
Undergraduate Lecture Notes in Physics

For further volumes:
http://www.springer.com/series/8917



Undergraduate Lecture Notes in Physics (ULNP) publishes authoritative texts
covering topics throughout pure and applied physics. Each title in the series is
suitable as a basis for undergraduate instruction, typically containing practice
problems, worked examples, chapter summaries, and suggestions for further
reading.

ULNP titles must provide at least one of the following:

• An exceptionally clear and concise treatment of a standard undergraduate
subject.

• A solid undergraduate-level introduction to a graduate, advanced, or non-
standard subject.

• A novel perspective or an unusual approach to teaching a subject.

ULNP especially encourages new, original, and idiosyncratic approaches to physics
teaching at the undergraduate level.

The purpose of ULNP is to provide intriguing, absorbing books that will continue
to be the reader’s preferred reference throughout their academic career.

Series Editors

Neil Ashby
Professor, Professor Emeritus, University of Colorado Boulder, CO, USA

William Brantley
Professor, Furman University, Greenville, SC, USA

Michael Fowler
Professor, University of Virginia, Charlottesville, VA, USA

Michael Inglis
Associate Professor, SUNY Suffolk County Community College, Selden, NY, USA

Elena Sassi
Professor, University of Naples Federico II, Naples, Italy

Helmy Sherif
Professor Emeritus, University of Alberta, Edmonton, AB, Canada



Robert L. Brooks

The Fundamentals of Atomic
and Molecular Physics

13



Robert L. Brooks
Department of Physics
University of Guelph
Guelph, Ontario, Canada

ISSN 2192-4791 ISSN 2192-4805 (electronic)
ISBN 978-1-4614-6677-2 ISBN 978-1-4614-6678-9 (eBook)
DOI 10.1007/978-1-4614-6678-9
Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2013931254

© Springer Science+Business Media New York 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

This book represents an expansion of a set of course notes for a fourth year
undergraduate course in atomic and molecular physics. It assumes two semesters
of quantum mechanics as background and could just as easily be called an applied
quantum mechanics text. It presents material central to an understanding of structure
for both atoms and molecules, developed with a thoroughness not seen in texts since
the classics of John C. Slater. It makes no attempt to cover scattering or the multitude
of  modern topics related to trapping, cooling, or condensation. When used for a 12
week course at the senior undergraduate level, a term paper on some modern topic
of the student’s interest has been assigned as a supplement and together offer an
excellent grounding for students interested in graduate work, whether in this area or
some other. Indeed, most of the students taking this course have gone on to study
other areas of physics.

The quantum mechanics of complex atoms is not easy to grasp when only cursory
or simplified explanations are offered. There seems to be some tacit assumption
among authors that only quantum chemists need to know this material and so it is
given short shrift in most texts when treated at all. The frustrating thing for many
students is that graduate work often assumes that they know this material and yet it
is developed from the basics in no book at this level. Whereas many texts develop
the two-electron atom using techniques that are not applicable to the many-electron
atom, this one treats the two-electron atom as the simplest example of the multi-
electron atom and then turns to carbon, as an example, without needing to develop
additional equations.

Perturbation techniques are then used to treat fine-structure, the Zeeman and
Stark effects, and hyperfine structure. Complications that arise from intermediate
coupling or from external fields are handled by direct diagonalization and, for fine
structure, are then compared with the results from first-order perturbation.

Spontaneous emission from an atom or molecule in an excited state is another
fundamental process which is not often developed from the foundations of time-
dependent perturbation theory through the expression for the lifetime of the excited
state. Advanced texts can start with Fermi’s golden rule while quantum mechanics
texts often end there. Developing these expressions in detail is good pedagogy
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vi Preface

for the student. Asking the question, why does an excited atom decay at all, can
stimulate the student to learn quantum electrodynamics even as the answer can be
understood, though incompletely, without that.

The electronic structure of diatomic molecules is not so easily accessible as
the ro-vibrational interactions and so most books will start with the latter. But if
one has just completed a study of the electronic structure of atoms, then to start
with the electronic structure of the simplest molecule, H2

+, makes a lot of sense.
Prolate spheroidal coordinates are used, which are natural to the problem, and
afford the student usually the first example of performing quantum mechanics using
coordinates other than Cartesian, cylindrical, or spherical. The student can perform
all of the needed integrals. After that the H2 molecule is taken up which becomes the
molecular analogue of progressing from the hydrogen atom (one electron system)
to the complex atom (multi-electron system). One cannot overstate the usefulness,
toward understanding molecular bonding, of solving the quantum mechanics of the
hydrogen molecular ion and molecule. The ro-vibrational excitations of diatomic
molecules are taken up in the final chapter in sufficient detail to satisfy the needs
of those progressing toward further study as well as for those not likely to see this
material in graduate school.

For most of the years that this material has been used for a fourth year elective
course at the University of Guelph it has attracted between 10 and 20 students with
the latest numbers nearing thirty. The overwhelming majority of students have gone
on to other areas of physics and many have returned to say that this course was
where they learned quantum mechanics. I can think of no higher praise.

Guelph, ON, Canada Robert L. Brooks
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Chapter 1
Central Forces and Angular Momentum

Much of the material in Chap. 1 will be a review for many of the students using
this text. However, indicial notation for vectors will be used throughout this chapter
and much of the book, and while most students have been exposed to this notation
previously, experience has shown that many have yet to master it. It is not at all
difficult and allows for such straightforward proofs of angular momentum relations
that it is highly effective to become proficient with it.

Once the commutator relations have been defined, the orbital angular momentum
is introduced along with the auxiliary raising and lowering operators. This material
is then applied to the solution of the hydrogen atom before generalizing angular
momentum through the introduction of spin. Angular momentum is then concluded
by considering the addition of two general angular momenta, the definitions and
relations regarding Clebsch–Gordan coefficients and the Wigner–Eckart theorem.
Hydrogen is then revisited to examine the consequences of spin on its solution, and
the basis for the multi-electron treatment of atoms will have been established.

1.1 Indicial Notation for Vectors

A vector �A has Cartesian coordinates

Ax ≡ A1

Ay ≡ A2

Az ≡ A3

�Amay be writtenAi where i can take any of the values 1, 2, or 3.1 The inner product
of two vectors may be written

1This ignores the distinction between covariant and contravariant basis vectors which is valid and
commonly done when working in three dimensions with orthogonal unit vectors.

R.L. Brooks, The Fundamentals of Atomic and Molecular Physics, Undergraduate
Lecture Notes in Physics, DOI 10.1007/978-1-4614-6678-9 1,
© Springer Science+Business Media New York 2013
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4 1 Central Forces and Angular Momentum

�A · �B =
∑

i

AiBi ≡ AiBi

This is the Einstein summation convention. Repeated Roman subscripts are summed
over. If one wanted to talk about the product of any two like elements, such asA2B2

for 1, 2, or 3, one writesAαBα; i.e., Greek subscripts are not summed. Furthermore
if one wanted to refer to a single component of a vector, a Greek rather than a Roman
subscript would be used. Also

�A · �B = δijAiBj = AiBi or AjBj .

Repeated indices are said to be dummy; any letter will do. The product is a scalar, is
no longer a vector, and is said to be contracted:

δij ≡ 1 when i = j

0 when i �= j

The cross product of two vectors is given by

�A× �B = εijkAjBk (summation implied)

where εijk , the alternating unit tensor, is defined by

εijk = 0 if any two indices are the same

= +1 for ε123, ε231, ε312 cyclic permutation

= −1 for ε213, ε321, ε132 anticyclic permutation

A particularly important relationship that will be used for much of the manipula-
tion that follows is

εijkεilm = δjlδkm − δjmδkl

This relationship is tedious but not difficult to prove. Break it down into cases and
use Greek indices, for which summation does not apply. For example, case 1 could
be that the second two indices of one ε are equal: εijkεiαα. Clearly this is zero.
Check to see what the RHS is. This case covers 3 of the 81 equations represented
by the given expression (α can be 1, 2, or 3). But since it doesn’t matter which of
the two alternating unit tensors has equal second and third indices, this case covers
nine equations. In this manner the expression may be proved.

To see the power of this notation, consider the vector identity

�∇ · (�∇× �A) = 0

In indicial notation this may be written

∇iεijk∇jAk = εijk∇i∇jAk
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Because the expression is a scalar, all indices are dummy. Change i to j everywhere
and permute the gradients:

εjik∇j∇iAk = εjik∇i∇jAk

Now when j and i are exchanged in epsilon, the sign changes, yielding the negative
of the original expression:

εjik∇i∇jAk = −εijk∇i∇jAk = 0.

1.2 Commutator Algebra

Two operators A and B have a commutator defined as

[A,B] = AB−BA

It follows that

[A,B] = − [B,A] (1.1)

[A,B+C] = [A,B] + [A,C] (1.2)

[A,BC] = [A,B]C+B [A,C] (1.3)

Equation (1.3) can be readily proven:

[A,BC] = ABC−BCA

= ABC−BAC+BAC−BCA

= (AB−BA)C+B(AC−CA)

= [A,B]C+B [A,C]

Consider the position operator qi where q1 ≡ x, q2 ≡ y, q3 ≡ z and the
momentum operator pi where

p1 = −i� ∂

∂x
, p2 = −i� ∂

∂y
, p3 = −i� ∂

∂z

Then pi ≡ −i� ∂

∂qi
or − i�∇i
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and [qi, qj ] = 0 (1.4)

[pi, pj ] = 0 (1.5)

[qi, pj ] = i�δij . (1.6)

To prove this last relation, invoke some arbitrary function A which depends on
variables qi. A is introduced only for pedagogical reasons:

[qi, pj]A = −i�qi ∂
∂qj

A+ i�
∂

∂qj
qiA

The second term is i�qi
∂

∂qj
A+ i�

(
∂

∂qj
qi

)
A

So [qi, pj ]A = i�

(
∂

∂qj
qi

)
A = i�δijA

[qi, pj] = i�δij

[qi, F (qj)] = 0 (1.7)

[pi, F (pj)] = 0 (1.8)

[pi, F (qj)] = −i� ∂

∂qi
F (qj) (1.9)

Proof of Eq. (1.9) is done just like (1.6).

1.3 Orbital Angular Momentum

Angular momentum in quantum mechanics plays a most important role. If one starts
with the classical expression and makes the standard conversion for the momentum
operator, one obtains a quantum mechanical operator for orbital angular momentum.
What is important to keep in mind is that angular momentum in quantum mechanics
is a more general concept than just this. How that comes about will be presented as
this chapter proceeds.

Consider the quantum Hamiltonian of a particle with mass m in the central
potential V (r):

H =
p2

2m
+ V (r) = −�

2 ∇2

2m
+ V (r)

The problem of an electron bound to a proton can be described by such a
Hamiltonian when V (r) is a Coulomb potential. Chapter 2 will consider this
problem for more than one electron. Remembering that the axioms of quantum
mechanics permit simultaneous determinations of measurable quantities only if
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those quantities are observables described by commuting operators, it becomes
important to investigate the operators that commute with the Hamiltonian and with
each other. The orbital angular momentum, classically conserved for the central
force problem (Kepler’s Second Law), is

�L = �r × �p = �r × �

i
�∇

or Li = εijkqjpk

What are the commutation relations for �L?

[Li, ql] = εijk [qjpk, ql]

= εijkqj [pk, ql] + εijk [qj , ql]︸ ︷︷ ︸
=0

pk

= −i�εijkqjδkl
= i�εiljqj

Changing free and dummy indices gives

[Li, qj ] = i�εijkqk (1.10)

This illustrates a typical situation that occurs when using indicial notation. It also
affords an opportunity to emphasize an important rule relating to the use of these
indices. The two expressions, before and after changing the indices, which I shall
write again here, are identical:

[Li, ql] = i�εiljqj [Li, qj ] = i�εijkqk

First realize that one never changes indices in the middle of a derivation. One starts
a derivation with some letters assigned to indices because they were the ones used
in a definition (like j and k above). Those letters, being dummy, may drop out over
the course of the derivation of the new expression, as k did above. You would like
to express your answer using letters that are familiar, in a familiar order, like i, j,
k. To do that you reexpress the dummy index j as k because that letter is available
and then change the free index l to j everywhere it appears because now that letter
too is available. It is important to realize that such changes are for appearance only,
usually just to check your answer, and have no further significance.

Look again at the two expressions above. For the first one, i and l are free indices
because they appear once on each side of the equal sign. j is a dummy index because
it appears twice in a product. Any index that appears three or more times in a product
is an error. No index may appear more than twice. So the dummy index j could be
changed to any letter, so change it to k. Our entity, which is a commutator of two
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vectors having indices i and l, has not been effected. But why should the commutator
have those indices? They were freely chosen and could have been any two letters
at all. If one chooses to reexpress that commutator using different letters, then one
better change those letters everywhere they appear on both sides of the equation.
Changing l to j, which is allowed because the letter j is no longer being used, then
permits the result to be expressed using the subscripts i, j, and k.

Problem 1.1
Show that

[Li, pj ] = i�εijkpk (1.11)

[Li, Lj ] = i�εijkLk. (1.12)

Remember that this means [Lx,Ly] = i�Lz , for example.

Problem 1.2
Use the second relation above to show that �L× �L = i��L.

So the components of angular momentum do not commute with the position, the
linear momentum, or with each other. However,

[
Li, p

2
j

]
= [Li, pj] pj + pj [Li, pj ]

= 2i�εijkpkpj = 0.

Why? It is because of the sum over j and k. The only nonzero values are

εαβγpβpγ + εαγβpβpγ = εαβγpβpγ − εαβγpβpγ = 0.

The components of angular momentum do commute with the kinetic energy.
Similarly,

[
Li, q

2
j

]
= 0.

What about [Li, r] =
[
Li, (q

2
j )

1/2
]
?

[Li, r] = εijkqj

[
pk, (q

2
l )

1/2
]

= −i�εijkqj∇k(q
2
l )

1/2 By property (1.9)

= −i�εijkqj ql
r
δlk

= −i�εijk qjqk
r

= 0



1.3 Orbital Angular Momentum 9

So �L commutes with r. In addition, �L commutes with any function of r:

[Li, V (r)] = −i�εijkqj∇kV (r)

But
∂

∂qk
V (r) =

∂ V

∂r

∂ r

∂qk
=
qk
r

∂

∂r
V (r)

So [Li, V (r)] = −i�εijk qjqk
r

∂

∂r
V (r) = 0

One consequence of �L commuting with any function of r is that each component
of �L commutes with the Hamiltonian for central force problems:

[Li,H] = 0 for central forces.

With what else does �L commute? Define L2 = L2
x + L2

y + L2
z = L2

i :

[
L2, �L

]
=

[
L2
i , Lj

]

= Li [Li, Lj ] + [Li, Lj ]Li

= i�εijkLiLk + i�εijkLkLi

= i�εjki(LiLk + LkLi)

= 0

Be careful: unlike previous derivations, Li and Lk do not commute. The pedestrian
way to show that the above commutator in fact is 0 is to consider j = 1; this then
gives

j = 1 : i� (L3L2 − L2L3 + L2L3 − L3L2) = 0

Similarly for j = 2 and j = 3, so
[
L2, �L

]
= 0. One could also note that because k

and i are dummy, interchanging them everywhere and then interchanging them just
in the alternating unit tensor gives

−i�εjki[LkLi + LiLk].

But this is the negative of the above expression (the order of the double operator
expressions in the sum is unimportant), and hence it equals 0. Also, L2 commutes
with each component of angular momentum. Since �L commutes with H, L2 must
also commute with H. (Why?)

Now let’s look at the explicit form for the angular momentum operators in
spherical coordinates:
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�∇ = r̂
∂

∂r
+ φ̂

1

r sin θ

∂

∂φ
+ θ̂

1

r

∂

∂θ

r̂ = sin θ cosφx̂+ sin θ sinφŷ + cos θẑ

θ̂ = cos θ cosφx̂ + cos θ sinφŷ − sin θẑ

φ̂ = − sinφx̂ + cosφŷ

Then �L = �r × �p = rr̂ × �

i
�∇

=
�

i

(
φ̂
∂

∂θ
− θ̂

1

sin θ

∂

∂φ

)

In this form it is apparent that �L commutes with any function of r.
From these expressions it is easy to find Lx, Ly , and Lz and is also straightfor-

ward to show

L2 = −�
2

[
1

sin2 θ

∂

∂φ2
+

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)]
.

The eigenvalue problem for the angular momentum operators L2 and Lz is
fundamental to all central force problems. Since L2 and Lz commute, it is possible
to find an eigenfunction that is simultaneously a solution for each operator. The
spherical harmonics form such a solution:

L2Ym� (θ, φ) = 	 (	+ 1) �2Ym� (θ, φ)

LzY
m
� (θ, φ) = m�Ym� (θ, φ)

(1.13)

(1.14)

Here the symbol 	 is referred to as the orbital angular momentum even though it
is not itself an eigenvalue of any operator. 	 (	+ 1) is the eigenvalue of L2 rather
than 	2 as a consequence of the spherical harmonics. Usually textbooks simply say
it is a matter of convenience. It certainly is that! m is the eigenvalue of Lz , usually
called the magnetic quantum number but that is an unfortunate misnomer. It is better
to think of it as a directional quantum number.

Spherical harmonics are simply one member of a family of special functions that
form the solutions of the Sturm–Liouville problem. Such functions are the subject of
courses in Special Functions, and all too often students who have never taken such
a course feel intimidated by their use. This is unfortunate because using special
functions is very different from deriving the relations that they satisfy. Learning to
manipulate the relations is not so difficult and is all one needs to understand their
use in quantum mechanics. The relations that you need are given in Appendix B.

One of the important concepts in QM is that the eigenfunctions of operators of
interest span a Hilbert space. A complete linear vector space with a defined inner
product is a Hilbert space. The above equations can be rewritten as



1.3 Orbital Angular Momentum 11

L2| 	m 〉 = 	 (	+ 1) �2| 	m 〉 (1.15)

and Lz | 	m 〉 = m�| 	m 〉 (1.16)

The ket | 	m 〉 is a vector in an infinite dimensional Hilbert space. The com-
mutator relations among the operators �L and L2, along with the relations (1.15)
and (1.16), completely define the concept of angular momentum. The functions
Ym� (θ, φ) are one representation of the kets | 	m 〉. But the kets have an existence
in their Hilbert space that is independent of whether a coordinate representation
exists. Angular momentum in QM has a well-defined existence independent of the
coordinates r, θ, φ (or any other spatial coordinates).

Let us pursue these concepts by examining the ladder operatorsL+ and L−. The
auxiliary operators L+ and L− are defined as

L+ ≡ Lx + iLy

L− ≡ Lx − iLy

It is easy to prove the following commutators:

Problem 1.3

[Lz,L+] = �L+ (1.17)

[Lz ,L−] = −�L− (1.18)

[L+,L−] = 2�Lz (1.19)
[
L2,L±

]
= 0 (1.20)

Next take note of the following product of operators:

L−L+ = (Lx − iLy)(Lx + iLy)

= L2
x + L2

y + i(LxLy − LyLx)

= L2
x + L2

y + i [Lx,Ly]

= L2
x + L2

y − �Lz

L−L+ = L2 − Lz(Lz + �)

Similarly L+L− = L2 − Lz(Lz − �). Since these operator products are diagonal
using the basis | 	m 〉, it is straightforward to evaluate the eigenvalues for each:
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L−L+| 	m 〉 = L2| 	m 〉 − Lz(Lz + �)| 	m 〉
= �

2 [	 (	+ 1)−m(m+ 1)] | 	m 〉
or L−L+| 	m 〉 = �

2(	−m)(	 +m+ 1)| 	m 〉 (1.21)

L+L−| 	m 〉 = �
2(	+m)(	 −m+ 1)| 	m 〉 (1.22)

Enough has now been developed to prove an important relationship. The
eigenvaluem, which can be positive or negative, cannot exceed the value of 	; i.e.,

−	 ≤ m ≤ 	

The proof is straightforward. The norm of the vectors L±| 	m 〉 is positive definite
or

|(L±| 	m 〉)| ≥ 0

But this can be written as

〈 	m |L∓L±| 	m 〉 ≥ 0

〈 	m |L2 − Lz(Lz ± �)| 	m 〉 ≥ 0

�
2 [	 (	+ 1)−m(m+ 1)] ≥ 0

From which it follow that
	 (	+ 1) ≥ m2 +m

	 (	+ 1) ≥ m2 −m

But there is no reason why m can’t be positive, negative, or zero and also must be
integer from which the result follows.

Next the relations that the operators L± themselves satisfy need to be developed.
Consider

LzL+| 	m 〉 = (�L+ + L+Lz)| 	m 〉 from (1.17)

= (m+ 1)�L+| 	m 〉.

But Lz | 	m+ 1 〉 = (m + 1)�| 	m+ 1 〉. So the vector L+| 	m 〉 must be a scalar
multiple of | 	m+ 1 〉. Or

L+| 	m 〉 = α| 	m+ 1 〉 (1.23)

L+ has raised the m index by one. L+ is also called a raising operator. Now what is
α? The value of α can be found without appeal to any properties of Ym� ’s. Simply
take the norm of both sides of Eq. (1.23). Something similar was done above. The
rule when taking the complex conjugate using bra–ket notation is to replace every
ket by its bra, every number by its complex conjugate, and every operator by its
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adjoint specified by the dagger. For an operator written in functional notation that
simply means replacing it with its complex conjugate. But in bra–ket notation one
should think of the operators as matrices in which case the adjoint is the transpose
of the complex conjugate:

RHS: Norm = 〈 	m+ 1 |α∗α| 	m+ 1 〉 = α∗α = α2

LHS: Norm = 〈 	m |L†
+L+| 	m 〉 = 〈 	m |L−L+| 	m 〉

= �
2(	−m)(	 +m+ 1)

The phase of α can freely be chosen to be real so that α = �
√
(	−m)(	 +m+ 1).

Then

L+| 	m 〉 = �

√
(	 −m)(	+m+ 1)| 	m+ 1 〉

L−| 	m 〉 = �

√
(	 +m)(	−m+ 1)| 	m− 1 〉

(1.24)

(1.25)

Since m is bounded, it follows that

L+| 	 	 〉 = 0

L−| 	 − 	 〉 = 0.

Equations (1.24) and (1.25) are more important than they at first appear. For a
fixed value of 	, the vectors | 	m 〉 span a finite dimensional subspace of dimension
2	 + 1. By somehow finding one vector in this subspace, repeated application of
Eq. (1.24) or (1.25) will yield all of the other vectors. L+ and L− cannot project a
vector out of this subspace because they commute with L2.

Another obvious consequence of Eqs. (1.24) and (1.25) is that | 	m 〉 are not
eigenvectors of the operators L±. There is no reason to expect them to be because
L± do not commute with Lz . Furthermore, L± are not Hermitian operators.

1.4 Solution of the Hydrogen Atom

It is assumed that the student has encountered the hydrogen atom’s solution in a
previous quantum mechanics course. What is presented here will be a review with
emphasis on those aspects necessary for an understanding of the multi-electron
problem.
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For an electron in a Coulomb potential

Hu = Eu

H = − �
2

2μ
∇2 − Ze2

4πε◦ r

∇2 =
1

r2
∂

∂r
r2
∂

∂r
− L2

�2r2

u(r, θ, φ) = R(r)Θ(θ)Φ(φ) = R(r)Ym� (θ, φ)

Putting this into the above yields the differential equation for the r variable:

[
1

r2
d

dr
r2

d

dr
+

2μ

�2

(
E +

Ze2

4πε◦ r

)
− 	 (	 + 1)

r2

]
R(r) = 0

Here μ = memN

me+mN
is the reduced mass. Recall that whenever two bodies interact

through a central force, the problem is equivalent to one body having the reduced
mass acting under the influence of the same force. For this problem the two bodies
differ in mass by nearly a factor of 2,000, and the reduced mass is nearly the mass
of the electron. Often one thinks of the electron being electrostatically bound to an
infinitely massive nucleus. In Chap. 6 the two bodies will be those of the nuclei of
diatomic molecules with similar masses, and a derivation of this consequence will
be given.

Atomic units (a.u.)will be introduced at this point. The reader is warned that
these units are used by no other humans, that their adoption to other branches of
physics is not being encouraged, and that it is not possible to uniquely restore
dimensions to any result that one obtains. They are profoundly convenient for
theoretical atomic physics, are widely used within that community, and do not
present any insurmountable challenge to the student:

4πε◦ = � = e = me = 1

c �= 1 c =
1

α
≈ 137

α is the fine-structure constant:

α ≡ e2

4πε◦�c
=

1

137.0359(3)

The energy unit is the Hartree:

1 Hartree = 2 Rydbergs =
mee

4

(4πε◦)2�2
= 27.21140 eV
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a◦ = Bohr radius =
4πε◦�2

mee2
= 1 length unit

= 0.529178 Å

= 5.29178 · 10−11 m

Problem 1.4
Show that one Hartree can be written as α2mec2.

A simple fact of life for a research physicist is that one needs to be proficient
using different systems of units, particularly energy units. The Hartree is the unit
used for all atomic, theoretical calculations. The electron volt (eV) is the unit
most widely used in other branches of physics, and the cm−1 (to be introduced
subsequently) is favored by spectroscopists.

The differential equation (DE) for R(r) may be written for a nucleus of infinite
mass in atomic units as

1

r2
d

dr

(
r2

d

dr

)
+ 2

[
E +

Z

r
− 	 (	+ 1)

2r2

]
R = 0

Introducing P (r) here allows a somewhat simpler DE to be obtained. Please be
alert to the fact that both R(r) and P (r) are referred to as hydrogenic radial wave
functions. Tables are as likely to list the one as the other:

Let P (r) ≡ rR(r)

dP

dr
= r

dR

dr
+R

d2P

dr2
= r

d2R

dr2
+ 2

dR

dr
=

1

r

d

dr

(
r2

dR

dr

)

So the above DE becomes

d2P

dr2
+ 2

[
E +

Z

r
− 	 (	+ 1)

2r2

]
P = 0

Conditions placed on the solution (finite at ∞, continuous, etc.) demand that the
series which expresses the solution should terminate. This termination introduces
another integer quantity n, which is needed (besides 	) to defineP . These conditions
also lead to

E = − Z2

2n2
Hartrees (1.26)
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for an infinite nuclear mass. For a finite nuclear mass the expression is

E = − μZ2

2men2
= −RZ

2

n2
.

The second version uses R which is the Rydberg constant. This constant, expressed
in some energy unit, has different values for different elements, e.g.,

R∞ = 109737.32 cm−1

RH = 109677.58 cm−1

The energy unit cm−1 comes from the Planck relation E = hν = hc/λ.

1

λ
=
E

hc
express λ in cm and the others in compatible units.

This expression can be a source of some confusion, so let me try to clarify. Energy
can be expressed in many different units. You should be familiar with joules and
electron volts and probably ergs. In atomic units, energy is expressed in Hartrees,
is introduced above, and is dimensionless. If one looks at the Planck relation and
realizes that both h and c are universal constants, one could convert any energy into
either Hz or cm−1. Such a conversion has nothing to do with atomic units and
is done simply for laboratory convenience. Because many of the results of atomic
physics are used by spectroscopists and they like the unit cm−1, that unit will
often (certainly not always) be used in this text when comparing to experiment.
Some authors make a distinction between the Rydberg constant expressed in cm−1

given above and the same constant expressed in joules or eV which is sometimes
written “Ry.” Such a distinction will not be used in this text. Figure 1.1 presents a
Grotrian level diagram for the energy levels of hydrogen. This type of diagram is
common among spectroscopists and is one in which the energy is graphed vertically
while distinct values of angular momentum are graphed horizontally. Lines are
often drawn between allowed transitions, and the wavelengths of the transitions are
written along the line.

The solution for P (r) may be expressed as

Pn�(r) =
− [(n− 	− 1)!Z]

1/2

n [(n+ 	)!]
1/2

x�+1e−x/2L2�+1
n−�−1(x) (1.27)

where x ≡ 2Zr/n and L(x) are the associated Laguerre polynomials. The Pn�’s
have the following orthonormality condition:

∫ ∞

0

Pn�(r)Pn′�(r) dr = δnn′ (1.28)
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Fig. 1.1 Grotrian level
diagram for hydrogen

Recall that

∫ π

0

sin θ dθ

∫ 2π

0

Ym� (θ, φ)Ym
′

�′ (θ, φ) dφ = δ��′δmm′ (1.29)

Finally, the eigenfunctions for the hydrogen atom are

U(r, θ, φ) =
Pn�(r)

r
Ym� (θ, φ) (1.30)

The squared, normalized radial wave functions multiplied by r2, the radial part
of the volume element, P2

n� are graphed in Fig. 1.2. The top panel shows the s-states,
the middle panel the p-states, and the bottom the d-states for a selection of n values.
Note that the number of nodes, the zeros of the wave functions, are given by n−	−1.

It is obviously more difficult to attempt to graph the wave function, or its
square, if one wants to include the angular part. In The Picture Book of Quantum
Mechanics,2 the authors show a number of different projections of hydrogenic wave
functions. The one that graphs r and θ as polar variables in the x−z plane with
the probability density perpendicular to this plane is particularly effective since
the azimuthal variable is often unimportant because of symmetry. It is interesting
to note that the appearance of such a graph is remarkably different depending on

2Siegmund Brandt and Hans Dieter Dahmen, Springer-Verlag, New York, 1995.
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Fig. 1.2 Squared, radial wave functions, P2
n�, for 1s–4s (top), 2p–4p (middle), and 3d–4d (bottom)

for hydrogen

whether one includes or excludes the volume element component r2sinθ. Since that
was included in the graphs of the squares of the radial wave functions, the volume
element will also be included in the following graphs. As a caution to the reader,
this is not the convention followed in The Picture Book.

Figure 1.3 shows the square of the 3p m = 1 hydrogenic wave function
multiplied by the volume element. Figure 1.4 is the same but for m = 0. One might
think there would be no difference since the azimuthal variable is suppressed in the
plots, but a glance at Table 1.3 clearly shows that Y1

1 differs in its functional form for
θ from Y0

1 and this causes the observed difference between these plots. Figure 1.5
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	 = 0 1 2 3 4 5 6 7 8

s p d f g h i k l

and alphabetically skipping p and s.
For each value of 	, there are (2	 + 1) values for m. For a given n, 	 takes on

all values from 0 to n − 1. So the number of states sharing a common energy, the
degeneracy, is

Degeneracy =

n−1∑

�=0

(2	+ 1) = 2

[
(n− 1)n

2

]
+ n = n2

This degeneracy is not an accidental degeneracy. By that is meant that two
energy levels in a given system with different quantum numbers happen to have
the same energy. Often this occurs when applying external fields to an atom as
discussed in Chap. 3. Rather, this degeneracy is essential arising from a symmetry
that the Coulomb field has. There is a fundamental connection between essential
degeneracies and symmetries. The study of group theory, particularly continuous
groups, explores that connection. While it is not expected that the student has
studied group theory, let me mention that the symmetry group is O(4), a higher
symmetry than O(3) or SU(2) which are common to the central field problem and
may be related to the isotropy of space. This latter symmetry is responsible for
the degeneracy of the m quantum number which occurs even in the multi-electron
problem.

1.5 Spin Angular Momentum

One reason for the frequent confusion when spin is introduced is that wave
mechanics cannot handle the concept naturally, and so it often appears like a fifth
wheel on a wagon. Matrix mechanics is where it belongs and where the appearance
is really rather natural.

What if the matrix element for a given operator A with respect to some known
wave function were desired? One could write

〈n |A|n′ 〉 =
∫

Ψ∗
n(�r)AΨn′(�r) dτ

By arranging the indices n and n′ into rows and columns, we could evaluate each
element in turn and fill a table so long as n and n′ had finite dimensions.
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What if the wave functions were hydrogenic orbitals? Then there would be

〈n 	m |A|n′ 	′m′ 〉 =
∫
u∗n�m(r, θ, φ)Aun′�′m′(r, θ, φ) dτ

How can this be written as a matrix? Since all of the m and 	 values are bounded, it
could be built up something like

n′ 1 2 2 3

	′ 0 0 1 0

n 	 m\m′ 0 0 −1 0 +1 0

1 0 0

2 0 0

−1 〈 2 1 − 1 |A| 3 0 0 〉
2 1 0

+1

3 0 0

Clearly the matrix is infinite, cumbersome, and not at all practical. The matrices
for particular subspaces can, however, be useful. Consider the angular momentum
portion of the Hilbert space, and ask what is the matrix of 〈 	m |Lx| 	m′ 〉 for, say,
	 = 1. (Since Lx does not operate on the n part, n must equal n′.)

The matrix under investigation is

	 1

	 m\m′ −1 0 +1

−1 〈 1 − 1 |Lx| 1 − 1 〉 〈 1 − 1 |Lx| 1 0 〉 〈 1 − 1 |Lx| 1 1 〉
1 0 〈 1 0 |Lx| 1 − 1 〉 〈 1 0 |Lx| 1 0 〉 〈 1 0 |Lx| 1 1 〉

+1 〈 1 1 |Lx| 1 − 1 〉 〈 1 1 |Lx| 1 0 〉 〈 1 1 |Lx| 1 1 〉

Now

〈 	m |Lx| 	m′ 〉 =
∫

Y∗m
� LxY

m′
� dΩ

This equality is purely formal and merely demonstrates the equivalence of matrix
mechanics and wave mechanics. These matrix elements could be evaluated either
way.

Using wave mechanics,

Lx = i�

(
sinφ

∂

∂θ
+ cot θ cosφ

∂

∂φ

)
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Consider, e.g.,

∫
Y1∗

1 LxY
0
1 dΩ

= −
(

3

8π

)1/2 ∫
sin θe−iφ

[
i�

(
sinφ

∂

∂θ
+ cot θ cosφ

∂

∂φ

)](
3

4π

)1/2

cos θ dΩ

=
3i�√
24π

∫
sin2 θ sinφe−iφ dΩ

=
3�

4
√
2

∫
sin3 θ dθ

=
�√
2

Using matrix mechanics

Lx = 1/2(L+ + L−)

〈 1 1 |Lx| 1 0 〉 = 〈 1 1 |1/2(L+ + L−)| 1 0 〉

=
�
√
2

2
(〈 1 1 | 1 1 〉+ 〈 1 1 | 1 − 1 〉)

=
�√
2

Proceeding in this manner, the entire matrix may be filled out:

〈 	m |Lx| 	m′ 〉 =

	 1

	 m\m′ −1 0 +1

−1 0 �/
√
2 0

1 0 �/
√
2 0 �/

√
2

+1 0 �/
√
2 0

written more simply like

Lx =
�√
2

⎡

⎣
0 1 0

1 0 1

0 1 0

⎤

⎦

Whenever an operator, like Lx above, is written as a matrix, it is assumed that you
know the basis. In this case the basis is the usual one in which L2 and Lz have
diagonal representations.
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Clearly such a matrix has specified the operator Lx on a given subspace. The
only thing preventing us from specifying this operator on its entire Hilbert space is
that the matrix is infinite. For spin angular momentum, the matrices are finite.

Problem 1.5
The vector operator �L = x̂Lx + ŷLy + ẑLz . Show that the matrix 〈 1m |�L| 1m′ 〉 is given by

m\m′ −1 0 +1

−1 −�ẑ �√
2
(x̂+ iŷ) 0

0 �√
2
(x̂− iŷ) 0 �√

2
(x̂+ iŷ)

+1 0 �√
2
(x̂− iŷ) �ẑ

All of the relations that have been developed for the orbital angular momentum
�L are valid for a general angular momentum operator �J. This notation explicitly
assumes that there exists some angular momentum in quantum mechanics other
than orbital angular momentum, as is indeed the case. In particular, the following
relations define the angular momentum:

If [Ji,Jj ] = i�εijkJk

And J2| j m 〉 = �
2j (j + 1) | j m 〉

Jz | j m 〉 = �m| j m 〉

Let J+ = Jx + iJy

J− = Jx − iJy

Then [Jz ,J±] = ±�J±

[J+,J−] = 2�Jz
[
J2,J±

]
= 0

J+| j m 〉 = � [(j −m)(j +m+ 1)]
1/2 | j m+ 1 〉

J−| j m 〉 = � [(j +m)(j −m+ 1)]
1/2 | j m− 1 〉
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There is one consequence of these equations yet to be examined. Consider

Jp+| j m 〉 with p integer

if m < j J+| j m 〉 → α| j m+ 1 〉
J2
+| j m 〉 → αβ| j m+ 2 〉

Jp+| j m 〉 → αβ . . . | j m+ p 〉
= αβ . . . | j j 〉

So m+ p = j; p = j −m. Similarly,

Jq−| j m 〉 → α′β′ . . . | j m− q 〉
= α′β′ . . . | j − j 〉

So m− q = −j; q = j +m. Therefore

p+ q = 2j where p+ q are integers.

So 2j must be an integer and j can at most be half-integer. Of course it can also be
integer.

The main points can be summarized as:

1. The only possible eigenvalues of J2 are of the form j (j + 1) where j is a
nonnegative, integral, or half-integral number:

j = 0, 1/2, 1,
3/2, 2, . . . ,∞

2. The only possible eigenvalues of Jz are the integral and half-integral numbers:

m = 0,±1/2,±1,±3/2,±2, . . . ,±∞
3. If j (j + 1) and m are the respective eigenvalues of J2 and Jz , then the only

possible values of m are the (2j + 1) quantities

−j,−j + 1, . . . , j − 1, j

Based on experiments involving the Zeeman effect and the Stern–Gerlach
experiment, it is postulated that an electron has an intrinsic angular momentum �S
of magnitude �/2 (spin 1/2). That is, the existence of an observable operator �S is
postulated along with an associated Hilbert space with two dimensions such that

S2| sms 〉 = s(s+ 1)�2| sms 〉
Sz| sms 〉 = ms�| sms 〉
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Now s = 1/2, so

S2| sms 〉 = 3

4
�
2| sms 〉

and
| sms 〉 = | 1/2 1/2 〉 or | 1/2 − 1/2 〉 only

All of the previous formulae for a general angular momentum are applicable. In
particular

S+| 1/2 − 1/2 〉 = �| 1/2 1/2 〉
S−| 1/2 + 1/2 〉 = �| 1/2 − 1/2 〉

S+| 1/2 1/2 〉 = S−| 1/2 − 1/2 〉 = 0

S−S+| 1/2 − 1/2 〉 = �
2| 1/2 − 1/2 〉

S+S−| 1/2 1/2 〉 = �
2| 1/2 1/2 〉

The smallness of the Hilbert space leads to some interesting relations. In what
follows you need to consider the operator acting upon the basis kets (either one!):

S2
+| sms 〉 = S2

−| sms 〉 = 0

Sx = 1/2(S+ + S−) (1.31)

S2
x =

1

4
(S2

+ + S2
− + S+S− + S−S+) (1.32)

=
1

4
(S+S− + S−S+) (1.33)

S2
x| sms 〉 = 1

4
(S+S− + S−S+)| sms 〉 = �

2

4
| sms 〉

for either state. Similarly (show these)

S2
y| sms 〉 = S2

z | sms 〉 = �
2

4
| sms 〉

So S2
x = S2

y = S2
z =

�
2

4 .
Since S2

+ = (Sx + iSy)
2 = (S2

x − S2
y) + i(SxSy + SySx), it follows that

SxSy + SySx = 0. In fact, this relationship holds for any two of the three spin
operators, that is, Sx, Sy and Sz anticommute. This will be evident once we develop
the matrix form for these operators:

Anticommutator ≡ {A,B} ≡ AB+BA
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It is easy to write down the matrices of �S in the basis | sms 〉. One proceeds
exactly as was done for Lx in the basis | 1ml 〉. Since our basis now consists of two
vectors, our matrices are two dimensional. It is customary to define

�S ≡ �

2
�σ

and to work out the matrices for �σ, called the Pauli spin matrices. Using the basis
| sms 〉 with s = 1/2, sometimes the bras and kets will be written using ms alone.
Let’s do the one for σy:

〈 1/2 |σy| − 1/2 〉 = 〈 1/2 |−i
�
(S+ − S−)| − 1/2 〉 = −i

The other three can be done in the same manner giving

〈 sms |σy| sm′
s 〉 =

m\m′ −1/2
1/2

−1/2 0 i
1/2 −i 0

The shorthand form for these is

σx =

[
0 1

1 0

]

σy =

[
0 −i
i 0

]

σz =

[
1 0

0 −1

]

and the basis is

| 1/2 1/2 〉 =
(
1

0

)
sometimes called α

| 1/2 − 1/2 〉 =
(
0

1

)
sometimes called β

You may verify

σ2
α = σ2

x = σ2
y = σ2

z = 1 1 =

[
1 0

0 1

]

σασβ = εαβγiσγ + δαβ

σxσyσz = i (means i1)

Trσx = Trσy = Trσz = 0

detσx = detσy = detσz = −1
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Note: The subscripts on σ have nothing to do with the matrix indices themselves.
This is frequently a confusing point for students.

Now the wave functions for hydrogen should be modified to include spin. The
notation changes from

|n 	m� 〉 an orbital

to |n 	m�ms 〉 ≡ |n 	m� 〉| 1/2ms 〉, called a spin orbital.

The expression |n 	m� 〉| 1/2ms 〉 is the tensor product of two Hilbert spaces having
a dimension twice as large as |n 	m� 〉 alone. The effect of any operator independent
of the spin is trivial:

〈n 	m�ms |A|n′ 	′m′
�m

′
s 〉 = 〈n 	m� |A|n′ 	′m′

� 〉〈ms |m′
s 〉

= 〈n 	m� |A|n′ 	′m′
� 〉δmsm′

s

So far, our Hamiltonian does not depend on the spin, so there would be no
change to the energy levels of hydrogen with this modification (not true, however,
for complex atoms). There is a small effect (fine structure) this change makes for
hydrogen which will be developed subsequently.

1.6 Addition of Angular Momentum

Having introduced the concept of a generalized angular momentum and then having
shown that spin satisfies all of the conditions of such an angular momentum, it
remains to show that one can add two generalized angular momenta and obtain a
generalized angular momentum. One can, for example, add orbital and spin angular
momenta without being accused of adding apples and oranges. This is not a trivial
point because electron spin is not an electron spinning on its axis; all such classical
models fail. It is a purely quantum mechanical attribute of fundamental particles, not
derivable from classical physics, which combines with an attribute that is derivable
from classical physics. You may be forgiven for thinking that is amazing.

Consider
�J = �J1 + �J2 (1.34)

where �J1 and �J2 refer to the angular momentum of two different systems or of
noninteracting parts of one system which together form the system under study.
Either way, the requirement is that

[
�J1, �J2

]
= 0. (1.35)

By this is meant that each component of one angular momentum commutes with
every component of the other.
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Then [Ji,Jj ] = [J1i + J2i,J1j + J2j ]

= [J1i,J1j ] + [J2i,J2j ]

= εijki�(J1k + J2k)

= εijki�Jk.

(1.36)

�J can also be an angular momentum with J± defined as before. Proofs of all the
commutator relations are done as above. �J will satisfy all such relations.

What about eigenvalues of �J and the state vectors? To be an angular momentum,
there must exist state vectors such that

J2| j m 〉 = j (j + 1)�2| j m 〉 (1.37)

and Jz | j m 〉 = m�| j m 〉. (1.38)

What is j in terms of j1 and j2? What is | j m 〉 in terms of | j1m1 〉, | j2m2 〉?
Consider the easily formed state

| j1 j2m1m2 〉 ≡ | j1m1 〉| j2m2 〉. (1.39)

This is a vector in a (2j1+1)(2j2+1) dimensional Hilbert space. The vector | j m 〉,
more completely written as | j1 j2 j m 〉, is a vector in the same space. There must
exist a unitary transformation between these two sets defined as

| j1 j2 j m 〉 =
∑

m1m2

| j1 j2m1m2 〉〈 j1 j2m1m2 | j1 j2 j m 〉. (1.40)

The coefficients 〈 j1 j2m1m2 | j1 j2 j m 〉 are called Clebsch–Gordan coefficients
(C–G’s) or vector-coupling coefficients. Thought of as a matrix, they form a unitary
matrix. However, the phases are chosen such that these coefficients are real.

Note that Jz commutes with J1z and J2z . However, J2 does not commute with
J1z and J2z separately (though it does commute with their sum). Furthermore J2

1

and J2
2 commute with J2, Jz as well as J1z and J2z . So there are two different

equivalent sets of commuting operators:

either J2
1 J

2
2 J1z J2z

or J2
1 J

2
2 J

2 Jz

This is the reason for adopting the notation above.
Next notice that

Jz | j1 j2 j m 〉 = m�| j1 j2 j m 〉
Jz | j1 j2m1m2 〉 = (m1 +m2)�| j1 j2m1m2 〉
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So the set of eigenvalues for Jz can be readily found in either basis. Now the
eigenvalues of an operator are independent of basis, so

m = m1 +m2. (1.41)

Furthermore, using considerations of ladder operators it can be shown that

j1 + j2 ≥ j ≥ |j1 − j2| (1.42)

The veracity of this relation can be demonstrated by reflecting on the sizes of the
two Hilbert spaces and realizing that they must have the same dimension. This
dimension is simply (2j1 + 1)(2j2 + 1) in the j1, j2 basis. The dimension in the j
basis is obtained by counting the degeneracy, (2j + 1), for each allowed value of j.
The following problem asks you to demonstrate this.

Problem 1.6
Show

j1+j2∑

j=|j1−j2|
(2j + 1) = (2j1 + 1)(2j2 + 1)

A feel for C–G coefficients can best be obtained by example: consider j1 = 1,
j2 = 1/2, then j = 3/2 or 1/2. The vectors which span the space for each of the bases
are

| j1 j2 j m 〉
| 1 1/2

3/2
3/2 〉

| 1 1/2
3/2

1/2 〉
| 1 1/2

1/2
1/2 〉

| 1 1/2
3/2 − 1/2 〉

| 1 1/2
1/2 − 1/2 〉

| 1 1/2
3/2 − 3/2 〉

| j1 j2m1m2 〉
| 1 1/2 1

1/2 〉
| 1 1/2 0

1/2 〉
| 1 1/2 1 − 1/2 〉
| 1 1/2 − 1 1/2 〉
| 1 1/2 0 − 1/2 〉

| 1 1/2 − 1 − 1/2 〉
The relationm = m1+m2 is extremely powerful. It means the following kets must
satisfy

| 1 1/2
3/2

3/2 〉 = | 1 1/2 1
1/2 〉 (1.43)

and | 1 1/2
3/2 − 3/2 〉 = | 1 1/2 − 1 − 1/2 〉. (1.44)

The remaining four cluster into groups of two. The first group is

| 1 1/2
3/2

1/2 〉 = α| 1 1/2 0
1/2 〉+ β| 1 1/2 1 − 1/2 〉 (1.45)

| 1 1/2
1/2

1/2 〉 = γ| 1 1/2 0
1/2 〉+ δ| 1 1/2 1− 1/2 〉 (1.46)
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Because the kets on the right-hand side are orthogonal, one can multiply by their
bras to solve for the four coefficients. The expressions one obtains can be compared
to those in Eq. (1.40) which are Clebsch–Gordan coefficients:

α = 〈 1 1/2 0
1/2 | 1 1/2

3/2
1/2 〉

β = 〈 1 1/2 1 − 1/2 | 1 1/2
3/2

1/2 〉
γ = 〈 1 1/2 0

1/2 | 1 1/2
1/2

1/2 〉
δ = 〈 1 1/2 1 − 1/2 | 1 1/2

1/2
1/2 〉

Clebsch–Gordan coefficients

The kets on the LHS of Eqs. (1.45) and (1.46) are orthonormal, so α2 + β2 = 1,
γ2 + δ2 = 1, and αγ + βδ = 0.

One consistent way of finding C–G’s is to start with the maximum vector and
work down with ladder operators. Start with Eq. (1.43):

J−| 1 1/2
3/2

3/2 〉 =
√
3�| 1 1/2

3/2
1/2 〉

(J1− + J2−)| 1 1/2 1
1/2 〉 =

√
2�| 1 1/2 0

1/2 〉+ �| 1 1/2 1 − 1/2 〉
Equating these two expressions immediately gives Eq. (1.45) from which the values
may be obtained:

α =

√
2√
3

β =
1√
3
.

Orthonormality then gives

γ = ± 1√
3

δ = ∓
√
2√
3
.

Choice of sign is a matter of convention. The chosen convention is that γ = −1/
√
3

and δ = +
√
2/
√
3.

Problem 1.7
Find the C–G coefficients for the second group of two.

One important property of C–G’s is that they are real. Therefore,

〈 j1 j2m1m2 | j1 j2 j m 〉 = 〈 j1 j2 j m | j1 j2m1m2 〉 (1.47)

One consequence of deciding upon a certain phase for the C–G’s is that the order of
coupling the vectors is no longer arbitrary. Reversing the order introduces a phase
factor:

〈 j1 j2m1m2 | j1 j2 j m 〉 = (−1)j1+j2−j〈 j2 j1m2m1 | j2 j1 j m 〉 (1.48)

Note: Some authors write | j1 j2m1m2 〉 as | j1m1 j2m2 〉, which is the same thing.
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There are many symmetry relations exhibited by C–G coefficients. Many of them
become simpler to write if one defines a new symbol. The 3−j symbol is defined as

(
j1 j2 j

m1 m2 m

)
= (−1)j1−j2−m(2j + 1)−

1/2〈 j1 j2m1m2 | j1 j2 j −m 〉 (1.49)

These 3−j symbols have become a standard notation for angular momentum theory.
Extensive use of them will not be made in this text, but we will invoke certain
properties and make use of certain relations without trying to prove them:

1. An even permutation of columns leaves the value of a 3−j symbol unchanged,
e.g.,

(
j1 j2 j3
m1 m2 m3

)
=

(
j2 j3 j1
m2 m3 m1

)
(1.50)

2. An odd permutation is equivalent to multiplication by (−1)j1+j2+j3 , e.g.,

(
j2 j1 j3
m2 m1 m3

)
= (−1)j1+j2+j3

(
j1 j2 j3
m1 m2 m3

)
(1.51)

3. All of the signs of the m’s can be changed:

(
j1 j2 j3
m1 m2 m3

)
= (−1)j1+j2+j3

(
j1 j2 j3

−m1 −m2 −m3

)
(1.52)

4. For the 3−j symbol

(
j1 j2 j3
m1 m2 m3

)
m1 +m2 +m3 = 0 always.

From the symmetry relation (3) above, we deduce that

(
j1 j2 j3
0 0 0

)
= 0 if j1 + j2 + j3 odd.

Two orthogonality relations among 3−j symbols are particularly useful. These are

∑

j3,m3

(2j3 + 1)

(
j1 j2 j3
m1 m2 m3

)(
j1 j2 j3
m′

1 m
′
2 m3

)
= δm1,m′

1
δm2,m′

2
(1.53)
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∑

m1,m2

(
j1 j2 j3
m1 m2 m3

)(
j1 j2 j′3
m1 m2 m

′
3

)
= δj3,j′3δm3,m′

3
(2j3 + 1)−1 (1.54)

There is one further relation that should be mentioned before leaving 3−j
symbols. It is called the Wigner–Eckart theorem. This theorem states that if one
forms the matrix element of an operator whose angular dependence is the same as
the spherical harmonics between angular momentum states, then the m-dependence
is given by a 3−j symbol independent of the original operator.

Operators that have the same angular dependence as the spherical harmonics are
called spherical tensors or, more properly, spherical tensor operators. They are
written as Tmk and satisfy the same commutator relations with J± and Jz as do
the Ym� . If one were to take some quantum mechanical operator, say the electric
quadrupole moment, and express it as a spherical tensor, then the angular part of
the problem becomes solved, and one is left with only a radial integral to perform.
Formally the Wigner–Eckart theorem is expressed as

〈 γ ′ j ′m ′ |Tqk| γ j m 〉 = (−1)j
′−m ′

(
j ′ k j

−m ′ q m

)
〈 γ ′ j ′ ||Tk|| γ j 〉 (1.55)

In the equation above, γ stands for all quantum numbers other than the ones relating
to angular momentum. The symbol on the right is called a double-bar matrix element
or reduced matrix element and is defined by this expression. It is evaluated by
choosing the easiest matrix element on the left to perform. Once the double-bar
matrix element is known, all other matrix elements involving different values for
m,m′, or q can be evaluated by just evaluating the 3−j symbol.

It is now possible for us to add the orbital and spin angular momentum of an
electron in a hydrogen atom:

�J = �L+ �S

In the coupled basis there are the states |n 	 s j m 〉 while in the uncoupled basis
there are |n 	 smlms 〉 ⇒ Rn�(r)Y

m
� (θ, φ)| 1/2ms 〉.

In QM only matrix elements are really important. Whether one can write down
a wave function is not so important. Elementary treatments imply that to do the
former, you must be able to do the latter. As this course develops, you will see that
this is often not the case.

Consider the expectation value of an operator, A, which does not depend on θ
or φ and does not operate on the spin. Its expectation value in the coupled basis is
desired:
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〈n 	 s j m |A(r)|n 	 s j m 〉
=

∑

m′
�m

′
s

m�ms

〈n 	 s j m |n 	 sm′
�m

′
s 〉〈n 	 sm′

�m
′
s |A|n 	 sm�ms 〉

〈n 	 sm�ms |n 	 s j m 〉

=

∫
R∗
n�(r)ARn�(r)r

2 dr
∑

m′
�m

′
s

m�ms

δm′
l
ml
δm′

sms〈 j m |m′
�m

′
s 〉〈m�ms | j m 〉

=

∫
R∗
n�(r)ARn�(r)r

2 dr
∑

m�ms

〈 j m |m�ms 〉〈m�ms | j m 〉

=

∫
R∗
n�(r)ARn�(r)r

2 dr (1.56)

No Clebsch–Gordan coefficients appear in the final expression.
For one-electron systems, the notation in the coupled basis is built up in the

following manner:

If one electron has 	 = 0 1 2 3 4

write s p d f g

Then a complete description can be done by subscripting the letter with the j value.
So,

s = 1/2, 	 = 1, j = 3/2 becomes p3/2

s = 1/2, 	 = 1, j = 1/2 becomes p1/2

s = 1/2, 	 = 3, j = 5/2 becomes f5/2
etc.

Initially it might seem confusing that the symbol s stands both for the spin quantum
number in general and for the specific orbital quantum number of zero value. In
practice, context will make clear which is meant. In spectroscopic notation, the m
values are rarely given since except for applied external fields, all such states are
degenerate.
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1.7 Hamiltonian Consequences of Spin: Hydrogen Atom

It has already been mentioned that the addition of electron spin to hydrogen changes
nothing since the Schrödinger equation is spin independent. When hydrogen is
solved in the Dirac theory,3 there appear additional terms, one of which looks like

H1 =
−�μ◦
mce

�L · �S
r

dV

dr
in Gaussian units, �L and �S dimensionless

Since V = Ze2/r, this can be rewritten in atomic units as

H1 =
Zα2

2

�L · �S
r3

(1.57)

H1 is given in Hartrees. Since α = 1/137, α2 is a small quantity compared to the
ground-state energy of 1/2 Hartree. First-order perturbation theory may then be used
to obtain the energy shifts, E1, which can be used to correct the Schrödinger result
for spin.

Recall whenever H = H0 +H1 with H1 small, the exact result HΨ = EΨ can
be approximated by

E = E0 + E1

where H0Ψ0 = E0Ψ0 is the unperturbed solution and

E1 =

∫
Ψ0H1Ψ0 dτ. (1.58)

In bra–ket notation this would be written

E1 = 〈n 	m�ms |H1|n 	m�ms 〉 (1.59)

Now notice that �L · �S = 1/2[J
2 −L2 −S2]. This operator is diagonal in the basis

|n 	 s j mj 〉. H0 is spin independent, so it too is diagonal in the |n 	 s j mj 〉 basis.
Hence

E1 = 〈n 	 s j mj |Zα
2

4

[J2 − L2 − S2]

r3
|n 	 s j mj 〉

=
Zα2

4
[j (j + 1)− 	 (	+ 1)− 3/4]〈n 	 s j mj | 1

r3
|n 	 s j mj 〉. (1.60)

But the expectation value on the right is given in Table 1.2:

3See Quantum Mechanics of One- and Two-Electron Atoms, Bethe and Salpeter, Plenum Press,
1977 (reprint of 1957).
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〈n 	 s j mj | 1
r3

|n 	 s j mj 〉 =
∫

R∗
n�(r)

1

r3
Rn�(r)r

2 dr

=
Z3

n3	(	+ 1/2)(	+ 1)
. (1.61)

Let ξn� ≡ α2Z4

2n3	(	+ 1/2)(	+ 1)
Hartrees (1.62)

then E1 = 1/2 ξn� [j (j + 1)− 	 (	+ 1)− 3/4]. (1.63)

Since there are additional terms in the Hamiltonian, this correction to the
Schrödinger equation is not expected to be complete. We can, however, expect it
to give the correct value for fine-structure splitting since this was the only spin-
dependent term which appeared. The fine structure is the energy between the two
states j = 	+ 1/2 and j = 	− 1/2, for example, the energy between 2p3/2

and 2p1/2
:

ΔEfs = E1(j)− E1(j − 1) = jξn� = (	 + 1/2)ξn�

ΔEfs =
α2Z4

2n3	 (	+ 1)
(1.64)

ΔEfs =
Rα2Z4

n3	 (	+ 1)

where R is the Rydberg constant. For hydrogen, Rα2 = 5.8405 cm−1. So the fine
structure between the 2p3/2

and 2p1/2
(the largest such splitting in hydrogen) is

ΔE(2p3/2
− 2p1/2

) = 0.365 cm−1

This is less than one part in 2× 105 of the ground-state energy.

1.8 Useful Tables

The tables following will be used throughout the text and should be self-explanatory.
A few comments here might be of some help to the student. The first table
(Table 1.1), giving normalized hydrogenic radial wave functions, is not needed for
the solution to any exercise or problem but is useful when using programs that use
such functions so that one can ensure that normalization factors are those being
assumed in this text. The second table (Table 1.2) that offers matrix elements of
powers of r is the one that will be used when doing such matrix elements “by
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Table 1.1 Normalized hydrogenic radial wave functions

n � rRn�(r)

1 0 2Z
3
2 r e(−Zr)

2 0 1
4

√
2Z

3
2 r e(−Zr/2)(2 − Z r)

2 1 1
12

√
6Z

5
2 r2 e(−Zr/2)

3 0 2
27

√
3Z

3
2 r e(−Zr/3)(3− 2Z r + 2

9
Z2 r2)

3 1 1
81

√
6Z

5
2 r2 e(−Zr/3)(4 − 2

3
Z r)

3 2 2
1215

√
30Z

7
2 r3 e(−Zr/3)

4 0 1
16

Z
3
2 r e(−Zr/4)(4− 3Z r + 1

2
Z2 r2 − 1

48
Z3 r3)

4 1 1
480

√
15Z

5
2 r2 e(−Zr/4)(10 − 5

2
Z r + 1

8
Z2 r2)

4 2 1
1920

√
5Z

7
2 r3 e(−Zr/4)(6 − 1

2
Z r)

4 3 1
26880

√
35Z

9
2 r4 e(−Zr/4)

5 0 2
125

√
5Z

3
2 r e(−Zr/5) (5− 4Z r + 4

5
Z2 r2 − 4

75
Z3 r3 + 2

1875
Z4 r4)

5 1 1
1875

√
30Z

5
2 r2 e(−Zr/5) (20 − 6Z r + 12

25
Z2 r2 − 4

375
Z3 r3)

5 2 2
65625

√
70Z

7
2 r3 e(−Zr/5) (21− 14

5
Z r + 2

25
Z2 r2)

5 3 1
328125

√
70Z

9
2 r4 e(−Zr/5) (8− 2

5
Z r)

5 4 2
4921875

√
70Z

11
2 r5 e(−Zr/5)

6 0 1
108

√
6Z

3
2 r e(−Zr/6) (6−5Z r+ 10

9
Z2 r2− 5

54
Z3 r3+ 1

324
Z4 r4− 1

29160
Z5 r5)

6 1 1
11340

√
210Z

5
2 r2 e(−Zr/6) (35 − 35

3
Z r + 7

6
Z2 r2 − 7

162
Z3 r3 + 1

1944
Z4 r4)

6 2 1
136080

√
105Z

7
2 r3 e(−Zr/6) (56 − 28

3
Z r + 4

9
Z2 r2 − 1

162
Z3 r3)

6 3 1
1224720

√
35Z

9
2 r4 e(−Zr/6) (36 − 3Z r + 1

18
Z2 r2)

6 4 1
7348320

√
7Z

11
2 r5 e(−Zr/6) (10 − 1

3
Z r)

6 5 1
242494560

√
77Z

13
2 r6 e(−Zr/6)

hand.” If one chooses to use a computer program to perform the calculation, one
can compare to the table to make sure that results agree. The third table (Table 1.3),
like the first, may not be used directly but is useful for comparison when using a
computer program. The fourth table (Table 1.4), offering integrals of three spherical
harmonic functions, is needed on occasion and will prove more useful for future
reference than for solving problems in the text. Such an integral arises when
calculating matrix elements of any operator expressed as a spherical tensor.

The last table has been taken from the Atomic, Molecular and Optical Physics
Handbook of the American Physical Society (used with permission) and gives
the ground-state configurations for each of the elements. In addition, it gives the
spectroscopic term designation (described in the following chapter) for the ground
level of each element and the ionization energy in electron volts (Table 1.5).
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Table 1.2 Matrix elements for rα
∫
Rn�(r)r

αRn′�′(r)r
2 dr

n′ = n and �′ = �

α = 4 1
8
n4[63n4 − 35n2(2�2 + 2�− 3) + 5�(�+ 1)(3�2 + 3�− 10) + 12]

α = 3 1
8
n2[35n2(n2 − 1) − 30n2(�+ 2)(� − 1) + 3(�+ 2)(� + 1)�(� − 1)]

α = 2 1
2
n2[5n2 + 1− 3�(�+ 1)]

α = 1 1
2
[3n2 − �(�+ 1)]

α = −1 1
n2

α = −2 1
n3(�+ 1

2
)

α = −3 1
n3(�+1)(�+ 1

2
)�

α = −4
3n2−�(�+1)

2n5(�+ 3
2
)(�+1)(�+ 1

2
)�(�− 1

2
)

n′ = n and �′ = �− 1

α = 1 3
2
n[n2 − �2]

1
2

n > n′ n′ = 1 and �′ = 0

α = � 2�+3 n�+2(n−1)n−�−2�

(n+1)n+�+2

[
(n+�)!

(n−�−1)!

] 1
2

α = �− 1 2�+2 n�(n−1)n−�−1

(n+1)n+�+1

[
(n+�)!

(n−�−1)!

] 1
2

n > n′ n′ = 2 and �′ = 1

α = �+ 1 23�+7 n�+4(n−2)n−�−4
√
6(n+2)n+�+4

[
(n+�)!

(n−�−1)!

] 1
2
(2�3 − 3�2 − 5�+ 2)

α = � 23�+5 n�+2(n−2)n−�−3
√
6(n+2)n+�+3

[
(n+�)!

(n−�−1)!

] 1
2
[(2�2 − 3�− 1)n2 + 4(� + 1)]

α = �− 1 23�+4 n�+2(n−2)n−�−2(�−1)√
6(n+2)n+�+2

[
(n+�)!

(n−�−1)!

] 1
2

α = �− 2 23�+2 (n−2)n−�−1
√
6(n+2)n+�+1

[
(n+�)!

(n−�−1)!

] 1
2

n > n′ n′ = 2 and �′ = 0

α = � 23�+5+ 1
2

n�+2(n−2)n−�−3�

(n+2)n+�+3

[
(n+�)!

(n−�−1)!

] 1
2
[(−�+ 2)n2 − 4]
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Table 1.3 Spherical
harmonic functions,
Ym

� (θ, φ)

Y0
0 4π− 1

2

Y±1
1 ∓(3/8π)

1
2 sin θ e±iφ

Y0
1 (3/4π)

1
2 cos θ

Y±2
2 (15/32π)

1
2 sin2 θ e±2iφ

Y±1
2 ∓(15/8π)

1
2 sin θ cos θ e±iφ

Y0
2 (5/4π)

1
2 [(3/2) cos2 θ − 1/2]

Y±3
3 ∓(35/64π)

1
2 sin3 θ e±3iφ

Y±2
3 (105/32π)

1
2 sin2 θ cos θ e±2iφ

Y±1
3 ∓(21/64π)

1
2 sin θ[5 cos2 θ − 1] e±iφ

Y0
3 (7/4π)

1
2 [(5/2) cos3 θ − (3/2) cos θ]

Y±4
4 (3/8)(35/8π)

1
2 sin4 θ e±4iφ

Y±3
4 ∓(3/4)(35/4π)

1
2 sin3 θ cos θ e±3iφ

Y±2
4 (3/4)(5/8π)

1
2 sin2 θ[7 cos2 θ − 1] e±2iφ

Y±1
4 ∓(3/4)(5/4π)

1
2 sin θ[7 cos3 θ − 3 cos θ] e±iφ

Y0
4 (9/4π)

1
2 [(35/8) cos4 θ − (15/4) cos2 θ + (3/8)]

Table 1.4 Integral of three spherical harmonic functions
∫
Ym∗

� (θ, φ)Ym′
�′ (θ, φ)Yγ

β(θ, φ)d(sin θ)dφ

β = 1 γ = 0

�′ = �+ 1 (−1)�+1
[
3(�+m+1)(�−m+1)

4π(2�+3)(2�+1)

]1/2

m′ = m

β = 1 γ = ±1

�′ = �+ 1 (−1)�
[
3(�−m+1)(�−m+2)

8π(2�+3)(2�+1)

]1/2

m′ = m∓ 1

β = 2 γ = 0

�′ = �+ 2 (−1)� 3
4(2�+3)

[
5(�+m+2)(�+m+1)(�−m+1)(�−m+2)

π(2�+5)(2�+1)

]1/2

m′ = m

�′ = � (−1)�
√

5
2
√

π
3m2−�(�+1)
(2�+3)(2�−1)

m′ = m

β = 2 γ = ±1

�′ = �+ 2 (−1)�+1 1
2(2�+3)

[
15(�±m+1)(�∓m+3)(�∓m+2)(�∓m+1)

2π(2�+5)(2�+1)

]1/2

m′ = m∓ 1

�′ = � (−1)�+1 (1−2m)[15(�∓m+1)(�±m)]1/2

2(2π)1/2(2�+3)(2�−1)

m′ = m∓ 1

β = 2 γ = ±2

�′ = �+ 2 (−1)� 1
4(2�+3)

[
15(�∓m+1)(�∓m+2)(�∓m+3)(�∓m+4)

2π(2�+5)(2�+1)

]1/2

m′ = m∓ 2

�′ = � (−1)� [15(�±m−1)(�±m)(�∓m+1)(�∓m+2)]1/2

2(2π)1/2(2�+3)(2�−1)

m′ = m∓ 2
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Table 1.5 Ground levels and ionization energies for the neutral atoms

Z

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

39
40

41
42
43
44
45
46
47
48
49
50
51
52

53 I
Xe
Cs
Ba
La
Ce
Pr
Nd
Pm
Sm
Eu
Gd
Tb
Dy
Ho
Er
Tm
Yb
Lu
Hf
Ta
W
Re
Os
Ir
Pt
Au
Hg
Tl
Pb
Bi
Po
At
Rn

Ra
Ac
Th

Pa
U

Np
Pu
Am
Cm
Bk
Cf
Es
Fm
Md
No
Lr
Rf

Fr

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

91
92

93
94
95
96
97
98
99

100
101
102
103
104Te

Sb
Sn
In
Cd
Ag
Pd
Rh
Ru
Tc
Mo
Nb

Zr
Y

Sr
Rb
Kr
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
Cr
V
Ti
Sc
Ca
K
Ar
Cl
S
P
Si
Al
Mg
Na
Ne
F
O
N
C
B
Be
Li
He
H 1s 2S1/2 13.5984 10.4513

12.1298
3.8939
5.2117
5.5770
5.5387
5.464
5.5250
5.58
5.6436
5.6704
6.1501
5.8638
5.9389
6.0215
6.1077
6.1843
6.2542
5.4259
6.8251
7.5496
7.8640
7.8335
8.4382
8.9670
8.9587
9.2255

10.4375
6.1082
7.4167
7.2856
8.4167

10.7485
4.0727
5.2784
5.17
6.3067

6.1941

6.2657
6.0262
5.9738
6.02
6.23
6.30
6.42
6.50
6.58
6.65
4.9 ?
6.0 ?

5.89

24.5874
5.3917
9.3227
8.2980

11.2603
14.5341
13.6181
17.4228
21.5646
5.1391
7.6462
5.9858
8.1517

10.4867
10.3600
12.9676
15.7596
4.3407
6.1132
6.5615
6.8281
6.7463
6.7665
7.4340
7.9024
7.8810
7.6398
7.7264
9.3942
5.9993
7.8994
9.7886
9.7524

11.8138
13.9996
4.1771
5.6949

6.2171
6.6339

6.7589
7.0924
7.28
7.3605
7.4589
8.3369
7.5763
8.9938
5.7864
7.3439
8.6084
9.0096

2P�1/2

2P�3/2

2P�3/2

1G�4
4I �9/2

6H�5/2

6H�15/2

4I�15/2

2F�7/2

8S�7/2
9D�2

5I8

3H6

2P�1/2

4S�3/2

2P�1/2

2P�1/2

2P�3/2

8S�7/2

6H�15/2

4I�15/2

2F�7/2

2P�1/2 ?
3F2 ?

9D�2

4S�3/2

4S�3/2

2S1/2

2D3/2

6D1/2

2P�3/2

4S�3/2

2S1/2

1S0

3P0

1S0

1S0

3P0

1S0

1S0

3F2

5D4

1S0

3P0

1S0

3P22P�3/2

2P�1/2

4S�3/2

1S0

3F2

7S3

5F5

1S0

1S0

3P0

3P2

2S1/2

4F9/2

6S5/2

7S36S5/2

4F9/2

2S1/2

3F4

4F3/2

2S1/2

2D3/2

3P2

2S1/2

3P2

1S0

2S1/2

2D3/2

1S0

1S0

1S0

3F24F3/2

6S5/2

4F9/2

2S1/21S0

3P0

3P2

1S0

1S0

3F2

7F0

5I8

3H6

1S0

2S1/2

2D3/2

(4,3/2)11/2

(4,3/2)11/2

(9
/2,

3
/2)�6

2D3/2

5D0

5D4

3D3

5I4

7F0

1s2

1s2    2s
1s2    2s2

1s2    2s2    2p
1s2    2s2    2p2

1s2    2s2    2p3

1s2    2s2    2p4

1s2    2s2    2p5

1s2    2s2    2p6

[Ne] 3s
[Ne] 3s2

[Ne] 3s2    3p
[Ne] 3s2    3p2

[Ne] 3s2    3p3

[Ne] 3s2    3p4

[Ne] 3s2    3p5

[Ne] 3s2    3p6

[Ar]        4s

[Kr]        5s

[Kr] 4d10

[Kr]        5s2

[Ar]        4s2

[Ar] 3d    4s2

[Kr] 4d    5s2

[Kr] 4d2   5s2

[Kr] 4d4   5s
[Kr] 4d5   5s

[Kr] 4d7   5s
[Kr] 4d8   5s

[Kr] 4d10  5s
[Kr] 4d10  5s2

[Kr] 4d10  5s2  5p
[Kr] 4d10  5s2  5p2

[Kr] 4d10  5s2  5p3

[Kr] 4d10  5s2  5p4

[Kr] 4d10  5s2  5p5

[Kr] 4d10  5s2  5p6

[Xe]          6s
[Xe]          6s2

[Rn] 5f 14 6d2 7s2 ?

[Xe] 4f 14
  5d10  6s2 6p6

[Xe] 4f 14  5d10  6s2 6p5
[Xe] 4f 14  5d10  6s2 6p4
[Xe] 4f 14  5d10  6s2 6p3
[Xe] 4f 14  5d10  6s2 6p2
[Xe] 4f 14  5d10  6s2 6p
[Xe] 4f 14  5d10  6s2

[Xe] 4f 14  5d7  6s2
[Xe] 4f 14  5d6  6s2
[Xe] 4f 14  5d5  6s2
[Xe] 4f 14  5d 4  6s2
[Xe] 4f 14  5d3  6s2
[Xe] 4f 14  5d2  6s2
[Xe] 4f 14  5d   6s2

[Xe] 4f 7   5d   6s2

[Xe] 4f   5d   6s2
[Xe]       5d   6s2

[Xe] 4f 14     6s2
[Xe] 4f 13     6s2
[Xe] 4f 12     6s2
[Xe] 4f 11     6s2
[Xe] 4f 10     6s2
[Xe] 4f 9      6s2

[Xe] 4f 7      6s2
[Xe] 4f 6      6s2
[Xe] 4f 5      6s2
[Xe] 4f 4      6s2
[Xe] 4f 3      6s2

[Xe] 4f 14
  5d10 6s

[Xe] 4f 14  5d9  6s

[Rn]       6d2   7s2 
[Rn]       6d    7s2 
[Rn]              7s2 
[Rn]              7s

[Rn] 5f 14      7s2 7p ?
[Rn] 5f 14      7s2 
[Rn] 5f 13      7s2 
[Rn] 5f 12      7s2 
[Rn] 5f 11      7s2 
[Rn] 5f 10      7s2 
[Rn] 5f 9        7s2 

[Rn] 5f 7       7s2 
[Rn] 5f 6       7s2 
[Rn] 5f 4   (5I4)

 6d 7s2 

[Rn] 5f 2   (3H4)
 6d 7s2 

[Rn] 5f 3   (4I�9/2)
 6d 7s2 

[Rn] 5f 7   6d  7s2 
[Kr] 4d5   5s2

[Ar] 3d2   4s2

[Ar] 3d3   4s2

[Ar] 3d5   4s2

[Ar] 3d6   4s2

[Ar] 3d7   4s2

[Ar] 3d8   4s2

[Ar] 3d10  4s2

[Ar] 3d10  4s2

[Ar] 3d10  4s2   4p
[Ar] 3d10  4s2   4p2

[Ar] 3d10  4s2   4p3

[Ar] 3d10  4s2   4p4

[Ar] 3d10  4s2   4p5

[Ar] 3d10  4s2   4p6

[Ar] 3d5   4s

Ele-
ment

Ground
level

Ionization
energy
(eV)

Ground
configurationa Z

Ele-
ment

Ground
level

Ionization
energy
(eV)

Ground
configurationa

aAn element symbol in brackets represents the electrons in the ground configuration of that element.



Chapter 2
Complex Atoms

The multi-electron, central force problem is one that does not have an exact solution.
Approximations must be applied, and some aspects of these approximations are
common to all multi-particle problems, particularly those of nuclear physics. Atoms
can rightly be thought of as the building blocks of our material world. Understanding
how quantum mechanics describes atoms, which justifies so much that you have
been taught in chemistry and modern physics courses, is the goal for the rest of this
text. In this chapter, the hardest part of that broad effort will be attempted which is
trying to understand the energy-level structure of an isolated, multi-electron atom.
That will be what is meant by the “solution” to the problem at hand. The problem,
as presented, will rapidly grow in complexity and seem to be impossible to handle.
But then the complexity will shrink as so many terms of interest are shown to be
equal to others or zero.

The problem being considered is to find the total energy of all of the electrons of
a multi-electron atom under the influence of the Coulomb attraction of the electrons
to the nucleus and the mutual repulsion of each of the other electrons. Solving the
Schrödinger equation is not the approach to take. Rather one starts by evaluating the
energy assuming that you know the wave functions. The variational procedure tells
you that if you then modify the assumed wave functions in any way at all that lowers
the energy, both the wave functions and energy are closer to the “correct” ones.
Interestingly, how one performs this procedure is not really very important. The
optimum method is the Hartree–Fock procedure which will be briefly described in
the last section of this chapter. What is important is understanding how one evaluates
the energy, what approximations are used in making that evaluation, and which
quantum numbers can be used to describe the states available to the atom. After
all, when doing atomic physics research, the atom is often in an excited state, so
these are every bit as important to understand as the ground state of the atom.

R.L. Brooks, The Fundamentals of Atomic and Molecular Physics, Undergraduate
Lecture Notes in Physics, DOI 10.1007/978-1-4614-6678-9 2,
© Springer Science+Business Media New York 2013
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42 2 Complex Atoms

2.1 Shell Model of the Atom

Consider forming a system of several electrons electrostatically bound to an
infinitely heavy nucleus of chargeZe. The electrons also electrostatically repel each
other, so a Hamiltonian for the system can be written that, in atomic units, looks like

H =

N∑

i=1

(
−∇2

i

2
− Z

|�ri|
)
+

N∑

i>j=1

1

|�ri − �rj |

or H =
N∑

i=1

(
−∇2

i

2
− Z

ri

)
+

N∑

i>j=1

1

rij
(2.1)

where �ri is the position of electron i with respect to the nucleus. ri and rij
are defined by the corresponding expression in the equation above. While the
Hamiltonian is not complete, all additional terms can quite successfully be treated
as perturbations.

The Schrödinger equation for this Hamiltonian is hopelessly complicated to
solve using even the largest computer presently imaginable. The starting point for
calculations is then taken to be the assumption of a central potential, V (ri), for
each of the electrons. Various approximations differ by what is chosen for V (ri).
Very often V is chosen iteratively: assume a V , calculate the wave functions, find
a new V , and calculate new wave functions until the procedure converges, called
the self-consistent field approximation. This treatment doesn’t take that approach.
Our potential really will be the one given above. However, the overall form of the
wave functions, taken to be obtained as products of one-electron wave functions, is
justified by looking at the form the wave functions would have if the potential were
central.

Using a central potential H may be written as

H =

N∑

i=1

−∇2
i

2
+ V (ri). (2.2)

The Schrödinger equation is

Hu = Eu

where u =

N∏

i=1

ui(ai) = u1(a1)u2(a2) . . . uN(AN ) (2.3)

and E =

N∑

i=1

Ei(ai) (2.4)



2.1 Shell Model of the Atom 43

Here ui(ai) is the wave function of the ith electron having a set of quantum
numbers ai.

Problem 2.1
Show that the above product wave function is a solution of the Schrödinger equation.

The separation of the wave function into a product of one-electron wave functions
is a direct consequence of the central potential assumption and is the cornerstone of
the atomic theory of complex atoms. In fact our potential is not a central potential,
so how can such a separation be justified? The answer is that the largest part of the
potential, attraction to the nucleus, is rigorously central and the electron–electron
repulsion, which is not central, appears to average out enough to let this crucial
approximation work amazingly well. Keep in mind that no change to the potential
is being made here. This is an assumption relating to the overall form of the solution.
Hence it will be assumed that the form of the wave function can be taken as a product
of one- electron wave functions.

It follows then that each ui is a solution of the one-electron central force problem
and must be of the form

ui(ai) = Rni�i(ri)Y
mi

�i
(θi, φi)χsi(i) (2.5)

which is a one-electron spin orbital. The form of the Rni�i(ri) is unspecified and
depends on the particular choice of central potential. So ai must represent the set of
four quantum numbers:

ai ≡ ni �im�i msi (2.6)

which could also be written as

ui(ai) = |ni �im�i msi 〉. (2.7)

What if the positions of the ith and jth electron were exchanged? The expression
would be

uj(ai) = Rni�i(rj)Y
mi

�i
(θj , φj)χsi(j)

So something is wrong with our solution, (2.3). It has erroneously assigned a
given set of quantum numbers to a given electron when the electrons cannot be
distinguished.

For brevity consider a 2-electron system. (2.3) might be more properly written as

us = u1(a1)u2(a2) + u2(a1)u1(a2) (2.8)

ua = u1(a1)u2(a2)− u2(a1)u1(a2). (2.9)

us is symmetric under exchange of electrons, while ua is antisymmetric (changes
sign) under such an interchange. Both solutions satisfy the indistinguishability of
electrons.
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To explain the building-up of the periodic table of elements, Pauli postulated
that no two electrons could have the same set of quantum numbers. Using this
criterion the solution ua is chosen over us since the former vanishes whenever the
two electrons have the same quantum numbers. The correct generalization of the
Pauli principle is that a system composed of fermions (spin 1/2 odd integer) has a
wave function which is antisymmetric against exchange of any two particles.

One could now define a symmetrization operator and an antisymmetrization
operator which would form the necessary linear combinations to account for
indistinguishability of particles. Since in atomic physics only the latter needs to
be considered, there is a particularly elegant way to perform this. It is known as the
Slater determinant. Let

u(a) ≡ 1√
N !

∣∣∣∣∣∣∣∣∣

u1(a1) u1(a2) u1(a3) . . . u1(aN )

u2(a1) u2(a2) u2(a3) . . . u2(aN )
...

uN (a1) uN(a2) uN(a3) . . . uN(aN )

∣∣∣∣∣∣∣∣∣

(2.10)

Note that this reduces to (2.9) for two particles. Also note that our first attempt as a
solution, (2.3), is represented by the diagonal entries.

A more compact notation for |u(a) 〉 is

|u(a) 〉 = A|n1 �1m�1 ms1 〉|n2 �2m�2 ms2 〉 . . . |nN �N m�N msN 〉

where A means antisymmetrical product or Slater determinant. Let us write

n = 3 � = 2 m� = 1 ms =
1/2 as | 3 d 1+ 〉

n = 3 � = 2 m� = −2 ms = −1/2 as | 3 d -2− 〉

which shall define our notation.
If there were four electrons in a 1s22p3d configuration, what might the wave

function be? Four electrons require the specification of 16 quantum numbers
whereas 1s22p3d specifies only eight of them. There must be a whole host of states
permitted by the classification 1s22p3d. One of them could look like

|u(a) 〉 = A| 1 s 0+ 〉| 1 s 0− 〉| 2 p 1+ 〉| 3 d -2+ 〉

=
1√
4!

∣∣∣∣∣∣∣∣

| 1 s 0+ 〉1 | 1 s 0− 〉1 | 2 p 1+ 〉1 | 3 d -2+ 〉1
| 1 s 0+ 〉2 | 1 s 0− 〉2 | 2 p 1+ 〉2 | 3 d -2+ 〉2
| 1 s 0+ 〉3 | 1 s 0− 〉3 | 2 p 1+ 〉3 | 3 d -2+ 〉3
| 1 s 0+ 〉4 | 1 s 0− 〉4 | 2 p 1+ 〉4 | 3 d -2+ 〉4

∣∣∣∣∣∣∣∣

The subscript to the right of each ket indicates the electron number. Each electron
takes a turn getting each set of quantum numbers. There are four electrons and four
specified sets of QN’s, but one cannot say which electron has which set. Therefore
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|u(a) 〉 specified above is one state allowed to the configuration 1s22p3d. How
many different states are there?

If a determinant were formed in which two of the states were | 1 s 0+ 〉| 1 s 0+ 〉
or | 1 s 0− 〉| 1 s 0− 〉, then two columns of the Slater determinant would be identi-
cal, and the state would be zero. Also, if the state | 1 s 0− 〉| 1 s 0+ 〉 were formed,
it would be the determinant previously written with the first two columns inter-
changed, yielding precisely the same state. So the specification | 1 s 0+ 〉| 1 s 0− 〉
for 1s2 is unique.

Six different kets could be formed using a 2p configuration. They would be

| 2 p 1+ 〉, | 2 p 1− 〉, | 2 p 0+ 〉, | 2 p 0− 〉, | 2 p -1+ 〉, | 2 p -1− 〉
Similarly, ten different kets could be formed using 3d. All in all 60 different Slater
determinants could be formed from the configuration 1s22p3d. Do these 60 different
states yield 60 different energies, the same energy 60 times, or what?

The answer is that if the central potential were Z/ri, all 60 states would be de-
generate. The occurrence of 1/rij in the Hamiltonian partially lifts the degeneracy.
(There are six different energies for these 60 states using the Hamiltonian of (2.1).
This point will be returned to later.)

The shell structure of an atom should now be understandable. Only one state can
be formed from the configuration 1s2. Similarly the configuration 1s22s2 has only
one state. It is formed by the determinant

|u(a) 〉 = A| 1 s 0+ 〉| 1 s 0− 〉| 2 s 0+ 〉| 2 s 0− 〉
In this way all shells (those having the same value of n) when filled have only

one state. 2n2 electrons fill a shell. The following are closed shells:

1s2

2s22p6

3s23p63d10

etc.

It is equally clear, however, that whenever 2(2�+1) electrons are assigned to an n�
subshell, there is only one state:

2s2

3s2 or 3p6

4d10

etc.
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Multiple states for a single configuration arise only with partially filled subshells.
All filled shells (given n value) or subshells (given n and � values) have a
total angular momentum of zero and are completely defined by the configuration
specifications.

Problem 2.2
Consider all different filled subshells in the periodic table up to 54Xe. Which ones yield chemically
nonreactive substances? Which are chemically reactive? Why?

2.2 Angular Momentum for Complex Atoms

In Chap. 1, the general rules for coupling two angular momenta were presented.
One always couples angular momenta in pairs, usually starting from the innermost
to the outermost electron in a partially filled subshell. (Filled subshells have zero
total angular momentum.) The most common coupling scheme for atoms is called
Russell–Saunders or LS coupling. In this scheme all of the orbital angular momenta
are coupled together, all of the spin angular momenta are coupled together, and the
two sums are then coupled together to form the total angular momentum, �J:

�L =

N∑

i=1

��i

�S =

N∑

i=1

�si

�J = �L+ �S

For two electrons, everything carries over from the coupling of two angular
momenta. So,

|�1 − �2| ≤ L ≤ |�1 + �2|
|s1 − s2| ≤ S ≤ |s1 + s2|
|L− S| ≤ J ≤ |L+ S|

Even for more than two electrons, one can write

ML =

N∑

i=1

m�i

MS =

N∑

i=1

msi

MJ =ML +MS
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For two electrons in the configuration 2p3p, the possible values for the total
orbital angular momentum are L = 0, 1, or 2 whose symbols are S, P , or D. Since
the spin for each is si = 1/2, the total spin can be S = 1 or 0. These possibilities are
expressed as

1S, 3S, 1P , 3P , 1D, 3D called terms.

The rule is
2S+1LJ

where (2S + 1) is called the multiplicity. The levels can then be

1S0,
3S1,

1P1,
3P0,1,2,

1D2,
3D1,2,3

where 3P0,1,2 means 3P0 and 3P1 and 3P2 pronounced “triplet pee two.”
Proceeding as before, remember that the configuration 2p3p has 36 states, each

with its own Slater determinant. The coupling done above effectively changes the
basis from these 36 states to another set of 36 states, each of which is a linear
combination of one or more of the original ones. Each total J value has (2J + 1)
different MJ values. The number of different MJ values for all of the above levels
must be 36.

Problem 2.3
Verify that there are 36 states by counting the number of different MJ values for each of the levels
given above.

For more than two electrons the angular momenta are coupled in pairs starting
with the innermost configuration. The first pair then gives rise to all terms allowed
by the angular momentum coupling rules. The next electron’s angular momentum is
then added to these terms, called parent terms, to obtain a new set of terms. Coupling
angular momenta for four or more electrons from open subshells becomes more
complicated and is treated in books on angular momentum theory.

The configuration 2p3p3d can yield a lot of terms. For example,

2p3p(1S)3d 2D3/2,
5/2

2p3p( 3P︸︷︷︸
parent term

)3d 2,4P , 2,4D, 2,4F ⇒ 4F3/2,
5/2,

7/2,
9/2

This is only a selection of all possible terms that one could form. As a review of the
terminology, consider where the second subscript is the MJ value.

an expression like 2F is called a term
2F5/2

is called a level
2F5/2

5/2
is called a state
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Do not confuse the notation 2F5/2
3/2

with 2F7/2,
5/2

. The first has J = 5/2 and
MJ = 3/2 and is a state designation. The second is a shorthand for the two levels
2F7/2

and 2F5/2
.

The configuration 2p3p3d has 360 different states, each of which has a Slater
determinant in the basis |ni �im�i msi 〉. Coupling of the angular momentum
represents a change of basis. In general, obtaining the transformation is complicated.
Very often, only two or three electrons are outside closed subshells, which provides
some simpler cases for consideration.

Problem 2.4
Write down all possible terms and levels from the configuration 2p3p3d. Verify that in the coupled
basis, there are 360 states. Hint: One must form all possible parent terms by coupling the inner two
electrons before coupling the outer electron to each of these in turn.

The final coupling of �J = �L + �S occurs only if the Hamiltonian has a term like
�L · �S in it. This coupling is the weakest one and shall be ignored for the time being.
Without such coupling,L, S,ML, andMS are good quantum numbers, and the state
designations could be expressed as

(2S+1)LMLMS .

It will be made clear whenever such notation is used that the subscripts are ML and
MS and not J and MJ . Again, this simply represents a different basis, actually a
slightly easier one than JMJ . For a given term, the number of allowedML andMS

values is the same as the number of JMJ values.

Problem 2.5
Verify the claim made in the previous sentence.

Finally, note that the parity of a given state is given by (−1)Σ�i , not by (−i)L.
Why so? Because any state is a linear combination of Slater determinants made up
of the product of q spin orbitals where q is the number of electrons. Each spin orbital
has a parity determined by Ym� which is (−1)�. The parity of a product of q of them
is then

(−1)
∑q
i=1 �i

The parity of any state is determined by the electron configuration and not by the
coupling scheme.

The notation introduced in this section is particularly important for everything
that follows. In particular, the distinction between the total spin, S, and the
multiplicity, 2S + 1, is often missed by many students.



2.3 Equivalent Electrons 49

2.3 Equivalent Electrons

You have seen that a lot of terms result from the coupling of three angular momenta.
But our example chose three orbitals that were all different. What if there were
three electrons in the same orbital? The Pauli exclusion principle insists that every
electron have a unique set of quantum numbers and the use of Slater determinants
ensures that. Whenever more than one electron resides in the same orbital, the
electrons are called equivalent. This is the situation now being considered.

As previously mentioned, whenever two electrons are in an s2 configuration,
only a single state is formed. This follows since there is only one Slater determinant
which is nonzero, given by

1√
2

∣∣∣∣
| s 0+ 〉1 | s 0− 〉1
| s 0+ 〉2 | s 0− 〉2

∣∣∣∣

where the unspecified quantum number n does not matter. The same argument holds
for any filled subshell. But what happens to a partially filled subshell like 2p2? (Any
pwill do; the n value doesn’t matter.) There is a clever tabular method which enables
one to work out not only the number of allowed states (fewer than 36, the number for
two nonequivalent p electrons) but also the allowed term values under LS coupling:

ML MS m�1 ms1 m�2 ms2

2 1 1 +1/2 1 +1/2 Excluded by PP
2 0 1 +1/2 1 -1/2 OK
2 0 1 -1/2 1 +1/2 Same as above
2 -1 1 -1/2 1 -1/2 Excluded by PP
...

... etc.
...

...

One constructs a table in which each line represents one possible state available
to the electrons in a given subshell. Each electron gets an entry designated by its
m� and ms values. The sum of these values for all of the electrons in the table is
written to the left under the column headings of ML, and MS . Now reflect for a
moment that each electron has four possible quantum numbers, n, �,m� and ms.
By specifying only the m� and ms numbers, there is a tacit assumption that n and
� are unimportant. The reason is that this table is only useful when all of the n and
� values are the same for each electron. If either of these values were different for
two different electrons, those would not be equivalent, and the coupling could be
performed as done previously.

A table for two nonequivalent p electrons would contain 36 entries since each
electron can have six differentm�,ms combinations. Such a table is not particularly
useful. However, when two of the p electrons are equivalent, many of these 36
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entries will be excluded by the Pauli principle. A table for only the allowed
combinations of m�1 , ms1 , m�2 , and ms2 would look like the following:

# ML MS m�1 ms1 m�2 ms2

1 2 0 1 +1/2 1 −1/2
2 1 1 1 +1/2 0 +1/2
3 1 0 1 +1/2 0 −1/2
4 1 0 1 −1/2 0 +1/2
5 1 −1 1 −1/2 0 −1/2
6 0 1 1 +1/2 −1 +1/2
7 0 0 1 +1/2 −1 −1/2
8 0 0 1 −1/2 −1 +1/2
9 0 0 0 +1/2 0 −1/2
10 0 −1 1 −1/2 −1 −1/2
11 −1 1 −1 +1/2 0 +1/2
12 −1 0 −1 +1/2 0 −1/2
13 −1 0 −1 −1/2 0 +1/2
14 −1 −1 −1 −1/2 0 −1/2
15 −2 0 −1 +1/2 −1 −1/2

Any other combination you might think of is either zero upon forming a Slater
determinant or is equivalent to one already written since the electrons are indistin-
guishable.

The terms of two inequivalent p electrons are

Term: 1S 3S 1P 3P 1D 3D

Degeneracy: 1 3 3 9 5 15

How many terms are possible for the case of 2p2? If any state belonging to a given
term appears in the table, then all the states of that term must appear. It is best to
start consideration from the largest value ofML. Here that value is 2, and the largest
value of MS associated with that is 0, so there must be a 1D. By count, 5 of the 15
entries in the table above are associated with this term. The next largest value of
ML is 1, and there are four entries in the table. The 1D is responsible for one of
these, one of the ML = 1,MS = 0. But there are three others, with MS = 1, 0, and
−1. A 3P gives rise to those entries and 6 others besides, so 14 of the 15 entries are
accounted for. There are three entries with ML = 0 andMS = 0, and the two terms
found so far account for 2 of them. The third must belong to a 1S, which accounts
for only this entry and in total all 15 entries have been accounted for.

Note that if there were more than two electrons, the final terms that can occur
depend on parentage, that is, the terms that are formed coupling in pairs from the
inside out. For example, for a configuration of 2p3p4p, there are 21 possible terms.
This raises a point worth pursuing. Angular momentum is coupled in pairs, and it is
important to keep track of the intermediate quantum numbers. The coupling of 2p
and 3p leads to six terms specified previously. The � and s values for the 4p electron
need to be added to these six in turn. This procedure can be expressed as
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2p3p(1S)4p 2P

2p3p(3S)4p 2P 4P

2p3p(1P )4p 2S 2P 2D

2p3p(3P )4p 2S 4S 2P 4P 2D 4D

2p3p(1D)4p 2P 2D 2F

2p3p(3D)4p 2P 4P 2D 4D 2F 4F

In total, there are 21 terms not 8. It is important to realize that 2P occurs six times.
Each of those six has different energies and a recognizably different parentage. The
same is true for many of the others. When being asked to give the terms that result
from coupling three or more angular momenta, one must include the intermediate
terms as part of the designation.

Problem 2.6
Show that the only allowed terms for a p3 configuration are 4S, 2P , and 2D. How many states are
there? If the configuration were 2p3p4p, how many states would there be?

2.4 Matrix Elements of the Hamiltonian

For elementary QM problems the “solution” will yield energy values (eigenvalues
of the Hamiltonian) and wave functions simultaneously. One might think of such a
solution as a “single-pass” solution. Problems that require iterative techniques for
their solution need to evaluate the expectation value of the Hamiltonian as one step
in a multi-pass algorithm. The variation technique, backbone for most approximate
methods, is such an example. Besides this reason, there is the likelihood that the
wave functions have been found for some approximate Hamiltonian (say, central
potential) and that once these wave functions are known, you then desire to find
the energy levels of the actual Hamiltonian. Either way one needs to know how to
evaluate the matrix elements of the Hamiltonian between determinantal functions:

Let H =
∑

i

fi +
∑

pairs i,j

gij

where fi = −∇2
i

2
− Z

ri

and gij =
1

rij
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Here, because fi is a function of the coordinates of a single electron, it is called a
one-electron operator, and gij , having coordinates of two different electrons, is a
two-electron operator.

The first step is to write the matrix element 〈u |A|u′ 〉 of any operatorA between
determinantal functions:

1

N !

∫
∣∣∣∣∣∣∣

u∗1(1) . . . u
∗
1(N)

...
u∗N (1) . . . u∗N(N)

∣∣∣∣∣∣∣
A

∣∣∣∣∣∣∣

u′1(1) . . . u
′
1(N)

...
u′N(1) . . . u

′
N(N)

∣∣∣∣∣∣∣
dτ1 . . . dτN (2.11)

Here u1(1) is short for

u1(a1) = u1(n1, �1,m�1 ,ms1) = Rn1�1(r1)Y
m�1

�1
(θ1, φ1)χms1

(1)

u2(a1) = Rn1�1(r2)Y
m�1

�1
(θ2, φ2)χms1

(2)

So the subscript on u is the electron index which goes with the coordinates (r, θ, φ)
and thus with dτ1, dτ2, etc. ( dτ1 ≡ r21 sin θ1 dr1 dθ1 dφ1.) This notation for ui(j)
is backward from Slater’s1 but consistent with what was introduced previously. Now
consider the term arising from the principal diagonal on the left:

1

N !

∫
u∗1(1)u

∗
2(2) . . . u

∗
N(N)A

∣∣∣∣∣∣∣

u′1(1) . . . u
′
1(N)

...
u′N(1) . . . u

′
N (N)

∣∣∣∣∣∣∣
dτ1 . . . dτN (2.12)

Another term from the determinant on the left might be

1

N !

∫
−u∗1(2)u∗2(1)u∗3(3) . . . u∗N (N)A

∣∣∣∣∣∣∣

u′1(1) . . . u
′
1(N)

...
u′N (1) . . . u′N(N)

∣∣∣∣∣∣∣
dτ1 . . . dτN

Since the integration is performed over all electron coordinates, these are dummy
indices. The above is the same as

1

N !

∫
−u∗2(2)u∗1(1)u∗3(3) . . . u∗N (N)A

∣∣∣∣∣∣∣∣∣

u′2(1) . . . u
′
2(N)

u′1(1) . . . u
′
1(N)

...
u′N (1) . . . u′N(N)

∣∣∣∣∣∣∣∣∣

dτ1 . . . dτN

1John C. Slater, Quantum Theory of Matter, 2nd ed., McGraw-Hill, New York, 1968.
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Upon interchange of the first two rows of the determinant on the right, Eq. (2.12) is
regained. In this way it can be shown that all N ! terms from the determinant on the
left are the same as (2.12) which leads to

〈u |A|u′ 〉 =
∫
u∗1(1) . . . u

∗
N(N)A

∣∣∣∣∣∣∣

u′1(1) . . . u
′
1(N)

...
u′N(1) . . . u

′
N(N)

∣∣∣∣∣∣∣
dτ1 . . . dτN

Further simplification depends on the form of the operator. It could be a constant,
a one-electron operator, or a two-electron operator. Consider what happens if
the operator is just a complex number. All u’s are orthonormal, so unless one
permutation matches the term on the left, the result is zero. A match can occur
only if u = u′ for all N . Thus, unity results from the principal diagonal and zero
from all other terms so that

〈u |c|u′ 〉 = c〈u |u′ 〉 = c for u = u′

= 0 for u 	= u′

2.4.1 One-Electron Operators

Let A be any one-electron operator fi. There are three cases to consider. Either u′ is
identical to u (one case) or it is different. If different, it can differ in any number of
spin orbitals. However, should two or more spin orbitals be different, the resultant
matrix element must be zero. After presenting the generality, a specific example
should make the following cases clearer:

Case 1: u = u′ (diagonal matrix elements). Only the principal diagonal of the
determinant on the right contributes yielding

〈u |
∑

i

fi|u 〉 =
∫
u∗1(1)f1u1(1) dτ1 +

∫
u∗2(2)f2u2(2) dτ2 + . . .

+

∫
u∗N(N)fNuN(N) dτN

But fi has the same functional form for each electron and the electron indices are
dummy, so this expression may be written

〈u |
∑

i

fi|u 〉 =
∑

i

∫
u∗1(i)f1u1(i) dτ1

≡
∑

i

〈 i |f | i 〉
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Don’t be confused by the index “1.” When we started this all of the electrons were
numbered. Now that number is redundant (and will shortly be dropped), so the “1”
could equally well have been any of the electron numbers:

Case 2: u = u′ except for one spin orbital. Only a single term survives:

〈 i |f | i′ 〉 =
∫
u∗1(i)f1u

′
1(i

′) dτ1

Case 3: u = u′ except for more than one spin orbital.

Zero.

Before proceeding to two-electron operators, working through a specific example
should clarify what has been presented. Consider the configuration 1s2s2p, three
nonequivalent electrons. Choose the wave function (arbitrarily) to be

|u 〉 = A| 1 s 0+ 〉| 2 s 0+ 〉| 2 p 1− 〉

This is one of 24 possible determinants from the configuration 1s2s2p. Written out
explicitly, the wave function looks like

u =
1√
6

∣∣∣∣∣∣

| 1 s 0+ 〉1 | 2 s 0+ 〉1 | 2 p 1− 〉1
| 1 s 0+ 〉2 | 2 s 0+ 〉2 | 2 p 1− 〉2
| 1 s 0+ 〉3 | 2 s 0+ 〉3 | 2 p 1− 〉3

∣∣∣∣∣∣

Let f = 1/ri, for example. Then

〈u |
∑

i

fi|u 〉 =
∑

i

〈 (1 s 0+)1 (2 s 0
+)2 (2 p 1

−)3 | 1
ri
|

|
∣∣∣∣∣∣

| 1 s 0+ 〉1 | 2 s 0+ 〉1 | 2 p 1− 〉1
| 1 s 0+ 〉2 | 2 s 0+ 〉2 | 2 p 1− 〉2
| 1 s 0+ 〉3 | 2 s 0+ 〉3 | 2 p 1− 〉3

∣∣∣∣∣∣
〉

The first term in the sum over i has six contributions from the determinant on the
right. The one from the principal diagonal (the only nonzero one) is

〈 1 s 0+ | 1
r1

| 1 s 0+ 〉1〈 2 s 0+ | 2 s 0+ 〉2〈 2 p 1− | 2 p 1− 〉3

One of the five contributions not from the principal diagonal is

〈 1 s 0+ | 1
r1

| 2 s 0+ 〉1 〈 2 s 0+ | 1 s 0+ 〉2︸ ︷︷ ︸
=0 by orthogonality

〈 2 p 1− | 2 p 1− 〉3
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In this way all contributions from terms not of the principal diagonal are zero
because at least one overlap integral (an integral not containing the operator) is
zero.

Performing the sum over i would then yield

〈u |
∑

i

fi|u 〉 = 〈 1 s 0+ | 1
r1

| 1 s 0+ 〉1 + 〈 2 s 0+ | 1
r2

| 2 s 0+ 〉2

+ 〈 2 p 1− | 1
r3

| 2 p 1− 〉3

Next notice that 1/r1, 1/r2, and 1/r3 have the same functional form. Only the
electron index is different. But this difference is now no longer relevant because the
integrals are isolated in individual terms of the sum. Hence they may be written as

〈u |
∑

i

fi|u 〉 = 〈 1 s 0+ | 1
r1

| 1 s 0+ 〉1 + 〈 2 s 0+ | 1
r1

| 2 s 0+ 〉1

+ 〈 2 p 1− | 1
r1

| 2 p 1− 〉1

Now clearly the subscript 1 is irrelevant, and there is no possibility of confusion or
ambiguity if the expression is written as

〈u |
∑

i

fi|u 〉 = 〈 1 s 0+ |1
r
| 1 s 0+ 〉+〈 2 s 0+ |1

r
| 2 s 0+ 〉+〈 2 p 1− |1

r
| 2 p 1− 〉.

Problem 2.7
Do you know what these integrals are for hydrogenic wave functions? Note that the sum over i has
become a sum over quantum numbers.

Off-diagonal matrix elements are nonzero only if u′ differs from u by not more
than one spin orbital. This is quite a simplification for something that started off
looking so formidable. For the one-electron operator 1/r, it happens that there
are no nonzero off-diagonal elements at all between different states of the same
configuration. This happens because these different states differ only in their angular
or spin dependence and the operator 1/r is insensitive to such dependence. But for
a general one-electron operator, f(r, θ, φ), there can be nonzero elements.

Take another of our 24 possible determinants and write

|u′ 〉 = A| 1 s 0+ 〉| 2 s 0+ 〉| 2 p 0− 〉

Then 〈u |∑i fi|u′ 〉 has only the single nonzero contribution
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〈 1 s 0+ | 1 s 0+ 〉1〈 2 s 0+ | 2 s 0+ 〉2〈 2 p 1− |f3(r, θ, φ)| 2 p 0− 〉

or

〈u |
∑

i

fi|u′ 〉 = 〈 2 p 1− |f(r, θ, φ)| 2 p 0− 〉

Of course, even for a general one-electron operator, if it is not spin dependent, then
the spins must be aligned, or the matrix element is zero, e.g.,

〈u |
∑

i

fi|u′ 〉 = 〈 2 p 1− |f(r, θ, φ)| 2 p 1+ 〉 = 0

because of spin orthogonality.

2.4.2 Two-Electron Operators

Let

A =
∑

pairs i,j

gij ≡
∑

i<j

gij .

For n electrons, there are n(n− 1)/2 such terms:

Case 1: Diagonal matrix elements (u = u′).

〈u |A|u 〉 =
∫
u∗1(1) . . . u

∗
N (N)

∑

i<j

gij

∣∣∣∣∣∣∣

u1(1) . . . u1(N)
...

uN(1) . . . uN(N)

∣∣∣∣∣∣∣
dτ1 . . . dτN

Look at one of the terms in the sum over i and j, say i = 1, j = 2. Then

〈u |g12|u 〉 =
∫
u∗1(1) . . . u

∗
N(N)g12

∣∣∣∣∣∣∣

u1(1) . . . u1(N)
...

uN(1) . . . uN (N)

∣∣∣∣∣∣∣
dτ1 . . . dτN

Of all the terms from the determinant, two survive: the principal diagonal and the
one which looks like

−u1(2)u2(1)u3(3) . . . uN (N).
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The element becomes

〈u |g12|u 〉 =
∫
u∗1(1)u

∗
2(2)g12u1(1)u2(2) dτ1 dτ2

−
∫
u∗1(1)u

∗
2(2)g12u1(2)u2(1) dτ1 dτ2

Summing over i and j, remembering that the electron indices are dummy, yields

〈u |
∑

i<j

gij |u 〉 =
∑

i<j

[∫
u∗1(i)u

∗
2(j)g12u1(i)u2(j) dτ1 dτ2

−
∫
u∗1(i)u

∗
2(j)g12u1(j)u2(i) dτ1 dτ2

]

Or
〈u |A|u 〉 =

∑

i<j

[〈 i j |g12| i j 〉 − 〈 i j |g12| j i 〉]

.
Case 2: u = u′ except for one spin orbital.

〈u |
∑

i<j

gij |u′ 〉 =
∑

i�=j
[〈 i j |g12| i′ j 〉 − 〈 i j |g12| j i′ 〉]

Case 3: u = u′ except for two spin orbitals.

〈u |
∑

i<j

gij |u′ 〉 = 〈 i j |g12| i′ j′ 〉 − 〈 i j |g12| j′ i′ 〉

where i′ and j′ indicate just those spin orbitals of u′ which differ from u. All others
must be the same, and the spin of i′ and j′ must be aligned with those of i and j
when gij is spin independent.

Example: Again choose a 1s2s2p configuration, and let

|u 〉 = A| 1 s 0+ 〉| 2 s 0+ 〉| 2 p 1+ 〉
Then

〈u |
∑

i<j

gij |u 〉 = 〈 (1 s 0+)1(2 s 0
+)2 |g12| (1 s 0+)1(2 s 0

+)2 〉

− 〈 (1 s 0+)1(2 s 0
+)2 |g12| (1 s 0+)2(2 s 0

+)1 〉
+ 〈 (2 s 0+)1(2 p 1

+)2 |g12| (2 s 0+)1(2 p 1
+)2 〉

− 〈 (2 s 0+)1(2 p 1
+)2 |g12| (2 s 0+)2(2 p 1

+)1 〉
+ 〈 (1 s 0+)1(2 p 1

+)2 |g12| (1 s 0+)1(2 p 1
+)2 〉

− 〈 (1 s 0+)1(2 p 1
+)2 |g12| (1 s 0+)2(2 p 1

+)1 〉
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An expression like 〈 i j |gij | i j 〉 has not previously been encountered, and an
expression for a general two-electron integral can be written as

〈 i j |g12| r t 〉 =
∫ ∫

u∗1(i)u
∗
2(j)g12u1(r)u2(t) dτ1 dτ2

The diagonal matrix elements of the two-electron operator have special names:

〈 i j |g12| i j 〉 ⇒ Coulomb integral

〈 i j |g12| j i 〉 ⇒ exchange integral

Antisymmetrization and indistinguishable particles gave us nothing for one-
electron operators (or for c-numbers) that would not have resulted by letting
u = u1(1)u2(2) . . . uN (N) rather than u = Au1(1)u2(2) . . . uN (N). The first
new feature appears for two-electron operators and is the exchange integral.

Subsequently, explicit formulae for these matrix elements in terms of the
(Rn�Y

m
� χms) one-electron spin orbitals will be presented.

By the way, any problem you are asked to solve will only require the use of
diagonal matrix elements. Take note of the fact that what has been derived is valid
for both one- and two-electron operators of any functional form. Here our interest
is in evaluating the energy, but in subsequent chapters other operators will be of
interest.

The relevant energy operators are

H =
∑

i

fi +
∑

i<j

gij (2.13)

fi ≡ −1/2∇2
i −

Z

ri
(2.14)

gij ≡ 1

rij
(2.15)

Consider now only diagonal matrix elements of the Hamiltonian

〈u |
∑

i

fi|u 〉 =
∑

shells

qn�I(n, �)

q(n, �) is the occupation number of a shell (given n� value), e.g., for 1s22s2p3,
q1s = 2, q2s = 1, and q2p = 3.

I(n, �) ≡
∫
u∗(n, �)

(
−∇2

2
− Z

r

)
u(n, �) dτ

=

∫ ∞

0

[
1

2
r2�+2 d

dr

(
R∗
n�

r�

)
d

dr

(
Rn�
r�

)
− ZrR∗

n�Rn�

]
dr (2.16)
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Problem 2.8
Prove this.

So I(n, �) is the same for all states of a given configuration. (The operator fi has
no off-diagonal elements between states of the same configuration.)

The two-electron operator is more cumbersome:

〈 i j | 1
rij

| i j 〉 =
∫ ∫

R∗
ni�i(r1)R

∗
nj�j (r2)Y

∗m�i

�i
Y

∗m�j

�j

(
1

r12

)

Rni�i(r1)Rnj�j (r2)Y
mli

�i
(θ1, φ1)Y

mlj

�j
(θ2, φ2) dτ1 dτ2 (2.17)

The most reasonable way to handle an integral of this form is to invoke the
spherical harmonic addition theorem:

1

r12
=

∑

k,mk

4π

2k + 1

rk<

rk+1
>

Y∗mk

k (θ1, φ1)Y
mk

k (θ2, φ2)

where
1

r12
≡ 1

|�r1 − �r2|
and r> is the larger of |�r1| and |�r2| and r< is the smaller of the two (see the appendix
Polynomials and Spherical Harmonics for the derivation). This is an extremely
useful expression but does demand that the user split any integral in which it is
invoked into two regions, one in which |�r1| is greater than |�r2| and one in which the
opposite is the case. Reflect on the fact that the angles which originally occurred
in the denominator are now in the numerator and are in the form of the spherical
harmonics. The price one pays is to have an infinite sum, which at first might seem
high, but in fact, the sum is always constrained to the first few terms whenever the
operator appears inside a matrix element in which one of the angular momenta is
not ridiculously large. The index k cannot be larger than the sum of the angular
momenta appearing in the bra and ket making up the matrix element. This is a
consequence of what follows.

Our task is to perform the integration expressed in (2.17). There are six integrals
in this expression over the variables r1, r2, θ1, θ2, φ1, and φ2. First look at the
integrals just over θ1 and φ1 for a given value of k and reexpress them without
complex conjugates:
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[
4π

2k + 1

]1/2 ∑

mk

∫
Y∗mk

k Y
∗m�i

�i
Y
m�i

�i
(θ1, φ1) dΩ1

=

[
4π

2k + 1

]1/2 ∑

mk

(−1)mk+m�i

∫
Y−mk

k Y
−m�i

�i
Y
m�i

�i
(θ1, φ1) dΩ1 (2.18)

This integral over three spherical harmonics has a closed form in terms of Clebsch–
Gordan coefficients or better still in terms of 3−j symbols. Its value will be
tabulated in a convenient form, and its derivation would take us too far afield. The
result is2

∫
Ymp
p Ymq

q Yms
s dΩ =

[
(2p+ 1)(2q + 1)(2s+ 1)

4π

]1/2

(
p q s

0 0 0

)(
p q s

mp mq ms

)
(2.19)

The last two expressions are 3−j symbols. Recall from the defining properties
that p+ q+ s must be an even integer and that mp+mq +ms = 0. Applying these
to the integral (2.18) results in

−mk = mp

−m�i = mq

m�i = ms.

So mk = 0. Now the integral can be rewritten as

[
4π

2k + 1

]1/2 ∫
Y0
kY

∗m�i

�i
Y
m�i

�i
dΩ

The coefficient ck can be defined as

ck(�im�i ; �jm�j ) ≡
[

4π

2k + 1

]1/2 ∫
Y
m�i

−m�j

k Y
∗m�i

�i
Y
m�j

�j
dΩ (2.20)

2A.R. Edmonds Angular Momentum in Quantum Mechanics Princeton University Press, Princeton,
NJ, 1960.
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Shorthand notation for this same integral is ck(i; j) ≡ ck(�im�i ; �jm�j ).
The integral above (2.18) is just ck(i; i). The Coulomb integral that is being
considered (2.17) may now be written as

〈 i j | 1

r12
| i j 〉 =

∞∑

k=0

ck(i; i)ck(j; j)Fk(i, j) (2.21)

where ck(i; i), the double integral that has just been completed, expresses the
integral over θ1 and φ1. The double integral over θ2 and φ2 is ck(j; j) done just
as the previous case. What has not yet been done is the double integral over r1 and
r2 which can be expressed as

Fk(i, j) ≡
∫ ∫

R∗
ni�i(r1)R

∗
nj�j (r2)

rk<

rk+1
>

Rni�i(r1)Rnj�j (r2)r
2
1r

2
2 dr1 dr2

(2.22)

and Fk(i, j) = Fk(ni�i, nj�j). The evaluation of this integral for any specific
problem is quite involved and obviously needs the radial wave functions which are
specific to each different problem. It suffices for the present discussion to express
this integral with notation that is commonly used.

It is customary to define

ak(i; j) ≡ ak(�im�i ; �jm�j ) ≡ ck(i; i)ck(j; j)

So finally, the combined angular and radial integrals from Eq. (2.17) can be
expressed as

〈 i j | 1

r12
| i j 〉 =

∞∑

k=0

ak(i; j)Fk(i, j) (2.23)

In practice, only very few terms are nonzero.
The exchange integral is done in the same manner, but the interchange of i and

j on the right side of the ket means that the spin part of the wave functions do not
automatically align and if they were not aligned, zero would result. In addition, the
radial integral is more complicated than the Coulomb integral:

〈 i j | 1

r12
| j i 〉 = δmsi

msj

∞∑

k=0

[
ck(i; j)

]2
Gk(i, j) (2.24)
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where

Gk(i, j) ≡
∫ ∫

R∗
ni�i(r1)R

∗
nj�j (r2)

rk<

rk+1
>

Rnj�j (r1)Rni�i(r2)r
2
1r

2
2 dr1 dr2

(2.25)

Problem 2.9
Prove (2.24).

Putting it all together, the diagonal matrix elements of the Hamiltonian between
determinantal spin orbitals is given by

〈u |H|u 〉 =
∑

shells

qn�I(n, �)+

∑

i<j

∞∑

k=0

{
ak(i; j)Fk(i, j)− δmsi

msj

[
ck(i; j)

]2
Gk(i, j)

}
. (2.26)

Some remarks are in order. I(n, �) will always be a very large negative number.
The integrals Fk and Gk are always positive. The energy that results will be negative
taken with respect to complete ionization of the atom.

Values for ck and ak have been tabulated. All that is needed to work out the
energy for many excited states of any atom are the values of the Coulomb integrals
Fk and the exchange integrals Gk. However, the relative placement of different
terms of a configuration can often be done without knowing the values of these
integrals.

2.5 Energy Values for Some Simple Examples

Consider the configuration 1s2s of helium. There are four states; in the primitive
basis of determinantal wave functions, they are

u1 = A| 1 s 0+ 〉| 2 s 0+ 〉
u2 = A| 1 s 0+ 〉| 2 s 0− 〉
u3 = A| 1 s 0− 〉| 2 s 0+ 〉
u4 = A| 1 s 0− 〉| 2 s 0− 〉
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In the basis L, S, ML, and MS , there are the states

3S01 (ML = 0, MS = 1)

3S00

1S00

3S0−1

Forming a table connecting these basis sets yields

ML MS m�1 ms1 m�2 ms2

0 1 0 1/2 0 1/2
0 0 0 1/2 0 −1/2
0 0 0 −1/2 0 1/2
0 −1 0 −1/2 0 −1/2

Clearly the state 3S01 is given by u1 while 3S0−1 is u4. But 1S00 is a linear
combination of u2 and u3 while 3S00 is an orthogonal linear combination of
u2 and u3.

For the Hamiltonian being considered, all the states of a given term are
degenerate. The energy of the 3S term can then be found by

E(3S) = 〈u1 |H|u1 〉 or 〈u4 |H|u4 〉

To obtain the energy of the 1S, one could proceed in two ways. Evaluate the matrix

〈u2 |H|u2 〉 〈u2 |H|u3 〉
〈u3 |H|u2 〉 〈u3 |H|u3 〉

and diagonalize it, thereby getting the 3S and 1S energies as eigenvalues. There is,
however, a much easier way which avoids evaluating off-diagonal matrix elements.
Called the Slater sum rule, it reminds you that the trace of a matrix is invariant to a
unitary transformation. So the sum of the diagonal matrix elements above must be
the sum of the 3S and 1S energies. The 3S energy is known from before, so subtract
that from the sum to find the 1S energy.

Use (2.26) to obtain

E(3S) = 〈u1 |H|u1 〉 = I(1s) + I(2s) + F0(1s, 2s)−G0(1s, 2s)

Then

〈u2 |H|u2 〉 = I(1s) + I(2s) + F0(1s, 2s)

〈u3 |H|u3 〉 = I(1s) + I(2s) + F0(1s, 2s)
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Adding these and subtracting the above gives

E(1S) = I(1s) + I(2s) + F0(1s, 2s) + G0(1s, 2s)

So the triplet lies below the singlet. If determinantal wave functions had not been
used, one would have obtained I(1s) + I(2s) + F0(1s, 2s) for both of these. The
exchange interaction, an electrostatic effect that has nothing to do with any magnetic
moment associated with spin, has split the energy between singlet and triplet.

If the configuration had been 1s22s3s, the analysis would go through as before,
but there would be many more terms to the energy expression:

E(1s22s3s 3S) = 2I(1s) + I(2s) + I(3s)

+ F0(1s, 1s)

+ 2F0(1s, 2s)−G0(1s, 2s)

+ 2F0(1s, 3s)−G0(1s, 3s)

+ F0(2s, 3s)−G0(2s, 3s)

E(1s22s3s 1S) = 2I(1s) + I(2s) + I(3s)

+ F0(1s, 1s)

+ 2F0(1s, 2s)−G0(1s, 2s)

+ 2F0(1s, 3s)−G0(1s, 3s)

+ F0(2s, 3s) + G0(2s, 3s)

Warning: The formulae above are applicable whenever the configuration is 1s22s3s,
but the actual values of the integrals depend on the value of Z . This configuration
exists for Be but also for B+, C++, N+++, etc., and is called the Be isoelectronic
sequence. Spectroscopic notation for these ions is

Be I,B II,C III,NIV, etc.

Consider 2p2. Our previous work concluded that there are only three terms: 3P ,
1S, and 1D. Refer to the table on page 50. The numbers in the left column label the
states in the basis |ni �im�i msi 〉. Use of the Slater sum rule allows us to restrict
our attention to just five of these. Using the same numbers as on page 50, there are

2p 2p

# ML MS m�1 ms1 m�2 ms2

1 2 0 1 1/2 1 −1/2
2 1 1 1 1/2 0 1/2
7 0 0 1 1/2 −1 −1/2
8 0 0 1 −1/2 −1 1/2
9 0 0 0 1/2 0 −1/2
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Now #1 labels the state u1 = A| 2 p 1+ 〉| 2 p 1− 〉. In the coupled basis,
there is the state 1D20 which must equal u1. The energy of the 1D can be
found by evaluating 〈u1 |H|u1 〉. Similarly the energy of the 3P can be found
by 〈u2 |H|u2 〉. Now 1S has only one state: the 1S00. But this must be a linear
combination of u7, u8, and u9. The 1D00 and 3P00 are also orthogonal linear
combinations of u7, u8, and u9. So by adding together 〈u7 |H|u7 〉, 〈u8 |H|u8 〉,
and 〈u9 |H|u9 〉, one obtains the sum of the 1D, 3P and 1S energies. The first two
are known, and by subtraction the energy of the 1S can be obtained:

E(2p2 1D) = 〈u1 |H|u1 〉
(One could just as well use 〈u15 |H|u15 〉.)

E(1D) = 2I(2p) + F0(2p, 2p) +
1

25
F2(2p, 2p)

In like fashion,
E(2p2 3P ) = 〈u2 |H|u2 〉

(One could just as well use 〈u5 |H|u5 〉 or 〈u6 |H|u6 〉 or 〈u10 |H|u10 〉 or
〈u11 |H|u11 〉 or 〈u14 |H|u14 〉.)

E(3P ) = 2I(2p) + F0(2p, 2p)− 2

25
F2(2p, 2p)− 3

25
G2(2p, 2p)

= 2I(2p) + F0(2p, 2p)− 1

5
F2(2p, 2p)

because Gk(n�, n�) = Fk(n�, n�).
The desired sum is 〈u7 |H|u7 〉+ 〈u8 |H|u8 〉+ 〈u9 |H|u9 〉.

〈u7 |H|u7 〉 = 2I(2p) + F0(2p, 2p) + 1/25F
2(2p, 2p)

〈u8 |H|u8 〉 = 2I(2p) + F0(2p, 2p) + 1/25F
2(2p, 2p)

〈u9 |H|u9 〉 = 2I(2p) + F0(2p, 2p) + 4/25F
2(2p, 2p)

E(1S) = 2I(2p) + F0(2p, 2p) + 2/5F
2(2p, 2p)

Because the Fk integrals are positive, this analysis tells us that the 3P lies lowest
in energy, the 1D is next, and the 1S lies highest. That the 3P lies lowest is a
verification of Hund’s rules.

Hund’s rules:

1. Of the terms given by equivalent electrons, those with the greatest multiplicity
(largest S value) lie deepest, and of these, the lowest is that with the greatest L.
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2. Multiplets formed from equivalent electrons are regular when less than half the
shell is occupied but inverted when more than half the shell is occupied.

The second rule requires some clarification. When one considers all the levels
(nondegenerate for real systems) associated with a given term, that grouping is
called a multiplet, e.g., 3P0,1,2. Regular spacing means that the level of lowest j
lies deepest, while inverted means that the level of highest j lies deepest. The
first example in the periodic table of this rule is that the ground state of carbon,
1s22s22p2, is 3P0 while the ground state of oxygen, 1s22s22p4, is 3P2.

For the configuration 1s22s22p2, the energy for the 1D term is

E(1s22s22p2 1D) = 2I(1s) + 2I(2s) + 2I(2p)

+ F0(1s, 1s)

+ 4F0(1s, 2s)− 2G0(1s, 2s)

+ 4F0(1s, 2p)− 2/3G
1(1s, 2p)

+ F0(2s, 2s)

+ 4F0(2s, 2p)− 2/3G
1(2s, 2p)

+ F0(2p, 2p) + 1/25F
2(2p, 2p)

Every line but the last is the same for each of the three terms 1D, 1S, and 3P . All one
needs to obtain the relative placement of the three terms is the value of F2(2p, 2p)
for C I:

C I : F2(2p, 2p) = 0.2433 Hartrees

Problem 2.10
Place the three terms for the lowest configuration of carbon on an energy level diagram with the
lowest term at 0 and the top of the diagram at the ionization limit of carbon. Use any consistent set
of units.

The energy of C III is a subset of the contributions considered above. Specifi-
cally, it has only a single-state 1S00 in the ground level whose energy is given by

E(C III 1s22s2 1S) = 2I(1s) + 2I(2s)

+ F0(1s, 1s)

+ 4F0(1s, 2s)− 2G0(1s, 2s)

+ F0(2s, 2s)

The energy of C I 1s22s22p2 1D could then be written as
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E(C I 1s22s22p2 1D) = E(C III ground state ) + 2I(2p)

+ 4F0(1s, 2p)− 2/3G
1(1s, 2p)

+ 4F0(2s, 2p)− 2/3G
1(2s, 2p)

+ F0(2p, 2p) + 1/25F
2(2p, 2p)

If someone were to tell you the energy of C III in the ground state and ask for
the energy of some term of C I, your labor has been cut, in this instance, almost in
half. For a heavier atom, the saving in effort would be greater still!

2.6 Average Energy of a Configuration

The energy of the three terms 1D, 1S, and 3P differs only in the coefficients of the
F2(2p, 2p) integral. The energies can be written as

E(1D) = E0 +
1/25F

2(2p, 2p)

E(1S) = E0 +
2/5F

2(2p, 2p)

E(3P ) = E0 − 1/5F
2(2p, 2p)

(2.27)

Here E0 represents all of the energy terms common to the above expressions.
The average energy of the configuration 1s22s22p2 is obtained by multiplying

each term energy by its statistical weight (the number of states which share that
energy), adding them, and dividing by the total number of states, which for this case
is 15. The 1D has five states, the 3P nine, and the 1S one. The average energy is
then

E(av 1s22s22p2) = E0 − 2/25F
2(2p, 2p)

Each of the term energies could now be written with respect to this average:

E(1D) = E(av) + 3/25F
2(2p, 2p)

E(1S) = E(av) + 12/25F
2(2p, 2p)

E(3P ) = E(av)− 3/25F
2(2p, 2p)

(2.28)

Expressions for evaluating the average energy of the configuration have been de-
rived in Condon and Odabaşi.3 Such expressions might save a significant amount of
time for performing calculations, by hand, for atoms heavier than neon. Practically

3Atomic Structure, E.U. Condon and Halis Odabaşi, Cambridge University Press, 1980.
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speaking, one rarely wishes to do that, and the expressions given here enable one
to understand what the computer is doing when such evaluations are performed
numerically.

2.7 Hartree–Fock Equations

This section will offer a very brief look at the Hartree–Fock equations written with a
notation different from what has been used previously in this book.4 The reason for
doing this is that one sees many different sets of notations and it is useful to learn
their equivalence. Let H = H1 +H2:

H1 ≡
N∑

i=1

fi =
∑[

−∇2
i

2
− Z

ri

]

H2 =
N∑

i<j=1

1

rij
; rij ≡ |�ri − �rj |

An antisymmetrized product of one-electron spin orbitals will form the basis and
be written as

Φ ≡ Au1(q1)u2(q2) . . . uN(qN )

The total energy can be written as (compare to (2.26))

E[Φ] =
∑

λ

Iλ +
1/2

∑

λ

∑

μ

[
Jλμ − δmsλ

msμ
Kλμ

]

Iλ ≡ 〈uλ(qi) |fi|uλ(qi) 〉

Jλμ ≡ 〈uλ(qi)uμ(qj) | 1
rij

|uλ(qi)uμ(qj) 〉

Kλμ ≡ 〈uλ(qi)uμ(qj) | 1
rij

|uμ(qi)uλ(qj) 〉

and λ, μ stand for a set of quantum numbers

λ⇐⇒ nλ�λm�λmsλ

4Robert D. Cowan Theory of Atomic Structure and Spectra University of California Press, 1981.
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and i and j serve to distinguish two different sets of electron coordinates, but any
of the two—there is no sum over i and j. To try to relate this notation to what was
done previously, note that Jλμ is given by (2.23) while Kλμ is given by (2.24).

Using the method of Lagrange multipliers a variational equation can be written as

δE −
∑

λ,μ

ελμδ〈uμ |uλ 〉 = 0

By performing a unitary transformation the above equation can be written in
diagonal form as

δE −
∑

λ

ελδ〈uλ |uλ 〉 = 0

Performing the variation on the expression for the total energy yields the Hartree–
Fock equations for closed shells:

[
−∇2

i

2
− Z

ri

]
uλ(qi) +

[
∑

μ

∫
u∗μ(qj)

1

rij
uμ(qj) dqj

]
uλ(qi)

−
∑

μ

[
δmsλ

msμ

∫
u∗μ(qj)

1

rij
uλ(qj) dqj

]
uμ(qi) = ελuλ(qi)

These are a set of coupled integrodifferential equations which have replaced the
Schrödinger equation for a multi-electron atom. Indistinguishability of particles,
antisymmetrization (Pauli principle), and the form of one-electron spin orbitals
(appropriate for a central potential) have all been built in.
ελ is approximately the energy needed to remove the electron with quantum

numbers λ. This is Koopman’s theorem.
The equations are solved iteratively for the functions uλ(qi). Note that the

noncentral potential, H2, has been integrated over, forming an effective central
potential. This is the potential alluded to early in this chapter when describing the
self-consistent field approximation.
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2.8 Tables

Table 2.1 ak(�im�i ; �jm�j )

k

m�i m�j 0 2 4

ss 0 0 1 0 0
sp 0 ±1 1 0 0

0 0 1 0 0
sd 0 ±2 1 0 0

0 ±1 1 0 0
0 0 1 0 0

pp ±1 ±1 1 1/25 0
±1 0 1 −2/25 0

0 0 1 4/25 0
pd ±1 ±2 1 2/35 0

±1 ±1 1 −1/35 0
±1 0 1 −2/35 0

0 ±2 1 −4/35 0
0 ±1 1 2/35 0
0 0 1 4/35 0

dd ±2 ±2 1 4/49 1/441

±2 ±1 1 −2/49 −4/441

±2 0 1 −4/49 6/441

±1 ±1 1 1/49 16/441

±1 0 1 2/49 −24/441

0 0 1 4/49 36/441
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Table 2.2 ck(�im�i ; �jm�j )

k

m�i m�j 0 1 2 3 4

ss 0 0 1 0 0 0 0
sp 0 ±1 0 −

√
1/3 0 0 0

0 0 0
√

1/3 0 0 0
sd 0 ±2 0 0

√
1/5 0 0

0 ±1 0 0 −
√

1/5 0 0
0 0 0 0

√
1/5 0 0

pp ±1 ±1 1 0 −
√

1/25 0 0
±1 0 0 0

√
3/25 0 0

±1 ∓1 0 0 −
√

6/25 0 0
0 0 1 0

√
4/25 0 0

pd ±1 ±2 0 −
√

6/15 0
√

3/245 0
±1 ±1 0

√
3/15 0 −

√
9/245 0

±1 0 0 −
√

1/15 0
√

18/245 0
±1 ∓1 0 0 0 −

√
30/245 0

±1 ∓2 0 0 0
√

45/245 0
0 ±2 0 0 0

√
15/245 0

0 ±1 0 −
√

3/15 0 −
√

24/245 0
0 0 0

√
4/15 0

√
27/245 0

dd ±2 ±2 1 0 −
√

4/49 0
√

1/441

±2 ±1 0 0
√

6/49 0 −
√

5/441

±2 0 0 0 −
√

4/49 0
√

15/441

±2 ∓1 0 0 0 0 −
√

35/441

±2 ∓2 0 0 0 0
√

70/441

±1 ±1 1 0
√

1/49 0 −
√

16/441

±1 0 0 0
√

1/49 0
√

30/441

±1 ∓1 0 0 −
√

6/49 0 −
√

40/441

0 0 1 0
√

4/49 0
√

36/441
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Chapter 3
Electro- and Magnetostatic Interactions

This chapter will include all of those static interactions that can in some way effect
the total energy of any given level of an atom or ion of interest. That’s a tall order.
Consider that the total energy of an atom is known, having solved the problem
presented in the previous chapter; that is, all of the electrons are in stationary states
about some nucleus, with the only interactions being electrostatic attraction to the
nucleus and repulsion to other electrons. The solution to such a problem would have
ignored additional interactions. The largest, and one alluded to in previous chapters,
is the fine-structure interaction. This is the coupling of the angular momenta of the
outer electrons, the ones in open subshells. All filled shells and subshells have zero
total angular momentum, so those electrons cannot take part. Whichever way one
chooses to couple the angular momenta, and there are many different possible ways
(Russell–Saunders coupling being just one), the total angular momentum, J, is a
good quantum number.

At this stage the question you might want to ask is why aren’t all of the different
levels with differing J values degenerate? The answer is that if the Hamiltonian
were composed only of the terms considered in the previous chapter, they all would
be degenerate. But measurement shows that they are not, so something must have
been left out of the Hamiltonian. Actually quite a few terms have been left out
of the Hamiltonian which is known by solving the one-electron hydrogen atom
relativistically. In recent years, the two-electron atom has been solved relativistically
(not in closed form but to extraordinary precision), so it really is known that there
are lots of interactions among the orbital and spin angular momenta of the electrons
that produce additional terms in the Hamiltonian. The good news is that they can be
handled quite successfully by perturbation techniques.

The plot thickens when one considers the fact that the nucleus also can have a
net angular momentum with an associated magnetic dipole moment, and an electric
quadrupole moment and these too can interact with the electron cloud to alter the
total energy and produce a new total angular momentum. What is interesting is
that these nuclear effects are typically orders of magnitude smaller than the fine-
structure effects mentioned above, and if one is performing an experiment to a

R.L. Brooks, The Fundamentals of Atomic and Molecular Physics, Undergraduate
Lecture Notes in Physics, DOI 10.1007/978-1-4614-6678-9 3,
© Springer Science+Business Media New York 2013
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74 3 Electro- and Magnetostatic Interactions

level of precision that is not sensitive to such small interactions, then ignoring those
interactions is OK. We do, however, live in a world of high-precision measurements,
so it is commonly the case that one has to consider the specific atom and levels of
interest before deciding on which interactions to include.1

The above comments still ignore external electric and magnetic fields. Interac-
tions with electric fields are called the Stark effect, while those with magnetic fields
are called the Zeeman effect. For typical laboratory fields the effects on energy from
these interactions are intermediate between fine structure and hyperfine structure.
But both of these effects might be relevant to an atom you care to investigate
even when you don’t deliberately apply external fields. The earth’s magnetic field
can easily perturb a high-precision measurement. An ion moving in an ion beam
experiences a motional electric field by moving in the earth’s magnetic field. An
ion in a crystal experiences an electric field from the surrounding crystal lattice.
As mentioned above, the electric and magnetic fields of the nucleus interact with
the electron cloud. Hence, the effects of external fields will be taken up after fine
structure and before hyperfine structure.

Modern experimental atomic physics offers a large selection of interactions
that can perturb an atom or ion of interest. What we want to strive for is the
basic understanding of how quantum mechanics can be applied to a multi-electron
atom subject to the interactions just mentioned. These are the interactions that will
comprise this chapter.

3.1 Fine Structure

The largest term missing from the Hamiltonian of Chap. 2 is the fine-structure
contribution, which for a multi-electron atom can be written as

HFS =
Zα2

2

N∑

i=1

f(ri)��i · �si (3.1)

where the sum is over the N electrons in the atom. For hydrogen, previously, the
additional term was written f(r) = 1/r3, and this is the form commonly taken for
f . However, self-consistent field treatments can use a somewhat more complicated
expression. Pause for a moment to reflect on the fact that this operator, as written,
is a simple sum over all electrons of the operator that was introduced in Chap. 1.
One can think of it as an interaction between the electron’s magnetic moment and

1It seems appropriate at this point to introduce the reader to an on-line service that lists basic
atomic spectroscopic data including the lower-lying energy levels of most atoms and ions. The
American National Institute of Standards and Technology (NIST) maintains the Web site http://
physics.nist.gov/PhysRefData/Handbook/index.html from which it is straightforward to obtain
basic spectroscopic data.
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the magnetic field caused by the orbital motion of a charged particle, the very same
electron. But we are now considering a multi-electron problem, so how can we
know in advance that summing this one-electron operator captures all of the relevant
interactions? In particular, when looking at the relativistic solution of the helium
atom, there occur terms involving the interaction of an electron’s spin with the spin
of another electron as well as the interaction of an electron’s spin with the orbital
motion of another electron. So, yes, there are terms in the Hamiltonian being left
out. Are these bigger or smaller than the one being considered? Interestingly, for
helium, they are of comparable size. For light atoms heavier than helium, maybe
up to krypton, this spin-orbit interaction is significantly larger than the others and
represents the one most commonly considered.

Let us rewrite the defining equation above as

HFS =
∑

i

ζi(ri)��i · �si (3.2)

and not concern ourselves about calculating ζi. It is often evaluated empirically. It
is important to remember that ζi(ri) is a one-electron operator, and as such, when
its value in a matrix element is used, only quantum number designators are needed
and it is written as ζn� or more completely as ζ(ni�i).

Pause for a moment and reflect on the fact that the Hamiltonian of Eq. (3.2) does
not use the simpler operator �L ·�S which is commonly used in elementary treatments
of the fine structure. This simpler operator will arise naturally when the treatment
of the more complete operator of Eq. (3.2) is taken up.

To obtain any corrections to the term energies and to obtain the level energies,
allowing for the lifting of any degeneracies that might occur, the technique of direct
diagonalization will be used which is usually taught as degenerate perturbation
theory.

In the basis LSJMJ one needs to examine matrix elements of the form

〈αLS J MJ |HFS |αL′ S′ J ′M ′
J 〉

One usually chooses a manifold of states which lie reasonably close together such
as those of a given configuration; hence, α is the same on both the bra and ket of the
matrix element above. Evaluating such matrix elements is hopelessly complicated
in all but the simplest cases. The operator is not diagonal in this basis or in any other
basis that has been considered so far.

In order to grasp the levels of approximation that are usually applied, let us
consider a specific example, such as the 2p2 configuration, which has 3P , 1S, and
1D terms.

Recall that a ket such as |LS J MJ 〉 must be converted to a ket such as
|LSMLMS 〉 via Clebsch–Gordan coefficients. This must then be decomposed
into the primitive one-electron basis using ladder operators or projection techniques.
It is not useful for you to know how to do that, but rather that it has to be done.
The kets that diagonalize H0, the Hamiltonian of our previous chapter, can be
expressed as
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MJ = 2 3P2 : (1+0+)

1D2 : (1+1−)

MJ = 1 3P2 :
1

2

[
(1+0−) + (1−0+)

]
+

1√
2
(1+-1+)

3P1 :
1

2

[
(1+0−) + (1−0+)

]− 1√
2
(1+-1+)

1D2 :
1√
2

[
(1+0−)− (1−0+)

]

MJ = 0 3P2 :
1√
6

[
(1−0−) + (0+-1+)

]
+

1√
3

[
(1+-1−) + (1−-1+)

]

3P1 :
1√
2

[
(1−0−)− (0+-1+)

]

3P0 :
1√
3

[
(1−0−) + (0+-1+)

] − 1√
6

[
(1+-1−) + (1−-1+)

]

1D2 :
1√
6

[
(1+-1−)− (1−-1+) + 2(0+0−)

]

1S0 :
1√
3

[
(1+-1−)− (1−-1+)− (0+0−)

]
(3.3)

The complete matrix of HFS in the LSJMJ basis is 15 × 15. However, each
value of MJ yields the same result because of the isotropy of space. Furthermore
the rest of the Hamiltonian is diagonal in this basis. Remember that the three relevant
terms differ in energy only by factors of F2 and that the rest of the diagonal energy,
E0, should be added to every term on the diagonal. It is absent only to make the
matrix more readable. The relevant energy expression for H0 is given by the set of
equations (2.27). The energy expression for the complete Hamiltonian is then given
by the matrix below:

〈 2p2 LS J |H0 +HFS | 2p2L′ S′ J ′ 〉 = (3.4)

1D2
3P2

3P1
3P0

1S0
1D2 F2/25 ζ/

√
2 0 0 0

3P2 ζ/
√
2 −F2/5 + ζ/2 0 0 0

3P1 0 0 −F2/5− ζ/2 0 0
3P0 0 0 0 −F2/5− ζ −√

2ζ
1S0 0 0 0 −√

2ζ 2F2/5

To see how one gets such a result, consider the matrix element

〈 1D2 |HFS| 3P2 〉 = 〈 1D22 |HFS | 3P22 〉



3.1 Fine Structure 77

Since any MJ could be chosen (remember the degeneracy) the simplest one uses
MJ = 2. The fine-structure operator for two p electrons may be written as

HFS = ζ(2p)��1 · �s1 + ζ(2p)��2 · �s2 (3.5)

But ��1 · �s1 = 1/2(�
+
1 s

−
1 + �−1 s

+
1 ) + �z1s

z
1 where �+ ≡ �x + i�y.

Problem 3.1
Show that �� · �s = 1/2(�+s− + �−s+) + �zsz .

It follows that

HFS =
ζ

2

(
�+1 s

−
1 + �−1 s

+
1

)
+ ζ�z1s

z
1 +

ζ

2

(
�+2 s

−
2 + �−2 s

+
2

)
+ ζ�z2s

z
2

(3.4) becomes
〈 1+ 1− |ζ(��1 · �s1 + ��2 · �s2)| 1+ 0+ 〉

The operator must convert 1+0+ into 1+1− or else othogonality yields zero. Only
�+2 s

−
2 does that. Recall

�+2 | 1+ 0+ 〉 = �+2 |
m�ms

1 1/2 〉1|
m�ms

0 1/2 〉2.

The general expression for the raising operator is j+| j m 〉 = [(j − m)(j +m +

1)]
1/2 | j m+ 1 〉. For this case, j = � = 1 and m = m� = 0.

�+2 | 1+ 0+ 〉 =
√
2| 1+ 1+ 〉

s−2
{√

2| 1+ 1+ 〉
}
=

√
2| 1+ 1− 〉

So

〈 1D2 |HFS | 3P2 〉 =
√
2

2
ζ =

ζ√
2

The diagonal matrix elements are given by

〈 1D2 |HFS | 1D2 〉 = 〈 1+ 1− |HFS | 1+ 1− 〉
The ket on the right must not be raised or lowered, so only the z part of the operator
applies, and

〈 1+ 1− |ζ(�z1sz1 + �z2s
z
2)| 1+ 1− 〉 = 0

Finally,

〈 3P2 |HFS | 3P2 〉 = 〈 1+ 0+ |ζ(�z1sz1 + �z2s
z
2)| 1+ 0+ 〉 = ζ

2
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Problem 3.2
Work out the remaining matrix elements of HFS .

Problem 3.3
If one diagonalizes the Hamiltonian under the approximation that ζ � F2 < E0, show that the
diagonal entries are perturbed by a term of order ζ2/F2.

The conditions specified in the previous problem are those required for LS
coupling to be appropriate. When these conditions hold, to a good approximation
the diagonal entries alone are the energies. WithE0 the same as given by Eq. (2.27),
this yields

E(1S0) = E0 +
2/5F

2

E(1D2) = E0 +
1/25F

2

E(3P2) = E0 − 1/5F
2 + ζ/2

E(3P1) = E0 − 1/5F
2 − ζ/2

E(3P0) = E0 − 1/5F
2 − ζ

(3.6)

This represents the Landé approximation in which

HFS =
∑

i

ζi��i · �si → Γ�L · �S

Then

〈αLS J |HFS |αLS J 〉 = Γ

2
[J(J + 1)− L(L+ 1)− S(S + 1)] (3.7)

From our example above Γ = ζ/2. So the elementary treatment of fine structure
results by ignoring off-diagonal matrix elements. When ζ is large (compared to F2),
these terms cannot be ignored and the matrix must be diagonalized. This situation is
called intermediate coupling. For two p electrons outside of a closed shell the above
approximation works well throughout the carbon column of the periodic table until
one reaches lead, atomic number 82. For this element, the energy values listed by
NIST2 afford an opportunity to show that the method of direct diagonalization as
outlined here works quite well. When solving problems, don’t let the zero of energy
be a concern. Atomic energy-level tables take the zero to be the lowest energy level

2The American National Institute of Standards and Technology (NIST); see http://physics.nist.gov/
cgi-bin/ASD/energy1.pl.
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Table 3.1 Energy levels of
neutral silicon

Configuration Term J Level ( cm−1)

3s23p2 3P 0 0.000
1 77.112
2 223.157

1D 2 6,298.847
1S 0 15,394.362

of the atom or ion of interest. Simply subtract the lowest-lying energy from every
calculated level when making comparisons.

Problem 3.4
Using direct diagonalization with ζ6p = 7,280 cm−1 and F2 = 23,200 cm−1, show that the five
lowest-lying energy levels for Pb can be obtained to better than 2%.

Even within the Landé approximation, Γ is a function of the individual ζi and
moreover is also a function of the orbital quantum numbers. Γ is different for every
term of a configuration, so it is written as Γ(LS).

For two electrons outside of a closed shell, one can derive the following useful
expression for Γ:

Γ(LS) = ζ(n1�1)

[
L(L+ 1) + �1(�1 + 1)− �2(�2 + 1)

4L(L+ 1)

]

+ ζ(n2�2)

[
L(L+ 1) + �2(�2 + 1)− �1(�1 + 1)

4L(L+ 1)

]
. (3.8)

From (3.7) it can be seen that two energy levels of a given term (same S and
L) having Jupper = J and Jlower = J − 1 are separated by ΓJ . This is the Landé
interval rule, useful for practical spectroscopy. Of course, this rule applies only when
LS coupling is good.

This is perhaps a good place to mention that helium, a light element for which
LS coupling is good, does not satisfy the Landé interval rule. The reason is that
the fine-structure interaction of Eq. (3.2) is the first in a series of interaction terms.
For helium, the higher-order terms are of comparable magnitude to the term already
considered, whereas for higher Z, this first-order term dominates. Then the warning
is don’t try to apply these expressions to helium.

Staying within the np2 terms, silicon affords a nice example of the Landé interval
rule. Consider the energies as written in the NIST table (Table 3.1).

The energy interval between J = 2 and J = 1 of 146 cm−1 is very nearly twice
the interval from J = 1 to J = 0 of 77 cm−1.
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The Landé formula, (3.7), yields good results whenever the magnitude of ζn� is
small compared to the separation of term energies. For the silicon example above,
the formula will give the splitting among the 3P2,1,0 levels so long as the 1D2 and
1S0 levels are far away, which they are. It’s a matter of judgment regarding what
“far away” means but certainly an order of magnitude should be sufficient. When
the energy separation between terms is comparable to or not much larger than the
fine-structure splitting within one term, there is an interaction between all levels
with the same J value.

Two further points, not easy to prove, are worth mentioning:

1. For k electrons in the same subshell, which when filled holds m electrons, one
may write

Γ(n�m−k LS) = −Γ(n�k LS)

2. As a corollary to the above, Γ(LS) of half-filled shells is zero.

As you have probably realized by now, the name “fine structure” can be a
misnomer for heavier atoms and ions. The interaction scales as Z4 so that it is really
only “fine” for the light elements. It ranges from a fraction of a cm−1 to several
thousand cm−1.

Problem 3.5
Why does the fine-structure interaction scale as Z4?

3.2 Zeeman Effect

The Zeeman effect is the name given to the splitting observed in spectral lines
when the source of those lines is placed in an external magnetic field. The quantum
mechanical explanation, which will be developed here, rests on two important facts.
The first is that a single spectral line, representing the transition energy between
two levels, is not really a single line at all but is composed of a number of lines
all occurring at the same energy. This is a consequence of the degeneracy of most
energy levels related to the isotropy of space and described by the m quantum
number. The second is that there is an interaction energy between any magnetic
moment that the atom of interest may possess and the applied external magnetic
field. If the total angular momentum of the electron cloud were zero, there would
be no magnetic moment and no interaction energy for that level. Both the upper and
lower levels would have to have zero total angular momentum for there to be no
observable Zeeman effect for that transition. For reasons discussed in the following
chapter, such transitions are highly forbidden.
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A reasonably complete derivation of the interaction energy of a classical
magnetic dipole placed in an external magnetic field is given in an appendix. The
magnetic dipole of an orbiting charged particle is elementary, and the expression for
a collection of charges having the same charge to mass ratio is given by

�μ� = −
N∑

i=1

1

2

( e

mc

)
��i. (3.9)

The quantum mechanical validity of this expression will be assumed where �μ� and
��i are considered to be operators. In quantum mechanics the spin of the electron is
also an angular momentum and one might suppose that there would be a magnetic
moment associated with it. There is, and the value is given by

�μs = −
N∑

i=1

( e

mc

)
�si (3.10)

Note that this is a factor of two larger than might have been guessed. It is important
to realize that no value for this coefficient should come as a surprise since no
attempt has been made to derive or justify any value whatever. In fact, the best
value is somewhat larger than 2. The number 2 comes out of Dirac theory, while the
deviation from 2 is a quantum electrodynamic effect.

The total magnetic moment is given by

�μ = �μ� + �μs = −1

2

( e

mc

)
(�L+ 2�S) (3.11)

or more properly as

�μ = �μ� + �μs = −1

2

( e

mc

)
(�L+ g�S)

where g is called the magnetic g-factor of the electron. Measurements of g are
among the most precise in all of physics. For our work assume a value of g = 2.
Equation (3.11) can also be written as

�μ = −1

2

( e

mc

)
(�J+ �S)

Writing �J and �S without dimensions gives

�μ = −1

2

e�

mc
(�J+ �S) = −μ0(�J+ �S) (3.12)
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where3

μ0 = Bohr magneton ≡ 1

2

e�

mc
= 9.274078·10−24 J

Tesla
= 9.274078·10−21 erg

gauss

Then the interaction energy is

W = −�μ · �B = μ0(�J+ �S) · �B (3.13)

Since an external field selects a spatial direction, no generality is lost by taking
the axis of quantization (z) to lie along the �B field. Then

W = μ0(Jz + Sz)B (3.14)

In the basis LSJMJ , Sz is a noncommuting operator. Of course one could work
out the matrix elements in the basis LSMLMS , but in that basis the fine-structure
interaction α�L · �S is non-diagonal.

Prior to the development of quantum mechanics, Landé worked out a formula
based on the vector model in which he replaced (3.13) by the relation

W ≈ μ0

[
(�J+ �S) · �J

]
(�J · �B)

|�J|2

Since �J · �S = 1/2(|�J|2 + |�S|2 − |�L|2) and �J · �B = JzB, the above becomes

W = μ0B

[
|�J|2 + 1/2(|�J|2 + |�S|2 − |�L|2)

]

|�J|2 Jz

Now the change in the energy level is given by

ΔE = 〈αLS J MJ |W |αLS J MJ 〉

which is readily worked out to be

ΔE = μ0B

[
1 +

J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)

]
MJ (3.15)

3The defining equation differs by a factor of c between SI and Gaussian units. The most convenient
value is obtained by taking the Gaussian value and converting ergs to cm−1 to obtain 4.6685 ×
10−5 cm−1

gauss
.
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or

ΔE = μ0BgMJ (3.16)

where g is the Landé g-value defined as

g ≡ 1 +
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)

So a magnetic field removes the degeneracy associated with the isotropy of space.
Note that the g-value is a property of the level.

Spectroscopy is a direct measurement of the energy differences between two
different levels. Consider

E1 = E0
1 +ΔE1

and E2 = E0
2 +ΔE2

Then the transition energy is just

T ≡ E1 − E2 = (E0
1 − E0

2) + μ0B(g1MJ1 − g2MJ2)

There is a selection rule for transitions that demands that MJ1 −MJ2 = 0, ±1 but
not 0 → 0.

Consider a transition 2s2p 3P1−2p2 3P2. In the absence of a magnetic field, this
would produce a single spectral line with a transition energy of T = E0

1 −E0
2 and a

wavelength of λ = hc/T or λ = 1/T if T is expressed in cm−1. A magnetic field
will split the line into how many components?

T = (E0
1 − E0

2 ) + μ0B
3

2
(MJ1 −MJ2)

which follows since g1 = g2 = 3/2.
Even though MJ1 can take on three values and MJ2 can take on five values,

the previously mentioned selection rule demands that only three different transition
energies (or spectral lines) are allowed. These are

T1 = (E0
1 − E0

2) +
3

2
μ0B

T2 = (E0
1 − E0

2)

T3 = (E0
1 − E0

2)−
3

2
μ0B

Drawing the energy-level diagram will help you to see this.
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2s2p 3P1
0

2p2 3P2

(E0
1 − E0

2 )

MJ

-1

0

1

-2

-1

0

1

2

�

�

�

�

�

�

�

�

� �

Splitting of a single spectral line into three components in the presence of an
external magnetic field is called the normal Zeeman effect. Any time the g-values
of the upper and lower states are the same, this pattern results. When the g-values
are different, much more complicated patterns are possible. These, for historical
reasons, are called the anomalous Zeeman effect.

Realize that the diagram above is not to scale! For an optical transition (5,000 Å),
E0

1 − E0
2 = 20,000 cm−1, while 3/2μ0B = 0.7 cm−1 for a magnetic field of

10,000 gauss (a typical value).

Problem 3.6
Find the Zeeman structure of a spectral line which results from the transition 4F3/2

−4 D5/2
.

Return now to (3.14), which is

W = μ0(Jz + Sz)B

The matrix elements of Jz in the basis LSJMJ are easy and are given by MJ for
diagonal elements and zero otherwise. The matrix elements for Sz are not difficult
to obtain for a given set of quantum numbers, but a general expression requires
techniques not taken up in this text. The results are:

Diagonal elements of Sz :

〈LS J MJ |Sz|LS J MJ 〉 =MJ
[S(S + 1) + J(J + 1)− L(L+ 1)]

2J(J + 1)
(3.17)
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Off-diagonal elements:

〈LS J MJ |Sz |LS (J + 1)MJ 〉 =

−
[
(J +MJ + 1)(J −MJ + 1)(S + L+ J + 2)

(2J + 3)(2J + 2)2
×

(S + L− J)(S − L+ J + 1)(−S + L+ J + 1)

(2J + 1)

]1/2

(3.18)

All other off-diagonal elements are zero. Note that use of (3.17), which is exact,
in first-order perturbation theory, yields the Landé result. This is the quantum
mechanical justification for that result.

Note further that the off-diagonal elements differ only by one in the J value. For
example, if a 3P2 differs in energy from 3P1 (all other QN’s the same) by much more
than the magnetic interaction energyW , one can work in the subspace of a given L,
S, and J . In that subspace Sz is diagonal and the Landé formula is applicable.

3.3 Stark Effect

An atom placed in an external electric field is subject to spectral line splitting called
the Stark effect. This is similar to that experienced in an external magnetic field, but
now the interaction is between the electric multipole moments of an atom with an
applied, external electric field. The lowest such moment is the dipole moment, but
an atom doesn’t have a permanent dipole moment, so one expects that interaction to
be zero. Using first-order perturbation theory, for complex atoms, that expectation
is correct. Interestingly, because an atom has an electron cloud and that cloud need
not be spherical, all multipole moments should be considered as possibly interacting
with an external field, and one should let the wave functions decide whether or not
the interaction is zero. Recall from your study of electrostatics that the interaction
energy is the scalar product of the dipole moment with the derivative of the potential
(the electric field). The interaction energy for higher multipole moments is the scalar
product of the moment with higher derivatives of the potential. If the electric field
is an applied laboratory field, these higher derivatives will be insignificant over the
size of an atom, but if the field is caused by neighboring ions, that may not be the
case. Nonetheless, only interactions with the dipole moment of the atom will be
considered.

The dipole moment for an electron is just −e�r and its expectation value for any
atomic state is zero. That is simply a result of the fact that it is an odd parity operator
and all states of an atom have definite parity. Hence, using first-order perturbation
theory, the interaction with an external field is zero. The hydrogen atom presents
an interesting special case. It has degenerate states of opposite parity for principal
quantum numbers 2 or higher, so one can expect that this dipolar interaction will
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play a dominant role for hydrogen. This interaction will scale linearly with the
applied electric field and is referred to as the linear Stark effect and is important
for hydrogen even at low values of the applied field. The lowest-order interaction
for complex atoms scales as the square of the applied electric field and is referred
to as the quadratic Stark effect. Each of these will be developed in the following
sections.

3.3.1 Linear Stark Effect

The Hamiltonian for a hydrogen atom in an external electric field, E , may be written
as

H = H0 − e�r · �E
and letting �E lie along the z-axis yields

H = H0 − ezE .

This can be solved by direct diagonalization; consider the matrix

〈n �m� |H|n �′m�′ 〉.

Note that our attention here is restricted to a given n manifold and that spin is
ignored. For a one-electron atom, all levels with a given n-value are degenerate, and
this procedure of direct diagonalization is often taught as degenerate perturbation
theory. One then obtains

〈n �m� |H0|n �′m�′ 〉 − eE〈n �m� |r cos θ|n �′m�′ 〉

= ε0δ��′δm�m�′ − eEc1(�m�; �
′m�′)

∫
Rn�Rn�′r

3 dr

Here c1(�m�; �
′m�′) is the same ck coefficient (k=1) as defined in Chap. 2. The only

nonzero matrix element on the right for the n = 2 manifold is

〈 2 0 0 |r cos θ| 2 1 0 〉 = 〈 2 1 0 |r cos θ| 2 0 0 〉 = −3rB

Problem 3.7
Verify that −3rB is the value of the above matrix element.

The matrix to diagonalize is then
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2p 2p 2s 2p

1 0 0 −1

n �

m�⎡

⎢⎢⎣

ε0 0 0 0

0 ε0 −3erBE 0

0 −3erBE ε0 0

0 0 0 ε0

⎤

⎥⎥⎦
.

Clearly the 2p m� = ±1 are not changed in energy and still maintain the value
ε0. The determinantal equation for the 2× 2 matrix in the center is

(ε0 − λ)2 − 9e2E2r2B = 0

or λ = ε0 ± 3erBE

.

Problem 3.8
By what amount will the n = 2 state of hydrogen be split if the atom is 20 a.u. from a proton?

Clearly the electric field mixes the 2s m� = 0 and 2p m� = 0 states and
lifts (partially) the degeneracy among the n = 2 states. Inclusion of spin does not
qualitatively change this result. For very strong fields, however, one should include
interactions between differing n manifolds. This can be done by enlarging the size
of the matrix, but note that then all of the diagonal energies are no longer the same.
The off-diagonal element is much smaller than the energy difference among the
diagonal elements and one obtains the quadratic Stark effect. The same result is
obtained using second-order perturbation theory. For complex atoms the diagonal
elements are not degenerate and the quadratic Stark effect is the lowest-order effect.
The following problem illustrates these possibilities.

Problem 3.9
Consider a perturbation w (which could be an electric field interaction) for a two-level system with
energies E1 and E2: [

E1 w

w E2

]

(a) Obtain the exact solution for the eigenvalues of this matrix.
(b) Find an approximation valid whenever w � (E1 − E2).

3.3.2 Quadratic Stark Effect

There are two ways to obtain a result that scales like the square of the applied
external field. The first is to consider all states whose energies are close to the level



88 3 Electro- and Magnetostatic Interactions

of interest, evaluate the matrix for those states, and then diagonalize it. The problem
above exemplifies that method for a two-level system. The second is to employ
second-order perturbation theory, which in principle involves an infinite sum but in
practice the sum is truncated so as to include only those levels close in energy to the
one of interest. By “close” I mean comparable to the magnitude of the perturbation,
but even that varies a lot depending on the problem at hand and on the precision
desired for the result.

The Hamiltonian, for a multielectron atom in an external electric field, is similar
to what was written previously:

H = H0 −
∑

i

e�ri · �E

The operator is best converted to a spherical tensor. Again letting the electric field
lie along the z-axis produces

−
∑

i

e�ri · �E = −
∑

i

E e riY0
1(θi, φi) ≡ E

∑

i

D0
1(ri, θi, φi) (3.19)

Dm
1 is the spherical tensor form of the dipole moment operator. What is desired

here is the matrix element of a one-electron operator which, from Chap. 2, can be
written without reference to any electron indices. The sum over electrons becomes
a sum over quantum numbers. Specifically, using second-order perturbation theory,
it is straightforward to write the perturbed energy as

E′
γ,J,M = E2

∑

γ ′,J ′,M ′

〈 γ J M |D0
1| γ ′ J ′M ′ 〉〈 γ ′ J ′M ′ |D0

1| γ J M 〉
Eγ,J,M − Eγ ′,J ′,M ′

(3.20)

Here E′ is the perturbed energy, while E is the unperturbed energy; γ represents all
of the unwritten quantum numbers, specifically the configuration and total orbital
and spin quantum numbers. Invoking the Wigner–Eckart theorem, this may be
rewritten as

E′
γ,J,M = E2

∑

γ ′,J ′
(−1)J+J

′
(
J ′ J 1

M −M 0

)2 |〈 γ J ||D1|| γ ′ J ′ 〉|2
Eγ,J − Eγ ′,J ′

(3.21)

Problem 3.10
Obtain Eq. (3.21) from (3.20).

This expression, while quite general, is not so easy to apply as others seen
previously. The reduced matrix element would need to be evaluated in the basis
of one-electron spin orbitals, and learning to do that is subject matter for a more
advanced course. Nonetheless, a few conclusions can be drawn. The matrix elements
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are zero unless the states have opposite parity. The ground state for most atoms is
well separated in energy from the first excited state, so one can conclude that the
quadratic Stark effect would only be significant for excited states of atoms or ions
subjected to external, laboratory-scale, electric fields.

3.4 Hyperfine Structure

Hyperfine structure, so named because spectral lines show a splitting or structure at
very high resolution whenever the nuclear spin is nonzero, is a consequence of the
interactions of the atomic electron cloud with the magnetic and electric multipole
moments of the nucleus.4 No interactions occur for closed shells or subshells. The
leading-order interaction occurs between the total atomic angular momentum, J ,
and the magnetic dipole moment of the nucleus given by

�μI = μn gI �I. (3.22)

This expression is completely analogous to the one written previously for the
electron, Eq. (3.12). Here �μI is the nuclear magnetic moment. �I is the total angular
momentum of the nucleus. μn is the nuclear magneton which is the Bohr magneton
with the electron mass replaced with the proton mass, i.e.,

μn = μ0
me

mp

What is significantly different from the case for electrons is that the nuclear g-factor,
gI , ranges from −4.3(3He) to +5.3(19F), while nuclear spins range from 0 to 7
(176Lu).5 The nuclear spin, �I , couples to the total electronic angular momentum, �J ,
to form �F the coupled angular momentum which satisfies all of our rules for angular
momentum coupling. Explicitly,

�F = �J + �I. (3.23)

The interaction energy, just to the level of the nuclear magnetic dipole, is not so
easy to write down. If one thinks of a magnetic field caused by the electron cloud
pointing in the direction of �J , one might write

4See L. Armstrong, Jr. Theory of the Hyperfine Structure of free Atoms Wiley-Interscience, New
York, 1971.
5Robert D. Cowan, The Theory of Atomic Structure and Spectra, Univ. of Calif. Press, Berkeley,
1981.
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�BJ =
�B · �J
J2

�J. (3.24)

Then the magnetic hyperfine structure Hamiltonian could be written as

Hmhfs = − �BJ · �μI = −μngI
�B · �J
J2

�J · �I ≡ A �J · �I (3.25)

The matrix element that yields the perturbed energy in first-order perturbation theory
is just

E′ = 〈 γJIF |A �J · �I| γJIF 〉 = 1/2A[F (F+1)−J(J + 1)− I(I + 1)] = 1/2AK
(3.26)

where

K ≡ F (F + 1)− J(J + 1)− I(I + 1). (3.27)

Problem 3.11
Show that two energy levels differing only by one in their value for F have a separation given by
AF where F is the larger of the two.

A represents the actual interaction energy and is not simple to calculate. It is often
inferred from measurements. For the case of one electron outside of a closed shell,
theA value can be calculated from expressions that differ depending on whether the
electron is or is not in an s-state,6 For � > 0,

A = μ0 μn
2�(�+ 1)

J(J + 1)
gI < r−3 >n� . (3.28)

For � = 0,

A =
16π

3
μ0 μn gI |ψ(0)|2. (3.29)

Here ψ(0) is the wave function for the single outer electron at the origin, the
angular momentum quantum numbers are dimensionless, and the expressions are
using Gaussian units. Equation (3.29) was first worked out by Enrico Fermi and this
term is called the Fermi contact term. It’s useful to realize that when there is an
unpaired s electron, this interaction is the largest of the hyperfine terms.

6E. Arimondo, M. Inguscio, and P. Violino, Rev.Mod.Phys. 49, 31 (1977).
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If one now includes the nuclear electric quadrupolar interaction with the electron
cloud, the hyperfine interaction can be written as

E′
hfs =

1/2AK +B
[3/2K(K + 1)− 2I(I + 1)J(J + 1)]

2I(2I − 1)2J(2J − 1)
. (3.30)

B is given by

B = e2
(2J − 1)

(2J + 2)
< r−3 >n� Q (3.31)

where Q is the nuclear quadrupole moment.
The situation in which there is more than one electron outside of a closed shell

is significantly more complicated. There are also higher-order interactions which
cannot necessarily be ignored. Again, helium (3He) is a good example of a common
element in which the above expressions are insufficient for reasonable accuracy.
Theoretical expressions have been worked out7 and an example of their application
is also available.8 Figure 3.1 shows the energy-level positions for the 1s3d (all of the
1snd are similar) of atomic 3He. The singlet–triplet separation, called electrostatic
exchange, was treated in the previous chapter. Note the relative size of the fine
structure and hyperfine structure for this manifold. That the hyperfine structure is
comparable in size to the fine structure occurs only for helium. Its fine structure is
particularly small and the Fermi contact term, −8,667.8 MHz (3He+), caused by
an unpaired 1s electron, is significantly larger than the fine structure. The contact
term appears in both diagonal and off-diagonal matrix elements, so no elementary
treatment comes close to approximating these energy separations.

Perhaps the most widely known and arguably most important example of
hyperfine structure occurs in the ground state of atomic hydrogen. The nucleus is a
proton with I = 1/2 and the ground state, 1s1/2 , has J = 1/2. Hence F may equal
0 or 1. The transition between those two levels is referred to as the 21 cm line of
hydrogen by astronomers which is nothing but the energy difference expressed in
wavelength. Can this calculation yield a value close to that for this transition?

The gI factor for the proton is +5.5856. Invoking the result of a recent problem,
the answer to the question of what is the energy separation between the lowest
hyperfine levels of atomic hydrogen will be given by evaluating Eq. (3.29). While
this is not difficult, it becomes an exercise in understanding Gaussian units.

Problem 3.12
Show that μ2

0/a
3
0 is given by 1

4
α2 Hartree where μ0 is the Bohr magneton, a0 is the Bohr radius,

and α is the fine structure constant.

7A. Lurio, M. Mandel and R. Novick, Phys.Rev. 126, 1758 (1962).
8R.L. Brooks, V.F. Streif and H.G. Berry, Nucl. Instrum. Meth. 202, 113 (1982).
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Fig. 3.1 Energy-level
diagram of 1s3d 3He I

If one looks up the ground-state radial wave function for hydrogen from Chap. 1
and evaluates it at r = 0, one obtains a value of 2. Two what? Remember that the
square of the wave function integrated over all space must equal 1, unitless, but
dV in the integrand has dimensions of distance cubed. Hence, the square of the
wave function itself must have both the dimensions and units of a−3

0 and the wave

function itself of a−
3/2

0 . Next you have to remember that the angular part of the wave
function is given by Y0

0 . With all of these comments and the result of the problem
given above, you should be able to show that the energy separation between the two
hyperfine components of the ground state of hydrogen is 0.04738 cm−1, yielding a
wavelength of 21.1 cm and a frequency of 1,420 MHz.

Problem 3.13
Obtain the result stated in the previous paragraph.

Problem 3.14
Perform the same calculation for 3He+, using a value for gI of −4.255, and see how close to
−8,668 MHz you can come.



Chapter 4
Transition Probabilities

In order to develop the concept of transitions between excited states of atoms based
completely on the formalism of quantum mechanics, time-dependent perturbation
theory will be described and then applied to the problem of spontaneous emission
of an excited atomic state. Every author faces a dilemma when trying to do this at an
undergraduate level. The difficulty is that spontaneous emission can most properly
be thought of as an interaction of the quantized radiation field with an atom. To do
that interaction properly one should quantize the radiation field and apply second
quantization to the atom. All of that is beyond the scope of this text, so what is to
be done? Many authors choose to do a semiclassical treatment in which a classical
radiation field interacts quantum mechanically with an atom. The level of detail
varies considerably. This presentation will attempt to be complete, explicitly stating
where a result from more advanced quantum mechanics is invoked, even as that
result is explained and motivated.

4.1 Time-Dependent Perturbation Theory

The time-dependent Schrödinger equation describes the time evolution of the state
of a physical system and is given by

Hψ(t) = i�
d

dt
ψ(t) (4.1)

At some time t0 (and for all earlier times), assume that the state of the system
satisfies the time-independent equation

Hψ(t0) = Eψ(t0) (4.2)

If H is time independent, (4.1) can be integrated to yield

R.L. Brooks, The Fundamentals of Atomic and Molecular Physics, Undergraduate
Lecture Notes in Physics, DOI 10.1007/978-1-4614-6678-9 4,
© Springer Science+Business Media New York 2013
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ψ(t) = e−iH(t−t0)/�ψ(t0) (4.3)

This solution can be readily verified by differentiation.

d

dt
ψ(t) =

−iH
�

e−iH(t−t0)/�ψ(t0)

=
−iH
�

ψ(t)

or i�
d

dt
ψt = Hψ(t) (4.1)

What does it mean to have an operator in the exponent as in (4.3)? It means just
a series expansion as

eAt = 1 +At+
A2t2

2
+ · · ·

So when H is time independent, (4.3) gives

ψ(t) = e−iE(t−t0)/�ψ(t0) (4.4a)

or ψ(t) = e−iEt/�ψ(0) (4.4b)

Of course, since (4.2) is an eigenvalue equation the above is valid for each
eigenvector k, or

ψk(t) = e−iEkt/�ψk(0) (4.5)

If the system were prepared in the kth eigenstate at time t = 0, the probability of
finding it in the mth state at a later time is

|〈ψm(t) |ψk(0) 〉|2 =
∣∣∣e−iEmt/�〈ψm(0) |ψk(0) 〉

∣∣∣
2

= δmk

So when a Hamiltonian is time independent, a system prepared in a given state stays
in that state. This is the justification for treating the time-independent problem by a
separate formalism. Of course, an atom in an excited state decays spontaneously
which does not occur for the Hamiltonian previously considered. Hence, the
Hamiltonian previously considered must be incomplete. There must be some time
dependence that has yet to be considered.

Consider next the problem given by the equation

(H0 +HI)ψ(t) = i�
d

dt
ψ(t) (4.6)

HI is a perturbation term in the Hamiltonian which will be time dependent, but only
the time-independent solution is known and is given by

H0uk(�r) = Ekuk(�r) (4.7)
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So uk are the time-independent wave functions for the unperturbed Hamiltonian.
Since these represent a complete set, ψ(t) can be expanded as

ψ(t) =
∑

k

Ck(t)uk(�r)e
−iEkt/� (4.8)

The exponential factor represents the only time dependence H0 can produce.
Putting (4.8) into (4.6) gives

(H0 +HI)ψ(t) = i�
∑

k

[
Ċk(t)uke

−iEkt/� − iEk
�
Ck(t)uke

−iEkt/�

]

The second term on the RHS is just H0ψ(t), leaving

∑

k

HICkuke
−iEkt/� = i�

∑

�

Ċ�(t)u�e
−iE�t/�. (4.9)

Because the two sums are independent, the index on the right has been changed to
�. Now multiply both sides by u∗meiEmt/�, integrate over all space, and interchange
the left- and right-hand sides:

i�
∑

�

Ċ�(t)δ�mei(Em−E�)t/� =
∑

k

〈m |HI | k 〉ei(Em−Ek)t/�Ck(t) (4.10)

The sum over � picks out the mth component of Ċ� giving

Ċm(t) =
1

i�

∑

k

〈m |HI | k 〉ei(Em−Ek)t/�Ck(t) (4.11)

where

〈m |HI | k 〉 ≡
∫
u∗m(�r)HIuk(�r) dτ.

In Eq. (4.11) which is exact, k is a dummy index that is summed over. Here m is
the index of interest. One can solve this equation iteratively by letting

Cm(t) = C(0)
m (t) + C(1)

m (t) + C(2)
m (t) + · · · (4.12)

Starting with the assumption that the zero-order C coefficient is unity for some index
but zero for all other indices, letting it be unity when the index is � yieldsC0

� (t) = 1
and C0

k(t) = 0 for k �= �; then Eq. (4.11) can be rewritten as

Ċ(1)
m (t) =

1

i�

∑

k

〈m |HI | k 〉ei(Em−Ek)t/�C
(0)
k (t). (4.13)
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Integrating over time and remembering that only one term in the sum is nonzero
gives the first order result:

C(1)
m (t) =

1

i�

∫ t

0

dt′〈m |HI | � 〉ei(Em−E�)t
′/�. (4.14)

Then to this order Cm(t) = C
(1)
m (t) (of course C�(t) = 1). What has been done

here is to prepare the system at time t = 0 in the �th state and to let it evolve in time.
The second-order term is

C(2)
m (t) =

1

i�

∑

n

∫ t

0

dt′′〈m |HI(t
′′)|n 〉ei(Em−En)t

′′/�C(1)
n (t′′)

=
1

i�

∑

n

∫ t

0

dt′′
∫ t′′

0

dt′〈m |HI(t
′′)|n 〉ei(Em−En)t

′′/�

〈n |HI(t
′)| � 〉ei(En−E�)t

′/� (4.15)

and so on.
Note that this second-order result has an intermediate, infinite sum not present

in the first-order result. For that reason, second-order, time-dependent perturbation
theory is not so commonly used. With the formalism completed, let us consider how
to apply perturbation theory to atomic transitions. Our starting point is to derive an
expression valid to first order for any harmonic time-dependent perturbation. If for
any reason HI(t) = H′

Ie
∓iωt with H′

I independent of time,

C(1)
m (t) =

1

i�
〈m |H′

I | � 〉
∫ t

0

dt′ei(Em−E�∓�ω)t′/�. (4.16)

The Ck(t) are the coefficients in an orthonormal expansion of ψ(t). Since
〈ψ(t) |ψ(t) 〉 = 1, the sum of the squares of the coefficients is unity. So |Cm|2
is interpreted as the probability of finding the system in the mth state.

Return now to (4.16). Let

(Em − E� ∓ �ω)/� ≡ ωm� ∓ ω ≡ Ω. (4.17)

The integral over t′ can be performed and yields

1

iΩ
eiΩt

′
]t

0

=
1

iΩ

[
eiΩt − 1

]
=

2eiΩt/2

Ω

[
eiΩt/2 − e−iΩt/2

2i

]
=

2eiΩt/2

Ω
sin(Ωt/2).
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Then

C(1)
m (t) =

2eiΩt/2

i�Ω
sin(Ωt/2)〈m |H′

I | � 〉 (4.18)

∣∣∣C(1)
m (t)

∣∣∣
2

=
4

�2

sin2(Ωt/2)

Ω2
|〈m |H′

I | � 〉|2. (4.19)

It is tempting to try to interpret this equation as an oscillatory change in probability
between the original state � and the state of interest m. Something like that occurs
when the light field is considered as the source of the interaction but the intensity
is so high that a perturbative treatment, like this one, is insufficient to explain the
observed phenomena. In our treatment it is more fruitful to think of the perturbation
as weak, in which case only resonant interactions (ones for which Ω = 0) are of
interest.

Often this is as far as such an expression is carried. However, note that

4 sin2(Ωt/2)

�2Ω2
=

2πt

�2

[
sin2(Ωt/2)

π(t/2)Ω2

]
.

If the transition probability per unit time is defined as

P�→m ≡ lim
t→∞

∣∣∣C(1)
m (t)

∣∣∣
2

t

=
2π

�2
|〈m |H′

I | � 〉|2 lim
t→∞

[
sin2(Ωt/2)

π(t/2)Ω2

]

then the limit can be recognized as one definition of the Dirac delta function:

lim
α→∞

1

π

sin2 αx

αx2
= δ(x). (4.20)

In this way the transition probability in going from the �th state to the mth is given
by an expression often referred to as Fermi’s golden rule:

P�→m =
2π

�2
|〈m |H′

I | � 〉|2 δ(ωm� ∓ ω). (4.21)

The Dirac delta function, more properly a distribution, has meaning only inside
of an integral expression. It is equal to zero everywhere except at zero where it is
undefined (i.e., infinite). Its role is to eliminate all contributions of the integrand
except those at x = 0 (or at the zero of the argument of the delta function). In other
words,



98 4 Transition Probabilities

0

0.5

1

1.5

–1 0 1
0

2

4

6

–1 0 1
0

10

20

30

–1 0 1

Fig. 4.1 Argument of the limit in (4.20) for α = 5, 20 and 100

f(x0) =

∫ x>x0

x<x0

f(x) δ(x− x0) dx.

The Dirac delta function is normalized to unity. That is,

1 =

∫ x>x0

x<x0

δ(x− x0) dx.

One can graphically see how the expression in Eq. (4.20) becomes a spike with
vanishingly narrow x-extent by looking at that expression for three different values
of α (Fig. 4.1).

4.2 Spontaneous Emission

The previous development assumed a harmonic interaction Hamiltonian. To see how
such a Hamiltonian might arise consider the classical Hamiltonian for the ith particle
in an electromagnetic field given by

H =
1

2m

(
�pi − q

c
�Ai

)2

+ qΦi (4.22)

where �Ai and Φi are the vector and scalar potentials of the field at the position of
the ith particle. Further, recall that any vector �A can be decomposed into transverse
and longitudinal components

�A = �A⊥ + �A‖

such that �∇ · �A⊥ = 0 and �∇ × �A‖ = 0. The vector potential in the Hamiltonian
being considered will be treated as a transverse vector allowing for a somewhat
simpler treatment of what follows. This is equivalent to working in the Coulomb
gauge which is appropriate for a large class of light–matter interactions.
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The potential Φ in the above Hamiltonian may be interpreted as any electrostatic
potential or indeed as any superposition of electrostatic potentials from any number
of sources. For a particle in the field of the nucleus, Φi = e/ri. If there was also an
external constant electric field, then from the superposition principle, Φi = e/ri −
E0z. For a system of many charged particles (electrons) in the electrostatic field of
the nucleus and each other, the superposition principle simply demands one term
being the electrostatic attraction to the nucleus and a second term involving the
electrostatic repulsion of each electron to any other. Then the Hamiltonian of (4.22)
can be written as

H =

N∑

i=1

[
1

2m

(
�pi − e

c
�Ai

)2

− Ze2

ri

]
+

N∑

i>j

e2

rij
(4.23)

where �Ai should be interpreted as �A⊥(�ri, t). This guarantees that div �A = 0, a
criterion for working in the Coulomb gauge. This Hamiltonian can be expanded
into two parts, one which was treated previously and another called the interaction
Hamiltonian:

H = H0 +HI

with

H0 =
N∑

i=1

(
1

2m
�p 2
i − Ze2

ri

)
+

N∑

i>j

e2

rij
(4.24)

HI =

N∑

i=1

{
− e

2mc

[
�pi · �A(�ri, t) + �Ai · �pi

]
+

e2

2mc2
�A · �A

}
(4.25)

Recall that �p = i��∇ and the gradient operator operates on everything to its right, so
for any φ

�∇ · �Aφ = φ�∇ · �A+ �A · �∇φ
But �∇ · �A = 0 so �p · �A = �A · �p.

Because the vector potential represents the perturbation, which in this treatment
is assumed to be small, the term �A · �A will be dropped and the interaction
Hamiltonian becomes

HI =

N∑

i=1

− e

mc

(
�A(�ri, t) · �pi

)
(4.26)

Consider the problem of an atom in a bath of electromagnetic radiation composed
of near optical frequencies (say far infrared to ultraviolet). Classically one considers
the source of this bath of radiation to be external to the atom so that
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∇2 �A− 1

c2
∂2 �A

∂t2
= 0

�E =
1

c

∂ �A

∂t

�B = �∇× �A

Then the plane wave solution for �A must be of the form

�A(�r, t) = �A0e
±i(�k·�r−ωt) (4.27)

with
�A0 · �k = 0 (4.28)

Before an expression like (4.27) can be put into (4.26), one needs to know how to
convert �A into a quantum mechanical operator. This entails quantizing the radiation
field and the derivation would take us too far into quantum electrodynamics, but the
result is easy to understand.

For absorption,

�A→ c

√
2π�nk
ωV

�ε ei(
�k·�r−ωt) (4.29)

For emission,

�A→ c

√
2π�(nk + 1)

ωV
�ε e−i(�k·�r−ωt) (4.30)

Here nk is the number of photons having wavevector �k in a volume V , and �ε
is a unit (polarization) vector at right angles to �k. ω is the frequency of the photon
at position �r traveling in the direction of the wavevector �k. Recall that �B · �B is
proportional to an energy density. Since �B = curl �A, A2 must have the dimensions
of energy density times distance squared. Those are the dimensions of the above
expression. One can think of �A as representing a bath of electromagnetic radiation
interacting with the atom of interest. Its “intensity” is represented by nk/V . What
is fascinating is that if the electromagnetic radiation is turned off, �A is not zero but
nk is zero. Absorption is impossible but emission is still possible. This is a purely
quantum electrodynamic effect resulting from the zero-point energy of the quantized
electromagnetic field. How does one interpret �k, ω, etc., when there are no photons?
Since this only occurs for emission, one interprets these as the parameters of the
emitted photon. How this comes about will be shown directly.

Let us consider the problem of spontaneous emission. One can then use (4.30)
with nk = 0. Putting that into (4.26) gives

HI =

N∑

i=1

− e

m

√
2π�

ωV
(�ε · �pi)e−i�k·�ri+iωt (4.31)
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This will shortly be put into (4.21) of the previous section. There the expression
was the probability per unit time that a transition would take place between two
energy levels if the condition

Em − E�
�

+ ω = 0 (4.32)

is satisfied, where E� is the energy of the initial state.
Equation (4.21) previously is

P�→m =
2π

�2
|〈m |H′

I | � 〉|2 δ(ωm� ∓ ω) (4.21)

This expression, however, needs to be multiplied by the number of states (photon
states) having a frequency in the range ω to ω + dω. Apply periodic boundary
conditions to a box of arbitrary volume V such that

2πn

L
= kx or ky or kz (4.33)

and V = L3 and n = ±1,±2,±3 . . .∞. The number of allowed states is n3. The
density of states is formed by considering

Δn(�k) =
LxLyLz
(2π)3

ΔkxΔkyΔkz

or dn(�k) =
V d3�k

(2π)3
(Density of states)

|�k| = ω

c
.

For a spherical shell, d3�k ⇒ 4πk2Δk; then

Δn(�k) =
V 4πk2Δk

(2π)3

Changing to frequency yields

Δn(ω) =
V 4πω2Δω

(2π)3c3
⇒ V 4πω2

(2π)3c3
dω

(Two states of polarization will be counted later.)
The result needs to be averaged over all angles which is accomplished by

integrating over Ω and dividing by 4π. The integrand part of this can be inserted
now by multiplying by dΩ/4π.

The number of allowed states per unit frequency in a solid angle dΩ is then
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ρω, dΩ dω =
V

(2π)3
ω2

c3
dΩdω (4.34)

So the transition probability per unit time into a solid angle dΩ, labeled wdΩ,
must be

wdΩ =

∫
P�→m ρω, dΩ dω

=
2π

�2
|〈m |H′

I | � 〉|2 ρω, dΩ (4.35)

=
2π

�2
|〈m |H′

I | � 〉|2
V

(2π)3
ω2
m�

c3
dΩ

Here one sees that the integral over ω has removed the delta function and turned the
variable of integration, ω, into ωm�. This is the frequency determined by the energy
difference between the upper and lower states. It is the frequency of the emitted
photon. In subsequent equations it will be written as ω rather than ωm� since that
is the only frequency left in the expressions. Reflect on this point because it can
be confusing to see a final expression having within it what you remember to be a
variable of integration.

Writing out the matrix element, the transition probability may be written as

wdΩ =
2π

�2

e2

m2

2π�

ωV

∣∣∣∣∣
∑

i

〈m |e−i�k·�ri �ε · �pi| � 〉
∣∣∣∣∣

2
V ω2

(2π)3c3
dΩ

=
e2ω

2π�m2c3

∣∣∣∣∣
∑

i

〈m |e−i�k·�ri �ε · �pi| � 〉
∣∣∣∣∣

2

dΩ. (4.36)

Since λphoton = 2π/|�k| � ratom as r ≈ 1 Å and λ ≈ 5,000 Å, the exponential above
can be expanded as

e−i�k·�ri = 1− i�k · �ri − (�k · �ri)2
2

+ · · · (4.37)

and replaced by the leading term of 1. This leaves us with an operator of the form∑
i �ε · �pi. This approximation is called the electric dipole approximation for reasons

that will shortly be apparent. In fact, each term in the series is responsible for electric
multipole radiation which will not concern us presently. This yields

wdΩ =
e2ω

2π�m2c3

∣∣∣∣∣
∑

i

〈m |�pi| � 〉 · �ε
∣∣∣∣∣

2

dΩ. (4.38)

Using the commutation relation
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[
�p 2
i , �ri

]
= −2i��pi

this may be written as

∑

i

�pi =
∑

i

i

2�

[
�p 2
i , �ri

]
=
im

�

[
H0,

∑

i

�ri

]
.

This follows for two reasons. The first is that �ri commutes with 1/ri and with
1/rij in H0. The second is that �ri commutes with �pj for i �= j. Hence the operator
becomes

∑

i

〈m |�pi| � 〉 = im

�
(Em − E�)

∑

i

〈m |�ri| � 〉

= imω
∑

i

〈m |�ri| � 〉 (4.39)

Then

wdΩ =
ω3

2π�c3

∣∣∣∣∣
∑

i

〈m |e�ri · �ε| � 〉
∣∣∣∣∣

2

dΩ (4.40)

e�ri is classically a dipole moment, hence the name electric dipole radiation. All
of the derivation following the expansion of the exponential in (4.37) carries through
for any of the terms. Subsequent ones are simply multiplied by higher powers of�k·�r.
These give rise to electric quadrupole, electric octupole, etc., transitions which are
many orders of magnitude weaker than electric dipole but can play a significant role
when electric dipole transitions are forbidden.

The expression (4.40) is valid for a multi-electron atom, but in fact, the sum over
i is a sum over electrons, and for the case of spontaneous emission, there is usually
only one electron in the excited state of interest. Hence the only difference between
the situation in a complex atom and the situation in hydrogen is the form of the wave
functions for the upper and lower states. Because the wave functions for hydrogen
are both known and available to you, further detailed development of these concepts
will be done for hydrogen, but the expressions have a more general validity.

4.3 Lifetime for Hydrogen

Simplifying the problem to a one-electron system, Eq. (4.40) can be written as

wdΩ =
ω3e2

2π�c3
|�rm� · �ε|2 dΩ (4.41)

where �rm� ≡ 〈m |�r| � 〉.
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It is worth mentioning here that this expression is a good deal more complicated
that it might at first appear. The reason is that the operator is an inner product of two
vectors whose value depends on the direction in which one is looking. The wave
functions themselves also depend on spatial directions, and so the result becomes
dependent on polarization (through�ε), the direction in which the photon is emitted,
and whether or not an ensemble of atoms has a statistical distribution ofm substates.
All of this is significantly beyond our present concerns but are mentioned to alert the
reader to what can be found in more advanced treatments. If one doesn’t care about
the direction of the emitted photon, counts two for the polarization, and assumes
statistical population of sublevels, a significant simplification results.

With these comments in mind,wdΩ can be integrated over all directions to obtain
the transition probability per unit time of a photon having any possible direction.
This is equivalent to integrating (4.41) for all possible directions of �ε keeping �rm�
fixed in space. Choose the z-axis of our coordinate frame to lie along �rm�; then
�rm� · �ε = |�rm�| cos θ and

∫
wdΩ dΩ =

ω3e2

2π�c3
|�rm�|2

∫
cos2 θ dΩ

=
2ω3e2

3�c3
|�rm�|2

This would be sufficient if there was one polarization vector�ε or if it was guaranteed
that all emitted radiation would be plane polarized. There are, however, two
independent states of polarization, so multiply the above by 2. (Usually �ε is written
ε(α) where α = 1 or 2. This has been suppressed for legibility.) Finally, the total
transition probability per unit time for one-electron systems is given by

w =
4e2ω3

3�c3
|〈m |�r| � 〉|2 (4.42)

This is fine but is still somewhat abstract. � is the initial state and m is the final
state and ω = (E� − Em)/� and E� > Em. Since (4.42) holds for spontaneous
emission of one-electron atoms it follows that

| � 〉 = |ni �im�i 〉 i initial

〈m | = 〈nf �f m�f | f final

Of course the � and m on the LHS of the above equations have nothing to do with
the � and m on the RHS! For what follows, think only of n, �, and m quantum
numbers of hydrogenic systems.

In the absence of external fields or some other way to determine a direction
in space, there will be m degeneracy. Despite the actual degeneracy in �, the
different values are nonetheless distinct, written, for example, as 3d and 3p. They
are indeed distinct entities though they happen to be energetically degenerate for
this Hamiltonian.
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Since the m values in some sense select spatial directions and all directions are
equally probable, the usual prescription is to average over initial states and sum
over final states. Then

w(ni�i → nf �f ) =
4e2ω3

3�c3
1

2�i + 1

∑

mimf

|〈nf �f mf |�r|ni �imi 〉|2 (4.43)

So |〈αf |�r|αi 〉|2 =
∑

j 〈αf |xj |αi 〉〈αi |xj |αf 〉 where xj is the jth Cartesian
component of �r. There is a simple shortcut which leads to

|〈αf |�r|αi 〉|2 ⇒ 3 |〈αf |z|αi 〉|2

There is no equality in general, but equality holds when the sum over all mi andmf

is taken. Since z = r cos θ, the integral may be written as

∑

mimf

|〈nf �f mf |r cos θ|ni �imi 〉|2 =

∣∣∣∣
∫

Rni�iRnf �f r
3 dr

∣∣∣∣
2

∑

mimf

∣∣∣∣
∫

Y
∗mf

�f
(θ, φ) cos θYmi

�i
(θ, φ) dΩ

∣∣∣∣
2

(4.44)

But

cos θ =

√
4π

3
Y0

1(θ, φ)

The above integral over Ω is nothing but c1(�imi; �fmf ) with mi = mf (given
by (2.20)) and zero otherwise. Alternatively one may use the expression for the
integral over three spherical harmonics, Eq. (2.19), to obtain

∑

mimf

∣∣∣∣
∫

Y
∗mf

�f
cos θYmi

�i
dΩ

∣∣∣∣
2

=
4π

3

[
(2�f + 1)(2�i + 1)3

4π

]

(
�f 1 �i
0 0 0

)2 ∑

mimf

(
�f 1 �i

−mf 0 mi

)2

(4.45)

and the integral is zero unless

mi = mf and �i = �f ± 1.

By invoking Eq. (1.54), the sums over mi and mf simply yield 1/3. The other 3−j
symbol can be looked up for the condition that �i = �f + 1 to give
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(
�f + 1 �f 1

0 0 0

)2

=
(�f + 1)

(2�f + 3)(2�f + 1)

The entire angular integral is seen to be (�f + 1)/3. Starting with the opposite
possibility, �i = �f − 1, one obtains (�i + 1)/3 for the angular integral.

Problem 4.1
Derive the above expressions.

Completing the evaluation of Eq. (4.43) and remembering to multiply by three
produces

w(ni�i → nf �f ) =
4

3

e2ω3

�c3
�f + 1

2�i + 1

∣∣∣∣
∫

Rni�iRnf �f r
3 dr

∣∣∣∣
2

(4.46)

The lifetime of the excited level is just

t(ni�i) =
1∑

f w(ni�i → nf �f )
(4.47)

Equation (4.46) above is in Gaussian units. To obtain a particularly convenient
expression, note that ω/2πc = 1/λ where λ is the wavelength of the emitted light
which is also a measure of the energy difference of the transition usually given as
1/λ expressed in cm−1. With this in mind, working out the constants yields

w(ni�i → nf �f ) = 2.0259 · 10−6

(
1

λ

)3
�f+1

2�i+1

∣
∣
∣
∣

∫
Rni�iRnf �f r

3 dr

∣
∣
∣
∣

2
1

r2B
sec−1

(4.48)

where rB is the Bohr radius. If the integral is done in atomic units, rB = 1.

Problem 4.2
Find the lifetimes of the 2p, 3p, 4p, 3d, and 4d levels. Only one lower state will dominate the sum
in (4.47), so use only that one.

4.4 Transition Moments for Complex Atoms

The derivations required to obtain the transition moment and lifetime for hydrogenic
atoms are not so different for complex atoms. It is useful to have these expressions
available and to consider their consequences for higher multipoles and for selection
rules. If one uses the spherical harmonics as a template on which to build
more complex operators, then one can manipulate the resultant expressions using
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angular momentum algebra and take advantage of the Wigner–Eckart theorem and
elegant ways of combining operators. These techniques are part of more advanced
treatments but the final expressions and the physics which they convey are accessible
to us now so long as we are willing to forego the level of detail of the previous
sections.

If one defines the jth electric multipole moment as

Qmj ≡ e

[
4π

2j + 1

]1/2 ∑

i

rji Y
m
j (θi , φi) (4.49)

then the electric dipole transition probability can be written as

w(E1) = 4k3

3�
[〈αJM |Qm1 |α′J ′M ′ 〉]2 . (4.50)

This is the multi-electron analog to Eq. (4.42). The integral over directions has been
performed. The sum over electrons occurs in the definition of Qm1 . α, J, and M
represent the quantum numbers of the lower state, while the primed ones are those
of the upper state. k is nothing but ω/c. The electric quadrupole transition moment
can be written as

w(E2) = k5

15�
[〈αJM |Qm2 |α′J ′M ′ 〉]2 . (4.51)

Problem 4.3
The electric dipole moment occurs in the units of e a0 where e is the electric charge and a0 is the
Bohr radius or unit of distance in atomic units. Then the dipole transition probability will be given
by 4k3

3�
e2 a20 multiplied by a matrix element that at most can be of the order of unity. Estimate

the maximum value of the transition probability for a dipole transition in the visible spectral range
(500 nm).

Problem 4.4
Repeat the above calculation for the electric quadrupole transition probability and show that the
ratio of the electric dipole to electric quadrupole probabilities is 4.5×107 for a transition at 500 nm.

What is not remotely obvious from our treatment of electric multipole transitions
is that it is also possible to have magnetic multipole transitions. Again one requires
an additional time-dependent term in the Hamiltonian, but this time it cannot be
motivated from the classical Hamiltonian. Instead, one should consider all of the
terms that occur when solving the hydrogen atom relativistically. Following such
considerations, one can define the magnetic multipole moment to be

Mm
j ≡ μ0

[
4π

2j + 1

]1/2 ∑

i

�∇[rji Y
m
j (θi , φi)] •

[(
2

j + 1

)
��i + 2 �si

]
(4.52)
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Here μ0 is the Bohr magneton and the sum is over individual orbital and spin
angular momenta. If this expression looks a lot more complicated than the electric
multipole one, rest assured that it is. But one rarely calculates these moments. It
is often enough to realize that they exist and give rise to transitions. It is useful to
know the order of magnitude of these various multipoles which is the purpose of the
suggested problems. The expression for the magnetic dipole transition probability
is then given by

w(M1) =
4k3

3�
[〈αJM |Mm

1 |α′J ′M ′ 〉]2 . (4.53)

Problem 4.5
Perform the calculation done above for the electric quadrupole transition probability for the
magnetic dipole transition, and find the ratio of the electric quadrupole to magnetic dipole transition
probabilities. These are usually considered to be of comparable magnitude.

4.5 Lifetimes, Selection Rules, and Oscillator Strengths

Note from Eq. (4.46) of the previous section that the transition probability varies as
ω3. When considering order of magnitude estimates for lifetimes of excited states in
which the transition frequency spans many decades, one can take (4.48) and write a
crude estimate (which sets the matrix element to unity) as

t(ni → nf ) ≈ 1037

ν3
sec

Using this it is possible to make a table of approximate lifetimes of excited states
against electric dipole radiation.

Radio Microwave IR Visible UV

ν (Hz) 103 1010 1013 5× 1014 5× 1015

t (s) 1028 107 10−2 3× 10−6 3× 10−9

Problem 4.6
Very high Rydberg states in hydrogen are receiving experimental attention today. For such states
the Yrast chain (ni, �i = ni−1; nf = ni−1, �f = nf −1) often dominates. Estimate the lifetime
of the n = 50 level in hydrogen against an Yrast transition.
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The most straightforward way to derive selection rules is to return to (4.44) and
to recall that

∫
Y

∗mf

�f
Y0

1Y
mi

�i
dΩ is proportional to

(
�i 1 �f
0 0 0

)

This 3−j symbol is zero unless �i, �f , and 1 can “form a triangle” and unless �i +
�f + 1 is an even integer. This results in the rule that �f = �i ± 1. No other electric
dipole transitions are possible.

Since the parity of a state is given by (−1)�, states connected by electric dipole
transitions must have opposite parity. What is not obvious is that these rules hold
for complex atoms as well, though one might expect additional rules following from
the coupling of angular momenta.

Since in a complex atom the transition operator is just �ri, a one-electron
operator, there exist nonvanishing matrix elements between different determinantal
states only if the states differ by a single spin orbital. Since the operator is spin
independent, there can be no spin flip during a transition which leads to the selection
rule ΔS = 0. The total angular momentum J , along with L and S, appears in a 6−j
symbol whose symmetries lead to selection rules for these.

Here then are the selection rules for electric dipole transitions, given in order of
strongest to weakest:

1. Parity change
2. ΔJ = 0,±1 but not 0 → 0
3. Only one different orbital between configurations with Δ� = ±1
4. ΔL = 0,±1 but not 0 → 0
5. ΔS = 0

Numbers (1) and (2) are never violated. (Well, hardly ever; number (2) can
be violated if hyperfine structure, interaction with the nuclear spin, is relevant.)
Number (3) is as good as the one-electron spin orbital description, and so can be
violated when configuration interaction is considered. Numbers (4) and 5 are not any
better than the LS coupling approximation and break down whenever intermediate
or j–j coupling is used as a descriptor.

Problem 4.7
Which of the following transitions are forbidden? Note that transitions are always written
with the lower energy level on the left.

1. 2p2 3P1 − 2p3d 3P2

2. 2s2 1S0 − 2p2 1D2

3. 2p3 4S3/2
− 2p23p 4S3/2

4. 2p3 2D3/2
− 2p23s 2D5/2

5. 2p3 2P3/2
− 2s2p3s 2P1/2

6. 2p23s 2D3/2
− 2p23p 2F5/2

7. 2p23s 2P1/2
− 2p23p 2D5/2

8. 3d2 1G4 − 3d4f 3G5

9. 3d2 3F2 − 4p4f 3G3

10. 2p3 2D3/2
− 2s3d2 2D5/2

11. 3d24s 2G7/2
− 3d24f 2G9/2
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Here are some concepts, many of which predate quantum mechanics. First return
to (4.42) which can be rewritten as

w =
4

3

e2ω3

�c3
|〈 1 |�r| 2 〉|2

where 1 is the lower (final in emission) state and 2 is the upper state. Now define the
line strength to be

S ≡ e2
∑

mimf

|〈 1 |�r| 2 〉|2

This is perfectly OK for a complex atom since
∑
i �ri has only one nonzero matrix

element between determinantal states, so no ambiguity can arise. This is not to say
that S is easy to evaluate for complex atoms; it isn’t.

The probability of transition from state 2 to 1 is just the Einstein A coefficient
and is given by

A21 =
4

3

ω3S

�c3g2
(Gaussian)

where g2 is the statistical weight of level 2 and for a one-electron system is (2�+1).
(The above is just (4.43).)

The Einstein B coefficients are related to stimulated emission (B21) and
absorption (B12) and satisfy

g1B12 = g2B21

The stimulated emission coefficient, B21, is related to A21 by

B21 =
πc3A21

2�ω3

Finally the oscillator strength, f12, which is dimensionless in any system of units, is
given by

f12 ≡ 2mωS

3e2�g1
(4.54)

4.6 Absorption

If one reflects for a moment on Eqs. (4.29) and (4.30), it is obvious that our
expressions for the transition probability are valid in absorption as well as in
emission. It is true that one has to be a bit careful when counting degeneracies;
are they for the upper or lower state? One comment should be made here. The
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Table 4.1 Selection rules for some radiative transitions from level 1 to level 2

Electric dipole Magnetic dipole Electric quadrupole
E1 M1 E2

Parity ±1 → ∓1 ±1 → ±1 ±1 → ±1

ΔJ 0,±1 0, ±1 0, ±1, ±2

J1 + J2 ≥ 1 J1 + J2 ≥ 1 J1 + J2 ≥ 2

ΔM 0,±1 0,±1 0,±1, ±2

Δ� ±1 0 0, ±2

(Δn = 0) �1 = 0 �→ �2 = 0

(Δm� = 0, ±1, ±2)

ΔS 0 0 0
(ΔMS = 0) (ΔMS = 0)

ΔL 0, ±1 0 0, ±1, ±2

Ł1 + L2 ≥ 1 Ł1 + L2 ≥ 2

(ΔML = 0, ±1)

concept of initial or final state is much less useful than that of upper or lower when
considering transitions. Expression for the f -value or oscillator strength has gained
wide acceptance and is used for both emission and absorption.

The perception that conventional emission and absorption spectroscopy were
done by physicists in the 1930s and 1940s but have since been relegated to pat
diagnostic work by chemists or engineers has long been widespread but simply
isn’t true. Astronomical research alone uses both techniques extensively, and the
laboratory search for spectroscopic lines, be they from diffuse interstellar bands
(DIBS) or Fe XIV, has been a rich source of intense research up to the present time.
Furthermore, the formulae presented here are applicable to laser-based research so
long as pulse powers are not extreme,>1014 W.

Despite the theoretical similarities between the expressions for emission and
absorption, the two techniques have several fundamental differences. Perhaps the
most useful one is that a measurement of an absorption line is a measurement of the
f -value for the transition multiplied by the number density of the absorbing state.
Consider Beer’s law for a beam of light of intensity Iν passing through an absorbing
medium with a path length of l where ν is the wavevector, 1/λ of the light:

Iν(l) = Iν(0) e
−kν l

Typically absorption spectroscopy is performed by measuring the spectrum of the
source with, Iν(l), and without, Iν(0), the sample or absorbing medium present.
By taking the logarithm of the ratio of the spectra, one obtains the absorption
coefficient, kν :

kν =
1

l
ln
Iν(0)

Iν(l)
.

Clearly this depends on knowing the path length of the light through the sample.
A plot of kν vs ν is then an absorption spectrum and if done with the signs as
specified above looks identical to an emission spectrum; that is, the absorption
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lines are plotted more positively than the background. If one integrates under the
absorption profile for a given line with the conditions that the line has not saturated,
there is no spontaneous emission present, and the line is well isolated from lines of
other transitions in the medium under study, then that integrated intensity is directly
proportional to the f -value:

∫

line

kν dν =
π e2

mc2
N1f12. (4.55)

This expression is in Gaussian units with ν in cm−1 and N1 being the number
density in the lower state, the state from which absorption is occurring.

Problem 4.8
Equation (4.55) can be expressed in SI units by replacing e2 by e2/4πε0 and remembering that ν
needs to be in Hz. Show that the expression becomes

∫

line

kν dν =
e2

4ε0mc
N1f12.

Absorption spectroscopy as outlined above has traditionally been used for
molecules in the infrared spectral region. It is limited by the fact that one needs
a sufficient number of absorbers to discern a change in intensity. Commonly the
absorbing level is the ground state or perhaps a metastable state. Since the signal
scales with the optical path length, long path-length cells have been designed to
measure weak absorptions. The longest path lengths are observed in interstellar
clouds in which over 100 molecules have been identified by their absorption line
signatures.



Part II
Diatomic Molecules



Chapter 5
Electronic Structure of Diatomic Molecules

What makes the solution for the electronic motion in a molecule so much more
difficult from that for an atom (which as we have seen is certainly not easy!) is
that the problem, in general, is multicentered. In an atom, with a single nucleus,
one may use spherical coordinates for the multielectron problem. The angular part
of the problem is effectively solved by invoking spherical harmonics for the basis
functions for each electron. In a molecule, spherical symmetry is broken, and one
cannot even use the same quantum numbers that one could use for an atom. It is little
wonder that most texts that do treat the quantum mechanics of molecules ignore
the atomic underpinnings. One can hardly blame the authors; the methodology is
fundamentally different.

What this chapter will try to show is that, while different, the fundamentals that
were learned in the previous part of the text can and should be kept in mind when
attempting to solve molecular problems. This is easier to do for diatomic molecules
than more complicated ones and easier still for molecular hydrogen and its one-
electron molecular ion. Because our aim is to understand the fundamentals, only
diatomic molecules will be considered. Realize that molecules have multiple nuclei;
these nuclei can vibrate and rotate and such motions occur at much lower energies
than electron excitation. In fact, such excitations occur at ordinary, everyday
temperatures and represent much, if not most, of what chemists study. If chemistry
is the study of reactions and interactions of molecules, the forming and breaking of
bonds, there is much that can be learned without appeal to quantum mechanics, but
that is not our concern. Our interest here is to consider what quantum mechanics
has to offer for the study of molecules and to try to present the fundamentals in a
manner that will be of use to physicists in all subdisciplines.

Now it is tempting to say that if the electrons of a molecule are in their ground
states, the study of such molecules is physical chemistry, while if the molecules
are electronically excited, the study is chemical physics. Tempting but false. The
worlds of molecular physics, chemical physics, and physical chemistry have so
much overlap that I have never met anyone who attempted exclusive definitions.
It might be fair to say that most physicists working with molecules work with

R.L. Brooks, The Fundamentals of Atomic and Molecular Physics, Undergraduate
Lecture Notes in Physics, DOI 10.1007/978-1-4614-6678-9 5,
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diatomics at least most of the time. I am sure there are those who would disagree
but even those had to learn about diatomic molecules first. Diatomics manage to
straddle the divide between atoms, whose nuclear motion is irrelevant, and complex
molecules in which knowing the arrangement of the nuclei can be a challenge.
Group theory is indispensable for the study of complex molecules (ones that are
multicentered) but not necessary for the study of diatomic molecules. Hence we
shall limit ourselves to the simplest of diatomic molecules but treat the motions of
the electrons and nuclei quantum mechanically.

5.1 Hydrogen Molecular Ion

The simplest molecule that one can consider is formed by two protons separated by
a distance R surrounded by a single electron. Since there is a net positive charge,
the system is clearly a positive ion and represents the hydrogen molecular ion. Just
as the hydrogen atom is the only problem in atomic physics that can be exactly
solved, so the hydrogen molecular ion is the only problem in molecular physics
which has an exact solution. Here the analogy stops. In atomic physics the solution
for hydrogen forms the foundation for complex atoms. The exact solution for H2

+

does not form the foundation for complicated molecules. Rather an approximate
solution is used for more complicated molecules, and this approximate solution
can be performed on H2

+ and then compared for accuracy with the exact solution.
Hence we shall not derive the exact solution1 but rather use some of the results to
discuss general properties of diatomic molecules.

5.1.1 Born–Oppenheimer Approximation

Let us clarify the quantum mechanical problem posed by molecules. The “solution”
of such a problem must not only describe the wave function for the electrons but
must also consider the motion of the nuclei. The following description is valid for
all molecules, not just diatomic ones.

Let the positions of the nuclei be given by coordinates Xi where X represents
(X,Y, Z) and i means the ith nucleus. Similarly xj is the position of the jth
electron. Then the time-independent Schrödinger equation for the system as a whole
can be written as

⎡

⎣
∑

i

− �
2

2Mi
∇2
i +

∑

j

− �
2

2me
∇2
j + V (Xi, xj)

⎤

⎦ψ(Xi, xj) = εψ(Xi, xj) (5.1)

1See J. Slater, Quantum Theory of Molecules and Solids, Vol. 1, Appendix 1.
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Here V (Xi, xj) is the electrostatic interaction between all pairs of particles,
electrons and nuclei, and contains all necessary sums within it. A two-step approxi-
mation can be performed toward attempting a solution of (5.1). The first is to solve
the equation

⎡

⎣
∑

j

− �
2

2me
∇2
j + V (Xi, xj)

⎤

⎦ u(Xi, xj) = E(Xi)u(Xi, xj) (5.2)

This is a Schrödinger equation with the nuclear kinetic energy omitted and
represents a problem for fixed Xi (each i). Clearly the energy will then be a
parametrically dependent function of Xi, and in principle the problem would have
to be solved on a grid of points for Xi. The second step is to solve the Schrödinger
equation [

∑

i

− �
2

2Mi
∇2
i + E(Xi)

]
v(Xi) = εv(Xi) (5.3)

This equation solves for the motion of the nuclei in a potential given byE(Xi) from
(5.2).

The Born–Oppenheimer theorem now states that ε from (5.3) is a good approx-
imation to ε of (5.1) and furthermore that a good approximation for ψ of (5.1) is
given by

ψ(Xi, xj) = u(Xi, xj)v(Xi) (5.4)

This separation of nuclear and electronic motions is made possible by the
vast differences in the mass of an electron and even the lightest nucleus. In this
chapter the electronic problem represented by (5.2) will be considered. For diatomic
molecules, once the center of mass motion has been removed,Xi reduces to a single
parameter, the internuclear separation. The energy solution is then a function E(R)
of internuclear separation. Because E(R) is the potential for the nuclear motion
(vibration and rotation), the set of curves E(R) are called potential energy curves
and a suitable graph the potential energy diagram. The nuclear motion will be taken
up in the next chapter.

5.1.2 Molecular Orbitals for H2
+

The H2
+ problem is solved in spheroidal coordinates μ, λ, and φ (right handed in

that order; details given in a subsequent section):
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H+(a) H+(b)R

ra rb

e−

μ ≡ ra − rb
R

λ ≡ ra + rb
R

and φ is the angle of rotation about R. Note that −1 ≤ μ ≤ 1 and 1 ≤ λ ≤ ∞.
The two nuclei, in this case just protons, are labeled a and b and are separated by
a distance R. The vectors ra and rb then specify the position of the electron with
respect to the two nuclei.

The Hamiltonian for electronic motion for H2
+ is

H = −∇2

2
− 1

ra
− 1

rb
+

1

R
(5.5)

Since 1/R is an effective constant, it can be dropped and added to the energy at the
end. The wave function will be of the form

u = L(λ)M(μ)eimφ (5.6)

The dependence of the solution on φ is like the atomic problem. However the z-axis
of the problem is the internuclear axis, and this represents a defined direction, unlike
the atomic problem. Hence the energy levels differ for differing |m| but are doubly
degenerate for ±m. The levels (or more properly, curves, since each energy is a
function of R) are labeled with a spectroscopic notation analogous to atoms. Levels
with m = 0 are σ, m = ±1 are π, m = ±2 are δ, m = ±3 φ, etc., in analogy
to s, p, d, f in atoms. This is a somewhat unfortunate analogy since in atoms s,
p, d, f are labels for the 	 quantum number, which does not exist in molecules
since molecules are not even approximately spherically symmetric. Furthermore,
for homonuclear molecules (two nuclei the same) the solutions either change sign
on inversion (odd or ungerade) or they don’t (even or gerade). This leads to σg ,
σu, πg , πu, etc. The solutions are then ordered in energy for small R and labeled
(by Slater) in the order of appearance. So the first σg is 1σg , the first σu is 1σu,
etc. This labeling is not standard and a modification will be introduced shortly. The
only “good” quantum numbers for diatomics are m and parity. Clearly this makes
labeling a bit of a challenge!
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5.1.3 United Atom and Separated Atom Limits for H2
+

Consider the lowest two potential energy curves for H2
+, labeled 1σg and 1σu. To

a first approximation these curves can be formed by a linear combination of atomic
orbitals (LCAO) in the following manner:

1σg ≈ 1sa + 1sb = e−ra + e−rb (5.7)

1σu ≈ −1sa + 1sb = −e−ra + e−rb (5.8)

where these orbitals are not normalized but should be. (To be discussed later.) In
terms of spheroidal coordinates λ and μ the above can be expressed as

1σg ≈ 2e−Rλ/2 cosh(Rμ/2) (5.9)

1σu ≈ 2e−Rλ/2 sinh(Rμ/2) (5.10)

Problem 5.1
Derive (5.9) and (5.10) from (5.7) and (5.8).

Expressions like (5.9) and (5.10) are called molecular orbitals (MO). As R→ 0,
the problem becomes equivalent to He+ and it is expected that one of these orbitals
will become the 1s orbital of He+. The 1σg becomes this orbital, but note that our
LCAO approximation approaches e−r rather than e−2r as it should. What happens
to 1σu? It becomes the 2p (m = 0) orbital of He+. The limit R = 0 is called the
united atom limit and thus offers an alternate scheme for labeling molecular orbitals.
The 1σg could then be called the 1s σg and the 1σu the 2p σu where 1s and 2p are
the n 	 quantum numbers of the united atom.

In the united atom limit, the states are even or odd (g or u) depending on
whether 	 for the united atom is even or odd. For the separated atom, the molecular
orbitals are even or odd depending on whether the separated atom orbitals have been
added or subtracted. Now the molecule (as well as the separated atom) is a two-
center problem which introduces a doubling to the number of orbitals. Nevertheless
a one-to-one mapping between the united atom designation and the separated atom
designation can be established once the notation is clarified.

United Atom Limit

In the united atom limit, the molecular orbitals become the atomic orbitals of He+.
Ignoring spin, there are the 1s (m� = 0), 2s(0), 2p(−1), 2p(0), 2p(+1), 3s(0),
etc. But the 2p(−1) and 2p(+1) are degenerate in an axial electric field such that
the 2p(±1) will be referred to as 2p πu (u, because p = 1 is odd). This πu is
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doubly degenerate as are all orbitals except σ’s. Therefore the following united atom
orbitals can be listed: 1s σg , 2s σg, 2p σu, 2p πu, 3s σg, 3p σu, 3p πu, 3d σg , 3d πg ,
3d δg, etc.

Separated Atom Limit

In the separated atom limit, the molecular orbitals become linear combinations
of atomic orbitals of H. Don’t be concerned about not having two electrons.
The one electron could be on either nucleus (proton) and so forming these linear
combinations is appropriate. Their occupation is another matter and for the problem
being considered, H2

+, only one electron will occupy any molecular orbital. (By
adding and subtracting atomic orbitals, one can form g and u states out of any
like ones.) To indicate the separated atom limit, the n 	 designation will be written
second. The molecular orbitals can then be written as follows: σg 1s, σu 1s, σg 2s,
σu 2s, σg 2p, σu 2p, πg 2p, πu 2p, etc.

5.1.4 Variational Calculation of Ground-State MO for H2
+

Let us calculate the molecular orbitals and energies for the lowest potential of the
hydrogen molecular ion. Recall the previous comments that this solution will not
be exact but rather will proceed in a manner that can be used for more complex
molecules. This problem is ideally suited for working with prolate spheroidal
coordinates—μ, λ, φ. This also affords an opportunity to practice techniques that
all physics students learn but rarely exercise.

z

y

x

R

ra
rb

↖ μ const.

λ const. ↗

�

φ

λ ≡ ra + rb
R

μ ≡ ra − rb
R

(5.11)
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The transformation equations are given by

x =
R

2

[
(λ2 − 1)(1− μ2)

]1/2
cosφ (5.12)

y =
R

2

[
(λ2 − 1)(1− μ2)

]1/2
sinφ (5.13)

z =
R

2
λμ (5.14)

Problem 5.2
Show that the volume element dV = dx dy dz becomes

dV =
R3

8
(λ2 − μ2) dφ dμ dλ (5.15)

Note that −1 ≤ μ ≤ 1, 1 ≤ λ ≤ ∞, 0 ≤ φ ≤ 2π, so the integral of a function
over all space becomes

∫

all space
f dV ⇒ R3

8

∫ 2π

0

dφ

∫ 1

−1

dμ

∫ ∞

1

f(μ, λ, φ)(λ2 − μ2) dλ (5.16)

Previously the approximation was made that

1σg ≈ e−ra + e−rb (5.7)

which is a simple linear combination of 1s orbitals on the separated atom, and it was
found that the behavior as R → 0 was particularly poor. The approximation can be
improved by writing

1σg = N(e−αra + e−αrb) (5.17)

= 2Ne−αRλ/2 cosh
(
αRμ

2

)
(5.17a)

where N is a normalization constant which needs to be evaluated and α is an
adjustable parameter for each value ofR, i.e., α = α(R). From work in the previous
sections, one would suspect that α(R = 0) = 2 and α(R = ∞) = 1. The task at
hand is to minimize the total energy for a given R by varying α and thereby obtain
a good ground-state orbital in the form of (5.17).
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To find the normalization constant, set

∫
(1σg)

2 dV = 1 or

1

N2
=

∫ [
e−2αra + e−2αrb + 2e−α(ra+rb)

]
dV (5.18)

Since the integration is being done over all space, it is permissible to perform the
first two integrals using spherical coordinates centered on the appropriate nucleus.
The first becomes

4π

∫ ∞

0

e−2αrr2 dr (5.19)

This is an easy integral to perform by parts. There is, however, a general equation
for integrals of this type which will prove handy:

∫ ∞

y

xne−ax dx =
n!e−ay

an+1

[
1 + ay +

(ay)2

2!
+ · · ·+ (ay)n

n!

]
(5.20)

It is easy to see that (5.19) becomes 8π/(2α)3 = π/α3. Equation (5.18) now
becomes

1

N2
=

2π

α3
+

∫
2e−α(ra+rb) dV (5.21)

Recognize that the integrand in (5.18) can be thought of as the electron
probability density. The integrals which have been performed can be interpreted
as the total probability of the electron being localized around either nucleus. The
integral in (5.21) can be thought of as the overlap probability. More specifically, one
usually defines the overlap integral as

S ≡ α3

π

∫
e−α(ra+rb) dV (5.22)

from which one can see that

N =

[
α3

2π(1 + S)

]1/2

(5.23)

Next the integration of (5.22) needs to be performed.

S =
α3

π

∫
e−Rαλ dV =

α3R3

4

∫ 1

−1

dμ

∫ ∞

1

e−Rαλ(λ2 − μ2) dλ
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where (5.16) has been used. Now using (5.20) one obtains

S =
α3R3

4

∫ 1

−1

[
2e−Rα

(Rα)3

(
1 +Rα+

R2α2

2

)
− μ2e−Rα

Rα

]
dμ

and finally

S = e−Rα
(
1 +Rα+

R2α2

3

)
(5.24)

The normalized molecular orbital may be written

1σg =

[
α3

2π(1 + S)

]1/2 [
e−αra + e−αrb

]
(5.25)

Using this MO the total energy of the molecule needs to be evaluated and then
minimized by varying α.

The wave function in spheroidal coordinates is given by

ψ = 1σg = 2Ne−αRλ/2 cosh
(
αRμ

2

)
(5.26)

with N =

[
α3

2π(1 + S)

]1/2

(5.23)

The total energy is
∫
ψ∗Hψ dV =

∫
ψ∗

[
−∇2

2
− 1

ra
− 1

rb

]
ψ dV (5.27)

First consider the kinetic energy. The Laplacian in spheroidal coordinates is

∇2ψ =
4

R2

{
1

λ2 − μ2

∂

∂λ

[
(λ2 − 1)

∂ ψ

∂λ

]

+
1

λ2 − μ2

∂

∂μ

[
(1− μ2)

∂ ψ

∂μ

]
+

1

(λ2 − 1)(1− μ2)

∂2 ψ

∂φ2

}
(5.28)

Obviously, from (5.26) ∂ ψ∂φ = 0.

∂ ψ

∂λ
= −αR

2
ψ

∂2 ψ

∂λ2
=
α2R2

4
ψ

∂ ψ

∂μ
=
αR

2
tanh

(
αRμ

2

)
ψ

∂2 ψ

∂μ2
=
α2R2

4
ψ

Using these expressions yields

∇2ψ =
(λ2−1)α2

λ2−μ2
ψ +

(1−μ2)α2

λ2−μ2
ψ− 4αλ

R(λ2−μ2)
ψ− 4αμ

R(λ2−μ2)
ψ tanh

(
αRμ

2

)
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The first and second terms readily sum, leaving

∇2ψ = α2ψ − 4αψ

R(λ2 − μ2)

[
λ+ μ tanh

(
αRμ

2

)]

The kinetic energy is then
∫
ψ∗

(
−∇2

2

)
ψ dV = −α

2

2
(5.29a)

+
α4R2

1 + S

∫ ∞

1

λe−αRλ dλ
∫ 1

−1

cosh2
(
αRμ

2

)
dμ (5.29b)

+
α4R2

1 + S

∫ ∞

1

e−αRλ dλ
∫ 1

−1

μ

2
sinh(αRμ) dμ (5.29c)

(5.29b) yields

α4R2

1 + S

[
e−αR(1 + αR)

(αR)2

] [
sinh(αR)

αR
+ 1

]

(5.29c) yields

α4R2

1 + S

[
e−αR

αR

(
cosh(αR)

αR
− sinh(αR)

(αR)2

)]

(5.29b) + (5.29c) gives

α2

1 + S

[
1 + e−αR(1 + αR)

]

Finally, the kinetic energy is given by (5.29a) + (5.29b) + (5.29c).

KE =
1

2

α2

1 + S

[
1 + e−αR

(
1 + αR − α2R2

3

)]
(5.30)

Problem 5.3
Perform the necessary sums to obtain Eq. (5.30).

The potential energy operator is

− 1

ra
− 1

rb
= −ra + rb

rarb
= − 4λ

R(λ2 − μ2)
∫
ψ∗PEψ dV = −4πN2R2

∫
λe−αRλ dλ

∫
cosh2

(
αRμ

2

)
dμ

= −2α3R2

1 + S

∫ ∞

1

λe−αRλ dλ
∫ 1

−1

cosh2
(
αRμ

2

)
dμ
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Fig. 5.1 Potential energy curves for H2
+. Note how the curves approaching the atomic n = 2

asymptote evolve into Stark-split levels of H at 20 a.u.

This is the same integral as (5.29b) previously.

PE = − 2α

1 + S

[
e−αR(1 + αR)

] [ sinh(αR)
αR

+ 1

]

PE = − α

1 + S

[
2e−αR(1 + αR) +

(
1 +

1

αR

)
− e−2αR

(
1 +

1

αR

)]
(5.31)

The total energy is the sum of (5.30) and (5.31). This can be written out explicitly
writing S from (5.24) in the following form:
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Total energy = KE + PE = α2F1(αR) + αF2(αR)

F1(αR) ≡ 1

2

[
1 + e−αR(1 + αR − α2R2/3)

1 + e−αR(1 + αR + α2R2/3)

]

F2(αR) ≡ −
[
1 + 1

αR + 2e−αR(1 + αR)− e−2αR(1 + 1
αR )

1 + e−αR(1 + αR+ α2R2/3)

]

(5.32)

(5.33)

(5.34)

It has taken a lot of manipulation to get to this point. These expressions give
the energy but are a function of the variational parameter α which still needs to
be determined. Before doing that in general these expressions can be checked for
the limits R = 0 and R = ∞.

At R = ∞, F1(αR) = +1/2 and F2(αR) = −1. Since α will equal 1 for the
separated atom limit, the total energy will be −1/2 Hartree, correct for hydrogen,
and the virial theorem2 (KE = −1/2PE) is satisfied.

At R = 0, F1(αR) = +1/2 and F2(αR) = −2. To see this latter limit, it is not
sufficient to replace the exponentials by the lead term of unity in an expansion about
the origin. Rather e−2αR needs to be replaced by (1−2αR) because the exponential
is multiplied by 1

αR which produces a constant term of −2. It makes no difference
to the other terms whether the exponentials are replaced by unity or by (1 − αR).
Further practice, in which even higher order terms must be kept, is provided by
Problem 5.4 in the next section.

The total energy for R = 0 is then

E(R = 0) =
α2

2
− 2α

Recall that α is a function ofR and needs to be evaluated by minimizing the energy.
This means

dE

dα
= 0 = α− 2

so α = 2 which is the expected value from our previous work. So the KE = +2 and
PE = −4 for a total of −2 Hartrees, correct for He+, and again the virial theorem
is satisfied. Of course the above variational procedure at R = ∞ yields α = 1.
It is, however, much more difficult to evaluate α for intermediate values of R. This
procedure was worked out before computers became ubiquitous but still has some
merit. Let αR = w, and then write

E = α2F1(w) + αF2(w)

dE

dα
= 0 = 2αF1 + α2R

dF1

dw
+ F2 + αR

dF2

dw

2Valid for inverse square force only.
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1

2

1 2 3 4
R

Fig. 5.2 α vs R for H2
+

and

α = − F2 + w dF2

dw

2F1 + w dF1

dw

What is wanted is α for a selection of values of R. Choosing instead a selection
of values for w, one can use the above equation to find α and then R = w/α.
On first reading this may seem circuitous or even silly, but it’s a clever way to
solve an otherwise formidable expression for α. The solution for α(R) is shown
in Fig. 5.2. Figure 5.3 compares three different solutions for the energy. The one
marked “variational” represents the solution given here. The one marked “LCAO,”
for linear combination of atomic orbitals, is the solution one obtains using an α of
unity. The “exact” solution is taken from Sharp.3

5.1.5 Variational Calculation of First Excited State MO
for H2

+

What about the solution for 1σu, the first excited state for H2
+? That molecular

orbital can be written as

3T.E. Sharp, Atomic Data 2, 119 (1971).
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the total energy is then written as

E(αR) = KE + PE = α2F1(αR) + αF2(αR).

As before, when R = ∞, F1(αR = ∞) = +1/2 and F2(αR = ∞) = −1. By
setting dE

dα = 0, one obtains α = 1 and the energy is −1/2 Hartree, appropriate for
the ground state of neutral H. What about for R = 0?

Problem 5.4
Show that F1(αR = 0) = 5/2 and F2(αR = 0) = −2.

So E(R = 0) = 5/2α
2 − 2α

dE

dα
= 5α− 2 = 0 and α = 2/5

Then KE = +2/5 and PE = −4/5, and the virial theorem is satisfied.
The total energy is −0.4Hartree rather than the “correct” answer of−0.5Hartree,

which is the value suitable for the n = 2 state of He+. Note that no real value of α
can produce an energy of −0.5 Hartree.

There is no mystery here. The wonder is that it turns out so well when you
consider that the variational function 1σu misbehaves at R = 0, i.e., it does not
have a form closely approximating the 2pm� = 0 wave function of He+, at least
not close enough to get really good agreement.

5.2 The Hydrogen Molecule, H2

The problem of the hydrogen molecule is, with respect to wave functions, very
similar to H2

+. Because there are two electrons, however, two complications arise.
The first is that the Hamiltonian is more involved, leading to very much more
complicated integral expressions for the total energy. The second is that the wave
function must be a properly antisymmetrized Slater determinant. Let’s consider the
wave function problem first.

Write the atomic orbitals as

a ≡
(
α3

π

)1/2

e−αra (5.35)

b ≡
(
α3

π

)1/2

e−αrb (5.36)
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and the ground-state molecular orbital as

g ≡ [2(1 + S)]−
1/2 (a+ b) (5.37)

Comparison of the expressions with our previous expressions for H2
+ shows that

they are the same. g = 1σg previously and S is given by (5.24) of the previous
section. Next, in complete analogy with the atomic problem, multiply this MO by a
spinor. Call the spin-up spinor

(
1
0

) ≡ γ and the spin-down spinor
(
0
1

) ≡ δ. (These
are usually labeled α and β, but α has been defined as the variational parameter.)
The state function (for the two-electron problem) can be formed as

ψ(1, 2) =
1√
2

∣∣∣∣
g(1)γ(1) g(2)γ(2)

g(1)δ(1) g(2)δ(2)

∣∣∣∣

or
ψ(1, 2) = 2−

1/2g(1)g(2) [γ(1)δ(2)− δ(1)γ(2)] (5.38)

1 and 2 label the electrons. This expression is completely analogous to the ground
state of He in which the configuration is 1s2. g plays the role of 1s and the spinors
are the same. Clearly the spinor part of (5.38) says that the electron spins are
antiparallel or that the state ψ(1, 2) is a singlet state. Furthermore, if the problem
is limited to a single molecular orbital such that (5.37) is the only MO under
consideration, the state ψ(1, 2) is unique. (This is analogous to there being only
one state for a closed shell atomic system.) Recall that any time the energy level
under consideration is composed of a single state of a single Slater determinant,
the matrix elements of one- or two-electron operators are given by considering just
the principal diagonal. Since the Hamiltonian being considered is spin independent,
the matrix elements of H, evaluated with respect to ψ(1, 2), are the same if ψ(1, 2)
were given by

ψ(1, 2) = 2−
1/2g(1)g(2) (5.38a)

Next notice that

g(1)g(2) =
1

2(1 + S)
[a(1)a(2) + a(1)b(2) + b(1)a(2) + b(1)b(2)] (5.39)

(The analogous expression for 1s2 1S is just 1s(1)1s(2). (5.39) is complicated by
being a two-center problem.)

The Hamiltonian for the two-electron, two-center problem being considered is
given by

H = −∇2
1

2
− ∇2

2

2
− 1

r1a
− 1

r2a
− 1

r1b
− 1

r2b
+

1

r12
+

1

R
(5.40)
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The total energy can be found by evaluating

E(α,R) =

∫
ψ∗(1, 2)Hψ(1, 2) dV (5.41)

for any value of R. α is the variational parameter and can be found as before by
setting dE

dα = 0.
Clearly (5.41) becomes a formidable expression with the Hamiltonian of (5.40).

However, all of the required integrals are tabulated in Table 5.1 taken from Slater.4

(Each of the integrals could be done using methods similar to H2
+. Only the 1

r12
term requires something new.)

The results of this calculation, while reasonable, are not nearly so good as for
H2

+. In particular, the energy at R = ∞ is 0.29 Hartree too high. What is
interesting is that simplification of the wave function will improve the result! If
instead of (5.39) the following equation were used

ψ(1, 2) =
1√
2
g(1)g(2) = N [a(1)b(2) + b(1)a(2)] (5.42)

the behavior at R = ∞ becomes correct. Such a calculation, without varying α,
was performed by Heitler and London. The variational problem, which is of interest
here, was performed by Wang and Rosen.

Why does (5.42) work better than (5.39)? The terms a(1)a(2) and b(1)b(2)
represent charge densities in which both electrons are on the same nucleus. While
the contributions exist and should be included, the wave function of (5.39) grossly
overestimates the effect. If one insists on trying to represent the ground-state
potential energy curve with a single MO (minimal basis set), it is better to exclude
such terms entirely and use (5.42).

Proceeding with such a calculation, remembering that the first item of business
is to find the normalization constant N , the kinetic and potential energies can be
expressed as

KE =
α2

1 + S2
(1 − 2SK − S2)

PE =
α

1 + S2
(−2 + 2J + 4KS + J ′ +K ′) +

1

R

(5.43)

(5.44)

(S is the same as used for H2
+.) Here J , K , J ′, etc., are the values of particular

integrals given in Table 5.1.

4Quantum Theory of Matter, 2nd ed. John C. Slater, McGraw-Hill, N.Y., 1968.
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Table 5.1 Integrals needed for the energy calculation of the hydrogen molecule

∫
a(1)(− 1

2
∇2

1)a(1) dv1 = α2

2
∫
a2(1)

(
−1
r1a

)
dv1 = −α

∫
a2(1)a2(2)

(
1

r12

)
dv1 dv2 = 5

8
α

∫
a(1)b(1) dv1 = S = exp (−w)(1 +w + w2

3
) = 1− 1

6
w2 + 1

24
w4 − . . .

∫
a2(1)

(
−1
r1b

)
dv1 = αJ = α[− 1

w
+ exp (−2w)(1 + 1

w
)]

= α(−1 + 2
3
w2 − 2

3
w3 + 2

5
w4 − . . .)

∫
a(1)b(1)

(
−1
r1b

)
dv1 = αK = −α exp (−w)(1 + w)

= α(−1 + 1
2
w2 − 1

3
w3 + 1

8
w4 − . . .)

∫
a(1)(− 1

2
∇2

1)b(1) dv1 = −α2(K + S/2) = α2 exp (−w)( 1
2
+ 1

2
w − 1

6
w2)

= α2( 1
2
− 5

12
w2 + 1

3
w3 − 1

16
w4 + . . .)

∫
a2(1)b2(2)

(
1

r12

)
dv1 dv2 = 〈 a b | g | a b 〉 = αJ ′

= α
[
1
w

− exp (−2w)
(

1
w

+ 11
8

+ 3
4
w + 1

6
w2

)]

= α( 5
8
− 1

12
w2 + 1

60
w4 − . . .)

∫
a2(1)a(2)b(2)

(
1

r12

)
dv1 dv2 = 〈 a a | g | a b 〉 = αL

= α
[
exp (−w)

(
w + 1

8
+ 5

16w

)
+ exp (−3w)

(− 1
8
− 5

16w

)]

= α( 5
8
− 7

48
w2 + 3

64
w4 − . . .)

∫
a(1)b(1)b(2)a(2)

(
1

r12

)
dv1 dv2 = 〈 a b | g | b a 〉 = αK ′

= 1
5
α
[− exp (−2w)(− 25

8
+ 23

4
w + 3w2 + 1

3
w3) +W ′]

= α[ 5
8
− 1

4
w2 + ( 3

100
+ 4

75
ln 4)w4 − . . .]

where W ′ = + 6
w
[S2(C + lnw) + S′2Ei(−4w)− 2SS′Ei(−2w)]

and S′ = exp (w)(1 −w + 1
3
w2) = 1− 1

6
w2 + 1

24
w4 − . . .

C = Euler′s constant
∫ 1
0

1−exp (−t)
t

dt− ∫∞
1

exp (−t)
t

dt = 0.57722

Ei(x) = integral logarithm, Ei(−x) = − ∫∞
x

exp (−t)
t

dt,wherex > 0

The atomic orbitals, a(1), b(1), are defined in Eqs. (5.35) and (5.36). α is a variational parameter;
energies are in Hartrees, distances in au, and w = αR, where R is the internuclear separation

Problem 5.5
Using the values of Table 5.1, derive (5.43) and (5.44). Show that at R = ∞, the total energy is
−1 Hartree, the sum of two hydrogen atoms in the 1s orbital.

The previous problem examined the behavior at R = ∞ and found that the
energies were correct for two separated hydrogen atoms which is promising. But
what happens in the opposite limit ofR = 0, which would correspond to the ground
state of helium? With no difficulty the energy as a function of α is given by
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Fig. 5.4 Lowest two
potential energy curves for
H2 showing positions of
vibrational levels

E(α,R = 0) = α2 − 27

8
α (5.45)

dE

dα
= 0 = 2α− 27

8
; α =

27

16

The second line evaluated the derivative which then yields α = 27/16 which gives
the final result

E = −
(
27

16

)2

= −2.8477 Hartree

The Hartree–Fock ground-state energy of helium is −2.8617 Hartree, so this
approximation is not bad at least at R = 0 and R = ∞.

Now the equilibrium separation is 1.4 a.u. Wang reports an energy for this
calculation of −1.139 Hartrees at equilibrium. The experimental value is −1.174.
The difference is 0.035 Hartree. This must be considered excellent when one
realizes that for He in the ground state, the difference between the previously quoted
Hartree–Fock and the experimental value is 0.042 Hartree.

This energy difference between the HF and the “correct” value is known as
the correlation energy. Configuration interaction is able to account for most of it.
If the ground state of He is multi-configured with 11 configurations, Froese Fischer
reports that ΔE reduces to 0.0007 Hartree.5 Figure 5.4 shows the lowest two

5C. Froese Fischer, The Hartree–Fock Method for Atoms: A Numerical Approach, Wiley, N.Y.,
1977.
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potential energy curves for molecular hydrogen as given by Sharp.6 The placement
of the lowest 12 (of 14) vibrational energy levels has been included. The asymptote
occurs at the sum of the energy of two hydrogen atoms.

5.3 State Designations for Diatomic Molecules

Even as 	z commutes with the one-electron diatomic molecule Hamiltonian, such
that m� is a good quantum number, so Lz =

∑
i(	z)i commutes with the

Hamiltonian of a multielectron molecule. This means that ML, the component of
angular momentum along the internuclear axis, is a constant of the motion.

For atoms, the designation of 	 for a one-electron system is written as as s, p, d,
etc., but the designations for L use the uppercase letters S, P ,D, etc. For molecules
the designations for ML will be written as Σ, Π, Δ, etc., for multielectron diatomic
molecules even as the lowercase σ, π, and δ were previously used for m�. Σ means
ML = 0 and is not degenerate, while ML = ±1 ⇒ Π is twofold degenerate
and likewise for all larger values of ML. Sz may be quantized along the same
internuclear axis allowing the total S to be written as a superscript on the designation
in analogy with atoms. Such a designation may look as 1Σ, 3Σ, etc.

Homonuclear (actually, equal charge) molecules have inversion symmetry. If the
electronic wave function is unchanged under inversion, it is even (gerade); if it
changes sign it is odd (ungerade). The easiest way to see this for the present case is
to note that an inversion interchanges the nuclei so a state like a(1)b(2) + a(2)b(1)
is unchanged when a and b are reversed and must be a g state. The ground state for
H2, considered in the previous section, is then 1Σg. One caution here is that while
it is true that an inversion exchanges identical nuclei, it is not true that an exchange
of nuclei is the same as an inversion. This point is taken up in more detail in the
following chapter.

Recall that the ground-state wave function for H2 was originally written as
ψ(1, 2) = Ng(1)g(2), which could have been written (1σg)

2. Even though
these wave functions were truncated for a better approximation, this did not alter
the symmetry, and these molecular orbitals afford a convenient labeling scheme.
The ground state of H2 could be called (1σg)

2 1Σg, while an excited orbital might
be 1σg1σu 1Σu or 3Σu. Of course a state like (1σu)

2 must be 1Σg .
There is one further symmetry which leads to a distinction for Σ states only. This

is written as Σ+ or Σ− depending on whether the wave function changes sign when
φ is replaced by −φ. This will be introduced in the next section, but two points
should be remembered:

1. The designation is for Σ states only.
2. The designation holds for all diatomic molecules, not just homonuclear ones.

6T.E. Sharp, Atomic Data 2, 119 (1971).
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5.4 First-Row Diatomic Molecules

Consider homonuclear diatomic molecules formed from like elements in the first
row of the periodic table, i.e., Li2 to F2. Further consider that the molecular orbitals
are formed from only the σ 1s, σ 2s, σ 2p, and π 2p atomic orbitals on the separated
atoms. By adding and subtracting these orbitals in like pairs, eight MOs can be
formed, but the ordering of these MOs energetically is not obvious. It is found that
they take the order

1σg 1σu 2σg 2σu 1πu 3σg 1πg 3σu

Each σ orbital can accept two electrons (spin up and spin down), while each π
orbital is doubly degenerate and can therefore accept four.

If these orbitals are filled in the order given above, then, for example, N2, which
has 14 electrons, would have the orbital designation

N2 : (1σg)
2(1σu)

2(2σg)
2(2σu)

2(1πu)
4(3σg)

2 1Σg

and there would be the equivalent of a closed subshell. What about O2? O2 has 16
electrons and it would have

O2 : . . . (as above)(3σg)2(1πg)2

but now the last orbital is only half full, so there must be some multiplet structure.
Let’s make a table of allowed states analogous to what was done for the atomic
case. Next it is possible to infer the multiplet structure by examining the table in a

# ML MS π +
g+ π −

g+ π +
g− π −

g−
1 2 0 1 1 0 0
2 0 1 1 0 1 0
3 0 0 1 0 0 1
4 0 0 0 1 1 0
5 0 −1 0 1 0 1
6 −2 0 0 0 1 1

way similar to what was done for atoms. There are 4!
2!2! = 6 ways of putting two

particles into four boxes. The superscript on πg represents a spin of ±1/2, while the
subscript represents m� = ±1. The order of the columns is unimportant. What is
important is that summing across the rows yields the total values for ML and MS .
Now ML = ±2 is a Δ state, and since MS = 0 for the only two such occurrences
and both orbitals are even, these two must have a 1Δg identity. The remaining four
states all have ML = 0, so clearly three of them belong to 3Σg , while one is 1Σg.

Just as in the atomic case, each line on the table above represents a Slater
determinant, e.g., state #2 could be written
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φ2 = A (πg+(1)α(1) πg−(2)α(2))

where α is the spin-up spinor and β will be the spin-down spinor. Writing out this
wave function yields

φ2 =
1√
2
[πg+(1)πg−(2)− πg−(1)πg+(2)]α(1)α(2) (5.46)

Similarly φ5 is given by

φ5 =
1√
2
[πg+(1)πg−(2)− πg−(1)πg+(2)]β(1)β(2) (5.47)

Clearly these wave functions belong to the triplet as their spins are aligned. So φ3
and φ4 must contribute to the singlet and to the MS = 0 component of the triplet.
These triplet and singlet components are linear combinations of φ3 and φ4. One
such linear combination, which will be seen to belong to the triplet, is given by

φt =
1√
2
(φ3 + φ4)

=
1√
2
[πg+(1)πg−(2)− πg−(1)πg+(2)]

1√
2
(α(1)β(2) + β(1)α(2)) (5.48)

The other linear combination is

φs =
1√
2
(φ3 − φ4)

=
1√
2
[πg+(1)πg−(2) + πg−(1)πg+(2)]

1√
2
(α(1)β(2)− β(1)α(2)) (5.49)

There are two reasons why (5.48) belongs to the triplet. The first is that the spatial
part of the function is the same as (5.46) and (5.47) and one should expect the three
states belonging to MS = −1, 0, 1 to differ only in their spin parts. The second is
that the spin parts of (5.46) and (5.47) are symmetric under exchange of electrons
and so is the spin part of (5.48). This symmetry must be the same for all components
of a multiplet.

In the previous section it was mentioned that the symmetry operation φ → −φ
afforded an additional designation for Σ states. Since all wave functions for diatomic
molecules have some term like e−iMLφ, if φ changes sign, it is equivalent to M
changing sign so long as M �= 0. Such an operation simply carries one degenerate
state into the other for all but Σ states. Consider the Σ wave functions and make the
substitution πg+ → πg−, by changing the sign of m�, and notice that the triplets
change sign while the singlet does not. Hence the 3Σg must be 3Σg

−
, while the 1Σg

is 1Σg
+

.
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Hund’s rule is still applicable for molecules, and this leads to the conclusion that
the 3Σg

−
is the lowest orbital for O2. This yields the interesting complication that

O2 is paramagnetic. Liquid O2 when poured between the pole faces of a magnet is
attracted like iron filings!

5.5 Bonding and Antibonding Orbitals

Look at a correlation diagram for homonuclear diatomic molecules. The left-hand
side represents the united atom limit, while the right-hand side represents the
separated atom limit. Consider only those molecular orbitals relevant to the first
two rows (up to Z = 10) of the periodic table.

1s σ

2s σ

2p σ
2p π

3s σ

3p σ
3p π

3d σ
3d π
3d δ

4s σ

4p σ
4p π

σg

σu

σg

σu

σg

πu

πg

σu

1s

2s

2p

Bonding

Antibonding

σg and πu are bonding orbitals, while σu and πg are antibonding.
Count +1 for every electron pair in a bonding orbital and −1 for every pair in an

antibonding orbital. Count ±1/2 for a single electron in such an orbital. If the sum
of such a count is positive, the molecule is bound. If zero or negative, it is unbound.
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Consider three examples from first- and second-row elements:

1. He2: Count is 0; not bound.
2. N2: Count is +3.
3. O2: Count is +2.

This indicates that nitrogen is more strongly bound than oxygen. Indeed N2 is bound
by 9.7 eV, while O2 is bound by 5.1 eV.

While such an activity may be useful for developing an intuition for the chemical
bond, it really is a poor substitute for doing the relevant quantum mechanics to
determine whether and by how much an electron is bound to a molecule. This
chapter has given you some idea of how such calculations can be performed even if
the detail was far too sketchy to allow you to do them.



Chapter 6
Vibrations and Rotations of Diatomic
Molecules

With the electronic part of the problem treated in the previous chapter, the nuclear
motion shall occupy our attention in this one. In many ways the motion of two nuclei
in a potential well formed by the electron cloud is among the simpler of all quantum
mechanical problems. The reason is that it readily reduces to the motion of a single
particle in a potential well. The derivation of how that comes about is given in detail
in case some have not seen it before.

A single particle in a potential well is also what the hydrogen atom is, and it is
useful to reflect on the differences. For hydrogen, one is interested in the motion
of the electron in the coulombic field of the nucleus. It too is a two-body problem,
but the reduced mass is almost the same as the electron mass. For the diatomic
molecule the reduced mass is half the mass of either nucleus for homonuclear
molecules but always on the order of nuclear masses, not the electronic mass. More
importantly, the attractive force is not coulombic but rather harmonic; it becomes
stronger as the distance between the nuclei gets larger. As a field theory professor
of mine remarked to his class, all of quantum mechanics is the simple harmonic
oscillator! He was not thinking of the diatomic molecule when he said that, but the
diatomic molecule affords an excellent example of a system for which the simple
harmonic oscillator is a good approximation.

When studying an electron in the hydrogen atom one can readily imagine the
spherical coordinates used to locate the electron from the origin which is positioned
at the proton (more properly at the center of mass but that is very close to where the
proton is). For a diatomic molecule one should picture a dumbbell with the center
of mass located midway between the nuclei for a homonuclear molecule, otherwise
closer to the more massive nucleus. The dumbbell can now rotate about the center
of mass, and only two angular parameters are needed to describe that. They are the
same two as used for the angular description of the electron in hydrogen, and hence
the rotational motion is a solved problem.

Imagining a diatomic molecule as a rigid dumbbell when rotating and as two
masses connected to a spring when vibrating is simplistic on the one hand and
remarkably good on the other. Your task is to keep in mind when and how these

R.L. Brooks, The Fundamentals of Atomic and Molecular Physics, Undergraduate
Lecture Notes in Physics, DOI 10.1007/978-1-4614-6678-9 6,
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approximations break down and what can be done about that. One of the easier
ways to picture the situation is to realize that the simple harmonic oscillator
demands a potential curve that looks like a parabola while the real potential curve
looks more like the Morse potential, to be treated subsequently. The real potential
curve supports only a finite number of vibrational levels (often fewer than 20)
while a parabola supports an infinite number. As one gets closer to the top of the
finite potential, vibrational spacings are nothing like that predicted by the simple
expressions derived for the harmonic oscillator even when corrected for anharmonic
effects.

Perhaps one surprising feature that results from applying quantum mechanics to
diatomic molecules is that the spin of the nuclei plays a role. This is a consequence
of spin statistics, is a purely quantum effect, and is one that I have always found
nonintuitive.

This chapter tries to present the core material that one requires when doing
spectroscopy of diatomic molecules. Far more has been left out than included, but
the student should be left in a position to read the classic monograph, Spectra of
Diatomic Molecules by Gerhard Herzberg.1

6.1 Basic Considerations

In the previous chapter the solution of the electronic motion in a diatomic molecule
was discussed, which represents the first part in the two-part Born–Oppenheimer
approximation. The second part considers the motion of the nuclei, which is
represented by (5.3) on page 117:

[
∑

i

− �
2

2Mi
∇2
i + E(Xi)

]
v(Xi) = Ev(Xi) (5.3)

Here Xi are the coordinates of the nuclei of mass Mi. E(Xi) is the potential curve
obtained in the previous chapter which will look like one of the two in Fig. 5.4.

The first step toward a solution of (5.3) is to separate out the center of mass
solution for a system with two nuclei. On the off chance you have not seen this done
before, it will be done here.

Let �RCM =
M1�r1 +M2�r2
M1 +M2

(6.1)

�Rrel = �r1 − �r2 (6.2)

1Spectra of Diatomic Molecules, 2nd ed. Gerhard Herzberg, Van Nostrand Reinhold, N.Y., 1950.
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z

x

y

M1

M2

r1−r2

r2

r1

Fig. 6.1 Vectors relevant to the separation of the center of mass motion

�r1 and �r2 are the vectors from the origin to nucleus 1 and 2, respectively. Figure 6.1
presents the relevant vectors. Remember, all coordinates are now nuclear ones. The
electron coordinates have all been integrated over to obtain the potential energy
curve for nuclear motion.

Equation (5.3) may be written

[
− �

2

2M1
∇2

1 −
�
2

2M2
∇2

2 + E(|�Rrel|)
]
v(�r1, �r2) = Ev(�r1, �r2) (6.3)

It is easiest to work in Cartesian coordinates, and the idea is to reexpress the above
second-order differential equation in center of mass and relative coordinates defined
above. The following is a bit tedious but not difficult:

∇2
1 =

∂2

∂x21
+

∂2

∂y21
+

∂2

∂z21

∇2
2 =

∂2

∂x22
+

∂2

∂y22
+

∂2

∂z22
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�r1 = x̂x1 + ŷy1 + ẑz1

�r2 = x̂x2 + ŷy2 + ẑz2

XCM =
M1x1 +M2x2
M1 +M2

Xrel = x1 − x2

and similarly for YCM , ZCM , Yrel, and Zrel,

�RCM = x̂XCM + ŷYCM + ẑZCM

�Rrel = x̂Xrel + ŷYrel + ẑZrel

Then

∂

∂x1
=
∂ XCM

∂x1

∂

∂XCM

+
∂ Xrel

∂x1

∂

∂Xrel

(chain rule)

∂

∂x1
=

M1

M1 +M2

∂

∂XCM

+
∂

∂Xrel

∂2

∂x21
=

M2
1

(M1 +M2)2
∂2

∂X2
CM

+
∂2

∂X2
rel

+
2M1

M1 +M2

∂2

∂Xrel ∂XCM

and similarly for ∂2

∂y21
and ∂2

∂z21
. Also

∂2

∂x22
=

M2
2

(M1 +M2)2
∂2

∂X2
CM

+
∂2

∂X2
rel

− 2M2

M1 +M2

∂2

∂Xrel ∂XCM

and similarly for ∂2

∂y22
and ∂2

∂z22
.

Looking now at the x-components and remembering that precisely the same
relations hold for y- and z-components, it is possible to write

∇2
1

M1
⇒ 1

M1

∂2

∂x21
;

∇2
2

M2
⇒ 1

M2

∂2

∂x22

Adding these gives

∇2
1

M1
+

∇2
2

M2
⇒ 1

M1 +M2

∂2

∂X2
CM

+
M1 +M2

M1M2

∂2

∂X2
rel
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Let M ≡ M1 +M2 and μ ≡ M1M2

M1+M2
, and realizing that the as-yet-unsolved wave

function can just as easily be considered a function of �Rrel and �RCM yields
[
− �

2

2M
∇2
CM − �

2

2μ
∇2
rel + E(|�Rrel|)

]
v(�Rrel, �RCM ) = Ev(�Rrel, �RCM )

Assume separability, that is, that v may take the form

v(�Rrel, �RCM ) = vCM (�RCM )vrel(�Rrel)

and E = E ′
rel + E ′

CM

The equation itself separates into the form

1

vrel

[
− �

2

2μ
∇2
rel + E(Rrel)

]
vrel − E ′

rel =
1

vCM

[
�
2

2M
∇2
CMvCM

]
+ E ′

CM

Each side is clearly a function of different variables, so each may be set equal to a
constant. Including that constant with the energy leads to the two equations

[
− �

2

2μ
∇2
rel + E(Rrel)

]
vrel = Erelvrel (6.4)

− �
2

2M
∇2
CMvCM = ECMvCM (6.5)

The second equation is just the Schrödinger equation of a free particle of mass M
and is of no particular interest. The first equation is the Schrödinger equation for a
“particle” of mass μ in the potential given byE(Rrel) and represents our looked for
result.

The subscript rel can be dropped and (6.4) can be considered in some detail.
Spherical coordinates may be used, r, θ, and φ, where r ≡ Rrel is the distance
between the nuclei and θ, φ are the usual spherical coordinates which determine the
direction of the “dumbbell” molecule. The notation can be simplified somewhat by
redefining

E(Rrel) ≡ V (r)

vrel(r, θ, φ) = Z(r)Ym� (θ, φ)

This second equation is just a separation of coordinates which will look very similar
to the hydrogen atom in that there is a single particle in a central potential. (The form
of the potential is very different from hydrogen, so a very different radial solution
can be expected. The angular solution, however, must be the same.) Then writing
out the Laplacian in spherical coordinates (6.4) becomes
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[
− �

2

2μ

(
1

r2
∂

∂r

[
r2
∂

∂r

]
− L2

�2r2

)
+ V (r)

]
Z(r)Ym� (θ, φ)

= EZ(r)Ym� (θ, φ)

Once again separating variables, calling the separation constant � (�+ 1) as was
done for hydrogen, yields

[
− �

2

2μ

1

r2
d

dr

(
r2

d

dr

)
+ V (r) +

�
2� (�+ 1)

2μr2

]
Z(r) = EZ(r) (6.6)

and L2Ym� ((θ, φ)) = � (�+ 1) �2Ym� ((θ, φ)) (6.7)

Equation (6.6) is the DE for the radial variable. The term �
2�(�+1)
2μr2 comes from the

angular part of the equation, so it is natural to associate this term with the rotational
energy of the molecule. This is more clearly seen by noting that

�r = |�r1 − �r2| = [r21 + r22 − 2r1r2 cos(180
◦)]

1/2 = r1 + r2

Since the origin is at the center of mass and �r1 and �r2 are oppositely directed, it
follows that

M1r1 =M2r2 = μr

So M1r
2
1 +M2r

2
2 =

μ2r2

M1
+
μ2r2

M2
= μr2

So μr2 = M1r
2
1 + M2r

2
2 = I , which is the moment of inertia of the dumbbell

molecule. Then

Erot =
�
2� (� + 1)

2I
(6.8)

It is tempting to treat I as a constant which would certainly simplify things. In fact,
this is done as a first approximation to a solution. Remember that r changes but little
about some equilibrium value. Such small changes in r produce changes in Erot
much smaller than changes in V (r). To a first approximation if Erot is dropped
from the Hamiltonian, the energy due to vibrations could be found, and then the
rotational energy could be added back in. This shall be done as a first attempt at a
solution. Later it will be seen that inclusion of this term does make second-order but
easily measurable changes to molecular energy levels.

With those comments in mind, return to (6.6) and write this for Erot = 0. (This
is no approximation when � = 0.) What this produces is the differential equation
for vibrational motion which will next be considered. The rotational energy will be
added back in afterward which is equivalent to treating it as a constant:

[
− �

2

2μ

1

r2
d

dr

(
r2

d

dr

)
+ V (r)

]
Z(r) = EZ(r) (6.9)
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Consider solutions close to the equilibrium separation r0, where V (r) achieves a
minimum. Taking the zero of potential to be at infinite nuclear separation, then
V (r0) ≡ −De, which is the equilibrium dissociation energy. Next expand V (r)
in a Taylor series about r0:

V (r) ≈ V (r0) +
d

dr

∣∣∣∣
r=r0

(r − r0) +
d2V

dr2

∣∣∣∣
r=r0

(r − r0)
2

2!
. . .

But V (r) has a minimum at r = r0 so dV
dr

∣∣
r=r0

= 0. Call d2V
dr2

∣∣∣
r=r0

≡ k. Then

V (r) ≈ −De +
k

2
(r − r0)

2 = −De +
k

2
x2 (6.10)

and x ≡ r − r0.
What is about to be done is the transformation of the original differential

equation, written for a function Z(r), into one written for a function H(x), with
x defined above. The reason is simply to try to put the differential equation into a
recognizable form with a known solution. In this case, the solution shall involve the
Hermite polynomials.

The differential operation in Eq. (6.9) may now be written

1

r2
d

dr

(
r2

dZ

dr

)
=

d2Z

dr2
+

2

r

dZ

dr
=

d2Z

dx2
+

2

x+ r0

dZ

dx

As was done for hydrogen, let H(x) ≡ (x + r0)Z(x+ r0). Then

dH

dx
= (x+ r0)

dZ

dx
+ Z

d2H

dx2
= (x+ r0)

d2Z

dx2
+ 2

dZ

dx

and

1

x+ r0

d2H

dx2
=

d2Z

dx2
+

2

x+ r0

dZ

dx

This then leads to
d2H

dx2
+

2μ

�2

(
E′ − 1/2kx

2
)
H = 0 (6.11)

where E′ ≡ E +De.
Equation (6.11) is the Schrödinger equation of a one- dimensional simple har-

monic oscillator in the displacement x from equilibrium. The functions Hn(x) are
Hermite polynomials times an exponential, and the solution for the eigenvalues is

E′
n = �

√
k

μ
(n+ 1/2) = �ω(n+ 1/2)
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with ω2 ≡ k/μ. So the solution for the vibrational energy levels is given by

Evib = −De + �ω(n+ 1/2) (6.12)

Including the rotational energy levels, the full solution may be written

Etot = −De + �ω(n+ 1/2) +
�
2� (�+ 1)

2I
(6.13)

A review of the levels of approximation which were used to obtain this result
would be useful. The Born–Oppenheimer separation is fundamental, is often quite
good, and gives V (r) as a solution to the electronic problem. Next a centrifugal
force contribution to the potential was identified as the rotational energy. This is not
all that bad an approximation. Finally the potential curve V (r) was approximated by
a parabola which, while not bad for very small n, is expected to be rather poor as n
becomes large. Doing better than making a parabolic approximation to the potential
will be the next order of business.

6.2 The Anharmonic Oscillator and Nonrigid Rotator

There exists an analytic potential function with a single adjustable parameter
(besides the well depth) which can reasonably approximate most ground-state
potential curves. In addition it has the property that the Schrödinger equation can be
exactly solved for this potential. It is called the Morse potential and is given by

V (r) = De

[
e−2a(r−r0) − 2e−a(r−r0)

]
+A (6.14)

Here a is an adjustable shape parameter and De is the depth of the well at the
equilibrium separation below the asymptotic value of A.

Figure 6.2 shows a Morse potential for H2 with r0 = 1.4011a0, a = 0.9790a−1
0 ,

De = 0.1745 a.u., and A = −1.0 a.u. It really is quite good for rough work, but
one should take notice that any Morse potential does poorly for small values of r.
At r = 0 the potential is finite rather than infinite as Coulomb repulsion would
demand.

The Morse potential yields the following values for the vibrational energy in
place of (6.12) of the previous section:

Evib = −De + �ω(n+ 1/2)− �
2ω2

4De
(n+ 1/2)

2 (6.15)
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Fig. 6.2 Morse potential for H2 with the “correct” potential of the previous chapter shown in inset
using the same scale for comparison

It is well known in quantum mechanics that such a quadratic arises from the
treatment of the anharmonic oscillator. In such a treatment, V (r) is expressed as a
power series in (r− r0), and terms higher than (r− r0)2 are treated as perturbations
of the harmonic oscillator. Such a treatment results in terms higher than (n+ 1/2)

2.
For most diatomic molecules, (6.15) accounts for the energy separation reasonably
well up to modest values of n. The Morse potential itself has the added advantage
of yielding a reasonable potential curve for fairly large values of (r − r0).

How good is Eq. (6.15) for hydrogen? At v = 0 the formula yields a value only
0.3 % above that of a good quantum mechanical calculation. The error increases
smoothly with v, becoming 11 % at v = 5 and 40 % at v = 10.

Problem 6.1
Express the vibrational frequency ω in terms of a, De, and μ of the Morse potential.

Problem 6.2
How many vibrational levels does Eq. (6.15) predict are bound for molecular hydrogen? Compare
to the correct value of 14.



148 6 Vibrations and Rotations of Diatomic Molecules

The energy levels of a diatomic molecule with anharmonic vibration but rigid
rotation could then be expressed as

Etot = −De + �ω(n+ 1/2)− �
2ω2

4De
(n+ 1/2)

2 +
�
2J(J + 1)

2I
(6.16)

The angular momentum for a molecule is written as J , but in fact J includes
more rotational contributions than just the mechanical tumbling of the molecule
taken up previously. The mechanical tumbling is properly referred to as N , and this
is coupled to the angular momenta of the electron cloud to obtain the total angular
momentum always referred to as J . How this is done gets tricky as one distinguishes
different Hund’s coupling cases. Our discussion is sufficiently elementary that none
of these complications will be taken up and for 1Σ states do not exist.

The classic work on diatomic molecules is by Herzberg,2 and spectroscopists use
strange notation. It is worth some space here to rewrite some of our expressions the
way Herzberg writes them so that you may take advantage of extensive compilation
of the known constants for diatomic molecules.

First, express all energies in cm−1. The symbol ω means 1/λ. The zero of energy
is taken at the minimum of the potential curve. The vibrational energies are then
written

G(v) = ωe(v +
1/2)− ωexe(v +

1/2)
2 + ωeye(v +

1/2)
3 + · · · (6.17)

Here v takes the place of n previously. Clearly this expression is not derivable
from a Morse curve but rather from a power expansion of V (r).

Using this same notation the rotational energies are written

Fv(J) = BvJ(J + 1)−DvJ
2(J + 1)2 + · · · (6.18)

with

Bv ≡ Be − αe(v +
1/2) (6.19)

Dv ≡ De − βe(v +
1/2) (6.20)

and

Be ≡ �

4πcI
De =

4B3
e

ω2
e

2Spectra of Diatomic Molecules, 2nd ed. Gerhard Herzberg, Van Nostrand Reinhold, N.Y. 1950.
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Be, αe, and βe would be tabulated. Clearly the first term in (6.18) is the same as our
Erot written in wave number energy units, except that it allows for a slight change
in the moment of inertia as the molecule rises to high vibrational levels.Dv is a very
small correction and can usually be ignored.

Example: The N2 Molecule

For the ground electronic state of the nitrogen molecule, N2, the following numbers
can be found in Herzberg3:

ωe = 2359.6 cm−1

ωexe = 14.46 cm−1

ωeye = 0.0075 cm−1

Be = 2.01 cm−1

αe = 0.019 cm−1

De = 6 · 10−6 cm−1

βe = 10−9 cm−1

One sees immediately that the dropping of vibrational contributions from terms
higher than quadratic in (n + 1/2) is justified for 1% accuracy. Also, ignoring the
rotational contribution of Dv is justified.

The moment of inertia for N2 is given by

I =
�

4πcBe
= 29.9 amu r2B

The force constant ke is given by

ke = 5.88 · 10−2μω2
e

dyne

cm
= 2.30 · 10+6 dy/cm for N2

= 157 lbs/ft (!)

6.3 Transitions and Selection Rules

When considering transitions between states of molecules one must carefully dis-
tinguish between electronic transitions in which one electron “jumps” to a different
molecular orbital, thereby jumping between potential curves, and transitions within
the same potential curve in which the electron does not take part.

3More recent numbers are compiled in Constants of Diatomic Molecules, K.P. Huber and G.
Herzberg, Van Nostrand Reinhold, N.Y. 1979.
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The former transitions are completely analogous to the atomic case, in which an
electric dipole is induced by the electromagnetic field of a photon. The selection
rules are likewise analogous and arise precisely the same way they do for atoms.
The details are beyond the scope of the present treatment. Calling Λ =ML, there is
the rule for electronic transitions

ΔΛ = 0,±1.

The additional symmetries, ± and g, u, behave according to

g ↔ u g �↔ g u �↔ u

Σ+ ↔ Σ+ Σ− ↔ Σ− Σ+ �↔ Σ−

The vibrational rule is Δv = anything (for different electronic states). The rotational
rule is ΔJ = 0,±1 but not 0 → 0. For transitions in the infrared, in which the
electron does not jump but stays in the ground-state potential, it is not obvious that
any transitions will occur.

When the two nuclei have different charges, it seems reasonable to suppose that
the electrons will localize in such a way that the molecule will possess a permanent
dipole moment, �P . Such a dipole moment will represent an additional term in the
Hamiltonian which so far has been ignored. The radiation field �A will interact with
this dipole moment in the same way that it interacts with the electronic moment so
that transitions will be proportional to

〈ψi |�P |ψf 〉

Now assuming that �P is proportional to the internuclear separation and directed
along that axis and that x = r−re, as before, the dipole moment may be expanded as

P (r) = P (x+ re) ≡ P (re) + x
dP

dr

∣∣∣∣
r=re

≡ P0 + xP1

For harmonic oscillator wave functions this leads to

〈ψi |P|ψf 〉 = 〈Hv′ |P0 + xP1|Hv′′ 〉

where Hv′ is the Hermite polynomial of the lower state with eigenvalues v′ and Hv′′

is for the upper state. Note that the operatorxP1 is proportional to the rate of change
of the dipole moment with internuclear separation. Using the recursion relation

xHv(x) =
1/2Hv+1(x) + vHv−1(x)



6.3 Transitions and Selection Rules 151

the selection rule follows immediately

Δv = ±1.

for vibrational states belonging to the same electronic state. The rotational selection
rule is

ΔJ = 0,±1 but not 0 → 0.

Of course the selection rule Δv = ±1 is only as good as the harmonic oscillator
approximation. When anharmonic terms are included, the rule can be violated but
usually with a significantly reduced intensity.

It follows from this discussion that homonuclear molecules have no dipole
transitions. Very weak transitions can occur if the quadrupole of neighboring
molecules can induce a dipole on a given molecule, which then undergoes an
allowed vibrational or rotational transition. Such transitions become easily
observable in dense gases and in certain liquids and solids.

Of course selection rules tell you which transitions are forbidden. But among
allowed transitions there is an extreme variability of intensities. Consider a transition
between two different electronic potential curves, one that occurs for the same
reasons that excited atoms make transitions. The electronic dipole moment, μe, is
the relevant transition operator, and calculating the transition moment is not easy.
For the point being made now, it is not important. Realize that the operator itself is
a function only of electronic coordinates. The transition moment between levels i
and j is proportional to

Aij ∝ [〈ψi |μe|ψj 〉]2 = [〈ui v′′ |μe|uj v′ 〉]2

= [〈ui |μe|uj 〉 〈 v′′ | v′ 〉]2
(6.21)

where the details are unimportant so don’t be concerned about calculating these
terms. What is relevant is to notice that the total transition moment is a function of
both the electronic and nuclear (vibrational) coordinates. The last term, |〈 v′′ | v′ 〉|2,
which is a function of only the nuclear coordinates, is an overlap integral of
the vibrational wave functions of the upper state and lower state involved in the
transition. It is called the Franck–Condon factor and can be large whenever the
two potential curves are of similar shape and line up, one on top of the other and
Δ v = 0. Guessing whether or not this factor is large by inspection of the potential
curves is often done but probably shouldn’t be as detailed calculations are really
needed to make an appropriate assessment.

The keen-eyed student will have noticed that the separation that gave rise to this
factor for the vibrational wave functions would have done something similar for the
rotational wave functions for precisely the same reason. This factor has not been
included above (but could have been) and is called the Hönl–London factor. More
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properly, the Hönl–London factor is more complicated than just a simple overlap
integral. The issue of laboratory-fixed versus molecule-fixed reference frames is
relevant, and such details are beyond this elementary treatment. This factor is not so
important for survey work because typically either an entire rotational branch shows
in a spectrum or it doesn’t and it is impossible to estimate this factor on inspection
of the potential curves. It would be included when doing detailed calculations.

6.4 Thermal Distribution of Quantum States

Consider the lowest few vibrational and rotational states of a diatomic molecule.
The vibrational energy levels may be written as

G(v) = ωe(v +
1/2)− ωexe(v +

1/2)
2 (6.22)

G(v = 0) =
ωe
2

− ωexe
4

(6.23)

G(v = 0) is the energy of the ground vibrational state with respect to the minimum
of the potential well. Let

G0(v) ≡ G(v)−G(v = 0) = ωev − ωexe(v
2 + v) (6.24)

For a Maxwell–Boltzmann distribution the number of molecules with energyG0(v)
will be distributed according to e−E/kT . Or

Nv
N0

= e−G0(v)hc/kT = e−G0(v)/0.6952T (6.25)

the latter form being correct when G0 is in cm−1 and T is in Kelvin. The total
number of molecules must be

N =
∞∑

v=0

Nv = N0

∞∑

v=0

e−G0(v)hc/kT ≡ N0Qv (6.26)

Qv is called the state sum or partition function. The fraction of molecules having
energyG0(v) must then be given by

Nv
N

=
e−G0(v)hc/kT

Qv
(6.27)
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This is simply the fraction of molecules having a vibrational quantum number
of v. For example, looking at N2, using the values given on page 149, N1/N at
300 K is given by 1.17 × 10−5 while at 1,000 K N1/N = 3.21 × 10−2. So at
room temperature 99.99% of the N2 molecules are in the ground vibrational level.
For this example, the result does not change much if one looks at N1/N0 which is
easier to calculate. For heavier molecules that is not the case.

Since ωe ∝ 1/
√
μ for heavy diatomic molecules, the fraction N1/N (as well as

N1/N0) will be larger. Indeed, for I2 at 300 K, N1/N = 0.23, and a very large
fraction (36 %) of molecules are not in the ground state.

Problem 6.3
Using values for I2, ωe = 214.57 and ωexe = 0.6127 verify the above statement.

An analogous calculation may be performed for the distribution of rotational
levels. There is, however, one big difference which is that each rotational level has
a (2J + 1) degeneracy. Writing

Fv(J) = BvJ(J + 1) (neglectingDv) (6.28)

the ratio of the populationNJ/N0 (for a given fixed v) is

NJ
N0

= (2J + 1)e−Fv(J)hc/kT (6.29)

Defining the rotational partition function to be

Qr ≡
∞∑

J=0

(2J + 1)e−BvJ(J+1)hc/kT (6.30)

the fraction of total molecules in the rotational state J is given as before by

NJ
N

=
(2J + 1)e−BvJ(J+1)hc/kT

Qr
(6.31)

The behavior of this distribution as a function of J is fundamentally different
from the simple exponential behavior of the analogous distribution for vibration.
This one for rotations has a maximum. Its behavior as a function of J is dictated by
the numerator of (6.31). The curve for the ground vibrational state of N2 looks like
the following:
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The value of the maximum is readily seen to be

Jmax =

√
kT

2Bvhc
− 1/2 = 0.5896cm−1/2/K1/2

√
T

Bv
− 1/2

Problem 6.4
Derive this expression for Jmax.

It can be seen that even for very low temperatures (∼ 4K),N2 will have a number
of excited rotational states. However, for molecules like H2 (B0 = 60 cm−1) or D2

(B0 = 30 cm−1), virtually all of the molecules are in the ground rotational state at
4 K. In the next section it will be necessary to modify this conclusion when nuclear
spin is considered.

For sufficiently large T or small Bv, the sum in (6.30) can be replaced by an
integral yielding the approximation

Qr ≈
∫ ∞

0

(2J + 1)e−BvJ(J+1)hc/kT dJ (6.32)

Let R ≡ Bvhc/kT

x ≡ J(J + 1)

dx ≡ (2J + 1) dJ

then Qr =

∫ ∞

0

e−Rx dx = 1/R
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So

Qr =
kT

Bvhc
(High temp.) (6.33)

Equation (6.31) then becomes

NJ
N

≈ Bvhc

kT
(2J + 1)e−BvJ(J+1)hc/kT (6.34)

for high temperature or small Bv. For T ≥ 300 K andB ≤ 10 cm−1, (6.33) will be
better than 2% as an approximation to (6.30).

6.5 Effects of Nuclear Spin for Homonuclear Molecules

Recall that in the Born–Oppenheimer approximation, the total wave function looks
like

ψ = ψeψvψrχ (6.35)

where e means electronic, v means vibrational, and r means the rotational compo-
nent of the total wave function. χ is the spinor which will be treated subsequently.

The question that needs to be answered is the following: what happens to the
wave function if two identical nuclei are interchanged? The answer depends on
whether the nuclei are fermions or bosons. This is determined by the total nuclear
spin I . If it is half-integer, the nucleus is a fermion; if it is integer, the nucleus is a
boson. For fermions, the wave function must change sign while for bosons it must
not change sign.

The task at hand is to determine what happens to the sign of the above wave
function under interchange of nuclei. An exchange of nuclei can result from a
double operation. First invert the entire wave function, nuclei, and electrons; then
again invert just the electrons. First, consider just the coordinate-dependent wave
functions, ψe, ψv , and ψr; the spinor will be treated afterward. χ is not a function
of the usual spatial coordinates.

The total coordinate wave function is said to be positive or negative depending on
whether it changes sign under inversion of all coordinates. ψv never changes sign,
so there is no worry about it. ψr changes sign under inversion depending on whether
J is even or odd. For ψe, it depends on whether Λ is zero (a Σ state) or nonzero.
If nonzero, there is a double degeneracy, such that one state changes sign and the
other does not; hence this symmetry operation imposes no constraints on the wave
function.

For Σ states, a total inversion effectively changes the direction of the internuclear
axis and hence changes sign for Σ− states while Σ+ states remain unaffected. So
consider the consequences of the first operation—total inversion of the nuclear and
electronic coordinates:
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Σ+

J

3 −
2 +

1 −
0 +

Σ−

J

3 +

2 −
1 +

0 −

The + or − to the right of every level represents the product of the evenness or
oddness of the J value with the superscript of the Σ. If the state were Π or Δ,
for example, none of this discussion is relevant because the double degeneracy
contains states of both symmetries so anything is possible. Now this isn’t a true
statement always because high-resolution work can often resolve what is called
lambda doubling, but for the purpose of this discussion it will be accepted.

The second operation now is to invert just the electronic wave functions.
Such an inversion will change the sign of Σu wave functions but leave Σg ones
unaffected. Call the total coordinate wave functions symmetric (s) or antisymmetric
(a) depending on whether it changes sign after both these operations are performed,
these operations being equivalent to an exchange of nuclei:

Σ+
g

J

3 − a

2 + s

1 − a

0 + s

(a)

Σ+
u

− s

+ a

− s

+ a

(b)

Σ−
g

J

3 + s

2 − a

1 + s

0 − a

(c)

Σ−
u

+ a

− s

+ a

− s

(d)

The diagrams above are twice as numerous as previously because each of the Σ
states may be “g” or “u” in addition to “+” or “−”. “a” or “s” to the right of each
level is the product of the + or − at the right of each level with the evenness or
oddness of “g” or “u”. It represents the total coordinate symmetry, under exchange
of nuclei, of the state under consideration.

In order to tell whether the total wave function is symmetric or antisymmetric to
an exchange of nuclei, one needs to consider the spin wave functions and multiply
their symmetry by that of the coordinate wave function.
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If the two nuclei have spins of I1 and I2, then the total spin (call it T ) is given by

T = I1 + I2 (6.36)

where the addition is that of two angular momenta. For homonuclear molecules, the
only ones that need to be considered here, I1 = I2, giving

T = 2I, 2I − 1, 2I − 2, . . . , 0

Consider the case of H2 in which each nucleus has a spin of 1/2. The total nuclear
spin of each molecule may be 0 or 1. The total nuclear spin eigenfunctions must be
singlet and triplet and look, by now familiarly, like

Triplet
α(1)α(2)

α(1)β(2) + α(2)β(1)

β(1)β(2)

Singlet

α(1)β(2) − α(2)β(1)

α and β are the spin-up and spin-down spinors for spin 1/2 particles. Consider the
ground electronic state of H2 which is Σ+

g , so table (a) is relevant. Since the nuclei
are fermions, the total wave function must be antisymmetric under exchange of
nuclei. Since the coordinate functions are symmetric for J = 0, 2, 4, these must be
paired with the antisymmetric singlet states while J = 1, 3, 5, etc., must be paired
with the symmetric triplet states. The triplet nuclear spin states have a statistical
weight of 3 (MT = −1, 0,+1), while singlets have a statistical weight of 1. When
the rotational spectrum is analyzed, the lines show an alternation of intensities in
the ratio 3:1.

The states of a given symmetry with the greater statistical weight are called ortho
while those with the lesser weight are called para. These species are noninteracting
in the absence of external fields. For H2, the rotational levels may be labeled:

H2 Σ+
g

J

3 − a ortho

2 + s para

1 − a ortho

0 + s para

Let’s review the notation. The numbers on the left are the J values, the rotational
quantum number. The +,− on the right are the symmetry of the wave function
to an inversion of all coordinates and are given by (−1)J multiplied by the +,−
superscript on Σ±. The s and a on the right are the total symmetry of the coordinate
wave function obtained by multiplying the +,− on the right by +1 for gerade
and −1 for ungerade. Finally para and ortho are determined by considering whether
the nuclei are fermions or bosons. H2 is composed of fermions, so the total wave
function must be antisymmetric. Hence the antisymmetric (para) spin functions
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are matched to the symmetric coordinate functions, and the symmetric (ortho) spin
functions are matched to the antisymmetric coordinate functions.

For nuclear spins greater than 1/2, it is not so easy to know whether the total spin
function is symmetric or antisymmetric. The following will help:

Nuclear spin symmetric if: T = 2I, 2I − 2, 2I − 4, . . .

Statistical weight is: (2I + 1)(I + 1)

Always ORTHO

Nuclear spin antisymmetric if: T = 2I − 1, 2I − 3, 2I − 5, . . .

Statistical weight is: (2I + 1)(I)

Always PARA

(6.37)

(6.38)

This discussion has been about a purely quantum effect which dictates whether or
not a given rotational level of a homonuclear diatomic molecule can be populated at
all and if so, with what statistical weight. These weights then can be readily verified
by measurements of the relative intensities of rotationally resolved spectral lines.
The more one reflects on the fact that a diatomic molecule, which tumbles because
it is shaped like a dumbbell, obeys a quantum rule for tumbling dictated by the spin
statistics of its constituent nuclei, the more one is impressed by the extraordinary
success of quantum mechanics to describe the physical world. At least I am!

When solving problems from this section one needs to proceed in reverse order
to how the material was presented. First consider whether the nuclei are fermions
or bosons which dictates the overall symmetry of the total wave function. Then
you need to obtain that symmetry by forming the product of the symmetry of the
ortho or para states with the symmetry of the coordinate state of a given J value.
The example below brings this altogether.

Example

Consider a 10B2 molecule with I = 3 and a ground electronic state of Σ−
g .

The symmetric nuclear states have T = 6, 4, 2, and 0 while the antisymmetric
ones are T = 5, 3, and 1. The statistical weight of the symmetric ones is 28.
(One does not need formula (6.37) above. Just count the MT values. There are
(2 · 6 + 1) + (2 · 4 + 1) + (2 · 2 + 1) + (2 · 0 + 1).) The statistical weight of the
antisymmetric ones is 21. The nuclei are bosons, so
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B2 Σ−
g

J

3 + s ortho

2 − a para

1 + s ortho

0 − a para

At very low temperatures, when all of the molecules sink to the lowest allowed
states, 3/7 will be in the J = 0 level, while 4/7 will be in the J = 1.

Problem 6.5
Try N2 (I = 1).

6.6 Labeling of Rotational Bands

Transition designators between levels in diatomic molecules use a special shorthand
notation for the rotational aspect of the transition. This notation is used whether
the transition occurs between two different electronic potential curves or simply
between two different vibrational levels within a single electronic potential. Recall
that the selection rule for J for a (dipole) transition is ΔJ = 0,±1. Transitions with
ΔJ greater than ±1 can occur through quadrupolar and higher multipole moments,
but such transitions become weaker as the multipole becomes higher. The transitions
are labeled alphabetically starting from Q when ΔJ = 0. Here ΔJ means J of the
upper level minus J of the lower level. Higher letters in alphabetical order are used
for positive ΔJ and lower ones for negative ΔJ . That is,

Q when ΔJ = 0

P when ΔJ = −1 R when ΔJ = +1

O when ΔJ = −2 S when ΔJ = +2

N etc. T etc.

The J value of the level lower in energy is placed in parentheses, following the
letter. Note that the rule states “lower level” which can be either the initial level or
the final level depending on whether the transition occurs in absorption or emission.

So R(1) is a transition from J = 1 to J = 2 in absorption
J = 2 to J = 1 in emission

Look at the figure for 4He2. Because this transition occurs in the visible part of
the spectrum, one can assume that it is an electronic transition. Molecular helium is
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an excimer, which means that the lowest electronic potential curve, the X 1Σ+
g , is

repulsive; it has no significant potential well. (Determining the size of the very slight
potential depression is an ongoing endeavor.) But once an electron is excited, there
exist a series of potential wells with increasingly larger energy until one reaches
the lowest potential for the He2

+ molecular ion which is stable. Transitions can
occur between these excited potential curves for molecular helium just as they can
for any other diatomic molecule. Of course the main difference is that a spontaneous
transition to the ground-state potential causes the excimer to fly apart. A discharge in
helium gas will result in both molecular and atomic lines with higher gas pressure
favoring the formation of excimer transitions. The spectra being presented (because
they are extremely clean examples of the effects of nuclear spin on rotational
transitions) were actually acquired from helium gas at 4.2 K being excited by a
proton beam, but that need not be of concern here.4

The strong feature just above 15,600 cm−1 is the unresolved Q-branch of the
3Σ+

u → 3Πg (v = 0 to v = 0) transition which has anR-branch to higher frequency
and a P -branch to lower frequency. First take note that every second line is missing.
This is a consequence of applying the rules for nuclear spin statistics to each of
the potentials in turn. Only the upper, 3Σ+

u , is restrictive, and because the nuclei
are bosons, the total wave function must be symmetric. The Σ+

u wave functions are
symmetric for odd J values, so only those can exist in the upper potential. When a
transition is made to the lower potential, J changes by zero (Q-branch) or ±1 (P -
and R-branches), and every J value is possible in the lower potential as there are
no symmetry restrictions because of the double degeneracy. But odd J values in the
upper level convert to even J values in the lower level for both R- and P -branch
transitions. Since such transitions are labeled by the lower J value one sees only
even values on the figure.

Problem 6.6
If the transition were 3Σ+

u → 3Σ+
g , show that the Q-branch is missing.

If one looks at the same electronic transition in the isotopic molecule, 3He2 quite
a bit is different. First the nuclei are fermions and so the entire wave function must
be antisymmetric. But the total nuclear spin can be 1 or 0 as the individual nuclei
have spin 1/2. The molecules with nuclear spin 1 are ortho, have a statistical weight
of 3, and have a symmetric wave function. Those with nuclear spin of 0 are para,
have a statistical weight of 1, and have an antisymmetric wave function. For the
same reasons as previously, only the upper, 3Σ+

u , is restrictive, but now even J
values must be paired with the symmetric ortho spin states while odd J values are
paired with the para states in order for the entire wave function to be antisymmetric.
The lower electronic level is nonrestrictive because it is Π, but after a transition,
the molecules that started with an even J value find themselves with an odd value
following either a P or R transition. These are the ones that came from the levels

4R.L. Brooks and J.L. Hunt, J.Chem.Phys. 88, 7267 (1988).



6.7 Transitions Revisited 161

with the higher statistical weight, so the stronger lines have labels in the figure with
odd J values. The ratio of intensities is 3 to 1 which is the ratio of statistical weights
dictated by the nuclear spin statistics.

6.7 Transitions Revisited

The previous two figures present an opportunity to point out a rather fundamental
aspect of molecular spectroscopy. Molecular constants, the ones tabulated in books
or online sources, almost always are derived from spectra not from ab initio
calculations. Extraction of these constants from detailed line-lists is done using
least-squares fitting on any modest computer. It is useful for you to realize that
perfectly reasonable estimates for some of these constants can be obtained by taking
judicious differences of wave number values and using elementary logic.

For example, if one wanted to obtain the rotational constant for the lower 3Π and
vibrational quantum number 0 (because the transitions in Figs. 6.3 and 6.4 are for
v = 0 to v = 0 in each potential curve), one could subtract two transition values
that originate on the same upper level but have different lower levels. For example,
the R2 and P4 transitions both have J = 3 in their upper originating energy level.
The difference between the two quoted transition values would then be the energy
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159001560015300
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10 2
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Fig. 6.3 Emission spectrum of 4He2 near 640 nm
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Fig. 6.4 Emission spectrum of 3He2 near 640 nm

difference between the J = 2 and J = 4 levels of the lower potential for v = 0.
The relevant equation is number (6.18). Using just the linear term and specializing
to v = 0 yields

F0(Jupper)− F0(Jlower) = B0(Ju(Ju + 1)− Jl(Jl + 1)).

If one does not have the quoted line positions and are reading values from a graph, it
makes statistical sense to use two well-separated lines. ChoosingR(10) and P (12),
the energy difference is about 330 cm−1 which yields a value forB0 = 7.17 cm−1.
This compares favorably to the quoted value of 7.306 cm−1. One could do several
pairs and the exercise is easier if the line positions are tabulated, which they
often are.

Problem 6.7
Choose two well-separated lines from the spectrum of 3He2 to obtain the B0 value for the lower
potential and compare to the quoted value of 9.67 cm−1. Do the same for the upper potential and
compare to 9.58 cm−1.



Appendix A
Some Atomic Constants

Quantity Symbol Value in SI (cgs) unitsa

Speed of light in vacuum c 2.99792458 × 108 m/s (1010 cm/s)
Elementary charge e 1.6021765 × 10−19 C (4.803242 × 10−10 esu)
Planck’s constant h 6.626069 × 10−34 J s (×10−27 erg s)

� 1.0545716 × 10−34 J s (×10−27 erg s)
Electron rest mass me 9.109382 × 10−31 kg (×10−28 g)
Boltzmann constant kB 1.380650 × 10−23 J/K (×10−16 erg/K)

kB/hc (0.6950356 cm−1 K−1)

Rydberg constant R∞ 1.09737315685 × 107 m−1 (×105 cm−1)

R∞hc 2.179872 × 10−18 J = 13.605691 eV
Fine-structure constant α−1 137.0359997
Bohr radius a0 0.529177208 × 10−10 m (×10−8 cm)

Atomic mass unit 1 u = mu 1.6605388 × 10−27 kg (×10−24 g)
Proton rest mass mp 1.6726216 × 10−27 kg (×10−24 gm)

mp/me 1836.152672
Electron g factor ge −2.002319304362

Bohr magneton μB 9.274009 × 10−24 J T−1

μB/hc (4.668645 × 10−5 cm−1 gauss−1)

Nuclear magneton μN 5.0507832 × 10−27 J T−1

aP.J. Mohr, B.N. Taylor and D.B. Newell, Rev. Mod. Phys. 80, 633 (2008)

R.L. Brooks, The Fundamentals of Atomic and Molecular Physics, Undergraduate
Lecture Notes in Physics, DOI 10.1007/978-1-4614-6678-9,
© Springer Science+Business Media New York 2013
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Appendix B
Polynomials and Spherical Harmonics

The associated Laguerre polynomials are defined as

Lμλ(x) =
1

λ!
x−μex

dλ

dxλ
(
xλ+μe−x

)

The Legendre polynomials are defined as

P� =
1

2�	!

d�

dx�
(
x2 − 1

)�
; P�(1) = 1 for all 	

The spherical harmonics are

Ym� (θ, φ)= (−1)meimφ
[
(2	+1)(	−m)!

4π(	+m)!

]1/2
sinm θ

dm

dxm
P�(x) for x= cos θ

Orthonormality and completeness are given by

∫ 2π

0

∫ π

0

Ym� (θ, φ)Y∗m
�′ (θ, φ) sin θ dθ dφ = δ��′δmm′ (B.1)

∞∑

�=0

�∑

m=−�
Y∗m
� (θ′, φ′)Ym� (θ, φ) = δ(φ − φ′)δ(cos θ − cos θ′) (B.2)

R.L. Brooks, The Fundamentals of Atomic and Molecular Physics, Undergraduate
Lecture Notes in Physics, DOI 10.1007/978-1-4614-6678-9,
© Springer Science+Business Media New York 2013
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Y∗m
� (θ, φ) = (−1)mY−m

� (θ, φ) (B.3)

Ym� (π − θ, φ+ π) = (−1)�Ym� (θ, φ) Inversion: �r → −�r (B.4)

Y0
� (θ, φ) =

(
2	+ 1

4π

)1/2

P�(cos θ) No φ dependence (B.5)

Ym� (0, φ) = Y0
� (0)δm0 =

√
2	+ 1

4π
δm0 (B.6)

The expansion of 1
r12

occurs often in this text, and its derivation will be given here:

1

|�r1 − �r2| =
∞∑

�=0

�∑

m=−�

4π

(2	+ 1)

r�<
r�+1
>

Y∗m
� (θ2, φ2)Y

m
� (θ1, φ1) (B.7)

�r1 and �r2 are arbitrary vectors having the usual spherical coordinate angles θ1, φ1
and θ2, φ2, respectively. Let γ be the angle between these vectors, r̂1 · r̂2 = cos γ,
such that if the z-axis of a coordinate system were aligned with either �r1 or �r2, γ
would play the role of θ for that coordinate frame. In that coordinate frame the role
of φ is played by ω. The first step is to recall that

∇2(|�r1 − �r2|−1) = 0 except at �r1 = �r2

If �r2 is chosen to lie along the z-axis, there is azimuthal symmetry with the solution

1

|�r1 − �r2| =
∞∑

�=0

[A� r
� +B� r

−(�+1)] P�(cos θ)

This is the general solution to Laplace’s equation in spherical coordinates with
azimuthal symmetry. Since this solution is valid everywhere (except at �r1 = �r2),
it must be valid for �r1 on the z-axis. Then

RHS =

∞∑

�=0

[A� r
� +B� r

−(�+1)]

LHS =
1

(r1 − r2)
=

1

r1
(1− r2/r1)

−1 r1 > r2

=
1

r1

[
1 +

r2
r1

+

(
r2
r1

)2

+

(
r2
r1

)3

+ · · ·
]

=
1

r1

∞∑

�=0

(
r2
r1

)�
=

∞∑

�=0

r2
�

r1�+1



B Polynomials and Spherical Harmonics 167

which holds whenever r1 > r2. Whenever r2 > r1, one obtains

LHS =
∞∑

�=0

r1
�

r2�+1

These two possibilities can be combined into the single expression:

LHS =

∞∑

�=0

r<
�

r>�+1

where r<(r>) is the lesser (greater) of r1 and r2. This is compatible with the right-
hand side. For example, if r1 > r2 B� = r�2 and A� = 0 while if r2 > r1 A� =

1/r
(�+1)
2 and B� = 0. When r1 is not along the z-axis, the solution would look like

1

|�r1 − �r2| =
∞∑

�=0

r<
�

r>�+1
P�(cos θ)

Finally if r2 had not been along the z-axis, θ would have been γ yielding

1

|�r1 − �r2| =
∞∑

�=0

r<
�

r>�+1
P�(cos γ). (B.8)

It remains to show that P�(cos γ) can be expanded in spherical harmonics. The
expression is referred to as the spherical harmonic addition theorem:

P�(cos γ) =

(
4π

2	+ 1

) �∑

m=−�
Y∗m
� (θ2, φ2)Y

m
� (θ1, φ1) (B.9)

First consider a function g(θ, φ) which will at first be identified with the spherical
harmonic having coordinates θ1, φ1. It will then be expanded in spherical harmonics
using γ, ω coordinates. It’s value at γ = 0 will prove to be important, but at that
value for γ, it becomes equal to the spherical harmonic having coordinates θ2, φ2.
Let’s see how this unfolds:

g(θ1, φ1) ≡ Ym� (θ1, φ1) (B.10)

=

�∑

m′=−�
a�m′Ym

′
� (γ, ω) (B.11)

No summation over 	 is needed as the spherical harmonics do not change 	 value
under a coordinate rotation:

g(θ1, φ1) |γ=0 =

�∑

m′=−�
a�m′

[
(2	+ 1)

4π

]1/2

δm′0 = a�0

[
(2	+ 1)

4π

]1/2

(B.12)
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This follows from property (B.6) of spherical harmonics. Using (B.11), one can see
that ∫

g(θ1, φ1) Y
∗0
� (γ, ω) dΩγ,ω = a�0

But from (B.10), this means that
∫

Ym� (θ1, φ1) Y
∗0
� (γ, ω) dΩγ,ω = a�0 (B.13)

It is now possible to expand P�(cos γ) itself in spherical harmonics:

P�(cos γ) =

�∑

m′=−�
b�m′ Ym

′
� (θ1, φ1) (B.14)

If one now multiplies both sides by Y∗m
� and integrates over all space,

∫
P�(cos γ)Y

∗m
� dΩ =

�∑

m′=−�
b�m′ δmm′ = b�m (B.15)

From Equation (B.5), it follows that

P�(cos γ) =

[
4π

(2	+ 1)

]1/2

Y0
� (γ, ω)

though in this expression ω is irrelevant. Inserting this into (B.15) yields

[
4π

(2	+ 1)

]1/2 ∫
Y0
� (γ, ω)Y

∗m
� (θ1, φ1) dΩ = b�m

But from (B.13), it follows that

b∗�m = a�0

[
4π

(2	+ 1)

]1/2

Substituting the right-hand side of the above from (B.12) yields

b∗�m =
4π

(2	+ 1)
g(θ1, φ1) |γ=0

But as stated in the introduction of this derivation at γ = 0, one can write

g(θ1, φ1) |γ=0 = Ym� (θ2, φ2)

from which it follows that

b∗�m =
4π

(2	+ 1)
Ym� (θ2, φ2).
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Taking the complex conjugate and putting back into Eq. (B.14) yields the result

P�(cos γ) =

(
4π

2	+ 1

) �∑

m=−�
Y∗m
� (θ2, φ2)Y

m
� (θ1, φ1)

where the dummy index m′ has been replaced by m everywhere. This completes
the derivation of Equation (B.7).

Sometimes one sees spherical harmonics redefined to emphasize their relations
to the Cartesian coordinates x, y, and z. Define

Cm� ≡
(
2	+ 1

4π

)1/2

Ym� (θ, φ)

(eliminates some annoying constants.) Note that C0
1 = cos θ = Z/r:

C−1
1 − C1

1√
2

= sin θ cosφ = x/r

C−1
1 +C1

1

−√
2i

= sin θ sinφ = y/r

These linear combinations have the spatial symmetries of x, y, and z. Wave
functions using these combinations are labeled px, py, and pz (p because 	 = 1).

Similarly for 	 = 2, one may write

C0
2 =

3

2
cos2 θ − 1

2
=

1

r2

(
z2 − x2 + y2

2

)

C−1
2 − C1

2√
2

=
√
3 sin θ cos θ cosφ =

√
3
xz

r2

C−1
2 +C1

2

−√
2i

=
√
3 sin θ cos θ sinφ =

√
3
yz

r2

C2
2 = C−2

2√
2i

=

√
3

2
sin2 θ sin 2φ =

√
3
xy

r2

C−2
2 +C2

2√
2

=

√
3

2
sin2 θ cos 2φ =

√
3

2

x2 − y2

r2

These linear combinations are sometimes labeled dxy , dx2−y2 , etc. This labeling is
not usually carried beyond 	 = 2. Such wave functions are often used for molecular
orbital theory.



Appendix C
Some Tensor Background

A vector may be defined as any object which transforms like a coordinate point

A′
i = λijAj

A coordinate point transforms by coordinate rotation by

x′i = λijxj

where λij ≡ cos(x′i, x
′
j).

In n-dimensional space, an mth rank tensor is an object which transforms under
coordinate rotations as

T ′
abcd... = λaiλbjλckλd� . . . Tijkl...

It has nm components. Such a Cartesian tensor has a rank given by the number of
indices. In three dimensions, an 	th-rank tensor has 3� components.

A symmetric tensor is invariant to the interchange of any two indices. For an 	th-
rank tensor, this reduces the number of components from 3� to (	+1)(	+2)/2. (Can
you show this?) For example, a 4th rank tensor is reduced from 81 to 15 components.

Now a second rank tensor is traceless whenever

δijTij = 0 or T11 + T22 + T33 = 0

The generalization of this is that

δmnTijk...� = 0

where m and n are any two indices. Such a tensor is said to be irreducible and has
only (2	 + 1) independent components. So a 4th rank tensor which started with 81
components would have only 9.

Most tensors which describe physical phenomena are symmetric, and by being
clever, one can usually make them irreducible.
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Consider, for example, an electrostatic multipole moment. You may recall that
the quadrupole moment is defined as

Qij =
1

2

∫
ρ(�r ′)

(
3x′jx

′
i − r′2δij

)
dτ ′

The 2�th pole moment is defined as

Qijk...� ≡ (−1)�

	!

∫
ρ(�r ′)r′(2�+1)∇′

i∇′
j∇′

k . . .∇′
�

(
1

r′

)
dτ ′.

Such a moment satisfies δmnQijk...� = 0 and is symmetric.
Recall that for Ym� m ranges from −	 to 	 and takes on (2	 + 1) values. In this

way Ym� can be used as a basis for irreducible tensors or spherical tensors. The
spherical tensor analog of Qijk...� is

qlm ≡
∫

Y∗m
� (θ′, φ′)r′�ρ(�r ′) dτ ′



Appendix D
Magnetic Dipole Interaction Energy

Recall that the definition of the magnetic dipole, �μ, of a current distribution is

�μ ≡ 1

2c

∫
�r′ × �J(�r) dτ ′

But
�J = Nq�v = N

q

m
�p

whereN is the number of particles (of mass m and charge q) per unit volume and �p
is the momentum. So

�μ =
Nq

2cm

∫
(�r′ × �p′) dτ ′

If there is but one particle in a volume V with charge q = −e whose angular
momentum is a constant of the motion, the dipole moment may be written as

�μ = − e�	

2cmV

∫
dτ ′ = − e�	

2mc
(D.1)

The interaction energy (potential energy) of a magnetic dipole moment in an
external magnetic field is what is desired. (The analogous result for an electric dipole
in an external electric field is −�p· �E.) Expand the magnetic field about some suitable
origin:

Bi(�r) = Bi(0) + �r · �∇Bi(0) + · · · (D.2)

Now the force on a current distribution in an external field is

�F =
1

c

∫
�J(�r′)× �B(�r′) dτ ′ (D.3)

(This is just an extension of the Lorentz law, �F = (q/c)�v × �B.) Putting (D.2) into
(D.3) gives

�F =
−1

c
�B(0)×

∫
�J(�r′) dτ ′ +

1

c

∫
�J(�r′)× [(�r′ · �∇) �B(0)] dτ ′ + · · ·
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The first term is zero for steady-state localized currents. Next note that

�J(�r′)× [(�r′ · �∇) �B] = �J(�r′)× �∇(�r′ · �B)

This follows by the vector identity

�∇(�r′ · �B) = �r′ × (�∇× �B) + �B × (�∇× �r′) + (�r′ · �∇) �B + ( �B · �∇)�r′

However, �∇× �B = 0 and ∇ do not operate on primed variables, so only the third
term on the RHS is nonzero. Next note that

�∇× (�r′ · �B) �J = (�r′ · �B)�∇× �J(�r′) + �∇(�r′ · �B)× �J(�r′)

This is a vector identity and the first term of the RHS is zero because ∇ does not
operate on �J(�r′). So

�F = −1

c
�∇×

∫
�J(�r′)(�r′ · �B(0)) dτ ′ (D.4)

Now use the identity

�B × (�r′ × �J ′) = �r′( �B · �J ′)− �J ′(�r′ · �B)

to express the integral as
∫

�J(�r′)(�r′ · �B) dτ ′ =
∫
�r′( �B · �J ′) dτ ′ − �B ×

∫
(�r′ × �J ′) dτ ′ (D.5)

On the LHS, there is

Bi

∫
J ′
jx

′
i dτ

′ = Bi

∫ [∇′
�(x

′
jJ

′
�)
]
x′i dτ

′

(This is easy to get by working on the right to obtain the left.) Now integrate the
RHS by parts:

= −Bi
∫
x′jJ

′
�∇′

�x
′
i dτ

′

= −Bi
∫
x′jJ

′
i dτ

′

= −
∫
�r′( �B · �J ′) dτ ′

So the first term on the RHS of (D.5) is the negative of the LHS. (D.5) becomes

∫
�J(�r′)(�r′ · �B) dτ ′ = −1

2
�B ×

∫
(�r′ × �J ′) dτ ′
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Putting this into (D.4) gives

�F = �∇×
[
�B × 1

2c

∫
(�r′ × �J ′) dτ ′

]

or �F = �∇× ( �B × �μ) (D.6)

Now use the vector identity

�∇× ( �A× �B) = �A(�∇ · �B)− �B(�∇ · �A) + ( �B · �∇) �A− ( �A · �∇) �B

and �F = (�μ · �∇) �B = �∇(�μ · �B) (D.7)

remembering that �μ is a constant vector and that div �B = curl �B = 0.
So if �F = −∇W where W is the potential energy, it follows that

W = −�μ · �B (D.8)
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Dirac delta function, 97
Dissociation energy, 145
Dummy, 4

E
Eigenstate of hydrogen, 19
Einstein A coefficient, 110
Einstein B coefficient, 110
Einstein summation convention, 4
Electric dipole

approximation, 102
transition, 107

Electric multipole moment, 107
Electron probability density, 122
Electron volt (eV), 15
Emission, 100
Energy density, 100
Equivalent electrons, 49–51
Exchange

integral, 58, 61
interaction, 63

F
Fermi contact term., 91
Fermions, 44, 155

R.L. Brooks, The Fundamentals of Atomic and Molecular Physics, Undergraduate
Lecture Notes in Physics, DOI 10.1007/978-1-4614-6678-9,
© Springer Science+Business Media New York 2013

177



178 Index

Fermi’s golden rule, 97
Fine structure, 35, 73–80
Fk, 61, 62
Franck–Condon factor, 151

G
Generalized angular momentum, 27
Gerade, 118
Gk, 61
Grotrian level diagram, 16

H
H+

2 , 117
Hamiltonian, 9, 27, 35, 42
Harmonic interaction, 98
Hartree, 14–15
Hartree–Fock

procedure, 41
equations, 68–72

Hermite polynomials, 145
Hilbert space, 11, 23–25, 27, 28
Homonuclear molecules, 118
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