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Preface

Man	has	tried,	from	time	immemorial,	to	increase	his	understanding	of	the	world
in	which	he	 lives.	A	crowning	achievement	 in	 this	attempt	was	 the	creation	of
Classical	 Mechanics	 by	 Newton,	 Lagrange,	 Hamilton	 and	 others.	 Classical
Mechanics	is	based	on	the	concept	that	each	system	has	a	definite	position	and
momentum.	 Mechanics	 is	 usually	 the	 first	 course,	 following	 introductory
physics,	 at	 the	 degree	 level	 for	 students	 of	 physics,	 mathematics,	 and
engineering.	A	thorough	understanding	of	mechanics	serves	as	a	foundation	for
studying	different	areas	in	these	branches.	The	study	of	Classical	Mechanics	also
gives	 the	 students	 an	 opportunity	 to	 master	 many	 of	 the	 mathematical
techniques.
The	 book	 is	 an	 outgrowth	 of	 the	 lectures	 on	Classical	Mechanics	which	 the

author	 had	 given	 for	 a	 number	 of	 years	 at	 the	 postgraduate	 level	 in	 different
universities	 in	Kerala,	 and	as	 such	 the	material	 is	 thoroughly	class-tested.	 It	 is
designed	 as	 a	 textbook	 for	 one-semester	 courses	 for	 postgraduate	 students	 of
physics,	mathematics	and	engineering.	I	have	made	every	effort	to	organize	the
material	 in	 such	 a	way	 that	 abstraction	 of	 the	 theory	 is	minimized.	Details	 of
mathematical	 steps	 are	 provided	 wherever	 found	 necessary.	 Every	 effort	 has
been	taken	to	make	the	book	explanatory,	exhaustive	and	user-friendly.
In	 the	 conventional	 approach	 to	 the	 subject,	 Lagrangian	 and	 Hamiltonian

formulations	 are	 usually	 taught	 at	 the	 end	 of	 the	 course.	 However,	 I	 have
introduced	 these	 topics	 at	 an	 early	 stage,	 so	 that	 the	 students	 become	 familiar
with	 these	 methods.	 Chapters	 1	 and	 2	 are	 of	 introductory	 nature,	 discussing
mainly	 the	 different	 frames	 of	 reference	 and	 the	 Newtonian	 mechanics	 of	 a
single	 particle	 and	 system	 of	 particles.	 In	 the	 next	 two	 chapters,	 Lagrange’s
formalism	 and	 the	 variational	 principle	 have	 been	 presented	 with	 special
emphasis	 on	 generalized	 coordinates,	 Lagrange’s	 equation,	 first	 integrals	 of
motion,	 Lagrange	multiplier	method,	 and	 velocity-dependent	 potentials,	which
are	 needed	 for	 the	 study	 of	 electromagnetic	 force.	 A	 section	 on	 symmetry
properties	 and	 conservation	 laws,	 which	 leads	 to	 the	 important	 pairs	 of
dynamical	variables	that	follow	the	uncertainty	principle	in	quantum	mechanics,
is	 also	 presented.	 Chapter	 5	 on	 central	 force	 motion	 has	 been	 broadened	 to



include	 topics	 like	 satellite	 parameters,	 communication	 satellites,	 orbital
transfers,	and	scattering	problem.
Hamilton’s	 formulation	 of	 mechanics	 along	 with	 Hamilton–Jacobi	 method,

Chapters	6	and	7,	provides	a	framework	to	discuss	 the	dynamics	of	systems	in
the	 phase	 space.	 The	 technique	 of	 action-angle	 variables	 leads	 to	 Wilson–
Sommerfeld	 quantum	 condition,	which	 is	 an	 essential	 rule	 in	 quantum	 theory.
Poisson	bracket,	an	integral	part	of	classical	mechanics,	is	also	indispensable	for
the	 formulation	 of	 quantum	 mechanics.	 Rigid	 body	 motion,	 Euler’s	 angles,
Coriolis	force,	Euler’s	equations	of	motion,	and	motion	of	symmetric	tops	have
all	been	discussed	in	Chapter	8.	A	chapter	on	the	essentials	of	small	oscillations,
which	is	crucial	for	the	study	of	molecular	vibrations,	is	also	included.	Further,	a
chapter	on	special	theory	of	relativity	is	presented	to	enable	the	study	of	systems
moving	 at	 relatively	 high	 velocities.	 This	 chapter	 discusses	 Lorentz
transformation,	 relativistic	 dynamics,	 space–time	 diagram,	 four-vectors,	 and
invariance	of	Maxwell’s	equations.
To	 provide	 a	 smooth	 transition	 from	 the	 traditional	 topics	 of	 Classical

Mechanics	to	the	modern	ones,	two	chapters	(11	and	12)	on	the	rapidly	growing
areas	of	nonlinear	dynamics	and	chaos	have	also	been	included	in	the	book.
Learning	 to	 solve	 problems	 is	 the	 basic	 purpose	 of	 any	 course,	 since	 this

process	helps	 in	understanding	 the	 subject.	Keeping	 this	 in	mind,	 considerable
attention	 is	 devoted	 to	 worked	 examples	 illustrating	 the	 concepts	 involved.
Another	 notable	 feature	 of	 the	 book	 is	 the	 inclusion	 of	 end-of-chapter	 review
questions	and	problems.	These	provide	 the	 instructor	with	enough	material	 for
home	assignment	and	classroom	discussions.	Answers	to	all	problems	are	given
at	 the	end	of	 the	book.	The	usual	convention	of	 indicating	vectors	by	boldface
letters	is	followed.	A	solutions	manual	is	available	from	the	publisher	for	the	use
of	teachers.
The	saying	‘I	have	 learnt	much	from	my	teachers	but	more	from	my	pupils’

rings	true	in	the	context	of	writing	this	book.	I	wish	to	record	my	gratitude	to	my
students	 for	 their	 active	 participation	 in	 the	 discussions	 we	 had	 on	 various
aspects	 of	 the	 subject.	 I	 place	 on	 record	my	 gratitude	 to	Dr.	V.K.Vaidyan,	Dr.
V.U.	Nayar,	Dr.	C.S.	Menon,	Dr.	V.	Ramakrishnan,	Dr.	V.S.	Jayakumar,	Lisha	R.
Chandran	and	Simitha	Thomas	for	 their	 interest	and	encouragement	during	 the
preparation	 of	 the	 book.	 Finally,	 I	 express	my	 sincere	 thanks	 to	 the	 publisher,
PHI	Learning,	for	their	unfailing	cooperation	and	for	the	meticulous	processing
of	the	manuscript.
Above	all	I	thank	my	Lord	Jesus	Christ,	who	has	given	me	wisdom,	might	and



guidance	all	through	my	life.

	
G.	Aruldhas

	



1

Introduction	to	
Newtonian	Mechanics	Classical

mechanics	deals	with	the	motion	of
physical	bodies	at	the	macroscopic
level.	Galileo	and	Sir	Isaac	Newton

laid	its	foundation	in	the	17th
century.	As	Newton’s	laws	of	motion

provide	the	basis	of	classical
mechanics,	it	is	often	referred	to	as
Newtonian	mechanics.	There	are	two
parts	in	mechanics:	kinematicsand
dynamics.	Kinematics	deals	with	the

geometrical	description	of	the
motionof	objects	without	considering
the	forces	producing	the	motion.
Dynamics	is	the	part	that	concerns



the	forces	that	produce	changes	in
motion	or	the	changes	in	other
properties.	This	leads	us	to	the

concept	of	force,	mass	and	the	laws
that	govern	the	motion	of	objects.	To
apply	the	laws	to	different	situations,
Newtonian	mechanics	has	since	been
reformulated	in	a	few	different	forms,
such	as	the	Lagrange,	the	Hamilton
and	the	Hamilton-Jacobi	formalisms.
All	these	formalisms	are	equivalent
and	their	applications	to	topics	of
interest	form	the	basis	of	this	book.

1.1	FRAMES	OF	REFERENCE

The	most	 basic	 concepts	 for	 the	 study	 of	motion	 are	 space	 and	 time,	 both	 of
which	are	assumed	to	be	continuous.	To	describe	the	motion	of	a	body,	one	has
to	 specify	 its	position	 in	 space	as	a	 function	of	 time.	To	do	 this,	 a	 co-ordinate
system	is	used	as	a	 frame	of	 reference.	One	convenient	co-ordinate	system	we
frequently	use	is	the	cartesian	or	rectangular	co-ordinate	system.

Cartesian	Co-ordinates	(x,	y,	z)	The	position	of	a	point	P	in	a



cartesian	co-ordinate	system,	as	shown	in	Fig.	1.1(a),	is	specified
by	three	co-ordinates	(x,	y,	z)	or	(x1,	x2,	x3)	or	by	the	position
vector	r.	A	vector	quantity	will	be	denoted	by	boldface	type	(as	r),
while	the	magnitude	will	be	represented	by	the	symbol	itself	(as	r).
A	unit	vector	in	the	direction	of	the	vector	r	is	denoted	by	the
corresponding	letter	with	a	circumflex	over	it	(as	 ).	In
terms	of	the	co-ordinates,	the	vector	and	the	magnitude	of	the

vector	are	given	by	

where	 	 are	 unit	 vectors	 along	 the	 rectangular	 axes	 x,	 y	 and	 z
respectively.
Elementary	lengths	in	the	direction	of	x,	y,	z:	dx,	dy,	dz	Elementary	volume:	dx

dy	dx	Cartesian	co-ordinates	are	convenient	in	describing	the	motion	of	objects
in	 a	 straight	 line.	 However,	 in	 certain	 problems,	 it	 is	 convenient	 to	 use	 non-
rectangular	co-ordinates.



Fig.	1.1	(a)	Cartesian	co-ordinates	(x,	y,	z)	of	a	point	P	in	three	dimensions;	(b)	Plane	polar	co-ordinates	(r,
q)	of	a	point	P.

Plane	Polar	Co-ordinates	(r,	q)	To	study	the	motion	of	a	particle	in
a	plane,	the	plane	co-ordinate	system	which	is	shown	in	Fig.	1.1
(b)	is	probably	the	proper	choice.	The	radius	vector	of	the	point	P
in	the	xy	plane	is	r.	The	line	OP	makes	an	angle	q	wih	the	x-axis.
The	position	of	point	P	can	be	described	by	the	co-ordinates	(r,	q)
called	plane	polar	co-ordinates.	The	rectangular	co-ordinates	of	P
are	(x,	y).	The	relations	connecting	(x,	y)	and	(r,	q)	can	be	written
from	Fig.	1.1	(b)	as:	

Elementary	lengths	in	the	direction	of	increasing	r	and	q:	dr,	rdq

Cylindrical	Co-ordinates	(r,	f,	z)	Consider	a	point	P	having	a
radius	vector	r.	Point	P	can	be	specified	by	using	a	set	of	cartesian



co-ordinates	(x,	y,	z)	or	cylindrical	co-ordinates	(r,	f,	z)	as	shown	in
Fig.	1.2	(a).	The	co-ordinate	r	is	the	projection	of	the	radius	vector
r	on	the	xy-plane.	The	two	sets	of	co-ordinates	are	related	by	the
relations:	

Spherical	Polar	Co-ordinates	(r,	q,	f)	Figure	1.2	(b)	defines	the
spherical	polar	co-ordinates	of	a	point	P	having	a	radius	vector	r.
The	cartesian	co-ordinates	of	P	are	(x,	y,	z).	The	co-ordinate	q	
is	the	angle	that	the	radius	vector	r	makes	with	the	z-axis	and	f	is
the	angle	that	the	projection	of	the	position	vector	into	the	xy-
plane	makes	with	the	x-axis.	From	Fig.	1.2	(b).

OQ	=	r	sin	q	and	OC	=	PQ	=	r	cos	q	



Fig.	1.2	(a)	Cylindrical	co-ordinates	(r,	f,	z)	of	a	point	P	in	space:	(b)	Spherical	polar	co-ordinates	(r,	q,	f)	of
a	point	P	in	space.

The	 two	 sets	 of	 co-ordinates	 are	 related	 by	 the	 relations:	

1.2	NEWTON’S	LAWS	OF	MOTION

Newton’s	First	Law	of	Motion	Every	object	continues	in	its	state	of
rest	or	uniform	motion	in	a	straight	line	unless	a	net	external	force
acts	on	it	to	change	that	state.
Newton’s	first	law	indicates	that	the	state	of	a	body	at	rest	(zero	velocity)	and

a	 state	 of	 uniform	 velocity	 are	 completely	 equivalent.	 No	 external	 force	 is
needed	in	order	to	maintain	the	uniform	motion	of	a	body;	it	continues	without
change	due	to	an	intrinsic	property	of	the	body	that	we	call	inertia.	Because	of
this	property,	the	first	law	is	often	referred	to	as	the	law	of	inertia.	Inertia	is	the
natural	tendency	of	a	body	to	remain	at	rest	or	in	uniform	motion	along	a	straight
line.	Quantitatively,	the	inertia	of	a	body	is	measured	by	its	mass.	In	one	sense,
Newton	made	the	first	law	more	precise	by	introducing	definitions	of	quantity	of



motion	 and	 amount	 of	 matter	 which	 we	 now	 call	 momentum	 and	 mass
respectively.	The	momentum	of	a	body	is	simply	proportional	to	its	velocity.	The
coefficient	of	proportionality	 is	 a	 constant	 for	 any	given	body	and	 is	 called	 its
mass.	 Denoting	mass	 by	m	 and	 momentum	 vector	 by	 p	p	 =	mv	………(1.6)
where	v	 is	 the	velocity	of	 the	body.	Mathematically,	Newton’s	 first	 law	can	be
expressed	in	the	following	way.	In	the	absence	of	an	external	force	acting	on	a
body	 p	 =	 mv	 =	 constant………(1.7)	 This	 is	 the	 law	 of	 conservation	 of
momentum.	As	per	the	special	theory	of	relativity	(see	Section	10.10),	mass	is
not	a	constant	but	varies	with	velocity.

Newton’s	Second	Law	of	Motion	The	rate	of	change	of	momentum
of	an	object	is	directly	proportional	to	the	force	applied	and	takes
place	in	the	direction	of	the	force.
If	we	denote	the	force	by	F,	then	the	second	law	can	be	written	

mathematically	 as	

which	 is	 often	 referred	 to	 as	 the	 equation	 of	 motion	 of	 the	 particle.	 It	 is	 a
second	order	differential	equation.	If	the	force	F	is	known	and	the	position	and
velocity	of	the	particle	at	a	particular	instant	are	given,	with	the	help	of	second
law	we	 can	 find	 the	 position	 and	 velocity	 of	 the	 particle	 at	 any	 given	 instant.
That	 is,	 its	path	 is	completely	known	 if	accurate	values	of	 its	co-ordinates	and
velocity	 (or	 momentum	 p	 =	 mv)	 at	 a	 particular	 instant	 are	 known
simultaneously.	 In	 quantum	 mechanics,	 we	 will	 be	 learning	 that	 this
deterministic	model	is	not	applicable	to	atomic	and	subatomic	particles.

Newton’s	Third	Law	of	Motion	Whenever	a	body	exerts	a	force	on	a
second	body,	the	second	exerts	an	equal	and	opposite	force	on	the



first.
This	law	is	often	paraphrased	as	to	every	action	there	is	an	equal	and	opposite

reaction.	This	statement	 is	perfectly	valid	but	 it	has	 to	be	remembered	 that	 the
action	force	and	the	reaction	force	are	acting	on	different	bodies.	In	a	twoparticle
system,	the	force	acting	on	particle	1	by	particle	2,	F12,	is	equal	and	opposite	to
the	force	acting	on	particle	2	by	particle	1,	F21.	That	is,	F12	=	–F21
Since	 force	 is	 the	 rate	 of	 change	 of	 momentum	

Equation	(1.12)	can	be	used	to	determine	the	mass	of	particles.

1.3	INERTIAL	AND	NON-INERTIAL
FRAMES

Newton’s	first	law	does	not	hold	in	every	reference	frame.	When	two	bodies	fall
side	by	side,	each	of	them	is	at	rest	with	respect	to	the	other	while	at	the	same
time	it	is	subject	to	the	force	of	gravity.	Such	cases	would	contradict	the	stated
first	 law.	 Reference	 frames	 in	 which	 Newton’s	 law	 of	 inertia	 holds	 good	 are
called	 inertial	reference	frames.	The	 remaining	 laws	are	also	valid	 in	 inertial
reference	frames	only.	The	acceleration	of	an	inertial	reference	frame	is	zero	and
therefore	it	moves	with	a	constant	velocity.	Any	reference	frame	that	moves	with
constant	 velocity	 relative	 to	 an	 inertial	 frame	 is	 also	 an	 inertial	 frame	 of
reference.	 For	 simple	 applications	 in	 the	 laboratory,	 reference	 frames	 fixed	 on
the	earth	are	inertial	frames.	For	astronomical	applications,	the	terrestrial	frame
cannot	 be	 regarded	 as	 an	 inertial	 frame.	 A	 reference	 frame	 where	 the	 law	 of
inertia	does	not	hold	is	called	a	non-inertial	reference	frame.
The	accelerations	in	Eq.	(1.12)	can	be	measured	experimentally.	Hence,	

Eq.	(1.12)	can	be	used	to	determine	the	mass	of	a	particle	by	selecting	m1	as	unit
mass.	The	mass	of	a	body	determined	in	this	way	is	termed	as	its	inertial	mass
because	 it	 characterizes	 the	 inertial	 properties	 of	 bodies.	 Mass	 can	 also	 be



defined	on	the	basis	of	Newton’s	law	of	gravitation.	The	mass	of	a	body	defined
on	 the	 basis	 of	 gravitational	 properties	 is	 called	 the	 gravitational	 mass.
Naturally	 a	 question	 arises:	 Is	 the	 inertial	 mass	 of	 a	 body	 equal	 to	 its
gravitational	mass?	Recently	 it	was	 established	 that	 these	masses	 are	 equal	 to
within	 a	 few	 parts	 in	 1012.	 This	 equivalence	 of	 the	 inertial	 and	 gravitational
masses	 of	 a	 body	 is	 the	 principle	 of	 equivalence	 postulated	 by	 Einstein	 in
general	relativity.

1.4	MECHANICS	OF	A	PARTICLE

In	 this	 section,	we	 shall	 discuss	mainly	 the	 conservation	 laws	 for	 a	 particle	 in
motion	in	Newtonian	formalism.

Conservation	of	Linear	Momentum	From	Newton’s	first	law,	we
have	already	indicated	the	law	of	conservation	of	momentum	of	a
single	particle	in	Eq.	(1.7).	It	also	follows	from	Newton’s	second
law	of	motion	which	states	that	

If	 the	 total	 force	 acting	 on	 a	 particle	 is	 zero,	 then	 the	 linear	 momentum	p	 is
conserved.

Angular	Momentum	and	Torque	Angular	momentum	and	torque
are	two	important	quantities	in	rotational	motion.	A	force	causes
linear	acceleration	whereas	a	torque	causes	angular	acceleration.
The	angular	momentum	of	a	particle	about	a	point	O	(say	origin),
denoted	by	
L,	is	defined	as	L	=	r		p………(1.14)	where	r	is	the	radius	vector	of
the	particle.	The	torque	(N)	or	moment	of	a	force	about	O	is



defined	as	

which	is	perpendicular	to	the	plane	containing	the	vectors	r	and	F	points	in	the
direction	 of	 the	 advance	 of	 a	 right	 hand	 screw	 from	 r	 to	 F.	 Since	

which	is	the	analogue	of	Newton’s	second	law	in	rotational	motion.

Conservation	of	Angular	Momentum	The	angular	momentum
conservation	comes	automatically	from	Eq.	(1.16).	
If	the	torque	N	acting	on	the	particle	is	zero,	then	

If	 the	 torque	 N	 acting	 on	 a	 particle	 is	 zero,	 the	 angular	 momentum	 L	 is	 a
constant.	Planets	moving	around	the	sun	and	satellites	around	the	earth	are	some
of	the	very	common	examples.

Work	Done	by	a	Force	Work	done	by	an	external	force	in	moving
a	particle	from	position	1	to	position	2	is	given	by	



where	T2	and	T1	are	the	kinetic	energies	of	the	particle	in	positions	2	and
1	 respectively.	 If	 T2	 >	T1,	W12	 >	 0,	 work	 is	 done	 by	 the	 force	 on	 the
particle	and	as	a	result	the	kinetic	energy	of	the	particle	is	increased.	If	T1
>	T2,	W12	 <	 0,	work	 is	 done	 by	 the	 particle	 against	 the	 force	 and	 as	 a
result	the	kinetic	energy	of	the	particle	is	decreased.

Conservative	Force	If	the	force	acting	on	a	system	is	such	that	the
work	done	along	a	closed	path	is	zero,	then	the	force	is	said	to	be
conservative.	That	is,	for	a	conservative	force	F

The	 scalar	 function	 V(r)	 in	 Eq.	 (1.22)	 is	 called	 the	 potential	 energy	 of	 the
particle	 at	 the	 point	 or	 simply	 the	 potential	 at	 the	 point.	 In	 terms	 of	 V,	 the
components	 of	 the	 force	 are	

Conservation	of	Energy	The	work	done	by	a	force	F	in	moving	a
particle	of	mass	m	from	position	1	to	position	2	is	given	by	Eq.



(1.18).	Now	consider	the	work	done	W12	by	taking	F	to	be	a
conservative	force	derivable	from	a	potential	V.	Then	W12	takes

the	form	

Combining	Eqs.	(1.18)	and	(1.24),	we	have	T1	+	V1	=	T2	+	V2
which	gives	the	energy	conservation	theorem.
If	 the	 force	acting	on	a	particle	 is	 conservative,	 then	 the	 total	 energy	of	 the

particle,	T	+	V,	is	a	constant.
Equation	 (1.22)	 is	 satisfied	 even	 if	 we	 replace	 V	 by	V	 +	C,	 where	C	 is	 a

constant.	Then	

Hence,	the	potential	introduced	through	Eq.	(1.22)	is	not	unique	and	therefore	an
absolute	value	of	the	potential	has	no	meaning.	It	may	be	noted	that	the	kinetic
energy	also	has	no	absolute	value	since	we	use	an	inertial	frame	of	reference	for
measuring	the	velocity	and	hence	the	kinetic	energy.	For	measuring	the	absolute
kinetic	energy	we	required	a	reference	frame	which	is	absolutely	at	rest.	It	is	not
possible	 to	 find	 such	 a	 reference	 frame	 and	 therefore	 the	 kinetic	 energy	 we
measure	is	only	relative.

1.5	MOTION	UNDER	A	CONSTANT
FORCE

When	the	applied	force	F	on	a	particle	is	constant	in	time	and	hence	there	is	a
constant	 acceleration,	 we	 write	 Eq.	 (1.10)	 in	 the	 form	

Direct	 integration	 of	Eq.	 (1.26)	 is	 possible	 if	 the	 initial	 conditions	 are	 known.



With	 the	 initial	 condition	 v	 =	v0	 at	 t	 =	 0,	 on	 integrating	 Eq.	 (1.26)	we	 have	

In	 one	 dimension,	 Eqs.	 (1.27),	 (1.28)	 and	 (1.29)	 reduce	 to	

Equations	 (1.30),	 (1.31)	 and	 (1.32)	 are	 the	 familiar	 equations	 that	describe	 the
translational	motion	of	a	particle	in	one	dimension.	One	of	the	familiar	exmples
of	motion	under	a	constant	force	is	motion	under	gravity.

1.6	MOTION	UNDER	A	TIME-
DEPENDENT	FORCE

When	the	force	acting	on	a	particle	is	an	explicit	function	of	time,	the	equation
of	 motion	 can	 be	 written	 as	



Since	there	is	a	double	integration,	two	variables	t	and	t 	are	used.	If	explicit
integration	 of	 the	 integrals	 in	 Eq.	 (1.35)	 is	 not	 possible,	 one	 has	 to	 go	 for
numerical	integration.

1.7	REFLECTION	OF	RADIOWAVES	FROM	
THE	IONOSPHERE
To	 illustrate	 the	 motion	 under	 a	 time-dependent	 force,	 we	 consider	 the
interaction	 of	 radiowaves	 with	 electrons	 in	 the	 ionosphere.	 Ionosphere	 is	 a
region	 that	 surrounds	 the	 earth	 at	 a	 height	 of	 approximately	 200	 km	 from	 the
surface	of	the	earth.	It	consists	of	positively	charged	ions	and	negatively	charged
electrons	which	 are	 formed	when	ultraviolet	 rays	 from	 the	 sun	 is	 absorbed	by
atoms	and	molecules	of	the	upper	atmosphere.	The	particles	are	trapped	by	the
earth’s	 magnetic	 field	 and	 stay	 in	 the	 upper	 region,	 forming	 the	 ionosphere
which	 is	 electrically	 neutral.	When	 a	 radiowave,	 which	 is	 an	 electromagnetic
wave,	passes	through	the	ionosphere,	 it	 interacts	with	the	charged	particles	and
accelerates	them.	Since	electrons	are	much	lighter	than	the	positive	ions,	they	are
more	effective	in	modifying	the	propagation	of	the	radiowaves.
The	electric	field	E	of	the	electromagnetic	plane	wave	is	given	by	E	=	E0	sin

wt………(1.36)	where	w	 is	 the	angular	 frequency	of	 the	wave.	The	 ionosphere
may	be	regarded	as	a	region	made	of	free	electron	gas.	A	free	electron	of	charge
–	e	interacts	with	the	electric	field	E	which	results	in	a	force	on	the	electron:	F	=
–	 eE	 =	 –e	 E0	 sin	 wt………(1.37)	 The	 acceleration	 of	 the	 electron	 is	



The	first	two	terms	indicate	that	the	electron	is	drifting	with	a	uniform	velocity
which	is	a	function	of	the	initial	conditions	only.	Superimposed	on	this	drifting
motion	 is	 an	 oscillating	 motion	 represented	 by	 the	 last	 term.	 The	 oscillating
frequency	of	the	electron	is	independent	of	the	initial	conditions	and	is	the	same
as	the	incident	frequency	of	the	electromagnetic	waves.	The	refractive	index	of

the	medium	is	

where	 c	 and	 v	 are	 the	 velocity	 of	 light	 in	 vacuum	 and	 in	 the	 medium
respectively.	 They	 are	 given	 by	

where	Î	is	the	relative	permittivity	of	the	medium.	In	general,	for	the	ionosphere,
e	<	e0	and	hence	from	Eq.	(1.43),	v	>	c.	That	is,	phase	velocity	v	of	radiowaves
in	 the	 ionosphere	 is	 greater	 than	 c,	 the	 velocity	 of	 the	 radiowaves	 in	 vacuum.
Also,	we	see	from	Eq.	(1.43)	that	the	refractive	index	n	of	the	ionosphere	is	less
than	the	refractive	index	n0	=	1	of	vacuum.	This	results	in	the	reflection	of	the



waves	from	the	ionosphere	back	to	earth	as	shown	in	Fig.	1.3.

Fig.	1.3	Reflection	and	refraction	of	radiowaves	by	ionosphere.

The	oscillating	part	of	x,	Eq.	(1.40),	gives	rise	to	an	electric	dipole	moment	p
given	 by	

which	is	inversely	proportional	to	w2	and	it	changes	the	refractive	index	of	the
ionosphere.	 If	w	 is	 very	 large,	 the	 refractive	 index	n	 of	 the	 ionosphere	 is	 also
very	close	to	unity	and	the	waves	are	refracted	away	from	the	normal.	Figure	1.3
also	shows	the	refraction	of	radiowaves	by	ionosphere.

1.8	MOTION	UNDER	A	VELOCITY
DEPENDENT	FORCE

It	 is	very	often	 the	case	 that,	 in	addition	 to	constant	applied	 forces,	 forces	 that



depend	on	velocity	are	present.	When	a	body	is	falling	in	a	gravitational	field,	in
additional	to	the	gravitational	force,	there	exists	a	force	of	resistance	offered	by
air	 which	 is	 dependent	 on	 velocity.	 When	 bodies	 move	 through	 fluids,	 the
viscous	forces	oppose	the	motion.	For	such	systems,	Newton’s	second	law	may
be	 written	 in	 the	 form	

Equation	(1.46)	or	(1.47)	can	be	solved	to	analyze	the	motion.	Integration	of	

Eq.	(1.46)	gives	

which	gives	time	as	a	function	of	velocity.	Here	v0	is	the	velocity	at	time	t	=	t0.
Integration	 of	 Eq.	 (1.47)	 gives	 position	 as	 a	 function	 of	 velocity	

1.9	MOTION	OF	CHARGED	PARTICLES	IN	MAGNETIC
FIELDS	Consider	a	charged	particle	having	a	charge	q,	mass	m	and
velocity	v	moving	in	a	uniform	magnetic	field	B.	The	force
experienced	by	the	charge	is	given	by	F	=	qv		B………(1.50)	The
equation	of	motion	of	the	particle	is	

That	is,	the	kinetic	energy	of	the	particle	is	a	constant.



The	 velocity	 v	 may	 be	 resolved	 into	 two	 components,	 one	 parallel	 to	 B
(denoted	by	vll)	and	the	other	perpendicular	to	B	(denoted	by	 	).	Since	
vll	 ´	 B	 =	 0,	 Eq.	 (1.51)	 takes	 the	 form	

Equation	 (1.53)	 splits	 into	 two	 equations,	 one	 describing	 the	 motion	 of	 the
particle	parallel	to	the	field	and	the	other	describing	the	motion	perpendicular	to
the	field.

The	 velocity	 vll	 is	 constant	 means	 that	 the	 particle	 moves	 with	 uniform
velocity	along	the	direction	of	B	as	shown	in	Fig.	1.4	(a).	The	quantity	
is	 always	 perpendicular	 to	 both	 B	 and	 	 and	 therefore	 the	 perpendicular
component	 makes	 the	 particle	 travel	 in	 a	 circle	 as	 shown	 in	 Fig.	 1.4(b).	 For
keeping	the	particle	in	a	circular	path,	the	necessary	centripetal	force	is	provided
by	 the	 force	 Therefore,	

Fig.	1.4	Charged	particle	motion	in	a	uniform	magnetic	field.



where	 R	 is	 the	 radius	 of	 the	 circle.	 Solving	

The	 radius	 R	 is	 often	 called	 the	 Larmor	 radius	 of	 the	 particle.	 Period	 of
revolution	

The	complete	motion	of	the	particle	is	obtained	by	combining	the	two	motions,
one	a	uniform	motion	along	the	magnetic	field	line	and	the	other	in	a	circle	in	a
plane	perpendicular	to	the	field	line.	The	resulting	motion	is	along	a	helical	path
as	shown	in	Fig.	1.4	(c).

WORKED	EXAMPLES	Example	1.1	Is	the	force	F	=	A		r
conservative	?

Solution:	 (i)	 F	 =	 A	 	 r	



Hence,	the	force	is	not	conservative.

Example	 1.2	 Find	 the	 potential	 energy	 function	 associated	 with	 the	 force	

Solution:	 It	 is	 given	 that	 Fx	 =	 yz,	 Fy	 =	 –xz,	 Fz	 =	 –xy	

From	these	expressions	for	V,	a	single	consistent	equation	is:	V	=	xyz	+	C	C	=
constant	Example	 1.3	 A	 particle	 of	mass	m	 moves	 under	 a	 force	F	 =	 –	 cx3,
where	c	 is	a	positive	constant.	 (i)	Find	 the	potential	energy	function;	(ii)	 If	 the
particle	starts	from	rest	at	x	=	–	a,	what	is	its	velocity	when	it	reaches	x	=	0?	(iii)
Where	in	the	subsequent	motion	does	it	come	to	rest?



Example	1.4	An	artificial	satellite	is	placed	in	an	elliptical	orbit	about	the	earth.
Its	point	of	closest	approach	(perigee)	is	at	a	distance	rp	from	the	centre	of	the
earth,	while	 its	point	of	greatest	distance	 (apogee)	 is	 at	 a	distance	 ra	 from	 the
centre	of	the	earth.	If	the	speed	of	the	satellite	at	the	perigee	is	vp,	find	the	speed
at	the	apogee.
Solution:	 The	 gravitational	 force	 on	 the	 satellite,	 not	 a	 very	 significant	 one,
exerts	 no	 torque	 as	 the	 force	 passes	 through	 the	 axis	 of	 rotation.	 Hence,	 the

angular	

momentum	of	the	satellite	is	constant	at	all	times:	where	Ia	and	Ip	are	the	M.I.	of
the	 satellite	 about	 the	 axis	 of	 rotation	 when	 it	 is	 at	 apogee	 and	 perigee
respectively.	 The	 orbiting	 satellite	 can	 be	 considered	 as	 a	 point	 mass	 and



therefore	

which	is	independent	of	the	mass	of	the	satellite.

Example	 1.5	 A	 particle	 of	 mass	m	 is	 projected	 vertically	 up	 with	 an	 initial
velocity	of	v0.	If	the	force	due	to	the	friction	of	the	air	is	directly	proportional	to
its	instantaneous	velocity,	calculate	the	velocity	and	position	of	the	particle	as	a
function	of	time.
Solution:	For	the	particle	moving	up	the	frictional	force	is	downward.	Hence,	the
total	 force	 acting	 on	 the	 particle	



Example	1.6	A	mass	m	 tied	 to	a	spring	having	a	 force	constant	k	oscillates	 in
one	dimension.	If	the	motion	is	subjected	to	the	force	F	=	–kx,	find	expressions
for	displacement,	velocity	and	period	of	oscillation.



Example	 1.7	A	 particle	 of	 mass	m	 is	 at	 rest	 at	 the	 origin	 of	 the	 co-ordinate
system.	At	 t	=	0,	a	 force	F	=	F0	(1	–	 te–lt)	 is	 applied	 to	 the	particle.	Find	 the
velocity	and	position	of	the	particle	as	a	function	of	time.
Solution:	 By	 Newton’s	 second	 law	

Example	1.8	A	particle	having	total	energy	E	is	moving	in	a	potential	field	V(r).
Show	 that	 the	 time	 taken	 by	 the	 particle	 to	 move	 from	 r1	 to	 r2	 is	

Solution:	The	particle	is	moving	under	the	action	of	a	position-dependent	force



and	 therefore	 the	 sum	 of	 its	 kinetic	 and	 potential	 energies	 is	 E.	 That	 is,	

Example	1.9	A	disc	of	mass	m	and	radius	r	rolls	down	an	inclined	plane	of	angle
q.	Find	the	acceleration	of	the	disc	and	the	frictional	force.
Solution:	Forces	 acting	 on	 the	 disc	 are	 the	weight	mg,	 the	 reaction	R	 and	 the
frictional	 force	 f.	 Let	 the	 acceleration	 of	 the	 disc	 be	 a.	 (See	 Fig.	 1.5.)	

Fig.	1.5	Disc	rolling	down	a	plane.

The	unbalanced	force	on	the	disc	=	mg	sinq	–	f	This	must	be	equal	to	ma.	Hence,
ma	 =	mg	 sinq	 –	 f	 Moment	 of	 inertia	 of	 the	 disc	 about	 its	 point	 of	 contact	



Equating	 the	 two	 expressions	 for	 torque	

Example	1.10	Consider	a	body	of	mass	m	projected	with	velocity	v0	at	an	angle
a	with	the	horizontal.	Derive	expressions	for	the	range	and	time	of	flight	of	the
projectile.
Solution:	The	motion	remains	in	the	vertical	plane	containing	the	velocity	vector
v0.	The	horizontal	may	be	 taken	 as	 the	x-axis	 and	 the	 vertical	 in	 the	 plane	 of
motion	may	be	taken	as	the	y-axis.	The	equations	of	motion	of	the	projectile	are	



This	 represents	 the	 trajectory	 of	 a	 parabola.	 The	 range	 R	 of	 the	 projectile	 is
obtained	by	putting	x	=	R	and	y	=	0.

REVIEW	QUESTIONS	1.	What	are	inertial	and	non-inertial



frames	of	references?
2.	Is	inertial	mass	same	as	gravitational	mass?	Explain.
3.	 Under	 what	 condition	 do	 we	 write	 Newton’s	 second	 law	 in	 the	 form	

4.	“Law	of	conservation	of	linear	momentum	is	a	consequence	of	Newton’s	first
law”.	Substantiate.

5.	When	do	you	say	a	force	is	conservative?	Illustrate	with	an	example.
6.	State	and	explain	the	analogue	of	Newton’s	second	law	in	rotational	motion.
7.	 Explain	 angular	 momentum	 conservation	 by	 taking	 an	 earth	 satellite	 as	 an
example.

8.	 “Absolute	 value	 of	 the	 potential	 and	 kinetic	 energies	 has	 no	 meaning.”
Comment.

9.	For	 a	particle	moving	under	 the	 action	of	 a	 force,	prove	 that	 the	 sum	of	 its
kinetic	energy	and	potential	energy	remains	constant	throughout	its	motion.

10.	A	 force	F	acts	 on	 a	 particle,	 giving	 it	 displacement	dr.	 If	F.dr	=	 –dV	 (r),
where	V(r)	is	a	scalar	function	of	r,	show	that	

11.	How	are	refraction	and	reflection	by	the	ionosphere	possible?
12.	Consider	a	particle	having	a	charge	q,	mass	m	and	velocity	v	moving	 in	 a
uniform	magnetic	field	B.	Explain	the	resulting	motion	of	the	charged	particle.

PROBLEMS
1.	 Find	 the	 potential	 energy	 function	 that	 corresponds	 to	 the	 force	

2.	Find	whether	the	following	force	is	conservative,	if	so	find	the	corresponding
potential	 function:	 	 where	 a,	 b
are	constants.

3.	 A	 ladder	 of	 length	 2l	 and	 mass	m	 is	 resting	 against	 a	 wall.	 Coefficient	 of
friction	between	the	ladder	and	the	wall	is	m	and	that	between	the	ladder	and
the	 horizontal	 floor	 is	m.	 The	 ladder	makes	 an	 angle	 q	 with	 the	 horizontal.

When	the	ladder	is	about	to	slip,	show	that	

4.	A	block	of	mass	m	is	at	rest	on	a	frictionless	surface	at	the	origin.	At	time	
t	=	0,	 a	 force	F	 =	F0e–lt	 =	where	 l	 is	 a	 small	 positive	 constant,	 is	 applied.



Calculate	x(t)	and	v(t).
5.	A	particle	of	mass	m	is	falling	under	the	action	of	gravity	near	the	surface	of
the	earth.	If	the	force	due	to	the	friction	of	the	air	is	directly	proportional	to	its
instantaneous	 velocity,	 calculate	 the	 velocity	 and	 position	 of	 the	 mass	 as	 a
function	of	time.

6.	A	particle	of	mass	m	having	an	initial	velocity	v0	is	subjected	to	a	retarding
force	 proportional	 to	 its	 instantaneous	 velocity.	 Calculate	 its	 velocity	 and
position	as	a	function	of	time.

7.	A	ball	of	mass	m	is	thrown	with	velocity	v0	on	a	horizontal	surface,	where	the
retarding	force	is	proportional	to	the	square	root	of	the	instantaneous	velocity.
Calculate	the	velocity	and	position	of	the	ball	as	a	function	of	time.

8.	A	particle	of	mass	m	is	at	rest	at	t	=	0	when	it	is	subjected	to	a	force	
F	=	A	sin	wt.	Calculate	the	values	of	x(t)	and	v(t).

9.	A	particle	of	mass	m	is	at	rest	at	the	origin	of	the	co-ordinate	system.	At	
t	=	0,	a	force	bt	starts	acting	on	the	particle.	Find	the	velocity	and	position	of
the	particle	as	a	function	of	time.

10.	The	components	of	a	force	acting	on	a	particle	are	Fx	=	ax	+	by2,	

Fy	=	az	+	2bxy	and	Fz	=	ay	+	bz2,	where	a	and	b	are	constants.	Evaluate	
the	work	done	 in	 taking	 the	particle	 from	the	origin	 to	 the	point	 (1,	1,	0)	by
moving	first	along	the	x-axis	and	then	parallel	to	the	y-axis.

11.	A	particle	of	mass	m	moves	in	a	central	force	field	V(r)	=	kmr3	(k	>	0).	If	its
path	is	a	circle	of	radius	a	,	then	(i)	what	is	its	period?	(ii)	what	is	its	angular
momentum?

12.	A	particle	having	a	charge	q,	mass	m	and	velocity	v	is	moving	in	a	uniform
magnetic	 field	B.	 If	 the	 field	 is	 perpendicular	 to	 v,	 prove	 that	 the	 kinetic
energy	of	the	particle	is	a	constant.

13.	A	particle	of	mass	m	moves	along	the	x-axis	under	a	constant	force	f	starting
from	rest	at	 the	origin	at	 time	 t	=	0.	 If	T	and	V	are	 the	kinetic	and	potential

energies	of	the	particle,	calculate	



2

System	of	Particles

The	mechanics	of	a	system	of	particles	can	be	studied	by	using	a	straightforward
application	 of	Newton’s	 laws.This	 application	 of	Newton’s	 laws	 considers	 the
forces	acting	between	particles	in	addition	to	the	externally	applied	forces.	One
can	 easily	 extend	 the	 considerations	 of	 the	mechanics	 of	 a	 single	 particle	 to	 a
system	of	particles	also.

2.1	CENTRE	OF	MASS

The	 mass	 of	 a	 point	 particle	 is	 concentrated	 at	 a	 particular	 point.	 When	 we
consider	 the	 motion	 of	 a	 system	 of	 n	 particles,	 there	 is	 a	 point	 in	 it	 which
behaves	 as	 if	 the	 entire	mass	 of	 the	 system	 is	 concentrated	 at	 that	 point.	 This
point	 is	 called	 the	 centre	 of	mass	 of	 the	 system.	 The	 centre	 of	 mass	C	 of	 a
system	of	particles	
(see	Fig.	 2.1)	whose	 radius	 vector	 is	R	 is	 related	 to	 the	masses	mi	 and	 radius
vectors	 ri	 of	 all	 n	 particles	 of	 the	 system	 by	 the	 equation	



Fig.	2.1	Centre	of	mass	of	a	system	of	n	particles.

where	M	is	the	total	mass	of	the	system.	For	a	continuous	body,	the	co-ordinates
of	 the	 centre	 of	 mass	 are	

A	frame	of	reference	with	the	centre	of	mass	as	the	origin	is	called	the	centre	of
mass	 frame	 of	 reference.	 In	 this	 frame	 of	 reference,	 obviously,	 the	 position
vector	 of	 the	 centre	 of	 mass	 R	 is	 equal	 to	 zero.	 Consequently,	 the	 linear
momentum	P	of	the	system	(dR/dt)	is	also	zero.	It	is	the	practice	to	deal	with	all
scattering	problems	in	nuclear	physics	in	this	frame	of	reference.

2.2	CONSERVATION	OF	LINEAR
MOMENTUM

Consider	a	system	of	n	particles	of	masses	m1,	m2,	m3,	...	mn.	Let	their	position
vectors	at	time	t	be	r1,	r2,	r3,	...	rn.	The	force	acting	on	the	 ith	particle	Fi	has
two	parts:	(i)	a	force	applied	on	the	system	from	outside	or	external	force	(ii)	an
internal	 force	 which	 is	 a	 force	 among	 the	 particles	 of	 the	 system.	 Newton’s
second	 law	 for	 the	 ith	 particle	 of	 the	 system	 can	 be	 written	 as	

where	Fie	is	the	external	force	on	the	ith	particle	and	Fij	is	the	internal	force	on
the	ith	particle	due	to	the	jth	one.	Since	Fii	=	0,	j	π	i	in	the	summation.	Summing



over	 all	 particles	 of	 the	 system,	 Eq.	 (2.2)	 takes	 the	 form	

Assuming	 that	 Newton’s	 third	 law	 is	 valid	 for	 the	 internal	 force	 Fij=	 –
Fji………(2.4)	Use	of	this	condition	reduces	the	second	term	on	the	right	of	Eq.

(2.3)	 to	 zero.	The	 first	 term	 	 the	 total	 external	 force	 acting	 on	 the

system.	The	sum	p1	+	p2	+	p3	+	...	+	pn	=	P
is	 the	 total	 linear	 momentum	 of	 the	 system.	 Now	 Eq.	 (2.3)	 reduces	 to	

which	 provides	 the	 law	 of	 conservation	 of	 linear	 momentum	 of	 a	 system	 of
particles:	 If	 the	 external	 force	acting	on	a	 system	of	 particles	 is	 zero,	 then	 the
total	linear	momentum	of	the	system	is	conserved.
When	external	force	acting	on	a	system	is	zero,	it	is	called	a	closed	system.	For	a
closed	system,	linear	momentum	is	conserved.
Another	interesting	result	is	the	relation	connecting	the	total	linear	momentum

and	the	velocity	of	the	centre	of	mass.	With	the	definition	of	centre	of	mass	in
Eq.	 (2.1)	

That	is,	the	centre	of	mass	moves	as	if	the	total	external	force	were	acting	on	the
entire	mass	of	the	system	concentrated	at	the	centre	of	mass.

2.3	ANGULAR	MOMENTUM

We	 now	 derive	 the	 angular	 momentum	 L	 of	 a	 system	 of	 particles	 which	 is



defined	as	

Figure	2.2	illustrates	the	position	vector	of	the	centre	of	mass	of	the	system	and
that	of	the	ith	particle.

Fig.	2.2	Position	of	centre	of	mass	and	ith	particle.

From	 Fig.	 2.2	 we	 have	

The	quantity	 	vanishes	 as	 it	 defines	 the	 radius	 vector	 of	 the	 centre	 of

mass	 in	 the	 co-ordinate	 system	 in	which	 the	 origin	 is	 the	 centre	 of	mass.	The
quantity	



where	VCM	 is	 the	velocity	of	 the	centre	of	mass	with	 respect	 to	 the	origin	O.
The	meaning	of	the	equation	is	that	the	total	angular	momentum	about	a	point	O
is	equal	to	the	sum	of	the	angular	momentum	of	the	system	concentrated	at	the
centre	of	mass	and	 the	angular	momentum	of	 the	system	of	particles	about	 the
centre	of	mass.

2.4	CONSERVATION	OF	ANGULAR
MOMENTUM

We	 now	 consider	 the	 angular	 momentum	 of	 a	 system	 of	 n	 particles	 which	 is

defined	as	

The	first	term	on	the	right	is	zero	since	the	vector	product	of	a	vector	with	itself
is	 zero.	 Substituting	 for	 (dpi	 /	 dt)	 from	 Eq.	 (2.2)	



The	 second	 term	 on	 the	 right	 contains	 pairs	 of	 terms	 like	

which	 is	 zero	 if	 the	 internal	 forces	 are	 central,	 that	 is,	 the	 internal	 forces	 are
along	the	line	joining	the	two	particles.	Hence,	 the	second	term	on	the	right	of
Eq.	(2.13)	vanishes.	Since	ri		Fie	is	the	torque	due	to	the	external	force	on	the	ith
particle,	 Eq.	 (2.13)	 reduces	 to	

where	 	is	the	total	external	torque	acting	on	the	system.	Eq.	(2.15)	leads	to	the
conservation	 law:	 If	 the	 total	 torque	 due	 to	 external	 forces	 on	 a	 system	 of
particles	is	zero,	then	the	total	angular	momentum	is	a	constant	of	motion.

2.5	KINETIC	ENERGY	FOR	A	SYSTEM	OF	PARTICLES
For	 a	 system	 of	 particles	 the	 kinetic	 energy	 of	 the	 system	

The	position	of	 the	centre	of	mass	of	 the	 system	and	 that	of	 the	 ith	 particle	 is
shown	 in	 Fig.	 2.2.	 From	 the	 figure,	 we	 have	

The	term	 	vanishes	as	it	defines	the	radius	vector	of	the	centre	of	mass

in	 the	 co-ordinate	 system	 in	 which	 the	 origin	 is	 the	 centre	 of	 mass.	 Hence,	

………(2.18)	 Thus,	 like	 angular	 momentum,	 the

kinetic	energy	also	consists	of	two	parts:	
(i)	the	kinetic	energy	obtained	if	all	the	mass	were	concentrated	at	the	centre	of



mass,	and	(ii)	the	kinetic	energy	of	motion	about	the	centre	of	mass.

2.6	ENERGY	CONSERVATION	OF	A	SYSTEM	OF	PARTICLES
The	energy	conservation	law	of	a	single	particle	system	can	easily	be	extended
to	a	system	of	particles.	The	force	acting	on	the	ith	particle	is	given	by	Eq.	(2.2).
As	 in	 the	 case	of	 a	 single	 particle,	 the	work	done	by	 all	 forces	 in	moving	 the
system	 from	 an	 initial	 position	 1	 to	 a	 final	 position	 2	 is	 given	 by	

………(2.19)	

where	T	is	the	total	kinetic	energy	of	the	system.
Next	we	 consider	 the	 right	 hand	 side	 of	 Eq.	 (2.19).	 If	 both	Fie	 and	Fij	 are

conservative,	 they	 are	 derivable	 from	 potential	 functions	
………(2.21)	 where	 the	 subscript	 i

on	 the	 del	 operator	 indicates	 that	 the	 derivative	 is	 with	 respect	 to	 the	 co-
ordinates	of	 the	 ith	particle.	The	 first	 term	on	 the	 right	 side	of	Eq.	 (2.19)	now
takes	 the	 form	



where	the	factor	½	is	introduced	to	avoid	each	member	of	a	pair	being	included
twice,	 first	 in	 the	 i	 summation	 and	 then	 in	 the	 j	 summation.	 Substituting	 this

value	

Here	 	stands	for	the	gradient	with	respect	to	rij.
Equation	 (2.19)	 can	 now	 be	 written	 as	



………(2.26)	 As	 the	 internal	 and

external	 forces	 are	 derivable	 from	 potentials,	 it	 is	 possible	 to	 define	 a	 total

potential	energy	V	of	the	system:	 ………(2.27)

With	this	potential,	Eq.	(2.19)	reduces	to	W12	=	–	(V2	–	V1)	………(2.28)	From
Eqs.	(2.20)	and	(2.28),	we	get	T2	–	T1	=	V1	–	V2

T1	+	V1	=	T2	+	V2………(2.29)	which	gives	the	energy	conservation	law:
For	 a	 conservative	 system	 of	 n	 particles,	 the	 total	 energy	E	=	T	+	V	 is
constant,	where	T	is	given	by	Eq.	(2.18)	and	V	by	Eq.	(2.27).

2.7	TIME	VARYING	MASS	SYSTEMS—ROCKETS
So	far	we	have	been	studying	systems	 in	which	 the	mass	 is	constant.	We	shall
now	investigate	a	system	in	which	the	mass	is	time-varying.	The	time	variation
of	 the	mass	 in	a	 rocket	 is	due	 to	 the	expulsion	of	 the	exhaust.	The	mass	of	an
object	 can	 also	 vary	 due	 to	 its	 very	 high	 speed	 (relativistic	 effect)	 which	 is
different	from	a	time-varying	mass	system.
Consider	a	rocket	which	is	propelled	in	a	forward	direction	by	the	ejection	of

mass	exhaust	 in	the	backward	direction	in	the	form	of	gases	resulting	from	the
combustion	of	fuel.	Thus,	the	forward	force	on	the	rocket	is	the	reaction	to	the
backward	force	of	the	ejected	gases.	Our	aim	is	to	find	the	velocity	of	the	rocket
at	any	 time	after	 take-off	 from	the	ground.	At	 time	 t	assume	 that	 the	rocket	of
mass	m	is	moving	with	a	velocity	v	relative	to	the	fixed	co-ordinate	system,	say
earth.	The	exhaust	is	ejected	with	a	constant	velocity	u	relative	to	the	rocket	and
therefore	v	+	u	relative	to	the	fixed	co-ordinate	system	
(see	Fig.	2.3).	At	time	t	+	dt	the	mass	of	the	rocket	has	changed	to	m	+	dm	and
the	velocity	to	v	+	dv.	At	this	time	an	amount	of	fuel	denoted	by	–	dm	is	moving
with	velocity	v	+	u	relative	to	the	fixed	co-ordinate	frame.
Momentum	of	the	system	at	time	t	is	P(t)	=	mv	Momentum	of	the	rocket	alone

at	t	+	dt	



Fig.	2.3	Motion	of	a	rocket	at	some	instant	of	time.

The	second	order	term	dm	dv	is	neglected.
The	momentum	of	the	fuel	Pfuel	(t	+	dt)	=	–	dm	(v	+	u)	=	–	dmv	–	dmu	Hence,
the	 total	momentum	of	 the	 system	at	 (t	+	dt)	 is	P(t	 +	dt)	=	Procket	 (t	 +	dt)	 +
Pfuel	 (t	 +	 dt)	 ………(2.30)	 Change	 of	 momentum	 dP	 is
given	by	 dP	 =	P(t	 +	dt)	 –	P(t)	 =	 mdv	 –	dmu………(2.31)	 Rate	 of	 change	 of
momentum	



where	m0	is	the	original	mass,	m	is	the	final	mass	and	v0	is	the	initial	velocity,
velocities	v	 and	u	 are	 in	 opposite	 directions.	Very	 high	 final	 velocity	 requires
large	values	for	the	exhaust	velocity	u	and	large	values	for	m0/m.	Large	values
of	m0/m	 can	be	 achieved	by	 reducing	m,	 the	 final	mass	which	 consists	 of	 the
rocket	 structure	 and	 the	 payload.	 To	 reduce	m,	 staged	 rockets	 are	 used.	 The
structure	of	the	first	stage	is	usually	very	massive	as	it	contains	all	the	necessary
fuel,	engine,	and	so	on.	When	its	fuel	is	over,	all	this	structure	is	jettisoned	from
the	 rest	 of	 the	 rocket,	 so	 that	 the	 entire	 force	 is	 applied	 to	 accelerate	 a	much
smaller	mass.
Near	the	earth	surface,	the	external	force	on	the	rocket	due	to	the	attraction	of

the	earth	has	 to	be	 taken	 into	account.	 In	such	a	situation,	Eq.	 (2.34)	 takes	 the
form	

Remembering	 that	 u	 and	 g	 are	 in	 a	 direction	 opposite	 to	 that	 of	 v,	 the
corresponding	scalar	equation	for	a	rocket	fired	vertically	upward	from	rest	

(v0	=	0)	 ………(2.39)	In	the	present-day	rockets,	the	high	final

speed	 is	 achieved	 by	 continued	 acceleration;	 the	 value	 of	 the	 acceleration
increases	as	the	remaining	mass	of	the	rocket	decreases.
Another	useful	relation	is	the	one	connecting	the	original	mass	of	the	rocket	m0,
mass	of	 the	 rocket	 at	 time	 t	and	 the	 rate	 of	mass	 decrease	a.	 From	 definition	



where	 the	 negative	 sign	 indicates	 that	 there	 is	 a	 mass	 decrease.	 Integrating,	

The	mass	at	the	end	of	the	mission	will	be	the	sum	of	the	body	of	the	rocket	plus
the	mass	of	the	satellite	or	bomb	in	the	case	of	missiles.

WORKED	EXAMPLES
Example	 2.1	 A	 body	 of	 mass	 m	 splits	 into	 two	 masses	 m1	 and	 m2	 by	 an
explosion.	After	 the	 split	 the	 bodies	move	with	 a	 total	 kinetic	 energy	T	 in	 the
same	direction.	Show	that	their	relative	speed	is	

Solution:	 The	 initial	 momentum	 of	 the	 mass	 is	 zero.	 Hence,	 by	 the	 law	 of
conservation	 of	 linear	 momentum	



Example	2.2	Ball	A	of	mass	m	is	attached	to	one	end	of	a	rigid	massless	rod	of
length	 2l,	 while	 an	 identical	 ball	 B	 is	 attached	 to	 the	 centre	 of	 the	 rod.	 This
arrangement	is	held	by	the	empty	end	and	is	whirled	around	in	a	horizontal	circle
at	a	constant	 rate.	Ball	A	 travels	at	a	constant	 speed	of	vA.	Find	 the	 tension	 in
each	half	of	the	rod.
Solution:	Fig.	2.4	illustrates	the	details.

Fig.	2.4	Illustration	showing	balls	A	and	B	of	example	2.2.



Ball	A:	Only	a	single	tension	force	TA	acts	on	A.	This	provides	 the	centripetal
force	keeping	ball	A	on	its	circular	path.

Example	 2.3	The	 maximum	 possible	 exhaust	 velocity	 of	 a	 rocket	 is	 2	 km/s.
Calculate	the	mass	ratio	for	the	rocket	if	it	is	to	attain	the	escape	velocity	of	11.2
km/s.	Also	calculate	the	time	taken	by	the	rocket	to	attain	this	velocity	if	its	rate
of	change	of	mass	to	its	initial	mass	is	1/10.



Example	2.4	Masses	of	1,	2	and	3	kg	are	located	at	positions	 	

and	 	 respectively.	 If	 their	 velocities	 are	 	 find	 the
position	and	velocity	of	the	centre	of	mass.	Also,	find	the	angular	momentum	of
the	system	with	respect	to	the	origin.

Solution:	 Radius	 vector	 of	 the	 centre	 of	 mass	



Example	2.5	Particles	of	masses	1,	2	and	4	kg	move	under	a	force	such	that	their
position	 vectors	 at	 time	 t	 are	 respectively	 	

.	Find	 the	angular	momentum	of	 the	 system	about	 the
origin	at	t	=	1	s.

Solution:	 The	 angular	 momentum	 L	 is	 given	 by	

REVIEW	QUESTIONS
1.	Define	the	centre	of	mass	of	a	system	of	particles.	What	is	the	centre	of	mass
frame	of	reference?

2.	Is	mass	necessary	at	the	centre	of	mass	in	the	case	of	a	solid	body?	Explain.
3.	 In	 a	 system	of	particles,	 if	Newton’s	 third	 law	 is	 applicable	 for	 the	 internal
forces,	 show	 that	 the	 acceleration	 of	 the	 centre	 of	 mass	 is	 only	 due	 to	 the
external	forces.

4.	 Show	 that	 the	 centre	 of	mass	 of	 a	 system	of	 particles	moves	 as	 if	 the	 total
external	force	were	acting	in	the	entire	mass	of	the	system	concentrated	at	the
centre	of	mass.

5.	 Explain	 the	 principle	 of	 a	 rocket.	What	 is	meant	 by	 thrust	 of	 a	 rocket?	On
what	factors	does	thrust	depend?

6.	The	final	velocity	of	a	multistage	rocket	is	much	greater	than	the	final	velocity
of	a	single-stage	rocket	of	the	same	total	weight	and	fuel	supply.	Explain.

7.	What	is	a	closed	system?	For	a	closed	system,	show	that	the	linear	momentum
is	conserved.

8.	The	total	angular	momentum	of	a	system	of	particles	about	a	point	is	equal	to
the	 sum	 of	 angular	 momentum	 of	 the	 system	 concentrated	 at	 the	 centre	 of
mass	and	the	angular	momentum	of	the	system	of	particles	about	the	centre	of
mass.	Substantiate.



PROBLEMS
1.	A	rocket	motor	consumes	120	kg	of	fuel	per	second.	If	the	exhaust	velocity	is
5	km/s,	what	 is	 the	 thrust	on	 the	 rocket?	What	would	be	 the	velocity	of	 the
rocket	when	its	mass	is	reduced	to	1/15th	of	its	initial	mass?	Assume	that	the
initial	velocity	of	the	rocket	is	zero.

2.	Calculate	the	mass	ratio	(m0/m)	of	a	rocket	so	that	its	speed	is:	(i)	equal	to	the
exhaust	 speed;	 (ii)	 equal	 to	 twice	 the	 exhaust	 speed.	 Here	m0	 is	 the	 initial
mass	and	m	is	the	mass,	at	a	time,	of	the	rocket.

3.	In	a	system	of	particles,	the	force	exerted	by	the	ith	particle	on	the	jth	one	is	
.	 If	 Newton’s	 third	 law	 is	 applicable	 for	 the	 internal	 forces,	 show	 that	

4.	 In	 a	 system	of	particles,	 if	Newton’s	 third	 law	 is	 applicable	 for	 the	 internal

forces,	show	that	

where	 Fij	 is	 the	 force	 exerted	 by	 the	 ith	 particle	 on	 the	 jth	 one	 and	

5.	A	string	with	masses	m1	and	m2	at	its	ends	passes	over	a	smooth	pulley	fixed
at	 the	edge	of	a	 table,	with	 the	mass	m1	resting	on	 the	smooth	 table	and	m2
hanging.	If	m2	>	m1,	calculate	the	acceleration	of	the	masses	and	the	tension
in	the	string.

6.	Particles	of	masses	4,	3	and	1	kg	move	under	a	force	such	that	their	position
vectors	 at	 time	 t	 are	 	 Find	 the
position	of	the	centre	of	mass	and	the	angular	momentum	of	the	system	about
the	origin	at	t	=	2	s.

7.	 The	 position	 vectors	 and	 velocity	 of	 masses	 2	 kg,	 3	 kg	 and	 4	 kg	 are
respectively	 	If	their	velocities	are	 	and

	units	respectively,	find	the	position	and	velocity	of	the	centre	of	mass.
Also	evaluate	the	total	angular	momentum	vector	of	the	system	with	respect	to
the	origin.

8.	In	a	radioactive	decay	of	a	nucleus,	an	electron	and	a	neutrino	are	emitted	at
right	 angles	 to	 each	 other.	 Their	 momenta	 are	 1.3	 	 10–22	 and	 6.0	 	 10–29



kgm/s.	If	the	mass	of	the	residual	nucleus	is	6.0		10–26	kg,	calculate	the	recoil
kinetic	energy.



3

Lagrangian	Formulation

In	 the	 previous	 chapters	 we	 were	 able	 to	 demonstrate	 the	 effectiveness	 of
Newton’s	laws	of	motion	in	solving	variety	of	problems.	However,	if	the	system
is	 subject	 to	 external	 constraints,	 solving	 the	 equations	 of	 motion	 may	 be
difficult,	and	sometimes	it	may	be	difficult	even	to	formulate	them.	The	forces	of
constraints	 are	usually	very	 complex	or	unknown,	which	makes	 the	 formalism
more	 difficult.	 To	 circumvent	 these	 difficulties,	 two	 different	 methods,
Lagrange’s	and	Hamilton’s	formulations,	have	been	developed.	These	techniques
use	an	energy	approach	and	are	constructed	 in	 such	a	way	 that	 the	Newtonian
formalism	 follows	 from	 it.	 Before	 going	 over	 to	 these	 procedures,	 we	 try	 to
understand	certain	terms	such	as	constraints,	generalized	coordinates,	etc.	In	this
chapter	a	discussion	on	the	Lagrangian	formalism	is	given.

3.1	CONSTRAINTS

A	motion	that	cannot	proceed	arbitrarily	in	any	manner	is	called	a	constrained
motion.	 The	 conditions	 which	 restricts	 the	 motion	 of	 the	 system	 are	 called
constraints.	For	example,	gas	molecules	within	a	container	are	constrained	by
the	walls	of	the	vessel	to	move	only	inside	the	container.	A	particle	placed	on	the
surface	of	a	solid	sphere	is	restricted	by	the	constraint,	so	that	it	can	only	move
on	the	surface	or	in	the	region	exterior	to	the	sphere.	There	are	two	main	types	of
constraints,	holonomic	and	non-holonomic.

Holonomic	Constraints
In	 holonomic	 constraints,	 the	 conditions	 of	 constraint	 are	 expressible	 as
equations	connecting	the	coordinates	and	time,	having	the	form	 f	 (r1,	r2,	r3,...
rn,	 t)	 =	 0………(3.1)	 We	 give	 below	 a	 few	 typical	 examples	 of	 holonomic



constraint:	(i)	In	a	rigid	body,	the	distance	between	any	two	particles	of	the	body
remains	 constant	 during	 motion.	 This	 is	 expressible	 as	 ………

(3.2)	where	cij	is	the	distance	between	the	particles	i	and	j	at	ri	and	rj.
(ii)	The	sliding	of	a	bead	on	a	circular	wire	of	radius	a	in	the	xy-plane	is	another

example.	The	equation	of	constraint	is	x2	+	y2	=	a2………(3.3)	which
can	 also	 be	 expressed	 in	 the	 differential	 form	 as	x	 dx	 +	 y	 dy	 =
0………(3.3a)	Equations	(3.2)	and	(3.3)	are	of	the	same	form	as
Eq.	(3.1).	The	differential	equation	denoted	by	Eq.	(3.3a)	can	be
integrated	 to	 obtain	 Eq.	 (3.3).	 Holonomic	 constraints	 are	 also
known	 as	 integrable	 constraints.	 The	 term	 integrable	 is	 used
here	 since	 Eq.	 (3.1)	 is	 equivalent	 to	 the	 differential	 equation	

………(3.4)	Equation	(3.4)	can	be	readily	integrated	to	Eq.

(3.1).

Non-holonomic	Constraints
Non-holonomic	constraints	are	those	which	are	not	expressible	in	the	form	of

Eq.	(3.1).	The	coordinates	in	this	case	are	restricted	either	by	inequalities	or	by
non-integrable	differentials.
(i)	The	constraint	involved	in	the	example	of	a	particle	placed	on	the	surface	of	a

sphere	is	non-holonomic,	which	may	be	expressed	as	the	inequality	r2	–	a2
>	0	(3.5)	where	a	is	the	radius	of	the	sphere.

(ii)	Gas	molecules	in	a	spherical	container	of	radius	R.	If	ri	is	the	position	vector
of	 the	 ith	molecule,	 ………(3.6)	Here,	 the	 centre	 of	 the
sphere	is	the	origin	of	the	coordinate	system.

In	 non-holonomic	 constraints,	 if	 the	 constraints	 are	 expressible	 as	 relations
among	 the	 velocities	 of	 the	 particles	 of	 the	 system,	 that	 is,	

………(3.6a)	and	if	these	equations	of	non-holonomic
constraints	 can	be	 integrated	 to	 give	 relations	 among	 the	 coordinates,	 then	 the
constraints	become	holonomic.

Scleronomous	and	Rheonomous	Constraints	Constraints	are
further	classified	as	scleronomous	and	rheonomous.	
A	scleronomous	constraint	is	one	that	is	independent	of	time



whereas	a	rheonomous	constraint	contains	time	explicity.	A
pendulum	with	an	inextensible	string	of	length	l0	is	described	by
the	equation	 ………(3.7)	As	the	constraint	equation	is
independent	of	time,	it	is	a	scleronomous	constraint.	A	pendulum
with	an	extensible	string	is	rheonomous,	the	condition	of
constraint	is	x2	+	y2	=	l2(t)………(3.8)	where	l(t)	is	the	length	of
the	string	at	time	t.
Constraints	 introduce	 two	 types	 of	 difficulties	 in	 the	 solution	 of	mechanical

problems.	The	coordinates	ri	are	no	longer	independent	as	they	are	connected	by
the	equations	of	constraint.	In	the	case	of	holonomic	constraints,	this	difficulty	is
solved	by	 the	 introduction	of	 generalized	 coordinates.	The	 second	difficulty	 is
due	to	the	fact	that	the	forces	of	constraints	cannot	be	specified	explicitly.	They
are	among	the	unknowns	of	the	problem	and	must	be	obtained	from	the	solution.
This	 difficulty	 can	 be	 solved	 if	 the	 problem	 is	 formulated	 in	 the	 Lagrangian
form,	in	which	the	forces	of	constraint	do	not	appear.
In	 most	 of	 the	 systems	 of	 interest,	 the	 constraints	 involved	 are	 holonomic.

Hence,	we	restrict	ourselves	mainly	to	holonomic	systems.

3.2	GENERALIZED	COORDINATES

Degrees	of	Freedom

The	 number	 of	 independent	 ways	 in	 which	 a	 mechanical	 system	 can	 move
without	violating	any	constraint	is	called	the	number	of	degrees	of	freedom	of
the	 system.	 It	 is	 the	 minimum	 possible	 number	 of	 coordinates	 required	 to
describe	 the	 system	 completely.	When	 a	 particle	moves	 in	 space,	 it	 has	 three
degrees	of	freedom.	If	it	is	constrained	to	move	along	a	space	curve	it	has	only
one	degree	of	 freedom	whereas	 it	has	 two	degrees	of	 freedom	if	 it	moves	 in	a
plane.

Generalized	Coordinates
For	 a	 system	 of	N	 particles,	 free	 from	 constraints,	 we	 require	 a	 total	 of	 3N
independent	coordinates	to	describe	its	configuration	completely.	Let	there	are	k



constraints	of	the	type	fs	(r1,	r2,...,	rN,t)	=	0	s	=	1,	2,	3,...,	k………(3.9)	acting
on	 the	 system.	 Now	 the	 system	 has	 only	 3N	 –	 k	 independent	 coordinates	 or
degrees	 of	 freedom.	These	3N	–	 k	 independent	 coordinates	 represented	 by	 the
variables	 q1,	 q2,	 q3,...,	q3N–k	 are	 called	 the	 generalized	 coordinates.	 In	 terms	 of	 the	 new
coordinates,	 the	 old	 coordinates	 r1,	 r2,...,	 rN	 can	 be	 written	 as	

These	are	the	transformation	equations	from	the	set	of 	variables	to	 variables.
In	analogy	with	cartesian	coordinates,	time	derivatives	 are	defined	as
generalized	velocities.
Generalized	 coordinates	 are	 not	 unique.	 They	 may	 or	 may	 not	 have

dimensions	of	length.	Depending	on	the	problem,	it	may	prove	more	convenient
to	select	 some	of	 the	coordinates	with	dimensions	of	energy,	some	others	with
dimensions	 of	 L2,	 and	 yet	 some	 others	 could	 be	 combinations	 of	 angles	 and
coordinates,	and	so	on.

Configuration	Space
We	have	seen	that	the	configuration	of	a	system	can	be	specified	completely	by
the	values	of	n	=	3N	–	k	independent	generalized	coordinates	q1,	q2,...,	qn.	It	is
convenient	to	think	of	the	n	q’s	as	the	coordinates	of	a	point	in	an	n-dimensional
space.	 This	 n-dimensional	 space	 is	 called	 the	 configuration	 space	 with	 each
dimension	 represented	by	 a	 coordinate.	As	 the	generalized	 coordinates	 are	 not
necessarily	 position	 coordinates,	 configuration	 space	 is	 not	 necessarily
connected	to	the	physical	3-dimensional	space	and	the	path	of	motion	also	does
not	necessarily	resemble	the	path	in	space	of	actual	particle.

3.3	PRINCIPLE	OF	VIRTUAL	WORK

A	virtual	 displacement,	 denoted	 by	 dri,	 refers	 to	 an	 imagined,	 infinitesimal,
instantaneous	 displacement	 of	 the	 coordinate	 that	 is	 consistent	 with	 the
constraints.	 It	 is	 different	 from	 an	 actual	 displacement	 dri	 of	 the	 system



occurring	 in	 a	 time	 interval	 dt.	 It	 is	 called	 virtual	 as	 the	 displacement	 is
instantaneous.	As	there	is	no	actual	motion	of	the	system,	the	work	done	by	the
forces	of	constraint	in	such	a	virtual	displacement	is	zero.
Consider	 a	 scleronomic	 system	 of	N	 particles	 in	 equilibrium.	 Let	Fi	 be	 the

force	acting	on	the	ith	particle.	The	force	Fi	is	a	vector	addition	of	the	externally
applied	force	 	and	the	forces	of	constraints	fi.	Then	 ………(3.11)
If	dri	is	a	virtual	displacement	of	the	ith	particle,	the	virtual	work	done	dWi	on	the	ith	particle	is	given	by	

………(3.12)	If	the	system	is	in	equilibrium,	the	total	force	on	each
particle	must	be	zero:	
Fi	 =	 0	 for	 all	 i.	 Therefore,	 the	 dot	 product	 	 is	 also	 zero.	 That	 is,	

………(3.13)	 The	 total	 virtual	 work
done	 on	 the	 system	 dW	 is	 the	 sum	 of	 the	 above	 vanishing	 products:	

Under	a	virtual	displacement,	the	work	done	by	the	forces	of	constraints	is	zero.
This	is	valid	for	rigid	bodies	and	most	of	 the	constraints	 that	commonly	occur.
Therefore,	 Eq.	 (3.14)	 reduces	 to	

which	is	the	principle	of	virtual	work	and	is	stated	as	:	In	an	N-particle	system,
the	total	work	done	by	the	external	forces	when	virtual	displacements	are	made
is	called	virtual	work	and	the	total	virtual	work	done	is	zero.
The	coefficients	 	in	Eq.	(3.15)	can	no	longer	be	set	equal	to	zero	as	they	are

not	independent.	It	should	also	be	noted	that	the	principle	of	virtual	work	deals
only	with	statics.

3.4	D’ALEMBERT’S	PRINCIPLE
The	principle	of	virtual	work	deals	only	with	statics	and	 the	general	motion	of
the	system	is	not	relevant	here.	A	principle	that	 involves	the	general	motion	of



the	system	was	suggested	by	D’	Alembert.
Consider	 the	motion	of	 an	N-particle	 system.	Let	 the	 force	acting	on	 the	 ith

particle	 be	Fi.	 By	 Newton’s	 law	 	 (3.16)	 This	 means
that	the	ith	particle	in	the	system	will	be	in	equilibrium	under	a	force	equal	to	the
actual	 force	 plus	 a	 “reversed	 effective	 force”, as	 named	 by	 D’Alembert.
Then	 dynamics	 reduces	 to	 statics.	 To	 this	 equivalent	 static	 problem,	 give	 a
virtual	 displacement	 	 which	 leads	 to	

Restricting	to	situations	where	the	virtual	work	done	by	forces	of	constraints	is

zero	 ………(3.19)	which	is	D’Alembert’s	principle.

3.5	LAGRANGE’S	EQUATIONS
Lagrange	 used	 D’Alembert’s	 principle	 as	 the	 starting	 point	 to	 derive	 the
equations	 of	 motion,	 now	 known	 as	 Lagrange’s	 equations.	 Dropping	 the

superscript	 e	 in	 Eq.	 (3.19)	 ………(3.20)	 The	 virtual

displacements	 	 in	 Eq.	 (3.20)	 are	 not	 independent.	 Lagrange	 changed	 Eq.
(3.20)	 into	 an	 equation	 involving	 virtual	 displacment	 of	 the	 generalized
coordinates	which	are	independent.
Consider	 a	 system	 with	N	 particles	 at	 r1,	 r2,...,	 rN	 having	 k	 equations	 of

holonomic	constraints.	The	system	will	have	n	=	3N	–	k	generalized	coordinates
q1,	q2,...,qn.	The	transformation	equations	from	the	r	variables	to	the	q	variables
are	given	by	Eq.	(3.10).

ri	=	ri	(q1,	q2,	...,	qn,	t)………(3.21)	Since	virtual	displacement	does	not
involve	 time,	 from	 Eq.	 (3.21)	



………(3.22)	Here	dqj’s

are	the	virtual	displacements	of	generalized	coordinates.	From	

Eq.	(3.21)	we	also	have	

	 ………(3.23)	 ………(3.24)	 The	 form	 of

D’Alembert’s	principle,	Eq.	(3.20),	can	be	changed	easily	by	substituting	
	 from	 Eq.	 (3.22).	 The	 first	 term	 of	 Eq.	 (3.20)	 is	

The	quantity	Qj	is	the	jth	component	of	the	generalized	force	Q.	The	generalized
force	components	need	not	have	the	dimension	of	force	as	the	q’s	need	not	have
the	dimension	of	length.	However,	Qjdqj	must	have	the	dimension	of	work.

We	 now	 write	 the	 inertial	 force	 term	 of	 Eq.	 (3.20)	



where	 T	 is	 the	 total	 kinetic	 energy	 of	 the	 system.	 Changing	 the	 order	 of
differentiation	 in	 the	 second	 term	 of	 Eq.	 (3.27)	

	 (3.29)	 Use	 of	 Eqs.

(3.28)	and	(3.29)	reduces	Eq.	(3.27)	to	 ………

(3.30)	 With	 Eqs.	 (3.26)	 and	 (3.30),	 Eq.	 (3.20)	 becomes	

………(3.31)	 The	 dq’s	 are	 independent	 and	 therefore

each	 of	 the	 coefficients	 must	 separately	 vanish.	 From	 which	 it	 follows	 that	

………(3.32)	 Equation	 (3.32)	 can	 be

simplified	further	if	the	external	forces	Fi	are	conservative:	 	where	V
=	 V	 (r1,	 r2,...,	 rN).	 Then	



We	 now	 introduce	 a	 new	 function	 L	 defined	 by	
………(3.37)	 where	 q	 stands	 for	 q1,	 q2,	 q3,...,	 qn	 and	 	 stands	 for	

This	 function	 L	 is	 called	 the	 Lagrangian	 function	 of	 the

system.	In	terms	of	L,	Eq.	(3.36)	becomes	

………(3.38)	 These	 n	 equations,	 one	 for	 each	 independent	 generalized
coordinate,	 are	 known	 as	 Lagrange’s	 equations.	 These	 constitute	 a	 set	 of	 n
second	order	differential	equations	for	n	unknown	functions	qj(t)	and	the	general
solution	contains	
2n	integration	constants.



In	certain	systems	the	forces	acting	are	not	conservative,	say	where	a	part	 is
derivable	from	a	potential	and	the	other	is	dissipative.	In	such	cases,	Lagrange’s

equations	can	be	written	as	 ………(3.39)

where	L	contains	the	potential	of	the	conservative	forces	and	 	 represents	 the
force	not	arising	from	that	potential.

3.6	KINETIC	ENERGY	IN	GENERALIZED
COORDINATES

Kinetic	energy	of	a	particle	of	mass	m	 is	a	homogeneous	quadratic	function	of
the	velocities	

………(3.40)	Replacing	 	using	Eq.	(3.23),

we	have	

	



In	 general,	 the	 kinetic	 energy	 in	 terms	 of	 generalized	 coordinates	 consists	 of
three	distinct	terms:	the	first	term	contains	quadratic	terms,	the	second	contains
linear	 terms	 and	 the	 third	 is	 independent	 of	 generalized	 velocities.	 If	

………(3.44)	 the	 generalized	 coordinate	 system	 in	 the

qj’s	is	referred	to	as	an	orthogonal	system.
The	special	case	where	 time	does	not	appear	explicitly	 in	 the	 transformation

equations,	 	 and	 therefore	 bj	 =	 c	 =	 0,	 and	 Eq.	 (3.42)	 reduces	 to	

………(3.45)	That	is,	the	kinetic	energy	is	a	homogeneous

quadratic	function	of	the	generalized	velocities.	In	such	a	case,	we	are	led	to	an
interesting	result	when	T	 is	differentiated	with	respect	to	 	For	this,	 let	us	go
back	 to	 the	 first	 term	 of	 Eq.	 (3.41)	

In	 the	 present	 case,	T	 is	 a	 homogeneous	 quadratic	 function	 of	 the	 generalized

velocities	 	 Hence,	 from	 Eq.	 (3.48)	 we	 have	 ………(3.49)

which	is	Eq.	(3.47).



3.7	GENERALIZED	MOMENTUM

Consider	 the	 motion	 of	 a	 particle	 of	 mass	m	 moving	 along	 x-axis.	 Its	 linear
momentum	p	is	 	and	kinetic	energy	 .	Differentiating	T	with

respect	 to	 	 we	 have	 ………(3.50)	 If	 the	 potential	 V	 is	 not	 a

function	of	the	velocity	 	since	L	=	T	–	V

………(3.51)	 Let	 us	 use	 this	 concept	 to	 define	 generalized

momentum.	For	a	system	described	by	a	set	of	generalized	coordinates	q1,
q2,...,	 qn,	 we	 define	 generalized	 momentum	 pi	 corresponding	 to

generalized	 coordinate	 qi	 as	 ………(3.52)	 Sometimes	 it	 is	 also

known	as	conjugate	momentum	(conjugate	to	co-
ordinate	qi	).

In	general,	generalized	momentum	is	a	function	of	the	q’s,	 ’s	and	t	 .	As	the
Lagrangian	is	utmost	quadratic	in	the	 ’s,	pi	is	a	linear	function	of	the	 ’s.	The
generalized	 momentum	 pi	 need	 not	 always	 have	 the	 dimension	 of	 linear
momentum.	 However,	 the	 product	 of	 any	 generalized	 momentum	 and	 the
associated	 coordinate	must	 always	 have	 the	 dimension	 of	 angular	momentum.
For	a	conservative	system,	the	use	of	the	expression	for	generalized	momentum,

Eq.	 (3.52),	 reduces	Lagrange’s	equations	of	motion	 to	

………(3.53)

3.8	FIRST	INTEGRALS	OF	MOTION	AND
CYCLIC

COORDINATES

Lagrange’s	equations	of	motion	for	a	system	having	n	degrees	of	 freedom	will



have	n	 differential	 equations	 that	 are	 second	 order	 in	 time.	As	 the	 solution	 of
each	equation	requires	two	integration	constants,	a	total	of	2n	constants	have	to
be	 evaluated	 from	 the	 initial	 values	 of	 n-generalized	 coordinates	 and	 n-
generalized	velocities.	In	general,	it	is	either	very	difficult	to	solve	the	problem
completely	 or	 very	 tedious.	 However,	 very	 often	 a	 great	 deal	 of	 information
about	the	system	is	possible	from	the	first	integrals	of	equations	of	motion.	The
first	 integrals	 of	 motion	 are	 functions	 of	 the	 generalized	 coordinates	 q’s	 and
generalized	 velocities	 ’s	 of	 the	 form	

………(3.54)	These	first	integrals
are	of	interest	because	they	give	good	deal	of	information	about	the	system.	The
conservation	 laws	 of	 energy,	 momentum	 and	 angular	 momentum	 that	 we
deduced	 in	Newtonian	 formalism	 are	 of	 this	 type.	 In	 the	 process,	 the	 relation
between	 conservation	 laws	 and	 the	 symmetry	 properties	 of	 the	 system	 is
revealed.

Cyclic	Coordinates
Coordinates	that	do	not	appear	explicitly	in	the	Lagrangian	of	a	system	(although
it	may	contain	the	corresponding	generalized	velocities)	are	said	to	be	cyclic	or
ignorable.	 If	 qi	 is	 a	 cyclic	 coordinate	

………(3.55)	 In	 such	 a	 case	
	 and	 Lagrange’s	 equation	 reduces	 to	

which	means	that

………(3.56)	 Equation	 (3.56)	 constitutes	 a	 first

integral	for	the	equations	of	motion.	We	may	state	this	result	as	a	general
conservation	 theorem:	The	 generalized	 momentum	 conjugate	 to	 a	 cyclic
coordinate	is	conserved	during	the	motion.

3.9	CONSERVATION	LAWS	AND	SYMMETRY	PROPERTIES
The	title	suggests	the	possibility	of	a	relationship	between	the	conservation	laws
and	symmetries.	In	this	section,	we	shall	investigate	the	connection	between	the
two	in	detail.	A	closed	system	is	one	that	does	not	interact	with	other	systems.



Homogeneity	of	Space	and	Conservation	of	Linear	Momentum
Homogeneity	in	space	means	that	the	mechanical	properties	of	a
closed	system	remain	unchanged	by	any	parallel	displacement	of
the	entire	system	in	space.	That	means	that	the	Lagrangian	is
unchanged	(dL	=	0)	if	the	system	is	displaced	by	an	infinitesimal
amount	 	The	change	in	L	due	to	infinitesimal
displacement	dr,	the	velocities	remaining	fixed,	is	given	by	

………(3.57)	The	second	term	in	this	equation

vanished	as	velocities	remained	constant	 	Since	each	of	the
	in	Eq.	(3.57)	is	an	arbitrary	independent	displacement,	the

coefficient	of	each	term	is	zero	separately.	Hence,	 ………

(3.58)	With	this	condition,	Lagrange’s	equation	reduces	to	

………(3.59)	 As	 the	 pi’s	 are	 additive,	 the	 total	 linear
momentum	p	of	a	closed	system	is	a	constant.	Thus,	 the	homogeneity	of
space	implies	that	the	linear	momentum	p	is	a	constant	of	motion.

It	 can	 also	 be	 proved	 that	 if	 the	 Lagrangian	 of	 a	 system	 (not	 necessarily
closed)	 is	 invariant	 with	 respect	 to	 translation	 in	 a	 certain	 direction,	 then	 the
linear	momentum	of	the	system	in	that	direction	is	constant	in	time.

Isotropy	of	Space	and	Conservation	of	Angular	Momentum	Space
is	isotropic,	which	means	the	mechanics	(i.e.,	the	Lagrangian)	of	a
closed	system	is	unaffected	by	an	infinitesimal	rotation	of	the
system	in	space,	i.e.,	
dL	=	0.	Consider	a	cartesian	frame	of	reference	with	O	as	the
origin.	Let	ri	be	the	radius	vector	of	the	ith	particle	located	at	P.
Let	the	system	as	a	whole	undergoes	an	infinitesimal	rotation	df.
The	displacement	is	denoted	by	the	vector	df	and	its	direction	is
that	of	the	axis	of	rotation.	Due	to	this	rotation,	the	position	vector



of	the	ith	particle	is	shifted	from	P	to	P	and	the	radius	vector	ri	to
ri	+	dri	

(see	Fig.	3.1)	

When	 the	 system	 is	 rotated,	 the	 position	 vectors	 of	 all	 particles	 change	 their
directions	in	this	way.	The	corresponding	change	in	the	velocity	vector	is	given

by	 ………(3.61)	

Fig.	3.1	Change	of	a	position	vector	under	rotation	of	the	system.

The	 condition	 that	 dL	 =	 0	 leads	 to	



where	L	 is	 the	 total	 angular	 momentum	 of	 the	 system.	 Since	 df	 is	 arbitrary	

Thus,	the	rotational	invariance	of	the	Lagrangian	of	a	closed	sytem	is	equivalent
to	the	conservation	of	total	angular	momentum.

Homogeneity	of	Time	and	Conservation	of	Energy	Homogeneity
in	time	implies	that	the	Lagrangian	of	a	closed	system	does	not
depend	explicitly	on	the	time	t.	That	is,	 	The	total	time



derivative	of	the	Lagrangian	is	

That	 is,	 the	 quantity	 in	 parenthesis	 must	 be	 constant	 in	 time.	 Denoting	 the

constant	 by 	 called	 the	 Hamiltonian	 of	 the	 system	

………(3.69)	 It	 can	 be	 shown	 that	 H	 is	 the	 total

energy	of	the	system	if	(i)	the	potential	energy	V	is	velocity-independent	and	(ii)
the	 transformation	 equations	 connecting	 the	 rectangular	 and	 generalized
coordinates	do	not	depend	on	time	explicitly.	When	condition	(ii)	is	satisfied,	the
kinetic	 energy	 T	 is	 a	 homogeneous	 quadratic	 function	 of	 the	 generalized

velocities	 and	 by	Euler’s	 theorem,	Eq.	 (3.48)	 	 (3.70)	Now,	 Eq.

(3.69)	 can	 be	 written	 as	



When	condition	(ii)	is	not	satisfied,	the	Hamiltonian	H	is	no	longer	equal	to	the
total	 energy	 of	 the	 system.	 However,	 the	 total	 energy	 is	 still	 conserved	 for	 a
conservative	system.
Summing	 up,	 the	 laws	 of	 conservation	 of	 linear	 momentum,	 angular

momentum	 and	 total	 energy	 are	 an	 immediate	 consequence	 of	 the	 symmetry
properties	 of	 space	 and	 time.	 For	 a	 closed	 system,	 there	 are	 always	 seven
constants	 or	 integrals	 of	 motion:	 linear	 momentum	 (3	 components),	 angular
momentum	
(3	 components)	 and	 total	 energy.	 An	 interesting	 point	 to	 be	 noted	 is	 that	 the
following	pairs	of	variables	are	associated	with	each	other:	(r,	p)……(q,	L)……
(t,	 E)	 These	 are	 the	 important	 pairs	 that	 follow	 the	 uncertainty	 principle	 in
quantum	mechanics.

3.10	VELOCITY-DEPENDENT
POTENTIAL

Lagrange’s	equation	 in	 the	 form	as	 in	Eq.	 (3.38)	with	L	=	T	–	V	 is	 applicable
only	 for	 conservative	 systems.	 For	 systems	 having	 non-conservative	 forces,
Lagrange’s	equations	can	be	put	 in	 the	same	form	if	 the	generalized	forces	are

obtained	 from	 a	 function	 	 such	 that	 ………

(3.72)	and	the	Lagrangian	is	defined	by	L	=	T	–	U………(3.73)	The	potential	U
is	 known	 as	 a	 generalized	 potential	 or	 velocity-dependent	 potential.	 An
important	example	of	such	a	potential	 is	 the	one	that	gives	the	electromagnetic
forces	on	moving	charges.	The	force	F	experienced	by	a	charge	q	moving	with
velocity	v	in	an	electromagnetic	field	is	given	by	the	Lorentz	force:	F	=	q[E	+	v	
B]………(3.74)	 where	 the	 electric	 intensity	E	 and	 magnetic	 induction	 B	 are
obtainable	 from	 the	 vector	 potential	 A	 and	 scalar	 potential	 f:	



As	 the	x-component	 of	 the	 vector	 potential	Ax	 =	Ax	 (x,	 y,	 z,	 t),	 the	 total	 time
derivative	 of	 Ax	 is	



Since	the	scalar	potential	f	is	independent	of	velocity,	this	expression	for	Fx	can

be	written	as	

where,
………(3.80)	 U	 is	 a	 generalized	 potential	 and	 the

Lagrangian	 L	 for	 a	 charged	 particle	 in	 an	 electromagnetic	 field	 can	 be
written	as	 ………(3.81)	 Since	 	 the
generalized	 momentum	 of	 the	 charged	 particle	 is	 given	 by	

or……p	=	mv	+	qA………(3.82)	which	shows	that	a	part	of	the	momentum	is
associated	with	the	electromagnetic	field.

3.11	DISSIPATIVE	FORCE

Often	the	forces	acting	on	the	particle	are	such	that	its	one	part	is	conservative
and	the	other	part	is	dissipative,	like	a	frictional	force	which	is	often	proportional



to	the	velocity	of	the	particle.	Its	x-component	Fx	=	–	kxvx………(3.83)	The
form	of	the	equations	of	motion	of	such	a	system	is	mentioned	in	Eq.
(3.39).	Frictional	forces	of	the	above	type	may	be	expressed	in	terms
of	 a	 function	 G(v),	 called	 Rayleigh’s	 dissipation	 function:	

………(3.84)	where	the	i	summation

is	over	the	particles	of	the	system.	It	is	evident	from	

Eq.	(3.84)	that	

In	three	dimensions
………(3.85)	where	 	 is	 the	gradient	operator	 in	velocity

space.
The	component	of	the	generalized	force	resulting	from	the	force	of	friction	is	

Using	Eq.	(3.24)

	………(3.86)	Now,	 Lagrange’s	 equations	 of

motion	in	the	presence	of	such	frictional	force	is	

………(3.87)	It	may	be	noted	that	in	addition	to	the	Lagrangian	L,	another
function	G	must	also	be	specified	to	get	the	equations	of	motion.

3.12	NEWTONIAN	AND	LAGRANGIAN
FORMALISMS

The	Lagrangian	 formalism	 is	not	 the	 result	 of	 a	new	 theory	but	 it	 is	derivable
from	Newton’s	second	law.	In	the	Newtonian	formalism,	all	the	forces	acting	on
the	system,	both	active	and	internal	forces,	must	be	taken	into	account.	That	is,
the	 dynamical	 conditions	 must	 be	 known.	 But	 the	 Lagrangian	 method
concentrates	 solely	 on	 active	 forces,	 completely	 ignoring	 the	 forces	 of



constraints	by	formulating	the	problem	in	terms	of	generalized	coordinates.	This
gives	the	advantage	of	selecting	any	suitable	quantity	such	as	linear	momentum,
angular	momentum,	velocity	or	angle	as	the	generalized	coordinates	depending
on	the	problem.	Secondly,	the	Newtonian	force-momentum	approach	is	vectorial
in	 nature	 whereas	 the	 work-energy	 approach	 of	 Lagrangian	 method	 involves
only	scalar	functions.	In	the	Lagrangian	approach,	all	the	details	are	contained	in
a	 single	 scalar	 function,	 the	Lagrangian	 of	 the	 system.	Though	 the	 directional
properties	of	the	vectors	are	more	helpful	when	dealing	with	simple	systems,	the
formulation	becomes	difficult	when	the	system	becomes	more	complex.
The	 Lagrangian	 method	 is	 applicable	 to	 conservative	 forces	 only,	 though

procedures	 are	 available	 to	 study	 velocity-dependent	 problems.	 However,
Newtonian	mechanics	 is	applicable	for	both	conservative	and	non-conservative
forces.

WORKED	EXAMPLES
Example	3.1	Consider	a	system	of	N	particles	with	masses	m1,	m2,	m3,...,mN,
located	 at	 cartesian	 coordinates	 r1,	 r2,...,	 rN,	 acted	 upon	 by	 forces	 derivable
from	a	potential	 function	V	(r1,	r2,...,	rN).	Show	 that	Lagrange’s	equations	of
motion	reduce	directly	to	Newton’s	second	law.

Solution:	The	kinetic	energy	



which	is	the	familiar	form	of	Newton’s	second	law.

Example	 3.2	Consider	 a	 particle	 moving	 in	 space.	 Using	 the	 spherical	 polar
coordinates	 (r,	 q,	 f)	 as	 the	 generalized	 coordinates,	 express	 the	 virtual
displacements	dx,	dy	and	dz	in	terms	of	r,	q	and	f.

Solution:	 In	 terms	 of	 coordinates	 (r,	 q,	 f)	

In	 terms	 of	 the	 generalized	 coordinates	 (r,	 q,	 f),	 we	 have	



Example	3.3	A	light	inextensible	string	with	a	mass	M	at	one	end	passes	over	a
pulley	at	a	distance	a	from	a	vertically	fixed	rod.	At	the	other	end	of	the	string	is
a	ring	of	mass	m(M	>	m)	which	slides	smoothly	on	the	vertical	rod	as	shown	in
Fig.	3.2.	The	ring	is	released	from	rest	at	the	same	level	as	the	point	from	which
the	pulley	hangs.	If	b	is	the	maximum	distance	the	ring	will	fall,	determine	
b	using	the	principle	of	virtual	work.
Solution:	Let	l	be	the	length	of	the	string.	From	Fig.	3.2

Fig.	3.2	Pulley-ring	system	with	mass	M	at	one	end	of	the	string.



Imagine	 a	 vertical	 displacement	 db	 of	 the	 ring	 along	 the	 rod	

The	constraints	over	the	pulley	and	rod	do	no	work.	By	the	principle	of	virtual

work,	Eq.	(3.15),	

Example	 3.4	 Consider	 the	 motion	 of	 a	 particle	 of	 mass	m	 moving	 in	 space.
Selecting	 the	 cylindrical	 coordinates	 (r,	 f,	 z)	 as	 the	 generalized	 coordinates,
calculate	the	generalized	force	components	if	a	force	F	acts	on	it.

Solution:	The	generalized	force,	Eq.	(3.26),	corresponding	to	the	coordinate	



Substituting	 these	 values	 in	 the	 expression	 for	 generalized	 force,	 we	 have	

where	 Fr,	 Ff	 and	 Fz	 are	 the	 components	 of	 the	 force	 along	 the	 increasing
directions	of	r,	f	and	z.

Example	 3.5	 Find	 Lagrange’s	 equation	 of	 motion	 of	 the	 bob	 of	 a	 simple
pendulum.
Solution:	Let	us	select	the	angle	q	made	by	the	string	with	the	vertical	axis	as	the
generalized	coordinate	as	shown	in	Fig.	3.3.	Since	l	is	a	constant,	kinetic	energy

of	the	bob	

Fig.	3.3	Simple	pendulum.

Taking	 the	 mean	 position	 of	 the	 bob	 as	 the	 reference	 point	



which	is	Lagrange’s	equation	of	motion	of	the	bob	of	a	simple	pendulum.

Example	3.6	Obtain	the	equations	of	motion	for	the	motion	of	a	particle	of	mass
m	in	a	potential	V	(x,	y,	z)	in	spherical	polar	coordinates.

Solution:	In	spherical	polar	coordinates	the	elementary	lengths	are	dr,	rdq,	

r	sinq	df	and	velocities	are	

Identifying	r,	q	and	f	as	as	the	generalized	coordinates,	the	equations	of	motion
are	 r	 coordinate:	



Example	 3.7	Masses	m	 and	 2m	 are	 connected	 by	 a	 light	 inextensible	 string
which	passes	over	a	pulley	of	mass	2m	and	radius	a.	Write	the	Lagrangian	and
find	the	acceleration	of	the	system.

Solution:	The	 system	 has	 only	 one	 degree	 of	 freedom,	 and	 x	 (see	 Fig.	 3.4)	 is
taken	as	the	generalized	coordinate.	The	length	of	the	string	be	l	and	the	centre
of	the	pulley	is	taken	as	zero	for	potential	energy.

Fig.	3.4	A	pulley	with	a	string	carrying	masses	m	and	2m	at	its	end.



Substitution	 of	 these	 derivatives	 in	 Lagrange’s	 equation	 gives	 the	 equation	 of
motion:	

Example	3.8	A	 simple	pendulum	has	a	bob	of	mass	m	with	 a	mass	m1	 at	 the
moving	support	(pendulum	with	moving	support)	which	moves	on	a	horizontal
line	in	the	vertical	plane	in	which	the	pendulum	oscillates.	Find	the	Lagrangian
and	Lagrange’s	equation	of	motion.
Solution:	This	pendulum	(see	Fig.	3.5)	has	two	degrees	of	freedom,	and	x	and	q
can	be	 taken	as	 the	generalized	coordinates.	Taking	 the	point	of	support	as	 the



zero	of	potential	energy	
Fig.	3.5	Simple	pendulum	with	a	moving	support.



Example	3.9	Two	equal	masses	m	connected	by	a	massless	rigid	rod	of	length	l
forming	a	dumb-bell	is	rotated	in	the	x-y	plane.	Find	the	Lagrangian	and	obtain
Lagrange’s	equations	of	motion.

Solution:	Figure	3.6	illustrates	the	motion	of	the	dumb-bell	in	the	x-y	plane.

Fig.	3.6	Dumb-bell	in	the	x-y	plane.

The	system	has	3	degrees	of	freedom.	The	cartesian	coordinates	x1,	y1	and	 the



angle	q	can	be	selected	as	the	generalized	coordinates.	From	the	figure	x2	=	x1	+
l	cosq	y2	=	y1	+	l	sinq





Example	3.10	A	simple	pendulum	that	is	free	to	swing	the	entire	solid	angle	is
called	 a	 spherical	 pendulum.	 Find	 the	 differential	 equations	 of	 motion	 of	 a
spherical	 pendulum	 using	 Lagrange’s	 method.	 Also	 show	 that	 the	 angular
momentum	 about	 a	 vertical	 axis	 through	 the	 point	 of	 support	 is	 a	 constant	 of
motion.
Solution:	Figure	3.7	illustrates	the	motion	of	the	spherical	pendulum	in	spherical
polar	 coordinates.	Since	 l	 is	 constant,	 the	 system	has	 two	degrees	 of	 freedom.
Angles	q	and	f	can	be	selected	as	the	generalized	coordinates.

Fig.	3.7	Spherical	pendulum.

Taking	 the	point	of	support	as	 the	 reference	 level	 for	potential	energy	V,	we



have	

In	 spherical	 polar	 coordinates,	 the	 magnitude	 of	 the	 angular	 momentum	 is	
	which	 is	 the	 same	 as	 the	 above.	Hence,	 the

angular	 momentum	 about	 a	 vertical	 axis	 through	 the	 point	 of	 support	 is	 a
constant	of	motion.

Example	3.11	A	bead	of	mass	m	slides	freely	on	a	frictionless	circular	wire	of
radius	a	that	rotates	in	a	horizontal	plane	about	a	point	on	the	circular	wire	with
a	 constant	 angular	 velocity	 w.	 Find	 the	 equation	 of	 motion	 of	 the	 bead	 by



Lagrange’s	method.	Also	show	that	the	bead	oscillates	as	a	pendulum	of	length	l
=	g/w2

Solution:	 The	 circular	 wire	 rotates	 in	 the	 x-y	 plane	 about	 the	 point	 O	 in	 the
counterclockwise	 direction	 with	 an	 angular	 velocity	w.	A	 is	 the	 centre	 of	 the
circular	wire.	The	angles	f	and	q	are	as	indicated	in	Fig.	3.8.	The	coordinates	of
m	are	(x,	y).	The	problem	is	of	one	degree	of	freedom	and	q	can	be	taken	as	the
generalized	 coordinate.	 The	 potential	 energy	 of	 the	 bead	 can	 be	 taken	 as	 zero
since	the	circular	wire	is	in	a	horizontal	plane.

Fig.	3.8	A	bead	sliding	on	a	circular	wire.



which	 is	 the	 equation	 of	 motion	 of	 the	 mass	m.	 Comparing	 the	 equation	 of
motion	with	that	of	the	simple	pendulum	(see	Example	3.5)	we	see	that	the	bead

oscillates	about	the	line	OAB	like	a	pendulum	of	length	

Example	3.12	A	particle	of	mass	m	is	constrained	to	move	on	the	inner	surface
of	a	cone	of	half	angle	a	with	its	apex	on	a	table.	Obtain	its	equation	of	motion
in	cylindrical	coordinates	(r,	f,	z).	Hence,	show	that	the	angle	f	is	a	cyclic	
coordinate.
Solution:	As	 the	particle	 is	moving	on	 the	surface	of	 the	cone,	 the	equation	of
constraint	is	
Since	there	 is	an	equation	of	constraint	 the	particle	requires	only	2	generalized
coordinates,	say	 and	 	(see	Fig.	3.9).

Fig.	3.9	Mass	m	moving	on	the	inner	surface	of	a	cone.



Since	the	generalized	momentum	is	a	constant,	the	corresponding	coordinate	is	a
cyclic	one.	This	can	be	seen	from	the	Lagrangian	itself	which	is	independent	of
f.

Example	3.13	An	 inclined	plane	of	mass	M	 is	 sliding	on	 a	 smooth	horizontal
surface,	while	a	particle	of	mass	m	is	sliding	on	the	smooth	inclined	plane.	Find
the	equation	of	motion	of	the	particle	and	that	of	the	inclined	plane.
Solution:	The	system	has	two	degrees	of	freedom.	Let	x1	be	the	displacement	of



M	from	origin	O	and	x2	be	the	displacement	of	m	fromO	[see	Fig.	3.10(a)].
We	shall	consider	x1	and	x2	as	the	generalized	coordinates.

The	velocity	of	M	with	respect	to	O	is	

The	velocity	of	m	with	respect	to	O	is	
The	 velocity	 of	 m	 with	 respect	 to	 O	 [see	 Fig.	 3.10(b)]	 is	 given	 by	

Fig	3.10	A	particle	sliding	on	an	inclined	plane	which	is	sliding	on	a	horizontal	surface.

If	O	is	taken	as	the	zero	for	potential	energy,	the	potential	energy	of	M	will
be	a	constant	which	will	not	affect	the	motion.	The	potential	energy	of	m	is
given	by	

From	Eqs.	(ii)	and	(iii)



Equation	 (ix)	 is	 the	 equation	 of	motion	 of	 the	 inclined	 plane	 and	 of	 the	 body
sliding	down	the	inclined	plane	respectively.

Example	 3.14	A	 rigid	 body	 capable	 of	 oscillating	 in	 a	 vertical	 plane	 about	 a
fixed	horizontal	axis	is	called	a	compound	pendulum.	(i)	Set	up	its	Lagrangian;
(ii)	Obtain	its	equations	of	motion;	and	(iii)	Find	the	period	of	the	pendulum.
Solution:	Let	the	vertical	plane	of	oscillation	be	xy.	Let	the	point	O	be	the	axis	of
oscillation,	m	be	the	mass	of	the	body,	G	its	centre	of	mass	and	I	its	moment	of
inertia	about	the	axis	of	oscillation.	The	system	has	only	one	degree	of	freedom.
(i)	Angle	q	can	be	taken	as	the	generalized	coordinate	(see	Fig.3.11).

Fig.	3.11	Compound	pendulum.



When	the	displacement	is	q,	the	kinetic	energy	

With	 respect	 to	 the	 point	 of	 oscillation,	 the	 potential	 energy	

Example	 3.15	A	 mass	M	 is	 suspended	 from	 a	 spring	 of	 mass	m	 and	 spring
constant	k.	Write	the	Lagrangian	of	the	system	and	show	that	it	executes	simple
harmonic	 motion	 in	 the	 vertical	 direction.	 Also,	 obtain	 an	 expression	 for	 its
period	of	oscillation.
Solution:	 The	 direction	 of	 motion	 of	 the	 mass	 is	 selected	 as	 the	 x-axis	 as
illustrated	in	Fig.	3.12.	The	velocity	of	the	spring	at	the	end	where	the	mass	M	is
attached	is	maximum,	say	 	and	minimum	(zero)	at	x	=	0.	At	the	distance	t	from
the	fixed	end,	the	velocity	is	 	where	l	is	the	length	of	the	spring.	If	r	is	the
mass	per	unit	length	of	the	spring,	the	kinetic	energy	of	the	element	of	length	dt



is	

Fig.	3.12	Vibration	of	a	loaded	spring	of	mass	m.

For	the	whole	spring

Lagrange’s	equation	is



which	is	the	equation	of	simple	harmonic	motion.

Example	3.16	A	particle	of	mass	m	 is	constrained	to	move	on	the	surface	of	a
cylinder	 of	 radius	a.	 It	 is	 subjected	 to	 an	 attractive	 force	 directed	 towards	 the
origin	and	is	proportional	to	the	distance	of	the	particle	from	the	origin.	Write	its
Lagrangian	in	cylindrical	coordinates	and	(i)	obtain	its	equations	of	motion,	
(ii)	 show	 that	 the	angular	momentum	about	 the	z-axis	 is	 a	 constant	of	motion,
and	 (iii)	 show	 that	 the	 motion	 of	 the	 particle	 in	 the	 z-direction	 is	 simple
harmonic.
Solution:	The	motion	of	the	particle	is	illustrated	in	Fig.	3.13.	It	can	be	described
by	the	cylindrical	coordinates	(r,	q,	z).	In	the	present	case	r	=	a	=	constant.	The
equation	of	constraint	is	x2	+	y2	=	a2
Coordinates	q	and	z	can	be	taken	as	the	generalized	coordinates.

Fig.	3.13	A	mass	m	constrained	to	move	on	the	surface	of	a	cylinder.



Force	=	–kr.	Hence,	

Example	 3.17	 If	 L	 is	 the	 Lagrangian	 for	 a	 system	 of	 n	 degrees	 of	 freedom
satisfying	 Lagrange’s	 equations,	 show	 by	 direct	 substitution	 that	



also	 satisfies	 Lagrange’s	 equations	 where	F	 is	 any	 arbitrary	 but	 differentiable
function	of	its	arguments.
Solution:	 For	 L	 to	 satisfy	 Lagrange’s	 equation	 of	 motion,	 we	 must	 have	

	

which	is	the	same	as	Eq.	(ii).	Hence,	the	result.

REVIEW	QUESTIONS
1.	 Explain	 holonomic	 and	 non-holonomic	 constraints,	 giving	 two	 examples	 of
each.

2.	Gas	molecules	are	confined	to	move	in	a	box.	What	is	the	type	of	constraint
on	the	motion	of	the	gas	molecules?	Explain.

3.	What	 is	 meant	 by	 degrees	 of	 freedom?	What	 is	 the	 number	 of	 degrees	 of
freedom	that	a	body	which	is	constrained	to	move	along	a	space	curve	has?



4.	 Explain	 the	 difference	 between	 real	 and	 virtual	 displacements.	 In	 a	 virtual
displacement,	the	work	done	by	the	forces	of	constraint	is	zero.	Why?

5.	State	and	explain	the	principle	of	virtual	work.
6.	 What	 are	 generalized	 coordinates?	 If	 a	 generalized	 coordinate	 has	 the
dimension	 of	 momentum,	 what	 would	 be	 the	 dimension	 of	 generalized
velocity?

7.	Explain	the	type	of	constraint	in:	(i)	a	pendulum	with	an	inextensible	string;
(ii)	a	pendulum	with	an	extensible	string.

8.	 What	 is	 configuration	 space?	 Why	 does	 the	 path	 of	 motion	 in	 the
configuration	 space	 not	 necessarily	 resemble	 the	 path	 in	 space	 of	 an	 actual
particle	?

9.	State	and	explain	D’	Alembert's	principle.
10.	What	is	generalized	momentum	pj?	For	generalized	momentum	pj,	establish

the	relation	
11.	What	are	the	first	integrals	of	motion?
12.	What	is	a	cyclic	coordinate	?	Why	do	we	say	that	the	generalized	momentum
conjugate	to	a	cyclic	coordinate	is	a	constant	of	motion?

13.	The	homogeneity	of	space	implies	that	the	linear	momentum	is	a	constant	of
motion.	Substantiate.

14.	 The	 homogeneity	 of	 time	 implies	 that	 the	 total	 energy	 is	 a	 constant	 of
motion.	Substantiate.

15.	What	are	velocity-dependent	potentials?
16.	 Write	 the	 Lagrangian	 of	 a	 charged	 particle	 in	 an	 electromagnetic	 field,
explaining	each	term.

17.	What	is	a	dissipation	function?	How	is	it	related	to	the	force	it	represents?
18.	Evaluate	the	dissipation	function	corresponding	to	Stoke’s	law.

PROBLEMS
1.	A	particle	of	mass	m	 is	moving	in	a	plane.	Using	plane	polar	coordinates	as
the	generalized	coordinates,	find	the	displacements	dx	and	dy	.

2.	Consider	 the	motion	of	a	particle	of	mass	m	moving	 in	 space.	Selecting	 the
cylindrical	 coordinates	 (r,	 f,	 z)	 as	 the	 generalized	 coordinates,	 calculate
displacements	dr,	df	and	dz.

3.	Two	blocks	of	masses	m1	and	m2	are	placed	on	a	frictionless	double	inclined
plane	 and	 are	 connected	 by	 an	 inextensible	 massless	 string	 passing	 over	 a



smooth	pulley	at	the	top	of	the	inclines.	Find	the	condition	for	equilibrium	by
the	principle	of	virtual	work.

4.	A	uniform	plank	of	mass	M	and	length	2l	is	leaning	against	a	smooth	wall	and
makes	 an	 angle	 a	 with	 the	 smooth	 floor.	 The	 lower	 end	 of	 the	 plank	 is
connected	to	the	base	of	the	wall	with	an	inextensible	massless	string.	Using
the	principle	of	virtual	work,	find	the	tension	in	the	string.

5.	A	particle	of	mass	m	is	moving	in	a	plane	under	the	action	of	a	force	F.	Using
the	 generalized	 coordinates	 (r,	 q),	 calculate	 the	 generalized	 forces	 for	 the
particle.

6.	Consider	 the	motion	of	a	particle	of	mass	m	moving	 in	 space.	Selecting	 the
spherical	 polar	 coordinates	 (r,	q,	 f)	 as	 the	 generalized	 coordinates,	 calculate
the	generalized	force	components	if	a	force	F	acts	on	it.

7.	A	particle	of	mass	m	 is	moving	in	a	plane	under	an	inverse	square	attractive
force.	Find	the	equation	of	motion	by	the	Lagrangian	method.

8.	A	mass	is	attached	to	a	spring	having	a	spring	constant	k	which	is	suspended
from	a	 hook.	Set	 up	Lagrange’s	 equation	of	motion	 (i)	 if	 the	mass	 executes
simple	harmonic	motion,	and	(ii)	if	the	mass	is	driven	by	a	sinusoidal	force	A0
sin	wt.

9.	A	 light	 inextensible	 string	passes	over	a	 smooth	massless	pulley	and	carries
masses	m1	 and	m2	 (m1	 >	m2)	 at	 its	 ends.	Write	 down	 the	 Lagrangian	 and
Lagrange’s	equation	of	motion	for	the	system.	Also	find	the	acceleration.

10.	 A	 particle	 of	 mass	m	 is	 moving	 in	 a	 potential	 V	 which	 is	 a	 function	 of
coordinates	only.	Set	up	the	Lagrangian	in	cylindrical	coordinates	and	obtain
the	equations	of	motion.

11.	Set	up	the	Lagrangian	of	a	three-dimensional	isotropic	harmonic	oscillator	in
polar	coordinates	and	obtain	Lagrange’s	equations	of	motion.

12.	A	particle	of	mass	m	is	projected	in	space	with	velocity	v0	at	an	angle	a	 to
the	horizontal.	Write	the	Lagrangian	for	the	motion	of	the	projectile	and	show
that	 its	 path	 is	 a	 parabola.	 Also	 find	 expressions	 for	 the	 range	 and	 time	 of
flight.

13.	A	cylinder	of	mass	m	and	radius	a	rolls	down	an	inclined	plane	of	angle	q.
Write	 the	Lagrangian	of	 the	system	and	obtain	the	equation	of	motion.	Also,
calculate	its	velocity	at	the	bottom	of	the	plane.

14.	In	a	double	pendulum,	the	second	pendulum	is	suspended	from	the	mass	of
the	first	one	(m1)	which	is	suspended	from	a	support.	The	double	pendulum	is
set	into	oscillation	in	a	vertical	plane.	Obtain	the	Lagrangian	and	equations	of



motion	for	the	double	pendulum	if	the	mass	of	the	second	one	is	m2.
15.	A	particle	of	mass	m	moves	in	one	dimension	such	that	it	has	the	Lagrangian	

where	V	is	a	differentiable	function	of	x.	Find	the	equation	of	motion	for	x(t)	and
interpret	the	physical	nature	of	the	system.

16.	 A	 solid	 homogeneous	 cylinder	 of	 radius	 a	 rolls	 without	 slipping	 inside	 a
stationary	hollow	cylinder	of	large	radius	R.	Write	the	Lagrangian	and	obtain
the	 equation	 of	 motion.	 Also	 show	 that	 the	 motion	 of	 the	 solid	 cylinder	 is
simple	harmonic	and	deduce	its	frequency.

17.	A	bead	of	mass	m	slides	on	a	wire	described	by	the	equations	x	=	a(q	–	sinq),
y	 =	a(1	 +	 cosq)	where	 0	 <	 q	<	 2p.	 Deduce	 (i)	 the	 Lagrangian	 and	 (ii)	 the
equation	of	motion	of	the	system.

18.	A	mass	M	is	suspended	from	a	fixed	support	by	a	spring	of	spring	constant
k1.	From	this	mass	another	mass	m	 is	suspended	by	another	spring	of	spring
constant	k.	If	the	respective	displacements	of	masses	are	x1	and	x2,	obtain	the
equation	of	motion	of	the	system.

	



4

Variational	Principle

In	Chapter	3,	Lagrange's	equations	of	motion	were	derived	from	D’Alembert’s
principle	 which	 is	 a	 differential	 principle.	 In	 this	 chapter	 the	 basic	 laws	 of
mechanics	 are	 obtained	 from	 an	 integral	 principle	 known	 as	 Hamilton’s
variational	 principle.	 In	 this	 procedure,	 Lagrange’s	 equations	 of	 motion	 are
obtained	from	a	statement	about	the	value	of	the	time	integral	of	the	Lagrangian
between	 times	 t1	 and	 t2.	 In	 D’Alembert’s	 principle,	 we	 considered	 the
instantaneous	 state	 of	 the	 system	 and	 virtual	 displacements	 from	 the
instantaneous	 state.	 However,	 in	 the	 following	 variational	 procedure,
infinitesimal	 virtual	 variations	 of	 the	 entire	 motion	 from	 the	 actual	 one	 is
considered.

4.1	HAMILTON’S	PRINCIPLE
Hamilton’s	 principle	 is	 a	 variational	 formulation	 of	 the	 laws	 of	 motion	 in
configuration	space.	It	is	considered	more	fundamental	than	Newton’s	equations
as	it	can	be	applied	to	a	variety	of	physical	phenomena.
The	 configuration	of	 a	 system	at	 any	 time	 is	 defined	by	 the	 values	 of	 the	n

generalized	co-ordinates	q1,	q2,	q3,...,	qn.	This	corresponds	to	a	particular	point
in	the	n-dimensional	configuration	space	in	which	the	qi’s	are	components	along
the	 n	 co-ordinate	 axes.	 Hamilton’s	 principle	 states:	 For	 a	 conservative
holonomic	 system,	 the	motion	 of	 the	 system	 from	 its	 position	 at	 time	 t1	 to	 its
position	 at	 time	 t2	 follows	 a	 path	 for	 which	 the	 line	 integral	

has	a	stationary	value.
That	is,	out	of	all	possible	paths	by	which	the	system	point	could	travel	from	its
position	at	time	t1	to	its	position	at	time	t2	in	the	configuration	space	consistent
with	the	constraints,	the	path	followed	by	the	system	is	that	for	which	the	value



of	the	above	integral	is	stationary.	Mathematically,	the	principle	can	be	stated	as:

where	 qi(t)	 and	 hence 	 is	 to	 be	 varied	 such	 that	 The
time	 integral	 of	 the	 Lagrangian	 L,	 Eq.(4.1),	 is	 called	 the	 action	 integral	 or
simply	 action.	 The	 d-variation	 considered	 here	 refers	 to	 the	 variation	 in	 a
quantity	 at	 the	 same	 instant	 of	 time	 (see	 section	 3.3)	while	 the	 d-variation	 as
usual	 refers	 to	a	variation	 in	quantity	along	a	path	at	different	 instants	of	 time
(see	Fig.4.1).	The	two	paths	are	infinitely	close	but	arbitrary.

Fig.	4.1	(a)	d-variation	in	motion;	(b)	d-variation	in	motion.

4.2	DEDUCTION	OF	HAMILTON’S	PRINCIPLE
Hamilton’s	principle	 can	be	easily	deduced	 from	D’Alembert’s	principle	given
by	 Eq.	 (3.19).	 Consider	 a	 system	 of	N	 particles	 of	masses	mi,	 i	 =	1,	 2,...,	 N,
located	 at	 points	 ri	 and	 acted	 upon	 by	 external	 forces	 Fi.	 According	 to
D’Alembert’s	 principle	



where	 Qj	 is	 the	 generalized	 force,	 defined	 by	 Eq.	 (3.26),	 and	 q’s	 are	 the
generalized	 co-ordinates	 of	 the	 system.	 The	 second	 term	 in	 Eq.	 (4.3)	 can	 be
written	 as	

The	second	term	on	the	right	hand	side	of	Eq.	(4.5)	is	the	d-variation	of	kinetic
energy	 T.	 Now	 Eq.	 (4.5)	 takes	 the	 form	



Eq.	(4.9)	is	sometimes	referred	to	as	the	integral	form	of	D	Alembert’s	principle
or	 the	 generalized	 version	 of	 Hamilton’s	 principle.	 The	 integral	 form	 is	 more
advantageous	since	it	is	independent	of	the	choice	of	co-ordinates	with	which	we

describe	 the	 system.	 If	 the	 external	 forces	 are	 conservative,	 and	 by

Eq.	 (3.33), 	 Consequently,	

and	 Eq.	 (4.9)	 becomes	

For	 a	 holonomic	 system	 the	 d-variation	 and	 integration	 can	 be	 interchanged.



Then	

which	is	Hamilton’s	principle.

4.3	LAGRANGE’S	EQUATION	FROM	HAMILTON’S
PRINCIPLE
The	action	integral	must	have	a	stationary	value	for	the	actual	path.	Let	us	label
each	possible	path	in	the	configuration	space	by	an	infinitesimal	parameter,	say
a.	That	is,	the	set	of	paths	may	be	labelled	by	(q,	a)	with	
q	(t,	0)	representing	the	correct	path.	In	terms	of	the	parameter	a,	each	path	may
be	written	as	qi	(t,	a)	=	qi	(t,	0)	+	a	hi	 (t),	 i	=	1,	2,	3,...,	n………(4.13)	where
hi(t)	is	a	completely	arbitrary	well-behaved	function	of	time	with	the	condition	h
(t1)	 =	 h(t2)	 =	 0.	 From	 Eq.	 (4.13)	

As	the	qi’s	and	 ’s	are	only	 functions	of	 t	and	a,	 for	 a	 given	hi(t),	 the	 action
integral	 I	 is	 a	 function	 of	 a	 only:	

Expanding	 the	 integrand	 L	 by	 Taylor	 series	

where	the	higher	order	terms	in	the	expansion	are	left	out,	which	is	reasonable	as
a		0	.	Since	the	integration	limits	t1	and	t2	are	not	dependent,	differentiating	with
respect	 to	 a	 under	 the	 integral	 sign	



For	I	to	be	stationary,	dI	=	0.	Since	qi’s	are	independent,	the	variations	dqi’s	are
arbitrary	and	the	necessary	condition	for	the	right	side	of	Eq.	(4.20)	to	be	zero	is
that	 the	 coefficients	 of	 dqi’s	 vanish	 separately.	 Hence,	

which	is	Lagrange’s	equation,	given	by	Eq.	(3.38).
The	 above	 result	 is	 a	 special	 case	 of	 the	 more	 general	 Euler-Lagrange

differential	 equation	 which	 determines	 the	 path	 y	 =	 y(x)	 such	 that	 the	 line



integral	

has	a	stationary	value.	From	simple	variational	considerations,	Euler	has	shown
that	the	necessary	and	sufficient	condition	for	the	integral	in	Eq.	(4.22)	to	have	a

stationary	value	is	

Later	 this	 was	 applied	 to	 mechanical	 systems	 by	 Lagrange.	 Hence,	 the	 name
Euler-Lagrange	differential	equation	for	Eq.	(4.22a).
If	 the	 forces	 of	 the	 system	 are	 not	 conservative,	 one	 has	 to	 go	 back	 to	 the

generalized	version	of	Hamilton’s	principle,	given	by	Eq.	(4.9).



4.4	HAMILTON’S	PRINCIPLE	FOR	NON-HOLONOMIC
SYSTEMS
Equations	 of	 constraints	 are	 in	 the	 form	 of	 algebraic	 expressions	 or	 in	 the



differential	 form.	 If	 they	 are	 in	 the	 differential	 form,	 they	 can	 be	 directly
incorporated	 into	 Lagrange’s	 equations	 by	 means	 of	 Lagrange	 undetermined
multipliers.	We	first	discuss	the	Lagrange	multiplier	method	for	non-holonomic
systems	and	then	for	holonomic	systems.
With	non-holonomic	system,	the	generalized	co-ordinates	are	not	independent

of	 each	 other.	 Consequently,	 for	 a	 virtual	 displacement	 consistent	 with	 the
constraints,	 the	 dqi’s	 are	 no	 longer	 independent.	 However,	 a	 straightforward
treatment	 is	 possible	 if	 the	 equations	 of	 constraints	 are	 of	 the	 type	

where	 the	 coefficients 	 and 	 may	 be	 functions	 of	 the	 q’s	 and	 time.	 The
quantity	m	 indicates	 that	 there	 are	 m	 equations	 of	 this	 type.	 The	 constraint
equation,	 Eq.	 (4.26),	 for	 virtual	 displacement	 is:	

We	 can	 now	 use	 Eq.	 (4.27)	 to	 reduce	 the	 number	 of	 virtual	 displacements	 to
independent	ones	by	the	Lagrange	multiplier	method.	If	Eq.	(4.27)	is	valid,	it	is

also	true	that	

where	 	 are	 some	 undetermined	 quantities	 known	 as
Lagrange’s	multipliers.	In	general,	they	are	functions	of	the	co-ordinates	and	of
time	 t.	 In	addition,	Hamilton’s	principle	 is	assumed	 to	hold	 for	non-holonomic
systems.	Proceeding	as	in	Section	4.3

where	 the	 integration	 is	with	 respect	 to	 time	 t1	(point	 1)	 to	 time	 t2	 (point	 2).
Summing	Eq.	 (4.28)	 over	 i	 and	 then	 integrating	with	 respect	 to	 time	 between

points	1	and	2,	we	have	

Combining	 Eqs.	 (4.29)	 and	 (4.30)	



In	Eq.	(4.31)	the	selection	of	li’s	are	at	our	disposal	but	the	dqj’s	are	still	not
independent	but	they	are	connected	by	the	m	relations	of	Eq.	(4.27).	That	is,	out
of	 the	n	co-ordinates	n–m	may	be	selected	 independently	and	 the	 remaining	m
are	 fixed	 by	 Eq.	 (4.27).	 The	 integrand	 in	 Eq.	 (4.31)	 can	 be	 split	 into	 two	 as	

Now	we	 have	n	+	m	 unknowns,	 the	n	 co-ordinates	 (qj’s)	 and	 the	m	 Lagrange
multipliers	(li).	Eq.	(4.35)	together	with	the	equations	of	constraints,	now	being
written	 as	 first	 order	 differential	 equations	



constitute	(n	+	m)	equations	for	n	+	m	unknowns.
Next	we	 consider	 the	 physical	 significance	 of	 the	 undetermined	multipliers.

For	that,	let	us	remove	the	constraints	on	the	system	in	such	way	that	the	motion
is	unchanged	by	the	application	of	external	forces	Qj.	These	external	forces	Qj
make	 the	 equations	 of	 motion	 of	 the	 system	 remain	 the	 same.	 Under	 the
influence	 of	 these	 forces	 Qj,	 the	 equations	 of	 motion	 are	

which	must	be	identical	with	Eq.	(4.35).	Hence,	we	can	identify with	Qj,
the	generalized	forces	of	constraint.
Next	we	consider	a	holonomic	system	in	which	there	are	more	generalized	co-

ordinates	 than	 degrees	 of	 freedom.	 A	 holonomic	 equation	 of	 constraint	

Thus,	Lagrange’s	multiplier	method	can	be	used	for	holonomic	constraints	when
(i)	it	is	inconvenient	to	reduce	all	the	q’s	to	independent	co-ordinates	or	(ii)	we
desire	to	obtain	the	forces	of	constraint.

WORKED	EXAMPLES
Example	4.1	Show	 that	 the	 shortest	 distance	 between	 two	 points	 is	 a	 straight
line.
Solution:	 In	 a	 plane,	 element	 of	 arc	 length	



Substituting	 in	 Eq.	 (4.22a)	

Example	 4.2	The	brachistochrone	 problem	 is	 to	 find	 the	 curve	 joining	 two
points	 along	 which	 a	 particle	 falling	 from	 rest	 under	 the	 influence	 of	 gravity
reaches	the	lower	point	in	the	least	time.
Solution:	Let	v	be	the	speed	along	the	curve.



Fig.	4.2	Brachistochrone	problem.

The	problem	is	to	find	the	minimum	of	the	integral	for	t.	If	x	is	measured	down,
by	 the	 principle	 of	 conservation	 of	 energy	

The	 function	 f	 in	 Euler-Lagrange	 equation	 is	 then	



The	 integral	 can	 be	 evaluated	 making	 the	 substitution	



the	parametric	equations	for	a	cycloid.	The	constant	a	can	always	be	determined
as	the	path	goes	through	the	final	point	(x1,	y1).

Example	 4.3	 Using	 Lagrange’s	 method	 of	 undetermined	 multiplier,	 find	 the
equation	of	motion	and	force	of	constraint	in	the	case	of	a	simple	pendulum.
Solution	:	The	system	has	two	co-ordinates	r	and	q.	(see	Fig.	4.3).

Fig.	4.3	Simple	pendulum.



From	 equation	 (ii),	 using	 r	 =	 l	

Example	4.4	Discuss	the	motion	of	a	disc	of	mass	m	and	radius	b	rolling	down
an	 inclined	plane	without	 slipping.	Also,	 find	 the	 force	of	 constraint	 using	 the



Lagrange	method	of	undetermined	multipliers.

Fig.	4.4	Disc	rolling	down	an	incline.

Solution:	Figure	4.4	illustrates	the	disc	rolling	down	the	incline.	We	can	take	x
and	q	 as	 the	 generalized	 co-ordinates.	Moment	 of	 inertia	 of	 the	 disc	 about	 an
axis	

The	equation	of	the	constraint	(holonomic)	connecting	the	co-ordinates	x	and	
q	 is	

Only	 one	 Lagrange	 multiplier	 is	 needed	 as	 there	 is	 only	 one	 equation	 of
constraint.



The	value	of	l	gives	the	force	of	constraint	resulting	from	a	frictional	force.	It	is
this	force	that	reduces	the	acceleration	due	to	gravity	from	g	sin	a	to	(2/3)	
g	sin	a	when	there	is	friction.
Example	4.5	A	bead	of	mass	m	 slides	 freely	on	 a	 frictionless	 circular	wire	 of
radius	a	that	rotates	in	a	horizontal	plane	about	a	point	on	the	circular	wire	with
a	constant	angular	velocity	w	.	Find	the	reaction	of	the	wire	on	the	bead.

Solution:	In	Example	3.11,	we	were	interested	in	the	equation	of	motion	of	the
bead.	The	angle	q	was	 taken	as	 the	generalized	co-ordinate	as	 it	was	a	case	of
one	degree	of	 freedom.	Now	we	have	 to	determine	 the	 force	of	constraint	 too.
Hence,	 the	 problem	 is	 treated	 as	 having	 two	 degrees	 of	 freedom	 with	 co-
ordinates	 r	 and	 q.	 The	 condition	 of	 constraint	 is	 r	 =	 a	 or	 dr	 =	 0	 (i)	



The	value	of	l	can	be	calculated	by	substituting	 	from	Eq.	(xi)	in	Eq.	(viii).	The
value	of	l	gives	the	force	of	constraint,	opposite	of	it	is	the	reaction	of	the	wire
on	the	bead.

Example	4.6	A	solid	sphere	of	mass	m	and	radius	b	rests	on	top	of	another	fixed
sphere	of	 radius	a.	The	upper	 sphere	 is	 slightly	displaced	 and	 it	 begins	 to	 roll
down	without	slipping.	By	Lagrange’s	method	of	undetermined	multipliers,	find
the	normal	 reaction	on	 the	upper	sphere	and	 the	frictional	 force	at	 the	point	of



contact.

	

Fig.	4.5	Instantaneous	position	of	a	sphere	rolling	down	another	sphere.

Solution:	Initially	the	sphere	is	at	the	top	with	the	point	of	contact	at	A	and	the
centre	of	the	sphere	B	is	along	the	line	OA.	When	the	sphere	moves	to	a	position
with	 angle	 q	 as	 in	 Fig.	 4.5,	 the	 line	 BA	 in	 the	 body	 of	 the	 sphere	 takes	 the
position	BA.	In	the	process	the	point	of	contact	travels	arc	AC	=	arc	CA.	That	is	

We	must	measure	 angles	with	 respect	 to	 a	 fixed	direction.	The	 angle	 travelled

with	 respect	 to	 the	 vertical	 	 The	 corresponding	 distance	 is	



The	co-ordinates	(r,	q,	f)	can	be	selected	as	generalized	co-ordinates.	The	kinetic
energy	(T)	of	the	sphere	=	translational	kinetic	energy	+	rotational	kinetic	energy



In	 addition	 to	 these	 three	 equations	 of	 motion,	 we	 have	 the	 two	 constraint
equations,	Eqs.	(ii)	and	(iii),	to	solve	for	the	various	quantities.	Since	r	=	(a	+	b)

=	 constant,	 	 Then	 Eq.	 (viii)	 reduces	 to	

With	 this	 value	 of	 	 Eq.	 (xi)	 reduces	 to	



Example	4.7	A	particle	of	mass	m	is	placed	at	the	top	of	a	smooth	hemisphere	of
radius	a.	 Find	 the	 reaction	 of	 the	 hemisphere	 on	 the	 particle.	 If	 the	 particle	 is
disturbed,	at	what	height	does	it	leave	the	hemisphere?
Solution:	Let	 the	 two	 generalized	 co-ordinates	 be	 r	 and	 q	 (ses	 Fig.	 4.6).	 The
bottom	of	the	hemisphere	is	taken	as	the	reference	level	for	potential	energy.	The
kinetic	 (T)	 and	 potential	 (V)	 energies	 are	

Fig.	4.6	Particle	on	a	hemisphere.



The	equation	of	constraint	 is	r	=	a	or	dr	=	0	and	therefore	ar	=	1	and	aq	=	0.
Lagrange’s	 equations	 are	

REVIEW	QUESTIONS
1.	 State	 and	 explain	 Hamilton’s	 principle,	 bringing	 out	 clearly	 the	 nature	 of
variation	involved.

2.	Express	D’	Alembert’s	 principle	 in	 the	 integral	 form.	What	 is	 its	 advantage
over	the	one	in	the	differential	form?

3.	Briefly	outline	Lagrange’s	multiplier	method	for	a	non-holonomic	system.
4.	Explain	the	significance	of	the	Lagrange	multiplier	constant.
5.	Lagrange’s	multiplier	method	can	be	used	also	for	systems	having	holonomic
constraints.	How?

6.	 For	 a	 particular	 set	 of	 equations	 of	 motion,	 there	 is	 no	 unique	 choice	 of
Lagrangian.	Comment.

7.	State	and	explain	 the	Euler-Lagrange	differential	equation	 in	 the	calculus	of
variation.

PROBLEMS
1.	 Obtain	 the	 equation	 of	 motion	 of	 a	 spring	 mass	 system,	 using	 Hamilton’s
variational	principle.



2.	Consider	a	curve	passing	through	two	fixed	end-points	(x1,	y1)	and	(x2,	y2)
and	 revolve	 it	 about	 the	 y-axis	 to	 form	 a	 surface	 of	 evolution.	 Find	 the
equation	of	the	curve	for	which	the	surface	area	is	minimum.

3.	Consider	 the	motion	 of	 a	 hoop	 (ring)	 of	mass	m	 and	 radius	 r	 rolling	 down
without	 slipping	 on	 an	 inclined	 plane	 of	 length	 l	 and	 angle	 a.	 Obtain
Lagrange’s	 equations	 of	 motion	 and	 hence	 show	 that	 the	 friction	 force	 of
constraint	is	mg .	Also	evaluate	the	velocity	of	the	hoop	at	the	bottom
of	the	incline.

4.	A	cylinder	of	mass	m	and	radius	r	is	rolling	down	an	inclined	plane	of	length	l
and	angle	a.	Calculate	the	force	of	constraint	and	the	velocity	of	the	cyclinder
at	the	bottom	of	the	incline.

5.	 If	 L	 is	 the	 Lagrangian	 for	 a	 system	 of	 n	 degrees	 of	 freedom	 satisfying

Hamilton’s	variational	principle,	show	that	

also	 satisfies	 Hamilton’s	 principle	 where	 F	 is	 any	 arbitrary	 well-behaved
function.

6.	A	cylinder	of	radius	a	is	fixed	on	its	side,	and	a	ring	of	mass	m	and	radius	b
rolls	 without	 slipping	 on	 it.	 The	 ring	 starts	 from	 rest	 from	 the	 top	 of	 the
cylinder.	Using	Lagrange’s	multiplier	method,	find	(i)	the	reaction	on	the	ring
due	to	the	cylinder,	and	(ii)	the	position	q	when	the	ring	leaves	the	cylinder.

7.	 For	 identical	 particles	 obeying	Fermi-Dirac	 statistics,	 the	 probability	 that	ni

particles	 are	 in	 the	 ith	 state	 of	 energy	 	 is	 given	 by	

and	derive	an	expression	for	the	most	probable	distribution	of	N	particles	among
the	various	states.	Assume	ni’s,	gi’s	and	N	to	be	very	large.

[Hint:	Use	the	Stirling	approximation,	which	states	that	is	large.]



8.	 A	 particle	 of	 mass	m	 is	 placed	 at	 the	 top	 of	 a	 vertical	 hoop	 of	 radius	 a.
Calculate	 the	 reaction	 of	 the	 hoop	 on	 the	 particle	 by	 Lagrange	 multiplier
method.	Also	find	the	point	at	which	the	particle	falls	off.



5

Central	Force	Motion

A	central	force	is	a	force	whose	line	of	action	is	always	directed	towards	a	fixed
point,	 called	 the	 centre	or	 origin	 of	 the	 force,	 and	 whose	 magnitude	 depends
only	on	 the	distance	 from	 the	centre.	 If	 interaction	between	any	 two	objects	 is
represented	by	a	central	force,	then	the	force	is	directed	along	the	line	joining	the
centres	 of	 the	 two	 objects.	Central	 forces	 are	 important	 because	we	 encounter
them	very	 often	 in	 physics.	 The	 familiar	 gravitational	 force	 is	 a	 central	 force.
The	electrostatic	force	between	two	charges	is	a	central	force.	Even	certain	two-
body	 nuclear	 interactions	 such	 as	 the	 scattering	 of	 a-particles	 by	 nuclei	 is
governed	by	a	central	force.	In	this	chapter,	we	shall	discuss	some	of	the	salient
features	of	central	force	motion.

5.1	REDUCTION	TO	ONE-BODY
PROBLEM

Consider	 an	 isolated	 system	 consisting	 of	 two	 particles	 of	masses	m1	 and	m2
with	 position	 vectors	 r1	 and	 r2	 as	 shown	 in	 Fig.	 5.1.	 Let	 r1	 and	 r2	 be	 their
position	vectors	with	respect	to	the	centre	of	mass	(CM)	and	R	be	 the	position
vector	 of	 the	 centre	 of	 mass.	 From	 the	 figure	 we	 see	 that	



Fig.	5.1	Co-ordinates	of	the	two-body	system.

Such	a	system	has	six	degrees	of	freedom	and	hence	six	generalized	co-ordinates
are	 required	 to	 describe	 its	 motion.	 The	 three	 components	 of	 the	 difference
vector	 r	 and	 the	 three	 components	 of	 the	 vector	 R	 can	 be	 taken	 as	 the
generalized	 co-ordinates.	 By	 the	 definition	 of	 centre	 of	 mass	



We	shall	limit	ourselves	to	cases	where	the	forces	acting	are	directed	along	the
line	 joining	 the	 masses.	 The	 Lagrangian	 of	 the	 system	 can	 be	 written	 as	



Writing	

where	m	 is	 called	 the	 reduced	 mass	 of	 the	 system.	 Thus,	 the	 central	 force
motion	of	two	bodies	splits	as	a	uniform	centre	of	mass	motion	plus	the	relative
motion	of	a	particle	of	mass	m	with	a	relative	co-ordinate	r.
The	three	components	of	R	do	not	appear	in	the	Lagrangian	and	therefore	they

are	 cyclic.	That	 is,	 the	 centre	of	mass	 is	 either	 at	 rest	 or	moving	at	 a	 constant
velocity,	and	we	can	drop	the	first	 term	from	the	Lagrangian	in	our	discussion.
The	 effective	 Lagrangian	 L	 is	 now	 given	 by	

It	is	the	Lagrangian	of	a	particle	of	mass	m	moving	in	a	central	force	field	which
is	derivable	from	the	potential	function	V(r).	The	problem	of	two	bodies	moving
under	 the	 influence	 of	 a	mutual	 central	 force	 is	 thus	 equivalent	 to	 a	 one-body
problem	moving	 about	 a	 fixed	 force	 centre.	Once	we	 have	 found	r(t),	we	 can
calculate	r1(t)	and	r2(t)	from	Eq.	(5.7).

5.2	GENERAL	PROPERTIES	OF	CENTRAL
FORCE

MOTION

The	 equation	 of	 motion	 for	 a	 particle	 of	 mass	 m	 in	 central	 force	 field	 is	

where 	Since	it	is	a	vector	equation,	in	effect	we	have	3	equations.
We	can	learn	a	lot	about	the	motion	of	the	particle	without	actually	solving	these
equations.

Angular	Momentum
Taking	 the	 cross	 product	 of	 both	 sides	 of	 Eq.	 (5.12)	 with	 r,	 we	 have	



L	=	Constant	………(5.15)	That	is,	the	angular	momentum	L	of	a	body	under	the	action	of
a	central	force	is	conserved.

Next	 consider	 the	 dot	 product	 of	 L	 with	 r	

It	means	that	the	angular	momentum	L	is	normal	to	the	vector	r.	In	other	words,
throughout	 the	 motion,	 the	 radius	 vector	 r	 of	 the	 particle	 lies	 in	 a	 plane
perpendicular	 to	 the	 angular	 momentum.	 That	 is,	 the	motion	 is	 confined	 to	 a
plane	which	 is	perpendicular	 to	L.	Thus,	 the	problem	has	been	 simplified	 to	a
motion	in	two	dimensions	instead	of	three	dimensions.
The	 Lagrangian	 L	 can	 now	 be	 expressed	 in	 plane	 polar	 co-ordinates	 as	



Law	of	Equal	Areas
The	result	in	Eq.	(5.18)	has	an	important	consequence.	Consider	a	mass	m	at	a
distance	r(q)	at	time	t	from	the	force	centre	O	as	shown	in	Fig.	5.2(b).	In	a	time
interval	dt	the	mass	moves	from	A	to	B.	The	distance	of	B	from	the	force	centre
O	is	r(q	+	dq).	As	shown	in	the	figure,	the	radius	vector	r	sweeps	out	an	area	dA
in	a	time	dt.	Since	dq	is	very	small,	ds	will	be	small	and	almost	a	straight	line.

which	is	the	rate	at	which	the	radius	vector	sweeps	out	the	area.	Substituting	the
value	 of 	 =	 L/mr2	 in	 Eq.	 (5.21)	

Fig.	5.2	(a)	Motion	of	a	particle	in	plane	polar	co-ordinates;	(b)	Area	swept	by	a	radius	vector	r	in	time	dt.

The	conservation	of	angular	momentum	implies	that	the	radius	vector	r	traces
equal	 areas	 in	 equal	 intervals	 of	 time.	 Eq.	 (5.22)	 is	 a	 statement	 of	Kepler’s
second	law	of	planetary	motion.	It	is	also	known	as	the	law	of	equal	areas.	The
law	of	equal	areas	is	a	very	general	result	for	any	type	of	central	force.	Kepler’s
second	law	implies	that	a	planet	will	move	faster	at	a	point	closer	to	the	sun	than
at	a	point	farther	from	it.	That	is,	as	r	 increases,	velocity	decreases	 to	keep	the
areal	 velocity	 constant,	 which	 is	 illustrated	 in	 Fig.	 5.3.	 When	 the	 motion	 is



periodic	 with	 period	 T,	 we	 may	 integrate	 Eq.	 (5.22)	 and	 get	

Note	that	the	expression	for	E	does	not	contain	

	

Fig.	5.3	Law	of	equal	areas:	A1	=	A2	=	A3.

5.3	EFFECTIVE	POTENTIAL

Equation	(5.24)	is	identical	to	the	total	energy	expression	of	a	particle	of	mass	m
moving	 under	 the	 influence	 of	 an	 effective	 potential	



In	physical	terms,	Eq.	(5.29)	describes	the	motion	of	a	particle	of	mass	m	under	a
central	 force	 as	 viewed	 by	 an	 observer	 at	 the	 centre	 of	 force	 from	 a	 rotating
reference	frame.	In	this	rotating	frame	the	force	seems	to	be	Feff	(r).

5.4	CLASSIFICATION	OF	ORBITS

A	 system	 has	 two	 generalized	 co-ordinates	 r	 and	 q	 and	 therefore	 two	 second
order	 differential	 equations	 have	 to	 be	 solved	 to	 study	 the	 motion.	 In	 other
words,	four	integrations	are	needed	to	study	the	motion	of	a	particle.	However,
without	solving	the	equations	of	motion	for	a	specific	central	force,	we	can	learn
a	lot	about	the	motion	using	the	first	integrals	of	motion,	E	and	L.	Solving	Eq.
(5.24)	 for 	 we	 have	



For	large	r,	the	first	term	is	the	dominant	one	and	therefore	Veff	<	0.	As	r		 ,	
Veff		0.	For	small	r,	the	second	term	is	the	dominant	one	and	Veff		+	as	
r		0.	Fig.	5.4	shows	a	plot	of	Veff	(r)	versus	r	for	a	particular	value	of	L.



Fig.	5.4	Plot	of	Veff	(r)	versus	r	for	a	given	L	for	attractive	inverse	square	law	force.

Next	 let	 us	 consider	 motions	 for	 different	 values	 of	E.	We	 have	 four	 distinct
cases.
E	>	0:	If	E	>	0,	say	E3,	from	Fig.	5.4	it	is	evident	that	there	is	a	minimum	radial
distance	r3	but	no	maximum.	The	motion	of	the	particle	is	unbounded.	A	particle
heading	towards	the	centre	of	force	can	come	as	close	as	r3	and	then	turns	back
and	may	even	go	back	to	infinity.	Thus,	for	a	particle	with	E	>	0,	the	motion	is
unbounded	with	a	single	turning	point.
0	>	E	>	(Veff)	min	=	Em:	This	condition	corresponds	to	energy	E1,	in	Fig.	5.4.
The	radial	motion	of	the	particle	will	be	confined	to	the	values	of	r	=	r1	=	rmin
and	
r	=	 r2	=	 rmax.	 The	 points	 r1	 and	 r2	 are	 the	 turning	 points.	 At	 these	 points	

Though	 	at	these	points,	angular	velocity	 .	Hence,	the	particle	will	not
be	at	rest	at	these	points.	Actually,	the	motion	is	confined	between	the	areas	of
two	 circles	 of	 radii	 r1	 and	 r2.	 A	 possible	 shape	 of	 the	 path	 for	 an	 attractive
inverse	square	law	force	is	an	ellipse	with	the	focus	at	the	force	centre.	When	r



varies	from	r1	to	r2	and	back,	the	radius	vector	turns	through	an	angle	q	which
can	 easily	 be	 obtained	 from	 Eq.	 (5.20):	

When	the	angle	q	=	2p	 (m/n)	where	m	and	n	 are	 integers,	 the	path	 is	a	closed
orbit.	 That	 is,	 during	 n	 periods	 the	 radius	 vector	 of	 the	 particle	 makes	 m
complete	revolutions	and	will	come	back	to	its	original	position.	When	q	is	not	a
rational	fraction	of	2p,	the	path	has	the	shape	of	a	rosette,	as	shown	in	Fig.	5.5.
Such	an	orbital	motion	is	often	referred	to	as	a	precessing	motion.
E	=	Em	=	(Veff)min:	 If	 the	energy	of	 the	particle	 is	such	 that	E	=	(Veff)min,	

	and	 	is	finite.	Hence,	the	particle	must	move	in	a	circle.
E	<	 (Veff)min:	 If	 the	 energy	 of	 the	 particle	 is	 less	 than	 (Veff)min,	 	 will	 be
imaginary	and	therefore	no	physically	meaningful	motion	is	possible.



Fig.	5.5	Motion	of	a	particle	with	energy	0	>	E	>	(Veff)min	resulting	in	precessing	motion.

5.5	 MOTION	 IN	 A	 CENTRAL	 FORCE	 FIELD—GENERAL
SOLUTION
The	complete	solution	for	the	motion	of	a	particle	in	a	central	force	field	can	be
obtained	in	 two	ways:	 the	energy	method	and	Lagrangian	analysis.	The	energy
method	is	based	on	the	laws	of	conservation	of	energy	and	angular	momentum.
In	Lagrangian	 analysis,	 the	 differential	 equations	 of	motion	 are	 obtained	 from
the	Lagrangian	and	then	analysed.

Energy	Method
In	Eq.	(5.24)	we	have	the	energy	expression	in	terms	of	the	angular	momentum.
Solving	 it	 for	 r	 we	 get	

which	gives	the	general	solution	in	the	form	t	=	t	(r).	The	solution	in	the	standard
form	 r	 =	 r	 (t)	 is	 also	 possible	 from	 Eq.	 (5.38).	 Often	 we	 require	 a	 relation
between	q	and	r,	 the	 form	of	which	 is	given	 in	Eq.	 (5.37).	The	 integral	 in	Eq.
(5.37)	 can	 be	 put	 in	 a	 standard	 form	 by	 making	 the	 substitution	

Equation	 (5.37)	 now	 takes	 the	 form	

where	q0	is	the	constant	of	integration.	To	proceed	further,	we	require	the	form
of	the	potential	V(r).

Lagrangian	Analysis
The	Lagrangian	of	 the	 system	 is	 given	by	Eq.	 (5.17).	Lagrange’s	 equations	of



motion	 are	

which	is	the	differential	equation	of	the	orbit.	It	is	possible	to	find	the	force	law
if	the	equation	of	the	orbit	r	=	r	(q)	is	given.

5.6	INVERSE	SQUARE	LAW	FORCE

The	most	 important	 type	 of	 central	 force	 is	 the	 one	 in	which	 the	 force	 varies
inversely	 as	 the	 square	 of	 the	 radial	 distance:	

where	k	is	a	positive	constant	for	an	attractive	force	and	negative	for	a	repulsive



force.	The	two	most	important	cases	under	this	category	are	gravitational	force
and	 coulomb	 force.	 For	 the	 gravitational	 force	 k	=	 G	 m1	m2	 where	G	 is	 the
gravitational	constant.	The	equation	of	the	orbit	can	be	obtained	from	Eq.	(5.41)
which	 now	 takes	 the	 form	

which	is	the	equation	of	the	orbit.	It	may	be	noted	that	only	three	(q0,	E	and	L)
of	 the	 four	 constants	 of	 integration	 appear	 in	 the	 orbit	 equation.	 The	 fourth
constant	can	be	obtained	by	finding	the	solution	of	the	other	equation	of	motion,	
Eq.	(5.43).
The	 general	 equation	 of	 a	 conic	 with	 one	 focus	 at	 the	 origin	 is	



where		is	the	eccentricity	of	the	conic	section.	A	comparison	of	Eqs.	(5.52)
and	(5.53)	shows	that	the	orbit	is	always	a	conic	section	with	eccentricity

These	orbits	are	shown	in	Fig.	5.6.	It	may	be	noted	that	the	energy	is	negative	for
bound	orbits.

Fig.	5.6	Shapes	of	different	conics.

The	constant	q0	simply	determines	the	orientation	of	the	orbit.	Therefore,	we
can	even	select	q0	=	0	which	corresponds	to	measuring	q	 from	rmin.	Then	 the



equation	 of	 the	 orbit,	 Eq.	 (5.53),	 becomes	

The	 position	 corresponding	 to	 r	 =	 rmin	 is	 called	 the	pericentre	 whereas	 that
corresponding	 to	 rmax	 is	 the	 apocentre.	 For	 motion	 about	 the	 sun,	 the
corresponding	positions	are	perihelion	and	aphelion	 and	 for	motion	 about	 the
earth	 they	 are	perigee	and	apogee.	The	 general	 term	 for	 the	 turning	 points	 is
apsides.

5.7	KEPLER’S	LAWS
Based	on	the	detailed	astronomical	data	of	Tycho	Brahe,	Kepler	enunciated	three
general	laws	regarding	planetary	motion.	They	can	be	stated	as	follows:	Law	of
orbits:	Planets	move	in	elliptical	orbits	with	the	sun	at	one	focus.
Law	of	areas:	The	radius	vector	from	the	sun	to	a	planet	sweeps	equal	areas

in	equal	intervals	of	time.
Law	 of	 periods:	 The	 square	 of	 the	 period	 of	 revolution	 about	 the	 sun	 is

proportional	to	the	cube	of	the	semi-major	axis	of	its	orbit.
We	have	already	discussed	the	first	two	laws	in	Sections	5.2	and	5.6.	The	laws

of	 orbits	 follows	 directly	 from	 Newton’s	 law	 of	 gravitation,	 that	 is,	 from	 the
inverse	 square	 nature	 of	 the	 force	 of	 gravitation.	 The	 law	 of	 areas	 is	 a
consequence	of	 the	result	 that	 the	angular	momentum	remains	constant.	 In	 this
section	we	consider	the	third	law	in	detail.
In	 the	 case	 of	 ellipse,	 the	 perihelion	 (r1	 =	 rmin)	 and	 aphelion	 (r2	 =	 rmax)

distances	are	the	values	of	r	when	(q	–	q0)	=	0	and	p,	respectively.	Now	from	
Eq.	 (5.53)	

That	is,	the	length	of	the	semi-major	axis	depends	solely	on	the	energy.



Let	T	be	the	time	period	of	an	elliptical	orbit.	From	Eq.	(5.23),	the	area	of	the
ellipse	A	=	LT/2m.	The	area	of	 the	ellipse	 is	 also	equal	 to	pab,	where	b	 is	 the
length	 of	 the	 semi-minor	 axis.	 From	 these	 two	 relations,	 we	 have	

With	 this	 value	 of	 b2,	 Eq.	 (5.60)	 takes	 the	 form	

which	is	the	statement	of	Kepler’s	third	law.
We	would	be	able	to	get	the	third	law	in	an	alternative	form	by	replacing	m	by

m1m2	 /(m1+	 m2)	 and	 k	 by	 its	 value	 G	 m1m2	 :	

In	 this	 approximate	 expression	 the	 proportionality	 constant	 4	 p2/Gm2	 is	 the
same	for	all	planets.	Eq.	(5.64)	is	fairly	valid,	except	in	the	case	of	Jupiter	which
has	a	mass	of	about	0.1%	of	the	mass	of	the	sun.
The	orbital	eccentricities	of	the	planets	vary	from	0.007	for	Venus	to	

0.249	for	Pluto.	For	Earth’s	orbit		=	0.017,	rmin	=	145.6		106	km	and	

rmax	 =	 152	 	 106	 km.	 Comets	 generally	 have	 very	 high	 orbital	 eccentricities.
Halley’s	 comet	 has	 a	 value	 of	 	 =	 0.967.	 The	 non-returning	 type	 comets	 have



either	parabolic	or	hyperbolic	orbits.

5.8	LAW	OF	GRAVITATION	FROM	KEPLER’S	LAWS
Kepler’s	laws	paved	the	way	for	Newton	to	develop	his	law	of	gravitation.	This
can	easily	be	proved.	To	start	with,	we	will	 show	 that	 it	 is	 a	central	 force	and
then	proceed	to	prove	that	it	is	of	the	inverse	square	type.	From	Kepler’s	second
law,	Eqs.	(5.21)	and	(5.22),	we	have

That	is,	the	transverse	acceleration	on	the	planet	is	zero	and	therefore	the	force
acting	on	the	planet	is	a	central	one.
The	 force	 law	can	be	determined	 from	 the	differential	 equation	of	 the	orbit,

Eq.	(5.48),	which	can	be	written	as





which	is	the	gravitational	force	of	sun	on	a	planet.

5.9	SATELLITE	PARAMETERS
Today	there	are	many	satellites	in	orbit	around	the	earth.	The	orbits	of	satellites
are	an	interesting	application	of	the	central	force	problem.	For	circular	orbits,	the
eccentricity	 	and	the	satellite	travels	at	a	constant	speed.	In	elliptical	orbits,	

	 and	 the	 speed	 of	 the	 satellite	 changes	 from	position	 to	 position	with
maximum	 speed	 at	 the	 perigee	 and	minimum	 at	 the	 apogee.	 The	 locations	 of
some	of	the	quantities	in	elliptical	orbits	are	shown	in	Fig.	5.7.

Fig.	5.7	Different	parameters	in	elliptical	orbits:	Centre	of	the	ellipse	–	O;	Force	centre	–	F	;	Perigee
distance	–	PF,	Apogee	distance	–	FA.

From	 the	 definition	 of	 eccentricity	 ()	 we	 have	

Hence,	



For	 completeness,	 some	 of	 the	 other	 parameters	 which	 we	 have	 already
discussed	are	also	listed	here.	From	Eqs.(5.58),	(5.61),(5.59)	and	(5.54)	we	have	

Next,	let	us	express	the	eccentricity,	position	and	velocity	of	a	satellite	in	terms
of	 certain	 parameters	 at	 perigee.	 From	 Eq.	 (5.76a)	



For	circular	orbits	as		=	0	we	see	that	v0	=	vp.	For	vp	>	v0,	the	eccentricity		 is
given	 by	 Eq.	 (5.78d).	 From	 Eq.	 (5.78a)	



which	is	the	velocity	of	the	satellite	in	terms	of	r.

5.10	COMMUNICATION	SATELLITES
Communication	satellites	are	used	for	transmitting	information	from	one	part	of
the	earth’s	surface	to	another.	They	are	of	two	types,	the	passive	system	and	the
active	 system.	 A	 passive	 system	 simply	 reflects	 signals	 from	 the	 transmitting
station	 to	 the	 receiving	 station.	 In	 the	 active	 system,	 the	 signal	 from	 the
transmitter	 is	 received	 by	 the	 satellite	 and	 undergoes	 amplification	 in	 the
satellite,	and	then	it	is	again	transmitted	to	the	ground	receiving	station.	In	both
the	cases	the	satellite	can	be	either	stationary	(synchronous	satellite)	or	in	motion
with	 respect	 to	 the	earth.	Synchronous	 satellites	are	put	 into	a	circular	orbit	 in
the	plane	of	the	equator	and	the	orbital	period	is	selected	to	be	one	day,	which	is
also	 the	 time	 the	earth	 takes	 to	 turn	once	about	 its	axis.	Hence,	 these	satellites
move	around	their	orbits	in	synchronous	form	with	the	rotation	of	the	earth.	For
earth-based	observers	the	satellite	will	be	in	a	fixed	position	in	the	sky.
It	 is	 not	 difficult	 to	 find	 the	 height	 above	 the	 earth’s	 surface	 at	 which	 all

synchronous	 satellites	 must	 be	 placed	 in	 orbit.	 Since	 	 =	 0,	 from	 Eq.	 (5.78c)	

where	 R	 is	 the	 radius	 of	 the	 earth	 and	 H	 is	 the	 altitude	 of	 the	 satellite.
Substituting	the	value	of	v0	and	remembering	that	rmin	=	R	+	H



Substituting	 these	 values	 in	 Eq.	 (5.81),	we	 get	H	 =	 3.59	 	 104	 km	which	 is	 a
constant.

5.11	ORBITAL	TRANSFERS

In	this	section	we	briefly	investigate	two	types	of	orbital	transfers:	(i)	transfer	of
a	 satellite	 in	 a	 circular	 orbit	 around	 the	 earth	 to	 an	 elliptical	 orbit	 around	 the
earth,	and	(ii)	sending	space	probes	from	one	planet	to	another.
A	satellite	in	a	circular	orbit	of	radius	rc	around	the	earth	can	be	sent	into	an

elliptical	 orbit	 with	 a	 perigee	 distance	 rc	 by	 a	 sudden	 blast	 of	 rockets	 at	 the
proposed	perigee.	A	rocket	blast	at	perigee	increases	the	velocity	perpendicular
to	the	radius	vector	only.	The	increase	in	velocity	increases	the	energy	E	and	the
angular	 momentum.	 Consequently,	 the	 eccentricity	 	 increases	 from	 zero	 to
positive	value	and	the	orbit	changes	from	circular	to	elliptical	(see	Fig.5.8).	This
technique	was	followed	in	the	Apollo	moon	mission.



Fig.	5.8	Orbital	transfer	from	circular	to	elliptical	orbit	around	the	earth.

The	most	efficient	way	of	achieving	the	second	type	is	to	put	the	probe	in	an
orbit,	 elliptical	 or	 circular,	 that	 joins	 the	 orbit	 of	 earth	 and	 that	 of	 the	 other
planet.	Such	an	orbit	is	called	a	transfer	orbit.	The	situation	is	illustrated	in	Fig.
5.9.	In	figure	the	transfer	orbit	is	dashed.

Fig.	5.9	The	transfer	orbit	from	Earth	to	Mars.

For	discussion	let	us	consider	a	space	probe	from	earth	to	another	planet,	say
Mars.	For	simplicity,	let	us	assume	that	their	orbits	about	the	sun	are	circles	of
radii	rE	and	rM.	The	transfer	orbit	is	tangential	to	the	earth’s	orbit	at	E	and	also
tangential	to	Mars’	orbit	at	M.	The	length	of	the	major	orbit	of	the	transfer	orbit	
=	rE	 +	 rM	 .	Let	L	 and	E	 be	 the	 angular	momentum	and	 energy	of	 the	 earth’s
orbit	and	L	and	E	be	that	of	Mars’	orbit,	respectively	with	E	>	E	and	L	>	L.	To
transfer	 a	 probe	 from	 Earth’s	 to	 Mars’	 orbit,	 the	 probe	 should	 be	 given	 an
acceleration	 at	 E	 to	 change	 the	 L	 and	 E	 values	 of	 earth,	 and	 once	 again	 an



acceleration	 is	 given	 at	M	 changing	 the	 values	 to	L	 and	E	 so	 that	 it	 can	 orbit
around	Mars.
For	 the	 earth	 to	 go	 around	 the	 sun	 (mass	Ms)	 in	 an	 orbit	 of	 radius	 rE	 and

velocity	v0.

where	TE	is	the	period	of	the	orbital	motion	of	Earth.	At	E,	the	probe	is	given	a
velocity	 v1	 to	 be	 in	 the	 transfer	 orbit.	 In	 the	 transfer	 orbit,	 energy	

where	Eq.	(5.82)	is	used.	The	probe	is	given	speed	v1	at	E	so	that	it	travels	in	an
elliptical	 orbit,	 the	 transfer	 orbit	whose	 apogee	 is	M.	 Next	 let	 us	 evaluate	 the
speed	of	the	probe	v2	when	it	reaches	the	apogee.	By	the	law	of	conservation	of
angular	 momentum	 for	 the	 transfer	 orbit	

Taking	T	as	the	time	period	in	the	transfer	orbit	and	using	the	result	that	T	2	 is



proportional	 to	 the	 cube	 of	 the	 major	 axis	

Knowing	rE	,	rM	and	TE,	we	can	calculate	v0,	v1,	v2	and	T	from	Eqs.	(5.82a),
(5.83),	(5.84)	and	(5.85).
Generally,	 v2	 is	 less	 than	 the	 orbital	 speed	 of	Mars,	 vM.	 Hence,	 when	 the

probe	reaches	the	Martian	orbit,	 the	approaching	Mars	will	overtake	the	probe.
To	avoid	 this	when	 the	probe	arrives	at	M,	 the	speed	of	 the	probe	 is	 increased
from	v2	to	vM.	If	the	probe	transfer	is	to	one	of	the	inner	planets,	say	Venus	or
Mercury,	instead	of	increasing	the	speed,	it	has	to	be	decreased	from	v0	to	v1	to
put	the	probe	in	a	smaller	transfer	orbit.	Again	the	probe	has	to	be	slowed	down
to	the	orbital	speed	of	Venus.

5.12	SCATTERING	IN	A	CENTRAL	FORCE
FIELD

Scattering	is	an	important	phenomenon	in	physics,	since	it	is	used	to	investigate
different	 aspects	 in	 different	 areas	 in	 physics.	 The	 scattering	 of	 high	 energy	a
particles	by	positively	charged	atomic	nuclei	is	a	typical	example	of	the	motion
of	a	particle	in	a	central	inverse	square	repulsive	field.	Such	an	experiment	was
first	carried	out	by	Geiger	and	Marsden	and	analyzed	by	Rutherford.
Consider	a	uniform	beam	of	particles	of	same	mass	and	energy	and	 incident

upon	a	centre	of	force.	It	will	be	assumed	that	the	force	falls	off	to	zero	for	very
large	distances.	The	number	of	particles	crossing	a	unit	area	placed	normal	to	the
beam	 in	 unit	 time	 is	 the	 intensity	 I,	 also	 called	 flux	 density.	 When	 a	 particle
approaches	a	centre	of	force,	 it	will	either	be	attracted	or	repelled	and	 its	orbit
will	deviate	from	the	incident	straight	line	path.	After	passing	the	centre	of	force,
the	 force	 acting	 on	 the	 particle	 will	 diminish,	 so	 that	 the	 orbit	 once	 again
approaches	 a	 straight	 line.	 In	 general,	 the	 final	 direction	 of	motion	 is	 not	 the
same	as	 the	 incident	direction	and	 the	particle	 is	 said	 to	be	 scattered.	Fig	5.10



illustrates	the	scattering	of	an	incident	beam	of	particles	by	a	scattering	centre	at
O	which	 is	 taken	 as	 the	 origin.	Angle	 f	 is	 the	 angle	 between	 the	 incident	 and
scattered	 directions	 and	 is	 called	 the	 scattering	 angle.	 The	 cross-section	 for
scattering	 in	 a	 given	 direction,	 is	 defined	 by	

where	dW	is	an	element	of	solid	angle	in	the	direction	W.	Often 	is	referred
to	as	the	differential	scattering	cross-section	which	has	the	dimension	of	area.
Hence,	the	name	scattering	cross	section.	The	total	cross-section	sT	 is	defined

as	the	integral	of	 	over	the	entire	solid	angle	4p.

	

Fig.	5.10	Scattering	of	particles	with	impact	parameters	between	b	and	b	+	db	are	scattered	through	angles
between	f	and	f	–	df.

The	impact	parameter	b	is	defined	as	the	perpendicular	distance	between	the
centre	of	force	and	the	incident	velocity	direction.	Fig.	5.10	shows	particles	with
impact	parameter	between	b	and	b	+	db	being	scattered	through	angles	between	

	and	
The	 number	 of	 particles	 incident	 in	 unit	 time	 with	 impact	



The	negative	sign	is	introduced	because	an	increase	in	impact	parameter	means
less	 force	 is	exerted	on	 the	particle,	 resulting	 in	a	decrease	df	 in	 the	 scattering
angle.	Equation	(5.90)	is	a	general	result	valid	for	both	repulsive	and	attractive
inverse	square	fields.
To	 illustrate	 the	procedure,	 let	us	consider	 the	scattering	of	charged	particles

by	a	Coulomb	field.	Let	the	scatterer	have	a	charge	Ze	and	the	incident	particles
a	 charge	 .	 The	 force	 between	 the	 charges	 is	 repulsive	 and	 is	 given	 by	

For	 convenience	 the	 factor	 	 is	 left	 out	 from	 the	 denominator.	 The

corresponding	potential	

In	Section	5.6,	while	solving	the	differential	equation	to	get	the	equation	of	the
orbit,	we	used	V(r)	=	–	k/r.	However,	here	V	 is	 positive.	Hence,	 the	 results	 of
Section	 5.6	 can	 be	 taken	 over	 here	 with	 the	 change	



which	is	the	eccentricity	of	the	conic.	As	the	constant	 	simply	determines	the

orientation	 of	 the	 orbit,	 we	 can	 select	 	 which	 will	 make	 the	 orbit
symmetric	 about	 the	 direction	 of	 the	 periapsis.	 This	 reduces	 Eq.	 (5.94)	 to	

Next	 let	 us	 see	more	 about	 the	 eccentricity.	 If	 v0	 is	 the	 incident	 speed	 of	 the
particle,	 its	 angular	 momentum	 is	 given	 by	

When	the	incident	particle	is	far	away	from	the	scattering	centre,	the	influence	of
the	scatterer	is	not	felt	and	therefore	the	total	energy	E	of	the	particle	is	the	same

as	the	kinetic	energy:	

With	 this	 value	 of	 ,	 Eq.	 (5.97)	 takes	 the	 form	

It	 is	 evident	 from	Eq.	 (5.99)	 that	 the	eccentricity	 	Hence,	 the	path	of	 the
particle	 will	 be	 a	 hyperbola.	 Fig.	 5.10	 shows	 the	 orbit	 parameters	 and	 the
scattering	 angle	 f.	 From	 Fig.	 5.11,	 we	 have	



Fig.	5.11	Angle	q	and	scattering	angle	f	in	repulsive	scattering.

When	r	is	very	large,	from	Eq.	(5.96)	 	Hence,	

which	 is	 Rutherford’s	 scattering	 formula	 for	 a-particle	 scattering.	 Non-
relativistic	quantum	mechanics	also	gives	the	same	result.



The	 assumption	 that	 no	 incident	 particle	 interacts	 with	 more	 than	 one	 target
nucleus	is	valid	if	the	scattering	angle	is	not	too	small.	An	interesting	feature	of

the	 expression	 is	 the	 appearance	 of	 the	 factor	 	 as	 square.	 This	 indicates
that	the	distribution	of	the	scattered	particles	is	the	same	for	an	attractive	force	as
for	a	repulsive	force.

5.13	SCATTERING	PROBLEM	IN	LABORATORY	
CO-ORDINATES
The	laboratory	co-ordinate	system	is	the	one	where	the	incident	particle	moves
in	and	the	scatterer	is	at	rest.	The	actual	measurements	are	made	in	this	system.
The	 scattering	 angle	 measured	 in	 the	 laboratory,	 denoted	 by	 c,	 is	 the	 angle
between	 the	 final	 and	 initial	 directions	 of	 the	 scattered	 particle.	 However,	 in
general	 the	 scatterer	 is	 not	 fixed	 but	 recoils	 from	 its	 position	 as	 a	 result	 of
scattering.	 The	 scattering	 angle	 f,	 calculated	 from	 the	 equivalent	 one-body
problem,	 is	 the	 angle	 between	 the	 final	 and	 initial	 directions	 of	 the	 relative
vector	between	the	two	particles.	The	two	angles	c	and	f	would	be	the	same	only
if	the	scatterer	is	at	rest	throughout.	In	general,	the	two	are	different	as	shown	in
Fig.	5.12(a).

Fig.	5.12	Scattering	of	two	particles:	(a)	as	viewed	in	the	laboratory	system;	(b)	as	viewed	in	the	centre	of
mass	system.

In	the	centre	of	mass	system,	the	centre	of	mass	is	always	at	rest	and	is	taken
as	the	origin.	In	this	system	the	total	linear	momentum	is	zero	and	therefore	the
two	particles	always	move	with	equal	and	opposite	momenta,	as	shown	in	
Fig.5.12	 (b).	 Before	 scattering	 the	 particles	 are	 moving	 directly	 toward	 each
other;	afterwards	they	are	moving	directly	away	from	each	other.



Next,	we	shall	derive	the	relation	connecting	the	two	scattering	angles
f	and	c.	Let	r1	and	v1	be	respectively	the	position	and	velocity	after	scattering	of

the	 incident	 particle	 in	 the	 laboratory	 system	 and	 	 and 	 the	 respective
position	and	velocity	after	scattering	of	the	particle	in	the	centre	of	mass	system.
Let	R	and	V	be	the	respective	position	and	velocity	of	the	centre	of	mass	in	the
laboratory	system.

At	 any	 instant	 by	 definition	 (see	 Fig.5.1)	

Fig.	5.13	Relation	between	the	velocities	in	the	centre	of	mass	and	laboratory
co-ordinates.

From	Eq.	(5.5)	we	have



Substituting	 these	 values	 of	 V	 and 	 in	 Eq.	 (5.104),	 we	 get	

which	is	the	case	for	a	fixed	scattering	centre.	If	the	scattering	is	inelastic,	
and	we	need	detailed	calculations	based	on	the	amount	of	energy	transfer	for	the
evaluation	of	v/v0.
For	 the	 interpretation	 of	 the	 results	 the	 relation	 between	 s	 (f)	 and	 s(c)	 is

required;	here	s(c)	is	the	differential	scattering	cross-section	expressed	in	terms
of	 the	scattering	angle	 in	 the	 laboratory	system.	This	can	be	obtained	by	using
the	 condition	 that	 the	 number	 of	 particles	 scattered	 into	 a	 given	 element	 of	 a
solid	angle	must	be	the	same,	both	in	the	centre	of	mass	and	the	laboratory	co-
ordinate	 systems.	 That	 is,	



Differentiating



Thus,	with	equal	masses,	scattering	angles	greater	than	90°	is	not	possible	in	the
laboratory	system.	The	entire	scattering	takes	place	in	the	forward	hemisphere.

WORKED	EXAMPLES
Example	5.1	The	orbit	of	a	particle	of	mass	m	moving	in	a	central	force	is	given
by	r	=	kq	2,	where	k	is	a	constant.	Find	the	law	of	force.
Solution:	In	the	central	force	problem,	the	equation	of	the	orbit	is	given	by	Eq.

(5.48)	



which	is	the	law	of	force.

Example	5.2	A	particle	moves	in	a	circular	orbit	in	a	force	field	F(r)	=	–	k/r2.
Suddenly	k	becomes	k/2	without	change	in	velocity	of	the	particle.	Show	that	the
orbit	becomes	parabolic.
Solution:	In	elliptical	orbits,	from	Eq.	(5.59)	we	have	the	total	energy	
E	=	–k/2a.	 In	 the	 case	of	 	=	0	 an	 elliptical	 orbit	 reduces	 to	 a	 circle,	 the	 semi-
major	axis	a	equals	semi-minor	axis	b	and	is	just	the	radius	of	the	circle	r.	For
the	circular	orbit,	the	total	energy	E,	potential	energy	V	and	kinetic	energy	

T	are	given	by	

When	 k	 becomes	 k/2	 there	 is	 no	 change	 in	 velocity.	 Hence,	 kinetic	 energy
remains	the	same,	but	potential	energy	changes.

Then	the	eccentricity	of	the	orbit	is	1	which	is	a	parabola.

Example	5.3	A	particle	moves	in	a	circular	orbit	of	diameter	b	in	a	central	force
field.	 If	 the	 centre	 of	 attraction	 is	 on	 the	 circumference	 itself,	 find	 the	 law	 of



force.
Solution:	 In	a	 central	 field,	 the	differential	 equation	of	 the	orbit,	Eq.	 (5.48),	 is

given	by	

In	Fig.	5.14,	O	is	the	centre	of	force,	and	A	is	the	position	of	the	particle.	The	

co-ordinates	of	the	particle	are	r	and	q.	From	the	figure	

Fig.	5.14	The	circular	orbit	of	the	particle.

where	K	is	a	constant.

Example	5.4	The	eccentricity	 ()	of	earth’s	orbit	around	sun	 is	1/60.	Show	that
the	 time	 taken	for	 travel	of	 the	arc	ABC	is	about	2	days	more	 than	 the	 time	 it
takes	to	trace	CDA	(see	Fig.	5.15).



Solution:	While	travelling	the	arc	CDA	the	radius	vector	moves	from	C	to	D	and
then	to	A.	During	this,	 the	area	of	the	triangle	(shaded)	is	 left	out.	This	area	is
included	 while	 travelling	 the	 arc	 ABC.	 Since	 areal	 velocity	 is	 constant,	 this
additional	 area	will	 certainly	 take	 some	 time.	 From	Eqs.	 (5.57)	 and	 (5.58)	we

have	

Fig.	5.15	Earth's	orbit	around	the	sun.

Example	5.5	A	satellite	in	an	elliptical	orbit	around	the	earth	has	the	equation	



Find:	 (i)	 the	 values	 of	 semi-major	 and	 semi-minor	 axes;	 (ii)	 the	 period	 of	 the
satellite;	 (iii)	 the	 altitude	 of	 perigee	 and,	 apogee	 and	 (iv)	 the	 velocity	 of	 the
satellite	at	perigee	and	apogee.	Radius	of	the	earth	=	6380	km,	mass	of	the	earth	
=	5.97		1024kg,	gravitational	constant	G	=	6.67		10	–11Nm2/kg2.
Solution:	 From	 Eq.	 (5.56),	 we	 have	





Example	5.6	A	satellite	of	mass	2500	kg	is	going	around	the	earth	in	an	elliptic
orbit.	The	altitude	at	the	perigee	is	1100	km,	while	at	the	apogee	it	is	3600	km.
Calculate	(i)	the	value	of	the	semi	major	axis,	(ii)	the	eccentricity	of	the	orbit,	
(iii)	the	energy	of	the	satellite,	(iv)	the	angular	momentum	of	the	satellite,	and
(v)	the	satellite’s	speed	at	perigee	(vp)	and	at	apogee	(va).	Radius	of	the	earth	

=	6400	km,	gravitational	constant	=	6.67		10–11	N.m2/kg2,	mass	of	the	earth	
=	5.97		1024	kg.
Solution:	 We	 have	



Example	5.7	A	spacecraft	 in	a	circular	orbit	of	 radius	rc	around	 the	earth	was
put	 in	 an	 elliptical	 orbit	 by	 firing	 a	 rocket.	 If	 the	 speed	 of	 the	 spacecraft
increased	by	12.5%	by	the	sudden	firing	of	the	rocket,	(i)	What	is	the	equation	of
the	new	orbit?	(ii)	What	is	its	eccentricity?	(iii)	What	is	the	apogee	distance?
Solution:	Let	 vc	 be	 the	 speed	 in	 the	 circular	 orbit.	 The	 speed	 after	 firing	 of



rocket	

Example	5.8	A	spacecraft	launched	from	earth	has	to	be	put	into	an	orbit	around
Mars.	Calculate	(i)	the	speed	of	the	spacecraft	around	the	earth,	(ii)	the	speed	of
the	spacecraft	at	the	launch	point	in	the	transfer	orbit,	(iii)	the	speed	of	the	craft
when	it	arrives	at	Mars,	and	(iv)	the	time	taken	by	the	craft	for	the	Earth	–	Mars
trip.	Radius	of	the	Earth	orbit	=	1.49		108	km,	radius	of	the	Mars	orbit	
=	2.265		108	km.
Solution:	



Note:	We	 can	 calculate	 the	 orbital	 speed	 of	Mars	 and	 then	 by	 how	much	 the
speed	has	to	be	decreased	when	it	reaches	Mars.

Thus,	when	arriving	at	Mars,	the	craft’s	speed	has	to	be	increased	by	
(24.0	–	21.46)	km/s	=	2.54	km/s	in	order	for	the	spacecraft	to	go	into	orbit	
around	Mars.

Example	5.9	Consider	scattering	of	particles	by	a	rigid	sphere	of	radius	R	and
calculate	the	differential	and	total	cross-sections.
Solution:	Since	 the	 sphere	 is	 rigid,	 the	potential	outside	 the	 sphere	 is	 zero	and



that	 inside	 is	 .	 Fig.	 5.17	 illustrates	 the	 scattering	 by	 a	 rigid	 sphere.	A	 particle
with	 impact	parameter	b	>	R	will	not	be	scattered.	 If	b	<	R,	 due	 to	 the	 law	of
conservation	of	momentum	and	energy	a	particle	incident	at	an	angle	a	with	the
normal	to	the	surface	of	the	sphere	will	be	scattered	off	on	the	other	side	of	the
normal	at	the	same	angle	a	(see	Fig.	5.17).

Fig.	5.16	Scattering	by	a	rigid	sphere.

From	figure

which	is	independent	of	f	and	incident	energy.



Example	5.10	Derive	an	expression	for	the	velocity	of	an	earth	satellite	in	terms
of	its	radius	vector	r,	the	semi	major	axis	a	of	its	elliptical	orbit,	the	mass	of	the
earth	M	 and	 the	gravitational	 constant	G.	Hence,	 obtain	 its	 velocity	 at	 perigee
and	apogee	if	a	=	27411.8	km	and	eccentricity	 	The	value	of	

GM	=	39.82	×	1013	m3/s2.
Solution:	 Total	 energy	 E	 of	 the	 satellite	 is	 given	 by	

Example	5.11	Find	the	law	of	force	if	a	particle	under	central	force	moves	along
the	curve	

Solution:	 The	 differential	 equation	 of	 the	 orbit	 is	



REVIEW	QUESTIONS
1.	What	is	a	central	force?	Are	all	central	forces	conservative?
2.	 In	 central	 force	motion,	 the	 conservation	of	 angular	momentum	 implies	 the
constancy	of	the	areal	velocity.	Prove.

3.	Outline	the	general	properties	of	central	force	motion.
4.	 What	 is	 the	 first	 integral	 of	 the	 central	 force	 motion?	 Explain	 with	 an
example.

5.	 In	 central	 force	 motion,	 obtain	 the	 energy	 equation	 in	 the	 form	



6.	In	the	case	of	inverse	square	law	force	field,	if	the	orbit	is	circular	prove	that
the	potential	energy	is	twice	the	total	energy.

7.	How	does	the	value	of	eccentricity	and	energy	determine	the	shape	of	the	orbit
in	a	central	force	problem?

8.	Consider	a	particle	of	mass	m	moving	in	a	plane	in	a	central	force	field.	Write
its	Lagrangian	in	plane	polar	co-ordinates.	Write	the	equations	of	motion	and
obtain	the	differential	equation	of	the	orbit.

9.	Explain	precessional	motion.
10.	Explain	how	a	satellite	in	a	circular	orbit	of	radius	a	around	the	earth	is	send
into	an	elliptical	orbit	around	the	earth	with	a	distance	of	closest	approach	a.

11.	 What	 are	 transfer	 orbits?	 Explain	 briefly	 the	 steps	 involved	 in	 sending	 a
space	probe	from	earth	to	an	outer	planet.

12.	Explain	the	working	of	communication	satellites.
13.	 How	 did	 Kepler’s	 laws	 pave	 the	 way	 for	 Newton	 to	 develop	 his	 law	 of
gravitation?

PROBLEMS
1.	A	particle	of	mass	m	is	observed	to	move	in	an	orbit	given	by	r	=	kq,	where	k
is	a	constant.	Determine	the	form	of	the	force.

2.	 A	 particle	 describes	 the	 path	 	 where	 k	 and	 a	 are	 constants,	 in	 a
central	force	field.	If	the	mass	of	the	particle	is	m,	find	the	law	of	force.

3.	For	a	satellite	in	an	elliptical	orbit,	the	value	of	perigee	and	apogee	distances
from	 the	 centre	 of	 force	 are	 denoted	 by	 rmin	 and	 rmax,	 respectively.	 Show
that	the	eccentricity	

4.	For	a	satellite	in	an	elliptical	orbit,	the	velocities	at	perigee	and	apogee	points
are	 up	 and	 ua,	 respectively.	 Show	 that	 the	 eccentricity	

5.	 A	 satellite	 in	 an	 elliptical	 orbit	 around	 the	 earth	 has	 the	 equation	

Find	the	values	of	(i)	the	eccentricity	(ii)	the	semi-major	axis	(iii)	the	semi-minor
axis,	 and	 (iv)	 the	 period.	 Mass	 of	 the	 earth	 =	 5.97	 	 1024	 kg,	 gravitational



constant	G	=	6.67		10–11	Nm2/kg2.
6.	A	planet	of	mass	m	is	moving	around	the	sun	in	an	elliptical	orbit.	If	M	is	the
mass	of	the	sun,	show	that	(i)	energy	E	=	–	GMm/(rmin	+	rmax);	(ii)	period	

T	=	2pGM/(–2E/m)3/2.
7.	 The	 energy	En	 and	 radius	 of	 the	 orbit	 rn	 of	 hydrogen	 atom,	 according	 to
quantum	 theory,	 are	 given	 by	

	 Evaluate	 the	 frequency	 for

the	transition	 	for	large	quantum	numbers	and	show	that	the	results
of	quantum	theory	is	consistent	with	Kepler’s	third	law.

8.	Show	that	the	product	of	the	maximum	and	minimum	velocities	of	a	particle
moving	in	an	elliptical	orbit	is	 	where	a	is	the	value	of	the	

semi-major	axis	and	T	is	the	time	period.
9.	 A	 particle	 of	 mass	M	moves	 in	 a	 central	 repulsive	 force	 field	 towards	 the
centre	of	force	with	a	velocity	u0	and	impact	parameter	b.	If	the	force	is	

F(r)	=	k/r3,	find	the	closest	distance	of	approach	to	the	centre	of	force.
10.	A	particle	of	mass	m	moves	in	an	elliptical	orbit	about	the	centre	of	attractive
force	at	one	of	its	focus	given	by	k/r2,	where	k	is	a	constant.	If	a	is	the	semi-
major	axis,	show	that	 the	speed	u	of	 the	particle	at	any	point	of	 the	orbit	 is	

11.	 A	 particle	 of	 mass	m	moves	 in	 an	 elliptical	 orbit	 under	 the	 action	 of	 an
inverse	square	central	force.	If	a	is	the	ratio	of	the	velocity	at	perigee	to	that	at
apogee,	show	that	the	eccentricity	

12.	A	 particle	moves	 in	 a	 circular	 orbit	 about	 the	 origin	 under	 the	 action	 of	 a

central	 force	 .	 If	 the	potential	 energy	 is	 zero	at	 infinity,	 find	 the

total	energy	of	the	particle.
13.	A	particle	of	mass	m	describes	 the	conic	 	where	 l	and	 	are
constants.	Find	the	force	law.

14.	A	particle	of	mass	m	at	the	origin,	acted	upon	by	a	central	force,	describe	the
curve	 r	 =	 e–q,	 where	 	 are	 the	 plane	 polar	 co-ordinates.	 Show	 that	 the



magnitude	of	the	force	is	inversely	proportional	to	.
15.	 The	 orbital	 plane	 of	 an	 earth	 satellite	 coincides	 with	 that	 of	 the	 earth’s
equator.	If	it	is	at	an	altitude	of	1000	km	above	the	earth	surface	at	perigee	and
2000	km	at	the	apogee,	find	(i)	the	eccentricity	of	the	orbit,	(ii)	the	semi-major
and	 semi-minor	 axes,	 and	 (iii)	 the	 period	 of	 the	 satellite.	 The	 radius	 of	 the
earth	is	6380	km,	the	mass	of	the	earth	=	5.97	×	1024	kg,	and	the	gravitational
constant	G	=	6.67		10–11	Nm2/kg2.

16.	Show	that	at	least	three	geostationary	satellites	are	needed	to	cover	all	points
on	the	equator	of	the	earth.

17.	A	 satellite	 is	 launched	 from	 the	 earth.	At	 perigee,	 it	 is	 636	 km	 above	 the
earth’s	 surface	and	has	a	velocity	of	9144	m/s.	Calculate	 (i)	 the	eccentricity,
(ii)	the	apogee	distance,	and	(iii)	the	velocity	at	the	apogee.	The	radius	of	the
earth	=	6380	km,	G	=	6.67		10–11	Nm2/kg2,	and	the	mass	of	the	earth	
=	5.97		1024	kg.

	



6

Hamiltonian	Mechanics

In	 Lagrangian	 formalism,	 generalized	 coordinates	 (qi’s)	 and	 generalized
velocities	 ( ’s)	 are	 used	 as	 independent	 coordinates	 to	 formulate	 dynamical
problems	 which	 result	 in	 second	 order	 linear	 differential	 equations.	 In
Hamilton’s	 formalism,	generalized	 coordinates	 and	generalized	momenta	 (pi’s)
are	 used	 as	 basic	 variables	 to	 formulate	 problems.	 The	 formulation	 is	 mainly
based	on	the	Hamiltonian	function	of	the	system	which	is	a	function	of	qi’s	and
pi’s	of	the	system.	The	resulting	first	order	linear	differential	equations	are	easier
to	 handle	 mathematically.	 Hamilton’s	 formalism	 also	 serves	 as	 the	 basis	 for
further	developments	such	as	Hamilton	–	Jacobi	theory	and	quantum	mechanics.
Throughout	this	chapter,	we	shall	assume	that	the	systems	are	holonomic	and	the
forces	are	derivable	from	a	position-dependent	potential.

6.1	THE	HAMILTONIAN	OF	A	SYSTEM

The	 Hamiltonian	 H	 of	 a	 system,	 defined	 by	 Eq.	 (3.69),	 is	

That	is,	H	is	expressed	as	a	function	of	the	generalized	coordinates,	generalized



momenta	and	time.	In	Lagrangian	formalism,	the	configuration	space	is	spanned
by	 the	n	generalized	coordinates.	Here,	 the	q’s	 and	p’s	 are	 treated	 in	 the	 same
way	 and	 the	 involved	 space	 is	 called	 the	 phase	 space.	 It	 is	 a	 space	 of	 2n
variables	q1,	q2,...,qn,	p1,	p2,...,	pn.	Every	point	in	the	space	represents	both	the
position	and	momenta	of	all	particles	in	the	system.
As	already	pointed	out,	in	general,	H	need	not	represent	the	total	energy	of	the

system.	However,	 if	 the	 transformation	 equations	 connecting	 the	 cartesian	 and
generalized	coordinates	do	not	depend	on	time	explicitly,	H	is	equal	to	the	total
energy	of	the	system.

6.2	HAMILTON’S	EQUATIONS	OF	MOTION
Hamilton’s	equations	of	motion	can	be	derived	in	the	following	different	ways:
(i)	From	the	Hamiltonian	of	the	system	(ii)	From	the	variational	principle.
In	this	section	we	shall	derive	them	from	the	Hamiltonian	of	a	system	given	by

Eq.	 (6.1).	 Differentiating	 Eq.	 (6.1),	 we	 have	



Equations	 (6.7)	 and	 (6.8)	 are	Hamilton’s	equations	of	motion.	 They	 are	 also
called	the	canonical	equations	of	motion.	They	constitute	a	set	of	2n	first	order
differential	 equations	 replacing	 the	 n	 second	 order	 differential	 equations	 of
Lagrange.
Hamilton’s	equations	are	applicable	to	holonomic	conservative	systems.	If	part

of	the	forces	acting	on	the	system	is	not	conservative,	Lagrange’s	equations	take
the	 form	



6.3	HAMILTON’S	EQUATIONS	FROM	VARIATIONAL
PRINCIPLE
Hamilton’s	 variational	 principle	 stated	 in	 Eq.	 (4.2)	 is	

which	 refers	 to	 paths	 in	 configuration	 space.	 In	 Hamilton’s	 formalism,	 the
integral	 I	has	 to	 be	 evaluated	 over	 the	 trajectory	 of	 the	 system	 point	 in	 phase
space,	 and	 the	 varied	 paths	must	 be	 in	 the	 neighbourhood	 of	 this	 phase	 space
trajectory.	Therefore,	to	make	the	principle	applicable	to	phase	space	trajectories,
we	 have	 to	 express	 the	 integrand	 of	 the	 integral	 I	 as	 a	 function	 of	 the
independent	coordinates	p	and	q	and	their	time	derivatives.	This	can	be	achieved
only	 by	 replacing	 L	 in	 Eq.	 (6.14)	 using	 Eq.	 (6.1).	 We	 then	 get	



where	q(t)	 is	varied	 subject	 to	 	and	pi(t)	 is	 varied	without
any	end-point	restriction.	Since	 the	original	variational	principle	 is	modified	 to
suit	phase	 space,	 it	 is	 known	as	modified	Hamilton’s	principle.	Carrying	out
the	 variations	 in	 Eq.	 (6.16)	 we	 have	

Since	the	modified	Hamilton’s	principle	is	a	variational	principle	in	phase	space,
the	dq’s	and	dp’s	are	arbitrary	and	therefore	the	coefficients	of	dqi	and	dpi	in	
Eq.	 (6.19)	 must	 vanish	 separately.	 Hence,	



Thus,	 Hamilton’s	 principle	 gives	 an	 independent	 method	 for	 obtaining
Hamilton’s	equations	of	motion	without	a	prior	Lagrangian	formulation.

6.4	INTEGRALS	OF	HAMILTON'S
EQUATIONS

Energy	Integral

Hamiltonian	H	 is	 a	 function	 of	 the	 generalized	 coordinates	qi,	 the	 generalized
momenta	 pi	 and	 time:	H	 =	 H	 (q,	 p,	 t)	 Differentiating	 with	 respect	 to	 time	

If	H	 does	 not	 depend	 on	 time	 explicitly,	 	 Replacing	 	 and	
using	 Hamilton’s	 equations,	

Hence,
H	 (q,	 p)	 =	 constant	 =	 h………(6.23)	 That	 is,	 H	 is	 conserved	 and	 the
quantity	 h	 is	 called	 Jacobi’s	 integral	 of	 motion.	 If	 the	 holonomic
constraints	are	time-independent	and	the	potential	is	velocity-independent
as	 shown	 in	 Eq.	 (3.	 71),	 the	 Hamiltonian	H	 is	 the	 total	 energy	 of	 the
system.
H	=	E	=	h………(6.24)	 Integrals	Associated	with	Cyclic	Coordinates	 In
Section	3.8,	we	defined	a	cyclic	or	ignorable	coordinate	as	one	that	does	not	appear	explicitly	in	the

Lagrangian	of	a	system.	If	the	coordinate	qi	is	not	appearing	in	the	Lagrangian,	 	and

then	

Hence,	 it	will	 not	be	 appearing	 in	 the	Hamiltonian	 also.	Combining	 the	 above
equation	 with	 Hamilton’s	 equation,	 Eq.	 (6.8),	 we	 have	



That	is,	the	momentum	conjugate	to	a	generalized	coordinate	which	is	cyclic	is
conserved.
Now,	 if	we	 have	 a	 system	 in	which	 the	 coordinates	q1,	q2,...,	qi	 are	 cyclic,

then	 the	 Lagrangian	 of	 the	 system	 is	 of	 the	 form	

When	i	cyclic	coordinates	are	present	in	a	system,	in	Lagrangian	formalism	the
problem	is	still	one	of	n	degrees	of	freedom,	whereas	in	Hamilton’s	formalism	it
is	one	of	(n	–	i)	degrees	of	freedom.	This	is	because	even	if	qj	 is	absent	in	the
Lagrangian,	 we	 have	 the	 equation	

6.5	CANONICAL	TRANSFORMATIONS

The	 transformation	 of	 one	 set	 of	 coordinates	 qi	 to	 another	 set	 Qi	 by
transformation	 equations	 of	 the	 type	Qi	 =	 Qi	 (q1,	 q2,...,	 qn,	 t)………(6.31)	 is
called	point	transformation	or	contact	transformation.	What	we	have	been	doing	in	earlier	chapters	are
transformations	of	this	type.	In	Hamilton’s	formalism,	the	momenta	are	also	independent	variables	on	the
same	 level	 as	 the	 generalized	 coordinates.	 Therefore,	 it	 is	 appropriate	 to	 have	 a	 more	 general	 type	 of
transformation	 that	 involves	both	generalized	coordinates	and	momenta.	Considerable	advantages	will	be
there	if	the	equations	of	motion	are	simpler	in	the	new	set	of	variables	(Q,	P)	than	in	the	original	set	(q,	p).
If	all	the	coordinates	are	made	cyclic	by	a	transformation,	the	solutions	will	be	much	simpler.	When	there	is
a	 transformation	 from	 the	 original	 set	 (q,	 p)	 to	 the	 new	 set	 (Q,	 P),	 a	 corresponding	 change	 in	 the
Hamiltonian	H	(q,	p,	t)	to	a	new	Hamiltonian	K	(Q,	P,	t)	is	expected.	The	transformation	equations	for	the
(q,	p)	to	(Q,	P)	set	are	Qi	=	Qi	(q,	p,	t)	and	Pi	=	Pi	(q,	p,	t)	(6.32)	The	(q,	p)	set	obeys
Hamilton’s	 canonical	 equations	



The	simultaneous	validity	of	Eqs.	(6.35)	and	(6.36)	means	that	their	 integrands
must	 be	 either	 equal	 or	 connected	 by	 a	 relation	 of	 the	 type	

Here	a	 is	 a	 constant	 independent	 of	 coordinates,	momenta	 and	 time.	This	a	 is
related	 to	 a	 simple	 type	 of	 scale	 transformation	 and	 therefore	 it	 is	 always
possible	to	set	a	=	1.	F	is	a	function	of	the	coordinates,	momenta	and	time.	The
total	 time	 derivative	 of	 F	 in	 Eq.	 (6.37)	 will	 not	 contribute	 to	 the	 modified
Hamilton’s	 principle	 since	



The	 left	 hand	 side	 of	 Eq.	 (6.38)	 is	 a	 function	 of	 original	 coordinates	 and
momenta,	and	the	first	two	terms	on	the	right	hand	side	depends	only	on	the	(Q,
P)	set.	Hence,	in	general,	F	must	be	a	function	of	the	original	and	new	variables
in	order	for	a	transformation	to	be	effected.	They	are	4n	in	all.	Of	these	4n,	only
2n	 are	 independent	 as	 the	 4n	 variables	 are	 connected	 by	 the	 2n	 equations	 of
constraints	given	by	Eq.	(6.32).	Hence,	the	function	F	can	be	written	in	4	forms:
F1	(q,	Q,	t),	F2	(q,	P,	t),	F3	(p,	Q,	t)	and	F4	(p,	P,	 t).	The	problem	in	question
will	 dictate	 which	 form	 is	 to	 be	 selected.	 Next	 we	 consider	 these	 4	 types	 in
detail.
Type	1	–	F1	(q,	Q,	 t):	When	 the	function	F	 is	of	 this	 form,	Eq.	 (6.38)	can	be
written	 as	

Since	the	original	and	new	coordinates	are	separately	independent,	Eq.	(6.40)	is
valid	only	if	 the	coefficients	of	dqi	and	dQi	 separately	vanish.	Therefore,	 from

Eq.	(6.40)	we	have	



From	Eq.	(6.41)	we	can	compute	Q	in	terms	of	q	and	p	if	the	arbitrary	function
F1	is	known:	Q	=	Q	(q,	p,	t)………(6.44)	Using	this	value	of	Q	in	Eq.	(6.42)	we
can	compute	P	in	terms	of	q	and	p:	P	=	P	(q,	p,	t)………(6.45)	Eqs.	 (6.44)	and
(6.45)	are	the	desired	transformations	from	the	original	(q,	p)	to	the	new	(Q,	P)
set.	Eq.	(6.43)	gives	the	relation	connecting	the	original	and	new	Hamiltonians.
Thus,	we	can	express	(Q,	P)	in	terms	of	(q,	p)	only	if	the	arbitrary	function	F1	is
known.	Hence,	F1	is	called	the	generating	function	of	the	transformation.	If	the
generating	function	F1	does	not	contain	time	explicitly,	then	K	=	H.

Type	2	–	F2	(q,	P,	t):	Addition	of	the	term	 	to	the	right	hand	side	of
Eq.	 (6.38)	 will	 not	 affect	 the	 value	 since	 F2	 is	 arbitrary	 and	



Eqs.	(6.51)	and	(6.52)	are	the	required	transformation	equations.



In	all	these	transformations,	t	is	unchanged	and	therefore	it	may	be	regarded	as
an	 independent	parameter.	However,	 in	 relativistic	 formalism	 this	cannot	be	so
as	 space	 and	 time	 are	 treated	 on	 an	 equal	 footing.	 Sometimes	 a	 suitable
generating	 function	 does	 not	 conform	 to	 one	 of	 the	 4	 types	 discussed	 above.
Different	 combinations	 of	 the	 4	 types	 may	 be	 needed	 in	 such	 cases.	 If	 the
generating	 function	 does	 not	 contain	 time	 explicitly,	 K	 =	 H	 and	 Eq.	 (6.38)

reduces	to	

Then	 the	 condition	 for	 a	 transformation	 to	 be	 canonical	 is	 that	

	must	be	a	perfect	differential.

6.6	POISSON	BRACKETS



Hamilton’s	 equations	 of	 motion	 for	 	 and	 	 give	 the	 time	 evolution	 of	 the
coordinates	and	momenta	of	a	system	in	phase	space.	Using	these	equations,	we
can	 find	 the	 equation	 of	motion	 for	 any	 function	F	 (q,	p)	 in	 terms	 of	what	 is
known	as	Poisson	brackets.	They	are	similar	to	commutator	brackets	in	quantum
mechanics	 and	 provide	 a	 bridge	 between	 classical	 mechanics	 and	 quantum
mechanics	(see	Section	6.12).
The	 Poisson	 bracket	 of	 any	 two	 functions	 F	 (q,	 p,	 t)	 and	G	 (q,	 p,	 t)	 with

respect	 to	 the	 canonical	 variables	 (q,	p),	written	 as	 [F,	G]	q,	 p,	 is	 defined	 by	

Fundamental	Poisson	Brackets	

The	above	three	brackets	are	called	the	fundamental	Poisson	brackets.

Fundamental	Properties	of	Poisson	Brackets	Let	F,	G,	S	be	functions



of	canonical	variables	(q,	p)	and	time.	The	following	fundamental	identities	can
be	obtained	from	the	definition	given	in	Eq.	(6.60).

6.	Another	important	property	of	the	Poisson	bracket	is	the	Jacobi	identity	 for
any	 three	 functions:	



A	pair	of	functions	for	which	the	Poisson	bracket	[F,	G]	=	0	are	said	to	commute
with	each	other.

Equations	of	Motion	in	Poisson	Bracket	Form	Consider	a
function	F	which	is	a	function	of	q’s,	p’s	and	time	t:	F	=	F	(q,	p,	t)	



which	is	 the	equation	of	motion	of	F	 in	 terms	of	Poisson	bracket.	 In	Eq.
(6.71),	
H	 is	 the	Hamiltonian	 of	 the	 system.	 If	F	 is	 replaced	 by	 qj	 and	 pj	 ,	 Eq.
(6.71)	 gives,	 when	 qj	 and	 pj	 do	 not	 depend	 explicitly	 on	 t	

These	 two	 equations	 constitute	 the	 canonical	 equations	 of	 motion	 in	 Poisson
bracket	form.

6.7	POISSON	BRACKET	AND	INTEGRALS
OF	MOTION

One	of	the	important	uses	of	Poisson	brackets	is	finding	the	integrals	of	motion.
Let	 us	 consider	 Eq.	 (6.71)	 again.	 For	 F	 to	 be	 an	 integral	 of	 motion	

If	the	integral	of	motion	F	does	not	contain	t	explicitly,	Eq.	(6.73)	reduces	to	[F,
H]	 =	 0………(6.74)	 That	 is,	 when	 the	 integral	 of	 motion	 does	 not	 contain	 t
explicitly,	 its	 Poisson	 bracket	 with	 the	 Hamiltonian	 of	 the	 system	 vanishes.
Conversely,	the	Poisson	brackets	of	constants	of	motion	with	the	Hamiltonian	H
must	be	zero.
Another	 important	property	of	Poisson	brackets	 is	Poisson’s	 theorem	which



states	that	if	F(q,	p,	t)	and	G	(q,	p,	t)	are	two	integrals	of	motion,	then	[F,	G]	is
also	an	integral	of	motion.	That	is,	[F,	G]	=	constant………(6.75)	Since	F	and	G
are	 integrals	 of	 motion	

6.8	THE	CANONICAL	INVARIANCE	OF
POISSON	BRACKET

Probably	 the	most	 important	 property	 of	 Poisson	 bracket	 is	 that	 it	 is	 invariant
under	 canonical	 transformation.	 This	 means	 that	 if	 (q,	 p)	 and	 (Q,	 P)	 are	 two
canonically	conjugate	sets,	then	[F,	G]	q,	p	=	[F,	G]Q,	P………(6.79)	where	F	and
G	 are	 any	 pair	 of	 functions	 of	 (q,	p)	 or	 (Q,	 P).	 The	 (q,	 p)	 and	 (Q,	 P)	 sets	 are	 related	 by	 a	 canonical
transformation	 of	 the	 type	 given	 in	Eq.	 (6.32):	Qi	=	Qi	 (q,	p,	 t)	and	Pi	=	Pi	 (q,	p,	 t)	 The



Poisson	bracket	of	the	functions	F	and	G	with	respect	to	the	(q,	p)	set	is	given	by



Thus,	Poisson	brackets	are	invariant	under	canonical	transformation.
Poisson	 bracket	 description	 of	 mechanics	 is	 invariant	 under	 a	 canonical

transformation.	Therefore,	a	canonical	transformation	can	be	defined	as	one	that
preserves	the	Poisson	bracket	description	of	mechanics.	Hence,	we	can	make	the
following	important	statement:	The	fundamental	Poisson	brackets	Eqs.	(6.61)	to
(6.63)	 provide	 the	 most	 convenient	 way	 to	 decide	 whether	 a	 given
transformation	is	canonical.

6.9	LAGRANGE	BRACKETS

In	 addition	 to	 Poisson	 bracket,	 other	 canonical	 invariants	 exist.	 One	 such
invariant	 is	 the	 Lagrange	 bracket.	 As	 its	 applications	 are	 limited,	 we	will	 not
elaborate	it	except	for	the	definition	and	certain	properties.
The	Lagrange	bracket	of	any	two	functions	F(q,	p)	and	G(q,	p)	with	respect	to

(q,	 p)	 variables,	 written	 as	 {F,	 G}q,	 p,	 is	 defined	 as	



The	 Lagrange	 brackets	 are	 invariant	 under	 canonical	 transformations.	 That	 is,
{F,	G}q,	p	=	{F,	G}Q,	P………(6.89)	Hence,	the	subscripts	(q,	p)	or	(Q,	P)	may
be	 dropped.	 From	 Eq.	 (6.88)	

Equations	(6.91)	to	(6.93)	are	called	the	fundamental	Lagrange	brackets.
The	definitions	of	Poisson	and	Lagrange	brackets	clearly	 indicate	some	kind

of	 inverse	 relationship	between	 the	 two.	The	relation	between	 the	 two	 is	given

by	

Lagrange	brackets	do	not	obey	Jacobi’s	identity.

6.10	D-VARIATION



Fig.	6.1	Illustration	of	D-variation	in	configuration	space.



6.11	THE	PRINCIPLE	OF	LEAST	ACTION

The	principle	of	least	action	is	another	variational	principle	associated	with	the
Hamiltonian	formulation.	It	involves	the	type	of	D-variation	discussed	in	Section
6.10.	 To	 prove	 the	 principle	 of	 least	 action,	 consider	 the	 action	 integral	



Using	Eqs.	(6.100)	and	(6.101),	the	part	in	the	parenthesis	of	the	first	term	in	
Eq.	 (6.99)	 is	



Combining	 Eqs.	 (6.99)	 and	 (6.104)	



which	is	the	principle	of	least	action.

Different	Forms	of	Least	Action	Principle	The	principle	of	least
action	can	be	expressed	in	different	forms.	If	the	transformation
equations	do	not	depend	on	time	explicitly,	then	the	kinetic	energy
is	a	quadratic	function	of	the	generalized	velocities.	In	such	a	case
from	
Eq.	(3.47)	we	have	



That	 is,	 of	 all	 paths	 possible	 between	 two	 points	 that	 are	 consistent	 with	 the
conservation	of	energy,	 the	system	moves	along	the	path	for	which	the	time	of
transit	is	the	least.	In	this	form,	the	principle	is	similar	to	Fermat’s	principle	in
geometrical	optics,	which	states	that	a	light	ray	travels	between	two	points	along
such	a	path	that	the	time	taken	is	the	least.
Again,	 when	 the	 transformation	 equations	 do	 not	 involve	 time,	 the	 kinetic

energy	 is	 given	 by	 Eq.	 (3.45):	



Equation	(6.116)	helps	us	to	change	the	variable	in	Eq.	(6.111)	and	the	principle
of	 least	 action	 takes	 the	 form	

Eq.	 (6.118)	 is	 often	 referred	 to	 as	Jacobi’s	 form	of	 least	 action	 principle.	 It
now	 refers	 to	 the	 path	 of	 the	 system	 in	 a	 curvilinear	 configuration	 space
characterized	by	the	metric	tensor	with	elements	ajk.

6.12	POISSON	BRACKETS	AND
QUANTUM	MECHANICS



In	 classical	 physics,	 the	 state	 of	 a	 system	 at	 a	 given	 time	 t	 is	 specified	 by
equations	of	motion.	The	dynamical	variables	occurring	 in	 these	 equations	 are
the	position	coordinate	r,	linear	momentum	p,	angular	momentum	L,	and	so	on.
In	 quantum	 mechanics,	 commutators	 replace	 the	 Poisson	 brackets.	 The
commutator	of	dynamical	variables	A	and	B,	written	as	[A,	B],	is	defined	as	[A,
B]	 =	 AB	 –	 BA………(6.119)	 The	 properties	 of	 commutators	 are
similar	to	those	of	Poisson	brackets.
In	quantum	mechanics,	dynamical	variables	of	classical	physics	are	 replaced

by	operators.	The	operators	in	quantum	mechanics	are	derived	from	the	Poisson
bracket	 of	 the	 corresponding	 pair	 of	 classical	 variables	 according	 to	 the	 rule	

………(6.120)	where	 	 and	 	 are	 the	 operators	 selected	 for	 the	 dynamical

variables	q	 and	 r,	 and	 {q,	 r}	 is	 the	Poisson	 bracket	 of	q	 and	 r.	As	 an	 example,	 consider	 the	 dynamical
variables	x	and	px.	The	Poisson	bracket	of	x	with	px	{x,	px}	=	1
The	 operators	 selected	 for	 x	 and	 px	 are	 	 and	 	 respectively.	 Then,	 by	 the

above	 rule,	 the	commutator	of	 	with	 	 is	given	by	
………(6.121)	 Operators	 associated	 with	 dynamical	 variables	 and
their	commutators	play	a	crucial	role	in	quantum	mechanics.

WORKED	EXAMPLES
Example	6.1	Obtain	Hamilton’s	equations	for	a	simple	pendulum.	Hence,	obtain
an	expression	for	its	period.
Solution:	Figure	6.2	illustrates	the	pendulum.

Fig.	6.2	Simple	pendulum	We	use	q	as	the	generalized	coordinate.	For	evaluating	potential	energy,	the



energy	corresponding	to	the	mean	position	is	taken	as	zero.	The	velocity	of	the	bob	

Example	6.2	Obtain	Hamilton’s	equations	for	a	particle	of	mass	m	moving	in	a
plane	about	a	 fixed	point	by	an	 inverse	square	 force	 .	Hence,	 (i)	obtain
the	radial	equation	of	motion;	(ii)	show	that	the	angular	momentum	is	constant.
Solution:	In	plane	polar	coordinates,	the	kinetic	energy	T	and	potential	energy	V
are	 given	 by	



which	is	the	radial	equation	of	motion.
(ii)	The	second	equation	of	Eq.	(vii)	gives	pq	=	constant	(ix)	which	is	the	law	of
conservation	of	angular	momentum,	since	 ,	the	angular	momentum.

Example	6.3	A	mass	m	is	suspended	by	a	massless	spring	of	spring	constant	k.
The	suspension	point	is	pulled	upwards	with	constant	acceleration	a0.	Find	 the
Hamiltonian	of	the	system,	Hamilton’s	equations	of	motion	and	the	equation	of
motion.



Solution:	 Let	 the	 vertical	 be	 the	 z-axis.	 As	 the	 acceleration	 due	 to	 gravity	 is
downwards,	taking	the	net	acceleration	as	(g	–	a0).

Example	6.4	A	bead	of	mass	m	slides	on	a	frictionless	wire	under	the	influence
of	gravity	(see	Fig.	6.3).	The	shape	of	the	wire	is	parabolic	and	it	rotates	about
the	z-axis	with	constant	angular	velocity	w.	Taking	z2	=	ar	as	the	equation	of	the
parabola,	obtain	the	Hamiltonian	of	the	system.	Is	H	=	E	?
Solution:	Figure	6.3	illustrates	the	motion	of	the	bead.



Fig.	6.3	Bead	sliding	down	on	a	wire.

The	wire	rotates	with	constant	angular	velocity	w	and	therefore	we	may	write	





Example	6.5	A	particle	of	mass	m	moves	in	three	dimensions	under	the	action	of
a	 central	 conservative	 force	 with	 potential	 energy	 V(r).Then	 (i)	 Find	 the
Hamiltonian	 function	 in	 spherical	 polar	 coordinates;	 (ii)	 Show	 that	 f	 is	 an
ignorable	 coordinate;	 (iii)	 Obtain	 Hamilton’s	 equations	 of	 motion;	 and	 (iv)

Express	 the	 quantity	 	 in	 terms	 of	 generalized
momenta.

(ii)	 The	 coordinate	 f	 is	 not	 appearing	 in	 the	 Hamiltonian.	 Hence,	 it	 is	 an
ignorable	coordinate.

(iii)	 Hamilton’s	 canonical	 equations	 will	 be	 six	 in	 number	 as	 there	 are	 three
generalized	 coordinates.	 They	 are	



Example	6.6	Obtain	the	Hamiltonian	of	a	charged	particle	in	an	electromagnetic
field.
Solution:	 The	 Lagrangian	 of	 a	 charged	 particle	 in	 an	 electromagnetic	 field	 is
given	 by	 Eq.	 (3.82)	



Example	 6.7	 Find	 the	 canonical	 transformation	 generated	 by	 the	 generating
function	F1	=	qi	Qi.
Solution:	When	 the	 generating	 function	 is	 a	 function	 of	qi	 and	Qi,	 Eq.	 (6.41)

gives	

In	effect,	 the	 transformation	 interchanges	 the	coordinates	and	momenta,	except
for	 the	 negative	 sign	 in	 the	 second	 one.	 The	 new	 coordinates	 are	 the	 old



momenta	 and	 the	 new	 momenta	 are	 the	 old	 coordinates.	 In	 other	 words,	 the
distinction	 between	 them	 is	 one	 of	 nomenclature.	 Thus,	Hamilton’s	 formalism
treats	coordinates	and	momenta	on	an	equal	footing.

Example	6.8	Solve	the	problem	of	simple	harmonic	oscillator	in	one	dimension
by	effecting	a	canonical	transformation.

Solution:	 The	 Hamiltonian	 of	 the	 oscillator	 	 (i)	 is	 obtained	 in

terms	of	the	coordinate	q	and	the	momentum	p.	To	make	the	solution	simpler,	let
us	have	a	transformation	in	which	the	new	coordinate	Q	is	cyclic;	then	P	will	be
a	 constant	 of	 motion.	 Consider	 the	 generating	 function	



It	is	true	that	the	use	of	canonical	transformation	has	not	simplified	the	harmonic
oscillator	problem.	It	is	given	here	to	illustrate	the	procedure.

Example	6.9	Show	that	the	following	transformation	is	canonical.

	 a	 is	 a	 constant	



Since,	 the	 right	 hand	 side	 is	 a	 perfect	 differential,	 the	 transformation	 is
canonical.

Example	 6.10	 Show	 that	 the	 transformation	

is	canonical,	and	obtain	the	generator	of	the	transformation.



Example	 6.11	 Using	 the	 Poisson	 bracket,	 show	 that	 the	 transformation	

is	canonical.
Solution:	From	the	definition	of	Poisson	bracket,	it	is	obvious	that	
[Q,	Q]	=	0	and	[P,	P]	=	0.
From	 the	 given	 data,	 we	 have	



Hence,	the	transformation	is	canonical.

Example	6.12	Find	the	Poisson	bracket	of	[Lx	,	Ly],	where	Lx	and	Ly	are	angular
momentum	components.



The	 implication	 of	 the	 above	 result	 is	 that	 no	 two	 components	 of	 angular
momentum	 can	 simultaneously	 act	 as	 conjugate	 momenta,	 since	 conjugate



momenta	 must	 obey	 the	 relation	 [pi,	 pj]	 =	 0.	 Only	 one	 angular	 momentum
component	can	be	chosen	as	a	generalized	coordinate	in	any	particular	system	of
reference.

Example	6.13	For	what	values	of	a	and	b	
represent	 a	 canonical	 transformation.	 Also	 find	 the	 generator	 of	 the
transformation.

	



Example	6.14	Show	that	the	transformation	 	is

canonical.	Also	obtain	the	generating	function	for	the	transformation.
Solution:	From	the	given	data

Example	6.15	Obtain	Hamilton’s	equations	for	the	projectile	motion	of	a	particle
of	mass	m	in	the	gravitational	field.	Hence,	show	that	the	cyclic	coordinate	in	it
is	proportional	to	the	time	of	flight	if	the	point	of	projection	is	the	origin.
Solution:	The	motion	of	the	projectile	is	in	the	two-dimensional	xy-plane.
Coordinates	 x	 and	 y	 can	 be	 taken	 as	 the	 generalized	 coordinates.	 Potential
energy	V	=	mgy,	where	y	is	the	height	above	the	earth.



REVIEW	QUESTIONS
1.	 Define	 the	 Hamiltonian	 of	 a	 system.	 Under	 what	 conditions,	 is	 it	 the	 total
energy	of	the	system?

2.	 A	 coordinate	 which	 is	 cyclic	 in	 Lagrangian	 formalism	 is	 also	 cyclic	 in
Hamilton’s	formalism.	Substantiate.

3.	State	and	explain	Hamilton’s	modified	principle.
4.	Distinguish	between	configuration	space	and	phase	space.
5.	Explain	the	salient	features	of	Hamilton’s	formalism	of	mechanics.
6.	What	is	a	canonical	transformation?
7.	Distinguish	between	point	transformation	and	canonical	transformation.



8.	Define	Poisson	bracket	and	state	its	important	properties.
9.	Obtain	the	equation	of	motion	of	a	dynamical	variable	F	(q,	p,	t)	 in	 terms	of
the	Poisson	bracket.

10.	State	and	explain	Jacobi	identity.
11.	If	F	(q,	p,	t)	and	G	(q,	p,	t)	are	two	integrals	of	motion,	show	that	the	Poisson
bracket	[F,	G]	is	also	an	integral	of	motion.

12.	 If	qj	and	pj	 do	 not	 depend	 on	 time	 explicitly,	 show	 that	 	 and	

.
13.	F,	G	and	S	are	functions	of	(q,	p,	t),	prove	that	[FG,	S]	=	F	[G,	S]	+	[F,	S]	G

14.	Show	that	

15.	Show	that	the	Poisson	brackets	of	constants	of	motion	with	the	Hamiltonian
is	zero.

16.	 The	 fundamental	 Poisson	 brackets	 provide	 the	 most	 convenient	 way	 to
decide	whether	a	given	transformation	is	canonical.	Discuss.

17.	Explain	the	principle	of	least	action,	bringing	out	clearly	the	type	of	variation
involved.

18.	 How	 does	 the	 principle	 of	 least	 action	 lead	 to	 Fermat’s	 principle	 in
geometrical	optics?

19.	Express	the	principle	of	least	action	in	Jacobi’s	form.
20.	Poisson	brackets	provide	a	bridge	between	classical	and	quantum	mechanics.
Substantiate.

PROBLEMS
1.	A	mass	m	is	suspended	by	a	massless	spring	of	spring	constant	k.	If	the	mass
executes	 simple	 harmonic	 motion,	 write	 its	 Hamiltonian.	 Hence,	 obtain	 its
equation	of	motion.

2.	A	mass	m	is	suspended	by	a	massless	spring	of	spring	constant	k.	If	the	mass
executes	simple	harmonic	motion,	determine	its	phase-space	trajectories.

3.	A	particle	of	mass	m	 is	constrained	 to	move	on	 the	 surface	of	a	cylinder	of
radius	 a.	 It	 is	 subjected	 to	 an	 attractive	 force	 towards	 the	 origin	 which	 is
proportional	 to	 the	 distance	 of	 the	 particle	 from	 the	 origin.	 Obtain	 its
Hamiltonian	and	Hamilton’s	equations	of	motion.

4.	A	particle	of	mass	m	and	charge	q	moves	in	a	plane	in	a	central	field	potential
V(r).	 A	 constant	 magnetic	 field	B	 is	 applied	 perpendicular	 to	 the	 plane	 of



rotation.	Find	the	Hamiltonian	in	a	fixed	frame	of	the	observer.
5.	 Find	 the	 canonical	 transformation	 generated	 by	 the	 following	 generating

functions:	

6.	 Is	 the	 transformation	 	 and	P	 =	 qp2	 canonical?	 If	 canonical,	 find	 the

generator	of	the	transformation.
7.	 Prove	 that	 the	 transformation	 defined	 by	 the	 equations	

	is	canonical.	Also	find	the	generating	function.
8.	The	transformation	equations	between	two	sets	of	coordinates	are	
Q	 =	 (q2	 +	 p2)/2	 and	 .	 Show	 that	 the	 transformation	 is
canonical.

9.	 Given	 the	 canonical	 transformations	 Q	 =	 (q2	 +	 p2)/2,	 P	 =	 –tan–1(q/p).
Evaluate	[Q,	P]	and	show	[H,	[Q,	P]]	=	0.

10.	If	the	Hamiltonian	of	a	system	is	 	show	that	 	is

a	constant	of	motion.
11.	Obtain	the	Poisson	bracket	of	(i)	[Lx,	py]	and	(ii)	[x,	Ly],	where	Lx	and	Ly	are
the	x	and	y	components	of	angular	momentum.

12.	Show	that	the	Poisson	bracket	[L2,	Li]	=	0	where	i	=	x,	y,	z.
13.	Using	Poisson	bracket,	show	that	the	following	transformation	is	canonical:

Also	 find	 the	 generator	 of	 the

transformation.
14.	Consider	the	motion	of	a	free	particle	of	mass	m.	A	constant	of	its	motion	is
F	=	x	–	pt/m.	Show	that	

15.	Find	the	condition	to	be	satisfied	by	a,	b,	c	and	d	so	that	the	transformation	Q
=	aq	+	bp,	P	=	cq	+	dp	is	canonical.

16.	A	mass	m	 is	 suspended	by	a	massless	 spring	having	 spring	constant	k	 and
unstretched	length	r0.	Find	Hamilton’s	equations	and	the	equations	of	motion
of	the	mass	m	if	the	mass	is	allowed	to	swing	as	a	simple	pendulum.

17.	 Use	 Hamilton’s	 method	 to	 obtain	 the	 equation	 of	 motion	 for	 a	 spherical
pendulum	and	show	that	the	angular	momentum	about	a	vertical	axis	through



the	point	of	support	is	a	constant	of	motion.
18.	 If	 all	 the	 coordinates	 of	 a	 dynamical	 system	 of	 n	 degrees	 of	 freedom	 are
ignorable,	prove	that	the	problem	is	completely	integrable.



7

Hamilton-Jacobi	Theory

The	canonical	transformation	which	we	discussed	in	the	previous	chapter	leads
us	to	the	Hamilton-Jacobi	theory	which	is	an	equivalent	formulation	of	classical
mechanics.	Two	slightly	different	approaches	are	available.	In	one,	the	procedure
is	to	find	a	canonical	transformation	from	the	original	set	(q,	p)	to	a	new	set	of
variables	(Q,	P)	which	makes	all	coordinates	cyclic.	Then	the	new	momenta	will
be	constants	in	time.	The	second	approach	is	to	effect	a	canonical	transformation

such	that	the	new	Hamiltonian	K	(Q,	P,	t)	is	zero,	then	each	 	and	 	is	zero.	It
means	that	all	Q’s	and	P’s	will	be	constants	of	motion.	The	second	approach	is	a
more	general	one	and	we	shall	discuss	such	a	transformation	in	this	chapter.

7.1	HAMILTON–JACOBI	EQUATION
Consider	 a	 dynamical	 system	 with	 Hamiltonian	 H	 (q,	 p,	 t).	 If	 a	 canonical
transformation	is	made	from	the	(q,	p,	t)	set	to	(Q,	P,	t)	set	with	the	transformed
Hamiltonian	 K	 =	 0,	 Hamilton’s	 equations	 will	 be	



where	F	is	the	generating	function	of	the	transformation.
It	is	convenient	to	take	F	as	a	function	of	the	original	coordinates	qi	and	 the

new	 constant	 momenta	 Pi	 and	 time	 t,	 which	 corresponds	 to	 F2	 (q,	 P,	 t)	 of
Section	 6.5.	 From	 Eq.	 (6.48)	

Equation	 (7.6)	 is	 known	 as	 the	 Hamilton	 Jacobi	 (H-J)	 equation.	 It	 is	 the
practice	 to	 denote	 the	 solution	 of	 Eq.	 (7.6)	 by	 S.	 The	 function	 S	 is	 called
Hamilton’s	principal	function.	Replacing	F2	by	S

………(7.6a)	 Equation	 (7.6a)	 is

a	first	order	differential	equation	in	the	(n	+	1)	variables	
q1,	q2,...,	 qn	 and	 t.	 Hence,	 the	 solution	 will	 have	 (n	 +	 1)	 independent
constants	of	integration.	In	the	H-J	equation,	only	partial	derivatives	of	the
type	 	 and	 	 appear.	 S	 as	 such	 does	 not	 appear	 in	 the
equation.	Therefore,	if	S	is	a	solution,	S	+	a	,	where	a	is	a	constant,	is	also
a	 solution.	 From	 the	 (n	 +	 1)	 constants	 	 we	 may	 choose	

	as	an	additive	constant.	Hence,	a	complete	solution	of	Eq.	(7.6)
can	be	written	as	 ………(7.7)	Comparison	of
S	in	Eq.	(7.7)	with	F2	in	Eq.	(6.48)	suggests	that	the	constants	of	integration	are	the	new	momenta

Pi	=	ai………(7.8)	The	n	 transformation	equations	denoted	by	Eq.	(6.48)

now	take	the	form	 ………(7.9)	The	other	n	transformation	equations

given	 by	 Eq.	 (6.49)	 gives	 the	 new	 constant	 coordinates	 ………

(7.10)	By	calculating	the	right	side	of	Eq.	(7.10)	at	t	=	t0	the	constant	b	’s
can	be	obtained	in	terms	of	the	initial	values	qi,	q2,...,	qn.	From	Eq.	(7.10)
we	can	get	



qi	in	terms	of	(a,	b,	t):	

After	 the	 differentiation	 in	Eq.	 (7.9),	 substitution	of	Eq.	 (7.11)	 for	q	 gives	 the
momenta	 pi	 in	 terms	 of	 (a,	 b,	 t):	

Hamilton’s	principal	function	is	thus	a	generator	of	a	canonical	transformation	to
constant	coordinates	and	momenta.

Physical	Significance	of	S
From	 Eq.	 (7.7)	

That	 is,	 Hamilton’s	 principal	 function	 differs	 at	most	 from	 the	 indefinite	 time
integral	of	the	Lagrangian	only	by	a	constant.

7.2	HAMILTON’S	CHARACTERISTIC	FUNCTION
In	 systems	 where	 the	 time-dependent	 part	 of	 Hamilton’s	 principal	 function	 S
could	 be	 separated	 out,	 the	 integration	 of	 the	H-J	 equation	 is	 straightforward.
Such	 a	 separation	 of	 variables	 is	 always	 possible	 whenever	 the	 original
Hamiltonian	 does	 not	 depend	 on	 time	 explicitly.	 In	 such	 cases,	 Eq.	 (7.6a)



reduces	to	

The	first	 term	involves	only	the	q’s	whereas	 the	second	 term	depends	on	 time.
Hence,	the	time	variation	can	be	separated	by	assuming	a	solution	for	S	of	
the	 type	

substituting	 the	 trial	 solution	 Eq.	 (7.17)	 in	 Eq.	 (7.16),	 we	 get	

This	 equation	 does	 not	 involve	 time.	 By	 virtue	 of	 Eq.	 (7.18),	 the	 constant	 of
integration	a1	appearing	 in	S	 is	 equal	 to	 the	constant	value	of	H,	which	 is	 the
total	energy	E	if	H	does	not	depend	on	time	explicitly.	The	function	W(q,	a)	 is
called	Hamilton’s	characteristic	function.	Since	W	does	not	 involve	time,	 the
original	and	new	Hamiltonians	are	equal	and	hence	K	=	a1.	Replacing	a1	by	

E	in	Eq.	(7.18)	

Equation	 (7.19)	 is	 the	 Hamilton-Jacobi	 equation	 for	 Hamilton’s	 characteristic
function.	 From	 Eqs.	 (7.10)	 and	 (7.17)	

Thus,	Q1	is	the	only	coordinate	which	is	not	a	constant	of	motion.
The	physical	 significance	of	Hamilton’s	characteristic	 function	can	easily	be



obtained.	 We	 have	

The	integral	in	Eq.	(7.22)	can	be	considered	an	abbreviated	action	integral.

7.3	HARMONIC	OSCILLATOR	IN	THE	H-J
METHOD

What	we	discussed	in	the	H-J	theory	can	be	applied	for	solving	the	motion	of	a
one-dimensional	 harmonic	 oscillator.	 The	 Hamiltonian	 of	 the	 system	 is	



Since	the	left	side	of	 this	equation	is	Hamiltonian,	 the	constant	a	 is	simply	 the
total	 energy	 E	 of	 the	 system.	 Equation	 (7.27)	 can	 be	 written	 as	



The	 constants	a	 and	b	 can	 be	 related	 to	 the	 initial	 values	 of	q0	 and	p0.	 If	 the
particle	 is	 at	 rest	 at	 t	 =	 0,	 p	 =	 p0	 and	 the	 particle	 is	 displaced	 from	 the
equilibrium	 position	 by	 q0.	 Squaring	 Eqs.	 (7.33)	 and	 (7.32)	 and	 adding	



Thus,	 Hamilton’s	 principal	 function	 S	 is	 the	 generator	 of	 a	 canonical
transformation	 to	 a	 new	 coordinate	 that	 measures	 the	 phase	 angle	 of	 the
oscillation	and	to	a	new	canonical	momentum	a	identified	as	the	total	energy.

7.4	SEPARATION	OF	VARIABLES	IN	THE	H-J	EQUATION
The	 solution	 of	 differential	 equations	 in	 the	 H-J	 formalism	 is	 somewhat
complicated.	 However,	 if	 the	 variables	 in	 the	 H-J	 equation	 are	 separable,	 the
procedure	 becomes	 much	 simpler.	 In	 fact,	 it	 becomes	 a	 useful	 tool	 to	 solve
problems	only	when	such	a	separation	is	possible.
A	variable	qj	 is	 said	 to	be	separable	 in	H-J	 equation	 if	Hamilton’s	principal

function	can	be	split	into	two	additive	parts,	one	of	which	depends	only	on	the
coordinate	qj	and	the	constant	momenta,	and	the	other	is	completely	independent
of	qj.	If	q1	is	the	separable	coordinate,	then	the	Hamiltonian	must	be	such	that	

Then	the	H-J	equation	splits	into	two	equations,	one	for	 and	the	other	for	S.	If



all	the	coordinates	in	a	problem	are	separable,	then	the	H-J	equation	is	said	to	be
completely	separable.	In	such	a	case

The	constants	ai	are	referred	to	as	the	separation	constants.	It	may	be	noted	that
each	 equation	 in	 Eq.	 (7.38)	 involves	 only	 one	 of	 the	 coordinates	 qi	 and	 the

corresponding	 partial	 derivative	 	 Therefore,	 one	 has	 to	 solve	 the
equation	only	for	the	partial	derivative	and	then	integrate	over	the	variable	qi.
In	 conservative	 mechanical	 systems,	 t	 is	 a	 separable	 variable	 in	 the	 H-J

equation	 and	 a	 solution	 for	 S	 can	 be	 written	 in	 the	 form	

In	Eq.	(7.40)	the	left	hand	side	is	a	function	of	q	alone	and	the	right	hand	side	is
a	function	of	t	alone.	This	is	possible	only	when	each	side	is	a	constant.	Then,	



Equation	 (7.41)	 is	 the	 H-J	 equation	 for	 W.	 This	 equation	 implies	 that	 the
separation	constant	a1	is	the	energy	of	the	system.
If	the	coordinate	q1	is	cyclic,	then	the	conjugate	momentum	p1	is	a	constant,

say	 g.	 The	 H-J	 equation	 for	 W	 is	 then	

The	H-J	equation	with	this	trial	solution	leads	to	two	equations,	one	for	W1	and
the	other	for	W.	The	equation	for	W	is	of	the	same	form	as	Eq.	(7.42);	the	other
one	 is	

Solution	of	Eq.	(7.47)	can	easily	be	obtained	by	solving	for	the	partial	derivative	

	and	then	integrating	over	q1.



7.5	CENTRAL	FORCE	PROBLEM	IN	PLANE	POLAR
COORDINATES
For	an	example	of	the	ideas	about	separability	developed	in	the	previous	section,
we	 consider	 the	H-J	 equation	 for	 a	 particle	moving	 in	 a	 central	 force	 field	 in
plane	polar	 coordinates.	The	motion	 involves	only	 two	degrees	of	 freedom.	 In
plane	 polar	 coordinates,	 the	 Hamiltonian	 is	

The	Hamiltonian	does	not	involve	time	and	hence	it	is	a	constant	of	motion	and
equals	 E.	 The	 variable	 q	 is	 cyclic.	 Hence,	 the	 conjugate	 momentum	 pq	 is	 a
constant	of	motion.	Hamilton’s	characteristic	function	is	separable	and	is	given
by	
Eq.	 (7.46)	

With	this	form	of	the	characteristic	function,	the	transformation	equations,	
Eqs.	 (7.21a)	 and	 (7.21b)	 become	



Equation	(7.53)	gives	t	as	a	function	of	r,	which	agrees	with	the	corresponding
expression,	Eq.	 (5.39),	 in	central	 force	motion	with	 the	energy	a1	written	as	E
and	the	angular	momentum	aq	as	L.	Changing	the	variable	of	integration	r	by	
u	 =	 1/r,	 Eq.	 (7.54)	 reduces	 to	

This	gives	 the	orbit	 equation	which	agrees	with	 the	one	 in	Eq.	 (5.50)	with	 the
constant	b2	as	q0.

7.6	ACTION-ANGLE	VARIABLES

Periodic	systems	are	very	common	in	physics.	Consider	a	conservative	periodic
system	with	one	degree	of	freedom.	The	Hamiltonian	is	then	H(q,	p)	=	a1………
(7.55)	Here	a1	is	the	energy	E.	Solving	for	the	momentum	p,	we	have	p	=	p	(q,	a1)………(7.56)
For	 periodic	motion,	we	 now	 introduce	 a	 new	 variable	 J	 to	 replace	 a1	 as	 the
transformed	 constant	 momentum.	 It	 is	 called	 the	 action	 variable	 or	 phase
integral,	 defined	 as	



where	v(J)	is	a	constant	function	of	J	only.	Integration	of	the	first	of	Eq.	(7.61)
gives	
By	 solving	Eq.	 (7.60),	 one	 can	get	q	 as	 a	 function	 of	w	 and	J.	 This	 results	 in
combination	with	Eq.	(7.62)	gives	the	solution	connecting	q	and	time.
To	 get	 a	 physical	 interpretation	 for	 the	 constant	n,	 consider	 a	 change	 in	 the

angle	 variable	w	 as	q	 goes	 through	 a	 complete	 cycle	 of	 the	 periodic	motion:	



which	means	n	is	the	frequency	associated	with	the	periodic	motion	of	q.	If	the
Hamiltonian	is	determined	as	a	function	of	J,	the	frequency	of	the	motion	can	be
determined	using	Eq.	(7.61).
Thus,	 one	 can	 get	 the	 frequency	 of	 periodic	 motion	 without	 solving	 the

problem	completely.	This	is	done	by	finding	the	Hamiltonian	as	a	function	of	J
and	 then	 taking	 the	 derivative	 of	H	 with	 respect	 to	 J.	 The	 variable	 J	 has	 the
dimension	 of	 angular	 momentum	 and	 the	 coordinate	 conjugate	 to	 angular
momentum	is	an	angle;	hence	the	name	angle	variable.
The	 application	 of	 the	 action-angle	 procedure	 to	 systems	 of	 more	 than	 one

degree	 of	 freedom	 requires	 the	 concept	 of	multiply-periodic	 system.	 In	 this
case,	 the	 motion	 of	 the	 system	 is	 said	 to	 be	 periodic	 if	 the	 projection	 of	 the
system	point	on	each	(qi,	pi)	plane	is	simply	periodic.



7.7	HARMONIC	OSCILLATOR	IN
ACTION-ANGLE	VARIABLES

For	an	example	of	action-angle	variables	to	find	frequencies,	let	us	consider	the
linear	harmonic	oscillator	problem.	The	H-J	equation	of	the	harmonic	oscillator
is	given	by	Eq.	(7.27).

That	is,	when	q	changes	from	qmin	to	qmax,	q	changes	from	–p/2	to	p/2.	On	the
return,	q	changes	from	p/2	to	–p/2.	Hence,	during	one	period,	q	changes	from	



0	to	2p.	Now	

Frequency	 of	 oscillation	

Equations	 (7.75a)	 and	 (7.75b)	 relate	 the	 canonical	 variables	 (w,	 J)	 to	 the
canonical	variables	(q,	p).

7.8	KEPLER	PROBLEM	IN	ACTION-
ANGLE	VARIABLES

Kepler’s	 problem	 is	 a	 very	 general	 one,	 unlike	 the	 linear	 harmonic	 oscillator
considered	 in	 the	 previous	 section.	 In	 the	Kepler	 problem	 a	 planet	 of	mass	m



moves	around	the	sun	in	space.	In	spherical	polar	coordinates	the	Hamiltonian	is	

Since	 the	 variables	 are	 separable	

Integration	of	Eqs.	(7.80),	(7.81)	and	(7.82)	gives	the	generating	functions	W3,
W2	and	W1.	The	sum	of	them	will	give	the	generating	function	W.
We	shall	restrict	our	discussion	to	bound	orbits,	that	is,	those	for	which	energy

E	is	negative.	In	such	a	case,	the	motion	will	be	periodic	in	(r,q,	f)	coordinates.
Next	we	shall	find	the	action-angle	variables	of	the	system.	
We	 have	



Taking	the	plane	in	which	the	planet	is	moving	as	the	plane	for	a	plane	polar	
coordinate	system





As	 expected,	 with	 an	 inverse	 square	 law	 force,	 energy	 is	 negative	 for	 bound
orbits.	 Using	 Eq.	 (7.61),	 we	 have	

which	 is	 Kepler’s	 third	 law.	 Thus,	 the	 action-angle	 variables	 method	 gives
frequencies	 of	 periodic	 motion	 without	 solving	 the	 complete	 equations	 of
motion.
With	 a	 closed	 orbit,	 the	 motion	 is	 periodic	 and	 therefore	 completely

degenerate.	 The	 degenerate	 frequencies	 can	 be	 eliminated	 by	 a	 canonical
transformation	 to	 a	 new	 set	 of	 action-angle	 variables.	With	 the	 new	variables,
two	of	the	frequencies	will	be	zero	and	the	third	one	will	be	finite.	In	terms	of
the	 new	 variables,	 the	 Hamiltonian	 is	

which	is	the	one	corresponding	to	the	finite	frequency.
The	action-angle	variables	are	of	use	in	fixing	the	location	of	planetary	orbits

and	 to	 determine	 the	 size	 and	 shape	 of	 orbits	 in	 space.	 They	 are	 also	 used	 to



study	 the	 effects	 of	 perturbing	 forces	 in	 addition	 to	 the	 force	between	 the	 two
bodies.

7.9	ROAD	TO	QUANTIZATION
The	 action-angle	 variables	 of	 H-J	 theory	 played	 a	 very	 crucial	 role	 in	 the
transition	 from	 classical	 to	 quantum	 theory.	According	 to	 classical	mechanics,
these	variables	possess	a	continuous	range	of	values.
Towards	the	end	of	the	19th	century,	experimental	observations	like	blackbody

radiation	 curves,	 photoelectric	 effect,	etc.	 and	 discoveries	 such	 as	 electron,	X-
rays	 and	 radioactivity	were	 carried	 out.	These	were	 very	 different	 things	 from
anything	 that	 had	 appeared	 before.	 To	 explain	 blackbody	 radiation	 curves,
Planck	quantized	energy	and	Bohr	quantized	angular	momentum	in	his	theory	of
the	 hydrogen	 atom.	 In	 1915,	 Wilson	 and	 Sommerfeld	 proposed	 a	 general
quantization	 rule	 which	 was	 applicable	 to	 all	 periodic	 systems.	 According	 to
them,	 stationary	 states	 are	 those	 for	 which	 the	 proper	 action	 integral	 of	 any
periodic	 motion	 equals	 an	 integer	 times	 h,	 the	 Planck’s	 constant:	

where	 q1,	 q2,...,	 qn	 and	 p1,	 p2,...,	 pn	 are	 the	 generalized	 coordinates	 and
generalized	momenta	 of	 the	 system.	 Proper	 action	 variables	mean	 J	 ’s	whose
frequencies	are	non-degenerate	and	different	from	zero.
In	circular	orbits,	the	momentum	conjugate	to	the	generalised	coordinate	

f	 is	 the	 angular	 momentum.	 Hence,	 for	 circular	 orbits,	 Eq.	 (7.104)	 becomes	

which	is	Bohr’s	frequency	condition.	The	general	quantization	rule,	Eq.	(7.104),
worked	very	well	with	all	periodic	systems	in	old	quantum	theory.
In	the	words	of	Sommerfeld,	the	method	of	action-angle	variables	is	the	bridge

between	classical	physics	and	quantum	theory.	Thus,	the	Hamilton-Jacobi	theory
in	action-angle	variables	provided	a	royal	road	to	quantization.

WORKED	EXAMPLES
Example	7.1	Apply	the	Hamilton-Jacobi	method	to	study	the	motion	of	a	freely



falling	body.
Solution:	 Let	 the	 vertical	 direction	 be	 the	 z-axis	 and	 the	 zero	 of	 the	 potential
energy	be	the	ground	level.	The	system	has	only	one	degree	of	freedom	and	the
coordinate	 is	 the	 value	 of	 z.	 The	 Hamiltonian	



Example	 7.2	 Use	 action-angle	 variables	 to	 obtain	 the	 energy	 levels	 of	 the
hydrogen	atom.
Solution:	 In	 the	 hydrogen	 atom	 the	 electron	 revolves	 around	 the	 nucleus	 in



circular	orbits.	The	potential	energy	

In	 spherical	 polar	 coordinates	

Example	7.3	Consider	the	motion	of	a	particle	of	mass	m	and	charge	q	circling
around	a	uniform	magnetic	field	B,	along	the	z-axis,	generated	by	a	static	vector
potential	 .	Show	that	the	magnetic	moment	m	of	the	particle	is	an
invariant	quantity.
Solution:	Since	the	magnetic	field	is	along	the	z-axis,	Bx	=	0,	By	=	0,	Bz	=	B.	The
static	 vector	 potential	





Example	7.4	Consider	a	particle	of	mass	m	moving	in	a	potential	V(r).	Write	the
Hamilton-Jacobi	 equation	 in	 spherical	 polar	 coordinates	 and	 show	 that	



is	a	constant,	where	pq	and	pf	are	 the	conjugate	momenta	corresponding	to	 the
coordinates	q	and	f.
Solution:	 From	 Eqs.	 (7.80)	 and	 (7.81),	 we	 have	

Example	7.5	 In	 the	 inverse	 square	 force	 field,	 elliptic	orbits	 are	described	by	

Solution:	 The	 phase	 integrals	 of	 the	 system	 are	





REVIEW	QUESTIONS
1.	Outline	the	Hamilton-Jacobi	theory.
2.	 State	 and	 explain	 the	 Hamilton-Jacobi	 equation	 for	 Hamilton’s	 principal
function.

3.	 Show	 that	 Hamilton’s	 principal	 function	 is	 a	 generator	 of	 a	 canonical
transformation	to	constant	coordinates	and	momenta.



4.	Explain	the	physical	significance	of	Hamilton’s	principal	function.
5.	Explain	the	Hamilton-Jacobi	equation	for	Hamilton’s	characteristic	function.
6.	What	are	action	and	angle	variables?
7.	Outline	how	action-angle	variables	can	be	used	to	obtain	the	frequencies	of	a
periodic	system.

8.	Explain	 how	 the	method	 of	 action-angle	 variables	 provides	 a	 procedure	 for
quantization	of	systems.

9.	State	and	explain	the	Wilson-Sommerfeld	quantization	rule.

PROBLEMS
1.	For	a	harmonic	oscillator,	show	that	Hamilton’s	principal	function	is	equal	to
the	time	integral	of	the	Lagrangian.

2.	Consider	a	particle	of	mass	m	moving	in	a	potential	V(r).	Write	the	Hamilton-
Jacobi	equation	in	spherical	polar	coordinates	and	reduce	them	to	quadratures.

3.	 Solve	 the	 problem	 of	 projectile	 of	mass	m	 in	 a	 vertical	 plane	 by	 using	 the
Hamilton-Jacobi	 method.	 Find	 the	 equation	 of	 the	 trajectory	 and	 the
dependence	of	coordinates	on	 time.	Assume	 that	 the	projectile	 is	 fired	off	at
time	 t	 =	 0	 from	 the	 origin	 with	 a	 velocity	 v0,	 making	 an	 angle	 with	 the
horizontal.

4.	Deduce	the	Hamilton-Jacobi	equation	of	a	spinning	top.	Separate	the	variables
in	it	and	reduce	it	to	quadratures.

5.	Show	that	Bohr’s	quantization	rule	is	a	consequence	of	the	quantization	rule
of	Wilson	and	Sommerfeld.

	



8

The	Motion	of	
Rigid	Bodies

We	have	been	considering	the	motion	of	particles	in	the	earlier	chapters.	In	this
chapter	we	 consider	motion	 of	 rigid	 bodies,	which	 require	 six	 generalized	 co-
ordinates	for	the	specification	of	their	configurations.	A	general	displacement	of
a	rigid	body	can	be	considered	to	be	a	combination	of	translations	and	rotations.
Its	motion	can	be	described	 in	 two	co-ordinate	systems,	one	an	 inertial	 system
which	is	fixed	in	space	and	the	other	a	body	system	fixed	to	the	rigid	body.	Of
the	six	independent	co-ordinates,	three	are	used	to	specify	the	rotational	motion.
We	 now	 discuss	 the	 characteristics	 and	 the	 dynamical	 equations	 of	motion	 of
some	important	systems	of	rigid	body	motion.

8.1	INTRODUCTION

A	body	 is	 said	 to	be	rigid	 if	 the	 relative	position	of	parts	of	 the	body	 remains
unchanged	during	motion	or	under	the	action	of	external	forces.	During	motion
the	body	as	a	whole	moves.	 It	can	also	be	considered	a	system	consisting	of	a
large	 number	 of	 particles	 such	 that	 the	 distances	 between	 pairs	 of	 particles
remain	constant.	That	is, 	where	rij	is	the	distance	between	the	ith	and	jth
particles,	and	cij’s	are	constants.
Next,	 we	 try	 to	 find	 the	 number	 of	 independent	 co-ordinates	 needed	 to

describe	the	position	of	a	rigid	body	in	space.	A	rigid	body	in	space	is	defined	by
three	points	which	do	not	lie	on	the	same	straight	line.	Each	point	is	specified	by
three	 co-ordinates	 and	 therefore	 9	 co-ordinates	 are	 needed	 to	 specify	 a	 rigid
body.	But	 these	9	co-ordinates	are	connected	by	 the	3	equations	of	constraints
r12	=	c12	r13	=	c13	and	r23	=	c23



Hence	we	 require	6	co-ordinates	 to	 specify	 the	position	of	 a	 rigid	body.	Apart
from	the	constraints	of	rigidity,	there	may	be	additional	constraints	on	the	rigid
body;	for	example,	the	body	may	be	constrained	to	move	on	a	surface,	or	it	may
be	 allowed	 to	 move	 with	 one	 point	 fixed.	 These	 additional	 constraints	 will
further	reduce	 the	number	of	 independent	co-ordinates.	There	are	several	ways
of	selecting	the	independent	co-ordinates.
The	 two	 important	 types	 of	motion	of	 a	 rigid	 body	 are	 translational	motion

and	 rotational	 motion.	 The	 translation	 of	 a	 rigid	 body	 will	 be	 given	 by	 the
translation	of	any	point	in	it,	say	the	centre	of	mass,	which	behaves	like	a	single
particle	 in	 motion.	 The	 remaining	 three	 co-ordinates	 are	 used	 to	 specify	 the
rotational	motion.

8.2	ANGULAR	MOMENTUM

Consider	a	rigid	body	consisting	of	n	particles	of	mass	mi,	i	=	1,	2,	3,...,	n.	Let
the	body	rotate	with	an	instantaneous	angular	velocity	w	about	an	axis	passing
through	the	centre	of	mass,	say	O,	and	the	co-ordinate	system	Oxyz	 is	 fixed	 in
the	body	with	its	origin	at	O	(see	Fig.	8.1).	Let	the	radius	vector	of	the	particle	of
mass	 mi	 be	 ri.	 Then	 its	 instantaneous	 translational	 velocity	 vi	 is	 given	 by	

where	w	 is	the	angular	velocity	of	the	body	whose	components	are	wx,	wy	and
wz.

Fig.	8.1	Rigid	body	rotating	with	angular	velocity	w	about	an	axis	passing	through	the	fixed	point	O.

The	 angular	 momentum	 about	 the	 origin	 O	 is	





where	the	coefficients	Ixx,	Iyy	and	Izz	involve	the	sums	of	the	squares	of	the	co-
ordinates	and	are	 referred	 to	as	moments	of	 inertia	of	 the	body	about	 the	 co-
ordinate	 axes:	 Ixx–moment	 of	 inertia	 about	 the	 x-axis,	 Iyy–moment	 of	 inertia
about	the	y-axis	and	Izz–moment	of	interia	about	the	z-axis.	The	coefficients	Ixy,
Iyz,...	 involve	 the	 sums	 of	 the	 products	 of	 the	 co-ordinates	 and	 are	 called	 the



products	of	inertia.	The	components	of	L	may	be	written	in	a	compact	form	as	

In	 the	above,	 the	body	rotates	about	a	general	direction.	 If	 the	body	is	 rotating
about	 the	 z-axis,	 w	 =(0,	 0,	 w)	 from	 Eq.(8.7).	 We	 now	 have	

That	is,	the	angular	momentum	vector	has	components	in	all	the	three	directions,
indicating	 that	L	 and	 w	 are	 not	 in	 the	 same	 direction.	 This	 leads	 us	 to	 the
important	 result	 that	L	 is	 not	 necessarily	 always	 in	 the	 same	 direction	 as	 the
instantaneous	axis	of	rotation.

8.3	KINETIC	ENERGY

We	now	derive	a	general	expression	for	 the	rotational	kinetic	energy	of	a	rigid
body.	Consider	a	rigid	body	rotating	about	an	axis	passing	through	a	fixed	point
in	 it	 with	 an	 angular	 velocity	w.	 A	 particle	 of	mass	mi	 at	 a	 distance	 ri	 has	 a
velocity	vi	given	by	Eq.	(8.1).	The	kinetic	energy	of	the	whole	body	is	given	by	



Defining	 a	 new	 vector	 r	 by	

The	ellipsoid	described	by	Eq.	(8.18)	is	called	the	Poinsots	ellipsoid	of	inertia.



8.4	INERTIA	TENSOR

We	considered	a	 rigid	body	as	one	consisting	of	discrete,	 separate	particles.	 In
reality,	 the	 situation	 is	 different	 and	 the	 rigid	 body	 is	 continuous.	 Again,	 the
density	r	may	not	be	constant	over	the	entire	body.	Hence,	it	is	more	appropriate
to	 replace	 summation	 by	 integration	 in	 the	 above	 equations.	 In	 that	 case	 the
moments	 of	 inertia	 and	 products	 of	 inertia	 take	 the	 form	

With	 a	 slight	 change	 in	 notation,	 all	 the	 9	 coefficients	 in	 Eq.	 (8.19)	 can	 be
combined	into	a	single	one.	As	the	co-ordinate	axes	can	be	denoted	by	xj,	j	=	1,
2,	 3	 the	 coefficient	 Ijk	 (k	 =	 1,	 2,	 3)	 can	 be	 written	 as	

where	 djk	 is	 the	 Kronecker	 d	 -symbol.	 It	 is	 obvious	 from	 the	 expression	 for
angular	momentum,	Eq.	(8.7),	that	the	components	of	L	are	linear	functions	of	w
which	 we	 may	 write	 in	 matrix	 notation	 as	

The	 9	 elements	 ,	 ,	 ......	 of	 the	 3	 	 3	 matrix	 may	 be	 considered	 the
components	of	a	single	entity	I,	called	a	tensor.	As	the	products	of	inertia	satisfy
the	 symmetry	 relation	 I12	 =	 I21,	 I23	 =	 I32,	 I13	 =	 I31,	 the	 tensor	 I	 is	 a
symmetric	 tensor.	Now	 the	 relations	 connecting	 the	 components	 of	L	 and	w,
Eq.	 (8.7),	 can	 be	 written	 as	



where	I	is	a	scalar,	the	moment	of	inertia	about	the	axis	of	rotation.	From	
Eq.	(8.25)	we	conclude	that	the	product	of	two	vectors	and	a	tensor	is	a	scalar.
The	 value	 of	 moment	 of	 inertia	 depends	 upon	 the	 direction	 of	 the	 axis	 of

rotation.	 If	w	 changes	 its	direction	with	 respect	 to	 time,	 the	moment	of	 inertia
must	also	be	considered	a	function	of	time.	The	moment	of	inertia	also	depends
upon	 the	 choice	 of	 origin	 of	 the	 body	 set	 of	 axes.	Another	 important	 result,
which	can	be	easily	proved,	is	Steiner’s	theorem:	The	moment	of	inertia	about	a
given	axis	 is	 equal	 to	 the	moment	 of	 inertia	 about	 a	 parallel	 axis	 through	 the
centre	of	mass	plus	the	moment	of	inertia	of	the	body,	as	if	concentrated	at	the
centre	of	mass,	with	respect	to	the	original	axis.

8.5	PRINCIPAL	AXES



The	 inertia	 tensor	we	defined	 is	with	 respect	 to	 a	 co-ordinate	 system	which	 is
fixed	 to	 a	 point	 in	 the	 body.	 We	 can	 simplify	 the	 mathematical	 calculations
considerably	 if	 we	 choose	 the	 co-ordinate	 axes	 in	 such	 a	 way	 that	 the	 off-
diagonal	 elements	 vanish.	 As	 the	 inertia	 tensor	 is	 symmetric,	 it	 is	 always
possible	to	orient	the	axes	so	that	the	products	of	inertia	terms	vanish.	The	axes
of	 this	 co-ordinate	 system	 are	 known	 as	 the	principal	 axes	 of	 the	 body.	 The
origin	of	 the	principal	axes	system	is	called	 the	principal	point.	The	 three	co-
ordinate	 planes,	 each	 of	 which	 passes	 through	 two	 principal	 axes,	 are	 called
principal	planes	at	the	origin.	In	this	system,	the	inertia	tensor	is	diagonal	and
the	three	elements	of	the	inertia	tensor	are	called	principal	moments	of	inertia.
It	is	the	practice	to	use	a	single	subscript	for	the	principal	moments	to	distinguish
them	 from	moments	 of	 inertia	 about	 arbitrary	 axes.	The	 principal	moments	 of
inertia	are	thus	denoted	by	I1,	I2	and	I3.	Since	the	principal	axes	are	attached	to
the	 rigid	body,	 I1,	 I2	and	 I3	do	not	 change	with	 time.	Therefore,	 they	may	be
treated	as	constants.	 It	 is	for	 this	reason	that	moving	axes	attached	to	 the	body
are	 employed.	 In	 the	 principal	 axes	 system	

where	I	is	the	corresponding	principal	moment	of	inertia.
Next,	we	shall	see	how	to	find	the	principal	axes.	Sometimes	we	may	be	able



to	 fix	 up	 the	 principal	 axes	 by	 examining	 the	 symmetry	 of	 the	 body.	 In	 the
general	 case,	 suppose	we	have	 the	moments	 and	products	 of	 inertia	 of	 a	 body
with	respect	to	an	arbitrary	set	of	x,	y	and	z-axes.	Then	its	angular	momentum	is
given	by	Eq.	(8.21).	In	addition,	we	require	Eq.	(8.31)	to	be	true.	This	leads	to	

Rearranging,

The	expansion	of	the	determinant	leads	to	a	cubic	equation	in	I,	whose	3	roots
we	shall	denote	by	I1,	I2	and	I3.	These	are	the	principal	moments	of	inertia.	The
direction	of	the	principal	axis	is	found	by	substituting	the	corresponding	I	back
into	Eq.	 (8.33)	 and	 solving	 for	w1:	w2	 :	w3.	This	 ratio	 is	 just	 the	 ratio	 of	 the
direction	cosines	relative	to	the	original	axes	which	specifies	the	direction	of	that
principal	axis.
Though,	there	are	differences	between	a	second	rank	tensor	and	a	3		3	matrix,

we	 can	make	 use	 of	 the	 properties	 of	matrices	 in	 tensors.	 The	 elements	 of	 an
inertia	 tensor	 I	 in	 a	 fixed	 co-ordinate	 system	 can	 be	 transformed	 into	 the
elements	 of	 a	 tensor	 I	 in	 a	 rotating	 co-ordinate	 system	 by	 a	 similarity

transformation	 	 (8.35)	where 	 is	 the	 transpose	 of	 the	 orthogonal
matrix	 A.	 This	 procedure	 is	 also	 equally	 good	 for	 obtaining	 the	 principal
moments	of	inertia	(see	Example	8.3).
Rigid	bodies	are	classified	into	three	categories,	depending	on	their	principal

moments	 of	 inertia:	 Spherical	 top:	 I1	 =	 I2	 =	 I3.	 Any	 three	 mutually
perpendicular	axes	can	be	selected	as	the	principal	axes.



Symmetric	top:	I1	=	I2	<	I3	or	I1	<	I2	=	 I3.	Two	principal	moments	of	 inertia
are	equal.	Bodies	belonging	to	the	first	type	are	called	oblate	symmetric	top	and
those	of	the	second	type	are	called	prolate	symmetric	top.

Asymmetric	top:	

8.6	EULER’S	ANGLES
The	angular	momentum	L	and	angular	velocity	w	need	not	be	parallel	vectors	as
I	is	a	tensor.	The	value	of	I	with	respect	to	a	fixed	frame,	called	the	space	fixed
frame	 or	 laboratory	 frame,	 does	 not	 remain	 constant	 but	 changes	 as	 the	 body
rotates.	 To	 have	 a	 constant	 value,	 it	must	 be	 expressed	 in	 a	 frame,	 called	 the
body	frame,	that	is	attached	to	the	body.
To	 specify	 the	 position	 of	 a	 rigid	 body,	 6	 co-ordinates	 must	 be	 specified.

Invariably,	3	of	these	are	taken	to	be	the	co-ordinates	of	the	centre	of	mass	of	the
body.	The	other	 three	 co-ordinates	 are	 taken	 to	be	 the	 angles	 that	describe	 the
orientation	of	the	body	axes	with	respect	to	the	space-fixed	axes.	Though	several
choices	are	available,	Euler’s	angles	are	the	most	commonly	used	ones.
Let	the	co-ordinate	system	that	is	fixed	to	the	rigid	body	be	Oxyz	and	the	one

fixed	to	the	space	be	 .	Euler’s	angles	are	the	three	successive	angles	of
rotations	involved	when	we	go	from	the	primed	to	the	unprimed	system.	These
are	illustrated	in	Fig.	8.2.	The	transformation	may	be	represented	by	the	matrix

equation	 	(8.35a)	Step	1:	Rotate	 	axes	anticlockwise	 through	an
angle	f	about	the	
z-axes.	Let	the	resulting	co-ordinate	system	be	 	 	will	be	the	same	as	

(see	 Fig.	 8.2a).	 The	 	 plane	will	 be	 the	 same	 as	 the	 	 plane.	 The
angle	f	is	called	the	precession	angle.	The	transformation	matrix	for	this	rotation
is	 given	 by	





Fig.	8.2	Euler’s	angles	(a)	rotation	through	f	(b)	rotation	through	q	(c)	rotation	through	y	and	directions	of

angular	velocities	

where,

	(8.40)	A	point	to	be	kept	in	mind	is	that	the	angles	f,	q	and	y
are	measured	in	different	planes.	Substituting	the	values	of	Ry,	Rq	and	Rf
in	Eq.	(8.40),	we	get	the	matrix	
R	 as	



The	inverse	transformation	from	the	xyz	axes	to	the	x	y	z	axes	is	x	=	R–1	x	(8.42)
R–1	 is	 given	 by	 the	 transposed	 matrix	 .	 The	 line	 ON	 formed	 by	 the
intersection	of	xy	and	x	y	 planes	 is	 called	 the	 line	of	nodes	 (see	Fig.	 8.2c).	 In
Fig.	8.2c	q	is	the	angle	between	the	axes	z	and	z

y	 is	 the	angle	between	ON	and	Ox	measured	 in	 the	xy	plane	 f	 is	 the	angle
between	Oxand	ON	measured	in	the	xy	plane.

The	 range	 of	 Euler’s	 angles	 is	
(8.43)	 Angular	 velocity	 w	 is	 a	 vector	 pointing	 along	 the	 axis	 of
rotation.	 The	 general	 infinitesimal	 rotation	 associated	with	 vector	w
can	 be	 thought	 of	 as	 consisting	 of	 three	 successive	 infinitesimal
rotations	with	angular	velocities	 	 (8.44)
All	infinitesimal	rotations	can	be	represented	by	vectors	(see	Section

8.7).	 This	 helps	 us	 to	 represent	 the	 three	 time	 derivatives	 	 as
detailed	 below:	



These	are	called	Euler’s	geometrical	equations,	which	express	the	components
of	angular	velocity	with	respect	to	the	body	axes	in	terms	of	Euler’s	angles	and
their	time	derivatives.

8.7	INFINITESIMAL	ROTATIONS

While	 discussing	 Euler’s	 angles,	 we	 associated	 vectors	 with	 infinitesimal



rotations.	 We	 will	 now	 justify	 it	 by	 considering	 how	 vectors	 behave	 under
rotation.	Consider	the	change	in	the	radius	vector	r	of	the	point	M	produced	by
an	 infinitesimal	 anticlockwise	 rotation	 through	 an	 angle	 df	 about	 the	 axis	 of
rotation.	This	is	illustrated	in	Fig.	8.3.

Fig.	8.3	An	infinitesimal	anticlockwise	rotation	of	a	vector.

The	 distance	 ML	 represents	 the	 magnitude	 of	 the	 change	 in	 the	 vector	

The	direction	of	the	vector	dr	is	along	ML	which	is	perpendicular	to	both	r	and	
	where	 	 is	 the	unit	vector	along	 the	axis	of	 rotation.	The	direction	of	 the

vector	 dr	 is	 the	 direction	 in	 which	 a	 right	 hand	 screw	 advances	 as	 vector

	 is	 turned	 into	 vector	 r.	 Hence,	



8.8	RATE	OF	CHANGE	OF	A	VECTOR

Rotational	motion	of	rigid	bodies	is	generally	formulated	in	a	body-fixed	
co-ordinate	 system.	 To	 convert	 results	 from	 a	 body-fixed	 system	 to	 a	 space
fixed-system	and	vice	versa,	we	should	know	how	the	time	derivative	of	a	vector
in	one	system	changes	to	the	time	derivative	in	the	other	system.	Let	Oxyz	be	the
co-ordinate	system	fixed	to	the	rotating	body	and	 	be	the	space-fixed	one
with	common	origin.	Let	the	unit	vectors	of	the	body	fixed	system	be	
The	radius	vector	of	a	mass	point	at	P	of	the	body	with	respect	to	the	body-fixed
system	 is	



Using	 Eq.	 (8.52),	 we	 can	 write	

where	w	 is	 the	 angular	 velocity	 vector	 of	 the	 rotating	 body.	 Eq.	 (8.59)	 is	 a
statement	 of	 the	 transformation	 of	 the	 time	 derivative	 between	 the	 body-fixed



and	space-fixed	co-ordinate	systems.
In	Eq.	(8.57),	(dr/dt)s	is	the	velocity	vs	with	respect	to	the	space-fixed	

co-ordinate	system	and	(dr/dt)r	is	the	velocity	vr	with	respect	to	the	rotating	
co-ordinate	 system.	 Eq.	 (8.57)	 can	 now	 be	 written	 as	

Equation	(8.59)	is	the	basic	law	on	which	the	dynamical	equation	of	motion	of	a
rigid	body	is	based.

8.9	CORIOLIS	FORCE

Equation	 (8.59)	 can	 be	 used	 to	 obtain	 the	 relation	 connecting	 the	 inertial
acceleration	 of	 the	 particle	 of	mass	m	 at	P	 and	 its	 acceleration	 relative	 to	 the
rotating	 frame.	 Using	 Eq.	 (8.59)	 to	 get	 the	 time	 rate	 of	 change	 of	 vs	



where	q	is	the	angle	between	vectors	w	and	r.	This	reduces	to	–mrw2	when	w	is
normal	to	the	radius	vector	(circular	motion).	The	negative	sign	indicates	that	the
centrifugal	 force	 is	 directed	 away	 from	 the	 centre	 of	 rotation.	 It	 is	 not	 a	 real
force,	but	a	fictitious	one.	It	is	present	only	if	we	refer	to	moving	co-ordinates	in
space.
The	 second	 term	 	 called	 the	Coriolis	 force,	 is	 present	 when	 a

particle	is	moving	in	the	rotating	co-ordinate	system.	This	is	also	not	a	real	force,
but	a	fictitious	one.	It	is	directly	proportional	to	vr	and	will	disappear	when	there
is	no	motion.	Another	feature	of	this	force	is	that	it	does	no	work,	since	it	acts	in
a	direction	perpendicular	to	velocity.
The	centrifugal	and	coriolis	forces	are	not	due	to	any	physical	interaction,	and

hence	 they	 are	 non-inertial	 or	 fictitious	 forces.	 The	 rotating	 earth	 can	 be
considered	 a	 rotating	 frame.	 Though	 its	 angular	 velocity	 is	 small,	 it	 has
considerable	effect	on	some	of	the	quantities.	Some	of	them	are:	(i)	The	Coriolis
force	has	to	be	taken	into	account	to	compute	accurately	the	trajectories	of	long
range	projectiles	and	missiles.
(ii)	It	 is	 the	Coriolis	force	on	moving	masses	that	produces	a	counterclockwise



circulation	in	the	northern	hemisphere	which	affects	the	course	of	winds.
(iii)	The	spinning	motion	of	the	earth	is	that	which	causes	the	equatorial	bulge.

8.10	EULER’S	EQUATIONS	OF	MOTION
The	inertia	tensor	I	with	respect	to	a	body-fixed	co-ordinate	system	is	a	constant.
In	 a	 principal	 axes	 system	 also	 it	 is	 diagonal.	Consider	 the	 rotation	 of	 a	 rigid
body	 with	 one	 point	 fixed,	 which	 is	 taken	 as	 the	 origin	 of	 a	 body-fixed	 co-
ordinate	system.	The	rotational	analogue	of	Newton’s	second	law	gives	the	rate
of	change	of	angular	momentum	with	respect	to	a	space-fixed	co-ordinate.	The
torque	
N	 acting	 on	 the	 body	



The	external	 torques	acting	on	 the	earth	are	so	weak	that	 the	rotational	motion
can	be	considered	as	torque-free	in	the	first	approximation.
The	angular	velocity	and	angular	momentum	are	not	parallel	vectors.	Though

angular	momentum	is	a	conserved	quantity,	angular	velocity	 is	not.	 In	general,



the	angular	velocity	will	precess	around	 the	angular	momentum	vector	and	 the
angle	between	them	varies	in	time.	This	is	known	as	nutation.

8.11	FORCE-FREE	MOTION	OF	A
SYMMETRICAL	TOP

As	an	example	of	Euler’s	equations	of	motion,	we	consider	 the	special	case	 in
which	 the	 torque	N	=	0	and	 the	body	 is	a	 symmetrical	 top.	A	symmetrical	 top
possesses	 an	 axis	 of	 symmetry	 and	 therefore	 two	 of	 the	 principal	moments	 of
inertia	are	equal.	If	the	axis	of	symmetry	is	taken	as	the	z-axis,	
For	force-or	torque-free	motion,	the	centre	of	mass	is	either	at	rest	or	in	uniform
motion	 relative	 to	 the	 space-fixed	 inertial	 system.	 Therefore,	 we	 can	 take	 the
centre	of	mass	as	the	origin	of	the	body-fixed	co-ordinate	system.	In	such	a	case
the	angular	momentum	arises	only	 from	rotation	about	 the	centre	of	mass.	For
such	 a	 symmetric	 body,	 Eq.	 (8.72)	 reduces	 to	



Squaring	 Eqs.	 (8.78)	 and	 (8.79)	 and	 adding	



This	precession	is	relative	to	the	body-fixed	axes	which	are	themselves	rotating
in	space	with	a	larger	frequency	w.	Fig.	8.4	shows	the	precession	of	the	angular
velocity	vector	w	about	the	body	symmetry	axis.

Fig.	8.4	(a)	The	precession	of	the	angular	velocity	vector	w	about	the	body-fixed	
z-axis;	(b)	The	angular	velocity	vector	w	precesses	about	the	space-fixed	

z-axis.

The	constants	A	and	w3	can	be	evaluated	in	term	of	the	familiar	constants,	the



kinetic	energy	T	and	angular	momentum	L.

What	we	have	been	discussing	so	far	is	the	precessional	motion	of	w	about	an
axis	 fixed	 in	 the	body.	As	viewed	 from	 the	 space-fixed	 (inertial)	 system,	 there
should	be	two	constants	of	motion,	the	angular	momentum	L	and	kinetic	energy
T.	In	the	body-fixed	sytem,	L	acts	in	the	direction	of	z	as	shown	in	Fig.	8.4(b)	:	L
=	 constant	 (8.86)	 Since	 the	 centre	 of	 mass	 is	 fixed	 ,	 the	 kinetic	 energy	 is
completely	 rotational	 and	 is	 given	 by	

As	L.w	is	constant,	during	motion	w	must	move	in	such	a	way	that	its	projection
on	the	stationary	L	(the	z-axis)	 is	constant.	That	 is,	w	must	precess	around	and
make	a	constant	angle	q	with	 the	angular	momentum	vector	L	 (see	Fig.	8.4b).
From	 Eq.	 (8.87)	 the	 angle	 q	 between	 the	 vectors	 L	 and	 w	 is	 given	 by	

This	precession	of	w	 about	 the	 angular	momentum	vector	L	 traces	 out	 a	 cone
around	L.	This	cone	is	known	as	the	space	cone.	Thus,	when	viewed	from	the
body	 co-ordinate	 system,	 the	 vector	w	 precesses	 around	 the	 z-axis	 (symmetry
axis)	 whereas	 it	 precesses	 around	 the	 z-axis	 when	 viewed	 in	 the	 space-fixed
system.	The	situation	may	be	described	as	shown	in	Fig.	8.5	(a),	with	the	body
cone	rolling	around	the	space	cone	with	the	line	of	contact	along	the	direction	of
angular	 velocity	w	 which	 precesses	 around	 the	 z-axis	 when	 viewed	 from	 the
body-fixed	 frame	 and	 around	 the	 z-axis	 when	 viewed	 from	 the	 space-fixed
frame.	Depending	on	the	value	of	I	and	I3,	the	body	cone	may	roll	outside	(I3	<
I)	or	inside	(I3	>	I)	the	space	cone	as	shown	in	Fig.	8.5.
An	 interesting	 example	 of	 the	 force-free	 motion	 of	 a	 symmetric	 body	 is

provided	by	the	rotation	of	the	earth.	The	earth	rotates	freely	about	its	polar	axis.
Its	axis	of	 rotation	departs	 slightly	 from	 its	 symmetry	axis.	From	astronomical



measurements	 (I3	 –	 I)/I	 is	 found	 to	 be	 0.00329.	 From	 Eq.	 (8.82)	

Recent	measurements	give	Tp	=	433	days.	The	discrepancy	 is	probably	due	 to
the	fact	that	the	earth	is	not	a	perfectly	rigid	body.	Thus,	the	earth’s	rotation	axis
precesses	about	the	north	pole	in	a	circle	of	radius	about	10	m	with	a	period	of
about	433	days.

Fig.	8.5	(a)	Space	and	body	cones	for	I3	<	I;	(b)	Space	and	body	cones	for	I3	>	I.

8.12	HEAVY	SYMMETRIC	TOP	WITH	ONE	POINT	FIXED
As	a	second	example	of	rigid	body	dynamics,	we	consider	the	motion	of	a	heavy
symmetrical	top	spinning	freely	about	its	symmetry	axis	under	the	influence	of	a
torque	produced	by	its	own	weight.	The	symmetry	axis	of	the	body	is	one	of	its
principal	axes	and	we	choose	it	as	the	z-axis	of	the	co-ordinate	system	fixed	in
the	body.	The	body	 is	 fixed	at	 the	point	O	which	 is	on	 the	 symmetry	axis	but
does	not	coincide	with	the	centre	of	gravity.	Point	O	is	taken	as	the	origin	of	the
space-fixed	 	 and	 body-fixed	 (xyz)	 co-ordinate	 systems.	 Fig.	 8.6	 shows
the	spinning	top	along	with	the	axes	of	the	co-ordinate	systems.	We	shall	use	the
Euler’s	angles	to	describe	the	motion	of	the	top.	The	line	ON	is	the	line	of	nodes;
q	gives	the	inclination	of	the	z-axis	from	the	Oz	axis,	f	measures	the	azimuth	of
the	symmetric	top	about	the	vertical,	and	 	is	the	rotation	angle	of	the	top	about
its	own	z-axis.	Let	 the	distance	of	 the	centre	of	gravity	G	 from	O	be	 l.	As	 the



symmetry	 axis	 is	 selected	 as	 the	 z-	 axis	 of	 the	 body-fixed	 system	

	

Fig.	8.6	Heavy	symmetric	top	with	one	point	fixed.



Substituting	 Eq.	 (8.90)	 in	 Eq.	 (8.89)	 we	 get	

Here,	pf	is	the	angular	momentum	due	to	the	angular	rotation	of	f	about	the	
z-axis	and	py	is	that	due	to	the	angular	rotation	of	y	about	the	z-axis.	These	are
the	 two	 first	 integrals	 of	motion.	 Another	 first	 integral	 is	 the	 total	 energy	E:	



Thus,	the	problem	is	reduced	to	motion	with	one	degree	of	freedom.	Replacing
the	 constant	 on	 the	 left	 side	 of	 Eq.	 (8.99)	 by	 E,	 we	 have	



Integrating

Integration	 of	Eq.	 (8.105)	 involves	 elliptic	 integrals	 and	 the	 procedure	 is	 very
complicated.	 The	 general	 feature	 of	 the	 motion	 can	 be	 understood	 without
performing	the	integration.
The	plot	of	the	effective	potential	 	versus	q	for	the	physically	acceptable

range	of	 	 is	given	in	Fig.	8.7.	From	Eq.	(8.105),	it	 is	obvious	that	the
motion	will	 be	 limited	 to	 the	 case	 	 For	 any	 energy	 value 	 the
motion	is	limited	between	two	extreme	values	q1	and	q2.	This	 implies	 that	 the
angle	 that	 the	 symmetry	 axis	 Oz	 can	 make	 with	 the	 vertical	 is	 limited	 to	

	 In	 other	words,	 the	 symmetry	 axis	Oz	 of	 the	 top	will	 be	 bobbing
back	and	forth	between	two	right	circular	cones	of	half	angles	q1	and	q2	while
precessing	with	 the	 angular	 velocity	 	 Eq.	 (8.97),	 about	Oz.	 Such	 a	 bobbing
back	 and	 forth	 motion	 is	 called	 nutation.	 If	 	 given	 by	 Eq.	 (8.97)	 does	 not
change	sign	as	q	varies	between	q1	and	q2,	the	path	described	by	the	projection
of	the	symmetry	axis	on	a	unit	sphere	with	the	centre	at	 the	origin	is	shown	in
Fig.	 8.8(a).	 If	 	 does	 change	 sign	 between	 the	 limiting	 values	 of	 q,	 the
precessional	angular	velocity	must	have	opposite	signs	at	q	=	q1	and	q	=	q2.	In



this	 situation	 the	 nutational-precessional	 symmetry	 axis	 describes	 loops	 as
shown	in	Fig.	8.8(b).	If	vanishes	at	one	of	 the	 limiting	values	of	q,	say	q1,	 the
resulting	motion	is	cusplike	as	shown	in	Fig.	8.8	(c).

Fig.	8.7	Plot	of	effective	potential	 	versus	q	for	a	heavy	symmetrical	top.



Next,	we	shall	consider	the	case	of	precession	without	nutation.	If	the	energy
is	such	that	 	the	value	of	q	is	limited	to	a	single	value	of	 	The
resulting	motion	is	a	steady	or	pure	precession	without	nutation	about	 .	The
steady	precession	at	 the	fixed	angle	of	 inclination	of	 	 is	possible	only	if	 the
angular	 velocity	 of	 the	 spinning	 top	

For	the	given	value	of	qm,	the	precessional	angular	velocity	 	has	two	possible
values,	one	giving	rise	to	a	fast	precession	and	the	other	a	slow	precession.	Slow
precession	is	the	one	usually	observed.
If	a	top	starts	spinning	sufficiently	fast	and	with	its	axis	vertical,	it	will	remain

steady	in	the	upright	position	for	a	while.	This	condition	is	called	sleeping	and
the	top	is	said	to	be	a	sleeping	top.	This	corresponds	to	the	constant	value	q	=	0.
The	 criterion	 for	 stability	 of	 the	 sleeping	 top	 is	 given	 by	

Friction	gradually	 slows	down	 the	 top,	 and	 it	 starts	 undergoing	 a	 nutation	 and
topples	over	eventually.

WORKED	EXAMPLES
Example	8.1	Find	the	moments	and	products	of	inertia	of	a	homogeneous	cube
of	side	a	for	an	origin	at	one	corner,	with	axes	directed	along	the	edges.



Example	8.2	Find	the	principal	axes	and	the	principal	moments	of	inertia	for	a
cube	of	mass	M	and	sides	a	for	an	origin	at	one	corner.
Solution:	From	Example	8.1

Obviously	the	specified	axes	are	not	principal	axes.	To	find	the	principal	axes	we
have	to	solve	the	determinant





That	is,	when	the	cube	is	rotating	about	this	principal	axis,	the	projections	of	w
on	the	three	co-ordinate	axes	are	equal.	Hence,	the	principal	axis	associated	with
I3	coincides	with	the	main	diagonal	of	the	cube.	The	orientation	of	the	principal
axes	 associated	 with	 I1	 and	 I2	 are	 arbitrary:	 they	 have	 to	 lie	 in	 a	 plane
perpendicular	to	the	diagonal	of	the	cube.

Example	8.3	Obtain	 the	 principal	moments	 of	 inertia	 of	 a	 cube	 of	 side	a	 and
mass	M	by	rotating	the	cube	about	the	co-ordinate	axes	of	a	co-ordinate	system
with	one	corner	as	the	origin	and	the	axes	directed	along	the	sides	of	the	cube.
Solution:	The	inertia	tensor	of	a	cube	of	side	a	and	mass	M	with	one	corner	as
the	origin	and	the	axes	directed	along	the	sides	is	given	by	Example	8.1.

Fig.	8.9	A	cube	of	side	a	with	one	corner	as	the	origin	and	the	axes	along	the	sides	of	the	cube.



The	diagonal	of	the	cube	is	a	principal	axis.	We	have	to	rotate	the	cube	in	such
a	way	that	the	x1	axis	 in	Fig.	8.9	coincides	with	 the	diagonal	of	 the	cube.	The
length	of	 the	 face	diagonal	of	a	cube	 	and	 that	of	 the	body	diagonal	 is	

	The	above	can	be	achieved	by	two	successive	rotations:	(i)	rotation	through
an	angle	of	 about	the	x3	axis;	and	(ii)	rotation	about	 	through	an	angle

The	rotation	matrix	corresponding	to	the	first	rotation	is





Example	8.4	Consider	a	dumb-bell	formed	by	two	point	masses	m	at	the	ends	of
a	 massless	 rod	 of	 length	 2a.	 It	 is	 constrained	 to	 rotate	 with	 constant	 angular
velocity	w	 about	 an	 axis	 that	 makes	 an	 angle	 a	 with	 the	 rod.	 Calculate	 the
angular	momentum	and	the	torque	that	is	applied	to	the	system.
Solution:	Fig.	8.10	shows	the	dumb-bell	rotating	with	angular	velocity	w	about
an	axis	AOA	in	the	inertial	co-ordinate	system.

	

Fig.	8.10	Dumb-bell	rotating	about	an	axis	that	makes	an	angle	a	with	the	rod.

Resolving	w	into	components	perpendicular	and	parallel	to	the	dumb-bell	axis	



Example	8.5	Consider	a	particle	falling	freely	from	a	height	h	at	latitude	l.	Find
its	deflection	from	the	vertical	due	to	Coriolis	force.
Solution:	Let	P	 be	 a	point	on	 the	 surface	of	 earth	 at	 latitude	 l.	A	particle	 falls
vertically	from	a	height	h	above	P.	The	velocity	of	 the	body	is	almost	vertical,
say	along	 the	 z-axis.	The	 angular	 velocity	w	 of	 the	 earth	 is	 in	 the	 north-south
vertical	plane	or	yz	plane.	The	Coriolis	force	–2mw		vr	will	be	in	the	east-west
direction,	which	will	be	the	deflecting	force.	Thus,	in	the	northern	hemisphere	a
freely	falling	body	will	be	deflected	to	the	east,	which	is	taken	as	the	x-axis.	The
equation	 of	 motion	 in	 the	 x-direction	 is	

Fig.	8.11	A	particle	falling	freely	from	a	height	h	at	latitude.



The	components	of	w	are	(0,	w	cos	l,	w	sin	l).	The	components	of	g	are	(0,	0,	–
g).	Since	the	Coriolis	force	is	very	weak	compared	to	g,	the	x	and	y	components
of	 the	velocity	 are	 approximately	 zero.	Hence,	 the	 components	of	 the	velocity
are
(0,	 0,	 –	 gt).	 Then	

That	is,	there	is	an	eastward	deflection	given	by	x	when	the	particle	falls	freely
from	a	height	h	at	latitude	l.

Example	8.6	A	body	can	rotate	freely	about	the	principal	axis	corresponding	to
the	principal	moment	of	inertia	I3.	If	it	is	given	a	small	displacement,	show	that
the	 rotation	will	 be	 oscillatory	 if	 I3	 is	 either	 the	 largest	 or	 the	 smallest	 of	 the



three	principal	moments	of	inertia.
Solution:	Since	the	displacement	is	small,	we	may	take	w1	and	w2	as	small	and
the	product	w1w2	may	be	neglected.	From	 the	 third	equation	of	Eq.	 (8.72)	we
get	

and	the	solution	for	w1	will	be	oscillatory.	On	the	other	hand,	if	I1	>	I3	>	I2	or	I1
<	I3	<	I2,	the	equation	becomes	
the	solution	will	be	exponentially	increasing	with	time.	Similar	arguments	hold
good	for	w2	also.	Hence,	the	rotation	will	be	oscillatory	if	I3	is	either	the	largest
or	the	smallest	of	the	three	principal	moments	of	inertia.

Example	 8.7	 A	 body	 moves	 about	 a	 point	 O	 under	 no	 force.	 The	 principal
moments	of	inertia	at	O	being	3A,	5A	and	6A.	Initially	the	angular	velocity	has
components	w1	=	w,	w2	=	0	and	w3	=	w	about	the	corresponding	principal	axes.
Show	 that	 at	 time	 t	



Integrating



Example	 8.8	 If	w3	 is	 the	 angular	 velocity	 of	 a	 freely	 rotating	 symmetric	 top
about	 its	 symmetry	axis,	 show	 that	 the	 symmetry	axis	 rotates	about	 the	 space-

fixed	z-axis	with	angular	frequency	 	where	q	and	f	are	Euler’s

angles.
Solution:	From	the	third	equation	of	Eq.(8.49),	we	have	 ………
(i)	In	the	force-free	motion	of	a	symmetric	top	we	have	seen	that	the	angular	velocity	vector	w	of	the	top
precesses	 in	 a	 cone	 about	 the	 body	 sysmmetry	 axis	 with	 an	 angular	 frequency	 k	 given	 by	

………(ii)	This	angular	frequency	is	the	same	as	 which	is	also

directed	along	the	symmetry	axis.	Substituting	this	value	of	 	in	the	expression
for	w3	and	simplifying,	

we	get	

Example	 8.9	 In	 the	 absence	 of	 external	 torque	 on	 a	 body,	 prove	 that	 (i)	 the
kinetic	 energy	 is	 constant;	 (ii)	 the	 magnitude	 of	 the	 square	 of	 the	 angular
momentum	(L2)	is	constant.
Solution:	(i)	Multiplying	the	first	of	Eq.	(8.72)	by	w1,	the	second	by	w2	and	the
third	 by	 w3,	 and	 adding,	 we	 get	



REVIEW	QUESTIONS
1.	 In	general,	 the	angular	momentum	vector	L	 is	not	necessarily	always	 in	 the
same	direction	as	the	instantaneous	axis	of	rotation.	Substantiate.

2.	What	are	moments	of	inertia	and	products	of	inertia?
3.	What	is	Poinsot’s	ellipsoid	of	inertia?
4.	Express	the	rotational	kinetic	energy	of	a	body	in	terms	of	inertia	tensor	and
angular	velocity.

5.	What	are	principal	axes	and	principal	moments	of	inertia?
6.	When	do	you	say	a	body	 is	a	symmetric	 top?	Give	an	example.	Distinguish
between	prolate	and	oblate	symmetric	tops.

7.	If	the	rotation	axis	of	a	body	is	in	the	direction	of	a	principal	axis,	show	that
the	 angular	 velocity	 vector	 and	 angular	 momentum	 will	 be	 in	 the	 same
direction.

8.	If	the	moments	of	inertia	and	products	of	inertia	of	a	body	with	respect	to	an



arbitrary	 co-ordinate	 system	 are	 known,	 how	 do	 you	 find	 out	 the	 principal
moments	of	inertia	in	a	principal	axes	system?

9.	What	are	Euler’s	angles?
10.	State	and	explain	Euler’s	geometrical	equations.
11.	 An	 infinitesimal	 rotation	 can	 be	 represented	 by	 a	 vector	 along	 the
instantaneous	axis	of	rotation.	Substantiate.

12.	 Express	 the	 inertial	 acceleration	 of	 a	 particle	 of	 mass	 m	 in	 terms	 of	 its
acceleration	relative	to	a	rotating	frame.

13.	What	are	centrifugal	and	Coriolis	forces?
14.	What	do	you	understand	by	nutation?
15.	In	the	force-free	motion	of	a	rigid	body,	distinguish	between	body	cone	and
space	cone.

16.	Explain	 the	precessional	motion	with	and	without	nutation	 in	 the	case	of	a
spinning	heavy	symmetric	top.

PROBLEMS
1.	A	rigid	body	of	mass	M	 is	 suspended	and	allowed	 to	 swing	 freely	under	 its
own	weight	about	a	fixed	horizontal	axis	of	rotation.	Obtain	an	expression	for
the	frequency	of	oscillation	and	find	the	length	of	an	equivalent	(in	frequency)
simple	pendulum.

2.	Find	the	moment	of	inertia	tensor	for	the	configuration.	in	which	point	masses
of	1,	2,	3	and	4	units	are	located	at	(1,	0,	0),	(1,	1,	0),	(1,	1,	1)	and	(1,	1,	–1).

3.	 Find	 the	 moments	 and	 products	 of	 inertia	 for	 a	 homogeneous	 rectangular
parallelopiped	of	mass	M	with	edges	a,	b,	c	with	 co-ordinate	 axes	 along	 the
edges	and	the	origin	located	at	one	corner.

4.	A	 rigid	 body	 is	 rotating	 about	 the	 x-axis.	 Find:	 (i)	 the	 angular	 momentum
vector	L;	(ii)	the	condition	for	L	and	w	to	be	parallel;	(iii)	the	kinetic	energy
of	the	body	under	that	condition.

5.	Find	 the	moments	and	products	of	 inertia	for	a	rectangular	parallelopiped	of
mass	M	 with	 edges	 a,	 b,	 c	 with	 its	 origin	 at	 the	 centre	 of	 mass	 and	 axes
parallel	to	the	three	edges.

6.	 In	 the	principal	 axes	 system,	express	 the	 rotational	kinetic	energy	of	a	 rigid
symmetric	body	(I1	=	I2	=	I)	in	terms	of	Euler’s	angles.

7.	A	rigid	body	is	rotating	under	the	influence	of	an	external	torque	N	acting	on
it.	 If	w	 is	 the	 angular	 velocity	 and	T	 is	 its	 kinetic	 energy,	 show	 that	 in	 the
principal	axes	system.

8.	If	a	rectangular	parallellopiped	with	its	edges	a,	a,	b	rotates	about	its	centre	of



gravity	under	no	forces,	prove	that	its	angular	velocity	about	one	principal	axis
is	constant.	Also	prove	that	the	motion	is	periodic	about	the	other	two	axes.

[Hint:	the	values	of	the	principal	moment’s	of	inertia	are	I1	=	I2	=	m(a2	+	b2)/12

I3	=	m(a2	+	a2)/12.]
9.	A	body	 is	 dropped	 from	 rest	 at	 a	 height	 of	 300	m	above	 the	 surface	 of	 the
earth	 at	 a	 latitude	 of	 45°.	 Find	 the	 magnitude	 of	 deflection	 due	 to	 Coriolis
force	when	the	body	touches	the	earth.



9

Theory	of	Small	Oscillations

The	theory	of	small	oscillations	about	the	equilibrium	position	is	of	importance
in	 molecular	 spectra,	 acoustics,	 vibrations	 of	 atoms	 in	 solids,	 vibrations	 of
coupled	mechanical	systems	and	coupled	electrical	circuits.	If	the	displacement
from	the	stable	equilibrium	conditions	are	small,	the	motion	can	be	described	as
that	 of	 a	 system	 of	 coupled	 linear	 harmonic	 oscillators	 with	 each	 generalized
coordinate	expressed	as	a	 function	of	 the	different	 frequencies	of	vibrations	of
the	 system.	 The	 problem	 can	 be	 simplified	 further	 by	 a	 transformation	 of	 the
generalized	coordinates	 to	another	set	of	coordinates,	each	of	which	undergoes
periodic	 changes	 with	 a	 well-defined	 single	 frequency.	 In	 this	 chapter	 we
develop	a	theory	of	small	oscillations	based	on	Lagrangian	formulation.

9.1	EQUILIBRIUM	AND	POTENTIAL
ENERGY

To	 understand	 the	 motion	 of	 a	 system	 in	 the	 neighbourhood	 of	 stable
equilibrium,	 it	 is	 essential	 that	we	 should	 know	 the	 relation	 between	 potential
energy	and	equilibrium.	Let	us	consider	a	conservative	system	having	n	degrees
of	 freedom	 with	 generalized	 coordinates	 q1,	 q2...,	 qn.	 Since	 the	 system	 is
conservative,	the	potential	energy	V	is	a	function	of	the	generalized	coordinates	

The	 system	 is	 said	 to	be	 in	 equilibrium	 if	 the	generalized	 forces	 acting	on	 the

system	vanish:	

An	 equilibrium	 position	 of	 the	 system	 is	 said	 to	 be	 stable	 if,	 after	 a	 small



disturbance,	 the	 system	does	 return	 to	 its	 original	 configuration.	 If	 the	 system
does	not	return	to	its	original	configuration	it	is	in	an	unstable	equilibrium.	On
the	other	hand,	if	the	system	is	displaced	and	it	has	no	tendency	to	move	toward
or	away	from	the	equilibrium	configuration,	the	system	is	said	to	be	in	neutral
equilibrium.
Figure	9.1	gives	the	form	of	a	potential	function	V	versus	q	curve.	At	points	A

and	 B,	 	 and	 therefore	 they	 are	 equilibrium	 positions.	 Let	 the
potential	 and	 kinetic	 energies	

Fig.	9.1	Form	of	the	potential	energy	curve	at	equilibrium.

of	a	system	in	the	equilibrium	position	be	V0	and	T0,	respectively.	Suppose	the
system	 is	 given	 a	 small	 displacement	 and	 the	 potential	 and	 kinetic	 energies	 at
any	subsequent	time	be	V	and	T.	By	the	law	of	conservation	of	energy	T0	+	V0	=
T	+	V

T	 –	 T0	 =	 –	 (V	 –	 V0)	 (9.3)	 Assume	 that	 the	 system	 is	 in	 equilibrium
corresponding	to	the	configuration	at	A,	where	the	potential	energy	V0	 is
minimum.	Any	displacement	from	this	equilibrium	position	will	lead	to	a
potential	energy	V	>	V0.	Then	V	–	V0	is	a	positive	quantity	and	from	Eq.
(9.3),	T	–	T0	is	negative	or	T	<	T0.	Since	T	decreases	with	displacement,
the	velocity	decreases	and	finally	comes	to	zero;	then	it	will	start	coming
back	 to	 the	 equilibrium	configuration.	Thus,	 the	 system	will	 be	 in	 stable
equilibrium.	However,	 if	V	 decreases	 as	 a	 result	 of	 a	 small	displacement
from	 an	 equilibrium	 position,	 T	 –	 T0	 will	 be	 positive	 and	 velocity



increases	indefinitely,	corresponding	to	an	unstable	motion.	This	situation
corresponds	to	position	
B	in	Fig.	9.1.

Thus,	for	small	displacements,	the	condition	for	stable	equilibrium	is	that	the
potential	energy	V0	is	minimum	at	the	equilibrium	configuration.

9.2	THEORY	OF	SMALL	OSCILLATIONS

Consider	a	conservative	system	having	n	degrees	of	freedom,	described	by	a	set
of	n	generalized	coordinates	q1,	q2,...,	qn.	The	system	has	a	stable	equilibrium
corresponding	 to	 the	minimum	of	 potential	 energy	V0.	 Let	 us	 assume	 that	 the
generalized	 coordinates	 are	 measured	 with	 respect	 to	 this	 stable	 equilibrium
position.	 Expanding	 the	 potential	 V(q1,	 q2,...,	 qn)	 of	 the	 system	 about	 the
equilibrium	 point	 in	 a	 Taylor	 series,	 we	 have	

The	 first	 term	 is	 the	 potential	 energy	 at	 the	 equilibrium	 position	 which	 is	 a
constant	 and	 may	 be	 taken	 as	 zero.	 The	 second	 term	 vanishes,	 since	 at	 the

equilibrium	 position	 	 Neglecting	 higher	 terms	

It	is	obvious	that	Vij’s	are	symmetric,	since	the	second	derivatives	are	evaluated
at	 the	 equilibrium	 position	 and	 the	 order	 of	 differentiation	 is	 immaterial.	 The
diagonal	 elements	 represent	 the	 force	 constant	 of	 the	 restoring	 force	 acting	on
the	particle.	Since	V	 is	measured	from	its	minimum	value	and	this	minimum	is
taken	as	zero,	V	>	0.
If	 the	 transformation	 equations	 defining	 the	 generalized	 coordinates	 do	 not
depend	 explicitly	 on	 time,	 the	 kinetic	 energy	 is	 a	 quadratic	 function	 of	 the



generalized	 velocities.	 That	 is,	

where	 the	 mij’s	 are	 in	 general	 functions	 of	 the	 generalized	 coordinates	 and
contain	 the	masses.	 Expanding	mij	 into	 a	 Taylor	 series	 about	 the	 equilibrium
values	 of	 qi’s	 and	 neglecting	 terms	 beyond	 the	 constant	 values	 of	mij	 at	 the
equilibrium	 position	mij	 =	 (mij)0………(9.8)	 Designating	 the	 constant
values	 of	 (mij)0	 by	 the	 constant	 Gij’s	

Again	it	is	obvious	that	the	constants	Gij	must	be	symmetric,	since	the	individual
terms	are	unaffected	by	an	interchange	of	indices.	For	the	case	i	=	1,	2	and	j	=	1,
2

Equation	 (9.12)	 is	 a	 system	 of	 n	 second	 order	 homogeneous	 differential



equations	 with	 constant	 coefficients.	 Each	 of	 the	 equations	 involves	 all	 the	 n
coordinates.
The	 form	 of	 the	 equations	 suggests	 an	 oscillatory	 solution	 of	 the	 type	

where	 the	amplitude	Caj	 is	 to	be	determined	 from	 initial	 conditions,	while	 the
natural	frequency	w	is	determined	from	the	system’s	constant.	The	factor	C	is	a
scale	factor,	which	is	the	same	for	all	coordinates.	Substituting	Eq.	(9.13)	into	
Eq.	 (9.12),	 we	 get	

This	set	of	n	linear	homogeneous	equations	for	the	a’s	will	have	a	solution	only
if	 the	 determinant	 of	 the	 coefficients	 vanishes:	

This	equation	is	of	nth	degree	in	w2,	and	the	roots	give	the	frequencies	for	which
Eq.	 (9.13)	 represents	a	correct	 solution	of	Eq.	 (9.12).	That	 is,	 the	equations	of
motion	will	be	satisfied	by	an	oscillatory	solution	of	the	type	given	in	Eq.	(9.13),
not	merely	for	one	frequency	but	in	general	for	a	set	of	n	frequencies	wp.	These
frequencies	are	often	called	 the	 frequencies	of	 free	vibration	 or	 the	resonant
frequencies	 of	 the	 system.	 A	 complete	 solution	 of	 the	 equations	 of	 motion
therefore	 involves	 a	 superposition	 of	 oscillations	 with	 all	 the	 allowed



frequencies:	

Each	 of	 the	 coordinates	 is	 dependent	 on	 all	 the	 frequencies	 and	 none	 is	 a
periodic	function	involving	only	one	resonant	frequency.
To	determine	the	amplitudes	(aj’s),	each	value	of	wp	 is	substituted	separately

in	Eq.	(9.15).	By	this	it	is	possible	to	determine	(n	–	1)	coefficients	in	terms	of
the	nth	one.	The	value	of	the	nth	coefficient	must	be	determined	arbitrarily.

9.3	NORMAL	MODES

As	 discussed	 in	 the	 previous	 section,	 the	 expression	 in	 Eq.	 (9.17)	 for	 the
coordinates	qj	contains	n	terms,	and	each	term	corresponds	to	one	frequency.	It
is	possible	to	effect	a	linear	transformation	to	new	generalized	coordinates	
Q1,	 Q2,	 Q3...	 so	 that	 one	 coordinate	 contains	 only	 one	 frequency.	 Let	 the

transformation	be	of	the	form	

Next	we	shall	express	the	potential	energy	V	and	the	kinetic	energy	T	in	terms	of
the	new	coordinates,	the	Q’s.	In	terms	of	column	vectors	q	and	Q,	Eq.	(9.18)	can
be	written	as	q	=	AQ………(9.19)	where	A	is	a	matrix,	called	the	matrix	of	eigenvectors,	formed
by	 the	 eigenvectors	 (a’s).	 Eq.	 (9.14)	 can	 also	 be	 written	 as	 the	 matrix	 equation	

The	matrix	of	the	eigenvectors	A	diagonalizes	both	G	and	V,	G	to	a	unit	matrix
and	 V	 to	 a	 matrix	 whose	 diagonal	 elements	 are	 the	 eigenvalues	 w2:	

The	 potential	 energy	 V,	 given	 in	 Eq.	 (9.5),	 in	 matrix	 form	 is	



It	is	evident	from	Eqs.	(9.25)	and	(9.27)	that	both	potential	and	kinetic	energies
are	homogeneous	quadratic	functions	without	any	cross	terms.
In	 terms	 of	 the	 new	 coordinates	 the	 Lagrangian	

Thus,	each	of	 the	new	coordinates	 is	a	periodic	function	involving	only	one	of
the	 resonant	 frequencies.	 The	 coordinates	 Q1,	 Q2,...,	 Qn	 are	 called	 normal
coordinates	and	w1,	w2,...,	wn	are	the	corresponding	normal	frequencies.	Each



normal	 coordinate	 corresponds	 to	 a	 vibration	 with	 only	 one	 frequency.	 These
component	vibrations	are	called	normal	modes	of	vibration.	In	each	mode,	all
the	particles	vibrate	with	the	same	frequency	and	with	the	same	phase.	Particles
may	be	exactly	out	of	phase	if	the	a's	have	opposite	sign.

9.4	TWO	COUPLED	PENDULA

Consider	 two	 identical	 simple	pendula	of	mass	m	 and	 length	 l	connected	 by	 a
massless	spring	of	spring	constant	k.	The	displacement	of	 the	bobs	 to	 the	right
are	x1	and	x2	(see	Fig.	9.2),	and	the	corresponding	angular	displacements	are	q1
and	q2.	The	potential	 energy	when	 the	bob	 is	 at	 the	mean	position	 is	 taken	as
zero.	Angles	q1	and	q2	can	be	taken	as	the	generalized	coordinates.

Fig.	9.2	Two	simple	pendula	coupled	by	a	spring.

Resonant	Frequencies	The	potential	energy	of	the	system	



The	 resonant	 frequencies	 can	 be	 obtained	 from	 Eq.	 (9.16).	 The	 secular
determinant	 is	



One	of	the	resonant	frequencies,	 ,	is	the	same	as	that	of	a	free	pendulum	of
the	same	length.	In	the	other	mode,	both	the	pendula	and	the	spring	participate.

Normal	Modes	Next	we	shall	find	the	normal	modes	of	the	system.
Eq.	(9.14)	gives	

These	eigenvectors	correspond	to	the	value	of	w	=	w1.	To	get	 the	eigenvectors
corresponding	to	the	value	of	w	=	w2,	substitute	the	value	of	w2	in	Eqs.	 (9.39)



and	 (9.40).	 We	 get	

From	 Eq.	 (9.19)	



Next	 we	 shall	 see	 the	 physical	 meaning	 of	 these	 normal	 modes.	 For	 the	Q1
mode,	we	take	Q2	=	O;	therefore	q1	–	q2	=	0	or	q1	=	q2………(9.56)	That	 is,
the	 two	 pendula	 are	 oscillating	 in	 phase.	 This	 is	 the	 symmetric	 mode	 of
oscillation	shown	in	Fig.	9.3	(a).	For	the	Q2	mode,	we	take	Q1	=	0;	then	q1	+	q2
=	 0	 or	 q1	 =	 –q2………(9.57)	 That	 is,	 the	 two	 pendula	 are	 oscillating	 out	 of
phase	with	each	other.	This	is	the	antisymmetric	mode	shown	in	Fig.	9.3	(b).



Fig.	9.3	Normal	modes	of	two	coupled	pendula:	(a)	Symmetric	mode:	q1	=	q2,	x1	=	x2;	(b)	Antisymmetric
mode:	q1	=	–q2,	x1	=	–x2.

9.5	LONGITUDINAL	VIBRATIONS	OF	CO2	MOLECULE

In	 the	 CO2	 molecule,	 the	 three	 atoms	 are	 in	 the	 same	 straight	 line.	 The
complicated	 interatomic	potential	can	be	approximated	by	 two	springs	of	force
constant	 k	 joining	 the	 three	 atoms	 as	 shown	 in	 Fig.	 9.4.	 The	 displacement
coordinates	marking	the	position	of	the	three	atoms	are	also	shown	in	the	figure.

Fig.	9.4	A	linear	symmetrical	CO2	molecule.

Normal	Frequencies	The	potential	energy	



Normal	Modes	To	find	the	normal	modes	of	the	system,	the



expanded	form	of	Eq.	(9.14)	is	needed.	To	each	value	of	w	we	will
have	a	set	of	a’s.	To	distinguish	them,	we	shall	add	an	additional
subscript	p.

Substituting	the	frequency	w1	=	0,	from	Eqs.	(9.65a)	and	(9.65c)	a11	=	a21	and	
a21	=	a31.

Hence,
a11	 =	 a21	 =	 a31	 =	a………(9.66)	 That	 is,	 the	 displacements	 of	 all	 the
atoms	 are	 equal	 and	 are	 in	 the	 same	 direction.	 It	 clearly	 shows	 that	 this
mode	is	not	an	oscillation	but	a	pure	translation	of	the	system	as	a	whole
and	is	illustrated	in	Fig.	9.5	(a).

Fig.	9.5	Longitudinal	modes	of	vibration	of	a	CO2	molecule:	(a)	translational	mode;	(b)	symmetric
stretching	mode;	(c)	antisymmetric	streching	mode.

Setting	 	from	Eq.	(9.65a)	a22	=	0	and	from	Eq.	(9.65b)	
a12	=	–	a32.	Hence,	a12	=	–	a32	=	b	a22	=	0………(9.67)	 In	 this	mode,	 the
centre	atom	is	at	rest	while	the	outer	ones	oscillate	exactly	out	of	phase,	which	is
illustrated	 in	 Fig.	 9.5	 (b).	 This	mode	 is	 called	 a	 symmetric	 stretching	mode
since	both	the	bonds	either	stretch	or	compress	at	the	same	time.



Hence,	the	two	outer	atoms	vibrate	with	the	same	amplitude,	while	the	inner	one
oscillates	 out	 of	 phase	 with	 them	 with	 a	 different	 amplitude.	 This	 mode	 of
vibration	 is	 illustrated	 in	 Fig.	 9.5	 (c),	 which	 is	 known	 as	 asymmetric	 or
antisymmetric	 stretching	 mode,	 since	 when	 one	 bond	 gets	 compressed	 the
other	gets	elongated.

Normal	Coordinates	From	Eqs.	(9.66),	(9.67)	and	(9.68)	the
matrix	of	eigenvectors	A	can	be	written	as	



where	 a,	 b	 and	 g	 are	 given	 by	 Eq.	 (9.71).	 On	 simplification	



The	vibrations	discussed	so	far	are	the	longitudinal	ones.	In	the	molecule,	there
will	also	be	normal	modes	of	vibrations	perpendicular	 to	 the	axis.	 It	 is	evident
from	Eq.	 (9.64)	 that	w3	>	w2.	 In	 general,	 the	mode	 that	 has	 higher	 symmetry
will	have	the	lower	frequency.	The	antisymmetric	mode	has	lower	symmetry	and
therefore	it	has	a	higher	frequency.

WORKED	EXAMPLES
Example	9.1	A	 simple	pendulum	has	a	bob	of	mass	m	with	 a	mass	m1	 at	 the
moving	 support	 (pendulum	 with	 moving	 support).	 Mass	 m1	 moves	 on	 a
horizontal	 line	 in	 the	vertical	plane	 in	which	 the	pendulum	oscillates.	Find	 the
normal	frequencies	and	normal	modes	of	vibrations.
Solution:	From	Example	3.8	and	Fig.	3.5

where	m1	is	the	mass	at	the	support	and	m	is	the	mass	of	the	pendulum	bob	and	
l	 its	 length.	 The	 coordinates	 be	 x	 and	 q.	 Since	 cosq	 =	 1	 at	 the	 equilibrium

position,	the	G	matrix	is	given	by	

Taking	the	point	of	support	as	the	zero	of	potential	energy	V



V11	 =	 0	 V12	 =	 V21	 =	 0	 V22	 =	 mgl	 The	 secular	 determinant	 is	

That	 is,	 the	 masses	 will	 be	 moving	 in	 the	 opposite	 direction	 during	 the
oscillation.	The	two	normal	modes	are	presented	in	Fig.	9.6.

Fig.	9.6	The	normal	modes	of	a	pendulum	with	moving	support.	(a)	Translational	mode,	(b)	Represents	the
frequency	w2.

Example	 9.2	 Find	 the	 normal	 frequencies	 and	 normal	 modes	 for	 a	 double
pendulum,	each	having	a	mass	m	suspended	by	a	string	of	length	l.



Solution:	Fig.	9.7	illustrates	a	double	pendulum	in	a	displaced	position.

Fig.	9.7	Double	pendulum.







That	 is,	 in	 the	 Q1	 mode,	 both	 the	 masses	 have	 displacements	 in	 the	 same
direction	 as	 shown	 in	 Fig.	 9.8(a).	 This	 is	 called	 the	 symmetric	mode.	 The	Q2

mode	appears	when	Q1	=	0	or	 	That	 is,	Q2	mode	 corresponds	 to
displacement	 of	 the	masses	 in	 the	 opposite	 direction	 as	 shown	 in	 Fig.	 9.8(b).
This	mode	is	known	as	antisymmetric	mode.

Fig.	9.8	Normal	vibrations	of	a	double	pendulum:	(a)	symmetric	mode;	
(b)	antisymmetric	mode.

Example	9.3	Consider	a	system	of	two	harmonic	oscillators	coupled	by	a	spring
of	spring	constant	k1.	The	spring	constant	of	the	harmonic	oscillators	is	k	and	the
mass	connected	to	each	of	 the	oscillator	 is	m.	Find	the	normal	frequencies	and
the	normal	coordinates	of	the	system.
Solution:	 The	 system	 has	 two	 degrees	 of	 freedom	 represented	 by	 the
displacements	x1	and	x2	shown	in	Fig.	9.9.



Fig.	9.9	Two	harmonic	oscillators	coupled	by	a	spring.

That	is,	the	displacements	are	equal	and	in	phase	and	therefore	no	change	to	the
spring	 that	 couples	 the	 two	 oscillators.	 This	 is	 understandable	 as	 its	 spring
constant	is	not	appearing	in	the	frequency	expression.	The	mode	of	oscillation	is
illustrated	in	Fig.	9.10	(a).



Fig.	9.10	Modes	of	vibration	of	two	coupled	oscillators.

Substituting	the	frequency	

The	displacements	are	equal	but	in	opposite	directions.	This	mode	of	oscillation
is	 illustrated	 in	 Fig.	 9.10	 (b).	 As	 expected,	 the	 spring	 that	 couples	 the	 two
oscillators	gets	compressed	and	elongated	alternately.	The	matrix	of	eigenvectors



The	nature	of	 any	one	of	 the	normal	modes	 can	be	 investigated	by	 setting	 the
other	normal	modes	to	zero.	In	this	way	also,	we	can	get	the	different	modes	of
vibrations	of	the	system.



REVIEW	QUESTIONS
1.	 Explain	 stable,	 unstable	 and	 neutral	 equilibria	 on	 the	 basis	 of	 potential
function.

2.	 For	 small	 displacements,	 the	 condition	 for	 stable	 equilibrium	 is	 that	 the
potential	energy	is	minimum	at	the	equilibrium	configuration.	Substantiate.

3.	Outline	the	procedure	for	obtaining	the	elements	of	the	V	and	G	matrices	of	
a	system.

4.	 Explain	 (i)	 normal	 modes	 of	 vibration;	 (ii)	 normal	 coordinates;	 and	 (iii)
normal	frequencies	of	a	system.

5.	 Express	 the	 kinetic	 and	 potential	 energies	 of	 a	 system	 in	 terms	 of	 normal
coordinates.

6.	 Sketch	 the	 normal	modes	 of	 vibration	 of	 a	CO2	molecule	 in	 the	 increasing
order	of	frequency.

PROBLEMS
1.	Consider	a	diatomic	molecule	consisting	of	masses	m1	and	m2	connected	by	a
spring	 of	 spring	 constant	 k	 vibrating	 along	 the	 line	 joining	 the	 two	masses.
Obtain	its	normal	frequencies	and	normal	modes	of	vibration.

2.	A	system	of	two	harmonic	osicllators	having	spring	constant	k	is	coupled	by	a
spring	 of	 spring	 constant	 k.	 If	 the	mass	 connected	 to	 each	 of	 the	 harmonic
oscillators	 is	 m,	 show	 that	 the	 system	 has	 the	 normal	 frequencies	

3.	A	spring	of	force	constant	k	hanging	from	a	rigid	support	carries	a	mass	m	at
the	other	end.	An	identical	spring	carrying	a	mass	m	is	connected	to	the	first
mass.	 The	 system	 is	 allowed	 to	 oscillate	 in	 the	 vertical	 direction.	 Find	 the
frequencies	 of	 the	 normal	 modes	 of	 vibration.	 Also	 find	 the	 ratios	 of	 the
amplitudes	of	the	two	masses	in	the	two	modes.

4.	 Obtain	 the	 two	 resonant	 frequencies	 for	 the	 double	 pendulum	 assuming
unequal	masses	and	lengths.	Discuss	the	following	cases:	(i)	m1	>	m2;
(ii)	m1	<	m2;	(iii)	m1	=	m2	=	m	and	l1	=	l2	=	l.

5.	 The	 masses	 of	 the	 bobs	 of	 two	 pendulums	 are	m1	 and	m2.	 The	 bobs	 are
coupled	by	a	spring	of	force	constant	k.	If	their	lengths	are	equal	to	 l,	obtain
the	normal	frequencies	of	the	system.

6.	Three	equal	mass	points	m	are	connected	by	4	springs	of	same	force	constant



k	 as	 shown	 in	 Fig.	 9.11.	 The	 point	O	 is	 fixed.	When	 the	 system	 is	 set	 into
vibrations,	the	mass	points	and	the	springs	are	constrained	to	move	only	on	a
circle.	Determine	the	resonant	frequencies.

Fig.	9.11	Arrangement	of	springs	and	masses	on	the	circumference	of	a	circle.
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Special	Theory	
of	Relativity

The	theories	developed	during	three	centuries,	starting	from	1600	AD,	had	been
very	 successful	 in	 explaining	 most	 of	 the	 phenomena	 in	 physical	 science.
Newtonian	 mechanics	 explained	 the	 dynamics	 of	 objects	 on	 earth	 and	 in	 the
heavens.	It	successfully	explained	wave	motion	and	the	behaviour	of	fluids.	The
kinetic	 theory	 of	 matter	 showed	 the	 connection	 between	 mechanics	 and	 heat.
Maxwell’s	electromagnetic	theory	unified	the	branches	of	optics,	electricity	and
magnetism	into	a	single	larger	field	called	electrodynamics.	Towards	the	end	of
the	19th	century,	certain	new	discoveries	(X-rays,	radioactivity	and	electron)	and
experimental	 observations	 (blackbody	 radiation	 curves,	 photoelectric	 effect,
optical	spectra,	etc.)	were	made,	which	the	existing	theories	failed	to	explain.	Yet
there	was	a	sense	of	completion	among	the	physicists	that	they	would	be	able	to
explain	 these	 phenomena	 on	 the	 basis	 of	 existing	 theories.	However,	with	 the
formulation	 of	 two	 revolutionary	 new	 theories,	 quantum	 theory	 and	 theory	 of
relativity,	they	were	convinced	about	the	inability	of	classical	physics	to	explain
all	 the	 physical	 phenomena.	We	 discuss	 the	 special	 theory	 of	 relativity,	which
was	proposed	by	Albert	Einstein	in	1905,	in	this	chapter.

10.1	GALILEAN	TRANSFORMATION

Newton’s	first	law	or	the	law	of	inertia	states	that	a	system	at	rest	will	remain	at
rest	 or	 a	 system	 in	 uniform	 motion	 will	 remain	 in	 uniform	 motion	 if	 no	 net
external	 force	 acts	 on	 it.	 Systems	 in	which	 the	 law	 of	 inertia	 holds	 are	 called
inertial	 systems.	 A	 reference	 frame	 that	 moves	 with	 uniform	 velocity	 with
respect	to	an	inertial	frame	is	also	an	inertial	frame.	For	most	purposes,	a	set	of
coordinate	 axes	 attached	 to	 the	 earth	may	 be	 regarded	 as	 an	 inertial	 frame	 of



reference.	Here,	the	small	acceleration	resulting	from	the	rotational	motion	about
its	own	axis	and	the	orbital	motion	about	the	sun	is	neglected.	An	ideal	inertial
frame	 is	 a	 coordinate	 frame	 of	 reference	 fixed	 in	 space	 with	 respect	 to	 fixed
stars.	Accelerating	frames	of	reference	are	noninertial	frames.
Consider	two	inertial	systems	S	and	S	with	coordinate	axes	xyz	and	

xyz	attached	to	them.	Let	S	be	moving	with	respect	to	S	with	a	uniform	velocity
v	 along	 the	 xx	 axes	 as	 shown	 in	 Fig.	 10.1.	 The	 origins	 of	 the	 two	 systems
coincide	when	t	=	t	=	0.	Let	an	event	be	taking	place	at	P	whose	coordinates	with
respect	to	S	be	(x,	y,	z,	t)	and	with	respect	to	S	be	(x,	y,	z,	t)	From	Fig.	10.1	it	is
obvious	 that	 these	 coordinates	 are	 related	 by	

These	 are	 called	 the	 Galilean	 transformation	 equations	 or	 Newtonian
transformation	equations.

Fig.	10.1	The	inertial	system	S	and	S	with	coordinates	axes	xyz	and	xyz.

The	Galilean	velocity	transformation	 is	obtained	by	differentiating	 the	above
equations	 with	 respect	 to	 time	 and	 using	 the	 result	 (d/dt)	 =	 (d/dt):	



We	can	get	the	acceleration	transformation	equation	by	taking	the	derivative	of
Eq.	(10.2)	with	respect	to	time.

That	 is,	 acceleration	 is	 invariant	 with	 respect	 to	Galilean	 transformation.	 In
Newtonian	formulation,	mass	is	absolute.	Multiplying	Eq.	(10.3)	by	m,	we	have	

This	implies	that	the	force	on	a	particle	of	mass	m	at	the	point	P	 is	identical	in
the	two	inertial	frames.	That	is,	Newton’s	second	law	is	invariant	under	Galilean
transformation.	It	can	also	be	shown	that	the	other	laws	of	mechanics	also	satisfy
this	principle.	This	result	means	that	the	basic	laws	of	physics	are	the	same	in	all
inertial	 reference	 frames,	 which	 is	 the	 principle	 of	 Galilean–Newtonian
relativity.	In	other	words,	no	inertial	frame	is	special	and	all	inertial	frames	are
equivalent.
Newtonian	 relativity	 assumes	 that	 space	 and	 time	 are	 absolute	 quantities.

Their	 measurement	 does	 not	 change	 from	 one	 inertial	 frame	 to	 another.	 The
mass	of	an	object	and	force	are	unchanged	by	a	change	in	inertial	frame.	But	the
position	of	an	object	and	its	velocity	are	different	in	different	inertial	frames.



10.2	ELECTROMAGNETISM	AND
GALILEAN	TRANSFORMATION

Maxwell’s	 equations	 predicted	 the	 existence	 of	 electromagnetic	 waves
propagating	 through	 space	 with	 a	 speed	 of	 3	 	 108	 m/s.	 Then,	 a	 spherical
electromagnetic	wave	propagating	with	a	constant	speed	c	in	the	reference	frame
S	 is	 given	 by	

which	 is	 not	 the	 same	 as	 Eq.	 (10.6).	 Hence,	 the	 Galilean	 transformation
equations	 do	 not	 hold	 good	 in	 the	 case	 of	 electromagnetism.	 This	 seemed	 to
suggest	that	there	must	be	some	special	reference	frame	wherein	the	velocity	of
light	is	
3		108	m/s.
The	19th	century	physicists	used	 to	view	the	various	phenomena	in	 terms	of

the	 laws	of	mechanics.	The	mechanical	wave	phenomena	 require	a	medium	 to
support	the	wave.	Therefore,	it	was	natural	for	the	physicists	to	assume	that	light
and	other	electromagnetic	waves	too	must	 travel	 in	some	medium.	They	called
this	transparent	medium	ether	and	assumed	that	it	permeates	all	space.	They	had
to	assign	very	strange	properties	to	ether.	It	had	to	be	transparent	and	massless	so
that	electromagnetic	waves	could	travel	through	vacuum.	On	the	contrary,	it	had
to	be	very	hard	 to	support	 transverse	vibrations	of	 the	wave	motion.	The	ether
hypothesis	 led	 to	 the	 following	 two	 alternatives:	 (i)	 The	 stationary	 ether
hypothesis	wherein	the	ether	is	at	rest	with	respect	to	the	bodies	moving	through
it.	The	reference	frame	wherein	the	ether	could	be	considered	at	rest	is	called	the
ether	frame	(or	the	rest	frame	or	absolute	frame).	In	this	frame	the	velocity	of
light	is	always	c.
(ii)	The	ether	drag	hypothesis	wherein	ether	is	dragged	along	with	the	bodies



which	move	through	it.
A	 number	 of	 experiments	 were	 designed	 to	 check	 the	 ether	 hypothesis.	 Of

these,	the	most	direct	one	is	the	one	performed	by	Michelson	and	Morley	in	the
1880s.

10.3	MICHELSON–MORLEY	EXPERIMENT
The	purpose	of	the	Michelson-Morley	experiment	was	to	confirm	the	existence
of	an	absolute	frame	of	reference	(stationary	ether).	If	the	ether	is	at	rest,	when
the	 earth	moves	 through	 it	 there	must	 be	 a	 relative	 velocity	 of	 the	 earth	with
respect	to	the	ether.	What	they	did	was	to	measure	the	difference	in	the	speed	of
light	in	different	directions.

The	Interferometer
The	 experimental	 set-up	 used	 is	 the	 Michelson	 interferometer	 shown	 in	 Fig.
10.2.	The	light	from	a	source	is	split	into	two	beams	by	a	half-silvered	plate	P.
One	 beam	 travels	 to	 mirror	M1	 and	 the	 other	 to	 mirror	M2.	 The	 beams	 are
reflected	by	M1	and	M2	and	are	recombined	again	after	passing	through	P.	Beam
2	 goes	 through	 the	 plate	P	 three	 times,	whereas	 beam	 1	 goes	 through	P	 only
once.	Hence,	to	make	the	optical	paths	of	the	two	beams	equal,	a	compensating
plate	P	is	placed	in	the	path	of	beam	1.	Beams	1	and	2	arrive	at	the	telescope	T
and	 produce	 interference	 fringes.	 If	 the	 optical	 path	 lengths	 of	 the	 beams	 are
exactly	equal,	constructive	interference	occurs,	leading	to	a	bright	fringe.	If	one
mirror	 is	 moved	 a	 distance	 l/4	 which	 corresponds	 to	 a	 path	 difference	 of	 l/2
between	the	beams,	destructive	interference	occurs,	giving	rise	to	a	dark	fringe.
Thus,	by	moving	one	of	the	mirrors,	the	fringe	system	can	be	made	to	move	past
a	crosswire	which	serves	as	the	reference	mark.	Let	the	earth	be	moving	to	the
right	 with	 a	 velocity	 v	 with	 respect	 to	 the	 stationary	 ether.	 (See	 Fig.10.2.)
Michelson	arranged	the	interferometer	in	such	a	way	that	PM1	is	parallel	to	the
direction	 of	 the	 vector	 v.	 To	 reduce	 mechanical	 vibrations,	 the	 interferometer
was	mounted	on	a	large	stone	that	floated	in	a	tank	of	mercury.

	



Fig.	10.2	Schematic	representation	of	the	Michelson-Morley	experiment.

The	Experiment
To	start	with,	 the	mirrors	M1	and	M2	are	set	such	that	PM1	=	PM2	=	d.	 If	 the
apparatus	is	stationary	in	ether,	the	two	waves	take	the	same	time	to	return	to	the
telescope	and	hence	meet	 in	 the	same	phase.	But	 the	apparatus	 is	moving	with
the	same	velocity	v	 to	the	right.	Therefore,	the	time	required	by	the	two	waves
for	their	to	and	fro	journeys	through	the	same	distance	will	not	be	equal.	First,
we	 consider	 beam	 1	 which	 travels	 parallel	 to	 the	 velocity	 v.	 The	 transmitted
wave	 travels	 towards	M1	with	relative	velocity	c	–	v.	After	 reflection	at	M1	 it
travels	 towards	 the	 glass	 plate	 P	with	 relative	 velocity	 c	 +	 v.	Hence,	 the	 time
required	 by	 this	 wave	 for	 its	 round	 trip	 is	

The	path	of	beam	2	when	the	interferometer	is	moving	with	velocity	v	parallel	to
beam	1	is	illustrated	in	Fig.10.3	(a).	By	vector	addition,	the	velocity	component

perpendicular	to	the	direction	of	motion	of	the	interferometer	is	
(See	Fig.	10.3b).	The	time	taken	by	beam	2	to	travel	from	P	to	M2	and	back	is	



Fig.	10.3	(a)	The	path	of	beam	2	while	the	interferometer	is	moving	with	velocity	v	parallel	to	PM1;	(b)
vector	addition	of	the	velocities	v	and	c.

Since	 v/c	 <<	 1,	 using	 binomial	 expansion	

………(10.10)	If	v	=	0,	 then	Dt	=	0
and	the	two	beams	take	the	same	time.
In	their	experiment,	Michelson	and	Morley	rotated	the	interferometer	through	an
angle	of	90°.	In	the	rotated	position,	beam	2	will	be	parallel	to	the	velocity	
v	and	beam	1	perpendicular	to	it.	This	leads	to	a	total	difference	in	time	
(Dt)	 +	 (Dt)	 which	 is	 equivalent	 to	 a	 path	 difference	 of	 2	 (Dt)c	 =	 2dv2/c2.
Therefore,	there	would	be	a	shift	in	the	fringe	system	across	the	crosswire	in	the
telescope.	 The	 number	 of	 fringes	 shifted	



Detection	of	 this	 fringe	width	 is	possible,	 since	 their	apparatus	was	capable	of
observing	 a	 fringe	 shift	 as	 small	 as	 0.01	 fringe.	 But	 they	 could	 observe	 no
significant	 fringe	 shift.	 They	 repeated	 the	 experiment	 at	 different	 places	 at
different	 times	of	 the	day	 and	 at	 different	 seasons.	But	 they	did	not	 observe	 a
significant	fringe	shift,	indicating	the	absence	of	ether	and	that	the	speed	of	light
in	the	interferometer	is	the	same	for	the	two	perpendicular	paths.	This	null	result
was	one	of	the	great	puzzles	of	physics	towards	the	end	of	the	19th	century.
The	null	 result	can	be	explained	 if	 the	Galilean	 transformation	 is	abandoned

and	the	velocity	of	light	is	assumed	to	be	the	same	in	all	inertial	frames.	Then	for
beam	1,	t1	=	2d/c	and	for	beam	2,	t2	=	2d/c,	which	leads	to	Dt	=	t1	–	t2	=	0.	It	is
also	evident	from	Eq.	(10.11)	that	DN	approaches	zero,	if	v	<<	c.	Hence,	we	may
assume	that	the	Galilean	transformation	is	valid	when	v	<<	c.	In	other	words,	the
Galilean	 transformation	 is	 valid	 for	 mechanics	 but	 not	 for	 electromagnetism,
since	the	velocity	of	electromagnetic	waves	is	equal	to	c.
The	results	of	Michelson	and	Morley	were	a	real	challenge	and	a	number	of

explanations	 were	 put	 forth	 over	 a	 period	 of	 years.	 The	 radical	 new	 theory
proposed	 by	 Einstein	 in	 1905	 explained	 the	 various	 experimental	 results
satisfactorily	and	changed	our	ideas	about	space	and	time.

10.4	THE	POSTULATES	OF	SPECIAL	THEORY	OF
RELATIVITY
Einstein	 in	 his	 theory	 dropped	 the	 concept	 of	 ether	 and	 the	 accompanying
assumption	 of	 an	 absolute	 frame	 of	 reference	 at	 rest.	 Also,	 he	 revised	 the
classical	 ideas	 regarding	 space	 and	 time	 by	 asserting	 that	 absolute	 motion	 is
meaningless.	Einstein’s	ideas	are	embodied	in	two	postulates.	The	first	one	is	an
extension	of	the	Newtonian	principle	of	relativity	to	include	not	only	the	laws	of
mechanics	but	also	those	of	the	rest	of	physics.
Postulate	 1–The	 principle	 of	 equivalence:	 The	 laws	 of	 physics	 have	 the



same	form	in	all	inertial	reference	frames.
Postulate	2–Constancy	of	the	speed	of	light:	The	speed	of	light	in	free	space

(vacuum)	is	always	a	constant	c	and	is	 independent	of	 the	speed	of	the	source,
the	observer	or	the	relative	motion	of	the	inertial	systems.
These	 two	 postulates	 form	 the	 foundation	 of	 Einstein’s	 special	 theory	 of

relativity.	 It	 is	 referred	 to	 as	 special	 to	 distinguish	 it	 from	his	 later	 theory,	 the
general	theory	of	relativity,	which	deals	with	noninertial	frames.

10.5	LORENTZ	TRANSFORMATION

The	 transformation	 equations	 for	 inertial	 frames	 of	 reference	 moving	 with
uniform	 relative	 velocity	 were	 derived	 by	 Einstein.	 However,	 they	 are	 called
Lorentz	 transformations	 since	 Lorentz	 derived	 (in	 1890)	 the	 same	 relations	 in
electromagnetism.	Consider	two	reference	frames	S	and	S	moving	with	uniform
relative	motion	as	described	in	Section	10.1.	Let	two	observers	O	and	O	observe
any	event	P	from	systems	S	and	S,	respectively.	Let	the	event	P	is	produced	at	
t	=	0	when	 the	origins	of	 the	 two	 frames	 coincide.	For	 the	observer	 at	O,	 the
coordinates	of	the	event	at	a	particular	instant	be	(x,	y,	z,	 t).	The	same	event	 is
described	by	the	coordinates	(x,	y,	z,	t)	for	the	observer	O	on	the	system	S.
The	velocity	of	S	with	respect	to	S	 is	along	 the	x-axis.	Hence,	y	=	y	and	z	=

z………(10.13)	According	to	postulate	1,	a	uniform	rectilinear	motion	in	S	must
go	over	into	a	uniform	rectilinear	motion	in	S.	Hence,	the	transformation	relating
x	and	x	must	be	linear.	A	non-linear	transformation	may	produce	acceleration	in
S	 even	 if	 the	 velocity	 is	 constant	 in	 S.	 In	 addition,	 the	 transformation	 must
reduce	 to	Galilean	 transformation	 at	 low	 speeds.	Therefore,	 the	 transformation
equation	relating	
x	and	x	 can	be	written	as	x	=	k(x	–	vt)………(10.14)	where	k	is	independent	of
x	and	t.	Since	S	is	moving	relative	to	S	with	velocity	v	along	the	positive	x-axis,
x	=	k(x	+	vt)………(10.15)	The	same	constant	k	 is	used,	since	according	to	the
first	postulate	nothing	distinguishes	S	and	S	from	one	another	except	the	sign	of
the	 relative	 velocity.	 Substituting	 the	 value	 of	 x	 from	 Eq.	 (10.14),	 we	 have	



Our	next	step	is	to	get	the	explicit	form	of	the	constant	k.	Let	us	assume	that
the	 event	 is	 a	 pulse	 of	 light	 emitted	 from	O	 at	 time	 t	 =	 0.	 The	 pulse	 of	 light
spreads	as	a	 spherical	wave	 travelling	with	 the	velocity	c.	The	equation	of	 the
wavefront	in	S	at	time	t	is:	x2	+	y2	+	z2	=	c2	t2………(10.18)	The	wavefront	 in	 the
reference	frame	S	is	

Here,	we	have	used	the	second	postulate	that	the	velocity	of	the	light	wave	is	the
same	 in	 all	 directions	 in	 either	 frame	 of	 reference.	 Substituting	 the	 tentative
transformation	equations,	Eq.	(10.17)	in	Eq.	(10.19),	we	have

......................................

We	 must	 choose	 k	 such	 that	 Eq.	 (10.20)	 reduces	 to	 Eq.	 (10.18),	 since	 each
equation	represents	 the	position	of	 the	wavefront	as	measured	in	S.	Comparing
the	 coefficients	 of	 the	 terms	 in	 x	 in	 both	 equations	



Equation	 (10.22)	 is	 called	 the	 Lorentz	 transformation	 equations,	 which
Lorentz	 derived	 in	 electromagnetism.	 Here,	 it	 is	 done	 on	 a	 more	 dynamical
basis.
The	 inverse	 transformation	can	be	obtained	by	 interchanging	 the	primed	and

unprimed	quantities	and	reversing	the	sign	of	the	relative	velocity,	since	S	and	S
differ	 only	 in	 the	 sign	 of	 the	 relative	 velocity.	 With	 the	 usual	 abbreviations	

In	the	low	velocity	limit,	where	b	<<	1,	it	follows	that	the	Lorentz	transformation
reduces	 to	 the	 Galilean	 transformation.	 It	 may	 be	 noted	 that	 the	 space
transformation	 involves	 time	 and	 the	 time	 transformation	 involves	 the	 space



coordinate.	 Hence,	 the	 transformation	 is	 sometimes	 referred	 to	 as	 space-time
transformation.
Lorentz	 transformation	sets	a	 limit	on	the	maximum	value	of	v.	If	v	>	c,	 the

quantity	 	 becomes	 imaginary.	 The	 space	 and	 time	 coordinates	 would

then	 become	 imaginary,	 which	 is	 physically	 unacceptable.	 Hence,	 in	 vacuum
nothing	can	move	with	a	velocity	greater	than	the	velocity	of	light.

10.6	VELOCITY	TRANSFORMATION

Again,	consider	two	inertial	systems	S	and	S	moving	with	relative	velocity	
v	along	the	xx-axes.	Consider	a	particle	at	P	which	is	moving	with	a	velocity	u
as	measured	by	an	observer	in	S.	Its	velocity	as	measured	by	an	observer	in	S	is
u.	 The	 velocity	 components	 in	 S	 and	 S	 are	



These	 are	 the	 Lorentz	 velocity	 transformations.	 It	 may	 be	 noted	 that	 the
velocity	components	 	and	 	also	depend	on	ux.	The	inverse	transformation
is	 obtained	 by	 replacing	 v	 by	 –v	 and	 interchanging	 primed	 and	 unprimed
coordinates:	



Equation	(10.30)	is	referred	to	as	Einstein’s	law	of	addition	of	velocities.	Here,	v
is	the	velocity	of	frame	S	with	respect	to	S	and	u	 is	 the	velocity	of	the	event	P
relative	 to	S	and	u	 is	 the	velocity	of	 the	event	P	 relative	 to	S.	 (See	Fig.	10.4)	

Fig.	10.4	Inertial	frames	of	reference	S,	S	and	event	at	P.

If	u	=	c,	the	velocity	of	light	

That	is,	the	velocity	of	the	source	does	not	add	anything	to	the	velocity	of	light
emitted	by	it.	In	other	words,	it	is	impossible	to	exceed	the	velocity	of	light	by
adding	 two	or	more	velocities,	no	matter	how	close	each	of	 these	velocities	 to
are	that	of	light.

10.7	LENGTH	CONTRACTION



Let	S	and	S	be	inertial	systems	moving	with	relative	velocity	v	along	the	xx	axes.
Consider	a	rod	at	rest	in	the	inertial	system	S	lying	parallel	to	the	x-axis.	Though
the	system	S	is	moving	with	a	relative	velocity,	to	the	observer	in	S	the	rod	is	at
rest.	The	length	in	an	inertial	frame	in	which	the	rod	is	at	rest	is	called	its	proper
length.	The	length	of	the	rod	 	where	 	are	the	coordinates
of	 its	 two	ends	measured	at	 the	 same	 instant	of	 time.	To	an	observer	 in	S,	 the
length	of	the	rod	L	=	x2	–	x1	where	x1	and	x2	are	the	coordinates	of	its	two	ends
measured	at	the	same	time;	therefore,	t2	=	t1	=	t.	Using	Lorentz	transformation	

Since	 	 is	 always	 less	 than	 unity,	 the	 length	 L	 <	 L0.	 That	 is,	 to	 an

observer	in	S	the	rod	looks	as	though	it	is	contracted	parallel	to	the	direction	of
motion.
The	 effect	 is	 reciprocal.	 If	 a	 rod	 has	 a	 length	L0.	 in	 S,	 to	 an	 observer	 in	S

which	 is	 in	 relative	 motion,	 it	 will	 appear	 to	 be	 of	 length	 	 The

phenomenon	 of	 length	 contraction	 is	 referred	 to	 as	 Lorentz-Fitzgerald
contraction.	Thus,	the	space	which	is	reduced	to	the	measurement	of	length	in
physics	 and	 the	 geometrical	 shapes	 of	 objects	 cannot	 be	 absolute	 but	 only
relative.

10.8	TIME	DILATION

Consider	 two	 successive	 events	 occurring	 at	 the	 same	 point	 x	 in	 the	 inertial
frame	S.	Let	 	and	 	be	the	times	recorded	by	the	observer	in	frame	S. 	Then
the	time	interval	measured	by	him	is	 	For	the	observer	in	S,	the	rest	frame
is	 S	 itself.	 The	 time	 interval	 between	 events	 in	 the	 rest	 frame,	 that	 is,	 time
interval	 as	 measured	 by	 a	 clock	 in	 S,	 is	 called	 the	 proper	 time	Dt.	 Hence,	



Since	 g	 >	 1,	 it	 follows	 from	 Eq.	 (10.33)	 that	 the	 proper	 time	 interval	 is	 a
minimum.	The	effect	is	known	as	time	dilation	and	is	equivalent	to	the	slowing
down	 of	moving	 clocks.	Hence,	 growth,	 aging,	 pulse	 rate,	 heartbeats,	 etc.	 are
slowed	 down	 in	 a	 fast-moving	 frame.	 If	 the	 velocity	 of	 the	 moving	 frame	

	and	the	process	of	aging	will	stop	altogether.
The	 time	 dilation	 effect	 has	 been	 verified	 experimentally	 by	 observation	 on

elementary	 particles	 and	 by	 atomic	 clocks	 accurate	 to	 nanoseconds	 carried
aboard	jet	planes.

10.9	SIMULTANEITY

Another	important	consequence	of	Lorentz	transformation	is	that	simultaneity	is
relative.	Consider	two	events	occurring	at	two	different	points	x1	and	x2	at	times
t1	 and	 t2	 in	 the	 inertial	 system	S.	Let	 	 be	 the	 times	 at	which	 the	 two
events	 are	 observed	 to	 occur	 with	 respect	 to	 S.	 Then	 from	 Lorentz
transformation	



That	 is,	 two	 events	 that	 are	 simultaneous	 in	 one	 reference	 frame	 are	 not
simultaneous	 in	 another	 frame	of	 reference	moving	 relative	 to	 the	 first,	 unless
the	two	events	occur	at	the	same	point	in	space.	It	implies	that	clocks	that	appear
to	 be	 synchronized	 in	 one	 frame	 of	 reference	 will	 not	 necessarily	 be
synchronized	in	another	frame	of	reference	in	relative	motion.

10.10	MASS	IN	RELATIVITY

In	 Newtonian	 mechanics,	 mass	 is	 considered	 to	 be	 a	 constant	 quantity
independent	 of	 its	 velocity.	 In	 relativity,	 like	 length	 and	 time,	 it	 is	 likely	 to
depend	on	its	velocity	u.	That	is,	m	=	m	(u)	and	when	u	=	0,	m	=	m0,	 the	rest
mass	 of	 the	particle.	We	now	obtain	 the	 form	of	m(u)	 by	 applying	 the	 law	of
conservation	of	linear	momentum,	which	is	a	basic	principle	in	physics,	together
with	Lorentz	velocity	transformations.
Consider	 an	 inelastic	 collision	 between	 two	 identical	 bodies	 in	 the	 inertial

system	S	which	is	moving	relative	to	the	inertial	system	S	with	a	velocity	v	along
the	 xx-axes.	 (See	 Fig.	 10.5.)	 Assume	 that	 the	 identical	 bodies	 are	 moving	 in
opposite	directions	along	the	x	axis	with	velocities	u	and	–u	in	S.	The	masses	of
these	bodies	as	observed	from	the	system	S	be	m1	and	m2	and	their	velocities	be
u1and	 u2,	 respectively.	 In	 S	 the	 masses	 of	 the	 bodies	 are	 equal,	 and	 their
momenta	equal	and	oppositely	directed.	Hence,	after	the	collision	the	two	bodies
will	stick	together	and	will	be	at	rest	 in	S.	After	collision,	 the	mass	(m1	+	m2)
will	be	moving	with	velocity	v	in	system	S.	Applying	the	law	of	conservation	of
linear	momentum	to	the	system	S



Fig.	10.5	Collision	between	two	bodies	taking	place	in	the	system	S	as	observed	from	the	system	S.

Substituting	 the	 values	 of	 u1	 and	 u2	 in	 Eq.	 (10.35)	

Similarly,	 from	 Eq.	 (10.36b)	 we	 have	



In	relativity,	the	invariant	quantity	is	the	rest	mass	m0.	In	classical	physics,	m0	is
used	 in	 place	 of	m	also	 since	 the	 speeds	 acquired	 by	 objects	 are	 considerably
small	 as	 compared	 to	 that	 of	 light.	 The	 momentum	 is	 defined	 by	

Thus,	 the	 change	 in	 the	 definition	 of	 mass	 has	 modified	 the	 definition	 of
momentum	and	Newton’s	second	law	of	motion.



10.11	MASS	AND	ENERGY

We	 see	 in	 this	 section	 how	 kinetic	 energy	 and	 total	 energy	 gets	 modified	 in
relativity.	Consider	a	particle	of	rest	mass	m0	acted	upon	by	a	force	F	through	a
distance	x	in	time	t	along	the	x-axis.	Because	of	the	force,	 the	particle	attains	a
final	 velocity	 u.	 Then	 the	 kinetic	 energy	 T	 is	 defined	 as	

Equation	(10.50)	looks	very	different	from	the	classical	expression	½	mu2.	This
relation	 implies	 that	mass	 is	 a	 form	 of	 energy.	 Einstein	 called	m0c2,	 the	 rest
energy	of	the	object.	It	is	the	total	energy	of	the	object	measured	in	a	frame	of
reference	 in	 which	 the	 object	 is	 at	 rest.	 By	 analogy,	mc2,	 the	 sum	 of	 kinetic



energy	 and	 rest	 energy,	 is	 called	 the	 total	 energy	 E:	 E	 =	 mc2………(10.51)
Equation	 (10.51)	 which	 states	 the	 relationship	 between	 mass	 and	 energy	 is
Einstein’s	mass-energy	relation.
The	 change	 of	 mass	 to	 other	 forms	 of	 energy	 and	 vice	 versa	 have	 been

experimentally	confirmed.	This	interconversion	is	easily	detected	in	elementary
particle	 physics.	 Electromagnetic	 radiation	 under	 certain	 conditions	 can	 be
converted	 into	 electron	 and	 positron.	 The	 energy	 produced	 in	 nuclear	 power
plants	is	a	result	of	the	loss	in	mass	of	the	fuel	during	a	fission	reaction.	Even	the
radiant	energy	we	receive	from	the	sun	is	an	example	of	conversion	of	mass	into
energy.
A	useful	relation	connecting	the	total	energy	E,	momentum	p	and	rest	energy

m0c2	 can	 be	 obtained	 as	 detailed	 below.	 We	 have	

Hence,	massless	particles	must	travel	at	the	speed	of	light.	Examples	of	particles
in	this	category	are	photon,	neutrino	and	graviton.

10.12	RELATIVISTIC	LAGRANGIAN	OF	A
PARTICLE



We	 shall	 try	 to	 find	 the	 relativistic	 Lagrangian	 and	 Hamiltonian	 of	 a	 single
particle,	 which	will	 give	 the	 spatial	 part	 of	 the	 the	 equations	 of	motion	 in	 an
inertial	 frame.	 The	 Lagrangian	 L	 is,	 in	 general,	 a	 function	 of	 the	 position
coordinates	 xi,	 the	 velocities	 	 and	 time.	 In	 nonrelativistic	 mechanics,	 the
generalized	momentum	components	of	a	particle	are	defined	by	 .
For	 a	 single	 particle	 acted	 upon	 by	 conservative	 forces,	 assuming	 a	 similar
definition	 for	 the	 momentum	 components	 in	 relativistic	 mechanics,	 one	 has	

where	 	u	 is	 the	velocity	of	 the	particle	 in	 the	 inertial	 frame
under	 consideration.	 The	 velocity-dependent	 part	 of	 L	 can	 be	 obtained	 by
integrating	 Eq.	 (10.54).	 Integrating	

where	the	constant	of	integration	is	taken	as	the	potential	function	V	which	is	a
function	of	position	coordinates.
Though	the	Lagrangian	contains	the	potential	function	V	as	in	nonrelativistic

mechanics,	the	remaining	in	Eq.	(10.55)	is	not	equal	to	the	kinetic	energy.	When

u	<<	c	

The	second	term	on	the	right	resembles	the	kinetic	energy	term	of	nonrelativistic
mechanics.
The	 form	 of	 the	 Lagrangian	 in	 Eq.	 (10.55)	 can	 be	 justified	 by	 obtaining

Lagrange’s	 equations	 of	 motion	 which	 are	 given	 by	



Similar	are	the	expressions	for	y—and	z-	coordinates.	Substituting	 these	values
in	 Eq.	 (10.57),	 we	 have	

This	agrees	with	the	equation	of	motion	of	a	particle,	and	therefore	L	given	by
Eq.	(10.55)	is	the	correct	one	in	relativistic	mechanics.

10.13	RELATIVISTIC	HAMILTONIAN	OF
A	PARTICLE

We	can	define	the	Hamiltonian	of	a	system	in	a	way	similar	to	the	definition	in

the	nonrelativistic	case	

In	 the	 case	 of	 a	 single	 particle,	 this	 equation	 reduces	 to	



10.14	SPACE-TIME	DIAGRAM

We	have	already	adopted	a	notion	of	space-time	as	the	setting	in	which	physical
events	 take	 place.	The	Lorentz	 transformation	 equation	 implies	 that	 space	 and
time	 can	 no	 longer	 be	 considered	 independent	 entities.	 This	 four-dimensional
world	 which	 is	 a	 linking	 together	 of	 space	 and	 time	 is	 called	 the	 four-



dimensional	 space-time	 continuum.	 Any	 four-dimensional	 space	 involving
time	 in	one	of	 the	axes	 is	 referred	 to	as	 four-space	or	world	space.	The	 four-
space	with	 ict	 as	 the	 fourth	 coordinate	 is	 referred	 to	 as	 the	Minkowski	 four-
space.	Thus,	events	are	defined	by	4	space-time	coordinates	and	represented	by
points	 called	 world	 points.	 The	 position	 of	 a	 particle	 at	 different	 times
represents	a	sequence	of	events	and	is	called	a	world	line.
For	 an	 event	 at	 (x,	 y,	 z,	 ict)	 in	 such	 a	 four-space,	 let	 a	 position	 vector	 or

distance	s	be	introduced	such	that	the	square	of	s	has	the	form	s2	=	c2	t2	–	x2	–
y2	–	z2………(10.63)	We	can	easily	prove	that	the	quantity	s2	is	invariant	under
the	Lorentz	transformation	(See	Worked	Example	10.1).	That	is,	c2	t2	–	x2	–	y2

–	 z2	 =	 c2	 t2	 –	 x2	 –	 y2	 –	 z2………(10.64)	 Here	 (x,	 y,	 z,	 ict)	 are	 the	 four
coordinates	in	the	reference	frame	S	and	
(x,	y,	z,	ict)	are	those	in	the	frame	S.	Since	the	Lorentz	transformation	keeps	the
magnitude	 of	 the	 position	 vector	 in	 four-space	 constant,	 it	 is	 an	 orthogonal
transformation.	 If	 (x1,	y1,	z1,	 ict1)	and	(x2,	y2,	z2,	 ict2)	are	 the	coordinates	of
any	 two	 events,	 then	 the	 quantity	

is	called	the	interval	between	these	two	events.
A	 full	 visualization	 of	 space-time	 requires	 a	 four-dimensional	 picture.	 We

represent	the	situation	in	a	two-dimensional	plane	by	suppressing	the	two	
coordinates	 x2	 and	 x3.	 Consider	 a	 particle	 moving	 with	 a	 uniform	 velocity	 u
along	the	x1-axis.	This	can	be	represented	by	the	straight	line	OA	(See	Fig.10.6)

having	a	slope	 tan–1(u/c)	with	 the	ct-axis	 (the	x4-axis).	This	 is	understandable
since	x	=	ut	=	(u/c)	ct.	The	line	OA	is	the	world	line	of	the	particle.	For	a	light
ray	u	=	c	and	therefore	tan–1	u/c	=	tan–1	1	=	45°.	Hence,	the	path	of	a	light	ray
is	represented	by	the	straight	 lines	OB	and	OC	 inclined	at	angles	of	45°	 to	 the
coordinate	 axis	 in	 Fig.	 10.6	 (b).	 These	 lines	 are	 defined	 by	 the	 equation	



Fig.	10.6	(a)	World	line	of	light	wave	(b)	light	cones.

s2	 =	 c2t2	 –	 x2	 =	 0………(10.66)	 If	 we	 restore	 x2	 and	 x3	 this	 equation

becomes	s2	=	c2t2	–	x2	–	y2	–	z2	=	0………(10.67)	where	s	is	the	interval
between	the	origin	and	the	point	(x,	y,	z,	ict).	The	interval	for	all	points	on
the	world	 line	 of	 a	 light	 ray	 vanishes,	 and	 the	 line	 in	 two	dimensions	 is
called	a	null	line	and	in	three	dimensions	it	becomes	a	cone	with	apex	at
O,	 called	 a	null	 cone.	 The	 value	 of	 s2	 =	 0	 on	 the	 surface	 of	 this	 cone.
World	lines	of	material	particles	lying	within	this	cone	must	pass	through
the	origin.	The	null	cone	constitutes	the	space-time	representation	of	light
and	hence	it	is	also	called	a	light	cone.

The	 light	 cone	 divides	 the	 four-dimensional	 space	 into	 two	 regions
characterized	 by	 the	 inequalities:	 Region	R1	 :	 s2	 =	 c2	 t2	 –	 x2	 –	 y2	 –	 z2	 <	 0

………(10.68)	Region	R2	 :	 s2	 =	 c2	 t2	 –	 x2	 –	 y2	 –	 z2	 >	 0	………(10.69)	As

already	mentioned,	s2	=	0	on	the	surface	of	the	light	cone.	The	intervals	are	said
to	be	 space-like,	 time-like	or	 light	 (null)-like	according	 to	whether	 s2	 is	 less
than,	greater	than	or	equal	to	zero.	Events	lying	inside	the	upper	and	lower	cones
are	 separated	 from	 the	 origin	 by	 time-like	 intervals	 (s2	 >	 0).	 In	 all	 frames	 of
reference,	 in	 the	 upper	 cone	 we	 have	 events	 which	 lie	 after	 the	 event	 at	 the
origin.	Hence,	this	region	is	referred	to	as	absolute	future.	In	the	lower	cone,	we
have	the	events	which	preceded	the	event	at	the	origin	and	hence	it	is	referred	to



as	 the	absolute	past.	All	 events	 in	 the	 two	 side	 cones	 are	 separated	 from	 the
event	at	the	origin	by	space-like	intervals	(s2	<	0).

10.15	GEOMETRICAL	INTERPRETATION
OF	LORENTZ	TRANSFORMATION

A	geometrical	interpretation	of	Lorentz	transformation	was	given	by	Minkowski
in	 analogy	 with	 the	 transformation	 of	 cartesian	 coordinates	 under	 spatial
rotation.	For	 anticlockwise	 rotation	of	 cartesian	coordinates	 in	 two	dimensions
through	 an	 angle	 f	 about	 the	 z-axis,	 we	 have	

where	(x,	y)	and	(x,	y)	are	the	coordinates	of	a	point	before	and	after	rotation.	In
the	space-time	case,	consider	a	rotation	of	the	x1	x4	plane	through	an	angle	q	as
shown	in	Fig.	10.7	where	(x1,	x2,	x3,	x4)	stands	for	(x,	y,	z,	ict).	The	coordinates
of	 the	 point	 P	 before	 and	 after	 rotation	 are	 related	 by	

Fig.	10.7	Rotation	of	x1	x4	plane	through	an	angle	q.



Equations	(10.73)	and	(10.74)	together	with	y	=	y	and	z	=	z	are	the	same	as	the
Lorentz	 transformation	 equation	 denoted	 by	 Eq.	 (10.22).	 Thus,	 the	 Lorentz
transformation	 can	be	 regarded	 as	 a	 rotation	 in	 the	x1	x4	 plane	 of	Minkowski
space	through	an	imaginary	angle	defined	by	Eq.	(10.72).

10.16	PRINCIPLE	OF	COVARIANCE

The	 postulate	 of	 equivalence	 requires	 that	 the	 mathematical	 equations
representing	 the	 physical	 laws	 should	 be	 covariant,	 co	means	 the	 same.	 If	 the
equation	in	one	inertial	frame	is	A	=	B,	then	that	in	another	frame	should	be	A	=
B	.	Here	A	and	B	may	both	be	scalars,	vectors,	tensors	or	any	other	geometrical
object.	In	other	words,	if	a	particular	component	of	A	is	multiplied	by	M	while
going	from	one	coordinate	system	to	another,	the	corresponding	component	of	B
should	also	be	multiplied	by	the	same	factor.	The	equation	is	said	to	be	covariant
as	both	sides	vary	in	the	same	manner.	This	principle	is	called	the	principle	of
covariance.
We	 have	 already	 seen	 that	 the	 length	 of	 a	 rod	 contracts	 and	 time	 does	 not

remain	invariant.	The	quantity	that	remains	invariant	is	ds2	=	dx2	+	dy2	+	dz2	–
c2dt2
Therefore,	 one	 must	 use	 four-dimensional	 vectors	 whose	 norms	

	being	imaginary,	remain	invariant.	Such	vectors	transform



according	 to	 the	 rule	 ………(10.75)	 Here	 we	 use	 Einstein’s
convention,	according	to	which	a	repeated	index	indicates	 that	we	have	to	 take
the	sum	over	all	the	possible	values	of	the	index.	
In	this	case	the	index	b	is	repeated,	so	we	have	to	sum	over	all	values	1	to	4,	the
possible	values	for	a	and	b.	However,	when	we	use	Latin	indices	the	summation
is	for	1	to	3.

10.17	FOUR-VECTORS	IN	MECHANICS

A	 vector	 in	 four-dimensional	 Minkowski	 space	 is	 called	 a	 four-vector,	 if	 its
components	transform	under	a	Lorentz	transformation	in	the	same	way	as	the	
x1,	x2,	x3,	 x4	 coordinates	 of	 a	 point.	 For	 example,	Am	 =	 (A1,	A2,	A3,	A4)	 is
defined	 to	 be	 a	 four-vector	 if,	 under	 a	 Lorentz	 transformation,	

That	is,	the	length	of	a	four-vector	is	unchanged	under	a	Lorentz	transformation
which	is	equivalent	to	a	rotation	of	axes.

Position	Four-Vector
A	position	four-vector,	written	as	X,	can	be	represented	by	the	components	
X1,	 X2,	 X3,	 X4	 as	



Four-Velocity
Let	two	events,	having	coordinates	X1,	X2,	X3,	X4	and	X1	+	dX1,	X2	+	dX2,
X3	+	dX3,	X4	+	dX4,	 respectively,	 refer	 to	 the	positions	of	a	particle	at	 times	 t
and	 t	+	dt	 in	 the	 inertial	 frame	S.	 If	u	 is	 the	 three-dimensional	 velocity	 of	 the
particle	 in	 the	 inertial	 frame	 S,	

In	 the	 four-dimensional	 world,	 time	 t	 is	 a	 coordinate	 and	 is	 not	 an	 invariant
quantity.	An	 invariant	 parameter	 that	 can	 be	 considered	 for	 use	 is	 the	 proper
time	 interval	 dt	 which	 is	 defined	 by	 the	 relation	

Proper	time	interval	dt	is	the	time	recorded	by	a	clock	moving	with	the	particle
(see	Section	10.8).	Since	ds2	is	an	invariant	quantity,	dt	is	also	invariant.	Hence,
for	 the	 four-velocity	 V,	 we	 have	



Using	 Eqs.	 (10.82)	 and	 (10.84)	

Momentum	Four-Vector
The	rest	mass	of	a	particle	m0	has	the	same	value	when	it	is	at	rest	in	all	inertial
frames.	Multiplying	 the	 four-velocity	 by	 the	 invariant	 rest	mass	m0,	 one	gets	

Here,	 Pm	 is	 the	 four-vector	 momentum	 or	 the	 four-momentum.	 Since	



Hence,	 writing	 p	 for	 px,	 py,	 pz	

Obviously,	the	fourth	component	of	the	momentum	four-vector	is	proportional	to
the	 total	 energy	 of	 the	 particle.	 As	 the	 length	 of	 a	 four-vector	 is	 invariant	

Four-Force
From	 Eq.	 (10.88),	 it	 follows	 that	



Consequently,



10.18	CHARGE	CURRENT	FOUR-
VECTOR

It	 is	 an	 established	 experimental	 fact	 that	 the	 total	 charge	 in	 a	 system	 is	 not
altered	by	the	motion	of	its	carrier.	Hence,	one	can	state	that	the	total	charge	in
an	isolated	system	is	relativistically	invariant.	Consider	a	volume	element	dV	=
dx1	 dx2	 dx3	 with	 charge	 dq	 in	 it.	 Then	 the	 charge	 density	

Hence,	the	four-vector



This	 relation	 establishes	 the	 Lorentz	 covariance	 of	 the	 charge-current
conservation	relation.

10.19	INVARIANCE	OF	MAXWELL’S	EQUATIONS

Maxwell’s	Equations
The	 classical	 theory	 of	 radiation	 is	 based	 on	 Maxwell’s	 equations	 for	 the
electromagnetic	 field.	 The	 two	 basic	 quantities	 describing	 the	 electromagnetic
field	are	the	electric	and	magnetic	field	strengths	E	and	B	which	are	functions	of
space	 and	 time.	 Maxwell’s	 equations	 in	 free	 space	 are	

where	 	 are	 respectively	 the	 permittivity	 and	 permeability	 of	 free
space.	These	coupled	first	order	differential	equations	can	be	solved	to	get	E	and
B,	which	gives	a	complete	description	of	the	electromagnetic	field.

Vector	and	Scalar	Potentials
Instead	of	E	and	B,	 the	 field	 equations	 can	 also	 be	 conveniently	 expressed	 in
terms	of	a	vector	potential	A	and	a	scalar	potential	f.	Eq.	(10.102)	implies	that	B



can	 be	 written	 as	

which	gives	the	electric	field	in	terms	of	the	potentials	A	and	f.
The	other	two	equations,	Eqs.	(10.101)	and	(10.104),	can	also	be	expressed	in

terms	 of	 A	 and	 f.	 Substituting	 the	 value	 of	 E	 in	 Eq.	 (10.101)	

The	 solution	 of	 Maxwell’s	 equations	 is	 thus	 reduced	 to	 solving	 the	 coupled



equations,	Eqs.	(10.109)	and	(10.110),	for	A	and	f.

Gauge	Transformations
The	potentials	A	and	f	as	defined	above	are	not	unique.	We	now	use	a	property
of	 classical	 electrodynamics,	 called	 gauge	 invariance,	 to	 decouple	 the	 two
equations.	 The	 transformations	

The	condition	in	Eq.	(10.114)	removes	the	coupling	of	the	two	equations,	
Eqs.	(10.109)	and	(10.110).
The	freedom	available	in	the	definitions	in	Eqs.	(10.111)	and	(10.112)	together

is	called	gauge	transformations,	and	the	condition	in	Eq.	(10.114)	is	known	as
the	Lorentz	 gauge	 condition.	 In	 view	 of	 this	 condition,	 Eqs.	 (10.109)	 and
(10.110)	 reduce	 to	



where	 we	 have	 used	 the	 relation	 c2	 =	 1/e0m0.	 We	 have	 already	 defined	 the
charge	 current	 four-vector	 as	

Equation	 (10.119)	 gives	 Maxwell’s	 equations	 in	 the	 four-vector	 form,	 which
implies	the	invariance	of	Maxwell’s	equations.	The	Lorentz	gauge	condition,	Eq.
(10.114),	 can	 now	 be	 expressed	 in	 terms	 of	 Am.	 From	 Eq.	 (10.114)	



10.20	ELECTROMAGNETIC	FIELD
TENSOR

The	 electric	 and	 magnetic	 field	 strengths	 of	 the	 electromagnetic	 field	 are
expressed	 in	 terms	 of	 the	 vector	 potential	A	 and	 scalar	 potential	 f.	 From	 Eq.
(10.105)	



10.21	GENERAL	THEORY	OF



RELATIVITY

The	special	theory	of	relativity	requires	the	modification	of	the	classical	laws	of
motion.	The	laws	of	electromagnetism,	including	the	Lorentz	force	law,	remain
valid	 in	 relativity	 also.	 Though	 Newton’s	 law	 of	 gravitation	 is	 successful	 in
explaining	 a	number	of	 phenomena,	 conceptually	 it	 is	 found	 to	be	 inadequate.
The	gravitational	force	of	attraction	between	bodies	is	assumed	to	be	transmitted
instantaneously,	 that	 is,	 with	 infinite	 speed.	 This	 is	 in	 contradiction	 to	 the
relativistic	requirement	that	the	limiting	speed	of	a	signal	is	the	velocity	of	light.
We	have	 learnt	 that	 the	 laws	of	physics	are	 the	same	 in	all	 inertial	 frames	and
that	 only	 the	 relative	 motion	 of	 a	 system	 with	 respect	 to	 another	 can	 be
considered	 a	 physical	 reality.	 The	 generalization	 of	 the	 special	 theory	 of
relativity	 to	 noninertial	 reference	 frames	 by	 Einstein	 in	 1916	 is	 known	 as	 the
general	theory	of	relativity.

Principle	of	Equivalence
The	basis	for	the	general	theory	is	the	principle	of	equivalence,	which	states	that
a	 homogeneous	 gravitational	 field	 is	 completely	 equivalent	 to	 a	 uniformly
accelerated	 reference	 frame.	 Consider	 two	 reference	 frames:	 (i)	 a	 non-
accelerating	(inertial)	reference	frame	S	in	which	there	is	a	uniform	gravitational
field;	and	
(ii)	 a	 reference	 frame	 S	 which	 is	 accelerating	 uniformly	 with	 respect	 to	 an
inertial	 frame	but	 in	which	 there	 is	no	gravitational	 field.	Two	such	frames	are
physically	equivalent.	That	is,	experiments	carried	out	under	otherwise	identical
conditions	 in	 these	 two	 frames	 should	give	 the	 same	 results.	This	 is	Einstein’s
principle	of	equivalence.
The	principle	of	 equivalence	 is	 related	 to	 the	 concept	of	 two	 types	of	mass:

gravitational	mass	and	inertial	mass.	Newton’s	law	of	gravitation	states	that	one
body	attracts	another	body	due	to	the	gravitational	force,	and	the	strength	of	the

force	is	proportional	to	the	product	of	the	masses	of	the	two	bodies:	

………(10.128)	 where	mG	 is	 the	 gravitational	 mass	 of	 the	 object,	M	 is	 the
gravitational	 mass	 of	 the	 earth,	 re	 is	 the	 radius	 of	 the	 earth	 and	 G	 the
gravitational	constant.	The	gravitational	mass	measures	how	strongly	an	object
is	attracted	to	other	masses.	The	other	type	of	mass	is	the	inertial	mass.	Newton’s



second	law	states	that	F	=	mIa………(10.129)	where	mI	 is	the	mass	of	the	object	or	more
precisely,	 the	 inertial	 mass.	 Inertial	 mass	mI	 measures	 how	 strongly	 an	 object	 resists	 a	 change	 in	 its
motion.	 No	 experiment	 has	 been	 able	 to	 indicate	 any	 measurable	 difference	 between	 inertial	 and

gravitational	mass.	Experiments	have	proved	this	result	to	better	than	one	part	in	1012.	Hence,	this	may	be
taken	as	another	way	to	state	the	principle	of	equivalence:	gravitational	mass	is	equivalent	to	inertial	mass.

Bending	of	Light	in	a	Gravitational	Field
An	important	prediction	of	the	general	theory	of	relativity	is	that	light	is	affected
by	 gravity.	 One	 of	 the	 basic	 properties	 of	 light	 is	 that	 it	 propagates	 along	 a
straight	 line.	However,	a	prediction	of	Einstein’s	 theory	 is	 that	 the	positions	of
stars	 whose	 light	 passes	 near	 the	 edge	 of	 the	 sun	 should	 be	 displaced	 due	 to
deflection	 by	 the	 gravitational	 field	 of	 the	 sun.	 Fig.	 10.8	 (a)	 illustrates	 the
deflection	of	light	from	a	star	in	the	gravitational	field	of	the	sun.	The	speed	of
light	with	mass	E/c2	is	reduced	in	the	vicinity	of	the	mass	M,	 thus	bending	the
beam.	A	calculation	of	this	deflection	gives	1.75	seconds	for	the	net	deflection	of
star	light	grazing	the	edge	of	the	sun.	A	measurement	could	be	made	only	during
a	 total	 solar	 eclipse;	 otherwise	 the	 light	 from	 the	 stars	 would	 be	 lost	 in	 the
brilliant	sunshine.	An	opportune	eclipse	occurred	in	1919	and	the	experimental
results	were	compatible	with	Einstein’s	predictions.



Fig.	10.8	(a)	Deflection	(not	to	scale)	of	a	beam	of	star	light	due	to	the	gravitational	attraction	of	the	sun;
(b)	Precession	of	an	elliptical	orbit.

Precession	of	the	Perihelion	of	Planetary	Orbits
As	per	Einstein’s	 theory,	 the	orbits	obtained	 for	planets	are	very	 similar	 to	 the
ellipses	 of	 classical	 theory.	 However,	 the	 ellipse	 precesses	 very	 slowly	 in	 the
plane	of	the	orbit,	so	that	the	perihelion	is	at	a	slightly	different	angular	position
for	each	orbit,	as	shown	in	Fig.	10.8	(b).	This	shift	is	greatest	in	the	case	of	the
planet	Mercury,	which	is	close	to	the	sun	and	hence	in	a	very	strong	gravitational
field.	The	perihelion	advance	of	Mercury	is	predicted	to	be	43	second	of	arc	in	a
century.	 This	 agrees	 with	 the	 discrepancy	 between	 classical	 theory	 and
observation,	 which	 was	 known	 for	 many	 years	 before	 the	 advent	 of	 general
theory	of	relativity.

Space	Curvature
A	 light	 beam	 must	 travel	 by	 the	 shortest	 path	 between	 two	 points.	 We	 have
already	seen	 that	 it	 travels	by	a	curved	path.	That	 is,	 if	a	 light	beam	follows	a
curved	path,	then	that	curved	path	must	be	the	shortest	distance	between	the	two
points.	This	suggests	that	space	itself	is	curved	and	the	gravitational	field	is	the
one	 that	 causes	 the	 curvature.	 Indeed,	 the	 curvature	 of	 space	 or	 of	 four-
dimensional	space-time	is	a	basic	aspect	of	general	relativity.
Figures	 drawn	 on	 plane	 surfaces	 are	 governed	 by	 the	 rules	 of	 classical

Euclidean	geometry	whereas	 those	on	curved	surfaces	are	not.	For	example,	 in
plane	 geometry	 the	 sum	 of	 the	 angles	 of	 a	 triangle	 is	 180°.	 To	 construct	 a
triangle	on	a	curved	surface,	say	a	sphere,	consider	 the	 large	 triangle	(See	Fig.
10.9a)	with	one	vertex	at	the	pole	and	two	others	B	and	C	on	the	equator.	Since
the	meridians	forming	two	sides	of	that	triangle	make	90°	with	the	equator,	the
sum	of	the	angles	ABC	and	ACB	is	equal	to	180°.	In	addition,	we	have	the	angle
BAC.	 Hence,	 the	 sum	 is	 always	 greater	 than	 180°,	 if	 the	 curved	 surface	 is	 a
sphere.	However,	if	a	triangle	is	drawn	on	a	saddle-like	surface,	the	sum	of	the
angles	of	the	triangle	will	be	less	than	180°,	as	shown	in	Fig	10.9	(b).	In	this	case
the	surface	sinks	between	the	vertices	of	the	triangle,	whereas	in	the	former	the
surface	bulges	up	between	the	vertices.	In	these	cases	the	sides	of	the	triangles
are	 not	 straight	 lines	 in	 the	 usual	 sense.	 They	 represent	 the	 shortest	 distances
between	 two	given	points	 and	are	called	geodesics.	 In	 the	geometry	of	curved
surfaces,	geodesics	play	the	same	role	as	that	of	straight	lines	in	plane	geometry.
The	 curved	 surface	 of	 the	 sphere	 is	 said	 to	 have	 positive	 curvature	 since	 the
surface	always	lies	on	one	side	of	the	tangent	plane	to	the	surface	at	a	point.	The



saddle-like	 surface	 is	 said	 to	 have	 negative	 curvature	 as	 the	 surface	 and	 the
tangent	plane	at	a	point	intersect.

Fig.	10.9	Sum	of	angles	of	a	triangle	on	a	two-dimensional	curved	surface:
(a)	Positive	curvature	surface;	(b)	Negative	curvature	surface.

Gravitational	Red	Shift
Electromagnetic	 radiation	 of	 a	 given	 frequency	 emitted	 in	 a	 gravitational	 field
will	appear	 to	an	outside	observer	 to	have	a	 lower	frequency,	 that	 is,	 it	will	be
red	shifted.	 Consider	 photons	 emitted	 from	 the	 surface	 of	 a	 star	 of	mass	Ms,
radius	Rs	and	observed	on	earth.	As	the	gravitational	field	of	the	star	acts	on	the
photon	in	an	opposite	direction,	the	photon	loses	energy,	resulting	in	a	decrease
in	 frequency.	 The	 effective	 mass	 of	 the	 photon	 is	 hv/c2	 and	 therefore	 the
decrease	 in	 energy	 is	



A	frequency	decrease	means	wavelength	increase,	and	we	say	that	visible	light	is
shifted	to	red.

WORKED	EXAMPLES

Example	 10.1	 Show	 that	 x2	 +	 y2	 +	 z2	 –	 c2t2	 is	 invariant	 under	 Lorentz
transformation.

Example	 10.2	A	 rocket	 leaves	 the	 earth	 at	 a	 speed	 of	 0.6c.	 A	 second	 rocket
leaves	the	first	at	a	speed	of	0.9c	with	respect	to	the	first.	Calculate	the	speed	of
the	second	rocket	with	respect	to	earth	if:	(i)	it	is	fired	in	the	same	direction	as
the	first	one;	(ii)	it	is	fired	in	a	direction	opposite	to	the	first.

Example	10.3	The	length	of	a	spaceship	is	measured	to	be	exactly	half	its	proper
length.	What	is	(i)	the	speed	of	the	spaceship	relative	to	the	observer	on	earth?
(ii)	the	dilation	of	the	spaceship’s	unit	time?
Solution:	(i)	Taking	the	spaceship’s	frame	as	the	S	one,	the	length	in	the	frame	S



is	given	by	

That	 is,	 unit	 time	 in	 the	 S	 clock	 is	 recorded	 as	 twice	 of	 unit	 time	 by	 the
observer.	In	other	words,	the	spaceship’s	clock	runs	half	as	fast.

Example	10.4	An	inertial	frame	S	moves	with	respect	to	another	inertial	frame	
S	 with	 a	 uniform	 velocity	 0.6	 c	 along	 the	 x	 x-axes.	 The	 origins	 of	 the	 two
systems	coincide	when	t	=	t	=	0.	An	event	occurs	at	x1	=	10	m,	y1	=	0,	z1	=	0,	t1
=	
2	×	10–7s.	Another	event	occurs	at	x2	=	40m,	y2	=	0,	z2	=	0,	t2	=	

3	 ×	 10–7s	 .	 In	 S, 	 (i)	 what	 is	 the	 time	 difference?	 (ii)	 what	 is	 the	 distance
between	the	events?
Solution:	 (i)	 From	 Eq.	 (10.34	 a)	



(ii)	From	Lorentz	transformation	

Example	10.5	How	fast	must	an	unstable	particle.	move	to	travel	20	m	before	it
decays?	The	mean	lifetime	of	the	particle	at	rest	=	2.6	×	10–8s.

Solution:	The	mean	lifetime	of	2.6		10–8s	is	in	a	frame	of	reference	in	which	the
particle	 is	 at	 rest.	 That	 is,	Dt	 =	 2.6	 	 10–8s.	 Lifetime	 in	 the	 laboratory	 frame	

Example	10.6	The	average	lifetime	of	m-mesons	at	rest	is	2.3		10–6s.	
A	laboratory	measurement	on	m-meson	gives	an	average	lifetime	of	6.9		10–6s.
(i)	What	is	the	speed	of	the	mesons	in	the	laboratory	?	(ii)	What	is	the	effective
mass	of	a	m-meson	when	moving	at	this	speed,	if	its	rest	mass	is	207me?	
(iii)	What	is	its	kinetic	energy?

Solution:	 (i)	 Proper	 time	 interval	 Dt	 =	 2.3	 ×	 10–6s.	 For	 the	 lifetime	 in	 the
laboratory	 Dt,	 we	 have	



Example	10.7	A	p∞	meson	of	rest	mass	m0,	velocity	u	decays	in	flight	into	two
photons	 of	 same	 energy.	 If	 one	 of	 the	 photons	 is	 emitted	 at	 an	 angle	q	 to	 the
direction	 of	 motion	 of	 the	 p∞	meson	 in	 the	 laboratory	 system,	 show	 that	 its

energy	hv	is	given	by	

Solution:	The	two	photons	have	the	same	energy.	Hence,	both	will	be	making	the
same	angle	with	the	incident	direction	(See	Fig.	10.10).

Fig.	10.10	p∞	meson	disintegrating	into	two	photons.

By	 the	 principle	 of	 conservation	 of	 energy	



Example	10.8	Energy	and	momentum	conservation	in	pair	production	by	photon
is	not	possible	if	the	process	takes	place	in	vacuum	spontaneously.	Prove.
Solution:	Figure	10.11	illustrates	pair	production	by	a	photon	of	energy	hv.

Fig.	10.11	Pair	production	by	a	photon.

Let	p1	 be	 the	momentum	 of	 the	 electron	 and	p2	 be	 that	 of	 positron.	 The	 rest
mass	of	electron	and	positron	are	the	same,	say	m0.	The	resultant	of	p1	and	p2
can	be	obtained	by	 the	parallelogram	law	of	velocities	which	must	be	equal	 to



hv/c:	

For	the	minimum	value	of	cosq	=	–1,	the	right	side	of	Eq.	(v)	is	
which	is	positive.	However,	the	left	side	of	(v)	is	always	negative	or	zero.	Hence
both	sides	must	vanish.	The	left	side	vanishes	for	q	=	0	or	p.	The	right	hand	side
vanishes	only	when	q	=	p	and	p1	=	p2.	When	 this	 condition	 is	 satisfied,	 from
Equation	 (i)	we	have	v	 =	 0.	 That	 is,	 the	 photon	 is	 nonexistent.	Hence,	 such	 a
process	cannot	take	place.

Example	10.9	A	p-meson	 of	 rest	mass	mp	 decays	 at	 rest	 into	 a	muon	 of	 rest
mass	mm	and	a	neutrino	of	zero	rest	mass.	Evaluate	the	energy	of	the	neutrino.

Also	show	that	the	kinetic	energy	of	the	muon	

Solution:	Let	p	be	the	momentum	of	the	neutrino.	Then	its	energy	=	cp.	By	the
law	 of	 conservation	 of	 momentum,	 the	 momentum	 of	 muon	 is	 equal	 and
opposite	 to	 the	momentum	 of	 neutrino.	 By	 the	 law	 of	 conservation	 of	 energy
Energy	 of	 p-meson	 =	 Energy	 of	 m-meson	 +	 Energy	 of	 neutrino	



Example	 10.10	 Show	 that	 the	 operator	 	 is

invariant	under	Lorentz	transformation.
Solution:	To	prove	the	above	invariance,	one	should	know	the	relation	between
partial	 differentiation	 with	 respect	 to	 one	 set	 of	 variables	 (x,	 y,	 z,	 t)	 and	 the
corresponding	partial	differentiation	with	respect	to	the	other	set	of	variables	
(x,	y,	z,	t).The	variables	are	related	by	the	Lorentz	transformation:





Example	 10.11	 Obtain	 the	 transformations	 for	 the	 components	 of	 the
momentum-energy	four-vector.
Solution:	 From	 Eq.	 (10.88),	 the	 momentum-energy	 four-vector	 is	 given	 by	

Example	 10.12	 Obtain	 the	 transformations	 from	 inertial	 frame	 S	 to	 inertial
frame	S	for	the	components	of	the	four-force.
Solution:	For	a	four-vector	Am,	from	Eq.	(10.76)	one	has	in	inertial	frame	S



Now,	for	the	first	component





The	fourth	relation	involves	the	power	since	f.u	has	the	unit	of	power.

Example	10.13	A	particle	is	moving	with	a	velocity	u	in	an	inertial	frame	
S	and	with	velocity	u	 in	inertial	frame	S	which	is	moving	parallel	to	the	x-axis
with	 a	 velocity	 v	 relative	 to	 S.	 Show	 that	

Solution:	 From	 Eq.	 (10.86)	 the	 four-velocity	



REVIEW	QUESTIONS
1.	What	are	inertial	and	noninertial	frames	of	reference?	Give	examples.
2.	 Explain	 the	 significance	 of	 the	 null	 result	 of	 the	 Michelson-Morley
experiment.

3.	What	is	a	Galilean	transformation?
4.	State	the	postulates	of	the	special	theory	of	relativity.
5.	State	the	Lorentz	transformation	equations	and	express	them	in	matrix	form.



6.	State	and	explain	the	relativistic	law	of	addition	of	velocities.
7.	Explain	time	dilation	and	length	contraction.
8.	 Explain	 how	 the	 length	 contraction,	 time	 dilation	 and	 mass	 variation
expressions	 might	 be	 used	 to	 indicate	 that	 c	 is	 the	 limiting	 speed	 in	 the
universe.

9.	What	are	proper	time	and	proper	length?
10.	Show	that	the	addition	of	a	velocity	to	the	velocity	of	light	gives	the	velocity
of	light.

11.	 State	 the	 expressions	 for	 rest	 energy,	 kinetic	 energy	 and	 total	 energy	 of	 a
relativistic	particle.

12.	 Suppose	 the	 speed	 of	 light	 were	 infinite,	 what	 would	 happen	 to	 the
relativistic	predictions	of	length	contraction,	time	dilation	and	mass	variation?

13.	‘In	special	theory	of	relativity,	mass	and	energy	are	equivalent.’	Discuss	this
statement	with	examples.

14.	Will	two	events	that	occur	at	the	same	place	and	same	time	in	one	reference
frame	 be	 simultaneous	 to	 an	 observer	 in	 a	 reference	 frame	 moving	 with
respect	to	the	first?

15.	Does	 time	 dilation	mean	 that	 time	 actually	 passes	more	 slowly	 in	moving
reference	frames	or	that	it	only	seems	to	pass	more	slowly?

16.	Does	E	=	mc2	apply	to	particles	that	travel	at	the	speed	of	light?
17.	Explain	how	relativity	changed	our	notion	about	space	and	time.
18.	‘Events	that	are	simultaneous	in	one	reference	frame	are	not	simultaneous	in
another	reference	frame	moving	with	respect	to	the	first.’	Comment.

19.	Is	mass	a	conserved	quantity	in	special	relativity?
20.	 Show	 that	 the	 velocity	 of	 a	 particle	 having	 zero	 rest	mass	 is	 equal	 to	 the
velocity	of	light.

21.	Draw	the	graph	of	kinetic	energy	versus	momentum	for	(i)	a	particle	of	zero
rest	mass;	(ii)	a	particle	of	nonzero	rest	mass.

22.	What	is	a	four-space?	What	is	a	world	line?
23.	When	do	you	say	an	interval	between	two	events	is	(i)	time-like	(ii)	space-
like	(iii)	light-like?

24.	Comment	on	the	statement:	‘The	Lorentz	transformation	can	be	regarded	as
a	rotation	of	coordinate	axes	x,	y,	z,	ict	in	space	time.’

25.	Explain	how	the	momentum	components	px,	py,	pz	along	with	iE/c,	where	
E	is	the	total	energy,	form	a	four-vector.

26.	What	 is	 the	charge-current	 four-vector?	Express	charge-current	equation	of
continuity	in	electrodynamics	in	the	covariant	form.



27.	What	 is	 a	 four-vector	 potential?	 Express	Maxwell’s	 field	 equations	 in	 the
four-vector	form.

28.	Explain	the	principle	of	equivalence.	What	is	a	geodesic?
29.	What	is	gravitational	red	shift?	Account	for	it.
30.	 Write	 notes	 on	 (i)	 precession	 of	 the	 perihelion	 of	 planetary	 orbits;	 (ii)
bending	of	light	in	the	gravitational	field.

PROBLEMS
1.	A	rocket	travelling	away	from	the	earth	with	a	speed	of	0.5	c	fires	off	a	second
rocket	at	a	speed	of	0.6	c	with	respect	to	the	first	one.	Calculate	the	speed	of
the	second	rocket	with	respect	to	the	earth.

2.	An	object	passes	at	a	speed	of	0.8	c.	Its	length	is	measured	to	be	72.5	m.	At
rest	what	would	be	its	length?

3.	At	what	 speed	would	 the	 relativistic	value	 for	 time	differ	 from	 the	classical
value	by	2	per	cent?

4.	A	person	on	a	 rocket	 travelling	at	a	speed	of	0.5	c	with	 respect	 to	 the	earth
observes	a	meteor	come	from	behind	and	pass	him	at	a	speed	0.5	c.	How	fast
is	the	meteor	moving	with	respect	to	the	earth?

5.	Two	spaceships	leave	the	earth	in	opposite	directions,	each	with	a	speed	of	0.5
c	 with	 respect	 to	 the	 earth	 .	What	 is	 the	 velocity	 of	 spaceship	 1	 relative	 to
spaceship	2?

6.	A	free	neutron	has	an	average	 lifetime	of	1000	s.	How	fast	must	a	beam	of
neutrons	travel	for	them	to	have	a	lifetime	twice	this	long	with	respect	to	the
laboratory?

7.	A	proton	has	a	kinetic	energy	of	m0c2.	Find	its	momentum	in	units	of	MeV/c.

8.	 A	 particle	 with	 mean	 lifetime	 of	 10–6s	 moves	 through	 the	 laboratory	 at	 a
speed	 of	 0.8	 c.	What	will	 be	 its	 lifetime	 as	measured	 by	 an	 observer	 in	 the
laboratory?

9.	What	 is	 the	speed	of	a	beam	of	particles	 if	 their	mean	 lifetime	 is	3	 	10–7s?
Their	proper	lifetime	is	2.6		10–7s.

10.	Calculate	the	rest	energy	in	MeV	of	electron	and	proton.	Mass	of	electron	=
9.11		10–31	kg,	Mass	of	proton	=	1.67		10–27kg.

11.	What	is	the	kinetic	energy	of	a	proton	moving	at	a	speed	of	0.86	c?	Its	rest
energy	is	939	MeV.

12.	If	the	kinetic	energy	of	an	electron	is	5	MeV,	what	is	its	velocity?



13.	A	meson	having	a	mass	of	2.4		10–28	kg	travels	at	a	speed	of	v	=	0.8	c.	What
is	its	kinetic	energy?

14.	At	what	speed	will	the	mass	of	a	body	be	twice	its	rest	mass?
15.	Evaluate	the	speed	of	a	particle	when	its	kinetic	energy	equals	its	rest	energy.
16.	Calculate	the	mass	of	a	particle	whose	kinetic	energy	is	half	its	total	energy.
How	fast	is	it	travelling?

17.	What	is	the	speed	and	momentum	of	an	electron	whose	kinetic	energy	equals
its	rest	energy?

18.	The	mean	 lifetime	of	 a	muon	at	 rest	 is	 2.4	 	10–6s.	What	will	 be	 its	mean
lifetime	 as	 measured	 in	 the	 laboratory,	 if	 it	 is	 travelling	 at	 v	 =	 0.6	 c	 with
respect	to	the	laboratory?

19.	p-mesons	coming	out	of	an	accelerator	have	a	velocity	of	0.99	c.	If	they	have
a	mean	lifetime	of	2.6		10–8s	in	the	rest	frame,	how	far	can	they	travel	before
decay?

20.	At	what	speed	will	 the	relativistic	value	for	 length	differ	from	the	classical
value	by	1	per	cent?

21.	 A	 beam	 of	 particles	 travels	 at	 a	 speed	 of	 0.9	 c.	 At	 this	 speed	 the	 mean
lifetime	as	measured	in	the	laboratory	frame	is	5		10–6s.	What	is	the	particle’s
proper	lifetime?

22.	At	what	 speed	will	 the	mass	of	 a	body	be	20	per	 cent	greater	 than	 its	 rest
mass?

23.	Derive	 an	 expression	 showing	 how	 the	 density	 of	 an	 object	 changes	with
speed	v	relative	to	an	observer.

24.	 If	 the	 sun	 radiates	 energy	 at	 the	 rate	 of	 4	 	 1026Js–1,	 evaluate	 the	 rate	 at
which	its	mass	is	decreasing.

25.	Find	the	momentum	and	velocity	of	an	electron	having	kinetic	energy	of	10.0
MeV.	The	rest	energy	of	electron	is	0.512	MeV.

26.	A	particle	having	rest	mass	m0	is	travelling	at	a	speed	of	u.	If	its	momentum

is	p,	show	that	

27.	An	electron	is	accelerated	to	an	energy	of	1.0	BeV.	(i)	What	is	its	effective
mass	in	terms	of	its	rest	mass.	(ii)	What	is	its	speed	in	terms	of	the	speed	of
light?

28.	Derive	 the	following	relations	between	momentum	p,	 kinetic	 energy	T	and



rest	 mass	 m0	 for	 relativistic	 particles:	

29.	Compute	 the	 effective	mass	 for	 a	 photon	of	wavelength	5000	Å	and	 for	 a
photon	of	wavelength	1.0	Å.

30.	Show	that	the	rest	mass	of	a	particle	of	kinetic	energy	T	and	momentum	p	is

given	by	

31.	Show	that	(i)	a	particle	which	travels	at	the	speed	of	light	must	have	a	zero
rest	mass;	(ii)	for	a	particle	of	zero	rest	mass,	T	=	E,	p	=	E/c.

32.	A	charged	p-meson	of	rest	mass	273	me	at	rest	decays	into	a	neutrino	and	a
m-meson	of	rest	mass	207	me.	Find	the	kinetic	energy	of	the	m-meson	and	the
energy	of	the	neutrino.

33.	Two	electrons	are	ejected	 in	opposite	directions	from	a	radioactive	nucleus
which	 is	 at	 rest	 in	 a	 laboratory.	 If	 each	 electron	 has	 a	 speed	 of	 0.67	 c	 as
measured	by	a	laboratory	observer,	what	is	the	speed	of	one	electron	relative
to	the	other?

34.	A	p+-meson	is	created	in	the	earth’s	atmosphere	200	km	above	the	sea	level.
It	descends	vertically	at	a	speed	of	0.99	c	and	disintegrates	in	its	proper	frame
2.5		10–8	s	after	its	creation.	At	what	altitude	above	its	sea	level	is	it	observed
to	disintegrate?

	

	



11

Introduction	to	
Nonlinear	Dynamics

The	 mechanical	 problems	 we	 considered	 so	 far	 have	 linear	 time	 evolution
equation.	However,	most	of	the	dynamical	systems	and	phenomena	in	nature	are
nonlinear.	 We	 are	 not	 fully	 equipped	 with	 simple	 tools	 to	 handle	 nonlinear
problems,	 although	 linear	 ones	 have	 been	 extensively	 studied.	 Many	 of	 the
nonlinear	 problems	 are	 reduced	 to	 linear	 ones	 by	 approximations.	 In	 many
situations	such	linearization	procedures	are	valid	to	a	large	extent.	In	this	context
a	 remark	 by	 Albert	 Einstein	 is	 worth	 noting	 :	 ‘Since	 the	 basic	 equations	 of
physics	are	nonlinear,	all	of	mathematical	physics	will	have	to	be	done	again.’	In
this	chapter,	we	shall	discuss	some	of	the	general	features	of	nonlinear	dynamic
systems,	time-dependence	and	stability	of	their	solutions.

11.1	LINEAR	AND	NONLINEAR	SYSTEMS

In	 Example	 1.6,	 we	 discussed	 the	 familiar	 linear	 harmonic	 oscillator	 having

frequency	 	where	k	 is	 the	spring	constant	and	m	 is	 the	mass	of	 the
particle	 executing	 the	 motion.	 The	 force	 acting	 on	 the	 system	



where	 the	 amplitude	 A	 and	 the	 phase	 f	 are	 constants.	 That	 is,	 if	 the	 mass	 is
displaced	from	the	equilibrium	position,	 it	will	oscillate	sinusoidally	about	 that
position	 with	 an	 angular	 frequency	 w0.	 In	 this	 example,	 we	 have	 a	 linear
system.
Next	we	shall	consider	a	slightly	more	complicated	system.	If	the	system	has

an	 additional	 force	 term	 of	 the	 type	 bx2,	 the	 time	 evolution	 of	 the	 equation

becomes	

Now	 the	 system	 is	 a	 nonlinear	 one,	 since	 the	 position	 x	 of	 the	 particle	 in	 the
equation	is	a	squared	one.
A	system	whose	time	evolution	equations	are	nonlinear	is	called	a	nonlinear

system.	The	dynamical	variables	describing	the	properties	of	the	variables	such
as	 position,	 velocity,	 acceleration,	 etc.	 appear	 in	 the	 equations	 in	 a	 nonlinear
form.
In	 linear	systems,	 if	 f1(x,	 t)	and	 f2(x,	 t)	are	 linearly	 independent	solutions	of

the	time	evolution	equation	for	the	system,	then	the	linear	combination	c1f1(x,	t)
+	c2	f2	(x,	t)	where	c1	and	c2	are	constants,	is	also	a	solution.	However,	it	is	not
in	the	nonlinear	case.	We	can	also	explain	the	concept	of	nonlinearity	in	terms	of
the	response	of	a	system	to	a	stimulus.	Let	a	stimulus	s(t)	give	rise	to	a	response
g(x,	t)	to	a	particular	system.	If	we	change	the	stimulus	to	2	s(t),	a	linear	system
will	 have	 the	 response	 2	 g(x,t).	 For	 a	 nonlinear	 system,	 the	 response	 will	 be
different	 from	 2	 g(x,	 t),	 can	 be	 smaller	 or	 larger	 than	 2	 g(x,	 t).	 That	 is,	 if	 a
parameter	 that	 describes	 a	 linear	 system	 is	 changed,	 then	 the	 other	 parameters
will	 change	 correspondingly.	 For	 nonlinear	 systems,	 a	 small	 change	 in	 a
parameter	can	lead	to	dramatic	and	sudden	changes	of	the	co-ordinates	and	other



parameters	 in	both	qualitative	and	quantitative	behaviour	of	 the	system.	It	may
be	noted	here	that	most	of	the	real	systems	are	nonlinear	at	least	to	some	extent.

11.2	INTEGRATION	OF	LINEAR	EQUATION:	QUADRATURE
METHOD
Again	 consider	 the	 linear	 equation,	 Eq.	 (11.2),	 for	 our	 discussion.	 It	 can	 be
written	 in	 the	 form	 of	 a	 pair	 of	 coupled	 first	 order	 equations:	



which	is	the	same	as	Eq.	(11.2).	Though	this	procedure	is	somewhat	roundabout
for	 this	 simple	 linear	 equation,	 it	 becomes	more	 natural	when	 nonlinear	 terms
appear	in	the	differential	equation.	Even	the	method	of	quadrature	fails	in	certain
cases	where	the	nonlinearity	is	higher	than	second	order.

It	is	obvious	from	Eq.	(11.11)	that	the	period	of	the	oscillator	 	This
can	also	be	obtained	 from	Eq.	 (11.8).	Since	 I1	 is	 the	 total	energy	E	 and	at	 the

classical	 turning	 points	 	 from	 Eq.	 (11.6)	



Thus,	the	period	is	independent	of	energy.

11.3	INTEGRATION	OF	NONLINEAR
SECOND	ORDER	EQUATIONS

Nonlinear	second	order	equations	are	very	common	in	physics	and	a	majority	of

them	are	in	the	form	

where	f(x)	might	be	a	polynomial,	 rational	or	 transcendental	functions	of	x.	As
an	example,	we	may	consider	a	particle	moving	under	a	force	function	which	is
of	 third	 order	 in	 the	 displacement	 x.	 Then	 the	 equation	 of	 motion	 is	



Replacing	 f(x)	 using	 Eq.	 (11.14)	 and	 performing	 the	 integration	

Consequently,	 Eq.	 (11.19)	 can	 be	 written	 as	



Tabulated	values	of	the	elliptic	integral	are	available	in	mathematical	handbooks.
The	 inverse	 of	 the	 elliptic	 integral	 given	 in	Eq.	 (11.25)	 or	Eq.	 (11.24)	 are	 the
Jacobi’s	elliptic	functions.	For	more	details	regarding	elliptic	integrals,	refer	to
Appendix	A.

11.4	THE	PENDULUM	EQUATION

Another	 most	 studied	 nonlinear	 system	 is	 the	 simple	 pendulum.	 It	 can	 be
integrated	exactly	 in	 terms	of	elliptic	 functions.	Let	 the	departure	of	 the	 string
from	its	equilibrium	position	be	q.	The	time	evolution	equation	for	the	position



of	the	bob	can	be	written	as	

where	l	 is	 the	 length	of	 the	pendulum.	If	we	approximate	sin	q	byq	we	get	 the
familiar	 equation	 of	 a	 harmonic	 oscillator	

with	the	general	solution	given	by	Eq.	(11.3).
We	shall	now	solve	the	original	nonlinear	equation	without	the	approximation.

Writing	 Eq.	 (11.26)	 as	 two	 coupled	 equations	





The	 definition	 of	 k	 suggests	 that	 it	 is	 a	 constant.	 Hence,	 differentiating	 Eq.
(11.34)	



Angle	 q(t)	 in	 terms	 of	 time	 can	 be	 written	 as	



11.5	PHASE	PLANE	ANALYSIS	OF
DYNAMICAL	SYSTEMS

For	understanding	the	dynamics	of	linear	and	nonlinear	systems,	the	description
of	its	behaviour	in	phase	space	is	quite	useful.	The	two	independent	variables	

(x,	 px)	 here	 	 define	 the	 space	 in	 which	 the	 solution	 moves.	 For	 a
particle	 having	 only	 one	 independent	 variable,	 the	 phase	 space	 is	 only	 two-
dimensional	and	hence	it	is	often	referred	to	as	the	phase	plane.	At	any	time	the
value	of	 the	phase	space	co-ordinates	 (x,	y)	completely	defines	 the	state	of	 the
system.	For	a	system	having	n	independent	variables	x1,	x2,...,	xn	,	each	variable
can	be	thought	of	as	an	independent	phase	space	co-ordinate	in	the	associated	n-
dimensional	phase	space.	A	given	solution	to	the	equations	of	motion	will	map
out	 a	 smooth	 curve	 in	 the	 phase	 plane	 as	 a	 function	 of	 time.	 This	 is	 called	 a
phase	curve	 or	phase	 trajectory	 and	 the	motion	 along	 it	 is	 called	 the	phase
flow.	 Because	 of	 the	 unique	 properties	 of	 solutions	 to	 differential	 equations,
different	phase	space	trajectories	do	not	cross	each	other.	A	picture	made	up	of
sets	of	phase	curves	is	often	called	a	phase	portrait.

Phase	Curve	of	Simple	Harmonic	Oscillator	To	illustrate	the
various	concepts,	we	make	use	of	the	familiar	harmonic	oscillator
problem	as	given	in	Eq.	(11.2).	In	its	first	integral,	Eq.	(11.6),	I1	is
simply	total	energy.	From	Eq.	(11.6)	

Clearly	 the	phase	 trajectories	are	concentric	ellipses	(See	Fig.	11.1).	The	semi-
major	and	minor	axes	can	easily	be	determined	as	detailed	below.	At	the	turning



points	 of	 the	 ellipse,	 .	 Hence,	 from	 Eq.	 (11.42)	

The	origin	of	 the	phase	plane	x	=	y	=	0	corresponds	 to	an	obvious	equilibrium
point	of	the	motion.	Thus,	the	existence	of	a	constant	first	integral	has	provided	a
definite	geometrical	constraint	on	the	phase	flow.

Fig.	11.1	Phase	curves	for	the	simple	harmonic	oscillator.

Phase	Curve	of	Damped	Oscillator
Next	we	shall	consider	oscillations	with	damping	forces	proportional	to	velocity.
The	 equation	 of	 the	 oscillator	 is	 then	



When	 	the	roots	l1	and	l2	are	complex	and	the	motion	is	oscillation	with
decreasing	amplitude.	The	solution	just	spirals	into	the	equilibrium	point	at	 the
origin	at	a	rate	depending	on	the	damping	coefficient	b	(See	Fig.	11.2a).

In	 the	 case	of	 	 or	 the	 solution	 is	 aperiodic	 damped	motion.
Phase	trajectories	for	these	cases	are	obtained	numerically	and	are	given	in	
Figs.	11.2	(b)	and	(c).	The	trajectories	in	these	two	cases	approach	the	origin.
For	 nonlinear	 systems	 such	 as	 Eq.	 (11.13)	with	 a	 constant	 first	 integral	 and

executing	bounded	motion,	the	phase	portrait	is	again	a	set	of	concentric	curves
centred	 at	 the	 origin.	However,	 for	more	 general	 nonlinear	 systems,	 the	 phase
portrait	is	more	complicated.



Fig.	11.2	Phase	curves	of	a	damped	oscillator:	(a)	 .	The	solution	spirals	into	the	equilibrium

point;	(b)	 	(c)	 .	In	(b)	and	(c)	the	trajectories	approach	the	origin.

11.6	PHASE	PORTRAIT	OF	THE
PENDULUM

One	 of	 the	most	 studied	 examples	 is	 the	 simple	 pendulum.	 Its	 time	 evolution
equation	 for	 the	 displacement	 is	 given	 by	 Eq.	 (11.26).	 To	 have	 uniformity	 in
notation	with	the	previous	section,	we	denote	the	variables	 	and	 	as	x	and	y,
respectively.	 In	 the	 new	 notation	 Eq.	 (11.28)	 takes	 the	 form	

where	E	is	the	scaled	total	energy.	The	phase	space	diagram	of	the	pendulum	is
shown	in	Fig.	11.3.
For	very	small	energies	the	pendulum	will	just	oscillate	about	the	equilibrium

point	 x	 =	 y	 =	 0	 in	 nearly	 linear	 fashion.	 For	 small	 energies	 the	 phase	 space
trajectories	 are	 ellipses	 centred	 on	 the	 origin.	 As	 the	 energy	 increases,	 the
pendulum	



Fig.	11.3	Phase	curves	for	the	pendulum.

executes	 larger	 librations	 until	 finally	 a	 point	 is	 reached	 with	 the	 pendulum
standing	straight	up	with	the	mass	directly	above	the	point	of	pivot	and	starts	to
execute	 rotational	 motion.	 That	 means	 the	 pendulum	 has	 sufficient	 energy	 to

swing	from	x	=	0	to	 ,	the	value	of	y	for	these	two	values	of	x	being	zero.

When	y	=	0	and	 	 from	Eq.	 (11.48)	 	 In	 other	words,	 the
pendulum	 will	 just	 complete	 the	 circle	 if	 it	 has	 the	 energy	 	 As	 the
energy	increases	further	and	further,	the	rotational	motion	gets	faster	and	faster.

The	point	 	with	y	=	0	is	an	equilibrium	point,	but	an	unstable	one.	This
phase	pattern	will	be	repeated	at	every	multiple	of	2p	to	the	left	and	right	since

the	 restoring	 force	 is	 periodic.	 Thus,	 at	 every	 	 there	 is	 a	 stable

equilibrium	point	and	at	every	 	there	is	an	unstable	equilibrium
point.	 These	 points	 marks	 a	 transition	 from	 librational	 motion	 to	 rotational
motion	 and	 the	 phase	 curves	 change	 from	 closed	 to	 open	 ones.	The	 open	 one
corresponds	to	unbounded	rotational	motion.
The	 pair	 of	 space	 curves	 that	 separate	 the	 librational	 and	 rotational	motions

and	that	meet	at	the	unstable	equilibrium	points	is	termed	the	separatrix.	Inside
the	 separatrices,	 the	motion	 is	completely	periodic	and	oscillatory.	Trajectories
outside	 the	 separatrices	 correspond	 to	running	modes	 in	which	 the	 pendulum
has	 sufficient	 energy	 to	 swing	 over	 the	 top.	 One	 type	 of	 running	 mode	 has

angular	 velocity 	 (anticlockwise	 motion)	 and	 the	 other	 type	 has	 angular

velocity	 (clockwise	motion).



11.7	MATCHING	OF	PHASE	CURVE	WITH	POTENTIAL	V(x)
For	conservative	systems,	the	energy	E	is	a	constant	of	motion	and
can	be	written	as	the	sum	of	kinetic	and	potential	energies.	We	may

write	 	(11.49)	where	the	potential	function

is	some	nonlinear	function	of	x.	For	conservative	systems,	the	phase
curves	are	often	referred	to	as	level	curves	and	their	constructions	are
somewhat	easy.

Simple	Harmonic	Oscillator

For	the	simple	harmonic	oscillator	 	and	the	curve	V(x)	versus	x	is	a
simple	parabola	 in	which	 the	motion	 is	 confined	between	 the	 classical	 turning

points	given	by	 	Matching	of	this	parabola	with	the	phase	curve
of	the	oscillator	(See	Fig.	11.1)	is	illustrated	in	Fig.	11.4.	Clearly	the	ellipses	are
between	the	classical	turning	points	in	the	parabola.

Fig	11.4	Matching	of	phase	curves	with	potential	V(x)	for	a	simple	harmonic	oscillator.

Simple	Pendulum

For	the	pendulum,	 	which	is	a	nonlinear	periodic	potential
(See	Fig.	 11.5).	Below	 the	periodically	 spaced	maxima	 the	motion	 is	 bounded
and	 hence	 elliptical.	 Above	 the	maxima,	 as	 discussed	 the	motion	 is	 rotational



and	 hence	 unbounded.	 The	 minima	 are	 stable	 equilibrium	 points	 whereas	 the
maxima	 give	 the	 unstable	 equilibrium	 points.	 The	 matching	 of	 the	 potential
energy	curve	with	the	phase	curve	is	illustrated	in	Fig.	11.5.

	

Fig.	11.5	Matching	of	phase	curves	with	potential	V(x)	for	a	pendulum.

11.8	LINEAR	STABILITY	ANALYSIS

Phase	portraits	for	conservative	systems	are	not	difficult	to	construct.	They	have
characteristic	closed	curves	around	stable	points	and	hyperbolic	type	regions	in
the	neighbourhood	of	unstable	points.	For	nonconservative	systems,	construction
of	 phase	 portraits	 are	 difficult	 unless	 an	 explicit	 solution	 is	 known	 to	 the
equations	of	motion.	However,	 it	 is	possible	 to	 construct	 an	approximate	 local
phase	portrait	by	 identifying	 the	equilibrium	points,	 referred	 to	as	fixed	points
or	critical	points	and	drawing	phase	curves	in	their	neighbourhood.	Fixed	points
will	be	satisfying	conditions	satisfied	by	equilibrium	points.	Therefore,	one	can
build	 up	 a	 fairly	 good	 phase	 portrait	 of	 any	 system	 by	 identifying	 reasonably
stable	 fixed	points,	which	are	 the	organizing	centres	of	a	system’s	phase	space
dynamics.



Stability	Matrix
For	 discussion,	 consider	 a	 general	 second	 order	 system	 of	 the	 form	

The	number	of	such	fixed	points	depend	on	the	form	of	f	and	g.	The	stability	of
fixed	points	can	be	understood	by	considering	the	time	evolution	of	some	small
displacement 	 about	 (x0,	 yo).	 For	 small	 displacements,	we	 need	 retain
only	 the	 linear	 terms	 in	 the	 Taylor	 expansion	 of	 the	 functions	 f	 and	 g.	 The
linearized	 time	 evolution	 of	 displacements	 dx	 and	 dy	 are	 then	 given	 by	

Equation	(11.53)	is	often	referred	to	as	the	linearized	equations.	The	2		2	matrix
in	Equation	(11.53),	denoted	as	M,	 is	often	referred	 to	as	 the	stability	matrix.
Let	 l1	 and	 l2	 be	 the	 two	 eigenvalues	 of	 the	 matrix	M	 and	 the	 eigenvectors
associated	with	the	eigenvalues	be	D1	and	D2.	A	solution	of	the	first	order	linear
equations	 in	 Equation	 (11.53)	 is	 given	 by	 the	 roots	 of	 the	 equation	



Classification	of	Fixed	Points	The	nature	of	phase	curves	will	depend	on
the	 eigenvalues	 of	 the	 stability	 matrix	 l1	 and	 l2.	 However,	 the	 form	 of
eigenvectors	 determines	 the	 actual	 directions	 of	 the	 local	 phase	 flows.	 The
different	possibilities	are	discussed	in	this	section.
Case	(i):	l1	<	l2	<	0–	a	stable	node.	As	the	eigenvalues	are	negative,	the	local
flow	decays	in	both	directions	determined	by	D1	and	D2	into	the	fixed	point,	as
illustrated	in	Fig.	11.6	(a).
Case	(ii):	l1,	l2	>	0–an	unstable	node.	The	local	flow	grows	exponentially	away
from	the	fixed	point	in	both	directions,	as	shown	in	Fig.	11.6	(b).
Case	(iii):	l1	<	0	<	 l2–hyperbolic	point	or	saddle	point.	One	direction	grows
exponentially	and	the	other	decays	exponentially,	as	illustrated	in	Fig.	11.6	(c).
The	 incoming	 and	 outgoing	 directions	 are	 often	 referred	 to	 as	 the	 stable	 and
unstable	manifolds	of	the	separatrix,	respectively.

Case	(iv):	 —a	stable	spiral	point.	Since
the	two	eigenvalues	l1	and	l2	have	the	negative	real	part	–a,	the	flow	spirals	in
toward	the	fixed	points,	as	shown	in	Fig.	11.6	(d).

Case	(v):	 —	an	unstable	spiral	point.	Because	of	 the
positive	real	parts,	the	flow	spirals	away	from	the	fixed	point	(Fig.	11.6	e).

Case	(vi):	 —an	elliptic	point	or	simply	centre.	As	the	two
eigenvalues	 are	 purely	 imaginary,	 the	 phase	 curves	 will	 be	 closed	 ellipses,	 as
shown	in	Fig	11.6	(f).	This	will	be	a	stable	equilibrium	point.



Fig.	11.6	Local	phase	flows	for:	(a)	stable	node;	(b)	unstable	node;	(c)	hyperbolic	point;	(d)	stable	spiral
point;	(e)	unstable	spiral	point;	(f)	elliptic	point.

In	 the	 last	 three	 cases,	 whether	 the	 flow	 is	 clockwise	 or	 anticlockwise	 is

determined	from	Eq.	(11.53)	by	setting	dy	=	0	and	dx	>	0.	If	 ,	the	motion

is	upwards	and	hence	anticlockwise;	if	 ,	the	motion	is	downwards,	which
corresponds	to	clockwise	motion.
The	cases	we	considered	so	far	have	nondegenerate	roots	l1	and	l2.	When	the

roots	 are	 degenerate,	 the	 general	 solution	 of	 Eq.	 (11.53)	 will	 be	 of	 the	 form	

	 (11.56)	The	 sign	 and	 nature	 of	 the	 eigenvectors
D1	and	D2	decide	the	nature	of	the	fixed	points.
Case	 (vii):	 D2	 is	 a	 null	 vector	 and	 D1	 is	 arbitrary.	 The	 flow	 lines	 will	 be
independent,	 intersecting	 straight	 lines	 forming	 a	 stable	 star	 if	 l	 <	 0	 and	 an
unstable	 star	 if	 l	 >	 0.	 These	 are	 represented	 in	 Figs.	 11.7	 (a)	 and	 11.7	 (b),
respectively.
Case	 (viii):	D2	 is	 not	 a	 null	 vector;	 the	 flow	 lines	 will	 be	 curved,	 forming	 a
stable	 improper	 node	 if	 l	 <	 0,	 as	 shown	 in	 Fig.	 11.7	 (c)	 and	 an	 unstable



improper	node	if	l	>	0,	as	shown	in	Fig.	11.7	(d).

Fig.	11.7	Local	phase	flows	for	(a)	stable	star;	(b)	unstable	star;	(c)	stable	improper	node;	(d)	unstable
improper	node.

11.9	FIXED	POINT	ANALYSIS	OF	A	DAMPED	OSCILLATOR
To	illustrate	the	fixed	point	method	of	analysis,	we	discuss	the	case	of	a	damped
oscillator.	 The	 equation	 of	 motion	 of	 the	 damped	 harmonic	 oscillator	 is	

At	the	fixed	point,	 .	With	this	condition,	from	Eqs.	(11.58)	and	(11.59),
we	have	x	=	0,	y	=	0.	Hence,	 the	only	 fixed	point	 is	x0	=	y0	=	0.	Writing	 the
coupled	 equations	 denoted	 by	 Eqs.	 (11.58)	 and	 (11.59)	 in	 matrix	 form	



11.10	LIMIT	CYCLES

Apart	 from	 the	 simple	 fixed	 points	 (equilibrium	 points)	 in	 the	 linear	 stability
analysis,	 a	dynamical	 system	may	exhibit	other	 type	of	 stable	 solutions.	These
are	 the	 limit	 cycles	 that	 are	 characterized	 by	 periodically	 oscillating	 closed
trajectories.	A	 system	 exhibiting	 such	 a	 feature	 is	 the	Van	 der	 Pohl	 oscillator	

This	 has	 a	 fixed	 point	 at	 (x,	 y)	 =	 (0,	 0),	 which	 will	 be	 an	 unstable	 node	 if	



	and	an	unstable	spiral	point	if	 .	(Problem	11.2).	Considering
the	unstable	spiral	point,	as	x	and	y	increase,	the	nonlinear	term	–bx2y	dominates
in	Eq.	(11.65),	which	suggests	a	decay	back	to	the	origin.	That	is,	trajectories	far
from	the	origin	move	inwards.	By	continuity	there	must	be	at	least	one	solution
that	stays	in	the	middle.	This	solution	is	the	limit	cycle	of	the	system	(See	Fig.
11.8),	 which	 is	 a	 closed	 orbit	 encircling	 the	 origin.	 Solutions	 starting	 either
within	or	outside	it	are	attracted	to	it	but	can	never	cross	it.	The	exact	shape	of
the	limit	cycle	has	to	be	worked	out	numerically.

Fig.	11.8	The	limit	cycle.

In	a	stable	 limit	cycle	or	attracting	 limit	cycle	all	 the	 trajectories	approach
the	 limit	cycle,	whereas	 in	an	unstable	 limit	cycle	or	repelling	 limit	 cycle	all
the	 trajectories	move	away	from	it.	 If	one	set	of	 trajectories	(inside	or	outside)
approaches	the	limit	cycle	and	the	other	set	moves	away	from	it,	the	limit	cycle
is	said	to	be	a	semi-stable	or	saddle	cycle.

WORKED	EXAMPLES
Example	 11.1	 Find	 the	 possible	 fixed	 points	 of	 a	 damped	 pendulum	 with
damping	force	proportional	to	velocity.	Discuss	their	stability.







Fig.	11.9	Phase	plane	for	damped	pendulum	for	 .

Case	 (i):	 b2	 <	 g/l:	 	 which	 corresponds	 to	 a	 stable
spiral	point.	To	 find	 the	 flow	direction,	on	 setting	dy	=	0	and	dx	>	0,	Eq.	 (iv)

gives	 .	Hence,	 the	flow	direction	 is	clockwise.	The	phase	curve	for	 this
case	is	illustrated	in	Fig.	11.9.
Case	(ii):	b2	>	g/l:	This	condition	leads	to	l1	<	l2	<	0,	which	corresponds	to	a
stable	node.
Case	 (iii):	 b2	 =	 g/l:	 We	 have	 the	 degenerate	 case	 with	 l1	 =	 l2	 =	 –b
corresponding	to	a	stable	improper	node.

Example	 11.2	 Consider	 the	 conservative	 nonlinear	 system	 of	 the	 coupled
equations	of	Voltera	in	connection	with	the	growth	or	decay	of	population	of	two
species,	one	of	which	thrives	on	the	other:	
Discuss	the	possible	fixed	points,	their	stability	and	the	nature	of	phase	curve.
Solution:	At	the	fixed	points,	 .	Then	x	=	xy	and	y	=	xy.	Hence,	x	=	y.

Substituting	 this	condition	 in	x	=	xy,	we	have	x	=	x2	which	means	x	=	0	or	1.
Then	it	is	obvious	that	the	system	has	two	fixed	points	(x1,	y1)	=	(0,	0)	and	(x2,
y2)	
=	(1,	1).	From	the	given	equations,	we	have	



In	 the	 matrix	 form,	

direction	can	be	obtained	by	setting	dy	=	0	and	dx	>	0	 in	Eq.	 (i).	When	 this
condition	is	applied,	we	have	 	Hence,	the	rotation	about	the	elliptic	fixed
point	is	anticlockwise.	The	approximate	phase	portrait	is	illustrated	in	Fig.	11.10.

Fig.	11.10	Phase	portrait	of	the	coupled	equations	of	Voltera	Example	11.3	Solve	the	nonlinear	equation	of

motion	



which	corresponds	to	the	motion	of	a	particle	under	a	nonlinear	restoring	force.
Hence,	 show	 that	 the	 period	 is	 explicitly	 dependent	 on	 the	 energy,	 given	 that	

Solution:	Given	equation	is	 ,	where	b	is	a	constant.	(i)	This	equation
can	 be	 written	 in	 the	 form	 of	 a	 pair	 of	 coupled	 first	 order	 equations	

which	 is	 the	 first	 integral	 of	 Eq.	 (i).	 Since	 	 the	 constant	 can	 now	 be
identified	 as	 the	 total	 energy	 E.	 Then	



REVIEW	QUESTIONS
1.	 Explain	 integration	 of	 linear	 second	 order	 equations	 by	 the	 method	 of
quadrature	with	the	help	of	an	example.

2.	What	is	a	phase	curve?	Illustrate	diagrammatically	the	phase	curve	of	a	simple
harmonic	oscillator.

3.	Explain	the	phase	portrait	of	a	damped	oscillator.
4.	With	the	necessary	diagram,	explain	the	phase	portrait	of	a	pendulum.
5.	 The	 existence	 of	 a	 constant	 first	 integral	 provides	 a	 definite	 geometrical
constraint	on	the	phase	flow.	Substantiate.

6.	 Draw	 the	 phase	 curve	 of	 a	 simple	 pendulum	 and	 match	 it	 with	 the	 curve



representing	the	potential.
7.	 Explain	 how	 an	 approximate	 phase	 portrait	 is	 built	 up	 for	 nonconservative
systems.

8.	 Explain	 the	 following	with	 the	 local	 phase	 flow	 curves:	 (i)	 stable	 node	 (ii)
unstable	node	(iii)	hyperbolic	point	(iv)	stable	spiral	point	(v)	unstable	spiral
point	(vi)	elliptic	point.

9.	What	are	(i)	stable	stars	(ii)	unstable	stars	(iii)	stable	improper	nodes	
(iv)	unstable	improper	nodes?

10.	 Outline	 the	 fixed	 point	 stability	 analysis	 of	 the	 damped	 linear	 harmonic
oscillator.

11.	What	are	limit	cycles?	Distinguish	between	stable	limit	cycle	and	semi-stable
limit	cycle.

PROBLEMS
1.	Discuss	the	fixed	point	analysis	of	a	pendulum	and	show	that	the	fixed	points
are	either	elliptical	or	hyperbolic.

2.	Investigate	the	Van	der	Pohl	oscillator
equation

and	show	that	(x,	y)	=	(0,	0)	is	a	fixed	point	which	will	be	an	unstable	node	if	
	and	an	unstable	spiral	point	if	 .

3.	A	one-dimensional	system	is	described	by	the	following	equation	of	motion:	

Discuss	the	possible	fixed	points	and	their	stability.

	



12

Classical	Chaos

At	times,	sudden	and	exciting	changes	in	nonlinear	systems	may	give	rise	to	the
complex	 behaviour	 called	 chaos.	 Chaotic	 systems,	 although	 deterministic,
exhibit	 extensive	 randomness.	 Chaotic	 trajectories	 arise	 from	 the	 motion	 of
nonlinear	 systems,	which	 are	nonperiodic	but	 still	 somewhat	predictable.	Such
complicated	chaotic	dynamics	can	be	present	even	in	deceptive	simple	systems.
The	 existence	 of	 chaotic	 dynamics	 in	 mathematics	 dates	 back	 to	 the	 days	 of
Poincare	at	the	turn	of	the	20th	century.	However,	only	in	the	second	half	of	the
20th	century	has	 the	wide-ranging	 impact	of	chaos	 in	 the	different	branches	of
physics	been	visualized.	We	shall	discuss	here	some	of	the	definitions,	concepts
and	results	that	are	basic	to	the	field	of	chaotic	dynamics.

12.1	INTRODUCTION

Chaos	 describes	 the	 complicated	 behaviour	 of	 dynamical	 systems	 that	 lies
between	 regular	 deterministic	 trajectories	 and	 a	 state	 of	 noise.	 It	 is	 used	 to
describe	the	time	behaviour	of	a	system	when	the	behaviour	is	aperiodic,	that	is,
when	 it	 never	 repeats	 exactly.	 Chaos	 shows	 up	 in	 systems	 that	 are	 essentially
free	 from	 noise	 and	 are	 relatively	 simple.	 The	 three	 major	 components	 that
determine	the	behaviour	of	a	system	are	the	time	evolution	equations,	the	values
of	the	parameters	describing	the	system	and	the	initial	conditions.	For	example,	a
small	change	in	one	or	more	of	the	initial	conditions	could	completely	alter	the
course	of	the	system,	and	the	final	outcome	cannot	be	predicted.
The	 theoretical	 framework	 needed	 to	 describe	 chaos	 and	 chaotic	 systems	 is

beyond	 the	 scope	 of	 this	 book.	 However,	 certain	 qualitative	 features	 will	 be
developed	 without	 introducing	 serious	 mathematics.	 The	 description	 of	 the
behaviour	of	the	system	will	be	described	under	phase	space	or	state	space.



12.2	BIFURCATION

Bifurcation	means	splitting	into	two	parts.	The	behaviour	of	dynamical	systems
is	 influenced	by	 the	value	of	one	or	more	control	parameters	 (m).	The	 control
parameters	 could	 be	 the	 amount	 of	 friction,	 the	 strength	 of	 an	 interaction,	 the
amplitude	and	frequency	of	a	periodic	perturbation	or	some	other	quantity.	The
term	bifurcation	is	generally	used	in	the	study	of	nonlinear	dynamics	to	describe
the	change	in	the	behaviour	of	the	system	as	one	or	more	control	parameters	are
varied.	The	control	parameter	may	suddenly	change	a	stable	equilibrium	position
into	two	such	positions,	or	a	system	initially	at	rest	may	begin	to	oscillate.	The
phenomenon	 of	 additionally	 arising	 solutions	 or	 of	 solutions	 that	 suddenly
change	 their	 character	 is	 called	branching	 or	bifurcation.	 Bifurcation	 for	 the
logistic	map	function	is	discussed	in	Sections	12.3	and	12.5,	and	the	diagram	is
represented	in	Fig.	12.6.
If	the	behaviour	of	a	system	in	the	neighbourhood	of	an	equilibrium	solution	is

changed,	 it	 is	 called	 a	 local	 bifurcation.	 If	 the	 structure	 of	 the	 solutions	 is
modified	on	a	larger	scale,	it	is	called	global	bifurcation.	In	the	simple	systems
we	study	here,	we	encounter	only	the	bifurcations	generated	by	a	single	control
parameter.

12.3	LOGISTIC	MAP

To	 understand	 the	 phenomenon	 of	 chaos,	 we	 consider	 a	 simple	 mathematical
model	used	to	describe	the	growth	of	biological	populations.	If	N0	is	the	number
of	insects	born	at	a	particular	time	and	N1	is	the	number	that	survives	after	one
year,	the	simplest	way	one	can	relate	the	two	is	to	write	N1	=	AN0………(12.1)
where	A	 is	 a	number	 that	depends	on	 the	conditions	 such	as	 food	 supply,	weather	 conditions,	water,	etc.
Suppose	that	A	remains	the	same	for	the	subsequent	generation.	If	A	>	1,	the	number	will	increase	year	after
year,	leading	to	an	explosion.	If	A	<	1,	the	number	will	decrease	and	end	up	with	extinction.	To	limit	the
growth	of	population,	we	have	to	incorporate	another	term	that	would	be	insignificant	for	small	values	of	N

but	becomes	significant	as	N	increases.	One	possible	way	is	to	add	a	term	of	the	type ,	where	B	is	very
small.	 The	 effect	 of	 this	 term	 should	 be	 to	 decrease	 the	 population.	 In	 such	 a	 case	Eq.	 (12.1)	 becomes	



Let	 us	 introduce	 a	 new	 variable	 xn	 defined	 by	

It	means	 that	 xn	 is	 the	 population	 in	 the	nth	 year	 as	 a	 fraction	 of	Nmax.	 It	 is
obvious	that	the	value	of	x	is	 in	the	range	0	 	1.	With	this	definition,	Eq.	(12.2)

gives	

where	Eq.	(12.4)	is	used.	Eq.	(12.6)	is	an	important	one	as	it	played	a	crucial	role
in	the	development	of	chaos.	The	function	fA(x)	is	called	the	iteration	function
since	 the	 population	 fraction	 in	 subsequent	 years	 can	 easily	 be	 obtained	 by
iterating	the	mathematical	operations	as	per	Eq.	(12.6).	The	plot	of	the	function
fA(x)	versus	x	for	four	values	of	the	parameter	A	is	illustrated	in	Fig.	12.1.	In	the
figure	the	diagonal	line	is	the	plot	of	fA(x)	=	x.



Fig.	12.1	Function	fA	(x)	versus	x	for	various	values	of	A.

Since	the	environment	represented	by	the	parameter	A	remains	a	constant	over
a	period	of	time,	we	expect	the	value	of	population	fraction	x	also	to	settle	down
into	 some	 definite	 value.	 This	 value	 of	 x	 may	 change	 gradually	 if	A	 changes
gradually.	Hence,	if	we	start	with	some	value	of	x0.

x1	=	fA	(x0)	x2	=	fA	(x1)	x3	=	fA	(x2),...………(12.7)	The	function	fA	(x)	is
therefore	 referred	 to	 as	 the	 iterated	map	 function	 or	 the	 logistic	 map
function.

The	nonlinear	equation,	Eq.	(12.6),	is	a	parabola	since	it	is	in	the	form	
y	=	bx	–	cx2.	The	maximum	value	exceeds	unity	if	A	>	4.	If	A	<	1,	x1,	x2,...,	tend
to	zero,	which	means	 the	population	 is	heading	 towards	extinction.	Hence,	we
need	consider	only	the	range	of	values	1	<	A	<	4.
The	 successive	 terms	 x1,	 x2,	 x3,...	 generated	 by	 this	 iteration	 procedure	 is

called	the	trajectory	or	orbit.	The	first	few	points	of	a	trajectory	depend	on	the
starting	value	of	x.	The	subsequent	behaviour	is	the	same	for	almost	all	starting
points	 for	a	given	value	of	A.	An	x-value,	 called	x*,	 defined	by	 the	 condition	

is	called	a	fixed	point	of	 the	 iterated	map.	The	subscript	A	 to	x*	 is	 to	 indicate



that	 it	 depends	 on	A.	 The	 fixed	 point	 	means	 that	 successive	 iterations	 are

expected	 to	 bring	 xn+1	 closer	 and	 closer	 to	 the	 limiting	 value	 	 and	 further
iterations	 produce	 no	 additional	 change	 in	 xn.	 For	 the	 logistic	 map,	 the	 fixed
points	 can	 easily	 be	 determined	 by	 solving	 the	 equation	

That	 is,	 in	 general	 there	 are	 two	 fixed	 points	 in	 the	 range	 0	 <	 x	 <	 1.	 For	

	is	the	only	fixed	point	in	this	range.	However,	for	A	>	1,	both	the
fixed	points	fall	in	this	range.	In	Fig.	12.1,	whenever	the	fA	(x)	curve	crosses	the
diagonal	line,	the	map	function	has	a	fixed	point.

Fig.	12.2	Representation	of	the	iteration	in	Eq.	(12.6)	starting	from	x0	=	0.8	and	A	=	0.6.

Next	we	shall	see	how	a	trajectory	that	starts	from	some	value	of	x	different
from	zero	approaches	zero	if	A	<	1.	Fig.12.2	gives	the	graphic	representation	of
the	iteration	map	starting	from	x0	=	0.8	with	A	=	0.6	.	From	the	starting	value	of
x0	=	0.8	on	the	x-axis,	draw	a	vertical	which	meets	the	fA	curve.	The	intersection
value	 determines	 the	 value	 of	 x1.	 From	 the	 intersection	 point,	 draw	 a	 line
parallel	to	the	x-axis	to	the	diagonal.	Directly	below	this	intersection	point	is	x1
on	the	
x-axis.	 From	 the	 intersection	 point	 on	 the	 diagonal,	 draw	 a	 vertical	 to	 the	 fA



curve.	The	 resulting	 intersection	point	on	 the	 fA	 curve	determines	x2	(see	 Fig.
12.2).	Continuing	this	process	we	approach	the	final	value	x	=	0.	In	general,	we
conclude	that	if	A	<	1	the	population	dies	out,	that	is,	x		0	as	n	increases.
Next,	we	shall	consider	the	situation	when	A	>	1.	Fig.12.3	illustrates	the	plot

of	fA	(x)	against	x	along	with	the	diagonal	line	and	the	trajectory	starting	at	
x	=	0.08.	From	the	figure	we	see	that	the	trajectory	is	heading	for	the	fixed	point	

.	It	may	be	noted	that	all	trajectories	starting	in	the	range	
0	<	x	<	 1	 approach	 this	 same	 attractor	 (refer	 to	 Section	 12.4).	 It	may	 also	 be
noted	that	for	A	>	1,	x*	=	0	has	become	a	repelling	fixed	point	since	trajectories
starting	near	x	=	0	also	move	away	 from	 the	value.	 In	Figs.	12.4	and	12.5	we
have	plotted	fA	(x)	versus	x	for	A	slightly	less	 than	3	(A	=	2.9)	and	for	slightly
greater	than	
3,	 respectively.	 In	 the	 case	 given	 in	 Fig.	 12.4	 (A	 <	 3)	 a	 spiralling	 of	 the
trajectories	on	to	a	stable	fixed	point	x*	is	noticed,	whereas	in	Fig.12.5	(A	>	3)	a
spiralling	away	of	the	trajectories	from	an	unstable	fixed	point	x*	takes	place.

Fig.	12.3	Graphic	representation	of	the	iteration	procedure	with	A	=	1.9	and	x0	=	0.08	leads	to	



Fig.	12.4	Graphic	representation	of	the	iteration	procedure	with	A	=	2.9	and	x0	=	0.08.	Note	the	spiralling	of

the	trajectories	on	to	the	stable	fixed	point	

Fig.	12.5	Graphic	representation	of	the	iteration	procedure	with	A	=	3.2.	Note	the	spiralling	away	of	the
trajectories	from	the	unstable	fixed	point	x*.

From	what	we	have	seen,	for	a	stable	fixed	point	A	must	satisfy	the	condition	
1	<	A	<	3.	Such	a	 fixed	point	constitutes	an	attractor	since	values	of	xn	 iterate
toward	it.	When	A	is	slightly	greater	than	3,	it	is	noticed	that	the	trajectory	does
not	settle	down	to	a	single	attracting	value	but	alternates	between	the	two	values
or	attractors.

xn	 =	 0.559	 and	 xn+1	 =	 0.764………(12.9)	 This	 is	 often	 referred	 to	 as
period-2	behaviour.	In	other	words,	at	A	=	3	
a	period	doubling	bifurcation	occurs.	The	point	at	which	the	bifurcation
takes	place	is	called	a	critical	point.	For	the	parameter	A	=	3.5,	a	double



bifurcation	corresponding	to	a	fourfold	cycle	involving	the	four	attractors
occurs.
xn	=	0.501	xn	+	1	=	0.875	xn	+	2	=	0.383	xn	+	3	=	0.827

As	A	is	increased	there	is	an	eightfold	cycle	for	A	=	3.55,	a	sixteenfold	cycle
for	A	=	3.566,	...	This	continues	until	the	value.

A	 =	 3.5699456………(12.10)	 called	 the	 Feigenbaum	 point	 is	 reached.
Beyond	A,	the	behaviour	becomes	chaotic.	Fig.	12.6	is	a	plot	of	x	against	A
which	 illustrates	 the	 bifurcations.	 These	 are	 sometimes	 referred	 to	 as
Feigenbaum	diagrams.	For	values	of	parameter	
A	beyond	A,	 successive	xn	 terms	generate	all	possible	 random	values.	 In
this	 chaotic	 region,	 two	 points	 that	 are	 initially	 very	 close	 generate
successive	 sequences	 that	 do	 not	 remain	 near	 each	 other.	 As	 a
consequence,	the	region	in	the	(A,	x)	plane	beyond	A	is	extremely	densely
populated.	That	is,	we	have	an	attractor	of	an	infinite	set	of	points.	Another
interesting	property	of	the	diagram	is	the	presence	of	nonchaotic	windows
embedded	 in	 the	 chaos.	 Odd	 cycles	 (e.g.,3	 cycles)	 also	 appear	 in	 the
chaotic	regime.

Fig.	12.6	Bifurcation	diagram	for	logistic	map	function.

12.4	ATTRACTORS

In	the	section	on	logistic	maps	(Section	12.3),	we	have	seen	that	(i)	if	A	<	1,	all
trajectories	starting	in	the	range	0	<	x	<	1	approach	the	fixed	point	zero,	(ii)	if	



A	>	1,	trajectories	starting	in	the	range	0	<	x	<	1	approach	the	same	fixed	point	

.	Such	a	 fixed	point	constitutes	an	attractor	 since	 the	values	of	xn
iterate	toward	it.	In	general,	the	attractor	is	that	set	of	points	in	phase	space	to
which	the	solution	of	an	equation	evolves	long	after	transients	have	died	out.	As
an	 example,	 consider	 the	 state	 of	 the	 damped	 harmonic	 oscillator	

The	phase	space	variables	specifying	the	state	of	the	oscillator	are	the	position	
x	and	velocity	v	=	(dx/dt).	Any	initial	condition	eventually	comes	to	rest	at	 the
point	(x,	v)	=	(0,	0),	which	is	the	attractor	for	the	system.	Here	the	attractor	is	a
single	point.
In	 a	 dynamical	 system,	 if	 trajectories	 originating	 from	 starting	values	 of	 the

parameter	x	 between	0	 and	1	 approach	 the	 final	value,	 say	x	 =	 0.47,	 then	 that
point	is	called	the	attractor	for	those	orbits.	The	interval	0	<	x	<	1	is	called	the
basin	of	attraction	 for	 that	 attractor	 since	any	 trajectory	 starting	 in	 that	 range
approaches	 x	 =	 0.47.	 In	 Section	 11.10,	 we	 considered	 a	 system	 in	 which	 the
initial	conditions	start	the	motion	on	a	trajectory	that	does	not	lie	on	a	stable	path
but	 that	evolves	 towards	a	 stable	orbit	 in	phase	space	called	a	 limit	cycle.	 The
limit	cycle	is	an	example	of	an	attractor.	For	chaotic	systems,	the	attractor	can	be
geometrically	much	more	complicated.
If	the	attractor	is	a	fixed	point,	we	say	its	dimensionality	dA	is	0	since	a	point

is	a	0-dimensional	object	in	geometry.	If	the	attractor	is	a	line	or	a	simple	closed
curve,	 its	 dimensionality	 dA	 =	 1,	 since	 a	 line	 or	 a	 curve	 is	 a	 1-dimensional
object.	Extending	 this	 nomenclature,	 a	 surface	 has	 a	 dimensionality	dA	 =	 2,	 a
solid	 volume	 a	 dimensionality	 dA	 =	 3.	We	 can	 have	 hypervolumes	 of	 higher
dimensions	 also.	 The	 dimensionality	 of	 an	 attractor	 gives	 us	 an	 idea	 of	 the
number	of	active	degrees	of	freedom	for	the	system.
In	 nonlinear	 dynamics	 there	 is	 a	 different	 type	 of	 attractor,	 called	 strange

attractor,	whose	dimensionality	is	not	an	integer.	A	familiar	example	is	the	one
associated	with	the	logistic	map	(Section	12.3)	in	the	region	where	the	parameter
A	>	3.5699.	In	that	region	the	map	becomes	the	chaotic	occurrence	of	a	strange
attractor	in	a	dynamical	system,	which	is	an	indication	that	the	system	is	chaotic.
Hence,	strange	attractors	are	also	called	chaotic	attractors.



12.5	UNIVERSALITY	OF	CHAOS

In	 the	 section	 on	 logistic	 maps	 (Section	 12.3)	 we	 discussed	 the	 basics	 of	 the
period	doubling	 route	 to	 chaos.	From	a	 study	of	 period	doubling,	Feigenbaum
discovered	that	there	might	be	some	universality	underlying	the	phenomenon	of
chaos.	 He	 studied	 the	 bifurcation	 diagram	 for	 the	 logistic	 maps	 of	 the	 two
functions	

and	found	the	same	rate	of	convergence	for	both	the	maps.
To	understand	more	about	convergence	and	other	details,	 let	us	consider	 the

logistic	map	equation,	Eq.	(12.12),	which	is	the	same	as	Eq.	(12.6).	A	portion	of
the	bifurcation	diagram	of	the	logistic	map	in	Fig.	12.6	is	reproduced	in	
Fig.	12.7.	In	the	figure,	A1	is	the	parameter	value	where	period-1	gives	birth	to
period-2,	 A2	 is	 the	 value	 when	 period-2	 changes	 to	 period-4,	 and	 so	 on.

Denoting	the	parameter	value	at	which	period-2n	is	born	by	An,	 let	us	examine

the	ratio	

Feigenbaum	found	that	 this	ratio	is	approximately	the	same	for	all	values	of	n.
Surprisingly,	 for	 large	 values	 of	 n	 this	 ratio	 approached	 a	 number,	 called
Feigenbaum	d,	 that	was	 the	 same	 for	both	 the	map	 functions	defined	by	Eqs.
(12.12)	and	(12.13).

Later,	he	was	able	 to	establish	 the	same	convergence	ratio	for	 the	 iterated	map
function	that	has	a	parabolic	shape	near	its	maximum	value.
As	 part	 of	 the	 numerical	 investigation	 of	 mapping	 functions,	 Feigenbaum

introduced	 the	 Feigenbaum	 a	 by	 the	 relation	

where	dn	 is	 the	size	of	 the	bifurcation	pattern	of	period	2n	 just	before	 it	gives

birth	 to	 period	 2n	 +	 1	 (see	 Fig.12.7).	 The	 ratio	 involves	 the	 d’s	 for	 the



corresponding	parts	of	the	bifurcation	pattern.	The	theory	leading	to	the	number
2.5029	applies	only	in	the	limit	of	higher	order	bifurcation.	The	agreement	with
experiment	is	therefore	only	to	be	expected.

Fig.	12.7	A	portion	of	the	bifurcation	diagram	for	the	logistic	map	function	given	in	Eq.	(12.12).

Subsequently,	 universality	 has	 been	 discovered	 in	 other	 nonlinear	 systems
also.	 It	 may	 be	 mentioned	 here	 that	 these	 features	 do	 not	 hold	 good	 for	 all
nonlinear	systems.

12.6	LYAPUNOV	EXPONENT	AND	CHAOS

So	 far	 we	 have	 been	 discussing	 chaos	 in	 a	 qualitative	 way.	 In	 this	 section,	 a
method	 of	 quantifying	 the	 chaotic	 behaviour	 is	 introduced.	 Consider	 a	 one-
dimensional	 state	 space	 and	 let	x0	 and	x	 be	 two	 nearby	 points.	 Let	 x0(t)	 be	 a
trajectory	that	arises	from	the	point	x0	while	x(t)	be	one	that	arises	from	x.	The
distance	 between	 the	 two	 trajectories	 s	 =	 x(t)	 –	 x0(t)………(12.17)	 grows	 or
contracts	exponentially	in	time.	The	time	rate	of	change	of	distance	between	the
trajectories	 is	



Neglecting	 higher	 order	 terms	

That	 is,	 the	 distance	 between	 the	 two	 changes	 exponentially	with	 time.	 If	 l	 is
positive	 the	 two	 trajectories	 diverge,	 and	 if	 l	 is	 negative	 the	 two	 trajectories
converge.	 For	 l	 >	 0,	 the	 motion	 will	 be	 chaotic,	 and	 Lyapunov	 exponent	 l
quantifies	 the	average	growth	of	an	 infinitesimally	small	deviation	of	a	regular
orbit	arising	from	perturbation.	For	t	>>	(1/l),	chaos	is	appreciable.
In	species	with	 two	or	 three	dimensions,	we	may	define	Lyapunov	exponent

for	each	of	the	directions.	If	the	system	evolves	by	an	iterative	process	instead	of
a	 temporal	 process,	 then	 Eq.	 (12.24)	 assumes	 the	 form	

where	n	is	the	number	of	iterations	and	the	exponent	l	is	now	dimensionless.



12.7	FRACTALS

In	Fig.	 12.7	we	note	 that	 the	 lower	 section	 between	A2	 and	A3	 looks	 like	 the
region	 between	 A1	 and	 A2	 when	 the	 parameter	 axis	 between	 A2	 and	 A3	 is
expanded	 by	 a	 factor	d	 and	 the	 vertical	 axis	 for	 that	 region	 is	 expanded	 by	 a
factor	 a.	 The	 upper	 portion	 requires	 a	 different	 degree	 of	 magnification.	 A
geometrical	 structure	 having	 this	 replicating	 behaviour	 under	 magnification	 is
said	to	be	self-similar.	Such	self-similar	objects	are	referred	to	as	fractals	since
their	geometric	dimension	is	often	a	fraction,	not	an	integer.
The	 geometrical	 construction	 of	 a	 fractal	 is	 based	 on	 a	 simple	 iteration	 rule

that	 is	applied	 repeatedly.	 In	 the	 limit	of	 infinite	number	of	 iteration	steps,	 the
fractal	arises.	We	shall	consider	two	of	the	familiar	examples,	the	Cantor	set	and
the	Sierpinski	gasket.
Cantor	set:	Consider	a	 line	segment,	 remove	 its	middle	 third	and	get	 two	 line
segments.	Then	remove	 the	middle	 third	 in	each	of	 these	 two	 line	segments	 to
get	a	total	of	four.	When	this	procedure	is	continued	infinite	times,	there	arises	a
series	 of	 dots	with	 characteristic	 spacings,	which	 is	 called	 the	Cantor	 set.	The
formation	 of	 the	Cantor	 set	 is	 illustrated	 in	 Fig.	 12.8.	At	 various	 stages	 in	 its
generation,	the	set	is	self-similar	since	magnification	of	the	set	at	the	latter	stages
of	generation	have	 the	same	appearance	as	 the	set	 itself	at	 the	earlier	stages	of
formation.

Fig.	12.8	The	iterative	construction	of	the	Cantor	set.

Sierpinski	gasket:	An	equilateral	triangular	area	forms	the	basic	element	of	the
Sierpinski	 gasket.	 The	 iteration	 rule	 is	 to	 subdivide	 each	 triangle	 into	 4
congruent	 parts	 and	 remove	 the	 central	 one.	 Its	 self-similarity	 is	 obvious.	 Fig.
12.9	illustrates	the	iterative	construction	of	the	Sierpinski	gasket.



Fig.	12.9	Iterative	construction	of	the	Sierpinski	gasket.

Fractal	Dimension	A	number	of	methods	are	available	for
determining	fractal	dimension.	However,	no	method	is	foolproof.
Fractals	and	their	dimensionalities	play	a	crucial	role	in	the
dynamics	of	chaotic	systems.	For	ordinary	objects	such	as	smooth
curves,	areas	and	volumes,	the	dimension	is	obvious	as	it	coincides
with	visual	conception.	However,	fractals	behave	differently.	To
start	with,	let	us	consider	the	dimensionality	dE	in	ordinary
Cartesian	or	Euclidean	space.	In	one	dimension,	consider	a	line
segment	of	length	a0	divided	into	a	large	number	of	equal	smaller
parts,	each	of	length	a	<<	a0.	In	two	dimensions,	it	is	the
subdivision	of	a	square	of	side	a0	into	many	equal	smaller	parts,
each	of	side	a.	In	three	dimensions,	a	cube	of	side	a0	is	subdivided
into	number	of	equal	cubes,	each	of	side	a	<<	a0.	Denoting	the
total	number	of	smaller	parts	by	N	(a),	we	have	



Here,	in	general,	the	number	N(Œ)	depends	on	the	box	size	Œ.
As	 an	 example,	we	 shall	 evaluate	dF	 for	 the	Cantor	 set.	 For	 the	Cantor	 set,

after	 the	 first	division,	 the	 length	a1	=	a0/3	=	a0/31,	a2	=	a0/9	=	a0/32,	a3	 =
a0/27	

=	a0/33,	and	so	on.	After	the	nth	division	an	=	a0/3n.	After	each	subdivision,	the

number	always	doubles.	Thus,	N(a0)	=	1,	N(a1)	=	2	=	21,	N(a2)	=	4	=	22,	N(a3)	

=	 8	 =	 23,	 and	 so	 on.	 Consequently,	

All	 fractals	 are	 not	 similar.	 The	 self-similar	 objects	 form	 a	 simple	 class	 of
fractals.	 In	 a	 different	 class	 of	 fractals,	 called	 self-affine	 fractals,	 their	 self-
similarity	is	apparent	only	if	different	magnification	factors	are	used	in	different
directions.	 The	 fractal	 set	 generated	 by	 stochastic	 processes	 are	 referred	 to	 as



random	fractals.

12.8	ROUTES	TO	CHAOS

Having	understood	the	basics	of	chaos,	we	can	now	try	to	discuss	the	following
routes	 or	 transitions	 to	 chaos:	 (i)	 Period	 doubling	 (ii)	 Quasi-periodicity	 (iii)
Intermittency	(iv)	Crises.
More	 routes	 to	 chaos	 are	 undoubtedly	 there	 and	 more	 will	 undoubtedly	 be

recognized	when	we	 learn	 systems	with	 larger	 number	 of	 degrees	 of	 freedom.
An	experimental	system	may	change	its	behaviour	from	regular	to	chaotic	as	the
control	 parameters	 of	 the	 system	 are	 slowly	 changed.	 A	 given	 system	 may
exhibit	different	types	of	routes	to	chaos	for	different	ranges	of	parameter	values.

Period	Doubling	As	already	discussed,	an	important	route	to
chaos	is	that	of	period	doubling	bifurcations.	This	behaviour	is
exhibited	by	the	one-dimensional	nonlinear	mappings	of	the	form
xn	+	1	=	f(xn)………(12.31)	with	f	(xn)	satisfying	certain
conditions.	Of	these	mappings,	an	important	one	is	the	logistic
map	which	we	discussed	in	Section	12.3

xn	+	1	=	Axn(1	 –	xn)	0	 <	 x	 <	 1………(12.32)	where	A	 is	 an	 adjustable
parameter.	We	have	seen	that	for	small	values	of	A	all	iterates	converge	on
to	a	single	limit	point.	This	behaviour	continues	till	A	reaches	the	value	3.
At	 A	 =	 3	 a	 period-2	 bifurcation	 occurs.	 As	 A	 is	 increased	 further,	 the
period-2	 bifurcates	 into	 a	 period-4	 cycle	 (	A	 =	 3.5)	 which	 subsequently
bifurcates	into	a	period-8	cycle	(A	=	3.55),	and	so	on.	The	values	at	which
bifurcations	occur	become	closer,	converging	to	a	critical	value	
A	 =	 3.5699456.	 At	 this	 point	 the	 orbit	 becomes	 aperiodic.	 Beyond	 this
point	 the	 chaotic	 orbits,	 period-3	 and	 other	 odd-period	 cycles	 start	 to
appear,	giving	rise	to	the	long	time	chaotic	behaviour	of	the	system.	For	A
beyond	the	value	at	which	a	3-cycle	is	born,	each	fixed	point	of	the	3-cycle
bifurcates	 into	 a	 pair	 of	 fixed	 points,	 one	 stable	 and	 the	 other	 unstable.
Such	bifurcations	are	called	saddle-node	bifurcations.

Driven	 nonlinear	 oscillators,	 Rayleigh-Benard	 instability	 of	 convective
turbulence,	chemical	reactions,	etc.	are	some	of	the	physical	examples	of	period
doubling.



Quasi-periodicity	A	type	of	motion	which	is	possible	in	three-
dimensional	state	space	is	the	quasi-periodic	one.	It	is	called
quasi-periodic	since	it	has	two	different	frequencies	associated
with	it.	It	can	be	analysed	into	two	independent	periodic	motions
with	the	trajectories	constrained	to	the	surface	of	a	torus	in	the	3-
dimensional	state	space.	(A	torus	has	the	shape	of	a	doughnut	or
the	inner	tube	of	a	motor	car	wheel.)	A	mathematical	description
of	quasi-periodic	motion	is	given	by	

where	wR	 and	wr	 are	 the	 two	 angular	 frequencies.	 Eq.	 (12.28)	 describes	 the
motion	 on	 the	 surface	 of	 a	 torus	 whose	 larger	 radius	 is	 R	 and	 whose	 cross-
sectional	 radius	 is	 r.	 The	 angular	 frequency	 wR	 corresponds	 to	 the	 rotation
around	the	 large	circumference,	while	 the	angular	frequency	wr	corresponds	 to
rotation	about	the	cross-section.
If	 the	 ratio	 of	 the	 two	 frequencies	 (wr/wR)	 can	 be	 expressed	 as	 a	 rational

fraction	such	as	n/m,	then	the	type	of	motion	is	called	frequency-locked,	 since
an	integral	multiple	of	one	frequency	is	equal	to	another	integral	multiple	of	the
other.	 In	 this	 case	 the	motion	will	 eventually	 repeat	 itself	 and	 they	are	usually
referred	 to	 as	 closed	 orbits.	 If	 the	 frequencies	 are	 not	 related	 rationally,	 the
motion	 never	 exactly	 repeats	 itself.	 Such	 orbits	 are	 usually	 termed	 quasi-
periodic.	Thus,	a	single	orbit	will	eventually	cover	 the	 torus	uniformly.	Under
certain	 circumstances,	 if	 the	 control	 parameter	 is	 changed	 further,	 the	 motion
becomes	 chaotic.	 This	 route	 to	 chaos	 is	 sometimes	 referred	 to	 as	 the	Ruelle-
Takens	route	since	its	theoretical	possibility	was	first	suggested	by	them	in	1971.
In	 the	quasi-periodic	process,	as	 the	control	parameter	 is	changed	one	might

expect	 a	 long	 sequence	of	different	 frequencies	 as	 a	mechanism	 for	producing
chaos	 in	 the	 system,	 as	 Landau	 had	 proposed	 such	 an	 infinite	 sequence	 of
frequencies	as	the	mechanism	for	producing	fluid	turbulence.	However,	at	least
in	a	number	of	cases	it	has	been	found	that	the	system	becomes	chaotic	instead
of	introducing	a	third	distinct	frequency	for	its	motion.
The	 quasi-periodic	 process	 involves	 competition	 between	 two	 or	 more

independent	 frequencies	 characterizing	 the	 dynamics	 of	 the	 system	 at	 least	 in



two	 different	 ways.	 In	 one,	 a	 nonlinear	 system	 with	 a	 natural	 oscillation
frequency	is	driven	by	an	external	periodic	force	and	the	competition	is	between
these	 two	 frequencies.	 In	 the	other,	 spontaneous	oscillations	develop	at	 two	or
more	frequencies	as	some	of	the	parameters	of	the	system	is	varied.	In	this	case
we	 have	 competition	 among	 the	 different	 modes	 of	 the	 system	 itself.	 In	 both
cases,	as	these	frequencies	compete	with	each	other	the	result	may	be	chaos.
Some	of	 the	physical	 systems	 that	display	 the	quasi-periodic	 transition	 from

regular	 to	 chaotic	 behaviour	 are	 the	 periodically	 perturbed	 cardiac	 cells,
periodically	 driven	 relaxation	 oscillators,	 turbulence	 in	 a	 fluid	 flow	 confined
between	two	coaxial	cylinders	with	the	inner	cylinder	rotating,	etc.

Intermittency
Intermittency	 occurs	 whenever	 the	 behaviour	 of	 a	 system	 switches	 to	 and	 fro
between	 two	 qualitatively	 different	 behaviours,	 even	 though	 all	 the	 control
parameters	remain	constant	and	the	external	noise	is	absent.	Though	the	system
is	 described	 by	 deterministic	 equations,	 switching	 behaviour	 is	 random.	 Two
types	 of	 intermittency	 are	 important.	 In	 the	 first	 type,	 the	 system’s	 behaviour
seems	 to	 switch	 between	 periodic	 and	 chaotic	 behaviours.	 For	 some	 control
parameter	value,	let	the	behaviour	of	the	system	be	predominently	periodic	with
occasional	 bursts	 of	 chaotic	 behaviour.	 As	 the	 control	 parameter	 value	 is
changed,	 the	 time	 spent	 being	 chaotic	 increases	 till	 finally	 the	 behaviour
becomes	 chaotic	 all	 the	 time.	 As	 the	 parameter	 is	 changed	 in	 the	 opposite
direction,	 the	 time	 spent	 in	 the	 periodic	 state	 increases	 and	 at	 some	 value	 the
behaviour	is	completely	periodic	throughout.	In	the	second	type	of	intermittency,
the	 system’s	 behaviour	 seems	 to	 switch	 between	 periodic	 and	 quasi-periodic
behaviours.

Crises
A	 crisis	 is	 a	 bifurcation	 event	 in	 which	 a	 chaotic	 attractor	 and	 its	 basin	 of
attraction	 suddenly	 disappear	 or	 suddenly	 change	 in	 size	 as	 some	 control
parameter	 is	adjusted.	The	 type	 that	disappears	 is	called	boundary	crisis.	 The
sudden	expansion	or	contraction	of	a	chaotic	attractor	is	called	an	interior	crisis.
The	appearance	or	sudden	enlargement	of	fractal	structure	in	a	basin	boundary	is
called	metamorphosis.
The	behaviour	of	a	system	at	a	crisis	event	can	be	illustrated	with	the	help	of

Fig.12.6.	 In	 the	 figure,	 the	 bifurcation	 diagram	 suddenly	 ends	 at	 A	 =	 4.	 The
chaotic	 attractor	 which	 is	 present	 for	 A	 values	 just	 below	 4	 disappears	 in	 a



boundary	crisis.
The	 subject	 of	 chaos,	 as	 mentioned	 in	 the	 beginning,	 is	 introduced	 in	 a

qualitative	way.	It	 is	hoped	that	what	is	needed	for	understanding	the	basics	of
chaos	has	been	conveyed.

REVIEW	QUESTIONS
1.	 Explain	 bifurcation	 with	 the	 help	 of	 a	 diagram.	 What	 is	 period-doubling
bifurcation?

2.	What	is	a	logistic	map?	What	are	the	fixed	points	of	an	iterated	map?
3.	Explain	with	an	example	the	period	doubling	route	to	chaos.
4.	What	is	a	Feigenbaum	diagram	?	What	are	Feigenbaum	d	and	a	?
5.	Explain	the	concept	of	attractors	in	chaos.	What	is	a	basin	of	attraction?	What
are	strange	attractors?

6.	Write	a	note	on	fractals.
7.	What	is	a	Lyapunov	exponent?	How	is	it	related	to	chaos?
8.	Explain	the	quasi-periodicity	route	to	chaos.
9.	How	are	fractal	dimensions	determined?

	



Appendix	A	Elliptic	Integrals	
Elliptic	 integrals	 of	 the	 first	 kind	 are	 the	 integrals	

Thus,	Eqs.	 (A.1)	and	 (A.2)	are	equivalent	 forms	of	elliptic	 integral	of	 the	 first
kind.	The	inverse	of	the	elliptic	integral	in	Eq.	(A.2)	or	Eq.	(A.1)	are	the	Jacobi
elliptic	 functions.	To	understand	elliptic	 functions,	write	 the	 elliptic	 integral	 in
Eq.	 (A.2)	 as	

Let	us	now	consider	the	situation	when	k	π	0.	When	k	π	0,	the	integral	is	not	a
simple	one.	It	will	be	a	complicated	function,	called	the	elliptic	function,	denoted
as	 sn.	 In	 that	 case,	 in	 place	 of	 Eq.	 (A.5)	 we	 have	





Appendix	B



Perturbation	Theory

The	majority	of	systems	in	classical	mechanics,	as	already	indicated,	cannot	be
solved	exactly.	Perturbation	procedure	is	an	approximation	method	for	obtaining
solutions	of	such	systems.

Principle	Often	it	is	possible	to	represent	a	given	Hamiltonian	H
in	the	form	of	an	integrable	unperturbed	part	H0	plus	a	small
non-integrable	perturbation	H1	:	

where	e	 is	 the	perturbation	parameter	and	 is	assumed	 to	be	<<1.	For	example,
the	motion	of	the	earth	about	the	sun	is	an	exactly	integrable	two-body	problem.
However,	in	the	case	of	Jupiter,	the	influence	due	to	other	planets	and	16	moons
is	 not	 negligible	 and	 can	 be	 considered	 a	 small	 perturbation	 on	 the	 two-body
problem.	 The	 perturbation	 theory	 considers	 techniques	 for	 obtaining
approximate	 solutions	 to	 H	 in	 the	 form	 of	 exact	 solutions	 to	 H0	 plus	 some
corrections	 due	 to	 H1(p,	 q).	 In	 other	 words,	 in	 the	 procedure	 the	 integrable
system	plays	an	important	role	in	solving	the	non-integrable	system.
The	basic	idea	of	perturbation	theory	is	to	expand	the	solution	x(t)	in	a	power

series	in	e:	

where	x0(t)	is	the	exact	solution	to	the	integrable	part	H0	and	the	corrections	
x1(t),	x2(t),...	are	calculated	by	a	recursion	procedure.	If	e	 is	very	small,	only	a
few	terms	in	the	expansion	in	Eq.	(B.2)	will	contribute	to	the	value	of	x(t)	and	in
the	limit	e	Æ	0	only	the	integrable	part	of	the	problem	remains.	It	may	be	noted
here	that	the	series	may	not	converge	always	even	for	a	very	small	value	of	e.	In
Eq.	(B.2),	the	first,	second,	third	and	subsequent	terms	are	respectively	called	the
zeroth	 order,	 first	 order,	 second	 order	 and	 higher	 order	 corrections	 to	 the
problem.	To	illustrate	the	procedure	we	shall	apply	it	to	some	simple	cases.

Regular	Perturbation	Series–An	Example	As	an	example	of	the
perturbation	procedure,	consider	the	quadratic	equation	



can	be	taken	as	the	integrable	zeroth	order	problem	since	it	gives	x	=	0	and	–1	as
the	 two	 roots.	 Next,	 we	 shall	 consider	 a	 power	 series	 expansion	 of	 the	 form	

Regular	Perturbation	Series	for	Differential	Equation	Consider
the	first	order	differential	equation	



with	the	initial	condition	x(0)	=	a.	Expanding	the	solution	x(t)	in	a	power	series
of	 the	 type	 in	 Eq.	 (B.2)	

Since	x0(0)	=	a,	the	initial	condition	x0(0)	=	a,	will	be	satisfied	by	all	values	of	e
only	if	xn	(0)	=	0	for	n	>	1.	With	the	initial	condition	x1(0)	=	0,	the	solution	of
the	 inhomogeneous	 Eq.	 (B.13)	 gives	



which	is	the	solution	of	Eq.	(B.9).

Perturbed	Harmonic	Oscillator	The	differential	equation
representing	a	harmonic	oscillator	is	





The	non-periodic	term	t	sin	w0t	in	the	solution	is	because	of	the	term	3	cos	w0t
in	Eq.	(B.25),	which	is	in	resonance	with	the	intrinsic	oscillator	frequency.	This
can	be	avoided	by	expanding	both	the	amplitude	x	and	frequency	w,	which	leads
to	 a	 well-behaved	 periodic	 solution	 for	 Eq.	 (B.22b).	 This	 procedure	 can	 be
continued	 to	 higher	 orders	 in 	 with	 the	 necessary	 corrections	 for	 eliminating
non-periodic	terms.	The	procedure	is	quite	cumbersome.
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Action
integral,	79
principle,	157

Action-angle	variables,	182,	183
harmonic	oscillator,	184,	185
Kepler	problem,	185–188

Addition	of	velocities,	262
Angular	momentum,	7,	26
conservation,	7,	27,	28
rigid	body,	197

Aphelion,	109
Apocentre,	109
Apogee,	109
Asymmetric	stretching	mode,	243
Asymmetric	top,	203
Attractors,	330
chaotic,	331
strange,	331

Bending	of	light	in	gravitational	field,	284
Bifurcation,	324,	325,	329,	330,	332



Body
angle,	204
cone,	213

Brachistochrone	problem,	87



Canonical
equations	of	motion,	138
transformations,	142–145
generating	function,	144

Cantor	set,	334
Capacity	dimension,	335
Central	force,	98
Centre	of	mass,	24
system,	25,	123

Charged	particle	in	a	magnetic	field,	13
Communication	satellites,	115
Configuration	space,	42
Conics,	109
eccentricity,	109

Conservative	force,	8
Constraints,	39–41
holonomic,	39
non-holonomic,	40,	84
rheonomous,	40
scleronomous,	40

Contact	transformation,	142



Coordinates
cyclic,	50,	141
cylindrical,	3

Coriolis	force,	209,	210

D’	Alembert’s	principle,	43,	44



Damped
oscillator,	309,	316,	317
pendulum,	318,	319

Degrees	of	freedom,	41
Differential	scattering	cross	section,	119

Electromagnetic	field	tensor,	283



Elliptic
integral,	305,	339
point,	315

Ether	hypothesis,	255
Euler’s
angles,	203–206
equations	of	motion,	211
geometrical	equation,	8,	207
theorem,	48

Euler-Lagrange	differential	equation,	83



Feigenbaum
a,	331
d,	331
diagram,	329

Fermat’s	principle,	156
First	integrals	of	motion,	49,	50,	101
Force	free	motion	of	a	symmetric	top,	212–214
Four-vectors,	274–279
charge–current,	278,	279
four	acceleration,	278
four	force,	277
four	velocity,	275
momentum,	276,	277
position,	275

Fractals,	333–335
dimension,	334

Frames	of	reference,	1–	4
centre	of	mass,	25
cylindrical	coordinates,	3
inertial,	5,	6
non-inertial,	6
plane	polar	coordinates,	2
spherical	polar	coordinates,	3,4

	

General	theory	of	relativity,	283–286



Generalized
coordinates,	41,	42
kinetic	energy,	47,	48

force,	45
momentum,	49
potential,	54
velocity,	42

G-matrix,	233

Gravitational	mass,	6
red	shift,	286

Hamilton–Jacobi
equation,	173,	174
method,	173–180
central	force	problem,	181
harmonic	oscillator,	177

Hamilton’s
characteristic	function,	175,	176
equations,	138,	139,	140
principal	function,	174
variational	principle,	78–81
Lagrange’s	equations,	81,	82
non-holonomic	system,	84

Hamiltonian	of	a	system,	53,	137
relativistic,	269,	270

Heavy	symmetric	top,	215–219



Homogeneity
of	space,	50,	51
of	time,	53

Hyperbolic	point,	314

Impact	parameter,	119
Inertia	tensor,	200,	201



Inertial
frame,	6
mass,	6

Infinitesimal	rotation,	207,	208
Integrals	of	motion,	49,149
Integration	of	nonlinear	equations,	304–308
Ionosphere,	10
reflection	of	radiowaves,	10–12

Isotropy	of	space,	51

Jacobi’s
identity,	147
integral	of	motion,	141

Kepler’s	laws,	101,102,	108–111
first,	108,109
second,	101,	102
third,	110,	111
angular	momentum,	100,	101
central	force	motion,	100–105
classification	of	orbits,	103–105
effective	potential,	103
law	of	areas,	101,102
precessing	motion,	105
properties,	100–102



Kinetic	energy
in	generalized	coordinates,	47,	48
of	a	rigid	body,	199

Laboratory	coordinate	system,	122–124



Lagrange
brackets,	151,	152
fundamental,	152

multiplier,	84,	85
Lagrange’s	equations,	44–47
from	D’Alembert’s	principle,	44–46
from	Hamilton’s	principle,	81,	82

Lagrangian	function,	47
relativistic,	268,	269

Larmor	radius,	14
Law	of	gravitation,	111
from	Kepler’s	laws,	111,	112

Length	contraction,	262,	263
Light	cone,	271
Limit	cycles,	317



Linear
conservation,	4,	6,	25
momentum,	4
stability	analysis,	313–316

Logistic	map,	325,	329
function,	327



Lorentz
gauge,	281
transformation,	258–260
geometrical	interpretation,	272,	273
space	time	coordinates,	258,	259
velocity,	261

Lorentz–Fitzgerald	contraction,	263
Lyapunov	exponent,	332,	333

	

Mass-energy	relation,	267
Mass	in	relativity,	264–266
Maxwell’s	equations,	279
invariance,	279–282

Michelson–Morley	experiment,	255–257
Minkowsky	four-space,	270
Modified	Hamilton’s	principle,	139
Motion	of	rigid	bodies,	196–218
angular	momentum,	197
Euler’s
angles,	203–206
geometrical	equations,	207

kinetic	energy,	199
moments	of	inertia,	198



principal
axes,	201,	202
moments	of	inertia,	202

products	of	inertia,	198
Motion	under	a	force,	9–15
constant	force,	9
time	dependent	force,	10
velocity	dependent	force,	12

Multiply	periodic	system,	183

	

Newton’s	laws	of	motion,	4,	5
Non-inertial	frame,	6
Nonlinear	systems,	301,	302



Normal
coordinates,	236
frequencies,	236
modes	of	vibration,	236

Nutation,	218
angle,	204

Orbital	transfer,	116–118

Pericentre,	109
Perigee,	109
Perihelion,	109
Perturbation	theory,	341–345



Phase
curve,	308
curve	and	potential,	312–313
flow,	308
integral,	182



oscillator
damped,	309
harmonic,	308
pendulum,	311
plane	analysis,	308–310
portrait,	308
of	pendulum,	310–311

Plane	polar	coordinates,	2
Poinsots	ellipsoid	of	inertia,	200
Point	transformation,	142
Poisson	brackets,	146–151
equation	of	motion,	148
fundamental,	146
in	quantum	mechanics,	157
integrals	of	motion,	149
invariance,	150,	151
properties,	147,	148

Poisson’s	theorem,	149
Postulates	of	relativity,	258



Precession
angle,	204
of	the	perihelion,	285



Principal
axes,	201,	202
moments	of	inertia,	202



Principle
of	covariance,	273
of	equivalence,	258–284
of	least	action,	153–155
different	forms,	155
Jacobi’s	form,	157



Proper
length,	263
time	interval,	275

Quadrature	method,	302–303

Rate	of	change	of	a	vector,	208,	209
Rayleigh’s	dissipation	function,	56
Reduced	mass,	100
Reflection	of	radiowaves,	10–12



Relativistic
Hamiltonian,	269,	270
Lagrangian,	268,	269

Rocket,	31–34
Routes	to	chaos,	335–338
crises,	338
intermittency,	337
period	doubling,	336
quasi-periodicity,	336

Rutherford	scattering,	119–122

Saddle	point,	314
Satellite	parameters,	113
Scalar	potential,	279,	280
Scattering	cross	section,	118
Sierpinski	gasket,	333,	334
Sleeping	top,	219



Small	oscillations
CO2	molecule,	241–244
coupled	pendula,	237–240
double	pendulum,	246–247
normal	coordinates,	236
normal	modes,	235,	236
pendulum	with	moving	support,	244–245
theory,	233–235



Space
cone,	214
curvature,	285

Space-like	interval,	272
Space–time	diagram,	270–272
Spherical	top,	203
Stability	matrix,	313–314



Stable
node,	314
improper,	316

spiral,	315
star,	316

Steiner’s	theorem,	201
Symmetric	stretching	mode,	243
top,	203

Symmetry	and	conservation	laws,	50–54



homogeneity
of	space,	50
of	time,	53

isotropy	of	space,	51
Synchronous	satellites,	115
System	of	particles,	24–33
energy	conservation,	29–31
kinetic	energy,	28



momentum
angular,	26–28
linear,	25,	26

Time	dilation,	263,	264
Time-like	interval,	272
Torque,	7
Total	scattering	cross	section,	119
Transfer	orbit,	116



Transformations
canonical	(see	under	Canonical)	Galilean,	252–253
gauge,	280,	281
Lorentz	(see	under	Lorentz)	Two-body	problem,	98–100

Universality	of	chaos,	331



Unstable
node,	314
improper,	316

spiral,	315
star,	316

Van	der	Pohl	oscillator,	323



Variation
d-,	79
D-,	154

Vector	potential,	279,	280
Velocity	dependent	potential,	54,	55
Vibrations	of	CO2	molecule,	241–244	Virtual	work,	42,	43
Voltera’s	equation,	320



World
line,	271
point,	271
space,	270
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