of the terms
in (7.2.1) disappears. The modified function is called the Green’s function
for D.

Definition. The Green’s function G(x) for the operator −� and the do-
main D at the point x0 ∈ D is a function defined for x ∈ D such that:

(i) G(x) possesses continuous second derivatives and �G = 0 in D,
except at the point x = x0.

(ii) G(x) = 0 for x ∈ bdy D.
(iii) The function G(x) + 1/(4π |x − x0|) is finite at x0 and has contin-

uous second derivatives everywhere and is harmonic at x0.

It can be shown that a Green’s function exists. Also, it is unique by Exer-
cise 1. The usual notation for the Green’s function is G(x, x0).

Theorem 1. If G(x, x0) is the Green’s function, then the solution of the
Dirichlet problem is given by the formula

u(x0) =
∫∫
bdy D

u(x)
∂G(x, x0)

∂n
d S. (1)

Proof. Let us go back to the representation formula (7.2.1):

u(x0) =
∫∫
bdy D

(
u

∂v

∂n
− ∂u

∂n
v

)
d S, (2)

where v(x) = −(4π |x − x0|)−1, as before. Now let’s write G(x, x0) = v(x) +
H(x). [This is the definition of H(x).] Then H(x) is a harmonic function
throughout the domain D [by (iii) and (i)]. We apply Green’s second identity
(G2) to the pair of harmonic functions u(x) and H(x):

0 =
∫∫
bdy D

(
u
∂ H

∂n
− ∂u

∂n
H

)
d S. (3)
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Adding (2) and (3), we get

u(x0) =
∫∫
bdy D

(
u
∂G

∂n
− ∂u

∂n
G

)
d S.

But by (ii), G vanishes on bdy D, so the last term vanishes and we end up with
formula (1). �

The only thing wrong with this beautiful formula is that it is not usually
easy to find G explicitly. Nevertheless, in the next section we’ll see how to
use the reflection method to find G in some situations and thereby solve the
Dirichlet problem for some special geometries.

SYMMETRY OF THE GREEN’S FUNCTION

For any region D we have a Green’s function G(x, x0). It is always symmetric:

G(x, x0) = G(x0, x) for x �= x0. (4)

In order to prove (4), we apply Green’s second identity (G2) to the pair
of functions u(x) = G(x, a) and v(x) = G(x, b) and to the domain Dε . By Dε

we denote the domain D with two little spheres of radii ε cut out around the
points a and b (see Figure 1). So the boundary of Dε consists of three parts:
the original boundary bdy D and the two spheres |x − a| = ε and |x − b| = ε.
Thus ∫∫∫

Dε

(u�v − v�u) dx =
∫∫
bdy D

(
u

∂v

∂n
− v

∂u

∂n

)
d S + Aε + Bε, (5)

where

Aε =
∫∫

|x−a|=ε

(
u

∂v

∂n
− v

∂u

∂n

)
d S

and Bε is given by the same formula at b. Because both u and v are harmonic
in Dε , the left side of (5) vanishes. Since both u and v vanish on bdy D, the
integral over bdy D also vanishes. Therefore,

Aε + Bε = 0 for each ε.

Figure 1
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Let’s calculate the limits as ε → 0. We shall then have lim Aε +
lim Bε = 0. For Aε , denote r = |x − a|. Then

lim
ε→0

Aε = lim
ε→0

∫∫
r=ε

{(
− 1

4πr
+ H

)
∂v

∂n
− v

∂

∂n

(
− 1

4πr
+ H

)}
r2 sin θ dθ dφ

where θ and φ are the spherical angles for x − a, and H is a continuous
function. Now ∂/∂n = −∂/∂r for the sphere. Among the four terms in the last
integrand, only the third one contributes a nonzero expression to the limit [for
the same reason as in the derivation of (7.2.1)]. Thus

lim
ε→0

Aε = lim
ε→0

∫ 2π

0

∫ π

0
v

1

4πε2
ε2sin θ dθ dφ = v(a)

by cancellation of the ε2. A quite similar calculation shows that lim Bε =
−u(b). Therefore,

0 = lim(Aε + Bε) = v(a) − u(b) = G(a, b) − G(b, a).

This proves the symmetry (4). �

In electrostatics, G(x, x0) is interpreted as the electric potential inside
a conducting surface S = bdy D due to a charge at a single point x0. The
symmetry (4) is known as the principle of reciprocity. It asserts that a source
located at the point a produces at the point b the same effect as a source at b
would produce at a.

The Green’s function also allows us to solve Poisson’s equation.

Theorem 2. The solution of the problem

�u = f in D u = h on bdy D (6)

is given by

u(x0) =
∫∫
bdy D

h(x)
∂G(x, x0)

∂n
d S +

∫∫∫
D

f (x)G(x, x0) dx. (7)

The proof is left as an exercise.

EXERCISES

1. Show that the Green’s function is unique. (Hint: Take the difference of
two of them.)

2. Prove Theorem 2, which gives the solution of Poisson’s equation in terms
of the Green’s function.

3. Verify the limit of Aε as claimed in the proof of the symmetry of the
Green’s function.
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7.4 HALF-SPACE AND SPHERE

We solve for the harmonic functions in a half-space and a sphere by combining
the Green’s function with the method of reflection.

THE HALF-SPACE

We first determine the Green’s function for a half-space. A half-space is the
region lying on one side of a plane. Although it is an infinite domain, all the
ideas involving Green’s functions are still valid if we impose the ”boundary
condition at infinity” that the functions and their derivatives tend to 0 as
|x| → ∞.

We write the coordinates as x = (x, y, z). Say that the half-space is
D = {z > 0}, the domain that lies above the xy plane (see Figure 1). Each
point x = (x, y, z) in D has a reflected point x∗ = (x, y, −z) that is not in D.

Now we already know that the function 1/(4π |x − x0|) satisfies two of
the three conditions—(i) and (iii)—required of the Green’s function: We want
to modify it to get (ii) as well.

We assert that the Green’s function for D is

G(x, x0) = − 1

4π |x − x0| + 1

4π |x − x∗
0|

. (1)

In coordinates,

G(x, x0) = − 1

4π
[(x − x0)2 + (y − y0)2 + (z − z0)2]−1/2

+ 1

4π
[(x − x0)2 + (y − y0)2 + (z + z0)2]−1/2.

Notice that the two terms differ only in the (z ± z0) factors. Let’s verify the
assertion (1) by checking each of the three properties of G.

(i) Clearly, G is finite and differentiable except at x0. Also, �G = 0.

Figure 1
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Figure 2

(ii) This is the main property to check. Let x ∈ bdy D, so that z = 0.
From Figure 2 we see that |x − x0| = |x − x∗

0|. Thus G(x, x0) = 0.
(iii) Because x∗

0 is outside our domain D, the function −1/(4π |x − x∗
0|)

has no singularity inside the domain, so that G has the proper sin-
gularity at x0.

These three properties prove that G(x, x0) is the Green’s function for this
domain. Let’s now use it to solve the Dirichlet problem

�u = 0 for z > 0, u(x, y, 0) = h(x, y). (2)

We use formula (7.3.1). Notice that ∂G/∂n = −∂G/∂z|z=0 because n points
downward (outward from the domain). Furthermore,

−∂G

∂z
= 1

4π

(
z + z0

|x − x∗
0|3

− z − z0

|x − x0|3
)

= 1

2π

z0

|x − x0|3
on z = 0. Therefore, the solution of (2) is

u(x0, y0, z0) = z0

2π

∫∫
[(x − x0)2 + (y − y0)2 + (z0)2]−3/2h(x, y) dx dy,

(3)

where both integrals run over (−∞, ∞), noting that z = 0 in the integrand.
In vector notation, (3) takes the form

u(x0) = z0

2π

∫∫
bdy D

h(x)

|x − x0|3
d S. (4)

This is the complete formula that solves the Dirichlet problem for the half-
space.
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Figure 3

THE SPHERE

The Green’s function for the ball D = {|x| < a} of radius a can also be found
by the reflection method. In this case, however, the reflection is across the
sphere {|x| = a}, which is the boundary of D (see Figure 3).

Fix any nonzero point x0 in the ball (that is, 0 < |x0| < a). The reflected
point x∗

0 is defined by two properties. It is collinear with the origin 0 and the
point x0. Its distance from the origin is determined by the formula |x0| |x∗

0| =
a2. Thus

x∗
0 = a2x0

|x0|2
. (5)

If x is any point at all, let’s denote |x − x0| = ρ and |x − x∗
0| = ρ∗. Then

the Green’s function of the ball is

G(x, x0) = − 1

4πρ
+ a

|x0|
1

4πρ∗ (6)

if x0 �= 0. To verify this formula, we need only check the three conditions (i),
(ii), and (iii). We’ll consider the case x0 = 0 separately.

First of all, G has no singularity except at x = x0 because x∗
0 lies outside

the ball. The functions 1/ρ and 1/ρ∗ are harmonic in D except at x0 because
they are just translates of 1/r. Therefore, (i) and (iii) are true.

To prove (ii), we show that ρ∗ is proportional to ρ for all points x on the
spherical surface |x| = a. To do this, we notice from the congruent triangles
in Figure 4 that ∣∣∣∣r0

a
x − a

r0
x0

∣∣∣∣ = |x − x0|, (7)

where r0 = |x0|. The left side of (7) equals

r0

a

∣∣∣∣x − a2

r2
0

x0

∣∣∣∣ = r0

a
ρ∗
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Figure 4

Thus
r0

a
ρ∗ = ρ for all |x| = a. (8)

Therefore, the function

− 1

4πρ
+ a

|x0|
1

4πρ∗ , (9)

defined above, is zero on the sphere |x| = a. This is condition (ii). This proves
formula (6).

We can also write (6) in the form

G(x, x0) = − 1

4π |x − x0| + 1

4π |r0x/a − ax0/r0| . (10)

In case x0 = 0, the formula for the Green’s function is

G(x, 0) = − 1

4π |x| + 1

4πa
(11)

(see Exercise 10).
Let’s now use (6) to write the formula for the solution of the Dirichlet

problem in a ball:

�u = 0 in |x| < a, u = h on |x| = a. (12)

We already know from Chapter 6 that u(0) is the average of h(x) on the sphere,
so let’s consider x0 �= 0. To apply (7.3.1), we need to calculate ∂G/∂n on
|x| = a. (Let’s not forget that x0 is considered to be fixed, and the derivatives
are with respect to x.)
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We note that ρ2 = |x − x0|2. Differentiating, we have 2ρ∇ρ = 2(x − x0).
So ∇ρ = (x − x0)/ρ and ∇(ρ∗) = (x − x∗

0)/ρ∗. Hence differentiating (6), we
have

∇G = x − x0

4πρ3
− a

r0

x − x∗
0

4πρ∗3
. (13)

Remember that x∗
0 = (a/r0)2x0. If |x| = a, we showed above that ρ∗ = (a/r0)ρ.

Substituting these expressions into the last term of ∇G, we get

∇G = 1

4πρ3

[
x − x0 −

(r0

a

)2
x + x0

]
(14)

on the surface, so that

∂G

∂n
= x

a
· ∇G = a2 − r2

0

4πaρ3
. (15)

Thus (7.3.1) takes the form

u(x0) = a2 − |x0|2
4πa

∫∫
|x|=a

h(x)

|x − x0|3
d S. (16)

This is the solution to (12). It is the three-dimensional version of the Poisson
formula. In more classical notation, it would be written in the usual spherical
coordinates as

u(r0, θ0, φ0) = a
(
a2−r2

0

)
4π

∫ 2π

0

∫ π

0

h(θ, φ)(
a2 + r2

0 −2ar0cosψ
)3/2 sin θ dθ dφ,

(17)

where ψ denotes the angle between x0 and x.
In almost the same way, we can use the method of reflection in two

dimensions to recover the Poisson formula for

uxx + uyy = 0 in x2 + y2 < a2, u = h on x2 + y2 = a2.

Beginning with the function (1/2π ) log r, we find (see Exercise 11) that

G(x, x0) = 1

2π
log ρ − 1

2π
log

(r0

a
ρ∗

)
(18)

and hence that

u(x0) = a2 − |x0|2
2πa

∫
|x|=a

h(x)

|x − x0|2
ds,
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which is exactly the same as the Poisson formula (6.3.14), which we found
earlier in a completely different way!

EXERCISES

1. Find the one-dimensional Green’s function for the interval (0, l). The
three properties defining it can be restated as follows.

(i) It solves G′′(x) = 0 for x �= x0 (“harmonic”).
(ii) G(0) = G(l) = 0.

(iii) G(x) is continuous at x0 and G(x) + 1
2 |x − x0| is harmonic at x0.

2. Verify directly from (3) or (4) that the solution of the half-space problem
satisfies the condition at infinity:

u(x) → 0 as |x| → ∞.

Assume that h(x, y) is a continuous function that vanishes outside some
circle.

3. Show directly from (3) that the boundary condition is satisfied:
u(x0, y0, z0) → h(x0, y0) as z0 → 0. Assume h(x, y) is continuous and
bounded. [Hint: Change variables s2 = [(x − x0)2 + (y − y0)2]/z2

0 and
use the fact that

∫ ∞
0 s(s2 + 1)

−3/2
ds = 1.]

4. Verify directly from (3) that the solution has derivatives of all orders
in {z > 0}. Assume that h(x, y) is a continuous function that vanishes
outside some circle. (Hint: See Section A.3 for differentiation under an
integral sign.)

5. Notice that the function xy is harmonic in the half-plane {y > 0} and
vanishes on the boundary line {y = 0}. The function 0 has the same
properties. Does this mean that the solution is not unique? Explain.

6. (a) Find the Green’s function for the half-plane {(x, y): y > 0}.
(b) Use it to solve the Dirichlet problem in the half-plane with boundary

values h(x).
(c) Calculate the solution with u(x, 0) = 1.

7. (a) If u(x, y) = f (x/y) is a harmonic function, solve the ODE satisfied
by f .

(b) Show that ∂u/∂r ≡ 0, where r =
√

x2 + y2 as usual.
(c) Suppose that v(x, y) is any function in {y > 0} such that ∂v/∂r ≡ 0.

Show that v(x, y) is a function of the quotient x/y.
(d) Find the boundary values limy→0 u(x, y) = h(x).
(e) Show that your answer to parts (c) and (d) agrees with the general

formula from Exercise 6.
8. (a) Use Exercise 7 to find the harmonic function in the half-plane

{y > 0} with the boundary data h(x) = 1 for x > 0, h(x) = 0
for x < 0.

(b) Do the same as part (a) for the boundary data h(x) = 1 for x > a,
h(x) = 0 for x < a. (Hint: Translate the preceding answer.)
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(c) Use part (b) to solve the same problem with the boundary data h(x),
where h(x) is any step function. That is,

h(x) = cj for a j−1 < x < a j for 1 ≤ j ≤ n,

where −∞ = a0 < a1 < · · · < an−1 < an = ∞ and the cj are con-
stants.

9. Find the Green’s function for the tilted half-space {(x, y, z) :
ax + by + cz > 0}. (Hint: Either do it from scratch by reflecting across
the tilted plane, or change variables in the double integral (3) using a
linear transformation.)

10. Verify the formula (11) for G(x, 0), the Green’s function with its second
argument at the center of the sphere.

11. (a) Verify that (18) is the Green’s function for the disk.
(b) Use it to recover the Poisson formula.

12. Find the potential of the electrostatic field due to a point charge located
outside a grounded sphere. (Hint: This is just the Green’s function for
the exterior of the sphere. Find it by the method of reflection.)

13. Find the Green’s function for the half-ball D = {x2 + y2 + z2 < a2,
z > 0}. (Hint: The easiest method is to use the solution for the whole
ball and reflect it across the plane.)

14. Do the same for the eighth of a ball

D = {x2 + y2 + z2 < a2, x > 0, y > 0, z > 0}.
15. (a) Show that if v(x, y) is harmonic, so is u(x, y) = v(x2 − y2, 2xy).

(b) Show that the transformation (x, y) �−→(x2 − y2, 2xy) maps the
first quadrant onto the half-plane {y > 0}. (Hint: Use either polar
coordinates or complex variables.)

16. Use Exercises 15 and 7 to find the harmonic function u(x, y) in the first
quadrant that has the boundary values u(x, 0) = A, u(0, y) = B, where A
and B are constants. (Hint: u(x, 0) = v(x2, 0), etc.)

17. (a) Find the Green’s function for the quadrant

Q = {(x, y): x > 0, y > 0}.
(Hint: Either use the method of reflection or reduce to the half-plane
problem by the transformation in Exercise 15.)

(b) Use your answer in part (a) to solve the Dirichlet problem

uxx + uyy = 0 in Q, u(0, y) = g(y) for y > 0,

u(x, 0) = h(x) for x > 0.

18. (a) Find the Green’s function for the octant o = {(x, y, z) :
x > 0, y > 0, z > 0}. (Hint: Use the method of reflection.)



198 CHAPTER 7 GREEN’S IDENTITIES AND GREEN’S FUNCTIONS

(b) Use your answer in part (a) to solve the Dirichlet problem{ uxx + uyy + uzz = 0 ino
u(0, y, z) = 0, u(x, 0, z) = 0, u(x, y, 0) = h(x, y)

for x > 0, y > 0, z > 0.

19. Consider the four-dimensional laplacian �u = uxx + uyy + uzz + uww .
Show that its fundamental solution is r−2, where r2 = x2 + y2 + z2 +
w2.

20. Use Exercise 19 to find the Green’s function for the half-hyperspace
{(x, y, z, w) : w > 0}.

21. The Neumann function N(x, y) for a domain D is defined exactly like
the Green’s function in Section 7.3 except that (ii) is replaced by the
Neumann boundary condition

(ii)∗
∂ N

∂n
= c for x ∈ bdy D.

for a suitable constant c.
(a) Show that c = 1/A, where A is the area of bdy D. (c = 0 if A = ∞)
(b) State and prove the analog of Theorem 7.3.1, expressing the solution

of the Neumann problem in terms of the Neumann function.
22. Solve the Neumann problem in the half-plane: �u = 0 in {y > 0},

∂u/∂y = h(x) on {y = 0} with u(x, y) bounded at infinity. (Hint: Con-
sider the problem satisfied by v = ∂u/∂y.)

23. Solve the Neumann problem in the quarter-plane {x > 0, y > 0}.
24. Solve the Neumann problem in the half-space {z > 0}.
25. Let the nonconstant function u(x) satisfy the inequality �u ≥ 0 in a

domain D in three dimensions. Prove that it cannot assume its maximum
inside D. This is the maximum principle for subharmonic functions.
(Hint: Let f = �u, and let h denote u restricted to the boundary bdy D.
Let B ⊂ D be any ball and let x0 be its center. Use (11) and (16) together
with (7.3.7) in the ball B. Show that u(x0) is at most the average of h on
bdy B. Continue the proof as in Section 6.3.)
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COMPUTATION OF
SOLUTIONS

We have found formulas for many solutions to PDEs, but other problems
encountered in practice are not as simple and cannot be solved by formula.
Even when there is a formula, it might be so complicated that we would
prefer to visualize a typical solution by looking at its graph. The opportunity
presented in this chapter is to reduce the process of solving a PDE with its
auxiliary conditions to a finite number of arithmetical calculations that can be
carried out by computer. All the problems we have studied can be so reduced.
However, there are dangers in doing so. If the method is not carefully chosen,
the numerically computed solution may not be anywhere close to the true
solution. The other danger is that the computation (for a difficult problem)
could easily take so long that it would take more computer time than is practical
to carry out (years, millenia, . . . ). The purpose of this chapter is to illustrate
the most important techniques of computation using quite simple equations
as examples.

8.1 OPPORTUNITIES AND DANGERS

The best known method, finite differences, consists of replacing each deriva-
tive by a difference quotient. Consider, for instance, a function u(x) of one
variable. Choose a mesh size �x . Let’s approximate the value u( j�x) for
x = j�x by a number u j indexed by an integer j:

uj ∼ u( j�x).

Then the three standard approximations for the first derivative
∂u

∂x
( j�x) are:

199
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The backward difference:
u j − u j−1

�x
(1)

The forward difference:
u j+1 − u j

�x
(2)

The centered difference:
u j+1 − u j−1

2�x
. (3)

Each of them is a correct approximation because of the Taylor expansion:

u(x + �x) = u(x) + u′(x)�x + 1
2 u′′(x)(�x)2 + 1

6 u′′′(x)(�x)3 + O(�x)4.

[It is valid if u(x) is a C4 function.] Replacing �x by −�x , we get

u(x − �x) = u(x) − u′(x)�x + 1
2 u′′(x)(�x)2 − 1

6 u′′′(x)(�x)3 + O(�x)4.

From these two expansions we deduce that

u′(x) = u(x) − u(x − �x)

�x
+ O(�x)

= u(x + �x) − u(x)

�x
+ O(�x)

= u(x + �x) − u(x − �x)

2�x
+ O(�x)2.

We have written O(�x) to mean any expression that is bounded by a constant
times �x , and so on. Replacing x by j �x , we see that (1) and (2) are correct
approximations to the order O(�x) and (3) is correct to the order O(�x)2.

For the second derivative, the simplest approximation is the

centered second difference: u′′( j�x) ∼ u j+1 − 2u j + u j−1

(�x)2 . (4)

This is justified by the same two Taylor expansions given above which, when
added, give

u′′(x) = u(x + �x) − 2u(x) + u(x − �x)

(�x)2 + O(�x)2.

That is, (4) is valid with an error of O(�x)2.
For functions of two variables u(x, t), we choose a mesh size for both

variables. We write

u( j�x, n �t) ∼ un
j ,
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where the n is a superscript, not a power. Then we can approximate, for
instance,

∂u

∂t
( j�x, n �t) ∼ un+1

j − un
j

�t
, (5)

the forward difference for ∂u/∂t . Similarly, the forward difference for ∂u/∂x
is

∂u

∂x
( j�x, n �t) ∼ un

j+1 − un
j

�x
, (6)

and we can write similar expressions for the differences (1)–(4) in either the
t or x variables. �

Two kinds of errors can be introduced in a computation using such ap-
proximations. Truncation error refers to the error introduced in the solutions
by the approximations themselves, that is, the O(�x) terms. Although the
error in the equation may be O(�x), the error in the solutions (the truncation
error) may or may not be small. This error is a complicated combination of
many small errors. We want the truncation error to tend to zero as the mesh
size tends to zero. Thinking of �x as a very small number, it is clear that
O(�x)2 is a much smaller error than O(�x). The errors written in (1)–(4)
are, strictly speaking, called local truncation errors. They occur in the approx-
imation of the individual terms in a differential equation. Global truncation
error is the error introduced in the actual solutions of the equation by the
cumulative effects of the local truncation errors. The passage from local to
global errors is usually too complicated to follow in any detail.

Roundoff error occurs in a real computation because only a certain number
of digits, typically 8 or 16, are retained by the computer at each step of the
computation. For instance, if all numbers are rounded to eight digits, the
dropping of the ninth digit could introduce big cumulative errors in a large
computation. We have to prevent these little errors from accumulating.

Example 1.

Let’s solve the very simple problem

ut = uxx , u(x, 0) = φ(x)

using finite differences. We use a forward difference for ut and a centered
difference for uxx . Then the difference equation is

un+1
j − un

j

�t
= un

j+1 − 2un
j + un

j−1

(�x)2 . (7)

It has a local truncation error of O(�t) (from the left side) and O(�x)2

(from the right side).
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Figure 1

Suppose that we choose a very small value for �x and choose �t =
(�x)2. Then (7) simplifies to

un+1
j = un

j+1 − un
j + un

j−1. (8)

Let’s take φ(x) to be the very simple step function (see Figure 1), which
is to be approximated by the values φ j :

0 0 0 0 1 0 0 0 0 0 → x .

A sample calculation with these simple initial data can be done by
hand by simply “marching in time.” That is, φ(x) provides u0

j , then the
“scheme” (8) gives u1

j , then (8) gives u2
j , and so on. We can summarize

(8) schematically using the diagram

∗
• +1 • −1 • +1

(called a template), which means that in order to get un+1
j you just add or

subtract its three lower neighbors as indicated. Thus simple arithmetic
gives us the result shown in Figure 2. (Verify it!) The values of un

j are
written in the ( j, n) location. This is supposed to be an approximate
solution.

The result is horrendous! It is nowhere near the true solution of
the PDE. We know that by the maximum principle, the true solution
of the diffusion equation will always be between zero and one, but the
difference equation has given us an “approximation” with the value 19
and growing! �

In the next section we analyze what went wrong.

Figure 2
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EXERCISES

1. The Taylor expansion written in Section 8.1 is valid if u is a C4 function.
If u(x) is merely a C3 function, the best we can say is that the Taylor
expansion is valid only with a o(�x)3 error. [This notation means that the
error is (�x)3 times a factor that tends to zero as �x → 0.] If merely a
C2 function, it is only valid with a o(�x)2 error, and so on.
(a) If u(x) is merely a C3 function, what is the error in the first derivative

due to its approximation by the centered difference?
(b) What if u(x) is merely a C2 function?

2. (a) If u(x) is merely a C3 function, what is the error in the second
derivative due to its approximation by a centered second difference?

(b) What if u(x) is merely a C2 function?
3. Suppose that we wish to approximate the first derivative u′(x) of a very

smooth function with an error of only O(�x)4. Which difference approx-
imation could we use?

8.2 APPROXIMATIONS OF DIFFUSIONS

We take up our discussion of the diffusion equation ut = uxx again. There
is nothing obviously wrong with the scheme we used, as each derivative is
appropriately approximated with a small local truncation error. Somehow the
little errors have accumulated! What turns out to be wrong, but this is not
obvious at this point, is the choice of the mesh �t relative to the mesh �x .
Let’s make no assumption now about these meshes; in fact, let

s = �t

(�x)2 . (1)

As before, we can solve the scheme (8.1.7) for un+1
j :

un+1
j = s

(
un

j+1 + un
j−1

) + (1 − 2s)un
j . (2)

The scheme is said to be explicit because the values at the (n + 1)st time step
are given explicitly in terms of the values at the earlier times.

Example 1.

To be specific, let’s consider the standard problem:

ut = uxx for 0 < x < π, t > 0
u = 0 at x = 0, π

u(x, 0) = φ(x) =
{

x in
(
0, π

2

)
π − x in

(
π
2 , π

)
.
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Figure 1

Its exact solution from Section 5.1 is

u(x, t) =
∞∑

k=1

bk sin kx e−k2t , (3)

where bk = 4(−1)(k+1)/2/πk2 for odd k, and bk = 0 for even k. It looks
like Figure 1 for some t > 0 (t = 3π2/80).

We approximate this problem by the scheme (2) for j = 0, 1,. . . ,
J − 1 and n = 0, 1, 2, . . . together with the discrete boundary and initial
conditions

un
0 = un

J = 0 and u0
j = φ( j�x).

For J = 20, �x = π/20, and s = 5
11 , the result of the calculation (from

page 6 of [RM]) is shown in Figure 2 (exactly on target!). However, if
we repeat the calculation for J = 20, �x = π/20, and s = 5

9 , the result
is as shown in Figure 3 (wild oscillations as in Section 8.1!). Thus the
choice s = 5

11 is stable, whereas s = 5
9 is clearly unstable. �

Figure 2
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Figure 3

STABILITY CRITERION

The primary distinction between these two calculations turns out to be whether
s is bigger or smaller than 1

2 . We might have gotten a suspicion of this from
the scheme (2) itself, because when s < 1

2 , the coefficients in (2) are positive.
But to actually demonstrate that this is the stability condition, we separate the
variables in the difference equation. Thus we look for solutions of equation
(2) of the form

un
j = X j Tn. (4)

Thus

Tn+1

Tn
= 1 − 2s + s

X j+1 + X j−1

X j
. (5)

Both sides of (4) must be a constant ξ independent of j and n. Therefore,

Tn = ξ nT0 (6)

and

s
Xj+1 + Xj−1

Xj
+ 1 − 2s = ξ. (7)

To solve the spatial equation (7), we argue that it is a discrete version of a
second-order ODE which has sine and cosine solutions. Therefore, we guess
solutions of (7) of the form

Xj = Acos jθ + Bsin jθ
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for some θ , where A and B are arbitrary. The boundary condition X0 = 0 at
j = 0 implies that A = 0. So we can freely set B = 1. Then X j = sin jθ .

Furthermore, the boundary condition XJ = 0 at j = J implies that
sin Jθ = 0. Thus Jθ = kπ for some integer k. But the discretization into
J equal intervals of length �x means that J = π/�x . Therefore, θ = k �x
and

X j = sin( jk�x). (8)

Now (7) takes the form

s
sin(( j + 1)k�x) + sin(( j − 1)k�x)

sin( jk�x)
+ 1 − 2s = ξ

or

ξ = ξ (k) = 1 − 2s[1 − cos(k�x)]. (9)

According to (6), the growth in time t = n �t at the wave number k is
governed by the powers ξ (k)n . So

unless |ξ (k)| ≤ 1 for all k, the scheme is unstable

and could not possibly approximate the true (exact) solution. (Recall that the
true solution tends to zero as t → ∞.) Now we analyze (9) to determine
whether |ξ (k)| ≤ 1 or not. Since the factor 1 − cos(k�x) ranges between 0
and 2, we have 1 − 4s ≤ ξ (k) ≤ 1. So stability requires that 1 − 4s ≥ −1,
which means that

�t

(�x)2 = s ≤ 1

2
. (10)

Thus (10) is the condition required for stability.
This condition explains the instability that we observed in Section 8.1. It

means that in practice the time steps must be taken quite short. For instance, if
�x = 0.01, an apparently reasonable choice, then �t can be at most 0.00005.
Then solving up to time t = 1 would require 20,000 time steps!

The analysis above shows that it is precisely the wave number k for which
ξ (k) = −1, which is the most dangerous for stability. That critical situation
happens when cos(k�x) = −1, that is, when k = π/�x . In practice, this is a
fairly high wave number.

By the way, the complete solution of the difference scheme (2), together
with the discrete boundary conditions, is the “Fourier series”

un
j =

∞∑
k=−∞

bksin( jk�x) [ξ (k)]n. (11)
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Let’s see how it could be that this “discrete” series converges to the “true”
series (3). In fact, the Taylor series of (9) is

ξ (k) = 1 − 2sk2(�x)2/2! + · · · � 1 − k2�t

if k�x is small. Taking the nth power and letting j�x = x and n�t = t , we
have

ξ (k)n � (1 − k2�t)
t/�t � e−k2t

in the limit as �t → 0, using the well-known limit for the exponential. So
the series (11) looks like it tends to the series (3), as it should. Of course, this
could not possibly be a proof of convergence (since we know it does not even
converge at all if s > 1

2 ). An actual proof for s ≤ 1
2 , which we omit, would

require a careful analysis of the approximations.

The example discussed above indicates that the general procedure to de-
termine stability in a diffusion or wave problem is to separate the variables in
the difference equation. For the time factor we obtain a simple equation like
(6) which has an amplification factor ξ (k). In the analysis above we used the
stability condition |ξ (k)| ≤ 1. More precisely, it can be shown that the correct
condition necessary for stability is

|ξ (k)| ≤ 1 + O(�t) for all k (12)

and for small �t . (We omit the proof.) This is the von Neumann stability
condition [RM]. The extra term in (12) is irrelevant for the example above
but important for problems where the exact solution may grow in time (as in
Exercise 11).

In practice we could go more quickly from (7) to (9) simply by assuming
that

Xj = (eik�x )
j (13)

is an exponential. (This is the procedure to be followed in doing the exercises.)
Plugging (13) into (7), we immediately have

ξ = 1 − 2s + s(eik�x + e−ik�x ).

Thus we again recover equation (9) for the amplification factor ξ.

NEUMANN BOUNDARY CONDITIONS

Suppose that the interval is 0 ≤ x ≤ l and the boundary conditions are

ux (0, t) = g(t) and ux (l, t) = h(t).
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Although the simplest approximations would be

un
1 − un

0

�x
= gn and

un
J − un

J−1

�x
= hn,

they would introduce local truncation errors of order O(�x), bigger than the
O(�x)2 errors in the equation. To introduce O(�x)2 errors only, we prefer
to use centered differences for the derivatives on the boundary.

To accomplish this, we introduce “ghost points” un
−1 and un

J+1 in addition
to un

0, . . . , un
J . The discrete boundary conditions then are

un
1 − un

−1

2 �x
= gn and

un
J+1 − un

J−1

2 �x
= hn. (14)

At the nth time step, we can calculate un
0, . . . , un

J using the scheme for the
PDE, and then calculate the values at the ghost points using (14).

CRANK-NICOLSON SCHEME

We could try to avoid the restrictive stability condition (10) by using another
scheme. There is a class of schemes that is stable no matter what the value of
s. In fact, let’s denote the centered second difference by

un
j+1 − 2un

j + un
j−1

(�x)2 = (δ2u)
n
j .

Pick a number θ between 0 and 1. Consider the scheme

un+1
j − un

j

�t
= (1 − θ )(δ2u)

n
j + θ(δ2u)

n+1
j . (15)

We’ll call it the θ scheme. If θ = 0, it reduces to the previous scheme. If
θ > 0, the scheme is implicit, since un+1 appears on both sides of the equation.
Therefore, (15) means that we solve a set (n = 1) of algebraic linear equations
to get u1

j , another set (n = 2) to get u2
j , and so on.

Let us analyze the stability of this scheme by plugging in a separated
solution

un
j = (eik�x )

j
(ξ (k))n

as before. Then

ξ (k) = 1 − 2(1 − θ )s(1 − cos k�x)

1 + 2θs(1 − cos k�x)
,

where s = �t/(�x)2 (see Exercise 9).
Again we look for the stability condition: |ξ (k)| ≤ 1 for all k. It is always

true that ξ (k) ≤ 1, but the condition ξ (k) ≥ −1 requires that

s(1 − 2θ )(1 − cos k�x) ≤ 1.
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(Why?) If 1 − 2θ ≤ 0, it is always true! This means that

if 1
2 ≤ θ ≤ 1, there is no restriction on the size of s (16)

for stability to hold. Such a scheme is called unconditionally stable.
The special case θ = 1

2 is called the Crank–Nicolson scheme. It has the
template

1

2

s

1 + s
• ∗ •1

2

s

1 + s

1

2

s

1 + s
• 1 − s

1 + s
• •1

2

s

1 + s

On the other hand, in case θ < 1
2 , a necessary condition for stability is

s ≤ (2 − 4θ )−1. Thus (15) is expected to be a stable scheme if

�t

(�x)2 = s <
1

2 − 4θ
. (17)

EXERCISES

1. (a) Solve the problem ut = uxx in the interval [0, 4] with u = 0 at both
ends and u(x, 0) = x(4 − x), using the forward difference scheme
with �x = 1 and �t = 0.25. Calculate four time steps (up to t = 1).

(b) Do the same with �x = 0.50 and �t = 0.0625 = 1
16 . Calculate

four time steps (up to t = 0.25).
(c) Compare your answers with each other. How close are they at x =

2.0, t = 0.25?
2. Do the same with �x = 1 and �t = 1. Calculate by hand or by computer

up to t = 7.
3. Solve ut = uxx in the interval [0, 5] with u(0, t) = 0 and u(5, t) = 1 for

t ≥ 0, and with u(x, 0) = 0 for 0 < x < 5.
(a) Compute u(3, 3) using the mesh sizes �x = 1 and �t = 0.5.
(b) Write the exact solution as an infinite series. Calculate u(3, 3) to

three decimal places exactly. Compare with your answer in (a).

4. Solve by hand the problem ut = uxx in the interval [0, 1] with ux = 0
at both ends. Use the forward scheme (2) for the PDE, and the scheme
(14) for the boundary conditions. Assume �x = 1

5 , �t = 1
100 , and start

with the initial data: 0 0 64 0 0 0. Compute for four time steps.

5. Using the forward scheme (2), solve ut = uxx in [0, 5] with the mixed
boundary conditions u(0, t) = 0 and ux (5, t) = 0 for t ≥ 0, and the ini-
tial condition u(x, 0) = 25 − x2 for 0 < x < 5. Use �x = 1 and �t =
1
2 . Compute u(3, 3) approximately.
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6. Do the same with the conditions ux (0, t) = u(5, t) = 0 and u(x, 0) = x .
7. Show that the local truncation error in the Crank-Nicolson scheme is

O((�x)2 + (�t)2).
8. (a) Write down the Crank–Nicolson scheme (θ = 1

2 ) for ut = uxx .
(b) Consider the solution in the interval 0 ≤ x ≤ 1 with u = 0 at both

ends. Assume u(x, 0) = φ(x) and φ(1 − x) = φ(x). Show, using
uniqueness, that the exact solution must be even around the midpoint
x = 1

2 . [That is, u(x, t) = u(1 − x, t).]
(c) Let �x = �t = 1

6 . Let the initial data be 0 0 0 1 0 0 0.
Compute the solution by the Crank–Nicolson scheme for one time
step (t = 1

6 ). (Hint: Use part (b) to halve the computation.)

9. For the θ scheme (15) for the diffusion equation, provide the details of
the derivation of the stability conditions (16) and (17).

10. For the diffusion equation ut = uxx , use centered differences for both ut
and uxx .
(a) Write down the scheme. Is it explicit or implicit?
(b) Show that it is unstable, no matter what �x and �t are.

11. Consider the equation ut = auxx + bu, where a and b are constants and
a > 0. Use forward differences for ut , use centered differences for uxx ,
and use buj

n for the last term.
(a) Write the scheme. Let s = �t/(�x)2.
(b) Find the condition on s for numerical stability. (Hint: check condi-

tion (12).)
12. (a) Solve by hand the nonlinear PDE ut = uxx + (u)3 for all x using

the standard forward difference scheme with (u)3 treated as (un
j )

3.
Use s = 1

4 , �t = 1, and initial data u0
j = 1 for j = 0 and u0

j = 0
for j �= 0. Solve for u3

0.
(b) Compare your answer to the same problem without the nonlinear

term.
(c) Exactly solve the ODE dv/dt = (v)3 with the condition v(0) = 1.

Use it to explain why u3
0 is so large in part (a).

(d) Repeat part (a) with the same initial data but for the PDE ut =
uxx − (u)3. Compare with the answer in part (a) and explain.

13. Consider the following scheme for the diffusion equation:

un+1
j − un−1

j

2 �t
= un

j+1 + un
j−1 − un+1

j − un−1
j

(�x)2 .

It uses a centered difference for ut and a modified form of the centered
difference for uxx .
(a) Solve it for un+1

j in terms of s and the previous time steps.
(b) Show that it is stable for all s.

14. (a) Formulate an explicit scheme for ut = uxx + uyy .
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(b) What is the stability condition for your scheme in terms of s1 =
�t/(�x)2 and s2 = �t/(�y)2?

15. Formulate the Crank-Nicolson scheme for ut = uxx + uyy .

8.3 APPROXIMATIONS OF WAVES

In this section we continue our discussion of finite difference approximations
for some very simple PDEs. Although the PDEs are simple, the methods we
develop can be used for more difficult, even nonlinear, equations. For the
one-dimensional wave equation utt = c2uxx the simplest scheme is the one
using centered differences for both terms:

un+1
j − 2un

j + un−1
j

(�t)2 = c2
un

j+1 − 2un
j + un

j−1

(�x)2 . (1)

It is explicit since the (n + 1)st time step appears only on the left side. Thus

un+1
j = s

(
un

j+1 + un
j−1

) + 2(1 − s)un
j − un−1

j , (2)

where we now denote s = c2(�t)2/(�x)2. Its template diagram is

n + 1 ∗
n • • •

s 2 − 2s s
n − 1 •

−1

Notice that the value at the (n + 1)st time step depends on the two previ-
ous steps, because the wave equation has time derivatives of second order.
Therefore, the first two rows u0

j and u1
j must be given as initial conditions.

Example 1.

If we pick s = 2, the scheme simplifies to

un+1
j = 2

(
un

j+1 + un
j−1 − un

j

) − un−1
j (3)

and it is easy to compute by hand the solution shown in Figure 1, given
its first two rows. This horrendous solution bears no relationship to the
true solution of the wave equation, which is a pair of waves traveling to
the left and right, u(x, t) = 1

2 [φ(x + ct) + φ(x − ct)]. The scheme for
s = 2 is highly unstable. �
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Figure 1

Example 2.

For s = 1 we have �x = c �t and the scheme

un+1
j = un

j+1 + un
j−1 − un−1

j . (4)

The same initial data as above lead to the solution shown in Figure 2.
This is an excellent approximation to the true solution! �

INITIAL CONDITIONS

How do we handle the initial conditions? We approximate the conditions
u(x, 0) = φ(x) and ∂u/∂t(x, 0) = ψ(x) by

u0
j = φ( j�x),

u1
j − u−1

j

2 �t
= ψ( j�x). (5)

This approximation is chosen to have a O(�x)2 local truncation error in order
to match the O(�x)2 + O(�t)2 truncation error of the scheme (2). (If we
only used a simpler approximation with a O(�x) error, the initial conditions
would contaminate the solution with too big an error.) Let’s abbreviate φ j =
φ( j�x) and ψ j = ψ( j�x). Now (2) in the case n = 0 is

u1
j + u−1

j = s
(
u0

j+1 + u0
j−1

) + 2(1 − s)u0
j .

Together with (5), this gives us the starting values

u0
j = φ j ,

u1
j = s

2
(φ j+1 + φ j−1) + (1 − s)φ j + ψj�t,

(6)

the first two rows of the computation. Then we march ahead in time to get u2
j ,

u3
j , and so on, using (2).

Figure 2
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Figure 3

Example 3.

For instance, let the initial data be

φ(x) = 0 0 0 0 0 0 1 2 1 0 0 0 0 0 0

and ψ(x) ≡ 0. Let s = 1. Then from (6) we get the starting values (the
first two rows)

0 0 0 0 0 1
2 1 1 1 1

2 0 0 0 0 0
0 0 0 0 0 0 1 2 1 0 0 0 0 0 0 .

If we use (4), we get the solution shown in Figure 3. This is an
even better approximation to the true solution than that shown in Fig-
ure 2. �

STABILITY CRITERION

Now let’s analyze the stability by the method of Section 8.2. Again, a clue may
be found in the values of the coefficients. None are negative if s ≤ 1. Once
again this simple observation turns out to be the correct stability condition.
However, proceeding more logically, we separate the variables

un
j = (η) j (ξ )n where η = eik�x .

From (1) we get

ξ + 1

ξ
− 2 = s

(
η + 1

η
− 2

)
= 2s [cos(k �x) − 1]. (7)

Letting p = s[cos(k�x) − 1] for the sake of brevity, (7) can be written as

ξ 2 − 2(1 + p)ξ + 1 = 0, which has the roots ξ = 1 + p ±
√

p2 + 2p. (8)

Note that p ≤ 0. If p < −2, then p2 + 2p > 0 and there are two real roots,
one of which is less than −1. Thus for one of the roots we have |ξ | > 1, so that
the scheme is unstable. On the other hand, if p > −2, then p2 + 2p < 0 and
there are two complex conjugate roots 1 + p ± i

√
−p2 − 2p. These complex

roots satisfy

|ξ |2 = (1 + p)2 − p2 − 2p = 1.
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Figure 4

So ξ = cos θ + i sin θ for some real number θ . In this case the solutions
oscillate in time (just as they ought to for the wave equation). Finally, if
p = −2, then ξ = −1.

Thus a necessary condition for stability is that p ≥ −2 for all k. This
means that

s ≤ 2

1 − cos(k �x)

for all k. Thus stability requires that

s = c2 (�t)2

(�x)2 ≤ 1. (9)

There is a nice way to understand this condition (9). At each time step �t
the values of the numerical solution spread out by one unit �x . So the ratio
�x/�t is the propagation speed of the numerical scheme. The propagation
speed for the exact wave equation is c. So the stability condition requires
the numerical propagation speed to be at least as large as the continuous
propagation speed. In Figure 4 we have sketched the domains of dependence
of the true and the computed solutions for the case c = 1 and �t/�x = 2 (so
that s = 4). The computed solution at the point P does not make use of the
initial data in the regions B and C as it ought to. Therefore, the scheme leads
to entirely erroneous values of the solution.

On the other hand, even the stable schemes do not do a very good job
at resolving singularities in the true solution. For instance, one solution of
the nice scheme (4) with s = 1 is shown in Figure 5. This initial condition is

Figure 5
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“singular” because it has a sudden up and down jump. The solution in Figure 5
isn’t as unstable as the one in Figure 1, but it surely is a poor approximation
to the true solution. (It’s a good approximation only for someone who wears
fuzzy glasses.) The difficulty here is that the initial function φ(x) has a signif-
icant “jump” at one point; the earlier cases illustrated in Figures 2 and 3 were
at least slightly gradual. More sophisticated schemes must be used to solve
problems with singularities, as in shock wave problems.

There are also implicit schemes for the wave equation (like the Crank–
Nicolson scheme) but they are less urgently needed here since the stability
condition (9) for the explicit scheme does not require �t to be so much smaller
than �x .

Example 4.

For a more interesting PDE, let’s consider the nonlinear wave equation

utt − �u + u + [u]7 = 0 (10)

in three dimensions (x, y, z), where [u]7 denotes the seventh power. Let
(r, θ, φ) be the usual spherical coordinates. We shall make the calculation
manageable by computing only those solutions that are independent of
θ and φ. Then the equation takes the form

utt − urr − 2

r
ur + u + [u]7 = 0

by (6.1.7), which is a modification of the one-dimensional wave equa-
tion. To get rid of the middle term, it is convenient to change variables
v(r, t) = ru(r, t) to get{

vt t − vrr + v + r−6[v]7 = 0 (0 < r < ∞)

v(0, t) = 0.
(11)

The last condition comes from the definition of v.
Now we use the scheme (1) with s = 1 and with suitable additional

terms to get

vn+1
j − 2vn

j + vn−1
j

(�t)2
= vn

j+1 − 2vn
j + vn

j−1

(�r )2

−1

2

(
vn+1

j + vn−1
j

) − 1

8
( j�r )−6

(
vn+1

j

)8 − (
vn−1

j

)8

vn+1
j − vn−1

j

(12)

One reason for this treatment of the additional terms is that this scheme
has a constant energy (independent of n), an analog of the continuous
energy of Section 2.2 (see Exercise 9).

Using the mesh sizes �r = �t = 0.002 and certain initial data, the
computed solution is graphically presented in Figure 6 (see [SV]). The
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Figure 6
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effect of the nonlinear term is visible in the oscillations of fairly large
amplitude which reflect at the origin. �

EXERCISES

1. (a) Write the scheme (2) for the wave equation in the case s = 1
4 and

draw the template.
(b) Compute the solution by hand for five time levels with the same

starting values as in Figure 2.
(c) Convince yourself that the computed solution is not too accurate but

is “in the right ballpark.” When interpreting the solution remember
that �x/�t = 2.

2. Solve by hand for a few time steps the numerical scheme (2) for utt =
uxx , with u(x, 0) ≡ 0, with

ψ j = 0 0 0 0 1 2 1 0 0 0 0

and with the starting scheme (6).
(a) First use �t = 1 and �x = 0.5.
(b) Then use �t = 1 and �x = 1.
(c) Compare your answers to parts (a) and (b).

3. (a) Use the scheme (2) with �x = �t = 0.2 to approximately solve
utt = uxx with u(x, 0) = x2 and ut (x, 0) = 1. Solve it in the region
{0 ≤ t ≤ 1, |x | ≤ 2 − t}.

(b) Solve the problem exactly and compare the exact and approximate
solutions.

4. (a) Use the scheme (2) with �x = �t = 0.25 to solve utt = uxx ap-
proximately in the interval 0 ≤ x ≤ 1 with u = 0 at both ends and
u(x, 0) = sin πx and ut (x, 0) = 0. Show that the solution is peri-
odic.

(b) Compare your answer to the exact solution. What is its period?
5. Solve by hand for a few time steps the equation utt = uxx in the finite

interval 0 ≤ x ≤ 1, with ux = 0 at both ends, using �t = �x = 1
6 and

the initial conditions

u(x, 0) = 0 0 0 1 2 1 0 0 0 and ut (x, 0) ≡ 0.

Use central differences for the boundary derivatives as in (8.2.14) and
use second-order-accurate initial conditions as in (6). Do you see the
reflections at the boundary?

6. Consider the wave equation on the half-line 0 < x < ∞, with the bound-
ary condition u = 0 at x = 0. With the starting values u0

4 = u0
5 = u1

4 =
u1

5 = 1 and u0
j = u1

j = 0 for all other j ( j = 1, 2, . . .), compute the so-
lution by hand up to 10 time steps. Observe the reflection at the boundary
and compare with Section 3.2.
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7. Solve by hand the nonlinear equation utt = uxx + u3 up to t = 4, using
the same initial conditions as in Figure 3, replacing the cubic term by
(un

j )
3, and using �x = �t = 1. What is the effect of the nonlinear term?

Compare with the linear problem in Figure 3.
8. Repeat Exercise 7 by computer for the equation utt = uxx − u3 using an

implicit scheme like (12) with �t = �x = 1.
9. Consider the scheme (12) for the nonlinear wave equation (10). Let the

discrete energy be defined as

En

�r
= 1

2

∑
j

(
vn+1

j − vn
j

�t

)2

+ 1

2

∑
j

(
vn+1

j+1 − vn+1
j

�r

)(
vn

j+1 − vn
j

�r

)

+ 1

4

∑
j

[(
vn+1

j

)2
+ (

vn
j

)2
]

+ 1

16

∑
j

(
vn+1

j

)8
+

(
vn

j

)8

( j�r )6 .

By multiplying (12) by 1
2 (vn+1

j − vn−1
j ), show that En = En−1. Conclude

that En does not depend on n.
10. Consider the equation ut = ux . Use forward differences for both partial

derivatives.
(a) Write down the scheme.
(b) Draw the template.
(c) Find the separated solutions.
(d) Show that the scheme is stable if 0 < �t/�x ≤ 1.

11. Consider the first-order equation ut + aux = 0.
(a) Solve it exactly with the initial condition u(x, 0) = φ(x).
(b) Write down the finite difference scheme which uses the forward

difference for ut and the centered difference for ux .
(c) For which values of �x and �t is the scheme stable?

8.4 APPROXIMATIONS OF LAPLACE’S EQUATION

For Dirichlet’s problem in a domain of irregular shape, it may be more con-
venient to compute numerically than to try to find the Green’s function. As
with the other equations, the same ideas of numerical computation can easily
be carried over to more complicated equations. For Laplace’s equation

uxx + uyy = 0

the natural approximation is that of centered differences,

u j+1,k − 2u j,k + u j−1,k

(�x)2 + u j,k+1 − 2u j,k + u j,k−1

(�y)2 = 0. (1)



8.4 APPROXIMATIONS OF LAPLACE’S EQUATION 219

Here uj,k is an approximation to u( j�x, k�y). The relative choice of mesh
sizes turns out not to be critical so we just choose �x = �y. Then (1) can be
written as

u j,k = 1
4 (u j+1,k + u j−1,k + u j,k+1 + u j,k−1). (2)

Thus uj,k is the average of the values at the four neighboring sites. The tem-
plate is

•
1
4

• ∗ •
1
4

1
4

•
1
4

The scheme (2) has some nice properties. The most obvious one is the
mean value property, the exact analog of the same property for the Laplace
equation. In its discrete version (2), the difference equation and the mean
value property become identical! It follows that a solution ujgk cannot take
its maximum or minimum value at an interior point, unless it is a constant;
for otherwise it couldn’t be the average of its neighbors. Thus, if (2) is valid
in a region, the maximum and minimum values can be taken only at the
boundary.

To solve the Dirichlet problem for uxx + uyy = 0 in D with given bound-
ary values, we draw a grid covering D and approximate D by a union of
squares (see Figure 1). Then the discrete solution is specified on the bound-
ary of the “discrete region.” Our task is to fill in the interior values so as to
satisfy (2). In contrast to time-dependent problems, no marching method is
available. If N is the number of interior grid points, the equations (2) form a
system of N linear equations in N unknowns. For instance, if we divide x and
y each into 100 parts, we get about 10,000 little squares. Thus N can be very
large.

Figure 1
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Figure 2

The system we get in this way has exactly one solution. To prove this,
suppose that there were two solutions, {uj,k} and {vj,k}, of (2) in D with
identical boundary values. Their difference {uj,k − vj,k} also satisfies (2) in
D but with zero boundary values. By the maximum principle stated above,
uj,k − vj,k ≤ 0, and by the minimum principle, uj,k − vj,k ≥ 0. Hence uj,k =
vj,k . So there is at most one solution. But this means that the determinant of
the linear system of N equations is not zero, which means that there exists
exactly one solution.

Example 1.

As a baby example, consider solving (2) in the square with the boundary
values indicated in Figure 2(a). This is a set of four linear equations, one
for each interior point. The solution is given in Figure 2(b). Notice that
each interior entry is indeed the average of its four neighbors. �

JACOBI ITERATION

In the absence of a marching method to solve (2), several techniques are
available. One is called Jacobi iteration. We start from any reasonable first
approximation u(1)

j,k . Then we successively solve

u(n+1)
j,k = 1

4

[
u(n)

j+1,k + u(n)
j−1,k + u(n)

j,k+1 + u(n)
j,k−1

]
. (3)

It can be shown that u j,k = lim u(n)
j,k converges as n → ∞ to a limit which is

a solution of (2). It converges, however, very slowly and so Jacobi iteration is
never used in practice. Since N is usually quite large, a more efficient method
is needed.

It might be noticed that (3) is exactly the same calculation as if one were
solving the two-dimensional heat equation vt = vxx + vyy using centered dif-
ferences for vxx and vyy and using the forward difference for vt , with �x = �y
and �t = (�x)2/4 (see Exercise 11). In effect, we are solving the Dirichlet
problem by taking the limit of the discretized v(x, t) as t → ∞.

GAUSS–SEIDEL METHOD

This method improves the rate of convergence. Here it is important to specify
the order of operations. Let’s compute u(n+1)

j,k one row at a time starting at
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the bottom row and let’s go from left to right. But every time a calculation is
completed, we’ll throw out the old value and update it by its newly calculated
one. This procedure means that

u(n+1)
j,k = 1

4

[
u(n)

j+1,k + u(n+1)
j−1,k + u(n)

j,k+1 + u(n+1)
j,k−1

]
. (4)

The new values (with superscript n + 1) are used to the left and below the ( j, k)
location. It turns out that Gauss–Seidel works about twice as fast as Jacobi.

SUCCESSIVE OVERRELAXATION

This method is still faster. It is the scheme

u(n+1)
j,k = u(n)

j,k + ω
[
u(n)

j+1,k + u(n+1)
j−1,k + u(n)

j,k+1 + u(n+1)
j,k−1 − 4u(n)

j,k

]
. (5)

If ω = 1
4 , it is the same as Gauss–Seidel. It is quite surprising that a different

choice of ω could make a significant improvement, but it does. But how to
choose the relaxation factor ω in practice is an art whose discussion we leave
to more specialized texts. Note again that once we know that u j,k = lim u(n)

j,k
exists, the limit must satisfy

uj,k = uj,k + ω(uj+1,k + uj−1,k + uj,k+1 + uj,k−1 − 4uj,k)

and hence it satisfies (2).

EXERCISES

1. Set up the linear equations to find the four unknown values in Figure 2(a),
write them in vector-matrix form, and solve them. You should deduce
the answer in Figure 2(b).

2. Apply Jacobi iteration to the example of Figure 2(a) with zero initial
values in the interior. Compute six iterations.

3. Apply four Gauss–Seidel iterations to the example of Figure 2(a).
4. Solve the example of Figure 2(a) but with the boundary conditions (by

rows, top to bottom) 0, 48, 0, 0; 0, ∗, ∗, 24; 0, ∗, ∗, 0; 0, 0, 0, 0.
5. Consider the PDE uxx + uyy = 0 in the unit square {0 ≤ x ≤ 1,

0 ≤ y ≤ 1} with the boundary conditions:

u = 0 on x = 0, on x = 1, and on y = 1
u = 324 x2(1 − x) on y = 0.

Calculate the approximation to the solution using finite differences (2)
with the very coarse grid �x = �y = 1

3 .
(Hint: You may use Figure 2 if you wish.)

6. (a) Write down the scheme using centered differences for the equation
uxx + uyy = f (x, y).
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(b) Use it with �x = �y = 0.5 to solve the problem uxx + uyy = 1 in
the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 with u = 0 on the boundary.

(c) Repeat with �x = �y = 1
3 .

(d) Compute the exact value at the center of the square and compare
with your answer to part (b).

7. Solve uxx + uyy = 0 in the unit square {0 ≤ x ≤ 1, 0 ≤ y ≤ 1} with the
boundary conditions: u(x, 0) = u(0, y) = 0, u(x, 1) = x, u(1, y) = y.
Use �x = �y = 1

4 , so that there are nine interior points for the
scheme (2).
(a) Use two steps of Jacobi iteration, with the initial guess that the value

at each of the nine points equals 1.
(b) Use two steps of Gauss–Seidel iteration, with the same initial guess.
(c) Compare parts (a) and (b) and the exact solution.

8. Formulate a finite difference scheme for uxx + uyy = f (x, y) in the
unit square {0 ≤ x ≤ 1, 0 ≤ y ≤ 1} with Neumann conditions ∂u/∂n =
g(x, y) on the boundary. Use uj,k for −1 ≤ j ≤ N + 1 and −1 ≤ k ≤
N + 1 and use centered differences for the normal derivative, such as
(u j,N+1 − u j,N−1)/2 �y. [That is, use ghost points as in (8.2.14).]

9. Apply Exercise 8 to approximately find the harmonic function in the
unit square with the boundary conditions ux (0, y) = 0, ux (1, y) = −1,
uy(x, 0) = 0, uy(x, 1) = 1. Formulate a Gauss–Seidel method of solving
the difference scheme and compute two iterations with �x = �y =
1
3 . Compare with the exact solution u = 1

2 y2 − 1
2 x2. You may use a

computer program.
10. Try to do the same with the boundary conditions ux (0, y) = 0,

ux (1, y) = 1, uy(x, 0) = 0, uy(x, 1) = 1. What’s wrong?
11. Show that performing Jacobi iteration (3) is the same as solving

the two-dimensional diffusion equation vt = vxx + vyy using centered
differences for vxx and vyy and using the forward difference for vt , with
�x = �y and �t = (�x)2/4.

12. Do the same (solving the diffusion equation) with �t = ω(�x)2 and
compare with successive overrelaxation.

8.5 FINITE ELEMENT METHOD

All computational methods reduce PDEs to discrete form. But there are other
methods besides finite differences. Here we briefly discuss the finite element
method. The idea is to divide the domain into simple pieces (polygons) and
to approximate the solution by extremely simple functions on these pieces.
In one of its incarnations, the one we shall discuss, the simple pieces are
triangles and the simple functions are linear. The finite element method was
developed by engineers to handle curved or irregularly shaped domains. If D
is a circle, say, they were having trouble using finite differences, which are not
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Figure 1

particularly efficient simply because a circle is not very accurately partitioned
into rectangles.

Let’s consider the Dirichlet problem for Poisson’s equation in the plane

−�u = f in D, u = 0 on bdyD. (1)

First, D is triangulated; that is, D is approximated by a region DN which is the
union of a finite number of triangles (see Figure 1). Let the interior vertices
be denoted by V1, . . . , VN .

Next, we pick N trial functions, v1(x, y), . . . , vN (x, y), one for each in-
terior vertex. Each trial function vi(x, y) is chosen to equal 1 at “its” vertex Vi
and to equal 0 at all the other vertices (see Figure 2). Inside each triangle, each
trial function is a linear function: vi (x, y) = a + bx + cy. (The coefficients
a, b, c are different for each trial function and for each triangle.) This pre-
scription determines vi(x, y) uniquely. In fact, its graph is simply a pyramid of
unit height with its summit at Vi and it is identically zero on all the triangles
that do not touch Vi.

We shall approximate the solution u(x, y) by a linear combination of the
vi(x, y):

uN (x, y) = U1v1(x, y) + · · · + UNvN (x, y). (2)

How do we choose the coefficients U1, . . . , UN ?
To motivate our choice we need a digression. Let’s rewrite the problem

(1) using Green’s first identity [formula (G1) from Section 7.1]. We multiply

Figure 2
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Poisson’s equation by any function v(x, y) that vanishes on the boundary. Then∫∫
D

∇u · ∇v dx dy =
∫∫

D

f v dx dy. (3)

Rather than requiring (3) to be valid for uN(x, y) for all functions v(x, y), we ask
only that it be valid for the first N special trial functions v = vj ( j = 1, . . . , N ).
Thus, with u(x, y) = uN(x, y) and v(x, y) = vj(x, y), (3) becomes

N∑
i=1

Ui

⎛
⎝∫∫

D

∇vi · ∇vj dx dy

⎞
⎠ =

∫∫
D

f vj dx dy.

This is a system of N linear equations ( j = 1, . . . , N) in the N unknowns
U1, . . . , UN . If we denote

mi j =
∫∫

D

∇vi · ∇v j dx dy and fj =
∫∫

D

f vj dx dy, (4)

then the system takes the form

N∑
i=1

mi jUi = fj ( j = 1, . . . , N ). (5)

The finite element method consists of calculating mij and fj from (4) and
solving (5). The approximate value of the solution u(x, y) then is given by (2).

The trial functions vj are completely explicit and depend only on the ge-
ometry. The approximate solution uN automatically vanishes on the boundary
of DN . Notice also that, at a vertex Vk = (xk, yk),

uN (xk, yk) = U1v1(xk, yk) + · · · + UNvN (xk, yk) = Uk,

since vi (xk,yk) equals 0 for i �= k and equals 1 for i = k. Thus the coefficients
are precisely the values of the approximate solution at the vertices.

Another way to understand uN (x, y) is that it is a continuous and
piecewise-linear function (linear on each triangle), simply because it is a
sum of such functions. In fact, it is the unique piecewise-linear continuous
function on the triangulation such that uN (xk, yk) = Uk (k = 1, . . . , N ).

Notice also that the matrix mi j is “sparse”: mi j = 0 whenever Vi and Vj
are not neighboring vertices. Furthermore, for a pair of neighboring vertices,
mij is easy to compute since each vi (x, y) is linear on each triangle.

Triangulations with linear functions are not the only versions of the finite
element method used in practice. Two other versions in two variables are as
follows.

(i) Bilinear elements on rectangles: D is divided into rectangles on
each of which the solution is approximated using trial functions
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vi (x, y) = a + bx + cy + dxy. Each trial function is associated with
a corner of a rectangle.

(ii) Quadratic elements on triangles: D is triangulated and the trial func-
tions have the form vi (x, y) = a + bx + cy + dx2 + exy + f y2.
Each trial function is associated with one of the six “nodes” of a
triangle, namely, the three vertices and the midpoints of the three
sides.

For a reference, see [TR].
As a further example, consider solving the diffusion equation

ut = κuxx + f (x, t); u = 0 at x = 0, l; u = φ(x) at t = 0.

Suppose, for simplicity, that l is an integer. Partition the interval [0, l] into l
equal subintervals. We assign the trial function v j (x) to each of the N = l − 1
interior vertices, where v j (x) is the linear element of Exercise 3. Now we
multiply the diffusion equation by any function v(x) that vanishes on the
boundary. Integrating by parts, we get

d

dt

∫ l

0
uv dx = −κ

∫ l

0

∂u

∂x

dv

dx
dx +

∫ l

0
f (x, t) v(x) dx . (6)

In order to use the finite-element method, we look for a solution of the form

u(x, t) =
N∑

i=1

Ui (t) vi (x)

and we merely require (6) to hold for v = v1, . . . , vN . Then

N∑
i=1

(∫ l

0
viv j dx

)
dUi

dt
= −κ

N∑
i=1

(∫ l

0

dvi

dx

dv j

dx
dx

)
Ui (t) +

∫ l

0
f (x, t)v j (x) dx .

This is a system of ODEs for U1, . . . , UN that can be written as a vector
equation as follows.

Let U be the column vector [U1, . . . , UN ] and let F be the column vector
[F1(t), . . . , FN (t)] with Fj (t) = ∫ l

0 f (x, t)vj (x)dx . Let M be the matrix with
entries mij and K be the matrix with entries kij where

kij =
∫ l

0
viv j dx, mi j =

∫ l

0

dvi

dx

dv j

dx
dx .

Then the system of N ODEs in N unknowns takes the simple vector form

K
dU

dt
= −κMU (t) + F(t). (7)
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M is called the stiffness matrix, K the mass matrix, and F the forcing vector.
In Exercise 3(a), the stiffness and mass matrices are computed to be

M =

⎛
⎜⎜⎜⎝

2 −1 0 · · · 0
−1 2 −1 · · · 0

· · ·
0 · · · 0 −1 2

⎞
⎟⎟⎟⎠, K =

⎛
⎜⎜⎜⎝

2
3

1
6 0 · · · 0

1
6

2
3

1
6 · · · 0

· · ·
0 · · · 0 1

6
2
3

⎞
⎟⎟⎟⎠

The matrices M and K have two important features. They are sparse and they
depend only on the trial functions. So they remain the same as we change the
data. We also have the initial condition

Ui (0) = �i ≡
∫ l

0
φ(x)vi (x) dx . (8)

This ODE system (7)-(8) can be solved numerically by any of a number
of methods. One simple method is Euler’s. One chooses tp = p�t for p =
0, 1, 2, . . . and then solves

U (p+1) = U (p) + �tW (p),

K W (p) = −κ MU (p) + F(tp).

Another method is the backwards Euler method, in which we solve

K

[
U (p+1) − U (p)

�t

]
= −κ MU (p+1) + F(tp+1).

This is the same as

[K + κ�t M] U (p+1) = KU (p) + �t F(tp+1),

which is solved recursively for U (1), U (2), . . . .

EXERCISES

1. Consider the problem uxx + uyy = −4 in the unit square with u(0, y) = 0,
u(1, y) = 0, u(x, 0) = 0, u(x, 1) = 0. Partition the square into four trian-
gles by drawing its diagonals. Use the finite element method to find the
approximate value u( 1

2 ,
1
2 ) at the center.

2. (a) Find the area A of the triangle with three given vertices (x1, y1),
(x2, y2), and (x3, y3).

(b) Let (x1, y1) be a vertex in the finite element method and let v(x, y)
be its trial function. Let T be one of the triangles with that vertex and
let (x2, y2) and (x3, y3) be its other two vertices. Find the formula for
v(x, y) on T .

3. (Linear elements on intervals) In one dimension the geometric building
blocks of the finite element method are the intervals. Let the trial function
v j (x) be the “tent” function defined by v j (x) = 1 − j + x for j − 1 ≤
x ≤ j, v j (x) = 1 + j − x for j ≤ x ≤ j + 1, and v j (x) = 0 elsewhere.
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That is, v j (x) is continuous and piecewise-linear with v j ( j) = 1
and v j (k) = 0 for all integers k �= j .
(a) Show that

∫
[v j (x)]2dx = 2 and

∫
v j (x)v j+1(x) dx = −1.

(b) Deduce that the one-dimensional analog of the matrix mij is the
tridiagonal matrix with 2 along the diagonal and −1 next to the
diagonal.

4. (Finite elements for the wave equation) Consider the problem utt = uxx
in [0, l], with u = 0 at both ends, and some initial conditions. For sim-
plicity, suppose that l is an integer and partition the interval into l equal
sub-intervals. Each of the l − 1 = N interior vertices has the trial func-
tion defined in Exercise 3. The approximate solution is defined by the
formula uN (x) = U1(t)v1(x) + · · · + UN (t)vN (x), where the coefficients
are unknown functions of t.
(a) Show that a reasonable requirement is that

N∑
i=1

U ′′
i (t)

∫ l

0
vi (x)v j (x) dx +

N∑
i=1

Ui (t)
∫ l

0

∂vi

∂x

∂v j

∂x
dx = 0

for j = 1, . . . , N .
(b) Show that the finite element method reduces in this case to a system of

ODEs: K d2U/dt2 + MU = 0 with an initial condition U (0) = �.
Here K and M are N × N matrices, U(t) is an N-vector function, and
� is an N-vector.

5. (Bilinear elements on rectangles) On the rectangle with vertices
(0, 0), (A, 0), (0, B), and (A, B), find the bilinear function v(x, y) =
a + bx + cy + dxy with the values U1, U2, U3, and U4, respectively.
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WAVES IN SPACE

In two and three dimensions we derive the energy and causality principles and
then solve the wave equation in the absence of boundaries. In Section 9.3 we
study the geometry of the characteristics. We also solve the wave equation with
a source term. In Section 9.4 we solve the diffusion and Schrödinger equations
and the harmonic oscillator. In the final section we derive the energy levels of
the hydrogen atom.

9.1 ENERGY AND CAUSALITY

Our goal now is to study the wave equation

utt − c2 �u = 0 (1)

in two and three dimensions in the absence of boundaries. As before, we
concentrate on the three-dimensional case

utt = c2(uxx + uyy + uzz).

This equation is invariant under (i) translations in space and time, (ii) rotations
in space, and (iii) Lorentz transformations (see Exercise 4).

THE CHARACTERISTIC CONE

The notion of characteristics is as fundamental as it was in one dimension,
but now the characteristics are surfaces. Take, for example, a characteristic
line in one dimension x − x0 = c(t − t0) and rotate it around the t = t0 axis.
You get the “hypercone”

|x − x0| = [(x − x0)2 + (y − y0)2 + (z − z0)2]
1/2 = c|t − t0|, (2)

which is a cone in four-dimensional space-time. The set in space-time defined
by equation (2) is called the characteristic cone or light cone at (x0, t0). The
reason for the latter term is that if c is the speed of light in electromagnetics,
the cone is the union of all the light rays that emanate from the point (x0, t0).

228
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Figure 1

The solid light cone is the “inside” of the cone, namely, {|x − x0| < c|t − t0|}.
It is the union of the future and the past half-cones (see Figure 1). At any fixed
time t, the light cone is just an ordinary sphere, and the future is just the ball
consisting of the points that can be reached in time t by a particle traveling
from (x0, t0) at less than the speed of light. As t → +∞ the sphere grows
concentrically at the speed c. The light cone is the quintessential characteristic
surface; general characteristic surfaces are discussed in Section 9.3.

As an exercise in geometry, let’s calculate the unit normal vector to the
light cone (2). It is the 3-surface in 4-space given by the equation

φ(t, x, y, z) ≡ −c2(t − t0)2 + (x − x0)2 + (y − y0)2 + (z − z0)2 = 0.

This is a level surface of φ, so a normal vector is the gradient vector of
φ(x, y, z, t). (We’re talking here about vectors with four components.) Now

grad φ = (φx , φy, φz, φt ) = 2(x − x0, y − y0, z − z0,−c2(t − t0)).

The unit normal vectors are

n = ± grad φ

|grad φ|

= ± (x − x0, y − y0, z − z0,−c2(t − t0))

(c4(t − t0)2 + (x − x0)2 + (y − y0)2 + (z − z0)2)
1/2 .

Let r2 = (x − x0)2 + (y − y0)2 + (z − z0)2. With this notation the equation
of the cone is r = ±c(t − t0). We can use it to simplify the formula for n to

n = ±
(

x − x0√
(c2 + 1)r2

, . . . ,
−c2(t − t0)√

(c4 + c2)(t − t0)2

)

or

n = ± c√
c2 + 1

(
x − x0

cr
,

y − y0

cr
,

z − z0

cr
, − t − t0

|t − t0|
)

. (3)
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These are the two unit normal vectors to the light cone in 4-space, one pointing
in and one pointing out.

CONSERVATION OF ENERGY

This is a fundamental concept. We mimic Section 2.2 as follows. Multiplying
the wave equation (1) by ut and doing some algebra, we obtain

0 = (utt − c2�u)ut = (
1
2 u2

t + 1
2 c2|∇u|2)t − c2∇ · (ut∇u) (4)

(also see Section 7.1). We integrate this identity over 3-space. The integral
of the last term will vanish if the derivatives of u(x, t) tend to zero (in an
appropriate sense) as |x| → ∞. Assuming this, we get

0 =
∫∫∫

∂

∂t

(
1

2
u2

t + 1

2
c2|∇u|2

)
dx (5)

(integration over all 3-space R
3). But the time derivative can be pulled out of

the integral (by Section A.3). Therefore, the (total) energy

E = 1

2

∫∫∫ (
u2

t + c2|∇u|2) dx (6)

is a constant (independent of t). The first term is the kinetic energy, the second
the potential energy.

PRINCIPLE OF CAUSALITY

Consider a solution of the wave equation with any initial conditions

u(x, 0) = φ(x) ut (x, 0) = ψ(x).

Let x0 be any point and t0 > 0 any time. The principle of causality asserts that
the value of u(x0, t0) depends only on the values of φ(x) and ψ(x) in the ball
{|x − x0| ≤ ct0}. This ball is the intersection of the solid light cone with the
initial hyperplane {t = 0} (see Figure 2).

Figure 2
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Figure 3

Proof. We start from the energy identity (4) written in the explicit form

∂t
(

1
2 u2

t + 1
2 c2|∇u|2) + ∂x (−c2ut ux ) + ∂y(−c2ut uy) + ∂z(−c2ut uz) = 0,

(7)
abbreviating ∂t = ∂/∂t , and so on. This time, however, we integrate (7) over
a solid cone frustum F in four-dimensional space-time, with top T , bottom B,
and side K. F is just a piece of a solid light cone (see Figure 3).

We regard the identity (7) as stating that the divergence of a certain
four-dimensional vector field vanishes. This is perfectly set up for the four-
dimensional divergence theorem (see Section A.3)! The frustum F is four-
dimensional and its boundary bdy F is three-dimensional. Let (nx , ny, nz, nt )
denote the unit outward normal 4-vector on bdy F and let dV denote the
three-dimensional volume integral over bdy F. Then we get∫∫∫

bdy F

[
nt
(

1
2 u2

t + 1
2 c2|∇u|2)− nx (c2ut ux )− ny(c2ut uy)− nz(c

2ut uz)
]

dV = 0.

(8)

Now bdy F = T ∪ B ∪ K , which means that the integral in (8) has three
parts. So (8) takes the form∫∫∫

T

+
∫∫∫

B

+
∫∫∫

K

= 0.

On the top T , the normal vector points straight up, so that n = (nx , ny,
nz, nt ) = (0, 0, 0, 1) and we get simply∫∫∫

T

(
1
2 u2

t + 1
2 c2|∇u|2) dx.

On the bottom B, it points straight down, so that n = (0, 0, 0, −1) and we get
simply∫∫∫

B

(−1)
(

1
2 u2

t + 1
2 c2|∇u|2) dx = −

∫∫∫
B

(
1
2ψ

2 + 1
2 c2|∇φ|2) dx.
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n

Figure 4

The integral over the mantle K is more complicated, but we claim that
it is positive (or zero). To prove this, we plug the formula (3) for n into the
K integral. We use the plus sign in (3) because the outward normal vector
has a positive t component on K (see Figure 4). Note that t < t0. As before,
r = |x − x0|. So the integral is

c√
c2 + 1

∫∫∫
K

[
1

2
u2

t + 1

2
c2|∇u|2 + x − x0

cr
(−c2ut ux )

+ y − y0

cr
(−c2ut uy) + (z − z0)

cr
(−c2ut uz)

]
dV . (9)

The last integrand can be written more concisely as

I = 1
2 u2

t + 1
2 c2|∇u|2 − cut ur , (10)

where ∇u = (ux , uy, uz),

r̂ = x − x0

|x − x0| =
(

x − x0

r
,

y − y0

r
,

z − z0

r

)
,

and the radial derivative is

ur = ux
∂x

∂r
+ uy

∂y

∂r
+ uz

∂z

∂r
= r̂ · ∇u.

Completing the square in (10), we get

I = 1
2 (ut − cur )2 + 1

2 c2
(|∇u|2 − u2

r

) = 1
2 (ut − cur )2 + 1

2 c2|∇u − ur r̂|2,
(11)

which is clearly positive. Since the integrand is positive, the integral (9) is
also positive, as we wished to show.

Hence from (8) we end up with the inequality

∫∫∫
T

(
1
2 u2

t + 1
2 c2|∇u|2) dx ≤

∫∫∫
B

(
1
2ψ

2 + 1
2 c2|∇φ|2) dx. (12)
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Figure 5

Suppose now that ψ and φ vanish in B. By (12) and the first vanish-
ing theorem in Section A.1, the integrand 1

2 u2
t + 1

2 c2|∇u|2 vanishes in T .
Therefore, ut and ∇u also vanish in T . But we can vary the height of the
frustum F at will. Therefore, ut and ∇u vanish in the whole piece of solid
cone C that lies above B (see Figure 5). So u is a constant in the solid cone
C. Since u = 0 on the bottom B, the constant is zero. So u ≡ 0 in all of C. In
particular, u(x0, y0, z0, t0) = 0.

By taking the difference of two solutions as in Section 2.2, we easily
deduce that if u and v are any two solutions of (1) and if u = v in B, then
u(x0, y0, z0, t0) = v(x0, y0, z0, t0). This completes the proof of the principle
of causality. �

The solid cone C is called the domain of dependence or the past history
of the vertex (x0, t0). As in Section 2.2, we can restate the result as follows.
We let t0 = 0.

Corollary. The initial data φ, ψ at a spatial point x0 can influence the
solution only in the solid light cone with vertex at (x0, 0).

That is, the domain of influence of a point is at most the solid light cone
emanating from that point. Thus we have proved, from the PDE alone, that
no signal can travel faster than the speed of light!

The same causality principle is true in two dimensions.

EXERCISES

1. Find all the three-dimensional plane waves; that is, all the solutions of
the wave equation of the form u(x, t) = f (k · x − ct), where k is a fixed
vector and f is a function of one variable.

2. Verify that (c2t2 − x2 − y2 − z2)
−1

satisfies the wave equation except on
the light cone.

3. Verify that (c2t2 − x2 − y2)
−1/2

satisfies the two-dimensional wave equa-
tion except on the cone {x2 + y2 = c2t2}.

4. (Lorentz invariance of the wave equation) Thinking of the coordinates
of space-time as 4-vectors (x, y, z, t), let � be the diagonal matrix with
the diagonal entries 1, 1, 1, −1. Another matrix L is called a Lorentz
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transformation if L has an inverse and L−1 = � tL�, where tL is the
transpose.
(a) If L and M are Lorentz, show that LM and L−1 also are.
(b) Show that L is Lorentz if and only if m(Lv) = m(v) for all 4-

vectors v = (x, y, z, t), where m(v) = x2 + y2 + z2 − t2 is called
the Lorentz metric.

(c) If u(x, y, z, t) is any function and L is Lorentz, let U (x, y, z, t) =
u(L(x, y, z, t)). Show that

Uxx + Uyy + Uzz − Utt = uxx + uyy + uzz − utt .

(d) Explain the meaning of a Lorentz transformation in more geometrical
terms. (Hint: Consider the level sets of m(v).)

5. Prove the principle of causality in two dimensions.
6. (a) Derive the conservation of energy for the wave equation in a domain

D with homogeneous Dirichlet or Neumann boundary conditions.
(b) What about the Robin condition?

7. For the boundary condition ∂u/∂n + b ∂u/∂t = 0 with b > 0, show that
the energy defined by (6) decreases.

8. Consider the equation utt − c2�u + m2u = 0, where m > 0, known as
the Klein–Gordon equation.
(a) What is the energy? Show that it is a constant.
(b) Prove the causality principle for it.

9.2 THE WAVE EQUATION IN SPACE-TIME

We are looking for an explicit formula for the solution of

utt = c2(uxx + uyy + uzz) (1)

u(x, 0) = φ(x) ut (x, 0) = ψ(x). (2)

[like d’Alembert’s formula (2.1.8)]. The answer is

u(x, t0) = 1

4πc2t0

∫∫
S

ψ(x) d S + ∂

∂t0

⎡
⎣ 1

4πc2t0

∫∫
S

φ(x) d S

⎤
⎦, (3)

where S is the sphere of center x0 and radius ct0. This famous formula is due
to Poisson but is known as Kirchhoff’s formula.

We will derive (3) shortly, but first let’s compare the result with the causal-
ity principle. The value of u(x0, t0) depends, according to (3), just on the values
of ψ(x) and φ(x) for x on the spherical surface S = {|x − x0| = ct0} but not
on the values of ψ(x) and φ(x) inside this sphere. This statement can be
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Figure 1

inverted to say that the values of ψ and φ at a spatial point x1 influence the
solution only on the surface {|x − x1| = ct} of the light cone that emanates
from (x1, 0). This fact, illustrated in Figures 1 and 2, is called Huygens’s prin-
ciple. It means that any solution of the three-dimensional wave equation (e.g.,
any electromagnetic signal in a vacuum) propagates at exactly the speed c of
light, no faster and no slower.

This is the principle that allows us to see sharp images. It also means that
any sound is carried through the air at exactly a fixed speed c without “echoes,”
assuming the absence of walls or inhomogeneities in the air. Thus at any time
t a listener hears exactly what has been played at the time t − d/c, where d
is the distance to the musical instrument, rather than hearing a mixture of the
notes played at various earlier times.

Proof of Kirchhoff’s Formula (3). We shall use the method of spherical
means. Let the average (the mean) of u(x, t) on the sphere {|x| = r}, of center

Figure 2
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0 and any radius r, be denoted by u(r, t). That is,

u(r, t) = 1

4πr2

∫∫
|x|=r

u(x, t) d S

= 1

4π

∫ 2π

0

∫ π

0
u(x, t) sin θ dθ dφ, (4)

where x, y, and z are expressed in terms of the spherical coordinates r, θ , and
φ. We’ll now show that u itself satisfies the PDE

(u)t t = c2(u)rr + 2c2 1

r
(u)r . (5)

Proof of (5). For simplicity, assume c = 1. Equation (5) follows from
the rotational invariance of �. Indeed, by Exercise 1, we have �(u) = (�u).
That is, the laplacian of the mean is the mean of the laplacian. Therefore,

�(u) = (�u) = (utt ) = (u)t t .

So u satisfies exactly the same PDE that u does. Now in spherical coordinates
we know that

�u = urr + 2

r
ur + angular derivative terms

from (6.1.7). For u, which depends only on r, the angular derivatives must
vanish, so (5) is proved.

To give an alternative proof of (5), we apply the divergence theorem to
the equation utt = �u over the domain D = {|x| ≤ r}. Thus∫∫∫

D

utt dx =
∫∫∫

D

�u dx =
∫∫
∂ D

∂u

∂n
d S. (6)

In spherical coordinates, (6) can be written explicitly as∫ r

0

∫ 2π

0

∫ π

0
utt ρ2 sin θ dθ dφ dρ =

∫ 2π

0

∫ π

0

∂u

∂r
r2 sin θ dθ dφ

or ∫ r

0
ρ2utt (ρ, t) dρ = r2 ∂u(r, t)

∂r
. (7)

Differentiating (7) with respect to r, we get the integrand on the left side and
two terms on the right side, as follows:

r2utt = (r2ur )r = r2urr + 2rur .

Dividing by r2, we again get equation (5).
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Continuing with the proof of (3), we now substitute

v(r, t) = ru(r, t)

into the PDE (5). Then vr = rur + u and vrr = rurr + 2ur . So in terms of
v(r, t), (5) simplifies to

vt t = c2vrr. (8)

Of course, equation (8) is valid only for 0 ≤ r < ∞. The function v = ru
clearly vanishes at r = 0:

v(0, t) = 0 (at r = 0) (9)

and satisfies the initial conditions

v(r, 0) = rφ(r ) vr (r, 0) = rψ(r ) (at r = 0). (10)

Thus we are reduced to a half-line problem in one dimension: the PDE (8),
the BC (9), and the IC (10). This problem for v was solved back in Section
3.2. Its solution is given by the formula [from (3.2.3)]

v(r, t) = 1

2c

∫ ct+r

ct−r
sψ(s) ds + ∂

∂t

[
1

2c

∫ ct+r

ct−r
sφ(s) ds

]
(11)

for 0 ≤ r ≤ ct and by a different formula for r ≥ ct .
The next step is to recover u at the origin r = 0:

u(0, t) = u(0, t) = lim
r→0

v(r, t)

r

= lim
r→0

v(r, t) − v(0, t)

r
= ∂v

∂r
(0, t). (12)

Differentiating (11), we have

∂v

∂r
= 1

2c
[(ct + r )ψ(ct + r ) + (ct − r )ψ(ct − r )] + · · · ,

where · · · denotes a similar term depending on φ. When we put r = 0, it
simplifies to [∂v/∂r ](0, t) = (1/2c)[2ctψ(ct)] = tψ(ct). This is the right side
of (12). Therefore,

u(0, t) = tψ(ct) = 1

4πc2t

∫∫
|x|=ct

ψ(x) d S + · · · . (13)

This is precisely the first term in formula (3) (in the case that the spatial point
is the origin and the time is denoted by t). It is just the time t multiplied by
the average of ψ on the sphere of center 0 and radius ct.
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Next we translate the result (13). If x0 is any spatial point at all, let

w(x, t) = u(x + x0, t).

This is the solution of the wave equation whose initial data are φ(x + x0) and
ψ(x + x0). So we can apply the result (13) to w(x, t), in order to obtain the
formula

u(x0, t) = w(0, t) = 1

4πc2t

∫∫
|x|=ct

ψ(x + x0) d S + · · ·

= 1

4πc2t

∫∫
|x−x0|=ct

ψ(x) d S + · · · . (14)

This is precisely the first term of (3).
A little thought shows that the second term in (3) works in the same

way. In fact, if we replace ψ by φ in the first term of (11) and take the time
derivative, we get the second term. The two terms in (3) must have the same
relationship. �

SOLUTION IN TWO DIMENSIONS

We shall see that Huygens’s principle is not valid in two dimensions! What
we want to solve is

utt = c2(uxx + uyy) (15)

u(x, y, 0) = φ(x, y), ut (x, y, 0) = ψ(x, y). (16)

The key idea is to regard u(x, y, t) as a solution of the three-dimensional
problem which just happens not to depend on z. So it must be given by the
Kirchhoff formula. Let’s again assume for the sake of simplicity that φ ≡ 0
and that (x0, y0) = (0, 0). By the three-dimensional formula (13) we have

u(0, 0, t) = 1

4πc2t

∫∫
x2+y2+z2=c2t2

ψ(x, y) d S.

This is a correct formula for the solution of (15), (16), but we can simplify it as
follows. It is twice the integral over the top hemisphere z =

√
c2t2 − x2 − y2.

On the hemisphere (see Figure 3) we can use the usual formula for the surface
element dS in terms of the coordinates (x, y), getting the double integral

u(0, 0, t) = 1

2πc2t

∫∫
x2+y2≤c2t2

ψ(x, y)

[
1 +

(
∂z

∂x

)2

+
(

∂z

∂y

)2
]1/2

dx dy.

(17)
The term in brackets inside (17) equals[

·
]

= 1 +
(
− x

z

)2
+

(
− y

z

)2
= c2t2

z2
= c2t2

c2t2 − x2 − y2
.
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Figure 3

Hence (17) becomes

u(0, 0, t) = 1

2πc

∫∫
x2+y2≤c2t2

ψ(x, y)

(c2t2 − x2 − y2)1/2 dx dy. (18)

This is the solution formula at the point (0, 0, t). At a general point, the formula
is

u(x0, y0, t0) =
∫∫

D

ψ(x, y)[
c2t2

0 − (x − x0)2 − (y − y0)2
]1/2

dx dy

2πc

+ ∂

∂t0
(same expression with φ). (19)

where D is the disk {(x − x0)2 + (y − y0)2 ≤ c2t2
0 }. (Why?)

Our formula (19) shows that the value of u(x0, y0, t0) does depend on the
values of φ(x, y) and ψ(x, y) inside the cone:

(x − x0)2 + (y − y0)2 ≤ c2t2
0 .

This means that Huygens’s principle is false in two dimensions. For instance,
when you drop a pebble onto a calm pond, surface waves are created that
(approximately) satisfy the two-dimensional wave equation with a certain
speed c, where x and y are horizontal coordinates. A water bug whose distance
from the point of impact is δ experiences a wave first at time t = δ/c but
thereafter continues to feel ripples. These ripples die down, like t−1 according
to Exercise 18, but theoretically continue forever. (Physically, when the ripples
become small enough, the wave equation is not really valid anymore as other
physical effects begin to dominate.)

One can speculate what it would be like to live in Flatland, a two-
dimensional world. Communication would be difficult because light and
sound waves would not propagate sharply. It would be a noisy world! It
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turns out that if you solve the wave equation in N dimensions, signals prop-
agate sharply (i.e., Huygens’s principle is valid) only for dimensions N =
3, 5, 7, . . . . Thus three is the “best of all possible” dimensions, the smallest
dimension in which signals propagate sharply!

In fact, the method of spherical means can be generalized to any odd
dimension ≥5. For each odd dimension n = 2m + 1 we can “descend” to
the even dimension 2m below it to get a formula that shows that Huygens’s
principle is false in 2m dimensions [CH].

EXERCISES

1. Prove that �(u) = (�u) for any function; that is, the laplacian of the
average is the average of the laplacian. (Hint: Write �u in spherical
coordinates and show that the angular terms have zero average on spheres
centered at the origin.)

2. Verify that (3) is correct in the case of the example u(x, y, z, t) ≡ t .
3. Solve the wave equation in three dimensions with the initial data φ ≡ 0,

ψ(x, y, z) = y, by use of (3).
4. Solve the wave equation in three dimensions with the initial data φ ≡ 0,

ψ(x, y, z) = x2 + y2 + z2. (Hint: Use (5).)
5. Where does a three-dimensional wave have to vanish if its initial data φ

and ψ vanish outside a sphere?
6. (a) Let S be the sphere of center x and radius R. What is the surface

area of S ∩ {|x| < ρ}, the portion of S that lies within the sphere of
center 0 and radius ρ?

(b) Solve the wave equation in three dimensions for t > 0 with the
initial conditions φ(x) ≡ 0, ψ(x) = A for |x| < ρ, and ψ(x) = 0
for |x| > ρ, where A is a constant. Sketch the regions in space-
time that illustrate your answer. (This is like the hammer blow of
Section 2.1.)

(c) Sketch the graph of the solution (u versus |x|) for t = 1
2 , 1, and 2,

assuming that ρ = c = A = 1. (This is a “movie” of the solution.)
(d) Sketch the graph of u versus t for |x| = 1

2 and 2, assuming that ρ =
c = A = 1. (This is what a stationary observer sees.)

(e) Let |x0| < ρ. Ride the wave along a light ray emanating from
(x0, 0). That is, look at u(x0 + tv, t) where |v| = c. Prove that

t · u(x0 + tv, t) converges as t → ∞.

(Hint: (a) Divide into cases depending on whether one sphere con-
tains the other or not. Use the law of cosines. (b) Use Kirchhoff’s
formula.)

7. (a) Solve the wave equation in three dimensions for t > 0 with the
initial conditions φ(x) = A for |x| < ρ, φ(x) = 0 for |x| > ρ, and
ψ |x| ≡ 0, where A is a constant. (This is somewhat like the plucked
string.) (Hint: Differentiate the solution in Exercise 6(b).)
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(b) Sketch the regions in space-time that illustrate your answer. Where
does the solution have jump discontinuities?

(c) Let |x0| < ρ. Ride the wave along a light ray emanating from
(x0, 0). That is, look at u(x0 + tv, t) where |v| = c. Prove that

t · u(x0 + tv, t) converges as t → ∞.

8. Carry out the derivation of the second term in (3).
9. (a) For any solution of the three-dimensional wave equation with initial

data vanishing outside some sphere, show that u(x, y, z, t) = 0 for
fixed (x, y, z) and large enough t.

(b) Prove that u(x, y, z, t) = O(t−1) uniformly as t → ∞; that is, prove
that t · u(x, y, z, t) is a bounded function of x, y, z, and t. (Hint: Use
Kirchhoff’s formula.)

10. Derive the mean value property of harmonic functions u(x, y, z) by the
following method. A harmonic function is a wave that happens not to
depend on time, so that its mean value u(r, t) = u(r ) satisfies (5). Deduce
that u(r ) = u(0).

11. Find all the spherical solutions of the three-dimensional wave equation;
that is, find the solutions that depend only on r and t. (Hint: See (5).)

12. Solve the three-dimensional wave equation in {r �= 0, t > 0} with zero
initial conditions and with the limiting condition

lim
r→0

4πr2ur (r, t) = g(t).

Assume that g(0) = g′(0) = g′′(0) = 0.
13. Solve the wave equation in the half-space {(x, y, z, t) : z > 0} with

the Neumann condition ∂u/∂z = 0 on z = 0, and with initial data
φ(x, y, z) ≡ 0 and general ψ(x, y, z). (Hint: See (3) and use the method
of reflection.)

14. Why doesn’t the method of spherical means work for two-dimensional
waves?

15. Obtain the general solution formula (19) in two dimensions from the
special case (18).

16. (a) Solve the wave equation in two dimensions for t > 0 with the
initial conditions φ(x) ≡ 0, ψ(x) = A for |x| < ρ, and ψ(x) = 0
for |x| > ρ, where A is a constant. Do not carry out the integral.

(b) Under the same conditions find a simple formula for the solution
u(0, t) at the origin by carrying out the integral.

17. Use the result of Exercise 16 to compute the limit of t · u(0, t) as t → ∞.
18. For any solution of the two-dimensional wave equation with initial data

vanishing outside some circle, prove that u(x, y, t) = O(t−1) for fixed
(x, y) as t → ∞; that is, t · u(x, y, t) is a bounded function of t for fixed
x and y. Note the contrast to three dimensions. (Hint: Use formula (19).)
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19. (difficult) Show, however, that if we are interested in uniform conver-
gence, that u(x, y, t) = O(t−1/2) uniformly as t → ∞.

20. “Descend” from two dimensions to one as follows. Let utt = c2uxx with
initial data φ(x) ≡ 0 and general ψ(x). Imagine that we don’t know
d’Alembert’s solution formula. Think of u(x, t) as a solution of the two-
dimensional equation that happens not to depend on y. Plug it into (19)
and carry out the integration.

9.3 RAYS, SINGULARITIES, AND SOURCES

In this section we discuss the geometry of the characteristics, the geometric
concepts occurring in relativity theory, and the fact that wave singularities
travel along the characteristics. We also solve the inhomogeneous wave equa-
tion.

CHARACTERISTICS

A light ray is the path of a point in three dimensions moving in a straight line
at speed c. That is, |dx/dt | = c, or

x = x0 + v0t where |v0| = c. (1)

Such a ray is orthogonal to the sphere |x − x0| = c|t |.
We saw earlier in this chapter that the basic geometry of the wave equation

is the light cone |x| = c|t |. It is made up of all the light rays (1) with x0 = 0.
Now consider any surface S in space-time. Its time slices are denoted by

St = S ∩ {t = constant}. Thus S is a three-dimensional surface sitting in four-
dimensional space-time and each St is an ordinary two-dimensional surface.
S is called a characteristic surface if it is a union of light rays each of which
is orthogonal in three-dimensional space to the time slices St.

For a more analytical description of a characteristic surface, let’s suppose
that S is the level surface of a function of the form t − γ (x). That is, S =
{(x, t) : t − γ (x) = k} for some constant k. Then the time slices are St =
{x : t − γ (x) = k}. Here is the analytical description.

Theorem 1. All the level surfaces of t − γ (x) are characteristic if and only
if |∇γ (x)| = 1/c.

Proof. First suppose that all the level surfaces of t − γ (x) are character-
istic. Let x0 be any spatial point. Let S be the level surface of t − γ (x) that
contains the point (x0, 0). Thus S = {(x, t) : t − γ (x) = −γ (x0)}. Since S is
characteristic and (x0, 0) ∈ S, there is a ray of the form (1) that is contained
in S for which v0 is orthogonal to St for all t. Since the ray lies on S, it satisfies
the equation

t − γ (x0 + v0t) = −γ (x0) (2)
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for all t. Differentiating this equation with respect to t, we find that
1 − v0 · ∇γ (x0 + v0t) = 0. Setting t = 0, we get v0 · ∇γ (x0) = 1.

On the other hand, the time slice S0 = {x : γ (x) = γ (x0)} has ∇γ (x0) as
a normal vector. Another normal vector is v0, so that ∇γ (x0) and v0 are
parallel. Therefore, 1 = |v0 · ∇γ (x0)| = |v0||∇γ (x0)| = c|∇γ (x0)|. Hence
|∇γ (x0)| = 1/c. This is what we wanted to prove. For the converse, see Ex-
ercise 2. �

Example 1.

Starting from any surface S0 at all in 3-space at t = 0, we could draw
straight lines (1) of slope c with x0 ∈ S0 to construct a characteristic
surface S. For instance, the plane S0 = {x : a1x + a2 y + a3z = b} with
a2

1 + a2
2 + a2

3 = 1 gives rise in this manner to the plane characteristic
surface S = {(x, t) : a1x + a2 y + a3z − ct = b}. It also gives rise to the
plane characteristic surface S′ = {(x, t) : a1x + a2 y + a3z + ct = b}.
Similarly, the sphere S0 = {x : |x − x0| = R} gives rise to the pair of
characteristic surfaces S = {(x, t) : |x − x0| = R ± ct}. �

RELATIVISTIC GEOMETRY

In relativity theory the following terminology is commonly used. The past (or
past history) of the point (0, 0) is the set {ct < −|x|}, its future is {ct > −|x|},
and its present is {−|x| < ct < |x|}. A four-dimensional vector (v, v0) is called
(see Figure 1)

Timelike if |v0| > c|v|
Spacelike if |v0| < c|v|
Null (or characteristic) if |v0| = c|v|.

Thus a timelike vector points into either the future or the past. A straight line
in space-time is called a ray (or bicharacteristic) if its tangent vector is null;
it projects onto a light ray [as defined by (1)].

Still another description of a surface in space-time being characteristic is
that its (four-dimensional) normal vector is a null vector. Indeed, if the surface
is represented as S = {t = γ (x)}, then a normal 4-vector is (∇γ (x), −1). S
is characteristic if this vector is null. That is, 1 = |v0| = c|v| = c|∇γ (x)|, in
agreement with Theorem 1.

Figure 1
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A surface is spacelike if all its normal vectors are timelike, that is, if
|∇γ (x)| < 1/c. For instance, the initial surface{t =0}, considered as a surface
in space-time, is spacelike since γ ≡ 0. The spacelike surfaces are just the
ones that naturally carry initial conditions, as stated in the following theorem.

Theorem 2. If S is any spacelike surface, then one can uniquely solve the
initial-value problem

utt = c2�u in all of space-time

u = φ and
∂u

∂n
= ψ on S, (3)

where ∂/∂n indicates the derivative in the direction normal to S.
If S is represented as {t = γ (x)}, the second initial condition in (3) means

explicitly that

ut − ∇γ · ∇u = [1 + |∇γ |2]
1/2

ψ for t = γ (x). (4)

(Why?) We omit the proof of Theorem 2.

SINGULARITIES

Here is another basic property of characteristic surfaces that is also proved in
advanced texts [CH].

Theorem 3. Characteristic surfaces are the only surfaces that can carry the
singularities of solutions of the wave equation.

The idea is that information gets transported along light rays (cf. Section
2.5) and a singularity is a very specific bit of information. A singularity
of a solution is any point where the solution, or a derivative of it of some
order, is not continuous. For instance, in the plucked string of Section 2.1, the
singularity is the jump discontinuity in the first derivative; it clearly occurs
along a characteristic.

Example 2.

A more elaborate example of a singularity is the following. Let

u(x, t) = 1
2v(x, t)[t − γ (x)]2 for γ (x) ≤ t

u(x, t) = 0 for γ (x) ≥ t,
(5)

where v(x, t) is a C2 function, nonzero on the surface S = {t = γ (x)}.
This function u(x, t) is only a C1 function because its second derivatives
have jump discontinuities on the surface. We shall show that if u(x, t)
solves the wave equation, then the surface must be characteristic.
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Indeed, on one side {γ (x) < t} of the surface, we calculate

ut = v(t − γ ) + 1
2vt (t − γ )2,

utt = v + 2vt (t − γ ) + 1
2vt t (t − γ )2,

∇u = −v∇γ (t − γ ) + 1
2∇v(t − γ )2,

�u = ∇ ·∇u = v|∇γ |2 −v�γ (t −γ )−2∇v · ∇γ (t −γ ) + 1
2�v(t −γ )2.

Hence, on the side {γ (x) < t}, we have

0 = uu − c2�u = (v)(1 − c2|∇γ |2)
+ (2vt + c2v�γ + 2c2∇v · ∇γ )(t − γ ) + 1

2 (vt t − c2�v)(t − γ )2. (6)

Of course, everything is zero on the other side {γ (x) > t}. So for
u(x, t) to be a solution across the surface, the expression (6) must be zero
on the surface {t − γ (x) = 0}. Set t = γ (x) in (6). Then on S we have
(v)(1 − c2|∇γ |2) = 0, or |∇γ | = 1/c, which means that the surface S
is characteristic. This proves the assertion made above. In diffraction
theory the equation |∇γ | = 1/c is called the eikonal equation. It is a
nonlinear first-order PDE satisfied by γ .

Because the first term on the right side of (6) is zero, (6) may be
divided by (t – γ ). So it also implies that

0 = (2vt + c2v�γ + 2c2∇v · ∇γ ) + 1
2 (vt t − c2 �v)(t − γ ) (7)

on one side of S. Matching across S again, it follows that (7) must be
valid when t = γ (x), which means that

vt + c2∇γ · ∇v = − 1
2 c2(�γ )v. (8)

This is called the transport equation; it is a linear first-order PDE satisfied
by v on S.

To understand it, notice that d = ∂t + c2 ∇γ · ∇ is a derivative in
a direction tangent to S. In fact, d is the derivative in the direction
of the ray dx/dt = c2∇γ with |dx/dt| = c2|∇γ | = c. Thus v(x, t) is
“transported” along the ray by the differential equation (8). Equation (8)
can be solved by the methods of Section 1.2. Equation (8) also implies
that v �= 0 everywhere along the ray because v �= 0 where the ray meets
S, by assumption. �

WAVE EQUATION WITH A SOURCE

Now we shall solve the three-dimensional problem

utt − c2 �u = f (x, t)
u(x, 0) ≡ 0, ut (x, 0) ≡ 0 (9)

using the operator method of Section 3.4.
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The solution we found in Section 9.2 for the homogeneous problem with
initial data φ and ψ was

(∂ts(t0)φ)(x0) + (s(t0)ψ)(x0),

where

(s(t0)ψ)(x0) = 1

4πc2t0

∫∫
S

ψ(ξ) d Sξ (10)

and S = {ξ: |ξ − x0| = ct0} is a sphere. Now let’s drop the subscripts “0.”
The operator s(t) is the source operator.

Just as in Section 3.4, the unique solution of (9) is expressible in terms of
the source operator as

u(x, t) =
∫ t

0
s(t − s) f (x, s) ds. (11)

This is sometimes called the Duhamel formula. Inside the integral (11), the
operators(t − s) acts on f (x, s) as a function of x, with s merely playing the
role of a parameter. Formula (11) means that in (10) we must replace t0 by
(t – s), x0 by x, and ψ(ξ) by f (ξ, s). Thus

u(x, t) =
∫ t

0

1

4πc2(t − s)

∫∫
{|ξ−x|=c(t−s)}

f (ξ, s) d Sξ ds

= 1

4πc

∫ t

0

∫∫
{|ξ−x|=c(t−s)}

f (ξ, t − |ξ − x|/c)

|ξ − x| d Sξ ds, (12)

where we have substituted the value of s = t − |ξ − x|/c on the sphere S.
Now the last expression is exactly an iterated integral in spherical coor-

dinates. The region of integration in space-time is the backward cone surface
sketched in Figure 2. The coordinates ξ run over the base of the conical sur-
face, which is the ball {|ξ − x| = c(t − s)}. The volume element dξ is the
ordinary one dξ = cd Sξ ds. Thus the iterated integral combines into a triple

�

Figure 2
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integral to produce the solution formula

u(x, t) = 1

4πc2

∫∫∫
{|ξ−x|≤ct}

f (ξ, t − |ξ − x|/c)

|ξ − x| dξ. (13)

This result says that, in order to solve (9), you just multiply f (ξ, s) by
the “potential” 1/(4πc|ξ − x|) and integrate it over the backward cone. The
backward cone consists exactly of the domain of dependence of the given
point (x, t); that is, those points that can reach (x, t) via a light ray from some
time s in the past (0 ≤ s ≤ t).

It is interesting to compare this formula with the solution of Poisson’s
equation in the whole of three-dimensional space. See (7.3.7) without the
boundary term and with G = −1/(4πr). Changing x0 to x, and x to ξ, formula
(7.3.7) says that the bounded solution of Poisson’s equation −�w = f in all
of 3-space is

w(x) = 1

4πc

∫∫∫
f (ξ)

|ξ − x| dξ. (14)

The only difference between (13) and (14) is that time is “retarded” by the
amount |ξ − x|/c. So in the formula (13) the potential is called retarded.

EXERCISES

1. Let S be a characteristic surface for which S ∩ {(x, y, z): t = 0} is the
sphere {x2 + y2 + z2 = a2}. Describe S geometrically.

2. Prove the converse of Theorem 1. That is, prove that a level surface of
t − γ (x) is characteristic if γ (x) satisfies the nonlinear PDE

|∇γ (x)| ≡ 1

c
. (∗)

(Hint: Differentiate the equation (∗) to get �γij(x)γ j (x) = 0, where sub-
scripts denote partial derivatives. Show that a curve, which satisfies the
ODE dx/dt = c2∇γ (x), also satisfies d2x/dt2 = 0 and hence is a ray.
Show that t − γ (x) is constant along a ray. Deduce that any level surface
of t − γ (x) is characteristic.)

3. Prove Theorem 2 in the one-dimensional case. That is, if c is a spacelike
curve in the xt plane, there is a unique solution of utt = c2uxx with u = φ
and ∂u/∂n = ψ on c.

4. Verify that the solution given by (5) has second derivatives which have
jump discontinuities on the surface S = {(x, t) : t = γ (x)}.

5. Verify the correctness of (13) for the example u(x, y, z, t) = t2 and
f (x, y, z, t) ≡ 2.
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6. Show that the unique solution of (9) is expressible in terms of the source
operator by the simple formula (11).

7. (difficult) Solve utt − c2�u = f (x), where f (x) = A for |x| < ρ, f (x) = 0
for |x| > ρ, A is a constant, and the initial data are identically zero. Sketch
the regions in space-time that illustrate your answer. (Hint: Use (13) and
find the volume of intersection of two balls, or use (11) and Exercise
9.2.6(b).)

8. Carry out the passage from (11) to (13) more explicitly using spherical
coordinates.

9. Simplify formula (13) for the solution of utt − c2�u = f (x, t) in the
special case that f is spherically symmetric [ f = f (r, t)].

9.4 THE DIFFUSION AND SCHRÖDINGER EQUATIONS

THREE-DIMENSIONAL DIFFUSION EQUATION

Consider the diffusion equation in all of 3-space,

∂u

∂t
= k�u = k

(
∂2u

∂x2
+ ∂2u

∂y2
+ ∂2u

∂z2

)
(1)

u(x, 0) = φ(x). (2)

It is very easy to solve, using our knowledge from Chapter 2.

Theorem 1. For any bounded continuous function φ(x), the solution of
(1), (2) is

u(x, t) = 1

(4πkt)3/2

∫∫∫
exp

(
−|x − x′|2

4kt

)
φ(x′) dx′ (3)

for all t > 0. The dummy variables of integration, x′ = (x′, y′, z′), run over all
of 3-space.

Proof. To derive (3), let’s denote by

S(z, t) = 1

(4πkt)1/2 e−z2/4kt

the one-dimensional source function. Let

S3(x, y, z, t) = S(x, t)S(y, t)S(z, t) (4)
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be the product of three such functions in the different variables. Then

∂S3

∂t
= ∂S

∂t
(x, t) · S(y, t) · S(z, t) + (two similar terms)

= k
∂2S

∂x2
(x, t) · S(y, t) · S(z, t) + S(x, t) · k

∂2S

∂y2
(y, t) · S(z, t)

+ S(x, t) · S(y, t) · k
∂2S

∂z2
(z, t)

= k

(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
(S(x, t)S(y, t)S(z, t))

= k�S3.

So S3(x, t) satisfies the three-dimensional diffusion equation.
We claim that S3 is the source function. To prove it, note that

∫∫∫
S3(x, t) dx =

(∫
S(x, t) dx

)(∫
S(y, t) dy

)(∫
S(z, t) dz

)
= 13 = 1. (5)

Now in the special case that φ(x, y, z) depends only on z, we have

lim
t→0

∫∫∫
S3(x − x′, t) φ(z′) dx′

=
[∫

S(x − x ′, t) dx′
]

·
[∫

S(y − y′, t) dy′
]

·
[

lim
t→0

∫
S(z − z′, t)φ(z′) dz′

]

= 1 · 1 · lim
t→0

∫
S(z − z′, t)φ(z′) dz′ = φ(z)

by Theorem 3.5.1. In a similar way, we can show that

lim
t→0

∫∫∫
S3(x − x′, t)φ(x′) dx′ = φ(x) (6)

if φ(x) is a product φ(x)ψ(y)ζ (z). Therefore, (6) is also true of any linear
combination of such products. It can be deduced (Exercise 2) that the same is
true for any bounded continuous function φ(x). Equations (5) and (6) imply
that S3(x, t) is the source function.

Consequently, the unique bounded solution of (1), (2) is

u(x, t) =
∫∫∫

S3(x − x′, t)φ(x′) dx′.
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But the explicit formula for S3 is

S3(x, t) =
(

1√
4πkt

e−x2/4kt

)
·
(

1√
4πkt

e−y2/4kt

)
·
(

1√
4πkt

e−z2/4kt

)

= 1

(4πkt)3/2 e−(x2+y2+z2)/4kt . (7)

and therefore we have derived (3). The complete proof, including the conver-
gence of the triple integral and so on, can also be carried out directly just as
in Section 3.5. �

SCHRÖDINGER’S EQUATION

We saw in Chapter 1 how the simplest atom is described by the PDE

−ihut = h2

2m
�u + e2

r
u. (8)

The potential e2/r is a variable coefficient.
So, as a simple warm-up problem, let’s take the free Schrödinger equation

−i
∂u

∂t
= 1

2
�u (9)

in three dimensions, where we’ve set h = m = 1 and dropped the potential term.
It looks suspiciously like the diffusion equation. In fact, the only difference is
that k = i/2 is imaginary instead of real. The presence of the i = √−1 implies
that the solutions are “waves” because the temporal factor (see below) has the
form

T (t) = eiλt = cos λt + i sin λt,

which is oscillatory.
We are looking for solutions of (9) that tend to zero as |x| → ∞. It is not

difficult to show that the solution of (9) with the initial condition u(x, 0) =
φ(x) is

u(x, t) = 1

(2π it)3/2

∫∫∫
exp

(
−|x − x′|2

2 it

)
φ(x′) dx′, (10)

the same as for the diffusion equation except for the i.
Because complex numbers have two square roots, which one do we take

in the first factor here? To answer this question, as well as to justify (10), we
use the following reasoning. With either one of the choices of the square root,
(10) appears to be correct. Let’s assume that φ(x′) vanishes for large |x′|. But



9.4 THE DIFFUSION AND SCHRÖDINGER EQUATIONS 251

let’s first solve the nearby equation

∂uε

∂t
= +ε + i

2
�uε, uε(x, 0) = φ(x), (11)

whose solution depends on the real number ε > 0. Equation (11) can be solved
exactly like the diffusion equation with k = (ε + i)/2. The formula is

uε(x, t) = 1

(2π t)3/2(ε + i)3/2

∫∫∫
exp

[
− |x − x′|2

2(ε + i)t

]
φ(x′) dx′. (12)

Here (ε + i)1/2 denotes the unique square root with the positive real part.
Because ε > 0, it contributes to a negative exponent and the integral converges.
For that reason there is no difficulty in justifying the formula (12). (We need
to take the positive real part because otherwise the exponent would be too
large as |x − x′| → ∞ and we wouldn’t get a bounded solution.)

As ε ↘ 0, we get the solution of (9), given by formula (10), where the
i1/2 factor is the unique square root with the positive real part. That is,

lim
ε↘0

(ε + i)1/2 = 1 + i√
2

.

This is the correct factor in front of the formula (10). [It is not exactly a
rigorous proof of (10) but it does provide the correct answer.]

A different method we could envision to solve (9) would be to separate
variables: u(x, t) = T(t)X(x). Then, in the one-dimensional case, say, we’d
have

−2i
T ′

T
= X ′′

X
= −λ. (13)

There are no solutions of X′′ + λX = 0 that satisfy the required condition at
infinity, that X(x) → 0 as x → ±∞. (It can be satisfied at +∞, but then not
−∞, and vice versa.) So the condition at infinity prevents the existence of
any eigenvalues, and the method of Chapter 5 fails. (The method of separation
of variables is salvaged, however, by the use of the Fourier transform; see Sec-
tion 12.3.)

HARMONIC OSCILLATOR

The addition of a potential term to Schrödinger’s equation, as in equation (8),
sometimes leads to the occurrence of eigenvalues. As an example, we now
study the quantum-mechanical harmonic oscillator equation in one dimension,
which in appropriate units is

−iut = uxx − x2u (−∞ < x < ∞). (14)
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For our eigenfunctions we will require the condition that

u → 0 as x → ±∞.

We separate variables u = T (t)v(x) to get

−i
T ′

T
= v′′ − x2v

v
= −λ.

The constant λ is interpreted as the “energy” of the harmonic oscillator. Thus
v(x) satisfies the ODE

v′′ + (λ − x2)v = 0. (15)

Because of its variable coefficient, (15) is not easily solvable. The simplest
case turns out to be λ = 1, in which case the solutions are e−x2/2. (Check it!)
So for any λ it is natural to attempt the substitution

v(x) = w(x)e−x2/2.

This leads to an equation for w,

(x2 − λ)e−x2/2w = (x2 − λ)v = v′′ = [w ′′ − 2xw ′ + (x2 − 1)w]e−x2/2,

or

w ′′ − 2xw ′ + (λ − 1)w = 0, (16)

which is known as Hermite’s differential equation.
We shall solve (16) by the method of power series. Substituting

w(x) = a0 + a1x + a2x2 + · · · =
∞∑

k=0

ak xk (17)

into (16), we get
∞∑

k=0

k(k − 1)ak xk−2 −
∞∑

k=0

(2k − λ + 1)ak xk = 0.

Matching the like powers of x, we get

2a2 = (1 − λ)a0, 6a3 = (3 − λ)a1, etc.

In general,

(k + 2)(k + 1)ak+2 = (2k + 1 − λ)ak (k = 0, 1, 2, 3, . . .). (18)

This “recursion formula” yields all the coefficients provided that we know the
first two, a0 and a1. The first two are arbitrary. If a0 = 0, the solution is an
odd function; if a1 = 0, the solution is even.
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There is one particularly simple case. In case λ = 2k + 1 for some integer
k, then (18) shows that ak+2 = 0, ak+4 = 0, and so on. Then we get an even
or an odd polynomial (depending on whether k is even or odd) of degree k. It
is called the Hermite polynomial Hk(x) (with an appropriate normalization).
The first five Hermite polynomials are:

H0(x) = 1 (λ = 1, a1 = a2 = 0)
H1(x) = 2x (λ = 3, a0 = a3 = 0)
H2(x) = 4x2 − 2 (λ = 5, a1 = a4 = 0)
H3(x) = 8x3 − 12x (λ = 7, a0 = a5 = 0)
H4(x) = 16x4 − 48x2 + 12 (λ = 9, a1 = a6 = 0).

Thus we have found some separated solutions of equation (15) of the form

vk(x) = Hk(x) e−x2/2 if λ = 2k + 1.

The corresponding solutions of (14) are

uk(x, t) = e−i(2k+1)t Hk(x) e−x2/2

for k = 0, 1, 2, . . . . Note that uk(x, t) → 0 as x → ±∞, as required.
If we go back to the full power series (17), it can be shown that if

λ �= 2k + 1, no power series solution can satisfy the condition at infinity, and
therefore the only eigenvalues (energy levels) are the positive odd integers
(see Exercise 7).

EXERCISES

1. Find a simple formula for the solution of the three-dimensional diffusion
equation with φ(x, y, z) = xy2z. (Hint: See Exercise 2.4.9 or 2.4.10.)

2. (a) Prove that (6) is valid for products of the form φ(x)ψ(y)ζ (z) and
hence for any finite sum of such products.

(b) Deduce (6) for any bounded continuous function φ(x). You may use
the fact that there is a sequence of finite sums of products as in part
(a) which converges uniformly to φ(x).

3. Find the solution of the diffusion equation in the half-space {(x, y, z, t):
z > 0} with the Neumann condition ∂u/∂z = 0 on z = 0. (Hint: Use the
method of reflection.)

4. Derive the first four Hermite polynomials from scratch.
5. Show that all the Hermite polynomials are given by the formula

Hk(x) = (−1)kex2 dk

dxk
e−x2

up to a constant factor.
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6. Show directly from the ODE (15) that the functions Hk(x)e−x2/2 are mu-
tually orthogonal on the interval (−∞, ∞). That is∫ ∞

−∞
Hk(x)Hl(x)e−x2

dx = 0 for k �= l.

(Hint: See Section 5.3.)
7. (a) Show that if λ �= 2k + 1, any solution of Hermite’s ODE is a power

series but not a polynomial.
(b) Deduce that in this case no solution of Hermite’s ODE can satisfy the

condition at infinity. (Hint: Use the recursion relation (18) to find the
behavior of ak as k → ∞. Compare with the power series expansion
of ex2

. Deduce that u(x, t) behaves like ex2
as |x | → ∞.)

9.5 THE HYDROGEN ATOM

Now let’s return to the hydrogen atom, which we are modeling by the PDE

iut = −1

2
�u − 1

r
u (1)

with the units chosen so that e = m = h = 1. Equation (1) is supposed to be
satisfied in all of space x = (x, y, z). We have written r = |x| = (x2 + y2 + z2)1/2.
We also require that

∫∫∫
|u(x, t)|2dx < ∞ (2)

which may be interpreted as a condition of vanishing at infinity (see Section
1.3, Example 7).

Although this is a whole-space problem, let’s separate variables anyway.
It turns out, as with the harmonic oscillator, that the potential term does lead
to some eigenvalues. Writing u(x, t) = T(t)v(x) as usual, we have

2i
T ′

T
=

−�v − 2

r
v

v
= λ,

a constant. Thus u = v(x)e−iλt/2, where

−�v − 2

r
v = λv. (3)

In quantum mechanics, λ is the energy of the bound state u(x, t). Bohr ob-
served in 1913 that the energy levels of the electron in a hydrogen atom occur
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only at special values (related to squares of integers). We shall verify Bohr’s
observation mathematically!

We look for solutions of (3) that are spherically symmetric: v(x) = R(r).
Later (in Section 10.7) we shall look for the others. By (6.1.7), equation (3)
reduces to the ODE

−Rrr − 2

r
Rr − 2

r
R = λR (4)

in 0 < r < ∞ with the condition at infinity that∫ ∞

0
|R(r )|2r2dr < ∞. (5)

It is also understood that

R(0) is finite. (6)

As with the harmonic oscillator, this ODE is not easily solved. After some
changes of variable, (4) is known as Laguerre’s differential equation. It turns
out that all of the eigenvalues λ are negative. For the time being, let’s just
assume that λ < 0.

It is quite convenient to first make a couple of changes of variables. Notice
that if the second and third terms in (4) were absent (which is true “at infinity”),
the equation would simply be − R′′ = λR, which has the solutions e±βr with
β = √−λ. We are interested only in solutions that vanish at infinity, so we
choose the negative exponent. We could consider e−βr as an approximation to
a solution of equation (4). At any rate, we are thus motivated to try the change
of variables

w(r ) = e+βr R(r ) where β = √−λ. (7)

Then R = we−βr , Rr = (wr − βw)e−βr , and Rrr = (wrr − 2βwr +
β2w)e−βr so that (4) is converted to the equation

−wrr + 2

(
β − 1

r

)
wr +

(
2(β − 1)

1

r

)
w = 0

or the equation

1
2rwrr − βrwr + wr + (1 − β)w = 0. (8)

To understand the ODE (8), we observe that r = 0 is a regular singular
point. For this terminology, see Section A.4. We shall solve it by the power
series method. (This will provide some, but not all, of the solutions.) We look
for a solution of (8) of the form

w(r ) =
∞∑

k=0

akrk = a0 + a1r + a2r2 + · · ·
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whose coefficients are to be determined. Substituting into (8), we get

1
2

∞∑
k=0

k(k − 1)akrk−1 − β

∞∑
k=0

kakrk +
∞∑

k=0

kakrk−1 + (1 − β)
∞∑

k=0

akrk = 0.

In the second and fourth terms, we change the dummy variable k to (k – 1),
so that

∞∑
k=0

[ 1
2 k(k − 1) + k]akrk−1 +

∞∑
k=1

[−β(k − 1) + (1 − β)]ak−1rk−1 = 0.

Each coefficient must vanish:

k(k + 1)

2
ak = (βk − 1)ak−1 (k = 1, 2, . . .). (9)

This means

a1 = (β − 1)a0 3a2 = (2β − 1)a1

6a3 = (3β − 1)a2 10a4 = (4β − 1)a3

15a5 = (5β − 1)a4 21a6 = (6β − 1)a5 etc.

If β happens to be the reciprocal of a positive integer, the sequence of coeffi-
cients terminates and we have a polynomial solution of (8)!

Since v(x) = R(r ) = w(r )e−βr , we have a polynomial times a decaying
exponential. This tends to zero as r → ∞, so the condition at infinity (2) is
also satisfied.

The first few solutions of (8) and (3) are

n β λ w(r) v(x)
1 1 −1 1 e−r

2 1
2 − 1

4 1 − 1
2r e−r/2(1 − 1

2r )

3 1
3 − 1

9 1 − 2
3r + 2

27r2 e−r/3[1 − 2
3r + 2

27r2]

4 1
4 − 1

16

The lowest energy state (the ground state) v(x) = e−r drops off exponen-
tially with the distance from the proton and vanishes nowhere. The second
state corresponds to n = 2 and vanishes for a single value of r (has one node).
The nth state has (n − 1) nodes. Its energy is λ = −β2 = −1/n2. Thus the
lowest possible energy levels are

−1, − 1
4 , − 1

9 , . . . ,

which agrees with the experiments of Bohr. These energy levels lead to spectral
lines whose frequencies are proportional to the differences between the energy
levels.
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Other Solutions. For β = 1/n, there is, of course, another, linearly in-
dependent solution of the second-order ODE (8). However, that solution is
singular at r = 0 and it does not interest us.

What happens whenβ �= 1/n? Then the factor (βk − 1) never vanishes, so
that the recursion relation (9) looks approximately like (k2/2)ak ∼ (βk)ak−1
for large k, or like ak ∼ (2β/k)ak−1. These are the coefficients in the Taylor
expansion of e2βr . So R(r) looks approximately like

e−βr e+2βr = e+βr .

Such a solution would not satisfy the condition at infinity (2). So we see that
the only eigenvalues are λ = 1/n for n = 1, 2, 3, . . . . (This argument is not
rigorous but could be made so.)

Are the eigenfunctions complete? By no means, for two reasons. First,
there are plenty of eigenfunctions that possess angular dependence (spin)
(see Section 10.7). Second, there is plenty of continuous spectrum as a con-
sequence of our domain D being all of space, rather than a bounded part of
it (see Section 13.4). Physically, the continuous spectrum corresponds to the
“unbound states” which are scattered by the potential. See a good book on
quantum mechanics, such as [St], [MF], or [AJS].

EXERCISES

1. Verify the formulas for the first three solutions of the hydrogen atom.
2. For the hydrogen atom if λ > 0, why would you expect equation (4) not

to have a solution that satisfies the condition at infinity?
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BOUNDARIES IN THE
PLANE AND IN SPACE

In Chapters 4 and 5 we used separation of variables and Fourier series to
solve one-dimensional wave and diffusion problems. This chapter is devoted
to extending the same methods to higher dimensions. We begin with a general
review of these methods. Then Section 2 is devoted to the circular disk and
Section 3 to the spherical ball. The problems with circular symmetry lead in-
exorably to Bessel functions and (in three dimensions) to Legendre functions,
which are the topics of Sections 5 and 6. In Section 4 we discuss the nodal
sets of the eigenfunctions. Finally, in Section 7 we complete our analysis of
the hydrogen atom by discussing the states that have angular momentum.

10.1 FOURIER’S METHOD, REVISITED

We would like to solve the wave and diffusion equations

utt = c2�u and ut = k �u

in any bounded domain D with one of the classical homogeneous conditions
on bdy D and with the standard initial condition. We denote

� = ∂2

∂x2
+ ∂2

∂y2
or

∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

in two or three dimensions, respectively. For brevity, we continue to use the
vector notation x = (x, y) or (x, y, z). The general discussion that follows
works in either dimension, but for definiteness, let’s say that we’re in three
dimensions. Then D is a solid domain and bdy D is a surface.

The first step is to separate the time variable only,

u(x, y, z, t) = T (t)v(x, y, z). (1)

258
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Then

−λ = T ′′

c2T
= �v

v
or −λ = T ′

kT
= �v

v
, (2)

depending on whether we are doing waves or diffusions. In either case we get
the eigenvalue problem

−�v = λv in D
v satisfies (D), (N), (R) on bdy D.

(3)

Therefore, if this problem has eigenvalues λn (all positive, say) and eigen-
functions vn(x, y, z) = vn(x), then the solutions of the wave equation are

u(x, t) =
∑

n

[An cos (
√

λn ct) + Bn sin (
√

λn ct)] vn(x) (4)

and the solutions of the diffusion equation are

u(x, t) =
∑

n

Ane−λnktvn(x). (5)

As usual, the coefficients will be determined by the initial conditions. How-
ever, to carry this out, we’ll need to know that the eigenfunctions are orthog-
onal. This is our next goal. One point of notation in (4) and (5): In three
dimensions the index n in the sums (4) and (5) will be a triple index [(l, m, n),
say] and the various series will be triple series, one sum for each coordinate.

ORTHOGONALITY

Our discussion of orthogonality and completeness is practically a repetition
of Section 5.3. We define the inner product

( f, g) =
∫∫∫

D

f (x) g(x) dx (where dx = dx dy dz)

as a triple integral. (In two dimensions it would be a double integral.) If ∇·
denotes the divergence, the identity

u(�v) − (�u)v = ∇ · [u(∇v) − (∇u)v] (6)

(check it!) is integrated over D. Using the divergence theorem (Section A.3),
we obtain Green’s second identity:∫∫∫

D

[u(�v) − (�u)v] dx =
∫∫
bdy D

(
u

∂v

∂n
− ∂u

∂n
v

)
d S. (G2)
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The right side of (G2) is a surface integral and ∂u/∂n = n · ∇u is the direc-
tional derivative in the normal direction.

If u and v both satisfy homogeneous Dirichlet conditions (u = v = 0 on
bdy D), the surface integral must vanish. The same is true for Neumann or
Robin boundary conditions. For instance, if

∂u

∂n
+ au = 0 = ∂v

∂n
+ av on bdy D,

then u(∂v/∂n) − (∂u/∂n)v = −uav + auv = 0. We therefore say that each
of the three classical BCs is symmetric since in each case

(u, �v) = (�u, v) for all functions that satisfy the BCs.

Now suppose that both u and v are real eigenfunctions:

−�u = λ1u and −�v = λ2v in D, (7)

where u and v both satisfy (D) [or (N) or (R)] on bdy D. By (G2),

(λ1 − λ2)(u, v) = (u, �v) − (�u, v) = 0. (8)

Therefore, u and v are orthogonal provided that λ1 �= λ2. As in Section 5.3,
a similar argument shows that all the eigenvalues are necessarily real. We
summarize these observations in the following theorem.

Theorem 1. Consider any one of the problems (3). Then all the eigenvalues
are real. The eigenfunctions can be chosen to be real valued. The eigenfunc-
tions that correspond to distinct eigenvalues are necessarily orthogonal. All
the eigenfunctions may be chosen to be orthogonal.

MULTIPLICITY

An eigenvalue λ is double (triple, . . . ) if there are two (three, . . . ) linearly
independent eigenfunctions for it. It has multiplicity m if it has m linearly
independent eigenfunctions. In other words, the “eigenspace” for λ has di-
mension m.

If a given eigenvalue λ has multiplicity m, let w1, . . . ,wm be linearly
independent eigenfunctions. They are not necessarily orthogonal. But we can
always choose a new set of eigenfunctions that is orthogonal. The step-by-step
procedure to accomplish this is the Gram–Schmidt orthogonalization method,
which works as follows.

Let w1,. . .,wm be any (finite or infinite) set of linearly independent vectors
in any vector space V that has an inner product. First we normalize:

u1 = w1

‖w1‖ .
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Second, we subtract from w2 the component parallel to u1 and then normalize.
That is, we define

v2 = w2 − (w2, u1)u1 and u2 = v2

‖v2‖ . (9)

That u2 and u1 are orthogonal is easy to see either by a calculation or from a
sketch. Third, we subtract off from w3 the component in the u1u2 plane and
then normalize. That is, we define

v3 = w3 − (w3, u2)u2 − (w3, u1)u1 and u3 = v3

‖v3‖ , (10)

and so on. At each stage we subtract off the components in all the previous
directions. Then {u1, u2, u3, . . .} is an orthogonal set of vectors. In fact,

(v2, u1) = (w2 − (w2, u1)u1, u1) = (w2, u1) − (w2, u1)(u1, u1) = 0
(v3, u1) = (w3 − (w3, u2)u2 − (w3, u1)u1, u1)

= (w3, u1) − (w3, u2)(u2, u1) − (w3, u1)(u1, u1)
= (w3, u1) − (w3, u2) · 0 − (w3, u1) · 1 = 0,

and so on. See the exercises for some examples with large multiplicity.

GENERAL FOURIER SERIES

Because of Theorem 1, we can talk about general Fourier series which are
made up of the eigenfunctions in D. If

φ(x) =
∑

n

Anvn(x), (11)

where vn(x) denote orthogonal eigenfunctions of (3), then

An = (φ, vn)

(vn, vn)
=

∫∫∫
D φ(x)vn(x) dx∫∫∫

D |vn(x)|2 dx
. (12)

The question of the positivity of the eigenvalues is addressed in the next
theorem.

Theorem 2. All the eigenvalues are positive in the Dirichlet case. All the
eigenvalues are positive or zero in the Neumann case, as well as in the Robin
case ∂u/∂n + au = 0 provided that a ≥ 0.

Proof. We use Green’s first identity (G1) with u ≡ v, namely,∫∫∫
D

(−�v)v dx =
∫∫∫

D

|∇v|2 dx −
∫∫
bdy D

v
∂v

∂n
d S.
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In the Dirichlet case, with v an eigenfunction of (3), we get

λ

∫∫∫
D

|v|2 dx =
∫∫∫

D

|∇v|2 dx ≥ 0.

In fact, the last integral cannot be zero, because if it were, ∇v(x) would be
identically zero and v(x) ≡ C would be a constant function and C = 0 by the
boundary condition. Therefore, λ > 0 in the Dirichlet case. See Exercise 7 for
the other cases. �

Besides orthogonality, the other property the eigenfunctions had better
have is completeness. The discussion of completeness is left for Chapter 11.
Suffice it to say that completeness is always true as long as the boundary bdy
D of the domain is not too wild (i.e., for any domain one normally encounters
in scientific problems). Completeness in the mean-square sense for (1) means
that ∥∥∥∥φ −

∑
n≤N

Anvn

∥∥∥∥
2

=
∫∫∫

D

∣∣∣∣φ(x) −
∑
n≤N

Anvn(x)

∣∣∣∣
2

dx → 0 (13)

as N → ∞.
What we have just shown is how a wave or diffusion problem with bound-

ary and initial conditions is reducible to the eigenvalue problem (3). But we
are still left with finding the solutions of (3). If we expect to carry out a spe-
cific computation, we will need to assume that D has a very special geometry
in which we can separate the space variables (in cartesian, polar, or some
other coordinate system). We already did this for harmonic functions. What
we are dealing with at present is similar to the harmonic case except for the
parameter λ.

Example 1.

Take the cube Q = {0 < x < π, 0 < y < π, 0 < z < π} and solve the
problem

DE: ut = k �u in Q
BC: u = 0 on bdy Q
IC: u = φ(x) when t = 0.

(14)

Separating the time variable as in the general discussion above, we are
led to the eigenvalue problem

−�v = λv in Q, v = 0 on bdy Q. (15)
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Because the sides of Q are parallel to the axes, we can successfully
separate the x, y, and z variables: v = X (x)Y (y)Z (z),

X ′′

X
+ Y ′′

Y
+ Z ′′

Z
= −λ.

The separated BCs are

X (0) = X (π ) = Y (0) = Y (π ) = Z (0) = Z (π ) = 0.

Clearly, the solutions are

v(x, y, z) = sin lx sin my sin nz = vlmn(x), (16)

where

λ = l2 + m2 + n2 = λlmn (1 ≤ m,l,n < ∞) . (17)

Note the triple index! Therefore,

u(x, t) =
∑

n

∑
m

∑
l

Almn e−(l2+m2+n2)kt sin lx sin my sin nz. (18)

Orthogonality in Example 1 implies that

Almn = (2/π )3
∫ π

0

∫ π

0

∫ π

0
φ(x, y, z) sin lx sin my sin nz dx dy dz. (19)

Notice that the orthogonality of the functions vlmn(x, y, z) is, in this case,
a direct consequence of the separate orthogonalities of the separated
eigenfunctions sin lx, sin my, and sin nz. Namely,∫∫∫

Q

vlmn(x) vl ′m ′n′(x) dx =
(∫ π

0
sin lx sin l ′x dx

)
(∫ π

0
sin my sin m ′y dy

)(∫ π

0
sin nz sin n′z dz

)
= 0

unless all three indices exactly match. �

We shall observe the same phenomenon in the polar, cylindrical, and
spherical coordinate systems. To study the cases of circular symmetry is the
subject of our next investigation.

EXERCISES

1. Solve the wave equation in the square S = {0 < x < π, 0 < y < π}, with
homogeneous Neumann conditions on the boundary, and the initial con-
ditions u(x, y, 0) ≡ 0, ut(x, y, 0) = sin2 x .
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2. Solve the wave equation in the rectangle R = {0 < x < a, 0 < y < b},
with homogeneous Dirichlet conditions on the boundary, and the initial
conditions u(x, y, 0) = xy(b − y)(a − x), ut (x, y, 0) ≡ 0.

3. In the cube (0, a)3, a substance is diffusing whose molecules multiply
at a rate proportional to the concentration. It therefore satisfies the PDE
ut = k �u + γ u, where γ is a constant. Assume that u = 0 on all six
sides. What is the condition on γ so that the concentration does not grow
without bound?

4. Consider the eigenvalue problem −�v = λv in the unit square D =
{0 < x < 1, 0 < y < 1} with the Dirichlet BC v = 0 on the bottom and
both vertical sides, and the Robin BC ∂v/∂y = −v on the top {y = 1}.
(a) Show that all the eigenvalues are positive.
(b) Find an equation for the eigenvalues λ. Show that they can be ex-

pressed in terms of the roots of the equation s + tan s = 0.
(c) Find the solutions of the last equation graphically. Find an approxi-

mate formula for the (m, n)th eigenvalue for large (m, n).
5. Find the dimension of each of the following vector spaces.

(a) The space of all the solutions of u′′ + x2u = 0.
(b) The eigenspace with eigenvalue (2π/ l)2 of the operator −d2/dt2 on

the interval (−l, l) with the periodic boundary conditions.
(c) The space of harmonic functions in the unit disk with the homoge-

neous Neumann BCs.
(d) The eigenspace with eigenvalue λ = 25π2 of −� in the unit square

(0,1)2 with the homogeneous Neumann BCs on all four sides.
(e) The space of all the solutions of utt = c2uxx in −∞ < x < ∞,

−∞ < t < ∞.
6. Illustrate the Gram–Schmidt orthogonality method by sketching two lin-

early independent vectors w1 and w2 in the plane that are not orthogonal.
Then do it with three vectors in space.

7. Prove Theorem 2 in the Neumann and Robin cases.

10.2 VIBRATIONS OF A DRUMHEAD

Consider a membrane stretched across the top of a circular drum D =
{x2 + y2 < a2} of radius a. Its small transverse vibrations satisfy the two-
dimensional wave equation in D with Dirichlet boundary conditions. There-
fore, we want to solve the problem

⎧⎨
⎩

utt = c2(uxx + uyy) in D
u = 0 on bdy D
u, ut are given functions when t = 0.

(1)
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To solve this problem, of course we’ll use polar coordinates just as we
did in Section 6.3. We write

c−2utt = urr + 1

r
ur + 1

r2
uθθ . (2)

Separating the variables u(r, θ, t) = T (t)R(r )�(θ) gives

T ′′

c2T
= R′′

R
+ R′

rR
+ �′′

r2�
. (3)

It follows by the usual argument that T ′′/c2T is a constant (call it −λ) and
�′′/� is a constant (call it −γ ). Thus we have the three ODEs

T ′′ + c2λT = 0 (4)

�′′ + γ� = 0 (5)

R′′ + 1

r
R′ +

(
λ − γ

r2

)
R = 0. (6)

We’ll save (4) for last, because it involves the inhomogeneous (initial) condi-
tions.

As for (5), we have the periodic boundary conditions, �(θ + 2π ) = �(θ ),
exactly as in Section 6.3. Therefore,

γ = n2 and �(θ ) = An cos nθ + Bn sin nθ (n = 1, 2, . . .) (7)

or else γ = 0 and �(θ ) = 1
2 A0.

As for the radial part (6), we have the ODE

Rrr + 1

r
Rr +

(
λ − n2

r2

)
R = 0 (8)

for 0 < r < a together with the boundary conditions{
R(0) finite

R(a) = 0.
(9)

From (7) we know that n must be an integer. If λ = 0, equation (8) is of
the Euler type and we already solved it in Section 6.3, but since R(a) = 0 we
would get only the trivial solution R(r ) ≡ 0. [In fact, by Theorem 2 of Section
10.1, we already knew that all the eigenvalues of −� are positive.] So let
λ > 0. We can transform (8) into a standard form by changing scale ρ = √

λr ,
so that

Rr = Rρ

dρ

dr
=

√
λ Rρ, Rrr = λRρρ
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and

Rρρ + 1

ρ
Rρ +

(
1 − n2

ρ2

)
R = 0. (10)

This is Bessel’s differential equation of order n. It is the third time we have
encountered an ODE that is not directly solvable, the first times being in
Sections 9.4 and 9.5.

SOLUTION OF BESSEL’S EQUATION (10)

It is a second-order linear ODE and, as such, has a two-dimensional space of
solutions. At ρ = 0 its coefficients become infinite; this is a singular point.
However, it is the least troublesome kind of singular point, a so-called regular
singular point (see Section A.4). Recall that an ODE of Euler type also has a
regular singular point and generally has solutions of the form R(ρ) = Cρα +
Dρβ . To solve Bessel’s equation, we guess a solution of the form

R(ρ) = ρα
∞∑

k=0

akρ
k , a0 �= 0, (11)

with coefficients ak to be determined. Plugging (11) into (10), we get

ρα
∞∑

k=0

[(α + k)(α + k−1)akρ
k−2 + (α + k)akρ

k−2 + akρ
k − n2akρ

k−2] = 0.

(12)
The third sum can be rewritten as

∞∑
k=0

akρ
k =

∞∑
k=2

ak−2ρ
k−2

by changing the name of the dummy variable. Therefore, equating the like
powers of ρ, we get

For k = 0, [α(α − 1) + α − n2] a0 = 0
For k = 1, [(α + 1) α + α + 1 − n2] a1 = 0
For k ≥ 2, [(α + k)(α + k − 1) + α + k − n2] ak + ak−2 = 0.

The first equation gives us α = ±n (since a0 �= 0). We thus have two
choices, α = +n and α = −n. Let us begin with the case α = +n. The second
equation gives [(α + 1)2 − n2]a1 = 0, whence a1 = 0. The infinite set of
equations for k = 2, 3, 4, . . . (called the recursion relations) determine ak
from ak−2:

ak = − ak−2

(α + k)2 − n2
(k = 2, 3, . . .) (13)
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Figure 1

and therefore determine all the succeeding coefficients. Therefore, ak = 0
for k odd. Making the conventional choice a0 = 2−n/n!, we end up with the
particular solution

Jn(ρ) = ρn

2nn!

[
1 − ρ2

22(n + 1)
+ ρ4

2!24(n + 1)(n + 2)
− · · ·

]

=
∞∑

j = 0

(−1) j

(
1
2ρ

)n+2 j

j!(n + j)!
. (14)

This particular solution is called the Bessel function of order n (see
Figure 1). It crosses the axis an infinite number of times. In fact, one can
prove that Jn(ρ) has the asymptotic form

Jn(ρ) ∼
√

2

πρ
cos

(
ρ − π

4
− nπ

2

)
+ O

(
1

ρ3/2

)
(15)

as ρ → ∞. The Bessel function Jn(ρ) is the only solution (except for a con-
stant factor) of Bessel’s ODE that is finite at the singular point ρ = 0. All the
other solutions of (6) look like a constant times ρ−n near ρ = 0 in case n > 0
(and also have a term ρn log ρ in their expansions). In the case n = 0, the other
solutions look like C log ρ near ρ = 0. For a discussion of these properties
and for more information about Bessel’s ODE, see Section 10.5.

THE EIGENFUNCTION EXPANSION

Now let’s return to the drumhead that led to (8) and (9). Since R(0) is to
be finite, R = cJn(ρ) for any constant c. Therefore, we have the separated
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solutions

Jn(
√

λr ) (An cos nθ + Bn sin nθ ). (16)

Next we put in the homogeneous boundary condition u = 0 where r = a.
Thus λ must be chosen as a root of

Jn(
√

λa) = 0. (17)

From Figure 1, each Bessel function has an infinite number of positive roots.
Call the roots of (17)

0 < λn1 < λn2 < λn3 < · · · .
Finally, we can sum everything up. The full solution of (1) is

u(r, θ, t) =
∞∑

m=1

J0(
√

λ0mr )(A0m cos
√

λ0mct + C0m sin
√

λ0mct)

+
∞∑

m,n=1

Jn(
√

λnmr )
[
(Anm cos nθ + Bnm sin nθ ) cos

√
λnmct

+ (Cnm cos nθ + Dnm sin nθ ) sin
√

λnmct
]
. (18)

This is quite formidable! We shall give some manageable examples shortly.
Before we do that, let’s put in the initial conditions u(r, θ, 0) = φ(r, θ)

and ut (r, θ, 0) = ψ(r, θ ). Abbreviating βnm = √
λnm , we must have

φ(r, θ ) =
∞∑

m=1

A0m J0(β0mr ) +
∞∑

m,n=1

Jn(βnmr )(Anm cos nθ + Bnm sin nθ )

(19)
and

ψ(r, θ ) =
∞∑

m=1

cβ0mC0m J0(β0mr )

+
∞∑

m,n=1

cβnm Jn(βnmr )(Cnm cos nθ + Dnm sin nθ ).

(Why?) These expansions are an example of the general Fourier series dis-
cussed in Section 10.1. So the coefficients are given by the formulas

A0m = 1

2πj0m

∫ a

0

∫ π

−π

φ(r, θ )J0(β0mr ) r dθ dr

Anm = 1

πjnm

∫ a

0

∫ π

−π

φ(r, θ )Jn(βnmr ) cos nθ r dθ dr

Bnm = (same formula with sin nθ ),

(20)
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and similarly for the other coefficients in terms of ψ(r, θ ), where for relative
brevity we have denoted

jnm =
∫ a

0
[Jn(βnmr )]2r dr = 1

2a2[J ′
n(βnma)]2

. (21)

The evaluation of the last integral comes from (10.5.9). The formulas (21)
come from the orthogonality of the eigenfunctions

Jn(βnmr )
(

cos
sin

)
(nθ) (22)

with respect to the inner product on the disk D,

( f, g) =
∫∫

D

f g dx dy =
∫ π

−π

∫ a

0
f g r dr dθ. (23)

The formulas (21) are just special cases of the formulas in Section 10.1.
Not only do we have the orthogonality in the disk D, but we also have

the separate orthogonalities of sin nθ and cos nθ on the interval −π < θ < π
and of the Bessel functions on the interval 0 < r < a. The last orthogonality
statement is ∫ a

0
Jn(βnmr )Jn(βnpr ) r dr = 0 for m �= p. (24)

Note that the n is the same in both factors and that the extra factor r is retained
from (24).

Example 1. The Radial Vibrations of a Drumhead
You beat the center of the drum with the baton at time t = 0 and listen
for the ensuing vibrations. This means the initial conditions are

u(x, y, 0) = 0 and ut (x, y, 0) = ψ(r ) (25)

[where ψ(r ) is concentrated near r = 0]. Because φ(r, θ ) = 0, all the
Anm and Bnm equal zero (see Exercise 1). Furthermore, because ψ(r )
does not depend on θ , we have Cnm = Dnm = 0 for n �= 0. So all that
remains from (18) is the series

u(r, t) =
∞∑

m=1

C0m J0(β0mr ) sin (β0mct), (26)

where

cβ0mC0m = (ψ, J0)

(J0, J0)

=
∫ a

0 ψ(r ) J0(β0mr ) r dr∫ a
0 [J0(β0mr )]2r dr

.
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By (10.5.9) the coefficients are given by

C0m =
∫ a

0 ψ(r ) J0(βr ) r dr
1
2a2cβ[J1(βa)]2 , (27)

where we have written β = β0m .
The lowest note you’ll hear is the fundamental frequency β01c =

z1c/a, where z1 denotes the smallest positive root of J0(z1) = 0. Nu-
merically, z1 = 2.405. [This is also the fundamental frequency of the
general (nonradial) vibrations of the drumhead.] It is interesting to com-
pare this with the one-dimensional string, whose lowest frequency was
πc/ l, where of course π = 3.142. �

EXERCISES

1. Show that with the initial conditions (26), all the cos
√

λct terms in the
series (18) are missing. Also show that Dnm = Cnm = 0 for n �= 0.

2. Determine the vibrations of a circular drumhead (held fixed on the bound-
ary) with the initial conditions u = 1 − r2/a2 and ut ≡ 0 when t = 0.

3. Suppose that you had a circular drum with wave speed cd and radius a
and a violin string with wave speed cv and length l. In order to make the
fundamental frequencies of the drum and the violin the same, how would
you choose the length l?

4. Find all the solutions of the wave equation of the form u = e−iωt f (r ) that
are finite at the origin, where r =

√
x2 + y2.

5. Solve the diffusion equation in the disk of radius a, with u = B on the
boundary and u = 0 when t = 0, where B is a constant. (Hint: The answer
is radial.)

6. Do the same for the annulus {a2< x2 + y2< b2} with u = B on the whole
boundary.

7. Let D be the semidisk {x2 + y2 < b2, y > 0}. Consider the diffusion
equation in D with the conditions: u = 0 on bdy D and u = φ(r, θ ) when
t = 0. Write the complete expansion for the solution u(r, θ , t), including
the formulas for the coefficients.

10.3 SOLID VIBRATIONS IN A BALL

We take D to be the ball with its center at the origin and radius a. We consider
the wave equation with Dirichlet BCs. Upon separating out the time by writing
u(x, t) = T(t)v(x), we get the eigenvalue problem

{−�v = λv in D
v = 0 on ∂ D,

(1)
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Figure 1

as described in Section 10.1. Naturally, we shall separate variables in spherical
coordinates (see Figure 1)

0 ≤ r < a x = r sin θ cos φ

0 ≤ φ < 2π y = r sin θ sin φ

0 ≤ θ ≤ π z = r cos θ.

(Watch out: In some math books θ and φ are switched!) In these coordinates
the equation looks like

0 = �v + λv

= vrr + 2

r
vr + 1

r2

[
1

sin2 θ
vφφ + 1

sin θ
(sin θ vθ )θ

]
+ λv.

Now we separate the r coordinate only:

v = R(r ) · Y (θ, φ),

so that

λr2 + r2Rrr + 2rRr

R
+ (1/sin2 θ )Yφφ + (1/sin θ)(sin θ Yθ )θ

Y
= 0.

We get two equations, because the first two terms depend only on r and the
last expression only on the angles. So the R equation is

Rrr + 2

r
Rr +

(
λ − γ

r2

)
R = 0 (2)

and the Y equation is

1

sin2 θ
Yφφ + 1

sin θ
(sin θ Yθ )θ + γ Y = 0, (3)

where γ is the separation constant.
Equation (2) is similar to the Bessel equation, but it misses because of the

coefficient 2/r instead of 1/r. To handle that coefficient, we change dependent
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variables by

w(r ) = √
r R(r ), R(r ) = r−1/2w(r ), (4)

which converts (2) to the equation

wrr + 1

r
wr +

(
λ − γ + 1

4

r2

)
w = 0. (5)

We are looking for a solution of (5) with the boundary conditions

w(0) finite and w(a) = 0. (6)

As in Section 10.2, the solution is any constant multiple of the Bessel function

w(r ) = J√
γ+ 1

4
(
√

λ r ). (7)

Here the “order” of the Bessel function is n =
√

γ + 1
4 . (See the discussion in

Section 10.5 for Bessel’s equation with any real order.) Thus the whole radial
factor is

R(r ) =
J√

γ+ 1
4
(
√

λ r )
√

r
(8)

Let’s go on to the angular functions Y(θ , φ). We wish to solve equation
(3) with the “boundary conditions”

{Y (θ, φ) of period 2π in φ

Y (θ, φ) finite at θ = 0, π.
(9)

Such a function is called an eigenfunction of the spherical surface, or a spher-
ical harmonic. (The reason for the name is this: A harmonic function v in D,
which corresponds to the case λ = 0, will have an expansion in the r, θ , φ
variables which is an infinite series in the spherical harmonics.)

To solve (3) with the boundary conditions (9), we separate a final time:

Y (θ, φ) = p(θ ) q(φ).

Thus

q ′′

q
+ sin θ (sin θ pθ )θ

p
+ γ sin2 θ = 0. (10)

The first term in (10) must be a constant, which we call (−α). This means that
the φ equation is

qφφ + αq = 0, q(φ) of period 2π. (11)
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This is a familiar problem. We know that the eigenvalues are α= m2

(m = 0, 1, 2, . . .) and the eigenfunctions are

q(φ) = A cos mφ + B sin mφ.

Finally, the θ equation is, from (10) with the first term (−m2),

(d/dθ )[sin θ (dp/dθ )]

sin θ
+

(
γ − m2

sin2 θ

)
p = 0 (12)

with the conditions

p finite at θ = 0, π. (13)

Let’s introduce the variable s = cos θ so that sin2 θ = 1 − cos2 θ = 1 − s2.
Then equation (12) is converted to the form

d

ds

[
(1 − s2)

dp

ds

]
+

(
γ − m2

1 − s2

)
p = 0 (14)

with

p(s) finite at s = ±1. (15)

Note the singular behavior of the coefficients of (14) at s = ±1. This is a
consequence of the degeneration of the coordinate system at the north and
south poles and is the reason for the unusual boundary conditions (15).

The ODE (14) is called the associated Legendre equation. It too can be
solved most readily by the method of power series. The details are given in
Section 10.6. The main fact that we need to know about it is the following.
The eigenvalues of problem (14)-(15) are

γ = l(l+1), where l is an integer ≥ m (16)

and the eigenfunctions are (any constant times)

Pm
l (s) = (−1)m

2l l!
(1 − s2)

m/2 dl+m

dsl+m
[(s2 − 1)

l
]. (17)

The function (17) is called the associated Legendre function. Notice that it is
merely a polynomial multiplied by a power of

√
1 − s2. Also notice that it is

finite at s = ±1.
Finally, let’s put the whole problem together. The separated solutions of

(1) are

v = R(r )p(θ )q(φ)

=
Jl+ 1

2
(
√

λr )
√

r
Pm

l (cos θ ) (A cos mφ + B sin mφ)
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because
√

γ + 1
4 =

√
l(l + 1) + 1

4 = l + 1
2 . As usual, we could replace the

last factors of cosine and sine by eimφ and e−imφ . When we finally insert the
boundary condition v = 0 at r = a, we get the eigenvalue equation

Jl+ 1
2
(
√

λ a) = 0. (18)

Let’s call its roots λ = λl1, λl2, λl3, . . . . Then the eigenfunctions that corre-
spond to the eigenvalue λl j can be rewritten as

vlm j (r, θ, φ) =
Jl+ 1

2
(
√

λl j r )
√

r
· P |m|

l (cos θ ) · eimφ, (19)

where we allow m = −l, . . . , 0, . . . , +l since we’ve replaced the sines and
cosines by complex exponentials. Thus we see that the eigenvalue λl j has
multiplicity (2l + 1), since there are that many different m’s. The whole set
of eigenfunctions for

m = −l, . . . , l; l = 0, . . . , ∞; j = 1, . . . , ∞ (20)

is orthogonal and complete! What does orthogonality mean for this case? It
means that∫ 2π

0

∫ π

0

∫ a

0
vlm j (r, θ, φ) · vl ′m ′ j ′(r, θ, φ) · r2 sin θ dr dθ dφ = 0 (21)

for all the different triplets (l, m, j) �= (l ′, m ′, j ′).

Example 1.

Solve the heat equation in the ball of radius a with u = 0 on bdy D and
with a given initial condition u(x, 0) = g(x). The exact solution is

u(x, t) =
∞∑

l=0

∞∑
j=1

l∑
m=−l

Almj e
−kλl j t

Jl+ 1
2
(
√

λl j r )
√

r
P |m|

l (cos θ ) eimφ (22)

where the coefficients are

Almj =
∫∫∫

D vlm j (x) g(x) dx∫∫∫
D |vlm j (x)|2 dx

.

What does the solution look like for very large t? It looks approximately
like its first term, the one with the smallest λl j . �
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Returning to the general properties of the eigenfunctions, we can also
verify the separate orthogonality conditions in each variable. In φ,∫ 2π

0
eimφe−im ′φ dφ = 0 for m �= m ′.

In θ , ∫ π

0
Pm

l (cos θ )Pm
l ′ (cos θ ) sin θ dθ = 0 for l �= l ′

with the same index m; or in terms of s = cos θ ,∫ 1

−1
Pm

l (s)Pm
l ′ (s) ds = 0 for l �= l ′.

In r, ∫ a

0
Jl+ 1

2
(
√

λl j r )Jl+ 1
2
(
√

λl j ′r ) r dr = 0 for j �= j ′

with the same l. The normalizing constants∫ π

0

[
Pm

l (cos θ )
]2

sin θ dθ = 2

2l + 1

(l + m)!

(l − m)!
(23)

for the Legendre functions may also be found in Section 10.6.

SPHERICAL HARMONICS

The functions

Y m
l (θ, φ) = P |m|

l (cos θ ) eimφ

are the spherical harmonics. Their indices range over

−l ≤ m ≤ l, 0 ≤ l < ∞.

They are the eigenfunctions of the problem (3), (9). Equation (3) is the equation
for the eigenfunctions of the Laplacian on the spherical surface. They are
complete:

Theorem 1. Every function on the surface of a sphere {r = a} (specifically,
every function whose square is integrable) can be expanded in a series of the
spherical harmonics Y m

l (θ, φ).
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Ignoring the constant coefficients, which are arbitrary anyway, the first
few spherical harmonics are as follows:

l m
0 0 1

1 0 cos θ = z

r

1 ±1 sin θ cos φ = x

r
and sin θ sin φ = y

r

2 0 3 cos2 θ − 1 = 3z2 − r2

r2

2 ±1 sin θ cos θ cos φ = xz

r2
and

yz

r2

2 ±2 sin2 θ cos 2φ = x2 − y2

r2
and

xy

r2

See Section 10.6 for the first few associated Legendre functions, from which
this table is derived.

Example 2.

Solve the Dirichlet problem

�u = 0 in the ball D
u = g on bdy D

by the method of separation of variables. (This is the three-dimensional
analog of the two-dimensional problem in a disk that we did in Section
6.3.) When we separate variables, we get precisely (2) and (3) except
that λ = 0. Because the λ term is missing, the R equation (2) is exactly
of Euler type and so has the solution

R(r ) = rα where α(α − 1) + 2α − γ = 0, or α2 + α − γ = 0.

Equation (3) together with the boundary conditions (9) has already been
solved: Y = Y m

l (θ, φ) with γ = l(l + 1). Therefore,

0 = α2 + α − l(l + 1) = (α − l)(α + l + 1).

We reject the negative root α = −l − 1, which would lead to a singular-
ity at the origin. So α = l. Therefore, we have the separated solutions

rl · Pm
l (cos θ ) · eimφ. (24)
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The complete solution is

u =
∞∑

l=0

l∑
m=−l

Alm rl Pm
l (cos θ ) eimφ. (25)

The coefficients are determined by the expansion of g(θ , φ) in spherical
harmonics. �

It is a remarkable fact that the solid spherical harmonics (24) are poly-
nomials(!) in the cartesian coordinates x, y, z. To prove this, we use the
fact, mentioned above, that the associated Legendre functions have the form
(
√

1 − s2)
m

p(s) where p(s) is a polynomial and m is an integer. Therefore,
the solid harmonics (24) have the form

rl · sinm θ · p(cos θ ) · eimφ

for some polynomial p of degree l − m. It is an even polynomial if l − m is
even, and an odd polynomial if l − m is odd. So we can write (24) as

(r sin θ eiφ)
m · rl−m p

( z

r

)
. (26)

In either case only even powers of r appear in the last factor rl−m p(z/r ), so
that it is a polynomial in the variables z and r2. Therefore, the solid spherical
harmonic (26) is the polynomial (x + iy)m multiplied by a polynomial in z
and x2 + y2 + z2. Therefore, (24) is a polynomial in x, y, and z.

EXERCISES

1. Calculate the normalizing constants for the spherical harmonics using
the appropriate facts about the Legendre functions.

2. Verify the first six entries in the table of spherical harmonics.
3. Show that the spherical harmonics satisfy Y m

l = (−1)m Y −m
l .

4. Solve the wave equation in the ball {r < a} of radius a, with the condi-
tions ∂u/∂r = 0 on {r = a},

u = z = r cos θ when t = 0, and ut ≡ 0 when t = 0.

5. Solve the diffusion equation in the ball of radius a, with u = B on the
boundary and u = C when t = 0, where B and C are constants. (Hint:
The answer is radial.)

6. (“A Recipe for Eggs Fourier,” by J. Goldstein) Consider an egg to be a
homogeneous ball of radius π centimeters. Initially, at 20◦C, it is placed
in a pot of boiling water (at 100◦C). How long does it take for the center
to reach 50◦C? Assume that the diffusion constant is k = 6 × 10−3

cm2/sec. (Hint: The temperature is a function of r and t. Approximate
u(0, t) by the first term of the expansion.)
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7. (a) Consider the diffusion equation in the ball of radius a, with
∂u/∂r = B on the boundary and u = C when t = 0, where B and C
are constants. Find the nondecaying terms in the expansion of the
solution. (Hint: The answer is radial.)

(b) Find the decaying terms, including a simple equation satisfied by
the eigenvalues.

8. (a) Let B be the ball {x2 + y2 + z2 < a2}. Find all the radial eigen-
functions of −� in B with the Neumann BCs. By “radial” we mean
“depending only on the distance r to the origin.” [Hint: A simple
method is to let v(r) = ru(r).]

(b) Find a simple explicit formula for the eigenvalues.
(c) Write the solution of ut = k �u in B, ur = 0 on bdy B, u(x, 0) =

φ(r ) as an infinite series, including the formulas for the coefficients.
(d) In part (c), why does u(x, t) depend only on r and t?

9. Solve the diffusion equation in the ball {x2 + y2 + z2 < a2} with u = 0
on the boundary and a radial initial condition u(x, 0) = φ(r ), where
r2 = x2 + y2 + z2. (Hint: See the hint for Exercise 8(a).)

10. Find the harmonic function in the exterior {r > a} of a sphere that sat-
isfies the boundary condition ∂u/∂r = −cos θ on r = a and which is
bounded at infinity.

11. Find the harmonic function in the half-ball {x2 + y2 + z2 < a2, z > 0}
with the BC u = f (z) on the hemisphere {z = (a2 − x2 − y2)

1/2} and
the BC u ≡ 0 on the disk {z = 0, x2 + y2 < a2}. Include the formulas for
the coefficients. (Hint: Use spherical coordinates and extend the solution
to be odd across the xy plane.)

12. A substance diffuses in infinite space with initial concentration φ(r ) = 1
for r < a, and φ(r ) = 0 for r > a. Find a formula for the concentration
at later times. (Hint: It is radial. You can substitute v = ru to get a
problem on a half-line.)

13. Repeat Exercise 12 by computer using the methods of Section 8.2.

10.4 NODES

Let v(x) be an eigenfunction of the laplacian,

−�v = λv in D, (1)

together with one of the standard boundary conditions. Its nodal setN is de-
fined simply as the set of points x ∈ D where v(x) = 0. By definition boundary
points are not in the nodal set.

For example, in one dimension with Dirichlet’s condition, we have
vn(x) = sin(nπx/ l) on the interval 0 < x < l. This eigenfunction has a node
each of the n − 1 times it crosses the axis in the open interval (0, l).N consists
of these n − 1 points.
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The nodal set is important because it allows us to visualize the sets where
v(x) is positive or negative. These sets are divided by the nodal set. In one, two,
and three dimensions the nodal set consists of points, curves, and surfaces,
respectively.

Here is an interpretation of the nodes in terms of waves. As we know, the
function

u(x, t) = (A cos
√

λct + B sin
√

λct) v(x), (2)

for any A and B, solves the wave equation utt = c2�u in D with the same
boundary conditions as v(x). The nodal set is stationary. That is, the points
x in N do not move at all because, at such a point, u(x, t) = 0 for all t. So,
for instance, when a guitar player puts his finger on a string, he eliminates
certain notes. If he puts his finger exactly in the middle, he eliminates all
the frequencies nπct/ l with odd n, because only for even n does the eigen-
function vanish in the middle, vn(l/2) = 0. The nodal sets of ancient Chinese
bells form interesting patterns which precisely explain their acoustic tones
(see [Sh]).

Example 1. The Square
In two dimensions the nodal set can be a lot more interesting than
in one. Consider the Dirichlet problem in a square D = {0 < x < π,
0 < y < π}. Just as in Section 10.1,

vnm(x, y) = sin nx sin my and λnm = n2 + m2. (3)

The four smallest eigenvalues are as follows:

λ v (x, y)
2 A sin x sin y
5 A sin 2x sin y + B sin x sin 2y
8 A sin 2x sin 2y

10 A sin 3x sin y + B sin x sin 3y

The eigenvalues λ = 5 and λ = 10 are double. Because the eigenvalues
are m2 + n2, the multiplicity problem reduces to the question: In how
many ways can a given integer λ be written as the sum of two squares?

The nodal lines for the eigenfunctions sin nx sin my are simply
line segments parallel to the coordinate axes. However, in the case of
multiple eigenvalues many other nodal curves can occur. The zeros of
the eigenfunction A sin mx sin ny + B sin nx sin my for a square are an
example.

In Figure 1 are drawn some pictures of nodal curves in cases of
multiplicity where the eigenfunctions (3) are denoted by unm. �
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Figure 1

Example 2. The Ball
Consider the ball D = {r < a}, with the eigenfunctions

vlm j (r,θ,φ) = r− 1
2 Jl+ 1

2
(r
√

λl j )Pm
l (cos θ )(A cos mφ + B sin mφ). (4)

Its nodal set is a union of the following kinds of surfaces.

(i) Spheres inside D, which correspond to zeros of the Bessel func-
tion.

(ii) Vertical planes φ = constant.
(iii) Horizontal planes θ = constant.

There are j − 1 spheres, m vertical planes, and l − m horizontal planes.
The vertical and horizontal planes intersect any sphere (with its center
at the origin) in great circles through the poles (of constant longitude)
and horizontal circles (of constant latitude). They divide the sphere into
regions called tessera on each of which the eigenfunction is of one sign.
For details, see [St] or [TS]. �

How many regions can the nodal set divide a general domain D into?
The following result delineates the possibilities. (We assume that D is a “con-
nected” set.)
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Theorem 1.
(i) The first eigenfunction v1(x) (the one corresponding to the smallest

eigenvalue λ1) cannot have any nodes.
(ii) For n ≥ 2, the nth eigenfunction vn(x) (corresponding to the nth

eigenvalue, counting multiplicity) divides the domain D into at least
two and at most n pieces.

For instance, in one dimension, there are n − 1 nodal points that divide the
interval (0, l) into exactly n pieces. In the case of the square illustrated above,
the eigenvalues are 2, 5, 5, 8, 10, 10, . . . . The fifth and sixth eigenvalues on
this list are l = 10, whose eigenfunctions divide the square into two or three
or four pieces.

It is easy to see why the nodes of vn(x) divide D into at least two pieces if
n ≥ 2. Indeed, by (i) we have v1(x) �= 0 for all x ∈ D. Since it is continuous
and D is connected, we may assume that v1(x) > 0 for all x ∈ D. But we
know that vn(x) is orthogonal to v1(x):

∫∫∫
D

vn(x) v1(x) dx = 0. (5)

Therefore, vn(x) cannot be everywhere of one sign. So vn(x) must be some-
where positive and somewhere negative. By continuity these points must be
separated by the nodal set where vn(x) is zero. The other statements of the
theorem will be proven in Exercises 11.6.7 and 11.6.8.

EXERCISES

1. For the Dirichlet problem in a square whose eigenfunctions are given by
(3), list the nine smallest distinct eigenvalues. What are their multiplici-
ties?

2. Sketch the nodal set of the eigenfunction

v(x, y) = sin 3x sin y + sin x sin 3y in the square (0, π )2.

(Hint: Use formulas for sin 3x and sin 3y together with factorization to
rewrite it as v(x, y) = 2 sin x sin y (3 − 2 sin2 x − 2 sin2 y).)

3. Small changes can alter the nature of the nodal set drastically. Use a
computer program to show that the eigenfunction sin 12x sin y + sin x
sin 12y has a nodal set that divides the square (0, π )2 into 12 subregions,
but that the eigenfunction sin 12x sin y + ν sin x sin 12y, for ν near 1, has
a nodal set that divides it into only two subregions. Show that the nodal
sets are as sketched in Figure 2.

4. Read about the nodal patterns of ancient Chinese bells in [Sh].
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Figure 2

10.5 BESSEL FUNCTIONS

We have seen that in problems with circular and spherical symmetry the radial
parts of the eigenfunctions satisfy Bessel’s differential equation

d2u

dz2
+ 1

z

du

dz
+

(
1 − s2

z2

)
u = 0. (1)

The purpose of this section is to summarize the most important properties of
the solutions of Bessel’s equation. Some of the proofs are omitted. There are
whole volumes on Bessel functions, such as [Bo].

In Section 10.2 we solved Bessel’s ODE in the case that the order s is
an integer. Now we allow s to be any real number. We write a prospective
solution as

u(z) = zα
∞∑

k=0

akzk (a0 �= 0). (2)

We get, exactly as in Section 10.2, the value (two values, actually) of the
exponent α and the values of all the coefficients:

α = ±s, ak = 0 for k odd,

ak = − ak−2

(α + k)2 − s2
(k = 2, 4, 6, . . .). (3)

BESSEL FUNCTION

The Bessel function is defined as that particular solution of (1) with the ex-
ponent α = +s and with the leading coefficient a0 = [2s�(s + 1)]−1. Here
� denotes the gamma function (see Section A.5). Actually, the choice of a0
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is quite arbitrary; we have simply made the standard choice. The gamma
function has the property that �(s + 1) = s! if s is an integer. For any real s,

�(s + 1) = s�(s) = · · · = s(s − 1) · · · (s − n)�(s − n).

Therefore, if we write k = 2j, it follows from (3) that

a2 j = (−1) j [22 j+s�( j + 1)�( j + s + 1)]
−1

.

So from (2) the Bessel function is

Js(z) =
∞∑
j=0

(−1) j

�( j + 1)�( j + s + 1)

( z

2

)2 j+s
. (4)

This series sums up to a bona fide solution of (1) for any real s, except if s is
a negative integer. [In the latter case, the series is not defined because �(s) is
infinite for negative integers s.]

For a given value of s, not an integer, the functions Js(z) and J−s(z) provide
a pair of linearly independent solutions of (1). Hence all the solutions of (1)
are AJs(z) + BJ−s(z) for arbitrary constants A and B. Note, however, that
J−s(z) is infinite at z = 0.

ZEROS

The zeros of Js(z) are the roots of the equation Js(z) = 0. It can be shown
that there are an infinite number of them: 0 < z1 < z2 < · · · . Each one is a
simple zero, meaning that J ′

s (z j ) �= 0. Between any two zeros of Js is a zero
of Js+1, and vice versa. We therefore say that the zeros of Js and Js+1 separate
each other. In fact, the zeros of any two linearly independent solutions of
(1) separate each other. The first zeros of J0(z) are z = 2.405, 5.520, 8.654,
11.79, . . . . (see Figure 10.2.1).

ASYMPTOTIC BEHAVIOR

It can be shown that as z → ∞ the Bessel function has the form

Js(z) =
√

2

π z
cos

(
z − sπ

2
− π

4

)
+ O(z−3/2). (5)

(Precisely, this means that [Js(z) − √
2/πz cos(z − sπ/2 − π/4)]z3/2 is

bounded as z → ∞.) Thus it looks just like a damped cosine.
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RECURSION RELATIONS

These are identities that relate the Bessel functions for different values of s.
Three of them are

Js±1(z) = s

z
Js(z) ∓ J ′

s (z) (6)

and

Js−1(z) + Js+1(z) = 2s

z
Js(z). (7)

The first pair (6) follows easily from the series expansion (4), while (7) follows
from (6) (see Exercise 3).

NORMALIZING CONSTANTS

In Sections 10.2 and 10.3 we used the values of the definite integrals

∫ a

0
[Js(z)]2 z dz = 1

2a2[J ′
s (a)]2 + 1

2 (a2 − s2)[Js(a)]2. (8)

To prove (8), we observe that Js(z) satisfies Bessel’s equation (zu′)′ +
z−1(z2 − s2)u = 0. Multiplying the equation by 2zu′, we get the identity

[(zu′)2 + (z2 − s2)u2]
′ = 2zu2.

Integrating from 0 to a, we deduce that

2
∫ a

0
zu2 dz = (zu′)2 + (z2 − s2)u2

∣∣∣∣
a

0

= a2u′(a)2 + (a2 − s2)u(a)2

since u(0) = 0 for s �= 0. This proves (8).
In particular, if βa is a zero of Js(z), then (8) simplifies to∫ a

0
[Js(βr )]2r dr = 1

2a2[J ′
s (βa)]2 = 1

2a2[Js±1(βa)]2 (9)

where the last expression comes from (6).

BESSEL FUNCTIONS OF HALF-INTEGER ORDER

By this we mean Js(z) with s = n + 1
2 , where n is an integer. (This is the

case we encountered in Section 10.3.) In this case the change of variables
u = z−1/2v is highly effective. In fact, Bessel’s equation (1) then is converted
to the equation

v′′ +
(

1 − s2 − 1
4

z2

)
v = 0 (10)

(see Exercise 4).
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The simplest case is s = 1
2 , in which case the equation is just v′′ +

v = 0, with the solutions v = A cos z + B sin z. So u(z) = A cos z/
√

z +
B sin z/

√
z. The Bessel function J1/2(z) is the solution that is finite at z = 0

(with an appropriate choice of constant B). Thus

J1/2(z) =
√

2

π z
sin z. (11)

Similarly, J−1/2(z) = √
2/π z cos z. The recursion relations (6) now provide

explicit formulas for all the half-integers; namely,

Jn+ 1
2
(z) = (−1)n

√
2

π
zn+ 1

2

(
z−1 d

dz

)n sin z

z
. (12)

OTHER SOLUTIONS OF BESSEL’S EQUATION

For s not an integer, the Neumann function is defined as

Ns(z) = cos πs

sin πs
Js(z) − 1

sin πs
J−s(z). (13)

(This is unrelated to the Neumann function of Exercise 7.4.21.) Of course,
this is just another particular solution of (1). One can show that as z → ∞
this solution satisfies

Ns(z) =
√

2

π z
sin

(
z − sπ

2
− π

4

)
+ O(z−3/2). (14)

Still another pair of solutions is the pair of Hankel functions:

H±
s (z) = Js(z) ± iNs(z)

=
√

2

π z
exp[±i(z − sπ/2 − π/4)] + O(z−3/2).

(15)

The property that distinguishes the Neumann and Hankel functions from the
other solutions is their special behavior for large z.

BESSEL FUNCTIONS OF INTEGER ORDER s = n
As we saw above, this is the case when we have found only one (Jn(z)) of the
solutions of Bessel’s equation (1). A second linearly independent solution for
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s = n is the Neumann function, which is defined as

Nn(z) = lim
s→n

Ns(z) = π−1 lim
s→n

∂

∂s
[Js(z) − (−1)n J−s(z)]

= 2

π
Jn(z) log

( z

2

)
+

∞∑
k=−n

akzk
(16)

for some coefficients ak. We omit the derivations of these formulas.

TWO IDENTITIES

An interesting pair of identities involving integer-order Bessel functions is

eiz sin θ =
∞∑

n=−∞
einθ Jn(z) (17)

and

Jn(z) = 1

π

∫ π

0
cos (z sin θ − nθ ) dθ. (18)

To prove (17) and (18), let’s begin by changing notation, replacing z by
r. Let’s think of r and θ as polar coordinates in the xy plane. The function
eirsin θ = eiy is periodic in θ , so that we can expand it in a complex Fourier
series

eirsin θ =
∞∑

n=−∞
gn(r ) einθ .

Its coefficients are

gn(r ) = 1

2π

∫ π

−π

eirsin θ−inθdθ = 1

π

∫ π

−π

cos(r sin θ − nθ ) dθ.

So it is enough to prove that gn(r ) = Jn(r ).
Integrating by parts twice, we get

2πn2gn(r ) = n2

∫ π

−π

eirsin θ · e−inθdθ

= nr
∫ π

−π

eirsin θcos θ · e−inθdθ

=
∫ π

−π

eirsin θ−inθ · (r2cos2 θ + ir sin θ ) dθ. (19)
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Upon differentiating this integral, using Section A.3, we find that

r2g′′
n + rg′

n + (r2 − n2)gn

= 1

2π

∫ π

−π

eirsin θ−inθ (−r2 sin2 θ + ir sin θ + r2 − n2) dθ. (19a)

Due to −r2 sin2 θ + r2 = r2 cos2 θ and identity (19), the last integral equals

1

2π

∫ π

−π

eirsin θ−inθ (n2 − n2) dθ = 0.

So by (19a), gn(r) satisfies Bessel’s equation of order n. Which solution is
it? Since gn(0) is finite, gn(r ) = An Jn(r ) for some constant An. Now the kth
derivative is

g(k)
n (0) = i k

2π

∫ π

−π

einθsink θ dθ.

Hence 0 = gn(0) = g′
n(0) = · · · = g(n−1)

n (0) and g(n)
n (0) = 2−n as we can see

by writing the sine as exponentials. Since also J (n)
n (0) = 2−n , we deduce that

gn(r ) ≡ Jn(r ). This completes the proof of (17) and (18).

EXERCISES

1. Show that

J0(z) = 1 −
( z

2

)2
+ 1

(2!)2

( z

2

)4
− 1

(3!)2

( z

2

)6
+ · · ·

and

J1(z) = −J ′
0(z) = z

2
− 1

2!

( z

2

)3
+ 3

(3!)2

( z

2

)5
+ · · · .

2. Write simple formulas for J3/2 and J−3/2.
3. Derive the recursion relations (6) and (7).
4. Show that the substitution u = z−1/2v converts Bessel’s equation into

(10).
5. Show that if u satisfies Bessel’s equation, then v = zαu(λzβ) satisfies

the differential equation

v′′ + 1 − 2α

z
v′ +

[
(λβzβ−1)

2 − s2β2 − α2

z2

]
v = 0.
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6. Use (11) and the recursion relations to compute J3/2 and J5/2. Verify
(12) in these cases.

7. Find all the solutions u(x) of the ODE xu′′ − u′ + xu = 0. (Hint: Sub-
stitute u = xv.)

8. Show that H±
1/2(z) = √

2/π z e±i(z−π/2) exactly!

9. (a) Show that u(r, t) = eiωt H±
s (ωr/c) solves the three-dimensional

wave equation.
(b) Show that it has the asymptotic form (1 + i)

√
c/πωr eiω(t±r/c). The

plus sign gives us an incoming wave (an approximate function of
t + r/c), the minus sign an outgoing wave (an approximate function
of t − r/c).

10. Prove that the three definitions of the Neumann function of integer order
given by (16) are equivalent.

11. Fill in the details in the derivation of (17) and (18).
12. Show that cos(x sin θ ) = J0(x) + 2

∑∞
k=1 J2k(x) cos 2kθ.

13. Substitute t = eiθ in (17) to get the famous identity

e(1/2)z(t−1/t) =
∞∑

n=−∞
Jn(z)tn.

The function on the left is called the generating function for the Bessel
functions of integer order. It is the function whose power series expansion
in t has the integer Bessel functions as coefficients.

14. Solve the equation −uxx − uyy + k2u = 0 in the disk {x2 + y2 < a2}
with u ≡ 1 on the boundary circle. Write your answer in terms of the
Bessel functions Js(iz) of imaginary argument.

15. Solve the equation −uxx − uyy + k2u = 0 in the exterior {x2 + y2 > a2}
of the disk with u ≡ 1 on the boundary circle and u(x, y) bounded at
infinity. Write your answer in terms of the Hankel functions Hs(i z) of
imaginary argument.

16. Solve the equation −uxx − uyy − uzz + k2u = 0 in the ball {x2 + y2 +
z2 < a2}, with u ≡ 1 on the boundary sphere. Write your answer in terms
of elementary functions.

17. Solve the equation −uxx − uyy − uzz + k2u = 0 in the exterior
{x2 + y2 + z2 > a2} of the ball with u ≡ 1 on the boundary sphere and
u(x, y, z) bounded at infinity. Write your answer in terms of elementary
functions.

18. Find an equation for the eigenvalues and find the eigenfunctions of −�
in the disk {x2 + y2 < a2} with the Robin BC ∂v/∂r + hv = 0 on the
circle, where h is a constant.

19. Find an equation for the eigenvalues and find the eigenfunctions of −�
in the annulus {a2 < x2 + y2 < b2} with Dirichlet BCs on both circles.
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10.6 LEGENDRE FUNCTIONS

In problems with spherical symmetry, as in Section 10.3, we encountered
Legendre’s differential equation

[(1 − z2)u′]
′ + γ u = 0, (1)

where γ = l(l + 1) for some integer l ≥ 0. The purpose of this section is to
summarize the most important properties of its polynomial solutions. Some
of the proofs are omitted. For more details, see [Sa] or [MF].

LEGENDRE POLYNOMIAL

The ODE (1) has “singular points” where 1 − z2 = 0. Thus z = ±1. (See
Section A.4 for a brief discussion of singular points.) The equation (1) is
easily solved by a power series:

u(z) =
∞∑

k=0

akzk .

Upon substituting the power series into (1), we get

∞∑
k=0

k(k − 1)akzk−2 −
∞∑

k=0

(k2 + k − γ )akzk = 0.

We replace k − 2 by k in the first sum. The coefficients of like powers of z
must match, so that

ak+2 = ak
k(k + 1) − γ

(k + 2)(k + 1)
(k = 0, 1, 2, . . .). (2)

Both a0 and a1 are arbitrary constants. Since γ = l(l + 1) for some integer l,
we see from (2) that al+2 = al+4 = · · · = 0.

Thus we always get at least one solution that has only a finite number
of nonzero coefficients al, al−2, . . . , that is, a polynomial. It is the Legendre
polynomial Pl(z). If l is even, Pl(z) has only even powers. If l is odd, Pl(z)
has only odd powers. The integer l is the degree of Pl(z). Making a certain
choice of the first coefficient a0 or a1, it follows from (2) that the Legendre
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polynomials are

Pl(z) = 1

2l

m∑
j=0

(−1) j

j!

(2l − 2 j)!

(l − 2 j)!(l − j)!
zl−2 j (3)

where m = l/2 if l is even, and m = (l − 1)/2 if l is odd. The first six Legendre
polynomials are as follows:

l Pl(z)
0 1
1 z

2
1

2
(3z2 − 1)

3
1

2
(5z3 − 3z)

4
1

8
(35z4 − 30z2 + 3)

5
1

8
(63z5 − 70z3 + 15z)

The Pl(z) satisfy the recursion relation

(l + 1)Pl+1(z) − (2l + 1)z Pl(z) + l Pl−1(z) = 0 (4)

(see Exercise 1). As mentioned in Section 10.3, they satisfy the orthogonality
relation ∫ 1

−1
Pl(z)Pl ′(z) dz = 0 for l �= l ′. (5)

In case γ is not the product l(l + 1) of two successive integers, it turns out
that there is no polynomial solution u �≡ 0 of (1). Both linearly independent
solutions can be expressed as power series as in Section A.4 in powers of
(z − 1). Only one of these solutions is singular at z = 1. The nonsingular
solution is called a Legendre function.

NORMALIZING CONSTANTS

The normalizing constants are∫ 1

−1
[Pl(z)]2 dz = 2

2l + 1
. (6)

Let’s prove (6). Taking the inner product of (4) with Pl−1(z) and using the
orthogonality (5), we get

(2l + 1)(z Pl, Pl−1) = l(Pl−1, Pl−1).
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Replacing l by l − 1 in (4) and taking the inner product with Pl, we get

(2l − 1)(z Pl−1, Pl) = l(Pl, Pl).

Combining these two identities, we get

(2l + 1)(Pl, Pl) = (2l − 1)(Pl−1, Pl−1)

valid for l = 2, 3, . . . and also for l = 1. Hence

(Pl, Pl) = 2(l − 1) + 1

2l + 1
(Pl−1, Pl−1)

= 2(l − 2) + 1

2l + 1
(Pl−2, Pl−2) = · · ·

= 3

2l + 1
(P1, P1) = 1

2l + 1
(P0, P0) = 2

2l + 1
.

RODRIGUES’ FORMULA

The formula of Rodrigues expresses the Legendre polynomials explicitly.
It is

Pl(z) = 1

2l l!

dl

dzl
(z2 − 1)

l
. (7)

It follows that Pl(1) = 1. The proof is left for Exercise 2.

ZEROS

Inside the interval −1 < z < 1, Pl(z) has exactly l zeros. Furthermore, its
kth derivative dkPl/dzk has exactly l − k zeros for 1 ≤ k ≤ l. None of these
derivatives vanishes at either endpoint.

To prove these statements, we’ll use Rodrigues’ formula. The polynomial
Q(z) = (z2 − 1)

l
has no zeros in the interval (−1, 1) except at the endpoints

±1. By Rolle’s theorem from elementary calculus, its first derivative Q′ has
at least one interior zero as well as zeros at the two endpoints. Similarly, its
second derivative Q′′ has at least two interior zeros separated by the zero of
Q′, its third derivative Q′′′ has at least three separated by the two of Q′′, and
so on. Thus Pl, which is essentially the lth derivative Q(l) of Q, has at least
l interior zeros. Because it is a polynomial of degree l, it must have exactly
l zeros. But now the game changes because Q(l) no longer vanishes at the
endpoints ±1. Because there are only l − 1 subintervals between the zeros
of Q(l), its derivative Q(l+1) is only guaranteed to have l − 1 zeros. Because
Q(l+1), which by (7) is almost the same as P ′

l , is a polynomial of degree l −
1, it must have exactly l − 1 zeros. Similarly, Q(l+2), which is essentially P ′′

l ,
has exactly l − 2 zeros, and so on.
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GENERATING FUNCTION

The identity

(1 − 2t z + t2)
−1/2 =

∞∑
l=0

Pl(z)t l (8)

is valid for |z| < 1 and |t | < 1. The function on the left side of (8) is called the
generating function for the Legendre polynomials because all of them appear
as the coefficients in the power series expansion.

To prove (8), we note that the left side g(t, z) of (8) is an analytic function
of t for |t | < 1, which precisely means that it has a power series expansion

g(t, z) =
∞∑

l=0

Ql(z)t l (9)

with some coefficients Ql(z). (The reader who has not yet studied analytic
functions can simply expand the function g(t, z) using the binomial expansion
in powers of 2tz − t2 and then expand the powers and rearrange the terms to
get (9).)

On the other hand, explicit differentiation of g(t, z) shows that it satisfies
the PDE

[(1 − z2)gz]z + t[tg]tt = 0.

(Check it.) Plugging the expansion (9) into this PDE, we find that
∞∑

l=0

[(1 − z2)Q′
l(z)]′t l +

∞∑
l=0

l(l + 1)Ql(z)t l = 0.

Because the coefficients must match, we must have

[(1 − z2)Q′
l(z)]′ + l(l + 1)Ql(z) = 0.

So Ql satisfies Legendre’s differential equation!
On the other hand, putting z = 1 in the definition of g(t, z), we have

g(t, 1) = (1 − 2t + t2)
−1/2 = (1 − t)−1 =

∞∑
l=0

t l,

so that Ql(1) = 1. This determines which solution of Legendre’s equation Ql
is, namely Ql ≡ Pl . This proves (8).

ASSOCIATED LEGENDRE FUNCTIONS

The associated Legendre equation is

[(1 − z2)u′]′ +
(

γ − m2

1 − z2

)
u = 0, (10)

where γ = l(l + 1) and m ≤ l, m and l being integers.
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We define the associated Legendre functions as

Pm
l (z) = (1 − z2)

m/2 dm

dzm
Pl(z), (11)

where the integer m is a superscript. Let’s show that (11) is indeed a solution
of (10). In fact, v = (dm/dzm)Pl(z) has to satisfy the m-times-differentiated
Legendre equation

(1 − z2)v′′ − 2(m + 1)zv′ + [γ − m(m + 1)]v = 0.

Substituting v(z) = (1 − z2)
−m/2

w(z), we get the equation

[(1 − z2)w ′]′ +
(

γ − m2

1 − z2

)
w = 0,

which is precisely (10).
The orthogonality property of the associated Legendre functions has al-

ready been stated in Section 10.3; namely, Pm
l and Pm

l ′ are orthogonal on the
interval (−1, 1). The normalizing constants are∫ 1

−1
[Pm

l (z)]2 dz = 2(l + m)!

(2l + 1)(l − m)!
. (12)

Rodrigues’ formula for the associated functions follows immediately from
the m = 0 case (7); its statement is left to the reader.

EXERCISES

1. Show that the Legendre polynomials satisfy the recursion relation (4).
2. (a) Prove Rodrigues’ formula (7).

(b) Deduce that Pl(1) = 1.
3. Show that P2n(0) = (−1)n(2n)!/22n(n!)2.
4. Show that

∫ 1
−1 x2 Pl(x) dx = 0 for l ≥ 3.

5. Let f (x) = x for 0 ≤ x < 1, and f (x) = 0 for −1 < x ≤ 0. Find the co-
efficients al in the expansion f (x) = ∑∞

l=0 al Pl(x) of f (x) in terms of
Legendre polynomials in the interval (−1, 1).

6. Find the harmonic function in the ball {x2 + y2 + z2 < a2} with u =
cos2 θ on the boundary.

7. Find the harmonic function in the ball {x2 + y2 + z2 < a2}
with the boundary condition u = A on the top hemisphere
{x2 + y2 + z2 = a2, z > 0} and with u = B on the bottom hemi-
sphere {x2 + y2 + z2 = a2, z < 0}, where A and B are constants.

8. Solve the diffusion equation in the solid cone {x2 + y2 + z2 < a2, θ < α}
with u = 0 on the whole boundary and with general initial conditions.
[Hint: Separate variables and write the solution as a series with terms of
the separated form T (t) R(r )q(φ)p(cos θ ). Show that p(s) satisfies the
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associated Legendre equation. Expand p(s) in powers of (s − 1). In terms
of such a function, write the equations that determine the eigenvalues.]

10.7 ANGULAR MOMENTUM
IN QUANTUM MECHANICS

This section is a follow-up to Section 9.5. We consider Schrödinger’s equation
with a radial potential V(r), where r = |x| = (x2 + y2 + z2)

1/2
. Thus

iut = − 1
2�u + V (r )u (1)

in all of space with the “boundary condition”∫∫∫
|u(x, t)|2 dx < ∞. (2)

We separate out the time variable to get u(x, t) = v(x)e−iλt/2, where

−�v + 2V (r )v = λv.

Recall that λ is interpreted as the energy.
Next we separate out the radial variable v = R(r )Y (θ, φ) to get

λr2 − 2r2V (r ) + r2Rrr + 2rRr

R
+ 1

Y

{
1

sin2 θ
Yφφ + 1

sin θ
[(sin θ)Yθ ]θ

}
= 0.

Because the variable r occurs only in the first three terms, the radial equation
is

Rrr + 2

r
Rr +

[
λ − 2V (r ) − γ

r2

]
R = 0, (3)

whereas the Y equation is precisely (10.3.3). Therefore, Y (θ, φ) is a spherical
harmonic:

Y (θ, φ) = Y m
l (θ, φ) = Pm

l (cos θ ) eimφ (4)

for |m| ≤ l (see Section 10.3). Furthermore, γ = l(l + 1). The index l is called
the orbital quantum number, and m is the magnetic quantum number.

In quantum mechanics the angular momentum operator is defined as the
cross product

L = −ix × ∇ = −i

⎛
⎜⎝y∂z − z∂y

z∂x − x∂z

x∂y − y∂x

⎞
⎟⎠ =

⎛
⎜⎝Lx

L y

Lz

⎞
⎟⎠. (5)
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This operator L has the spherical harmonics as its eigenfunctions, as we now
explain. In spherical coordinates L takes the form (Exercise 1){ Lx = i(cot θ cos φ ∂φ + sin φ ∂θ )

L y = i(cot θ sin φ ∂φ − cos φ ∂θ )
Lz = −i∂φ.

(6)

Therefore,

|L|2 = L2
x + L2

y + L2
z

= − 1

sin2 θ

∂2

∂φ2
− 1

sin θ

∂

∂θ
sin θ

∂

∂θ
,

(7)

which is exactly the angular part of the negative laplacian operator! So from
(10.3.3) we have the equation

|L|2(Y m
l

) = l(l + 1) Y m
l . (8)

Because of the explicit form of Lz, we also have the equation

Lz
(
Y m

l

) = mY m
l . (9)

The effect of the operators Lx and Ly on the spherical harmonics is not as
simple. If we denote

L± = Lx ± iL y,

known as the raising and lowering operators, then

L+
(

Y m
l

) = [(l − m)(l + m + 1)]1/2 Y m+1
l

L−
(
Y m

l

) = [(l + m)(l − m + 1)]1/2 Y m−1
l .

(10)

In quantum mechanics there cannot be a pure rotation about a single
axis. Indeed, let’s choose coordinates so that the axis of rotation is the z
axis. A pure rotation about the z axis would mean φ dependence but no θ
dependence. But such a spherical harmonic would mean that m �= 0 and l =
0. This cannot happen because |m| ≤ l. The physicist’s explanation is that
in quantum mechanics you cannot define an axis of rotation except in an
averaged way. There will always remain some probability of a rotation off the
axis.

HYDROGEN ATOM

The radial equation (3) can be solved analytically only for certain potentials
V(r). We take up the case again of the hydrogen atom where V(r) = −1/r.
Thus, after separating the time variable, we have

Rrr + 2

r
Rr +

[
λ + 2

r
− l(l + 1)

r2

]
R = 0. (11)
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The case when l = 0 has already been discussed in Section 9.5. As in Section
9.5, the boundary conditions are R(0) finite and R(∞) = 0. We shall follow
exactly the same method as in that section.

Consider only the case λ < 0 and let β = √−λ. Let w(r ) = eβr R(r ).
Then

wrr + 2

(
1

r
− β

)
wr +

[
2(1 − β)

r
− l(l + 1)

r2

]
w = 0. (12)

We look for solutions in the form of a power series w(r ) = ∑∞
k=0 akrk .

Thus∑
k(k − 1)akrk−2 + 2

∑
kakrk−2 − 2β

∑
kakrk−1

+ 2(1 − β)
∑

akrk−1 − l(l + 1)
∑

akrk−2 = 0.

Switching the dummy index k to k − 1 in the third and fourth sums, we get
∞∑

k=0

[k(k − 1) + 2k − l(l + 1)] akrk−2

+
∞∑

k=1

[−2β(k − 1) + (2 − 2β)] ak−1rk−2 = 0.

That is,
∞∑

k=0

[k(k + 1) − l(l + 1)] akrk−2 +
∞∑

k=1

2(1 − kβ)ak−1 rk−2 = 0. (13)

Thus we are led to the recursion relations

k = 0: l(l + 1)a0 = 0
k = 1: [2 − l(l + 1)]a1 = −2(1 − β)a0

k = 2: [6 − l(l + 1)]a2 = −2(1 − 2β)a1

k = 3: [10 − l(l + 1)]a3 = −2(1 − 3β)a2,

and in general

[k(k + 1) − l(l + 1)]ak = −2(1 − kβ)ak−1. (14)

We know that l has to be a nonnegative integer. Thus a0 = 0 if l �= 0. In fact,
it is clear from (14) that every coefficient has to vanish until the lth one:

a0 = a1 = · · · al−1 = 0.

But then al is completely arbitrary. Once al is chosen, the succeeding coef-
ficients are determined by it. There will be a polynomial solution only if the
coefficients terminate. This will happen whenever β = 1/n with n an integer
greater than l. Thus the eigenvalues are

λ = − 1

n2
(15)
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(as in Section 9.5). The index n is called the principal quantum number.
Thus for each integer l, 0 ≤ l < n, we have eigenfunctions of the form

vnlm(r, θ, φ) = e−r/n Ll
n(r ) · Y m

l (θ, φ). (16)

These are the wave functions of the hydrogen atom. We have used the (non-
standard) notation w(r ) = Ll

n(r ) for the polynomial. The ODE (11) is a rel-
ative of the associated Laguerre equation. The polynomials Ll

n(r ) have the
form

L(r ) =
n−1∑
k=l

akr k = alr
l + · · · + an−1rn−1. (17)

[The associated Laguerre polynomials are r−lL(r).] The eigenfunctions
satisfy the PDE

−�vnlm − 2

r
vnlm = − 1

n2
vnlm (18)

for n, l, m integers with 0 ≤ |m| ≤ l ≤ n − 1.
We conclude that the separated solutions of the full Schrödinger equation

for the hydrogen atom are

eit/2n2 · e−r/n · Ll
n(r ) · Y m

l (θ, φ). (19)

We should beware however that, as in Section 9.5, the eigenfunctions vnlm(x)
are not complete among the functions of three variables.

We have seen that the eigenvalue λn = −1/n2 has many eigenfunc-
tions, one corresponding to each m and l such that 0 ≤ l < n and |m| ≤ l.
Thus there are 2l + 1 eigenfunctions for each l and altogether there are∑n−1

l=0 (2l + 1) = n2 eigenfunctions for λn. (In physics, the values of l are
traditionally denoted by the letters s(l = 0), p(l = 1), d(l = 2), and f (l = 3), a
legacy from the early observations of spectral lines. For a reference, see [Ed].)

EXERCISES

1. Show that in spherical coordinates the angular momentum operator L is
given by (6).

2. Prove the identity LxLy − LyLx = iLz and the two similar identities formed
by cyclically permuting the subscripts.

3. (a) Write down explicitly the eigenfunction of the PDE (18) in the case
n = 1.

(b) What are the four eigenfunctions with n = 2?
(c) What are the nine eigenfunctions with n = 3?
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4. Show that if β is not the reciprocal of an integer, the ODE (11) has no
solution that vanishes as r → ∞.

5. (a) Write Schrödinger’s equation in two dimensions in polar coordi-
nates iut = − 1

2 (urr + ur/r + uθθ/r2) + V (r )u, with a radial poten-
tial V(r). Find the separated eigenfunctions u = T (t)R(r )�(θ ), leav-
ing R in the form of a solution of an ODE.

(b) Assume that V (r ) = 1
2r2. Substitute ρ = r2 and R(r ) =

e−ρ/2ρ−n/2L(ρ) to show that L satisfies the Laguerre ODE

Lρρ +
[
−1 + ν + 1

ρ

]
Lρ + μ

ρ
L = 0

for some constants ν and μ.
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GENERAL
EIGENVALUE
PROBLEMS

The eigenvalues are the most important quantities in PDE problems. Only for
special domains, as in Sections 10.2 and 10.3, is it possible to get explicit
formulas for the eigenvalues of the laplacian. Can anything be said about the
eigenvalues of the laplacian for a domain of arbitrary shape? The answer is
yes and provides the subject of this chapter.

We first show that the eigenvalues always minimize the energy subject to
certain constraints. We use this idea in Section 2 to derive a practical method
for computing the eigenvalues. In Section 3 we prove the completeness of the
eigenfunctions. In Section 4 we consider more general eigenvalue problems,
including the Sturm–Liouville problems. Then we deduce some consequences
of completeness. Finally, in Section 6 we study the size of the nth eigenvalue
for n large.

11.1 THE EIGENVALUES ARE MINIMA OF THE
POTENTIAL ENERGY

The basic eigenvalue problem with Dirichlet boundary conditions is

−�u = λu in D, u = 0 on bdy D, (1)

where D is an arbitrary domain (open set) in 3-space that has a piecewise-
smooth boundary. In this chapter we denote the eigenvalues by

0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · ≤ λn ≤ · · · , (2)

299
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repeating each one according to its multiplicity. (We know they are all pos-
itive by Section 10.1.) Each domain D has its own particular sequence of
eigenvalues.

As usual, we let

( f, g) =
∫∫∫

D

f (x)g(x) dx and ‖ f ‖ = ( f, f )1/2 =
(∫∫∫

D

| f (x)|2 dx
)1/2

.

Although we’ll work in three dimensions, everything we’ll say is also valid
in two dimensions (or any number of dimensions for that matter). We have
already seen in Section 7.1 (Dirichlet principle) that the function that mini-
mizes the energy and satisfies an inhomogeneous boundary condition is the
harmonic function. The eigenvalue problem as well is equivalent to a mini-
mum problem for the energy, as we shall now show.

It may be helpful to pause for a moment to think about minima in ordinary
calculus. If E(u) is a function of one variable and u is a point where it has
a minimum, then the derivative is zero at that point: E ′(u) = 0. The method
of Lagrange multipliers states the following. If E(u) is a scalar function of
a vector variable that has a minimum among all u which satisfy a constraint
F(u) = 0, then u satisfies the equation ∇E(u) = λ∇F(u) for some constant
scalar λ. The constant λ is called the Lagrange multiplier.

Now consider the minimum problem:

m = min

{‖∇w‖2

‖w‖2 : w = 0 on bdy D, w �≡ 0

}
(MP)

(where w(x) is a C2 function). This notation means that we should find the
smallest possible value of the quotient.

Q = ‖∇w‖2

‖w‖2 (3)

among all functions w(x) that vanish on the boundary but are not identically
zero in D. This Q is called the Rayleigh quotient.

What do we mean by a “solution” of (MP)? We mean a C2 function u(x),
not the zero function, such that u = 0 on bdy D and such that

‖∇u‖2

‖u‖2 ≤ ‖∇w‖2

‖w‖2 (4)

for all w with w = 0 on bdy D and w �≡ 0. Notice that if u(x) is a solution of
(MP), so is Cu(x) for any constant C �= 0.
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Theorem 1. Minimum Principle for the First Eigenvalue Assume
that u(x) is a solution of (MP). Then the value of the minimum equals the first
(smallest) eigenvalue λ1 of (1) and u(x) is its eigenfunction.

That is,

λ1 = m = min

{‖∇w‖2

‖w‖2

}
and −�u = λ1u in D. (5)

The moral is that “the first eigenvalue is the minimum of the energy.” This
is a true fact in most physical systems. The first eigenfunction u(x) is called
the ground state. It is the state of lowest energy.

Proof. By a trial function, we shall mean any C2 function w(x) such that
w = 0 on bdy D and w �≡ 0. Let m be the minimum value of the Rayleigh
quotient among all trial functions. Clearly, the constant m is nonnegative. Let
u(x) be a solution of (MP). By assumption, we have

m =
∫∫∫ |∇u|2 dx∫∫∫ |u|2 dx

≤
∫∫∫ |∇w |2 dx∫∫∫ |w |2 dx

for all trial functions w(x). Let’s abbreviate, writing
∫

instead of
∫∫∫

dx. Let
v(x) be any other trial function and let w(x) = u(x) + εv(x) where ε is any
constant. Then

f (ε) =
∫ |∇(u + εv)|2∫ |u + εv|2 (6)

has a minimum at ε = 0. By ordinary calculus, f ′(0) = 0. Expanding both
squares in (6), we have

f (ε) =
∫

(|∇u|2 + 2ε∇u · ∇v + ε2|∇v|2)∫
(u2 + 2εuv + ε2v2)

.

So the derivative is easy to compute:

0 = f ′(0) = (
∫

u2)(2
∫ ∇u · ∇v) − (

∫ |∇u|2)(2
∫

uv)

(
∫

u2)2 .

Hence ∫
∇u · ∇v =

∫ |∇u|2∫
u2

∫
uv = m

∫
uv. (7)

By Green’s first identity (G1 in Chapter 7) and the boundary condition v = 0,
we can rewrite (7) as ∫∫∫

(�u + mu)(v) dx = 0.
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(Check it.) It is valid for all trial functions v(x). Since v(x) can be chosen in
an arbitrary way inside D, we deduce just as at the end of Section 7.1 that
�u + mu = 0 in D. Therefore, the minimum value m of Q is an eigenvalue
of −� and u(x) is its eigenfunction!

To show that m is the smallest eigenvalue of −�, let −�v j = λ jv j , where
λj is any eigenvalue at all. By the definition of m as the minimum of Q and by
(G1), we have

m ≤
∫ |∇v j |2∫

v2
j

=
∫

(−�v j )(v j )∫
v2

j

=
∫

(λ jv j )v j∫
v2

j

= λ j . (8)

Therefore, m is smaller than any other eigenvalue. This completes the proof
of Theorem 1. �

A formulation equivalent to (5) is that

λ1 = min
∫∫∫

|∇w |2 dx (9)

subject to the conditions w ∈C2, w = 0 on bdy D, and
∫∫∫

w2dx = 1 (see
Exercise 2). Thusλ1 minimizes the potential energy subject to these conditions.

Example 1.

The minimum of
∫ 1

0 [w ′(x)]2dx , among all functions such that∫ 1
0 w2 dx = 1 and w(0) = w(1) = 0, is the first eigenvalue of −d2/dx2

with Dirichlet BCs and therefore equals exactly π2. (Who would have
imagined that this minimum had anything to do with the number π?)
A direct derivation (from scratch) of this minimum is quite tricky; see
Exercise 3. �

THE OTHER EIGENVALUES

All the other eigenvalues listed in (2) are minima as well, but with additional
constraints, as we now demonstrate.

Theorem 2. Minimum Principle for the nth Eigenvalue Sup-
pose that λ1, . . . ,λn−1 are already known, with the eigenfunctions v1(x), . . . ,
vn−1(x), respectively. Then

λn = min

{‖∇w‖2

‖w‖2 : w �≡ 0, w = 0 on bdy D, w ∈ C2,

0 = (w, v1) = (w, v2) = · · · = (w, vn−1)

}
,

(MP)n
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assuming that the minimum exists. Furthermore, the minimizing function is
the nth eigenfunction vn(x).

This is the same as the minimum problem (MP) except for the additional
constraints of being orthogonal to all of the earlier eigenfunctions. Because
there are more constraints now, the minimum value for (MP)n must be higher
than the minimum value for (MP)n−1, which is higher than the minimum value
for (MP). In fact, Theorem 2 says that you get exactly the next eigenvalue
λn ≥ λn−1.

Proof of Theorem 2. Let u(x) denote the minimizing function for (MP)n,
which exists by assumption. Let m∗ denote this new minimum value, so that
m∗ is the value of the Rayleigh quotient at u(x). Thus u = 0 on bdy D, u is
orthogonal to v1, . . . , vn−1, and the quotient Q is smaller for u than for any
other function w that satisfies the conditions in (MP)n. As in the proof of
Theorem 1, we substitute w = u + εv, where v satisfies the same constraints.
Exactly as before, ∫∫∫

(�u + m∗u) v dx = 0 (10)

for all trial functions v that are orthogonal to v1, . . . , vn−1. Furthermore, by
Green’s second formula (G2) (see Section 7.2),∫∫∫

(�u + m∗u) vj dx =
∫∫∫

u (�v j + m∗vj ) dx

= (m∗ − λj )
∫∫∫

uvj dx = 0
(11)

because u is orthogonal to vj for j = 1, . . . , n − 1.
Now let h(x) be an arbitrary trial function (a C2 function such that h = 0

on bdy D and h �≡ 0). Let

v(x) = h(x) −
n−1∑
k=1

ckvk(x), where ck = (h, vk)

(vk, vk)
. (12)

Then (v, vj) = 0 for j = 1, . . . , n − 1. (Check it!) This function v is the
“part” of h that is orthogonal to each of the n − 1 functions v1, . . . , vn−1. So
v satisfies all the required constraints. Therefore, (10) is valid for this v. So a
linear combination of (10) and (11) yields∫∫∫

(�u + m∗u) h dx = 0. (13)

This is true for all trial functions h. Therefore, we again deduce the equation
−�u = m∗u, which means that m∗ is an eigenvalue. It is left as an exercise
to show that m∗ = λn. �

The existence of the minima (MP) and (MP)n is a delicate mathematical
issue that we have avoided. The early proofs in the mid-nineteenth century had
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serious gaps and it took some 50 years to fill them! In fact, there are domains
D with rough boundaries for which (MP) does not have any C2 solution at all.
For further information, see [Ga] or [CH].

EXERCISES

1. Let f (x) be a function such that f (0) = f (3) = 0,
∫ 3

0 [f (x)]2 dx = 1, and∫ 3
0 [ f ′(x)]2 dx = 1. Find such a function if you can. If it cannot be found,

explain why not.
2. Show that Theorem 1 can be reformulated as (9).
3. Construct a direct (but unmotivated) proof of Example 1 as follows, with-

out using any knowledge of eigenvalues. Let w(x) be a C2 function such
that w(0) = w(1) = 0.
(a) Expand

∫ 1
0 [w ′(x) − πw(x) cot(πx)]2 dx and integrate the cross-

term by parts.
(b) Show that w2(x) cot πx → 0 as x → 0 or 1.
(c) Deduce that∫ 1

0
[w ′(x)]2 dx − π2

∫ 1

0
[w(x)]2 dx

=
∫ 1

0
[w ′(x) − πw(x) cot πx]2 dx ≥ 0.

(d) Show that if w(x) = sin πx , then part (c) is an equality and therefore
the minimum of Example 1 is π2.

4. In the proof of Theorem 2 we showed that −�u = m∗u. Show that m∗ =
λn .

5. (a) Show that the lowest eigenvalue λ1 of −� with the Robin boundary
condition ∂u/∂n + a(x)u = 0 is given by

λ1 = min

{∫∫∫
D |∇w |2 dx + ∫∫

bdyD aw2 d S∫∫∫
D w2 dx

}

among all the C2 functions w(x) for which w �≡ 0.
(b) Show that λ1 increases as a(x) increases.

11.2 COMPUTATION OF EIGENVALUES

The eigenvalues, particularly the smallest one, are important in many engi-
neering applications. The most useful technique for computing them is based
on their characterization as minima of the energy.

Beginning with the first eigenvalue, we know from (11.1.5) that

λ1 ≤ ‖∇w‖2

‖w‖2 (1)
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for all w vanishing on the boundary. A supremely clever choice of the trial
function w would give an equality (namely, w = v1), but since we don’t know
v1 in advance, we should be satisfied with a moderately clever choice that
might provide a moderately good approximation.

Example 1.

Consider finding the first eigenvalue of −u′′ = λu on the interval 0 ≤
x ≤ l with the Dirichlet BC u(0) = u(l) = 0, assuming that we didn’t
already know the correct answer λ1 = π2/ l2. Take as a simple trial
function the quadratic w(x) = x(l − x). It clearly satisfies the boundary
conditions. The Rayleigh quotient is

‖w ′‖2

‖w‖2 =
∫ l

0 (l − 2x)2 dx∫ l
0 x2(l − x)2 dx

= 10

l2
. (2)

This is an amazingly good approximation to the exact value λ1 =
π2/ l2 = 9.87/ l2. �

Further examples are found in the exercises. The method does not usually
work as well as in this simple example because it is too difficult to guess a good
trial function, but it can always be improved by using more trial functions, as
we shall now show.

RAYLEIGH–RITZ APPROXIMATION

Let w1, . . . , wn be n arbitrary trial functions (C2 functions that vanish on bdy
D). Let

a jk = (∇wj , ∇wk) =
∫∫∫

D

∇wj · ∇wk dx

and

bjk = (wj , wk) =
∫∫∫

D

wj · wk dx.

Let A be the n × n symmetric matrix (ajk) and B the n × n symmetric matrix
(bjk). Then the roots of the polynomial equation

determinant of (A − λB) = 0 (3)

are approximations to the first n eigenvalues λ1, . . . , λn.
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Example 2.

Consider the radial vibrations of a circular membrane (disk) of radius 1:

−�u = −urr − 1

r
ur = λu (0 < r < 1), u = 0 at r = 1. (4)

Then −(rur)r = λru and the Rayleigh quotient is

Q =
∫∫ |∇u|2 dx∫∫

u2 dx
=

∫ 1
0 ru2

r dr∫ 1
0 ru2 dr

. (5)

The trial functions are required to satisfy the boundary conditions ur(0)=
0 = u(1). A simple choice of a pair of them is 1 − r2 and (1 − r2)2. Then

A

2π
=

⎛
⎝
∫ 1

0 4r2r dr
∫ 1

0 8r2(1 − r2)r dr∫ 1
0 8r2(1 − r2)r dr

∫ 1
0 16r2(1 − r2)

2
r dr

⎞
⎠ =

(
1 2

3
2
3

2
3

)

and

B

2π
=

(∫ 1
0 (1 − r2)

2
r dr

∫ 1
0 (1 − r2)

3
r dr∫ 1

0 (1 − r2)
3
r dr

∫ 1
0 (1 − r2)

4
r dr

)
=

(
1
6

1
8

1
8

1
10

)
.

Hence a calculation of the determinant (3) yields the quadratic equation

1

(2π )2 det(A − λB) =
(

1 − λ

6

)(
2

3
− λ

10

)
−

(
2

3
− λ

8

)2

or λ2/960 − 2λ/45 + 2/9 = 0. The eigenvalues are approximately equal
to the roots of this quadratic. They are λ1 ∼ 5.784 and λ2 ∼ 36.9. The
true eigenvalues are the squares of the roots of the Bessel function Jo
(as we know from Section 10.2), the first two of which are λ1 ∼ 5.783
and λ2 ∼ 30.5. The first is amazingly accurate; the second is a poor
approximation. To do a better job with λ2, we could use a different pair
of trial functions or else use three trial functions. �

Informal Derivation of the RRA Let w1, . . . , wn be arbitrary linearly in-
dependent trial functions. As an approximation to the true minimum problem
(MP)n, let’s impose the additional condition that w(x) is a linear combination
of w1(x), . . . , wn(x). We can then write

w(x) =
n∑

k=1

ckwk(x). (6)

If we were extremely clever, then w(x) would itself be an eigenfunction. Then
−�w = λw , where λ is both the eigenvalue and the value of the Rayleigh
quotient. Then we would have (∇w, ∇wj ) = λ(w, wj ). Into the last equation
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we substitute (6) and obtain∑
k

a jkck = λ
∑

k

b jkck . (7)

In matrix notation we can write (7) as Ac = λBc, where c ∈ R
n . Since w �≡ 0,

we have c �= 0. This means that A − λB would be a singular matrix, or in
other words that the determinant of (A − λB) would be zero. We are not
so supremely clever; nevertheless, we use the determinant as our method of
approximating the eigenvalues.

MINIMAX PRINCIPLE

What we really want is an exact formula rather than just an approximation.
To motivate it, let’s denote the roots of the polynomial equation (3) by

λ∗
1 ≤ · · · ≤ λ∗

n.

Let’s just consider the biggest one, λ∗
n . It’s easy to see by linear algebra that

λ∗
n = max

c �=0

Ac · c
Bc · c

. (8)

(see Exercise 9). Therefore,

λ∗
n = max

∑
a jkc j ck∑
b jkc j ck

= max

(∇(∑
c j w j

)
, ∇(∑

ckwk
))(∑

c j w j ,
∑

ckwk
) ,

where the maxima are taken over all (nonzero) n-tuples c1, . . . , cn. Therefore,

λ∗
n = max

{‖�w‖2

‖w‖2 , taken over all functions w

that are linear combinations of w1, . . . , wn

}
.

(9)

Formula (9) leads to the minimax principle, which states that the smallest
possible value of λn

∗ is the nth eigenvalue λn. Thus λn is a minimum of a
maximum!

Theorem 1. Minimax Principle If w1, . . . , wn is an arbitrary set of trial
functions, define λn

∗ by formula (9). Then the nth eigenvalue is

λn = min λ∗
n (10)
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where the minimum is taken over all possible choices of n trial functions
w1, . . . , wn.

Proof. We begin by fixing any choice of n trial functions w1, . . . , wn.
Then we choose n constants c1, . . . , cn (not all zero), so that the linear combi-
nation w(x) ≡ ∑n

j=1 cj wj (x) is orthogonal to the first (n − 1) eigenfunctions
v1(x), . . . , vn−1(x). That is,

(w, vk) =
n∑

j=1

cj (wj , vk) = 0, k = 1, . . . , n − 1. (11)

This can surely be accomplished because the constants c1, . . . , cn are n un-
knowns that need only satisfy the (n − 1) linear equations (11). Because there
are fewer linear equations than unknowns, there is always a nonzero solution.

By the minimum principle for the nth eigenvalue (in Section 11.1), we
have λn ≤ ‖∇w‖2/‖w‖2. On the other hand, because the maximum in (9)
is taken over all possible linear combinations, we have ‖∇w‖2/‖w‖2 ≤ λ∗

n .
Thus

λn ≤ ‖∇w‖2

‖w‖2 ≤ λ∗
n. (12)

Inequality (12) is true for all choices of n trial functions w1, . . . , wn. Therefore,
λn ≤ min λ∗

n , where the minimum is taken over all such choices. This proves
half of (10).

To show that the two numbers in (10) are equal, we’ll exhibit a special
choice of the trial functions w1, . . . , wn. In fact, we choose them to be the first
n eigenfunctions: w1 = v1, . . . , wn = vn. We may assume they are normalized:
‖v j‖ = 1. With this choice of the w’s, we have

λ∗
n = max

c1,...,cn

‖∇(∑
c jv j

)‖2

‖∑ c jv j‖2 . (13)

Using Green’s first formula again as in (11.1.8), the last quotient equals∑
c2

jλ j/
∑

c2
j , which is at most

∑
c2

jλn/
∑

c2
j = λn . Thus (13) implies that

λ∗
n ≤ λn for this particular choice of n trial functions. But we already showed

in (12) the opposite inequality λn ≤ λ∗
n for all choices of trial functions. So

λn = λ∗
n for our particular choice. (14)

Therefore λn equals the minimum of λ∗
n over all possible choices of n trial

functions. This is the minimax principle. �

The Rayleigh–Ritz method is reminiscent of the finite element method
of Section 8.5. The finite element method is distinguished from it by its use
of piecewise-linear trial functions or other very simple functions defined “in
pieces.”
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EXERCISES

1. For the eigenvalue problem −u′′ = λu in the interval (0, 1), with u(0) =
u(1) = 0, choose the pair of trial functions x − x2 and x2 − x3 and compute
the Rayleigh–Ritz approximations to the first two eigenvalues. Compare
with the exact values.

2. Do the same with the pair of trial functions w1(x) = x − x2 and w2(x) =
the piecewise-linear function such that w2(0) = 0, w2

(
1
4

) = 1, w2
(

3
4

) =
−1, w2(1) = 0. Compare with the answer to Exercise 1.

3. Consider −� in the square (0, π )2 with Dirichlet BCs. Compute the
Rayleigh quotient with the trial function xy(π − x)(π − y). Compare with
the first eigenvalue.

4. Consider −� in the ball {r2 = x2 + y2 + z2 < 1} with Dirichlet BCs.
(a) Compute the Rayleigh quotient with the trial function (1 − r). Com-

pare with the first eigenvalue.
(b) Repeat using the trial function cos 1

2πr .
5. For the eigenvalue problem −u′′ = λu in the interval (0, 1), but with the

mixed boundary conditions u′(0) = u(1) = 0, choose the trial function
1 − x2 and compute the Rayleigh quotient. Compare with the first eigen-
value.

6. For the eigenvalue problem −u′′ = λu in the interval (0, 1), but with
the mixed boundary conditions u′(0) = u(1) = 0, choose the pair of trial
functions 1 − x2 and 1 − x3.
(a) Compute the 2 × 2 matrices A and B.
(b) Solve the polynomial equation (3).
(c) How close are the roots to the first two eigenvalues?

7. (a) What is the exact value of the first eigenvalue of −� in the unit disk
with Dirichlet BCs?

(b) Compute the Rayleigh quotient of the function 1 − r. Compare with
the exact value.

8. Estimate the first eigenvalue of −� with Dirichlet BCs in the triangle
{x + y < 1, x > 0, y > 0}:
(a) Using a Rayleigh quotient with the trial function xy(1 − x − y).
(b) Using the Rayleigh–Ritz approximation with two trial functions of

your own choosing.
9. (a) Show that if A is a real symmetric matrix and λn

∗ is its largest eigen-
value, then

λ∗
n = max

c �=0

Ac · c
|c|2 .

(b) If B is another real symmetric matrix, B is positive definite, and λn
∗ is

the largest root of the polynomial equation det(A−λB)=0, show that

λ∗
n = max

c�=0

Ac · c
Bc · c

.

[Hint for (b): Use the fact that B has a unique square root that is
positive definite symmetric.]
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11.3 COMPLETENESS

In this section we’ll begin with a discussion of the Neumann boundary condi-
tion. Then we’ll prove, in a very simple way, the completeness of the eigen-
functions for general domains.

THE NEUMANN BOUNDARY CONDITION

This means that ∂u/∂n = 0 on bdy D. We denote the eigenvalues by λ̃ j and
the eigenfunctions by ṽ j (x). Thus

−�ṽ j (x) = λ̃j ṽ j (x) in D

∂ṽ j

∂n
= 0 on bdy D.

(1)

We number them in ascending order:

0 = λ̃1 < λ̃2 ≤ λ̃3 ≤ · · · ≤ λ̃3 ≤ · · · .

(This is not the same numbering as in Section 4.2.) The first eigenfunction
ṽ1(x) is a constant.

Theorem 1. For the Neumann condition we define a “trial function” as any
C2 function w(x) such that w �≡ 0. With this new definition of a trial function,
each of the preceding characterizations of the eigenvalues [the minimum prin-
ciple, (11.1.5) and (MP)n, the Rayleigh–Ritz approximation, and the minimax
principle (11.2.10)] is valid.

Thus there is no condition on the trial functions at the boundary. The trial
functions are not supposed to satisfy the Neumann or any other boundary
condition. For this reason the Neumann condition is sometimes called the
free condition, as distinguished from the “fixed” Dirichlet condition. (This
terminology also makes sense for physical reasons.)

Proof. We repeat the various steps of the preceding proofs. There are
differences only where the boundary comes into play. The proof of Theorem
11.1.1 ends up with (11.1.7):∫∫∫

D

(−∇u · ∇v + muv) dx = 0,

which now is valid for all C2 functions v(x) with no restriction on bdy D. This
can be rewritten by Green’s first formula (G1) as∫∫∫

D

(�u + mu) v dx =
∫∫
bdy D

∂u

∂n
v d S. (2)
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In (2) we first choose v(x) arbitrarily inside D and v = 0 on bdy D. As before,
we still get �u + mu = 0 inside D.

Thus the left side of (2) vanishes for every trial function v(x). So

∫∫
bdy D

∂u

∂n
v d S = 0 (3)

for all trial functions v. But the new kind of trial function can be chosen to be
an arbitrary function on bdy D. Let’s choose v = ∂u/∂n on bdy D. Then (3)
implies that the integral of (∂u/∂n)2 vanishes. By the first vanishing theorem
of Section A.1, we deduce that ∂u/∂n = 0 on bdy D. This is the Neumann
condition!

The same sort of modification is made in Theorem 11.1.2. The proof of the
minimax principle is completely unchanged, except for the broader definition
of what a trial function is. �

COMPLETENESS

Theorem 2. For the Dirichlet boundary condition, the eigenfunctions are
complete in the L2 sense. The same is true for the Neumann condition.

This theorem means the following. Let λn be all the eigenvalues and vn(x)
the corresponding eigenfunctions. The eigenfunctions may be assumed to be
mutually orthogonal. Let f (x) be any L2 function in D, that is, ‖ f ‖ < ∞. Let
cn = ( f, vn)/(vn, vn). Then

∥∥∥∥ f −
N∑

n=1

cnvn

∥∥∥∥
2

=
∫∫∫

D

∣∣∣∣ f (x) −
N∑

n=1

cnvn(x)

∣∣∣∣
2

dx → 0 as N → ∞. (4)

The proof of Theorem 2, given below, depends upon: (i) the existence
of the minima discussed in Section 11.1, and (ii) the fact (which will be
derived in Section 11.6) that the sequence of eigenvalues λn tends to +∞ as
n → ∞.

Proof. We will prove (4) only in the special case that f (x) is a trial function.
In advanced texts it is shown that (4) is also valid for any L2 function f (x).
Let’s begin with the Dirichlet case. Then f (x) is a C2 function that vanishes
on bdy D. Let’s denote the remainder after the subtraction of N terms of the
Fourier expansion of f by

rN (x) = f (x) −
N∑

n=1

cnvn(x). (5)
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By the orthogonality,

(
rN , v j

) =
(

f −
N∑

n=1

cnvn, v j

)

= ( f, v j ) −
N∑

n=1

cn(vn, v j )

= ( f, v j ) − c j (v j , v j ) = 0

for j = 1, 2, . . . , N. Thus the remainder is a trial function that satisfies the
constraints of (MP). Hence

λN+1 = min
w

‖∇w‖2

‖w‖2 ≤ ‖∇rN‖2

‖rN‖2 (6)

by Theorem 11.1.2.
Next we expand

‖∇rN‖2 =
∫ ∣∣∣∣∇

[
f −

N∑
n=1

cnvn

]∣∣∣∣
2

=
∫ (

|∇ f |2 − 2
∑

n

cn∇ f · ∇vn +
∑
n,m

cncm∇vn · ∇vm

)
, (7)

using the shorthand notation for the integrals. By Green’s first identity and the
boundary condition (f = vn = 0 on bdy D), the middle term in (7) contains
the integral ∫

∇ f · ∇vn = −
∫

f �vn = λn

∫
f vn (8)

while the last term in (7) contains the integral∫
∇vn · ∇vm = −

∫
vn�vm = δmnλn

∫
v2

n, (9)

where δmn equals zero for m �= n and equals one for m = n. So the expression
(7) simplifies to

‖∇rN‖2 =
∫

|∇ f |2 − 2
∑

n

cnλn( f, vn) +
∑
n,m

δmnc2
nλn(vn, vn). (10)

Recalling the definition of cn, the last two sums combine to produce the
identity

‖∇rN‖2 =
∫

|∇ f |2 −
∑

n

c2
nλn(vn, vn).
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All the sums run from 0 to N. If we throw away the last sum, we get the
inequality

‖∇rN‖2 ≤
∫

|∇ f |2 = ‖∇ f ‖2. (11)

If we combine (11) and (6), we get

‖rN‖2 ≤ ‖∇rN‖2

λN
≤ ‖∇ f ‖2

λN
, (12)

recalling that λN > 0.
We will show in Section 11.6 that λN → ∞. So the right side of (12)

tends to zero since the numerator is fixed. Therefore, ‖rN‖ → 0 as N → ∞.
This proves (4) in case f (x) is a trial function and the boundary condition is
Dirichlet.

In the Neumann case, too, we assume that f (x) is a trial function. We use
the notation λ̃ j and ṽ j (x) for the eigenvalues and eigenfunctions. Then the
proof is the same as above (with tildes). Notice that (8) and (9) still are valid
because the eigenfunctions ṽ j (x) satisfy the Neumann BCs. The only other
difference from the preceding proof occurs as a consequence of the fact that
the first eigenvalue vanishes: λ̃1 = 0. However, λ̃2 > 0 (see Exercise 1). So,
when writing the inequality (12), we simply assume that N ≥ 2. �

Some consequences of completeness are discussed in Section 11.5. In
Section 11.6 it is proved that λN → ∞.

EXERCISES

1. We well know that the smallest eigenvalue for the Neumann BCs is λ̃1 = 0
(with the constant eigenfunction). Show that λ̃2 > 0. This is the same as
saying that zero is a simple eigenvalue, that is, of multiplicity 1.

2. Let f (x) be a function in D and g(x) a function on bdy D. Consider the
minimum of the functional

1
2

∫∫∫
D

|∇w |2 dx −
∫∫∫

D

f w dx −
∫∫
bdy D

gw d S

among all C2 functions w(x) for which
∫∫∫

D w2dx = 1. Show that a
solution of this minimum problem leads to a solution of the Neumann
problem

−�u = f in D,
∂u

∂n
= g on bdy D.

3. Let g(x) be a function on bdy D. Consider the minimum of the functional

1
2

∫∫∫
D

|∇w |2 dx −
∫∫∫

D

f w dx
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among all C2 functions w(x) for which w = g on bdy D. Show that a
solution of this minimum problem leads to a solution of the Dirichlet
problem

−�u = f in D, u = g on bdy D.

11.4 SYMMETRIC DIFFERENTIAL OPERATORS

Our purpose here is to indicate how extensively all the theory of this chapter
(and much of this book!) can be generalized to allow for variable coefficients.
Variable coefficients correspond to inhomogeneities in the physical medium.

We consider the PDE

−∇ · (p∇u) + qu = λmu (1)

in a domain D where the coefficients p, q, and m are functions of x. More
explicitly, the equation is

−
∑ ∂

∂x j

(
p(x)

∂u

∂x j

)
+ q(x)u(x) = λm(x)u(x) (1′)

if we write x = (x, y, z) = (x1, x2, x3) and let the sum run from 1 to 3. We
assume that p(x) is a C1 function, that q(x) and m(x) are continuous functions,
and that p(x) > 0 and m(x) > 0. By the Dirichlet eigenvalue problem we mean
the search for a solution u(x) of (1) in a domain D for some λ that satisfies

u = 0 on bdy D. (2)

Theorem 1. All the previous results (Theorems 11.1.1, 11.1.2, 11.2.1,
11.3.2, and the Rayleigh–Ritz approximation) are valid for the Dirichlet eigen-
value problem (1)-(2) with only the following two changes:

(i) The Rayleigh quotient is now defined as

Q =
∫∫∫

D [p(x)|∇w(x)|2 + q(x)[w(x)]2] dx∫∫∫
D m(x)[w(x)]2 dx

. (3)

(ii) The inner product is now defined as

( f, g) =
∫∫∫

D

m(x) f (x)g(x) dx. (4)

The trial functions w(x) are the same as before, namely all the C2 functions
that satisfy (2).
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The Neumann eigenvalue problem consists of the PDE (1) together with
the boundary condition ∂u/∂n = 0. As before, we get the same results with
the trial functions free to be arbitrary C2 functions.

The Robin eigenvalue problem is the PDE (1) together with the boundary
condition

∂u

∂n
+ a(x)u(x) = 0 on bdy D, (5)

where a(x) is a given continuous function. The Rayleigh quotient in the Robin
case is

Q =
∫∫∫

D [p|∇w |2 + qw2] dx + ∫∫
bdyD aw2d S∫∫∫

D mw2 dx
. (6)

The trial functions in this case are free. Everything else is the same.

Example 1.

The hydrogen atom. In Section 9.5 we studied the eigenvalue problem
−�v − (2/r )v = λv. In that case, the potential was q(x) = −2/|x|, and
m(x) = p(x) ≡ 1. �

Example 2.

Heat flow in an inhomogeneous medium (Section 1.3, Example 5) leads
to the eigenvalue problem∇ · (κ∇v) = λcρv, whereκ, c, ρ are functions
of x. �

STURM–LIOUVILLE PROBLEMS

This is the name given to the one-dimensional case of equation (1) together
with a set of “symmetric” boundary conditions. Thus x is a single variable,
running over an interval D = [a, b]. The differential equation in the interval
D is

−(pu′)′ + qu = λmu for a < x < b. (7)

What does it mean for the boundary conditions for (7) (at x = a and
x = b) to be symmetric? The idea is the same as in Section 5.3 except for
the modification due to the variable coefficients. Namely, a set of boundary
conditions [as in (5.3.4)] is called symmetric for the ODE (7) if

( f g′ − f ′g)p

∣∣∣∣
x=b

x=a

= 0. (8)

Thus the only difference from Section 5.3 is the presence of the function p(x)
in (8).
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In most texts the Sturm–Liouville problem is treated by methods of ODEs.
Those methods are less sophisticated but more explicit than the ones we have
used. The reader is referred to [CL] or [CH] for such a discussion. The main
results in those references are the same as ours: that the eigenvalues λn tend
to +∞ and that the eigenfunctions are complete.

Example 3.

When studying Dirichlet’s problem for an annulus in Section 6.4, we
separated the variables to get the radial equation

r2R′′ + rR′ − λR = 0 or (rR′)′ = λr−1R

for a < r < b with boundary conditions R(a) = R(b) = 0. In this case
m(r) = r−1 and p(r) = r. �

Singular Sturm–Liouville Problems One often encounters Sturm–
Liouville problems of one of the following types:

(i) The coefficient p(x) vanishes at one or both of the endpoints x = a
or x = b.

(ii) One or more of the coefficients p(x), q(x), or m(x) becomes infinite
at a or b.

(iii) One of the endpoints is itself infinite: a = −∞ or b = +∞.

If either (i) or (ii) or (iii) occurs, the Sturm–Liouville problem is called
singular. The boundary condition at a singular endpoint is usually modified
from the usual types. This is easiest to understand by looking at some exam-
ples, several of which we have already encountered in this book.

Example 4.

When studying the vibrations of a drumhead in Section 10.2, we en-
countered Bessel’s equation,

(rR′)′ − n2

r
R = λrR in [0, a]

with R(0) finite and R(a) = 0. This example is singular because p(r) = r
vanishes at the left endpoint. The BC at the left endpoint is a finiteness
condition. �

Example 5.

When studying the solid vibrations of a ball in Section 10.3, the θ -part
of the spherical harmonic satisfied the ODE

−(sin θp′(θ ))′ + m2

sin θ
p(θ ) = γ sin θ p(θ) in (0, π )
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with p(0) and p(π ) finite. Notice that sin θ > 0 in 0 < θ < π , but
sin θ = 0 at both endpoints, so this problem is singular at both ends.
It is singular at both ends due to both (i) and (ii). At both of these ends
the BC is a finiteness condition. �

Example 6.

When studying quantum mechanics in Section 10.7, the radial part of
the wave function satisfied the ODE

R′′ + 2

r
R′ +

[
λ − 2V (r ) − γ

r2

]
R = 0

or

−(r2R′)
′ + [2r2V (r ) + γ ] R = λr2R in 0 < r < ∞.

Either way one writes the equation, it is singular at both ends. At r = 0
we require a finiteness condition, while at r = ∞ we require a vanishing
condition. �

EXERCISES

1. (a) Find the exact eigenvalues and eigenfunctions of the problem

−(xu′)′ = λ

x
u in the interval 1 < x < b,

with the boundary conditions u(1) = u(b) = 0.
(b) What is the orthogonality condition?

(Hint: It is convenient to change the variable x = es.)
2. Repeat Exercise 1 with the boundary conditions u′(1) = 0 and u′(b) +

hu(b) = 0. Find the eigenvalues graphically.
3. Consider the eigenvalue problem −v′′ − xv = λv in (0, π ) with v(0) =

v(π ) = 0.
(a) Compute the Rayleigh quotient for this equation for w(x) = sin x.
(b) Find the first eigenvalue exactly, by looking up Airy functions in a

reference. Compare with part (a).
4. Solve the problem (x2ux )x + x2uyy = 0 with the conditions u(1, y) =

u(2, y) ≡ 0 and u(x, 1) = u(x, −1) = f (x), where f (x) is a given function.
5. Consider the PDE utt = (1/x)(xux )x in the interval 0 < x < l. The

boundary conditions are |u(0)| < ∞ and u(l, t) = cos ωt . Find the eigen-
function expansion for the solution.

6. Show that the Robin BCs are symmetric for any Sturm–Liouville operator.
7. Consider the operator v �→(pv(m))

(m)
, where the superscript denotes the

mth derivative, in an interval with the boundary conditions v = v′ =
v′′ = . . . = v(m−1) = 0 at both ends. Show that its eigenvalues are real.
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11.5 COMPLETENESS AND SEPARATION
OF VARIABLES

In this section we show how completeness (Section 11.3) allows us to
(i) solve an inhomogeneous elliptic problem and (ii) fully justify the sepa-
ration of variables technique.

INHOMOGENEOUS ELLIPTIC PROBLEM

We begin with the solution of the elliptic PDE

−∇ · (p(x)∇u) + q(x) u(x) = a m(x)u(x) + f (x) in D (1)

with homogeneous Dirichlet, Neumann, or Robin boundary conditions, where
p, q, m satisfy the conditions of Section 11.4, f is a given real function, and
a is a given constant.

Theorem 1.
(a) If a is not an eigenvalue (of the corresponding problem with f ≡ 0),

then there exists a unique solution for all functions f (x) [such that∫∫∫
f 2(1/m) dx < ∞].

(b) If a is an eigenvalue of the homogeneous problem, then either there
is no solution at all or there are an infinite number of solutions,
depending on the function f (x).

Proof. Theorem 1 is sometimes called the Fredholm alternative. To prove
it, let’s first take the case (a) when a is not an eigenvalue. Call the eigenvalues
λn and the eigenfunctions vn(x) (n = 1, 2, . . . ). Let δ be the distance between
the number a and the nearest eigenvalue λn. Let’s write

∫
for

∫∫∫
D. By a

solution we mean a function u(x) that satisfies the PDE (1) and one of the
three standard boundary conditions. By the completeness, we know that u(x)
can be expanded in a series of the vn(x) as

u(x) =
∞∑

n=1

(u, vn)

(vn, vn)
vn(x), (2)

where the inner product is ( f, g) = ∫
D fgm dx and the infinite series converges

in the L2 sense.
Let’s multiply the equation (1) by vn and integrate over D to get

−
∫

∇ · (p∇u) vn dx +
∫

quvn dx = a
∫

muvn dx +
∫

f vn dx. (3)

Applying the divergence theorem (Green’s second identity, essentially) to the
first term and using the fact that both u and vn satisfy the boundary conditions,
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the first term of (3) becomes −∫
u∇ · (p∇vn) dx. Equation (3) simplifies

greatly if the PDE satisfied by vn is taken into account. It reduces to

(λn − a)
∫

muvn dx =
∫

f vn dx. (4)

That is, (u, vn) = (λn − a)−1
∫

f vn dx. Substituting this into (2), we get

u(x) =
∞∑

n=1

∫
f vn dx

(λn − a)
∫
v2

n mdx
vn(x). (5)

This is an explicit formula for the solution, in the form of an infinite series,
in terms of f (x) and the eigenfunctions and eigenvalues.

Why does the series (5) converge in the L2 sense? Because |λn − a| ≥ δ,
we have

|u(x)| ≤
∞∑

n=1

|∫ f vn dx|
δ(vn, vn)

|vn(x)|.

We may assume that ‖vn‖ = 1. By Schwarz’s inequality (Exercise 5.5.2) and
Parseval’s equality (5.4.19) it follows that

‖u‖2 ≤ 1

δ2

∞∑
n=1

∣∣∣∣
∫

f vn dx

∣∣∣∣
2

≤ 1

δ2

∫
f 2 1

m
dx < ∞. (6)

This proves part (a) of Theorem 1.
As for part (b), on the other hand, suppose that a = λN for some N. Then

the same identity (4) with n = N implies that
∫

f vN dx = 0. Therefore, in case∫
f vN dx �= 0, there cannot exist a solution. In case

∫
f vN dx = 0, there exist

an infinite number of solutions! They are

u(x) =
∑
n �=N

∫
D f vn dx

(λn − λN )(vn, vn)
vn(x) + CvN (x) (7)

for any constant C. �

SEPARATION OF VARIABLES, REVISITED

The simplest case is the separation of the time variable. Let’s consider our
standard problem

ut = k �u in D, u(x, 0) = φ(x), u = 0 on bdy D. (8)

We could also consider the Neumann or Robin boundary conditions. Let’s de-
note the eigenvalues and eigenfunctions by −�vn = λnvn in D, vn satisfying
the boundary condition. The eigenfunctions are complete. If we assume that
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D(|u|2 + |∇u|2) dx < ∞ and we also make certain differentiability assump-

tions, we shall show that the usual expansion

u(x, t) =
∞∑

n=1

Ane−λnkt vn(x) (9)

must hold.
To prove it, we simply expand u(x, t), for each t, as a series in the complete

set of eigenfunctions,

u(x, t) =
∞∑

n=1

an(t)vn(x). (10)

By completeness there are some coefficients an(t), but so far they are unknown.
Assuming differentiability (sufficient to differentiate the series term-by-term
as in Section A.2), the PDE (8) takes the explicit form∑(

dan

dt

)
vn = k

∑
an�vn = −k

∑
anλnvn. (11)

Because the coefficients in (11) must match, we get dan/dt = −λnkan. This
is a simple ODE with the solution an(t) = Ane−λnkt , which is exactly (9) as
we wanted.

In Section 12.1 we will introduce a more general concept of differentia-
bility with which it will be exceedingly straightforward to justify the passage
from (10) to (11). �

Now we justify the separation of the space variables. For simplicity,
let’s take D to be a rectangle and write D = D1 × D2, where D1 is the x
interval and D2 is the y interval. (It will be clear that more general geometry is
possible, such as annuli in polar coordinates, and so on.) We write x = (x, y)
where x ∈ D1, y ∈ D2. We write � = ∂xx + ∂yy and consider any one of
the three standard boundary conditions. Let the operator −∂xx have the real
eigenfunctions vn(x) with eigenvalues αn, and let the operator −∂yy have wn(y)
with βn.

Theorem 2. The set of products {vn(x)wm(y) : n = 1, 2, . . . ; m =
1, 2, . . .} is a complete set of eigenfunctions for −� in D with the given
boundary conditions.

Proof. We note that each product vn(x)wm(y) is an eigenfunction because

−�(vnwm) = (−∂xxvn)wm + vn(−∂yywm) = (αn + βm)vnwm . (12)

The eigenvalue is αn + βm. The eigenfunctions are mutually orthogonal since∫∫
vnwmvn′wm ′ dx dy =

(∫
vnvn′ dx

)
·
(∫

wmwm ′ dy

)
= 0

if either n �= n′ or m �= m ′.
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By Section 11.3, the eigenfunctions for all three problems (in D, in D1,
and in D2) are complete. Among the eigenfunctions of −� in the rectangle D
are the products vnwm. Suppose now that there were an eigenfunction u(x, y)
in the rectangle, other than these products. Then, for some λ, −�u = λu in
D and u would satisfy the boundary conditions. If λ were different from every
one of the sums αn + βm, then we would know (from Section 10.1) that u is
orthogonal to all the products vnwm. Hence

0 = (u, vnwm) =
∫ [∫

u(x, y)vn(x) dx

]
wm(y) dy. (13)

So, by the completeness of the wm,

∫
u(x, y)vn(x) dx = 0 for all y. (14)

By the completeness of the vn, (14) would imply that u(x, y) = 0 for all x, y.
So u(x, y) wasn’t an eigenfunction after all.

One possibility remains, namely, that λ = αn + βm for certain n and m.
This could be true for one pair m, n or several such pairs. If λ were such a
sum, we would consider the difference

ψ(x, y) = u(x, y) −
∑

cnmvn(x)wm(y), (15)

where the sum is over all the n, m pairs for which λ = αn + βm and where
cnm = (u, vnwm)/‖vnwm‖2. The function ψ defined by (15) is constructed
so as to be orthogonal to all the products vnwm, for both αn + βm = λ and
αn + βm �= λ. It follows by the same reasoning as above that ψ(x, y) ≡ 0.
Hence u(x, y) = ∑

cnmvn(x)wm(y), summed over αn + βm = λ. That is, u
was not a new eigenfunction at all, but just a linear combination of those old
products vnwm which have the same eigenvalue λ. This completes the proof
of Theorem 2. �

EXERCISES

1. Verify that all the functions (7) are solutions of (1) if a is an eigenvalue
λN and if

∫
f vN dx = 0. Why does the series in (7) converge?

2. Use the completeness to show that the solutions of the wave equation in any
domain with a standard set of BCs satisfy the usual expansion u(x, t) =∑∞

n=1 [An cos(
√

λn ct) + Bn sin(
√

λn ct)]vn(x). In particular, show that
the series converges in the L2 sense.

3. Provide the details of the proof that ψ(x, y), defined by (15), is identically
zero.
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11.6 ASYMPTOTICS OF THE EIGENVALUES

The main purpose of this section is to show that λn → +∞. In fact, we’ll show
exactly how fast the eigenvalues go to infinity. For the case of the Dirichlet
boundary condition, the precise result is as follows.

Theorem 1. For a two-dimensional problem −�u = λu in any plane do-
main D with u = 0 on bdy D, the eigenvalues satisfy the limit relation

lim
n→∞

λn

n
= 4π

A
, (1)

where A is the area of D.
For a three-dimensional problem in any solid domain, the relation is

lim
n→∞

λ
3/2
n

n
= 6π2

V
, (2)

where V is the volume of D.

Example 1. The Interval
Let’s compare Theorem 1 with the one-dimensional case where λn =
n2π2/ l2. In that case,

lim
n→∞

λ
1/2
n

n
= π

l
, (3)

where l is the length of the interval! The same result (3) was also derived
for the one-dimensional Neumann condition in Section 4.2 and the Robin
conditions in Section 4.3. �

Example 2. The Rectangle
Here the domain is D = {0 < x < a, 0 < y < b} in the plane. We
showed explicitly in Section 10.1 that

λn = l2π2

a2
+ m2π2

b2
(4)

with the eigenfunction sin(lπx/a) · sin(mπy/b). Because the eigenval-
ues are naturally numbered using a pair of integer indices, it is difficult to
see the relationship between (4) and (1). For this purpose it is convenient
to introduce the enumeration function

N (λ) ≡ the number of eigenvalues that do not exceed λ. (5)
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Figure 1

If the eigenvalues are written in increasing order as in (11.1.2), then
N(λn) = n. Now we can express N(λ) another way using (4). Namely,
N(λ) is the number of integer lattice points (l, m) that are contained
within the quarter-ellipse

l2

a2
+ m2

b2
≤ λ

π2
(l > 0, m > 0) (6)

in the (l, m) plane (see Figure 1). Each such lattice point is the upper-
right corner of a square lying within the quarter ellipse. Therefore, N(λ)
is at most the area of this quarter ellipse:

N (λ) ≤ λab

4π
. (7)

For large λ, N(λ) and this area may differ by approximately the
length of the perimeter, which is of the order

√
λ. Precisely,

λab

4π
− C

√
λ ≤ N (λ) ≤ λab

4π
(8)

for some constant C. Substituting λ = λn and N(λ) = n, (8) takes the
form

λnab

4π
− C

√
λn ≤ n ≤ λnab

4π
, (9)

where the constant C does not depend on n. Therefore, upon dividing
by n, we deduce that

lim
n→∞

λn

n
= 4π

ab
, (10)

which is Theorem 1 for a rectangle. �
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For the Neumann condition, the only difference is that l and m are allowed
to be zero, but the result is exactly the same:

lim
n→∞

λ̃n

n
= 4π

ab
. (11)

To prove Theorem 1, we will need the maximin principle. It is like the
minimum principle of Section 11.1 but with more general constraints. The
idea is that any orthogonality constraints other than those in Section 11.1 will
lead to smaller minimum values of the Rayleigh quotient.

Theorem 2. Maximin Principle Fix a positive integer n ≥ 2. Fix n − 1
arbitrary trial functions y1(x), . . . , yn−1(x). Let

λn∗ = min
‖∇w‖2

‖w‖2
(12)

among all trial functions w that are orthogonal to y1, . . . , yn−1. Then

λn = max λn∗ (13)

over all choices of the n − 1 piecewise continuous functions y1, . . . , yn−1.

A function defined on a domain D is called piecewise continuous if D can
be subdivided into a finite number of subdomains Di so that, for each i, the
restriction of f to Di has a continuous extension to the closure Di. The idea
is that the function can have jump discontinuities on some curves inside D
but is otherwise continuous. This generalizes the one-dimensional concept in
Section 5.4.

Proof. Fix an arbitrary choice of y1, . . . , yn−1. Let w(x) = ∑n
j=1 c jv j (x)

be a linear combination of the first n eigenfunctions which is chosen to be
orthogonal to y1, . . . , yn−1. That is, the constants c1, . . . , cn are chosen to
satisfy the linear system

0 =
(

n∑
j=1

cjvj , yk

)
=

n∑
j=1

(vj , yk)cj (for k = 1, . . . , n − 1).

Being a system of only n − 1 equations in n unknowns, it has a solution
c1, . . . , cn , not all of which constants are zero. Then, by definition (12) of λn∗,

λn∗ ≤ ‖∇w‖2

‖w‖2 =
∑

j,k cj ck(−�vj , vk)∑
j,k cj ck(vj , vk)

=
∑n

j=1 λ j c2
j∑n

j=1 c2
j

≤
∑n

j=1 λnc2
j∑n

j=1 c2
j

= λn, (14)
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where we’ve again taken ‖vj‖ = 1. This inequality (14) is true for every choice
of y1, . . . , yn−1. Hence, max λn∗ ≤ λn . This proves half of (13).

To demonstrate the equality in (13), we need only exhibit a special choice
of y1, . . . , yn−1 for which λn∗ = λn . Our special choice is the first n − 1
eigenfunctions: y1 = v1, . . . , yn−1 = vn−1. By the minimum principle (MP)n
for the nth eigenvalue in Section 11.1, we know that

λn∗ = λn for this choice. (15)

The maximin principle (13) follows directly from (14) and (15). �

The same maximin principle is also valid for the Neumann boundary
condition if we use the “free” trial functions that don’t satisfy any bound-
ary condition. Let’s denote the Neumann eigenvalues by λ̃ j . Now we shall
simultaneously consider the Neumann and Dirichlet cases.

Theorem 3. λ̃ j ≤ λ j for all j = 1, 2, . . . .

Proof. Let’s begin with the first eigenvalues. By Theorems 11.1.1 and
11.3.1, both λ̃1 and λ1 are expressed as the same minimum of the Rayleigh
quotient except that the trial functions for λ1 satisfy one extra constraint
(namely, that w = 0 on bdy D). Having one less constraint, λ̃1 has a greater
chance of being small. Thus λ̃1 ≤ λ1.

Now let n ≥ 2. For the same reason of having one extra constraint, we
have

λ̃n∗ ≤ λn∗. (16)

We take the maximum of both sides of (16) over all choices of piecewise
continuous functions y1, . . . , yn−1. By the maximin principle of this section
(Theorem 2 and its Neumann analog), we have

λ̃n = max λ̃n∗ ≤ max λn∗ = λn.

Actually it is true that λ̃n+1 ≤ λn but we omit the proof [Fi]. �

Example 3.

For the interval (0, l) in one dimension, the eigenvalues are λn = n2π2/ l2

and λ̃n = (n − 1)2π2/ l2 (using our present notation with n running from
1 to ∞). It is obvious that λ̃n < λn . �

The general principle illustrated by Theorem 3 is that

any additional constraint will increase the value of the maximin. (17)

In particular, we can use this principle as follows to prove the monotonicity
of the eigenvalues with respect to the domain.

Theorem 4. If the domain is enlarged, each Dirichlet eigenvalue is de-
creased.
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Figure 2

That is, if one domain D is contained in another domain D′, then λn ≥ λ′
n ,

where we use primes on eigenvalues to refer to the larger domain D′ (see
Figure 2).

Proof. In the Dirichlet case, consider the maximin expression (13) for D.
If w(x) is any trial function in D, we define w(x) in all of D′ by setting it equal
to zero outside D; that is,

w ′(x) =
{

w(x) for x in D
0 for x in D′ but x not in D.

(18)

Thus every trial function in D corresponds to a trial function in D′ (but not
conversely). So, compared to the trial functions for D′, the trial functions
for D have the extra constraint of vanishing in the rest of D′. By the general
principle (17), the maximin for D is larger than the maximin for D′. It follows
that λn ≥ λ′

n , as we wanted to prove. But we should beware that we are
avoiding the difficulty that by extending the function to be zero, it is most
likely no longer a C2 function and therefore not a trial function. The good
thing about the extended function w ′(x) is that it still is continuous. For a
rigorous justification of this point, see [CH] or [Ga]. �

SUBDOMAINS

Our next step in establishing Theorem 1 is to divide the general domain
D into a finite number of subdomains D1, . . . , Dm by introducing inside D
a system of smooth surfaces S1, S2, . . . (see Figure 3). Let D have Dirichlet
eigenvalues λ1 ≤ λ2 ≤ . . . and Neumann eigenvalues λ̃1 ≤ λ̃2 ≤ . . . . Each of
the subdomains D1, . . . , Dm has its own collection of eigenvalues. We combine

Figure 3
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all of the Dirichlet eigenvalues of all of the subdomains D1, . . . , Dm into a
single increasing sequence μ1 ≤ μ2 ≤ · · · . We combine all of their Neumann
eigenvalues into another single increasing sequence μ̃1 ≤ μ̃2 ≤ . . . .

By the maximin principle, each of these numbers can be obtained as the
maximum over piecewise continuous functions y1, . . . , yn−1 of the minimum
over trial functions w orthogonal to y1, . . . , yn−1. As discussed above, although
each μn is a Dirichlet eigenvalue of a single one of the subdomains, the trial
functions can be defined in all of D simply by making them vanish in the
other subdomains. They will be continuous but not C2 in the whole domain
D. Thus each of the competing trial functions for μn has the extra restriction,
compared with the trial functions for λn for D, of vanishing on the internal
boundaries. It follows from the general principle (17) that

λn ≤ μn for each n = 1, 2, . . . . (20)

On the other hand, the trial functions defining λ̃n for the Neumann problem
in D are arbitrary C2 functions. As above, we can characterize μ̃n as

μ̃n = max μ̃n∗ μ̃n∗ = min

∑
i

∫∫
Di

|∇w |2 dx

‖w‖2
, (21)

where the competing trial functions are arbitrary on each subdomain and
orthogonal to y1, . . . , yn−1. But these trial functions are allowed to be dis-
continuous on the internal boundaries, so they comprise a significantly more
extensive class than the trial functions for λ̃n , which are required to be con-
tinuous in D. Therefore, by (17) we have μ̃n ≤ λ̃n for each n. Combining this
fact with Theorem 3 and (20), we have proven the following inequalities.

Theorem 5.

μ̃n ≤ λ̃n ≤ λn ≤ μn.

Example 4.

Let D be the union of a finite number of rectangles D = D1 ∪ D2 ∪ . . .
in the plane as in Figure 4. Each particular μn corresponds to one of
these rectangles, say Dp (where p depends on n). Let A(Dp) denote the

Figure 4
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area of Dp. Let M(λ) be the enumeration function for the sequence μ1,
μ2, . . . defined above:

M(λ) ≡ the number of μ1, μ2, . . . that do not exceed λ. (22)

Then, adding up the integer lattice points which are located within the
quarter ellipses, we get

lim
λ→∞

M(λ)

λ
=

∑
p

A(Dp)

4π
= A(D)

4π
, (23)

as for the case of a single rectangle. Since M(μn) = n, the reciprocal of
(23) takes the form

lim
n→∞

μn

n
= 4π

A(D)
. (24)

Similarly,

lim
n→∞

μ̃n

n
= 4π

A(D)
. (25)

By Theorem 5 it follows that all the limits are equal: lim λn/n =
lim λ̃n/n = 4π/A(D). This proves Theorem 1 for unions of rec-
tangles. �

Now an arbitrary plane domain D can be approximated by finite unions
of rectangles just as in the construction of a double integral (and as in Section
8.4). With the help of Theorem 5, it is possible to prove Theorem 1. The details
are omitted but the proof may be found in Sec. VI.4, vol. 1 of [CH].

THREE DIMENSIONS

The three-dimensional case works the same way. We limit ourselves, however,
to the basic example.

Example 5. The Rectangular Box
Let D = {0 < x < a, 0 < y < b, 0 < z < c}. As in Example 2, the enu-
meration function N(λ) is approximately the volume of the ellipsoid

l2

a2
+ m2

b2
+ k2

c2
≤ λ

π2

in the first octant. Thus for large λ

N (λ) ∼ 1

8

4π

3

aλ1/2

π

bλ1/2

π

cλ1/2

π
= λ3/2 abc

6π2
(26)
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and the same for the Neumann case. Substituting λ = λn and N(λ) = n,
we deduce that

lim
n→∞

λ
3/2
n

n
= 6π2

abc
= lim

n→∞
λ̃

3/2
n

n
. (27)

For the union of a finite number of boxes of volume V(D), we deduce
that

lim
n→∞

λ
3/2
n

n
= 6π2

V (D)
= lim

n→∞
λ̃

3/2
n

n
.

Then a general domain is approximated by unions of boxes. �

For the very general case of a symmetric differential operator as (11.4.1),
the statement of the theorem is modified (in three dimensions, say) to read

lim
n→∞

λ
3/2
n

n
= lim

n→∞
λ̃

3/2
n

n

= 6π2∫∫∫
D [m(x)/p(x)]3/2dx

.

(28)

EXERCISES

1. Prove that (9) implies (10).
2. Explain how it is possible that λ2 is both a maximin and a minimax.
3. For −� in the interior D = {x2 + y2/4 < 1} of an ellipse with Dirichlet

BCs use the monotonicity of the eigenvalues with respect to the domain
to find estimates for the first two eigenvalues. Inscribe or circumscribe
rectangles or circles, for which we already know the exact values.
(a) Find upper bounds.
(b) Find lower bounds.

4. In the proof of Theorem 1 for an arbitrary domain D, one must approximate
D by unions of rectangles. This is a delicate limiting procedure. Outline
the main steps required to carry out the proof.

5. Use the surface area of an ellipsoid to write the inequalities that make
(26) a more precise statement.

6. For a symmetric differential operator in three dimensions as in (11.4.1),
explain why Theorem 1 should be modified to be (28).

7. Consider the Dirichlet BCs in a domain D. Show that the first eigenfunc-
tion v1(x) vanishes at no point of D by the following method.
(a) Suppose on the contrary that v1(x) = 0 at some point in D. Show that

both D+ = {x ∈ D: v1(x) > 0} and D− = {x ∈ D: v1(x) < 0} are
nonempty. (Hint: Use the maximum principle in Exercise 7.4.25.)

(b) Let v+(x) = v1(x) for x ∈ D+ and v+(x) = 0 for x ∈ D−. Let
v− = v1 − v+. Notice that |v1| = v+ − v−. Noting that v1 = 0 on
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bdy D, we may deduce that ∇v+ = ∇v1 in D+, and ∇v+ = 0 out-
side D+. Similarly for ∇v−. Show that the Rayleigh quotient Q for
the function |v1| is equal to λ1. Therefore, both v1 and |v1| are eigen-
functions with the eigenvalue λ1.

(c) Use the maximum principle on |v1| to show that v1 > 0 in all of D
or v1 < 0 in all of D.

(d) Deduce that λ1 is a simple eigenvalue (Hint: If u(x) were another
eigenfunction with eigenvalue λ1, let w be the component of u or-
thogonal to v1. Applying part (c) to w, we know that w > 0 or w < 0
or w ≡ 0 in D. Conclude that w ≡ 0 in D.)

8. Show that the nodes of the nth eigenfunction vn(x) divide the domain D
into at most n pieces, assuming (for simplicity) that the eigenvalues are
distinct, by the following method. Assume Dirichlet BCs.
(a) Suppose on the contrary that {x ∈ D : vn(x) �= 0} is the disjoint

union of at least n + 1 components D1 ∪ D2 ∪ . . . ∪ Dn+1. Let
wj (x) = vn(x) for x ∈ Dj , and wj (x) = 0 elsewhere. You may as-
sume that ∇wj (x) = ∇vn(x) for x ∈ Dj , and ∇wj (x) = 0 elsewhere.
Show that the Rayleigh quotient for wj equals λn.

(b) Show that the Rayleigh quotient for any linear combination
w = c1w1 + · · · + cn+1wn+1 also equals λn.

(c) Let y1, . . . , yn be any trial functions. Choose the n + 1 coefficients
cj so that w is orthogonal to each of y1, . . . , yn. Use the maximin
principle to deduce that λn+1∗ ≤ ‖∇w‖2/‖w‖2 = λn . Hence deduce
that λn+1 = λn , which contradicts our assumption.

9. Fill in the details of the proof of Theorem 5.
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DISTRIBUTIONS AND
TRANSFORMS

The purpose of this chapter is to introduce two important techniques, both of
which shed new light on PDE problems. The first is the theory of distributions,
which permits a succinct and elegant interpretation of Green’s functions. The
second technique is that of the Fourier transformation and its cousin, the
Laplace transformation. They permit a new and independent approach to many
of the problems already encountered in this book. Some of the examples in
this chapter require a knowledge of Chapters 7 or 9.

12.1 DISTRIBUTIONS

In several critical places in this book we’ve encountered approximate delta
functions. See the diffusion kernel in Section 2.4 and the Dirichlet kernel in
Section 5.5. They look roughly as shown in Figure 1. What exactly is a delta
function? It is supposed to be infinite at x = 0 and zero at all x �= 0. It should
have integral 1:

∫ ∞
−∞ δ(x) dx = 1. Of course, this is impossible. However, the

concept in physics is clear and simple. The delta function δ(x) is supposed to
represent a point mass, that is, a particle of unit mass located at the origin. It
is the idealization that it is located at a mathematical point that is the source of
the logical difficulty. So how should we make sense of it? Certainly it’s not a
function. It’s a more general object, called a distribution. A function is a rule
that assigns numbers to numbers. A distribution is a rule (or transformation
or functional) that assigns numbers to functions.

Definition. The delta function is the rule that assigns the number φ(0) to
the function φ(x).

To give a proper definition, we need to say what kinds of φ(x) are used.
A test function φ(x) is a real C∞ function (a function all of whose derivatives
exist) that vanishes outside a finite interval. Thus φ : R → R is defined and

331
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Figure 1

differentiable for all −∞ < x < ∞ and φ(x) ≡ 0 for x large (near + ∞) and
for x small (near − ∞) (see Figure 2). Let d denote the collection of all test
functions.

Definition. A distribution f is a functional (a rule): d �→ R which is
linear and continuous in the following sense. If φ ∈ d is a test function, then
we denote the corresponding real number by (f , φ).

By linearity we mean that

( f, aφ + bψ) = a( f, φ) + b( f, ψ) (1)

for all constants a, b and all test functions φ, ψ .
By continuity we mean the following. If {φn} is a sequence of test func-

tions that vanish outside a common interval and converge uniformly to a test
function φ, and if all their derivatives do as well, then

( f, φn) → ( f, φ) as n → ∞. (2)

We’ll sometimes specify a distribution f by writing φ �→ ( f, φ).

Example 1.

According to the first definition above, the delta function is the distri-
bution φ �→ φ(0). It is denoted by δ. In integration theory it is called

Figure 2



12.1 DISTRIBUTIONS 333

the unit point mass. It is a distribution because both (1) and (2) are true.
(Why?) �

Example 2.

The functional φ �→ φ′′(5) is a distribution. It is linear because
(aφ + bψ)′′(5) = aφ′′(5) + bψ ′′(5). It is a continuous functional be-
cause obviously φ′′

n (5) → φ′′(5) as n → ∞ if φn → φ, φ′
n → φ′ and

φ′′
n → φ′′ uniformly. �

Example 3.

Let f (x) be any ordinary (integrable) function. It corresponds to the
distribution

φ �→
∫ ∞

−∞
f (x) φ(x) dx . (3)

See Exercise 1 for the verification that this is a distribution. The function
f (x) is thereby considered to be a distribution. �

Because of Example 3, it is common to use the notation (but it is only a
notation) ∫ ∞

−∞
δ(x) φ(x) dx = φ(0) (4)

and to speak of the delta function as if it were a true function.

CONVERGENCE OF DISTRIBUTIONS

If f N is a sequence of distributions and f is another distribution, we say that
f N converges weakly to f if

( fN , φ) → ( f, φ) as N → ∞ (5)

for all test functions φ.

Example 4.

The source function for the diffusion equation on the whole line is
S(x, t) = 1/

√
4πkt e−x2/4kt for t > 0. We proved in Section 3.5 that∫ ∞

−∞
S(x, t)φ(x) dx → φ(0) as t → 0. (6)

Because for each t we may consider the function S(x, t) as a distribution
as in Example 3, this means that

S(x, t) → δ(x) weakly as t → 0. (7)
�
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Example 5.

Let KN (θ ) be the Dirichlet kernel from Section 5.5. It is given by the
formulas

KN (θ ) = 1 + 2
N∑

n=1

cos nθ = sin
[(

N + 1
2

)
θ
]

sin 1
2θ

. (8)

We proved that∫ π

−π

KN (θ ) φ(θ ) dθ → 2πφ(0) as N → ∞ (9)

for any periodic C1 function φ(x). In fact, it can be verified that the
periodicity is not required (because we are dealing only with the case
x = 0 of Section 5.5). Therefore,

KN (θ ) → 2πδ(θ ) weakly as N → ∞ in the interval (−π, π ). (10)
�

DERIVATIVE OF A DISTRIBUTION

The derivative of a distribution always exists and is another distribution. To
motivate the definition, let f (x) be any C1 function and φ(x) any test function.
Integration by parts shows that∫ ∞

−∞
f ′(x)φ(x) dx = −

∫ ∞

−∞
f (x)φ′(x) dx (11)

since φ(x) = 0 for large |x |.
Definition. For any distribution f , we define its derivative f ′ by the for-

mula

( f ′, φ) = −( f, φ′) for all test functions φ. (12)

That f ′ satisfies the linearity and continuity properties is left to
Exercise 2. Most of the ordinary rules of differentiation are valid for dis-
tributions. It is easy to see that if fN → f weakly, then f ′

N → f ′ weakly.
(Why?)

Example 6.

Directly from the definition we see that the derivatives of the delta
function are

(δ′, φ) = −(δ, φ′) = −φ′(0) (13)

(δ′′, φ) = −(δ′, φ′) = +(δ, φ′′) = +φ′′(0), etc. (14)
�



12.1 DISTRIBUTIONS 335

Example 7.

The Heaviside function (or step function) is defined by H(x) = 1 for x >
0, and H(x) = 0 for x < 0. For any test function, (H ′, φ) = −(H, φ′) =
− ∫ ∞

−∞ H (x)φ′(x) dx = − ∫ ∞
0 φ′(x) dx = −φ(x)|∞0 = φ(0). Thus

H ′ = δ. (15)

The plus function p(x) = x+ is defined as p(x) = x for x ≥ 0, and
p(x) = 0 for x ≤ 0. Then p′ = H and p′′ = δ. �

If I is an open interval, a distribution f in I is a functional defined as
before but where the test functions vanish outside a closed interval ⊂ I , and the
required continuity is valid for sequences {φn} that vanish outside a common
closed interval ⊂ I .

Example 8.

We know from Chapter 5 and the comparison test in Section A.2 that

|x | = π

2
−

∑
n odd

4

n2π
cos nx uniformly in [−π, π]. (16)

In particular, if we multiply this series by a test function and integrate,
we see that (16) converges weakly as a series of distributions in (−π, π).
Therefore, the differentiated series also converges weakly. This means
that

∑
n odd

4

nπ
sin nx =

{
1 for 0 < x < π

−1 for −π < x < 0.
= 2H (x) − 1 (17)

Actually, (17) is true pointwise, as we showed in Chapter 5. We can
keep differentiating weakly as often as we please. If we differentiate
(17) once more and divide by 2, we get

∑
n odd

2

π
cos nx = δ(x) in (−π, π) (18)

What (18) actually means is that

∑
n odd

∫ π

−π

φ(x) cos nx dx = πφ(0)

2
(19)

for all C∞ functions φ(x) that vanish near ±π . �
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Example 9.

Consider the complex series
∑∞

n=−∞ einx . Clearly, it diverges (e.g., at
x = 0). However, the Dirichlet kernel (8) can be written as its partial sum

KN (x) =
N∑

n=−N

einx . (20)

From (10) we have KN → 2πδ as N → ∞. Thus from (20) we get

∞∑
n=−∞

einx = 2πδ(x) in the weak sense in (−π, π ). (21)

�

DISTRIBUTIONS IN THREE DIMENSIONS

A test function φ(x) = φ(x, y, z) is a real C∞ function that vanishes outside
some ball. d denotes the set of all test functions of x. Then the definition
of a distribution is identical to the one-dimensional case except we replace
‘common interval’ by ‘common ball.’

The “delta function” δ is defined as the functional φ �→ φ(0). Its partial
derivative ∂δ/∂z is defined as the functional φ �→ −(∂φ/∂z) (0). If f (x) is any
ordinary integrable function, it is considered to be the same as the distribution
φ �→ ∫ ∞

−∞
∫ ∞
−∞

∫ ∞
−∞ f (x)φ(x) dx.

Example 10.

Let’s reconsider the plucked string. The initial condition is φ(x) =
(b − b|x |/a)+, where ( )+ denotes the plus function of Example 7. The
solution is

u(x, t) = 1

2
φ(x + ct) + 1

2
φ(x − ct)

= 1

2

(
b − b|x + ct |

a

)+
+ 1

2

(
b − b|x − ct |

a

)+
.

By the chain rule, we calculate its various derivatives as

ux = − b

2a
H (x + ct) − b

2a
H (x − ct),

uxx = − b

2a
[δ(x + ct) + δ(x − ct)],

ut = −bc

2a
H (x + ct) + bc

2a
H (x − ct),

utt = −bc2

2a
[δ(x + ct) + δ(x − ct)].
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Therefore utt = c2uxx and u is called a “weak” solution of the wave
equation. In general, a weak solution of the wave equation is a distribu-
tion u for which

(u, φt t − c2φxx ) = 0

for all test functions φ(x, t). �

Example 11.

Let S denote the sphere {|x| = a}. Then the distribution φ �→ ∫∫
S φ d S

is denoted δ(|x| − a). This notation makes sense because formally∫∫∫
δ(|x| − a)φ(x) dx =

∫ ∞

0

∫ 2π

0

∫ π

0
φ(x) sin θ dθ dψ δ(r − a) r2dr

= a2

∫ 2π

0

∫ π

0
φ(x) sin θ dθ dψ

=
∫∫

S

φ d S. �

Example 12.

Let C be a smooth curve in space. Then the line integral over C defines
the distribution φ �→ ∫

C φ ds, where ds denotes the arc length. �

EXERCISES

1. Verify directly from the definition that φ �→ ∫ ∞
−∞ f (x) φ(x) dx is a dis-

tribution if f (x) is any function that is integrable on each bounded set.
2. Let f be any distribution. Verify that the functional f ′ defined by

( f ′, φ) = −( f, φ′) satisfies the linearity and continuity properties and
therefore is another distribution.

3. Verify that the derivative is a linear operator on the vector space of
distributions.

4. Denoting p(x) = x+, show that p′ = H and p′′ = δ.
5. Verify, directly from the definition of a distribution, that the discon-

tinuous function u(x, t) = H (x − ct) is a weak solution of the wave
equation.

6. Use Chapter 5 directly to prove (19) for all C1 functions φ(x) that vanish
near ±π .

7. Let a sequence of L2 functions f n(x) converge to a function f (x) in the
mean-square sense. Show that it also converges weakly in the sense of
distributions.

8. (a) Show that the product δ(x)δ(y)δ(z) makes sense as a three-
dimensional distribution.
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(b) Show that δ(x) = δ(x)δ(y)δ(z), where the first delta function is the
three-dimensional one.

9. Show that no sense can be made of the square [δ(x)]2 as a distribution.
10. Verify that Example 11 is a distribution.
11. Verify that Example 12 is a distribution.
12. Let χa(x) = 1/2a for −a < x < a, and χa(x) = 0 for |x | > a. Show

that χa → δ weakly as a → 0.

12.2 GREEN’S FUNCTIONS, REVISITED

Here we reinterpret the Green’s functions and source functions for the most
important PDEs.

LAPLACE OPERATOR

We saw in Section 6.1 that 1/r is a harmonic function in three dimensions
except at the origin, where r = |x|. Let φ(x) be a test function. By Exercise
7.2.2 we have the identity

φ(0) = −
∫∫∫

1

r
�φ(x)

dx
4π

.

This means precisely that

�

(
− 1

4πr

)
= δ(x) (1)

in three dimensions. Because δ(x) vanishes except at the origin, formula (1)
explains why 1/r is a harmonic function away from the origin and it explains
exactly how it differs from being harmonic at the origin.

Consider now the Dirichlet problem for the Poisson equation,

�u = f in D, u = 0 on bdy D.

Its solution is

u(x0) =
∫∫∫

D

G(x, x0) f (x) dx (2)

from Theorem 7.3.2, where G(x, x0) is the Green’s function. Now fix the point
x0 ∈ D. The left side of (2) can be written as

u(x0) =
∫∫∫

D

δ(x − x0)u(x) dx.
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We assume that u(x) is an arbitrary test function whose support (closure of
the set where u �= 0) is a bounded subset of D. The right side of (2) is

u(x0) =
∫∫∫

D

G(x, x0) �u(x) dx =
∫∫∫

D

�G(x, x0) u(x) dx,

where �G is understood in the sense of distributions. Because u(x) can be an
arbitrary test function in D, we deduce that

�G(x, x0) = δ(x − x0) in D. (3)

This is the best way to understand the Green’s function. As we saw in
Section 7.3, the function G(x, x0) + (4π |x − x0|)−1 is harmonic in the whole
of the domain D, including at x0. Thus

�G = −�
1

4π |x − x0| = δ(x − x0) in D,

which is the same result as (3). G(x, x0) is the unique distribution that satisfies
the PDE (3) and the boundary condition

G = 0 for x ∈ bdy D. (4)

G(x, x0) may be interpreted as the steady-state temperature distribution
of an object D that is held at zero temperature on the boundary due to a unit
source of heat at the point x0.

DIFFUSION EQUATION

Consider the one-dimensional diffusion equation on the whole line. As we
saw in Example 4 of Section 12.1, the source function solves the problem

St = k �S (−∞ < x < ∞, 0 < t < ∞), S(x, 0) = δ(x). (5)

It is a function for t > 0 that becomes a distribution as t ↘ 0.
Let R(x, t) = S(x − x0, t − t0) for t > t0 and let R(x, t) ≡ 0 for t < t0.

Then R satisfies the inhomogeneous diffusion equation

Rt −k�R = δ(x − x0) δ(t − t0) for −∞ < x < ∞, −∞ < t < ∞ (6)

(see Exercise 7). The same interpretations are true in any dimension by Sec-
tion 9.4.
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WAVE EQUATION

The source function for the wave equation is the solution of the problem

Stt = c2�S (−∞ < x, y,z < ∞, −∞ < t < ∞)

S(x, 0) = 0 St (x, 0) = δ(x).
(7)

It is called the Riemann function. To find a formula for it, let ψ(x) be any test
function and let

u(x, t) =
∫

S(x − y, t) ψ(y) dy. (8)

Then u(x, t) satisfies the wave equation with initial data u(x, 0) ≡ 0 and
ut (x, 0) = ψ(x).

Now in one dimension (8) must take the form∫ ∞

−∞
S(x − y, t) ψ(y) dy = u(x, t) = 1

2c

∫ x+ct

x−ct
ψ(y) dy

for t ≥ 0 by Section 2.1. Therefore, S(x − y, t) equals either 1
2 c or 0, depend-

ing on whether y − x is in the interval (−ct, +ct) or not. Replacing x − y by
x, we conclude that

S(x, t) =
⎧⎨
⎩

1

2c
for |x | < ct

0 for |x | > ct.

Using the Heaviside function, we can rewrite it as

S(x, t) = 1

2c
H (c2t2 − x2) sgn(t) for c2t2 �= x2, (9)

where we now permit −∞ < t < ∞ and sgn(t) denotes the sign of t. Notice
that although the Riemann function is a function, it does have a jump discon-
tinuity along the characteristics that issue from the origin. This is an example
of the propagation of singularities discussed in Section 9.3.

In three dimensions we derived the formula∫∫∫
S(x − y, t) ψ(y) dy = u(x, t) = 1

4πc2t

∫∫
|x−y|=ct

ψ(y) d Sy

= 1

4πc2t

∫∫∫
δ(ct − |x − y|) ψ(y) dy
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for t ≥ 0, with a minor shift of notation from Section 9.2. Therefore, S(x, t) =
1/(4πc2t) δ(ct − |x|) for t ≥ 0. By Exercise 8 this can be rewritten as

S(x, t) = 1

2πc
δ(c2t2 − |x|2) sgn(t). (10)

Formula (10) is valid for negative as well as positive t. Like (9), it is written
in relativistic form. It is a distribution that vanishes except on the light cone,
where it is a delta function. The fact that it vanishes inside the cone is exactly
equivalent to Huygens’s principle.

Some explanation is in order for expressions like those in (10). If f is a
distribution and w = ψ(r ) is a function with ψ ′(r ) �= 0, the meaning of the
distribution g(r ) = f [ψ(r )] is

(g, φ) =
(

f ,
φ[ψ−1(w)]

|ψ ′[ψ−1(w)]|
)

(11)

for all test functions φ. This definition is motivated by the change of variables
w = ψ(r ) for ordinary integrals∫

f [ψ(r )] φ(r ) dr =
∫

f (w) φ(r )
dw

|ψ ′(r )| .

For instance, in (10) we have f = δ and w = c2t2 − r2 with r > 0, so that

(δ(c2t2 − r2), φ(r )) =
(

δ(w),
φ(

√
c2t2 − w)

2(
√

c2t2 − w)

)
= 1

2c|t |φ(c|t |).

In two dimensions the formula is, for t > 0,

S(x, t) =
⎧⎨
⎩

1

2πc
(c2t2 − |x|2)

−1/2
for |x| < ct

0 for |x| > ct
(12)

(see Exercise 9). In this case the Riemann function is a certain smooth function
inside the light cone (depending only on the relativistic quantity c2t2 − |x|2)
with a singularity on the cone. It becomes infinite as the cone is approached
from the inside.

BOUNDARY AND INITIAL CONDITIONS

Consider a diffusion process inside a bounded region D in three dimensions
with Dirichlet boundary conditions. The source function is defined as the
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solution of the problem

St = k�S for x ∈ D

S = 0 for x ∈ bdy D

S = δ(x − x0) for t = 0.

(13)

We denote it by S(x, x0, t). Let u(x, t) denote the solution of the same problem
but with the initial function φ(x). Let λn and Xn(x) denote the eigenvalues
and (normalized) eigenfunctions for the domain D, as in Chapter 11. Then

u(x, t) =
∞∑

n=1

cne−λnkt Xn(x)

=
∞∑

n=1

⎡
⎣∫∫∫

D

φ(y)Xn(y) dy

⎤
⎦e−λnkt Xn(x)

=
∫∫∫

D

[ ∞∑
n=1

e−λnkt Xn(x)Xn(y)

]
φ(y) dy,

assuming that the switch of summation and integration is justified. Therefore,
we have the formula

S(x, x0, t) =
∞∑

n=1

e−λnkt Xn(x)Xn(x0). (14)

However, the convergence of this series is a delicate question that we do not
pursue.

EXERCISES

1. Give an interpretation of G(x, x0) as a stationary wave or as the steady-
state diffusion of a substance.

2. An infinite string, at rest for t < 0, receives an instantaneous transverse
blow at t = 0 which imparts an initial velocity of V δ(x − x0), where V
is a constant. Find the position of the string for t > 0.

3. A semi-infinite string (0 < x < ∞), at rest for t < 0 and held at u = 0 at
the end, receives an instantaneous transverse blow at t = 0 which imparts
an initial velocity of V δ(x − x0), where V is a constant and x0 > 0. Find
the position of the string for t > 0.
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4. Let S(x, t) be the source function (Riemann function) for the one-
dimensional wave equation. Calculate ∂S/∂t and find the PDE and initial
conditions that it satisfies.

5. A force acting only at the origin leads to the wave equation utt = c2�u +
δ(x) f (t) with vanishing initial conditions. Find the solution.

6. Find the formula for the general solution of the inhomogeneous wave
equation in terms of the source function S(x, t).

7. Let R(x, t) = S(x − x0, t − t0) for t > t0 and let R(x, t) ≡ 0 for t < t0.
Let R(x, t0) remain undefined. Verify that R satisfies the inhomogeneous
diffusion equation

Rt − k �R = δ(x − x0)δ(t − t0).

8. (a) Prove that δ(a2 − r2) = δ(a − r )/2a for a > 0 and r > 0.
(b) Deduce that the three-dimensional Riemann function for the wave
equation for t > 0 is

S(x, t) = 1

2πc
δ(c2t2 − |x|2).

9. Derive the formula (12) for the Riemann function of the wave equation
in two dimensions.

10. Consider an applied force f (t) that acts only on the z axis and is inde-
pendent of z, which leads to the wave equation

utt = c2(uxx + uyy) + δ(x, y) f (t)

with vanishing initial conditions. Find the solution.
11. For any a �= b, derive the identity

δ[(λ − a)(λ − b)] = 1

|a − b| [δ(λ − a) + δ(λ − b)].

12. A rectangular plate {0 ≤ x ≤ a, 0 ≤ y ≤ b} initially has a hot spot
at its center so that its initial temperature distribution is u(x, y, 0) =
Mδ(x − a

2 , y − b
2 ). Its edges are maintained at zero temperature. Let k

be the diffusion constant. Find the temperature at any later time in the
form of a series.

13. Calculate the distribution �(log r ) in two dimensions.

12.3 FOURIER TRANSFORMS

Just as problems on finite intervals lead to Fourier series, problems on the
whole line (−∞, ∞) lead to Fourier integrals. To understand this relationship,
consider a function f (x) defined on the interval (−l, l). Its Fourier series, in
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complex notation, is

f (x) =
∞∑

n=−∞
cneinπx/ l

where the coefficients are

cn = 1

2l

∫ l

−l
f (y) e−inπy/ ldy.

(As usual, complex notation is more efficient.) The Fourier integral comes
from letting l → ∞. However, this limit is one of the trickiest in all
of mathematics because the interval grows simultaneously as the terms
change. If we write k = nπ/ l, and substitute the coefficients into the series,
we get

f (x) = 1

2π

∞∑
n=−∞

[∫ l

−l
f (y) e−ikydy

]
eikx π

l
. (1)

As l → ∞, the interval expands to the whole line and the points k get
closer together. In the limit we should expect k to become a continuous vari-
able, and the sum to become an integral. The distance between two successive
k’s is �k = π/ l, which we may think of as becoming dk in the limit. There-
fore, we expect the result

f (x) = 1

2π

∫ ∞

−∞

[∫ ∞

−∞
f (y) e−iky dy

]
eikx dk. (2)

This is in fact correct, although we shall not provide a rigorous proof (see,
e.g., [Fo]). It is a continuous version of the completeness property of Fourier
series.

Another way to state the identity (2) is

f (x) =
∫ ∞

−∞
F(k) eikx dk

2π
(3)

where

F(k) =
∫ ∞

−∞
f (x) e−ikx dx . (4)

F(k) is called the Fourier transform of f (x). Notice that the relationship
is almost reversible: f (x) is almost the Fourier transform of F(k), the only
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difference being the minus sign in the exponent and the 2π factor. The vari-
ables x and k play dual roles; k is called the frequency variable.

Following is a table of some important transforms.

f (x) F(k)

Delta function δ(x) 1 (5)

Square pulse H (a − |x |) 2

k
sin ak (6)

Exponential e−a|x | 2a

a2 + k2
(a > 0) (7)

Heaviside function H (x) πδ(k) + 1

ik
(8)

Sign H (x) − H (−x)
2

ik
(9)

Constant 1 2πδ(k) (10)

Gaussian e−x2/2
√

2πe−k2/2 (11)

Some of these are left to the exercises. Some of them require reinterpreta-
tion in terms of distribution theory. The last one (11) is particularly interesting:
The transform of a gaussian is again a gaussian! To derive (11), we complete
the square in the exponent:

F(k) =
∫ ∞

−∞
e−x2/2e−ikx dx =

∫ ∞

−∞
e−(x+ik)2/2 dx · e+i2k2/2

=
∫ ∞

−∞
e−y2/2 dy · e−k2/2 =

√
2π e−k2/2

where y = x + ik. This change of variables is not really fair because ik
is complex, but it can be justified as a “shift of contours,” as is done in
any complex analysis course. The last step uses the formula from Exer-
cise 2.4.7.

Another example, which we will need later, is the following one (which
can be found on page 406 of [MOS]):

The transform of 1
2 J0(

√
1 − x2)H (1 − x2) is

sin
√

k2 + 1√
k2 + 1

(12)

where J0 is the Bessel function of order zero.
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PROPERTIES OF THE FOURIER TRANSFORM

Let F(k) be the transform of f (x) and let G(k) be the transform of g(x). Then
we have the following table:

Function Transform

(i)
d f

dx
ik F(k)

(ii) x f (x) i
dF

dk

(iii) f (x − a) e−iak F(k)

(iv) eiax f (x) F(k − a)

(v) a f (x) + bg(x) aF(k) + bG(k)

(vi) f (ax)
1

|a| F

(
k

a

)
(a �= 0)

Example 1.

By (iii) the transform of δ(x − a) is e−iak times the transform of δ(x).
Therefore,

the transform of 1
2δ(x + a) + 1

2δ(x − a) is cos ak. (13)
�

Another important property is Parseval’s equality (also called Plancherel’s
theorem in this context), which states that∫ ∞

−∞
| f (x)|2dx =

∫ ∞

−∞
|F(k)|2 dk

2π
. (14)

If one of these integrals is finite, so is the other. Also,∫ ∞

−∞
f (x)g(x) dx =

∫ ∞

−∞
F(k)G(k)

dk

2π
. (15)

THE HEISENBERG UNCERTAINTY PRINCIPLE

In quantum mechanics k is called the momentum variable and x the po-
sition variable. The wave functions f (x) are always normalized, so that∫ ∞
−∞ | f (x)|2 dx = 1. To be precise, let f (x) be a test function. The expected

value of the square of the position is x2 = ∫ ∞
−∞ |x f (x)|2 dx . The expected

value of the square of the momentum is k2 = ∫ ∞
−∞ |k F(k)|2 dk/2π . The

uncertainty principle asserts that

x · k ≥ 1

2
. (16)
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Thus x and k can’t both be too close to zero. This principle has the in-
terpretation that you can’t precisely determine that both the position and the
momentum are at the origin. In other words, if you make a very precise mea-
surement of position, then momentum can’t be measured with much precision
at the same time. Actually, by our choice of units we have omitted the very
small Planck’s constant, which should appear on the right side of (16).

Proof of (16). By Schwarz’s inequality (see Exercise 5.5.2), we have∣∣∣∣
∫ ∞

−∞
x f (x) f ′(x) dx

∣∣∣∣ ≤
[∫ ∞

−∞
|x f (x)|2 dx

]1/2[∫ ∞

−∞
| f ′(x)|2 dx

]1/2

. (17)

By the definitions of x and k, by property (i) of Fourier transforms, and by
Parseval’s equality the right side of (17) equals

x

[∫ ∞

−∞
|ik F(k)|2 dk

2π

]1/2

= x k. (18)

On the other hand, integrating the left side of (17) by parts, we get∫ ∞

−∞
x f (x) f ′(x) dx = 1

2 x[ f (x)]2

∣∣∣∣
∞

−∞
−

∫ ∞

−∞
1
2 [ f (x)]2 dx = 0 − 1

2 (19)

since f (x) is normalized. Therefore, (17) takes the form 1
2 ≤ x k, which is

(16). �

CONVOLUTION

A useful concept is the convolution of two functions. If f (x) and g(x) are two
functions of a real variable, their convolution (written f ∗ g) is defined to be

( f ∗ g)(x) =
∫ ∞

−∞
f (x − y)g(y) dy.

We have seen many PDE formulas that are convolutions, such as formula
(2.4.6). Its most interesting property is its relationship with the Fourier trans-
form.

If the Fourier transform of f (x) is F(k) and that of g(x) is G(k), the Fourier
transform of the convolution ( f ∗ g)(x) is the product F(k)G(k). To prove this,
just observe that the Fourier transform of f ∗ g is∫

( f ∗ g)(x)e−ikx dx =
∫∫

f (x − y)g(y) dy e−ikx dx .

If we switch the order of integration and then substitute z = x − y in the inner
x integral, we get∫∫

f (z)e−ik(y+z) dz g(y) dy =
∫

f (z)e−ikz dz ·
∫

g(y)e−iky dy

= F(k) · G(k).

The convolution also plays a prominent role in probability theory.
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THREE DIMENSIONS

In three dimensions the Fourier transform is defined as

F(k) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f (x)e−ik ·x dx,

where x = (x, y, z), k = (k1, k2, k3), and k · x = xk1 + yk2 + zk3. Then one
recovers f (x) from the formula

f (x) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
F(k) e+ik ·x dk

(2π )3 .

EXERCISES

1. Verify each entry in the table of Fourier transforms. (Use (15) as needed.)
2. Verify each entry in the table of properties of Fourier transforms.
3. Show that

1

2π2cr

∫ ∞

0
sin kct sin kr dk = 1

8π2cr

∫ ∞

−∞
[eik(ct−r ) − eik(ct+r )] dk

= 1

4πcr
[δ(ct − r ) − δ(ct + r )].

4. Prove the following properties of the convolution.
(a) f ∗ g = g ∗ f .
(b) ( f ∗ g)′ = f ′ ∗ g = f ∗ g′, where ′ denotes the derivative in one

variable.
(c) f ∗ (g ∗ h) = ( f ∗ g) ∗ h.

5. (a) Show that δ ∗ f = f for any distribution f , where δ is the delta
function.

(b) Show that δ′ ∗ f = f ′ for any distribution f , where ′ is the derivative.
6. Let f (x) be a continuous function defined for −∞ < x < ∞ such that its

Fourier transform F(k) satisfies

F(k) = 0 for |k| > π.

Such a function is said to be band-limited.
(a) Show that

f (x) =
∞∑

n=−∞
f (n)

sin[π (x − n)]

π(x − n)
.

Thus f (x) is completely determined by its values at the integers! We
say that f (x) is sampled at the integers.

(b) Let F(k) = 1 in the interval (−π, π ) and F(k) = 0 outside this interval.
Calculate both sides of (a) directly to verify that they are equal.

(Hints: (a) Write f (x) in terms of F(k). Notice that f (n) is the nth
Fourier coefficient of F(k) on [−π, π ]. Deduce that F(k) = � f (n)e−ink
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in [−π, π ]. Substitute this back into f (x), and then interchange the integral
with the series.)

7. (a) Let f (x) be a continuous function on the line (−∞, ∞) that vanishes
for large |x |. Show that the function

g(x) =
∞∑

n=−∞
f (x + 2πn)

is periodic with period 2π .
(b) Show that the Fourier coefficients cm of g(x) on the interval (−π, π )

are F(m)/2π , where F(k) is the Fourier transform of f (x).
(c) In the Fourier series of g(x) on (−π, π ), let x = 0 to obtain the Poisson

summation formula
∞∑

n=−∞
f (2πn) =

∞∑
n=−∞

1

2π
F(n).

8. Let χa(x) be the function in Exercise 12.1.12. Compute its Fourier trans-
form χ̂a(k). Use it to show that χ̂a → 1 weakly as a → 0.

9. Use Fourier transforms to solve the ODE −uxx + a2u = δ, where
δ = δ(x) is the delta function.

12.4 SOURCE FUNCTIONS

In this section we show how useful the Fourier transform can be in finding
the source function of a PDE from scratch.

DIFFUSION

The source function is properly defined as the unique solution of the problem

St = Sxx (−∞ < x < ∞, 0 < t < ∞), S(x, 0) = δ(x) (1)

where we have taken the diffusion constant to be 1. Let’s assume no knowledge
at all about the form of S(x, t). We only assume it has a Fourier transform as
a distribution in x, for each t. Call its transform

Ŝ(k, t) =
∫ ∞

−∞
S(x, t)e−ikx dx .

(Here k denotes the frequency variable, not the diffusion constant.) By property
(i) of Fourier transforms, the PDE takes the form

∂ Ŝ

∂t
= (ik)2 Ŝ = −k2 Ŝ, Ŝ(k, 0) = 1. (2)

For each k this is an ODE that is easy to solve. The solution is

Ŝ(k, t) = e−k2t . (3)
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All we have to do is find the function with this transform. The variable t
is now fixed. Our table shows that the transform of f (x) = e−(1/2)x2

/
√

2π

is F(k) = e−(1/2)k2
. By property (vi), the transform of e−(1/2)a2x2

/
√

2π is
(1/a)e−(1/2)k2/a2

for any a > 0. Choosing a = 1/
√

2t , we find that the trans-
form of e−x2/4t/

√
2π is

√
2t e−k2t . Therefore, the transform of 1/

√
4π t e−x2/4t

is e−k2t , so that S(x, t) = 1/
√

4π t e−x2/4t . This result agrees with Section 2.4.

WAVES

By definition, the source function for the one-dimensional wave equation
satisfies

Stt = c2Sxx , S(x, 0) = 0 St (x, 0) = δ(x). (4)

The same method used for diffusions now leads to

∂2 Ŝ

∂t2
= −c2k2 Ŝ, Ŝ(k, 0) = 0,

∂̂S

∂t
(k, 0) = 1. (5)

This ODE has the solution

Ŝ(k, t) = 1

kc
sin kct = eikct − e−ikct

2ikc
. (6)

Therefore,

S(x, t) =
∫ ∞

−∞

eik(x+ct) − eik(x−ct)

4π ikc
dk. (7)

Now, according to our table, the transform of sgn(x) ≡ H (x) − H (−x) is
2/ ik. By property (iii) of Fourier transforms, the transform of sgn(x + a)/4c
is eiak/2ikc. Therefore, from either (6) or (7) for t > 0,

S(x, t) = sgn(x +ct)− sgn(x −ct)

4c
=

{
(1 − 1)/4c= 0 for |x |> ct > 0
(1 + 1)/4c= 1/2c for |x | < ct,

S(x, t) = H (c2t2 − x2)

2c
. (8)

In three dimensions the source function has a (three-dimensional) Fourier
transform Ŝ(k, t) which satisfies

∂2 Ŝ

∂t2
= −c2

(
k2

1 + k2
2 + k2

3

)
Ŝ, Ŝ(k, 0) = 0,

∂̂S

∂t
(k, 0) = 1,

where k = (k1, k2, k3). Letting k2 = |k|2 = (k2
1 + k2

2 + k2
3), the solution of the

ODE is (6) again. Therefore,

S(x, t) =
∫∫∫

1

kc
sin kct eik ·x dk

8π3
. (9)
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This integral can be calculated conveniently using spherical coordinates
in the k variables. We choose the polar axis (the “z-axis”) to be along the x
direction and denote the spherical coordinates by k, θ , and φ. Also let r = |x|.
Then k · x = kr cos θ and

S(x, t) =
∫ 2π

0

∫ π

0

∫ ∞

0
(kc)−1 sin kct eikr cos θk2 sin θ

dk dθ dφ

8π3
. (10)

The φ and θ integrals can be exactly evaluated to get

1

2π2cr

∫ ∞

0
sin kct sin kr dk.

Writing in terms of complex exponentials and switching k to −k in some
terms, we get (by Exercise 12.3.3)

1

8π2cr

∫ ∞

−∞
[eik(ct−r ) − eik(ct+r )] dk = 1

4πcr
[δ(ct − r ) − δ(ct + r )]. (11)

Notice how the characteristic variables show up again! For t > 0, we have
ct + r > 0, so that δ(ct + r ) = 0. Therefore,

S(x, t) = 1

4πcr
δ(ct − r ) = 1

4πc2t
δ(ct − r ) (12)

for t > 0, in agreement with our previous answer.

LAPLACE’S EQUATION IN A HALF-PLANE

We use the Fourier transform to rework the problem of Section 7.4,

uxx + uyy = 0 in the half-plane y > 0,

u(x, 0) = δ(x) on the line y = 0.
(13)

We cannot transform the y variable, but can transform x because it runs from
−∞ to ∞. Let

U (k, y) =
∫ ∞

−∞
e−ikx u(x, y) dx (14)

be the Fourier transform. Then U satisfies the ODE

−k2U + Uyy = 0 for y > 0, U (k, 0) = 1. (15)

The solutions of the ODE are e±yk . We must reject a positive exponent be-
cause U would grow exponentially as |k| → ∞ and would not have a Fourier
transform. So U (k, y) = e−y|k|. Therefore,

u(x, y) =
∫ ∞

−∞
eikx e−y|k| dk

2π
. (16)
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This improper integral clearly converges for y > 0. It is split into two parts
and integrated directly as

u(x, y) = 1

2π (i x − y)
eikx−ky

∣∣∣∣
∞

0

+ 1

2π (i x + y)
eikx+ky

∣∣∣∣
0

−∞

= 1

2π

(
1

y − i x
+ 1

y + i x

)
= y

π (x2 + y2)
,

(17)

in agreement with Exercise 7.4.6.

EXERCISES

1. Use the Fourier transform directly to solve the heat equation with a con-
vection term, namely, ut = κuxx + μux for −∞ < x < ∞, with an initial
condition u(x, 0) = φ(x), assuming that u(x, t) is bounded and κ > 0.

2. Use the Fourier transform in the x variable to find the harmonic function in
the half-plane {y > 0} that satisfies the Neumann condition ∂u/∂y = h(x)
on {y = 0}.

3. Use the Fourier transform to find the bounded solution of the equation
−�u + m2u = δ(x) in free three-dimensional space with m > 0.

4. If p(x) is a polynomial and f (x) is any continuous function on the interval
[a, b], show that g(x) = ∫ b

a p(x − s) f (s) ds is also a polynomial.
5. In the three-dimensional half-space {(x, y, z) : z > 0}, solve the Laplace

equation with u(x, y, 0) = δ(x, y), where δ denotes the delta function, as
follows.
(a) Show that

u(x, y, z) =
∫ ∞

−∞

∫ ∞

−∞
eikx+ily e−z

√
k2+l2 dkdl

4π2
.

(b) Letting ρ = √
k2 + l2, r =

√
x2 + y2, and θ be the angle between

(x, y) and (k, l), so that xk + yl = ρr cos θ , show that

u(x, y, z) =
∫ 2π

0

∫ ∞

0
eiρrcosθe−zρ ρ dρ

dθ

4π2
.

(c) Carry out the integral with respect to ρ and then use an extensive
table of integrals to evaluate the θ integral.

6. Use the Fourier transform to solve uxx + uyy = 0 in the infinite strip
{0 < y < 1, −∞ < x < ∞}, together with the conditions u(x, 0) = 0
and u(x, 1) = f (x).
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12.5 LAPLACE TRANSFORM TECHNIQUES

The Laplace transform is a close relative of the Fourier transform. In this
section, however, we apply it to the time rather than the space variable. It
allows us to solve some PDE problems in a very simple way.

For a function f (t) we define its Laplace transform as

F(s) =
∫ ∞

0
f (t) e−st dt. (1)

(The only essential differences from the Fourier transform are that the ex-
ponential is real and that the variable is the time.) For instance, the Laplace
transform of the function f (t) ≡ 1 is F(s) = ∫ ∞

0 1 · e−st dt = 1/s for s > 0.
If f (t) is any bounded function, then F(s) is defined for s > 0.

Following is a table of Laplace transforms.

f (t) F(s)

eat 1

s − a
(2)

cos ωt
s

s2 + ω2
(3)

sin ωt
ω

s2 + ω2
(4)

cosh at
s

s2 − a2
(5)

sinh at
a

s2 − a2
(6)

t k k!

sk+1
(7)

H (t − b)
1

s
e−bs (8)

δ(t − b) e−bs (9)

a(4π t3)
−1/2

e−a2/4t e−a
√

s (10)

(π t)−1/2e−a2/4t 1√
s

e−a
√

s (11)

1 −er f
a√
4t

1

s
e−a

√
s (12)

Here are some properties of the Laplace transform. Let F(s) and G(s)
be the Laplace transforms of f (t) and g(t), respectively. Then we have the
following table of properties.
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Function Transform
(i) a f (t) + bg(t) aF(s) + bG(s)

(ii)
d f

dt
s F(s) − f (0)

(iii)
d2 f

dt2
s2 F(s) − s f (0) − f ′(0)

(iv) ebt f (t) F(s − b)

(v)
f (t)

t

∫ ∞

s
F(s ′) ds ′

(vi) t f (t) −d F

ds
(vii) H (t − b) f (t − b) e−bs F(s)

(viii) f (ct)
1

c
F
( s

c

)

(ix)
∫ t

0
g(t − t ′) f (t ′) dt ′ F(s)G(s)

The last property says that the transform of the “convolution” is the prod-
uct of the transforms.

Example 1.

By (4) and (v), the transform of (sin t)/t is∫ ∞

s

ds ′

s ′2 + 1
= π

2
− tan−1s = tan−1 1

s
. �

Complex integration together with residue calculus is a useful technique
for computing Laplace transforms, but it goes beyond the scope of this book.
We limit ourselves to writing down the inversion formula

f (t) =
∫ α+i∞

α−i∞
est F(s)

ds

2π i
. (13)

This is an integral over the vertical line s = α + iβ in the complex plane,
where −∞ < β < ∞. For further information on Laplace transforms, see
[We], for instance.

Example 2.

Here is an efficient way of solving the simple ODE

utt + ω2u = f (t) with u(0) = u′(0) = 0.
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By the properties on page 354, the Laplace transform U(s) satisfies

s2U (s) + ω2U (s) = F(s).

Hence U (s) = F(s)/(s2 + ω2). Now the Laplace transform of sin ωt is
ω/(s2 + ω2). So we use the last property (ix) in the table to get the
solution u(t) expressed as the convolution

u(t) =
∫ t

0

1

ω
sin[ω(t − t ′)] f (t ′) dt ′. �

Now we illustrate the applications of the Laplace transform to PDEs
for some one-dimensional problems. Although each of them can be solved
in other ways, the Laplace transform provides an easy alternative method.
It is a particularly useful technique to handle an inhomogeneous boundary
condition, providing an alternative approach to the problems of Section 5.6.
We begin with a really simple inhomogeneous example.

Example 3.

Solve the diffusion equation ut = kuxx in (0, l), with the conditions

u(0, t) = u(l, t) = 1, u(x, 0) = 1 + sin
πx

l
.

Using properties (i) and (ii) and noting that the partials with respect to
x commute with the transforms with respect to t, the Laplace transform
U(x, s) satisfies

sU (x, s) − u(x, 0) = kUxx (x, s).

The boundary conditions become U (0, s) = U (l, s) = 1/s, using for
instance (2) with a = 0. So we have an ODE in the variable x together
with some boundary conditions. The solution is easily seen to be

U (x, s) = 1

s
+ 1

s + kπ2/ l2
sin

πx

l
.

(Check it!) As a function of s, this expression has the form s−1+
b(s − a)−1 where b = sin (πx/ l) and a = −kπ2/ l2. Therefore, the first
entry (2) in our table of Laplace transforms yields the answer

u(x, t) = 1 + beat = 1 + e−kπ2t/ l2
sin

πx

l
. �

Example 4.

Solve the wave equation utt = c2uxx for 0 < x < ∞, with the conditions

u(0, t) = f (t), u(x, 0) = ut (x, 0) ≡ 0.

For x → +∞we assume that u(x, t) → 0. Because the initial conditions
vanish, the Laplace transform satisfies

s2U = c2Uxx , U (0, s) = F(s).
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Solving this ODE, we get

U (x, s) = a(s)e−sx/c + b(s)e+sx/c,

where a(s) and b(s) are to be determined. From the assumed property
of u, we expect that U (x, s) → 0 as x → +∞. Therefore b(s) ≡ 0.
Hence U (x, s) = F(s)e−sx/c. Now we use property (vii) directly to get
the answer

u(x, t) = H
(

t − x

c

)
f
(

t − x

c

)
.

For another method, see (3.4.19). �

Example 5.

Solve the diffusion equation ut = kuxx for 0 < x < ∞, with the condi-
tions

u(0, t) = f (t), u(x, 0) ≡ 0

with u(x, t) → 0 as x → +∞. The Laplace transform satisfies

sU = kUxx , U (0, s) = F(s), U (+∞) = 0.

Its solution is U (x, s) = F(s)e−x
√

s/k because the positive exponent is
not allowed. By (10), the function e−x

√
s/k is the Laplace transform of

E(x, t) = [x/(2
√

kπ t3/2)] e−x2/4kt . The convolution property (ix) then
states that

u(x, t) =
∫ t

0
E(t − t ′) f (t ′) dt ′

= x

2
√

kπ

∫ t

0

1

(t − t ′)3/2 e−x2/4k(t−t ′) f (t ′) dt ′.

This is the solution formula.
For instance, suppose that f (t) ≡ 1. Then the last integral can be

simplified by substituting p = x[4k(t − t ′)]−1/2 to obtain the solution

u(x, t) = 2√
π

∫ ∞

x/
√

4kt
e−p2

dp = 1 − erf
x√
4kt

.

For another method, see Exercise 3.3.2. �

EXERCISES

1. Verify the entries (2)–(9) in the table of Laplace transforms.
2. Verify each entry in the table of properties of the Laplace transform.
3. Find f (t) if its Laplace transform is F(s) = 1/[s(s2 + 1)].
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4. Show that the Laplace transform of tk is �(k + 1)/sk+1 for any k > −1,
where �(p) is the gamma function. (Hint: Use property (viii) of the
Laplace transform.)

5. Use the Laplace transform to solve utt = c2uxx for 0 < x < l, u(0, t) =
u(l, t) = 0, u(x, 0) = sin(πx/ l), and ut (x, 0) = −sin(πx/ l).

6. Use the Laplace transform to solve

utt = c2uxx + cos ωt sin πx for 0 < x < 1

u(0, t) = u(1, t) = u(x, 0) = ut (x, 0) = 0.

Assume that ω > 0 and be careful of the case ω = cπ . Check your answer
by direct differentiation.

7. Use the Laplace transform to solve ut = kuxx in (0, l), with ux (0, t) = 0,
ux (l, t) = 0, and u(x, 0) = 1 + cos(2πx/ l).



13

PDE PROBLEMS
FROM PHYSICS

This chapter contains five independent sections. Section 13.1 requires knowl-
edge of Section 9.2, Section 13.2 requires only Chapter 1, part of Section 13.3
requires Section 10.3, Section 13.4 requires Section 9.5, and part of Section
13.5 requires Chapter 12.

13.1 ELECTROMAGNETISM

Electromagnetism describes the effects of charged particles on each other.
Charged particles create an electric field E, whereas moving ones also create
a magnetic field B. These fields are vector fields, that is, vector functions of
space and time: E(x, t) and B(x, t), where x = (x, y, z). Maxwell proposed
that these two functions are universally governed by the equations

(I)
∂E
∂t

= c∇ × B (III) ∇ · E = 0

(II)
∂B
∂t

= −c∇ × E (IV) ∇ · B = 0,

(1)

where c is the speed of light, at least in a vacuum. That is, these equations
exactly govern the propagation of electromagnetic radiation such as light,
radio waves, and so on, in the absence of any interference. The Maxwell
equations are the subject of this section. Notice that there are two vector
equations and two scalar equations.

In the presence of interference, the physics is governed instead by the
inhomogeneous Maxwell equations

(I)
∂E
∂t

= c∇ × B − 4πJ (III) ∇ · E = 4πρ

(II)
∂B
∂t

= −c∇ × E (IV) ∇ · B = 0,

(2)

358
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where ρ(x, t) is the charge density and J(x, t) is the current density. The
equations (2) imply the continuity equation ∂ρ/∂t = ∇ · J (see Exercise 1).

Special cases of the Maxwell equations are well known by themselves. (II)
is called Faraday’s law. (III) is called Coulomb’s law. In case E does not depend
on time, (I) reduces to c∇ × B = 4πJ, which is Ampère’s law. The trouble
with Ampère’s law is that it requires ∇ · J = 0. So if ∇ · J �= 0, Maxwell
proposed adding the term ∂E/∂t for the sake of mathematical consistency,
thereby coming up with his complete set of equations (2).

As we know, inhomogeneous linear equations can be solved once the ho-
mogeneous ones are. So we concentrate on solving the homogeneous equa-
tions (1). To (1) must be adjoined some initial conditions. They are

E(x, 0) = E0(x) B(x, 0) = B0(x). (3)

The two vector fields E0(x) and B0(x) are arbitrary except for the obvious
restriction that ∇ · E0 = ∇ · B0 = 0, which comes from (III) and (IV).

Our main goal is to solve (1) and (3) in all of 3-space, that is, without
boundary conditions. This can be done very simply by reduction to the wave
equation, already solved in Chapter 9.

SOLUTION OF (1),(3)

First notice that E satisfies the wave equation. In fact, from (I) and then (II),
we have

∂2E
∂t2

= ∂

∂t
(c∇ × B) = c∇ × ∂B

∂t
= c∇ × (−c∇ × E).

By a standard vector identity, this equals c2(�E − ∇(∇ · E)) = c2�E, be-
cause ∇ · E = 0 in the equations (1). Thus

∂2E
∂t2

= c2�E, (4)

which means that each component of E = (E1, E2, E3) satisfies the ordinary
wave equation. Similarly for the magnetic field:

∂2B
∂t2

= c2�B. (5)

Now E satisfies the initial conditions

E(x, 0) = E0(x) and
∂E
∂t

(x, 0) = c∇ × B0(x). (6)

Similarly, B satisfies the initial conditions

B(x, 0) = B0(x) and
∂B
∂t

(x, 0) = −c∇ × E0(x). (7)

We now show that any solution of (4)–(7) also satisfies our problem (1),(3).
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Assuming (4)–(7), it is obvious that the initial conditions (3) are satisfied,
so we just need to check (1). Let’s begin with equation (III). Let u = ∇ · E.
We know that (∂2/∂t2 − �)u = ∇ · (∂2/∂t2 − �)E = 0. So the scalar u(x, t)
satisfies the wave equation and the initial conditions u(x, 0) = ∇ · E0 = 0 (by
assumption) and ∂u/∂t(x, 0) = ∇ · (c∇ × B0) = 0 (because the divergence
of the curl of any vector field is zero). By the uniqueness of solutions of the
wave equation, u(x, t) ≡ 0. This proves (III).

How about (I)? Let F = ∂E/∂t − c∇ × B. Then (∂2/∂t2 − �)F = 0 be-
cause both E and B satisfy the wave equation. The initial conditions of F(x, t)
are F(x, 0) = c∇ × B0 − c∇ × B0 = 0 and

∂F
∂t

(x, 0) = ∂2E
∂t2

− c∇ × ∂B
∂t

∣∣∣∣
t=0

= c2 �E0 − c∇ × (−c∇ × E0)

= c2 ∇(∇ · E0) = 0

by yet another vector identity. Therefore, F(x, t) ≡ 0. This proves (I). Equa-
tions (II) and (IV) are left as an exercise.

Now we may solve (4) and (6) for E separately. Each of the three compo-
nents of E(x, t) separately satisfies the ordinary wave equation with an initial
condition. So we may apply the formula (9.2.3) to get

E(x0, t0) = 1

4πc2t0

∫∫
S

c∇ × B0 d S + ∂

∂t0

1

4πc2t0

∫∫
S

E0 d S,

where S = {|x − x0| = ct0} is the sphere of center x0 and radius ct0. We
carry out the time derivative in the last term by using spherical coordinates.
We get

E(x0, t0) = 1

4πct0

∫∫
S

(
∇ × B0 + 1

ct0
E0 + ∂E0

∂r

)
d S, (8)

where r = |x − x0|. Similarly, we get

B(x0, t0) = 1

4πct0

∫∫
S

(
−∇ × E0 + 1

ct0
B0 + ∂B0

∂r

)
d S. (9)

Formulas (8) and (9) are the solution of (1),(3). For further discussion,
see [Ja] or [Fd].
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EXERCISES

1. Derive the continuity equation ∂ρ/∂t + ∇ · J = 0 from the inhomoge-
neous Maxwell equations.

2. Derive the equations of electrostatics from the Maxwell equations by
assuming that ∂E/∂t = ∂B/∂t ≡ 0.

3. From ∇ · B = 0 it follows that there exists a vector function A such that
∇ × A = B. This is a well-known fact in vector analysis; see [EP], [Kr],
[Sg1].
(a) Show from Maxwell’s equations that there also exists a scalar func-

tion u such that −∇u = E + c−1∂A/∂t .
(b) Deduce from (2) that

−c−1∇ · ∂A
∂t

− �u = 4πρ

and
1

c2

∂2A
∂t2

− �A + ∇
(

∇ · A + c−1 ∂u

∂t

)
= 4π

c
J.

(c) Show that if A is replaced by A + ∇λ and u by u − (1/c)∂λ/∂t , then
the equations in parts (a) and (b) are still valid for the new A and the
new u. This property is called gauge invariance.

(d) Show that the scalar function λ may be chosen so that the new A and
the new u satisfy ∇ · A + c−1∂u/∂t = 0.

(e) Conclude that the new potentials satisfy

1

c2

∂2u

∂t2
− �u = 4πρ and

1

c2

∂2A
∂t2

− �A = 4π

c
J.

A is called the vector potential and u the scalar potential. The equations
in part (e) are inhomogeneous wave equations. The transformation in
part (c) is the simplest example of a gauge transformation.

4. Show that each component of E and of B satisfies the wave equation.
5. Derive carefully the formulas (8) and (9) for the solution of Maxwell’s

equations.
6. Prove that (II) and (IV) follow from the solution formulas (8)-(9).
7. Prove that (3) follows directly from (8)-(9).
8. Solve the inhomogeneous Maxwell equations.

13.2 FLUIDS AND ACOUSTICS

We shall model a fluid (gas or liquid) by its velocity field. That is, v(x, t) is
the velocity of the fluid at the point x at the time t. Another basic quantity is
the mass density ρ(x, t), which is a scalar. This will lead us to the eulerian
form of the fluid equations.
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FLUIDS

The first equation is merely the conservation of mass. Take any region D.
The amount of mass within D at time t is M(t) = ∫∫∫

D ρ dx. Fluid can exit
the region only through the boundary. The rate of exiting in the unit outward
normal direction n at a point is ρv · n. Thus∫∫∫

D

∂ρ

∂t
dx = d

dt

∫∫∫
D

ρ dx = −
∫∫
bdy D

ρv · n d S. (1)

The minus sign indicates that the mass within D is decreasing if the fluid
is escaping from D. By the divergence theorem, the last expression is
− ∫∫∫

D ∇ · (ρv) dx. Because this result is valid for all regions D, we may
apply the second vanishing theorem in Section A.1 to deduce that

∂ρ

∂t
= −∇ · (ρv). (2)

This is the equation of continuity.
Next we balance the forces on the portion of fluid in D. This is Newton’s

law of motion or the conservation of momentum. Balancing the momentum
in the same way that we balanced the mass, we get

d

dt

∫∫∫
D

ρvi dx +
∫∫
bdy D

ρvi v · n d S +
∫∫
bdy D

pni d S =
∫∫∫

D

ρFi dx, (3)

where p(x, t) is the pressure and F(x, t) is the totality of “external” forces at
the point x. The index i runs over the three components. The first term in (3)
is the rate of change of momentum, the second term is the flux of momentum
across the boundary, the third term is the net pressure at the boundary, and the
fourth term is the net external force. Applying the divergence theorem to the
second and third terms, we get

∫∫∫
D

[
∂(ρvi )

∂t
+ ∇ · (ρvi v) + ∂p

∂xi
− ρFi

]
dx = 0. (4)

Because D is arbitrary, the last integrand vanishes. Carrying out the derivatives
in this integrand, we get

ρ

[
∂vi

∂t
+ v · ∇vi

]
+ vi

[
∂ρ

∂t
+ ∇ · (ρv)

]
= − ∂p

∂xi
+ ρFi .



13.2 FLUIDS AND ACOUSTICS 363

But the second term in brackets vanishes because of (2). So we end up with
the equation of motion

∂v
∂t

+ (v · ∇)v = F − 1

ρ
∇ p. (5)

Finally, we need an equation for the pressure p(x, t). This usually takes
the form

p(x, t) = f (ρ(x, t)), (6)

where f is some empirically determined, increasing function. This is the equa-
tion of state. For a gas the equation of state is often taken to be p = cργ , where
c and γ are constants. In this case the entropy is a constant and the fluid flow
is called adiabatic.

The fluid equations are the equations of continuity, motion, and state.
They form a system of five scalar equations for the five scalar unknowns ρ,
v, and p. In contrast to Maxwell’s equations, they are highly nonlinear and
therefore very difficult to analyze. We all know how turbulent a fluid can
become, and this turbulence is a consequence of the nonlinear character of
the equations.

The equation of motion (5) was first derived by Leonhard Euler in 1752. In
case the fluid is viscous, there are internal forces of the form F = ν ∇v, where
ν > 0 represents the strength of the viscosity. This viscous equation, together
with (2), was derived in 1821 and is called the Navier-Stokes equation (NS).
The mathematical properties of the Euler and the NS equations are related to
the turbulence of the fluid and are still only partly understood. Figure 1 is a
photograph of a jet becoming increasingly turbulent from left to right. The

Figure 1 A turbulent jet (Photograph by Robert Drubka and Hassan Nagib)
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well-posedness of NS is one of the five celebrated Millenium Problems (see
http://www.claymath.org/millennium).

ACOUSTICS

Now let us consider the propagation of sound in a gas. Assume that there are
no external forces (F = 0). Sound is the result of vibrations in air which under
normal circumstances are fairly small. The waves are longitudinal because
the individual molecules move in the same direction as the waves propagate.
The smallness of the vibrations will lead us to the linear wave equation. In
the air we know that equations (2), (5), and (6) are valid, so that

∂ρ

∂t
+ ∇ · (ρv) = 0 and

∂v
∂t

+ (v · ∇)v = − 1

ρ
∇( f (ρ)). (7)

Quiet air has a constant density ρ = ρ0 and a vanishing velocity v = 0.
We assume that the vibrations that disturb the air are so small that

ρ(x, t) = ρ0 + O(ε) and v = O(ε), (8)

where O(ε) is a small quantity. We write the equation of continuity as

∂ρ

∂t
+ ρ0∇ · v = −∇ · ((ρ − ρ0)v).

Expanding the functions 1/ρ and f ′(ρ) in Taylor series in powers of ρ − ρ0,
the equation of motion (7) becomes

∂v
∂t

+ (v · ∇) v = −
[

1

ρ0
− 1

ρ2
0

(ρ − ρ0) + O(ρ − ρ0)2

]

×
[

f ′(ρ0) + f ′′(ρ0)(ρ − ρ0) + O(ρ − ρ0)2

]
∇(ρ − ρ0).

We assume that ρ − ρ0 and v and their first derivatives are small to the order
O(ε). Dropping all the terms of order O(ε)2, we therefore get the approximate
equations

∂ρ

∂t
+ ρ0 ∇ · v = 0,

∂v
∂t

= − f ′(ρ0)

ρ0
∇ρ. (9)

These are the linearized equations of acoustics.
It follows from (9) that

∂2ρ

∂t2
= −ρ0 ∇ · ∂v

∂t

= −ρ0 ∇ ·
(

− f ′(ρ0)

ρ0
∇ρ

)

= f ′(ρ0) �ρ,

http://www.claymath.org/millennium
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so that ρ satisfies the wave equation with the wave speed

c0 =
√

f ′(ρ0).

As for the velocity v, its curl satisfies

∂

∂t
∇ × v = ∇ × ∂v

∂t
= − f ′(ρ0)

ρ0
∇ × ∇ρ = 0.

∇ × v is called the vorticity. We assume now that ∇ × v = 0 at t = 0, which
means that the motion of the air is irrotational initially. Then the vorticity
vanishes (∇ × v = 0) for all t. This implies that

∂

∂xi

∂v j

∂x j
= ∂

∂x j

∂vi

∂x j

so that ∇(∇ · v) = �v. It follows that

∂2v
∂t2

= − f ′(ρ0)

ρ0
∇ ∂ρ

∂t

= − f ′(ρ0)

ρ0
∇(−ρ0∇ · v)

= f ′(ρ0) ∇(∇ · v) = f ′(ρ0)�v.

Thus both ρ and all three components of v satisfy the wave equation with the
same wave speed c0. Naturally, c0 is the speed of sound and c2

0 is the derivative
of the pressure with respect to the density.

Example

In air at normal atmospheric pressure we have approximately p = f (ρ) =
p0(ρ/ρ0)7/5, where p0 = 1.033 kg/cm2 and ρ0 = 0.001293 g/cm3.
Hence c0 = √

(1.4)p0/ρ0 = 336 m/s. �

For more information on fluids, see [Me], and on acoustics, see [MI] for
instance.

EXERCISES

1. Assuming in (5) that F = 0, and that v is a gradient (v = ∇φ),
which means that the flow is irrotational and unforced, show that∫

dp/ρ + ∂φ/∂t + 1
2 |∇φ|2 = constant. (Hint: Into (5) substitute v = ∇φ

and p = f (ρ).) This is called Bernoulli’s Law.
2. In particular, in a steady flow, show that low pressure corresponds to high

velocity. (Hint: Set ∂φ/∂t = 0.)
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13.3 SCATTERING

A scattering, or diffraction, problem consists of an incoming wave, an interac-
tion, and an outgoing wave. Because the interaction itself may have very com-
plicated effects, we focus our attention on its consequence, the incoming →
outgoing process, known as the scattering process.

INHOMOGENEOUS STRING

As our first example, we take an infinite vibrating string made of two different
materials so that its density is ρ(x) = ρ1 for x < 0 and ρ2 for x > 0. A wave
would travel along the left half string at speed c1 = √

T/ρ1 and along the
right half at speed c2 = √

T/ρ2. Thus any wave along the string would satisfy

utt = c2(x)uxx where c(x) =
{

c1 for x < 0.

c2 for x > 0.
(1)

Let a wave u(x, t) = f (x − c1t) come in from the left, where f (s) = 0 for
s > 0. This is the incoming, or incident, wave (see Figure 1). What eventually
happens to this wave?

We know from Section 2.1 that

u(x, t) =
{

F(x − c1t) + G(x + c1t) for x < 0 and all t
H (x − c2t) + K (x + c2t) for x > 0 and all t.

(2)

Even though c(x) is discontinuous at x = 0, the physics requires that u(x, t)
and ux(x, t) are continuous everywhere. (Why?) The initial conditions are

u(x, 0) = f (x) and ut (x, 0) = −c1 f ′(x). (3)

(Why?) In particular, the initial data are zero for x > 0. Combining (2) and
(3), we can derive

u(x, t) = f (x − c1t) + c2 − c1

c2 + c1
f (−c1t − x) for x < 0 (4)

Figure 1
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and

u(x, t) = 2c2

c2 + c1
f

(
c1

c2
(x − c2t)

)
for x > 0. (5)

(see Exercise 1).
This result is interpreted as follows. The first term in (4) is the incoming

wave. The last term in (4) is the reflected wave, which travels to the left at
speed c1 with a reflection coefficient (c2 − c1)/(c2 + c1). The expression (5) is
the transmitted wave, which travels to the right at speed c2 with a transmission
coefficient 2c2/(c2 + c1).

In this example the medium undergoes an abrupt change at a single point.
In a more general situation we could study the effects of any impurities or
inhomogeneities in the medium. For instance, we could consider the equation

utt − ∇ · (p ∇u) + qu = 0, (6)

where x = (x, y, z) and the functions p = p(x) and q = q(x) represent inhomo-
geneities. We would assume that p(x) → c2 > 0 and q(x) → 0 as |x| → ∞,
meaning that the inhomogeneities are “localized”. Another kind of scatterer
is a rigid body. This is our next example.

SCATTERING OF A PLANE WAVE BY A SPHERE

Let the sphere be {|x| = R}, on which we assume Dirichlet boundary con-
ditions. Let the incident wave be Aei(ωt−kz) with constants A, ω, and k that
satisfy ω2 = c2k2. This is a solution of the wave equation traveling along the
z axis at speed c, called a traveling plane wave. The scattering problem is to
solve

utt − c2�u = 0 in |x| > R

u = 0 on |x| = R

u(x, t) ∼ Aei(ωt−kz) as t → −∞.

(7)

Because we expect the time behavior of the solution to be eiωt , we look for a
solution of the form

u(x, t) = Aei(ωt−kz) + eiωtv(x). (8)

This requires the reflected wave v(x) to satisfy the problem

ω2v + c2�v = 0 in |x| > R

v = −Ae−ikz on |x| = R
(9)

v satisfies an “outgoing radiation condition” at ∞.
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The radiation condition ought to mean that eiωtv(x) has no incoming part:
it should be purely outgoing. For instance, the spherical wave eiωt e±ikr/r is
incoming with the + sign and outgoing with the − sign (for positive k and
ω). For the outgoing one, rv is bounded and r (∂v/∂r + ikv) → 0 as r → ∞.
Thus the problem to be satisfied by v(x) is

�v + k2v = 0 in |x| > R

v = −Ae−ikz on |x| = R
(10)

rv bounded and r

(
∂v

∂r
+ ikv

)
→ 0 as r → ∞.

To solve (10), we shall make use of the methods of Chapter 10. It is natural
to use spherical coordinates (r, θ, φ). Then v(x) will not depend on φ due to
the symmetry of the problem. As in Section 10.3, we expand v(x) in spherical
harmonics. Because �v = k2v, the expansion has the form

v(r, θ ) =
∑

al Rl+ 1
2
(kr ) Pl(cos θ ), (11)

where Rl+ 1
2

is related to Bessel’s equation, see (10.3.2), and Pl is a Legendre
polynomial. Because v is independent of the angle φ, the associated index m
is zero.

The outgoing radiation condition determines the asymptotic behavior as
r → ∞. We look at Section 10.5 for the facts we need. From (10.5.15) with
s = l + 1

2 and z = kr , we have

H−
s (kr ) ∼

√
2

πkr
e−i(kr−sπ/2−π/4) as r → ∞.

Among all the solutions of Bessel’s equation, this is the one we are looking
for. Thus Rl+ 1

2
(kr ) = H−

l+ 1
2
(kr )/

√
kr .

The coefficients in (11) are determined by the boundary condition in (10).
Putting r = R, we require

−Ae−ikz = −Ae−ikR cos θ =
∞∑

l=0

al

H−
l+ 1

2
(k R)

√
k R

Pl(cos θ ). (12)

In order to find the al, we shall use a three-dimensional version of the identity
(10.5.17), as follows.

Notice that e−i z = e−ircos θ obviously solves the equation �w + w = 0.
So it has an expansion in spherical harmonics, as in Section 10.3, of the form

e−ircos θ =
∞∑

l=0

bl
1√
r

Jl+ 1
2
(r )Pl(cos θ ) (13)

for some coefficients bl. By the orthogonality of the Legendre polynomi-
als and by the values of their normalizing constants from Section 10.6, we
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deduce that

bl
1√
r

Jl + 1
2 (r ) = 2l + 1

2

∫ 1

−1
e−irs Pl(s) ds. (14)

(See Exercise 3).
Let’s compare the asymptotic behavior as r → ∞ of both sides of (14).

The right side of (14) is integrated by parts twice to get

(
l + 1

2

)[ i

r
e−irs Pl(s)

∣∣∣∣
1

−1

−
(

i

r

)2

e−irs P ′
l (s)

∣∣∣∣
1

−1

+
(

i

r

)2 ∫ 1

−1
e−irs P ′′

l (s) ds

]
.

Of these three terms the dominant one is the first one, since it has a 1/r factor
instead of 1/r2. So the right side of (14) is

(
l + 1

2

) i

r

[
e−ir Pl(1)−eir Pl(−1)

] + O

(
1

r2

)

= 2

r
(−i)l

(
l + 1

2

)
sin

(
r − lπ

2

)
+ O

(
1

r2

) (15)

by Exercise 4. On the other hand, using (10.5.5), the left side of (14) is
asymptotically

bl
1√
r

√
2

πr
cos

[
r −

(
l + 1

2

)
π

2
− π

4

]
= bl

√
2

π

1

r
sin

(
r − lπ

2

)
. (16)

Comparing (15) and (16), we deduce that

bl =
√

2π (−i)l
(
l + 1

2

)
.

Putting this result into (13), we have derived the expansion

e−ircos θ =
√

2π

∞∑
l=0

(−i)l
(
l + 1

2

) 1√
r

Jl+ 1
2
(r )Pl(cos θ ). (17)

We multiply (17) by −A and replace r by kR. Then this expansion must
be in agreement with (12), so that

al

H−
l+ 1

2
(k R)

√
k R

= −A
√

2π (−i)l(l + 1
2 )

Jl+ 1
2
(k R)

√
k R

.

This is the formula for the coefficients in (11). Thus we have proven the
following theorem.
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Theorem 1. The scattering of the plane wave Aeik(ct−z) by the sphere
|x| = R with Dirichlet boundary conditions leads to the complete solution

u(x, t) = Aeik(ct−z) − Aeikct

√
2π

kr

∞∑
l=0

(−i)l

(
l + 1

2

)

×
Jl+ 1

2
(k R)

H−
l+ 1

2
(k R)

H−
l+ 1

2
(kr )Pl(cos θ ).

For more on scattering, see [MF], [AJS], or [AS].

EXERCISES

1. Derive (4) and (5) from (2) and (3).
2. A point mass M is attached to an infinite homogeneous string at the origin

by means of a spring. This leads to the wave equation (with a speed c)
with the jump conditions

T [ux (0+, t) − ux (0−, t)] = ku(0−, t) + Mutt (0−, t)

= ku(0+, t) + Mutt (0+, t).

Find the reflected and transmitted waves if a wave f (x − ct) is initially
traveling from the left (i.e., f (x − ct) = 0 for x ≥ 0, t ≤ 0). For simplic-
ity, take c = T = k = M = 1 = c1 = c2.

3. Use the orthogonality of the Legendre polynomials to derive (14).
4. Derive (15).
5. Repeat the problem of scattering by a sphere for the case of Neumann

boundary conditions. (This could be acoustic scattering off a rigid ball.).
6. Do the problem of scattering by an infinitely long cylinder with Dirichlet

conditions. (Hint: See Section 10.5)
7. Solve the problem of scattering of a point source off a plane:

�v + k2v = δ(x2 + y2 + (z − a)2) in z > 0, v = 0 on z = 0

where a > 0. What is the “reflected” or “scattered” wave? (Hint: First
solve the equation in all space without a BC. Then use the method of
reflection as in Section 7.4.)

13.4 CONTINUOUS SPECTRUM

In quantum mechanics a variety of phenomena are described by the
Schrödinger equation

iut = −�u + V(x)u

with a real potential V(x). By separating variables v(x, t) = e−iλtψ(x), we get

−�ψ + V (x)ψ = λψ. (1)
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We say that λ is an eigenvalue if (1) has a nonzero solution with∫∫∫ |ψ |2 dx < ∞. The set of all the eigenvalues is called the discrete spectrum
(or point spectrum). The eigenfunction ψ(x) is called a bound state. In this
section we shall assume that the potential V (x) → 0 at a certain sufficiently
rapid rate as |x| → ∞. Then the solutions of (1) ought to behave like the
solutions of −�ψ = λψ as |x| → ∞.

The simpler equation −�ψ = λψ has the harmonic plane wave solutions
ψ(x, k) = e−ix·k for |k|2 = λ. In Chapter 12 we analyzed problems like this
using Fourier transforms. However, the plane waves that we are now consid-
ering are not eigenfunctions because

∫∫∫ |ψ |2 dx = ∞. Thus we say that the
set of all positive numbers λ (0 < λ < ∞) comprise the continuous spectrum
of the operator −�. It is because of the continuous spectrum that the usual
Fourier expansion has to be replaced by the Fourier integral.

The problem (1) with a potential also has a continuous spectrum. This
means that for λ = |k|2 > 0, there is a solution f (x, k) of (1) such that

f (x, k) ∼ e−ik·x as |x| → ∞.

Problem (1) may or may not have bound states as well.
For the hydrogen atom where V(x) = c/r (c = constant), the discrete spec-

trum (corresponding to the bound states) was found in Sections 9.5 and 10.7
to be {−1/n2: n is a positive integer}. The continuous spectrum turns out to be
the whole interval [0, +∞). The whole spectrum, continuous and discrete, is
sketched in Figure 1. The potential c/r for the hydrogen atom has a singularity
at the origin and does not tend to zero particularly rapidly as r → ∞. For a
nicer potential that is smooth and tends to zero rapidly (exponentially fast,
say, or faster than a certain power) as r → ∞, it has been proven that the
continuous spectrum is [0, ∞) and the discrete spectrum consists of a finite
number of negative values λN ≤ · · · ≤ λ1 < 0 where N ≥ 0. See Vol. IV,
p. 98 of [RS], or p. 117 of [Dd], or [AS].

Now we study the continuous spectrum from the point of view of scattering
theory. For simplicity we take the one-dimensional case, writing (1) in the form

−ψxx + V (x)ψ = k2ψ (−∞ < x < ∞), (2)

where λ = k2 > 0 is in the continuous spectrum. The role of the scatterer is
played by the potential V(x), which we assume satisfies∫ ∞

−∞
(1 + x2) V (x) dx < ∞. (3)

Figure 1
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Figure 2

If e−ikx is a wave coming in from x = +∞, there will be a reflected
wave going back to +∞ and a transmitted wave going through to −∞ (see
Figure 2):

ψ(x) ∼ e−ikx + Re+ikx as x → +∞
ψ(x) ∼ T e−ikx as x → −∞.

(4)

The reflection coefficient is R, which depends on k. So does the transmission
coefficient T. It can be proved, under condition (3), that for each k there is a
unique solution with these properties (4) (see [AS] or [Dd]).

Theorem 1.

|R|2 + |T |2 = 1.

This theorem means that you add R and T in a pythagorean way. It follows,
obviously, that both |R| and |T | are ≤1.

Proof. Let f (x) and g(x) be the solutions of (2) such that

f (x) ∼ e−ikx as x → −∞ and g(x) ∼ e+ikx as x → +∞. (5)

(More precisely, eikx f (x) → 0 as x → −∞, and so on. It can be shown that
f (x) and g(x) exist and are unique. Their complex conjugates f̄ (x) and ḡ(x)
are solutions as well (why?) and satisfy

f̄ (x) ∼ e+ikx as x → −∞ and ḡ(x) ∼ e−ikx as x → +∞. (6)

Now g and ḡ are linearly independent because they satisfy linearly inde-
pendent conditions at +∞. So every solution of the ODE (2) can be expressed
in terms of these two. Thus

f (x) = ag(x) + bḡ(x) (7)

for some complex constants a and b. (All these functions and constants depend
on k.) The wronskian, defined as W (g, ḡ) = gḡx − gx ḡ, must be independent
of x because

dW

dx
= gḡxx + gx ḡx − gx ḡx − gxx ḡ = g · ḡxx − gxx · ḡ

= g · (V (x) − k2)ḡ − (V (x) − k2)g · ḡ = 0

from (2). On the other hand, we know that as x → +∞,

W (g, ḡ) ∼ (eikx )(−ike−ikx ) − (ikeikx )(e−ikx ) ∼ −2ik.
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Therefore, W (g, ḡ) ≡ −2ik for all x. Similarly, W ( f, f̄ ) ≡ +2ik for all x.
Using (7) and the fact that W (g, g) = 0 = W (ḡ, ḡ), we have

W ( f, f̄ ) = W (ag + bḡ, āḡ + b̄g) = aāW (g, ḡ) + bb̄W (ḡ, g)
= (|a|2 − |b|2)W (g, ḡ).

Therefore, 2ik = (|a|2 − |b|2)(−2ik), which means that

|a|2 − |b|2 = −1. (8)

We return to ψ(x), which is defined by the conditions (4). Comparing (4)
to (6), we must have

ψ(x) = ḡ(x) + Rg(x) (from the conditions at +∞)

and

ψ(x) = T f (x) (from the conditions at −∞).

Hence T f (x) = ḡ(x) + Rg(x). From (7) it follows that a = R/T and
b = 1/T . Putting this into (8), we deduce that |R/T |2 − |1/T |2 = −1, or

|R|2 + |T |2 = 1.

For further information on the continuous spectrum, see [RS] or [AS].

EXERCISES

1. Find all the eigenvalues (discrete spectrum) of

−ψ ′′ + qψ = λψ with ψ(−x) = ψ(x) (−∞ < x < ∞)

where q(x) = −Q for |x | < 1, and q(x) = 0 outside this interval. The
depth Q is a positive constant. This is the square well potential. (Hint:
First show that −Q < λ < 0. The eigenfunctions and their first derivatives
should be continuous.)

2. Find all the eigenvalues (discrete spectrum) of

−ψ ′′ + qψ = λψ (−∞ < x < ∞)

for the potential q(x) = −Qδ(x), a positive constant times the delta func-
tion. (Hint: The eigenfunctions in this case are merely continuous.)

13.5 EQUATIONS OF ELEMENTARY PARTICLES

In the last 50 years various PDE models of hyperbolic type have played central
roles in our understanding of the elementary particles: electrons, protons,
neutrons, mesons, quarks, and so on. Here we shall describe some of these
equations. For deeper study, see [MF] or [Bl].

One of the simplest is the Klein–Gordon equation

utt − c2�u + m2u = 0 (1)
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in three dimensions, where m is the mass of the particle. It is of hyperbolic
type (see Section 1.6) and in fact its only difference from the wave equation
is the last term. Its solution is given at the end of this section. Much more
difficult is the nonlinear Klein–Gordon equation

utt − c2�u + m2u + gu3 = 0, (2)

where g is constant, which is a model for mesons.

DIRAC EQUATION

The Dirac equation for the electron was devised to be a “square root” of the
Klein–Gordon equation. It is

c−1γ 0 ∂u

∂t
+ γ 1 ∂u

∂x
+ γ 2 ∂u

∂y
+ γ 3 ∂u

∂z
+ imu = 0, (3)

where m is the mass, i = √−1, and γ 0, γ 1, γ 2, and γ 3 are certain 4 × 4
matrices. The coefficient matrices are

γ 0 =

⎛
⎜⎜⎜⎝

1
1

−1
−1

⎞
⎟⎟⎟⎠ γ j =

⎛
⎜⎜⎜⎝

0 0
0 0

−σ j

−σ j
0 0
0 0

⎞
⎟⎟⎟⎠ .

for j = 1, 2, 3, where

σ 1 =
(

0 1
1 0

)
σ 2 =

(
0 −i
i 0

)
σ 3 =

(
1 0
0 −1

)

are the 2 × 2 Pauli matrices. The solution u(x, y, z, t) is a four-dimensional
complex vector at each point in space-time. The coefficient matrices have the
following properties:

(γ 0)
∗ = γ 0, (γ j )

∗ = γ j for j = 1, 2, 3, (4)

where ∗ is the conjugate transpose,

(γ 0)
2 = I, (γ j )

2 = −I for j = 1, 2, 3 (5)

and

γ αγ β + γ βγ α = 0 for α �= β, α, β = 0, 1, 2, 3. (6)

Dirac is a square root of Klein–Gordon in the sense that(
1

c
γ 0 ∂

∂t
+ γ 1 ∂

∂x
+ γ 2 ∂

∂y
+ γ 3 ∂

∂z
+ im

)2

= 1

c2

∂2

∂t2
− � + m2

as operators (see Exercise 2).
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The famous equations of quantum electrodynamics (QED) form a system
that combines Dirac’s and Maxwell’s equations with nonlinear coupling terms.
We will not write them down here. They describe the interaction between
electrons (governed by Dirac’s equation) and photons (governed by Maxwell’s
equations). The predictions of the theory agree with experiments to 12 figures,
making it the most accurate theory in all of physics.

GAUGE THEORY

This is the central idea by which physicists today are attempting to unify
the four fundamental forces of nature (gravitational, electromagnetic, weak,
and strong). On the PDE level it is based on the Yang–Mills equations. They
are just like the Maxwell equations except that each of the components has
(three-dimensional) vector values. They are, putting c = 1 for simplicity,

(I)

⎧⎪⎨
⎪⎩

D0B1 = D3E2 − D2E3

D0B2 = D1E3 − D3E1

D0B3 = D2E1 − D1E2

(II)

⎧⎪⎨
⎪⎩

D0E1 = D2B3 − D3B2

D0E2 = D3B1 − D1B3

D0E3 = D1B2 − D2B1

(III) D1B1 + D2B2 + D3B3 = 0 (IV) D1E1 + D2E2 + D3E3 = 0.

But here the operators D1, D2, and D3 are nonlinear versions of the ordinary
partial derivatives. These covariant derivative operators are defined as

D0U = ∂U
∂t

− A0 × U
(8)

DkU = ∂U
∂xk

+ Ak × U

for k = 1, 2, 3 and x = (x1, x2, x3) = (x, y, z). The unknowns in the Yang–Mills
equations are the 10 variables

E1, E2, E3, B1, B2, B3, A0, A1, A2, A3.

Finally, to (I)–(IV) are adjoined the equations

(V) Ek = ∂A0

∂xk
+ ∂Ak

∂t
+ Ak × A0

and

(VI) B1 = ∂A2

∂x3
− ∂A3

∂x2
+ A3 × A2

and similar equations for B2 and B3 (with the indices permuted cyclically).
The total energy for the Yang–Mills equations is

e = 1
2

∫∫∫
(|E1|2 + |E2|2 + |E3|2 + |B1|2 + |B2|2 + |B3|2) dx (9)
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and the total momentum is

p1 =
∫∫∫

(B2 · E3 − B3 · E2) dx, etc. (cyclically). (10)

These quantities are invariants (see Exercise 3).
An equivalent way to write the Yang–Mills equations is to consider each

of the 10 dependent variables not as a vector but as a skew-hermitian complex
2 × 2 matrix with zero trace. Thus each of E1, . . . , A3 becomes such a matrix.
Such a matrix has three real components, so that it is equivalent to a vector;
see Exercise 11. Then everywhere replace each vector product like A × B by
AB − BA and each scalar product like A · B by trace (AB∗).

What is special about the Yang–Mills equations is their gauge invariance.
Namely, let G(x, t) be any unitary 2 × 2 matrix function with determinant
= 1. If (Ek, Bk, Ak, A0) (where k = 1, 2, 3) is any solution of (I)–(VI) with
values considered as matrices, then so is (E ′

k, B ′
k, A′

k, A′
0), where

E ′
k = G−1 Ek G, B ′

k = G−1 Bk G,

A′
k = G−1 Ak G + G−1 ∂G

∂xk
, A′

0 = G−1 A0G − G−1 ∂G

∂t
(11)

(where k = 1, 2, 3). The products are ordinary matrix multiplications. This
invariance has powerful consequences that lie at the heart of the idea from
physics.

We have described the equations of gauge theory with the gauge groupg
being the group of unitary 2 × 2 matrices with determinant = 1. More general
gauge theories use larger gauge groups.

SOLUTION OF THE KLEIN–GORDON EQUATION

First we solve it in one dimension:

utt − c2uxx + m2u = 0 (−∞ < x < ∞)

u(x, 0) = φ(x) ut (x, 0) = ψ(x),
(12)

where c and m are positive constants. We use the method of Fourier transforms
as in Section 12.4. The source function has the Fourier transform Ŝ(k, t), where

∂2 Ŝ

∂t2
= −c2k2 Ŝ − m2 Ŝ, Ŝ(k, 0) = 0,

∂ Ŝ

∂t
(k, 0) = 1.

This ODE has the solution

Ŝ(k, t) = sin [t
√

c2k2 + m2]√
c2k2 + m2

, (13)
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so that

S(x, t) =
∫ ∞

−∞

sin [t
√

c2k2 + m2]√
c2k2 + m2

eikx dk

2π
.

Fortunately, this is (almost) an entry in our table of Fourier transforms in
Section 12.3. From Exercise 5 it follows that

S(x, t) = 1

2c
J0

⎛
⎝m

√
t2 − x2

c2

⎞
⎠ for |x | < ct (14)

and S(x, t) = 0 for |x | > ct ≥ 0. Thus the source function has the same jump
discontinuity on the light cone as the wave equation. In fact, as m → 0 it
converges to the source function for the wave equation (12.2.9).

In three dimensions the same method, using three-dimensional Fourier
transforms, leads to the formula

S(x, t) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

sin [t
√

c2k2 + m2]√
c2k2 + m2

eik·x dk
8π3

, (15)

where k2 = |k|2. Now we must use spherical coordinates. We let θ denote the
angle between k and x, and let r = |x|. Then (15) takes the form

S(x, t) =
∫ 2π

0

∫ π

0

∫ ∞

0

sin [t
√

c2k2 + m2]√
c2k2 + m2

eikr cos θ k2 sin θ dk dθ dφ

8π3
. (16)

The φ and θ integrals are easily integrated out to get

S(x, t) = 1

2π2r

∫ ∞

0

sin [t
√

c2k2 + m2]√
c2k2 + m2

k sin kr dk. (17)

Now we can write k sin kr = ∂(−cos kr )/∂r , pull the ∂/∂r outside the integral,
and use the fact that the integrand is an even function of k, to get

S(x, t) = − 1

4π2r

∂

∂r

∫ ∞

−∞

sin [t
√

c2k2 + m2]√
c2k2 + m2

eikr dk. (18)
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Using Exercise 6, we get

S(x, t) = − 1

4πcr

∂

∂r

⎡
⎣H

(
t2 − r2

c2

)
J0

⎛
⎝m

√
t2 − r2

c2

⎞
⎠
⎤
⎦. (19)

Carrying out the derivative and using the identity J ′
0 = −J1 and J0(0) = 1,

we get

S(x, t) = 1

2πc
δ(c2t2 − r2)

− m H (c2t2 − r2)
J1[(m/c)

√
c2t2 − r2]

4πc2
√

c2t2 − r2
.

(20)

This means that the source function for the Klein–Gordon equation in
three dimensions is a delta function on the light cone plus a Bessel function
inside the cone. If m = 0, the formula reduces to the wave equation case.

EXERCISES

1. Prove properties (4), (5), and (6) of the Dirac matrices.
2. Prove that the Dirac operator is a square root of the Klein–Gordon op-

erator.
3. For the Yang–Mills equations, show that the energye and the momentum
p are invariants. Assume the solutions vanish sufficiently fast at infinity.

4. Prove the gauge invariance of the Yang–Mills equations. See Exercise
11 on page 379.

5. Use (12.3.12) in the table of Fourier transforms to carry out the last step in
the derivation of the formula (14) for the one-dimensional Klein–Gordon
equation.

6. Fill in the details of the derivation of (20) in three dimensions.
7. Rederive the solution of the one-dimensional Klein–Gordon equation by

the “method of descent” as follows. Calling it u(x, t), define v(x, y, t) =
eimy/cu(x, t). Show that v satisfies the two-dimensional wave equation.
Use the formula from Chapter 9 to solve for v(0, 0, t), assuming that
φ(x) ≡ 0. Transform it to

u(0, t) =
∫

|x |<ct

∫
|y|<μ

eimy 1√
μ2 − y2

dy ψ(x)
dx

2π
,

where μ = √
t2 − x2. From a table of definite integrals, the inner integral

equals πJ0(mμ).
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8. The telegraph equation or dissipative wave equation is

utt − c2�u + νut = 0,

where ν > 0 is the coefficient of dissipation. Show that the energy is
decreasing:

de

dt
= −ν

∫∫∫
u2

t dx ≤ 0.

9. Solve the telegraph equation with ν =1 in one dimension as follows. Sub-
stituting u(x, t) = e−t/2v(x, t), show that utt − c2uxx − 1

4 u = 0. This is
the Klein–Gordon equation with imaginary mass m = i/2. Deduce the
source function for the telegraph equation.

10. Solve the equation uxy + u = 0 in the quarter plane Q = {x > 0, y > 0}
with the boundary conditions u(x, 0) = u(0, y) = 1. (Method 1: Reduce
it to the Klein-Gordon equation by a rotation of π /4. Method 2: Look
for a solution of the form u(x, y) = f (xy) and show that f satisfies an
ODE that is almost Bessel’s equation.)

11. Let A be a skew-hermitian complex 2 × 2 matrix with trace = 0. Show
that A has the form

A = i

(
α1 α2 + iα3

α2 − iα3 −α1

)

with three real components α1, α2, α3. For any such matrix A, let A be
the real vector A = [α1, α2, α3]. Show that the vector corresponding to
the matrix 1

2 (AB − BA) is exactly A × B.
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NONLINEAR PDES

With nonlinear equations the superposition principle ceases to hold. Therefore,
the method of eigenfunctions and the transform methods cannot be used. New
phenomena occur, such as shocks and solitons. We now pursue five such
topics. The latter part of Section 14.1 requires knowledge of Section 12.1,
Section 14.2 of Section 13.4, Section 14.3 of Section 7.1, Section 14.4 merely
of Chapter 4, and Section 14.5 of Section 13.2.

14.1 SHOCK WAVES

Shock waves occur in explosions, traffic flow, glacier waves, airplanes break-
ing the sound barrier, and so on. They are modeled by nonlinear hyperbolic
PDEs. The simplest type is the first-order equation

ut + a(u)ux = 0. (1)

A system of two nonlinear equations of a similar type is

ρt + (ρv)x = 0 and vt + vvx + ρ−1 f (ρ)x = 0,

which we encountered in Section 13.2. In this section we limit ourselves to
discussing the single equation (1).

However, we shall begin with a review of first-order linear equations,
Section 1.2. Consider the equation

ut + a(x, t) ux = 0. (2)

[If one encounters the more general equation b(x, t)ut + a(x, t)ux = 0, one
would first divide by b(x, t).] Consider the characteristic curves, which are
defined as the solutions of the ODE, dx/dt = a(x, t). Every point (x0, t0) in
the (x, t) plane has a unique characteristic curve passing through it, because
the ODE can be uniquely solved with the initial condition x(t0) = x0. Call this
solution x = x(t; x0, t0).

380
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Now, along such a curve (parametrized by t) we calculate

0 = uxa + ut = ∂u

∂x

dx

dt
+ ∂u

∂t
= d

dt
[u(x(t), t)] = du

dt
.

So the derivative of u along the curve must vanish. Thus u(x(t), t) is constant
along each such curve. That is, u(x(t), t) = u(x0, t0). If we draw these curves
in the xy plane, any differentiable function u(x, t) that is constant on each
characteristic curve is a solution of the PDE (2).

Example 1.

Let’s solve the PDE

ut + ex+t ux = 0. (3)

The characteristic equation is dx/dt = ex+t . This ODE separates as
e−x dx = et dt . Its solutions are e−x = −et + C where C is an arbitrary
constant, or x = −log(C − et ). So the general solution of (3) is

u(x, t) = f (C) = f (e−x + et ) (4)

where f is an arbitrary differentiable function of one variable. �

Example 2.

Let’s solve (3) with the initial condition u(x, 0) = φ(x). Using the pre-
ceding formula, we must have φ(x) = u(x, 0) = f (e−x + 1). We find
f in terms of φ by substituting s = e−x + 1 or x = −log(s − 1) to get
f (s) = φ[−log(s − 1)].

So the solution is

u(x, t) = φ[−log(e−x + et − 1)].

For instance, if we want to solve (3) with u(x, 0) = x3, then

u(x, t) = −[log(e−x + et − 1)]3
. (5)

�

We begin our discussion of nonlinear equations with a very specific but
typical example.

Example 3.

The equation

ut + uux = 0 (6)

is the simplest form of the basic equation of fluids (13.2.5). It is nonlin-
ear and therefore a lot subtler than the linear equations of Section 1.2.
Nevertheless, we use the geometric method. The characteristic curves
for (6) are the curves that are given by solutions of the ODE

dx

dt
= u(x, t). (7)
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Because the PDE (6) is nonlinear, this characteristic equation (7) depends
on the unknown function u(x, t) itself! Each solution u(x, t) of (6) will
give a different set of characteristics. By the existence and uniqueness
theorem for ODEs (see Section A.4), there is a unique curve passing
through any given point (x0, t0). So if we could lay our hands on a
solution, it would provide us with a family of curves perfectly filling out
the xt plane without intersections.

At first, because we don’t know a solution u(x, t), it seems we could
know nothing about such a characteristic curve (x(t), t). But notice that
u is a constant on it:

d

dt
[u(x(t), t)] = ut + dx

dt
ux = ut + uux = 0 (!) (8)

by the chain rule. The solution u(x(t), t) is a constant on each such curve,
even though we still don’t know what the curve is. Hence it is also true
that dx/dt = u(x(t), t) = constant. From these observations we deduce
three principles.

(α) Each characteristic curve is a straight line. So each solution
u(x, t) has a family of straight lines (of various slopes) as its
characteristics.

(β) The solution is constant on each such line.
(γ ) The slope of each such line is equal to the value of u(x, t) on it.

Suppose now that we ask for a solution of the PDE that satisfies the
initial condition

u(x, 0) = φ(x). (9)

That is, we specify the solution on the line t = 0. Then, by (γ ), the
characteristic line that passes through (x0, 0) must have slope φ(x0).
Similarly, the characteristic line through (x1, 0) must have slope φ(x1).
If the two lines intersect (see Figure 1), we’re in trouble. For u = φ(x0)
on one line and u = φ(x1) on the other line, so that φ(x0) = φ(x1), which
is impossible because they have different slopes!

Figure 1
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Figure 2

There are three conceivable ways out of this quandary. One is to
avoid any such intersection of characteristic lines. This will happen for
t ≥ 0 whenever the function φ(x) is increasing for all x. A second way
is to extend the notion of solution to allow discontinuities. This leads
to the theory of shock waves. A third way is to simply admit that the
solution usually exists only near the initial line t = 0 and that away from
this line it may break down in some unknown manner.

We can write a formula for the solution of (6), where it exists, as
follows. Consider the characteristic line passing through (x0, 0) and
(x, t) (see Figure 2). Its slope is

x − x0

t − 0
= dx

dt
= u(x, t) = u(x0, 0) = φ(x0),

so that

x − x0 = tφ(x0). (10)

Equation (10) gives x0 implicitly as a function of (x, t). Then

u(x, t) = φ(x0(x, t)) (11)

is the solution. [The implicit form of (10) is related to the geometric
intersection problem discussed above.] �

Example 4.

Let us continue Example 3 by making a particular choice of the initial
function φ(x). Let φ(x) = x2. Then (10) takes the form

x − x0 = tx2
0 or tx2

0 + x0 − x = 0.

We solve this quadratic equation for x0 explicitly as

x0 = −1 ± √
1 + 4tx

2t
for t �= 0.
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The solution of the PDE (6) is, according to (11),

u(x, t) = φ(x0) =
(

−1 ± √
1 + 4tx

2t

)2

= 1 ∓ 2
√

1 + 4tx + (1 + 4tx)

4t2
= 1 + 2tx ∓ √

1 + 4tx

2t2

for t �= 0. This formula is supposed to be the solution of the problem

ut + uux = 0, u(x, 0) = x2,

but it is not defined along the line t = 0. So we require that

x2 = u(x, 0) = lim
t→0

1 + 2tx ∓ √
1 + 4tx

2t2
.

With the plus sign this expression has no limit (it is 2/0 = ∞), so it
can’t be a solution. With the minus sign, however, there is some hope
because the limit is 0/0. We use L’Hôpital’s rule twice (with x constant)
to calculate the limit as

lim
2x − 2x(1 + 4tx)−1/2

4t
= lim

4x2(1 + 4tx)−3/2

4
= x2,

as it should be. Therefore, the solution is

u(x, t) = 1 + 2tx − √
1 + 4tx

2t2
for t �= 0. (12)

This is the formula for the unique (continuous) solution. It is a solution,
however, only in the region 1 + 4tx ≥ 0, which is the region between
the two branches of the hyperbola tx = − 1

4 . �

Let’s return now to the general equation

ut + a(u) ux = 0 (1)

The characteristic curves for (1) are the solutions of the ODE

dx

dt
= a(u(x, t)). (13)

Calling such a curve x = x(t), we observe that

d

dt
u(x(t), t) = ux

dx

dt
+ ut = uxa(u) − a(u)ux = 0.

Therefore, the characteristics are straight lines and the solution is constant
along them.
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Figure 3

Thus we can solve equation (1) with the initial condition u(x, 0) = φ(x),
provided that the characteristics do not intersect. The characteristic line
through (x, t) and (z, 0) has the “slope” (see Figure 3)

x − z

t − 0
= dx

dt
= a(u(x, t)) = a(u(z, 0)) = a(φ(z)).

Hence x − z = t a(φ(z)). This gives z implicitly as a function of x and t.
Writing z = z(x, t), the solution of (1) is given by the formula

u(x, t) = u(z, 0) = φ(z) = φ(z(x, t)). (14)

In case no pair of characteristic lines intersect in the half-plane t > 0,
there exists a solution u(x, t) throughout this half-plane. This can happen only
if the slope is increasing as a function of the intercept:

a(φ(z)) ≤ a(φ(w)) for z ≤ w .

In other words, the lines spread out for t > 0. Such a solution is called an
expansive wave or rarefaction wave.

In the general case, however, some characteristics will cross and the so-
lution will exist only in the region up to the time of crossing. What does it
look like near that time? The wave speed is a(u). Because it depends on u,
some parts of the wave move faster than others. At any “compressive” part of
the wave, a movie of the solution will typically look as in Figure 4, where the
“crest” moves faster and the wave is said to “break.” The bigger u is, the faster
the wave moves, so the bigger, faster part of the wave overtakes the smaller,
slower part of the wave. This leads to a triple-valued “solution.” This is the
situation when a water wave breaks on the beach, as well as at the shock front
of an explosion.

Figure 4
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When the solution ceases to exist due to compression, what happens?
Mathematically speaking, where a shock wave occurs, the solution u(x, t) has
a jump discontinuity. This usually occurs along a curve in the xt plane.

DISCONTINUOUS SOLUTIONS

As we are dealing with a solution of a PDE that is not even continuous, let
alone differentiable, what is the meaning of the PDE? In Section 12.1 we
discussed a way that very general “functions” could be solutions of PDEs.
Therefore, for equation (1) we ask that it be valid in the sense of distributions.
Let A′(u) = a(u). The equation (1) can be written as ut + A(u)x = 0. For it to
be valid in the sense of distributions means precisely that∫ ∞

0

∫ ∞

−∞
[uψt + A(u)ψx ] dx dt = 0 (15)

for all test functions ψ(x, t) defined in the half-plane. (A test function is a C∞
function in the xt plane that is zero outside a bounded set.) A solution of this
type is called a “weak” solution.

Suppose now that the jump discontinuity, called a shock, occurs along the
curve x = ξ (t) (see Figure 5). Because it is a jump, the limits u+(t) = u(x+, t)
and u−(t) = u(x−, t) from the right and the left exist. We assume that the
solution is smooth elsewhere. The speed of the shock is s(t) = dξ/dt, which
is the reciprocal of the slope in Figure 5. Now we split the inner integral in
(15) into the piece from −∞ to ξ (t) and the piece from ξ (t) to +∞. On each
piece separately (where the function is C1) we apply the divergence theorem.
We obtain∫ ∞

0

∫ ξ (t)

−∞
[−utψ − A(u)xψ] dx dt −

∫
x=ξ (t)

[u+ψnt + A(u+)ψnx ] dl

+
∫ ∞

0

∫ +∞

ξ (t)
[−utψ − A(u)xψ] dx dt

+
∫

x=ξ (t)

[u−ψnt + A(u−)ψnx ] dl = 0, (16)

Figure 5
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where (nx, nt) denotes the unit normal vector to the shock curve which points
to the left. But ut + A(u)x = 0 in the ordinary sense in both regions separately,
so that the two double integrals in (16) vanish. Hence∫

x=ξ (t)

[u+ψnt + A(u+)ψnx ] dl =
∫

x=ξ (t)

[u−ψnt + A(u−)ψnx ] dl.

Because ψ(x, t) is arbitrary, we can cancel it and we get the result that

A(u+) − A(u−)

u+ − u− = − nt

nx
= s(t). (17)

This is the Rankine–Hugoniot formula for the speed of the shock wave.
To summarize, a shock wave is a function with jump discontinuities along

a finite number of curves on each of which (17) holds and off of which the
PDE (1) holds.

Example 5.

Let a(u) = u and φ1(x) = 1 for x > 0, and φ1(x) = 0 for x < 0. Then
A(u) = 1

2 u2 and a(φ1(x)) is an increasing function of x. A continuous
solution is the expansion wave u1(x, t) = 0 for x ≤ 0, x/t for 0 ≤ x ≤ t,
and 1 for x ≥ t. It is a solution of the PDE for t ≥ 0 because (x/t)t +
(x/t)(x/t)x = −x/t2 + (x/t)(1/t) = 0. The characteristics are sketched
in Figure 6. �

Example 6.

Let a(u) = u and φ2(x) = 0 for x > 0, and φ2(x) = 1 for x < 0. Then
a(φ2(x)) is a decreasing function of x and there is no continuous solution.
But there is a shock wave solution, namely u2(x, t) = 0 for x < st, and
u2(x, t) = 1 for x > st. It has a discontinuity along the line x = st.

Figure 6
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Figure 7

What is s? By (17),

s = A(u+) − A(u−)

u+ − u− =
1

2
02 − 1

2
12

0 − 1
= 1

2
.

Therefore, the solution is as sketched in Figure 7. �

Example 7.

By extending the concept of a solution to allow jumps, we have intro-
duced the possibility that the solution is not unique. Indeed, consider
the same initial data as in Example 5, and the solution u3(x, t) = 0 for
x < t/2, and u3(x, t) = 1 for x > t/2. This is obviously a solution for
x �= t/2 and furthermore it satisfies (17) because s = 1

2 = ( 1
2 12 − 1

2 02)/
(1 – 0). Therefore there are at least two solutions with the initial condi-
tion φ1(x) (see Figure 8).

Which one is physically correct? We could argue that the continuous
one is preferred. But there may be other situations where neither one is
continuous. Here both mathematicians and physicists are guided by the
concept of entropy in gas dynamics. It requires that the wave speed just
behind the shock is greater than the wave speed just ahead of it; that

Figure 8
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is, the wave behind the shock is “catching up” to the wave ahead of it.
Mathematically, this means that on a shock curve we have

a(u−) > s > a(u+). (18)

This is the entropy criterion for a solution. Notice that (18) is satisfied
for Example 6 but not for Example 7. Therefore, Example 7 is rejected.
Finally, the definition of a shock wave is complete. Along its curves of
discontinuity it must satisfy both (17) and (18). For further discussion
of shocks, see [Wh] or [Sm]. �

EXERCISES

1. (a) Use direct differentiation to check that (4) solves (3).
(b) Check directly that (5) solves the initial condition u (x, 0) = x3.

2. Solve (1 + t)ut + xux = 0. Then solve it with the initial condition
u(x, 0) = x5 for t > 0.

3. Solve the nonlinear equation ut + uux = 0 with the auxiliary condition
u(x, 0) = x. Sketch some of the characteristic lines.

4. Sketch some typical characteristic lines for Example 4.
5. Solve ut + u2ux = 0 with u(x, 0) = 2 + x.
6. Verify by differentiation that the formula (12) provides a solution of the

differential equation (6).
7. Solve xut + uux = 0 with u(x, 0) = x. (Hint: Change variables x �→ x2.)
8. Show that a smooth solution of the problem ut + uux = 0 with u(x, 0) =

cos πx must satisfy the equation u = cos[π (x − ut)]. Show that u ceases
to exist (as a single-valued continuous function) when t = 1/π . (Hint:
Graph cos−1 u versus π (x − ut) as functions of u.)

9. Check by direct differentiation that the formula u(x, t) = φ(z), where z
is given implicitly by x − z = t a(φ(z)), does indeed provide a solution
of the PDE (1).

10. Solve ut + uux = 0 with the initial condition u(x, 0) = 1 for x ≤ 0, 1 − x
for 0 ≤ x ≤ 1, and 0 for x ≥ 1. Solve it for all t ≥ 0, allowing for a
shock wave. Find exactly where the shock is and show that it satisfies
the entropy condition. Sketch the characteristics.

11. Show that (15) is equivalent to the statement

d

dt

∫ b

a
u(x, t) dx + A(u(b, t)) − A(u(a, t)) = 0 for all a, b.

12. Solve ut + uux = 1 with u(x, 0) = x.
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14.2 SOLITONS

A soliton is a localized traveling wave solution of a nonlinear PDE that is
remarkably stable. One PDE that has such a solution is the Korteweg–deVries
(KdV) equation,

ut + uxxx + 6uux = 0 (−∞ < x < ∞). (1)

(The “six” is of no special significance.) It has been known for a century
that this equation describes water waves along a canal. The soliton was first
observed by J. S. Russell in 1834, who wrote:

I was observing the motion of a boat which was rapidly drawn along a
narrow channel by a pair of horses, when the boat suddenly stopped—not
so the mass of water in the channel which it had put in motion; it ac-
cumulated round the prow of the vessel in a state of violent agitation, then
suddenly leaving it behind, rolled forward with great velocity, assuming
the form of a large solitary elevation, a rounded, smooth and well-defined
heap of water, which continued its course along the channel apparently
without change of form or diminution of speed. I followed it on horseback,
and overtook it still rolling on at a rate of some eight or nine miles an hour,
preserving its original figure some thirty feet long and a foot to a foot and
a half in height. Its height gradually diminished, and after a chase of one
or two miles I lost it in the windings of the channel.

The same equation has also come up in the theory of plasmas and several
other branches of physics.

Associated with equation (1) are the three fundamental quantities

mass =
∫ ∞

−∞
u dx

momentum =
∫ ∞

−∞
u2 dx

energy =
∫ ∞

−∞

(
1

2
u2

x − u3
)

dx,

each of which is a constant of motion (an invariant) (see Exercise 1). In fact,
it has been discovered that there are an infinite number of other invariants
involving higher derivatives.

Let’s look for a traveling wave solution of (1), that is,

u(x, t) = f (x − ct).

We get the ODE − c f ′ + f ′′′ + 6 f f ′ = 0. Integrating it once leads to −cf +
f ′′ + 3 f 2 = a, where a is a constant. Multiplying it by 2 f ′ and integrating
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again leads to

−c f 2 + ( f ′)2 + 2f 3 = 2a f + b, (2)

where b is another constant.
We are looking for a solution that is solitary like Russell’s, meaning that

away from the heap of water, there is no elevation. That is, f (x), f ′(x), and
f ′′(x) should tend to zero as x → ±∞. Then we must have a = b = 0, so that
−cf 2 + ( f ′)2 + 2f 3 = 0. The solution of this first-order ODE is

f (x) = 1
2 c sech2

[
1

2

√
c(x − x0)

]
, (3)

where x0 is the constant of integration and sech is the hyperbolic secant,
sech x = 2/(ex + e−x ) (see Exercise 3). It decays to zero exponentially as
x → ±∞ (see Figure 1).

With this function f, u(x, t) = f (x − ct) is the soliton. It travels to the
right at speed c. Its amplitude is c/2. There is a soliton for every c > 0. It is
tall, thin, and fast if c is large, and is short, fat, and slow if c is small.

The remarkable stability of the soliton, discovered only in the 1960s by
computer experimentation by M. Kruskal and N. Zabusky, can be described
as follows. If we start with two solitons, the faster one will overtake the
slower one and, after a complicated nonlinear interaction, the two solitons
will emerge unscathed as they move to the right, except for a slight delay. In
fact, it was observed from the computer output that every solution of (1), with
any initial function u(x, 0) = φ(x), seems to decompose as t → +∞ into a
finite number of solitons (of various speeds c) plus a dispersive tail which
gradually disappears (see Figure 2).

This kind of behavior is expected for linear problems because each eigen-
function evolves separately as in Section 4.1, but that it could happen for a
nonlinear problem was a complete surprise at the time. This special behavior
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induced physicists to use the soliton as a mathematical model of a stable
elementary particle.

INVERSE SCATTERING

The explanation of soliton stability lies in the inverse scattering analysis,
which shows that the highly nonlinear equation (1) has in fact a close but
complicated relationship with a linear equation! The associated linear equa-
tion is just Schrödinger’s:

−ψxx − uψ = λψ (4)

with the parameter λ and the “potential function” u = u(x, t). In (4), the
time variable t is to be regarded merely as another parameter, so that we are
dealing with a family of potentials that are functions of x depending on the
parameter t.

We know from Section 13.4 that (in general) there are some eigenvalues λ
for (4). That is, there are expected to be solutions of (4) with

∫ ∞
−∞ |ψ |2dx < ∞

and λ is expected to depend on t. If λ(t) is an eigenvalue and ψ(x, t) its eigen-
function that satisfies equation (4), let’s substitute

u = −λ − ψxx

ψ
(5)

into (1) to get

λtψ
2 + (ψhx − ψx h)x = 0, (6)

where

h = ψt − 2(−u + 2λ)ψx − uxψ
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(see Exercise 5). We may normalize so that
∫ ∞
−∞ |ψ |2dx = 1. Integrating (6),

we then get λt = 0, so that λ is a constant. Thus we have found the key
relationship between (1) and (4). If u solves (1) and λ is an eigenvalue of (4),
then λ does not depend on t.

Thus each eigenvalue provides another constant of the motion. Let’s de-
note all the discrete spectrum of (4) by

λN ≤ λN−1 ≤ · · · ≤ λ1 < 0,

where λn = −κ2
n has the eigenfunction ψn(x, t). The limiting behavior

ψn(x, t) ∼ cn(t) e−κn x as x → +∞
can be proven from (4) (see [AS] or [Ne]). The cn(t) are called the normalizing
constants.

As we know, a complete analysis of (4) involves the continuous spectrum
as well. So let λ = k2 > 0 be a fixed positive number. From Section 13.4 we
know that there is a solution of (4) with the asymptotic behavior

ψ(x) ∼ e−ikx + Re+ikx as x → +∞
ψ(x) ∼ Te−ikx as x → −∞.

(7)

Here the reflection coefficient R and the transmission coefficient T may depend
on both k and the “parameter” t.

Theorem 1. ∂T/∂t ≡ 0, ∂ R/∂t = 8ik3R, and dcn/dt = 4κ3
n cn.

It follows immediately from Theorem 1 that

T (k, t) = T (k, 0), R(k, t) = R(k, 0)e8ik3t , cn(t) = cn(0)e4κ3
n t .

Proof. Identity (6) is also true for any λ > 0. But λ is a fixed constant.
So (6) says that ψhx − ψx h depends only on t. So ψhx − ψx h equals its
asymptotic value as x → −∞, which is the sum of several terms. From the
formula for h, the fact that u(x, t) → 0, and from the asymptotic expression (7)
for ψ(x, t), all of these terms cancel (see Exercise 6). Hence ψhx − ψx h ≡ 0.

Furthermore, dividing the last result by ψ2, it follows that the quotient h/ψ
is a function of t only. So h/ψ also equals its asymptotic value as x → +∞.
That is,

h

ψ
= ψt − 2(−u + 2λ)ψx − uxψ

ψ

∼ Rt eikx − 4λ(−ike−ikx + Rikeikx ) − 0

e−ikx + Reikx

= [Rt − 4ikλR]eikx + [4ikλ]e−ikx

Reikx + e−ikx
.
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For this expression to be independent of x, the numerator and denominator
must be linearly dependent as functions of x. Therefore,

Rt − 4ikλR

R
= 4ikλ

1
.

Thus Rt = 8ikλR = 8ik3R, proving the second part of the theorem. The first
and third parts are left for Exercise 8.

SOLUTION OF THE KdV

The scattering theory of the associated Schrödinger equation leads to the reso-
lution of the KdV equation with an initial condition u(x, 0) = φ(x). Schemat-
ically, the method is

φ(x) → scattering data at time 0

→ scattering data at time t

→ u(x, t).

(8)

By the scattering data we mean the reflection and transmission coefficients,
the eigenvalues, and the normalizing constants. The first arrow is the direct
scattering problem, finding the scattering data of a given potential. The second
one is trivial due to the theorem above. The third one is the inverse scattering
problem, finding the potential with given scattering data. The third step is the
difficult one. There is a complicated procedure, the Gelfand–Levitan method,
to carry it out. It turns out that the transmission coefficient T(t) is not needed,
and the required scattering data is just {R, κn, cn}. All three steps in (8) have
unique solutions, leading to the unique solution of (1) with the given initial
condition.

Example 1.

Suppose that we take u(x, 0) to be the initial data of a single soliton,
say u(x, 0) = 2 sech2 x . The unique solution, of course, is u(x, t) =
2 sech2(x − 4t), which is (3) with c = 4. It turns out that in this
case R(k, t) ≡ 0 and there is exactly one negative eigenvalue of the
Schrödinger operator (4) (see Exercise 9). �

All of the cases with vanishing reflection coefficient can be explicitly
computed. If there are N negative eigenvalues of (4), one obtains a complicated
but explicit solution of (1) which as t → ±∞ resolves into N distinct solitons.
This solution is called an N-soliton.

Example 2.

Let φ(x) = 6 sech2x . Then it turns out that R(k, t) ≡ 0, N = 2,
λ1 = −1, and λ2 = −4. The solution of (1) is the 2-soliton, given by
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the formula

u(x, t) = 12[3 + 4 cosh(2x − 8t) + cosh(4x − 64t)]

[3 cosh(x − 28t) + cosh(3x − 36t)]2 .

A movie of it is shown in Figure 3. It looks asymptotically like a pair of
single solitons of amplitudes 8 and 2 which are interacting. There is a
phase shift, which means they are slightly shifted from what they would
have been if they were not interacting. �

There are a number of other “soliton equations,” including the cubic
Schrödinger equation

iut + uxx + |u|2u = 0,

the (ridiculously named) sine-Gordon equation

utt − uxx + sin u = 0,

and the Kadomstev–Petviashvili equation

(ut + uxxx + 6uux )x + 3uyy = 0.

Each such equation arises in a variety of problems in physics. Soliton equations
are, however, very special; almost any change in the nonlinear term will spoil
it. For instance, the equation ut + uxxx + u pux = 0 is a soliton equation only
if p = 2 or 3. For more information, see [AS], [Dd] or [Ne].

EXERCISES

1. Show that the mass, momentum, and energy are constants of motion
(invariants) for the KdV equation by direct differentiation with respect
to time.

2. Show that
∫

(xu − 3tu2) dx is also an invariant.
3. Derive the formula (3) for the soliton.
4. Show that there also exist periodic traveling wave solutions of KdV, as

follows. Let P( f ) = −2 f 3 + c f 2 + 2af + b.
(a) By solving the ODE ( f ′)2 = P( f ), find an implicit formula de-

fining f (x).
(b) Show that each simple zero of P(f ) corresponds to a minimum or

maximum of f (x).
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(c) Show that one can choose a and b in such a way that the cubic
polynomial P( f ) has three real zeros f 1 < f 2 < f 3. Show that
P( f ) > 0 for f 2 < f < f 3 and for f < f 1.

(d) Show that there is a periodic solution f (x) with maxx f (x) = f 3 and
minx f (x) = f 2.

(e) Look up what an elliptic integral is (in [MOS], for instance) and
transform the formula in (a) to an elliptic integral of the first kind.

5. (difficult) Verify the key identity (6).
6. Use the asymptotic formula (7) to prove that ψhx − ψx h ≡ 0.
7. Carry out the following alternative proof that an eigenvalue λ in equation

(4) is independent of t. Differentiate (4) with respect to t, multiply the
result by ψ , integrate over x, integrate by parts, substitute ∂u/∂t from
(1), and simplify the result.

8. Prove the rest of Theorem 1.
9. Consider the single soliton 2 sech2x and its associated eigenvalue prob-

lem ψxx + (2 sech2 x + λ)ψ = 0.
(a) Substitute s = tanh x to convert it to

[(1 − s2)ψ ′]
′ +

(
2 + λ

1 − s2

)
ψ = 0 where ′ = d

ds
.

This is the associated Legendre equation of degree one (see Section
10.6).

(b) Show that a solution that vanishes at x = ±∞ (s = ±1) is λ = −1
and ψ = 1

2

√
1 − s2 = 1

2 sech x . This is the unique bound state of
this Schrödinger equation!

(c) (difficult) By analyzing the solutions of the associated Legen-
dre equation for λ = k2 > 0, show that R(k) ≡ 0 and T (k) =
(ik − 1)/(ik + 1).

10. The linearized KdV equation is ut + uxxx = 0. Solve it by Fourier
transformation with the initial condition u(x, 0) = φ(x), assuming ap-
propriate decay as x → ±∞. Write the answer in terms of the Airy
function

A(ξ ) =
∫ ∞

−∞
eikξ+ik3/3 dk

2π

assuming this integral makes sense.
11. Show that the KdV equation is invariant under the scaling transformation:

x �→ kx, t �→ k3t, u �→ k−2u for any k > 0.
12. Use the idea in Exercise 11 together with the ideas in Section 2.4 to show

that the linearized KdV equation ut + uxxx = 0, u(0) = φ must have a
solution of the form u(x, t) = (k/t1/3)

∫ ∞
−∞ B((x − y)/t1/3) φ(y) dy.
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13. For the cubic Schrödinger equation iut + uxx + |u|2u = 0, show that
Q = ∫ |u|2 dx and 2E = ∫

(u2
x − 1

2 |u|4) dx are constants of motion (in-
dependent of time).

14.3 CALCULUS OF VARIATIONS

Dirichlet’s principle (Section 7.1) is a problem in the calculus of variations.
In general, the calculus of variations is concerned with minimizing or maxi-
mizing a quantity that depends on an arbitrary function. The Dirichlet prin-
ciple asserts that one can find the state of least potential energy among all
the functions in D that satisfy a boundary condition on bdy D. This state is
the harmonic function. A second example we have seen in Section 11.2 is the
computation of the eigenvalues as minima of the energy.

Example 1.

Here is another instance of a minimum. Consider the refraction of light as
it passes through an inhomogeneous medium. The velocity of light c(x)
changes from point to point. Thus |dx/dt | = c(x) so that dt = |dx|/c(x).
Writing x = (x, y) and assuming a light ray travels in the xy plane along
a curve y = u(x), the time required for it to get from x = a to x = b is
therefore

T =
∫ b

a

1

c(x, u)

√
1 +

(
du

dx

)2

dx. (1)

Fermat’s principle states that the path must minimize this time T. In a
homogeneous medium the solution of this minimization problem is of
course the straight line (see Exercise 1). �

Example 2.

Another famous problem is to find the shape of a soap bubble that spans
a wire ring. The shape must be chosen so as to minimize the energy,
and according to the physics of stretched membranes, the energy is
proportional to the surface area. Thus, if we want to find the soap bubble
bounded by a wire ring, we must minimize the surface area subject to
the boundary condition given by the wire ring. The geometry is simplest
when the surface can be written as the graph of a (single-valued) function
z = f (x, y) where (x, y) lies over a plane region D and the wire ring is
a curve {(x, y) ∈ bdy D, z = h(x, y)} lying over bdy D (see Figure 1).
The surface area is

A =
∫∫

D

√
1 + u2

x + u2
y dx dy. (2)

We must minimize A among all functions u(x, y) in the closure D that
satisfy u(x, y) = h(x, y) on bdy D. �
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Example 3.

Sometimes in the calculus of variations one does not minimize or max-
imize but one just looks for a saddle point. For instance, let’s take the
vibrating string (Section 1.3). Physicists define the action as the kinetic
energy minus the potential energy, which in this case is

A[u] =
∫ t2

t1

∫ L

0

[
ρ

(
∂u

∂t

)2

− T

(
∂u

∂x

)2
]

dx dt (3)

and assert that the action is “stationary.” This means that the “derivative”
of A[u] is zero at a solution u. That is, (d/dε)A(u + εv) = 0 at ε = 0.
Explicit differentiation of A(u + εv) with respect to ε leads to∫ t2

t1

∫ L

0

(
ρ

∂u

∂t

∂v

∂t
− T

∂u

∂x

∂v

∂x

)
dx dt = 0

for all functions v(x, t) that vanish on the space-time boundary. We can
integrate by parts to get

−
∫ t2

t1

∫ L

0

(
1

2
ρ

∂2u

∂t2
− 1

2
T

∂2u

∂x2

)(
v

)
dx dt = 0.

Because v is arbitrary inside D, we deduce that

ρ
∂2u

∂t2
− T

∂2u

∂x2
= 0 in D,

which is the wave equation! �

The particular examples above require us to maximize, minimize, or find
the stationary points of a functional of the form

E[u] =
∫ b

a
F(x, u, u′) dx (4)
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or

E[u] =
∫∫

D

F(x, y, u, ux , uy) dx dy. (5)

The basic idea of the calculus of variations is to set the first derivative equal
to zero, just as in ordinary calculus.

Let’s carry this out for the case of (4) assuming that u(x) is specified at
both ends. Let v(x) be any function that vanishes at both ends. We denote
p = u′(x) and F = F(x, u, p). We consider

g(ε) = E[u + εv] =
∫ b

a
F(x, u + εv, u′ + εv′) dx

as a function of the single variable ε. We set its derivative equal to zero at
ε = 0 to get ∫ b

a

(
∂F

∂u
v + ∂F

∂p
v′
)

dx = 0.

Integrating by parts, we get∫ b

a

(
∂F

∂u
− d

dx

∂F

∂p

)(
v

)
dx = 0.

Because v(x) is an arbitrary function on a < x < b, we could choose it to be
the first factor in the integral and therefore we deduce from the first vanishing
theorem in Section A.1 that

∂F

∂u
= d

dx

∂F

∂p
. (6)

That is,

∂F

∂u
(x, u(x), u′(x)) = d

dx

[
∂F

∂p
(x, u(x), u′(x))

]
.

This is the Euler-Lagrange equation for (4), an ODE that must be satisfied by
u(x).

For the two-dimensional problem (5), we denote p = ux , q = uy and
F = F(x, y, u, p, q). The same procedure leads to

0 =
∫∫

D

(
∂F

∂u
v + ∂F

∂p
vx + ∂F

∂q
vy

)
dx dy

=
∫∫

D

(
∂F

∂u
− ∂

∂x

∂F

∂p
− ∂

∂y

∂F

∂q

)(
v

)
dx dy.
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In this case the Euler-Lagrange equation takes the form

∂F

∂u
= ∂

∂x

∂F

∂p
+ ∂

∂y

∂F

∂q
, (7)

a PDE to be satisfied by u(x, y). In equation (7), p = ux (x, y) and q = uy(x, y).
Let’s apply this to the soap bubble problem, Example 2 above. The inte-

grand is F(ux , uy) =
√

1 + u2
x + u2

y , which does not depend on u but only on

its first derivatives. Differentiating F, the Euler-Lagrange equation (7) takes
the form ⎛

⎝ ux√
1 + u2

x + u2
y

⎞
⎠

x

+
⎛
⎝ uy√

1 + u2
x + u2

y

⎞
⎠

y

= 0, (8)

called the minimal surface equation. This PDE is nonlinear but nevertheless
is reminiscent of the Laplace equation. It is an elliptic equation (see Exercise
5). It shares some properties with the Laplace equation but is much harder to
solve. If the minimal surface equation is linearized around the zero solution,
the square root is replaced by 1 and the Laplace equation is obtained.

For more on the calculus of variations, see [Ak] or [Ga].

EXERCISES

1. Use the calculus of variations to prove that the shortest path between
two points is a straight line. (Hint: Minimize the integral (1) where
c(x, u) ≡ 1.)

2. Find the shortest curve in the xy plane that joins the two given points
(0, a) and (1, b) and that has a given area A below it (above the x-axis
and between x = 0 and x = 1); a and b are positive.

3. Prove Snell’s law of reflection: Given two points P and Q on one side
of a plane �, the shortest broken line path from P to a point of � and
thence to Q is the unique path that makes equal angles with �. (You may
use ordinary calculus.)

4. Find the curve y = u(x) that makes the integral
∫ 1

0 (u′2 + xu) dx stationary
subject to the constraints u(0) = 0 and u(1) = 1.

5. (a) Carry out the derivatives in the minimal surface equation (8) to
write it as a second-order equation.

(b) Show that the equation is elliptic in the sense of Section 1.6.
6. Find the minimal surfaces of revolution. (Hint: The area is∫ b

a 2πy
√

1 + y′2dx.)
7. Show that there are an infinite number of functions that minimize
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the integral∫ 2

0
(y′)2(1 + y′)2 dx subject to y(0) = 1 and y(2) = 0.

They are continuous functions with piecewise continuous first deriva-
tives.

8. In the kinetic theory of gases, equilibrium is attained when the entropy
is minimized subject to constant mass, momentum, and energy. Find the
resulting distribution of particles f (v) where v denotes the velocity. Here
entropy = ∫∫∫

f (v) log f (v) dv = H , energy = ∫∫∫
1
2 |v|2 f (v) dv = E ,

mass = ∫∫∫
f (v) dv = 1, and momentum = ∫∫∫

v f (v) dv = 0.
9. Repeat Exercise 8 without the energy constraint.

10. (a) If the action is A[u] = ∫∫
( 1

2 ux ut + u3
x − 1

2 u2
xx ) dx dt , find the

Euler-Lagrange equation.
(b) If v = ux, show that v satisfies the KdV equation.

11. If the action is A[u] = ∫∫
(u2

xx − u2
t ) dx dt , show that the Euler-Lagrange

equation is the beam equation utt + uxxxx = 0, the equation for a stiff
rod.

14.4 BIFURCATION THEORY

A bifurcation means a fork in the road. The road here is a path of solutions
that depend on a parameter. Bifurcation theory means the study of how the
solutions of differential equations depend on parameters and, in particular,
the study of the forks in the road.

Figure 2
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Figure 3

A trivial example is afforded by the eigenvalue problem −u′′ = λu in
[0, π ] with u = 0 at x = 0, π . The solutions are λ = n2 with u(x) = C sin nx
with the arbitrary parameter C. The picture of all the solutions in the λC plane
is therefore drawn schematically in Figure 1. There is a horizontal line (C = 0)
and an infinite number of vertical lines λ = n2, one at each eigenvalue. There
is a “fork” at each eigenvalue on the λ axis.

If nonlinear terms are present, they will distort these lines into curves.
Typically they may look like one of the examples shown in Figure 2. There
can also be secondary (or tertiary, etc.) bifurcations as shown in Figure 3.

Example 1.

A rod is subjected to a compressive load λ and bends as shown in Figure
4. (For instance, it could be a vertical yardstick resting on the ground
with a weight at its upper end.) Let u(x) be the angle of bending. Under
reasonable assumptions about the rod, one can show that

d2u

dx2
+ λ sin u = 0 for 0 ≤ x ≤ l (1)

du

dx
(0) = 0 = du

dx
(l). (2)

Figure 4
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Figure 5

The ODE is nonlinear. The equilibrium state is u ≡ 0. The parameter
is λ.

We can “linearize” it by replacing sin u = u − u3/3! + · · · sim-
ply by u. So the linearized problem is v′′ + λv = 0 with v′(0) = 0 =
v′(l). Its exact solutions are λn = n2π2/ l2 with vn(x) = C cos (nπx/ l)
(n = 0, 1, 2, . . .). A detailed analysis of the nonlinear problem (1)-(2)
shows that each line is distorted to the right as in Figure 5.

This bifurcation diagram can be interpreted as follows. If the load
is small, then λ < π2/ l2 and merely a slight compression of the rod
results. But as the load increases past the value π2/ l2, the rod can buckle
one way or the other (see Figure 6). These are the two branches of the
first “pitchfork” in Figure 5. As the load gets still bigger, λ > 4π2/ l2,
there are two more theoretical possibilities as in Figure 7. Which states
are most likely to occur for large loads? It can be shown that the two
simple buckled states in Figure 6 will almost certainly occur because all
the other states (the trivial state u ≡ 0 as well as the complicated states
as in Figure 7) are unstable. That is, the states in Figure 7 can occur but
a tiny perturbation of them will make them “pop” into one of the stable
states of Figure 6. (With a very heavy load of course, the rod would
break.) �

Example 2.

We now consider the problem

uxx + f (u) = 0 for − l ≤ x ≤ l (3)

u(−l) = 0 = u(l), (4)

Figure 6
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Figure 7

where f (u) = −u(u − a)(u − b). Here 0 < a < 1
2 b (see Figure 8). This

is a model of a reaction-diffusion problem. The nonlinear term represents
a chemical reaction, the unknown u is the concentration of a substance,
and uxx is the diffusion term. The corresponding time-dependent problem
is the nonlinear diffusion equation ut = uxx + f (u).

Rather than being fixed, l is regarded as a parameter. Of course,
there is the trivial solution u ≡ 0. Are there any others? How do they
depend on the parameter? To analyze the problem, we draw the phase
plane picture for the ODE (3), letting v = u′ (see Figure 9). Note that
H (u, v) = 1

2v
2 + F(u), where F ′ = f , is independent of x. We are look-

ing for orbits that satisfy the boundary conditions, which means that the
curves should begin and end on the v axis; that is, we want u = 0 when
x = ±l. At x = −l, the curve passes through a point (0, p). By the sym-
metry (v → −v), the curve will be symmetric with respect to the u axis,
and at x = 0 it will pass through a point (α(p), 0) on the u axis. Thus
H (u, v) = F(α(p)), so that

du

dx
= v =

√
2
√

F(α(p)) − F(u).

Solving this for dx and integrating from x = 0 to x = l, we get

l = 1√
2

∫ α(p)

0

du√
F(α(p)) − F(u)

. (5)

We would like to solve (5) for p if 0 < p < A, where A is defined in
Figure 9. Let’s denote the right side of (5) by β(p) so that (5) takes the
form l = β(p). We can show that the graph of β(p) has a single minimum
β0 in 0 < p < A and that β(p) → ∞ as p → 0 or A (see Figure 10).
Thus if l < β0, there is no solution except the trivial one. If l > β0, there

Figure 8
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Figure 9

are exactly two nontrivial solutions u1(x) and u2(x), which in the phase
plane look like Figure 11. �

Example 3.

Finally, consider the time-dependent reaction-diffusion problem

ut = uxx + f (u) in − l < x < l, u(−l, t) = 0 = u(l, t) (6)

with the same f as in Example 2. Note that the solutions u0 ≡ 0, u1(x),
and u2(x) are stationary solutions of the parabolic PDE (6). It can be
shown (see Section 24D in [Sm]) that u0 ≡ 0 and u2(x) are stable, but that
u1(x) is unstable. This means that if the initial condition u(x, 0) = φ(x)
is near enough to 0 or u2(x), then the solution will always remain nearby
in the future. The opposite is true of u1(x). No matter how near the
function φ(x) is to the function u1(x), the solution of (6) may get away
from u1(x) in the future; it might go to u0 or to u2(x) as t → +∞. �

For further reading on bifurcation, see [Sm] or [IJ].

Figure 10
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Figure 11

EXERCISES

1. (difficult) Derive the bifurcation diagram for Example 1 by integrating the
ODE as explicitly as possible.

2. Show that the curves in the phase plane (Figure 9) must be symmetric
with respect to the u axis.

3. (difficult) Show that in Figure 10 the graph of β(p) has a single minimum
β0 in 0 < p < A and that β(p) → ∞ as p → 0 or A.

4. Show that the solutions of Example 2 look as pictured in Figure 11.

14.5 WATER WAVES

A famous problem in physics is to understand the shapes of water waves, for
instance ocean waves. A water wave can be gentle and regular as in Figure 1,
or it can be turbulent with a very complicated structure like a fractal or a
random pattern. An extreme example of a water wave is a tsunami. A tsunami
is regular in the open ocean but it has a lot of energy and becomes very
turbulent as soon as it nears the shore.

Water can be regarded for practical purposes as an incompressible fluid
without viscosity. In Section 13.2 we derived Euler’s equations for the motion

S

B

z

x

water

air

Figure 1
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of a fluid:

∂ρ

∂t
= −∇ · (ρv),

∂v
∂t

+ (v · ∇)v = F − 1

ρ
∇ p. (1)

Here ρ(x, t) is the density of the fluid, v(x, t) is its velocity, and p(x, t) is its
pressure at the position x. F(x, t) is a force acting on the water particles. We
assume incompressibility, which means that ρ is a constant. We also assume
that the only force is gravity, so that F is the constant vector of magnitude g
pointing downwards. Therefore the basic equations reduce to

∇ · v = 0,
∂v
∂t

+ (v · ∇)v = − 1

ρ
∇ p +

⎛
⎜⎝ 0

0
−g

⎞
⎟⎠ . (2)

We also assume that the air above the water is quiescent. Let P0 be the atmo-
spheric pressure.

We assume the bottom B is flat and the average water depth is d. The
water particles cannot penetrate the bottom, so that v is tangent to B. On the
water surface S, which is unknown, there are two conditions coming from the
physics, assuming that there is no surface tension:

(i) The water particles that start on S remain on S.
(ii) The water pressure from below is equal to the air pressure from above:

p = P0 on S.

UNIDIRECTIONAL WATER WAVES

Now let’s consider waves that move in only one horizontal direction x. They
depend on x and z but are independent of y. Furthermore, there is no motion
in the y direction. Such a wave is called unidirectional. We write

x =

⎛
⎜⎝x

y
z

⎞
⎟⎠, v =

⎛
⎜⎝u

0
w

⎞
⎟⎠ .

Thus the PDEs inside the water reduce to⎧⎨
⎩

ux + wz = 0
ut + uux + wuz = −px

wt + uwx + wwz = −pz − g.

(3)

Let the bottom and the water surface be given by

B = {z = 0}, S = {z = η(x, t)}.
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The boundary conditions are⎧⎨
⎩

w = 0 on B
p = P0 on S
w = ηt + uηx on S.

(4)

The third equation in (4) comes from the consideration that if a water particle
is given by x = x(t), z = z(t) and remains on the surface S, then z = η(x, t)
so that by differentiation, dz/dt = ηt + ηx dx/dt . Since dx/dt = u and
dz/dt = w , we get the third equation in (4). Equations (3) and (4) are an
example of a free boundary problem because the boundary S is one of the
unknowns. Altogether, the unknowns are u, w, p, and η. It’s a big system of
equations. (It would have been even more complicated without the unidirec-
tional assumption.)

Two auxiliary functions are useful to introduce. One is the vorticity ∇ × v.
Because of the unidirectional assumption, its first two components vanish. Its
third component is

ω = wx − uz, (5)

which we call the (scalar) vorticity. A second useful function is the stream
function, defined by

ψx = −w ψz = u. (6)

It exists because of the incompressibility, ux + wz = 0, by basic vector analy-
sis (in a simply connected domain); see the end of Section A.1. It is determined
up to an additive constant. By Exercise 1, ωt + uωx + wωz = 0. Note also
that

ψxx + ψzz = −wx + uz = −ω, (7)

which is the Poisson equation (6.1.1) for ψ .
Let’s now assume the water wave is periodic in the horizontal direc-

tion x:

u(x + L , z, t) = u(x, z, t), w(x + L , z, t) = w(x, z, t),
η(x + L , t) = η(x, t).

The total energy of the wave (within a period) is defined as

E =
∫∫

Dη

{
1

2
(u2 + w2) + gz

}
dz dx (8)

where Dη is the region {0 < z < η(x, t), 0 < x < L} occupied by the water.
By Exercise 2, E is a constant. This is conservation of energy. The mass
(within a period) is

m =
∫∫

Dη

dz dx (9)

because the density ρ = 1.
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Even with these assumptions, the problem (3)-(4) is still very difficult so
we will content ourselves to study only the traveling waves. Ocean waves are
generated by wind and have different speeds, wavelengths, and heights. When
they move far past the influence of the generating winds, they sort themselves
into groups with similar speeds and wavelengths, thereby forming a regular
pattern of wave “trains”. For instance, waves originating from Antarctic storms
have been recorded close to the Alaskan coast. The wave trains are typically
two-dimensional, their motion being identical in any direction parallel to the
crest line, as well as periodic and traveling at a constant speed.

A traveling wave has the form

u = u(x −ct, z), w = w(x −ct, z), p = p(x − ct, z), η = η(x − ct)

where its speed c is a constant. Then wt = −cwx . By Exercise 1,

(u − c)ωx + wωz = 0. (10)

Now we calculate

(u − c)ψx + w(ψz − c) = (u − c)(−w) + w(u − c) = 0.

The last two equations say that the plane vector
(

u − c
w

)
is orthogonal to both

∇ω and ∇(ψ − cz). Because the gradients are normal vectors to the level
curves in the xz plane, the level curves of ω and ψ − cz coincide! Thus one
is a function of the other. Let’s write

ω = γ (ψ − cz). (11)

The function γ is arbitrary. Combining (7) and (11), we have

ψxx + ψzz = −γ (ψ − cz) (12)

in the fluid domain Dη. This is a single scalar PDE for the single unknown ψ .
The equation is elliptic because there are no derivatives in the nonlinear term.

We can completely eliminate t from the problem simply by letting
X = x − ct . Then Dη = {0 < z < η(X ), 0 < X < L} is independent of t.
We can also eliminate c by setting � = ψ − cz. Its derivative along the water
surface S is

d

d X
[�(X, η(X ))] = d

d X
[ψ(X, η(X )) − cη(X )] = ψX + (ψz − c)η′(X )

= ψx + ψzηx + ηt = −w + uηx + ηt = 0.

So � is a constant on the surface! In view of (6), the constant is quite arbitrary,
so we may take its value on S to be 0. With the help of Exercise 3, we then
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have the following reduced problem for the traveling waves.⎧⎪⎪⎨
⎪⎪⎩

�X X + �zz = −γ (�) in Dη

� = 0 on S
1

2
|∇�|2 + gz = a = constant on S

� = b = constant on B.

(13)

This is a scalar PDE with a free boundary, a lot simpler than the original
system (3)-(4) which had more unknowns. The PDE is the Laplace equation
except for the nonlinear term. Of course, it still has the free surface S and a
nonlinear boundary condition on it. For some mathematical analysis on this
problem, see [CS][Js].

WATER WAVES AND KORTEWEG-DE VRIES

Now we shall show how, under appropriate conditions, water waves (not
necessarily traveling or periodic ones) lead to the KdV equation (see Section
14.2). This time we simplify the problem by considering only waves of small
amplitude, for which S does not differ much from the horizontal. Of course,
many realistic waves indeed have relatively small amplitudes. Thus we will
now assume that S = {z = 1 + εη(x, t)}, where ε is a small parameter.

First, the basic equations (3)-(4) for water waves can be rescaled to lead
to the equations ⎧⎨

⎩
ux + wz = 0

ut + ε(uux + wuz) = −px

wt + ε(uwx + wwz) = −ε−1 pz

(14)

in D = {0 < z < 1 + εη (x, t)}, together with the boundary conditions⎧⎨
⎩

w = 0 on B
p = η on S
w = ηt + εuηx on S.

(15)

The system (14)-(15) arises from the weird rescaling

x = x̃, z = δ2 z̃, t = δ−1 t̃, u = δ5ũ, w = δ7w̃,

p = P0 + δ2 − δ2gz̃ + δ6 p̃, η = δ2 + δ6η̃, ε = δ4.

One gets (14)-(15) in the tilde-variables x̃, p̃, and so forth. See Exercise 5. A
detailed explanation of this rescaling is given in [Js].

So far ε has been an arbitrary positive parameter but from now on we
take it to be small. If, as a first really simple approximation, we set ε = 0 in
(14) and (15), then we get p(x, z, t) = η(x, t) and ut = −ηx , from which it
follows that

ηt t = ηxx . (16)
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See Exercise 6. By Section 2.1, η is the sum of a function of x + t and x − t .
Let’s assume η(x, t) = f (x − t). This means we are taking a right-moving
wave.

Therefore for small ε we are motivated to introduce the new variables

ξ = x − t, τ = εt.

Introduction of τ means that we are looking at the behavior of the water wave
at a large time because t = τ/ε will be large if τ is of modest size and ε is
small. Then the system (14)-(15) takes the new form⎧⎨

⎩
uξ + wz = 0

−uξ + ε(uτ + uuξ + wuz) = −pξ

−εwξ + ε2(wτ + uwξ + wwz) = −pz

(17)

in D = {0 < z < 1 + εη(x, t)}, together with the boundary conditions⎧⎨
⎩

w = 0 on B
p = η on S
w = −ηξ + ε(ητ + uηξ ) on S

(18)

where B = {z = 0} is the bottom and S = {z = 1 + εη(x, t)} is the water
surface.

If we now consider small (but nonzero) ε, then we ought to be able to
expand all the functions in Taylor series in powers of ε. If ε is very small, it
is reasonable to take just the first two terms in each series:

u = u0 + εu1, w = w0 + εw1, p = p0 + εp1, η = η0 + εη1. (19)

Of course, this is not the exact solution but merely an approximation to it. We
plug (19) into (17)-(18) and drop all terms of order ε2, thereby obtaining⎧⎨

⎩
u0ξ + εu1ξ + w0z + εw1z = 0

−u0ξ − εu1ξ + ε(u0τ + u0u0ξ + w0u0z) = −p0ξ − εp1ξ

−εw0ξ = −p0z − εp1z.

(20)

For the boundary conditions at {z = 1 + εη}, we have to expand
w(x, 1 + εη) = w + εηwz + O(ε2) and similarly for the other variables.
Therefore⎧⎨
⎩

w0 + εw1 = 0 on {z = 0}
p0 + εη0 p0z + εp1 = η0 + εη1 on {z = 1}

w0 + εη0w0z + εw1 = −η0ξ + ε(−η1ξ + η0τ + u0η0ξ ) on {z = 1}.
(21)

Putting ε = 0, we get

−u0ξ = −p0ξ , p0z = 0, u0ξ + w0z = 0,

w0 = 0 on {z = 0}, p0 = η0 and w0 = −η0ξ on {z = 1}.
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Therefore

p0 = η0 = u0, w0 = −zη0ξ

for all z (assuming that u0 = 0 whenever η0 = 0). Using this result and match-
ing the coefficients of ε in (20)-(21), we get⎧⎨

⎩
u1ξ + w1z = 0

−u1ξ + u0τ + u0u0ξ = −p1ξ

p1z = w0ξ .

(22)

⎧⎨
⎩

w1 = 0 on {z = 0}
p1 = η1 on{z = 1}

w1 + η0w0z = −η1ξ + η0τ + u0η0ξ on {z = 1}.
(23)

Because u0z = p0z = 0 and w0z = −η0ξ , we get p1zz = w0ξ z = w0zξ = −η0ξξ .
Thus p1 = 1

2 (1 − z2)η0ξξ + η1 so that

w1z = u1ξ = −p1ξ − u0τ − u0u0ξ = −η1ξ − 1

2
(1 − z2)η0ξξξ − η0τ − η0η0ξ

and

w1 = −(η1ξ + η0τ + η0η0ξ + 1

2
η0ξξξ )z + 1

6
z3η0ξξξ .

However, the surface condition is now expressed as w1 − η0η0ξ =
−η1ξ + η0τ + η0η0ξ on {z = 1}. Combining the last two equations on {z = 1},
we have

2η0τ + 3η0η0ξ + 1

3
η0ξξξ = 0. (24)

Up to a simple rescaling, (24) is the same as the KdV equation (14.2.1)! This
is the reason that one can see solitons on water surfaces, as Russell did at the
canal.

EXERCISES

1. Use differentiation to show that ωt + uωx + wωz = 0. (Vorticity equa-
tion)

2. Show that E is independent of t (Conservation of energy)
[Hint: Let q = 1

2 u2 + 1
2 w2 + p + gz. Show that (3) can be written as

ut + qx = wω, wt + qz = −uω. Deduce that(
1
2 u2 + 1

2 w2 + gz
)

t
+ (uq)x + (wq)z = 0.

Integrate over z, use the boundary conditions, and then integrate over x.]
3. For a traveling wave, show that 1

2 |∇�|2 + gz is a constant on S.
(Bernoulli’s condition) [Hint: Let Q = 1

2�
2
X + 1

2�
2
z + gz + p + �(�),

where �′ = γ . Use the equations to show that Q is a constant throughout
the fluid. Then deduce Bernoulli’s condition on S.]
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4. Consider the “flat” waves, solutions of (13) that depend on z but not on
X, and for which �z > 0. For these waves the water particles move only
horizontally. Solve the resulting system in terms of an implicit equation.
Show that there is one identity that must hold between the constants a, b,
and the water height d.

5. Show how (14)-(15) follow from (3)-(4) by using the indicated scaling.
[This problem is not difficult but requires plenty of patience!]

6. Give the details of how the wave equation (16) follows from the ε = 0
form of (14)-(15). (Hint: The key observation is that p and therefore ut
are independent of z.)

7. Use a simple rescaling to change (24) into (14.2.1).



APPENDIX

This is a brief guide to some of the concepts used in this book. It is designed to
be used as a reference by the reader. For more details, see a book on advanced
calculus such as [F1].

A.1 CONTINUOUS AND DIFFERENTIABLE FUNCTIONS

We write [b, c] = the closed interval {b ≤ x ≤ c}, (b, c) = the open interval
{b < x < c}, and we define similarly the half-open intervals [b, c) and (b, c].

The key concept in calculus is that of the limit. Let f (x) be a (real) function
of one variable. The function f (x) has the limit L as x approaches a if for any
number ε > 0 (no matter how small) there exists a number δ > 0 such that
0 < |x − a| < δ implies that | f (x) − L| < ε. We write limx→a f (x) = L .
An equivalent definition is in terms of limits of sequences: For any sequence
xn → a it follows that f (xn) → L .

To have a limit, the function has to be defined on both sides of a. But it
doesn’t matter what the function is at x = a itself; it need not even be defined
there. For instance, even though the function f (x) = (sin x)/x is not defined at
x = 0, its limit as x → 0 exists (and equals 1).

We can also define the one-sided limits. The function f (x) has the limit
L from the right as x approaches a if for any number ε > 0 (no matter how
small) there exists a number δ > 0 such that 0 < x − a < δ implies that
| f (x) − L| < ε. The only difference from the ordinary (two-sided) limit is
the removal of the absolute value, which implies that x > a. In this text the
number L is denoted by f (x+).

The limit from the left is defined the same way except that 0 < a − x < δ.
The value of the limit from the left is denoted by f (x−). If both the limits from
the right and from the left exist and if f (x+) = f (x−), then the (ordinary)
limit limx→a f (x) exists and equals f (x+) = f (x−).

The function f (x) is continuous at a point a if the limit of f (x) as x → a
exists and equals f (a). In particular, the function has to be defined at a. For
instance, the function defined by f (x) = (sin x)/x for x �= 0 and f (0) = 1 is

414
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a continuous function at every point. A function is continuous in an interval
b ≤ x ≤ c if it is continuous at each point of that interval. (At the endpoints
only one-sided continuity is defined.) Intuitively, the graph of a continuous
function can be drawn without lifting the pen from the page. Thus the graph
may have corners but not jumps or skips.

Intermediate Value Theorem. If f (x) is continuous in a finite closed in-
terval [a, b], and f (a) < p < f (b), then there exists at least one point c in the
interval such that f (c) = p.

Theorem on the Maximum. If f (x) is continuous in a finite closed interval
[a, b], then it has a maximum in that interval. That is, there is a point m ∈ [a, b]
such that f (x) ≤ f (m) for all x ∈ [a, b]. By applying this theorem to the
function −f (x), it follows that f (x) also has a minimum.

Vanishing Theorem. Let f (x) be a continuous function in a finite closed
interval [a, b]. Assume that f (x) ≥ 0 in the interval and that

∫ b
a f (x) dx = 0.

Then f (x) is identically zero.

Proof. The idea of this theorem is that the graph y = f (x) lies above the
x-axis, but the area under it is zero. We provide a proof here because it is not
a particularly standard fact but it is used repeatedly in this book. Suppose, on
the contrary, that f (c) > 0 for some c ∈ (a, b). Let ε = 1

2 f (c) in the definition
of continuity at c. Thus there exists δ > 0 such that |x − c| < δ implies that
f (x) > 1

2 f (c). Then the region under the graph encloses a rectangle of height
1
2 f (c) and width 2δ, so that∫ b

a
f (x) dx ≥

∫ c+δ

c−δ

f (x) dx ≥ 1
2 f (c) · 2δ = δ f (c) > 0. (1)

This contradicts the assumption. So f (x) = 0 for all a < x < b. It follows from
the continuity that f (a) = f (b) = 0 as well. �

A function is said to have a jump discontinuity (or simply to have a jump)
if both one-sided limits f (x−) and f (x+) exist (as finite numbers) but they are
unequal. The number f (x+) − f (x−) is called the value of the jump. Other
kinds of discontinuities may occur as well.

A function f (x) is called piecewise continuous on a finite closed interval
[a, b] if there are a finite number of points a = a0 ≤ a1 ≤ · · · ≤ an = b such
that f (x) is continuous on each open subinterval (a j−1, a j ) and all the one-
sided limits f (a−

j ) for 1 ≤ j ≤ n and f (a+
j ) for 0 ≤ j ≤ n − 1 exist. Thus

it has jumps at a finite number of points but is otherwise continuous. Every
piecewise continuous function is integrable. See Section 5.4 for examples.

A function f (x) is differentiable at a point a if the limit of [ f (x) − f (a)]/
(x − a) as x → a exists. The value of the limit is denoted by f ′(a) or
(d f/dx)(a). A function is differentiable in an open interval (b, c) if it is
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differentiable at each point a in the interval. It is easy to show that any func-
tion which is differentiable at a point is continuous there.

FUNCTIONS OF TWO OR MORE VARIABLES

Such functions are defined on domains in the space of independent variables.
In this book we often use the vector notation x = (x, y, z) in three dimensions
(and x = (x, y) in the plane). By a domain or region we mean an open set
D (a set without its boundary). An important example of a domain is the
ball {|x − a| < R} of center a and radius R, where | · | denotes the euclidean
distance.

More precisely, a boundary point of any set D (in three-dimensional space)
is a point x for which every ball with center at x intersects both D and the
complement of D. In this book we denote the set of all boundary points of D
by bdy D. A set is open if it contains none of its boundary points. A set is
closed if it contains all of its boundary points. The closure D is the union of
the domain and its boundary: D = D ∪ bdy D.

We will not repeat here the definitions of continuity and (partial) differ-
entiability of functions, which are similar to those for one variable.

First Vanishing Theorem. Let f (x) be a continuous function in D where D
is a bounded domain. Assume that f (x) ≥ 0 in D and that

∫∫∫
D f (x) dx = 0.

Then f (x) is identically zero. (The proof of this theorem is similar to the
one-dimensional case and is left to the reader.)

Second Vanishing Theorem. Let f (x) be a continuous function in D0 such
that

∫∫∫
D f (x) dx = 0 for all subdomains D ⊂ D0. Then f (x) ≡ 0 in D0.

(This theorem is analogous to the theorem in one dimension that a function is
zero if its indefinite integral is.) Proof: Let D be a ball and let its radius shrink
to zero.

A function is said to be of class C1 in a domain D if each of its partial
derivatives of first order exists and is continuous in D. If k is any positive
integer, a function is said to be of class Ck if each of its partial derivatives of
order ≤ k exists and is continuous.

The mixed derivatives are equal: If a function f (x, y) is of class C2, then
fxy = fyx . The same is true for derivatives of any order. Although pathological
examples can be exhibited for which the mixed derivatives are not equal, we
never have to deal with them in this book.

The chain rule deals with functions of functions. For instance, consider
the chain (s, t) �→ (x, y) �→ u. If u is a function of x and y of class C1, while
x and y are differentiable functions of s and t, then

∂u

∂s
= ∂u

∂x

∂x

∂s
+ ∂u

∂y

∂y

∂s
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and
∂u

∂t
= ∂u

∂x

∂x

∂t
+ ∂u

∂y

∂y

∂t
.

The gradient of a function (of three variables) is ∇ f = ( fx , fy, fz). The
directional derivative of f (x) at a point a in the direction of the vector v is

lim
t→0

f (a + tv) − f (a)

t
= v · ∇ f (a).

It follows, for example, that the rate of change of a quantity f (x) seen by a
moving particle x = x(t) is (d/dt)( f (x)) = ∇ f · dx/dt .

VECTOR FIELDS

A vector field assigns a vector to each point. In two variables it is the same as
two scalar functions of two variables, which can be written as x = g(x ′, y′) and
y = h(x ′, y′). It can also be regarded as a “coordinate change” from primed
to unprimed coordinates. The first-order partial derivatives form a matrix

j =

⎛
⎜⎜⎝

∂x

∂x ′
∂y

∂x ′
∂x

∂y′
∂y

∂y′

⎞
⎟⎟⎠,

called the jacobian matrix. The jacobian determinant (or just jacobian) is the
determinant of this matrix, J = det j. In case the functions g and h are linear,
j is just the matrix of the linear transformation (with respect to the coordinate
systems) and J is its determinant.

For example, the transformation from polar to cartesian coordinates
x = r cos θ, y = r sin θ has the jacobian matrix

j =

⎛
⎜⎜⎝

∂x

∂r

∂y

∂r
∂x

∂θ

∂y

∂θ

⎞
⎟⎟⎠ =

(
cos θ sin θ

−r sin θ r cos θ

)
.

The jacobian determinant is J = cos θ · r cos θ + sin θ · r sin θ = r .
Any change of coordinates in a multiple integral involves the jacobian. If

the transformation x = g(x ′, y′) and y = h(x ′, y′) carries the domain D′ onto
the domain D in a one-to-one manner and is of class C1, and if f (x, y) is a
continuous function defined on D, then∫∫

D

f (x, y) dx dy =
∫∫

D′

f (g(x ′, y′), h(x ′, y′)) · |J (x ′, y′)| dx ′ dy′. (2)

The size of the jacobian factor |J | expresses the amount that areas are stretched
or shrunk by the transformation. For example, a change to polar coordinates
gives |J (x ′, y′)| dx ′ dy′ = r dr dθ .
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In three dimensions j is a 3 × 3 matrix and the integrals in the formula
(2) are triple integrals.

If G is a vector field in a simply connected domain in three dimensions,
then ∇ × G = 0 if and only if G = ∇ f for some scalar function f . That is, G
is curl-free if and only if it is a gradient. In two dimensions the same is true
if we define curl G = ∂g2

∂x − ∂g1

∂y , where G = [g1, g2].

A.2 INFINITE SERIES OF FUNCTIONS

Given the infinite series
∑∞

n=1 an , the partial sums are the sums of the first N
terms: SN = ∑N

n=1 an . The infinite series converges if there is a finite number
S such that limN→∞ SN = S. This means that for any number ε > 0 (no
matter how small) there exists an integer n such that N ≥ n implies that
|SN − S| < ε. S is called the sum of the series.

If the series does not converge, we say it diverges. For instance, the series
∞∑

n=1

(−1)n+1 = 1 − 1 + 1 − 1 + · · ·

diverges because its partial sums are 1, 0, 1, 0, 1, 0, 1, . . . , which has no limit.
If the series

∑∞
n=1 an converges, then limn→∞ an = 0. Thus if the nth term

does not converge or its limit is not zero, the series does not converge. This is
the nth term test for divergence. The most famous subtle example is the series∑∞

n=1 1/n, which diverges even though its nth term tends to zero.
If a series has only positive terms, an ≥ 0, then its partial sums SN increase.

In that case either the series converges or the partial sums diverge to +∞.
To every series

∑∞
n=1 an we associate the positive series

∑∞
n=1 |an|. If∑∞

n=1 |an| converges, so does
∑∞

n=1 an . If
∑∞

n=1 |an| converges, we say that∑∞
n=1 an is absolutely convergent. If

∑∞
n=1 an converges but

∑∞
n=1 |an| di-

verges, we say that
∑∞

n=1 an is conditionally convergent. This book is full of
conditionally convergent series.

Comparison Test. If |an| ≤ bn for all n, and if
∑∞

n=1 bn converges, then∑∞
n=1 an converges absolutely. The contrapositive necessarily follows: If∑∞
n=1 |an| diverges, so does

∑∞
n=1 bn . The limit comparison test states that

if an ≥ 0, bn ≥ 0, if limn→∞ an/bn = L where 0 ≤ L < ∞, and if
∑∞

n=1 bn

converges, then so does
∑∞

n=1 an .

SERIES OF FUNCTIONS

Now let’s consider
∑∞

n=1 fn(x), where f n(x) could be any functions. A simple
example is the series

∞∑
n=0

(−1)nx2n = 1 − x2 + x4 − x6 + · · · ,



A.2 INFINITE SERIES OF FUNCTIONS 419

which we recognize as a geometric series with the ratio −x2. It converges
absolutely to the sum (1 + x2)−1 for |x | < 1, but diverges elsewhere. The best
known series are the power series

∑∞
n=1 anxn . They have special convergence

properties, such as convergence in a symmetric interval around 0. However,
most of the series in this book are not power series.

We say that the infinite series
∑∞

n=1 fn(x) converges to f (x) pointwise in
an interval (a, b) if it converges to f (x) (as a series of numbers) for each a <
x < b. That is, for each a < x < b we have∣∣∣∣ f (x) −

N∑
n=1

fn(x)

∣∣∣∣ → 0 as N → ∞. (1)

That is, for each x and for each ε, there exists an integerN such that

N ≥N implies

∣∣∣∣ f (x) −
N∑

n=1

fn(x)

∣∣∣∣ < ε. (2)

It is always expected that N depends on ε (the smaller the ε, the larger the
N), but N can also depend on the point x. For this reason it is difficult to
make general deductions about the sum of a pointwise convergent series, and
a stronger notion of convergence is introduced.

We say that the series converges uniformly to f (x) in [a, b] if

max
a≤x≤b

∣∣∣∣ f (x) −
N∑

n=1

fn(x)

∣∣∣∣ → 0 as N → ∞. (3)

(Note that the endpoints are included.) That is, you take the biggest difference
over all the x’s and then take the limit. It is the same as requiring that (2) is
valid whereN does not depend on x (but still depends on ε, of course).

Comparison Test. If | fn(x)| ≤ cn for all n and for all a ≤ x ≤ b, where
the cn are constants, and if

∑∞
n=1 cn converges, then

∑∞
n=1 fn(x) converges

uniformly in the interval [a, b], as well as absolutely.

Convergence Theorem. If
∑∞

n=1 fn(x) = f (x) uniformly in [a, b] and if
all the functions f n(x) are continuous in [a, b], then the sum f (x) is also
continuous in [a, b] and

∞∑
n=1

∫ b

a
fn(x) dx =

∫ b

a
f (x) dx . (4)

The last statement is called term by term integration.

Term by term differentiation is considerably more delicate.

Convergence of Derivatives. If all the functions f n(x) are differentiable
in [a, b] and if the series

∑∞
n=1 fn(c) converges for some c, and if the series

of derivatives
∑∞

n=1 f ′
n(x) converges uniformly in [a, b], then

∑∞
n=1 fn(x)
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converges uniformly to a function f (x) and

∞∑
n=1

f ′
n(x) = f ′(x). (5)

A third kind of convergence, not mentioned here, plays a central role in
Chapter 5.

A.3 DIFFERENTIATION AND INTEGRATION

DERIVATIVES OF INTEGRALS

We frequently deal with integrals of the general form

I (t) =
∫ b(t)

a(t)
f (x, t) dx . (1)

How are they differentiated?

Theorem 1. Suppose that a and b are constants. If both f (x, t) and ∂ f/∂t
are continuous in the rectangle [a, b] × [c, d], then(

d

dt

)∫ b

a
f (x, t) dx =

∫ b

a

∂ f

∂t
(x, t) dx for t ∈ [c, d]. (2)

The idea of this theorem is simply that

1

�t

[∫ b

a
f (x, t + �t) dx −

∫ b

a
f (x, t) dx

]
=

∫ b

a

f (x, t + �t) − f (x, t)

�t
dx,

from which one passes to the limit as �t → 0.
For the case of integrals on the whole line, we have the following theorem.

Theorem 2. Let f (x, t) and ∂ f/∂t be continuous functions in (−∞, ∞) ×
(c, d). Assume that the integrals

∫ ∞
−∞ | f (x, t)| dx and

∫ ∞
−∞ |∂ f/∂t | dx con-

verge uniformly (as improper integrals) for t ∈ (c, d). Then

d

dt

∫ ∞

−∞
f (x, t) dx =

∫ ∞

−∞

∂ f

∂t
(x, t) dx for t ∈ (c, d).

For the case of variable limits of integration, we have the following corol-
lary.

Theorem 3. If I(t) is defined by (1), where f (x, t) and ∂ f/∂t are continuous
on the rectangle [A, B] × [c, d], where [A, B] contains the union of all the
intervals [a(t), b(t)], and if a(t) and b(t) are differentiable functions on [c, d],
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then

d I

dt
=

∫ b(t)

a(t)

∂ f

∂t
(x, t) dx + f (b(t), t) b′(t) − f (a(t), t) a′(t). (3)

Proof. Let g(t, a, b) = ∫ b
a f (x, t) dx , where t, a, and b are regarded as

three independent variables. Then I (t) = g(t, a(t), b(t)). By the chain rule,
I ′(t) = gt + gaa′(t) + gbb′(t). The first term gt = ∂g/∂t (with constant a
and b) is given by Theorem 1. The other partial derivatives are gb = f (b, t)
and ga = − f (a, t). The identity (3) follows. [There is also an analog of this
theorem for a(t) = −∞ or for b(t) = +∞.] �

For functions of three (or two) variables we have similar theorems. The
analog of Theorem 1 is the following.

Theorem 4. Let D be a fixed three-dimensional bounded domain and let
f (x, t) and its partial derivative (∂ f/∂t)(x, t) be continuous functions for x ∈ D
and t ∈ [c, d]. Then(

d

dt

)∫∫∫
D

f (x, t) dx =
∫∫∫

D

∂ f

∂t
(x, t) dx for t ∈ [c, d]. (4)

We omit the multidimensional analog of Theorem 3, which is not required
in this book.

CURVES AND SURFACES

A curve may be intuitively visualized as the path continuously traced out by a
particle. More precisely, a curve C in space is defined as a continuous function
from an interval [a, b] into space. Thus it is given by a triple of continuous
functions

x = f (t), y = g(t), z = h(t) for a ≤ t ≤ b. (5)

The triple of functions is called a parameterization of the curve. It is really the
image of the functions in x space, which corresponds to our intuitive notion
of a curve. For instance, the two parametrizations

x = cos θ, y = sin θ for 0 ≤ θ ≤ π

and

x = −t, y = √
1 − t2 for −1 ≤ t ≤ 1

represent the same semicircle in the plane (traced counterclockwise). Ev-
ery C1 curve can be given the natural arc length parameter defined by
ds/dt = |dx/dt |.

If the three coordinate functions are of class C1, we say that the curve
C is of class C1. The curve C is piecewise C1 if there is a partition
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a = t0 < t1 < · · · < tn = b such that the coordinate functions are C1 on each
closed subinterval [t j−1, t j ]; at each endpoint tj the functions and their first
derivatives are computed as one-sided limits.

A surface S is defined as a continuous function from a closed set D in a
plane into three-dimensional space. Thus it too is given by a triple of functions

x = f (s, t), y = g(s, t), z = h(s, t) for (s, t) ∈ D. (6)

This triple of functions is a parametrization of S, the variables s and t are
the parameters, and D is the parameter domain. Of course, it is the image of
the functions in three-dimensional space which corresponds to our intuitive
notion of a surface. For example, the unit sphere {|x| = 1} is parameterized
by spherical coordinates:

x = sin θ cos φ, y = sin θ sin φ, z = cos θ for 0 ≤ φ ≤ 2π, 0 ≤ θ ≤ π.

The parameters are φ and θ ; they run over the rectangle [0, 2π ] × [0, π ],
which is the parameter domain D.

A surface may also be given as the graph of a function z = h(x, y) where
the point (x, y) runs over a plane domain D. Thus it is given parametrically
by the equations x = s, y = t, z = h(s, t) for (s, t) ∈ D.

A surface is of class C1 if all three coordinate functions are of class C1.
The union of a finite number of overlapping surface is also considered to be
a surface. A surface is piecewise C1 if it is the union of a finite number of
C1 surfaces that meet along their boundary curves. For instance, the surface
of a cube is piecewise C1, as it consists of six smooth faces. Alternatively, a
surface can be described implicitly, as stated in the following theorem, which
can be proved using the implicit function theorem [F1].

Theorem 5. Let F(x, y, z) be a C1 function of three variables (defined in
some spatial domain) such that its gradient does not vanish (∇F �= 0). Then
the level set {F(x, y, z) = 0} is a C1 surface. That is, local C1 parameteriza-
tions like (6) can be found for it.

INTEGRALS OF DERIVATIVES

In one variable we have the fundamental theorem of calculus. In two variables
we have the following theorem.

Green’s Theorem 6. Let D be a bounded plane domain with a piecewise
C1 boundary curve C = bdy D. Consider C to be parametrized so that it is
traversed once with D on the left. Let p(x, y) and q(x, y) be any C1 functions
defined on D = D ∪ C . Then∫∫

D

(qx − py) dx dy =
∫
C

p dx + q dy. (7)
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The line integral on the right side may also be written as
∫

C (p, q) · t ds,
where t is the unit tangent vector field along the curve and ds is the element
of arc length. If (p, q) is the velocity field of a fluid flow, the line integral is
the circulation of the flow. If, for instance, D is an annulus, then bdy D is a
pair of circles traversed in opposite directions.

A completely equivalent formulation of Green’s theorem is obtained by
substituting p = −g and q = + f . If f = ( f, g) is any C1 vector field in D,
then

∫∫
D( fx + gy) dx dy = ∫

C (−g dx + f dy). If n is the unit outward-
pointing normal vector on C, then n = (+dy/ds, −dx/ds). Hence Green’s
theorem takes the form ∫∫

D

∇ · f dx dy =
∫
C

f · n ds, (8)

where ∇ · f = fx + gy denotes the divergence of f.
In three dimensions we have the divergence theorem, also known as

Gauss’s theorem, which is the natural generalization of (8).

Divergence Theorem 7. Let D be a bounded spatial domain with a piece-
wise C1 boundary surface S. Let n be the unit outward normal vector on S.
Let f(x) be any C1 vector field on D = D ∪ S. Then∫∫∫

D

∇ · f dx =
∫∫

S

f · n d S, (9)

where ∇ · f is the three-dimensional divergence of f and dS is the element of
surface area on S.

For example, let f = (x, y, z) = x i + yj + zk and let D be the ball with
center at the origin and radius a. Then ∇ · f = ∂x/∂x + ∂y/∂y + ∂z/∂z = 3,
so that the left side of (9) equals∫∫∫

D

3 dx dy dz = 3

(
4

3
πa3

)
= 4πa3.

Furthermore, n = x/a on the spherical surface, so that f · n = x · x/a =
a2/a = a and the right side of (9) is

∫∫
S a d S = a(4πa2) = 4πa3.

As a reference for this material, see [MT] or [EP], for instance.

A.4 DIFFERENTIAL EQUATIONS

Existence Theorem for ODEs. Consider the system of ODEs

du
dt

= f(t, u) (1)

together with the initial condition u(a) = b. Let f(t, u) be a vector function of
a scalar variable t and a vector variable u of class C1 in a neighborhood of the
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point (a, b). Here u = (u1, u2, . . . , uN ) and f = ( f1, f2, . . . , fN ). Then there
exists a unique solution u(t) of class C1 for t in some open interval containing
a. That is, there is a unique curve in the (t, u) space that passes through the
point (a, b) and satisfies (1).

REGULAR SINGULAR POINTS

A linear second-order ODE has the form

a(t) u′′ + b(t) u′ + c(t) u = 0. (2)

Its solutions form a two-dimensional vector space. A point where one of the
coefficients is infinite or where a(t) = 0 is called a singular point. Suppose
that the point in question is t = 0. The origin is called a regular singular point
if the quotient b(t)/a(t) behaves no worse than t−1 and the quotient c(t)/a(t)
behaves no worse than t−2 near t = 0. Examples include the Euler equation

u′′ + β

t
u′ + γ

t2
u = 0 (3)

and the Bessel and Legendre equations discussed in Chapter 10.
The main theorem about regular singular points states that near a regular

singular point the solutions of (2) behave roughly like the solutions of the
Euler equation. To be precise, assume that the limits

β = lim
t→0

t
b(t)

a(t)
and γ = lim

t→0
t2 c(t)

a(t)
(4)

exist. Assume furthermore that tb(t)/a(t) and t2c(t)/a(t) are analytic near t =
0; that is, they have convergent power series expansions in powers of t. (For
instance, they could be arbitrary polynomials.)

Let r and s denote the two roots of the quadratic equation

x(x − 1) + βx + γ = 0, (5)

known as the indicial equation. Then the solutions of the simple Euler equation
(3) are Ctr + Dts for arbitrary C and D, except in the case r = s. The exponents
r and s are called the indices.

Theorem.

(a) If r and s do not differ by an integer, then all the solutions of (2) have
the form

Ctr
∞∑

n=0

pntn + Dts
∞∑

n=0

qntn (6)

with arbitrary C and D. (This includes the case that r and s are
complex.)
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(b) If s − r is a nonnegative integer, then the solutions have the form

Ctr
∞∑

n=0

pntn + (Cm log t + D) t s
∞∑

n=0

qntn (7)

for some constant m and with arbitrary constants C and D. In case
r = s, we have m = 1. All these series converge in at least a neigh-
borhood of t = 0.

The same theorem is true in a neighborhood of any other point t0 if the
powers of t are consistently replaced by powers of (t − t0) in (4), (6), and (7).
For examples, see Sections 10.5 and 10.6 of this book, or see [BD].

A.5 THE GAMMA FUNCTION

The logarithm can be defined by an integral. So can the gamma function,
although in a different way. It is

�(x) =
∫ ∞

0
sx−1e−s ds for 0 < x < ∞.

The integral converges because the exponential makes it small as s → ∞. As
s → 0, the factor sx−1 is integrable because x > 0.

The gamma function is a generalization of the factorial. In fact, it has the
following properties.

�(x + 1) = x�(x). (1)

�(n + 1) = n! if n is a positive integer. (2)

�
(

1
2

) = √
π. (3)

To prove (1), we integrate by parts:

�(x + 1) =
∫ ∞

0
sx e−s ds = −sx e−s

∣∣∣∣
∞

0

+
∫ ∞

0
xsx−1e−s ds = 0 + x�(x).

Now �(1) =
∫ ∞

0
e−s ds = 1, so that �(2) = �(1) = 1, and so on, and (2)

follows by induction. Third, substituting s = r2, we have

�(x) = 2
∫ ∞

0
r2x−1e−r2

dr.

When x = 1
2 , �( 1

2 ) = 2
∫ ∞

0
e−r2

dr = √
π from Exercise 2.4.6.

The gamma function on the “half-integers” is given by the formulas

�
(

1
2 + n

) = (2n − 1)(2n − 3) · · · (5)(3)(1) · 2−n√π = (2n)!
√

π

n!22n
(4)
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where n is a nonnegative integer. They are proved by induction using (1) and
(3):

�
(
n + 1

2

) = (2n − 1)2−1�(n − 1
2 ) = (2n − 1)(2n − 3)2−2�(n − 3

2 ) = · · ·
= (2n − 1)(2n − 3) · · · (5)(3)(1) · 2−n�

(
1
2

)
= (2n)!

(2n)(2n − 2) · · · (4)(2)

√
π

2n
= (2n)!

√
π

n!22n
.

Another useful identity is

�(x) = 2x−1

√
π

�
( x

2

)
�

(
x + 1

2

)
, (5)

which can be used to give another derivation of (4).
The formula for the surface area of the sphere {x2

1 + x2
2 + · · · + x2

n = R2}
of radius R in n dimensions is

An = 2πn/2 Rn−1

�(n/2)
. (6)

For instance, A2 = 2π R, A3 = 4π R2, A4 = 2π2 R3, and A5 = (8/3)π2 R4.
The identity (1), �(x) = �(x + 1)/x , can obviously be used to extend

the definition of the gamma function to negative numbers, except for the
negative integers. Indeed, we first use (1) to define �(x) for −1 < x < 0, then
for −2 < x < −1, and so on. It follows from Theorem A.3.2 that �(x) is a
differentiable function for all x except the negative integers.
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ANSWERS AND
HINTS TO SELECTED

EXERCISES

Chapter 1

Section 1.1

2. (a) Linear; (b) nonlinear
3. (a) Order 2, linear inhomogeneous; (c) order 3, nonlinear
5. (a), (d), and (e) are vector spaces.
7. Linearly independent
9. Its dimension is 2, not 3.

10. The three functions e−x , e2x , xe2x

Section 1.2

1. sin(x − 3t/2)
3. u(x, y) = f (y − arctan x) for any function f of one variable.
5. u = f (y/x)
7. (a) ex2−y2

; (b) a sketch of the characteristics shows that the solution is
determined only in the region {x2 ≤ y2}.

8. By either the coordinate method or the geometric method,
u = e−c(ax+by)/(a2+b2) f (bx − ay), where f is arbitrary.

13. u = x + 2y + 5/(y − 2x) + exp[(−2x2 − 3xy + 2y2)/5] f (y − 2x)
where f is arbitrary.

431
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Section 1.3

2. utt = g[(l − x)ux ]x where l is the length of the chain.
3. ut = (κ/cρ)uxx − (μP/cρ A)(u − T0), where P is the perimeter of the

cross section, A is its area, and μ is the conductance across the contact
surface.

4. ut = kuzz + V uz

5. ut = kuxx − V ux

9. 4πa5

Section 1.4

1. Try a simple polynomial in x and t.
4. The hottest point is x = 5l/8.
5. kuz = −V u on z = a
6. (a) u′′

1 = 0 in 0 ≤ x ≤ L1, u′′
2 = 0 in L1 ≤ x ≤ L1 + L2, together with

four boundary and jump conditions. Hence u1(x) = ax + b and
u2(x) = cx + d. Solve for a and b using the four conditions.
(b) u1 = 10x/7 and u2 = 10(2x − 3)/7

Section 1.5

1. Solve the ODE. The solution is unique only if L is not an integer multiple
of π .

2. (a) Take the difference of two solutions and solve the ODE. Not unique.
(b) Integrate the equation from 0 to l. The function f (x) must have zero
average.

5. u = f (e−x y) where f (0) = 1

Section 1.6

1. (a) d = 3, so it’s hyperbolic. (b) parabolic
2. Use the method of Example 2.
5. α = 1, β = −4, γ = 1/

√
3

Chapter 2

Section 2.1

1. ex cosh ct + (1/c) sin x sin ct
3. (l/4 − a)(

√
ρ/T )

4. As in the text, ut + cux = h(x + ct). Let w = u − f (x − ct). Show that
wt + cwx = 0 and then find the form of w.
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6. Let m(t) = maxx u(x, t). Then m(t) = t for 0 ≤ t ≤ a/c, and
m(t) = a/c for t ≥ a/c.

8. (b) u(r, t) = (1/r ) [ f (r + ct) + g(r − ct)]
(c) (1/2r ){(r + ct)φ(r + ct) + (r − ct)φ(r − ct)} +
(1/2cr )

∫ r+ct
r−ct sψ(s) ds

9. 4
5 (ex+t/4 − ex−t ) + x2 + 1

4 t2

11. u = f (3x − t) + g(x − 3t) − 1
16 sin(x + t)

Section 2.2

5. d E/dt = −r
∫

ρu2
t dx ≤ 0

6. (a) (1 − c2β ′2)α f ′′ + c2

(
αβ ′′ + n − 1

r
αβ ′ + 2α′β ′

)
f ′ −

c2

(
α′′ + n − 1

r
α′
)

f = 0

Section 2.3

1. (0, 0) and (1, T)
4. (a) Use the strong maximum principle. (b) Apply the uniqueness theorem

to u(1 − x, t). (c) Use the equation preceding (4).
5. (a) At the point (−1, 1)

Section 2.4

1. 2u(x, t) = e rf{(x + l)/2
√

kt} − e rf{(x − l)/2
√

kt}
3. e3x+9kt

6.
√

π/2
8. The maximum is (4πkt)−1/2 e−δ2/4kt = (1/

√
πδ) se−s2

where
s = δ/

√
4kt . This tends to zero as s → +∞.

9. x2 + 2kt

12. (c) Q(x, t) ∼ 1
2 + x√

4πkt
− 1

3
√

π

(
x√
4kt

)3

17. v(x, t) satisfies the diffusion equation with initial condition φ(x).
18.

u(x, t) =
∫ ∞

−∞
exp

[
− (x − V t − z)2

4kt

]
φ(z)

dz√
4πkt

Section 2.5

1. Take φ ≡ 0 and ψ �= 0.
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Chapter 3

Section 3.1

2. 1 − erf[x/
√

4kt]
3. w(x, t) = (4πkt)−1/2

∫ ∞
0 [e−(x−y)2/4kt + e−(x+y)2/4kt ]φ(y) dy

Section 3.2

2. At t = a/c, it is a truncated triangle. At t = 3a/2c, it has a plateau up to
x = 5a/2 that drops down to zero at x = 7a/2. At t = 3a/c, it has two
plateaus, on [0, a] and on [2a, 4a].

3. f (x + ct) for x > ct ; f (x + ct) − f (ct − x) for x < ct
4. Same as the preceding answer but with a plus sign
5. The singularity is on the line x = 2t.
6. u(x, t) = tV for 0 < ct < x ; and u(x, t) = (at − x)V/(a − c) for

0 < x < ct
9. (a) 4/27; (b) −1/48

Section 3.3

1. u(x, t) = ∫ ∞
0 [S(x − y, t) − S(x + y, t)] φ(y) dy

+ ∫ t
0

∫ ∞
0 [S(x − y, t − s) − S(x + y, t − s)] f (y, s) dy ds

Section 3.4

1. 1
6 xt3

3. (x + 1)t + sin x cos ct + (1/c2) cos x (1 − cos ct)
8. Compute [s(t)ψ]t t = 1

2 c[ψ ′(x + ct) − ψ ′(x − ct)] = c2[s(t)ψ]xx .
9. Differentiating, ∂u/∂t = ∫ t

0 s
′(t − s) f (s) ds + s(0) f (t). The last term

vanishes. Differentiating again, we have

∂2u

∂t2
=

∫ t

0
s

′′(t − s) f (s) ds + s′(0) f (x, t)

=
∫ t

0
c2 ∂2

∂x2
s(t − s) f (s) ds + f (t)

= c2 ∂2

∂x2

∫ t

0
s(t − s) f (s) ds + f (t) = c2 ∂2u

∂x2
+ f (t).

13. u = x for x ≥ ct ; u = x + (t − x/c)2 for 0 ≤ x ≤ ct
14. u ≡ 0 for x ≥ ct ; u = −c

∫ t−x/c
0 k(s) ds for 0 ≤ x ≤ ct
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Chapter 4

Section 4.1

2. (4/π )
∑

n odd (1/n) e−n2π2kt/ l2
sin(nπx/ l)

3.
∑∞

n=1 An sin(nπx/ l) e−in2π2t/ l2

Section 4.2

1. The eigenvalues are
(
n + 1

2

)2
π2/ l2 and the eigenfunctions are

sin[(n + 1
2 )πx/ l] for n = 0, 1, 2, . . . .

Section 4.3

1. Draw the graph of y = tan βl versus y = −β/a. Do the cases a > 0 and
a < 0 separately.

8. (b) Two eigenvalues if la0 + 1 and lal + 1 are negative and their product
is greater than 1. One eigenvalue if (la0 + 1)(lal + 1) < 1. No eigenvalue
if la0 + 1 and lal + 1 are positive and their product is greater than 1.

9. (b) tan β = β; (d) no
12. (b) [sin βl][−sin βl + βl] = (1 − cos βl)2

(e) Some of them are solutions of sin γ = 0 and others of tan γ = γ . The
eigenfunctions are 1 and x for λ = 0; cos (nπx/ l) for n = 2, 4, 6, . . .;
and l

√
λn cos(

√
λnx) − 2 sin(

√
λnx) for n = 3, 5, 7, . . .

(f) u(x, t) = A + Bx + two series
13. λ = β2 where tan βl = k/βc2 and X (x) = sin βx
14. λn = 1 + n2π2, un(x) = x−1sin(nπ log x) for n = 1, 2, 3, . . . .

15. If λ = β2, the equation for β is

ρ1

κ1
cot

βρ1a

κ1
+ ρ2

κ2
cot

βρ2(l − a)

κ2
= 0.

16. λn = (nπ/ l)4, Xn(x) = sin(nπx/ l) for n = 1, 2, 3, . . .

17. λ = β4, where β is a root of the equation cosh βl cos βl = 1. The cor-
responding eigenfunction is

X (x) = (sinh βl − sin βl)(cosh βx − cos βx)
− (cosh βl − cos βl)(sinh βx − sin βx).

18. (c) cosh βl cos βl = −1
(d) β1l = 1.88, β2l = 4.69, β3l = 7.85, . . . . The frequencies are
cβ2

n .
(e) For the bar β2

2/β2
1 = 6.27, while for the string the ratio of the first two

frequencies is β2/β1 = 2. Thus, relative to the fundamental frequency,
the first overtone of the bar is higher than the fifth overtone of the string.
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Chapter 5

Section 5.1

1. π
√

2/4
4. 2/π + (4/π )

∑
even n≥2 (1 − n2)

−1
cos nx . Set x = 0 and x = π /2. The

sums are 1
2 and 1

2 − π/4.
5. (a) l2/6 + 2(l2/π2)

∑∞
n=1 [(−1)n/n2] cos (nπx/ l) (b) π2/12

7. −7π4/720
9. 1

2 t + (sin 2ct cos 2x)/4c
10. En = [4lρV 2/(nπ )2] sin2(nπδ/ l) ∼ 4ρV 2l−1δ2 for fixed even n and

small δ.

Section 5.2

1. (a) Odd, period = 2π/a; (b) neither even nor odd nor periodic
9. Zero

10. (a) If φ(0+) = 0
11. The complex form is

∞∑
n=−∞

(−1)n l + inπ

l2 + n2π2
sinh(l) einπx/ l

14. 1
2 l − (4l/π2)

∑
n odd (1/n2) cos (nπx/ l)

Section 5.3

1. (a) All the multiples of (1, 1, −2). (b) The coefficients are 4
3 ,

5
2 , and − 11

6

2. (b) 3x2 − 1
4. (a) U − (4U/π )

∑∞
n=0 [1/(2n + 1)] e−(n+1/2)2π2kt/ l2

sin[(n + 1
2 )πx/ l]

(c) (4l2/kπ2)|log(επ/4|U |)|
6. 2πni ; yes

10. (b) cos x + cos 2x and cos x − cos 2x
11. (a) The expression equals zero in these cases.

Section 5.4

1. (a) Yes; (b) no; (c) yes
6. cos x on (0, π ), −cos x on (−π, 0), zero at the points x = −π, 0, π

7. (c) Yes; (d) yes; (e) no
12. π2/6
13. π4/90
14. π6/945
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16. a0 = π, a1 = −4/π, b1 = a2 = b2 = 0
19. (b)

∫ b
a X2 dx = [(∂ X/∂x)(∂ X/∂λ) − X (∂2 X/∂λ ∂x)]|ba

(c) Use X (x, λ) = sin(
√

λ x). Evaluate part (b) at λ = (mπ/ l)2.

Section 5.5

4. (d) A = (2/ l2)
∫ l

0 (2l − 3x)φ(x) dx

Section 5.6

1. (a) 1+∑∞
n=0 Ane−(n+1/2)2π2t cos[(n+ 1

2 )πx], An =(−1)n+14(n+ 1
2 )

−3
π−3

(b) 1
4. u = c−2 kx(l − 1

2 x) + series
6. ω = Nπc/ l, where N is any positive integer, provided that g(x) and

sin Nπx/l are not orthogonal.
7. No resonance for any ω

9. (k − h)x + h + ∑∞
n=1 (2/nπ )[(−1)nk − h] cos 3nπ t sin nπx

10. (l − x)−1 ∑∞
n=1 an e−n2π2kt/ l2

sin (nπx/ l)
13. (b) The differencev = u −u satisfies homogeneous BCs. Separate vari-

ables. Show that v is the sum of a series each term of which decays
exponentially as t → +∞.
(c) u(x, t) blows up as r → 0 and ω → mπc/ l, where m is any inte-
ger. If r = 0 and ω = mπc/ l, use the method of (11), (12) to see the
resonance.

Chapter 6

Section 6.1

2. [Aekr + Be−kr ]/r
3. AI0(kr ) + BK0(kr ), where I0 and K0 are associated Bessel functions
4. u = B + (A − B)(1/a − 1/b)−1(1/r − 1/b)
6. (1/4)(r2 − a2) − [(b2 − a2)/4][(log r − log a)/(log b − log a)]
7. (r2 − a2)/6 − ab(a + b)(1/a − 1/r )/6
9. (c) γ = 40

Section 6.2

1. U = 1
2 x2 − 1

2 y2 − ax + by + c for any c
3. [2 sinh(2π )]−1 sinh 2x cos 2y + x/2π
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Section 6.3

1. (a) 4; (b) 1
2. 1 + (3r/a) sin θ

3. 3
4 (r/a) sin θ − 1

4 (r/a)3 sin 3θ

Section 6.4

1. 1 + (3a/r ) sin θ

5. (b) u = 1
2 (1 − log r/log 2) + [(1/30)r2 − (8/15)(1/r2)] cos 2θ

8. a A log(r/b) + B
10. The first two terms are (2r2/πa) sin 2θ + (2r6/9 πa5) sin 6θ .

Chapter 7

Section 7.1

8. (∇ w0, ∇ w1) = +0.45, (∇ w1, ∇ w1) = 1.50, c1 = −0.30
9. c1 = −0.248, c2 = −0.008

10. c1 = 1
2

Section 7.4

1.
G(x) =

{
x0(l − x)/ l for 0 ≤ x0 ≤ x ≤ l

x(l − x0)/ l for 0 ≤ x ≤ x0 ≤ l

6. (b)
∫ ∞
−∞ y[y2 + (ξ − x)2]

−1
h(ξ ) dξ/π

7. (a) f (s) = A tan−1s + B. (b) Use the chain rule. (d) h(x) = 1
2π A + B

for x > 0, − 1
2π A + B for x < 0

8. (b) 1
2 + π−1 tan−1((x − a)/y)

(c) 1
2 (c0 + cn) + π−1 ∑n

j=1 (c j−1 − c j )θ j , where θ j is the angle between
the y axis and the vector from (a j , 0) to (x, y).

12. −1/(4π |x − x0|) + |x∗|/(4πa|x − x∗
0|) for |x| > a and |x0| > a

13. A sum of four terms involving the distances of x to x0, x∗
0, x#

0 and x∗#
0 ,

where ∗ denotes reflection across the sphere and # denotes reflection
across the plane z = 0

14. There are 16 terms, similar to those in Exercise 13. (Written in terms of
the Green’s function for the whole ball, there are eight terms.)

15. (a) Use the chain rule. (b) In polar coordinates the transformation takes
the simple form (r, θ ) �→ (r2, 2θ ).

16. 1
2 (A + B) + [(A − B)/π ] arctan [(x2 − y2)/2xy]
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17. (b)∫ ∞

0
xg(η)

[
1

(y − η)2 + x2
− 1

(y + η)2 + x2

]
dη

π
+ term with h

22. C + ∫ ∞
−∞ h(x − ξ ) log(y2 + ξ 2) dξ

24. u(x0, y0, z0) = C +∫∫
h(x, y) [(x − x0)2 + (y − y0)2+ z2

0]
−1/2

dx dy/2π

Chapter 8

Section 8.1

1. (a) O((�x)2); (b) O(�x)
3.

(
2
3 u j+1 − 2

3 u j−1 − 1
12 u j+2 + 1

12 u j−2
)
/�x , using the Taylor expansion

Section 8.2

1. (a) u4
1 = u4

3 = 99
64 , u4

2 = 35
16

2. A wild result (unstable). Negative values begin at the third time step.
3. (a) 29

64 = 0.453; (b) 0.413
4. u4

j = 16, 14, 16, 71
4 , 14, 29

4 , 4, 29
4 (from j = −1 to j = 6)

5. u(3, 3) = 10
8. (c) u1

j = 0, 9
77 ,

3
11 , − 37

77 ,
3

11 ,
9

77 , 0 (from j = 0 to j = 6)

10. (a) Explicit; (b) ξ = −p ±
√

p2 + 1, where p = 2s(1 − cos(k �x)).
One of these roots is always < −1.

11. (b) ξ = 1 − 2as[1 − cos(k �x)] + b �t . So the stability condition is
s ≤ 1/2a.

12. (a) 79.15; (b) 0.31
13. (a) un+1

j = [2s/(1 + 2s)](un
j+1 + un

j−1) + [(1 − 2s)/(1 + 2s)]un−1
j

(b) (1 + 2s)ξ 2 − 4sξ cos(k �x) + 2s − 1 = 0. The roots ξ may be real
or complex but in either case |ξ | ≤ 1.

14. (b) s1 + s2 ≤ 1
2

Section 8.3

2. (a) u2
j = 0, 0, 0, 4, 2, −4, 2, 4, 0, 0, 0

u3
j = 0, 0, 16, −16, −13, 38, −13, −16, 16, 0, 0

(b) u3
j = 0, 0, 1, 2, 2, 2, 2, 2, 1, 0, 0

(c) Case (a) is unstable, while case (b) is stable.
3. (b) u = x2 + t2 + t
5. u3

j = u9
j = 2, 1, 0, 0, 0, 1, 2. Reflection of the maximum value (= 2)

occurs at both ends at the time steps n = 3, 9, 15, . . . , as it should.
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7. The middle value at t = 4 is 35.
11. (b) (un+1

j − un
j )/�t + a(un

j+1 − un
j−1)/2 �x = 0

(c) Calculate ξ = 1 − 2ias sin(k�x), so that |ξ | > 1 for almost all k;
therefore, always unstable.

Section 8.4

2. At n = 6, the interior values are 63
32 ,

111
16 , 15

16 ,
63
32 .

3. At n = 4, one of the values is 447/64 = 6.98.
4. 0, 48, 0, 0; 0, 16, 11, 24; 0, 5, 4, 0; 0, 0, 0, 0
5. From top to bottom the rows are 0, 0, 0, 0; 0, 4, 5, 0; 0, 11, 16, 0;

0, 24, 48, 0.
6. (d) The exact value is −0.0737
7. The values at the center are (a) 7

16 and (b) 5
16 , while the exact value is 1

4 .
The exact solution is u(x, y) = xy.

9. Using the starting values u(0)
j,k = 0 at the nonghost points and appropriate

values at the ghost points so as to satisfy the BCs, compute u(1)
3,2 ∼ −0.219

and u(2)
3,2 ∼ −0.243. The exact value at that point is u(1, 2

3 ) = −0.278.

Section 8.5

1. 1
3

2. (a) A = 1
2 |x2 y3 − x3 y2 + x3 y1 − x1 y3 + x1 y2 − x2 y1|

(b) v(x, y) = |x2 y3 − x3 y2 + (y2 − y3)x − (x2 − x3)y|/2A

Chapter 9

Section 9.1

1. Either |k| = 1 or u = a + b(k · x − ct), where a and b are constants.

Section 9.2

3. ty
6. (a) (π R/r )(ρ2 − (r − R)2) if |ρ − R| ≤ r ≤ ρ + R, where r = |x|.

(b)

u(x, t) =
⎧⎨
⎩

At for r ≤ ρ − ct

A
ρ2 − (r − ct)2

4cr
for |ρ − ct | ≤ r ≤ ρ + ct

and u(x, t) = 0 elsewhere. Notice that this solution is continuous.
(e) The limit is [A/4c2][ρ2 − (x0 · v)2/c2].



CHAPTER 10 441

7. (a) u(x, t) = A for r < ρ − ct, u(x, t) = A(r − ct)/2r for |ρ − ct | <
r < ρ + ct , and u(x, t) = 0 for r > ρ + ct .
(c) The limit is Ax0 · v/2c2.

11. u = [ f (r + ct) + g(r − ct)]/r
12.

u =
⎧⎨
⎩

− 1

4πr
g
(

t − r

c

)
for t ≥ r

c
0 for 0 ≤ t ≤ r

c
16. (b) u(0, t) = At for t ≤ ρ/c, and u(0, t) = A[t − (t2 − ρ2/c2)

1
2 ] for

t ≥ ρ/c.
17. Aρ2/2c2

Section 9.3

7. u = 1
2 At2 for r < ρ − ct ; u ≡ 0 for r > ρ + ct ; u = cubic expressions

for ct − ρ < r < ct + ρ and for r < ct − ρ.
9. u(r, t) = ∫ t

0

∫ r+ct−cτ
|r−ct+cτ| f (s, τ ) s ds dτ/2cr

Section 9.4

1. xy2z + 2ktxz

Chapter 10

Section 10.1

2.

u = 64a2b2

π6

∑
m,n odd

1

m3n3
sin

mπx

a
sin

nπy

b
cos

[
πct

(
m2

a2
+ n2

b2

)1/2
]

3. −∞ < γ ≤ 3kπ2/a2

4. (c) λmn ∼ n2π2 + (m + 1
2 )

2
π2 for large m, n

5. (a) 2; (d) 4; (e) ∞

Section 10.2

2. u = ∑∞
n=1 Ancos(βnct/a)J0(βnr/a), where J0(βn) = 0, the An are given

by explicit integrals, and βn = a
√

λ0n.
4. u = Ae−iωt J0(ωr/c), where A is any constant.
5. u = B + 2B

∑∞
n=1 [βn J1(βn)]−1e−β2

n kt/a J0(βnr/a), where J0(βn) = 0.
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Section 10.3

4. Separating u = w(r, t) cos θ , we have

w(r, t) =
∞∑

n=1

An cos
βnct

a

1√
r

J3/2

(
βnr

a

)

where the βn are the roots of β J ′
3/2(β) = 1

2 J3/2(β) and

An =
∫ a

0

r5/2 J3/2(βnr/a) dr
1
2a2

(
1 − 2/β2

n

)
J 2

3/2(βn)

5. u = B +2(a/π )(C − B)
∑∞

n=1 [(−1)n+1/n] e−n2π2kt/a2
(1/r ) sin(nπr/a)

6. t � k−1 log
(

16
5

) � 193.9 sec

7. (a) C + (B/a)
(
3kt − 3

10a2 + 1
2r2

)
(b) −2Ba2 � e−γ 2

n kt/a2
sin(γnr/a)(rγ 3

n cos γn)
−1

where tan γn = γn

9. u(r, t) = ∑∞
n=1 Ane−n2π2kt/a2

(1/r ) sin(nπr/a), where

An = (2/a)
∫ a

0 rφ(r ) sin(nπr/a) dr .

10. u = C + (a3/2r2) cos θ

11. The solution u(r, θ, φ) is independent of φ and odd in θ . Separating
variables, we find rα Pl(cos θ ), where α = l or −l − 1. We exclude the
negative root. So the solution is u(r, θ, φ) = ∑

l odd Alrl Pl(cos θ ). The
coefficients are found from the expansion of f (a cos θ ) in the odd
Legendre polynomials.

Section 10.5

2. J3/2(z) = √
2/π z (sin z/z − cos z)

J−3/2(z) = √
2/π z (−cos z/z − sin z)

7. Show that v satisfies Bessel’s equation of order 1.
14. u(r ) = J0(ikr )/J0(ika)

15. u(r ) = H+
0 (ikr )/H+

0 (ika)

16. u(r ) = √
a/r (J1/2(ikr )/J1/2(ika)) = a sinh kr/(r sinh ka)

17. u(r ) = √
a/r H+

1/2(ikr )/H+
1/2(ika) = ae−kr/(re−ka)

18. The eigenvalues are λ = β2, where β J ′
n(aβ) + h Jn(aβ) = 0. The eigen-

functions are Jn(βr )e±inθ , where β is a root of this equation.
19. v(r, θ ) = {Jn(βr )Nn(βa) − Jn(βa)Nn(βr )}e±inθ , where λ = β2 and β

are the roots of Jn(βb)Nn(βa) = Jn(βa)Nn(βb).
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Section 10.6

5. a0 = 1
4 , a1 = 1

2 , a2 = 5
16 , al = 0 for l odd ≥ 3, and

a2n = (−1)n+1 (4n + 1)(2n − 3)!

4n(n − 2)!(n + 1)!
for n ≥ 2.

6. u = 1
3 + (2r2/3a2)P2(cos θ )

7.

u = 1

2
(A + B) + 1

2
(A − B)

∑
l odd

(−1)(l−1)/2(2l + 1)(l − 2)!!

(l + 1)!!

( r

a

)l
Pl(cos θ)

where m!! = m(m − 2)(m − 4) · · ·
8. Same as (10.3.22) except that l is not necessarily an integer, and Pm

l (s) is
a nonpolynomial solution of Legendre’s equation with Pm

l (1) finite. The
equation Pm

l (cos α) = 0 determines the sequence of l’s, and (10.3.18)
determines λl .

Section 10.7

3. (b) (2 − r )e−r/2, r cos θ e−r/2, r sin θ e±iφe−r/2

Chapter 11

Section 11.1

3. (b) Because w(1) = 0, limx→1 w(x)/(x − 1) is finite; similarly as x → 0.
Use this to prove part (b).

Section 11.2

1. A has the entries 1
3 ,

1
6 ,

1
6 ,

2
15 . B has the entries 1

30 ,
1

60 ,
1

60 ,
1

105 . Hence
λ1 ∼ 10 and λ2 ∼ 42.

2. λ1 ∼ 10 and λ2 ∼ 48
3.

∫∫ |∇w |2 dx dy = π8/45,
∫∫

w2 dx dy = π10/900, Q = 20/π2 = 2.03,
λ1 = 2

4. (a) Q = 10, λ1 = π2 ∼ 9.87
6. (a) A has the entries 4

3 ,
3
2 ,

3
2 ,

9
5 . B has the entries 8

15 ,
7

12 ,
7

12 ,
9

14 .
(b) 2.47 and 23.6 (c) λ1 = π2/4 = 2.47 and λ2 = 9π2/4 = 22.2

7. (a) The square of the first zero of the Bessel function J0, which is 5.76

Section 11.3

1. Multiply the PDE by the eigenfunction and integrate.
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Section 11.4

1. (a) (nπ/log b)2, sin(nπ log x/log b)
4. u(x, y) = ∑∞

n=1 Anx−1 sin nπx cosh nπy, where
An = 2 sech(nπ )

∫ 2
1 sin nπx f (x)x dx .

5. The eigenvalues are the roots of J0(
√

λnl) = 0.

Section 11.6

5. Using rectangles, 5π2/16 < λ1 < 9π2/16 and π2

2 < λ2 < π2.

Chapter 12

Section 12.2

2. u(x, t) = V/2c for |x − x0| < ct , and u = 0 elsewhere.
3. u(x, t) = V/2c in a certain region with corners at (x0, 0) and (0, x0/c),

and u = 0 elsewhere.
5. u = f (t − r/c)/4πc2r in r < ct , and u = 0 in r > ct.

10. H (t − r/c)(2πc)−1
∫ t−r/c

0 [c2(t − τ )2 − r2]
−1/2

f (τ ) dτ

Section 12.4

1. (4πkt)−1/2
∫ ∞
−∞ φ(y)e−(μt+x−y)2/4κt dy

3. e−mr/4πr
5. (c) u = 2π z(r2 + z2)−3/2

6. u(x, y) = ∫ ∞
0

∫ ∞
−∞ [π sinh(k)]−1 f (ξ ) sinh (ky) cos(kx − kξ ) dξ dk

Section 12.5

3. 1 − cos t
5. [cos(cπ t/ l) − (l/cπ ) sin(cπ t/ l)] sin(πx/ l)
7. 1 + e−4π2kt/ lcos(2πx/ l)

Chapter 13

Section 13.3

2. Write the solution as in (2) with c1 = c2 = 1. Then u(x, t) =
f (x − t) + G(x + t) for x < 0, and u = H (x − t) for 0 < x < t , and
u = 0 for x > t. The jump conditions lead to the fourth-order ODE
G ′′′′ +2G ′′′ + 2G ′′ + 2G ′ + G =− f ′′′′(−t) − 2 f ′′(−t) − f (−t),
which can be solved.
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7. −eikr+/4πr+ + eikr−/4πr−, where r± = [x2 + y2 + (z ∓ a)2]
1/2

. The re-
flected wave is the second term.

Section 13.4

1. Let β = √
λ + Q. Then β satisfies 0 < β <

√
Q and tan β =

−β + Q/β. This equation can be graphed as in Section 4.3 to obtain
a finite number of eigenvalues depending on the depth.

2. λ = −Q2/4 is the only eigenvalue and ψ(x) = e−Q|x |/2 is the eigenfunc-
tion.

Section 13.5

9. (2c)−1e−t/2 J0[(i/2c)
√

c2t2 − x2] H (c2t2 − x2)
10. J0(2

√
xy) for (x, y) ∈ Q

Chapter 14

Section 14.1

2. u = [x/(t + 1)]5

3. u = x/(1 + t)
5. [(4t x + 8t + 1)1/2 − 1]/2t
7. u = −t + √

t2 + x2 for x > 0, u = −t − √
t2 + x2 for x < 0.

9. ∂z/∂t =−a(φ(z))/[1+ ta′(φ(z))φ′(z)], ∂z/∂x = 1/[1+ ta′(φ(z))φ′(z)],
∂u/∂t = φ′(z)∂z/∂t, ∂u/∂x = φ′(z)∂z/∂x, etc.

10. u = (1 − x)/(1 − t) in the triangle bounded by t = 0, t = x , and x = 1.
Elsewhere, u = 0 or 1. The shock begins at t = 1 and proceeds along
the line x − 1 = 1

2 (t − 1).
12. (x + t + 1

2 t2)/(1 + t)

Section 14.2

4. (a) ± ∫ f
f2

[P(y)]−1/2 dy = x − x2

10. u(x, t) = (3t)−1/3
∫ ∞
−∞ A[(x − y)/(3t)1/3]φ(y) dy

Section 14.3

2. A circular arc. Minimize
∫ 1

0

√
1 + u′2 dx + m

∫ 1
0 u dx , where m is a

Lagrange multiplier.
4. y = (x3 + 11x)/12
8. (k/π )3/2e−k|v|2 , where k = 3/(4E). This is known as the Maxwellian.
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A

Absolute convergence, 418
Absorption, 24, 93, 96
Acoustic impedance, 23
Acoustics, 22–23, 364
Action, 398
Adiabatic fluid flow, 363
Air resistance, 13, 89, 151
Airy function, 396
Ampère’s law, 359
Amplification factor, 207
Analytic function, 153
Angular momentum, 294–297
Annulus, 174–175
Antidiffusion, 26, 55
Arbitrary function, 4, 34
Arc length, 421
Associated Legendre function,

292–293
Attenuation, 42
Auxiliary conditions, 9, 20, 26

B

Backward difference, 200
Band-limited function, 348
BC. See Boundary condition
Bernoulli’s Law, 365, 412
Bessel function, 267, 282ff.

asymptotic behavior, 283
differential equation, 282
generating function, 288
half-integer order, 284
integer order, 267, 285
in Klein-Gordon equation, 378
normalizing constants, 284
recursion relations, 284
zeros, 268, 283

Bessel’s differential equation, 266, 282
Hankel function, 285, 368
Neumann function, 285
order, 282
and scattering, 368
solid vibrations in a ball, 270
solution of, 266, 283–285
vibrations of a drumhead, 264

Bessel’s inequality, 133
Bicharacteristic line, 243
Bifurcation, 401
Bilinear elements, 224
Bohr, 18, 256
Boundary, 386
Boundary condition, 20, 21

free, 310
homogeneous, 21
at infinity, 24, 174, 191, 254, 288, 317
inhomogeneous, 147–151, 161, 276, 355

expansion method, 147–150
Laplace transform method, 355
method of shifting the data, 149

mixed, 91
periodic, 92, 115, 265
radiation, 24
Robin, 92ff.
symmetric, 119, 185, 260, 315

Boundary point, 416
Bound state, 254, 371
Breaking wave, 385
Brownian motion, 16, 51, 153
Buckled state, 403

C

Calculus of variations, 397
Canal, water wave in, 390
Cauchy-Riemann equations, 153, 160
Causality, 40, 72, 214, 230, 233

446
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Centered difference, 200
Centered second difference, 200
C2 function, 36, 416
Chain, flexible, 19
Chain rule, 4, 7, 416
Chaos, 26, 55
Characteristic cone, 228
Characteristic coordinates, 34, 73
Characteristic curve, 8, 10, 380ff.
Characteristic lines, 6, 10, 34, 39, 54

finite interval, 64
half-line, 62

Characteristic surface, 242, 244
Characteristic triangle, 39, 71
Characteristic vector, 243
Charge density, 359
Chemical reaction, 404
Chemistry, 18
Chinese bells, 281
Class Ck, 416
Closed interval, 414
Closed set, 416
Closure, 416
Coefficient matrix, 30
Comparison test, 418, 419
Completeness, 136–142, 262, 311,

318ff.
and continuous spectrum, 257, 371
continuous version, 344
and Gibbs phenomenon, 142

Complex eigenvalues, 88, 121
Complex exponential, 88, 116
Complex integration, 354
Compressive load, 402
Concentration, 10, 15, 51

gradient, 22
Conditional convergence, 418
Conditions at infinity, 24, 174, 191, 254,

294, 317
Conservation

of energy, 40, 101, 230, 390
of mass, 10, 362, 390
of momentum, 362, 390

Constant coefficient equation, 3, 6–7
Constant of motion, 390
Continuity equation, 361, 362
Continuous function, 414–415
Continuous spectrum, 257, 370, 371
Convection, 54, 352
Convergence

of distributions, 333
of Fourier series, 128ff., 136ff.
of functions, 125–127, 419
of infinite series, 418
mean-square, 126

pointwise, 125, 419
uniform, 126, 419

Convolution, 80, 347
Coordinate

change, 417
method, 7, 34, 73

Coulomb’s law, 359
Covariant derivatives, 375
Crank–Nicolson scheme, 208–209
Curl, 358, 365, 418
Current density, 359
Curve, 421

D

D’Alembert, 36, 87
Delay, 42
Delta function, 331

approximate, 331
derivatives of, 334
Fourier transform of, 345

DeMoivre formulas, 115
Derivatives of integrals, 420–421
Diamond-shaped regions, 65
Difference equation, 201
Differentiable function, 415
Diffraction problem, 366
Diffusion, 14, 19, 22, 90, 404

on the half-line, 57–61
inequality, 43
kernel, 50
with a source, 67–71
on the whole line, 46–52

Diffusion equation, 15, 22, 26, 42ff., 87
backwards, 26, 55
ball, 274
boundary source, 70, 147–151, 356
Crank–Nicolson scheme, 208–209
cube, 262
finite differences, 199ff.
finite elements, 225
finite interval, 87, 90
half-line, 57–61
half-space, 253
inhomogeneous, 67, 339

half-line, 70
initial condition, 46–54, 80, 87, 248
one-dimensional, 42ff.
stability, 45
three dimensional, 15, 248ff., 258, 274
uniqueness, 44

Dilated function, 47
Dimension, 5, 13–14

best possible, 41, 239–240
of vector spaces, 264

Dirac’s equation, 374
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Directional derivative, 6, 8, 21, 417
Dirichlet condition, 20, 57, 84
Dirichlet kernel, 137, 331, 334
Dirichlet principle, 182, 300, 397
Dirichlet problem

in an annulus, 174
in a ball, 193
in a circle, 165
on a half-line, 57, 61
uniqueness, 155, 182

Discrete energy, 218
Discrete spectrum, 371
Discriminant, d, 29
Dispersive tail, 391
Dispersive wave, 2, 390–396
Dissipative wave equation, 13, 379
Distribution, 332, 335, 386

convergence, 333
derivative, 334
in three dimensions, 336

Div, ∇, 178, 423
Divergence theorem, 19, 423
Domain, 20, 416

conditions at infinity, 24
Domain of dependence, 39, 63, 72, 214,

233, 247
Domain of influence, 39, 233
Drumhead, 264, 316
Duhamel’s formula, 246
Duhamel’s principle, 78

E

Echoes, 41
Eggs Fourier, 277
Eigenfunction, 88, 90, 99, 120, 259

expansion, 98–99, 125, 259
nodes, 278–282
of the spherical surface, 274

Eigenvalue, 88, 90, 93, 125
asymptotics, 322ff.
complex, 88, 121
computation, 304ff.
dependence on domain, 325–326
domain of arbitrary shape, 299
double, 260
minima of potential energy, 299ff.
minimum principle, 301
negative, 88, 96–98, 122
positive, 93–96, 261
zero, 90, 96, 98

Eigenvalue equation, 93, 97
Eikonal equation, 245
Elastic force, 12
Electric potential, 153, 190
Electromagnetic field, 22, 40, 358

Electron, 17, 254, 374
Electrostatics

electric potential, 190, 197
Laplace’s equation, 153
Poisson’s formula, 168

Elementary particles, 373
Elliptic integral, 396
Elliptic PDE, 30, 31

inhomogeneous, 318
Energy, 40, 101, 112, 136, 182, 230, 390, 408

action defined as, 398
discrete, 218
KdV equation, 390
levels, 18, 253, 254, 256
lowest, 182, 301
method, 44, 182
Yang-Mills equations, 375

Entropy, 389, 401
criterion, 389

Enumeration function, 322
Equation

fourth-order, 102
inhomogeneous elliptic, 318
of motion, 363
second order, 28–31
of state, 363

Equilibrium, 16, 25, 150
Error

function erf, 51
truncation, round off, 201

Euler, 87
differential equation, 166, 424
equation of fluids, 363, 407

Euler–Lagrange equation, 399
Even extension, 59, 115, 117
Even function, 59, 114
Existence, 25–26
Expansion in eigenfunctions, method of,

147–149, 318
Expansive wave, 385
Expected value of observable, 18, 346
Explicit scheme, 203
Exponential, transform of, 345
Extended function, 63, 113
External force, 13, 26, 71
External source, 15, 67

F

Factorial, 425
Faraday’s law, 359
Fermat’s principle, 397
Fick’s law, 15, 22, 24
Finite differences, 199

stability criterion, 206, 209, 213
Finite element method, 222, 308
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First order linear equation, 6–9
finite differences, 218

First vanishing theorem, 416
Flatland, 41, 239
Flea, 38
Fluid, 10, 153, 362, 390
Forward difference, 200
Four-dimensional divergence theorem, 231
Fourier coefficients, 104–107, 116, 120,

261
Fourier cosine series, 90

and boundary conditions, 115
coefficients in, 106

Fourier integral, 344, 371
Fourier series, 86, 104ff., 125

and boundary conditions, 115
change of scale, 117
coefficients in, 104–107
completeness, 133, 136, 262, 311, 318,

320
complex form, 115–116
differentiation, 130, 135, 335
divergent, 125
double, 164, 268
error, 132
full, 107, 115
general, 261
integration, 135
jump discontinuity, 128, 139–144
mean-square convergence, 128
of odd and even functions, 117
partial sums, 137
pointwise convergence, 129, 136, 146
triple, 263, 274
uniform convergence, 128, 140

Fourier sine series, 86
and boundary conditions, 115
coefficients in, 104
double, 164

Fourier’s law of heat, 16, 24
Fourier transform, 343ff.

convolution, 347
properties, 346
in spherical coordinates, 350, 377
in three dimensions, 348

Fredholm alternative, 318
Free boundary, 408
Frequency, 87, 270
Frequency variable, 345
Full Fourier series, 107–111

complex form, 115–116
Function of two variables, 4
Fundamental frequency, 87, 270
Fundamental solution, 50
Future, 231

G

Gamma function, 282, 357, 425
Gas dynamics, 22, 25, 366ff.
Gauge

group, 376
invariance, 361, 376
theory, 375

Gaussian
and diffusion equation, 50
transform of, 345

Gauss-Seidel method, 220
Gauss’s theorem, 423
Gelfand-Levitan method, 394
General Fourier series, 118, 261
General solution, 32
Geometric method, 6, 9, 381
Ghost points, 208
Gibb’s phenomenon, 142–144
Grad, ∇, 178
Gradient, 417
Gram-Schmidt orthogonalization, 120, 260
Graph of a function, 422
Graphing method, 94–97
Green, 178
Green’s first identity, 124, 179
Green’s function, 50, 188

revisited, 338
symmetry, 189

Green’s second identity, 119, 185, 259
Green’s theorem, 422

method using, 76
Ground state, 182, 256, 301
Guitar, 11, 279

H

Half-line, 57–63
Half-space, 191
Hammer blow, 38, 112
Hankel function, 285, 368
Harmonic function, 17

half-ball, 197
half-space, 191
infinitely differentiable, 170
maximum principle, 154, 169
mean value property, 169, 180–181
minimum energy, 182–183, 397
Poisson’s formula, 165–168
quadrant, 197
rectangle, 161
representation formula, 186
rotationally invariant, 156–160
sphere, 193

Harmonic oscillator, quantum mechanical,
251
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Heap of water, 390
Heat conductivity, 16
Heat equation, 16
Heat exchange, 19
Heat flow, 16, 19, 22, 67, 315

convection, 54
energy absorption, 99
maximum principle, 42
Robin condition, 93
source function, 50, 249, 349

Heat flux, 16, 25
Heaviside function, 335, 345
Heisenberg uncertainty principle, 346
Helium ion, 18
Hermite polynomial, 253
Hermite’s differential equation, 252
Homogeneous linear equation, 2, 5
Hooke’s law, 21
Hopf maximum principle, 177, 181
Hot rod, 99
Hot spot, 43, 51
Huygens’s principle, 41, 235, 239
Hydrogen atom, 17–18, 254ff., 295ff., 371

continuous spectrum, 371
Hyperbolic equation, 28, 30, 55

Klein-Gordon equation, 373, 376

I

IC, See Initial condition
Ill-conditioned matrix, 27
Ill-posed problem, 26
Impedance, 23
Implicit function theorem, 422
Implicit scheme, 208
Incident wave, 366
Incoming wave, 366
Indicial equation, 424
Infinitely differentiable solution, 81, 146,

170
Infinite series, 125, 418
Inhomogeneous elliptic equation, 318
Inhomogeneous linear equation, 2, 5, 13, 15

on finite interval, 149
on half line, 70, 78
on whole line, 67, 71

Inhomogeneous medium, 314, 367, 397
Inhomogeneous string, 366
Initial condition, 20

See also Boundary condition
Inner product, 118, 121, 259, 269, 314
Instability

diffusion equation, 55
of matrix, 27

Insulation, 22, 91, 93
Integral of derivatives, 422–423

Intermediate value theorem, 415
Invariance

under dilations, 41, 47
under Lorentz transformations, 233–234
under rotations, 156–160
diffusion equation, 47
KdV equation, 390, 395
wave equation, 41

Inverse scattering, 392
Inversion formula

Fourier transform, 344
Laplace transform, 354

Irrotational flow, 23, 153, 365
Isotropic, 156

J

Jacobian, 4, 417
Jacobi iteration, 220
Jump conditions, 24
Jump discontinuity, 82, 128, 386, 415

K

Kadomstev–Petviashvili equation, 395
Kinetic energy, 40, 230
Kinetic theory of gases, 401
Kirchhoff’s formula, 234
Klein-Gordon equation, 234, 373

solution of, 376–378
Korteweg-deVries (KdV) equation, 390, 412
Kruskal, M., 391

L

L2

convergence, 126, 128, 262, 311
metric, 131
norm, 131

Langrange multiplier, 300
Laguerre’s differential equation, 255, 297
Laplace equation, 2, 17, 152

annulus, 174, 316
circle, 165
computation, 218ff.
cube, 163
exterior of a circle, 174
half-plane, 196, 351
half-space, 191
maximum principle, 154
rectangle, 161
sphere, 193
wedge, 172

Laplace transform, 353
techniques, 353–357

Laplacian, 14
four-dimensional, 198
Green’s function, 188, 338
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invariance, 156–160
Neumann function, 198
polar coordinates, 156
spherical coordinates, 158–159

Legendre function, 289ff.
associated, 273, 292
generating function, 292
Legendre polynomial, 122, 289
normalizing constants, 290
Rodrigues’ formula, 291
zeros, 291

Legendre’s differential equation,
289

associated, 273, 292
Light, 22
Light cone, 228–229
Light ray, 242
Limit, 414

from the right, left, 414
Linear elements, 226
Linearity, 2
Linearized equation, 22, 364, 403
Linearly dependent, 5
Linear operator, 2
Lorentz transformation, 233–234

M

Magnetic quantum number, 294
Marching in time, 202
Matrix equation, 26
Maximin principle, 324
Maximum of a function, 415
Maximum principle

diffusion equation, 42
Hopf form, 177, 181
Laplace equation, 154, 169

Maxwell’s equations, 22, 40, 358–361
Mean-square convergence, 126, 128,

262, 311
Mean value property, 169, 181–182

discrete, 219
Mesh size, 199
Mesons, 373
Metric, L2, 131
Minimal surface equation, 400
Minimax principle, 307, 310
Minimum principle

diffusion equation, 42
for first eigenvalue, 301
for nth eigenvalue, 302
Laplace equation, 154

Minimum problem, 300, 397
Molecules, 18
Momentum

conservation of, 362, 376, 390

density, 41
variable, 346

Multiplicity, 260, 279
Musical notes, 87

N

Navier–Stokes equation, 363
Neumann condition, 20, 310, 325

Dirichlet’s principle, 184
discretization, 207–208
trial function, 310

Neumann function
for a domain, 198
for Bessel’s equation, 285

Neumann problem
finite interval, 89, 115
half-line, 59
uniqueness, 177, 182
wedge, 172

Newton’s law of cooling, 19, 22
Nodal set, 278, 330
Nodes, 256, 278, 330
Nonexistence, 26
Nonlinear interaction, 2, 391
Nonlinear wave equation, 2, 215
Nonuniqueness, 26
Norm

L2, 131
uniform, 72

Normal derivative, 20
Normalizing constants, 136, 284, 290, 393
Normal mode, 88
Normal vector, 14, 21, 170, 229
Normal velocity, 23
N-soliton, 394
Nth term test for divergence, 418
Null vector, 243

O

Observable, 18
Odd extension, 58, 115, 117
Odd function, 57, 114
ODE, 1

arbitrary constants, 3
Bessel, 266, 282
Euler, 166, 424
existence theorem, 423
Hermite, 252
Laguerre, 255, 297
method of power series, 252, 255, 266,

289, 424
singular point, 424

One-sided limit, 414
Open interval, 414
Open set, 154, 416
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Open window, BC at, 23
Operator, 2, 18

method, 68, 77, 246
Orbital quantum number, 294
Order, 1
Orthogonal, 118, 121, 259
Outgoing wave, 368
Overdetermined, 26
Overtone, 87

P

Parabolic PDE, 29, 31
Parametrization of surface, 422
Parseval’s equality, 133, 346
Partial sum, 418
Particles, elementary, 373
Past history 39, 72, 233, 243
Pauli matrices, 374
Perfect thermal conduction, 22
Period, 63, 113
Periodic extension, 113
Periodic function, 113, 129
Periodic traveling wave, 395
Phase plane, 404
Phase shift, 395
Piecewise C1, 421
Piecewise continuous, 128, 415
Pitchfork, 403
Plancherel’s theorem, 346
Planck’s constant, 17
Plane wave, 233, 367, 371
Plasma, 390
Plucked string, 36–37, 336
Point mass, 331
Point spectrum, 371
Pointwise convergence, 125, 129, 136, 419
Poisson’s equation 152, 190, 338

finite element method, 223
Poisson’s formula, 165–168

in three dimensions, 195
Poisson kernel, 170
Poisson summation formula, 349
Polar coordinates, 156, 165
Population dynamics, 16
Potential

continuous spectrum, 370
electric, 153, 184
electromagnetic, 361
function, 17, 18, 294, 392
square well, 373
velocity, 23, 153

Potential energy, 40, 182, 230, 299
Power series, 419

method of, 252, 255, 266, 289, 424
Pressure, 23, 362, 407
Principal quantum number, 297

Probability, 17, 153
Propagation speed, 39, 54, 214
Propagator of diffusion equation, 50
Proton, 17, 254, 373

Q

Quadratic elements, 225
Quantum electrodynamics (QED), 375
Quantum mechanics, 17–18, 254–257, 294,

317
angular momentum in, 294

Quantum numbers, 294, 297
Quarks, 373

R

Radar, 14
Radial vibrations, 269
Radiation, 22, 24, 93, 94, 97

condition, 24, 368
Raising and lowering operators, 295
Rankine–Hugoniot formula, 387
Rarefaction wave, 385
Ray, 242
Rayleigh quotient, 300, 315
Rayleigh-Ritz approximation, 184, 305

for Neumann condition, 310
Reaction-diffusion problem, 404
Reciprocity principle, 190
Recursion relation, 252, 266, 284, 290, 296
Reflected point, 191, 193
Reflection

coefficient, 367, 372, 393
method, 57–66, 191–198
of waves, 61–66, 367ff.

Refraction of light, 397
Region, 416
Regular singular point, 255, 266, 424
Relativity theory, 41, 243
Reservoir of heat, 22
Resistance, 13, 89, 151
Resonance, 151
Retarded potential, 247
Riemann function, 340–341
Rigid wall, BC at, 23
Robin condition, 20, 21, 22

disk, 176
half-line, 60
interval, 46, 92–100, 122
lowest eigenvalue, 304
rectangle, 162, 264
uniqueness, 176

Rodrigues’ formula, 291
Rotation invariance, 31, 156–160
Rotations in quantum mechanics, 295
Roundoff error, 201
Russell, J.S., 390
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S

Saddle point, 398
Scalar potential, 361
Scattering

acoustic, 24
and continuous spectrum, 370ff.
data, 394
inhomogeneous string, 366
inverse, 392
of light, 22
by medium, 367
of plane wave by sphere, 367

Schrödinger equation, 17, 24, 91, 250ff.,
295, 370

and angular momentum, 294
cubic, 395, 397
finite interval, 91
free space solution, 250–251
harmonic oscillator, 251
hydrogen atom, 254ff., 295ff., 371

Schwarz inequality, 145, 146
Secondary bifurcation, 402
Second-order equations, 28–31
Second vanishing theorem, 416
Seismic wave, 14
Separated solution, 84, 258
Separation of variables, 84–100

in polar coordinates, 165
space variables, 161, 165, 320
special geometries, 161
time variable, 319

Sharp images, 235
Shock wave, 2, 380ff.
Sign function, transform of, 345
Simple transport, 2, 10
Sine-Gordon equation, 395
Singularities

absence of, 54, 82, 170
and difference schemes, 215
shocks, 385–389
of waves, 54, 66, 244, 340–341

Singular point of ODE, 424
Singular Sturm-Liouville problem,

316
Snell’s law of reflection, 400
Soap bubble, 397, 400
Soft wall, BC at, 23
Solid light cone, 229
Solid spherical harmonic, 277
Solid vibrations, 270ff.
Solitons, 390
Sound, 22–23, 364–365
Source function

diffusion equation, 50, 67, 249, 333, 339,
342, 349

Klein-Gordon equation, 378
wave equation, 340, 350

Source operator
diffusion equation, 68
wave equation, 77, 79, 246

Source term
diffusion equation, 67
wave equation, 71–80, 149, 245

Spacelike surface, 243
Spacelike vector, 243
Space-time, 228
Specific heat, 16
Spectral lines, 297
Spectrum, 371
Speed of light, 40–41, 228, 233, 242, 358
Speed of propagation, 39, 54, 214
Sphere, surface area of, 426
Spherical coordinates, 158, 236, 271
Spherical harmonic, 272, 275, 294, 368
Spherical means, 235
Spherical wave, 38, 41
Spring, at boundary, 21
Square pulse, transform of, 345
Square well potential, 373
Stability, 25, 45, 72

numerical, 205ff., 213
of solitons, 390–395
of stationary states, 403–406

State
bound, 254, 371
buckled, 403
of electron, 17, 256
ground, 182, 256, 301

Stationary point, 398
Stationary wave, 16, 152
Steady state, 17, 25, 160
Steady fluid flow, 153
Step function, 335
Stream function, 408
Sturm-Liouville Problem, 315
Subdomain, eigenvalues for, 325–326
Subharmonic function, 198
Successive overrelaxation, 221
Superposition principle, 3, 380
Supersonic airflow, 14, 380
Surface, 421

area of a sphere, 426
Symmetric boundary conditions, 119, 185,

260, 315

T

Telegraph equation, 379
Temperature, 16, 22, 43, 51, 99
Template, 202
Tension, 11, 14
Term-by-term differentiation, 419
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Term-by-term integration, 135, 419
Tessera, 280
Test function, 331, 336
Timelike vector, 243
Time slices, 242
Tiny perturbation, 26
Topology, 26
Translate, 47
Translation, 156
Transmission

coefficient, 367, 372, 393
line, 13

Transmitted wave, 367
Transport equation, 10, 245
Traveling plane wave, 367
Traveling wave solution, 55, 390, 409
Trial function

for Dirichlet eigenvalues, 301, 305, 326
for finite elements, 223–227
for Neumann eigenvalues, 310, 325
for Robin eigenvalues, 315

Traingulation, 223
Truncation error, 201
Tsunami, 406
Tuning fork, 102–103
Turbulence, 363
Types of equations, 27–31

U

Ultrahyperbolic PDE, 30
Uncertainty principle, 346
Underdetermined, 26
Uniform convergence, 126, 140, 419
Uniform norm, 72
Uniqueness, 25, 44, 72, 155, 180
Unstable state, 403

V

Vanishing theorems, 415–416
Variable coefficient equation, 8–9,

314ff.
Vector

field, 417
potential, 361
space, 5, 122, 264

Velocity potential, 23, 153
Vibrating bar, 2, 102, 401
Vibrating drumhead, 13–14, 20, 264, 316
Vibrating string, 11, 20, 23, 26, 33–38,

342
damped, 41
energy, 93
frequencies, 87, 270
hammer blow, 38, 112

inhomogeneous, 366
initial and boundary conditions, 21
plucked, 36–37, 40, 336

Violin string, 87, 89
Viscosity, 363
Vorticity, 365, 408

W

Waterbug, 41, 239
Water wave, 13, 390, 406–413
Wave

function, 17
with interaction, 2, 215
with a source, 71–78, 245–247
speed, 12, 386

Wave equation, 12, 20, 23, 33, 228, 398
in absence of boundaries, 33, 228
acoustics, 22–23, 365
ball, 270
circle, 264
dissipative, 379
energy, 40, 101, 230
finite elements, 227
finite interval, 63–66, 84–87, 91,

99–100
general solution, 33, 234ff.
half-line, Dirichlet condition, 61
inhomogeneous, 71, 245

boundary conditions, 78, 147, 355
half-line, 78

initial conditions, 35, 234, 239
Lorentz invariance, 233–234
method of spherical means, 235
negative eigenvalue, 99
nonlinear, 215
polar coordinates, 265
scattering, 366
with a source, 71–78, 245–247
in space-time, 228ff.
spherical coordinates, 271
two-dimensional, 14, 238, 258
three-dimensional, 258

Weak solution, 337, 386
Wedge, 172
Welded rods, 25
Well-posed problem, 25–27, 45, 54, 72
Wronskian, 372

Y

Yang-Mills equations, 375

Z

Zabusky, N., 391
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