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Preface 
The aim is to give a very streamlined development of a course in met-

ric space topology emphasizing only the most useful concepts, concrete 

spaces and geometric ideas. To encourage the geometric thinking, I have 

chosen large number of examples which allow us to draw pictures and 

develop our intuition and draw conclusions, generate ideas for proofs. 
To this end, the book boasts of a lot of pictures. A secondary aim is 
to treat this as a preparatory ground for a general topology course and 

arm the reader with a repertory of examples. To achieve this, I have 

adopted the following strategy. Whenever a definition makes sense in an 

arbitrary topological space or whenever a result is true in an arbitrary 

topological space, I use the convention ... (metric) space .... This is 
to tell the reader the sentence makes mathematical sense in any topo-
logical space and if the reader wishes, he may assume that the space is 

a metric space. See, for example, Def. 4.1.3, Ex. 4.4.12, Def. 5.1.1 and 

Theorem 5.1.31. On few occasions, I have also shown that if we want 
to extend the result from metric spaces to topological spaces, what kind 
of extra conditions need to be imposed on the topological space. These 
instances may give the students an idea of why various special types of 
topological spaces are introduced and studied. A third aim is to use this 
course as a surrogate for real analysis to reinforce some of the concepts 
from basic analysis while dealing with examples such as functions spaces. 
This also helps the students to gain some perspective of modern analysis. 

The discerning experts will perceive that I have preferred definitions 
that use only the primitive concept of an open ball (or open sets) rather 
than secondary concepts. (See, for instance, the definitions of open sets, 
bounded sets, dense sets etc.) Teachers who use this book should feel free 
to use their discretion to change the order of the topics. I usually prefer 
to introduce continuity as early as possible, immediately after open sets 
and convergent sequences are introduced. In fact, I rarely follow the 
sequence in which the topics appear here. I am of the opinion that open 
sets, convergence of sequences, continuity, compactness, connectedness 
and completeness should be the focus of attention and nucleus of the 
course. All other concepts may be developed as and when necessary. 
Another important suggestion is "Draw pictures". After all, topology is 
geometric in nature and most of the proofs can be better explained by 
drawing pictures. 

I also suggest that the proofs of the theorem should be explained in 
detail with appropriate pictures with minimal writing on the board. The 
students should be asked to write the proofs on their own immediately 
after this. 



viii 	 Preface 

I have included many 'easy to see' remarks and observations as ex-
ercises. Most of them may get a passing mention during a course, but 
students may not appreciate them at the first instance. If these obser-
vations are given as exercises, the students may think over them and 
retain them for later use. Also, I have included many pictures in the 
book. I have seen students' classroom notebooks containing no pictures 
in a year long course in topology! Many a time, I have shown how a 
picture may lead to an idea of a solution. This, hopefully, will encourage 
the students to think geometrically. The book is written with a view 
towards self-study by the students. To make them take active participa-
tion in the learning of the subject, very often I spell out the strategy of 
the proof and encourage the reader to complete it on his own. This also 
shows the students how even long proofs have a simple core idea which 
evolves into a more complete and precise proof. This will help them not 
to miss the wood for the trees. Also, many results are broken into simple 
exercises and they precede the results. Another noteworthy feature of 
this book is that almost all results are followed by typical applications. 

Some of the topics/results could be assigned for student seminars. 
A few of them are: Tietze extension theorem, Existence of nowhere 
differentiable but everywhere continuous functions, Picard's existence 
theorem, topologist's sine curve, Arzela-Ascoli theorem, Connectedness 
and path-connectedness of Sn etc. 

The book may also be used as a supplementary text for courses in 
general (or point-set) topology so that students will acquire a lot of 
concrete examples of spaces and maps. 

A prerequisite for the course is an introductory course in real analysis. 

The book contains approximately 400 exercises of varying difficulty. 
I have three governing principles when I assign exercises to the students: 
(1) There should be a reasonable drill by means of straightforward 
exercises to test and consolidate the understanding of the definitions 
and results, (2) standard and typical applications should be given so 
that in future students will be able to perceive what results may be used 
to solve a problem and (3) mildly challenging to challenging exercise so 
that students should not think that everything will fall into their lap. 
They are also meant to build their perseverance. Most of the exercises 
are given copious hints. Students are advised to read the hint only after 
pondering over the problem for sometime. 

It is my pleasure to thank the participants of M.T.Sz.T.S. Programme 
on whom most of this material was tested. Their enthusiasm and their 
submission of compilation of the exercises and examples given during 
my courses were added to this book. I thank A.V. Jayanthan, Goa 
University who went through a preliminary version of the manuscript 
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and pointed out the typos and egregious errors and made suggestions for 
improvement. Special thanks are to Ajit Kumar who made sense out of 
my rough sketches, applied his own imagination and drew all the figures 
in this book. But for his contributions, the book will lack one of the 
noteworthy features of the book, namely, profusion of figures. 

I also take this opportunity to thank the charged atmosphere that 
prevailed in my department during the month of April 2004. It was this 
which really propelled me into taking up the project of writing this book, 
since I wanted to work on something that I enjoy and that will help me 
preserve my sanity. (Yes, it is a case of blatant escapism!) 

A Few words to the students. This book is written keeping in 

mind the difficulties of the beginners in the subject and with a view to-
wards self-study. I have motivated the concepts geometrically as well as 
using real-life examples/analogies whenever possible. Most of the com-
mon mistakes or misconceptions are pointed out. Lots of easy exercises 
are given so as to consolidate your understanding. You should try to 
solve at least half of them. It is my fervent hope that the book will en-
courage you to think geometrically, put some of the basic tricks, results 
and examples at your disposal for your future endeavour. 

A teacher's manual containing more detailed hints and solutions to 
most of the exercises is under preparation. The interested teacher may 
contact me on email and receive a pdf version in the near future. 

I would like to receive suggestions for improvement, corrections and 
critical reviews at kumarrsaOsankhya.mu.ac.in  

Mumbai 	 S. Kumaresan 
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Chapter 1 

Basic Notions 

1.1 Definition and Examples 

A metric space is a set in which we can talk of the distance between 
any two of its elements. The definition below imposes certain natural 
conditions on the distance between the points. 

Definition 1.1.1. Let X be a nonempty set. A function d:XxX---+ JR  
is said to be a metric or a distance function on X if d satisfies the 
following properties: 

(i) d(x, y) _>. 0 for all x, y E X and d(x,y) = 0 iff x = y. 
(ii) d(x , y) = d(y , x) for all x , y  E X. 
(iii) d(x, z) < d(x, y) + d(y, z) for all x, y, z E X. This is known as the 

triangle inequality. 
The pair (X, d) is then called a metric space. 

Example 1.1.2. The most important example is the set IR of real num- 
bers with the metric d(x, y) := Ix — yl. Recall the absolute value of a 

real number: Ix' = 
Ix 	if x > 0 

Observe that 

x < lx1 and — x < lx1 for x E R. 	 (1.1) ' 

It is easy to see that d satisfies the first two conditions of the met-
ric. The triangle inequality follows form the triangle inequality of the 
absolute value: 

lx + YI 5_ Ix' + lyi for all x, y E R. 	 (1.2) 

Let us quickly review a proof assuming the order relation on R: 
Case 1:  

—x if x < O. 

1 



2 	 CHAPTER 1. BASIC NOTIONS 

Case 2: Let Ix + yl = —(x + y). We have Ix + yl = —x — y 5_ .1xl + ly1 
by (1.1). 

We have completed the proof of the triangle inequality (1.2) for the 
absolute value. Also, note that the equality occurs in (1.2) if x and y are 
both nonnegative or both non-positive. Assume that the equality occurs 
in the triangle inequality. Let us further assume that Case 2 occurs. 
Then Ix + yl = —x — y = lx1 + ly1 holds so that ((x1 + x) + (1y( + y) = O. 
The terms on the left side of this equation are nonnegative so we conclude 
that 1x1 = —x and 1y1 = —y. Hence both x and y are nonpositive. Similar 
analysis of Case 1 yields that both x and y are nonnegative. 

It is now an easy matter to derive the triangle inequality for d: 

d(x, z) = I x — z1 

1(x — Y) + (Y — z)I 
< Ix — y1 + Iy — z1 (by triangle inequality for I I) 

. d(x, y) + d(y, z). 

We refer to d as the absolute value metric. 

Figure 1.1: Triangle Inequality 

Ex. 1.1.3. We may also prove (1.2) as follows: Observe that x < Ixl 
for all x E  II  and that 1x1 = 10- , the nonnegative square root of x2 . 
Therefore, 

I x  + y i2 ____ ( x  + y)2 _ x2 ± y2 ± 2xy  < 1x .2 + . y .2 I 	I I +  2 1x1  IYI = (IX' ± 10 2 . 

(We used the fact that Isyl = 1x1 Iy (  for all real numbers x and y in the 
proof above.) Since t --- Vi is increasing in (0, oo), the result follows. 

Ex. 1.1.4. When does equality hold in the triangle inequality for the 
absolute value metric in 111? (See Theorem 1.1.21 for a more general 
case.) 
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Example 1.1.5. We now define the absolute value of a complex number 

and use it to define a metric on C. 
For z E C, we define izi = Vx2  + y2  if z = x + iy, x, y E R. We 

write Re z (respectively, Im z) for the real (respectively, the imaginary) 

part of the complex number. 
We observe the following facts about the absolute value function on 

C: 
1. Izi = rzl for z E C. 
2. lz1 2  = z7 for z E C. 
3. Re z < izi and Im z < 	for z E C. 
4. 1zw1 =  z( w(  for z, w E C. 
5. For z,w E C, we have the triangle inequality: lz wl < izI 

We leave the verification of 1-4 to the reader. We prove 5. We write 

Re z for the real part x of the complex number z. We have 

lz + tvi 2  = (z + w)(z + w) 
_ izi 2 + 11E1 2 zyv- +7tv  

= 1z1 2  + 1w1 2  + 2Re zir) 

1z1 2  1w1 2  ± 2 kW( 

1z1 2  +1w1 2  + 2 1z11w1 
= (1z1 +1w1) 2 . 

From this, the triangle inequality follows. 
Given z,w E C, we define d(z , w) := lz - lid. It is now 

that d is a metric on C. 
easy to show 

Example 1.1.6 (Discrete Metric). Let X be a nonempty set. Define 
d(x , y) = 0 if x = y and d(x , y) = 1 if x y. We leave the easy exercise 
of showing that d is a metric on X to the reader. The metric d called 
the discrete metric. 

Example 1.1.7. Let V = IV. The following are metrics on Rn: 
(a) di (x,y) := 	ixk - ykl. 
(b) doe (x, y) 	ma.x{lxk - yk l : 1  < k <  n}. 

We leave the easy verifications to the reader. We shall come back to 
them later from a different perspective. See Ex. 1.1.22. 

In U.S.A., the metric d1 is known as the taxi-cab metric. Can you 
see why? Draw pictures especially the lattice of points with integer 
coordinates in R2  and see what the dl -distance between (1, 2) and (-4, 8) 
is. See Figure 1.2. 

Definition 1.1.8. An inner product on a real vector space V is a map 
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Q(x2,Y2) 
B(x4,Y4) 

A(X3,y3)  

1Q(x2,Y2) 
B(x4,Y4) 

A(x3,y3) 

P(x ,y1) P(x i,Y1) 

(P,Q)=x2 	-FY2 -- Y1 

(A,B)=x4 — x3+Y4 — Y3  

doo(P,Q)=Y2 — Y1 

cloo (A,B)=:x4—x3 

Figure 1.2: d1 and do°  metrics 

satisfying the following properties: For x, y, z E V and a E R, 

(a) (x, 	> 0 and (x, x) = 0 if and only if x = 0, 

(D) (x,Y) = 	x), 
(c) (x + z, y) = (x, + (z,y) and (x,y + z) 	(x,y) + (x,z), 
(d) (ctx , y) = (x, y) 

(V, ( , )) is called an inner product space. For brevity sake, we may say V 
is an inner product space without explicitly mentioning the inner product 

). 

Example 1.1.9. Consider V = 	If x = (x i  , . . .  ,x)  and y = 

(Yi, • • • , Yn) are in Rn, then their dot product (x, y) (or, s • y) is defined 
as (x, xiyi. Then it is easy to check that the dot product is 
an inner product. (R71 , (, )) is called the n-dimensional Euclidean space. 

Example 1.1.10. Let e[0, 1] denote the vector space of all real val-
ued continuous functions on [0, 1]. If f,g E C[0, 1] define (f,g) = 
fo  f (t)g(t) dt, where the integral is in the Riemann sense. Note first of all 
that the integral exists (thanks to analysis!). The crucial thing to show 
is that (f, f) = 0 if and only if f = 0. This follows from Lemma 1.1.11 
below. The rest of the properties follow from well-known properties of 
the (Riemann) integral. Thus (e[0, 1], (, )) is an inner product space. 

Lemma 1.1.11. Let  f:  [0, 1] ---> R be continuous with 1(t)  > 0 for 
t E [0, 1]. Then  Jc  f (t) dt = 0 if and only if f (t) = 0 for  alit  E [0, 11. 

Proof To prove the nontrivial part, assume that fol  f (t) dt = 0. If f is 
not identically 0, since f > 0, there exists to such that f (to) > 0. Let 

:= f (to ) and E := a/2. For this value of E, by continuity of f at to, 
there is a 6 such that f (t) E 	19 for t G (to— 6, to + (5). Using various 
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properties of the integral, we see that 

L 
1 	 to+8 	 to+6 
f (t) dt f 	f (t) dt > 	dt = a6 > O. 

to 	 2 

This contradicts our assumption that fol  f (t) dt = 0. 
Question: Can you spell out the properties of the (Riemann) integral 

used while deriving the displayed inequality? 	 1=1 

Remark 1.1.12. Note that if we assume that f is non-negative and 

Riemann integrable on [0, 1] such that fol  f (t) dt = 0, then we cannot 

conclude that f =  Don [0, 11. For instance, consider the function f (t) = 0 
if t 1/2 and  f (1/2)  = 10. Then f is Riemann integrable on [0, 1] and 

fol  f (t)dt = 0. 

Definition 1.1.13. Let V be an inner product space. Given a vector 

x E V, we define the norm or length ll x ll (read as norm of x) as the 

nonnegative square root of (x, x), that is, by ll x := V(x, x). 

The most important examples are the Euclidean spaces. On the 

vector space 111 7 , we define the inner product (x, y)  := 	xi yi. Note 

that when n = 2, II (x, y) II = Vx2  ± y2  is the length of the vector (x,  y). 

	

The norm function ll : V 	IR has the following properties: 
(1) 11 x 11 	0 for all x G V and  l xii = 0 if and only if x = 0. 
(2) II ax =  c i x H x E V and a E IR. 

Furthermore, given a nonzero vector y E V, the vector defined by 
u := is such that II u = 1 and y = lly u. This u is called the unit 
vector along v. (Se é Figure 1.3.) In general, we say that a vector x E V 
is of unit norm if ll x  il  = 1. 

Figure 1.3: Unit vectors along x and y 
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Theorem 1.1.14 (Cauchy-Schwarz Inequlaity). Let V be an inner 
product space. Then we have 

1(x,Y)1xj llli  for all x,y E V. 

The equality holds if one of them is a scalar multiple of the other. 

Proof. If x =  Dory   = 0, then (x,y) = 0 and either (x, x) = 0 or (y, y) = 
0. Hence the result. Now consider the case when IA = = 1. 
Consider (x — y,x — y). Then 

0<  (x — y, x — y) = (x, x) + (y,y) — 2 (x,y) 

= 2 — 2 (x, 	as x = 	II = 1. 

Thus we conclude that 2 — 2 (x, > 0 or (x, y) < 1. 
Similarly (x + y, x + > 0 yields — (x, y) < 1. Hence 

I 

 

(x, y) 5_ 1 = 1 1x11 1 1Y11 • 

	 (1.3) 

We now prove the statement concerning the equality. Let I (x y) I = 
1. Then either (x, y) = 1 or —1. If (x, y) = 1, from the above chain of 
inequalities we deduce that (x — y, x — y) = 0 or x = y. If (x, y) = —1, 
we see that x = —y. Thus equality holds if and only if either x + y = 0 
or x — y = 0, that is, if and only if x = ±y. 

Now suppose x and y are nonzero (not necessarily of unit length). 
Then u = x 	 and y = Y 	 are of unit length. By the previous case 11x11 	1101 
I (u, y)  I  < 1. Therefore, 

x 	y 

	

1 	1 
	 (x,y) 

\ 114 	Hx111IYil 

From this we get I (x, Y) I 	l x ii ilyll.  

	

If x and y are nonzero, then the equality means (x, 	= Ilx llll  y II or 

— (x,Y) = lxii llyli.  Assume the first happens. 
Then 

x y \ 

11x11 bit/ 

< 1.  

1 

X 	y 

11 x 11 	il  y  II 

1Ix II 
x

_ 

The other case is similar. 
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Theorem 1.1.15. The norm ii ii associated to an inner product on a 

vector space V as in the definition above satisfies the following: 
(i) II x II ? 0 for all x E V and Iix II = 0 iff x = O. 

(ii) 11 ax 11 = lai 11 x 11 for any scalar a and x E V. 

(iii) i Ix  ± Yil _ 11x11 ± 110 for all x,y E V. (This is known as the 
triangle inequality of the norm.) 

Proof. We leave the proof of the fact that the norm satisfies the first two 
conditions as easy exercise. To prove the triangle inequality, we proceed 
as follows: 

(x + y,x +y) 
. (x,x) + (y, y) + 2 (x, y) 

-• 

 

11x112  ± 11 y2  11 + 2  11 x 11 11 Y 11 
= 	(11x 11 + 11Y11) 2 . 

Since x 1-* x 2  is an increasing function on [0,  oc),  we deduce the required 
inequality. 	 0 

Definition 1.1.16. Let V be a vector space over R or C. A norm on V 
is a function 11  II:  V —+ satisfying the conditions (i)-(iii) listed in the 
last theorem. 

The pair (V, II II) is called a normed linear space, or NLS in short. 

Lemma 1.1.17. Given an NLS  (V, II  II), we define d(x,y) := 'Ix — yll. 
Then d is a metric on V. 

Proof. We show that d satisfies the triangle inequality. Let us write 
x — z = (x — y) + (y — z) and apply the triangle inequality of the norm: 

d(x , z) = I' x — z II 

= li (x — Y) + (Y — z) II 

= d(x , y) + d(y , z). 

Thus d defines a metric on V. 	 0 

Remark 1.1.18. The metric d defined by d(x, y) := 11x — Y11 on an NLS 
will be referred to as the metric associated with the norm II II. All metric 
concepts in the sequel concerning an NLS will be with reference to this 
metric. 

Ex. 1.1.19. Metrics induced by norms are translation invariant: 

d(x + z , y + z) = d(x , y) for x, y, z in an NLS. 
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The next theorem explains the geometric meaning of the case when 
the equality occurs in the triangle inequality in the standard Euclidean 
metric on R". This is typical of the equality cases of many inequalities. 
They are always very special and, more often than not, have a geometric 
interpretation. We need the following definition. 

Definition 1.1.20. Let V be any real vector space and x, y, z E V. We 
say that the point z lies between the points x and y  if there exists t E R, 
0 < t < 1 such that z = tx + (1 – t)y. 

Theorem 1.1.21. Let x and y be two points in an inner product space 
(V, (,)) over R. Let z E  V. Then the equality holds in the triangle 
inequality d(x, y) < d(x, z)+ d(z,y) if the point z lies between the points 
x and y. 

Proof Let z lie between the points x and y, say, z = tx + (1 – t)y for 
some t E [0,1]. Then 

d(x , z) + d(z , y) = iix  – 4  + Ilz - 
= lix – tx – (1 	t)Y II + 11 tx + (1 	t)Y 	II 
= 11(1 – t)(x – y)11 + 11t(x – Y) 11 

Since t > 0 and 1 – t > 0, it follows that 

d(x , z) + d(z , y) = (1 – t) II x – y + t  ix  – y  II  
= Ilx - Yll 
= d(x,y). 

Conversely let us assume that d(x, y) = d(x,z) + d(z, y). We know that 
11x – yli < Ilx – zil + liz – y11. But we have equality by our assumption. 
Therefore, it follows from the equality case of triangle inequality (for a 
norm induced by an inner product) that x – z = t(z – y) for some t > 0. 

i+t t  This shows that (1 + t)z = x + ty and z = t  x 	y. Since, t  2 0,  
we see that 0 < —1+1  t  < 1. Therefore, z = sx + (1 – s)y where s = 1  
That is, z lies between x and y. This completes the proof. 

Ex. 1.1.22. Show that the following are norms on Rn: 
(a) II x  Iii :=>=lxkl. 
(h) 11x11. := max{lik 1 : 1  < k  < n} . Hint: To prove triangle inequal-

ity, observe that lxi I < II x11 00 for x = (xi,...,xj,...,x n ) E  R.  

(c) M X M2 (Enk=1 lxkl 2 ) 1/2 . This is called the Euclidean norm. It is 
the norm associated with the dot-product on Rn . In the sequel unless 
otherwise specified, we shall assume that Rn is equipped with this norm 
and the metric induced by this norm will be denoted by d. 
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The metrics induced by the norms 	and IL are respectively 
the metrics d 1  and 40  of Ex. 1.1.7. 

We generalize these norms to suitable spaces of functions in the next 
few examples. 

Example 1.1.23. Let X be a nonempty set. Let B(X) be the set of all 
bounded real (or complex) valued functions. Then 

Ilf 1100 := suP{If(x)I : x E 

defines a norm on B(X). We shall show that the triangle inequality 
holds. Let f,g E B(X) and x E X. 

if (x)I + Ig(x)1 
5_ sup{I f (t)I : t E X} + supflg(t)1 : t E XI 

= 	+ 

Thus the set of real numbers {I f (x) + g(x)1 : x E X} is bounded above by 
the real number II f 11. + 11 g IL. Hence the supremum of the set, namely, 

I f  + g IL, must be less than or equal to the upper bound II f  I  + II g  I. 
We let do°  denote the metric induced by this norm. 

This is similar to the norm II IL on Rn. 

Example 1.1.24. Let X := [0, 1], the closed unit interval. Then 

	

It f 	:= f if 	(01 dt 

defines a norm on the set of all continuous real/complex valued functions 
on [0, 1]. This is similar to the norm II Il i  on  R. We let d1 denote the 
distance induced buy this norm. 

y 

08 

06 

0.4 

0.2 

0.0 

- 0.2 

- 0.4 

- 0.6 

- 0.8 -  

- 1.0 

- 1.2 

- 1.4 

Figure 1.4: Geometric meaning of  li. Ili: area of the shaded region 
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Here the main problem is to show that if II f = 0, then f = 0 on 
[0,1]. But this is already dealt with. See Lemma 1.1.11. The triangle 
inequality is easy using the properties of the Riemann integral. 

fo l 

	

(If  +g111 = 	I f (t) + g(t)I dt 

fo i 

	

< 	If (t)I + Ig(t)1 dt 

. 

fo i 	 1 
If MI dt + f ig(t)I dt 

L '  
= M11+1101. 

Y 

Figure 1.5: Geometric meaning of the dl-metric: di(f,  , g) is the area of 
the shaded region. 

The geometric meaning of 11 f 11 becomes clear to us if we recall the 

geometric meaning of the the integral Li: f (t) dt of a non-negative func-
tion f on an interval [a, 1)1. It is the area of the region bounded by x = a, 
x = b, y = 0 and y = f (x). See Figures 1.4-1.5 where a = 0 and b = 1. 

Ex. 1.1.25. Let X := [0, 1], the closed unit interval. Then 

1 	 1/2 

II f 112 := (fo  (If(t)D 2  dt) 

defines a norm on the set of all continuous real/complex valued functions 
on [0, 1]. 

Ex. 1.1.26. Consider the functions f (t) := t and g(t) = t2  for t E [0, 1 ] . 
Compute di (f, g) and dco ( f , g). 



8 (x  ' Y ) 	1 + d(x Y) 

d(x, Y) 	for all x, y  E X. 
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Ex. 1.1.27. Let V := C[0,1] denote the vector space of all real valued 

continuous functions on [0,1]. Show that f 	f 1100 := sup{ If (x)1 : x E 

[0, 1]} is a norm on V. (Why does f 	make sense?) 

Ex. 1.1.28. Let X be the set of all real sequences. We wish to regard 

two points (x n ) and (yri ) to be close to each other if their first N terms 

are equal for some large  N.  Larger the integer N closer they are. This 

is achieved by the following definition of the metric: 

d(x , y) = 
{0 

1 
 minfi:xi $yi l 

if x = y 

if x 	y. 

The triangle inequality d(x, z) < d(x, y) + d(y,z) certainly holds if any 

two of x, y, z are equal. So assume that x y, y z and z  x.  Let 

r := minfi, : xi 	yi 1,8 := minfi : yi 	zi bt := minfi : z, 	xi l. 

Clearly t > 	sl and hence d(x, z) < max{d(x , y), d(y , z)} 

Ex. 1.1.29. Let (X, d) be a metric space. Let A c X be nonempty. 
Define for x,y E A, 6(x , y) := d(x, y). Then 6 is a metric on A, called 

the induced metric on the subset A. 

Ex. 1.1.30. Let d be a metric on X. Define 6(x , y) := min{l,d(x,y)} 
for all x, y E X. Show that 6 is a metric on X. 

Ex. 1.1.31. Let (X, d) be a metric space. Define 

Show that 6 is a metric on X. 

Ex. 1.1.32 (Product Metric). Let  (X, d)  and (Y, d) be metric spaces. 
Show that 

d((xl, Yi), (x2, Y2)) := max{d(xi, x2) d(Y Y2)} 

defines a metric on the product set X x Y. We refer to the metric on 
X x Y as the product metric. 

Can you think of other metrics on X x Y coming from the original 
metrics on X and Y? 

Ex. 1.1.33. Suppose (X, d) and (Y, 6) be metric spaces. Is there a 
metric on XUY which induces d on X and 6 on Y? (Assume xn Y = 0). 
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Ex. 1.1.34. Let M(n, R.) denote the set of all n x n real matrices. We 
identify any A = (aii) E M(n, Ili) with the vector 

(aii,a12, • • • •ain,• • • ,ani, • • • ,an71) E Rn2 . 

This map is a linear isomorphism between M(n, IR.) and IIIn2 . Using this 
linear isomorphism, we define 

HAM   := (E la2)0 =  M (ail, 	ann)  M. 

Thus M(n, III) is an NLS. 

Lemma 1.1.35 (Young's inequality). Let x,y be nonnegative real 

numbers. Let  p> I and q be defined in such a way that t, + = 1 holds. 
We have the following inequality known as the Young's Inequality: 

P x y 
xy < — + 

P 	q 
(1.4) 

Equality holds iff xP = yq• 

Proof. The strategy is as follows. Fix y > O. Consider the function of 

xP yq 
for x > O. 

P 	q 

We apply maxima-minima tests of one variable calculus to arrive at the 
inequality. The reader should go  ahead  and complete the proof. 

The derivative of f is Px) = xP-1  - y. Therefore, the critical point, 
that is, the point at which the derivative vanishes, is given by xo = 

yP---1. Clearly, f"(x0) > O. We therefore conclude that  f(x0) = 0 is the 
minimum of f on (0, co) whence it follows that f(x) > 0 = f(x0). This 
is the inequality we were after. 

Note also that our analysis shows that the equality occurs if x = 
yP- 1 . Raising to p-th power leads to the result. D 

Lemma 1.1.36 (Holder's inequality). We let K stand for JR  or C. 

Let X be Kn and, for 1 5_ p < co, let  IIxI := ixiiP  ) 1 P  and for 
p = c>o, let Ilxil oo  := max{xi l : 1 < i < n}. For p > 1, let q be such that 
(11p) + (11q) = 1. For p = I take q = oo. We have Holder's inequality: 

lbil 5_ IlallplIbIl q , for all a, b E  K. 	(1.5) 

Equality holds iff C1Ixkl P  = C21Ykl q  for 1 < k < n for some nonzero 
constants Ci and C2. 
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Proof The strategy is as follows. We take x = lati  and u - 161   in Ilalp 	l b l q  
(1.4) and sum over j. Now, it is a straight forward exercise for the reader. 

If we take x =  lad  and y =  bd  in (1.4), we get 
lia  

1 la i r 	1  1b21 q  >  lad 	lb 1  
P 	q1lb Il qg 	11a1 p bar; 

Summing this over j  = 1 to j  = n, we get 

(1 .6) 

1 

b114 p 	q ) 
 	\n  (  lad  lbil  

Simplifying we get 

1 	1 	1 	1 
- + - > 	 
P q - O p  HMI 

whence the inequality. 

When does equality occur'? Going through the proof and recalling 
when the equality occurs in Young's inequality, we deduce that the equal-
ity occurs if  

XII  
lip 	II Y „ 	< 

	> 	xk-1 7)  = C2 1Ykl q  for 1 < k < n, 

for some nonzero constants  C1 , C2. 

Lemma 1.1.37 (Minkowski inequality). Let 1  <p  < Do. We have 
Minkowski  's inequality: 

+ bH < Ilal1 p  + H bll p  for a,b E Kn . 	 (1.7) 

Equality occurs iff there exist constants C1, C2 such that Ci a = C2b. 

Proof. The proof is seen already if p =  oc.  Therefore we assume that 
1  < p  < Dc. The case when either a = 0 or b = 0 is obvious and hence 
we assume that neither of them is zero. 

We again start with a hint and ask the reader to complete the proof 
on his own. For 1  < p  < oc, observe 

+ bi 	 a, + bjlla1  + bi r-1  

lb, 
z=1 

p-1 lb,lla• + bi P — ' . 	(1.8) 



laj + bi P-1  ail 
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We apply Holder's inequality to each of the summands. 
Now we carry out the complete argument. Let us observe certain 

relations between p and q. Since 1/p + 1/q = 1, we have p = q(p — 1) 
and 1/q = (p — 1)/p. We use them below. 

Consider a typical term 	a 	b 	If we apply (1.5) to 
this sum , we get 

1/q 
pi g  ai + b, 

1/ q  

a + b 	 1 )] 

= 
i=1 

= 11a411( a  + b) 77), /q  • 
	 (1.9) 

Similarly for the other term, we have 

i=1 
Ibil lai + bilP 1 	llb (a + b)  P I P 

(1.10) 

From (1.8)-(1.10), we get 

lia  + bjj5_ l all y  ll a + bIlrq + llbll y  ll a + blVq. 

Dividing both sides of the inequality by the positive number  lia  + brp/q 
and using the fact p — (p/q) = p(1 — 1/q) = 1 yields the Minkowski 
inequality. 

Equality case if left to the reader. 	 I=1 

Example 1.1.38 (Sequence Spaces). Let 1 < p < co. Let fp  be 
defined as follows: 

ep  := {(an ) 1  : an  E  JR  or C, and < CO. 

Let f oe  stand for (B(N),11 Moo).  Since p = co has already been dealt with 
in Example 1.1.23, we shall concentrate on the case when 1  < p  < oc. 

We first of all show that fp  is a vector space over JR (or C, as the case 
may be). Let (x n ) E ep  and a be a scalar. Then ax =  (ax).  Clearly, 
E77_ 1  lax, a P  EZL i  1X 1-1 1 P  < DC. Therefore, ax e f p . Let x = (xn ) 
and y = (y72 ) E ep . Then we need to show that Ek"--i l xk + yk IP < Do. 
This is an interesting argument and runs as follows. 
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Let 4 := k=1 X k
)1/p. 

 

(1.7), we deduce, for each n E N, 
Then using Minkowski inequality, 

1/p 	 1/p 	 1/p n 

k=1 

+ ye) 
n 

k=1 	

P) 

k=i 

▪ E  
oo 

k=1 	

P)11P ( oo 

ye) 
k=1 

▪ E . 	
1/p 

Since the above inequality is true for all n, it follows that l  

E + ye
) 1/p 

°=1 
11x1lp + II Y Ilp 

Consequently, raising to the power p, we get 

oc  

+ye (x11,9 llopr 
k=1 

We have thus shown fp  is a vector space as well as 

(an) 

	

	H (an) Ilp := (En, 1  Ian IP) 1 /73 is a norm on fp . Hence (fp , 00 

a normed linear space. 

Ex. 1.1.39 (An important inequality). In any metric space (X, d), 
show that  d(x, z) — d(y, z)1 < d(x, y) . 

In an NLS (X, 11 11), we have lx—Nyill 5_ x — y 11 for any two 
vectors x,y E X. 

1.2 Open Balls and Open Sets 

Definition 1.2.1. Let (X, d) be a metric space. Let x E X and r > O. 
The subsets 

Bd(x,r) := { y E X : d(x. y) < r} and Bd[x > r] := IyEX: d(x,y) < 

are respectively called the open and closed balls centred at x with radius 
r with respect to the metric d. We use this notation only when we 
want to emphasize that the metric under consideration is d. Otherwise, 
we denote Bd(x,r) by B(x,r) when there is no source for confusion. 
Similarly B[x, T.] will denote Bd [x,r]. 

'Recall that if \— k is a series of positive terms, then it is convergent  if  the 
sequence of partial sums is bounded, in which case, the sum is sup, E 	ak. 

established that 

I Hp) is  
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Example 1.2.2. Let R be with the standard metric. Then we claim that 

B(x,r) = (x — r,x + r). For, if y E B(x,r) iff d(x r y)  < T if X  —ÇJ  <T 

 iff y E (x — r, x + r). 

Example 1.2.3. Let X = R2  with the Euclidean metric d = d2. Then 

B(0, r) = {(x,y) E R2 x2 4_ y2 < r2} For, p := (x,y) E B(0,r)  if  
d(p, 0) < r  if  d(p,0) 2  < r2 if x2 ± y2 < 2 .  r (Why? For non-negative 

numbers a, b, we have a < b iff a2  < b2 . Since 0 < b2  — a 2  = (b— a)(b+ a) 

and since b +  a>  0, it follows that b2  — a 2  is positive  if  b — a is.) 

More generally, if q =  (a, b),  then B(q,r) is the set of points inside 

the circle of radius r with centre at (a, b): 

B(q,r) = {(x,y) E R2  : (x - a) 2  + (y — b) 2  < r2 }. 

Ex. 1.2.4. Show that any open interval (a, b)  in R is an open ball. Is 

R an open ball in R? 

Ex. 1.2.5. Let (X, d) be a discrete metric space and x E X. Find the 

following: (a) B(x, 1/2), (b) B(x,3I4),(c)B(x, 1), (d) B(x, r), 0 < r < 1 
and (e) B(x,r),  r> 1. 

Ex. 1.2.6. Let (X, d) be a metric space, x E X and 0 < r < s. Show 

that B(x, r) C B(0, s). Show that they may be equal even if r < s. 

Ex. 1.2.7. With the notation of the last exercise, show that B(x,r) C 
B[x,r]. Can the open balls be equal? 

Ex. 1.2.8. If in a metric space we have B(x,r) = B(y, 8), does it mean 
that x = y and r = p? 

Ex. 1.2.9. Draw figures of the open unit ball B(0,1) in the following 
metric spaces. 

(a) (R2 ,11 112), (the standard Euclidean norm). 

(b) (R2 ,11 Ili), (the L 1 -norm). 
(c) (R2 4 Moo), (the max or sup norm). 

Check your pictures with those in Figure 1.6. 

Definition 1.2.10. Let V be a real vector space, x, y E V. We let 
[x, y] := {(1 — t)x + ty : 0 < t < 1 } . The set [x, y] will be called the line 
segment joining x and y. A subset A of V is said to be convex if for any 
pair x, y E A, the line segment [x, y] C A. 

Ex. 1.2.11. Let (X, 	be an NLS. Show that any ball B(x, r) is 
convex. 
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B1(0, 1 ) B2 (0,1) 

Figure 1.6: Unit Balls with respect to d1,d2 and dœ  

Ex. 1.2.12. Show that in an NLS  (X, 	), we have 

B(x,r) = x +rB(0,1), x E X,r  > 0.  

Thus if we know the open unit ball, that is, B(0,1) in an NLS, we know 
all the open balls! To get B(x,r), we dilate (or contract) B(0,1) by r 
and then translate it by the vector x. See Figure 1.7 on page 17. 

Contraction or dilatio'n 

 

Translation 

Figure 1.7: Translation and dilation of the unit ball 

Ex. 1.2.13. Let (X,11)  be an NLS, x E X and 0  <r  < s. Show that 
B(x,r) 	B(x,$). (Compare this with Ex. 1.2.6.) Hint: First consider 
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the case X = IR. 2 . Later, in the general case, restrict to the case when 
x = 0. 

Ex. 1.2.14. Let (X, il II) be an NLS, x E X and 0 < r. Show that 
B(x,r) 5 B[x,s]. (Compare this with Ex. 1.2.7.) 

Example 1.2.15. Let X = I = [0,1]. Let V := C[0,1] be the NLS of 
continuous real valued functions on [0,1] under the sup norm. How will 
you visualize B(0,6)? Let f e C[0,1]. How will you visualize B(f,E)? 
See Figure 1.8. An element cp E C[0, 1] lies in B(0,6) if its graph lies in 
the region bounded by the lines y = ±E and x = 0,1. Similarly, c,o lies in 
B(f, 6) if its graph lies in the region bounded by the curves y = f + E 

and x = 0,1. 

B(f ,€) 

Figure 1.8: Open balls in C[0, 1] 

Ex. 1.2.16. Let f,g: [0,1]  —f  IR be continuous and f(t) < g (t) for all 
t E [0,1]. Consider the set 

U := th E C[0,1] : f (t) < h(t) < g (t) , for t E [0, 1]} 

in the space X := (C[0,1], L0 ). Is U a ball in X? If not, can you 
think of a condition of f and g that will ensure that the set U is an open 
ball? 

Example 1.2.17. Consider the NLS X = (C[0, 1 ],11 h), where  ilf h := 
1 fo  f(t)1 (It.  How do we visualize B(0,1) in X? 

Recall the geometric meaning of Ilfh  from Example 1.1.24. Thus, 
f E B(0,1) if the area 'under the graph' of Ifl is less than 1. For 
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Figure 1.9: f is in B(0,1) 	Figure 1.10: g is not in B(0,1) 

example, f in Figure 1.9 lies in B(0,1) whereas g in Figure 1.10 on 

page 19 does not. 

Ex. 1.2.18 (Hausdorff Property). Given two distinct points x, y G 

X, there exists r > 0 such that B(x, r) n B(y,r) = O. (See Figure 1.11.) 

Figure 1.11: Hausdorff Property 

Ex. 1.2.19. Let A be a nonempty subset of a metric space (X, d). Let 
us continue to denote by the same letter d the induced metric on A. Let 
BA (a, r) denote the open ball in the metric space (A, d) centred at a E A 
and radius r > 0. Show that BA(x,r) = B(x,r) n A, where B(x, r) 
stands for the open ball in X centred at x and radius r. 

Ex. 1.2.20. Let Z c R be endowed with the induced metric from 
R. Give a "concrete description" of all open balls in Z. (We are not 
interested in the description given in the last exercise!) 

Definition 1.2.21. A subset U C X of a metric space is said to be 
d-open if for each x E  U,  there exists r > 0 such that B(x, r) c U. See 
Figure 1.12. If there is no source of confusion about which metric is 
being used, we shall simply refer to as an open set rather than as d-open 
set. 
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Figure 1.12: 1.12: Open set in a metric space 

Ex. 1.2.22. Find all open sets in a discrete metric space. 

Ex. 1.2.23. Prove that an open interval in 1I8 is open. 

Lemma 1.2.24. Let (X, d) be a metric space, x E X and r > 0. Then 
the open ball B(x,r) is open. 

Proof Let y G B(x,r). We need to find s > 0 such that B(y,$) c 
B(x,r). Look at Figure 1.13. It suggests us what s could be. 

cll 	. ........ . - 
---...-f 	.---- 

(1,1. 

=r-d(x,y) 

Figure 1.13: B(x,r) is open 

Ss 	 .- 

Also, let us work backwards. Assume such an 8 exists. If z E B(y, s), 
we want to show that d(z, x) < r. Now, 

d(z, x) .5_ d(z, y) + d(y, x)  <s  + d(x, y) < r. 

This prompts us to consider 0 < s  <r  — d(x, y). Let s be one such. If 
z E B(y,$), then we have 

d(z, x) < d(z, y) + d(y, x)  <s  + d(y, x) < r. 

Thus, B(y, s) C B(x,r). Since y is an arbitrary element of B (x , r), we 
have proved that B(x,r) is an open set. 	 0 



:---eli; 

	). 

, , 
z , 

Figure 1.14: {xy 0} is open 

B(x,r 

Figure 1.16: Space without finite 
points is open 

Figure 1.15: {x 2  + y2 	1} is 
open 

Figure 1.17: (a, b) x (c, d) is open 
in R2  
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Ex. 1.2.25. Is the empty set O c  X open in the metric space (X, d)? 

Ex. 1.2.26. Let X be a metric space and a E X. Fix r > 0. Show that 
the set {x E X : d(x, a) > r} is open. 

In Exercises 1.2.27-1.2.31, you are required to find "the best possible" 
rp  such that B(p,rp) c U, for p E U, in case you claim that U is open. 

Ex. 1.2.27. Let U := R \ Z. Is U open in R? 

Ex. 1.2.28. Show that U := {(x, y) E 1R2  : xy 0} is open in R2 . (See 
Figure 1.14.) 

Ex. 1.2.29. Let U := {(x, y) E  R  : x  >0  86  y>  0 } . Draw the figure of 
this subset. Is this open? Prove your claim. 
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Ex. 1.2.30. Let U := {(x, y) E R2  : x Z, y Z } . Is U open in R2 ? 
Substantiate your claim. 

Ex. 1.2.31. Let U := {(x, y) E R2  : X 2  + y2 	1 } . Show that U is 
open in R2 . (Think geometrically and then make your ideas rigorous. 
See Figure 1.15.) 

Ex. 1.2.32. Let A be any finite set in a metric space (X,  d). Show that 
X \A is open. (See Figure 1.16.) 

Ex. 1.2.33. What are all the open sets in a finite metric space? 

Ex. 1.2.34. Show that a rectangle of the form (a, b) x (c, d) is open in 
R2 . (See Figure 1.17.) 

Ex. 1.2.35. Is a nonempty finite subset of IR open? When is a singleton 
set {x} in a metric space (X,  d) open? 

Ex. 1.2.36. Is Q open in R? How about the set of irrational numbers? 

Throughout the book, we need to deal with intervals in IR. A defini-
tion of intervals as special subsets of R, rather than the list of all such 
subsets, will make our treatment rigorous. 

Definition 1.2.37. We say that a subset J C R is an interval if for 
every x, y E J, and for every z such that x < z < y, it follows that 
z E J. 

The next proposition lists all intervals in R. 

Proposition 1.2.38. Any subset J C R is an interval if it is of the 
form (a,  b) , [a, b], [a, b), (a, b], (— oo ,  /3), (a,  oo) ,  [a,  oo) , (— oo , 0] or R. 
Here a < b (Note that the empty set is an interval!) and (a,00) := {x E 
R :  s  > a} etc. 

Proof. If J is one of the types specified in the proposition, it is clearly 
an interval. So we need to prove the converse. 

Let us break into two cases: (1) J is bounded and (2) J is unbounded. 
Case (1): If J = 0, there is nothing to prove. So we assume that J 

is nonempty. 
Let a := inf J and b := sup J. We claim that (a, b) c J c [a,b]. 

For, if a <  s  < b, then x > a and since a is the greatest lower bound 
of J, x is not a lower bound for J. Hence there exists c E J such that 
c < x. Similarly using the fact that b := sup J and x < b, we find 
that there exists d E J such that x < d. Thus we have c,d E J such 
that c <  s  < d. Since J is an interval, it follows that x E J. Since 

E (a, b) is arbitrary, . we have shown that (a, b) C J. By the very 



1.2. OPEN BALLS AND OPEN SETS 	 23 

definitions of a and b, if z E J, then a < z < b and hence J C [a,  b]. 
Now depending upon whether or not a, b E J, we find that J must be 
one among (a, b), (a, b], [a, b), [a, b]. 

We are sure that the reader should be able to supply the proof of 
Case (2) on his own and urge to reader to prove Case (2). 

Case (2). Since J is unbounded there are three possibilities: (i) It 
is bounded above but not below, (ii) It is bounded below but not above 
and (iii) it is neither bounded above nor below. Let us look at (i). Let 
b := sup J. We claim that (—co, b) c J c (—oo,b1. Let x C- (—oo,b). 
Since J is not bounded below, x cannot be a lower bound for J. Therefore 
there exists c G J such that c < x. Since x < b and b is the least upper 
bound for J, there exists d E J such that x < d. Thus, c < s < d and 
hence x E J. It is time that the reader went ahead on his own. 

Ex. 1.2.39. Show that a (nonempty) subset of TR is an interval if it is 
convex. 

Lemma 1.2.40 (Structure of open sets in III). A nonempty open set 
in JR  is the union of countable family of pairwise disjoint open intervals. 

Proof We give a sketch of the proof. The details should be worked out 
by the reader. 

Let U c  JR  be open and x E U. There exists an open interval J 
such that sEJC U. Let Jx  denote the union of all open intervals 
that contain x and contained in U. Then Jx  is open. It is an interval 
since x is common to all the intervals that constitute Jx . (Why?) Given 
x, y E U, we show that Jx  and Jy  are either identical or disjoint. Define 
an equivalence relation on U saying that x y if Jx  =  J.  Using this, 
we can write U as the union of a family, say, {Ji  :  j E I} of pairwise 
disjoint open intervals. 

Choose one rational number r i  E Ji from each interval of this family. 
Then for i j, i , j  E I, ri ri since JflJ = 0. We thus have a one-one 
map i ri from I into Q. Thus, I is countable. 0 

Ex. 1.2.41. Let G be an open subset of JR  which is also a subgroup of 
the group (IR, +). Show that G = IR. Hint: 0 E G and hence (—E,E) C G 
for some E > O. Use the fact that G is closed under addition. 

Ex. 1.2.42. Let {Ui :  j E / }  be a family of open sets in a metric space 
(X, d). Show that the union Uie/Ui is open in  X. 

Ex. 1.2.43. Let Ui, 1 < < n, be a finite collection of open sets in 
(X, d). Show that nin_ l ui  is open in X. 
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Ex. 1.2.44. Show by means of an example that the intersection of an 

arbitrary family open sets need not be open. Hint: Can you think of {0} 

as the intersection of a countable family of open intervals? 

Ex. 1.2.45. What are the metric spaces in which the only open sets are 

0 and the full set? (Compare this with Ex. 1.2.22.) 

Ex. 1.2.46. Show that a set U c X of a metric space is open if it is 

the union of open balls. Hint: Think of a family of open balls indexed 

by x E U. See Section 4.1. 

Ex. 1.2.47. If (X, II II) is an NLS, U is open in X, then x + U is open 

for any x E X. 

Ex. 1.2.48. If (X, II II) is an NLS, U is open in X, then A + U is open 

for any set A C X. 

Ex. 1.2.49. Let (X, II II) be an NLS. Show that if any vector subspace 

Y of X is open, then Y = X. Hint: Observe that nB(0, r) = B(0, nr) 
and that UnENB(0, nr) = X. 

Can you generalize this? 

Ex. 1.2.50. Show that C[0,1] is not an open subset of (B[0, 1],  

Theorem 1.2.51. Let  (X, d) be a metric space. Let 7 denote the set of 
all open sets in X. Then 7 has the following properties: 

(i) 0, X E 7. 
(ii) Arbitrary union of members of 7 again lies in 7. 
(iii) The intersection of any finite number of members of 7 lies again 

in 7. 
7 is called the topology determined by d. 

Proof. The proof is simple and was broken into simple exercises above. 
The reader should prove the theorem on his own. 

Proof of (i). Given any x E X and r > 0, by definition, B(x,r) C X. 
Hence X is open. I claim that 0 is open. Suppose you challenge me. 
Then I ask you to give me a point x in it and I promise that I shall give 
you an r > 0 as required. You cannot and so I win! (If you are at present 
uncomfortable with this kind of argument, then we declare 0 to be open. 
No proof required.) 

Proof of (ii). Let {Ui : i E /}  be a family of open sets. Let x E UiE/Ui. 
Then x E  U for some j E I. Since Ui is open, there exists r > 0 such 
that B(x, C U.1 C UiE /Ui. Since x is arbitrary, it follows that UiE /Ui 

is open in X. 
Proof of (iii). Let Uk, 1 < k < n, be a finite collection of open sets 

in X. We are required to show that their intersection ntkz. l uk  is open. 
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If nrk',_ i uk  = 0, then the intersection is open. If not, let x E nrki=luk  be 

arbitrary. Since Uk is open and x E Uk, there exists rk > 0 such that 

B(x,rk) C Uk. It is clear what we should do now. Let r min{ rk : 
1 < k < n}. Then clearly, B(x,r) C B(x,rk) C Uk for each k, that is, 

B(x,r) C n7k1=1uk . Hence (iii) follows. 

Definition 1.2.52. Let X be a nonempty set. Assume that we are 

given a collection 7 of subsets of X satisfying the above properties (i)- 
(iii). Then 7 is called a topology on X and members of 7 are called the 

open sets in the topology 7. The pair (X,7) is called a topological space. 

Ex. 1.2.53. Show that on any nonempty set X there always exist 

topologies, at least two, provided X has more than one element. 

Ex. 1.2.54. Let (X, d) be a metric space. Show that Hausdorff property 

of X is equivalent to saying that given two distinct points x, y, there exist 

open sets U and V such that x EU,yEV and unv = 0. (This allows us 

to define  Hausdorff property of a topological space. See Definition 2.1.5.) 

Ex. 1.2.55. Is the set U in Ex. 1.2.16 open? 

Ex. 1.2.56. Let X := C[0, 1] with the sup norm metric 11 Hoc. Let E 
be the set of all functions in X that do not vanish (that is, they do not 
take the value 0) at t = O. Is E open in X? 

Ex. 1.2.57. Show that the open ball B1(0, 1) := { f E C[0, 1] : 11111 1  < 
1} in (C[0, 1], ll lli) is open in (C[0,1], ll lloo). Hint: Observe that II f Ili 5_ 
ii f 11 0e  for any f E C[0,1]. 

Ex. 1.2.58. Show that the open ball Boo  (0, 1) := { f E C[0, 	II If  Iloo < 
1} in the NLS (C[0, 411 11 00 ), is not open in (C[0, 1],  J  lli). Hint: For 
a positive function f, the norm II  fil1  admits a geometric interpretation. 
To be very explicit, we can construct positive continuous functions f on 
[0, 1] such that the area under the graph is less than any positive (5 but 
whose maximum could be as large as we please. This implies that for no 

> 0, the open ball Bi (0, 8) could be a subset of  B(0, 1). 

Ex. 1.2.59. Let X, Y be metric spacbs. Consider the product set X x Y 
with the product metric (Ex. 1.1.32.) Show that any set of the form 
B(x,r) x B(y , s) c X xY is open in X x Y. Hint: Let (a, b) E B(x,r) x 
B(y, s). You need to find E > 0 such that B((a, b), 6) C B(x, r) x B(y, s). 
See Figure 1.18. Work backwards. Any E < minfr — d(a, x), s — d(b,y)} 
does the job. 
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Figure 1.18: B(x,r) x B(y, s) is Figure 1.19: U x V is open in 
open in X x Y 	 X x Y 

Ex. 1.2.60. Let X, Y be metric spaces. Consider the product set X x Y 
with the product metric (Ex. 1.1.32.) Let U (respectively, V) be an open 
set in X (respectively, Y). Show that U x V is open in X x Y. (See 
Figure 1.19.) 

Ex. 1.2.61. Keep the notations above. Let WCXxY be open in the 
product metric. Let px and py denote the projections of X x Y onto X 
and Y respectively. Show that px (W) (respectively, py(W)) is open in 
X (respectively, in Y). (See Fig 1.20.) 

Y 

Figure 1.20: Projections of W on X and Y 

Ex. 1.2.62. Let  (X, d)  be a metric space. Define 5 on X as in Ex. 1.1.30. 
Show that a subset U is d-open if it is 5-open. 

Ex. 1.2.63. Let X be the set of sequences (xk) such that 0 < xk < 1/k 
for all k E N. Define d(x,y) := (a!ti lxk — Yki 2 ) 11 ' 2 . Show that d is a 
metric on X. The metric space (X, d) is called the Hilbert cube and is 
usually denoted by I' or I. Hint: Note that E k°°  X i! < 00 for any 
x E . Also, recall the triangle inequality in 11/n for any n. 
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Ex. 1.2.64. Any open set in the Hilbert cube ./." (Ex. 1.2.63) is the 

union of open subsets of the form 

x " • Un X X n+1 X • • X Xn-i-k X ' • • , 

where X n  := [0,1/n] for n E N and where Ui are open in X 2 , 1 < i < n 
and n may vary. 

Hint: Let U be open in  100  and x E U. Let E > 0 be such that 

B(x,E) c U. Choose n E N such that Encx)±1  W10 2  < E2 /2. Then the set 

B(Xl, v- 7,1 )  X 	X B(x n , 	) x X n -Fi X • • • X Xn-Fk 	' • • 

for p, q E R2 . Show that c5 is a metric on R2 . What are B8(p, E) for 
"sufficiently small" E > 0 and p 0? What are B8(0, E) for E > 0? Can 

you describe the 6-open sets? 

Definition 1.2.66 (Equivalent Metrics). We say that two metrics d 
and d' on a set are equivalent if the topologies generated by d and d' are 
the same. This is equivalent to saying that U C X is d-open  if it is 
d'-open. 

Ex. 1.2.67. Two metrics d and d' on X are equivalent if given any 
E X, any open ball Bd(x,r) contains a ball 13d,  (x,  p) for some p>  0 

and any open ball  Bd'  (X, s) contains Bd(x , a) for some a > O. 

Ex. 1.2.68. What do Ex. 1.2.57 and Ex. 1.2.58 say about the metrics 
d 1  and doo  on C([0,1])? 

Ex. 1.2.69. We say that two norms 11 	and 11 2  on a vector space V 
are equivalent if the metrics induced by them are equivalent. Show that 
the norms are equivalent if there exist positive constants Ci,  C2  such 
that 

JXJJ < 4112 	C211X11 1  , 	(X E V). 

Hint: Ex. 1.2.67 applied to balls centred at 0 and Ex. 1.2.12. 

Ex. 1.2.70. Show that the norms 11 	11 112 and II IL on Rn are 
equivalent. More precisely, show that for any x E Rn, we have 

1 
n- 11x111 < –1- 11x112 <11x11" < 4112 < 11x111. 

1-11 	 – 

(In fact, all norms on Rn  are equivalent, as we shall see later in Theo-
rem 4.3.24.) 

is contained in U. 

Ex. 1.2.65. Let d be the Euclidean metric on R2 . Define 

6(p, q) := {4,0) + d(q,0), p q 

0, 	 P = 
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Ex. 1.2.71. Show that the norms ii ill and  ii iloo are not equivalent on 
C[0,1]. (See also Ex. 1.2.58 and Ex. 1.2.68.) 

Example 1.2.72. Let (X, d) be any metric space. We claim that there 
exists a bounded metric on X which is equivalent to d. 

One such is given by 5(x, y) := min{d(x, y), 11 for x, y E  X.  We 
verify only the triangle inequality, since other properties of a metric are 
obviously satisfied for 6. 

Let x, y, z E  X.  If d(x,y) < 1 and d(y, z) < 1, then observe that 
8(x, y) = d(x, y) and 6(y, z) = d(y, z). Hence 

5(x, z) 5. d(x, z) < d(x, y) + d(y, z) = .5(x , y) + 6(y,  z). 

We now assume that d(x, y) > 1. Then 

5(x , z) < 1 < 1 + (5(y , z) = (5(x, y) + (5(y , z). 

If d(y, z) > 1, we proceed in a similar fashion. 
Obviously, the metric 6 is bounded, that is, X is bounded in 5. For, 

X C B8(x,r) := {x' E  X:  5(x', x)  <r)  for any x  E X  and r > 1. 
Let U be d-open and x E U. Then there exists r > 0 such that 

Bd(x, r) C  U.  If this holds for r, then it holds for any 0 < E  < r so we 
may assume that 0  <r  < 1. In such a case, Bd(x, r) = B6(x, r) so that 
B6(x, r) C U. Therefore, U is 6-open. Exactly similar argument shows 
that if V is 6-open, then it is d-open. 

Ex. 1.2.73. Let  (X,  d) be a metric space and Y a set. Assume that 
ço: X ---* Y is a bijection. The we can transfer or transport the metric on 
X to Y in an obvious way: 

P(Yi, Y2) := d(xi, x2) where  Yi  = f (xi ), y2 = f (x2). 

Note that p is well-defined on Y. A concrete example is cp: [1, oo) ---+ (0,1] 
given by  p(x) =  1/x.  Thus we get a new metric on (0,1] by setting 

P(x,Y) = 
(0, 1]. 

Ex. 1.2.74. Let  f:  [0, co) ---* [0,  oc)  is a continuous function with the 
following properties: 

(a) f (t) -=-- 0 if t = 0. 
(b) f is nondecreasing:  1(x)  < f (y) if 0 < x < y. 
(c) f is subadditive: f (x + y) < f (x) +  1(y)  for all positive x, y. 

If d is a metric on a set X, then f 0 d is also a metric on  X.  The metrics d 
and f od are equivalent. In fact, the identity map is uniformly continuous 
from one metric space to the other. 

As a specific example, consider f (t) = 

1 _ 1 
X 	y . Show that p is equivalent to the standard metric on 
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Ex. 1.2.75 (Extended Real Line). Consider the function c,o: R 

(-1,1) given by (p(x) = 	 

(a) Show , that cp is a bijection with the inverse 0(y) := 

(b) Observe that 	(p(x) = 1 and 	(7o(x) = —1. (Thus, 

the lines y = +1 are horizontal asymptotes of the graph of cp.) 
(c) Let Re  :=  Tl  U {±oo}. We extend the map (10 to Re  by setting 

(P( 00 ) =  1 and (10( - 00) = —1. Then (p is a bijection of Re  with [-1, 1]. 
(d) Use the bijection to define a metric on Re• 
(e) Show that the metric on Re  induces a metric on R which is equiv-

alent to the standard metric. 

Most of what follows can be done in a setting more general than 

the metric spaces. To illustrate this, whenever possible, we indicate the 

concepts and the results that hold for a topological space. 

Definition 1.2.76 (Interior of a set). Let S C X be a subset of a 

metric space. We say that x E S is an interior point of S if there exists 

r > 0 such that B(x, r) C S. The set of interior points of S is denoted 

by 80 . See Figure 1.21. 

        

        

Bt 

A 
• 

   

A E S°  

B,C S° 

        

  

S = x > 0, y  >0  

   

P E S ° ,Q S°  

     

Figure 1.21: Interior of a set 

If (X,7) is a topological space, and A C X, a point x E A is said 
to be an interior point of A if there exists an open set U 9 x such that 
U c A. 

Thus, you may notice that the 'open ball' B(x,r) has been replaced 
by an open set containing x in the definition. 

If an exercise or a result holds for a topological space, then we for-
mulate them using the following convention: 

"Let X be a (metric) space. Then some result holds." 
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This means that the result is true for any topological space and you 
may assume that X is a metric space if you find it easier. See the next 
exercise. 

Ex. 1.2.77. Let X be a (metric) space. Prove the following: 
(a) A is open  if each of its points is an interior point, that is, A is 

open  if  A = A°. 
(h) For any set A, the set A° is the largest open set contained in A. 

Ex. 1.2.78. What is the interior of Q in R? What is the interior of 
(0,1j c R? What is the interior of the closed unit disk B[0,1] C R2 ? 

Ex. 1.2.79. Let A = [0,1) C R have the induced metric from R. Find 
BA (0, r) for any r > 0. Here BA(x,r) stands for the open ball in A 
centred at x and radius r with respect to the induced metric. 

Ex. 1.2.80. Let A = {(x,y) : x > 0,y > 0} be endowed with the 
induced metric as a subset of R2  with the Euclidean metric. Draw 
B(A4)(0, 1). (See Figure 1.22.) 

A = x > 0,y  > 0 

BA(0,1) 

1 1  

Figure 1.22: BA(0,1) is the shaded region 

Ex. 1.2.81. Let (X,d) be a metric space. Let A c X and a E A. 
Let BA(a,r) denote the open ball in A with the induced metric. Give a 
description of BA (a, r). See Figure 1.23. 

Definition 1.2.82 (Subspace Topology). Let Y be subset of a metric 
space. A subset A C Y is said to be open in Y if it is an open subset of 
the metric space (Y, d) where d is the induced metric on Y. 

Ex. 1.2.83. Show that A c Y is open in Y  if there exists an open set 
U in X such that A=  Y n U. 

Ex. 1.2.84. Let Y := {(x, y) E R2  : x > 0,y > 0} be the first quadrant 
in R2 . Let A := {(x, y) E Y : 0 < x < 1, 0 < y < 1 } . Is A open in Y? 
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Figure 1.23: BA(x, r) is the shaded region 

Ex. 1.2.85. Show that the collection 'Ty of all sets open in Y is a 
topology on Y, called the subspace topology. 

Now how do we define a subspace topology if Y is a subset of a 
topological space X? 

This exercise answers the question posed in Definition 1.2.82. 

Definition 1.2.86. Let Y c X be a subset of a topological space X. 
The subspace topology Ty is the collection {U nY:UE 7}. 

Ex. 1.2.87. Let X = R and Y = Z. Which subsets of Z are open in Z? 

Ex. 1.2.88. Let X be a (metric) space. Let Y c X be open in  X.  Then 
Z C Y is open in Y if Z is open in  X.  

The result is not true if Y is not open in  X.  

Closed Sets 

Definition 1.2.89. A subset F C X of a (metric) space is said to be 
closed if its complement X \ F is open in  X.  

Figure 1.24: A is closed but B is not 
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4 	  
0 	1 	3 	4 

Figure 1.25: [0,1] is closed but not [3,4) 

Example 1.2.90. Consider two sets A :=  [0,1]  and B :=  [3,4)  in R. 

See Figure 1.25. 
We claim that A is closed while B is not. Let x V A. Then either 

x < 0 or x > 1. Let r := lx1 or r = x — 1. Then (x — r, x + r) c A'. 

Let us now consider B. The point x = 4 B. But any open 'ball' 

centred at 4 is of the form (4 — E, 4 + E) which does intersect B. Hence 

the complement R \ B is not open and hence B is not closed. 

Ex. 1.2.91. Show that 0 and X are both open and closed in any (metric) 

space. 

Ex. 1.2.92. Any finite subset of a metric space is closed. 

Ex. 1.2.93. Let (X, d) be a discrete metric space. Find all closed sets 

in X. 

Ex. 1.2.94. Let X = R2  with the standard metric. Let A be the union 

of the x and y-axes, that is the set {(x, y) E R2  : xy = 0 } . Show that A 

is closed. 

Ex. 1.2.95. Let S l  := {(x, y) E R2  : x 2  + y2  = 1 } be the unit circle in 

R2 . Show that S I  is closed. 

Ex. 1.2.96. Is the set Q of rationals closed in R? How about the set of 
irrationals? 

Ex. 1.2.97. Show that the set (0, 1] is neither closed nor open in R. 

Hint: Which points do you think will give rise to problem when we try 
to prove that the set is open or its complement is open? 

Ex. 1.2.98. Give at least three 'distinct' subsets of R2  which are neither 
open nor closed. 

Ex. 1.2.99. Let X be a (metric) space. Show that arbitrary intersec-
tions of closed sets is closed and a finite union of closed sets is closed. 
Find "counterexamples" to obvious generalizations. 

Ex. 1.2.100. Let E be the xy-plane in R3 . Is it closed? More generally, 
if P is any plane, say, given by ax + by + cz = d, is it closed? (Geometric 
thinking is encouraged.) 
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Figure 1.26: Brx, r] is closed 

Ex. 1.2.101. Show that any closed ball B[x,r] in a metric space (X, d) 
is a closed set. (See Figure 1.26.) 

Ex. 1.2.102. Let a E X be a point in the metric space X and r > 0. 

Show that the set {x G X : d(x, a) = r} is closed in X. 

Ex. 1.2.103. Let A denote the sides along with the "inside" of the 
triangle whose vertices are at (-1, 0), (1,0)  and (0, 1). Show that A is 
closed. 

(-1,0) 	 (1,0) 

Figure 1.27: A is closed 

Ex. 1.2.104. If F is a closed subset Rn and x E RE, is x+F still closed? 
Can you generalize this question? 

Ex. 1.2.105. Show that in an NLS X, if F is closed and A is scalar, 
then AF is closed. 

Ex. 1.2.106. Show that there exist closed sets F and C in Rn such that 
their sum F + C is not closed. (Think geometrically in n = 2. Think 
of a curve with two parallel lines as asymptotes. Or, let F := {(x, y) G 
R2  : xy > 11 be the set of points (x, y) which lie on and above the 
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arm of the hyperbola xy = 1 in the first quadrant and C be the y-axis. 

Then F + C = {(x, y) : x > 0 } . (See Figures 1.28-1.29.) Can you also 

think of such an example using the tan function in (-7r/2, 7/2)? See 

also Ex. 2.5.7.) 

Figure 1.28: 	F and C in 	Figure 1.29: F + C in the 

Ex. 1.2.106 
	

Ex. 1.2.106 

Ex. 1.2.107. Since closed sets are defined as complements of open sets, 

it should be easy to find the counterpart of Theorem 1.2.51 (page 24) for 

the class of closed sets. Think over this and formulate such a result. 

The following is the counterpart of Theorem 1.2.51 for the class of 
closed sets. 

Theorem 1.2.108. Let e denote the class of closed sets in a (metric) 
space X. Then 

(i) ø,X  E  C.  
(ii) The intersection of an arbitrary family of closed sets is closed. 
(iii) The union of a finite family of closed sets is closed. 

Proof. The idea is to 'take complements' in the proof of Theorem 1.2.51 
(page 24). 

For instance, we shall prove (ii). Let {Fi  :  j e / } be a family of closed 
sets. Since Fi  is closed, its complement Ui  := X \ Fi  is open in X for 
each i E I. Hence, their union Uic it/i is open and hence its complement 

(UiE/Uir = niE/Ui  = ni E /Fi 

is closed. 	 LII  

Ex. 1.2.109. Let A be a nonempty subset of a metric space (X, d). 
Show that B c A is closed in A if there exists a closed set F of X such 
that B = F n A. (Compare this with Ex. 1.2.83.) 

Ex. 1.2.110. Show that {x E Q : —1 < x < 1} is open in Q but not 
closed in Q and that {x E  Q:  —/ < x < A is both open and closed 
in Q. 
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Convergence 

2.1 Convergent Sequences 

Definition 2.1.1. A sequence in a (metric) space X is a function x: N 
X. We exhibit the sequence x as (xn ) where xn  := x(n). 

Given a sequence x in a metric space, a subsequence is the restriction 
of x to an infinite subset  S c  N. If we exhibit  S as  n1  <n2  < • < nk < 
• • • , then we write the subsequence (x nk ). An easy but important and 
useful observation about the indices nk of the subsequence (xnk  ) is that 
nk > k for all k. For, n 1  > 1 and since n2 >  n 1 , it follows that n2  > 2. 
By induction, assume that nk > k. Since nk+i  > nk > k, it follows that 

rik+1 > k +1. 

x n  lies here for n> N 

Figure 2.1: Convergence of a sequence 

We say that a sequence (xn ) converges to x E X if given E > 0, 
there exists N E N such that for all n > N, we have x n  E B(x, E). See 
Figure 2.1. This is same as saying that for all n > N, d(x,x n ) < E. We 
then say that the sequence is convergent. The point x is called the limit 
of the sequence and denote it by x = limn,0,0 xn and also by x n  —4 x. 

How do we define a convergent sequence in an arbitrary topological 
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space X? We say that the sequence (x n ) in X converges to a point x E X 
if for any given open set U 9 x, 1  there exists N (which may depend on 
U) such that x n  E U for  n>  N. 

Ex. 2.1.2. Show that any subsequence of a convergent sequence con-
verges to the limit of the given sequence. 

Lemma 2.1.3. The limit of a sequence in a metric space is unique. 

Proof. What we are required to prove is this. If (x n ) is a sequence in X 
such that x n  x and xn  y, then x = y. 

Strategy: Assume x 0 y. Look at Figure 2.2 and use the Hausdorff 
property of X. Can we find an r > 0 such that B(x,r) and B(y,r) are 
disjoint? If possible, then for all large values of n, the terms xn  must lie 
in both the balls. That will be a required contradiction. 

If x 0 y, then 6 := d(x,y) > O. We choose r < 6/2 and consider the 
open balls B(x,r) and B(y,r). We claim that they are disjoint. For, if 
z E B(x,r)n B(y,r), then 

= d(x,y) < d(x,z) + d(z,y)  <r  + r < 

a contradiction. Now, since xn 	x, there exists n1 such that xn  E 
B(x, r) for all n > n1. Similarly, there exists n2 such that xn  E B(Y,r) 
for n > n2. In particular, for all n > max{n i , n2}, we see that xn 
B(x,r) n B(y,r). This contradicts the fact that  the balls are disjoint. 
So we conclude that x = y. 

Figure 2.2: Uniqueness of limit: Where will xn 's go? 

A standard proof runs as follows. Let e > 0 be given. Then there 
exists ni and n2  as above. Now if we choose n > max{ni, n2 } , then, we 
have 

d(x, y) _< d(x, x n ) + d(xn, y) < 26 . 

1 U D X  is  same as saying that x E U. 
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Since E is arbitrary, we conclude that d(x, y) = 0 and hence x = y. 

Why did we do the first proof? Because, it is more geometric and 

generalizes to a wider context. See the remark below. 

Remark 2.1.4. The last lemma is false in an arbitrary topological space. 

We do not stop to give an example of such a phenomenon. But we 

shall introduce a special class of topological spaces for which the lemma 

remains true. 

Definition 2.1.5. We say that a topological space X is Hausdorff if for 

any pair of distinct points x, y e X, we can find open sets U D x, V D y 

such that U n V = 0. 
Refer to Ex. 1.2.18 and Ex. 1.2.54. 

Ex. 2.1.6. Show that a sequence (x n ) in a metric space converges X to 

x E X if the sequence d(x„, x) converges to .... Complete the sentence 

and prove it. 

Ex. 2.1.7. Let xk = (xki, • • , xkn) G Rn . Show that (xk) converges to 

x = (x 1 , . . .  ,x)  E Rn if  x ki 	x i  as k 	oc for each i. Hint: An impor- 

tant observation is x j 1 < 11 x11 (1  <j  < n) for any x = (x 1 , 	,  x i,)  E Rn. 

Ex. 2.1.8. Let xk E Rn converge to x G Rn. Show that 11xk I -4 
1 x.  

Is the converse true? 

Ex. 2.1.9. Let xk 	x and yk  —4 y in Rn. Prove that xk + yk 	+ y 
and that (xk, Yk) 	(x, Y) • 

Ex. 2.1.10. Let X, Y be metric spaces. Let X x Y be endowed with 

the product metric. Show that a sequence (xn , yr,) EX X Y converges 

to (x, y) EX xY iff xn  x in X and yr, y in Y. 

Example 2.1.11. What does it mean to say that a sequence (fn ) in 
B(X) (with sup norm) is convergent with the induced metric cl„„(f, g) := 

I f — g!! oc? 
Let fn 	f in the metric doe . This means that, given E > 0, there 

exists N E N such that for all n>  N we have cloo (fn , f)  < E. Expanding 

this, we get supflf,(x) — f(x)1 : x E X} < E  for n > N. In particular, 

1f(x) — f(x)1  < E  for all x E X and n > N. Thus, we conclude that if 
fn  —4 f in do° , then fn  converges to f uniformly on X. 2  

The converse is also true. That is, if fn  E B(X) converge to an f E 
B (X) uniformly on  X,  then fn 	f in the metric. For, if E > 0 is given, 

2 We say that a sequence (fn.) of real (or complex) valued functions on a set E 
converge uniformly on E to a function f if for a given E > 0, there exists no  such that 
for all n > no we have 1 f (x) — fr,(x)1 < E for all x E E and n > no. 
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by the uniform convergence, we can find N such that I fa (x) - f (x)I < 
6/2 for all n > N and for all x E X. Taking the supremum of the 
inequality over x E  X,  we see that supfif,(x) - f(x)1 : x E X} < 6/2 < 
E, that is, II f7  - f  j  < for n > N. Thus, fa  f in the metric. 

In summary, a sequence fa  in (B (X), II M oo ) converges to f E B (X) 
if fn  converges to f uniformly on [0, 1]. For this reason, the sup norm 
is also called the uniform norm. 

Ex. 2.1.12. When does a sequence (fa) converge in (C[0, 1 1 ,  jLc)? 

Ex. 2.1.13. Let fa (x) := xn for x e [0, 1], for n G N. Show that the 
sequence (fa ) is convergent in (C[0, 1], 11 Il i ) whereas it is not convergent 
in (C[0,1], II 11 00 ). 

Ex. 2.1.14. Let (xn ) be a sequence in a discrete metric space. When 
does it converge? (Classify all convergent sequences in a discrete metric 
space.) 

Let X be a nonempty set. If we let 7 to be the family of all subsets 
of X, then 7 is a topology on X, called the discrete topology. The space 
(X, T) is then called a discrete space. Find all convergent' sequences in 
a discrete space. 

Ex. 2.1.15. Consider M(n,R) as an NLS as in Ex. 1.1.34. Then a 
sequence (Ak) in M(n, R) converges to A E M(n, R) if the matrix entries 
61 1:3  aji as k oc  for all i, j. 

Ex. 2.1.16. Let the notation be as above. Let Ak -+ A. Then A/2, —> A2 . 
Can you generalize this? 

Ex. 2.1.17. Let (Ak) be a sequence of invertible matrices in M(n, R) 
converging to an A e M(n,R). Is it necessary that A is invertible? 

Ex. 2.1.18. Let Ak G M(n,R) converge to A E M(n,R). Show that 
det(A k ) 	det A. Hint: Look at the case when n = 2. 

Ex. 2.1.19 (p-adic Metrics). (a) Let a prime number p be fixed. 
Given a nonzero x E Q, we can write it as x = pk -r-n-n  where k,m, n are 
integers with p dividing neither m nor n. We define  v(x) = k. We define 
the p-adic metric dp  as follows: 

dp (x,y) = 
{

o if x = y 

P
-vp(x-y) if y. 

Show that (Q, dp ) is a metric space. Hint: dp  satisfies a stronger form of 
the triangle inequality: 

dp (x, z) < max{dp (x, y), dp (y, z)}. 
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Show this by observing vp (a — b) > min{ vp (a), vp (b)} for a, b E Q, a 0, 
b 0 and a b 

(b) Let d be a metric on a set X. Assume that it satisfies the ultra-
metric inequality: 

d(x, z) < max{d(x , y), d(y , z)} 	 (2.1) 

Examples of such metrics are the p-adic metrics dp  and the metric in 

Ex. 1.1.28. Prove the following: 
(i) Equality holds in (2.1) whenever d(x, y) 	d(y, z). 
(ii) Any ball in  (X,  d) is both closed and open. 
(iii) Every point in a ball is the centre of the ball. 

(c) Show the sequence (pn) converges in (Q,.dp ) but not in (Q, d) where 
d is the restriction to Q of the absolute value metric on R. 

(d) What does it mean to say that a sequence of integers converge to 
0 in Q with the p-adic metric? 

(e) Show that the sequence (xn ) where x1 = 3, x2 = 33, x 3  = 333 and 
so on is convergent to —1/3 in (Q,11 5 ). 

2.2 Limit and Cluster Points 

Definition 2.2.1. Let X be a metric space. Let EC X. A point x E X 
is a limit point of E if for every r > 0, we have B(x,r) n E 0. See 
Figure 2.3. 

How do we extend the notion of a limit point to an arbitrary topo-
logical space? See Ex. 2.2.5 and Definition 2.2.6. 

Figure 2.3: Limit Points 

Ex. 2.2.2. Let E be a subset of a (metric) space. Show that any x E E 
is a limit point of E. 

Ex. 2.2.3. Find the limit points of (0, 1), (0,1] and [0,1] in R. 
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Ex. 2.2.4. Find the set of all limit points of Q in R. 

Ex. 2.2.5. Show that x is a limit point of E  if every open set containing 
x has nonempty intersection with E. 

Definition 2.2.6. Let E C X be a subset of a topological space X. A. 
point x E X is said to be a limit point of E if every nonempty open set 
that contains x contains a point of E. 

Ex. 2.2.7. Let X be a metric space and E C X. A point x is a limit 
point of E  if there exists a sequence (x n ) in E such that Xn —4  X. 

This result is false in an arbitrary topological space. It is true for 
a special class of topological spaces known as first countable T1  spaces, 
which we do not intend to define! In fact, the reader should analyze the 
proof and arrive at the conditions to be satisfied by a topological space 
so that the results continues to be true. 

The next theorem and its corollary offer an important method of 
proving that a set E of a metric space is closed. 

Theorem 2.2.8. A subset E of a metric space (X, d) is closed if E 
contains all its limit points. 

Proof. This is an easy exercise. The reader should attempt a proof on 
his own. 

Assume that E is closed. Let x be a limit point of E. If x G E, 
there is nothing to prove. If x 0 E, then the set U := X \ E is open 
and x E U. Therefore there exists an r > 0 such that the open ball 
B(x, r) C U. Hence, B(x, r) n E = O. This contradicts the assumption 
that x is a limit point of E. Therefore we conclude that the statement 
x 0 E is false. In other words, any limit point of E lies in E. 

Conversely, if E contains all its limit points, then we want to prove 
that E is closed. Consider U := X \E. We need to prove that U is open. 
If U is not open, it follows that there exists x E U such that for every 
r > 0, the open ball B(x, r) is not contained in U. That is, for every 
r > 0, there exists a point in the complement of U. Hence x is such that 
for every r > 0, the set B(x, r) n A O. That is, x is limit point of 
E and it is not in E. This contradicts our hypothesis that E contains 
all its limit points. Hence we conclude that U is open and hence E is 
closed. El 

The following is an immediate corollary of the theorem and Ex. 2.2.7. 

Corollary 2.2.9. A subset E of a metric space (X, d) is closed if the 
following holds: If (x n ) is a sequence in E converging to x G X, then 
x E E. 	 0 
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Example 2.2.10. Let C := C[0,1 ] be the set of real valued continuous 
functions on [0, 1], considered as a subset of B[0, 1] under the norm 11 IL. 
Then if f E B[0,1] is a limit point of C, then f E C. Hence C is closed 
in B[0, 1] by Theorem 2.2.8. Hint: This is a well-known result from real 
analysis in disguise. See Theorem 6.1.7. 

Ex. 2.2.11. Let E C R be a nonempty bounded and closed subset. 
Show that sup E, inf E E E. 

Ex. 2.2.12. Show that the only nonempty subset of IR which is both 
open and closed in R is R. Hint: If A is a nonempty subset of R which 
is both open and closed, let x E A. Then (x — E , X + E) C A for some 
E > O. Let 0 := sup{b : (x — E , b) C A, b > x} . Why cannot 0 be finite? 
If 0 were finite, conclude that 0 E A. 

Ex. 2.2.13. Let E be a subset of a metric space with the following 
property: If a sequence (xn ) in X converges to a point x E E, then there 
exists N E N, such that x„ G E for all n > N. Show that E is open. 

Ex. 2.2.14. Show that the diagonal {(x, x) : x E XI is closed in the 
product metric space X x X. 

Ex. 2.2.15. If A is a nonempty bounded subset of R, then its supremum 
and infimum are limit points of A. 

Definition 2.2.16 (Closure of a set). Let (X , d) be a metric space 
and A C X. Let lim(A) denote the set of all limit points of A. Thus 

lim(A) := {y  E X:  For every r > 0, the set B(y, r) n A 0}. 

Ex. 2.2.17. Show that lim(A) is the smallest closed set containing A. 
The standard notation for lim(A) is A. It is usually called the closure of 
A. 

The last exercise allows us to define the closure of a set in a topolog-
ical space. 

Definition 2.2.18. Let A be a subset of a topological space. Then the 
closure A of A in X is the smallest closed set that contains A. (Why 
does this make sense? How do we know that there exists the smallest 
closed set containing A?) 

Ex. 2.2.19. Show that  in  a metric space B(x,r) c B[x,r]. Give an 
example to show that B(x, r) can be a proper subset of B[x, r]. 

Ex. 2.2.20. In Rn, show that B(x,r) = B[x,r]. Extend the result to 
normed linear spacess. 
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Ex. 2.2.21. Find the closures of the following subsets of R: (a) Q, (b) 
Z, (c) (-1, 0)  U N  and (d)  (0,1)  U [3, 4]. 

Ex. 2.2.22. Investigate the relation between the closures of the sets 
A U B, A n B, A  c B and the sets A, B in an arbitrary (metric) space. 

Definition 2.2.23. We say that x is a cluster or an accumulation point 
of a set E if for each r > 0, the set B(x, r) n E contains a point other 
than x. 

If we let B' (x , r) := B (x , r) \ {x} , then B'(x, r) is called a deleted 
neighbourhood of x. Thus, x is a cluster point of E if every deleted 
neighbourhood of x contains a point of E. 

Almost all text-books refer to these points also as limit points. How-
ever in this book, we shall distinguish between limit points and cluster 
points. 

We shall give an analogy of cluster points in real life. If a celebrity, 
say, Amitabh Bachchan or Sachin Tendulkar attends a party in India, 
then in any vicinity around him, you will always find some other member 
of the party! If you or I were there in a party, it might happen that we 
may be sitting in a corner and in our vicinity there are no other members 
of the party. Thus, they are cluster points of the set of India people, 
though they may not be, say, among some tribal people in Africa! 

Ex. 2.2.24. Show that every point Z C R is limit point of Z while Z 
has no cluster point. 

What are the cluster points of Q in R? 

Ex. 2.2.25. Let A := {1/n : n E N} c R. Show that 0 is the only 
cluster point of A. 

Ex. 2.2.26. Show that every point of a nonempty open set U in Rn is 
a cluster point of U. 

Ex. 2.2.27. Let A c R". Then x E HU' is a cluster point of A if every 
open set containing x contains infinitely many points of A. 

Theorem 2.2.28 (Bolzano Weierstrass Theorem). Let A be an 
infinite bounded subset of IR. Then there is a cluster point of A in R. 

Proof. Let E := {x E  JR  : x  <a for infinitely many a E A}. Let M E R 
be such that —M < a < M for all a E A. It is obvious that —M E E. We 
can easily show that E is bounded by M. Hence there exists f E R such 
that = sup E. We claim that is a cluster point of E. That is, we need 
to show that for any given E > 0 there exists a point a E (f — E, P+ E) n A 
other than itself. 
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Since — E is not an upper bound for E there is an x E E such 

that f—  e  < X. Since x E E there exist infinitely many elements a E A 

such that x < a. Hence there exist infinitely many elements a E A such 

that — E < a. Also for infinitely many such a we have a < f + E. 

For, otherwise, except for finitely many such elements of A for all other 

a E A we have a > f+ E. But then f+ E E E. This contradicts the 

fact that f = sup E. Thus there exist infinitely many a E A such that 

L —E .  <a< f+ E. In particular there is at least one a E An — e,f+e) 
which is different from L.  

Remark 2.2.29. The version of Bolzano-Weierstrass in terms of se-

quences is: Any bounded sequence of reals has a convergent subsequence 
follows from Theorem 2.2.28. If the image of the sequence is finite then 
there exists an x E R such that x = xn  for infinitely many n E N. These 
n's give rise to a subsequence which converges to x. If the image of the 
sequence is infinite then it is a bounded infinite subset of R. Let x be 
a cluster point of this set. Let xnk  E (x — 1/k, x 1/k) be an element 
of the sequence chosen inductively so that xn,±i  {xn , , ..• , x nk }. The 
subsequence (x n,) then converges to x. 

Ex. 2.2.30. Extend the last two exercises to W. Can one extend these 
to an arbitrary NLS? 

Ex. 2.2.31. Let F be a finite subset of a (metric) space. What are its 
cluster points? 

2.3 Cauchy Sequences and Completeness 

Definition 2.3.1. A sequence (x,) in a metric space is called a Cauchy 
sequence if for any given e>  0, we can find N E N such that whenever 
m>  N and n>  N, we have d(x m , xn )  < e.  

Ex. 2.3.2. Show that any convergent sequence in a metric space is 
Cauchy. The converse is not true. Hint: Let (x ri ) converge to x. Given 

> 0, choose N such that d(x,„ x) < E for n > N. What can you say 
about d(x m , xn ) if m, n > N? 

Ex. 2.3.3. What are the Cauchy sequences in a discrete metric space? 

Example 2.3.4. Let X be any nonempty set. Let us consider the 
normed linear space B(X) of all bounded real valued functions on X 
under the sup norm IL•  We claim that a sequence (fa ) E B(X) is 
Cauchy if it is uniformly Cauchy. 
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First of all, let us recall the definition of a uniformly Cauchy sequence 
of functions on X. We say that a sequence fn  : X —+ IR is uniformly 

Cauchy if for a given E > 0, there exists N E N with the following 
property: 

If(x) - f m (X)I  <E  for all x  E X  and for all m, n > N. 

Let us assume that (fa ) is Cauchy in B(X). Let E > 0 be given. Since 
(fa ) is Cauchy in the NLS, there exists N E N such that ii fm — fniloo < E  
for m,  n>  N. Unwinding the definition of the norm, we see that 

sup{ 1 frn (x) — f n (x)1: x E X} < E,  for m, n > N. 

In particular, for all x E  X,  we have 

I fin (i) — fn (x)1  < E,  for m, n > N. 	 (2.2) 

Thus (fn ) is uniformly Cauchy on  X.  The proof of the converse is left 
to the reader. 	 I: 

Ex. 2.3.5. Show that any Cauchy sequence in a metric space is bounded, 
that is, if (x n ) is Cauchy in a metric space (X,  d), then xn  lies in an open 
ball B(x, r) for all n. Hint: Apply the definition for E = 1 to find N. 
Except for finitely many, all xn  E B(xN, 1). 

The next proposition lists some of the most often used facts about 
Cauchy sequences. It is in fact a compilation of the facts enunciated in 
the exercises above. 

Proposition 2.3.6. Let (X, d) be a metric space. 
1. Any convergent sequence in (X, d) is Cauchy. The converse is not 

true. 
2. Any Cauchy sequence (x n ) in X is bounded, that is, all xn  E B(x,r) 

for some x E X and  r>  O. 
3. A Cauchy sequence is convergent if it has a convergent subsequence. 

Proof. You must have already proved the results. If not, go ahead and 
prove them on your own. 

Proof of 1. Let (x n ) be Cauchy in X. Let E > 0 be given. We need 
to find N such that if m,  n>  N then d(x n , x i,n )  < E. We are given that 
(x n ) is convergent. Let x n  —* x. Draw an open ball B(x,E/2). For all 
n sufficiently large, xn  E B(x,E/2). Hence for such m, n we expect that 
d(x 7n , xn ) < 2E . (See Figure 2.4.) We turn this idea into a proof. Let 
N be such that d(x n , x) < E/2. Then for m, n > N, we have 

d(x n , xm ) < d(xn , x) + d(x , x 7n ) < E 12 + E 12 = E . 
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Figure 2.4: Convergent sequences are Cauchy 

The converse is not true. For, if we take (0,1) with the standard 
metric, then the sequence (1/n) is Cauchy. Given E > 0, choose N > lle. 
Then, for all n > m > N, 

11/n — 1/m1 = 

 

n — m n < 	= 1/m < 1/N < E. 
— nm 

 

nm 

 

     

But the sequence does not converge to any point in (0, 1). For, if x E 
(0,1) is the limit of (1/n), choose (using the Archimedean property of Ilk) 
a natural number N E N such that 1/N < x. We select E := X - 1/N > 
0. For this value of e, the convergence of 1/n —, x implies that there 
exists no such that for all n > no, we have lx — 1/n1 < e. If we choose 
n > max{2N, no}, we find that 

1 
x — —

n 
> > , 

      

a contradiction. We therefore conclude that the Cauchy sequence (1/n) 
is not convergent in (0, 1). 

Proof of 2. Let us take E = 1. Since (xn ) is Cauchy, there exists N 
such that d(x, x rn ) < 1 for n, m > N. In particular, xn  E B(xN, 1) for 
all n > N. Let 

R > max{d(xi,xN), • • • ,d(xN-1,xN),11. 

Then x n  e B(x, R) for all n E N. 
Proof of 3. If the given Cauchy sequence (x n ) is convergent, we can 

take it as the convergent subsequence. Let us prove the converse. Let 
(x n ) be Cauchy in X and assume that (x„,) is a convergent subsequence, 
converging to x E X. We claim that xn  —> x. 

Let E > 0 be given. Choose N1 such that d(x,,x n ) < 612 for m,n > 
N1 . Choose k1 such that if k >  k1, then d(x, x n,) < E/2. Observe that 
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nk > k. (For, 1 < n i  < n2  implies n2 > 2. By induction, we see that 
nk > k.) Let N := max{Ni,  k 1 }. Then for any n > N, we have 

d(x n , x) < d(xn, xn k ) ± d(xnk , x) < 612 + 6/2 = 6, 

where we have chosen a k such that k >  N. 	 D 

Remark 2.3.7. Many students cannot write a careful proof of (3) of the 
Proposition. A beginner is advised to go through the proof once again. 
The trick of inserting nk in the last inequality is an instance of what we 
call the 'curry leaves trick'. More on this can be found in Remark 6.1.2. 

Definition 2.3.8. A metric space (X, d) is said to be complete if every 
Cauchy sequence in X converges to an element in X. 

We say that a metric d is complete if the metric space (X, d) is 
complete. 

Ex. 2.3.9. Show that the sequence (x n ) given by x n  = 1/n is a Cauchy 
sequence in (0,1) (with the metric induced from that on R) but is not 
convergent in (0, 1). Hence conclude that (0,1) is not complete with 
respect to this metric. 

Ex. 2.3.10. Show that any discrete metric space is complete. 

Ex. 2.3.11. Let D := {(x,y) Ele : X 2  + y2  < 1 } . Is D complete? 

Theorem 2.3.12 (Completeness of R).  JR  is complete. 

Proof. This proof imitates that of Theorem 2.2.28. 
Let (x n ) be a Cauchy sequence in R. Let 8 > 0 be arbitrary. There 

exists a positive integer N = N(6) such that for all m > N and n > N,  
we have I x n  — x nd < 6/2. In particular we have Ixn  — xNI < 6/2. Or, 
equivalently, 

xn  E (xN — 6/2, xN  +6/2) 	for all n > N. 

From this we make the following observations: 
(i) For all n > N, we have xn  > xN — 6/2. 
(ii) If xn  > xN + 6/2, then n G  {1,  2, ... , N — 1 } . Thus the set of n 

such that x n, > x N + 6/2 is finite. 
We shall apply these two observations below for 6 = 1 and  8  = e. 
Let S := Ix E  R: there exists infinitely many n such that x n  > x}. 

We claim that S is nonempty, bounded above and that sup S is the limit 
of the given sequence. 

From (i), we see that xN — 1 E S. Hence S is nonempty. 
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From (ii) it follows that xN + 1 is an upper bound for S. That is, 
we claim that y < xN + 1 for all y e S. If this were not true, then there 

exists ayES such that y > xN + 1 and such that x n  > y for infinitely 

many n. This implies that x n  > xN + 1 for infinitely many n. This 

contradicts (ii). Hence we conclude that xN + 1 is an upper bound for 

S. 
By the LUB axiom, there exists f E R which is sup S. We claim 

that lirn xn  =  L.  Let E > 0 be given. As f is an upper bound for S and 
xN — E/2 E S (by (i)) we infer that xN — E/2 <  L.  Since f is the least 

upper bound for S and xN + E/2 is an upper bound for S (from (ii)) we 

see that f < x N + E/2. Thus we have xN — E/2  < L  < x N + E/2 or 

IxN —  

For  n>  N we have 

Ixn — el  < lxn — xNI + IxN — el 
< E/2 + E/2 = E. 

We have thus shown that limn.co  xn =  L. 	 D 

Theorem 2.3.13. Rn  is complete. 

Proof. Observe that a sequence (xk) is Cauchy in Rn if  the coordinate 
sequences (xk 3 ) 1  is Cauchy in R. Use the completeness of R to com-
plete the proof. 

Ex. 2.3.14. The notation is as in Ex. 1.2.73. Show that (0, 1] is complete 
with respect to p while it is not complete with respect to the standard 
metric. 

Ex. 2.3.15. Show that the metric space C with the metric d(z,w) := 
lz — wi is complete. 

Ex. 2.3.16. The notation is as in Ex. 1.2.72. Show that (X, d) is 
complete if  (X, (5) is complete. 

Example 2.3.17. The notation is as in Ex. 2.1.19. We claim that 
(Q, dp ) is not complete. We shall prove this in the case when p = 5. 
(Recall that the symbol a b(c) for integers means that the difference 
a — b is divisible by c.) We construct a sequence (x,i ) recursively with 
the following properties: (i)  X  1 (5') and (ii)  xi  xr,(5n). Let 
x i  = 2. Assume that we have already chosen xk, 1 < k < n. Let 
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xn+i = x n  + a5n for some a E Z to be determined. Our requirement is 
that xn2 +1  + 1 E (5'1+ 1 ), that is, 

4 + 1 + 2xna5n  + a2 52n a  0(5n+1) .  

Since 4  + 1 -a-- 0(5n), we need only find a E Z such that 2xna + b 0(5), 

where b = 	1  . Since 5 does not divide 2xn  (why?), such an a E Z 
exists. The sequence (x n ) is Cauchy, since xn  E x,„(5m) for any in  < n. 
But it is not convergent. For, if c E Q is the limit of the sequence (xn,), 
then 4+1  —* c2 +1. On the other hand, by our construction,  4 +1 --* 0. 
Hence we conclude that c2  + 1 = 0, which is impossible as c E Q. 

Ex. 2.3.18. Let X be any metric space. Assume that (xn ) and (yn ) are 
Cauchy sequences in  X.  Show that (d(x n , yn )) is convergent in IR. 

Remark 2.3.19. The concept of Cauchy sequences does not exist in an 
arbitrary topological space. 

2.4 Bounded Sets 

Definition 2.4.1. We define A to be bounded in (X, d) if there exists 
xo E X and  R>  0 such that A c  B (xo, R). See Figure 2.5. 

Ex. 2.4.2. Show that a subset A of a metric space (X, d) is bounded 
if  for every x E X there exists r > 0 such that A C B (x , r). (See 
Figure 2.6.) 

Figure 2.5: Bounded set 
	

Figure 2.6: Illustration for Exer- 
cise 2.4.2 

Ex. 2.4.3. In an NLS, A is bounded if there exists M > 0 such that 

li v il < M for all v E A. 

Ex. 2.4.4. Show that the union of a finite number of bounded sets in a 
metric space is bounded. 



2.4. BOUNDED SETS 	 49 

Definition 2.4.5. Let A be a nonempty subset of a metric space (X, d). 
The diameter diam (A) of A is defined by 

diam (A) := sup{d(x, y) : x, y G A}, 

in the extended real number system. 

Ex. 2.4.6. Show that a subset A is bounded if either it is empty or its 

diameter diam (A) is finite. (This is the standard definition of a bounded 

set in a metric space.) 

Ex. 2.4.7. Show that the diameter diam (B(x,r)) < 2r and that the 

strict inequality can occur. 

Ex. 2.4.8. Show that diam (B(x, r)) = 2r for any ball in an NLS. Hint: 
You may work with Rn and with the ball B(0, r). Note that x E B(0, r) 
if  —x E B(0,r). 

Ex. 2.4.9. Let (x)-be a convergent sequence in a metric space (X, d). 
Show that the set {xn } is bounded. More generally, if (x n ) is Cauchy in 
X, show that the set {xn } is bounded in (X, d). 

Ex. 2.4.10. Let (X, Il  II) be an NLS. Show that A c X is bounded if  
there exists M > 0 such that  l xii  < M  for all x E A. 

Ex. 2.4.11. Which vector subspaces of an NLS are bounded subsets? 

Ex. 2.4.12. Show that the set 0(n) of all orthogonal matrices (that is, 
the set, of matrices satisfying AA' = I = At A) is a bounded subset of 
M(n,R). Here M(n, R) is considered as an NLS as in Ex. 1.1.34. 

Ex. 2.4.13. Show that the set SL(n,R) of all n x n real matrices 
with determinant 1 is not bounded in M(n, R). (The metric is as in 
Ex. 1.1.34.) 

Ex. 2.4.14. Let G be a subgroup of the multiplicative group C* of the 
non-zero complex numbers. Assume that as a subset of C it is bounded. 
Show that WI = 1 for all g E G. 

Ex. 2.4.15. Consider R with the standard metric d and the metric 
6(x, y) := min{d(x, y), 1}. Then (R, 6) is bounded while (R, d) is not. 

Remark 2.4.16. The moral of the last example is that `boundedness' 
is metric specific. R with the standard metric is unbounded while with 
respect to 8  := min{ 1, d}, it is bounded. However the topologies induced 
by d and 6 are the same. 

Remark 2.4.17. There is no concept of bounded sets in an arbitrary 
topological space. 
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2.5 Dense Sets 

Definition 2.5.1. We say a subset D C X of a metric space is dense in 
X if for any given x E X and > 0,  we have B(x,r) n D 0. In other 
words, any n°on-empty open set in X must contain a point of D. 

A subset D C X of a topological space is dense in X if for every 

nonempty open set U c X, we have D n U 0, that is U intersects D 
non-trivially. 

A real life analogy will be useful. Imagine a lake with an abundant 
supply of fish. Then when you throw a net, however small, into the lake, 
the net will trap a fish. Then we say that the fish is dense in the lake. 

Figure 2.7: Dense set 
	

Figure 2.8: Not dense 

Another example would be the set of people with tonsured head in 
Tirupati Balaji temple. In any 'small neighbourhood' of devotees in the 
temple, you will always find one with a tonsured head. (Do not stretch 
the real life examples too far!) 

Ex. 2.5.2. Show that Q is dense in R. Is R \ Q dense in R? 
Can you think of a countable dense subset in R2 ? in IV? 

Example 2.5.3. We now show that there exists a countable subset of 
the space £2 of Example 1.1.38 which is dense. If you have shown that 
Qn is dense in Rn, a natural guess could be to think of sequences with 
rational terms only. But the set of all such sequences is QN , that is, 
the set of all functions from N to Q which is uncountable. Why? There 
is one-one map of the set of functions from N to the two element set 
{0, 1} into the set of all functions from N to Q. The former is in bijective 
correspondence with the set of all subsets of N. Cantor's theorem says 
that there could be no onto map from a set X to its power set, that is, 
the set of its subsets. Hence it follows that QN is uncountable. It is 
quite feasible that QN n £2  is uncountable. For instance, consider the set 

H 	2-n] n  Q) c  

nEN 

So we modify our guess. We consider the set Dn  of all sequences x = 
(x 7n ) whose terms are rational and xk = 0 for k > n. Let D := UnENDn• 
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Each D„ is obviously bijective with Qn and hence is countable. Thus D, 

being a countable union of countable sets, is itself countable. 

We claim that D is dense in £2. We need to show that given any 

x E £2 and 6 > 0, we can find y E D such that 11x — 02 < 6' Since 

x E £2, there exists N E N such that the tail EoeN+1 1xn 1 2  < 62 /2. Con-

sider y := (xi, ... , xN) E RN . Since QN  is dense in RN, there exists 

r = (71, ... , rN) E 0N  such that 1 y — r 1 22  < 6-2 /2. If we now define a 

sequence y such that yk = rk, 1 < k < N and yk = 0 for k > N, then 

y E £2. Further we have 

II x - Y g ----- 
00 

_rk 12+ E 
N+1 

Xk 1
2 

< E
2
/ 2  ± 62 / 2  = E2.  

 

k=1 

 

Therefore, D is a countable dense subset of £2. 

Ex. 2.5.4. Show that D C X is dense in the metric space (X, d) if 

every point of X is a limit point of D. 

Ex. 2.5.5. Show that D C X is dense in the (metric) space X if its 

closure D =  X.  (This is the standard definition.) 

Lemma 2.5.6. Let S := {n + mi.  : n, m E Z } . Let a,b E R be such 

that a < b. Then there exists an s E S such that a < s < b. In other 

words, S is dense in R. 

Proof If x, y E S and k E Z, then x±y, kx E S. Let n(m) := [mV-2-] , the 

greatest integer less than or equal to 772-V. Then, 0 < ni'l— n(m) < 1. 
It is easy to see that if n + m\/".  = n' + m'Na then n = n' and 

m = m'. 
Let s„ := m,.\/ — n(m). Then 0 < s, < 1 and s in  E S. Also, if 

m m', then sin  sin,. Hence we conclude that {s in  : m E Z }  is an 
infinite subset of S n [0, 1). 

Given E > 0, we partition [0,1) into k equal parts so that each subin-
terval has length less than E. At least one of these subintervals must 
contain two distinct elements, say, s in , sm, of S n [0, 1). Without loss of 
generality let us assume that 5, < sm ,. Then we have 0 < s„, — 5,  < E. 

Since s in, — s in  G S, we have shown that given E > 0, there exists an 
element s E S with 0 < s  < E. 

Now, let E > 0 such that b— a > e be given. Then there exists n E Z 
such that a < n6 < b. For, choose n to be the least integer k such that 
kE > a. Then (n — 1)6  <a < ne. We claim that ne < b. For, otherwise, 

a contradiction. 
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We take E := (to — a)/2. Then there exists s E S such that 0 < s  < E. 
Hence there exists an integer n such that a < ns < b. Since ns E  S,  the 
theorem is proved. El 

Ex. 2.5.7. Deduce from the foregoing lemma that the sum of two closed 
sets in R need not be closed. 

Ex. 2.5.8. Does there exist a finite set which is dense in R? What can 
you say about a metric space in which a finite set is dense? 

Ex. 2.5.9. What are the dense subsets of a discrete (metric) space? 

Ex. 2.5.10. Let  (X, d)  be a metric space. Assume that the only dense 
subset is X itself. Can you say something about the topology, that is, 
the family of open sets? 

Ex. 2.5.11. Let A, B be two dense subsets of a (metric) space? Is A U B 
dense? Is A n B dense? 

Ex. 2.5.12. If A, B are open dense subsets of a (metric) space X,  is 
their intersection dense? 

Ex. 2.5.13. Give an example of a proper open dense subset of R. 

Ex. 2.5.14. We know (from Lemma 1.2.40) that if U is an open subset 
of R, then it is the union of a countable numbers of open intervals, say, 

{ ,/n } . (It is possible that ,In  = 0!) We define the "length" of U as the 
sum Er7 1  fpn ). Given an example of an open dense set of finite length. 

Ex. 2.5.15 (Weierstrass Approximation Theorem). The theorem 
states: Given any continuous function f:  [0, 1] -4  R and given e > 0, 
there exists a polynomial p(x) such that I f(x) — p(x), < e for all x E 

[0, 1 ] . Interpret this result using the concepts learnt so far. 
We do not give a proof of this result. There are many proofs available 

and we refer the reader to [3] (page 143) or [4] (page 159) for elementary 
proofs. 

2.6 Basis 

Ex. 1.2.46 shows that in a metric space (X, d),  a set U is open if it is 
the union of a family of open balls. In fact, we can improve upon this. 
Consider the collection 

li := {B(x,1In): x E X, n E N}. 

Then a set U C X is open if it is the union of members of B. This 
collection has the following properties: 



2.7. BOUNDARY OF A SET 	 53 

(i) X is the union of members of B. 
(ii) Given B1, B2 E  B,  their intersection B 1  fl B2 is the union of a class 

of members of B. 
All of what we want to do with the topology, that is, the class of open 

sets can be done with B. For instance, x is a limit point of a set E if 
for every n E N, B(x,l/n) n E 0. Similarly, cluster points and other 
concepts that will be introduced later can be formulated using elements 
of D. The advantage of this is that we need to check whatever we want 

to check only for a smaller class of open balls. 
When X = R, we can even take a smaller family which is countable: 

{(r — 1/n,r + 1/n) : r E Q,n E N}. 

A set in R is open if it is the union of a family of members from this 
class. 

These examples suggest that it may be expedient to make the follow-
ing definition. 

Definition 2.6.1. Let X be a (metric) space. We say that a family of 
open sets B := {B, :  j E / } indexed by an indexing set I is a basis for 
the topology on X if it satisfies the condition: 

Any open set in X is the union of some collection of members of B. 

Ex. 2.6.2. Let X be (metric) space and D c X. Let D be a basis for 
the topology on X. Then D is dense in X if DnB 0 for every B E 

In the sequel, we shall indicate whenever possible how to make use 
of this concept. 

Ex. 2.6.3. Let X,Y be metric spaces. Consider the family of open sets 
of the form {B(x, e) X B (y, E) : (x, y) E X x Y, E > 01. Show that this is 
a basis for the topology induced by the product metric on X x Y. 

2.7 Boundary of a Set 

Definition 2.7.1. Let X be a (metric) space and A c X. A point 
x E X is said to be a boundary point of A in X if every open set that 
contains x intersects both A and X \ A non-trivially. The boundary of 
A in X is the set of boundary points of A in X. We denote it by 0A. 

Example 2.7.2. Let us consider the following sets: 
1. A 1  = (a, I)]. 
2. A2 = R \ {0}. 
3. A3 is the subset of R2  given by 

{x2  + y2  < 1,y > 0 } U {-1 < x < 1,y = 0 } U {x2 y2 = 1,y < 0 } . 
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4. A4 --:---- { (XI Y) : X 2  + y2  = 1}. 
The boundary points of (a, b] are a and b. The only boundary point 

of A2 is 0. The set of boundary points of A3  is  

{(x, y) : X 2  + y2  = 1} U {(x, y) : —1 < x < 1, y = 0}. 

The set of boundary points of A4 is the set itself. 
See Figures 2.9-2.12 and identify the boundary points. 

4 	 

   

R \ {0} 

   

d 	a 	c b 
	 C 	0 d 

Figure 2.9: Boundary points of Figure 2.10: Boundary points of 

(a, b.] 	 R \ {0} 

Figure 2.11: Boundary points of Figure 2.12: Boundary points of 
A3 	 X2  ± y2  = 1 

Ex. 2.7.3. Let X = R and A = (0, 1]. Show that aA = 0,11. 

Ex. 2.7.4. Consider A = R x {0} c R2 . What is the boundary of A in 
R2 ? 

Ex. 2.7.5. Show that the boundary of an open or closed ball in DV is 
the sphere: 8/3(x, r) = aB[x,r] = S(x,r) := ly E Rn : d(x,y) = 7'1. Is 
this true in an NLS? in an arbitrary metric space? 

Ex. 2.7.6. Let B be an open ball in RV. Find the boundary of B minus 
a finite number of points. 

Ex. 2.7.7. Let A := {Z E C : Z = reit , r E [0, 1], t E (0, 27r)}. (Draw a 
picture.) Find the boundary of A. 
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Ex. 2.7.8. Let A be subset of a (metric) space. Show that 0A = 71\ A ° . 
(This is the standard definition of the boundary of a set.) 

Ex. 2.7.9. Let A be subset of a (metric) space. Is 0A = 0(X \ A)? 



Chapter 3 

Continuity 

3.1 Continuous Functions 

Definition 3.1.1. Let (X, d) and (Y, d) be metric spaces. A function 
f :  X --* Y is said to be continuous at x E X  if  for every sequence (xn) 
in X converging to x, we have f (xn) -4  f (x). 

We say that f is continuous on a subset A C X if f is continuous at 
each a E A. 

Figure 3.1: Continuity of f at x 

Ex. 3.1.2. Show that any constant map from a metric space to another 
is continuous. 

Ex. 3.1.3. Show that the identity map x 1—> x is continuous from a 
metric space (X,  d) to itself. 

Ex. 3.1.4. Show that the map x 1—> x2  from R to itself is continuous. 

Example 3.1.5. We show that the maps R2  —4 R given by a: (x, y) 1—> 
x + y and p.: (x, y) 1-4 xy are continuous. 

56 
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Let (x, y) E R2  be arbitrary. We show that a is continuous at (x, y). 

Let (xn, Yn) (x , y). By Ex. 2.1.7, xn  x and yn  y4 By the standard 

result on algebra of limits of sequences in R (see also Ex. 2.1.9), it follows 

that xn +yn  x +y . That is, a(xn , yn ) a(x , y). Hence a is continuous 

at (x, y). 
A similar argument proves the continuity of on R2 . 

Ex. 3.1.6. Show that the projection maps pi : Rn 	R given by pz (x) = 

x i  where x = (x1, . , xn ) is continuous. 

Ex. 3.1.7. Let (X , d) and (Y, d) be metric spaces. Let us equip X x Y 

with the product metric. Let px and py denote the projection of X x Y 

to X, respectively to Y given by px (x, y) = x, respectively py (x, y) = y. 

Show th4 px and py are continuous. 

Ex. 3.1.8. Let the notation be as above. Fix yo E Y. Let ix denote 

the inclusion x 	(x, yo). Show that ix is continuous. 

Theorem 3.1.9 (Space of Continuous Functions). Let (X,d) be a 

metric space. Let x E X. 
(i) If  f, g:  X 	R are continuous at x, then so are f + g, f g,af , for 

any a E R. Consequently, the set of functions continuous at x form a 

real vector space. 
(ii) Let C(X,R) denote the set of all real valued continuous functions 

on X. Then they form 	. a vector space over R under the obvious opera- 

tions. 
(iii) If f : X 	RI is continuous at x E X and if f (x) 	0, then there 

exists r > 0 such that f(x') 	0 for all x' E B(x,r) and the function 
g(x') := 11 f (xl) from B(x,r) to R is continuous at x. 

Analogous results hold if we replace R by C. 

Proof Let x i, 	x. Then (f + g)(xn ) --= f (xn) + g(xn ). We are given 
that  f(x) --0 f(x) and g(x n ) --0 g(x). From the algebra of limits of 
sequences, it follows that f (x n ) + g(xn ) f (x) + g(x) = (f + g)(x). 
This proves the continuity of f + g at x. 

The other statements are proved similarly. 

Remark 3.1.10. Do you appreciate the ease with which you proved 
these results thanks to our definition of continuity? The core of the 
argument falls upon established facts on convergent sequences in R or in 
C! 

Ex. 3.1.11. Use Ex. 3.1.6 and Theorem 3.1.9 to conclude that any 
polynomial function p(xi,... , x n ) in the variables xl, , x n  will be con-
tinuous. (Give examples of such functions!) 
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Ex. 3.1.12. Consider M(2, R). Let f(A) = det(A). Show that f is a 
continuous function. Hint: Ex. 3.1.11. 

Can you think of a generalization? 

Ex. 3.1.13. Fix x E  X.  Show that the function fx  defined by fx (y) := 
d(x, y) is continuous. 

Ex. 3.1.14. Find a continuous function f:  C* ---. S l  := lz E C: izi = 
11 such that f (z) = z for z E S l . 

Ex. 3.1.15. Show that the conjugation map Z 1-4  .'- is continuous on C. 

Proposition 3.1.16. Composite of continuous functions is continuous: 
Let X ,Y, Z be metric spaces. Let f:  X -- Y be continuous at x E X 
and  g:  Y --* Z be continuous at y = f (x). Then the composite map 
gof: X --* Z is continuous at x  EX  

Proof. This is easy. 
Let xn  --- x. Then yn  := f (x n ) -- y = f (x) by the continuity of f at 

x.  Since g is continuous at y, it follows that g(yn ) ---* g(y) or what is the 
same, g ( f (x n )) --- g(f (x)). CI 

Ex. 3.1.17. In this exercise, the product sets are given the product 
metrics. 

Show that the following maps are continuous: 
(1) the vector addition map Ilin x Rn --- Rn given by(x, y) f---4 x + y. 
(2) the scalar multiplication map R x RI' -- Rn given by (a, x) 1—+ ax. 
(3) the inner product map Rn x Rn -- TR given by (x, y) i-- (x, y). 

Ex. 3.1.18. Let f , g : X  —p  Ili be continuous functions on a metric space 
X.  Show that the map cio: X -- R2  given by cp(x) = (f (x), g(x)) is 
continuous. 

Ex. 3.1.19. Let  f:  R 2  --4 R be continuous. Show that the map g:  R 2  ---- 
R given by g(x , y) := f (x +  y,  x — y) is continuous. 

Ex. 3.1.20. The map A i--+ A t  from M (n,R) to M (n,R) is continuous. 
Here A t  denotes the transpose of the matrix A such that the (i, j)-th 
entry of At is the (j, i)-th entry of A. 

Ex. 3.1.21. Show that the squaring map A 1—+ A 2  on M (n,R) is con-
tinuous. can you think of generalizations? 

Ex. 3.1.22. Consider the set X = {1/n : n E N} U {0 } C Ili with the 
induced metric. Show that the vector space of continuous functions on 
X is linearly isomorphic to the vector space of all convergent sequences 
in R. Hint: Given f E C(X), consider the real sequence (x n ) where 
x n  := f (1/n). 
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Ex. 3.1.23. Keep the notation as in the last exercise. Consider Y = 
N  U fool. Let f :  Y 	X be the bijection defined by 

f(n) = 1/n for n E N and f (oo) = O. 

Using this bijection, we transfer the metric on X to Y. (See Ex. 1.2.73.) 
Let (A, d) be a metric space and (an ) be a sequence in A. Let a E A. 
Then an  a in A if  the function cp: Y A defined by setting (,o(n) = an 
for n E N and ço(co) = a is continuous at  oc.  

3.2 Equivalent Definitions of Continuity 

In this section we shall define the standard E-5 definition of continuity 
as well another one which involves open sets. The latter one generalizes 
to topological spaces. We shall also show how to use the latter one to 
give an 'easy' way of finding open or closed sets and allows us to decide 
whether a set is open or closed. The E-6 definition leads us naturally to 
the definition of uniform continuity. 

Theorem 3.2.1 (Equivalent Characterisations of Continuity). 
Let X ,Y be metric spaces. Let  f: X Y be a function. Then the 
following are equivalent: 

(a) f is continuous at x E X. 
(b) Given any E > 0, there exists a 6 > 0 such that if d(x , x') <  5, 

then d(f (x), f (x')) < E . 

(c) Given an open set V containing f (x) in  Y, we can find an open 
set U containing x such that f (U) C V. 

Proof. We suggest that the reader draws pictures for each of the impli-
cations. 
(a) == (b): We shall prove this by contradiction. Assume that E > 0 is 
given and that there exists no 6 > 0 with the required property. Thus, 
if we take 6 = 11n, then there exists an x' such that d(x, x') < In but 
d(f (x), f (x')) > E. Let us call this x' as x T, to emphasize its dependence 
on  5  = 1/n. As d(x, x) < 1/n, the sequence x r, 	x.  (See Figure 3.2.) 
By our assumption, f (x n ) must converge to f (x). Hence we deduce that 
d(f (x n ), f (x)) 	O. This does not happen, since d(f (x,), f (x)) > E for 
all n. This is the desired contradiction. 
(b)	> (c): Let V be given as in (c). Since V is open and f (x) E V, 
there exists an E > 0 such that B (f (x), E) C V. Since we assume (b), for 
this E, there exists 6 > 0 with the property stated in (b). That is, if we 
let U := B(x, 8), then U is an open set that contains x and is such that 
f (U) C V. (See Figure 3.3.) 



X 

	 B(x,1/3) 

B(x,1/2) 
	 B(x1) 

Figure 3.2: a  ==  b of Theorem 3.2.1 
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f(xi) 

Figure 3.3: b 	> c of Theorem 3.2.1 

(c) 	>  (a): Let x n 	x. We need to show that f (x n,) 	f (x). Let E > 0 
be given. Consider V := B (f (x), E). This is an open set containing f (x). 
So, by (c), there exists an open set U containing x such that f (U) C V. 
Since U is open and x E  U,  there exists r > 0 such that B(x, r) c U. 
Since x„ x, there exists N E N such that if n >  N,  we have xn  E 
B(x,r). It follows that f (x„) E f (B(x, r)) C f (U) C B(f (x), E) for all 
n>  N. That is,  f(x 7 ) 1(x).  Therefore, f is continuous at x. 

Ex. 3.2.2. To gain practice, show all possible two way implications of 
the last theorem: (a) < > (b), (b) < > (C), (a) < > (c). 

Remark 3.2.3. Many students have problem with the F-6 definition 
of continuity, that is, (b) of Theorem 3.2.1. A real life example may 
clarify this. Think of X as a set of ingredients or input and f as a 
process, procedure or a recipe which takes an input x E X and yields 
the output f (x). We shall give more concrete examples presently. The 
end user or the consumer needs y G Y. The manufacturer knows to 
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get y, he needs the input x and by applying the process f to x he will 

get y = f (x) and he can deliver the good to the consumer. But what 
happens in real life is that there is no guarantee the input will be exactly 
or precisely the x needed for the process f.  The consumer also realizes 

this and he therefore sets a tolerance level of error. He says that what the 
manufacturer delivers is within this error tolerance, say, E (with respect 
to some measurement), he will accept the delivery. Now the onus is on 
the manufacturer. From his experience, he may know that if the input 
x' is within 6 distance from x, the process will produce f (x') which may 
meet the acceptance level of the consumer. Thus, the error tolerance E 

of the output is given and then we find the error tolerance 6 of the input. 

Now a concrete situation. Let us imagine that a country A wants to 
bomb the secret laboratory of biochemical weapons of a country  B.  The 
scientists involved may say that if we launch a missile inclined at, say, 
37° and at an initial velocity 1200 KM per hour, the missile will exactly 
land on the target. When they arrived at these numbers, they made a lot 
of simplifying assumptions. The missile is like a line rather than a three 
dimensional object. Nobody can have a perfect control over the initial 
velocity and the exact degree at which the missile is launched. What 
the president or the military of A wants is that knowing the destructive 
power of the bomb, the bomb should fall within 1 KM radius of the 
laboratory. Thus the E is given. Now the scientists will find out that if 
the degree of the launch lies between 36° and 38° and if the initial launch 
speed is between 1180-1220, then they can meet the requirements. You 
can now think of various such situations. We hope that this example not 
only clarifies the answer to the questions "Which comes first, e or  8 in 
the definition of continuity" but also that this definition is exactly what 
is needed by the applied scientists and engineers! 

Ex. 3.2.4. Let  (X, d)  be a metric space and a E X. Assume that 
f :  X R is a continuous function such that f (a) > 0. Then there 
exists 6>  0 such that f (x) > f(a)/2 for all x E B (a, ( 5 / 2). Hint: We 
needed this when we wish to prove that j j satisfies II f j 1  = 0 if f = 0 
in Example 1.1.10. (See Figure 3.4.) 

( I 	 )  
0 	f (a)—E= f  (;) 	f (a) 	f (a)-1-f = 3fa)  

Figure 3.4: Illustration for Exercise 3.2.4 

k ( = f (a) 
2 

Part (c) of Theorem 3.2.1 suggests the following definition. 
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Definition 3.2.5. Let X, Y be topological spaces and f :  X --> Y be a 

map. We say that f is continuous at x if given an open set V 3 f (x), 

we can find an open set U 3 x such that f (U) C  V.  

Ex. 3.2.6. Show that Ex. 3.1.2, Ex. 3.1.3, Ex. 3.2.4, Theorem 3.1.9 

and Proposition 3.1.16 remain valid (after suitable modifications in the 

statements!) for arbitrary topological spaces. (How will you modify 

Ex. 3.2.4?) 

Ex. 3.2.7. Let X, Y be (metric) spaces. Show that a map f : X  —> Y 

is continuous if for every open set V C Y, its inverse image f -1 (V) is 

open in  X.  

Ex. 3.2.8. Let the notation be as in the last exercise. Let By be basis 

of open sets for the topology on Y. (See Definition 2.6.1.) Show that f 

is continuous if Y -1 (B) is open in X for all B E By. 

Ex. 3.2.9. Let X, Y be (metric) spaces. Show that a map f :  X —> Y 

is continuous if for every closed set V c Y, its inverse image f -1 (V) is 

closed in  X.  

Ex. 3.2.10. One can use Ex. 3.2.7 and Ex. 3.2.9 to show that certain 
sets are open or closed. 

For instance the set of points (x, y) E R2  such that cos(x 2 ) + x3  - 
47y > ex - y2  is an open subset of R2 . For, the function ço(x,y) := 
cos(x2 ) + x3  - 4'7y - (ex - y2 ) is continuous on IR2  and the set under 
consideration is f -1 (-oo, 0). 

As a concrete example, let us show that a rectangle (a, b) x (c, d) is 
open in R2 . (This is was Ex. 1.2.34.) Where do we look for continuous 
functions? We look at the defining properties of the set. A point (x, y) 
lies in the rectangle if x E (a, h) and y E (c, d). Now (a, h) and (c, d) are 
open and the projections pi (x, y) = x and p2(x, y) = y are continuous. 
Thus, the set U1  := b) is open and U2 := p2-1 (c, d) is open. The 
rectangle is the intersection of these open sets and hence is open. 

Now redo Ex. 1.2.28, Ex. 1.2.29, Ex. 1.2.31, Ex. 1.2.34, Ex. 1.2.56 
and Ex. 1.2.100. 

Ex. 3.2.11. Show that the set of all invertible matrices in M(2, R) is 
open. (Hint: Ex. 3.1.12.) 

Ex. 3.2.12. Show that the set SL(n,R) of matrices in M(n,R) with 
determinant one is a closed subset of M (n, R). 

Ex. 3.2.13. Show that the set of all nipotent matrices in M (n,R) is 
closed. (Recall a matrix A E M(n, R) is said to be nilpotent if  Ac  = 0 
for some k E N.) Hint: Ex. 3.1.21. An infinite union of closed sets need 
not be closed. So, you need something from linear algebra also! 
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Ex. 3.2.14. Let  (X,  d) be a metric space. Consider the distance function 

d:XxX-- ,  R. We equip X x X with the product metric (Ex. 1.1.32). 

We ask whether d is continuous. 

Let (xi, Yi) and (x2, Y2) be given. We estimate 

— d(x2,Y2)1 5-( ,c1 ,xi‘yi) — d(x2, 	+ d(x2, Yi) — d(x2, Y2)I 

< Id(xl,m) — d(x2, 

+ Id(x2, yi) — d(x2, y2)I 
< d(x i , x 2 ) + d(yi , y2) 

< 6 ((x NO, (x2, Y2)) + ((x ,y1), (x2, Y2))• 

This shows that if E > 0 is given, we may take 6 < E/2. Note that .5 is 

independent of the point under consideration. 

Ex. 3.2.15. Let X, Y be metric spaces. Let f,g: X 	Y be continuous. 

Show that the set E :=- fx G X : f (x) 	g(x)} is open in  X.  (Draw 

pictures.) Hint: Let x E E. Choose open sets V and W in Y such that 

f (x) E V and g(x) E W and V n w = O. Then x E U := f —1  (V) n 

This exercise has an extension to arbitrary topological spaces pro-

vided that Y is Hausdorff. 

Ex. 3.2.16. Let  X,  Y be metric spaces and D c X be dense. Let 

f,g: X Y be continuous functions such that f(x) = g(x) for all 

x E D . Show that f = g on X. 
This has an extension to topological spaces with an extra assumption 

on Y. Let  X,  Y be topological spaces. Assume that Y is Hausdorff. Let 
D C X be dense in X. Let f,g: X Y be continuous functions such 

that f (x) = g(x) for all x E D. Then show that f = g on  X. Hint: Last 
exercise. 

Ex. 3.2.17. Let f :  R —> R be a continuous additive group homo-
morphism. Show that f(x) = Ax for x E R where A -=-  f(1).  Hint: 
Show by induction that f (n) = nf (1) for any n E Z and then that 
f (m/n) = (m/n) f (1) for m/n E Q. Define g(x) = f (1)x. Show that 

f = g. 

Ex. 3.2.18. Let D be dense in a (metric) space X.  Let Y be another 
(metric) space. Assume that f :  X —> Y is continuous and onto. Show 
that D' = f (D) is dense in Y. 

Ex. 3.2.19. Let X, Y be metric spaces. Let  f,  g: X —> Y be continuous. 
Then the set Ix E X : f (x) = g(x)} is closed in  X. 

In particular, if f :  X —> X is continuous, the fixed point set fx E 
X : f (x) =- xl is closed. 
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Remark: The results are false for general topological spaces. If we as-
sume that Y is Hausdorff then the results are true. Compare Ex. 3.2.16. 

Ex. 3.2.20. Define the map f :  R —> R by setting f (x) = — 1 . Show 
that f is continuous. 

More generally, let J = [—LI] and let 

f (x) := inffix —  t  : t E [-1, 

Show that f is continuous. Find an explicit expression/formula for  f.  
Draw its graph. Can you interpret f (x) as a geometric relation between 
x and the interval J? 

Example 3.2.21. Let A be a nonempty subset of a metric space (X,  d). 
Define 

dA(x) := inf{d(x, a) : a E A}, 	x E  X.  

Then dA is continuous. (Geometrically, we think of dA(x) as the distance 
of x to A.) 

We give a proof even though it is easy, because of the importance of 
this result. Let x, y E X and a E A be arbitrary. We have, from the 
triangle inequality d(a, x) < d(a, y) + d(y, x), 

d(a, y) > d(a, x) — d(y, x) 

d(a, y) > dA(x) — d(Y x), 	 (3.1) 

since d(a, x) > inf{d(a' , x) : a' E 	dA(x). The inequality (3.1) 
says that dA (x) — d(y, x) is a lower bound for the set {d(a, y) : a E A}. 
Hence the greatest lower bound of this set, namely, inf{d(a, y) : E AI 
is greater than or equal to this lower bound, that is, 

(y) > 	(x) — d(y, x). 

Therefore, dA(y) — dA(x) > —d(y, x) or what is the same, 

dA (x) — dA (y)  Ç  d(y,x). 

If we interchange x and y in this inequality, we see that ±(dA(x) — 
dA(y)) < d(x Y) that is, IdA(x) — d(y) < d(x y). Continuity of dA 
follows. 

One may also arrive at this as follows: 

d(a, x) < d(a, y) + d(y, x). 	 (3.2) 

Now we are in the following situation. We have two families A := {ai  : 
i E II and B := lb, : i E II of real numbers (bounded below) indexed 
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by the same set I and with the property that ai  < bi  for each i G I. Let 
a := inf fai l and b := inf Oi l. Then we claim that a < b. For, a < a, for 
each i and hence a < I), for each i. Thus, a is a lower bound for the set 
B. Since b is the greatest lower bound for the set B, we conclude that 
a < b, as claimed. Applying this claim to (3.2), we obtain 

dA(x) < dA(Y)+d(y,x). 

The rest of the argument is as above. 

Remark 3.2.22. In view of Ex 3.1.13 and Example 3.2.21, we see that 
there exist non-constant real valued continuous functions on any metric 
space X. In fact, they are 'abundant' in the sense that given any two 
distinct points x, y E X, there exists f :  X --+ IR such that f(x) = 0 and 
f(y) = 1. Thus, any pair of distinct points are "separated" by means of 
a continuous function! In fact, we can say more. Any two disjoint closed 
subsets of a metric space can be separated by means of a continuous 
function. See Theorem 3.2.33. 

In an arbitrary topological space, one cannot assert the existence of 
non-constant real valued continuous functions, leave alone being able to 
separate disjoint closed sets! We need to impose extra conditions to 
ensure such a possibility. This leads one to the definition of completely 
regular and normal spaces. As usual, we refrain from introducing these 
notions. 

Ex. 3.2.23. Let A = (0,1) c R. Draw the graph of the function dA. 

Ex. 3.2.24. Let x E IR. What is dg(x)? 

Ex. 3.2.25. Let p := (a, b) E R2  and A be the x-axis. What is dA(p)? 

Ex. 3.2.26. What is dA(p) where A := {(x,y) E  R2 x2 + y2 = 11? 

Find an explicit expression. 

Ex. 3.2.27. This exercise assumes knowledge of inner product spaces. 
Let V be a real (finite dimensional) inner product space and W a vector 
subspace. What is  d(x) for x E V? 

Ex. 3.2.28. Show that x is a limit point E if dE(x) = O. Conclude 
that x E  A if dA(x) = O. In particular, if A is closed, then dA(x) = 0 if 
x E A. 

Definition 3.2.29 (Distance between two subsets). Let A and B 
be two nonempty subsets of a metric space X. We define the distance 
d(A,B) between them by setting d(A,B) := inf{d(a, b) : a G, b E 13 } . 
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Ex. 3.2.30. Find two closed sets F1  and F2 which are disjoint but 

d(Fi , F2 ) = O. Hint: N and In + : n E NI. 

Ex. 3.2.31. Find the distance d(A, B) between A and B where 
(a) A = Q and B =  R\ Q. 
(b) A = Q and B is any nonempty subset of R. 
(c) A is the rectangular hyperbola xy = 1 and B is the union of axes 

xy = 0? 

Ex. 3.2.32. Let A be a subset in a metric space (X, d). Show that the 
set {x E X; dA (x) < el is open for any e  > 0 (i) directly and (ii) by 
using the continuity of dA • 

Theorem 3.2.33 (Urysohn's Lemma). Let A, B be two disjoint closed 
subsets of a metric space. There exists a continuous function f: X —> R 
such that 0 < f < 1 and f = 0 on A and f = 1  on B. 

Proof. We want a continuous function that vanishes on A. So we consider 
dA. We want it to be 1 on B, so we are tempted to consider dA/dA• 
This has problem. A little reflection immediately leads us to f(x) := 

da(x
d

)
A
+
(X 

 B(x) 
. It is now an easy exercise for the student to show f is as we 

wanted. 
First of note that dA (x) + dB(x) 0 for any x E X. For, if it were, 

each of the terms, being nonnegative, must be zero. But then this means 
that x E A and x E B by Ex. 3.2.28, a contradiction since A and B are 
disjoint. Hence we conclude that f (x) makes sense for any x E  X.  By 
algebra of continuous functions, f is also continuous. If x E A, then 
dA (x) = 0 so that f (x) =- 0 for any x G A. Also, if x E B, then the 
denominator of f (x) is dA(x) + dB(x) = dA (x) and hence 1(x) = 1. 
Clearly, 0 < f < 1. 

Ex. 3.2.34. Let A, B be nonempty subsets of a metric space (X,  d). 
(a) Show that the set -tx E X : dA(x) < dB(x)} is open in X. 
(b) Assume that A and B are closed disjoint subsets. Then there exist 

open sets U D A and V D B with U n v = O. 
(c) Could you have deduced (b) from Urysohn's lemma also? 

A topological space having the property mentioned in (b) is known as 
a normal space: any two disjoint closed sets can be 'separated' by means 
of open sets. But Urysohn's lemma says something stronger. They can 
be 'separated' by means of a real-valued continuous function. 

Ex. 3.2.35. Let A E M(n, R). Consider vectors of Rn as column 
vectors, that is, as matrices of size n x 1 so that the matrix multiplication 
Ax makes sense. Show that the map x Ax is continuous. 

In fact, we can prove more. The joint map from M(n, R) x Rn to Rn 
given by (A, x) 	Ax is continuous. 
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Ex. 3.2.36. Let (X,11 11) be an NLS. Show that 11 11 : X -> R is contin-

uous. 

Ex. 3.2.37. Let X,Y be NLS. Let T: X 	Y be a linear map. Prove 

that T is continuous if it is continuous at 0 E X. Use this to show that T 
is continuous if there exists a constant C > 0 such that II Tx j  < Cljx1 
for all x E X. 

Ex. 3.2.38. Let X be any NLS. Show that any linear map T: Rn -> X 
is continuous. Hint: Prove that 11 Tx < C >1  xjj  for any x E Rn. 

Ex. 3.2.39. Consider  y(f) := f(0) as a map y: (C[0,1],11 11) -> IR. 

Show that y is continuous. 
Is the same map continuous if we equip C[0,1] with the L 1 -norm 

11 	111? 
Ex. 3.2.40. Consider C[0,1] with the norm 11 11 00  as in Ex. 1.1.27. Show 

that the map f 1'01  f (t) dt is continuous. Is the map still continuous if 
we take 11 Hi as the norm on C[0, 1]? 

Ex. 3.2.41. Consider C[0,1] with the norm 11 1100 as in Ex. 1.1.27. Let 
Y be the vector subspace of all differentiable functions on [0,1]. Consider 
the linear map D: ( 17,11 1100) -4  (C[0  ' 1 ] 4 11 00 ) given by D f =  f',  the 
derivative of  f.  Show that D is not continuous. 

Ex. 3.2.42. Find a continuous function f: (a, b) 	R which is bijective 
and such that f -1  is also continuous. 

Ex. 3.2.43. Let  f:  JR ---+ JR  be such that f -1 (a, oo) and f -1 (-oo, b) are 
open for any a, b E R. Show that f is continuous. 

Ex. 3.2.44. Let A be a subset of a metric space (X,  d). Let (Y, d) be 
another metric space. A function f :  X -> Y is said to be continuous on 
A  if  f is continuous at each a E A. Show that f is continuous on A  if  
f:  (A, d) (Y,  d) is continuous. 

Ex. 3.2.45. Let  f: (X,  d) 	(Y,  d) be continuous. Let A C X. Show 
that the restriction f IA of f to A is a continuous function from the metric 
space (A, d) to (Y, d). (Here the metric on A is the induced metric.) 

Lemma 3.2.46 (Gluing Lemma). Let X and Y be (metric) spaces. 
(1) Let {U, : i E .0 be a family of open sets such that U,Ui = X. 

Assume that there exists a continuous function fi : Ui  --* Y for each 
i E I with the property that fi(x) = fi(x) for all x E  U  n ui  and i,j E I. 
Then the function f:  X 	Y defined by setting f (x) := fi(x) if x E 
is well-defined and continuous on X. 
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(2) Let {Ai :  j E Fl be a finite family of closed sets such that U, Ai = 
X.  Assume that there exists a continuous function fi  : Ai Y for each 
i E I with the property that fi (x) = f3 (x) for all x E Ai nAi  and i, j E  F.  
Then the function f:  X —> Y defined by setting f (x) := fi (x) if x E Ai  
is well-defined and continuous on  X.  

Proof. The proofs are straight forward and the reader should attempt 
them on his own. The only hint needed is that if U c X is open (re-
spectively closed) and A c U is open (respectively closed) in U, then A 
is open (respectively closed) in X. 

Let us prove (1). Let V c Y be open. Then we have to show that 
f -1 (V) is open in  X.  Now, we observe f -1 (V) n Ui  = f,--1 (V) n  U. 
For, x E f'(V) nU iff x E Uz  and f(x) E V, that is, iff x E Uz  and 
fi(x) E V, that is iff x E U, n fi-1 (V). Since Y is continuous, 
the set 4-1 (V)  nui  is open in U, and hence open in X. Thus, it follows 
that f -1 (V) is the union of open sets and hence is open: 

f -1 (V) = f 1 (V)n X = f -1 (V) n (u i Ui ) = u i  (fi-1 (V) n Ui ) . 

This proves the continuity of f on X. 
The proof of (2) is very similar, except that we use the characteriza-

tion of continuity by means of inverse images of closed sets. Let C c Y 
be a closed set. We shall show that f -1 (C) is closed in X. As in the 
earlier case, we find that f -1 (C)n Ai  = 4-1 (C)n Az  and that it is closed 
in A, and hence in X. We then express f -1 (V) as a finite union of closed 
sets of this form. 

f --1 (C) = f --1 (C) n X = f-1 (C) n (uiA i ) = u i  (fi--1 (C)n Ai ) 

This completes the proof. 

An immediate, though trivial, application is 

Ex. 3.2.47. Show that the absolute-value function 	: R 	R is con- 
tinuous. 

A most useful application is the following 

Ex. 3.2.48. Let f,g: [0,1] —> X be continuous. Assume that f(1) 
g(0). Define 

h(t) := {f (2t) 
	0 < t < 1/2 

g(2t - 1) 1/2 < t < 1. 

Show that h is continuous. (To see this exercise in proper perspective, 
see Ex. 5.2.4.) 
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A beautiful application of the gluing lemma is the Tietze extension 

theorem. 

Theorem 3.2.49 (Tietze). Let A be a closed subset of a metric space 
X. Given a continuous function g: A —> [0, 1] there exists a continuous 
function f: X —4 [0,1] which is an extension of g, that is, f (a) = g(a) 
for all a E A. 

Proof By considering the function x >—> 1 + g(x), we may assume that 
g: X —> [1, 2]. 

We define 

g(x) 	 if x E A 
f (x) := 	infIg(a)d(a,x):aeill 	if x 	A.  

dA(x) 

Note that since 0 < g(a) < 2 for a E A, we have 1 < f(x) < 2 for 
x E X \ A. Hence f: X —> [1,2] is an extension of g. 

We plan to show that f is continuous on the closed sets A and X \ A. 
Since X = AUX \ A, the result will follow from the gluing lemma. Since 
f = g on A, the continuity on A is clear. We need only establish the 
continuity of f on X \ A. 

Case 1. Let x E X \ A. Since dA is continuous at x and since 
dA(x) > 0 (why?), to prove the continuity of f at x, it suffices to show 
that h: u inf{g(a)d(a, u) : a E AI is continuous at x. (Why?) 

Let E > 0 be given. Let u E X \ A with d(u, x) < 6/2. (Draw 
pictures.) Then a E A implies 

d(x , a) 	d(x , u) + d(u, a) < + d(u, a). 

Multiplying the inequality by g(a) and using the fact that 1 < g(a) < 2, 
we get 

g(a)d(x, a) < 6 + g(a)d(u, a). 

Taking the infimum as a E A yields 

h(x) < E h(u). 

Similarly, we show that h(u) < E h(X) . Thus, Ih(u) — h(x)I < E for 
u E (X \ A) n B(x, 0. This proves that f is continuous at x E X \ A. 

Case 2. Let x be such that every open ball centered at x intersects 
both A and X \ A, that is, x E DA. Let E > 0 be given. By the continuity 
of g at x, there exists a (5 > 0 such that 

g(a) — g(x)1 < E  for all aEAnB(x, 	 (3.3) 
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In particular, 

11(x) - f(u)1 < E for all uE An B(x, (5/4). 	(3.4) 

We intend to prove the same thing holds for u E (X \ A). See Figure 3.5. 

Figure 3.5: Tietze extension theorem 

Let u E (X \ A) n B(x,6/ 4). We claim 

h(u) := inf{g(a)d(a, u) : a E AI = inf{g(a)d(a,u) :aE An B(x, 6)1. 
(3.5) 

In fact, a 1;t A n B(x, 6) implies 

	

(5 	36 
d(u, a) > d(x , a) - d(x , u) > 6 --zi  = --4--, 

so that 
3(5 

inf{g(a)d(u, a) :aE An B(x, 6)1 > -4- as g > 1. 	(3.6) 

On the other hand, since xE An B(x, 6), we deduce 

5 	(5 	38 
g(x)d(x, u) < 2d(x , u) < 2 • 71  = 	< ---4-. 	(3.7) 

The claim (3.5) follows from (3.6)-(3.7). Note also that a similar but 
easier argument shows that 

inf{d(u, a) :aE An B(x,6)} = inf{d(u, a) : a E A}-2.7, dA(u). 	(3.8) 

From (3.3), we have 

g (x) - 6 < g (a) < g (x) + E for xE AnB (x , (5) . 
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Hence, 

(g(x) - E) d A(u) < inf {g(a)d(u, a) :aE An B(x, (5)1 < (g(x) + E) dA(u). 

Here we have used (3.8) to obtain the middle inequality. Using (3.5), we 

conclude that If(u) - g(x)1 < E. Since x E A, we have g(x) = f(x) so 

that we have shown 

(u) - f (x)1 < E  for all u E (X A) n B(x, (5/4). 

Thus f is continuous at x E 0A. This completes the proof of the theorem. 

Ex. 3.2.50. Let  f: 	Rn be defined as follows: 

\ 	{x 	if Ilxil < 1 f (x)

if x  > 
Show that f is continuous. 

It is well-known that it is impossible to make a continuous choice 
0(z) E arg (z)  on  C*. That is, there is no continuous map 0: C* R 
such that z = Izlexp(0(z)) for z E C*. We shall see a proof of this 
statement later. 

However, the following lemma says that it is possible to assign the 
argument of a complex number in a continuous fashion if we restrict 
ourselves to C minus {z E C : Re z < 0 } , or the complex plane minus 
any closed half line starting from the origin. 

Lemma 3.2.51. There exists a continuous map 

:X:=C\{zEC:zERandz<0 } --(-7r,7r) 

such that z = Izje`' ( ' )  for all z E X. 

Proof. We shall give a sketch of a proof. 
Let us define the following open half-planes whose union is X: H1  := 

{z E  C:  Re z > 0 } , H2 := {z E  C:  Im z  > 0)  and H3 := {Z .E C : Imz < 
0 } . We define a, on Hi  which glue together to give the required map. 

Let z E HI . Then Re z = 1z1 cos 0 for some 0 E [-7r, 7r] and hence 
cos° > 0. Hence 0 E (-7r/2,7r/2). The sine function is increasing on 
(-7r/2,7r/2) so that we have the continuous inverse sin-1 : (-1, 1) -* 
(-7/2, 7r/2). We define a l  (z) sin-1 ( 1 11 1 z ). We can similarly define 

a2 H2 -4  (0,7r) and  c 3 :  H3 ---+ (-7r, 0) by 

a2 (z) = cos
-1 (Re z 

and a3  (z) = cos -1  

One easily sees that they agree upon their common domains. Thus we 
get the required function a. 
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3.3 Topological Property 

Definition 3.3.1. Let X, Y be (metric) spaces. A map f: X -+ Y is 

said to be a horneomorphism, if f is a bijection and both f :  X -+ Y and 

f -1 : Y -> X are continuous. We say that two topological spaces X and 

Y are homeomorphic if there exists a homeomorphism from X onto Y. 

Homeomorphism is something like an 'isomorphism' in the theory of 

groups or 'linear isomorphism' between vector spaces. 
A property P of a space is said to be a topological property if home-

omorphic spaces share the same properties. 
For example, the metric spaces (0,1] and [1, cc) (with the standard 

induced metric) are homeomorphic via the map x 1- 1/x. The first one 
is bounded while the second one is not. Therefore, we conclude that the 
property that a metric space is bounded in not a topological property. 

Similarly, any Cauchy sequence in [1, Do) converges to a point in 
[1, cc) while there exists a Cauchy sequence in (0, 1] which is not conver-
gent in (0, 1]. Thus the property that every Cauchy sequence in a metric 
space is convergent is not a topological property. 

Are there any properties that are topological? Existence of a count-
able basis of open sets is a topological property. Later, we shall see that 
'compactness', 'connectedness' and 'path-connectedness' are topological 
properties. See also Ex. 3.3.15. 

Ex. 3.3.2. Show that two metrics dl, d2 on a set X are equivalent if 
the identity map Ix:  (X, di) -- (X, d2) is a homeomorphism. 

Ex. 3.3.3. Show that homeomorphism is an equivalence relation: if Xis 
homeomorphic to Y and Y is homeomorphic to Z, then X is homeomor-
phic to Z. 

Ex. 3.3.4. Show that any two closed and bounded intervals in R are 
homeomorphic. 

Example 3.3.5. Let Sn be the unit sphere in Rn+ 1  defined by 

{

(x 1 , ... ,x,, ±1 ) E 
n+1 

i= 1 

x, 
=}. 

Let p := e71+1 be the north pole (0, 0, ... , 0, 1) and q := (0, ... , 0, -1) be 
the south pole. Let U := Sn \ {p} and V := Sn \ {q}. We show that 
Sn \ {p} is homeomorphic to Rn . 

The stereographic projection (i) from the north pole is the map that 
sends a point x E Sn  \ {p} to the point of intersection of the line joining p 
and x with the equator xn+ i = 0. Similarly the stereographic projection 
//) from the south pole is defined. See Figure 3.6 on 73. 
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We shall now find a coordinate expression for 

= fx E Rn+1  : Xn+1 = 01 —> Sn  \ {p}. 

Let x = (x i ,... , xn , 0) E Rn . Then the line joining x with en+1= P is 
given by 

a(t) = tx + (1 — t)p = (tx' , 1 — t) 

where x' = (x1, . . . ,  x i,).  Now a(t) lies on Sn if and only if II a(t) 1 2  = 1 
if and only if t 2  xfl  2  +  (1— 	= 1 if and only if t = 2(1 + (II x' 

In this case 

a(t) = (1 + (11x' 1 2 ) -1 (2x1,...,2Xn, X
/ 2 — 1). 

Thus we see that 

1 
(p -1  (x) = a(t) = 

(1+ 114 2) 
(2x 1 , 	, 2xn , x' 11 2  — 1). 

1  
(3.9) 

Figure 3.6: Stereographic projection 

In a similar way one can show that 

= a(t) = 	
1 

+ 	2 
(2x 1 ,. 	, 2xn , 1 — 

(1 	1141) 

It is obvious from the expressions for (p -1  and 7,b -1  that they are home- 
omorphisms. 	 C=J 

Example 3.3.6. We show that the closed ball B := B[0,1] c Rn is 
homeomorphic to the cube Q := 	C 

Note that Q :=  Bd  oc  [0,1], the closed unit ball in the metric induced 
by the max norm II Il oc . We also observe that B C Q. For, if II x < 1, 
then Ixi l < 1 for 1 <  j  < n and hence W. := max{Ix 2 I : 1 <  j  < 
n} < 1. Let K {x E Rn : xlI co  = 1} be the boundary of Q. Let 
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x E Q be nonzero. Then the ray {tx : t > 0} meets the boundary 
K exactly at one point. (Why?) Call this point of intersection g(x). 
Can we find this point explicitly? (It is precisely the unit vector (in 
the norm 11 11 00 ) in the direction of x.) We have Iltx H o. = t11x11 00  = 1  
if t := 11,7  . Hence g(x) := 14. .  Since Pi co  < II x II, the map 

x '-' 11 x 100 is continuous on (Ra, I ID. Therefore, the induced map 
Q \ {0} —> K given by x 1--- g(x) := TA:  is continuous. 

Figure 3.7: Homeomorphism of [-1, 1 ] and B[0,1] 

Now the strategy of the construction of a homeomorphism is this. 
We map the line segment [0, g(x)] onto the line segment [0, 4-17 1. We let 

u(x) := TIT  be the Euclidean unit vector in the direction of x. Thus we 
want to map [0, g(x)] bijectively on [0,u(x)]. We know how to achieve 
this! Thus we have arrived at the map f: Q -4 B given by 

1(x)  :, {II 	grx) ii 
0 

if x 0 

if x = O. 

The continuity of f at x 0 follows from that of g. At x = 0, we have 

11/(x) - 1(0 )11 = 1 .f (i)11 = 

 

X  

 

11 x 11  _. II x 1 1 , 11 g(x ) II 

 

11g(x) 11 

 

     

since 11 g(x)11 > 1. Clearly, f is a bijection. (Why?) The inverse of f is 
given by 

f  _ 1(v)  = {11g(v)11 v if v E B and v 	0 
0 	if v = O. 

Again, the continuity of f -1  is clear. Thus f is a homeomorphism. 0 

Ex. 3.3.7. Show that (OA (with the subspace topology induced from 
R) is homeomorphic to [1, Do) c R. 
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Ex. 3.3.8. Any two open balls in 1Rn are homeomorphic. 

Ex. 3.3.9. Show that a circle and an ellipse in R2  are homeomorphic. 

Ex. 3.3.10. Show that R and the parabola given by y = x2  are home-

omorphic. 

Remark 3.3.11. We shall see later that no two of a circle x2  + y2  = 1, 
a parabola y = x2  and a hyperbola x2  — y 2  = 1 are homeomorphic. (See 

Ex. 4.1.31 on page 90, Ex. 5.1.39 and Ex. 5.1.40 on page 114.) 

Ex. 3.3.12. Let N c R be given the induced metric d. Consider N with 

discrete metric 6. Are (N, d) and (N, 6) homeomorphic? 

Ex. 3.3.13. Two metrics d1, d2 on a set X are equivalent if the identity 

map of X from (X, d 1 ) to (X, d2) is a homeomorphism. 

Ex. 3.3.14. Show that (-1, 1) is homeomorphic to the parabola y = X 2  
in R2 . Hint: Ex. 3.3.3. 

Ex. 3.3.15. A (metric) space having a countable dense subset is a 

topological property. 

Ex. 3.3.16. Use Ex. 3.3.13 and Ex. 3.2.37 to solve Ex. 1.2.69. 

3.4 Uniform Continuity 

Consider the function f: (0,1)  ----+ R given by f(x) = 1/x. It is easy 

to show that f is continuous at each a E (0,1). What we would like to 
analyze is the behaviour of 6 required to prove the continuity of f at x as 
x varies in (0, 1). As x —> 0, we see that f (x) goes to 'infinity'. Thus, it 
is intuitively clear that if we want to control the value of f (xl) for x' near 
to x, nearer x to 0, smaller the value of 6. That is, if we want to assert 
that f (x') is within E-distance of f (x), then we may have to restrict x' to 
smaller and smaller open intervals around x as x goes nearer and nearer 
to 0. It follows therefore that given E > 0, we cannot make a single 
choice of 6 which will work for all x E (0, 1). This discussion motivates 
the following definition. 

Definition 3.4.1. Let  f: (X, 64 —> (Y, d) be a function. We say that f 
is uniformly continuous on X if for a given E > 0, there exists a 6 > 0 
such that whenever x i  , x2 E X are such that d(xi, x2) <  6,  we have 

d(f (xi), f (x2))  < E. 
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Note that while the continuity of f at a point is discussed, we are 

concerned only with the values (behaviour) of the function near the point 

under consideration. But when we wish to say that a function is uni-

formly continuous on its domain, we need to know the values of f on the 

entire domain. Hence the continuity is known as a local concept whereas 

the uniform continuity is known as a global concept. 
The best way to understand uniform continuity is to look at some 

examples and see how the behaviour of the function on the entire domain 

plays a role. 

Example 3.4.2. Let us look at a most standard example: f: [1, oo) 
given by f (x) = 1/x. We estimate 

If(x) POI = 1Y 	x1  xy 
< 	—  y, since x > 1 and  y>  1. 

So, if 6 > 0 is given, then we may choose 6 = E. 

On the other hand, look at g:  (0,1)  —> 11/ given by g(x) =11x. We 
expect trouble at points near to 0 and hence guess that g is not uniformly 
continuous on (0, 1). The natural choice of points near to zero are 1/n. 
Let us see what happens when we consider x =11n and y = 11m,n m. 
We have 

	

1.f(x) POI = 	1 . 

This shows that g cannot be uniformly continuous on (0, 1). For, if it 
were, for  e  = 1, there exists 6 > 0 such that 

— < 6 	
 

f (x) - f 	<1.  

	

Given such a 6, we choose n > 1/6 and let x = 11n and y = 	Then 
x —y < 6  but If (x) — f (y)1 = n. 

Example 3.4.3. We now look at f :  R —> IR given by f(x) = x2 . If we 
draw the graph of the function, we may observe that if lxj is very large, 
small increments in x produce large differences in the values of f taken at 
these points. So we guess that the function is not uniformly continuous 
on R. To prove this rigorously, we have to choose points which are 'near 
to infinity'. The obvious choices are ±n E N. Let us see what happens. 

(n + h) — f (n)I = 2nh h2  > 2nh. 

To expect that for a given E > 0, there exists 6 > 0 such that whenever 
< 6, then If (x + h) — f (x)1 < E is unrealistic, since in that case we 

are asserting that Ink < e for all n! This is blatant violation of the 
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Archimedean property of R. This thinking aloud suggests the following 
proof. Let E = 1 and assume if possible that there exists 6 > 0 such that 

lx YI  < 6  implies 11(x) — f (y)1 < 1. Consider x = n and y = n + 71,-. If 
n is sufficiently large, then Ix — y = 1/n < 6. But we have 

If (x) - f 	= 2+  (1/n) 2  > 2! 

Our analysis also suggests that f may be uniformly continuous on any 
finite interval. We leave its proof as an exercise. 

Ex. 3.4.4. Prove that the following functions are uniformly continuous: 
(a) f:  [1, oo) 	R given by 1(x)  = 1 1 x" , for n E N. 
(b) Any linear map T: R  —>  W. (Question: How about a linear map 

from R" to an NLS?) 
(c) f :  R 	R such that f(x) exists and is bounded. (If you have 

learnt calculus of several variables, extend this result suitably.) 

Ex. 3.4.5. Go through the solution of Ex. 3.2.14 on page 63 and Exam-
ple 3.2.21 on page 64. Would you like to improve upon the conclusion? 

Ex. 3.4.6. Let (x n ) be a sequence in a metric space (X, d). Show that 
the function x 	inf{d(x, x n ) : n E N} is uniformly continuous on X. 

Ex. 3.4.7. Show that any uniformly continuous function carries bounded 
sets to bounded sets. 

Ex. 3.4.8. Show that any uniformly continuous function carries Cauchy 
sequences to Cauchy sequences. 

Show that the converse is not true. 

Theorem 3.4.9. Let  (X,  d) be a metric space. Assume that D is a dense 
subset of  X.  Let Y be a complete metric space. Let  f:  (D,d) (Y,d) 
be a uniformly continuous function. There exists a uniformly continuous 
function g: X —> Y such that g(x) =  1(x)  for all x E D. (The function 
g is called an extension of f from D to X.) 

Proof We shall only sketch the proof, as filling in the details will be a 
very instructive exercise to the reader. 

Let x E  X.  Then by density of D in X, there exists a sequence (x n ) 
in D such that x n  x. Note that (x,i ) is Cauchy. Since f is uniformly 
continuous, the sequence  (f (x)) is Cauchy in Y (by Ex. 3.4.8). Since Y 
is complete, there exists y E Y such that f (x n ) y. We set g(x) = y. 
We need to show that g(x) is well-defined in the sense that if (x'n ) in D is 
convergent to x and if  f(x) y',  then y = y'. (Note that this will also 
show that g(x) = x for x E D, as we may take the constant sequence 
(x n  := x) convergent to x.) 

One then shows that g is, in fact, uniformly continuous on X. 	0 
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An instructive application of the theorem is the extension of the 

meaning of a' for r E Q to a' for any x E R for any fixed a > O. 

Starting from the existence of n-th roots (Theorem 5.1.22), one assigns 

a meaning to amin where m, n E Z and n O. One also verifies the 

laws of exponents hold. We shall assume these results in the proof of the 

theorem below. 

Theorem 3.4.10. Fix a positive a E R and N E N. Then the function 

r i— ar from Qn [—N, N] to R is uniformly continuous. Hence it extends 

to a continuous function from [—N, N] to R. This function is denoted 

by a' for x E [—N,N]. 

Proof. We shall give only an outline of the proof. The reader is encour-

aged to supply the details. 

Let x,x+hEQn[—N,N]. We estimate 

ax+h — a x = ax  ah  — 1 < aN  ah  — 1 

     

If we show that ah  —' 1 as h —> 0 in Q, then we are through. (Why? 

How does the uniform continuity follow?) This follows from the fact that 
a vn __, 1  as n  _, 00. (How?) 

We also used the fact that x 1--- ax is an increasing function on Q. 

(Where?) Prove this. 	 D 

Remark 3.4.11. Since a' defined on various [— N , NJ coincide on their 
common domain, it follows that we have a function x 1--- a' for all x E R. 

Ex. 3.4.12. A function f: (X,  d) —> (Y, d) is said to be Lipschitz if there 
exists a constant L > 0 (called a Lipschitz constant of f) such that for 
all xi, x2 E X, we have 

d(f (x i ), f (x 2 )) < Ld(x l  , x2). 

Show that any Lipschitz continuous function is uniformly continuous. 

Ex. 3.4.13. Show that the functions of Ex. 3.4.4-(c) are Lipschitz. 

Ex. 3.4.14. Let T: X —, Y be a linear map between two NLS. Show 
that T is continuous if it is Lipschitz. 

Ex. 3.4.15. Let  f:  R —+ R be differentiable with I f (x)I  < M. Then f 
is Lipschitz. Hint: Mean value theorem. If you have learnt calculus of 
several variables, you should extend this result. 
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3.5 Limit of a Function 

Let f :Dc X —> Y be a function. Let a be a point of  X,  possibly not 

in D. We wish to assign a meaning to the symbol limx_,a,xED f (x) = y. 

What we have in mind is that if x E D is near to a then f (x) is near to 

y. We first define this notion in the context of a metric space and then 

extend it to arbitrary topological space. It is intuitively clear that we 

need points (other than a) of D arbitrarily close to a, that is, a must be 

a cluster point of D. 

Definition 3.5.1. Let (X, d) and (Y, d) be metric spaces. Let D c X 

and assume that a E X is a cluster point of D. Assume that f:  D \ 

fal —> Y be given. We say that li-mxED;x „ f (x) exists if there exists 

y E Y such that for every given e > 0, there exists a (5 > 0 such that 

for all x E 13' (a, (5) n D, we have d(f (x), y) < E. (See Figure 3.8.) If 

such a y exists, it is called the limit of f as x —> a and is denoted by 

limx—a f (x) = y. 

X 
	 Y 

Figure 3.8: lim f (x) = y 
x--oci 

Note that we have used the definite article 'the' and it is justified in 

the next exercise. 

Ex. 3.5.2. Keep the notation of the definition. If there exists y i , y2 G Y 
such that limx, f (x) = yl  and lim,„ f (x) = y2 , then  Yi  = y2. Hint: 
You learnt to prove the uniqueness of the limit of a convergent sequence. 

Ex. 3.5.3. How do you assign a meaning to limx„ f (x) = y if  f:  D c 
X -- Y is a function between two arbitrary topological spaces? Do you 
think uniqueness of limit still holds true? What additional condition on 
(X or on Y) will be needed to ensure uniqueness'? 

Ex. 3.5.4. Can you reformulate the notion of continuity at a point a in 
terms of the limit of a functions as x —> a? 
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3.6 Open and closed maps 

These are very useful concepts in topology. 

Definition 3.6.1. Let X, Y be (metric) spaces. A map f :  X 	Y is 

said to be open if the image f(U) is open for every open set U c X. It 
is said to be closed if f (K) is closed for every closed subset K c  X.  

Ex. 3.6.2. Show that the projection map 7ri  : Rn 	R given by ri (x) = 
xj  is open. It is not closed. Hint: Consider {(x, 	: x > 0 and xy = 
1} c R 2  and the projection onto the x-axis. 

Ex. 3.6.3. Let X := (R, d) be the usual real line and Y := (R, (5) be 
the set R with discrete metric S. Show that the identity map i: X Y 
is not continuous but it is open as well as closed. (See Ex. 3.6.2.) 

On the other hand, i: Y 	X is continuous which is neither open 
nor closed. 

Ex. 3.6.4. A bijection  f :  X 	Y is open if it is closed. 

Ex. 3.6.5. Let A be subset of a (metric) space given the induced topol-
ogy. When is the inclusion map a a of A into X is open? When is it 
closed? 

Ex. 3.6.6. Prove the following: 
(a) If f : X —> Y is a continuous and onto, then a map g:Y--4Z is 

open if g f is open. 
(h) If g: Y —+ Z is a continuous injection, then a map f :  X 	Y is 

open if g o f is open. 
(c) Do (a) and (b) remain true if we replace 'open' by 'closed'? 



Chapter 4 

Compactness 

4.1 Compact Spaces and their Properties 

The basic intuitive idea of a compact subset of a (metric) space is that 

it is a generalization of a finite set. Most professional mathematicians 

may subscribe to this view but no author of a book would like to put 

it in print. But you have it here! Look for instances where this crude 

intuition helps us conjecture results. 
We first introduce the concept of an indexed family of subsets of a 

set. A thorough knowledge of this will be needed to understand open 

covers etc. 
Let X be any nonempty set. Let I be another nonempty set. A 

family of subsets of X indexed by the index set I is a map I P(X) 
of I into the power set of X, that is, the set of all subsets of X. We 
denote the image of i E I by A, or some such notation. Then the family 
is denoted by {A, : i E / } . (Compare this with the case of sequences. A 
sequence in X is a function from N to X and in practice, we denote it 
by (x„) etc.) Let us look at some examples. 

Example 4.1.1. Let X = R2  and I = (0, co). For any r G I, we let 
Cr {(x,y) e  R2 x2 + y2 = r2} be the circle of radius r with centre 
at the origin. Here the family is {Cr  : r E [0, co* 

Example 4.1.2. Let X = R an I = Q+, the set of positive rational 
numbers. For any r E Q, we let Jr  denote the interval (—r, r). Here the 
family is {Jr  : r E Q+}. 

Let a family {A, : i E II of subsets of X indexed by I be given. Let 
A C I be a subset. Then the family {A : i E A} is called a subfamily of 
the given family {A, : i G 

The subset U, G AA, of X defined by 

U, E A := { x E X:xE A, for some i in A} 

81 
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is called the union of the subfamily. Let us again look at some examples. 

In Example 4.1.1, if we take A = [1, 2], then the union of the subfam-

ily {G : r E [1, 2]1 is the annular region {(x, y) E R2  : 1 < x2  + y2  < 4}. 

If we take A = [0,1], is is the closed disk or the closed ball B[0,1] in  1R2 . 

In Example 4.1.2, if we take A = N, then the union of the subfamily 

: n E NI is R. Note that it is also the union of the family {Jr  : r E 

[OE 00}! 

Definition 4.1.3. Let X be a (metric) space and A C X. A family 

of subsets {U, : j E / }  is called an open cover of A if each Ui  is open 

and A c UiUi. (Note that Ui need not be contained in A and they are 

required to be open in X.) 
If J c I is a subset of I such that A C UiE  jUi, we then say {Ui : j E 

J }  is a subcover of the given open cover of A. 
If there exists a finite subset J C I such that the A C UiEjUi , then 

we say that the given cover admits a finite subcover for A. 

Example 4.1.4. Consider the family {(1/n, 1) : n E N,n > 2}. We 
show that this is an open cover of (0, 1). We need to show that (0, 1) C 

U2 (1 /n, 1). Let x E (0, 1). We want to show that x E (1/n, 1) for some 
n > 2. If there exits such an n, then 1/n <z < 1. Hence n> 1/x. By 
Archimedean property of R, N is not bounded above in R. Hence 1/x is 
not an upper bound for N. It follows that there exists N E N such that 
N > 1/x or 1/N <  z  < 1. Thus the given family is an open cover of 
(0,1). 

We claim that the given cover admits no finite subcover for (0,1). 
Suppose that it does. Then (0,1)  C U 1 (1/n, 1) for some n1, n2, • • nk• 
Note that (1/m, 1) C (1/n, 1) for all n > m. If we set N := max{ni : 1 < 
j < k}, then U 1 (1/n, 1) =- (1/N, 1). Hence we deduce that (0,1) C 

(1/N, 1). This is absurd, since 1/2N E (0,1) but (1/2N) (/ (1/N, 1). 
Hence the claim follows. 

Suppose we add two open intervals, say, Jo, Ji with the property that 
0 E Jo and 1 E  Ji.  Then the collection {(1/n, 1) n > 2}U {Ji, J2 } is an 
open cover of [0, 1]. We claim that this cover admits a finite subcover of 
[0, 1]! 

Figure 4.1: Illustration for Example 4.1.4 

Since 0 E Jo, there exists 6 > 0 such that (-6, 6) C Jo . There exists 
m E N such that l/m < 6, by Archimedean property of R. Similarly, 
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since 1 E Ji, there exists E > 0 such that (1 — E,1 + E) C Ji . By 

Archimedean property of R, we can find n E N such that 1/n < 1 — E. 

Let N := max{m, n } . Then [0, 1] C Jo U J1 U (1/N, 1). (Verify.) 

Let x E [0, 1 ] . If x = 0 or 1, there x E J0 U J1. If 0 < x < 1, then 

either x < 1/N or 1/N < x < 1. In the former case, x < 1/N < 
1/m < 6 and hence x E (-6, 6) c Jo. In the later, x E (1/N,1). 

Thus, the given cover of [0, 1] admits a finite subcover of [0, 1]. 

Ex. 4.1.5. Show that each of the following families is an open cover of 

(0, 1): 
(1) 1(0, (n — 1)/n) : n E NI. 
(2) {q — 871 , ± 80 : 8, := ri - — -; t  2  ,n, > 3,n  E N}. 

-4110• ön  4-  

i 
2 

Figure 4.2: Illustration for Ex. 4.1.5 

Show that none of these open covers admit a finite sub cover.  

Add one more open set (or two more open intervals) to each of these 

covers so that the resulting family is an open cover of [0,1]. Show that 

the latter admits a finite subcover of [0,1]. Hint: Proceed as in the last 

example. 

Ex. 4.1.6. The family {(—x, x) : x E (0, oo)} is an open cover of R. 

Consider N C (0,  oc).  Then {(—n, n) : n E NI is a subcover. Does this 

admit a finite subcover? 

Ex. 4.1.7. Give a 'nontrivial' open cover of an arbitrary metric space. 

Ex. 4.1.8. Show that given any open cover of A = { 1/n : n G N} U101 

(considered as a subset of R) we can find a finite number of elements in 
the cover such that their union contains A. 

Can we assert such an analogous result for the set B = { l/n : n E N}? 

Ex. 4.1.9. Let X = Z. Can you think of an open cover of X which 
does not admit a finite subcover? 

Ex. 4.1.10. Let X be an infinite set. Let X be endowed with discrete 
metric. Give an open cover of X which does not admit a finite subcover. 

Definition 4.1.11. A subset K C X of a (metric) space is said to be 
compact if every open cover of K admits a finite subcover. 
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Ex. 4.1.12. Show that any finite subset of a metric space is compact. 

Theorem 4.1.13 (Heine-Borel Theorem for R). Let J [a, b] be a 

closed and bounded interval in R. Then, any open cover of  [a, b] admits 

a finite subcover, that is,  [a, b] is com,apct. 

Proof. Assume that the result is false. Then, there exists an open cover 

{ : i G /}  of J which does not admit a finite subcover for J. 

The strategy is to bisect J and observe that {Ui  : i E II does not 

admit a finite subcover for one of the subintervals. Call it J,. Repeat the 

argument replacing J by J1  and so on. We shall have a nested sequence 

(Jk) such that {U, : j E /} does not admit a finite subcover for any of 

Jk's. If c E n k Jk , then c E  Ua  for some a G I. One then shows that 

J1c C Ua  for all k sufficiently large. Let us now work out the details. 
[a--1-1) We bisect J = [a, 	u 	b]. Note that {Ui : i E / }  is an open 

cover for each of these subintervals. We claim that {Ui  : j E /} does not 

admit a finite subcover for any of these subintervals. For, if did, say, 

[a, 
a + b 

2 
] c Ui, U 	U Uin, and [

a + b
, b] c 	U • • • U U3n , 

2 

then 

[a, b] c (Ui l  U • • • U Uini ) U (U31  U • • • U Uin ). 

Thus {Ui : j E /} admits a finite subcover for [a, b], a contradiction to 

our hypothesis. Hence the claim follows. 

We select one subinterval for which 	: j E /1 has no finite subcover. 
We denote it by Ji = [ai, b,]. Note that a < al (as al = a or al = 
(a + b)/2). We observe the following: 

1. {U, : i G / } does not admit a finite subcover for J1. 
2. The length «Jo  =  b 1  - a l  = (b - a)/2. 
3. The left end-point al of J1 is greater than or equal to that of J, 

that is, a < a l . 

We repeat the argument replacing J by Ji as {Ui  : i G I} is an 
open cover of Ji admitting no finite subcover for J1. We then obtain a 
subinterval J2 = [a2, b2]  of J1 such that the following hold: 

1. {U, :  j G /} does not admit a finite subcover for J2. 
2. The length f(J2) = (b2 - a2) = (bi - ai)/2 = 2 -2 (b - a). 
3. The left end-point a2 of J2 is greater than or equal to that of 

that is, a l  < a2 . 

We now proceed recursively. Thus we get a sequence of subintervals 
(Jk) with the following properties: 

1. {Ui : i E / } does not admit a finite subcover for Jk for an k G  N. 
2. The length f(Jk) = bk - ak = 2- k (b - a). 
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C—E ak c bk C+E 

Figure 4.3: Illustration for Thm. 4.1.13 

3. The left end-point ak of Jk is greater than or equal to that of Jk-13 
that is, ak_ i  < ak. 

Consider the sequence (ak). It is a non-decreasing sequence of real 
numbers, that is, ak+i  > ak  for all k E N. Also, it is bounded. For, 
all ak E  [a, b].  Hence, from a standard result from real analysis, the 
sequence (ak) converges to c := sup{ ak } . We observe that c G [a, b] . For, 
c is an upper bound for all ak and in particular,  e>  ai > a. Also, c is 
the least upper bound for the set {ak  : k E NI and b is its upper bound. 
Hence a < c < b. 

We claim that bk —> c. For, 

ibk — C  < 	— akl + 	— = k  (b — a) + lak — cl —> 0, 1  

as k 	Do. 
Since e E [a, 1)] and { 	:  j E .0 is an open cover of [a, bb there exists 

a E I such that c E  U.  Since Ue, is open (this is the only place where 
we use the fact that the sets in {Ui  :  j E II are open!), there exists E > 0 
such that (c — E, C 6) c  U.  Since ak c and bk e, there exist 
positive integers k 1  and k2 such that 

ak E (c — E,C E) for k > k 1  and bk  G (c — e,c + E) for k > k2. 

Hence if k > ko := max{ki , k2 }, then ak,bk E (c — E,C E). Therefore, 

[ak,bk] c (c — e,c + e)  c  Ua . 

This implies that {Ui :  j E /} admits a finite subcover for Jk (if k > ko)• 
This contradicts our assumption on Jk. This contradiction shows that 
out original assumption that {Ui :  j E / }  does not admit a finite subcover 
for J is wrong. Hence the theorem follows. CI 

Ex. 4.1.14. Find all compact subsets of a discrete metric space. 

While Theorem 4.1.13 gave an example of an uncountable compact 
set, the next exercise gives an example of a compact set which is infinitely 
countable. 

'We used the fact that 2 -k 	0. It follows from the observation that k <  2"  for 
all k E N. This is proved by induction. Consequently, 2 -k  < 1/k. 
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Ex. 4.1.15. Show that 11/n : n E NI U {0 } is compact in IR. Can you 

generalize this? (in a metric space?) 

Theorem 4.1.16. Any compact subset of a metric space is closed and 

bounded. 

Proof. Let K c X be compact. Fix any xo  G  X.  Consider the open 

cover {B(x o ,n) : n G N}. This admits a finite subcover for  K,  say, 

{B(xo, nj ) : 1  < j <n}. Since B(xo,m) C B(xo,n) for 71 >  in , it follows 

that K C B(xo, N) for N := max{ni : 1  < j  <n}. Thus, K is bounded. 

Figure 4.4: Compact subset is closed 

To show that K is closed, let x ft K.  For each y G  K,  using the 
Hausdorff property of  X,  we can find ry  such that B(x, ry )nB(y, ry ) =0. 
The collection {B(y,r y ) : y G K } is obviously an open cover of  K.  Since 
K is compact, we have a finite subcover, say B (y i , ri), 1 < i < n, where 

:= ryi . (See Figure 4.4.) Clearly, B := niB(x, r i ) is an open set 
containing x. We claim that B n K = 0. Let, if possible, x E BnK. 
Since K c ri ), there exists some j such that x E B(yi,ri). 
Since B C B(xi, ri ) for all i, it follows that x G B(xj, rj ) n B(y 3 ,ri), a 
contradiction. 

Thus for every x  K,  we have found an Open set U D x such that 
UCX\K, that is, X \ K is open. 

Remark 4.1.17. The last theorem has a partial analogue in the context 
of Hausdorff spaces. A compact subset of a Hausdorff space is closed. 
The reader can adapt the proof given above for metric spaces. See Fig-
ure 4.5. 

Ex. 4.1.18. Let A, B be compact subsets of a (metric) space X.  Is 
A U B compact? 
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Figure 4.5: Compact subset is closed in a Hausdorff space 

The assumptions are the same as above but we insist that X is a 
metric space. Is A n B compact? 

Ex. 4.1.19. Consider G := (0, Do) with the metric induced from R. 
Note that G is a group under multiplication. Which subgroups of G are 
compact subsets of the metric space G? 

Ex. 4.1.20. Show that any closed subset of a compact set in a (metric) 
space X is compact. 

Ex. 4.1.21. Show that any closed and bounded subset of R is compact. 
Hint: Ex. 4.1.20 and Theorem 4.1.13 on page 84. 

Ex. 4.1.22. A subset of IR is compact if and only if it is closed and 
bounded. 

We shall show later that a similar result is true in ilin for any n 
(Theorem 4.1.30). In a general metric space, this need not be true. See 
the next few exercises. 

Ex. 4.1.23. Let X be infinite and d be the discrete metric on X. Show 
that X is bounded and closed but not compact. 

Ex. 4.1.24. The set (— 	V2) n Q is a closed and bounded subset in 
Q, but not compact. 

Example 4.1.25. We show that the closed unit ball B[0, 1] in  £2  is not 
compact. Consider en  E  £2  defined by en (k) = 6,k, 2  for n, k E N. Thus, 
en  is the sequence all of whose terms are zero except the n-th terni. 
Clearly, en  E B[0, 1] and d(ern , en ) = if m n. We claim that the 
open cover 

{B(x, 1/2) : x E B[0,1]} 

2 
rs is the Kronecker delta symbol defined as (5,s = 1 if r = s and 0 otherwise. 
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of B[0,1] admits no finite subcover. For, if {B(x 2 , 1/2) : 1 < j < n} is 
a finite subcover, then there exists j (1  < j  < n) and m n such that 
em ,  e E B(x 3 , 1/2). In particular, d(em , ea ) < d(em, x3 ) + d(x 3 , en ) < 1, 
a contradiction. 

Ex. 4.1.26. Show that the unit ball in (C[0,1], 11 Hoe) is not compact. 
Hint: The strategy is to adapt the argument of the last example. For 
this purpose, we need to construct a sequence (fa) of functions in B[0, 1] 
such that d(fm , fa ) = 1 if m 	n. For each n G N, we consider the 
function which takes the value 0 at t = 0, „rij  , 	, 1 and the value 1 at 

—1  and at other points it is extended by 'linearity'. See Figure 4.6. 

Figure 4.6: Graphs of fn 's in Exercise 4.1.26 

To be very concrete, consider the sequence of functions defined as 
follows: 

Ex. 4.1.27. Let a, b, c, d G  JR  be such that b — a = d — c. Let S := 
[a, b] x [c, d} be the square in R2 . The vertices of S are (a, c), (b, c), (b, d) 
and (a, d). We call the point (a, c) as the bottom left vertex of  S.  The 
pair of midpoints of its opposite sides are given by 

([a + b]/2,c), ([a + IA/ 2, d) and (a, [c + d]/2), (b, [c 	c/J/2]). 

By joining the midpoints of opposite sides, we get four smaller squares. 
Observe that if (ai, el) is the bottom left vertex of any of these squares, 
we have a < a l  and c < el. See Figure 4.7. 
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Figure 4.7: Illustration for Exercise 4.1.27 

Lemma 4.1.28. The square S 	[—R, R] x [—R, 17] is a compact subset 
of IR 2  

Proof We mimic the argument of Theorem 4.1.13. 
Suppose that S is not compact. Then there is an open cover M : 

i E /1 of which there is no finite subcover of S. Let us divide the square 
S into four smaller squares by joining the pairs of midpoints of opposite 
sides. (See Exercise 4.1.27 above.) One of these square will not have a 
finite subcover from the given cover. For, otherwise, each of these four 
squares will have finite subcover so that the union of these subcovers will 
be a cover for S. Thus, S itself will admit a finite subcover. Choose one 
such smaller square and call it S i . Note that the length of its sides is R 
and that if (a l , ci) is the bottom left vertex of Si , then a l  > ao = —R 
and c i  > co = —R. We repeat the argument by subdividing S1  into four 
squares and choosing one of the smaller squares which does not admit a 
finite subcover of MI. Call this smaller square as 82. (See Figure 4.8.) 
Note that the length of its sides is R/2 and that if (a2, c2) is the bottom 
left vertex of S2, then a l  < a2 and Cl  < c2. 

Proceeding recursively, we have a sequence of squares S„ such that 
S, dose not admit a finite subcover and the length of sides of S, is 
2 -71 + 1 R and its bottom left vertex  (a, e) is such that an_i < a„ and 

en . Thus we have two sequences of real numbers (a„) and (ca). 
They are bounded and monotone. Hence there exist real numbers a and 
c such that a n  a and c„ c. It follows that (a n , c„) (a, c) E R2 . 
Since S is closed, we infer that (a, c) E S. Hence there is U„, in the open 
cover such that (a, c) E U10 . Since U., 0  is open there exists an r > 0 such 
that B((a,c),r) C  U. 

Choose n E N with the following properties: 
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ai  ,c1) 

Figure 4.8: [-R, R] x [-R, R] is compact 

(1) diam Sn  = 2 -71 ± 1 VM < r/2 and 

(2) d((a, c),  (an ,  ca )) < r/2. 
We then have, for any (x, y) E Sn, 

d((a, c), (x,y)) _< d((a, c), (an, en)) + d((an , cn ), (x , y)) 

< r/2 + 2 —n+1 VM < r. 

Thus S, C B ((a, c), r) C Uto . But then { Uio  } is a finite subcover for 

Sn , contradicting our choice of Sk 's. Therefore, our assumption that S 
is not compact is not tenable. 	 0 

Ex. 4.1.29. Note that the proof above generalizes to Rn  including the 
case when n = 1. 

Theorem 4.1.30 (Heine-Borel Theorem). A subset of Rn  is compact 
if it is closed and bounded. 

Proof. This is an easy corollary of Theorem 4.1.16 on page 86, Ex. 4.1.20 
on page 87, Lemma 4.1.28 on page 89 and Ex. 4.1.29. 

Ex. 4.1.31. Which of the following are compact? Justify your answers. 
(a) The unit sphere 571-1  := 	G 	:114 = 1 1. 
(b) The hyperbola X 2  — y 2  = 1 in R2 . 
(c) The parabola y2  = x in R2 . 
(d) The ellipse (x2 

 /a2) 	( y2/b2) = 1 .  

(e) A 'conic section' in R2  given by a second degree polynomial in x 
and y. 

(f) The set of points x E Rn  such that 4+24 + • • • + nxn2  < (n + 1) 2 . 
(g) A nonzero vector subspace of a (nonzero) NLS. 



4.2. CONTINUOUS FUNCTIONS ON COMPACT SPACES 	91 

Ex. 4.1.32. Is the set {(x, y, z) E R3 x2 ± y2 ___ z2 	1} compact in 

R3 ? 

Ex. 4.1.33. Show that the set 0(n) of all orthogonal matrices is a com-

pact subset of /11(n, R). (Recall that if A = (C1, , is orthogonal 

with Ck as the k-th column, then the dot product of the column vectors 

satisfy the equations: (Ck,C3 ) 

Ex. 4.1.34. Are GL(n,R) and SL(n,R) compact? How about the set 

of nilpotent matrices? 

Ex. 4.1.35. Which of the vector subspaces of an  NLS are compact? 

4.2 Continuous Functions on Compact Spaces 

In the next proposition, note the presence of (metric) for X and its 

absence for Y! 

Proposition 4.2.1. Any continuous function f from a compact (metric) 

space (X, d) to another metric space (Y, d)  is bounded, that is, f (X) is 

a bounded subset of Y 

Proof. Understand the proof when Y = R or Y = C. 

Fix any y E Y. For each n E N, the set B(y, n) is an open set in Y 

and hence 

:= rl (B(y,n)) = {x  E X  : d(f (x), y) < n} 

is open. Note also that Un  C Un+1. The collection {Un  : Tt E NI is an 

open cover of the compact space X. If {Uni  : 1 < i < m} is a finite 
subcover and if N := max{n 2 }, then X = UN, that is, f (X) C B(y, N). 
Hence f (X) is bounded. 

Ex. 4.2.2. Assume that the metric space (X, d) is not compact. Show 
that there exists f:  X —> R which is continuous but not bounded. 

Theorem 4.2.3. Any continuous function from a compact (metric) space 
to R attains its bounds. 

More precisely, let X be compact and f: X  —> R be continuous. Let 
M :=- M := sup{ f (x) : x E X} and m := inf{f (x) : x E X } . Then there 
exist x i , x 2  E X such that f (x i ) = M and f (x 2 ) = m. 

Proof. By the last proposition, there exists an a E R such that (x)1 < a 
for all x E X. Hence m and M exist as real numbers. We shall prove 
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the existence of x1 by contradiction. If there is no p E X such that 
f (p) = 11/I , then the sets 

Un  := fx E X; f (x)  < M — 

form an open cover of X. (For, if x G X, then f(x) <M  and hence by 
Archimedean property of  IR ,  there exists n E N such that n > m _if(x)  

whence (x) <M — in  or x E Un .) Note that Un  C Un+ 1 for all n. As in 
the last proof, we conclude that X = UN for some N. But this leads to 
the contradiction: sup{ f (x) : x E XI < M — ki ! 	 LI  

Ex. 4.2.4. Let  f: X —4 (O, oc) be a continuous function on a compact 
space X. Show that there exists E > 0 such that 1(x) > E for all x E X. 

Ex. 4.2.5. Show that the continuous image of a compact (metric) space 
is compact. 

Hence conclude that compactness is a topological property: if X and 
Y are homeomorphic, and if X is compact, so is Y. 

Ex. 4.2.6. A standard proof of Proposition 4.2.1 and Theorem 4.2.3 
uses Ex. 4.2.5, Theorem 4.1.16 and Ex. 2.2.11. Work out this proof and 
compare this with the ones given above. 

Ex. 4.2.7. Let K c 118 71  be with the property that any real valued 
continuous function on K is bounded. Show that K is compact. Hint: 
Heine-Borel Theorem. 

Theorem 4.2.8. Any continuous function from a compact metric space 
to any other metric space is uniformly continuous. 

Proof. Let  f: (X,  d) --+ (Y, d) be continuous. Assume that X is compact. 
We need to prove that f is uniformly continuous on  X. 

A naive attempt would runs as follows. For a given E > 0, for each 
x, there exists 6x  > 0 by continuity of f at x. Since X is compact, the 
open cover {B(x,(5 x ): x E X} admits a finite subcover, say, {B(xi , Si ) : 
1 <  j  < n} where 6i  = 6si . One may be tempted to believe that if we 
set  8 := mintSi  : 1 < i < nl, it might work. See where the problem is. 
Once you arrive at a complete proof, you may refer to the proof below. 

We now modify the argument and complete the proof. Given E > 0, 
by the continuity of f at x, there exists an rs  > 0 such that 

d(x, y)  <r 	d(f (x), f (y)) < E 12. 

Instead of the open cover {B(x,r x ) : x E X}, we consider the open 
cover {B(x, rs /2) :  X E XI and apply compactness. Let {B(x„ ri  /2) : 
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1 <  j  < n} be a finite subcover. (Here ri = rx „ 1 < j  < n.) Let 

6 := min{ri /2 : 1  <j < n}. Let x, y E X be such that d(x, y) < 6. Now 

E B (xi, 7- 2 /2) for some i. Since d(x, y) < 6, we see that 

Thus y E B (x , r,). It follows that 

d(f (x), f (y)) < d(f (x), f (x,)) + d(f (xi) + f (y)) < E /2 + E/2, 

by our choice of ri. Thus f is uniformly continuous. 

Another proof is indicated in Ex. 4.3.17 and a third is given in Ex-

ample 4.3.5. 

Ex. 4.2.9. Let  f:  (0,1) 	R be continuous, monotone and bonded. 

Show that f is uniformly continuous on (0,1). Hint: limx,o+  f (x) and 

f (x) exist so that f extends as a continuous function on [0,1]. 

Ex. 4.2.10. Let  f: (X , d) 	(Y, d) be a map of metric spaces. Assume 

that f is locally Lipschitz, that is, for each x G  X,  there exists an open 

ball Bx  containing x and a constant L x  > 0 such that 

d( f (xi), f (x2)) < Lxd(xi, x2) for all xi, x2 E  B. 

If X is compact, then f is Lipschitz. Hint: With the notation of the 

exercise, select a finite cover {Bi., : 1 <  j  < n}. Let Li  be the Lipshitz 
constant corresponding to the Bi  := B11 . The continuous function 

d: X x X\ (l.fiL i B i  x B i ) 	R 

is positive and attains a minimum 6. Choose M such that d(f (x), f (y)) < 
11/I 8 . Then L := max{M, L 1 , 	, Ln } is a Lipschitz constant for f on  X. 

Ex. 4.2.11. We say that a function f: [a, b] 	R is linear if it is of 
the form f (t) = at + for some a, E R. Show that f is determined 
by its values at two (distinct) points in [a, b]. More precisely, arrive 
at an expression for a linear f such that f(xi) =  Yi  and f (x2) = Y2) 

1 1, x2 E [a, N. 

Definition 4.2.12. A function g:  [0,1] 	R is said to be piecewise linear 
if we can find a partition 0 = xo < x 1  < • • < xn_i < xn  = 1 of the 
interval [0,1] such that g is a linear on each of the subintervals (xi, xi +1). 
It is continuous if it is linear on each of the closed subintervals. (Justify 
this.) 
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Proposition 4.2.13 (Density of Piecewise Linear Functions). 
Given a continuous function f:  [0,11 R, and E > 0, there exists a 
piecewise linear continuous function g on [0, 1] such that if (x) — g(x)1 < 
E for x E [0, 1]. That is, the set of piecewise linear continuous functions 

on [0, 1] is dense in (C[0, 1], 11 Moo). 

Proof Let e > 0 be given. Since f is uniformly continuous on [0, 1], there 
exists (5 > 0 such that whenever Ix —  y <0 ,  we have 11(x) — f (y)1 < 12. 
Choose a positive integer N so large that 1/N < 0. We partition the 
interval [0, 1 1 into N equal parts: 0 < 1/N < 2IN < • • • < (N —1)IN < 
1. Let xi = for 0 < i < N. 

Let g: [0,1] 	R be the function that is linear on each of the subin- 
tervals [xi, xi+i] such that  g(x i ) = f (xi) and g(xi+i) = f (xi+i) • (See 
Figure 4.9. Write down g explicitly.) 

Figure 4.9: Density of piecewise linear functions 

Let x E [xi, xi+d, for some 0 <  j  < N — 1. Then g(x) lies between 
the values g(x i ) = f (x i ) and g(xi +i ) = f (xi +i).' Hence 

If (xi) - 9(x)1 	If (xi) - f (xi+1)1 < E 12 . 

Also, 11(x) - f (xi)1 < E12, it follows that f (x) g(x)1  < E.  

Ex. 4.2.5 can be used to show that certain spaces are not homeomor-
phic. 

Ex. 4.2.14. Show that a circle in R2  is not homeomorphic to a parabola 
or a hyperbola. 

Show also that R is not homeomorphic to an ellipse. 

Ex. 4.2.15 (A very useful fact). Let X,Y be metric spaces. Assume 
that X is compact. Let  f:  X -4  Y be a bijective continuous map. 
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Show that the inverse map f _1:  Y 	X is continuous, that is, f is a 
homeomorphism. Hint: Observe that the image of a closed set under f 
is closed. Why? See Theorem 4.1.16 and Remark 4.1.17. 

This has the following extension in the context of topological spaces. 
A bijective continuous map f from a compact space to a Hausdorff space 
is continuous. (You need Remark 4.1.17.) 

4.3 Characterization of Compact Metric Spaces 

Lemma 4.3.1 (Lebesgue Covering Lemma). Let (X, d) be a compact 
metric space. Let {U,} be an open cover of  X. Then there is a (5 > 0 
such that if A c X with diameter diam (A) < S, then there is an i such 
that A C  U. 

Remark 4.3.2. If (5 is as in the theorem and 0 < 	< (5, then (5' also 
has the required property. Any (5 of the theorem is called a Lebesgue 
number of the covering {U1 } . 

Ex. 4.3.3. Let X = (0,1) and Un  = (1/n, 1). Does a Lebesgue number 
exist for this cover? 

Ex. 4.3.4. Let U0 := (-1/10.1/10) and Ua  := (a/2,2) for 0 < a < 1. 
Show that U0 U {Ua  : 0 < a < 1} is an open cover of [0, 1]. Find a 
Lebesgue number of this cover. 

We now go to a proof of the Lebesgue covering lemma. 

Proof. For x E X, there is an i(x) such that x E Ui ( x)  and an r(x) > 0 
such that B(x,2r(x)) c U i(x) . (Why?) There exist finitely many x k , 
1 < k < n such that X =-- UkB(xk,rk) where rk  := r(xk). Let 6 be 
any positive real such that 6 < min{rk  } . Let A be any subset with 
diam (A) < S. Let a E A. Then a E B(xk,r k ) for some k. Let x E A 
be arbitrary. Then d(x, x k ) < d(x, a) + d(a, xk) < + r k < 2rk. Thus, 
Ac  B(xk,2rk) C U2 ( ik ). 

Example 4.3.5. One may use Lebesgue covering lemma to give an 
alternative proof of Theorem 4.2.8. Given E > 0, by the continuity 
of f at x E X, there exists Sx  > 0 such that if d(x,x') < (5x , then 
d(f(x). f(x')) < E/2. Now the family {B(x,(5 x ) : x E X} is an open 
cover of the compact metric space X. Let  S be a Lebesgue number 
of the covering. Let x i , x2  E X be such that d(x i , x2) <  S.  Then 
diam {x1, x2} < (5 and hence there exists a member B(x,(5 x ) of the cov-
ering with xi, x2 E B(x,6 x ). It follows that 

d(f (xi), f (x2)) 5_ d(f (xi), f(x)) + d(f(x), f (x2)) < E/2 + E/2. 
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Therefore, f is uniformly continuous on X. 

Compare this proof with the one given in Theorem 4.2.8. 

Definition 4.3.6. Let A be a subset of a metric space. We say that A 

is totally bounded if for every E>  0, we can find a finite number of points 

xi , 1  <j < n, such that A c  
Clearly, this is a back-door entry of compactness! Do you see why? 

We say that a subset A C X is an E-net if dA(x)  < E  for any x E X. 

Thus X is totally bounded if there exists a finite E-net for every E > 0. 

Ex. 4.3.7. Show that any compact space is totally bounded. 

Ex. 4.3.8. Show that any bounded subset of R is totally bounded. 

Can you generalize this to Rn? to any metric space? 

Ex. 4.3.9. Show that if B is totally bounded and A c B, then A is 

totally bounded. 

Ex. 4.3.10. If A is totally bounded subset of a metric space, show that 

its closure A is also totally bounded. 

Ex. 4.3.11. Show that a metric space (X,  d) is totally bounded if each 
infinite subset of X contains distinct points that arbitrarily close to each 
other. 

Ex. 4.3.12. Let  (X, d)  be a metric space which is not totally bounded. 
Prove that there exists a sequence (xn ) in X and a positive ri such that 
d(x m , x n ) > i7 whenever m n. 

Ex. 4.3.13. Show that a subset D c X is dense if it is E-net for every 
E > 0. 

The following result gives three characterizations of compact metric 
spaces. Each of these is quite useful. One use is, of course, to decide 
whether a given metric space is compact or not. The other is to ap-
ply them to derive some results about compact metric spaces. We shall 
illustrate their uses below. Most often for theoretical purpose, charac-
terization (2) of the theorem seem to be efficient. See Theorem 4.4.8 
and Ex. 4.4.10. Condition (4) is quite useful when dealing with prob-
lems, where we have some idea of the convergence in the given metric 
space. See Ex. 4.3.18—Ex. 4.3.23. Only experience will teach us which 
characterization is useful or most expedient in a given context. 

Theorem 4.3.14 (Characterization of Compact Metric Spaces). 
For a metric space (X, d), the following are equivalent: 

(1) X is compact: every open cover has a finite subcover. 
(2) X is complete and totally bounded. 
(3) Every infinite set has a cluster point. 
(4) Every sequence has a convergent subsequence. 
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Proof (1) 	> (2): Let (X,d) be compact. Given E > 0, the family 

{B(x,$) 	x E X} is an open cover of X. Let {B(x,,E) 	1 < <ri}  _ _ 
be a finite subcover. Hence X is totally bounded. 

Now let (x n ) be a Cauchy sequence in X. Then for every k E N there 

exits nk such that d(x n , x nk ) < 1/k for all  ri>  rib .  Let 

\ 
Uk := {X E X 	d(x,x nk ) > -k- 

Then Uk is open. 3  Now x n 	Uk for n > nk. Hence no finite sub- 

cover of Uk 's cover X: For, if they did, say, X = 	Ui , we take 

n > max{n i , 	Then x n  Uk for any k with 1 < k < 771. This 

implies that {Uk} cannot cover X. Thus there exists x E X \U,Uk. 

But then d(x, x nk ) < Hence x„ k  —> x. Since (x n ) is Cauchy we see 

that x n  also converges to limk x nk • Thus X is complete. We have thus 

shown (1) implies (2). 
(2) 	> (3): Let E be an infinite subset of X. Let Fn  be a finite 

subset of X such that X = Uxe pri B(x, T.1„-). Then for n = 1 there exists 

x 1  E F1  such that E n B(x l , 1) is infinite. As a second step, replace E 

by E n B(x i , 1) and F1  by F2. The infinite set E n B(x i , 1) is contained 

in the finite union UsE F2 B(x, 1/2). Hence there exists x2 E F2 such that 

E n B(x i , 1) n B(x 2 , 1/2) is infinite. 

Inductively choose xn  E Fri  such that E n (nrki„B(xk , ,-1)) is infinite. 

Since there is aE En B(x 7„, 	n B(x n , ti-) we see that 

d(x,„,x„) < d(x7,2 , a) + d(a, xn ) < —
1 

+ —
1 

< —
2 

for m < n. 
m n m 

Thus (x n ) is Cauchy. Since X is complete xn  converges to some x E X. 
Also d(x,x, i ) < 2/n for all n. 4  Thus B(x,3In) includes B(x„, 771„) which 
includes infinitely many elements of E. Thus x is a cluster point of E. 
Hence (3) is proved. 

(3)	> (4): If (x n ) is a sequence in X we let x(N) := {xn 	n E N} 
be its image. If this set is finite then (4) trivially follows. 

Let x(N) = {z i , 	, zn1 } . Consider the subset Sk := X -1  (Zk). Since 

N = UrkrL i Sk, at least one of the subsets, say, Si  is infinite. Using 

well-ordering principle of N, we can write S1 as fni < n2 < • • 1. 

Then the subsequence (x„,) is a constant sequence z1 and hence 

converges to z 1 . 

3 1t is the complement of the closed set B[x„,„, 1/nk]. Or, if y E Uk and 6 := 

d(xn k , y) — then B(Y, (5) C  U.  A third way is to use the continuity of x 	d(X xnk)• 
4  Note that d(x, x n ) := 	 xr,) by the continuity of x 	d(x, x„). Since 

for TN > rt. d(x„„ x7,) < 2/n, the claim follows. 
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So assume that { x„ 	nEN} is infinite. Let x be a cluster point of this 

set. Then there exist elements x„k  such that d(x,x nk ) < 1/k for all k. 

Thus xnk 	x and (4) is thereby proved. 

(4) ---> (1): Let WO be an open cover of X. For x E X, let 

r, := sup {r E 	B(x,r) C U„ for some a } . 

, ,- .Xnv• s,  • 

Figure 4.10: (4) 	> (1) of Theorem 4.3.14 

We claim that E := inf { rx  I x E XI > 0. If not, there is a sequence 

(x n ) such that rx„ 	0. But (x n ) has a convergent subsequence, say, 

xnk 	x. Now x E Ua  for some a and hence there is an r > 0 such that 

B(x,r) C  U.  For k large enough d(x, x nk ) < so that rx „k  > 121  for all 

sufficiently large k - a contradiction. Hence the claim is proved. 

Let E := inf fr x  I xEX I. Choose any x 1  E X. Inductively choose 
x n  such that xn  Unki i1 B(x,,E/2). We cannot do this for all n. For 

otherwise, (x n ) will not have a convergent subsequence since d(x n , x m ) > 
for all m n. Hence X = U lkv, i B(xk, i) for some N. But then for 

each k there is an ak such that B(xk,)  C  U. Hence X = U l U k . 

Thus WQ  I has a finite subcover or X is compact. 

Ex. 4.3.15. Consider B[0,1], the closed unit ball in C[0,1] under the 
sup norm. Show that it is not compact. Hint: Can you think of a 
sequence which has no convergent subsequence? 

Remark 4.3.16. We give a second proof of Lebesgue covering lemma 
to illustrate the typical use of characterization (4) of Theorem 4.3.14. 

Suppose that Lebesgue covering lemma is false. Then, for any 6 = 
there is a subset An  with diameter less than 1/n and such that it 

is not a subset of U, for any i. Choose any x n  E  A. Then the sequence 
(xn ) has a convergent subsequence (x n,) such that x n, 	p in X. Let 
p E  U.  Let r > 0 be such that B(p, 2r) C Uz . Choose k so large that 

Xnk E B(p,r) and link  < r. Now if a E A„, is any element, then, 
d(a,p) < d(a,xnk ) + d(xnk ,P) < 2r. That is, An , C B(p,2r) C 

contradicting our assumption on the An's. 
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Ex. 4.3.17. Give an alternative proof of Theorem 4.2.8 along the fol-
lowing lines. Assume that f is not uniformly continuous. Therefore there 
exist some E.  > 0 and two sequences (x n ) and (yri ) such that d(xn, yn) 0 
but d( f(.r„). d(y,)) > E . Hint: Go through Remark 4.3.16 

Many of the exercises below admit more than one approach. We 
indicate them in some of the exercises, so that the reader can try different 
approaches. 

Ex. 4.3.18. The product metric space of two compact metric spaces 
is compact. Hint: Use the 4th characterization in Theorem 4.3.14 of a 
compact metric space. 

Given two topological spaces X,Y , one can define the product topol-
ogy on the Cartesian product X x Y and show that the product space 
of compact spaces is again compact. We do not get into this. 

Ex. 4.3.19. Given A, B two compact subsets of a metric space such 
that A n B = 0. Show that d(A, B) > O. In fact, show that there exist 
a E A and b E B such that d(A,B) = d(a,b). Hint: You can use the 
continuity of dA and Theorem 4.2.3. Or use the last exercise and Theo-
rem 4.2.3. A third approach would be to use the 4th characterization in 
Theorem 4.3.14 of a compact metric space. 

Ex. 4.3.20. Let C be closed and K be compact in Rn. Assume that 
C n K = 0. Show that d(K, C) > O. Hint: Most efficient solution 
would use Ex. 4.2.4. As an alternative, we also ask you to use the 4th 
characterization of a compact metric space. 

Ex. 4.3.21. Let C be closed and K be compact in El'. Show that K +C 
is closed. 

Ex. 4.3.22. Let A, B be compact subsets of Rn. Show that their sum 
A + B is compact. Hint: Vector addition is continuous. Alternatively, 
use the 4th characterization of a compact metric space. 

Ex. 4.3.23. Redo Ex. 4.2.10 using the 4th characterization in Theo-
rem 4.3.14 of a compact metric space. (This approach is the standard 
one!) 

A very instructive and useful exercise involving some typical com-
pactness argument is the following result. 

Theorem 4.3.24. Any two norms on Rn are equivalent, that is, the 
topologies induced by these norms are the same. 
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Proof It suffices to show that a given norm on Rn is equivalent to the 

Euclidean norm. (Why?) 

Let 77 denote a norm on Rn. We continue to denote the Euclidean 

norm by ll ll. The norms are equivalent iff there exist positive constants 

Ci , C2 such that 

11xli < 77(x)  < C2 XII for all x E  1W1 . 	 (4.1) 

Let {e k  : 1 < k < n} be the standard basis of  R.  Then we have for 

any x = (x1, 	, x r,) = Enk=l xkek) 

n 
E xkek) 
k=1 	

<. 

k=1 
I 71( ek ) 

k=1 

< M 	11 11 
k=1 

= 	 (4.2) 

where M := max{7J(ek) : 1 < k < n}. Thus the right most inequality in 

(4.1) is obtained with C2 := Mn. (An aside: One can, in fact, improve 

this constant to M \rn, by applying the Cauchy-Schwarz inequality to 

the sum E;1=1 lxii  y3  where y3  = 1 for all 1  < j  < n.) 
To get the left most inequality of (4.1), we make some preliminary 

observation. If  iI x = 1, what it means is that 

	

77 (x) > C1  for all x  E S := 	E  R : x = 11. 

If x E S, then 114 = 1 and hence x 	0. It follows that the map 
satisfies: x 	ri(x) > 0 for x E S. What we want to claim is that it 
is bounded below by a positive constant C1. This triggers our memory. 
We have seen something similar in Ex. 4.2.4. So what we need to show 
is that ri : S IR is a continuous function on the compact subset S C 
( 111n di ID- But we have done it already. The inequality (4.2) shows that 
n  is Lipschitz continuous from (S, II il)  to R: 

1 77 (x) —11(y)1 	77(x y) 	Mn 

by Ex. 1.1.39 and (4.2). 
Hence the function 7-7 restricted to S attains the minimum value, say 

C1  at some point xo E S. Hence ri(x) > C1 for all x E S. Consequently, 

71( Ai )  > C1 for all nonzero x E Rn. It follows that 77(x) >  C1  II x ll for 
all x E Rn. 
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Ex. 4.3.25. Adapt the above proof to show that any two norms on a 

finite dimensional (real/complex) vector space are equivalent. 

4.4 Arzela-Ascoli Theorem 

The theorem of the title gives an immensely useful criterion of com-

pactness of subsets of C(X) where X is a compact metric space and 

C(X) is given the sup norm metric. 

Definition 4.4.1. Let X and Y be metric spaces and a E X. A family 

A of functions from X to Y is said to be equicontinuous at a if for any 

E > 0 there exists a 6 > 0 such that 

d(x, a) <ô = d(f (x), f (a)) < E 	for  all !  E A. 

We say that A is equicontinuous on X if it is equicontinuous at each 

point of  X. 

A slightly stronger notion is introduced in the following 

Definition 4.4.2. Keep the notation of the last definition. We say that 

A is uniformly equi continuous  on X if for any given E > 0, there exists a 
8>  0 such that 

d(xi, x2)  <8  = d(f (xi), f (x2))  < E 	for all f E A. 

Ex. 4.4.3. Any member of a uniformly equicontinuous family is uni-
formly continuous. 

Ex. 4.4.4. Let  f: X -- Y be any continuous function between metric 
spaces. Then 

(0 A := {f} is equicontinuous on X  if.  
(ii) A := { f } is uniformly equicontinuous on X  if.  

The following two exercises give two of the most important ways 
uniformly equicontinuous families arise. 

Ex. 4.4.5. Let X be a compact metric space. Let F:XxX -- , Z 
be continuous. Let fy (x) := F(x,y). Show that A := {f y  : y E X} is 
uniformly equicontinuous. 

Ex. 4.4.6. Let X C Rn  be convex and open. Let A be a family of 
differentiable functions from X to Rm. Assume that there exists M > 0 
such that 11 D f (x)11 <M  for all f E A and for all x E  X.  Show that A 
is uniformly equicontinuous. 
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If X is a compact metric space, then there is no distinction between 
equicontinuous family and uniformly equicontinuous family. This is the 
content of the next lemma. 

Lemma 4.4.7. Let X be a compact metric space and A be a family of 
equi  continuous functions from X to another metric space Y. Then A is 
uniformly equicontinuous family. 

Proof. Proceed exactly as in the proof of Theorem 4.2.8. Observe that 
you can choose the  61 's independent of f E A thanks to the fact that A 
is equicontinuous at X G X. We leave the details to the reader. 	El 

Theorem 4.4.8 (Arzela-Ascoli Theorem). Let X be a compact met-
ric space. Let C(X, II() be given the sup norm metric. OK is either R 
or C.) Then a set 23 C C(X) is compact if 23 is bounded, closed and 
equzcontznuous. 

Proof. Assume that B is compact. Then B is closed and totally bounded 
since C(X) is a complete metric space. Given E > 0 there exists L E 
for 1  <j <n such that 13 c UiB(fi ,E). Let  6i  be chosen by the uniform 
continuity of L for the given E. Let  6 be the minimum of the  6i 's. This 
(5 does the job. 

\ 
\ \ 

, 
‘ 1 

v 

Yin 

y4 

y3 

Y2 

Xi X2 X3 X4 X5 X6 X7 18 X9 	 Xn 

Figure 4.11: Arzela-Ascoli 

Now assume that 93 is bounded, closed and equicontinuous. Since 
X is compact, 13 is uniformly equicontinuous. Since (C(X),11 H oc ) is 
complete, 13 is complete. So it is enough if we show that 13 is totally 
bounded. 
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Let E > 0 be given. We plan to show that there exists a 4E-net for 
B. Let M be such that If (x)1 <M  for all x G X and f G B. Using the 
uniform equicontinuity of 23 we get a 6 with the following property: 

f (x) — f (41 < E  whenever d(x,x')  <6  for all f E B. 

We can find x i  E X, 1 < i < m such that X = UB(x i ,8). Since 
B[0, M] the closed ball of radius M centred at 0 in K is compact and 
hence totally bounded, we can find yi  E B[0, Alb 1  <j <n such that 
B[0, /11] c uB(y 3 ,E). Let A := fa: { x,} {MI be the set of all 
functions a from the set {x, : 1 <  j  < ml to the set {y 3  : 1 < j < n} . 
Then 1A1 = n'. For a E A, let 

uer := { f E 	if(xi) 	ce(i)1 	El .  

(Refer to Fig. 4.11 on page 102.) 
We claim that the diameter of U, is at most 4E. We need to show that 

— Ylloo  < E,  that is, to show that 11(x) — g(x)1 < 4E for al x E X and 
f,g E Ua . Let x E X be given. Then x E B(x 2 , (5) for some 1  <j  < m. 
It follows that 

If (X) 	f (Xi)! < E 
g(x) — g(xi)1 < E. 

Also, since f,g G Ua , we have 

If(xi) 	)1 	5- E 

E. 

It follows that 

(4.3) 

(4.4) 

If(xi) — .9(xi)1 5_ 2E. 	 (4.5) 

We therefore deduce from (4.3)—(4.5) that 

If (x) — g(x) I 	If (x) — f(x)1 + If (xi) — g(xi)1 + Ig(xi) — g(x)1 < 4E. 

Hence we conclude that the diameter of U, is at most 4E. 
We show that the union of Ua 's is B. Let f G B be given. For 

any i (1 < i < n), let j := j(i) (1 < j(i) < n) be chosen so that 
f(x i ) E B(yi,E). Define  c(x) = yi(i) . Then, If (x i ) — o(x) 1 < E. That 
is, f E Ua . 

Remark 4.4.9. In the above proof, we showed that B c UaEAUa . To 
show total boundedness of B, we need to exhibit E-net of open balls. 
This can be done, if we fix fa  E Ua , then U, C B(f a , 5E), for any a E A. 
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Ex. 4.4.10. Prove that a set A C L i  is compact  if  (i) A is bounded and 

(ii) given E > 0, there exists n o  such that Xkl < E for all n > no  

and x E A. Hint: To prove the sufficiency, you need only show that 

A is totally bounded. Given E > 0, for no  as in the condition, apply 

Heine-Borel to the finite dimensional space {(xi, ... , x n0 , 0, 0, ... )}. 

Ex. 4.4.11. Let X, Y be metric spaces. Assume that Y is compact. Let 

f :  X ---> Y be a function. The graph Graph(f) is the subset 

Graph(f) := {(x , f (x)) : x e X} c X x Y. 

Show that f is continuous if  the graph of f is a closed subset of X x Y 

under the product metric. 

Ex. 4.4.12 (Finite Intersection Property and Compactness). 

Let X be a set. We say that a collection A of (nonempty) subsets of 

X has finite intersection property (f.i.p., in short) if every finite family 

A 1 , ... , An  of elements in A has a nonempty intersection. 

Prove the following: A (metric) space is compact  if every family of 

closed sets with f.i.p. has nonempty intersection. Hint: Start with an 

open cover II which does not admit a finite subcover. Look at {X \ U : 
U E 7.} . 

Ex. 4.4.13. Show that any compact metric space has a countable dense 

subset. Can you improve upon this result? 

Ex. 4.4.14. Let X be a compact space. Assume that (An ) is a sequence 

of non-empty closed sets in X such that An+ 1 C  A. Show that nAn  0. 
Compare this with Ex. 4.4.12. 

Ex. 4.4.15. Let X be a compact metric space. Let f :  X -, X be 
continuous. Show that there exists a nonempty subset A of X such that 
f (A) = A. Hint: Consider A1 = f (X) and An+1 = f (An) for  n>  1 

Ex. 4.4.16. Let (X, d) be a compact metric space. Let f :  X ---4 X be 
such that d(f (x), f (y)) < d(x, y) for all x, y e X with x y. Show that 
f has a fixed point, that is, there exists xo E X such that  f (x0) = xo• 
Is the fixed point unique? Hint: Consider the function x 1--4 d(x , f (x)). 
What contradiction does it lead to if ingd(x, f (x)) : x E X} > 0? 

Ex. 4.4.17. Let (X, d) be a compact metric space. Let  f: X ---+ X 
be such that d(f(x), f(y)) = d(x, y) for all x, y e  X.  Show that f is 
onto. Hint: Fix y G X and x 1  E  X.  Define x n  = f (xn _1). Observe that 

d(Xn, Xn+k) — d(Y,xn)- 
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Ex. 4.4.18. Let f :  X 	Y be a continuous map between metric spaces. 
Assume that Kn  is a nonempty compact subset of X and that Kn+i  c 
K„ for each n E N. Let K := nn i-(7,. Show that f (K) = nrif (K ) . Hint: 
For the non-trivial part, consider the compact (why?) sets f -1 (y) n K„ 
where y E nnf ( 1(n)• 

Ex. 4.4.19. Show that any open cover of the unit circle in R2  is a 
cover of an annulus, i.e., if {Ui  :  j E / }  is an open cover of {(x, y) E R2  : 
x.2 +y2  = 1 } , then it is an open cover of an annulus 1-6 < 11(x, < 1+6 
for some 6 > 0. Question: Draw pictures. Are you convinced of the 
truth? 

Ex. 4.4.20. Show that the Hilbert cube (Ex. 1.2.63) is compact. Hint: 
Show that it is complete and totally bounded. Or, you may prove se-
quential compactness by a diagonal argument. I personally prefer the 
first, as it is more instructive. 



Chapter 5 

Connectedness 

We say that a (metric) space is connected if it is a 'single piece.' This is 

a very difficult notion to be formulated precisely. If we look at R \ {0 } , 
we would think of it consisting of two pieces, namely, one of positive 

numbers and the other of negative numbers. Similarly, if we consider an 

ellipse or a parabola, it is in a single space while a hyperbola has two 

distinct pieces. If we remove a single point from a circle, it still remains 

as a single piece. We start with a definition which is unintuitive but with 

examples and further exploration see that it captures our intuitive ideas. 

5.1 Connected Spaces 

Definition 5.1.1. A (metric) space X is said to be connected if the only 

sets which are both open and closed in X are  O and the full space X,  
when X is a metric space. 

A subset A of a (metric) space X is said to be connected if A is a 
connected space when considered as a (metric) space with the induced 
(or subspace) topology. More explicitly, this amounts to saying that 
(A, 6) is connected, where .5 is the restriction of the metric d on X to A. 

Ex. 5.1.2. R is connected (Ex. 2.2.12) while R*, the subset of nonzero 
real numbers is not connected. 

Ex. 5.1.3. Show that a (metric) space X is not connected if there exist 
two disjoint proper non-empty subsets A and B such that A and B are 
both open and closed in X and X = A U B. In such a case, we say that 
the pair (A, B) is a disconnection of  X.  

Ex. 5.1.4. Let X be a set such that 1X1 > 2 with discrete metric. Show 
that X is not connected. 

Ex. 5.1.5. When is a finite subset of a metric space connected? 

106 
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The following result is the most important characterization of con-

nected spaces. 

Theorem 5.1.6. A topological space X is connected if every continuous 

function f:  X 	{±1} is a constant function. 

A subset A of  X, endowed with the subspace topology, is connected 

if every continuous function f:  A 	{±1} is a constant function 

Proof. Let X be a connected space and  f:  X 	{±1} a continuous 

function. We want to show that f is a constant function. If f is non-

constant, then it is onto. Let A = f_ 1 (1) and B = f -1 (-1). Then 

A and B are disjoint non-empty subsets of X such that A and B are 

both open and closed subsets of X and X = A U B.(Why?). This is a 

contradiction. Therefore f is constant. 

Conversely, let us assume that X is not connected. Therefore there 

exist two disjoint proper non-empty subsets A and B in X such that A 

and B are both open and closed in X and X = AU B. Now we define a 

map f:  X {±1} as 

f (x) = {1-1 
if x E A 

if x E B. 

Then f:  X -4 {±1} is a continuous non-constant function. (Why?) This 

completes the proof. 	 El 

Proposition 5.1.7. The interval [a,,b] C  I is connected. 

Proof If we assume the intermediate value theorem from real analysis, 
we can give a short and elegant proof. If J is an interval and if  f:  J 
{±1} is an onto Continuous function, then there exist x,y E J such that 
f(x) = -1 and f (y) = 1. By the intermediate value theorem, there 
exists z between x and y such that f(z) = 0, a contradiction to our 
assumption that f takes only the values +1. Hence no such f exists and 
hence J is connected. 

In stead, we may adapt the argument used to prove the intermediate 
value theorem to show directly that any interval [a, b] is connected and 
deduce the general result form this. 

Assume that [a, b] is not connected. We then can write [a, I)] = U U V 
where U and V are nonempty proper open subsets of [a, b] with UnV = 0. 
Without loss of generality assume that a E U. We intend to show that 
U = [a, I)] so that V = O. 

Consider E := {x E  [a, I)] : [a, x] C Ul. Since a E U and U is 
open there exists an E > 0 such that [a, E) C U. Hence [a, E/2] c U or 
a + E/2 E E so that E O. E is clearly bounded above by b. Thus by 
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the LUB axiom there exists a real number c E R which is sup E. Note 

that a < c < b. 
We claim that c G E. For each n E N, c— 1/n is not an upper bound 

for E. We can therefore find x n  E E such that c— 1/n  <x 	c. Clearly 

lim xn  = c. Since xn  E E, 	E U. Since U is closed in [a, b] (with respect 

to the subspace topology) and c E [a, b], we see that c =  urn xn  E U. 

Now [a, c) = U[a, c — 1/n] C U[a, x n]. As each of [a, xn ] C U we see that 

[a, c) c U. This along with the fact that c E U allows us to conclude 

that [a, cl C U and hence c G E. 
We now show that c = b. This will complete the proof. Since c E U 

and U is open there exists an (relatively) open subset containing c lying in 

U. If c <b, then there exists an N E N such that (c-11N,c+11N) C U. 
This means that the set [a, c+112N]c [a, c] U (c-11N,c+11N)c U. 

Thus c+ 1/2N  E E. This contradicts the fact that c= sup E. Therefore 

our assumption that c < b is wrong. Thus c = b. This completes the 

proof of connectedness of [a, b]. 

The next theorems list some important facts about connected spaces, 
which are frequently used. All of these facts follow easily from Theo-
rem 5.1.6 and hence the reader should attempt to prove them on his 

own. 

Theorem 5.1.8. (1) Let X be a (metric) space. Let A and B be two 
connected subsets of X such that A n B 0. Then A U B is connected. 
(2) Let A be a connected subset of a (metric) space X. Let A cBC A. 
Then B is connected. 
(3) Let {Ai  :  j E I} be a collection of connected subsets of a (metric) 
space X with the property that for all i, j E I we have Ai  n Ai  O. Then 
A := Uj ili is connected. 

Proof. We strongly recommend the reader to supply proofs on his own. 
We prove (1). Let c E An B. Let f: AnB {±1} be continuous. 

Since A is connected, f is a constant on A. So, f (a) = f (c) for all a G A. 
Similarly f is a constant on B and so f (b) =  1(c)  for all b E  B.  We have 
thus shown any continuous function from A U B to {±1} is a constant 
and hence A U B is connected. 

Now to prove (2), let  f:  B 	{±1} be a continuous function. Since 
A is connected, f is a constant, say 1, on A. Let b E B. Since f is 
continuous at b, given the open set { f (b)} in 1+11, there exists an open 
set U 3 b such that f(U)  C  {f(b)}. Since bEBC A, b is a limit point of 
A. In particular, there exists a E An U. So, we find that f(a) E {f(b)} 
or f (b) =  1 (a) = 1. Thus f is a constant on B. 

If you read the proofs of (1) and (2), it is time that you proved (3). 
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Ex. 5.1.9. Let X be a (metric) space such that given any two points 
X,  y G X there exists connected set A such that x, y G A. Then X is 
connected. 

Theorem 5.1.10. Let X be a connected (metric) space and g: X , Y 
be a continuous map. Then g(X) is connected. 

Proof We offer two proofs. The first proof uses our criterion. Let 
f:  g(X) -4 {±1} be a continuous function on  1(X). Since fog:  X , 
{±1} is continuous and X is connected, it follows that fog  is a constant 
on X. Hence f is a constant on g(X). Therefore g(X) is connected. 

Assume that g(X) is not connected. Then there exists nonempty 
proper subset V C g(X) which is both open and closed in g(X). Since f 
is continuous, g -1 (V) and g-1 (g(X)\V) are both nonempty, closed and 
open in X. This contradicts the hypothesis that X is connected. 0 

Remark 5.1.11. As a consequence of the theorem, we see that connect-
edness is a topological property. 

Ex. 5.1.12. Show that the circle {(x, y) E R2  : x 2 +y2  = 1 } is connected. 

Ex. 5.1.13. Show that the following subsets of R2  are not connected: 
(1) {(x,y) E R2  : xy 	0 } . 

(2) {(x, Y) 
E  R2 : x2  -y2  , 1 } .  

(3) {(x, y) E R 2  : x E Q and y Q } . 

Ex. 5.1.14. Show that the set GL(2,R) is not connected. 

Ex. 5.1.15. The 0(n, R) of orthogonal matrices of order n is not con-
nected. 

Ex. 5.1.16. Show that the set SO(2,R) := {A E 0(2,R) : det A = 1 }  
is connected. Hint: Write down all elements of  80 (2, R) explicitly. 

Ex. 5.1.17. Let X,Y be metric spaces. Assume that X is connected 
and that f :  X -+ Y is continuous. Show that the graph 

Ff :={(x,y)E X x Y:y=f(x),xE X1 

is a connected subset of X x Y (with iespect to the product metric). 

Theorem 5.1.18 (Connected Subsets of R). A set J C R is con-
nected if J is an interval. 

Proof If J c R is not an interval, then there exist x,y G J and a z 
between x and y such that z J. Consider the function f:  R \ {z} ---, 
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{±1} defined by setting f (s) = —1 if s  <z  and f (s) = 1 if s >  z.  Then 

f is a continuous function from J onto {±1}. Hence J is not connected. 
To prove the converse, let J be any nonempty interval. Let x, y E J. 

Without loss of generality, assume that x < y. Since J is an interval, 

[x, E J. By Proposition 5.1.7, [x, y] is a connected set. Thus, J has 

the property that any two of its points lie in a connected set. Hence J 
is connected by Ex. 5.1.9.  El 

Corollary 5.1.19 (Intermediate Value Theorem). Let  f: [a, b]  R 
be a continuous function. Assume that y is a point between f (a) and f (b), 
that is, either f (a) < y < f (b) or f (b) < y < f (a) holds. Then there 
exists x E  [a, b] such that f (x) = y. 

Proof This admits an elementary proof in real analysis. However, we 
show the role of connectedness using some of our recent results. 

By Proposition 5.1.7, the interval [a,b] is connected. Since f is con-
tinuous on [a, b],  the image f([a, bj) is connected by Theorem 5.1.10. Any 
connected subset of R is an interval (Theorem 5.1.18) and hence f ([a,b]) 
is an interval, say,  J.  Now f (a), f (b)  E J.  By the definition of an inter-
val, the point y E J, that is, y G f ([a,b]). Therefore we conclude that 
there exists x E [a, b] such that f (x) = y. El 

Ex. 5.1.20. Let A be a nonempty connected subset of R. Assume that 
every point of A is rational. What can you conclude? 

Ex. 5.1.21. Find all continuous functions f :  R 	R which take irra- 
tional values only at rational points and not at irrational points. 

We now give two neat applications of the intermediate value theorem. 

Theorem 5.1.22 (Existence of n-th roots). Let a E [0,00) and 
n E N. Then there exists a unique x  E [0, oc) such that xn = a. 

Proof. The case when a = 0 is clear. So we assume that a > 0. 
Consider the continuous function f:  [0,  oc)  [0,  oc)  given by f (t) = 

tn  . By Archimedean property of R, there exists N E N such that N>  a. 
We have 0 =  f (0)  < a and f(N) =  N  > N > a. So, applying the 
intermediate value theorem to the restriction of f to the interval [0, N], 
we see that there exists x E [0, AT] such that xn = a. 

Uniqueness is easy and left to the reader. 	 El 

Theorem 5.1.23. Any polynomial with real coefficients and of odd de-
gree has a real root. That is, if p(x) =  ax  n  + + • • • + aix + ao, 
then ai  E R for 0  < j  < n, a, 0 and n is odd, then there exists a E R 
such that p(a) = 0. 
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Proof. We may assume that an  = 1 and prove the result. (Why?) For 

x 0, we write 

p(x) = x"g(x) where g(x) := 1 + an-1  + an-2 	a l 	ao 
	 + •+ 	 

X 2 	Xn-1 	X n  • 

For Ix > 1, we have 

lan_il
+ 

I an- 21 
 + • + 	 + 

lao
, g(x) - 11 < 

xl 
	

1 x1 2 	xl n-1 	1X1 

1an-11 
 ± 

an-21 
 ± 	+ 

lad 
 + 

1a01  
1X1 	1x1 	1X1 

A 

lx1 

where A := E3n:dajl. Thus, if lxI > max{1, 2A}, then I g(x) - 11 < 1/2. 
Hence q(x) > 0 for such x. If we now choose any 3>  max{1, 2A}, then 

g(0) and  q(-/3)  are both positive. But then p ( 3) > 0 and  p(-/3) < O. 

Hence by intermediate value theorem there exists a E [-0,0] such that 

p(a) = O. 

Ex. 5.1.24. Let  f:  [a ,b] 	Ill be a continuous function. "Identify" 

na,b1). 

Ex. 5.1.25. Let f , g :  [0,1]  -> 11/ be continuous functions. Assume that 

f (x) G [0,1] for all x and g(0) = 0 and g(I) = 1. Show that 1(x)  = g(x) 
for some x E [0,1]. 

Example 5.1.26. We show that Sn := {x E Rn+1  : 1X1 = 1} is con-

nected. The strategy is to show that S" is the union of the closed upper 
and lower hemispheres, each of which is homeomorphic to the closed unit 
disk in llin and to observe that the hemispheres intersect. 

Let S+" := { x E 1V+ 1  : xn+ 1 > 0} be the upper hemisphere. Let 
D„ := fu E : I u  Il  < 11. Note that Dn  is convex and hence connected. 
We claini that Dn  is homeomorphic to Sr+' . Consider the map 1+:  Dn  

Sr+l given by f +(u) = (u1 , . . . , un  , 	- 11 11 11 2 )- Clearly, f + is bijective 
and continuous. Since f + is a bijective continuous map of a compact 
space to a metric space, it is a homeomorphism. In any case, S±n being 
the continuous image of the connected set Dn , is connected. Similarly, 
we show that the lower hemisphere Sn := {x E Rn+1  : Xn+i < 0 }  is 

the image of f_ : Dn 	Sn_ given by f_(u) = (u1 , . . . , un ,  -/1  - 11u11 2 ). 

Clearly, the intersection s74. n sn = {x E Ir+1  : X n±i = 0} is nonempty. 
Hence we conclude that Sn is connected by (1) of Theorem 5.1.8. 
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We have already seen that Sn is the union of two sets homeomorphic 
to Rn (see Example 3.6) with nonempty intersection. The connectedness 
of Sn follows from this. 

Ex. 5.1.27. Let A be the union of the following subsets of R2 : 

:= {(x,y) : X 2  ± y2  = 1 }  

L1 := {(x,y) : x > 1 and y =- 0} 

L2 := {(x,y) : x < —1 and y = 

L3 := {(x, y) : y 1 and x = 0} 

L4 := {(x,y) : x < —1 and x = 0}. 

Show that A is connected subset of R2 . (Draw a picture of A!) 
Can you generalize this exercise? 

Ex. 5.1.28. Let X be a (metric) space. Let S and Li (i E I) be 
connected subsets of  X.  Assume that sn Li O. Show that SU (Uie /Li) 
is a connected subset of  X.  (This is a generalization of the last exercise!) 

Ex. 5.1.29. Show that R2  \ {0} is connected. (See also Example 5.2.15. 
The next example proves something stronger.) 

Figure 5.1: Illustration for Example 5.1.30 

Example 5.1.30. Let  n>  1. Let A be a countable subset of Rn. We 
claim that Rn \ A is connected. 

By the last exercise, it suffices to show that any two points of Rn \ A 
lie in a connected set. Recall that 

13, q] := {x e R  : x =  (1—  t)p + tq, 0  <t  < 1 }  for p, q E Rn. 

Given x, y E Rn \ A, choose a point z E  [x, y]  other than x and y. (Why 
is this possible?) Choose w E  W  \ [x, y] such that [z, w] n  [x, y]  = {z}. 
(Why is this possible? Use n > 1. See Figure 5.1.) For each u E [z, w], 
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let B„ := [x, U [u, y]. Then Ha  is a connected set (why?) such that 

x, u  E B„. 
We claim that we can find u E [z, w] such that the set B„ lies in the 

complement of A. Assume the contrary. Then for each u E [Z, w], the 

set B u n A O. Note that Ha  n By  = fx,y1, for u, v E [Z, WI and u v. 

(Why? Draw pictures.) Since {x, y }  n A =  O  , it follows that there exist 

no point common to 13„ n E and By  n A for u, v as above. We then 

conclude that the set A n (u 1LElz.w1 B,i ) is uncountable. (How?) This is a 

subset of the countable set A, a contradiction. 111 

Theorem 5.1.31. Let X and Y be connected (metric) spaces. Then the 
product space X x Y is connected. 

Proof Let f:XxY —> {±1} be a continuous map. Let (xo, Yo) E XxY 
be fixed. Let  (x, y)  be an arbitrary point in X x Y. If we show that 

f (x,y) = f (x o , yo), we are through. 

To prove the above claim, let us first observe that for every point 

y E Y, the map iy  : X —> X x Y defined by  i(x) := (x, y) is continuous. 
(See Ex. 3.1.8.) Similarly the map ix : Y —> X x Y defined by ix (y) := 
(x, y) is continuous for every point x in  X.  Therefore for every point y 
in Y, the subset X x {y} := {(x, y) : x  C X} is a connected subset of 
X x Y; similarly, the subset {x} x Y := {(x, y) : y E Y }  is a connected 
subset of X x Y for every point x in  X.  

Y 
A 

{x} xY 

 

  

• (x,Y) 

(x0,Y0) 	(x,yo) 	x x {yo} •

x  

Figure 5.2: Connectedness of the product 

Now the point (x, yo ) lies in both sets X x  {Yo}  and {x} x Y. The re-
strictions of f to either of these sets are continuous and hence constants. 
We see that f (xo, Yo) = f (x, yo)) for all x E X and similarly, f (x , y) = 
f (x,y 0 ) for all y E Y. In particular, f (x, y) = f (x, yo) = f (xo, yo). (See 
Figure 5.2 on page 113.) 

Ex. 5.1.32. Show that the annulus {x E R2  : 1 < 11x11 < 2} is con-
nected. Hint: Continuous image of a connected set is connected. 



114 	 CHAPTER 5. CONNECTEDNESS 

Ex. 5.1.33. Show that Sn, the unit sphere in Rn+ 1  is connected. Hint: 
Can you think of a continuous map from Rn+ 1  \ {0 } to onto Sn? 

Ex. 5.1.34. We say that f:  X 	Y is a locally constant function if for 

each x E  X,  there exists an open set Ux  containing x with the property 
that f is a constant on  U.  

If X is connected, then any locally constant function is constant on 
X.  

Ex. 5.1.35. Let U be an open connected subset of Rn and f :  U —> R 
be a differentiable function such that D f (p) = 0 for all p E  U.  Then f 
is a constant function. 

Ex. 5.1.36. Let f :  X —* R be a nonconstant continuous function on a 
connected (metric) space. Show that f (X) is uncountable and hence X 
is uncountable. 

Ex. 5.1.37. Let (X, d) be a connected metric space. Assume that X 
has at least two elements. Then IX > 

Ex. 5.1.38. Let  (X,  d) be an unbounded connected metric space. Let 
x E X and  r>  0 be arbitrary. Show that there exists y E X such that 
d(x,y) = r. 

Ex. 5.1.39. Which of the following sets are connected subsets of R2 ? 
x2 + y2 = 1 1 .  (a) { (x, y) e 110 

(b) {(x,y) E R2  :  y=  x2 } . 
(c) {(x,y) E R2  : xy = 1 } . 
(d) {(x, y) E R2  : xy = c for some fixed c E R}. 

(e) {(x,Y) E R2 (X2/a2) (y2/b2) = ) 1} for some a>  b > 0. 

Theorem 5.1.10 shows that connectedness is a topological property. 
We can use this to show that certain spaces are not homeomorphic. 

Ex. 5.1.40. Show that a circle or a line or a parabola in IV is not 
homeomorphic to a hyperbola. 

Ex. 5.1.41. Show that R is not homeomorphic to R2 . Hint: Observe 
that if f :  X —> Y is a homeomorhism and if f(A) = B for a subset 
A c  X,  the the restriction of f to X \ A is a homeomorphsim of X \ A to 
Y \  B.  Recall that Ex. 5.1.29 says that R2  minus a point is connected. 

Ex. 5.1.42. Let X be the union of axes given by xy = 0 in R2 . Is it 
homeomorphic to a line, a circle, a parabola or the rectangular hyperbola 
xy = 1? 
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Ex. 5.1.43. Let A c X. What does it mean to say that the character-

istic function xA continuous? 

Ex. 5.1.44. Give an example of a sequence (An ) of connected subsets 

of R2  such that A7+1  c A, for n E N, but nn,A„ is not connected. 

Ex. 5.1.45. Show that no nonempty open subset of R is homeomorphic 
to an open subset of R2 . 

Ex. 5.1.46. The notation is as in Ex. 2.1.19. Show that the maximal 
connected subsets of (0,4) are singletons. 

What are the maximal connected subsets of Q with the standard 
metric? 

5.2 Path Connected spaces 

Definition 5.2.1. Let X be a (metric) space. A path in X is a contin-
uous map -y: [0, 1] X. in X. If -y(0) = x and -y(1) = y, then -y is said 
to be a path joining the points x and y or simply a path from x to y. 
See Figure 5.3. We also say that x is path connected to y. 

Figure 5.3: Path between x and y 

Ex. 5.2.2. If x is path connected to y, then y is path connected to x. 
Hint:  Define (TM := -y(1 — t) for t E [0, 1]. Then show that a connects y 
to x. (The path a is called the reverse path of -y.) 

Ex. 5.2.3. Give at least two paths in R2  that connect (-1, 0) and  (1,0)  
and pass through (0,1). 

Ex. 5.2.4. Show that if x is path-connected to y and y is path connected 
to z in X, then x is path-connected to z. 

More precisely, prove the following. Let -y, : [0, 1] —> X, i = 1, 2, be 
two paths such that 7 i (1)  =- 72(0). Then show that there exists a path 
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73:  [0,1] 	X such that 73 (0) = Y1 (0),  73(1/2) =  71(1) =  72(0) and 
73(1) = -y2 (1). Hint: If you think of [0,1] as the time interval, your train 

')11 should cover the distance between -y1(0) and  71(1) along the railway 
track 71[0, 1] within half the time and 72 should take over from there. 

To wit, consider 

{ 1/1( 20 	if t E [0,1/2] 
73(0 := -y2 (2t — 1) if t E [1/2,1]. 

Definition 5.2.5. A (metric) space X is said to be path connected if 
for any pair of points x and y in X, there exists a path -y: [0,1] X 
such that -y(0) = x and -y(1) = y. 

Ex. 5.2.6. Show that any interval in R is path connected. 

Example 5.2.7. The space Rn is path connected. Any two points can 
be joined by a line segment: -y(t) := x + t(y — x), for 0  < t  < 1. We call 
this path -y a linear path. 

Ex. 5.2.8. Show that any convex set in an NLS is path-connected. 
Hence conclude that any open or closed ball in an NLS is connected. 

Ex. 5.2.9. For every r > 0, show that the circle Cr  := {(x, y) E R2  : 

X2  ± y2  = r2 } is path connected. 

Ex. 5.2.10. Show that the set {(x, y) E R2  : x > 0 and x2  — y 2  = 1} is 
path connected. 

Show that the hyperbola {(x, y) E R2 x2 y2 = 1} is not path 
connected. 

Ex. 5.2.11. Show that the parabola { (x, y) E R2  : y
2 -= x }  is path 

connected. 

Ex. 5.2.12. Show that the union of the two parabolas {(x, y) E R2  : 
y 2  = x }  and {(x, y) E R2  : y = x2 } is path connected. 

Ex. 5.2.13. The union of the parabolas { (x, y) E R2  : y2  = x }  and 
{(x, y) E R2  : y2  = —x} is path connected. 

Lemma 5.2.14. A (metric) space is path connected if there exists a 
point a E X which is path-connected to any x E X. 

Proof. Let x, y G X be arbitrary. Let a (respectively, 0) be path joining 
a to x (respectively to y). Let c •  be the reverse path joining x to a. (See 
Ex. 5.2.2.) Then there exists a path joining x to y by Ex. 5.2.4. Thus 
any pair of points is path connected and hence X is path connected. 



5.2. PATH CONNECTED SPACES 	 117 

Example 5.2.15. We show that R" \ {0} is path connected if n > 2. 
The strategy is to modify the approach of Example 5.1.30. Let p 
e l  = (1, 0, 	, 0) E Rn and q = e2 = (0, 1, 0, 	, 0) E Rn . Let x E 

be any nonzero vector. Consider the line segments  p, x] and [x q]. We 

claim that at least one of them does not pass through the origin. If 
false, then (1 — t)p + tx = 0 = (1 — s)q + si for some 0 < s,t < 1. 
From these equation, it follows that (1 — t)p = — tx and (1 — s)q = — si.  
Thus p and q are scalar multiples of the same vector and hence they 
are linearly dependent. This contradiction shows that our claim is true. 

Note also that by a similar reasoning, the line segment  p, ql does not pass 

through the origin. Now consider the 'path' [x, p] or the path [x, q] U  [q, I)] 

connecting x and p, not passing through the origin. Thus any nonzero 
x E Rn is path-connected to p and hence Rn  {0} is path-connected by 
Lemma 5.2.14. 

Ex. 5.2.16. Show that any continuous image of a path-connected space 
is path connected, that is, if f :  X —+ Y is a continuous and X is path-
connected, then f (X) is path-connected. 

In particular, conclude that path-connectedness a topological prop-
erty. Can you think of applications'? 

Ex. 5.2.17. Let A and B be path-connected subsets of a (metric) space 
with A n B 0. Show that A U B is path-connected. 

Example 5.2.18. The unit sphere S" := {x E Rn+i 	+1.7,2+1 

1} is path connected. 

The reader should visualize the case when n = 2. The strategy is to 
show that any two distinct points of S 2  C R3  lie in a great circle, that 
is, the intersection of S2  and a plane through the origin in R3 . We carry 
out the details in the general case. 

A 'plane' through the origin in Rn+ 1  is a two dimensional vector 
subspace of R"+ 1 . A 'great circle' in the sphere is the intersection of Sn 
and a plane P passing through the origin. Let u, v be an orthonormal 
basis of the plane P. We claim that P n Sri can be described as follows: 

P n S" = {x G S" : x = cos tu + sin tv, for some t E [0, 27].} 

Clearly, if x = cost u + sin t v, then x E P and 

x • x = cos 2  t(u • u) + 2 cos t sin t (u • v) + sin 2  t(v v) = 1, 

since u•u=1= v•v and u • v = 0. Conversely, if x E P, then we can 
write x = au +  b e  for some a, b E R. If we further assume that x E  S",  
then lx11 2  = 1 so that 

X  • x = a2  + b2  = 1. 
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Thus (a, b) E R2  with a2  + b2  = 1. Therefore we can find t E [0, 27) such 

that a = cos t and b = sin t. This proves our claim. 

In particular, Pnsn is the image of [0, 27r] under the continuous map 

-y p(t) := cos tu + sin tv, 	(0 < t < 27). 

Note that -y p is a path that connects any two points on it. 

Given any two points x,y,x 	y of Sn, we show that it lies on a 

great circle. If y 	then x and y are linearly independent (why?) 

and hence x and y span a two dimen-
sional vector subspace P of 1/8"-1 • See 

Figure 5.4. Clearly, x,yEPnSn and 
hence are connected by the path -yp. 
(Note that -yp need not be of the form 
-yp = cos t x + sin t y, unless x y = 0. 
Can you find an explicit expression for 
-y p that involves only x and y? You 

have to recall Gram-Schmidt process!) Figure 5.4: Great circle on sphere  

If y = —x, since Ti >  1,  we can find a vector v which is of unit norm 
and such that x  y  = 0. Then x, v form an orthonormal basis of the 
vector subspace P spanned by x, v. If we let -yp(t) := cos tx + sin tv, 
then -yp(0) =  x and -yp(7) = y. Thus x and y are path connected via 

7P• 

Of course, an easier proof would run as follows: As seen in Ex-
ample 5.1.26, Sn is the union of two hemisphers and their intersection 
is nonempty. Now the hemi-spheres are homeomorphic the convex set 
B[0, 1] and hence are path-connected (by Ex. 5.2.8 and Ex. 5.2.16). Path-
connectedness of Sn follows from Ex. 5.2.17. 

Ex. 5.2.19. Give a third proof of path-connectedness of Sn as fol-
lows: The sphere Sn is the continuous image of the path-connected space 
Rn+ 1  \ {0 } . 

Ex. 5.2.20. Show that the annulus {x E R2  : 1 < 411 < 2 } is path 
connected. How about {x E R2  : 1 < 11x11 < 2 } ? 

Proposition 5.2.21. Let a (metric) space X be path connected. Then 
X is connected. 

Proof Since this is a very useful result, we shall give a proof. However, 
it is an easy exercise and the reader should do it on his own. 

Let  f:  X {±} be continuous. Fix a E X. Let x E X be arbitrary. 
Since X is path-connected, there exists a path -y : [0, 1] —> X such that 
-y(0) = a and -y(1) = x. The function f [0,1]  —> {±} is continuous 
on the connected set [0,1] by Proposition 5.1.7 and hence must be a 
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constant. In particular, f (a) = f o -y(0) =-- f o -y(1) = f (x). Since x E X 

is arbitrary, we have shown that f is a constant function. Therefore, X 

is connected. 	 11] 

Remark 5.2.22. The converse of the last exercise is not true. We give 

two examples, each is a slight modification of the other. 

Example 5.2.23 (Topologist's Sine Curve-I). Let 

A := {(x,sin(rr/x)) : 0 < x < 1} and B := {(0,y) : -1 _< y < 1 } . 

Let X = AUB c  l2  be given the induced metric topology. We claim 

that X is connected but not path connected. 

Figure 5.5: Topologist's Sine Curve-I 

Let -y :  [0,1]  -> X be a path joining (0,0) to (1,0). We write -y (t) = 
(-y (t) , -y2(t)). Since B is closed in  X,  the inverse image -y -1 (B) is closed, 
0 e -7 -1 (B). Let to  be the least upper bound of this closed and bounded 

set. Obviously, to E 'y -1 (B). Note that 0 < to < 1. We claim that -y2 is 
not continuous at to. 

For any 6>0, with  to +ö < 1, we must have (to + (5)  >0. (Why?) 
Hence there exists n E N such that (to) < 4n24-1 < 'Yi (to -I- 6). By the 
intermediate value theorem applied to the continuous function 71 , we 
can find t such that to < t < t0 + 6 and such that 71 (t) 4  Hence = 722+ 1 • 

t = 1 and l'-12(t) - -y2(t0)1 > 1. We therefore conclude that 72 is not 
continuous at to. 

Example 5.2.24 (Topologist's Sine Curve -II). Consider 

X := {(x,sin(14))  : x > 0} U {(x,0) : -1 <X <0} = A U B (say.) 

Clearly each of A and B is connected. Also, the point (0,0) is a limit 
point of the set A and hence A1 = A U {(0, 0)} c A is connected. Since 
B and A 1  have a point in common their union X is connected. 
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Figure 5.6: Topologist's Sine Curve-II 

We claim that X is not path-connected. In fact, we show that there 
is no path connecting (1/7,0) with (0,0). Let -y: [0,11 —+ X be path 
such that -y(0) = (1/7r, 0) and -y(1) = (0,0). Then 7r1 must take all 
values that lie between 0 and 1/7r. In particular, there exist tn  E [0,11 
such that 7r 1  o 'y(t) =--r--. (2n+-) 	Then, 'y(t) —* (0,1) as n 	cx). By 

1 7r 
Bolzano-Weierstrass, there exists  a convergent subsequence, (tnk ). Let 
to  be the limit of this subsequence. Then 7r1  o  -y(tnk ) 0. Thus, 7(t0) 
must be (0, y) for some y. Since -y(to) = (0, y) E  X,  it follows that y = 0. 
But, 7r2o-y(t0) = lim7r20-y(t nk ) = 1. This contradiction shows that there 
is no such path -y. 

Ex. 5.2.25. Assume that a path -y: [0,1] 	Rn  connects a point x E 
B(0,1) C Rn to a point y with y II > 1. Show that there exists t E [0,11 
such that 	= 1. (See Figure 5.7.) 

Figure 5.7: Illustration for Exercise 5.2.25 

The following result is a typical application of connectedness argu- 
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ment and also provides a large class of path-connected spaces. 

Proposition 5.2.26. Let U be an open connected subset of W 1 . Then 
U is path connected. 

Proof. Assume that U 0 and let a E U. Consider the set A consisting 
of those points x of U which can be path-connected to a in U, that is, 
there exists a path in U joining x and a. Since a is path connected to 
itself by a constant path 7(t) = a for t E [0, 1 ] , we see that a E A. We 
plan to show that it is both open and closed in U and hence A = U. 

We show that A is closed in U. Let x E U be a limit point of A. 
Then there exists a sequence (x n ) in A such that x n  x. Since x e U 
and U is open, there exists r > 0 such that B(x, r) C U. Since x n ---+ x, 
for the r as above, there exists N E N such that x,, E B(x,r) for n > N. 
Now xN E A and hence xN is path connected to a. Also, since B (x , r) 
is path connected (being a convex set), there exists a path joining xN 
to x. We therefore conclude that there exists a path joining a to x. In 
other words, x E A. Therefore A is closed. 

We show that A is open in U. Let x E A. Since x E U and U is 
open, there exists r > 0 such that B(x, r) C U. Since a is connected to 
x and x is connected to any point y E B(x,r) (thanks to the convexity 
of B(x, r)), it follows that a is connected to any y E B(x,r). That is to 
say that B(x,r) C A. Hence we conclude that A is open. 

Since U is connected and A is a nonempty set which is both open 
and closed, we conclude that A = U. That U is path-connected follows 
form Lemma 5.2.14. 

Ex. 5.2.27. By going through the argument above, we realize that we 
could prove the result in a more general setting. Let X be a connected 
(metric) space. Assume that each point of X has an open set U such 
that x E U and U is path-connected. Then X is path connected. 

Ex. 5.2.28. Let A be a connected subset in RV and  E>  0. Show that 
the 6-neighbourhood of A defined by  U(A) := {x E illn  : dA(x) < el is 
path-connected. 



Chapter 6 

Complete Metric Spaces 

We recall the definition of a complete metric space and give two most 
important examples of complete metric spaces of functions and one ex-
ample of an incomplete metric space of functions. 

6.1 Examples of Complete Metric Spaces 

Recall that a metric space (X,  d) is said to be complete if every Cauchy 
sequence in X is convergent in  X.  W have shown that IV is complete 
for n E N. 

We start with an example next only in importance to IR. 

Proposition 6.1.1. The normed linear space (B(X), 	00)  is complete. 

Proof. Let a Cauchy sequence (fa ) be given. By Example 2.3.4, the 
sequence of functions (fa ) is uniformly Cauchy on  X. 

Fix x E  X.  Consider the sequence of scalars ( fa(x)). By (2.2), it is 
a Cauchy sequence in R (or in C, if we are dealing with complex valued 
functions). For definiteness sake, we shall assume that we are working 
with real valued functions. (The proof for complex valued functions is 
exactly the same.) 

Since Ifk is complete, the sequence converges to a real number r E R, 
which we denote by f (x), to show the dependence of a -,--- lim fa (x) 
on x. Thus, for each x E X, we get a real number f(x) such that 
1im,00  fn(x) = f (x). (What we have shown so far is that the sequence 

fn converges to some function f: X pointwise.) To show that 
fn —4  f in the metric space, we first of all need to show that the function 

f (x) lies in B(X), that is, f is bounded on X. Next we need to 
show that fa  f in the metric space, that is, in view of Example 2.1.11, 
we need to prove that fri  -4  f uniformly on  X.  If we accomplish these 
two tasks, the proof of the theorem is complete. 

122 
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We first show that f is bounded. Since (fa) is Cauchy in the metric 

space, it is bounded by Ex. 2.3.5. Therefore, there exists M > 0 such 

that  I fM < M for n G N. In particular, l f(x) l < M for all x E X and 

n  E N. Fix x E X. Since fn (x) f(x), given E := 1, there exists N 
(which may depend on x and so we may denote it by N(x)) such that 

fn(x) — f (x)i <1  for  n>  N(x). It follows that 

	

If (x)1 = 	(x) — f N(x)(x)] + f N (x)(x)1 

	

5- 	f (x) — 	(x)(x)1 + f N (x)(x)1 

< 1 + M . 

We have therefore shown that if (x)i < M 1 for all x E X and hence 

II f II < M  + 1. We conclude that f is bounded and hence is an element 

of B(X). (Go through the argument carefully, as we shall again use it.) 

We now show that fn  f uniformly on X. (This proof is delicate 

and see the remark after the proof.) Let E > 0 be given. Since (fa ) is 

Cauchy in the metric, there exists no E N such that fn fm110,0 < E / 2  
for m,n > no . We claim that f (x) — f n (x)1  < E  for  n> no. Fix x E X. 

Since fn (x) --+ f(x), for the given 6 > 0, there exists N(x) E N such that 

if(x) — f (x)l < 6/2 for  m>  N(x). We have, for all n > no , 

if (x) — fn(x)1 = 1 f (x) — fin(x) + fm(x) — fn(x)1 

(for any m  E N) 

11(x) — fm (x) + fm (x) — f n (x)1 

(in particular for any m E N with m > N(x)) 

= 1 f (x) — fin(x) + fm(x) — fn(x)1 

(for any  mE N with m > N(x) and  m> no) 

6/2 +6/2 

That is, fn 	f uniformly on x. 	 0 

Rémark 6.1.2. The proof in the last paragraph is not the one found 
in any textbook. The standard proof for the boundedness of the limit 
function f and the convergence of fn  to f in the metric is by passing to 
the limit as n --> co keeping m fixed in the inequalities of the kind: 

fn(X) fm,(X)1  <E  for m,n > N. 

While this proof is correct, the beginner needs to be told that we are 
using the continuity of the distance function (in this case, the absolute 
value). We refer to the trick we have employed above as 'curry leaves 
trick'. In south Indian cooking, one uses curry leaves to add flavour and 
then throw the flavouring agent. In our proof, the curry leaves are m's. 
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Note also that we have employed this trick even earlier. See the proof of 
(3) of Proposition 2.3.6. 

Theorem 6.1.3 (Weierstrass M-Test). Let X be any nonempty set. 

Let (fa) be a sequence in B(X,R) such that there exists Mn  > 0 such that 

Ene° 1  Mn <  oc.  Then the series Enc°  1  fn is uniformly convergent, that 
is, the sequence (sn ) of partial sums of the series is uniformly convergent 
on  X. (Recall that  s(x) := Ekn=1 fk(X)-) 

Proof We need only show that the sequence (sa) is Cauchy in the the 
metric space (B(X, IR) 11 II ). Let E > 0 be given. Since Enc.° 1  Mn  < oc, 
the partial sums of the series En°3 1  Mn  is convergent and in partic-
ular Cauchy in IR. For the given E. , there exists N G N such that 

L.,v'kn,m-Fi Mk < E for n > m > N. Hence we have, for n > rn > N, 

n 
Il sn — sm 11 00  =  sup  E fk  (X) 

xEX k=m-1-1 
n 

< sup E ifk (x)i 
xEX k=m+1 

n 

< E Mk 
k=m+1 

G E. 

Thus  (Sn)  is Cauchy in B(X). Since (B(X),II lioo)  is complete, the result 
follows. 	 0 

Ex. 6.1.4. Let  (X, d)  be a complete metric space and E c X. Then E 
is closed in X if (E,  d) is a complete metric space. 

Ex. 6.1.5. Show that the set c of convergent sequences in the NLS of 
all bounded real sequences under the sup norm li Lc is complete. Hint: 
Enough to show that c is closed. If x = (xn ) is a limit point of c, it 
suffices to show that x is Cauchy. 

Ex. 6.1.6. This is a remark on Ex. 2.3.14 on page 47. 
By Ex. 6.1.4, the set [1, co) is closed in IR. 
Do you understand why the conclusion of Ex. 2.3.14 holds? 

Theorem 6.1.7. Let X be a compact (metric) space. The normed linear 
space (C(X),11 iloo)  of real/complex valued continuous functions on X 
is complete. 
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Proof First of all observe that since X is compact, C(X) c B(X), the 

set of bounded (real/complex) functions on X. We have already seen 

that (B(X),II Hoc)  is complete. So it suffices to show that C(X) is 

closed in B(X) under the sup norm topology. This is an easy exercise 

and the reader should do on his own. 
What needs to be shown is that if (fa ) is a sequence in C(X) con-

verging to an f E B(X) with respect to the sup norm, then f E C(X). 
Since convergence fa  to f in 11 ll oo  is the same as the uniform conver-

gence of fa  to f on X, the continuity of f is a standard result from real 

analysis and which uses a trick fondly remembered as 3E-trick. In case, 

you wish to recall the proof, it goes as follows. 

Let xo E X. We want to prove the continuity of f at xo. Let E > 0 
be given. By the uniform convergence, there exists N G N such that 

If (x) — f n (x)1 < 6 /3  for all x E  X.  In particular this inequality is true 

for n = N. By the continuity of fN at xo, there exists 8  > 0 (or an 
open set U D xo in X) such that if x E B(xo,8) (or if x E U), then, 

1fN(x) — fN(x0)1  <6/3. Thus, we have for any x as above, 

1 f (x) — f(x0)1 < l[f(x)- fN(x)] + [fN(x) - fN(x0)1 

+[fN(x0)- f(x0)1I 
< If (x) - fN(x)I+ fiN(x)- fN(x0)1 

+1fN(x0) - f (x0 ) 

< 613 + 6/3+ 613. 

1   

Note that in the last inequality, each of the first and the third terms is 
less than 6/3 by the uniform convergence while the second term is less 
than 613 thanks to the continuity of fN at xo. 0 

Ex. 6.1.8. Recall Ex. 3.1.22 on page 58. Show that Ex. 6.1.5 is a 
corollary of the last result if we observe that c --= C(X) where X is the 
compact space X = {1/n : n E N} U {0}. 

Ex. 6.1.9. Let f: X  —p Y be a continuous onto map of metric spaces. 
Assume that d(xi, x2) < d( f (x 1 ), f (x2 )) for all xi, x2 E  X.  Show that if 
X is complete, so is Y.  Hint: Observe that f is one-one! 

The following result gives characterizations of complte metric spaces. 

Theorem 6.1.10. Let  (X, d) be a metric space. The following are equiv-
alent. 

(a) (X,d) is complete. 
(b) Every sequence (x n ) in X with En'ti  d(x n+i,x n ) < co, is conver-

gent. 
(c) Every Cauchy sequence in X has a convergent subsequence. 
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Proof (a)  > (b). Consider a sequence (xn ) with En't i  d(x n+i, x n ) < 

oc. We need to show that (xn ) is convergent. Since X is complete, it 

suffices to show that (x n ) is Cauchy. Note that E'k_in  d(xk,xk +i) 0 

since Eric° d(x n+i , x n ) is convergent. Hence given E > 0, there exists N 

such that E77 N  d(X n+i, Xn ) < 6. 1  For positive integers n>  m >  N,  we 

have 
n---1 

d(x m , xn) < 
	

d(Xk, X k+i 	d(Xk, X k+i) G E. 

.m 

Hence (xn ) is Cauchy. 

(b) 	 (c). Let (xn ) be Cauchy. Given E := 2—k  , there exists nk 

such that d(x m , xn ) < 2-k for m, n > nk •  We choose nk's with a little 

more care. Suppose we have chosen nk. Then, for E = 2-4-1 , we choose 

nk+i  > nk such that d(x m x n ) < 2-k-1 . We claim that (x nk ) is Cauchy. 

For, if k < 1, 

1-1 	 oo 
d(x nk , dni ) < 	d(x n3  , x n3+1 ) _< E 	—> 0, 

j.k 

as j —> oc as seen earlier. 

(c) (a). This is seen earlier. See (c) of Proposition 2.3.6. 

Ex. 6.1.11 (Abstract Weierstrass M -Test). Let (X,11)  be an 

NLS. Show that X is complete if for every sequence (xn ) in X such that 

En"--111xn11 <  oc, the series Enct i  xn  is convergent in  X.  (The series 

Encc-i xn is convergent in X if the sequence of partial sums sn := Enk=1 Xk 
is convergent in  X.)  Hint: Go through the proof (b) == (c) in the last 

theorem. 
Compare this result with Theorem 6.1.3 

If J =  [a,  is an interval, we let f(J) 	b - a, the length of the 
interval. We shall repeatedly use the following two trivial observations. 

(i) If x , y G [a, bb then x -y  < b - a. 
(ii) Let [a, h] c [c, d]. Then c < a < b < d. 

Theorem 6.1.12 (Nested Interval Theorem). Let  J  :=  [an , b] be 
intervals in R such that Jn+1  c Jn  for all n E N. Then nJn  O. 

If, furthermore, we assume that lim f(Jn ) -4 0, then nn Jn  contains 

precisely one point. 

'Recall that Er7 an is convergent if the sequence of partial sums sr, := E 	ak 
is convergent. The limit s :=1im sn  is called the sum of the series E icc'c' ak. Now if 
the series is convergent, then the sequence (sa) is Cauchy. Also, if ak  > 0 for all k, 
then s := 1.u.b. {s r, } so that sr, — srn  < — sn, for m < n. 
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Proof. The strategy is clear. If there exists c E n,J,„ then an  < c < bn  

for all n. In particular, c must be an upper bound for A := fan  : n E NI. 

Now the other inequality c < bk  for all k says that each bk must be an 

upper bound for A. This suggests that a choice of c could be the least 

upper bound of A and we need to show also that each bk is an upper 

bound. The reader should draw pictures and devise a proof using the 

strategy. 
For completeness sake, we give the proof. 
Note that the hypothesis means that [an+i , bn+ 1] c [an , bn ] for all n. 

In particular, an  < an+i  and bn+ i < bn  for all n E N. See Figure 6.1. 

Observe also that if s > r, then Js  C Jr: 

Js  C Js _i C • • • C Jr+i C Jr . 

Hence, in view of the fact (ii) quoted above, we have 

ar  < a, < bs  < br , in particular a, < br . 	(6.1) 

Let E be the set of left endpoints of Jn . Thus, E := {a E R : a = 
an  for some n } . E is nonempty. 

4 	 

   

an  an+1 an+2 bn+2 bn-}-1 6, 

Figure 6.1: Illustration for Nested Interval Theorem 

We claim that bk is an upper bound for E for each k G N, i.e., an  < bk 
for all n and k. If k < n then [an , bn] C [ak, bk] and hence an  < bn < bk • 
(See Figure 6.1.) If k > n then an  < ak < bk. (Use Eq. 6.1.) Thus 
the claim is proved. By the LUB axiom there exists c E R such that 
c = sup E. We claim that c E A for all n. Since c is an upper bound for 
E we have an  < c for all n. Since each bn  is an upper bound for E and 
c is the least upper bound for E we see that c < bn . Thus we conclude 
that an  <c  < bn  or c E A for all n. Hence c E nJn• 

Let us now assume further that «A) —4 0 as n —›  oc.  By the first 
part we know that nJn  0. Let x, y E nnJn . We claim that x = y. For, 
since x, y E A for all n, we have 

as n —+ oo. 

Thus we conclude that Ix — yl = 0 and hence x = y. 	 El 

Remark 6.1.13. Did you observe that the condition t(Jn ) --4 0 is needed 
only to prove the uniqueness of the common point? 
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Theorem 6.1.14 (Cantor's Intersection Theorem). Let  (X, d) be a 
complete metric space. Let a nonempty closed subset Fn  be given for all 
n E N such that Fn+1 C Fn . Assume further that diam (Fa) —, O. Show 
that nn'L i Fn  consists exactly of one point. 

Proof We shall give a sketch. Choose x n  G Fn  for each n E N. For 
n, m > N, x m ,xn  E Fn  so that d(x m,,xn ) < diam (FN). Hence (x n ) is 
Cauchy. Since X is complete, (xn ) converges to some point x E X. We 
claim that x E Fn  for all n. Fix n E N. Then the sequence (xk)k> n  is a 
sequence in Fn  and it converges to x. Since Fn  is closed, it follows that 
X  E  F. Hence x nnEN  F. 

Uniqueness is seen as in the Nested interval theorem. 	 El 

Remark 6.1.15. Could you have concluded that nnFn  0 if you did 
not assume the condition that diam (Fa ) -4  0? Compare this with the 
nested interval theorem. Consider N with the discrete metric and Fr, := 
{k : k > n}. Then n,F, = 0. See also the next exercise. 

Ex. 6.1.16. Consider N with the metric 

d(m,n) :— 
fo 

1 + 1/(m + n) 
if m = n 
otherwise. 

Show that 
(i) Every Cauchy sequence is "eventually" constant and hence (N, d) 

is a complete metric space. 
(ii) Si, := {m  E N:   d(m, n) < 1 + 1/2n} = fm : m > n} is a nested 

sequence of closed balls whose intersection is empty. 
Why does this not contradict Cantor's intersection theorem? 

Ex. 6.1.17. Let  (X,  d) and (Y, d) be complete metric spaces. Show that 
the product metric space is also complete. 

Ex. 6.1.18. Let  (X,  d) be a metric space such that d(A, B) > 0 for any 
pair of disjoint closed subsets A and B. Show that (X,  d) is complete. 
Hint: If (x n ) is Cauchy with distinct terms and which is not convergent, 
consider A :=-- {x2k+1 : k E N}. 

Example 6.1.19. We show that (C[0,1], ll Ili) is not complete. Most 
often a naive guess is to consider the sequence (xn) in (C[0,1], ll Ili). As 
seen in Ex. 2.1.13, the sequence does converge to the zero function in 
11 11 1 . So what we need is to start with a function which is discontinuous, 
say, at an interior point and which can be the 'limit' of a sequence of 
continuous functions. To make the notation simpler, we shall show that 
(C[-1, 1], ll I ( i) is not complete. 
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The strategy is as follows. Construct a continuous function fn  which 
is 0 on  [-1,01, 1 on [1/n, 1] and linear on [0, 1/n]. This is Cauchy and 
it does not converge to a continuous function in il l . This is a subtle 
step in the proof. 

y 

0.75 

05 

 0 25 

0.0 

Figure 6.2: Graphs of fn 's of Example 6.1.19 

We now give the details. First we write down the function explicitly: 

{ 0 	for x E [-1, 0] 
=_- fn(x) := nx for x E (0, 1/n] 

1 	for x E [1/n, 1] 

See Figure 6.2. If you look at the picture and recall the geometric mean-
ing of II II 1 , then it is the 'shaded area' which goes to 0 as m, n oc. 
We shall give explicit estimate for II In  — fmll i  to quell your doubts, if 
any. For n > m, we have 

0 	 1/n f Ifn fin! +f I fn fin I 0 
/m 	 1 

+ 1 	1 fn fm + f fn fin I 
1/n 	 il/in 

=  11  + 12  + 13  + 14 . 

Clearly, I .  = 0 and so is 14. Let us look at 12: 

/n 	 (n — m) 	n1 
12 :=(n— m)x dx = 	 

2n2 	2n2  2n 

Now let us estimate 13. First we observe that fn (x) = 1 for 1/n < x < 1. 
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Hence, 

fl/m 
jvn  (1 — mx) dx 

1 ./m 

/1/n 
dx 

1 	1 

m n 
n — m 

mn 
1 < 

mn m 

So, given E > 0, if we choose N > 1/6 and assume that n > m > N, 
the inequality (6.3) shows that  H fm — fm < E for m, n > N. Hence 
the sequence (fn ) is Cauchy. (We wanted to give precise E.- N argument. 
In fact, we could have stopped at (6.2), since the sequence (1/n) is 
convergent and hence is Cauchy! See also the proof of Proposition 2.3.6 

( 1 ).) 
Now we show that the sequence (fa ) is not convergent in the space 

(C[-1, 1], II II 1 ). Let fn  converge to f in the space. We then have 

IIf—fm111 = 
0 

— fn1 + f If — fni + f If — fni 
0 

= 	+ + 	0 ) 

as n oc.  Hence each of the terms (being a sum of nonnegative terms) 
goes to zero. Let us look at J1. Since fn. = 0 on [-1, 0], we see that 
Ji =  f°1 If I. This is independent of n and saying that this goes to zero 
as n oc  is same as saying that this constant is zero. Hence (by an 
argument we have seen in Example 1.1.10), If I and hence f is zero on 
[-1, 0]. Next consider h. We have J3 —> 0 as n oc.  We fix N. Then 
for any n>  N, we have fn  (x) --= 1 on [1/N, 1]. Hence 

fl 	 fl 

If fnl =  I 	If — 
1/N 	 1/N 

Since J3 —4 0 as n 	oc,  it follows that film  If — 11 -= 0, that is, f(x) -= 0 
for x E [1/N, 1]. Since N is arbitrary, it follows that f(x) = 0 for 
x G (0,1]. Thus if f = lim fn  in the NLS, then 

(6.2) 

(6.3) 

{

0 if x E [-1, 0] 

1 if x E (0, 1]. 
f (x) = 
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Thus f cannot be continuous. This contradictions shows that the Cauchy 

sequence (fa ) is not convergent in (C[-1, 1 ],11 110. 	 D 

Ex. 6.1.20. Let co  denote the real vector space of all real sequences 

that converge to O. Show that II x := sup{Ixa  } defines a norm. Is co 

 complete with respect to this norm? 

Ex. 6.1.21. Let coo denote the real vector space of all real sequences 

such that xn  = 0 for all n greater than some N (which may depend on 

x). Show that  !! x := sup{Ixa  } defines a norm. Is coo complete with 

respect to this norm? 

Ex. 6.1.22. Let d be defined on N x N as d(m, n) := Im-711 . Show that d mn 
defines a metric on N and that the topology induced by d is the discrete 
topology. Hence conclude that d is equivalent to the standard metric on 

N considered as a subset of R. Is (N, d) complete? 

Ex. 6.1.23. Let RN denote the set of all real sequences. We consider it 
as rinEN  R, the cartesian product of countably infinite number of copies 
of R. We define a metric  (5 on  RN  as below: 

d(x , y) := sup{6(x n ,ya )/n : n E Nl, 

where 6(a, b) := max{la —  b  , 1} for a, b E R. Show that (R N , (5 ) is com-
plete. Hint: Convergence in (R N , (5 ) is the same as coordinatewise con-
vergence as in the finite dimensional Rn . 

Ex. 6.1.24. Let X be a metric space such that any closed and bounded 
subset of X is compact. Prove that X is complete. 

Ex. 6.1.25. Show that 'completeness' is not a topological property. 
That is, show that there exist two equivalent metrics d 1  and d2on a set X 
such that (X, d 1 )  is complete while (X, d2) is not. Hint: Exercise 1.2.75 
gives such metrics on (-1,1). 

Ex. 6.1.26. Let 11 112, i  =  1,2 be two equivalent norms on a vector space 
V. Show that (V,11)  is complete if (V, II  112) is complete. (Compare 
this with the previous exercise.) 

6.2 Completion of a Metric Space 

Definition 6.2.1. Let (X, d) and (Y, d) be metric spaces. We say that 
a map f :  X 	Y is an isometry if f preserves the metric, that is, 

d(f (xi), f (x2)) =-- d(xl, x2), for all xi, x2  E X. 
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Ex. 6.2.2. Show that the map from C to R2  given by z = x+iy i--4 (x, y) 
is an isometry. 

Ex. 6.2.3. Given any NLS, can you think of a family of isometries? 
Hint: Ex. 1.1.19 

Ex. 6.2.4. Show that if A is an n x n real orthogonal matrix, then the 
map x 1---4 Ax is an isometry of Rn . (Here IV is considered as a set of 
column vectors, i.e., matrices of type n x 1 so that the matrix product 
Ax makes sense.) 

Ex. 6.2.5. Fix a unit vector u E Rn. Define Ru (v) =  v-2  (v, u) u. Show 
that Ru  is an isometry. (Geometrically, it is the reflection with respect 
to the 'plane' determined by the equation (x, u)  = 0.) See Figure 6.3. 

= 0 

-" (z..) 

Figure 6.3: Reflection of y 

Ex. 6.2.6. The notation is as in Ex. 1.2.73. Show that cp: (X , d) --* 
(Y, p) is an isometry. 

Definition 6.2.7. Let  (X,  d) be a metric space. A metric space (Y, d) 
is said to be a completion of  (X,  d) if there exists a map f :  X -- Y such 
that (i) f is an isometry of X into Y and (ii) the image  1(X) is dense 
in Y. 

Ex. 6.2.8. Show that Ill is a completion of (Q, I I). 
What is the completion of the space of irrationals with respect to the 

absolute value metric? 

Ex. 6.2.9. Let  (X,  d) be complete and (Y, d) be a completion of  X.  
What can you conclude? 
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Ex. 6.2.10. Let V be the vector space of all polynomials with real 

coefficients endowed with the norm IIPII := sup{lp(x)1 : 0 < x < l}. 

Show that (C[0, 1], II 110.0) is a completion of V. (Strictly speaking, this 

is more of a remark than an exercise. See Ex. 2.5.15.) 

Theorem 6.2.11 (Completion of a Metric Space). Let  (X,  d) be a 

metric space. Then there exists a completion of  (X, d). 

Proof. We shall sketch a modern proof. Let (X, d) be any metric space. 

Fix a point o e  X.  For each x E X, consider the function fx (y) := 
d(y, x) — d(y, o). Show that h E B(X) and that the map yo: x f x  is 

an isometry of X into (B(X),11 Hoo).  If we let Y to be closure of (p(X) 

in B(X), then (Y, doo ) is a completion of  (X,  d) via the isometry (p of X 

into Y. (Here 40  denotes the restriction of the metric on B(X) to Y.) 

We now supply the details, in case you need them. Clearly h E 
B(X): 

I f x(Y)I 	Id(x,Y) — f (Y , 0)1 5_ d(x , o), for all y E  X. 

Hence 11 h 	< d(x, o). To show that the map ço is a isometry, we need 

to prove that for any x, y E X, 

d(x ,y) = d(40 (x), 'PM) = sup f x(z) fy(x)1 
z E X 

We have, for any z E X, 

f x(z) 	f(z) 	= Id(x, z) — d(z , 	— [d(y, z) — d(z, 0)11 
= d(x z) — d(Y z)1 

< d(x , y). 

Also, when z =  y,  we find that fx (y)—fy (y) = d(x,y). Thus Hfx —f = 
d(x , y). Thus (do is isometry of X into B(X). If we take Y to be the 
closure of y.9(X) in B(x), then Y is complete, being a closed subset of the 
complete metric space B(X). By our very construction,  'p(X) is dense 
in Y. Thus we have a completion of  (X,  d). 

Ex. 6.2.12. Do you think we can use this method to complete Q? 

There is another method due to Cantor to prove the existence of com-
pletion of a metric space. While this involves a bit of clumsy notation, 
the idea has wider ramification and impact. It is typical of mathematics 
to introduce ideal elements when you can not find them among the ones 
you have. For instance, you cannot find a real r E  TI such that r2  = —1. 
So what you do is simply introduce an ideal element i and declare that 
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i2  = -1 and write expression of the kind a + ib with a, b E R. You also 

carry out algebraic operations in the 'usual' way. What you get is the 

set of complex numbers. (We have not been very precise here, but we 

hope that you get the idea!) 
Before we carry out Cantor's method, we shall prove the following 

lemma as a preliminary. 

Lemma 6.2.13. Let (X, d) be a metric space. 

(a) Let (x n ) and (yn ) be Cauchy sequences in X. Then lim d(x n ,y,) 
n,co 

exists. 
(b) Let x n 	x E X and d(x n ,yn ) 	O. Then yn  -4 x. 

(c) Let d(x n ,4) -4 0 and d(yn ,yn' ) 	O. Then 

lim d(x n , yn ) = lim d(4, yn' ) 

Proof. The results are given here for easy reference and the proofs are 

easy and should be attempted by the reader on his own. 

To prove (a), it suffices to show that (d(x n , yn )) is a Cauchy sequences 

of real numbers. We have 

d(x n , yn ) - 	yrn ) < d(xn, xin) + d(xm , ym) + d(Ym, Yn) 

- d(x m ,y,n ) 

= d(xn,xrn) + d(Yin,Yn) 	0, 

as m, n oc.  (Why?) 
Proof of (h) is easy: 

d(yn , x) 5_ d(Yn, xn) + d(x n , x) -4 O. 

(c) is also easy. Look at 

d(xn, Yn) 5_ d(xn, x' n ) + d(x'n , Yrif ) +d(Yrif  Yn). 

Taking limits, we get limn  d(xn, Yn) < limn  d(xfn , y n' ). Similar argument 
shows the other way inequality and hence the proof. 	 0 

Let  (X,  d) be a metric space. Let (x n ) be a Cauchy sequence which 
is not convergent in X. We could declare this to be an ideal point to 
be added to X. But there could be two Cauchy sequences which may 
converge to the same point in the new space. (For instance, can you 
think of two distinct sequences in Q both converging to V2? See also 
(b) of the last lemma.) So what we need to do is to declare that they all 
represent the same point. We turn this naive idea into a more precise 
definition. 
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Definition 6.2.14. We say that two Cauchy sequences (x,i ) and (yn ) in 
a metric space are equivalent if d(x n , yn) -4 O. It is easily seen that this 
is an equivalence relation -, on the set of all Cauchy sequences. 

Cantor's Construction 

Let X denote the set of all Cauchy sequences in  X.  Let 	denote 
the set of equivalence classes in X under the equivalence relation ,. We 
use suggestive Greek letters to denote the elements of  X.  For example, 
if [(an )] is an element of 5-C- , we denote it by a. If [(x)] E .1c, we denote 
it by e and so on. We also let i stand for the equivalence class of the 
constant sequence (x,,, := x). We have an obvious one-one map cp of X 
into X. It is given by x i--- i. (Can you prove that this map is one-one?) 

We define a metric on j-C, show that it is complete and finally establish 
that the map x -+ yields a completion of  (X,  d). 

The metric d on )? is defined as 

d(a, (3) := lim d(ar„ bn ). 

Part (c) of Lemma 6.2.13 shows that the limit exists and is independent 
of the choice of the representatives (an ) and (bn ) of a and 0. We prove 
the triangle inequality: 

d(û, 'y) = liM d(anICn) 
n 

< 11111 [d(an ,bn ) + d(bn, C ) ] n 

= 11111 d(an , bn) ± liM d(bn  1 Cn) n 	 n 

= d(a, 0) + d( 3, -y). 

We make an observation: Let e := [(x n )]. Then 

as n -4 co. 	 (6.4) 

For, if E > 0 is given, by the Cauchy nature of (xn ), there exists N E N 
such that d(x m , x ri ) < E  for m, n >  N.  We have, for n >  N, 

d(in , 0 := lim d(xn , x m )  < E. 
m— ,  oo 

It is clear that the map cp: X --* î given by (p(x) = i is an isometry. 

d(cp(x), yo(y)) := lim d(x , y), the limit of a constant sequence. 
n 

We claim that the image cio(X) of X under the map yo: x H-*  is dense 
in (X , d). Let a E 21-( and E > 0 be given. Let (an ) be a representative 
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of a. Since (a n ) is Cauchy, there exists N E  N such that Ian  —amI  < E 

for all m,n >  N.  So, if we consider 5,N E  X,  then 

d(a, ei,N) = lim d(an , aN)  < E. 

Therefore, d(a,(p(aN)) < E. This proves that (p(X) is dense in  X. 
We next show that (X, d) is complete. Let (an ) be Cauchy in  X.  

Since yo (X) is dense in X, for each n E N, we can find an x n  E X such 

that d(an ,) < 1/n. We now consider the sequence (x n ) in  X.  We 

claim that it is Cauchy in X and that a, e, where e := [(x)J. Since 

(p is an isometry, it suffices to show that (yo(x n )) is a Cauchy sequence in 

X.  Given E > 0, choose N E N such that d(am , an ) < E  for m,n >  N. 

We then have for all m,  n>  N 

< 	am) + d(am, an) + d(an,in) 

< 1/m + E ± 1/n. 

Let no  > max{l/E, N}. Then for all m,n > no , the above inequality 

yields 
-±n ) < 3E. 

Thus (x n ) is Cauchy in  X.  Let its equivalence class be e E  L. 
We now show that an  —> e as n —>  oc.  

d(a„, < d(an ,) + 	5_ 1/n + 	—4 0, 

as  d(, 	—> 0 (as n 	oc)  by (6.4). 
This completes the proof of the fact that (5-C, d) is a completion of 

(X, d). 

Remark 6.2.15. Note that Cantor's construction also depends on the 
completeness of R. (Do you see where we needed it in the above con-
struction?) 

The next lemma says that all completions of a given metric spaces 
are the saine in the sense that they are isometric. This is known as the 
uniqueness of completions. 

Lemma 6.2.16 (Uniqueness of Completion). If (Y,d) and (Z, d) 
are two completions of the same metric space (X, d), then there is an 
isometry of Y onto Z. 

Proof. We shall only sketch a proof. 
Let f :  X —÷ Y be the map such that f is isometry and f(X) is dense 

in Y. Let g be the analogous map from X to Z. 
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Now given any y E Y, there exists a sequence (x n ) in X such that 
f (x n ) -4 y. Since g o f -1  : f (X) --4 g(X) is an isometry, it follows that 
(g(x n )) will be a Cauchy sequence in Z and hence converges to a point, 
say, z E Z. We define (p(y) = z. (It is easy to show that (p(y) does not 
depend on the choice of the sequence (x n ) converging to y.) This is the 
required isometry. El 

Ex. 6.2.17. Let (X, d) be a metric space and D C X be a dense subset. 
Assume that every Cauchy sequence in D is convergent in X, that is, 
if (x n ) is a Cauchy sequence in D then there exists x E X such that 
x„ ---+ x. Show that (X, d) is complete. Hint: Go through the argument 
of completeness of (X, d) in the Cantor's construction. 

Ex. 6.2.18. Show that a metric space is compact if every real valued 
continuous function on X attains a maximum. Hint: Completions exist! 

Ex. 6.2.19. Assume that (X, d) is not complete. Prove that there 
exists a uniformly continuous function from f:  X -4 (0,  oc)  such that 
the infxE x f (x) = O. Hint: Completions exist! 

6.3 Baire Category Theorem 

Definition 6.3.1. A subset A c X of a (metric/topological) space is 
said to be nowhere dense in X, if given any nonempty open set U, we 
can find a nonempty open subset V C U such that A n v = O. 

A prototypical example is a line in 1[1 2 . See the next exercise. See 
also Figure 6.4 

A=x-axis 

Figure 6.4: Nowhere dense sets 

Take sometime to understand the definition. In the past, dense sets 
are known as everywhere dense sets. Nowhere dense sets are diametri-
cally opposite to dense sets. If we want to say a set is not everywhere 
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dense set, how shall we formulate it? The set may not be dense ev-
erywhere but may be dense 'somewhere'. For instance, look at the set 
Q n (0, 1). It is not dense everywhere but dense in any open interval 
J C (0, 1). Again, if we want to say a set is nowhere dense in  X,  how do 
we formulate it? If you think over these questions, you will gain insight 
into our definition. 

Ex. 6.3.2. Show that the set Z is nowhere sense in R. How about 
c R? 
Show that the x-axis given by y = 0 is nowhere dense in R2 . 

Ex. 6.3.3. Let V be any proper vector subspace of RI'. Show that V is 
nowhere dense in EV. 

More generally, let X be a normed linear space. Let V be any proper 
closed vector subspace of  X.  Then V is nowhere dense in X. (Compare 
this with Ex. 1.2.49.) 

Ex. 6.3.4. Show that the set {1/n : n E NI U {0} is nowhere dense. 

Ex. 6.3.5. Show that ,A c X is nowhere dense in X if the interior 
of the closure of A is empty, that is, (A) °  = O. (This is the standard 
definition.) 

Ex. 6.3.6. Use the definition of nowhere dense sets in Ex. 6.3.5 to solve 
Ex. 6.3.4. 

Theorem 6.3.7 (Baire Category Theorem). Let (X, d) be a com-
plete metric space. 

(1) Let Ur, be open dense subsets of X, form E N. Then n r,U,,, is dense 
in  X. 

(2) Let Fr, be nonempty closed subsets of X such that X = Ur,Fn• 
Then at least one of Fr„'s has nonempty interior. In other words, a com-
plete metric space cannot be a countable union of nowhere dense closed 
subsets. 

Proof We first observe that both the statements are equivalent. For, G 
is open and dense if its complement F := X \ G is closed and nowhere 
dense. Hence any one of the statements of the theorem follows from the 
other by taking complements. So, we confine ourselves to proving the 
first. 

Let U := nn Un . We have to prove that U is dense in  X.  Let x E X 
and r > 0 be given. We need to show that B(x,r) n U O. Since U1 is 
dense and B (x , r) is open there exists x1 E B (x , r) nU . Since' B (x , r) 
is open, there exists r1 such that 0<  r1 < 1/2 and B[xi,rd C B(x, r) n 
U1 . We repeat this argument for the open set B(x i , r 1 ) and the dense 
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set U2 to get x2 E B(xi,r1) n U2. Again, we can find r2 such that 

0<  r2 <2_ 2  and B[x2,r2] C B(xi,ri) n U2. See Figure 6.5. Proceeding 

this way, for each n E N, we get x, E X and an rn, with the properties 

B[x n ,rn ] c B(x n _ i ,rn _ i ) n tin  and O  <  r  < 2 71  . 

Clearly, the sequence (x n ) is Cauchy: if rn < n, 

Ti  

d(x n.„ xn ) < d(xn , xn_i) + • • • + d(xm+i , x rn ) 5_  

k=m 

Since Ek  2 —ic  is convergent, it follows that (x„,) is Cauchy. 

Figure 6.5: Baire Category Theorem 

Since X is complete, there exists xo E X such that x„ 	xo. Since 
xo is the limit of the sequence  (x) 72>k in the closed set B[xk,rk], we 
deduce that xo E B[xk,rk] C B(xk_hrk_i) n Uk for all k. In particular, 
xo E B(x,r) n u. 	 LI  

Remark 6.3.8. The importance of our formulation is this. The first 
statement tells us of a typical way in which Baire category can be used. 
Imagine that we are on the look-out for an element x E X with some 
specific properties. Further assume that the sets of elements which have 
properties "arbitrarily close" to the desired one are dense open sets in 
X. Then the result says that there exists at least one element with the 
desired property. Thus the first formulation is useful when we are in-
terested in the existence problems. This vague way of remembering is 
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well-illustrated especially the proof of the existence of everywhere con-
tinuous nowhere differentiable function. 

The second formulation says that X cannot be a countable union 
of "hollow" sets. A typical application: Rn cannot be the union of a 
countable collection of lower dimensional subspaces. Another instance: 
a complete normed linear space cannot be countable dimensional. See 
Ex. 6.3.13 below. 

Ex. 6.3.9. 11In cannot be the union of a countable collection of lower 
dimensional subspaces. 

Ex. 6.3.10. Does there exist a metric d on Q which is equivalent to the 
standard metric but (Q, d) is complete? Hint: Baire! 

Ex. 6.3.11. We say that x E X is an isolated point in the metric space 
(X,  d) if there exists an r > 0 such that B(x, r) n (X \ {x}) = 

Let  (X,  d) be complete. Can the set of isolated points be countably 
infinite? 

Ex. 6.3.12. Show that any countable complete metric space has an 
isolated point. 

Ex. 6.3.13. Let X be an infinite dimensional complete normed linear 
space. Show that X cannot be countable dimensional. 

Ex. 6.3.14. Use Baire's theorem to show that R is uncountable. 

Ex. 6.3.15 (Uniform Boundedness Principle). Let X be a com-
plete metric space and T a family of continuous real valued functions on 
X. Assume that for all x E X, there exists Cx  > 0 such that If(x)1 < 
for all f E T. Then there exists a non-empty open set U C X and a 
constant C such that I f (x)f  <C  for all f E F and x E  U.  

Everywhere Continuous and Nowhere Differentiable Functions 

Definition 6.3.16 (Saw-tooth functions). A function f:  [0,1] 	R 
is called a saw-tooth function if there exist a positive real number h and 
a partition 0 = to < t1 < • • < tn, = 1 of the interval [0,1] such that 
f(ti) = 0 for 0 < j  < n and f(si) = h where si is the midpoint of the 
interval [ti_i , ti] and extended linearly to all of [0,1]. See Figure 6.6. We 
shall refer to h as the height of the teeth. 

Theorem 6.3.17. In the space (C[0, 1], II IL), the subset A of functions 
that are not differentiable at any point of [0, 1) is dense. 
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Figure 6.6: Saw-tooth function 

Proof This is perhaps the most difficult proof in the entire book. We 
suggest that the reader goes through the proof first to get some idea of 
the proof, later to look carefully at the details and last to think over 
the main steps. The basic strategy is spelled out in the next couple of 
paragraphs. Unlike the other proofs in the book, the strategy alone will 
not suffice to complete the proof on our own. Lots of new ideas are 
involved and we get a taste of real top-class mathematics. 

If f E C[0, 1] has a derivative at x E [0, 1), then the right-hand 
difference quotients 

f(x+h)—f(x)  
h 	

(0<h<1—x) 

are bounded. Thus, for large values of n E N, the function f belongs to 
the complement of the set A n, consisting of those functions f E C[0, 1] 
such that for each x E [0, 1 — 1/n], we can find h with 0 < h < 1 — x 
such that I f (x + h) — (x)I > nh. (Take sometime to digest this.) 

Clearly, n,A, c A. If we show that the smaller set A nu, A n  is 
dense, we are through. In view of Baire category theorem (Remark 6.3.8), 
it suffices to show that each A n  is an open dense set. For the remainder 
of the proof, we fix n. 

We show that Cn  := C[0, 1] \ A n  is closed in C[0, 1]. It suffices to 
show that if {fk } C Cn , with lim fk  = f E 11, then f E  C. Now, 
fk G en  implies that there exists tk E [0, 1] such that 

f k(tk + h) fk(tk)  
h 

< n, for all h. 

  

Since [0,1] is compact, the sequence tk has a convergent subsequence. 
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We call this subsequence again by tk and let to = lim tk. Then 

f (to + h) 

h 
f (to) 

 

f (to + h) — f(tk + h)  
h 

f (tk + h) — f k(tk + h)  

h 

fk(tk + h) — fk(tk)  

h 

fk(tk) — f (4)  

h 

f(4) — f  (to)  
h 

( 1 ) + (2) + (3) + (4 ) + (5 ) , 

 

   

    

    

   

say. 

Now, fix h. For any e > 0, if k is large enough, (1) and (5) are smaller 
than E, since f is continuous, and tk —> to. (2) and (4) are smaller than 
E, since fk converges uniformly to f.  The third term (3) is < n. Hence, 
we get 

 

f (to + h) f (to)  
h 

< n + 46 for any E > 0 

so that 

  

f (to + h) f (to)  
h 

and hence f E Cn . Thus each e n  is closed. 
We now show that A n  is dense in C[0,1]. Let f E C[0,1] and  e  > 

0 be given. By Proposition 4.2.13 (page 94), there exists a piecewise 
linear p E C[0,1] such that 11f — Al oe  < 6/2. Let the slopes of the 
line segment comprising of the graph of p be ml, • • • , mk. Choose an 
integer m > n + max{mi : 1 < i < k} . Let s be a saw-tooth piecewise 
linear functions whose line segments have slopes ±m and for which 0 < 
s(x) < 6/2 for x e [0,1]. We set g := p + s. Then g E C[0,1] and 
11p — g IL°  = max{s(x) : x E [0, = 6/2. 

We claim that g E  A. Let 0  < x  < 1 — 1/n. Choose 0 < h < 1 — 
so small that the points (x , p(x)) and (x + h, p(x + h)) both lie on a line 
segment of the graph of p, of slope mi, and at the same time the points 
(x, s(x)) and (x + h, s(x + h)) both lie on a line segment of the graph of 
s. (Why is all this possible? See Figure 6.7.) Then, 

1P(x + h) — P(x)1 = 'mil h 
Is(x + h) — s(x)I = mh > nh + Imi l h. 

Hence 1g(x + h) — g(x) I > nh, that is, g G  A. 

<n  
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Figure 6.7: Graph of P and s of Theorem 6.2 

6.4 Banach's Contraction Principle 

Definition 6.4.1. Let X and Y be metric spaces. A map T: X Y is 

said to be a contraction if there exists a constant c,  O  < c < 1 such that 

d(T (x),T (x')) < cd(x, ), 	for all x,x' E  X. 

Ex. 6.4.2. Show that any contraction is Lipschitz continuous and hence 

it is uniformly continuous. 

Ex. 6.4.3. Let  f: [a, b] —4 [a, b] be differentiable and I f(x)1 < c with 

O  < c < 1. Then f is a contraction of [a, b.]. 

Ex. 6.4.4. Let X and Y be metric spaces. Assume that Y is a dis-
crete metric space and that f:  X --* Y is a contraction. What can you 
conclude about f? 

Theorem 6.4.5 (Banach Contraction Principle). Let (X, d) be a 
complete metric space. Assume that T: X X is a contraction. Then 
f has a unique fixed point, that is, a point x e X such that f (x) = x. 

Proof The strategy of the proof is this. We take any xo  e X and define 
a sequence recursively by setting x l  = Tx °  and xn±i  =  Tx n  for n > 2. 
We show that (x n ) is a Cauchy sequence so that (x n ) converges to an 
x G X. It is easy to show that Tx = x and that such an x is unique. 

Let us work out the details. Let xo  e X be an arbitrary point. If 
Tx 0  = xo , then we got what we wanted. So, we assume that Tx 0  xo . 
We defined recursively a sequence by setting 

x l  :=Tx0 , x 2  := Txl , . 	x„±i  =Txn  for n E N. 
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We claim that the sequence (x n ) is Cauchy in X. First of all, let us 

observe the following: For any n > 3, 

d(x n , xn_i) = d(71  Xn-1,T Xn-2) 

< C • d(Xn-1,Xn-2) 

= C • d(TXn-2, 71Xn-3) 

< C2  • CI(Xn-2 > Xn-3) 

< cri-1 • d(xi, xo ). 
	 (6.5) 

Hence, by triangle inequality, we have, for m < n 

d(x m ,X n ) < d(xm, xm+i) ± d(x m±i  , xm+2) +...  + d(xn-i , Xn) 

< (Cm  + Cm+1  + • • • + 0-1 ) d(Xi , X0) 

= Cm  d(X0, Xi) (1 + C + • • - + Cn-m-1 ) 

< • cm 
 d(xo, xi)  

1 - c 
	 (6.6) 

It follows from (6.6) that (xn ) is Cauchy. Let x := lim xn . Using conti-
nuity of T we see that x= limn  T(Tnx)=Tx. 

Uniqueness is easy. Let x,y E X be such that and Tx = x and 
Ty = y.  Then d(x , y) = d(Tx,Ty) < cd(x,y). If d(x , y) 	0, we arrive 
at the contradiction d(x,y) < d(x,y). 	 0 

Remark 6.4.6. Note the the proof above shows that xn 's are arbitrarily 
close to the fixed point x and indeed we have 

d(Tn x o , x) < 
cn 

d(x o , Tx o ). 
1 - c 

Ex. 6.4.7. Let  (X,  d) be a complete metric space. Assume that f:  X -4 
X is a map such that for some positive integer the k-times composition 
f 0 • • • o f (composition of f with itself k times) is a contraction. Prove 
that f has unique fixed point. 

Ex. 6.4.8. Let a, b be real numbers with 0 < b < 1. Consider the 
subset X C C[0, b] consisting of functions f such that f(0) = a. Then 
X is closed in C[0, b]. Define 

x 
T f (x) := a + f If (t)I dt, (0 5_ x 5_ b). 

0 

Prove that T is a contraction of x and hence there exists a unique f G X 
which satisfies f' = Ifl on (0 , b). 
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Ex. 6.4.9. Show that the map T on (C[0,1], II IL) defined by 

x 
T f (x) := f (x — t) f (t) dt, 0  < x  < 1,1  E C[0,1] 

o 

is a contraction. What is its fixed point? 

Remark 6.4.10. There are two standard applications of the contraction 
principle in analysis. One is the existence of solutions of an ordinary . dif-
ferential equation. The other is to prove the inverse or implicit function 
theorem in calculus of several variables. Versions of these will be given 
below. For more details, we refer the reader to literature. 

Implicit Function Theorem 
First we give an easy version of the implicit function theorem. The 

version one needs in calculus of two variables is given next. 

Theorem 6.4.11 (An Implicit Function Theorem). Let D be the 
rectangle D :=  {(x, y)  E R 2  : a < x < b and c < y < d} . Assume that 
f:  D —4 R has continuous partial derivatives. Then there exists a unique 
function g:  [a, b]  —> Ill such that f (x,g(x)) = 0 for all x E [a, b] . 

Proof We shall sketch the argument. Let m, M be such that 

m< —
Of

(x,y)< M, for (x, y) E D. 
— Dy —  

Let X := (C [a , bb II IL). Consider 

1 
T(cp)(x) := (p(x) — —m  f (x, yo(x)), for x E [a, b]. 

One shows that T is a contraction by an obvious use of the mean value 
theorem. 	 El 

Theorem 6.4.12 (Implicit Function Theorem). Let U c R 2  be 
open and f:  U --- R have continuous partial derivatives, fx  and fy  on U. 
Assume that (x0,Y0)  E U  is such that f(xo,Yo) = 0 and that g(xo, yo) 
O.  Then there exist an E > 0 and a function g: (x0— 6, Xo ± E) ---> R such 
that the following hold: 
(1) f (x, g(x)) = 0 for all x E (x0 — E, X0 ± E) 

(2) y is differentiable on its domain with 

, 	Q,L 
g (x) . 	ax ( 

■ x, g(x)) 

a (x, g (x)) • 
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Proof. Let 
--1 

F(x,Y) := 	(x0,Y0)) 	f (x,Y)• ay 

Then F(xo,Yo) = Yo and g- (xo, Yo) = O. Since g: is continuous at 

(x0 , y0), we infer that Pk (x, y) is small for (x, y) for (x, y) near (xo,Y0)• 
We choose 61 > 0 and 62 >  O so that whenever lx — x01 < 6 1  and 

—  Yo < 62, then 
aF 

We may assume, by taking smaller 61, that 1F(x, Yo) Yol < 62/2 for all 
x with lx — x01 < 61. 

Let X be the set of continuous functions g on [x0  — 61,x0 + 51] such 
that g(xo) = Yo and 1g(x) — yo <62 if x  - 	<  61. We let d(gi, g2) := 
sup{191(x) — g2(x) I Ix — 	< 60. Then it is easy to see that (X, d) is 
a complete metric space. (This is a good exercise. Do it now!) 

For g E  X,  we define T(g)(x) := F (x , g(x)). Then T(g)(x 0 ) = y0  and 

1(T g)(x) — 	= 1F(x, 9(x)) — Yoi 
• IF (x, g(x)) — F (x, 	+ IF (x,Yo) — Yol 

<
F 

07) Ig(x) — yol + ,52 /2 

62 	62 < -2- 	62. 

Thus, T maps X to itself. We claim that T is a contraction: 

1( 71.0(x) — (T h)(x)1 = IF (x , g(x)) — F(x, h(x))1 

aF (x, 77) Ig(x) — h(x)I 
Dy 

1 
—2  Ig(x) — h(x)1 . 

Let go (x) = y0  for x G J 	[xo  — 61, xo + 81]. Define gn±i  :=  Tg.  
Then (gn ) is uniformly Cauchy on J and hence converges to a continuous 
function g. We also have 

F(x, g(x)) = lim F(x, gn (x)) = lim g1(x) = g(x). 
n-400 	 n-*co 

Therefore, g is a fixed point of T. Consequently, F(x, g(x)) = g(x) and 
hence f (x, g(x)) = O. 

We now show that g is differentiable and compute its derivative. 
Assume  that'2L and 21  are continuous at (x, g(x)). Let x l  be such that ax 	ay 

< 1/2. 
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xo  <61 . Then f (x , g(x)) = 0 and f (x i , g(xi)) = 0. We have 

0 = f(xi,g(xi))- f(x,g(x)) 

= f(xi,g(x1)) -  f(xi,g(x))+ f(xi,g(x)) -  f(x,g(x)) 

Of  
ay

(x1,77)[g(xl) - g(x)1 + —
af

(,g(x))[x i  - x], 
ax 

for some between x and x 1  and for some between g(x) and g(xi). 

Therefore, 

-1 
f 

_ — 
g(xi) - g(x) 	0 f

(e,g(x)) U(x1, 71)) 
x1- x 	Ox 

Hence 

g(x1)- g(x) 	 Of 
= - 	g (x)) 	g (x))) 

by the continuity of the partial derivatives. 

Theorem 6.4.13 (Picard's Existence Theorem). Consider the do-
main D := {(x,y) E R2  :  x-x o  < ly - < 1) } . Assume that 
f:  D ->R is a continuous function satisfying the Lipschitz condition in 
the y-variable uniformly in the x-variable, that is, 

If(x,y1)- f(x,y 2 ) <LJy1  -  Y2, 	(x, y2) E  D.  

Then there exists a  6>  0 and g: [xo- (5,x0 + 6] -> R which is a solution 
of the initial value problem: 

(x) = f (x, g(x)) satisfying the initial condition g(x0) = yo . 	(6.7) 

Proof. We shall only give a broad outline of the proof and leave the 
details for the reader to work out. 

Observe that the given initial value problem (6.7) is, by an applica-
tion of the fundamental theorem of calculus, equivalent to the integral 
equation 

g(x) = y0  + f f (t, g(t)) dt, 	- 	< 6). 	(6.8) 
xo 

Let M  > 0 be such that If (x , 	<M  for (x, y) E  D.  Choose 6>0 such 
that 

L6 < 1 and [x0 - 6,x0 + 6] x [Yo - M6,Yo+ M6] C D. 
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Define 

Y := { f E C[xo — 5, x0 + 6] : 19(x) — yol _. /1/(5 for Ix — xol _< 81. 

Then Y is closed in (C[xo —  8, xo + 8], ii Hoe) and hence is a complete 

metric space. The map 

x 

Tg(x) := yo + f f (t, g(t)) dt 
xo 

is a contraction on Y. 	 El 

Ex. 6.4.14. Let a > 0 and g E C[0,4 Define T:  00, a] —> C[0, a] as 
follows: 

x 

T f (x) := f f (t) dt + g(x), f E C[0, 40 _< x .5_ a. 
o 

Show that T is a contraction on (C[0,4 Il  II) if a < 1 . 
Assume that g is differentiable. Find the initial value problem of an 

ordinary differential equation whose solution is the fixed point of T. 
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