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Preface to the third
edition of Volume 2

For 50 years, physics students have enjoyed learning about electricity
and magnetism through the first two editions of this book. The purpose
of the present edition is to bring certain things up to date and to add new
material, in the hopes that the trend will continue. The main changes
from the second edition are (1) the conversion from Gaussian units to SI
units, and (2) the addition of many solved problems and examples.

The first of these changes is due to the fact that the vast majority
of courses on electricity and magnetism are now taught in SI units. The
second edition fell out of print at one point, and it was hard to watch such
a wonderful book fade away because it wasn’t compatible with the way
the subject is presently taught. Of course, there are differing opinions as
to which system of units is “better” for an introductory course. But this
issue is moot, given the reality of these courses.

For students interested in working with Gaussian units, or for instruc-
tors who want their students to gain exposure to both systems, I have
created a number of appendices that should be helpful. Appendix A dis-
cusses the differences between the SI and Gaussian systems. Appendix C
derives the conversion factors between the corresponding units in the
two systems. Appendix D explains how to convert formulas from SI to
Gaussian; it then lists, side by side, the SI and Gaussian expressions for
every important result in the book. A little time spent looking at this
appendix will make it clear how to convert formulas from one system to
the other.

The second main change in the book is the addition of many solved
problems, and also many new examples in the text. Each chapter ends
with “problems” and “exercises.” The solutions to the “problems” are
located in Chapter 12. The only official difference between the problems
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and exercises is that the problems have solutions included, whereas the
exercises do not. (A separate solutions manual for the exercises is avail-
able to instructors.) In practice, however, one difference is that some of
the more theorem-ish results are presented in the problems, so that stu-
dents can use these results in other problems/exercises.

Some advice on using the solutions to the problems: problems (and
exercises) are given a (very subjective) difficulty rating from 1 star to 4
stars. If you are having trouble solving a problem, it is critical that you
don’t look at the solution too soon. Brood over it for a while. If you do
finally look at the solution, don’t just read it through. Instead, cover it up
with a piece of paper and read one line at a time until you reach a hint
to get you started. Then set the book aside and work things out for real.
That’s the only way it will sink in. It’s quite astonishing how unhelpful
it is simply to read a solution. You’d think it would do some good, but
in fact it is completely ineffective in raising your understanding to the
next level. Of course, a careful reading of the text, including perhaps a
few problem solutions, is necessary to get the basics down. But if Level
1 is understanding the basic concepts, and Level 2 is being able to apply
those concepts, then you can read and read until the cows come home,
and you’ll never get past Level 1.

The overall structure of the text is essentially the same as in the sec-
ond edition, although a few new sections have been added. Section 2.7
introduces dipoles. The more formal treatment of dipoles, along with
their applications, remains in place in Chapter 10. But because the funda-
mentals of dipoles can be understood using only the concepts developed
in Chapters 1 and 2, it seems appropriate to cover this subject earlier
in the book. Section 8.3 introduces the important technique of solving
differential equations by forming complex solutions and then taking the
real part. Section 9.6.2 deals with the Poynting vector, which opens up
the door to some very cool problems.

Each chapter concludes with a list of “everyday” applications of
electricity and magnetism. The discussions are brief. The main purpose
of these sections is to present a list of fun topics that deserve further
investigation. You can carry onward with some combination of books/
internet/people/pondering. There is effectively an infinite amount of in-
formation out there (see the references at the beginning of Section 1.16
for some starting points), so my goal in these sections is simply to pro-
vide a springboard for further study.

The intertwined nature of electricity, magnetism, and relativity is
discussed in detail in Chapter 5. Many students find this material highly
illuminating, although some find it a bit difficult. (However, these two
groups are by no means mutually exclusive!) For instructors who wish to
take a less theoretical route, it is possible to skip directly from Chapter 4
to Chapter 6, with only a brief mention of the main result from Chapter 5,
namely the magnetic field due to a straight current-carrying wire.
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The use of non-Cartesian coordinates (cylindrical, spherical) is more
prominent in the present edition. For setups possessing certain symme-
tries, a wisely chosen system of coordinates can greatly simplify the cal-
culations. Appendix F gives a review of the various vector operators in
the different systems.

Compared with the second edition, the level of difficulty of the
present edition is slightly higher, due to a number of hefty problems that
have been added. If you are looking for an extra challenge, these prob-
lems should keep you on your toes. However, if these are ignored (which
they certainly can be, in any standard course using this book), then the
level of difficulty is roughly the same.

I am grateful to all the students who used a draft version of this book
and provided feedback. Their input has been invaluable. I would also like
to thank Jacob Barandes for many illuminating discussions of the more
subtle topics in the book. Paul Horowitz helped get the project off the
ground and has been an endless supplier of cool facts. It was a plea-
sure brainstorming with Andrew Milewski, who offered many ideas for
clever new problems. Howard Georgi and Wolfgang Rueckner provided
much-appreciated sounding boards and sanity checks. Takuya Kitagawa
carefully read through a draft version and offered many helpful sug-
gestions. Other friends and colleagues whose input I am grateful for
are: Allen Crockett, David Derbes, John Doyle, Gary Feldman, Melissa
Franklin, Jerome Fung, Jene Golovchenko, Doug Goodale, Robert Hart,
Tom Hayes, Peter Hedman, Jennifer Hoffman, Charlie Holbrow, Gareth
Kafka, Alan Levine, Aneesh Manohar, Kirk McDonald, Masahiro Morii,
Lev Okun, Joon Pahk, Dave Patterson, Mara Prentiss, Dennis Purcell,
Frank Purcell, Daniel Rosenberg, Emily Russell, Roy Shwitters, Nils
Sorensen, Josh Winn, and Amir Yacoby.

I would also like to thank the editorial and production group at Cam-
bridge University Press for their professional work in transforming the
second edition of this book into the present one. It has been a pleasure
working with Lindsay Barnes, Simon Capelin, Irene Pizzie, Charlotte
Thomas, and Ali Woollatt.

Despite careful editing, there is zero probability that this book is
error free. A great deal of new material has been added, and errors have
undoubtedly crept in. If anything looks amiss, please check the webpage
www.cambridge.org/Purcell-Morin for a list of typos, updates, etc. And
please let me know if you discover something that isn’t already posted.
Suggestions are always welcome.

David Morin

www.cambridge.org/Purcell-Morin




Preface to the
second edition of
Volume 2

This revision of “Electricity and Magnetism,” Volume 2 of the Berkeley
Physics Course, has been made with three broad aims in mind. First, I
have tried to make the text clearer at many points. In years of use teachers
and students have found innumerable places where a simplification or
reorganization of an explanation could make it easier to follow. Doubtless
some opportunities for such improvements have still been missed; not too
many, I hope.

A second aim was to make the book practically independent of its
companion volumes in the Berkeley Physics Course. As originally con-
ceived it was bracketed between Volume I, which provided the needed
special relativity, and Volume 3, “Waves and Oscillations,” to which
was allocated the topic of electromagnetic waves. As it has turned out,
Volume 2 has been rather widely used alone. In recognition of that I have
made certain changes and additions. A concise review of the relations of
special relativity is included as Appendix A. Some previous introduction
to relativity is still assumed. The review provides a handy reference and
summary for the ideas and formulas we need to understand the fields of
moving charges and their transformation from one frame to another. The
development of Maxwell’s equations for the vacuum has been transferred
from the heavily loaded Chapter 7 (on induction) to a new Chapter 9,
where it leads naturally into an elementary treatment of plane electro-
magnetic waves, both running and standing. The propagation of a wave
in a dielectric medium can then be treated in Chapter 10 on Electric
Fields in Matter.

A third need, to modernize the treatment of certain topics, was most
urgent in the chapter on electrical conduction. A substantially rewritten
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Chapter 4 now includes a section on the physics of homogeneous semi-
conductors, including doped semiconductors. Devices are not included,
not even a rectifying junction, but what is said about bands, and donors
and acceptors, could serve as starting point for development of such top-
ics by the instructor. Thanks to solid-state electronics the physics of the
voltaic cell has become even more relevant to daily life as the number
of batteries in use approaches in order of magnitude the world’s popu-
lation. In the first edition of this book I unwisely chose as the example
of an electrolytic cell the one cell—the Weston standard cell—which
advances in physics were soon to render utterly obsolete. That section
has been replaced by an analysis, with new diagrams, of the lead-acid
storage battery—ancient, ubiquitous, and far from obsolete.

One would hardly have expected that, in the revision of an elemen-
tary text in classical electromagnetism, attention would have to be paid to
new developments in particle physics. But that is the case for two ques-
tions that were discussed in the first edition, the significance of charge
quantization, and the apparent absence of magnetic monopoles. Obser-
vation of proton decay would profoundly affect our view of the first ques-
tion. Assiduous searches for that, and also for magnetic monopoles, have
at this writing yielded no confirmed events, but the possibility of such
fundamental discoveries remains open.

Three special topics, optional extensions of the text, are introduced
in short appendixes: Appendix B: Radiation by an Accelerated Charge;
Appendix C: Superconductivity; and Appendix D: Magnetic Resonance.

Our primary system of units remains the Gaussian CGS system. The
SI units, ampere, coulomb, volt, ohm, and tesla are also introduced in
the text and used in many of the problems. Major formulas are repeated
in their SI formulation with explicit directions about units and conver-
sion factors. The charts inside the back cover summarize the basic rela-
tions in both systems of units. A special chart in Chapter 11 reviews, in
both systems, the relations involving magnetic polarization. The student
is not expected, or encouraged, to memorize conversion factors, though
some may become more or less familiar through use, but to look them up
whenever needed. There is no objection to a “mixed” unit like the ohm-
cm, still often used for resistivity, providing its meaning is perfectly clear.

The definition of the meter in terms of an assigned value for the
speed of light, which has just become official, simplifies the exact rela-
tions among the units, as briefly explained in Appendix E.

There are some 300 problems, more than half of them new.
It is not possible to thank individually all the teachers and students

who have made good suggestions for changes and corrections. I fear
that some will be disappointed to find that their suggestions have not
been followed quite as they intended. That the net result is a substantial
improvement I hope most readers familiar with the first edition will agree.
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Mistakes both old and new will surely be found. Communications pointing
them out will be gratefully received.

It is a pleasure to thank Olive S. Rand for her patient and skillful
assistance in the production of the manuscript.

Edward M. Purcell





Preface to the first
edition of Volume 2

The subject of this volume of the Berkeley Physics Course is electricity
and magnetism. The sequence of topics, in rough outline, is not unusual:
electrostatics; steady currents; magnetic field; electromagnetic induc-
tion; electric and magnetic polarization in matter. However, our approach
is different from the traditional one. The difference is most conspicu-
ous in Chaps. 5 and 6 where, building on the work of Vol. I, we treat
the electric and magnetic fields of moving charges as manifestations of
relativity and the invariance of electric charge. This approach focuses
attention on some fundamental questions, such as: charge conservation,
charge invariance, the meaning of field. The only formal apparatus of
special relativity that is really necessary is the Lorentz transformation
of coordinates and the velocity-addition formula. It is essential, though,
that the student bring to this part of the course some of the ideas and atti-
tudes Vol. I sought to develop—among them a readiness to look at things
from different frames of reference, an appreciation of invariance, and a
respect for symmetry arguments. We make much use also, in Vol. II, of
arguments based on superposition.

Our approach to electric and magnetic phenomena in matter is pri-
marily “microscopic,” with emphasis on the nature of atomic and molec-
ular dipoles, both electric and magnetic. Electric conduction, also, is
described microscopically in the terms of a Drude-Lorentz model. Nat-
urally some questions have to be left open until the student takes up
quantum physics in Vol. IV. But we freely talk in a matter-of-fact way
about molecules and atoms as electrical structures with size, shape, and
stiffness, about electron orbits, and spin. We try to treat carefully a ques-
tion that is sometimes avoided and sometimes beclouded in introductory
texts, the meaning of the macroscopic fields E and B inside a material.
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In Vol. II, the student’s mathematical equipment is extended by
adding some tools of the vector calculus—gradient, divergence, curl,
and the Laplacian. These concepts are developed as needed in the early
chapters.

In its preliminary versions, Vol. II has been used in several classes at
the University of California. It has benefited from criticism by many peo-
ple connected with the Berkeley Course, especially from contributions
by E. D. Commins and F. S. Crawford, Jr., who taught the first classes to
use the text. They and their students discovered numerous places where
clarification, or something more drastic, was needed; many of the revi-
sions were based on their suggestions. Students’ criticisms of the last
preliminary version were collected by Robert Goren, who also helped
to organize the problems. Valuable criticism has come also from J. D.
Gavenda, who used the preliminary version at the University of Texas,
and from E. F. Taylor, of Wesleyan University. Ideas were contributed by
Allan Kaufman at an early stage of the writing. A. Felzer worked through
most of the first draft as our first “test student.”

The development of this approach to electricity and magnetism was
encouraged, not only by our original Course Committee, but by col-
leagues active in a rather parallel development of new course material
at the Massachusetts Institute of Technology. Among the latter, J. R.
Tessman, of the MIT Science Teaching Center and Tufts University, was
especially helpful and influential in the early formulation of the strategy.
He has used the preliminary version in class, at MIT, and his critical
reading of the entire text has resulted in many further changes and cor-
rections.

Publication of the preliminary version, with its successive revisions,
was supervised by Mrs. Mary R. Maloney. Mrs. Lila Lowell typed most
of the manuscript. The illustrations were put into final form by Felix
Cooper.

The author of this volume remains deeply grateful to his friends
in Berkeley, and most of all to Charles Kittel, for the stimulation and
constant encouragement that have made the long task enjoyable.

Edward M. Purcell



1
Electrostatics:
charges and fields

Overview The existence of this book is owed (both figuratively
and literally) to the fact that the building blocks of matter possess a
quality called charge. Two important aspects of charge are conser-
vation and quantization. The electric force between two charges
is given by Coulomb’s law. Like the gravitational force, the electric
force falls off like 1/r2. It is conservative, so we can talk about the
potential energy of a system of charges (the work done in assem-
bling them). A very useful concept is the electric field, which is
defined as the force per unit charge. Every point in space has a
unique electric field associated with it. We can define the flux of
the electric field through a given surface. This leads us to Gauss’s
law, which is an alternative way of stating Coulomb’s law. In cases
involving sufficient symmetry, it is much quicker to calculate the
electric field via Gauss’s law than via Coulomb’s law and direct
integration. Finally, we discuss the energy density in the elec-
tric field, which provides another way of calculating the potential
energy of a system.

1.1 Electric charge
Electricity appeared to its early investigators as an extraordinary phe-
nomenon. To draw from bodies the “subtle fire,” as it was sometimes
called, to bring an object into a highly electrified state, to produce a
steady flow of current, called for skillful contrivance. Except for the
spectacle of lightning, the ordinary manifestations of nature, from the
freezing of water to the growth of a tree, seemed to have no relation to
the curious behavior of electrified objects. We know now that electrical
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forces largely determine the physical and chemical properties of matter
over the whole range from atom to living cell. For this understanding we
have to thank the scientists of the nineteenth century, Ampère, Faraday,
Maxwell, and many others, who discovered the nature of electromag-
netism, as well as the physicists and chemists of the twentieth century
who unraveled the atomic structure of matter.

Classical electromagnetism deals with electric charges and currents
and their interactions as if all the quantities involved could be measured
independently, with unlimited precision. Here classical means simply
“nonquantum.” The quantum law with its constant h is ignored in the
classical theory of electromagnetism, just as it is in ordinary mechanics.
Indeed, the classical theory was brought very nearly to its present state
of completion before Planck’s discovery of quantum effects in 1900. It
has survived remarkably well. Neither the revolution of quantum physics
nor the development of special relativity dimmed the luster of the elec-
tromagnetic field equations Maxwell wrote down 150 years ago.

Of course the theory was solidly based on experiment, and because
of that was fairly secure within its original range of application – to
coils, capacitors, oscillating currents, and eventually radio waves and
light waves. But even so great a success does not guarantee validity in
another domain, for instance, the inside of a molecule.

Two facts help to explain the continuing importance in modern
physics of the classical description of electromagnetism. First, special
relativity required no revision of classical electromagnetism. Historic-
ally speaking, special relativity grew out of classical electromagnetic
theory and experiments inspired by it. Maxwell’s field equations, devel-
oped long before the work of Lorentz and Einstein, proved to be entirely
compatible with relativity. Second, quantum modifications of the elec-
tromagnetic forces have turned out to be unimportant down to distances
less than 10−12 meters, 100 times smaller than the atom. We can describe
the repulsion and attraction of particles in the atom using the same laws
that apply to the leaves of an electroscope, although we need quantum
mechanics to predict how the particles will behave under those forces.
For still smaller distances, a fusion of electromagnetic theory and quan-
tum theory, called quantum electrodynamics, has been remarkably suc-
cessful. Its predictions are confirmed by experiment down to the smallest
distances yet explored.

It is assumed that the reader has some acquaintance with the elemen-
tary facts of electricity. We are not going to review all the experiments
by which the existence of electric charge was demonstrated, nor shall we
review all the evidence for the electrical constitution of matter. On the
other hand, we do want to look carefully at the experimental foundations
of the basic laws on which all else depends. In this chapter we shall study
the physics of stationary electric charges – electrostatics.

Certainly one fundamental property of electric charge is its exis-
tence in the two varieties that were long ago named positive and negative.
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The observed fact is that all charged particles can be divided into two
classes such that all members of one class repel each other, while attract-
ing members of the other class. If two small electrically charged bodies
A and B, some distance apart, attract one another, and if A attracts some
third electrified body C, then we always find that B repels C. Contrast
this with gravitation: there is only one kind of gravitational mass, and
every mass attracts every other mass.

One may regard the two kinds of charge, positive and negative, as
opposite manifestations of one quality, much as right and left are the
two kinds of handedness. Indeed, in the physics of elementary parti-
cles, questions involving the sign of the charge are sometimes linked to a
question of handedness, and to another basic symmetry, the relation of a
sequence of events, a, then b, then c, to the temporally reversed sequence
c, then b, then a. It is only the duality of electric charge that concerns us
here. For every kind of particle in nature, as far as we know, there can
exist an antiparticle, a sort of electrical “mirror image.” The antiparticle
carries charge of the opposite sign. If any other intrinsic quality of the
particle has an opposite, the antiparticle has that too, whereas in a prop-
erty that admits no opposite, such as mass, the antiparticle and particle
are exactly alike.

The electron’s charge is negative; its antiparticle, called a positron,
has a positive charge, but its mass is precisely the same as that of the
electron. The proton’s antiparticle is called simply an antiproton; its elec-
tric charge is negative. An electron and a proton combine to make an
ordinary hydrogen atom. A positron and an antiproton could combine
in the same way to make an atom of antihydrogen. Given the building
blocks, positrons, antiprotons, and antineutrons,1 there could be built
up the whole range of antimatter, from antihydrogen to antigalaxies.
There is a practical difficulty, of course. Should a positron meet an elec-
tron or an antiproton meet a proton, that pair of particles will quickly
vanish in a burst of radiation. It is therefore not surprising that even
positrons and antiprotons, not to speak of antiatoms, are exceedingly
rare and short-lived in our world. Perhaps the universe contains, some-
where, a vast concentration of antimatter. If so, its whereabouts is a
cosmological mystery.

The universe around us consists overwhelmingly of matter, not anti-
matter. That is to say, the abundant carriers of negative charge are
electrons, and the abundant carriers of positive charge are protons. The
proton is nearly 2000 times heavier than the electron, and very different,
too, in some other respects. Thus matter at the atomic level incorpo-
rates negative and positive electricity in quite different ways. The posi-
tive charge is all in the atomic nucleus, bound within a massive structure
no more than 10−14 m in size, while the negative charge is spread, in

1 Although the electric charge of each is zero, the neutron and its antiparticle are not
interchangeable. In certain properties that do not concern us here, they are opposite.
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effect, through a region about 104 times larger in dimensions. It is hard
to imagine what atoms and molecules – and all of chemistry – would be
like, if not for this fundamental electrical asymmetry of matter.

What we call negative charge, by the way, could just as well have
been called positive. The name was a historical accident. There is nothing
essentially negative about the charge of an electron. It is not like a neg-
ative integer. A negative integer, once multiplication has been defined,
differs essentially from a positive integer in that its square is an integer
of opposite sign. But the product of two charges is not a charge; there is
no comparison.

Two other properties of electric charge are essential in the electrical
structure of matter: charge is conserved, and charge is quantized. These
properties involve quantity of charge and thus imply a measurement of
charge. Presently we shall state precisely how charge can be measured in
terms of the force between charges a certain distance apart, and so on.
But let us take this for granted for the time being, so that we may talk
freely about these fundamental facts.

1.2 Conservation of charge
The total charge in an isolated system never changes. By isolated we
mean that no matter is allowed to cross the boundary of the system. We
could let light pass into or out of the system, since the “particles” of light,
called photons, carry no charge at all. Within the system charged parti-
cles may vanish or reappear, but they always do so in pairs of equal and
opposite charge. For instance, a thin-walled box in a vacuum exposed to
gamma rays might become the scene of a “pair-creation” event in which
a high-energy photon ends its existence with the creation of an electron
and a positron (Fig. 1.1). Two electrically charged particles have been

Photon

After

e+

e–

Before

Figure 1.1.
Charged particles are created in pairs with
equal and opposite charge.

newly created, but the net change in total charge, in and on the box, is
zero. An event that would violate the law we have just stated would be
the creation of a positively charged particle without the simultaneous cre-
ation of a negatively charged particle. Such an occurrence has never been
observed.

Of course, if the electric charges of an electron and a positron were
not precisely equal in magnitude, pair creation would still violate the
strict law of charge conservation. That equality is a manifestation of the
particle–antiparticle duality already mentioned, a universal symmetry of
nature.

One thing will become clear in the course of our study of electro-
magnetism: nonconservation of charge would be quite incompatible with
the structure of our present electromagnetic theory. We may therefore
state, either as a postulate of the theory or as an empirical law supported
without exception by all observations so far, the charge conservation law:
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The total electric charge in an isolated system, that is, the algebraic
sum of the positive and negative charge present at any time, never
changes.

Sooner or later we must ask whether this law meets the test of rel-
ativistic invariance. We shall postpone until Chapter 5 a thorough dis-
cussion of this important question. But the answer is that it does, and
not merely in the sense that the statement above holds in any given iner-
tial frame, but in the stronger sense that observers in different frames,
measuring the charge, obtain the same number. In other words, the total
electric charge of an isolated system is a relativistically invariant number.

1.3 Quantization of charge
The electric charges we find in nature come in units of one magnitude
only, equal to the amount of charge carried by a single electron. We
denote the magnitude of that charge by e. (When we are paying atten-
tion to sign, we write −e for the charge on the electron itself.) We have
already noted that the positron carries precisely that amount of charge,
as it must if charge is to be conserved when an electron and a positron
annihilate, leaving nothing but light. What seems more remarkable is the
apparently exact equality of the charges carried by all other charged par-
ticles – the equality, for instance, of the positive charge on the proton and
the negative charge on the electron.

That particular equality is easy to test experimentally. We can see
whether the net electric charge carried by a hydrogen molecule, which
consists of two protons and two electrons, is zero. In an experiment
carried out by J. G. King,2 hydrogen gas was compressed into a tank
that was electrically insulated from its surroundings. The tank contained
about 5 · 1024 molecules (approximately 17 grams) of hydrogen. The gas
was then allowed to escape by means that prevented the escape of any
ion – a molecule with an electron missing or an extra electron attached.
If the charge on the proton differed from that on the electron by, say, one
part in a billion, then each hydrogen molecule would carry a charge of
2 · 10−9e, and the departure of the whole mass of hydrogen would alter
the charge of the tank by 1016e, a gigantic effect. In fact, the experiment
could have revealed a residual molecular charge as small as 2 · 10−20e,
and none was observed. This proved that the proton and the electron do
not differ in magnitude of charge by more than 1 part in 1020.

Perhaps the equality is really exact for some reason we don’t yet
understand. It may be connected with the possibility, suggested by certain

2 See King (1960). References to previous tests of charge equality will be found in this
article and in the chapter by V. W. Hughes in Hughes (1964).
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theories, that a proton can, very rarely, decay into a positron and some
uncharged particles. If that were to occur, even the slightest discrepancy
between proton charge and positron charge would violate charge conser-
vation. Several experiments designed to detect the decay of a proton have
not yet, as of this writing, registered with certainty a single decay. If and
when such an event is observed, it will show that exact equality of the
magnitude of the charge of the proton and the charge of the electron (the
positron’s antiparticle) can be regarded as a corollary of the more general
law of charge conservation.

That notwithstanding, we now know that the internal structure of all
the strongly interacting particles called hadrons – a class that includes
the proton and the neutron – involves basic units called quarks, whose
electric charges come in multiples of e/3. The proton, for example, is
made with three quarks, two with charge 2e/3 and one with charge −e/3.
The neutron contains one quark with charge 2e/3 and two quarks with
charge −e/3.

Several experimenters have searched for single quarks, either free or
attached to ordinary matter. The fractional charge of such a quark, since
it cannot be neutralized by any number of electrons or protons, should
betray the quark’s presence. So far no fractionally charged particle has
been conclusively identified. The present theory of the strong interac-
tions, called quantum chromodynamics, explains why the liberation of a
quark from a hadron is most likely impossible.

The fact of charge quantization lies outside the scope of classical
electromagnetism, of course. We shall usually ignore it and act as if our
point charges q could have any strength whatsoever. This will not get us
into trouble. Still, it is worth remembering that classical theory cannot
be expected to explain the structure of the elementary particles. (It is not
certain that present quantum theory can either!) What holds the electron
together is as mysterious as what fixes the precise value of its charge.
Something more than electrical forces must be involved, for the electro-
static forces between different parts of the electron would be repulsive.

In our study of electricity and magnetism we shall treat the charged
particles simply as carriers of charge, with dimensions so small that
their extension and structure is, for most purposes, quite insignificant.
In the case of the proton, for example, we know from high-energy scat-
tering experiments that the electric charge does not extend appreciably
beyond a radius of 10−15 m. We recall that Rutherford’s analysis of the
scattering of alpha particles showed that even heavy nuclei have their
electric charge distributed over a region smaller than 10−13 m. For the
physicist of the nineteenth century a “point charge” remained an abstract
notion. Today we are on familiar terms with the atomic particles. The
graininess of electricity is so conspicuous in our modern description of
nature that we find a point charge less of an artificial idealization than a
smoothly varying distribution of charge density. When we postulate such
smooth charge distributions, we may think of them as averages over very
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large numbers of elementary charges, in the same way that we can define
the macroscopic density of a liquid, its lumpiness on a molecular scale
notwithstanding.

1.4 Coulomb’s law
As you probably already know, the interaction between electric charges
at rest is described by Coulomb’s law: two stationary electric charges
repel or attract one another with a force proportional to the product of
the magnitude of the charges and inversely proportional to the square of
the distance between them.

We can state this compactly in vector form:

F2 = k
q1q2r̂21

r2
21

. (1.1)

Here q1 and q2 are numbers (scalars) giving the magnitude and sign of
the respective charges, r̂21 is the unit vector in the direction3 from charge
1 to charge 2, and F2 is the force acting on charge 2. Thus Eq. (1.1)
expresses, among other things, the fact that like charges repel and unlike
charges attract. Also, the force obeys Newton’s third law; that is,
F2 = −F1.

The unit vector r̂21 shows that the force is parallel to the line joining
the charges. It could not be otherwise unless space itself has some built-
in directional property, for with two point charges alone in empty and
isotropic space, no other direction could be singled out.

If the point charge itself had some internal structure, with an axis
defining a direction, then it would have to be described by more than the
mere scalar quantity q. It is true that some elementary particles, includ-
ing the electron, do have another property, called spin. This gives rise to
a magnetic force between two electrons in addition to their electrostatic
repulsion. This magnetic force does not, in general, act in the direction
of the line joining the two particles. It decreases with the inverse fourth
power of the distance, and at atomic distances of 10−10 m the Coulomb
force is already about 104 times stronger than the magnetic interaction
of the spins. Another magnetic force appears if our charges are moving –
hence the restriction to stationary charges in our statement of Coulomb’s
law. We shall return to these magnetic phenomena in later chapters.

Of course we must assume, in writing Eq. (1.1), that both charges
are well localized, each occupying a region small compared with r21.
Otherwise we could not even define the distance r21 precisely.

The value of the constant k in Eq. (1.1) depends on the units in which
r, F, and q are to be expressed. In this book we will use the International
System of Units, or “SI” units for short. This system is based on the

3 The convention we adopt here may not seem the natural choice, but it is more
consistent with the usage in some other parts of physics and we shall try to follow it
throughout this book.
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meter, kilogram, and second as units of length, mass, and time. The SI
unit of charge is the coulomb (C). Some other SI electrical units that
we will eventually become familiar with are the volt, ohm, ampere, and
tesla. The official definition of the coulomb involves the magnetic force,
which we will discuss in Chapter 6. For present purposes, we can define
the coulomb as follows. Two like charges, each of 1 coulomb, repel one
another with a force of 8.988 · 109 newtons when they are 1 meter apart.
In other words, the k in Eq. (1.1) is given by

k = 8.988 · 109 N m2

C2 . (1.2)

In Chapter 6 we will learn where this seemingly arbitrary value of k
comes from. In general, approximating k by 9 · 109 N m2/C2 is quite suf-
ficient. The magnitude of e, the fundamental quantum of electric charge,
happens to be about 1.602 · 10−19 C. So if you wish, you may think of
a coulomb as defined to be the magnitude of the charge contained in
6.242 · 1018 electrons.

Instead of k, it is customary (for historical reasons) to introduce a
constant ε0 which is defined by

1 coulomb = 2.998 × 109 esu

1 newton = 105 dynes

e = 4.802 × 10−10 esu = 1.602 × 10−19 coulomb

8.988 × 109
F = 8.988 × 108 newtons

F = 8.988 × 108 newtons

F =

newtons

coulomb

m2

q1q2

r 2
21

5 coulombs

2 coulombs

10 meters

 0 = 8.854 × 10−12

F = 10 dynes

F = 10 dynes

F =

cm2

8 esu

esu20 esu
q1q2

r 2
21

4 centimeters

1
4p  0

Figure 1.2.
Coulomb’s law expressed in Gaussian
electrostatic units (top) and in SI units (bottom).
The constant ε0 and the factor relating coulombs
to esu are connected, as we shall learn later,
with the speed of light. We have rounded off the
constants in the figure to four-digit accuracy.
The precise values are given in Appendix E.

k ≡ 1
4πε0

�⇒ ε0 ≡ 1
4πk

= 8.854 · 10−12 C2

N m2

(
or

C2 s2

kg m3

)
.

(1.3)

In terms of ε0, Coulomb’s law in Eq. (1.1) takes the form

F = 1
4πε0

q1q2r̂21

r2
21

(1.4)

The constant ε0 will appear in many expressions that we will meet in the
course of our study. The 4π is included in the definition of ε0 so that
certain formulas (such as Gauss’s law in Sections 1.10 and 2.9) take on
simple forms. Additional details and technicalities concerning ε0 can be
found in Appendix E.

Another system of units that comes up occasionally is the Gaus-
sian system, which is one of several types of cgs systems, short for
centimeter–gram–second. (In contrast, the SI system is an mks system,
short for meter–kilogram–second.) The Gaussian unit of charge is the
“electrostatic unit,” or esu. The esu is defined so that the constant k
in Eq. (1.1) exactly equals 1 (and this is simply the number 1, with no
units) when r21 is measured in cm, F in dynes, and the q values in esu.
Figure 1.2 gives some examples using the SI and Gaussian systems of
units. Further discussion of the SI and Gaussian systems can be found in
Appendix A.
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Example (Relation between 1 coulomb and 1 esu) Show that 1 coulomb
equals 2.998 · 109 esu (which generally can be approximated by 3 · 109 esu).

Solution From Eqs. (1.1) and (1.2), two charges of 1 coulomb separated by a
distance of 1 m exert a (large!) force of 8.988 · 109 N ≈ 9 · 109 N on each other.
We can convert this to the Gaussian unit of force via

1 N = 1
kg m

s2 = (1000 g)(100 cm)

s2 = 105 g cm
s2 = 105 dynes. (1.5)

The two 1 C charges therefore exert a force of 9 · 1014 dynes on each other. How
would someone working in Gaussian units describe this situation? In Gaussian
units, Coulomb’s law gives the force simply as q2/r2. The separation is 100 cm,
so if 1 coulomb equals N esu (with N to be determined), the 9 · 1014 dyne force
between the charges can be expressed as

9 · 1014 dyne = (N esu)2

(100 cm)2 �⇒ N2 = 9 · 1018 �⇒ N = 3 · 109. (1.6)

Hence,4

1 C = 3 · 109 esu. (1.7)

The magnitude of the electron charge is then given approximately by e= 1.6 ·
10−19 C ≈ 4.8 · 10−10 esu.

If we had used the more exact value of k in Eq. (1.2), the “3” in our result
would have been replaced by

√
8.988 = 2.998. This looks suspiciously similar to

the “2.998” in the speed of light, c = 2.998 · 108 m/s. This is no coincidence. We
will see in Section 6.1 that Eq. (1.7) can actually be written as 1 C = (10{c}) esu,
where we have put the c in brackets to signify that it is just the number 2.998 · 108

without the units of m/s.
On an everyday scale, a coulomb is an extremely large amount of charge,

as evidenced by the fact that if you have two such charges separated by 1 m
(never mind how you would keep each charge from flying apart due to the self
repulsion!), the above force of 9 · 109 N between them is about one million tons.
The esu is a much more reasonable unit to use for everyday charges. For example,
the static charge on a balloon that sticks to your hair is on the order of 10 or
100 esu.

The only way we have of detecting and measuring electric charges
is by observing the interaction of charged bodies. One might wonder,
then, how much of the apparent content of Coulomb’s law is really only
definition. As it stands, the significant physical content is the statement
of inverse-square dependence and the implication that electric charge

4 We technically shouldn’t be using an “=” sign here, because it suggests that the units of
a coulomb are the same as those of an esu. This is not the case; they are units in
different systems and cannot be expressed in terms of each other. The proper way to
express Eq. (1.7) is to say, “1 C is equivalent to 3 · 109 esu.” But we’ll usually just use
the “=” sign, and you’ll know what we mean. See Appendix A for further discussion
of this.
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is additive in its effect. To bring out the latter point, we have to con-
sider more than two charges. After all, if we had only two charges in
the world to experiment with, q1 and q2, we could never measure them
separately. We could verify only that F is proportional to 1/r2

21. Suppose
we have three bodies carrying charges q1, q2, and q3. We can measure
the force on q1 when q2 is 10 cm away from q1, with q3 very far away,
as in Fig. 1.3(a). Then we can take q2 away, bring q3 into q2’s former

q1

q3

q2

10 cm

(a)

Great
distance

q1

q3

q210 cm

(b)

Great
distance

q3

q2

q1

10 cm

(c)

Figure 1.3.
The force on q1 in (c) is the sum of the forces on
q1 in (a) and (b).

position, and again measure the force on q1. Finally, we can bring q2
and q3 very close together and locate the combination 10 cm from q1.
We find by measurement that the force on q1 is equal to the sum of the
forces previously measured. This is a significant result that could not
have been predicted by logical arguments from symmetry like the one
we used above to show that the force between two point charges had to
be along the line joining them. The force with which two charges interact
is not changed by the presence of a third charge.

No matter how many charges we have in our system, Coulomb’s law
in Eq. (1.4) can be used to calculate the interaction of every pair. This is
the basis of the principle of superposition, which we shall invoke again
and again in our study of electromagnetism. Superposition means com-
bining two sets of sources into one system by adding the second system
“on top of” the first without altering the configuration of either one. Our
principle ensures that the force on a charge placed at any point in the
combined system will be the vector sum of the forces that each set of
sources, acting alone, causes to act on a charge at that point. This prin-
ciple must not be taken lightly for granted. There may well be a domain
of phenomena, involving very small distances or very intense forces,
where superposition no longer holds. Indeed, we know of quantum phe-
nomena in the electromagnetic field that do represent a failure of super-
position, seen from the viewpoint of the classical theory.

Thus the physics of electrical interactions comes into full view only
when we have more than two charges. We can go beyond the explicit
statement of Eq. (1.1) and assert that, with the three charges in Fig. 1.3
occupying any positions whatsoever, the force on any one of them, such
as q3, is correctly given by the following equation:

F = 1
4πε0

q3q1r̂31

r2
31

+ 1
4πε0

q3q2r̂32

r2
32

. (1.8)

The experimental verification of the inverse-square law of electri-
cal attraction and repulsion has a curious history. Coulomb himself ann-
ounced the law in 1786 after measuring with a torsion balance the force
between small charged spheres. But 20 years earlier Joseph Priestly, car-
rying out an experiment suggested to him by Benjamin Franklin, had
noticed the absence of electrical influence within a hollow charged con-
tainer and made an inspired conjecture: “May we not infer from this
experiment that the attraction of electricity is subject to the same laws
with that of gravitation and is therefore according to the square of the
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distances; since it is easily demonstrated that were the earth in the form
of a shell, a body in the inside of it would not be attracted to one side
more than the other.” (Priestly, 1767).

The same idea was the basis of an elegant experiment in 1772 by
Henry Cavendish. Cavendish charged a spherical conducting shell that
contained within it, and temporarily connected to it, a smaller sphere.
The outer shell was then separated into two halves and carefully removed,
the inner sphere having been first disconnected. This sphere was tested
for charge, the absence of which would confirm the inverse-square law.
(See Problem 2.8 for the theory behind this.) Assuming that a deviation
from the inverse-square law could be expressed as a difference in the
exponent, 2 + δ, say, instead of 2, Cavendish concluded that δ must be
less than 0.03. This experiment of Cavendish remained largely unknown
until Maxwell discovered and published Cavendish’s notes a century
later (1876). At that time also, Maxwell repeated the experiment with
improved apparatus, pushing the limit down to δ < 10−6. The present
limit on δ is a fantastically small number – about one part in 1016; see
Crandall (1983) and Williams et al. (1971).

Two hundred years after Cavendish’s experiment, however, the ques-
tion of interest changed somewhat. Never mind how perfectly Coulomb’s
law works for charged objects in the laboratory – is there a range of dis-
tances where it completely breaks down? There are two domains in either
of which a breakdown is conceivable. The first is the domain of very
small distances, distances less than 10−16 m, where electromagnetic the-
ory as we know it may not work at all. As for very large distances, from
the geographical, say, to the astronomical, a test of Coulomb’s law by
the method of Cavendish is obviously not feasible. Nevertheless we do
observe certain large-scale electromagnetic phenomena that prove that
the laws of classical electromagnetism work over very long distances.
One of the most stringent tests is provided by planetary magnetic fields,
in particular the magnetic field of the giant planet Jupiter, which was
surveyed in the mission of Pioneer 10. The spatial variation of this field
was carefully analyzed5 and found to be entirely consistent with classi-
cal theory out to a distance of at least 105 km from the planet. This is
tantamount to a test, albeit indirect, of Coulomb’s law over that distance.

To summarize, we have every reason for confidence in Coulomb’s
law over the stupendous range of 24 decades in distance, from 10−16 to
108 m, if not farther, and we take it as the foundation of our description
of electromagnetism.

1.5 Energy of a system of charges
In principle, Coulomb’s law is all there is to electrostatics. Given the
charges and their locations, we can find all the electrical forces. Or, given
5 See Davis et al. (1975). For a review of the history of the exploration of the outer limit

of classical electromagnetism, see Goldhaber and Nieto (1971).
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that the charges are free to move under the influence of other kinds of
forces as well, we can find the equilibrium arrangement in which the
charge distribution will remain stationary. In the same sense, Newton’s
laws of motion are all there is to mechanics. But in both mechanics and
electromagnetism we gain power and insight by introducing other con-
cepts, most notably that of energy.

Great
distance

q1

q2

(a)

q1

q2

r12

(b )

Final
position

of q3

q2

r21

r32

r31

ds

F31F32

q1

q3 in
transit

(c )

Figure 1.4.
Three charges are brought near one another.
First q2 is brought in; then, with q1 and q2 fixed,
q3 is brought in.

Energy is a useful concept here because electrical forces are con-
servative. When you push charges around in electric fields, no energy is
irrecoverably lost. Everything is perfectly reversible. Consider first the
work that must be done on the system to bring some charged bodies into
a particular arrangement. Let us start with two charged bodies or parti-
cles very far apart from one another, as indicated in Fig. 1.4(a), carrying
charges q1 and q2. Whatever energy may have been needed to create
these two concentrations of charge originally we shall leave entirely out
of account. How much work does it take to bring the particles slowly
together until the distance between them is r12?

It makes no difference whether we bring q1 toward q2 or the other
way around. In either case the work done is the integral of the product:
force times displacement, where these are signed quantities. The force
that has to be applied to move one charge toward the other is equal and
opposite to the Coulomb force. Therefore,

W =
∫

(applied force) · (displacement)

=
∫ r12

r=∞

(
− 1

4πε0

q1q2

r2

)
dr = 1

4πε0

q1q2

r12
. (1.9)

Note that because r is changing from ∞ to r12, the differential dr is
negative. We know that the overall sign of the result is correct, because
the work done on the system must be positive for charges of like sign;
they have to be pushed together (consistent with the minus sign in the
applied force). Both the displacement and the applied force are negative
in this case, resulting in positive work being done on the system. With q1
and q2 in coulombs, and r12 in meters, Eq. (1.9) gives the work in joules.

This work is the same whatever the path of approach. Let’s review
the argument as it applies to the two charges q1 and q2 in Fig. 1.5. There
we have kept q1 fixed, and we show q2 moved to the same final posi-
tion along two different paths. Every spherical shell, such as the one
indicated between r and r + dr, must be crossed by both paths. The
increment of work involved, −F · ds in this bit of path (where F is the
Coulomb force), is the same for the two paths.6 The reason is that F has
the same magnitude at both places and is directed radially from q1, while

6 Here we use for the first time the scalar product, or “dot product,” of two vectors.
A reminder: the scalar product of two vectors A and B, written A · B, is the number
AB cos θ , where A and B are the magnitudes of the vectors A and B, and θ is the angle
between them. Expressed in terms of Cartesian components of the two vectors,
A · B = AxBx + AyBy + AzBz.
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ds = dr/ cos θ ; hence F · ds = F dr. Each increment of work along one
path is matched by a corresponding increment on the other, so the sums
must be equal. Our conclusion holds even for paths that loop in and out,
like the dotted path in Fig. 1.5. (Why?)

Returning now to the two charges as we left them in Fig. 1.4(b), let

P

dr

ds

q1

r

q

Figure 1.5.
Because the force is central, the sections of
different paths between r + dr and r require the
same amount of work.

us bring in from some remote place a third charge q3 and move it to a
point P3 whose distance from charge 1 is r31, and from charge 2, r32. The
work required to effect this will be

W3 = −
∫ P3

∞
F3 · ds. (1.10)

Thanks to the additivity of electrical interactions, which we have already
emphasized,

−
∫

F3 · ds = −
∫

(F31 + F32) · ds

= −
∫

F31 · ds −
∫

F32 · ds. (1.11)

That is, the work required to bring q3 to P3 is the sum of the work needed
when q1 is present alone and that needed when q2 is present alone:

W3 = 1
4πε0

q1q3

r31
+ 1

4πε0

q2q3

r32
. (1.12)

The total work done in assembling this arrangement of three charges,
which we shall call U, is therefore

U = 1
4πε0

(
q1q2

r12
+ q1q3

r13
+ q2q3

r23

)
. (1.13)

We note that q1, q2, and q3 appear symmetrically in the expression
above, in spite of the fact that q3 was brought in last. We would have
reached the same result if q3 had been brought in first. (Try it.) Thus U is
independent of the order in which the charges were assembled. Since it
is independent also of the route by which each charge was brought in, U
must be a unique property of the final arrangement of charges. We may
call it the electrical potential energy of this particular system. There is
a certain arbitrariness, as always, in the definition of a potential energy.
In this case we have chosen the zero of potential energy to correspond to
the situation with the three charges already in existence but infinitely far
apart from one another. The potential energy belongs to the configuration
as a whole. There is no meaningful way of assigning a certain fraction
of it to one of the charges.

It is obvious how this very simple result can be generalized to apply
to any number of charges. If we have N different charges, in any arrange-
ment in space, the potential energy of the system is calculated by sum-
ming over all pairs, just as in Eq. (1.13). The zero of potential energy, as
in that case, corresponds to all charges far apart.
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Example (Charges in a cube) What is the potential energy of an arrange-
ment of eight negative charges on the corners of a cube of side b, with a positive
charge in the center of the cube, as in Fig. 1.6(a)? Suppose each negative charge
is an electron with charge −e, while the central particle carries a double positive
charge, 2e.

− e

+2e

− e

− e

− e

− e

− e

– e

− e

b
b

b

(a)

(b)

4 such pairs 8 such pairs

12 such
pairs

12 such pairs

Figure 1.6.
(a) The potential energy of this arrangement of
nine point charges is given by Eq. (1.14).
(b) Four types of pairs are involved in the sum.

Solution Figure 1.6(b) shows that there are four different types of pairs. One
type involves the center charge, while the other three involve the various edges
and diagonals of the cube. Summing over all pairs yields

U = 1
4πε0

(
8 · (−2e2)

(
√

3/2)b
+ 12 · e2

b
+ 12 · e2

√
2 b

+ 4 · e2
√

3 b

)
≈ 1

4πε0

4.32e2

b
.

(1.14)

The energy is positive, indicating that work had to be done on the system to
assemble it. That work could, of course, be recovered if we let the charges move
apart, exerting forces on some external body or bodies. Or if the electrons were
simply to fly apart from this configuration, the total kinetic energy of all the
particles would become equal to U. This would be true whether they came apart
simultaneously and symmetrically, or were released one at a time in any order.
Here we see the power of this simple notion of the total potential energy of the
system. Think what the problem would be like if we had to compute the resultant
vector force on every particle at every stage of assembly of the configuration!
In this example, to be sure, the geometrical symmetry would simplify that task;
even so, it would be more complicated than the simple calculation above.

One way of writing the instruction for the sum over pairs is this:

U = 1
2

N∑
j=1

∑
k �=j

1
4πε0

qjqk

rjk
. (1.15)

The double-sum notation,
∑N

j= 1
∑

k �=j, says: take j= 1 and sum over
k= 2, 3, 4, . . . , N; then take j= 2 and sum over k= 1, 3, 4, . . . , N; and so
on, through j=N. Clearly this includes every pair twice, and to correct
for that we put in front the factor 1/2.

1.6 Electrical energy in a crystal lattice
These ideas have an important application in the physics of crystals. We
know that an ionic crystal like sodium chloride can be described, to a
very good approximation, as an arrangement of positive ions (Na+) and
negative ions (Cl−) alternating in a regular three-dimensional array or
lattice. In sodium chloride the arrangement is that shown in Fig. 1.7(a).
Of course the ions are not point charges, but they are nearly spherical
distributions of charge and therefore (as we shall prove in Section 1.11)
the electrical forces they exert on one another are the same as if each ion
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were replaced by an equivalent point charge at its center. We show this
electrically equivalent system in Fig. 1.7(b). The electrostatic potential
energy of the lattice of charges plays an important role in the explanation
of the stability and cohesion of the ionic crystal. Let us see if we can
estimate its magnitude.

−
−

−

−

−
−

−

−

−

−

−

−
−

−

−

+

+
+

+

+

+
+

+

+
+

+
+

+

(b)

(a)

a

Figure 1.7.
A portion of a sodium chloride crystal, with the
ions Na+ and Cl− shown in about the right
relative proportions (a), and replaced by
equivalent point charges (b).

We seem to be faced at once with a sum that is enormous, if not dou-
bly infinite; any macroscopic crystal contains 1020 atoms at least. Will
the sum converge? Now what we hope to find is the potential energy per
unit volume or mass of crystal. We confidently expect this to be inde-
pendent of the size of the crystal, based on the general argument that
one end of a macroscopic crystal can have little influence on the other.
Two grams of sodium chloride ought to have twice the potential energy
of one gram, and the shape should not be important so long as the sur-
face atoms are a small fraction of the total number of atoms. We would
be wrong in this expectation if the crystal were made out of ions of one
sign only. Then, 1 g of crystal would carry an enormous electric charge,
and putting two such crystals together to make a 2 g crystal would take
a fantastic amount of energy. (You might estimate how much!) The sit-
uation is saved by the fact that the crystal structure is an alternation of
equal and opposite charges, so that any macroscopic bit of crystal is very
nearly neutral.

To evaluate the potential energy we first observe that every positive
ion is in a position equivalent to that of every other positive ion. Further-
more, although it is perhaps not immediately obvious from Fig. 1.7, the
arrangement of positive ions around a negative ion is exactly the same as
the arrangement of negative ions around a positive ion, and so on. Hence
we may take one ion as a center, it matters not which kind, sum over its
interactions with all the others, and simply multiply by the total number
of ions of both kinds. This reduces the double sum in Eq. (1.15) to a sin-
gle sum and a factor N; we must still apply the factor 1/2 to compensate
for including each pair twice. That is, the energy of a sodium chloride
lattice composed of a total of N ions is

U = 1
2

N
N∑

k=2

1
4πε0

q1qk

r1k
. (1.16)

Taking the positive ion at the center as in Fig. 1.7(b), our sum runs over
all its neighbors near and far. The leading terms start out as follows:

U = 1
2

N
1

4πε0

(
−6e2

a
+ 12e2

√
2 a

− 8e2
√

3 a
+ · · ·

)
. (1.17)

The first term comes from the 6 nearest chlorine ions, at distance a, the
second from the 12 sodium ions on the cube edges, and so on. It is clear,
incidentally, that this series does not converge absolutely; if we were so
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foolish as to try to sum all the positive terms first, that sum would diverge.
To evaluate such a sum, we should arrange it so that as we proceed
outward, including ever more distant ions, we include them in groups
that represent nearly neutral shells of material. Then if the sum is bro-
ken off, the more remote ions that have been neglected will be such an
even mixture of positive and negative charges that we can be confident
their contribution would have been small. This is a crude way to describe
what is actually a somewhat more delicate computational problem. The
numerical evaluation of such a series is easily accomplished with a com-
puter. The answer in this example happens to be

U = −0.8738Ne2

4πε0a
. (1.18)

Here N, the number of ions, is twice the number of NaCl molecules.
The negative sign shows that work would have to be done to take

the crystal apart into ions. In other words, the electrical energy helps to
explain the cohesion of the crystal. If this were the whole story, however,
the crystal would collapse, for the potential energy of the charge distri-
bution is obviously lowered by shrinking all the distances. We meet here
again the familiar dilemma of classical – that is, nonquantum – physics.
No system of stationary particles can be in stable equilibrium, according
to classical laws, under the action of electrical forces alone; we will give
a proof of this fact in Section 2.12. Does this make our analysis useless?
Not at all. Remarkably, and happily, in the quantum physics of crystals
the electrical potential energy can still be given meaning, and can be
computed very much in the way we have learned here.

1.7 The electric field
Suppose we have some arrangement of charges, q1, q2, . . . , qN , fixed in
space, and we are interested not in the forces they exert on one another,
but only in their effect on some other charge q0 that might be brought
into their vicinity. We know how to calculate the resultant force on this
charge, given its position which we may specify by the coordinates x, y,
z. The force on the charge q0 is

F = 1
4πε0

N∑
j=1

q0qjr̂0j

r2
0j

, (1.19)

where r0j is the vector from the jth charge in the system to the point
(x, y, z). The force is proportional to q0, so if we divide out q0 we obtain
a vector quantity that depends only on the structure of our original system
of charges, q1, . . . , qN , and on the position of the point (x, y, z). We call
this vector function of x, y, z the electric field arising from the q1, . . . , qN
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and use the symbol E for it. The charges q1, . . . , qN we call sources of
the field. We may take as the definition of the electric field E of a charge
distribution, at the point (x, y, z),

E(x, y, z) = 1
4πε0

N∑
j=1

qjr̂0j

r2
0j

. (1.20)

The force on some other charge q at (x, y, z) is then

F = qE (1.21)

Figure 1.8 illustrates the vector addition of the field of a point charge
q1 = +2C

r02

r01

q2 = −1C

r02

r01

−1r02 (x,y,z)

E

+ 2r01
r024      0

2

r014      0
2

Figure 1.8.
The field at a point is the vector sum of the fields
of each of the charges in the system.

of 2 C to the field of a point charge of −1 C, at a particular point in space.
In the SI system of units, electric field strength is expressed in newtons
per unit charge, that is, newtons/coulomb. In Gaussian units, with the esu
as the unit of charge and the dyne as the unit of force, the electric field
strength is expressed in dynes/esu.

After the introduction of the electric potential in Chapter 2, we shall
have another, and completely equivalent, way of expressing the unit of
electric field strength; namely, volts/meter in SI units and statvolts/
centimeter in Gaussian units.

So far we have nothing really new. The electric field is merely another
way of describing the system of charges; it does so by giving the force
per unit charge, in magnitude and direction, that an exploring charge q0
would experience at any point. We have to be a little careful with that
interpretation. Unless the source charges are really immovable, the intro-
duction of some finite charge q0 may cause the source charges to shift
their positions, so that the field itself, as defined by Eq. (1.20), is dif-
ferent. That is why we assumed fixed charges to begin our discussion.
People sometimes define the field by requiring q0 to be an “infinitesi-
mal” test charge, letting E be the limit of F/q0 as q0 → 0. Any flavor of
rigor this may impart is illusory. Remember that in the real world we have
never observed a charge smaller than e! Actually, if we take Eq. (1.20) as
our definition of E, without reference to a test charge, no problem arises
and the sources need not be fixed. If the introduction of a new charge
causes a shift in the source charges, then it has indeed brought about a
change in the electric field, and if we want to predict the force on the new
charge, we must use the new electric field in computing it.

Perhaps you still want to ask, what is an electric field? Is it some-
thing real, or is it merely a name for a factor in an equation that has to be
multiplied by something else to give the numerical value of the force we
measure in an experiment? Two observations may be useful here. First,
since it works, it doesn’t make any difference. That is not a frivolous
answer, but a serious one. Second, the fact that the electric field vector
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at a point in space is all we need know to predict the force that will act
on any charge at that point is by no means trivial. It might have been
otherwise! If no experiments had ever been done, we could imagine that,
in two different situations in which unit charges experience equal force,
test charges of strength 2 units might experience unequal forces, depend-
ing on the nature of the other charges in the system. If that were true, the
field description wouldn’t work. The electric field attaches to every point
in a system a local property, in this sense: if we know E in some small
neighborhood, we know, without further inquiry, what will happen to
any charges in that neighborhood. We do not need to ask what produced
the field.

Charge −1

Charge +3

(b)

(a)

Figure 1.9.
(a) Field of a charge q1 = 3. (b) Field of a
charge q2 = −1. Both representations are
necessarily crude and only roughly quantitative.

To visualize an electric field, you need to associate a vector, that is, a
magnitude and direction, with every point in space. We shall use various
schemes in this book, none of them wholly satisfactory, to depict vector
fields.

It is hard to draw in two dimensions a picture of a vector function
in three-dimensional space. We can indicate the magnitude and direction
of E at various points by drawing little arrows near those points, mak-
ing the arrows longer where E is larger.7 Using this scheme, we show in
Fig. 1.9(a) the field of an isolated point charge of 3 units and in Fig. 1.9(b)
the field of a point charge of −1 unit. These pictures admittedly add noth-
ing whatsoever to our understanding of the field of an isolated charge;
anyone can imagine a simple radial inverse-square field without the help
of a picture. We show them in order to combine (side by side) the two
fields in Fig. 1.10, which indicates in the same manner the field of two
such charges separated by a distance a. All that Fig. 1.10 can show is the
field in a plane containing the charges. To get a full three-dimensional
representation, one must imagine the figure rotated around the symmetry
axis. In Fig. 1.10 there is one point in space where E is zero. As an
exercise, you can quickly figure out where this point lies. Notice also
that toward the edge of the picture the field points more or less radially
outward all around. One can see that at a very large distance from the
charges the field will look very much like the field from a positive point
charge. This is to be expected because the separation of the charges can-
not make very much difference for points far away, and a point charge
of 2 units is just what we would have left if we superimposed our two
sources at one spot.

Another way to depict a vector field is to draw field lines. These are
simply curves whose tangent, at any point, lies in the direction of the
field at that point. Such curves will be smooth and continuous except at
singularities such as point charges, or points like the one in the example
of Fig. 1.10 where the field is zero. A field line plot does not directly give
7 Such a representation is rather clumsy at best. It is hard to indicate the point in space to

which a particular vector applies, and the range of magnitudes of E is usually so large
that it is impracticable to make the lengths of the arrows proportional to E.
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E = 0 here

Charge −1

Charge +3

Figure 1.10.
The field in the vicinity of two charges, q1 = +3,
q2 = −1, is the superposition of the fields in
Figs. 1.9(a) and (b).

Charge −1
Charge +3 Figure 1.11.

Some field lines in the electric field around two
charges, q1 = +3, q2 = −1.

the magnitude of the field, although we shall see that, in a general way,
the field lines converge as we approach a region of strong field and spread
apart as we approach a region of weak field. In Fig. 1.11 are drawn some
field lines for the same arrangement of charges as in Fig. 1.10, a positive
charge of 3 units and a negative charge of 1 unit. Again, we are restricted
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by the nature of paper and ink to a two-dimensional section through a
three-dimensional bundle of curves.

1.8 Charge distributions
This is as good a place as any to generalize from point charges to contin-
uous charge distributions. A volume distribution of charge is described
by a scalar charge-density function ρ, which is a function of position,
with the dimensions charge/volume. That is, ρ times a volume element
gives the amount of charge contained in that volume element. The same
symbol is often used for mass per unit volume, but in this book we shall
always give charge per unit volume first call on the symbol ρ. If we
write ρ as a function of the coordinates x, y, z, then ρ(x, y, z) dx dy dz is
the charge contained in the little box, of volume dx dy dz, located at the
point (x, y, z).

(x,y,z)

(x�,y�, z�)

r (x�, y�, z�)

r

Figure 1.12.
Each element of the charge distribution
ρ(x′, y′, z′) makes a contribution to the electric
field E at the point (x, y, z). The total field at this
point is the sum of all such contributions; see
Eq. (1.22).

On an atomic scale, of course, the charge density varies enormously
from point to point; even so, it proves to be a useful concept in that
domain. However, we shall use it mainly when we are dealing with large-
scale systems, so large that a volume element dv = dx dy dz can be quite
small relative to the size of our system, although still large enough to
contain many atoms or elementary charges. As we have remarked before,
we face a similar problem in defining the ordinary mass density of a
substance.

If the source of the electric field is to be a continuous charge distri-
bution rather than point charges, we merely replace the sum in Eq. (1.20)
with the appropriate integral. The integral gives the electric field at
(x, y, z), which is produced by charges at other points (x′, y′, z′):

E(x, y, z) = 1
4πε0

∫
ρ(x′, y′, z′)r̂ dx′ dy′ dz′

r2 . (1.22)

This is a volume integral. Holding (x, y, z) fixed, we let the variables of
integration, x′, y′, and z′, range over all space containing charge, thus
summing up the contributions of all the bits of charge. The unit vector
r̂ points from (x′, y′, z′) to (x, y, z) – unless we want to put a minus sign
before the integral, in which case we may reverse the direction of r̂. It is
always hard to keep signs straight. Let’s remember that the electric field
points away from a positive source (Fig. 1.12).

Example (Field due to a hemisphere) A solid hemisphere has radius R
and uniform charge density ρ. Find the electric field at the center.

Solution Our strategy will be to slice the hemisphere into rings around the
symmetry axis. We will find the electric field due to each ring, and then integrate
over the rings to obtain the field due to the entire hemisphere. We will work with
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polar coordinates (or, equivalently, spherical coordinates), which are much more
suitable than Cartesian coordinates in this setup.

dr
r

r dq

q

Figure 1.13.
Cross section of a thin ring. The hemisphere
may be considered to be built up from rings.

The cross section of a ring is (essentially) a little rectangle with side lengths
dr and r dθ , as shown in Fig. 1.13. The cross-sectional area is thus r dr dθ . The
radius of the ring is r sin θ , so the volume is (r dr dθ)(2πr sin θ). The charge in
the ring is therefore ρ(2πr2 sin θ dr dθ). Equivalently, we can obtain this result
by using the standard spherical-coordinate volume element, r2 sin θ dr dθ dφ,
and then integrating over φ to obtain the factor of 2π .

Consider a tiny piece of the ring, with charge dq. This piece creates an elec-
tric field at the center of the hemisphere that points diagonally upward (if ρ is
positive) with magnitude dq/4πε0r2. However, only the vertical component sur-
vives, because the horizontal component cancels with the horizontal component
from the diametrically opposite charge dq on the ring. The vertical component
involves a factor of cos θ . When we integrate over the whole ring, the dq simply
integrates to the total charge we found above. The (vertical) electric field due to
a given ring is therefore

dEy = ρ(2πr2 sin θ dr dθ)

4πε0r2 cos θ = ρ sin θ cos θ dr dθ

2ε0
. (1.23)

Integrating over r and θ to obtain the field due to the entire hemisphere gives

Ey =
∫ R

0

∫ π/2

0

ρ sin θ cos θ dr dθ

2ε0
= ρ

2ε0

(∫ R

0
dr

)(∫ π/2

0
sin θ cos θ dθ

)

= ρ

2ε0
· R · sin2 θ

2

∣∣∣∣π/2

0
= ρR

4ε0
. (1.24)

Note that the radius r canceled in Eq. (1.23). For given values of θ , dθ , and dr, the
volume of a ring grows like r2, and this exactly cancels the r2 in the denominator

E

E

(a)

(b)

Figure 1.14.
The symmetry argument that explains why E
must be vertical.

in Coulomb’s law.

REMARK As explained above, the electric field due to the hemisphere is verti-
cal. This fact also follows from considerations of symmetry. We will make many
symmetry arguments throughout this book, so let us be explicit here about how
the reasoning proceeds. Assume (in search of a contradiction) that the electric
field due to the hemisphere is not vertical. It must then point off at some angle,
as shown in Fig. 1.14(a). Let’s say that the E vector lies above a given dashed line
painted on the hemisphere. If we rotate the system by, say, 180◦ around the sym-
metry axis, the field now points in the direction shown in Fig. 1.14(b), because
it must still pass over the dashed line. But we have exactly the same hemisphere
after the rotation, so the field must still point upward to the right. We conclude
that the field due to the hemisphere points both upward to the left and upward to
the right. This is a contradiction. The only way to avoid this contradiction is for
the field to point along the symmetry axis (possibly in the negative direction),
because in that case it doesn’t change under the rotation.

In the neighborhood of a true point charge the electric field grows
infinite like 1/r2 as we approach the point. It makes no sense to talk about
the field at the point charge. As our ultimate physical sources of field are
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not, we believe, infinite concentrations of charge in zero volume, but
instead finite structures, we simply ignore the mathematical singularities
implied by our point-charge language and rule out of bounds the interior
of our elementary sources. A continuous charge distribution ρ(x′, y′, z′)
that is nowhere infinite gives no trouble at all. Equation (1.22) can be
used to find the field at any point within the distribution. The integrand
doesn’t blow up at r = 0 because the volume element in the numerator
equals r2 sin φ dφ dθ dr in spherical coordinates, and the r2 here can-
cels the r2 in the denominator in Eq. (1.22). That is to say, so long as ρ

remains finite, the field will remain finite everywhere, even in the interior
or on the boundary of a charge distribution.

1.9 Flux
The relation between the electric field and its sources can be expressed
in a remarkably simple way, one that we shall find very useful. For this
we need to define a quantity called flux.

(c)

(b)

(a)

Figure 1.15.
(a) A closed surface in a vector field is divided
(b) into small elements of area. (c) Each
element of area is represented by an outward
vector.

Consider some electric field in space and in this space some arbi-
trary closed surface, like a balloon of any shape. Figure 1.15 shows such
a surface, the field being suggested by a few field lines. Now divide the
whole surface into little patches that are so small that over any one patch
the surface is practically flat and the vector field does not change appre-
ciably from one part of a patch to another. In other words, don’t let the
balloon be too crinkly, and don’t let its surface pass right through a sin-
gularity8 of the field such as a point charge. The area of a patch has a
certain magnitude in square meters, and a patch defines a unique direc-
tion – the outward-pointing normal to its surface. (Since the surface is
closed, you can tell its inside from its outside; there is no ambiguity.) Let
this magnitude and direction be represented by a vector. Then for every
patch into which the surface has been divided, such as patch number j,
we have a vector aj giving its area and orientation. The steps we have just
taken are pictured in Figs. 1.15(b) and (c). Note that the vector aj does
not depend at all on the shape of the patch; it doesn’t matter how we have
divided up the surface, as long as the patches are small enough.

Let Ej be the electric field vector at the location of patch number
j. The scalar product Ej · aj is a number. We call this number the flux
through that bit of surface. To understand the origin of the name, imagine
a vector function that represents the velocity of motion in a fluid – say in a
river, where the velocity varies from one place to another but is constant
in time at any one position. Denote this vector field by v, measured in

8 By a singularity of the field we would ordinarily mean not only a point source where
the field approaches infinity, but also any place where the field changes magnitude or
direction discontinuously, such as an infinitesimally thin layer of concentrated charge.
Actually this latter, milder, kind of singularity would cause no difficulty here unless
our balloon’s surface were to coincide with the surface of discontinuity over some
finite area.
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Flux = va Flux = 0

a

a
60�

Flux = va cos 60� = 0.5va

a
v

Figure 1.16.
The flux through the frame of area a is v · a,
where v is the velocity of the fluid. The flux is the
volume of fluid passing through the frame, per
unit time.

meters/second. Then, if a is the oriented area in square meters of a frame
lowered into the water, v · a is the rate of flow of water through the frame
in cubic meters per second (Fig. 1.16). The cos θ factor in the standard
expression for the dot product correctly picks out the component of v
along the direction of a, or equivalently the component of a along the
direction of v. We must emphasize that our definition of flux is applicable
to any vector function, whatever physical variable it may represent.

Now let us add up the flux through all the patches to get the flux
through the entire surface, a scalar quantity which we shall denote by �:

� =
∑
all j

Ej · aj. (1.25)

Letting the patches become smaller and more numerous without limit,
we pass from the sum in Eq. (1.25) to a surface integral:

� =
∫

entire
surface

E · da. (1.26)

A surface integral of any vector function F, over a surface S, means just
this: divide S into small patches, each represented by a vector outward, of
magnitude equal to the patch area; at every patch, take the scalar product
of the patch area vector and the local F; sum all these products, and the
limit of this sum, as the patches shrink, is the surface integral. Do not
be alarmed by the prospect of having to perform such a calculation for

E

a

q r

Figure 1.17.
In the field E of a point charge q, what is the
outward flux over a sphere surrounding q?

an awkwardly shaped surface like the one in Fig. 1.15. The surprising
property we are about to demonstrate makes that unnecessary!

1.10 Gauss’s law
Take the simplest case imaginable; suppose the field is that of a single
isolated positive point charge q, and the surface is a sphere of radius r
centered on the point charge (Fig. 1.17). What is the flux � through this
surface? The answer is easy because the magnitude of E at every point
on the surface is q/4πε0r2 and its direction is the same as that of the
outward normal at that point. So we have

� = E · (total area) = q
4πε0r2 · 4πr2 = q

ε0
. (1.27)
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The flux is independent of the size of the sphere. Here for the first time
we see the benefit of including the factor of 1/4π in Coulomb’s law
in Eq. (1.4). Without this factor, we would have an uncanceled factor
of 4π in Eq. (1.27) and therefore also, eventually, in one of Maxwell’s
equations. Indeed, in Gaussian units Eq. (1.27) takes the form of
� = 4πq.

A

a

q

R

q

r

Figure 1.18.
Showing that the flux through any closed
surface around q is the same as the flux through
the sphere.

Now imagine a second surface, or balloon, enclosing the first, but
not spherical, as in Fig. 1.18. We claim that the total flux through this
surface is the same as that through the sphere. To see this, look at a cone,
radiating from q, that cuts a small patch a out of the sphere and continues
on to the outer surface, where it cuts out a patch A at a distance R from
the point charge. The area of the patch A is larger than that of the patch
a by two factors: first, by the ratio of the distance squared (R/r)2; and
second, owing to its inclination, by the factor 1/ cos θ . The angle θ is the
angle between the outward normal and the radial direction (see Fig. 1.18).
The electric field in that neighborhood is reduced from its magnitude on
the sphere by the factor (r/R)2 and is still radially directed. Letting E(R)

be the field at the outer patch and E(r) be the field at the sphere, we have

flux through outer patch = E(R) · A = E(R)A cos θ ,
flux through inner patch = E(r) · a = E(r)a. (1.28)

Using the above facts concerning the magnitude of E(R) and the area of
A, the flux through the outer patch can be written as

E(R)A cos θ =
[

E(r)

(
r
R

)2
][

a
(

R
r

)2 1
cos θ

]
cos θ = E(r)a, (1.29)

which equals the flux through the inner patch.
Now every patch on the outer surface can in this way be put into

correspondence with part of the spherical surface, so the total flux must
be the same through the two surfaces. That is, the flux through the new
surface must be just q/ε0. But this was a surface of arbitrary shape and
size.9 We conclude: the flux of the electric field through any surface
enclosing a point charge q is q/ε0. As a corollary we can say that the
total flux through a closed surface is zero if the charge lies outside the
surface. We leave the proof of this to the reader, along with Fig. 1.19 as
a hint of one possible line of argument.

There is a way of looking at all this that makes the result seem obvi-
ous. Imagine at q a source that emits particles – such as bullets or photons
– in all directions at a steady rate. Clearly the flux of particles through a
window of unit area will fall off with the inverse square of the window’s
distance from q. Hence we can draw an analogy between the electric field
strength E and the intensity of particle flow in bullets per unit area per

9 To be sure, we had the second surface enclosing the sphere, but it didn’t have to, really.
Besides, the sphere can be taken as small as we please.
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unit time. It is pretty obvious that the flux of bullets through any surface
completely surrounding q is independent of the size and shape of that

q

q

(a)

(b)

Figure 1.19.
To show that the flux through the closed surface
in (a) is zero, you can make use of (b).

surface, for it is just the total number emitted per unit time. Correspond-
ingly, the flux of E through the closed surface must be independent of
size and shape. The common feature responsible for this is the inverse-
square behavior of the intensity.

The situation is now ripe for superposition! Any electric field is the
sum of the fields of its individual sources. This property was expressed
in our statement, Eq. (1.19), of Coulomb’s law. Clearly flux is an addi-
tive quantity in the same sense, for if we have a number of sources,
q1, q2, . . . , qN , the fields of which, if each were present alone, would be
E1, E2, . . . , EN , then the flux � through some surface S in the actual field
can be written

� =
∫

S
E · da =

∫
S
(E1 + E2 + · · · + EN) · da. (1.30)

We have just learned that
∫

S Ei · da equals qi/ε0 if the charge qi
is inside S and equals zero otherwise. So every charge q inside the sur-
face contributes exactly q/ε0 to the surface integral of Eq. (1.30) and all
charges outside contribute nothing. We have arrived at Gauss’s law.

The flux of the electric field E through any closed surface, that is,
the integral

∫
E · da over the surface, equals 1/ε0 times the total

charge enclosed by the surface:∫
E · da = 1

ε0

∑
i

qi = 1
ε0

∫
ρ dv (Gauss’s law) (1.31)

We call the statement in the box a law because it is equivalent to
Coulomb’s law and it could serve equally well as the basic law of elec-
trostatic interactions, after charge and field have been defined. Gauss’s
law and Coulomb’s law are not two independent physical laws, but the
same law expressed in different ways.10 In Gaussian units, the 1/ε0 in
Gauss’s law is replaced with 4π .

Looking back over our proof, we see that it hinged on the inverse-
square nature of the interaction and of course on the additivity of
interactions, or superposition. Thus the theorem is applicable to any
inverse-square field in physics, for instance to the gravitational field.

10 There is one difference, inconsequential here, but relevant to our later study of the
fields of moving charges. Gauss’s law is obeyed by a wider class of fields than those
represented by the electrostatic field. In particular, a field that is inverse-square in r but
not spherically symmetrical can satisfy Gauss’s law. In other words, Gauss’s law alone
does not imply the symmetry of the field of a point source which is implicit in
Coulomb’s law.
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It is easy to see that Gauss’s law would not hold if the law of force
were, say, inverse-cube. For in that case the flux of electric field from
a point charge q through a sphere of radius R centered on the charge
would be

� =
∫

E · da = q
4πε0R3 · 4πR2 = q

ε0R
. (1.32)

By making the sphere large enough we could make the flux through it as
small as we pleased, while the total charge inside remained constant.

r0

Figure 1.20.
A charge distribution with spherical symmetry.

This remarkable theorem extends our knowledge in two ways. First,
it reveals a connection between the field and its sources that is the con-
verse of Coulomb’s law. Coulomb’s law tells us how to derive the elec-
tric field if the charges are given; with Gauss’s law we can determine how
much charge is in any region if the field is known. Second, the mathemat-
ical relation here demonstrated is a powerful analytic tool; it can make
complicated problems easy, as we shall see in the following examples. In
Sections 1.11–1.13 we use Gauss’s law to calculate the electric field due
to various nicely shaped objects. In all of these examples the symmetry
of the object will play a critical role.

1.11 Field of a spherical charge distribution
We can use Gauss’s law to find the electric field of a spherically sym-
metrical distribution of charge, that is, a distribution in which the charge
density ρ depends only on the radius from a central point. Figure 1.20
depicts a cross section through some such distribution. Here the charge
density is high at the center, and is zero beyond r0. What is the electric
field at some point such as P1 outside the distribution, or P2 inside it
(Fig. 1.21)? If we could proceed only from Coulomb’s law, we should

E1

P1

P2

S1

S2

E2

r2

r1

Figure 1.21.
The electric field of a spherical charge
distribution.

have to carry out an integration that would sum the electric field vectors
at P1 arising from each elementary volume in the charge distribution.
Let’s try a different approach that exploits both the symmetry of the sys-
tem and Gauss’s law.

Because of the spherical symmetry, the electric field at any point
must be radially directed – no other direction is unique. Likewise, the
field magnitude E must be the same at all points on a spherical surface S1
of radius r1, for all such points are equivalent. Call this field magnitude
E1. The flux through this surface S1 is therefore simply 4πr2

1E1, and by
Gauss’s law this must be equal to 1/ε0 times the charge enclosed by the
surface. That is, 4πr2

1E1 = (1/ε0) · (charge inside S1) or

E1 = charge inside S1

4πε0r2
1

. (1.33)

Comparing this with the field of a point charge, we see that the field
at all points on S1 is the same as if all the charge within S1 were con-
centrated at the center. The same statement applies to a sphere drawn
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inside the charge distribution. The field at any point on S2 is the same as
if all charge within S2 were at the center, and all charge outside S2 absent.
Evidently the field inside a “hollow” spherical charge distribution is zero
(Fig. 1.22). Problem 1.17 gives an alternative derivation of this fact.

E = 0
inside

Figure 1.22.
The field is zero inside a spherical shell of
charge.

Example (Field inside and outside a uniform sphere) A spherical
charge distribution has a density ρ that is constant from r= 0 out to r=R
and is zero beyond. What is the electric field for all values of r, both less than
and greater than R?

Solution For r ≥ R, the field is the same as if all of the charge were concen-
trated at the center of the sphere. Since the volume of the sphere is 4πR3/3, the
field is therefore radial and has magnitude

E(r) = (4πR3/3)ρ

4πε0r2 = ρR3

3ε0r2 (r ≥ R). (1.34)

For r ≤ R, the charge outside radius r effectively contributes nothing to the field,
while the charge inside radius r acts as if it were concentrated at the center. The
volume inside radius r is 4πr3/3, so the field inside the given sphere is radial
and has magnitude

E(r) = (4πr3/3)ρ

4πε0r2 = ρr
3ε0

(r ≤ R). (1.35)

In terms of the total charge Q = (4πR3/3)ρ, this can be written as Qr/4πε0R3.
The field increases linearly with r inside the sphere; the r3 growth of the effec-
tive charge outweighs the 1/r2 effect from the increasing distance. And the field
decreases like 1/r2 outside the sphere. A plot of E(r) is shown in Fig. 1.23. Note
that E(r) is continuous at r = R, where it takes on the value ρR/3ε0. As we will
see in Section 1.13, field discontinuities are created by surface charge densities,
and there are no surface charges in this system. The field goes to zero at the cen-
ter, so it is continuous there also. How should the density vary with r so that the
magnitude E(r) is uniform inside the sphere? That is the subject of Exercise 1.68.

r
R

E(r)

rR

r
1/r 2

3  0

Figure 1.23.
The electric field due to a uniform sphere of
charge.

The same argument applied to the gravitational field would tell us
that the earth, assuming it is spherically symmetrical in its mass distribu-
tion, attracts outside bodies as if its mass were concentrated at the center.
That is a rather familiar statement. Anyone who is inclined to think the
principle expresses an obvious property of the center of mass must be
reminded that the theorem is not even true, in general, for other shapes.
A perfect cube of uniform density does not attract external bodies as if
its mass were concentrated at its geometrical center.

Newton didn’t consider the theorem obvious. He needed it as the
keystone of his demonstration that the moon in its orbit around the earth
and a falling body on the earth are responding to similar forces. The delay
of nearly 20 years in the publication of Newton’s theory of gravitation
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was apparently due, in part at least, to the trouble he had in proving this
theorem to his satisfaction. The proof he eventually devised and pub-
lished in the Principia in 1686 (Book I, Section XII, Theorem XXXI)
is a marvel of ingenuity in which, roughly speaking, a tricky volume
integration is effected without the aid of the integral calculus as we
know it. The proof is a good bit longer than our whole preceding dis-
cussion of Gauss’s law, and more intricately reasoned. You see, with all
his mathematical resourcefulness and originality, Newton lacked Gauss’s
law – a relation that, once it has been shown to us, seems so obvious as
to be almost trivial.

(a)

(b)

cos q =

dx

dq

dx

dEy

P
r

x

z

l (C
/m)

y

dE

dx R dq

R dq

R q q

q

2
p − q

Figure 1.24.
(a) The field at P is the vector sum of
contributions from each element of the line
charge. (b) Detail of (a).

1.12 Field of a line charge
A long, straight, charged wire, if we neglect its thickness, can be charac-
terized by the amount of charge it carries per unit length. Let λ, measured
in coulombs/meter, denote this linear charge density. What is the elec-
tric field of such a line charge, assumed infinitely long and with constant
linear charge density λ? We’ll do the problem in two ways, first by an
integration starting from Coulomb’s law, and then by using Gauss’s law.

To evaluate the field at the point P, shown in Fig. 1.24, we must add
up the contributions from all segments of the line charge, one of which
is indicated as a segment of length dx. The charge dq on this element is
given by dq = λ dx. Having oriented our x axis along the line charge, we
may as well let the y axis pass through P, which is a distance r from the
nearest point on the line. It is a good idea to take advantage of symmetry
at the outset. Obviously the electric field at P must point in the y direc-
tion, so that Ex and Ez are both zero. The contribution of the charge dq
to the y component of the electric field at P is

dEy = dq
4πε0R2 cos θ = λ dx

4πε0R2 cos θ , (1.36)

where θ is the angle the electric field of dq makes with the y direction.
The total y component is then

Ey =
∫

dEy =
∫ ∞

−∞
λ cos θ

4πε0R2 dx. (1.37)

It is convenient to use θ as the variable of integration. Since Figs. 1.24(a)
and (b) tell us that R = r/ cos θ and dx = R dθ/ cos θ , we have dx =
r dθ/ cos2 θ . (This expression for dx comes up often. It also follows from
x = r tan θ �⇒ dx = r d(tan θ) = r dθ/ cos2 θ .) Eliminating dx and R
from the integral in Eq. (1.37), in favor of θ , we obtain

Ey =
∫ π/2

−π/2

λ cos θ dθ

4πε0r
= λ

4πε0r

∫ π/2

−π/2
cos θ dθ = λ

2πε0r
. (1.38)

We see that the field of an infinitely long, uniformly dense line charge is
proportional to the reciprocal of the distance from the line. Its direction
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is of course radially outward if the line carries a positive charge, inward
if negative.

L

l
r

Figure 1.25.
Using Gauss’s law to find the field of a line
charge.

Gauss’s law leads directly to the same result. Surround a segment of
the line charge with a closed circular cylinder of length L and radius r,
as in Fig. 1.25, and consider the flux through this surface. As we have
already noted, symmetry guarantees that the field is radial, so the flux
through the ends of the “tin can” is zero. The flux through the cylindrical
surface is simply the area, 2πrL, times Er, the field at the surface. On the
other hand, the charge enclosed by the surface is just λL, so Gauss’s law
gives us (2πrL)Er = λL/ε0 or

Er = λ

2πε0r
, (1.39)

in agreement with Eq. (1.38).

EP�

P�

s (C/m2)

r
EP

P

Figure 1.26.
Using Gauss’s law to find the field of an infinite
flat sheet of charge.

1.13 Field of an infinite flat sheet of charge
Electric charge distributed smoothly in a thin sheet is called a surface
charge distribution. Consider a flat sheet, infinite in extent, with the con-
stant surface charge density σ . The electric field on either side of the
sheet, whatever its magnitude may turn out to be, must surely point per-
pendicular to the plane of the sheet; there is no other unique direction
in the system. Also, because of symmetry, the field must have the same
magnitude and the opposite direction at two points P and P′ equidistant
from the sheet on opposite sides. With these facts established, Gauss’s
law gives us at once the field intensity, as follows: draw a cylinder, as in
Fig. 1.26 (actually, any shape with uniform cross section will work fine),
with P on one side and P′ on the other, of cross-sectional area A. The
outward flux is found only at the ends, so that if EP denotes the magni-
tude of the field at P, and EP′ the magnitude at P′, the outward flux is
AEP + AEP′ = 2AEP. The charge enclosed is σA, so Gauss’s law gives
2AEP = σA/ε0, or

EP = σ

2ε0
. (1.40)

We see that the field strength is independent of r, the distance from the
sheet. Equation (1.40) could have been derived more laboriously by cal-
culating the vector sum of the contributions to the field at P from all the
little elements of charge in the sheet.

In the more general case where there are other charges in the vicinity,
the field need not be perpendicular to the sheet, or symmetric on either
side of it. Consider a very squat Gaussian surface, with P and P′ infinites-
imally close to the sheet, instead of the elongated surface in Fig. 1.26.
We can then ignore the negligible flux through the cylindrical “side” of
the pillbox, so the above reasoning gives E⊥,P + E⊥,P′ = σ/ε0, where
the “⊥” denotes the component perpendicular to the sheet. If you want
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to write this in terms of vectors, it becomes E⊥,P − E⊥,P′ = (σ/ε0)n̂,
where n̂ is the unit vector perpendicular to the sheet, in the direction of
P. In other words, the discontinuity in E⊥ across the sheet is given by

�E⊥ = σ

ε0
n̂. (1.41)

Only the normal component is discontinuous; the parallel component is
continuous across the sheet. So we can just as well replace the �E⊥ in
Eq. (1.41) with �E. This result is also valid for any finite-sized sheet,
because from up close the sheet looks essentially like an infinite plane,
at least as far as the normal component is concerned.

The field of an infinitely long line charge, we found, varies inversely
as the distance from the line, while the field of an infinite sheet has the
same strength at all distances. These are simple consequences of the fact
that the field of a point charge varies as the inverse square of the distance.
If that doesn’t yet seem compellingly obvious, look at it this way: roughly
speaking, the part of the line charge that is mainly responsible for the
field at P in Fig. 1.24 is the near part – the charge within a distance of
order of magnitude r. If we lump all this together and forget the rest, we
have a concentrated charge of magnitude q ≈ λr, which ought to produce
a field proportional to q/r2, or λ/r. In the case of the sheet, the amount
of charge that is “effective,” in this sense, increases proportionally to r2

as we go out from the sheet, which just offsets the 1/r2 decrease in the
field from any given element of charge.

r0

s dA

s (C
/m

2 )

E = 0

E = s/  0

Figure 1.27.
A spherical surface with uniform charge
density σ .

1.14 The force on a layer of charge
The sphere in Fig. 1.27 has a charge distributed over its surface with
the uniform density σ , in C/m2. Inside the sphere, as we have already
learned, the electric field of such a charge distribution is zero. Outside
the sphere the field is Q/4πε0r2, where Q is the total charge on the
sphere, equal to 4πr2

0σ . So just outside the surface of the sphere the field
strength is

Ejust outside = σ

ε0
. (1.42)

Compare this with Eq. (1.40) and Fig. 1.26. In both cases Gauss’s law is
obeyed: the change in the normal component of E, from one side of the
layer to the other, is equal to σ/ε0, in accordance with Eq. (1.41).

What is the electrical force experienced by the charges that make up
this distribution? The question may seem puzzling at first because the
field E arises from these very charges. What we must think about is the
force on some small element of charge dq, such as a small patch of area
dA with charge dq= σ dA. Consider, separately, the force on dq due to all
the other charges in the distribution, and the force on the patch due to the
charges within the patch itself. This latter force is surely zero. Coulomb
repulsion between charges within the patch is just another example of
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Newton’s third law; the patch as a whole cannot push on itself. That
simplifies our problem, for it allows us to use the entire electric field E,
including the field due to all charges in the patch, in calculating the force
dF on the patch of charge dq:

dF = E dq = Eσ dA. (1.43)

But what E shall we use, the field E = σ/ε0 outside the sphere or the
field E = 0 inside? The correct answer, as we shall prove in a moment,
is the average of the two fields that is,

dF = 1
2

(
σ/ε0 + 0

)
σ dA = σ 2 dA

2ε0
. (1.44)
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Figure 1.28.
The net change in field at a charge layer
depends only on the total charge per unit area.

To justify this we shall consider a more general case, and one that
will introduce a more realistic picture of a layer of surface charge. Real
charge layers do not have zero thickness. Figure 1.28 shows some ways
in which charge might be distributed through the thickness of a layer. In
each example, the value of σ , the total charge per unit area of layer, is
the same. These might be cross sections through a small portion of the
spherical surface in Fig. 1.27 on a scale such that the curvature is not
noticeable. To make it more general, however, we can let the field on the
left be E1 (rather than 0, as it was inside the sphere), with E2 the field on
the right. The condition imposed by Gauss’s law, for given σ , is, in each
case,

E2 − E1 = σ

ε0
. (1.45)

Now let us look carefully within the layer where the field is changing
continuously from E1 to E2 and there is a volume charge density ρ(x)
extending from x = 0 to x = x0, the thickness of the layer (Fig. 1.29).
Consider a much thinner slab, of thickness dx � x0, which contains per
unit area an amount of charge ρ dx. If the area of this thin slab is A, the
force on it is

dF = Eρ dx · A. (1.46)

Thus the total force per unit area of our original charge layer is

F
A
=

∫
dF
A

=
∫ x0

0
Eρ dx. (1.47)

But Gauss’s law tells us via Eq. (1.45) that dE, the change in E through
the thin slab, is just ρ dx/ε0. Hence ρ dx in Eq. (1.47) can be replaced by
ε0 dE, and the integral becomes

F
A
=

∫ E2

E1

ε0E dE = ε0

2

(
E2

2 − E2
1
)
. (1.48)
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Since E2 − E1 = σ/ε0, the force per unit area in Eq. (1.48), after being
factored, can be expressed as

F
A
= 1

2

(
E1 + E2

)
σ (1.49)

We have shown, as promised, that for given σ the force per unit area on
a charge layer is determined by the mean of the external field on one
side and that on the other.11 This is independent of the thickness of the
layer, as long as it is small compared with the total area, and of the vari-
ation ρ(x) in charge density within the layer. See Problem 1.30 for an
alternative derivation of Eq. (1.49).

dx

E = E2E = E1

r(x)

x = 0 x = x0

Figure 1.29.
Within the charge layer of density ρ(x),
E(x + dx) − E(x) = ρ dx/ε0.

The direction of the electrical force on an element of the charge on
the sphere is, of course, outward whether the surface charge is positive or
negative. If the charges do not fly off the sphere, that outward force must
be balanced by some inward force, not included in our equations, that
can hold the charge carriers in place. To call such a force “nonelectrical”
would be misleading, for electrical attractions and repulsions are the
dominant forces in the structure of atoms and in the cohesion of matter
generally. The difference is that these forces are effective only at short
distances, from atom to atom, or from electron to electron. Physics on
that scale is a story of individual particles. Think of a charged rubber
balloon, say 0.1 m in radius, with 10−8 C of negative charge spread as
uniformly as possible on its outer surface. It forms a surface charge of
density σ = (10−8 C)/4π(0.1 m)2 = 8 · 10−8 C/m2. The resulting out-
ward force, per area of surface charge, is given by Eq. (1.44) as

dF
dA

= σ 2

2ε0
= (8 · 10−8 C/m2)2

2
(
8.85 · 10−12 C2/(N m2)

) = 3.6 · 10−4 N/m2. (1.50)

In fact, our charge consists of about 6 · 1010 electrons attached to the
rubber film, which corresponds to about 50 million extra electrons per
square centimeter. So the “graininess” in the charge distribution is hardly
apparent. However, if we could look at one of these extra electrons, we
would find it roughly 10−4 cm – an enormous distance on an atomic
scale – from its nearest neighbor. This electron would be stuck, elec-
trically stuck, to a local molecule of rubber. The rubber molecule would
be attached to adjacent rubber molecules, and so on. If you pull on the
electron, the force is transmitted in this way to the whole piece of rubber.
Unless, of course, you pull hard enough to tear the electron loose from
the molecule to which it is attached. That would take an electric field
many thousands of times stronger than the field in our example.

11 Note that this is not necessarily the same as the average field within the layer, a
quantity of no special interest or significance.
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1.15 Energy associated with the electric field
Suppose our spherical shell of charge is compressed slightly, from an
initial radius of r0 to a smaller radius, as in Fig. 1.30. This requires
that work be done against the repulsive force, which we found above to
be σ 2/2ε0 newtons for each square meter of surface. The displacement
being dr, the total work done is (4πr2

0)(σ
2/2ε0) dr, or (2πr2

0σ
2/ε0) dr.

This represents an increase in the energy required to assemble the system
of charges, the energy U we talked about in Section 1.5:

dU = 2πr2
0σ

2

ε0
dr. (1.51)

r0

dr

r0  – dr

Figure 1.30.
Shrinking a spherical shell or charged balloon.

Notice how the electric field E has been changed. Within the shell of
thickness dr, the field was zero and is now σ/ε0. Beyond r0 the field is
unchanged. In effect we have created a field of strength E = σ/ε0 filling
a region of volume 4πr2

0 dr. We have done so by investing an amount
of energy given by Eq. (1.51) which, if we substitute ε0E for σ , can be
written like this:

dU = ε0E2

2
4πr2

0 dr. (1.52)

This is an instance of a general theorem which we shall not prove
now (but see Problem 1.33): the potential energy U of a system of charges,
which is the total work required to assemble the system, can be calculated
from the electric field itself simply by assigning an amount of energy
(ε0E2/2) dv to every volume element dv and integrating over all space
where there is electric field:

U = ε0

2

∫
entire
field

E2 dv (1.53)

E2 is a scalar quantity, of course: E2 ≡ E · E.
One may think of this energy as “stored” in the field. The system

being conservative, that amount of energy can of course be recovered
by allowing the charges to go apart; so it is nice to think of the energy
as “being somewhere” meanwhile. Our accounting comes out right if
we think of it as stored in space with a density of ε0E2/2, in joules/m3.
There is no harm in this, but in fact we have no way of identifying, quite
independently of anything else, the energy stored in a particular cubic
meter of space. Only the total energy is physically measurable, that is,
the work required to bring the charge into some configuration, starting
from some other configuration. Just as the concept of electric field serves
in place of Coulomb’s law to explain the behavior of electric charges, so
when we use Eq. (1.53) rather than Eq. (1.15) to express the total poten-
tial energy of an electrostatic system, we are merely using a different
kind of bookkeeping. Sometimes a change in viewpoint, even if it is at
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first only a change in bookkeeping, can stimulate new ideas and deeper
understanding. The notion of the electric field as an independent entity
will take form when we study the dynamical behavior of charged matter
and electromagnetic radiation.

Example (Potential energy of a uniform sphere) What is the energy
stored in a sphere of radius R with charge Q uniformly distributed throughout
the interior?

Solution The electric field is nonzero both inside and outside the sphere, so
Eq. (1.53) involves two different integrals. Outside the sphere, the field at radius
r is simply Q/4πε0r2, so the energy stored in the external field is

Uext = ε0
2

∫ ∞
R

(
Q

4πε0r2

)2
4πr2 dr = Q2

8πε0

∫ ∞
R

dr
r2 = Q2

8πε0R
. (1.54)

The example in Section 1.11 gives the field at radius r inside the sphere as
Er = ρr/3ε0. But the density equals ρ =Q/(4πR3/3), so the field is Er =
(3Q/4πR3)r/3ε0 =Qr/4πε0R3. The energy stored in the internal field is
therefore

Uint = ε0
2

∫ R

0

(
Qr

4πε0R3

)2
4πr2 dr = Q2

8πε0R6

∫ R

0
r4 dr = Q2

8πε0R
· 1

5
.

(1.55)

This is one-fifth of the energy stored in the external field. The total energy is
the sum of Uext and Uint, which we can write as (3/5)Q2/4πε0R. We see that it
takes three-fifths as much energy to assemble the sphere as it does to bring in two
point charges Q to a separation of R. Exercise 1.61 presents an alternative method
of calculating the potential energy of a uniformly charged sphere, by imagining
building it up layer by layer.

We run into trouble if we try to apply Eq. (1.53) to a system that
contains a point charge, that is, a finite charge q of zero size. Locate q
at the origin of the coordinates. Close to the origin, E2 will approach
q2/(4πε0)

2r4. With dv = 4πr2 dr, the integrand E2 dv will behave like
dr/r2, and our integral will blow up at the limit r = 0. That simply tells
us that it would take infinite energy to pack finite charge into zero volume
– which is true but not helpful. In the real world we deal with particles
like electrons and protons. They are so small that for most purposes we
can ignore their dimensions and think of them as point charges when we
consider their electrical interaction with one another. How much energy
it took to make such a particle is a question that goes beyond the range of
classical electromagnetism. We have to regard the particles as supplied
to us ready-made. The energy we are concerned with is the work done in
moving them around.

The distinction is usually clear. Consider two charged particles, a
proton and a negative pion, for instance. Let Ep be the electric field of
the proton, Eπ that of the pion. The total field is E = Ep +Eπ , and E ·E
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equals E2
p + E2

π + 2Ep · Eπ . According to Eq. (1.53) the total energy in
the electric field of this two-particle system is

U = ε0

2

∫
E2 dv

= ε0

2

∫
E2

p dv + ε0

2

∫
E2

π dv + ε0

∫
Ep · Eπ dv. (1.56)

The value of the first integral is a property of any isolated proton. It is
a constant of nature which is not changed by moving the proton around.
The same goes for the second integral, involving the pion’s electric field
alone. It is the third integral that directly concerns us, for it expresses
the energy required to assemble the system given a proton and a pion as
constituents.

The distinction could break down if the two particles interact so
strongly that the electrical structure of one is distorted by the presence
of the other. Knowing that both particles are in a sense composite (the
proton consisting of three quarks, the pion of two), we might expect that
to happen during a close approach. In fact, nothing much happens down
to a distance of 10−15 m. At shorter distances, for strongly interacting
particles like the proton and the pion, nonelectrical forces dominate the
scene anyway.

That explains why we do not need to include “self-energy” terms
like the first two integrals in Eq. (1.56) in our energy accounts for a sys-
tem of elementary charged particles. Indeed, we want to omit them. We
are doing just that, in effect, when we replace the actual distribution of
discrete elementary charges (the electrons on the rubber balloon) by a
perfectly continuous charge distribution.

1.16 Applications
Each chapter of this book concludes with a list of “everyday” applications
of the topics covered in the chapter. The discussions are brief. It would
take many pages to explain each item in detail; real-life physics tends to
involve countless variations, complications, and subtleties. The main pur-
pose here is just to say a few words to convince you that the applications
are interesting and worthy of further study. You can carry onward with
some combination of books/internet/people/pondering. There is effec-
tively an infinite amount of information out there, so you should take
advantage of it! Two books packed full of real-life applications are:

• The Flying Circus of Physics (Walker, 2007);
• How Things Work (Bloomfield, 2010).

And some very informative websites are:

• The Flying Circus of Physics website: www.flyingcircusofphysics.com;
• How Stuff Works: www.howstuffworks.com;

www.howstuffworks.com
www.flyingcircusofphysics.com
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• Explain That Stuff: www.explainthatstuff.com;
• and Wikipedia, of course: www.wikipedia.org.

These websites can point you to more technical sources if you want to
pursue things at a more advanced level.

With the exception of the gravitational force keeping us on the earth, and
ignoring magnets for the time being, essentially all “everyday” forces are
electrostatic in origin (with some quantum mechanics mixed in, to make
things stable; see Earnshaw’s theorem in Section 2.12). Friction, tension,
normal force, etc., all boil down to the electric forces between the elec-
trons in the various atoms and molecules. You can open a door by push-
ing on it because the forces between neighboring molecules in the door,
and also in your hand, are sufficiently strong. We can ignore the gravi-
tational force between everyday-sized objects because the gravitational
force is so much weaker than the electric force (see Problem 1.1). Only
if one of the objects is the earth does the gravitational force matter. And
even in that case, it is quite remarkable that the electric forces between
the molecules in, say, a wooden board that you might be standing on
can completely balance the gravitational force on you due to the entire
earth. However, this wouldn’t be the case if you attempt to stand on a
lake (unless it’s frozen!).

If you want to give an object a net charge, a possible way is via the
triboelectric effect. If certain materials are rubbed against each other,
they can become charged. For example, rubbing wool and Teflon together
causes the wool to become positively charged and the Teflon negatively
charged. The mechanism is simple: the Teflon simply grabs electrons from
the wool. The determination of which material ends up with extra electrons
depends on the electronic structure of the molecules in the materials.
It turns out that actual rubbing isn’t necessary. Simply touching and
separating the materials can produce an imbalance of charge. Triboelectric
effects are mitigated by humid air, because the water molecules in the
air are inclined to give or receive electrons, depending on which of these
actions neutralizes the object. This is due to the fact that water molecules
are polar, that is, they are electrically lopsided. (Polar molecules will be
discussed in Chapter 10.)

The electrical breakdown of air occurs when the electric field
reaches a strength of about 3 · 106 V/m. In fields this strong, electrons
are ripped from molecules in the air. They are then accelerated by the
field and collide with other molecules, knocking electrons out of these
molecules, and so on, in a cascading process. The result is a spark,
because eventually the electrons will combine in a more friendly man-
ner with molecules and drop down to a lower energy level, emitting the
light that you see. If you shuffle your feet on a carpet and then bring your
finger close to a grounded object, you will see a spark.

The electric field near the surface of the earth is about 100 V/m,
pointing downward. You can show that this implies a charge of −5 · 105 C

www.wikipedia.org
www.explainthatstuff.com
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on the earth. The atmosphere contains roughly the opposite charge, so
that the earth-plus-atmosphere system is essentially neutral, as it must be.
(Why?) If there were no regenerative process, charge would leak between
the ground and the atmosphere, and they would neutralize each other in
about an hour. But there is a regenerative process: lightning. This is a
spectacular example of electrical breakdown. There are millions of light-
ning strikes per day over the surface of the earth, the vast majority of
which transfer negative charge to the earth. A lightning strike is the result
of the strong electric field that is produced by the buildup (or rather, the
separation) of charge in a cloud. This separation arises from the charge
carried on moving raindrops, although the exact process is rather com-
plicated (see the interesting discussion in Chapter 9 of Feynman et al.
(1977)). “Lightning” can also arise from the charge carried on dust parti-
cles in coal mines, flour mills, grain storage facilities, etc. The result can
be a deadly explosion.

A more gentle form of electrical breakdown is corona discharge.
Near the tip of a charged pointy object, such as a needle, the field is large
but then falls off rapidly. (You can model the needle roughly as having
a tiny charged sphere on its end.) Electrons are ripped off the needle (or
off the air molecules) very close to the needle, but the field farther away
isn’t large enough to sustain the breakdown. So there is a slow leakage
instead of an abrupt spark. This leakage can sometimes be seen as a faint
glow. Examples are St. Elmo’s fire at the tips of ship masts, and a glow at
the tips of airplane wings.

Electrostatic paint sprayers can produce very even coats of paint. As
the paint leaves the sprayer, an electrode gives it a charge. This causes
the droplets in the paint mist to repel each other, helping to create a uni-
form mist with no clumping. If the object being painted is grounded (or
given the opposite charge), the paint will be attracted to it, leading to less
wasted paint, less mess, and less inhalation of paint mist. When painting
a metal pipe, for example, the mist will wrap around and partially coat
the back side, instead of just sailing off into the air.

Photocopiers work by giving the toner powder a charge, and giving
certain locations on a drum or belt the opposite charge. These locations
on the drum can be made to correspond to the locations of ink on the
original paper. This is accomplished by coating the drum with a photo-
conductive material, that is, one that becomes conductive when exposed
to light. The entire surface of the drum is given an initial charge and
then exposed to light at locations corresponding to the white areas on the
original page (accomplished by reflecting light off the page). The charge
can be made to flow off these newly conductive locations on the drum,
leaving charge only at the locations corresponding to the ink. When the
oppositely charged toner is brought nearby, it is attracted to these loca-
tions on the drum. The toner is then transferred to a piece of paper, pro-
ducing the desired copy.

Electronic paper, used in many eBook readers, works by using
electric fields to rotate or translate small black and white objects.
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One technique uses tiny spheres (about 10−4 m in diameter) that are
black on one side and white on the other, with the sides being oppo-
sitely charged. Another technique uses similarly tiny spheres that are
filled with many even tinier charged white particles along with a dark
dye. In both cases, a narrow gap between sheets of electrodes (with one
sheet being the transparent sheet that you look through) is filled with
the spheres. By depositing a specific pattern of charge on the sheets, the
color of the objects facing your eye can be controlled. In the first system,
the black and white spheres rotate accordingly. In the second system, the
tiny white particles pile up on one side of the sphere. In contrast with a
standard LCD computer screen, electronic paper acts like normal paper,
in that it doesn’t produce its own light; an outside light source is needed
to view the page. An important advantage of electronic paper is that it
uses a very small amount of power. A battery is needed only when the
page is refreshed, whereas an LCD screen requires continual refreshing.

CHAPTER SUMMARY
• Electric charge, which can be positive or negative, is both conserved

and quantized. The force between two charges is given by Coulomb’s
law:

F = 1
4πε0

q1q2r̂21

r2
21

. (1.57)

Integrating this force, we find that the potential energy of a system of
charges (the work necessary to bring them in from infinity) equals

U = 1
2

N∑
j=1

∑
k �=j

1
4πε0

qjqk

rjk
. (1.58)

• The electric field due to a charge distribution is (depending on whether
the distribution is continuous or discrete)

E = 1
4πε0

∫
ρ(x′, y′, z′)r̂ dx′ dy′ dz′

r2 or
1

4πε0

N∑
j=1

qjr̂j

r2
j

. (1.59)

The force on a test charge q due to the field is F = qE.
• The flux of an electric field through a surface S is

� =
∫

S
E · da. (1.60)

Gauss’s law states that the flux of the electric field E through any
closed surface equals 1/ε0 times the total charge enclosed by the



Problems 39

surface. That is (depending on whether the distribution is continuous
or discrete), ∫

E · da = 1
ε0

∫
ρ dv = 1

ε0

∑
i

qi. (1.61)

Gauss’s law gives the fields for a sphere, line, and sheet of charge as

Esphere = Q
4πε0r2 , Eline = λ

2πε0r
, Esheet = σ

2ε0
. (1.62)

More generally, the discontinuity in the normal component of E across
a sheet is �E⊥ = σ/ε0. Gauss’s law is always valid, although it is
useful for calculating the electric field only in cases where there is
sufficient symmetry.

• The force per unit area on a layer of charge equals the density times
the average of the fields on either side:

F
A
= 1

2

(
E1 + E2

)
σ . (1.63)

• The energy density of an electric field is ε0E2/2, so the total energy in
a system equals

U = ε0

2

∫
E2 dv. (1.64)

Problems
1.1 Gravity vs. electricity *

(a) In the domain of elementary particles, a natural unit of mass
is the mass of a nucleon, that is, a proton or a neutron, the
basic massive building blocks of ordinary matter. Given the
nucleon mass as 1.67 · 10−27 kg and the gravitational constant
G as 6.67 · 10−11 m3/(kg s2), compare the gravitational attrac-
tion of two protons with their electrostatic repulsion. This
shows why we call gravitation a very weak force.

(b) The distance between the two protons in the helium nucleus
could be at one instant as much as 10−15 m. How large is the
force of electrical repulsion between two protons at that dis-
tance? Express it in newtons, and in pounds. Even stronger is
the nuclear force that acts between any pair of hadrons (includ-
ing neutrons and protons) when they are that close together.

1.2 Zero force from a triangle **
Two positive ions and one negative ion are fixed at the vertices of
an equilateral triangle. Where can a fourth ion be placed, along the
symmetry axis of the setup, so that the force on it will be zero? Is
there more than one such place? You will need to solve something
numerically.
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1.3 Force from a cone **
(a) A charge q is located at the tip of a hollow cone (such as an ice

cream cone without the ice cream) with surface charge density
σ . The slant height of the cone is L, and the half-angle at the
vertex is θ . What can you say about the force on the charge q
due to the cone?

(b) If the top half of the cone is removed and thrown away (see
Fig. 1.31), what is the force on the charge q due to the remain-

L /2

L /2

q

qq

s

Figure 1.31.

ing part of the cone? For what angle θ is this force maximum?

1.4 Work for a rectangle **
Two protons and two electrons are located at the corners of a rect-
angle with side lengths a and b. There are two essentially different
arrangements. Consider the work required to assemble the system,
starting with the particles very far apart. Is it possible for the work
to be positive for either of the arrangements? If so, how must a and
b be related? You will need to solve something numerically.

1.5 Stable or unstable? **
In the setup in Exercise 1.37, is the charge −Q at the center of the
square in stable or unstable equilibrium? You can answer this by
working with either forces or energies. The latter has the advan-
tage of not involving components, although things can still get
quite messy. However, the math is simple if you use a computer.
Imagine moving the −Q charge infinitesimally to the point (x, y),
and use, for example, the Series operation in Mathematica to cal-
culate the new energy of the charge, to lowest nontrivial order in
x and y. If the energy decreases for at least one direction of dis-
placement, then the equilibrium is unstable. (The equilibrium is
certainly stable with respect to displacements perpendicular to the
plane of the square, because the attractive force from the other
charges is directed back toward the plane. The question is, what
happens in the plane of the square?)

Q

Q

q

d

d

d

q

q

qq

(a)

(b)

Figure 1.32.

1.6 Zero potential energy for equilibrium **
(a) Two charges q are each located a distance d from a charge Q,

as shown in Fig. 1.32(a). What should the charge Q be so that
the system is in equilibrium; that is, so that the force on each
charge is zero? (The equilibrium is an unstable one, which can
be seen by looking at longitudinal displacements of the (nega-
tive) charge Q. This is consistent with a general result that we
will derive Section 2.12.)

(b) Same question, but now with the setup in Fig. 1.32(b). The
three charges q are located at the vertices of an equilateral
triangle.

(c) Show that the total potential energy in each of the above
systems is zero.
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(d) In view of the previous result, we might make the follow-
ing conjecture: “The total potential energy of any system of
charges in equilibrium is zero.” Prove that this conjecture is
indeed true. Hint: The goal is to show that zero work is required
to move the charges out to infinity. Since the electrostatic force
is conservative, you need only show that the work is zero for
one particular set of paths of the charges. And there is indeed
a particular set of paths that makes the result clear.

1.7 Potential energy in a two-dimensional crystal **
Use a computer to calculate numerically the potential energy, per
ion, for an infinite two-dimensional square ionic crystal with sepa-
ration a; that is, a plane of equally spaced charges of magnitude e
and alternating sign (as with a checkerboard).

1.8 Oscillating in a ring ***
A ring with radius R has uniform positive charge density λ. A par-
ticle with positive charge q and mass m is initially located at the
center of the ring and is then given a tiny kick. If it is constrained
to move in the plane of the ring, show that it undergoes simple
harmonic motion (for small oscillations), and find the frequency.
Hint: Find the potential energy of the particle when it is at a (small)
radius, r, by integrating over the ring, and then take the negative
derivative to find the force. You will need to use the law of cosines
and also the Taylor series 1/

√
1 + ε ≈ 1 − ε/2 + 3ε2/8.

1.9 Field from two charges **
A charge 2q is at the origin, and a charge −q is at x = a on the x
axis.
(a) Find the point on the x axis where the electric field is zero.
(b) Consider the vertical line passing through the charge −q, that

is, the line given by x = a. Locate, at least approximately, a
point on this line where the electric field is parallel to the x
axis.

l

Figure 1.33.

1.10 45-degree field line **
A half-infinite line has linear charge density λ. Find the electric
field at a point that is “even” with the end, a distance � from it, as
shown in Fig. 1.33. You should find that the field always points up
at a 45◦ angle, independent of �.

1.11 Field at the end of a cylinder **
(a) Consider a half-infinite hollow cylindrical shell (that is, one

that extends to infinity in one direction) with radius R and uni-
form surface charge density σ . What is the electric field at the
midpoint of the end face?

(b) Use your result to determine the field at the midpoint of a
half-infinite solid cylinder with radius R and uniform volume
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charge density ρ, which can be considered to be built up from
many cylindrical shells.

R

z

Figure 1.34.

1.12 Field from a hemispherical shell ***
A hemispherical shell has radius R and uniform surface charge
density σ (see Fig. 1.34). Find the electric field at a point on the
symmetry axis, at position z relative to the center, for any z value
from −∞ to ∞.

1.13 A very uniform field ***
(a) Two rings with radius r have charge Q and −Q uniformly

distributed around them. The rings are parallel and located a
distance h apart, as shown in Fig. 1.35. Let z be the vertical
coordinate, with z = 0 taken to be at the center of the lower
ring. As a function of z, what is the electric field at points on
the axis of the rings?

r

h

Q

−Q

Figure 1.35.

(b) You should find that the electric field is an even function with
respect to the z = h/2 point midway between the rings. This
implies that, at this point, the field has a local extremum as a
function of z. The field is therefore fairly uniform there; there
are no variations to first order in the distance along the axis
from the midpoint. What should r be in terms of h so that the
field is very uniform?

By “very” uniform we mean that additionally there aren’t
any variations to second order in z. That is, the second deriva-
tive vanishes. This then implies that the leading-order change
is fourth order in z (because there are no variations at any odd
order, since the field is an even function around the midpoint).
Feel free to calculate the derivatives with a computer.

1.14 Hole in a plane **
(a) A hole of radius R is cut out from a very large flat sheet with

uniform charge density σ . Let L be the line perpendicular to
the sheet, passing through the center of the hole. What is the
electric field at a point on L, a distance z from the center of the
hole? Hint: Consider the plane to consist of many concentric
rings.

(b) If a charge −q with mass m is released from rest on L, very
close to the center of the hole, show that it undergoes oscil-
latory motion, and find the frequency ω of these oscillations.
What is ω if m = 1 g, −q = −10−8 C, σ = 10−6 C/m2, and
R = 0.1 m?

(c) If a charge −q with mass m is released from rest on L, a dis-
tance z from the sheet, what is its speed when it passes through
the center of the hole? What does your answer reduce to for
large z (or, equivalently, small R)?
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1.15 Flux through a circle **
A point charge q is located at the origin. Consider the electric field
flux through a circle a distance � from q, subtending an angle 2θ , as
shown in Fig. 1.36. Since there are no charges except at the origin,

q
q

q

Figure 1.36.

any surface that is bounded by the circle and that stays to the right
of the origin must contain the same flux. (Why?) Calculate this
flux by taking the surface to be:

(a) the flat disk bounded by the circle;

(b) the spherical cap (with the sphere centered at the origin)
bounded by the circle.

1.16 Gauss’s law and two point charges **
(a) Two point charges q are located at positions x = ±�. At points

close to the origin on the x axis, find Ex. At points close to the
origin on the y axis, find Ey. Make suitable approximations
with x � � and y � �.

(b) Consider a small cylinder centered at the origin, with its axis
along the x axis. The radius is r0 and the length is 2x0. Using
your results from part (a), verify that there is zero flux through
the cylinder, as required by Gauss’s law.

1.17 Zero field inside a spherical shell **
Consider a hollow spherical shell with uniform surface charge den-
sity. By considering the two small patches at the ends of the thin
cones in Fig. 1.37, show that the electric field at any point P in
the interior of the shell is zero. This then implies that the electric
potential (defined in Chapter 2) is constant throughout the interior.

P

Figure 1.37.
1.18 Fields at the surfaces **

Consider the electric field at a point on the surface of (a) a sphere
with radius R, (b) a cylinder with radius R whose length is infinite,
and (c) a slab with thickness 2R whose other two dimensions are
infinite. All of the objects have the same volume charge density ρ.
Compare the fields in the three cases, and explain physically why
the sizes take the order they do.

1.19 Sheet on a sphere **
Consider a large flat horizontal sheet with thickness x and volume
charge density ρ. This sheet is tangent to a sphere with radius R
and volume charge density ρ0, as shown in Fig. 1.38. Let A be the
point of tangency, and let B be the point opposite to A on the top
side of the sheet. Show that the net upward electric field (from
the sphere plus the sheet) at B is larger than at A if ρ > (2/3)ρ0.
(Assume x � R.)

R

x
r

r
0

A

B

Figure 1.38.
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1.20 Thundercloud **
You observe that the passage of a particular thundercloud over-
head causes the vertical electric field strength in the atmosphere,
measured at the ground, to rise to 3000 N/C (or V/m).

(a) How much charge does the thundercloud contain, in coulombs
per square meter of horizontal area? Assume that the width of
the cloud is large compared with the height above the ground.

(b) Suppose there is enough water in the thundercloud in the form
of 1 mm diameter drops to make 0.25 cm of rainfall, and that
it is those drops that carry the charge. How large is the electric
field strength at the surface of one of the drops?

1.21 Field in the end face *
Consider a half-infinite hollow cylindrical shell (that is, one that
extends to infinity in one direction) with uniform surface charge
density. Show that at all points in the circular end face, the elec-
tric field is parallel to the cylinder’s axis. Hint: Use superposition,
along with what you know about the field from an infinite (in both
directions) hollow cylinder.

1.22 Field from a spherical shell, right and wrong **
The electric field outside and an infinitesimal distance away from a
uniformly charged spherical shell, with radius R and surface charge
density σ , is given by Eq. (1.42) as σ/ε0. Derive this in the follow-
ing way.

(a) Slice the shell into rings (symmetrically located with respect to
the point in question), and then integrate the field contributions
from all the rings. You should obtain the incorrect result of
σ/2ε0.

(b) Why isn’t the result correct? Explain how to modify it to obtain
the correct result of σ/ε0. Hint: You could very well have per-
formed the above integral in an effort to obtain the electric
field an infinitesimal distance inside the shell, where we know
the field is zero. Does the above integration provide a good
description of what’s going on for points on the shell that are
very close to the point in question?

1.23 Field near a stick **
A stick with length 2� has uniform linear charge density λ. Con-
sider a point P, a distance η� from the center (where 0 ≤ η < 1),
and an infinitesimal distance away from the stick. Up close, the
stick looks infinitely long, as far as the E component perpendicu-
lar to the stick is concerned. So we have E⊥ = λ/2πε0r. Find the
E component parallel to the stick, E‖. Does it approach infinity, or
does it remain finite at the end of the stick?
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1.24 Potential energy of a cylinder ***
A cylindrical volume of radius a is filled with charge of uniform
density ρ. We want to know the potential energy per unit length
of this cylinder of charge, that is, the work done per unit length
in assembling it. Calculate this by building up the cylinder layer
by layer, making use of the fact that the field outside a cylindrical
distribution of charge is the same as if all the charge were located
on the axis. You will find that the energy per unit length is infinite
if the charges are brought in from infinity, so instead assume that
they are initially distributed uniformly over a hollow cylinder with
large radius R. Write your answer in terms of the charge per unit
length of the cylinder, which is λ = ρπa2. (See Exercise 1.83 for
a different method of solving this problem.)

1.25 Two equal fields **
The result of Exercise 1.78 is that the electric field at the center
of a small hole in a spherical shell equals σ/2ε0. This happens
to be the same as the field due to an infinite flat sheet with the
same density σ . That is, at the center of the hole at the top of the
spherical shell in Fig. 1.39, the field from the shell equals the field

q

dq

Shell

Sheet

Figure 1.39.

from the infinite horizontal sheet shown. (This sheet could actually
be located at any height.) Demonstrate this equality by explaining
why the rings on the shell and sheet that are associated with the
angle θ and angular width dθ yield the same field at the top of the
shell.

1.26 Stable equilibrium in electron jelly **
The task of Exercise 1.77 is to find the equilibrium positions of
two protons located inside a sphere of electron jelly with total
charge −2e. Show that the equilibria are stable. That is, show that
a displacement in any direction will result in a force directed back
toward the equilibrium position. (There is no need to know the
exact locations of the equilibria, so you can solve this problem
without solving Exercise 1.77 first.)

1.27 Uniform field in a cavity **
A sphere has radius R1 and uniform volume charge density ρ. A
spherical cavity with radius R2 is carved out at an arbitrary loca-
tion inside the larger sphere. Show that the electric field inside the
cavity is uniform (in both magnitude and direction). Hint: Find a
vector expression for the field in the interior of a charged sphere,
and then use superposition.

What are the analogous statements for the lower-dimensional
analogs with cylinders and slabs? Are the statements still true?

1.28 Average field on/in a sphere **
(a) A point charge q is located at an arbitrary position inside a

sphere (just an imaginary sphere in space) with radius R. Show
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that the average electric field over the surface of the sphere
is zero. Hint: Use an argument involving Newton’s third law,
along with what you know about spherical shells.

(b) If the point charge q is instead located outside the sphere, a
distance r from the center, show that the average electric field
over the surface of the sphere has magnitude q/4πε0r.

(c) Return to the case where the point charge q is located inside
the sphere of radius R. Let the distance from the center be r.
Use the above results to show that the average electric field
over the entire volume of the sphere of radius R has magnitude
qr/4πε0R3 and points toward the center (if q is positive).

1.29 Pulling two sheets apart **
Two parallel sheets each have large area A and are separated by
a small distance �. The surface charge densities are σ and −σ .
You wish to pull one of the sheets away from the other, by a small
distance x. How much work does this require? Calculate this by:

(a) using the relation W = (force) × (distance);

(b) calculating the increase in energy stored in the electric field.
Show that these two methods give the same result.

1.30 Force on a patch **
Consider a small patch of charge that is part of a larger surface.
The surface charge density is σ . If E1 and E2 are the electric fields
on either side of the patch, show that the force per unit area on
the patch equals σ(E1 + E2)/2. This is the result we derived in
Section 1.14, for the case where the field is perpendicular to the
surface. Derive it here by using the fact that the force on the patch
is due to the field Eother from all the other charges in the system
(excluding the patch), and then finding an expression for Eother in
terms of E1 and E2.

1.31 Decreasing energy? *
A hollow spherical shell with radius R has charge Q uniformly dis-
tributed over it. The task of Problem 1.32 is to show that the energy
stored in this system is Q2/8πε0R. (You can derive this here if you
want, or you can just accept it for the purposes of this problem.)
Now imagine taking all of the charge and concentrating it in two
point charges Q/2 located at diametrically opposite positions on
the shell. The energy of this new system is (Q/2)2/4πε0(2R) =
Q2/32πε0R, which is less than the energy of the uniform spheri-
cal shell. Does this make sense? If not, where is the error in this
reasoning?
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1.32 Energy of a shell **
A hollow spherical shell with radius R has charge Q uniformly
distributed over it. Show that the energy stored in this system is
Q2/8πε0R. Do this in two ways as follows.

(a) Use Eq. (1.53) to find the energy stored in the electric field.
(b) Imagine building up the shell by successively adding on

infinitesimally thin shells with charge dq. Find the energy
needed to add on a shell when the charge already there is q,
and then integrate over q.

1.33 Deriving the energy density ***
Consider the electric field of two protons a distance b apart. Accord-
ing to Eq. (1.53) (which we stated but did not prove), the
potential energy of the system ought to be given by

U = ε0

2

∫
E2 dv = ε0

2

∫
(E1 + E2)

2 dv

= ε0

2

∫
E2

1 dv + ε0

2

∫
E2

2 dv + ε0

∫
E1 · E2 dv, (1.65)

where E1 is the field of one particle alone and E2 that of the other.
The first of the three integrals on the right might be called the
“electrical self-energy” of one proton; an intrinsic property of the
particle, it depends on the proton’s size and structure. We have
always disregarded it in reckoning the potential energy of a sys-
tem of charges, on the assumption that it remains constant; the
same goes for the second integral. The third integral involves the
distance between the charges. Evaluate this integral. This is most
easily done if you set it up in spherical polar coordinates with one
of the protons at the origin and the other on the polar axis, and
perform the integration over r before the integration over θ . Thus,
by direct calculation, you can show that the third integral has the
value e2/4πε0b, which we already know to be the work required to
bring the two protons in from an infinite distance to positions a dis-
tance b apart. So you will have proved the correctness of Eq. (1.53)
for this case, and by invoking superposition you can argue that
Eq. (1.53) must then give the energy required to assemble any sys-
tem of charges.

Exercises
1.34 Aircraft carriers and specks of gold *

Imagine (quite unrealistically) removing one electron from
every atom in a tiny cube of gold 1 mm on a side. (Never mind how
you would hold the resulting positively charged cube together.) Do
the same thing with another such cube a meter away. What is the
repulsive force between the two cubes? How many aircraft carriers
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would you need in order to have their total weight equal this force?
Some data: The density of gold is 19.3 g/cm3, and its molecular
weight is 197; that is, 1 mole (6.02 · 1023) of gold atoms has a mass
of 197 grams. The mass of an aircraft carrier is around 100 million
kilograms.

1.35 Balancing the weight *
On the utterly unrealistic assumption that there are no other charged
particles in the vicinity, at what distance below a proton would the
upward force on an electron equal the electron’s weight? The mass
of an electron is about 9 · 10−31 kg.

1.36 Repelling volley balls *
Two volley balls, mass 0.3 kg each, tethered by nylon strings and
charged with an electrostatic generator, hang as shown in
Fig. 1.40. What is the charge on each, assuming the charges are
equal?

0.5 m

2.
5 

m

Figure 1.40.

1.37 Zero force at the corners **
(a) At each corner of a square is a particle with charge q. Fixed at

the center of the square is a point charge of opposite sign, of
magnitude Q. What value must Q have to make the total force
on each of the four particles zero?

(b) With Q taking on the value you just found, show that the poten-
tial energy of the system is zero, consistent with the result from
Problem 1.6.

1.38 Oscillating on a line **
Two positive point charges Q are located at points (±�, 0). A par-
ticle with positive charge q and mass m is initially located midway
between them and is then given a tiny kick. If it is constrained to
move along the line joining the two charges Q, show that it under-
goes simple harmonic motion (for small oscillations), and find the
frequency.

1.39 Rhombus of charges **
Four positively charged bodies, two with charge Q and two with
charge q, are connected by four unstretchable strings of equal length.
In the absence of external forces they assume the equilibrium
configuration shown in Fig. 1.41. Show that tan3 θ = q2/Q2. ThisQQ

q

q

q

Figure 1.41.

can be done in two ways. You could show that this relation must hold
if the total force on each body, the vector sum of string tension and
electrical repulsion, is zero. Or you could write out the expression
for the energy U of the assembly (like Eq. (1.13) but for four charges
instead of three) and minimize it.

1.40 Zero potential energy **
Find a geometrical arrangement of one proton and two electrons
such that the potential energy of the system is exactly zero. How
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many such arrangements are there with the three particles on the
same straight line? You should find that the ratio of two of the
distances involved is the golden ratio.

1.41 Work for an octahedron **
Three protons and three electrons are to be placed at the vertices of
a regular octahedron of edge length a. We want to find the energy
of the system, that is, the work required to assemble it starting
with the particles very far apart. There are two essentially different
arrangements. What is the energy of each?

1.42 Potential energy in a one-dimensional crystal **
Calculate the potential energy, per ion, for an infinite 1D ionic
crystal with separation a; that is, a row of equally spaced charges
of magnitude e and alternating sign. Hint: The power-series expan-
sion of ln(1 + x) may be of use.

1.43 Potential energy in a three-dimensional crystal **
In the spirit of Problem 1.7, use a computer to calculate numeric-
ally the potential energy, per ion, for an infinite 3D cubic ionic
crystal with separation a. In other words, derive Eq. (1.18).

1.44 Chessboard **
An infinite chessboard with squares of side s has a charge e at
the center of every white square and a charge −e at the center of
every black square. We are interested in the work W required to
transport one charge from its position on the board to an infinite
distance from the board. Given that W is finite (which is plausible
but not so easy to prove), do you think it is positive or negative?
Calculate an approximate value for W by removing the charge from
the central square of a 7 × 7 board. (Only nine different terms are
involved in that sum.) For larger arrays you can write a program
to compute the work numerically. This will give you some idea of
the rate of convergence toward the value for the infinite array; see
Problem 1.7.

1.45 Zero field? **
Four charges, q, −q, q, and −q, are located at equally spaced inter-
vals on the x axis. Their x values are −3a, −a, a, and 3a, respec-
tively. Does there exist a point on the y axis for which the electric
field is zero? If so, find the y value.

1.46 Charges on a circular track **
Suppose three positively charged particles are constrained to move
on a fixed circular track. If the charges were all equal, an equi-
librium arrangement would obviously be a symmetrical one with
the particles spaced 120◦ apart around the circle. Suppose that two
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of the charges are equal and the equilibrium arrangement is such
that these two charges are 90◦ apart rather than 120◦. What is the
relative magnitude of the third charge?

1.47 Field from a semicircle *
A thin plastic rod bent into a semicircle of radius R has a charge Q
distributed uniformly over its length. Find the electric field at the
center of the semicircle.

1.48 Maximum field from a ring **
A charge Q is distributed uniformly around a thin ring of radius
b that lies in the xy plane with its center at the origin. Locate the
point on the positive z axis where the electric field is
strongest.

1.49 Maximum field from a blob **
(a) A point charge is placed somewhere on the curve shown in

Fig. 1.42. This point charge creates an electric field at the ori-

y

x

E

Figure 1.42.

gin. Let Ey be the vertical component of this field. What shape
(up to a scaling factor) should the curve take so that Ey is inde-
pendent of the position of the point charge on the curve?

(b) You have a moldable material with uniform volume charge
density. What shape should the material take if you want to
create the largest possible electric field at a given point in
space? Be sure to explain your reasoning clearly.

1.50 Field from a hemisphere **
(a) What is the electric field at the center of a hollow hemispheri-

cal shell with radius R and uniform surface charge density σ?
(This is a special case of Problem 1.12, but you can solve the
present exercise much more easily from scratch, without going
through all the messy integrals of Problem 1.12.)

(b) Use your result to show that the electric field at the center of
a solid hemisphere with radius R and uniform volume charge
density ρ equals ρR/4ε0.

1.51 N charges on a circle ***
N point charges, each with charge Q/N, are evenly distributed
around a circle of radius R. What is the electric field at the loca-
tion of one of the charges, due to all the others? (You can leave
your answer in the form of a sum.) In the N → ∞ limit, is the
field infinite or finite? In the N → ∞ limit, is the force on one of
the charges infinite or finite?

1.52 An equilateral triangle *
Three positive charges, A, B, and C, of 3 · 10−6, 2 · 10−6, and
2 · 10−6 coulombs, respectively, are located at the corners of an
equilateral triangle of side 0.2 m.
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(a) Find the magnitude in newtons of the force on each charge.
(b) Find the magnitude in newtons/coulomb of the electric field at

the center of the triangle.

1.53 Concurrent field lines **
A semicircular wire with radius R has uniform charge density −λ.
Show that at all points along the “axis” of the semicircle (the line
through the center, perpendicular to the plane of the semicircle, as
shown in Fig. 1.43), the vectors of the electric field all point toward

R

axis

−l

Figure 1.43.

a common point in the plane of the semicircle. Where is this point?

1.54 Semicircle and wires **
(a) Two long, thin parallel rods, a distance 2b apart, are joined by a

semicircular piece of radius b, as shown in Fig. 1.44. Charge of

2b

A

B

C

q

dq

dq

q

l

Figure 1.44.

uniform linear density λ is deposited along the whole filament.
Show that the field E of this charge distribution vanishes at the
point C. Do this by comparing the contribution of the element
at A to that of the element at B which is defined by the same
values of θ and dθ .

(b) Consider the analogous two-dimensional setup involving a
cylinder and a hemispherical end cap, with uniform surface
charge density σ . Using the result from part (a), do you think
that the field at the analogous point C is directed upward,
downward, or is zero? (No calculations needed!)

1.55 Field from a finite rod **
A thin rod 10 cm long carries a total charge of 24 esu = 8 · 10−9 C
uniformly distributed along its length. Find the strength of the elec-
tric field at each of the two points A and B located as shown in
Fig. 1.45.

1.56 Flux through a cube *
(a) A point charge q is located at the center of a cube of edge d.

What is the value of
∫

E · da over one face of the cube?
(b) The charge q is moved to one corner of the cube. Now what

is the value of the flux of E through each of the faces of the
cube? (To make things well defined, treat the charge like a tiny
sphere.)

1.57 Escaping field lines **
Charges 2q and −q are located on the x axis at x = 0 and x = a,
respectively.

(a) Find the point on the x axis where the electric field is zero, and
make a rough sketch of some field lines.

(b) You should find that some of the field lines that start on the
2q charge end up on the −q charge, while others head off to
infinity. Consider the field lines that form the cutoff between
these two cases. At what angle (with respect to the x axis) do
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these lines leave the 2q charge? Hint: Draw a wisely chosen
Gaussian surface that mainly follows these lines.

10 cm

5 cm

3 cm

A

B

Figure 1.45.

1.58 Gauss’s law at the center of a ring **
(a) A ring with radius R has total charge Q uniformly distributed

around it. To leading order, find the electric field at a point
along the axis of the ring, a very small distance z from the
center.

(b) Consider a small cylinder centered at the center of the ring,
with small radius r0 and small height 2z0, with z0 lying on
either side of the plane of the ring. There is no charge in this
cylinder, so the net flux through it must be zero. Using a result
given in the solution to Problem 1.8, verify that this is indeed
the case (to leading order in the small distances involved).

1.59 Zero field inside a cylindrical shell *
Consider a distribution of charge in the form of a hollow circular
cylinder, like a long charged pipe. In the spirit of Problem 1.17,
show that the electric field inside the pipe is zero.

1.60 Field from a hollow cylinder *
Consider the hollow cylinder from Exercise 1.59. Use Gauss’s law
to show that the field inside the pipe is zero. Also show that the
field outside is the same as if the charge were all on the axis. Is
either statement true for a pipe of square cross section on which
the charge is distributed with uniform surface density?

1.61 Potential energy of a sphere **
A spherical volume of radius R is filled with charge of uniform
density ρ. We want to know the potential energy U of this sphere
of charge, that is, the work done in assembling it. In the example
in Section 1.15, we calculated U by integrating the energy density
of the electric field; the result was U = (3/5)Q2/4πε0R. Derive
U here by building up the sphere layer by layer, making use of the
fact that the field outside a spherical distribution of charge is the
same as if all the charge were at the center.

1.62 Electron self-energy *
At the beginning of the twentieth century the idea that the rest
mass of the electron might have a purely electrical origin was very
attractive, especially when the equivalence of energy and mass
was revealed by special relativity. Imagine the electron as a ball of
charge, of constant volume density out to some maximum radius
r0. Using the result of Exercise 1.61, set the potential energy of
this system equal to mc2 and see what you get for r0. One defect of
the model is rather obvious: nothing is provided to hold the charge
together!
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1.63 Sphere and cones **
(a) Consider a fixed hollow spherical shell with radius R and sur-

face charge density σ . A particle with mass m and charge −q
that is initially at rest falls in from infinity. What is its speed
when it reaches the center of the shell? (Assume that a tiny
hole has been cut in the shell, to let the charge through.)

(b) Consider two fixed hollow conical shells (that is, ice cream
cones without the ice cream) with base radius R, slant height L,
and surface charge density σ , arranged as shown in Fig. 1.46.
A particle with mass m and charge −q that is initially at rest

R

L

R

(a)

(b)

Figure 1.46.

falls in from infinity, along the perpendicular bisector line, as
shown. What is its speed when it reaches the tip of the cones?
You should find that your answer relates very nicely to your
answer for part (a).

1.64 Field between two wires *
Consider a high-voltage direct current power line that consists of
two parallel conductors suspended 3 meters apart. The lines are
oppositely charged. If the electric field strength halfway between
them is 15,000 N/C, how much excess positive charge resides on a
1 km length of the positive conductor?

1.65 Building a sheet from rods **
An infinite uniform sheet of charge can be thought of as consisting
of an infinite number of adjacent uniformly charged rods. Using the
fact that the electric field from an infinite rod is λ/2πε0r, integrate
over these rods to show that the field from an infinite sheet with
charge density σ is σ/2ε0.

1.66 Force between two strips **
(a) The two strips of charge shown in Fig. 1.47 have width b,

b b

s −s

Figure 1.47.

infinite height, and negligible thickness (in the direction per-
pendicular to the page). Their charge densities per unit area are
±σ . Find the magnitude of the electric field due to one of the
strips, a distance x away from it (in the plane of the page).

(b) Show that the force (per unit height) between the two strips
equals σ 2b(ln 2)/πε0. Note that this result is finite, even though
you will find that the field due to a strip diverges as you get
close to it.

1.67 Field from a cylindrical shell, right and wrong **
Find the electric field outside a uniformly charged hollow cylin-
drical shell with radius R and charge density σ , an infinitesimal
distance away from it. Do this in the following way.

(a) Slice the shell into parallel infinite rods, and integrate the field
contributions from all the rods. You should obtain the incor-
rect result of σ/2ε0.



54 Electrostatics: charges and fields

(b) Why isn’t the result correct? Explain how to modify it to obtain
the correct result of σ/ε0. Hint: You could very well have per-
formed the above integral in an effort to obtain the electric
field an infinitesimal distance inside the cylinder, where we
know the field is zero. Does the above integration provide a
good description of what’s going on for points on the shell
that are very close to the point in question?

B
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Figure 1.48.

1.68 Uniform field strength *
We know from the example in Section 1.11 that the electric field
inside a solid sphere with uniform charge density is proportional
to r. Assume instead that the charge density is not uniform, but
depends only on r. What should this dependence be so that the
magnitude of the field at points inside the sphere is independent
of r (except right at the center, where it isn’t well defined)? What
should the dependence be in the analogous case where we have a
cylinder instead of a sphere?

1.69 Carved-out sphere **
A sphere of radius a is filled with positive charge with uniform
density ρ. Then a smaller sphere of radius a/2 is carved out, as
shown in Fig. 1.48, and left empty. What are the direction and mag-
nitude of the electric field at A? At B?

1.70 Field from two sheets *
Two infinite plane sheets of surface charge, with densities 3σ0 and
−2σ0, are located a distance � apart, parallel to one another. Dis-
cuss the electric field of this system. Now suppose the two planes,
instead of being parallel, intersect at right angles. Show what the
field is like in each of the four regions into which space is thereby
divided.

s
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Figure 1.49.

1.71 Intersecting sheets **
(a) Figure 1.49 shows the cross section of three infinite sheets

intersecting at equal angles. The sheets all have surface charge
density σ . By adding up the fields from the sheets, find the
electric field at all points in space.

(b) Find the field instead by using Gauss’s law. You should explain
clearly why Gauss’s law is in fact useful in this setup.

(c) What is the field in the analogous setup where there are N
sheets instead of three? What is your answer in the N → ∞
limit? This limit is related to the cylinder in Exercise 1.68.

s
r

d

Figure 1.50.

1.72 A plane and a slab **
An infinite plane has uniform surface charge density σ . Adjacent to
it is an infinite parallel layer of charge of thickness d and uniform
volume charge density ρ, as shown in Fig. 1.50. All charges are
fixed. Find E everywhere.
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1.73 Sphere in a cylinder **
An infinite cylinder with uniform volume charge density ρ has its
axis lying along the z axis. A sphere is carved out of the cylin-
der and then filled up with a material with uniform density −ρ/2.
Assume that the center of the sphere is located on the x axis at posi-
tion x = a. Show that inside the sphere the component of the field
in the xy plane is uniform, and find its value. Hint: The technique
used in Problem 1.27 will be helpful.

1.74 Zero field in a sphere **
In Fig. 1.51 a sphere with radius R is centered at the origin, an
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Figure 1.51.

infinite cylinder with radius R has its axis along the z axis, and an
infinite slab with thickness 2R lies between the planes z=−R and
z=R. The uniform volume densities of these objects are ρ1, ρ2,
and ρ3, respectively. The objects are superposed on top of each
other; the densities add where the objects overlap. How should
the three densities be related so that the electric field is zero
everywhere throughout the volume of the sphere? Hint: Find a
vector expression for the field inside each object, and then use
superposition.

1.75 Ball in a sphere **
We know that if a point charge q is located at radius a in the interior
of a sphere with radius R and uniform volume charge density ρ,
then the force on the point charge is effectively due only to the
charge that is located inside radius a.

(a) Consider instead a uniform ball of charge located entirely inside
a larger sphere of radius R. Let the ball’s radius be b, and let
its center be located at radius a in the larger sphere. Its volume
charge density is such that its total charge is q. Assume that
the ball is superposed on top of the sphere, so that all of the
sphere’s charge is still present. Can the force on the ball be
obtained by treating it like a point charge and considering only
the charge in the larger sphere that is inside radius a?

(b) Would the force change if we instead remove the charge in the
larger sphere where the ball is? So now we are looking at the
force on the ball due to the sphere with a cavity carved out,
which is a more realistic scenario.

1.76 Hydrogen atom **
The neutral hydrogen atom in its normal state behaves, in some
respects, like an electric charge distribution that consists of a point
charge of magnitude e surrounded by a distribution of negative
charge whose density is given by ρ(r) = −Ce−2r/a0 . Here a0 is
the Bohr radius, 0.53 · 10−10 m, and C is a constant with the value
required to make the total amount of negative charge exactly e.
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What is the net electric charge inside a sphere of radius a0? What
is the electric field strength at this distance from the nucleus?

1.77 Electron jelly **
Imagine a sphere of radius a filled with negative charge of uniform
density, the total charge being equivalent to that of two electrons.
Imbed in this jelly of negative charge two protons, and assume that,
in spite of their presence, the negative charge distribution remains
uniform. Where must the protons be located so that the force on
each of them is zero? (This is a surprisingly realistic caricature of
a hydrogen molecule; the magic that keeps the electron cloud in
the molecule from collapsing around the protons is explained by
quantum mechanics!)

Figure 1.52.

1.78 Hole in a shell **
Figure 1.52 shows a spherical shell of charge, of radius a and sur-
face density σ , from which a small circular piece of radius b � a
has been removed. What is the direction and magnitude of the field
at the midpoint of the aperture? There are two ways to get the
answer. You can integrate over the remaining charge distribution
to sum the contributions of all elements to the field at the point
in question. Or, remembering the superposition principle, you can
think about the effect of replacing the piece removed, which itself
is practically a little disk. Note the connection of this result with
our discussion of the force on a surface charge – perhaps that is a
third way in which you might arrive at the answer.

1.79 Forces on three sheets **
Consider three charged sheets, A, B, and C. The sheets are parallel
with A above B above C. On each sheet there is surface charge of
uniform density: −4 · 10−5 C/m2 on A, 7 · 10−5 C/m2 on B, and
−3 · 10−5 C/m2 on C. (The density given includes charge on both
sides of the sheet.) What is the magnitude of the electrical force
per unit area on each sheet? Check to see that the total force per
unit area on the three sheets is zero.

1.80 Force in a soap bubble **
Like the charged rubber balloon described at the end of Section 1.14,
a charged soap bubble experiences an outward electrical force on
every bit of its surface. Given the total charge Q on a bubble of
radius R, what is the magnitude of the resultant force tending to
pull any hemispherical half of the bubble away from the other half?
(Should this force divided by 2πR exceed the surface tension of
the soap film, interesting behavior might be expected!)

1.81 Energy around a sphere *
A sphere of radius R has a charge Q distributed uniformly over
its surface. How large a sphere contains 90 percent of the energy
stored in the electrostatic field of this charge distribution?
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1.82 Energy of concentric shells *
(a) Concentric spherical shells of radius a and b, with a < b,

carry charge Q and −Q, respectively, each charge uniformly
distributed. Find the energy stored in the electric field of this
system.

(b) Calculate the stored energy in a second way: start with two
neutral shells, and then gradually transfer positive charge from
the outer shell to the inner shell in a spherically symmetric
manner. At an intermediate stage when there is charge q on
the inner shell, find the work required to transfer an additional
charge dq. And then integrate over q.

1.83 Potential energy of a cylinder **
Problem 1.24 gives one way of calculating the energy per unit
length stored in a solid cylinder with radius a and uniform volume
charge density ρ. Calculate the energy here by using Eq. (1.53)
to find the total energy per unit length stored in the electric field.
Don’t forget to include the field inside the cylinder.

You will find that the energy is infinite, so instead calculate the
energy relative to the configuration where all the charge is initially
distributed uniformly over a hollow cylinder with large radius R.
(The field outside radius R is the same in both configurations, so
it can be ignored when calculating the relative energy.) In terms of
the total charge λ per unit length in the final cylinder, show that the
energy per unit length can be written as (λ2/4πε0)

(
1/4+ln(R/a)

)
.



2
The electric
potential

Overview The first half of this chapter deals mainly with the
potential associated with an electric field. The second half covers
a number of mathematical topics that will be critical in our treat-
ment of electromagnetism. The potential difference between two
points is defined to be the negative line integral of the electric field.
Equivalently, the electric field equals the negative gradient of the
potential. Just as the electric field is the force per unit charge, the
potential is the potential energy per unit charge. We give a num-
ber of examples involving the calculation of the potential due to
a given charge distribution. One important example is the dipole,
which consists of two equal and opposite charges. We will have
much more to say about the applications of dipoles in Chapter 10.

Turning to mathematics, we introduce the divergence, which
gives a measure of the flux of a vector field out of a small volume.
We prove Gauss’s theorem (or the divergence theorem) and then
use it to write Gauss’s law in differential form. The result is the first
of the four equations known as Maxwell’s equations (the subject
of Chapter 9). We explicitly calculate the divergence in Cartesian
coordinates. The divergence of the gradient is known as the Lapla-
cian operator. Functions whose Laplacian equals zero have many
important properties, one of which leads to Earnshaw’s theorem,
which states that it is impossible to construct a stable electrostatic
equilibrium in empty space. We introduce the curl, which gives a
measure of the line integral of a vector field around a small closed
curve. We prove Stokes’ theorem and explicitly calculate the curl in
Cartesian coordinates. The conservative nature of a static electric
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field implies that its curl is zero. See Appendix F for a discussion
of the various vector operators in different coordinate systems.

P1 P1

E

ds

P1

P2 P2 P2

Pa
th

Figure 2.1.
Showing the division of the path into path
elements ds.

2.1 Line integral of the electric field
Suppose that E is the field of some stationary distribution of electric
charges. Let P1 and P2 denote two points anywhere in the field. The line
integral of E between the two points is

∫ P2
P1

E · ds, taken along some path
that runs from P1 to P2, as shown in Fig. 2.1. This means: divide the
chosen path into short segments, each segment being represented by a
vector connecting its ends; take the scalar product of the path-segment
vector with the field E at that place; add these products up for the whole
path. The integral as usual is to be regarded as the limit of this sum as
the segments are made shorter and more numerous without limit.

Let’s consider the field of a point charge q and some paths running
from point P1 to point P2 in that field. Two different paths are shown in
Fig. 2.2. It is easy to compute the line integral of E along path A, which
is made up of a radial segment running outward from P1 and an arc of

Path A

Path B

q

r1

P1

r
r2

P2ds

ds

ds

E

E

E

E
E

Figure 2.2.
The electric field E is that of a positive point
charge q. The line integral of E from P1 to P2
along path A has the value (q/4πε0)(1/r1 − 1/r2).
It will have exactly the same value if calculated
for path B, or for any other path from P1 to P2.
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radius r2. Along the radial segment of path A, E and ds are parallel, the
magnitude of E is q/4πε0r2, and E · ds is simply (q/4πε0r2) ds. Thus
the line integral on that segment is

∫ r2

r1

q dr
4πε0r2 = q

4πε0

(
1
r1

− 1
r2

)
. (2.1)

The second leg of path A, the circular segment, gives zero because E is
perpendicular to ds everywhere on that arc. The entire line integral is
therefore

∫ P2

P1

E · ds = q
4πε0

(
1
r1

− 1
r2

)
. (2.2)

Now look at path B. Because E is radial with magnitude q/4πε0r2,
E ·ds = (q/4πε0r2) dr even when ds is not radially oriented. The corres-
ponding pieces of path A and path B indicated in the diagram make iden-
tical contributions to the integral. The part of path B that loops beyond
r2 makes a net contribution of zero; contributions from corresponding
outgoing and incoming parts cancel. For the entire line integral, path B
will give the same result as path A. As there is nothing special about path
B, Eq. (2.1) must hold for any path running from P1 to P2.

Here we have essentially repeated, in different language, the argu-
ment in Section 1.5, illustrated in Fig. 1.5, concerning the work done in
moving one point charge near another. But now we are interested in the
total electric field produced by any distribution of charges. One more
step will bring us to an important conclusion. The line integral of the
sum of fields equals the sum of the line integrals of the fields calculated
separately. Or, stated more carefully, if E = E1 + E2 + · · · , then

∫ P2

P1

E · ds =
∫ P2

P1

E1 · ds +
∫ P2

P1

E2 · ds + · · · , (2.3)

where the same path is used for all the integrations. Now any electro-
static field can be regarded as the sum of a number (possibly enormous)
of point-charge fields, as expressed in Eq. (1.20) or Eq. (1.22). There-
fore if the line integral from P1 to P2 is independent of path for each
of the point-charge fields E1, E2, . . . , the total field E must have this
property:

The line integral
∫ P2

P1
E · ds for any given electrostatic field E has

the same value for all paths from P1 to P2.
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The points P2 and P1 may coincide. In that case the paths are all
closed curves, among them paths of vanishing length. This leads to the
following corollary:

The line integral
∫

E · ds around any closed path in an electrostatic
field is zero.

By electrostatic field we mean, strictly speaking, the electric field of
stationary charges. Later on, we shall encounter electric fields in which
the line integral is not path-independent. Those fields will usually be
associated with rapidly moving charges. For our present purposes we
can say that, if the source charges are moving slowly enough, the field
E will be such that

∫
E · ds is practically path-independent. Of course,

if E itself is varying in time, the E in
∫

E · ds must be understood as
the field that exists over the whole path at a given instant of time. With
that understanding we can talk meaningfully about the line integral in a
changing electrostatic field.

2.2 Potential difference and the potential function
Because the line integral in the electrostatic field is path-independent,
we can use it to define a scalar quantity φ21, without specifying any par-
ticular path:

φ21 = −
∫ P2

P1

E · ds. (2.4)

With the minus sign included here, φ21 is the work per unit charge done
by an external agency in moving a positive charge from P1 to P2 in the
field E. (The external agency must supply a force Fext = −qE to balance
the electrical force Felec = qE; hence the minus sign.) Thus φ21 is a
single-valued scalar function of the two positions P1 and P2. We call it
the electric potential difference between the two points.

In our SI system of units, potential difference is measured in joule/
coulomb. This unit has a name of its own, the volt:

1 volt = 1
joule

coulomb
. (2.5)

One joule of work is required to move a charge of one coulomb through a
potential difference of one volt. In the Gaussian system of units, potential
difference is measured in erg/esu. This unit also has a name of its own,
the statvolt (“stat” comes from “electrostatic”). As an exercise, you can
use the 1 C≈ 3 · 109 esu relation from Section 1.4 to show that one volt
is equivalent to approximately 1/300 statvolt. These two relations are
accurate to better than 0.1 percent, thanks to the accident that c is that
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close to 3 · 108 m/s. Appendix C derives the conversion factors between
all of the corresponding units in the SI and Gaussian systems. Further
discussion of the exact relations between SI and Gaussian electrical units
is given in Appendix E, which takes into account the definition of the
meter in terms of the speed of light.

Suppose we hold P1 fixed at some reference position. Then φ21
becomes a function of P2 only, that is, a function of the spatial coord-
inates x, y, z. We can write it simply φ(x, y, z), without the subscript,
if we remember that its definition still involves agreement on a refer-
ence point P1. We can say that φ is the potential associated with the
vector field E. It is a scalar function of position, or a scalar field (they
mean the same thing). Its value at a point is simply a number (in units of
work per unit charge) and has no direction associated with it. Once the
vector field E is given, the potential function φ is determined, except
for an arbitrary additive constant allowed by the arbitrariness in our
choice of P1.

Example Find the potential associated with the electric field described in
Fig. 2.3, the components of which are Ex = Ky, Ey = Kx, Ez = 0, with K a
constant. This is a possible electrostatic field; we will see why in Section 2.17.
Some field lines are shown.

1

−1 1

Ex = Ky

Ey = Kx

2

2

y

xA B

C

Figure 2.3.
A particular path, ABC, in the electric field
Ex = Ky, Ey = Kx. Some field lines are shown.

Solution Since Ez = 0, the potential will be independent of z and we need
consider only the xy plane. Let x1, y1 be the coordinates of P1, and x2, y2 the
coordinates of P2. It is convenient to locate P1 at the origin: x1 = 0, y1 = 0.
To evaluate − ∫

E · ds from this reference point to a general point (x2, y2) it is
easiest to use a path like the dashed path ABC in Fig. 2.3:

φ(x2, y2) = −
∫ (x2,y2)

(0,0)
E · ds = −

∫ (x2,0)

(0,0)
Ex dx −

∫ (x2,y2)

(x2,0)
Ey dy. (2.6)

The first of the two integrals on the right is zero because Ex is zero along the x
axis. The second integration is carried out at constant x, with Ey = Kx2:

−
∫ (x2,y2)

(x2,0)
Ey dy = −

∫ y2

0
Kx2 dy = −Kx2y2. (2.7)

There was nothing special about the point (x2, y2) so we can drop the subscripts:

φ(x, y) = −Kxy (2.8)

for any point (x, y) in this field, with zero potential at the origin. Any constant
could be added to this. That would only mean that the reference point to which
zero potential is assigned had been located somewhere else.

Example (Potential due to a uniform sphere) A sphere has radius R and
uniform volume charge density ρ. Use the results from the example in Section 1.11
to find the potential for all values of r, both inside and outside the sphere. Take
the reference point P1 to be infinitely far away.
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Solution From the example in Section 1.11, the magnitude of the (radial) elec-
tric field inside the sphere is E(r) = ρr/3ε0, and the magnitude outside is
E(r) = ρR3/3ε0r2. Equation (2.4) tells us that the potential equals the negative
of the line integral of the field, from P1 (which we are taking to be at infinity)
down to a given radius r. The potential outside the sphere is therefore

φout(r) = −
∫ r

∞
E(r′) dr′ = −

∫ r

∞
ρR3

3ε0r′2 dr′ = ρR3

3ε0r
. (2.9)

In terms of the total charge in the sphere, Q = (4πR3/3)ρ, this potential is sim-
ply φout(r) = Q/4πε0r. This is as expected, because we already knew that the
potential energy of a charge q due to the sphere is qQ/4πε0r. And the potential
φ equals the potential energy per unit charge.

To find the potential inside the sphere, we must break the integral into two
pieces:

φin(r) = −
∫ R

∞
E(r′) dr′ −

∫ r

R
E(r′) dr′ = −

∫ R

∞
ρR3

3ε0r′2 dr′ −
∫ r

R

ρr′
3ε0

dr′

= ρR3

3ε0R
− ρ

6ε0
(r2 − R2) = ρR2

2ε0
− ρr2

6ε0
. (2.10)

r
R

f(r)

2  0

rR2 a − br2

c r

3  0

rR2

Figure 2.4.
The potential due to a uniform sphere of charge.

Note that Eqs. (2.9) and (2.10) yield the same value of φ at the surface of the
sphere, namely φ(R) = ρR2/3ε0. So φ is continuous across the surface, as it
should be. (The field is everywhere finite, so the line integral over an infinitesimal
interval must yield an infinitesimal result.) The slope of φ is also continuous,
because E(r) (which is the negative derivative of φ, because φ is the negative
integral of E) is continuous. A plot of φ(r) is shown in Fig. 2.4.

The potential at the center of the sphere is φ(0) = ρR2/2ε0, which is 3/2
times the value at the surface. So if you bring a charge in from infinity, it takes
2/3 of your work to reach the surface, and then 1/3 to go the extra distance of R
to the center.

We must be careful not to confuse the potential φ associated with a
given field E with the potential energy of a system of charges. The poten-
tial energy of a system of charges is the total work required to assemble
it, starting with all the charges far apart. In Eq. (1.14), for example, we
expressed U, the potential energy of the charge system in Fig. 1.6. The
electric potential φ(x, y, z) associated with the field in Fig. 1.6 would
be the work per unit charge required to move a unit positive test charge
from some chosen reference point to the point (x, y, z) in the field of that
structure of nine charges.

2.3 Gradient of a scalar function
Given the electric field, we can find the electric potential function. But
we can also proceed in the other direction; from the potential we can
derive the field. It appears from Eq. (2.4) that the field is in some sense
the derivative of the potential function. To make this idea precise we
introduce the gradient of a scalar function of position. Let f (x, y, z) be
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some continuous, differentiable function of the coordinates. With its par-
tial derivatives ∂f /∂x, ∂f /∂y, and ∂f /∂z we can construct at every point
in space a vector, the vector whose x, y, z components are equal to the
respective partial derivatives.1 This vector we call the gradient of f , writ-

(x1, y1)

x

y

f(x, y)

(a)

(b)

x

y

(x1, y1)

Direction of
steepest slope

Figure 2.5.
The scalar function f (x, y) is represented by the
surface in (a). The arrows in (b) represent the
vector function, grad f .

ten “grad f ,” or ∇f :

∇f ≡ x̂
∂f
∂x

+ ŷ
∂f
∂y

+ ẑ
∂f
∂z

. (2.13)

∇f is a vector that tells how the function f varies in the neighborhood
of a point. Its x component is the partial derivative of f with respect to
x, a measure of the rate of change of f as we move in the x direction.
The direction of the vector ∇f at any point is the direction in which one
must move from that point to find the most rapid increase in the function
f . Suppose we were dealing with a function of two variables only, x and
y, so that the function could be represented by a surface in three dimen-
sions. Standing on that surface at some point, we see the surface rising
in some direction, sloping downward in the opposite direction. There is a
direction in which a short step will take us higher than a step of the same
length in any other direction. The gradient of the function is a vector in
that direction of steepest ascent, and its magnitude is the slope measured
in that direction.

Figure 2.5 may help you to visualize this. Suppose some particular
function of two coordinates x and y is represented by the surface f (x, y)
sketched in Fig. 2.5(a). At the location (x1, y1) the surface rises most
steeply in a direction that makes an angle of about 80◦ with the positive
x direction. The gradient of f (x, y), ∇f , is a vector function of x and y.
Its character is suggested in Fig. 2.5(b) by a number of vectors at various
points in the two-dimensional space, including the point (x1, y1). The
vector function ∇f defined in Eq. (2.13) is simply an extension of this
idea to three-dimensional space. (Be careful not to confuse Fig. 2.5(a)
with real three-dimensional xyz space; the third coordinate there is the
value of the function f (x, y).)

As one example of a function in three-dimensional space, suppose f
is a function of r only, where r is the distance from some fixed point O.
On a sphere of radius r0 centered about O, f = f (r0) is constant. On a
slightly larger sphere of radius r0 + dr it is also constant, with the value
f = f (r0 + dr). If we want to make the change from f (r0) to f (r0 + dr),

1 We remind the reader that a partial derivative with respect to x, of a function of x, y, z,
written simply ∂f /∂x, means the rate of change of the function with respect to x with
the other variables y and z held constant. More precisely,

∂f
∂x

= lim
�x→0

f (x + �x, y, z) − f (x, y, z)
�x

. (2.11)

As an example, if f = x2yz3,

∂f
∂x

= 2xyz3,
∂f
∂y

= x2z3,
∂f
∂z

= 3x2yz2. (2.12)
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the shortest step we can make is to go radially (as from A to B) rather
than from A to C, in Fig. 2.6. The “slope” of f is thus greatest in the

r 0 +
 dr

r0

O

A

B

C

Figure 2.6.
The shortest step for a given change in f is the
radial step AB, if f is a function of r only.

radial direction, so ∇f at any point is a radially pointing vector. In fact
∇f = r̂(df /dr) in this case, r̂ denoting, for any point, a unit vector in the
radial direction. See Section F.2 in Appendix F for further discussion of
the gradient.

2.4 Derivation of the field from the potential
It is now easy to see that the relation of the scalar function f to the vector
function ∇f is the same, except for a minus sign, as the relation of the
potential φ to the field E. Consider the value of φ at two nearby points,
(x, y, z) and (x+ dx, y+ dy, z+ dz). The change in φ, going from the first
point to the second, is, in first-order approximation,

dφ = ∂φ

∂x
dx + ∂φ

∂y
dy + ∂φ

∂z
dz. (2.14)

On the other hand, from the definition of φ in Eq. (2.4), the change can
also be expressed as

dφ = −E · ds. (2.15)

The infinitesimal vector displacement ds is just x̂ dx + ŷ dy + ẑ dz. Thus
if we identify E with −∇φ, where ∇φ is defined via Eq. (2.13), then
Eqs. (2.14) and (2.15) become identical. So the electric field is the nega-
tive of the gradient of the potential:

E = −∇φ (2.16)

The minus sign came in because the electric field points from a region of
greater potential toward a region of lesser potential, whereas the vector
∇φ is defined so that it points in the direction of increasing φ.

To show how this works, we go back to the example of the field
in Fig. 2.3. From the potential given by Eq. (2.8), φ = −Kxy, we can
recover the electric field we started with:

E = −∇(−Kxy) = −
(

x̂
∂

∂x
+ ŷ

∂

∂y

)
(−Kxy) = K(x̂y + ŷx). (2.17)

2.5 Potential of a charge distribution
We already know the potential that goes with a single point charge,
because we calculated the work required to bring one charge into the
neighborhood of another in Eq. (1.9). The potential at any point, in the
field of an isolated point charge q, is just q/4πε0r, where r is the distance
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from the point in question to the source q, and where we have assigned
zero potential to points infinitely far from the source.

Superposition must work for potentials as well as fields. If we have
several sources, the potential function is simply the sum of the poten-
tial functions that we would have for each of the sources present alone –
providing we make a consistent assignment of the zero of potential in
each case. If all the sources are contained in some finite region, it is
always possible, and usually the simplest choice, to put zero potential at

z
“Field” point

(x, y, z)

r

y
Charge

distribution

x�

x
x

(x�, y�, z�)

dx�, dy�, dz�

Figure 2.7.
Each element of the charge distribution
ρ(x′, y′, z′) contributes to the potential φ at the
point (x, y, z). The potential at this point is the
sum of all such contributions; see Eq. (2.18).

infinite distance. If we adopt this rule, the potential of any charge distri-
bution can be specified by the integral

φ(x, y, z) =
∫

all
sources

ρ(x′, y′, z′) dx′ dy′ dz′

4πε0r
, (2.18)

where r is the distance from the volume element dx′ dy′ dz′ to the point
(x, y, z) at which the potential is being evaluated (Fig. 2.7). That is, r =
[(x − x′)2 + (y − y′)2 + (z − z′)2]1/2. Notice the difference between
this and the integral giving the electric field of a charge distribution; see
Eq. (1.22). Here we have r in the denominator, not r2, and the integral
is a scalar not a vector. From the scalar potential function φ(x, y, z) we
can always find the electric field by taking the negative gradient of φ,
according to Eq. (2.16).

In the case of a discrete distribution of source charges, the above
integral is replaced by a sum over all the charges, indexed by i:

φ(x, y, z) =
∑

all sources

qi

4πε0r
, (2.19)

where r is the distance from the charge qi to the point (x, y, z).

Example (Potential of two point charges) Consider a very simple exam-
ple, the potential of the two point charges shown in Fig. 2.8. A positive charge of
12 μC is located 3 m away from a negative charge, −6 μC. (The “μ” prefix stands
for “micro,” or 10−6.) The potential at any point in space is the sum of the poten-
tials due to each charge alone. The potentials for some selected points in space
are given in the diagram. No vector addition is involved here, only the algebraic
addition of scalar quantities. For instance, at the point on the far right, which is
6 m from the positive charge and 5 m from the negative charge, the potential has
the value

1
4πε0

(
12 · 10−6 C

6 m
+ −6 · 10−6 C

5 m

)
= 0.8 · 10−6 C/m

4πε0

= 7.2 · 103 J/C = 7.2 · 103 V, (2.20)

where we have used 1/4πε0 ≈ 9 · 109 N m2/C2 (and also 1 N m= 1 J). The
potential approaches zero at infinite distance. It would take 7.2 · 103 J of work
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f = 0

f = 0
5 m

0.5

1 m

Charge
+12 C

Charge
−6 C

2 m

4m

6m

3m

3
m

3
m

3
m6
m

 −8
4p  0

f =

f = +0.8

f = +10
4p  0

4p  0

Figure 2.8.
The electric potential φ at various points in a
system of two point charges. φ goes to zero at
infinite distance and is given in units of volts, or
joules per coulomb.

to bring a unit positive charge in from infinity to a point where φ = 7.2 · 103 V.
Note that two of the points shown on the diagram have φ = 0. The net work
done in bringing in any charge to one of these points would be zero. You can see
that there must be an infinite number of such points, forming a surface in space
surrounding the negative charge. In fact, the locus of points with any particular
value of φ is a surface – an equipotential surface – which would show on our
two-dimensional diagram as a curve.

There is one restriction on the use of Eq. (2.18): it may not work
unless all sources are confined to some finite region of space. A simple
example of the difficulty that arises with charges distributed out to infi-
nite distance is found in the long charged wire whose field E we studied
in Section 1.12. If we attempt to carry out the integration over the charge
distribution indicated in Eq. (2.18), we find that the integral diverges –
we get an infinite result. No such difficulty arose in finding the electric
field of the infinitely long wire, because the contributions of elements of
the line charge to the field decrease so rapidly with distance. Evidently
we had better locate the zero of potential somewhere close to home, in
a system that has charges distributed out to infinity. Then it is simply
a matter of calculating the difference in potential φ21, between the gen-
eral point (x, y, z) and the selected reference point, using the fundamental
relation, Eq. (2.4).

Example (Potential of a long charged wire) To see how this goes in the
case of the infinitely long charged wire, let us arbitrarily locate the reference
point P1 at a distance r1 from the wire. Then to carry a charge from P1 to
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any other point P2 at distance r2 requires the work per unit charge, using
Eq. (1.39):

φ21 = −
∫ P2

P1

E · ds = −
∫ r2

r1

(
λ

2πε0r

)
dr

= − λ

2πε0
ln r2 + λ

2πε0
ln r1. (2.21)

This shows that the electric potential for the charged wire can be taken as

φ = − λ

2πε0
ln r + constant. (2.22)

The constant, (λ/2πε0) ln r1 in this case, has no effect when we take −grad φ to
get back to the field E. In this case,

E = −∇φ = −r̂
dφ

dr
= λr̂

2πε0r
. (2.23)

2.6 Uniformly charged disk
Let us now study the electric potential and field around a uniformly
charged disk. This is a charge distribution like that discussed in
Section 1.13, except that it has a limited extent. The flat disk of radius
a in Fig. 2.9 carries a positive charge spread over its surface with the

y

a
ds

s

z

x

P2

P1

(0, y, 0)
s (C/m2)

Figure 2.9.
Finding the potential at a point P1 on the axis of
a uniformly charged disk.

constant density σ , in C/m2. (This is a single sheet of charge of infinites-
imal thickness, not two layers of charge, one on each side. That is, the
total charge in the system is πa2σ .) We shall often meet surface charge
distributions in the future, especially on metallic conductors. However,
the object just described is not a conductor; if it were, as we shall soon
see, the charge could not remain uniformly distributed but would redis-
tribute itself, crowding more toward the rim of the disk. What we have
is an insulating disk, like a sheet of plastic, upon which charge has been
“sprayed” so that every square meter of the disk has received, and holds
fixed, the same amount of charge.

Example (Potential on the axis) Let us find the potential due to our uni-
formly charged disk, at some point P1 on the axis of symmetry, which we have
made the y axis. All charge elements in a thin, ring-shaped segment of the disk
lie at the same distance from P1. If s denotes the radius of such an annular seg-
ment and ds is its width, its area is 2πs ds. The amount of charge it contains, dq,
is therefore dq = σ 2πs ds. Since all parts of this ring are the same distance away
from P1, namely, r =

√
y2 + s2, the contribution of the ring to the potential at

P1 is dq/4πε0r = σ s ds
/(

2ε0
√

y2 + s2
)
. To get the potential due to the whole

disk, we have to integrate over all such rings:

φ(0, y, 0) =
∫

dq
4πε0r

=
∫ a

0

σ s ds

2ε0
√

y2 + s2
= σ

2ε0

√
y2 + s2

∣∣∣∣a
0

. (2.24)
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Putting in the limits, we obtain

φ(0, y, 0) = σ

2ε0

(√
y2 + a2 − y

)
for y > 0. (2.25)

A minor point deserves a comment. The result we have written down in
Eq. (2.25) holds for all points on the positive y axis. It is obvious from the phys-
ical symmetry of the system (there is no difference between one face of the disk
and the other) that the potential must have the same value for negative and pos-
itive y, and this is reflected in Eq. (2.24), where only y2 appears. But in writing
Eq. (2.25) we made a choice of sign in taking the square root of y2, with the
consequence that it holds only for positive y. The correct expression for y < 0 is
obtained by the other choice of root and is given by

φ(0, y, 0) = σ

2ε0

(√
y2 + a2 + y

)
for y < 0. (2.26)

In view of this, we should not be surprised to find a kink in the plot of φ(0, y, 0)

at y = 0. Indeed, the function has an abrupt change of slope there, as we see in
Fig. 2.10, where we have plotted as a function of y the potential on the axis. The
potential at the center of the disk is

φ(0, 0, 0) = σa
2ε0

. (2.27)

This much work would be required to bring a unit positive charge in from infinity,
by any route, and leave it sitting at the center of the disk.

The behavior of φ(0, y, 0) for very large y is interesting. For y� a we can
approximate Eq. (2.25) as follows:

√
y2 + a2 − y = y

⎡
⎣(

1 + a2

y2

)1/2

− 1

⎤
⎦ = y

[
1 + 1

2

(
a2

y2

)
+ · · · − 1

]
≈ a2

2y
.

(2.28)

0

f on axis

a2s

a−a
y

2a−2a

f

4 0 y

Figure 2.10.
A graph of the potential on the axis. The dashed
curve is the potential of a point charge
q = πa2σ .
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Hence

φ(0, y, 0) ≈ a2σ

4ε0y
for y � a. (2.29)

Now πa2σ is the total charge q on the disk, and Eq. (2.29), which can be written
as πa2σ/4πε0y, is just the expression for the potential due to a point charge of
this magnitude. As we should expect, at a considerable distance from the disk
(relative to its diameter), it doesn’t matter much how the charge is shaped; only
the total charge matters, in first approximation. In Fig. 2.10 we have drawn, as a
dashed curve, the function a2σ/4ε0y. You can see that the axial potential func-
tion approaches its asymptotic form pretty quickly.

It is not quite so easy to derive the potential for general points away
from the axis of symmetry, because the definite integral isn’t so simple.
It proves to be something called an elliptic integral. These functions are
well known and tabulated, but there is no point in pursuing here mathe-
matical details peculiar to a special problem. However, one further cal-
culation, which is easy enough, may be instructive.

Example (Potential on the rim) We can find the potential at a point on the
very edge of the disk, such as P2 in Fig. 2.11. To calculate the potential at P2 we

dq

r

R

dr

s

a

q

P2

Figure 2.11.
Finding the potential at a point P2 on the rim of a
uniformly charged disk.

can consider first the thin wedge of length R and angular width dθ , as shown.
An element of the wedge, the black patch at distance r from P2, contains an
amount of charge dq = σ r dθ dr. Its contribution to the potential at P2 is there-
fore dq/4πε0r = σ dθ dr/4πε0. The contribution of the entire wedge is then

(σ dθ/4πε0)

∫ R

0
dr = (σR/4πε0) dθ . Now R is 2a cos θ , from the geometry of

the right triangle, and the whole disk is swept out as θ ranges from −π/2 to π/2.
Thus we find the potential at P2:

φ = σa
2πε0

∫ π/2

−π/2
cos θ dθ = σa

πε0
. (2.30)

Comparing this with the potential at the center of the disk, σa/2ε0, we see
that, as we should expect, the potential falls off from the center to the edge of the
disk. The electric field, therefore, must have an outward component in the plane
of the disk. That is why we remarked earlier that the charge, if free to move,
would redistribute itself toward the rim. To put it another way, our uniformly
charged disk is not a surface of constant potential, which any conducting surface
must be unless charge is moving.2

2 The fact that conducting surfaces have to be equipotentials will be discussed
thoroughly in Chapter 3.
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Let us now examine the electric field due to the disk. For y > 0, the
field on the symmetry axis can be computed directly from the potential
function given in Eq. (2.25):

Ey = −∂φ

∂y
= − d

dy
σ

2ε0

(√
y2 + a2 − y

)

= σ

2ε0

[
1 − y√

y2 + a2

]
y > 0. (2.31)

To be sure, it is not hard to compute Ey directly from the charge distri-
bution, for points on the axis. We can again slice the disk into concentric
rings, as we did prior to Eq. (2.24). But we must remember that E is
a vector and that only the y component survives in the present setup,
whereas we did not need to worry about components when calculating
the scalar function φ above.

As y approaches zero from the positive side, Ey approaches σ/2ε0.
On the negative y side of the disk, which we shall call the back, E points
in the other direction and its y component Ey is −σ/2ε0. This is the
same as the field of an infinite sheet of charge of density σ , derived in
Section 1.13. It ought to be, for at points close to the center of the disk,
the presence or absence of charge out beyond the rim can’t make much
difference. In other words, any sheet looks infinite if viewed from close
up. Indeed, Ey has the value σ/2ε0 not only at the center, but also all
over the disk.

For large y, we can find an approximate expression for Ey by using
a Taylor series approximation as we did in Eq. (2.28). You can show that
Ey approaches a2σ/4ε0y2, which can be written as πa2σ/4πε0y2. This
is correctly the field due to a point charge with magnitude πa2σ .

In Fig. 2.12 we show some field lines for this system and also, plotted
as dashed curves, the intersections on the yz plane of the surfaces of
constant potential. Near the center of the disk these are lens-like surfaces,
while at distances much greater than a they approach the spherical form
of equipotential surfaces around a point charge.

Figure 2.12 illustrates a general property of field lines and equipoten-
tial surfaces. A field line through any point and the equipotential surface
through that point are perpendicular to one another, just as, on a con-
tour map of hilly terrain, the slope is steepest at right angles to a contour
of constant elevation. This must be so, because if the field at any point
had a component parallel to the equipotential surface through that point,
it would require work to move a test charge along a constant-potential
surface.

The energy associated with this electric field could be expressed as
the integral over all space of (ε0/2)E2 dv. It is equal to the work done in
assembling this distribution, starting with infinitesimal charges far apart.
In this particular example, as Exercise 2.56 will demonstrate, that work
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Figure 2.12.
The electric field of the uniformly charged disk.
Solid curves are field lines. Dashed curves are
intersections, with the plane of the figure, of
surfaces of constant potential.

y

Surface of constant potential
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is not hard to calculate directly if we know the potential at the rim of a
uniformly charged disk.

There is a general relation between the work U required to assem-
ble a charge distribution ρ(x, y, z) and the potential φ(x, y, z) of that
distribution:

U = 1
2

∫
ρφ dv (2.32)

Equation (1.15), which gives the energy of a system of discrete point
charges, could have been written in this way:

U = 1
2

N∑
j=1

qj
∑
k �=j

1
4πε0

qk

rjk
. (2.33)

The second sum is the potential at the location of the jth charge, due to all
the other charges. To adapt this to a continuous distribution we merely
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replace qj with ρ dv and the sum over j by an integral, thus obtaining
Eq. (2.32).

2.7 Dipoles
Consider a setup with two equal and opposite charges ±q located at
positions ±�/2 on the y axis, as shown in Fig. 2.13. This configura-

q

x

y

−q

/2

/2

Figure 2.13.
Two equal and opposite charges form a dipole.

tion is called a dipole. The purpose of this section is to introduce the
basics of dipoles. We save further discussion for Chapter 10, where we
define the word “dipole” more precisely, derive things in more general-
ity, and discuss examples of dipoles in actual matter. For now we just
concentrate on determining the electric field and potential of a dipole.
We have all of the necessary machinery at our disposal, so let’s see what
we can find.

We will restrict the treatment to points far away from the dipole
(that is, points with r � �). Although it is easy enough to write down an
exact expression for the potential φ (and hence the field E = −∇φ) at
any position, the result isn’t very enlightening. But when we work in the
approximation of large distances, we obtain a result that, although isn’t
exactly correct, is in fact quite enlightening. That’s how approximations
work – you trade a little bit of precision for a large amount of clarity.

q

r

q

−q

r1

r2

P

/2

/2

Figure 2.14.
Finding the potential φ at point P.

Our strategy will be to find the potential φ in polar (actually spheri-
cal) coordinates, and then take the gradient to find the electric field E. We
then determine the shape of the field-line and constant-potential curves.
To make things look a little cleaner in the calculations below, we write
1/4πε0 as k in some intermediate steps.

2.7.1 Calculation of φ and E
First note that, since the dipole setup is rotationally symmetric around
the line containing the two charges, it suffices to find the potential in an
arbitrary plane containing this line. We will use spherical coordinates,
which reduce to polar coordinates in a plane because the angle φ doesn’t
come into play (but note that θ is measured down from the vertical axis).
Consider a point P with coordinates (r, θ), as shown in Fig. 2.14. Let
r1 and r2 be the distances from P to the two charges. Then the exact

q

rq

−q

r2

r1

to P

/2

(     )  cos q/2

(     )  cos q/2

Figure 2.15.
Closeup view of Fig. 2.14.

expression for the potential at P is (with k ≡ 1/4πε0)

φP = kq
r1

− kq
r2

. (2.34)

If desired, the law of cosines can be used to write r1 and r2 in terms of r,
θ , and �.

Let us now derive an approximate form of this result, valid in the
r � � limit. One way to do this is to use the law-of-cosines expressions
for r1 and r2; this is the route we will take in Chapter 10. But for the
present purposes a simpler method suffices. In the r � � limit, a closeup
view of the dipole is shown in Fig. 2.15. The two lines from the charges
to P are essentially parallel, so we see from the figure that the lengths of
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these lines are essentially r1 = r − (�/2) cos θ and r2 = r + (�/2) cos θ .
Using the approximation 1/(1 ± ε) ≈ 1 ∓ ε, Eq. (2.34) becomes

φ(r, θ) = kq

r − � cos θ

2

− kq

r + � cos θ

2

= kq
r

⎡
⎢⎣ 1

1− � cos θ

2r

− 1

1+ � cos θ

2r

⎤
⎥⎦

≈ kq
r

[(
1 + � cos θ

2r

)
−

(
1 − � cos θ

2r

)]

= kq� cos θ

r2 ≡ q� cos θ

4πε0r2 ≡ p cos θ

4πε0r2 , (2.35)

where p ≡ q� is called the dipole moment.
There are three important things to note about this result. First,

φ(r, θ) depends on q and � only through their product, p ≡ q�. This
means that if we make q ten times larger and � ten times smaller, the
potential at a given point P stays the same (at least in the r � � approx-
imation). An idealized dipole or point dipole is one where � → 0 and
q → ∞, with the product p = q� taking on a particular finite value. In
the other extreme, if we make q smaller and � proportionally larger, the
potential at P again stays the same. Of course, if we make � too large,
our r � � assumption eventually breaks down.

Second, φ(r, θ) is proportional to 1/r2, in contrast with the 1/r
dependence for a point-charge potential. We will see below that the
present 1/r2 dependence in φ(r, θ) leads to an E field that falls off like
1/r3, in contrast with the 1/r2 dependence for a point-charge field. It
makes sense that the potential (and field) falls off faster for a dipole,
because the potentials from the two opposite point charges nearly cancel.
The dipole potential is somewhat like the derivative of the point-charge
potential, in that we are taking the difference of two nearby values.

Third, there is angular dependence in φ(r, θ), in contrast with the
point-charge potential. This is expected, in view of the fact that the dipole
has a preferred direction along the line joining the charges, whereas a
point charge has no preferred direction.

q−q

Figure 2.16.
Two possible kinds of quadrupoles.

We will see in Chapter 10 that the q/r point-charge (or monopole)
potential and the q�/r2 dipole potential (just looking at the r dependence)
are the first two pieces of what is called the multipole expansion. A gen-
eral charge distribution also has a quadrupole term in the potential that
goes like q�2/r3 (where � is some length scale of the system), and an
octupole term that goes like q�3/r4, and so on. These pieces have more
complicated angular dependences. Two examples of quadrupole arrange-
ments are shown in Fig. 2.16. A quadrupole is formed by placing two
oppositely charged dipoles near each other, just as a dipole is formed by
placing two oppositely charged monopoles near each other. The various
terms in the expansion are called the moments of the distribution.
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Even the simple system of the dipole shown in Fig. 2.13 has higher
terms in its multipole expansion. If you keep additional terms in the
1/(1 ± ε) Taylor series in Eq. (2.35), you will find that the quadrupole
term is zero, but the octupole term is nonzero. It is easy to see that the
terms with even powers of r are nonzero. However, in the limit of an
idealized dipole (�→ 0 and q→∞, with q� fixed), only the dipole
potential survives, because the higher-order terms are suppressed by
additional powers of �/r.

Along the same lines, we can back up a step in the expansion and
consider the monopole term. If an object has a nonzero net charge (note

q

− q

Monopole

Dipole

Quadrupole

Octupole

Figure 2.17.
Examples of different objects in the multipole
expansion.

that our dipole does not), then the monopole potential, q/r, dominates,
and all higher-order terms are comparatively negligible in the r� � limit.
The distribution of charge in an object determines which of the terms in
the expansion is the first nonzero one, and it is this term that determines
the potential (and hence field) at large distances. We label the object
according to the first nonzero term; see Fig. 2.17.

Let’s now find the electric field, E=−∇φ, associated with the
dipole potential in Eq. (2.35). In spherical coordinates (which reduce
to polar coordinates in this discussion) the gradient of φ is ∇φ =
r̂(∂φ/∂r) + θ̂(1/r)(∂φ/∂θ); see Appendix F. So the electric field is

E(r, θ) = −r̂
∂

∂r

(
kq� cos θ

r2

)
− θ̂

1
r

∂

∂θ

(
kq� cos θ

r2

)

= kq�

r3

(
2 cos θ r̂ + sin θ θ̂

)

≡ q�

4πε0r3

(
2 cos θ r̂ + sin θ θ̂

)

≡ p
4πε0r3

(
2 cos θ r̂ + sin θ θ̂

)
. (2.36)

A few field lines are shown in Fig. 2.18. Let’s look at some special
cases for θ . Equation (2.36) says that E points in the positive radial direc-
tion for θ = 0 and the negative radial direction for θ = π . These facts
imply that E points upward everywhere on the y axis. Equation (2.36)
also says that E points in the positive tangential direction for θ = π/2
and the negative tangential direction for θ = 3π/2. In view of the local r̂
and θ̂ basis vectors shown in Fig. 2.18 (which vary with position, unlike
the Cartesian x̂ and ŷ basis vectors), this means that E points down-
ward everywhere on the x axis. We haven’t drawn the lines for small r,
to emphasize the fact that our results are valid only in the limit r � �.
There is a field for small r, of course (and it diverges near each charge);
it’s just that it doesn’t take the form given in Eq. (2.36).
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(q = 0)

(q  = p/2)(q = 3p/2)

(q  =  p)

r

r

r

r

q

q

q

q

Figure 2.18.
Electric field lines for a dipole. Note that the r̂
and θ̂ basis vectors depend on position.

q   =  0

q  =  p/2

Figure 2.19.
Field lines and constant-potential curves for a
dipole. The two sets of curves are orthogonal at
all intersections. The solid lines show
constant-φ curves (r = r0

√
cos θ ), and the

dashed lines show E field lines (r = r0 sin2 θ ).

2.7.2 The shapes of the curves
Let us now be quantitative about the shape of the E and φ curves. More
precisely, let us determine the equations that describe the field-line curves
and the constant-potential curves. In the process we will also determine
the slopes of the tangents to these curves. We know that the two classes
of curves are orthogonal wherever they meet, because E is the (negative)
gradientofφ,andbecausethegradientofafunctionisalwaysperpendicular
to the level-surface curves. This orthogonality is evident in Fig. 2.19. Our
task now is to derive the two expressions for r given in this figure.

Let’s look at φ first. We will find the equation for the constant-
potential curves and then use this to find the slope of the tangent at
any point. The equation for the curves is immediately obtained from
Eq. (2.35). The set of points for which φ takes on the constant value
φ0 is given by

kq� cos θ

r2 = φ0 �⇒ r2 =
(

kq�

φ0

)
cos θ �⇒ r = r0

√
cos θ

(2.37)

where r0 ≡√
kq�/φ0 is the radius associated with the angle θ = 0. This

result is valid in the upper half-plane where −π/2 < θ < π/2. In the
lower half-plane, both φ0 and cos θ are negative, so we need to add in some
absolute-value signs. That is, r= r0

√| cos θ |, where r0 ≡√
kq�/|φ0|.

The constant-potential curves in Fig. 2.19 are the intersections of the
constant-potential surfaces with the plane of the paper. These surfaces
are generated by rotating the curves around the vertical axis. The curves
are stretched horizontally compared with the circles described by the
relation r= r0 cos θ (which you can verify is indeed a circle).
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The slope of a given curve at a given point, relative to the local r̂ and
θ̂ basis vectors at that point, is dr/r dθ . The r is needed in the denomina-
tor because r dθ is the actual distance associated with the angular span
dθ in the r-θ plane; see Fig. 2.20. So the slope of the r = r0

√
cos θ

dr

x

y

r  dq
q

r

Figure 2.20.
The slope with respect to the r̂, θ̂ basis equals
dr/(r dθ).

curve is

1
r

dr
dθ

= 1

r0
√

cos θ

d
(
r0
√

cos θ
)

dθ
= 1

r0
√

cos θ

−r0 sin θ

2
√

cos θ
= − sin θ

2 cos θ
.

(2.38)

Remember that this is the slope with respect to the local r̂, θ̂ basis (which
varies with position), and not the fixed x̂, ŷ basis. For θ = 0 or π , the
slope is 0, which means that the tangent is parallel to the θ̂ direction.
This is horizontal in Fig. 2.19; the constant-φ curves all intersect the y
axis horizontally. For θ = ±π/2 the slope is ±∞, which means that the
tangent is parallel to the r̂ direction. Due to the orientation of the local
r̂, θ̂ basis vectors (see Fig. 2.18), this is also horizontal in Fig. 2.19; the
curves all feed into the origin directly along the x axis.

Now consider the E field. We will do things in reverse order here,
first finding the slope of the tangent, and then using that to find the equa-
tion of the field-line curves. The slope of the tangent is immediately
obtained from the Er and Eθ components given in Eq. (2.36). We have

Er

Eθ

= 2 cos θ

sin θ
. (2.39)

This slope is the negative reciprocal of the slope of the tangent to the
constant-φ curves, given in Eq. (2.38). This means that the two classes
of curves are orthogonal at all intersections, as we know is the case.

To find the equation for the field-line curves, we can use the fact that
the slope in Eq. (2.39) must be equal to dr/r dθ . We can then separate
variables and integrate to obtain

1
r

dr
dθ

= 2 cos θ

sin θ
�⇒

∫
dr
r

=
∫

2 cos θ dθ

sin θ

�⇒ ln r = 2 ln sin θ + C. (2.40)

Exponentiating both sides gives

r = r0 sin2 θ (2.41)

where r0 ≡ eC is the radius associated with the angle θ =π/2. The curves
are squashed vertically compared with the circles described by the rela-
tion r= r0 sin θ . If you want to get some practice with the concepts in
this section, the task of Exercise 2.63 is to repeat everything we’ve done
here, but for the case of a dipole in two dimensions.
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2.8 Divergence of a vector function
The electric field has a definite direction and magnitude at every point. ItS

V

(a)

(b)

(c)

(d)

V1

Vi

V2

D

da

F

S1 includes D

S2 includes D

is a vector function of the coordinates, which we have often indicated by
writing E(x, y, z). What we are about to say can apply to any vector func-
tion, not just to the electric field; we shall use another symbol, F(x, y, z),
as a reminder of that. In other words, we shall talk mathematics rather
than physics for a while and call F simply a general vector function. We
shall keep to three dimensions, however.

Consider a finite volume V of some shape, the surface of which we
shall denote by S. We are already familiar with the notion of the total flux
� emerging from S. It is the value of the surface integral of F extended
over the whole of S:

� =
∫

S
F · da. (2.42)

In the integrand da is the infinitesimal vector whose magnitude is the
area of a small element of S and whose direction is the outward-pointing
normal to that little patch of surface, indicated in Fig. 2.21(a).

Now imagine dividing V into two parts by a surface, or a diaphragm,
D that cuts through the “balloon” S, as in Fig. 2.21(b). Denote the two
parts of V by V1 and V2 and, treating them as distinct volumes, compute
the surface integral over each separately. The boundary surface S1 of V1
includes D, and so does S2. It is pretty obvious that the sum of the two
surface integrals ∫

S1

F · da1 +
∫

S2

F · da2 (2.43)

will equal the original integral over the whole surface expressed in
Eq. (2.42). The reason is that any given patch on D contributes with one
sign to the first integral and the same amount with opposite sign to the
second, the “outward” direction in one case being the “inward” direction
in the other. In other words, any flux out of V1, through this surface D,
is flux into V2. The rest of the surface involved is identical to that of the
original entire volume.

We can keep on subdividing until our internal partitions have divided
V into a large number of parts, V1, . . . , Vi, . . . , VN , with surfaces S1, . . . ,
Si, . . . , SN . No matter how far this is carried, we can still be sure that

N∑
i=1

∫
Si

F · dai =
∫

S
F · da = �. (2.44)

Figure 2.21.
(a) A volume V enclosed by a surface S is divided (b) into two pieces
enclosed by S1 and S2. No matter how far this is carried, as in (c) and
(d), the sum of the surface integrals over all the pieces equals the
original surface integral over S, for any vector function F.
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What we are after is this: in the limit as N becomes enormous we
want to identify something which is characteristic of a particular small
region – and, ultimately, of the neighborhood of a point. Now the surface
integral ∫

Si

F · dai (2.45)

over one of the small regions is not such a quantity, for if we divide every-
thing again, so that N becomes 2N, this integral divides into two terms,
each smaller than before since their sum is constant. In other words, as
we consider smaller and smaller volumes in the same locality, the sur-
face integral over one such volume gets steadily smaller. But we notice
that, when we divide, the volume is also divided into two parts that sum
to the original volume. This suggests that we look at the ratio of surface
integral to volume for an element in the subdivided space:∫

Si
F · dai

Vi
. (2.46)

It seems plausible that for N large enough, that is, for sufficiently
fine-grained subdivision, we can halve the volume every time we halve
the surface integral, so we find that, with continuing subdivision of any
particular region, this ratio approaches a limit. If so, this limit is a prop-
erty characteristic of the vector function F in that neighborhood. We call
it the divergence of F, written div F. That is, the value of div F at any
point is defined as

div F ≡ lim
Vi→0

1
Vi

∫
Si

F · dai (2.47)

where Vi is a volume including the point in question, and Si, over which
the surface integral is taken, is the surface of Vi. We must include the
proviso that the limit exists and is independent of our method of sub-
division. For the present we shall assume that this is true.

The meaning of div F can be expressed in this way: div F is the flux
out of Vi, per unit of volume, in the limit of infinitesimal Vi. It is a scalar
quantity, obviously. It may vary from place to place, its value at any par-
ticular location (x, y, z) being the limit of the ratio in Eq. (2.47) as Vi is
chopped smaller and smaller while always enclosing the point (x, y, z).
So div F is simply a scalar function of the coordinates.

2.9 Gauss’s theorem and the differential form
of Gauss’s law

If we know this scalar function of position, div F, we can work our way
right back to the surface integral over a large volume. We first write
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Eq. (2.44) in this way:∫
S

F · da =
N∑

i=1

∫
Si

F · dai =
N∑

i=1

Vi

[∫
Si

F · dai

Vi

]
. (2.48)

In the limit N → ∞, Vi → 0, the term in brackets becomes the diver-
gence of F, and the sum goes into a volume integral:

∫
S

F · da =
∫

V
div F dv (Gauss’s theorem). (2.49)

This result is called Gauss’s theorem, or the divergence theorem. It holds
for any vector field for which the limit involved in Eq. (2.47) exists. Note
that the entire content of the theorem is contained in Eq. (2.44), which
itself is simply the statement that the fluxes cancel in pairs over the inte-
rior boundaries of all the little regions. The other steps in the proof were
the multiplication by 1 in the form of Vi/Vi, the use of the definition in
Eq. (2.47), and the conversion of an infinite sum to an integral. None of
these steps contains much content.

Let us see what Eq. (2.49) implies for the electric field E. We have
Gauss’s law, Eq. (1.31), which assures us that∫

S
E · da = 1

ε0

∫
V

ρ dv. (2.50)

If the divergence theorem holds for any vector field, it certainly holds
for E: ∫

S
E · da =

∫
V

div E dv. (2.51)

Equations (2.50) and (2.51) hold for any volume we care to choose – of
any shape, size, or location. Comparing them, we see that this can only
be true if, at every point,

div E = ρ

ε0
(2.52)

If we adopt the divergence theorem as part of our regular mathematical
equipment from now on, we can regard Eq. (2.52) simply as an alterna-
tive statement of Gauss’s law. It is Gauss’s law in differential form, that
is, stated in terms of a local relation between charge density and elec-
tric field.

Example (Field and density in a sphere) Let’s use the result from the
example in Section 1.11 to verify that Eq. (2.52) holds both inside and outside a
sphere with radius R and uniform density ρ. Spherical coordinates are of course
the most convenient ones to use here, given that we are dealing with a sphere.
For the purposes of this example we will simply accept the expression given in
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Eq. (F.3) in Appendix F for the divergence (also written as ∇ · E) in spheri-
cal coordinates. This appendix explains how to derive the various vector opera-
tors, including the divergence, in the common systems of coordinates (Cartesian,
cylindrical, spherical). You are encouraged to read it in parallel with this chapter.
In Section 2.10 we give a detailed derivation of the form of the divergence in
Cartesian coordinates.

Since the electric field due to the sphere has only an r component, Eq. (F.3)
tells us that the divergence of E is div E = (1/r2)∂(r2Er)/∂r. Inside the sphere,
we have Er = ρr/3ε0 from Eq. (1.35), so

div Ein = 1
r2

∂

∂r

(
r2 ρr

3ε0

)
= 1

r2
ρr2

ε0
= ρ

ε0
, (2.53)
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Figure 2.22.
Calculation of flux from the box of volume
�x �y �z.

as desired. Outside the sphere, the field is Er = ρR3/3ε0r2 from Eq. (1.34),
which equals the standard Q/4πε0r2 result when written in terms of the total
charge Q. However, the exact form doesn’t matter here. All that matters is that Er
is proportional to 1/r2, because then

div Eout ∝ 1
r2

∂

∂r

(
r2 1

r2

)
= 0. (2.54)

This agrees with Eq. (2.52) because ρ = 0 outside the sphere. Of course, it is no
surprise that these relations worked out – we originally derived Er from Gauss’s
law, and Eq. (2.52) is simply the differential form of Gauss’s law.

Although we used spherical coordinates in this example, Eq. (2.52) must
still be true for any choice of coordinates. The task of Exercise 2.68 is to redo
this example in Cartesian coordinates. If you are uneasy about invoking the above
form of the divergence in spherical coordinates, you should solve Exercise 2.68
after reading the following section.

2.10 The divergence in Cartesian coordinates
While Eq. (2.47) is the fundamental definition of divergence, indepen-
dent of any system of coordinates, it is useful to know how to calcu-
late the divergence of a vector function when we are given its explicit
form. Suppose a vector function F is expressed as a function of Cartesian
coordinates x, y, and z. That means that we have three scalar functions,
Fx(x, y, z), Fy(x, y, z), and Fz(x, y, z). We’ll take the region Vi in the shape
of a little rectangular box, with one corner at the point (x, y, z) and sides
�x, �y, and �z, as in Fig. 2.22(a). Whether some other shape will yield
the same limit is a question we must face later.

Consider two opposite faces of the box, the top and bottom for
instance, which would be represented by the da vectors ẑ �x �y and
−ẑ �x �y. The flux through these faces involves only the z component
of F, and the net contribution depends on the difference between Fz at
the top and Fz at the bottom or, more precisely, on the difference between
the average of Fz over the top face and the average of Fz over the bottom
face of the box. To the first order in small quantities this difference is
(∂Fz/∂z)�z. Figure 2.22(b) will help to explain this. The average value
of Fz on the bottom surface of the box, if we consider only first-order
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variations in Fz over this small rectangle, is its value at the center of the
rectangle. That value is, to first order3 in �x and �y,

Fz(x, y, z) + �x
2

∂Fz

∂x
+ �y

2
∂Fz

∂y
. (2.55)

For the average of Fz over the top face we take the value at the center of
the top face, which to first order in the small displacements is

(a)

(b)

(c)

Figure 2.23.
The limit of the flux/volume ratio is independent
of the shape of the box.

Fz(x, y, z) + �x
2

∂Fz

∂x
+ �y

2
∂Fz

∂y
+ �z

∂Fz

∂z
. (2.56)

The net flux out of the box through these two faces, each of which has
the area of �x �y, is therefore

�x �y
[

Fz(x, y, z) + �x
2

∂Fz

∂x
+ �y

2
∂Fz

∂y
+ �z

∂Fz

∂z

]
︸ ︷︷ ︸

(flux out of box at top)

− �x �y
[

Fz(x, y, z) + �x
2

∂Fz

∂x
+ �y

2
∂Fz

∂y

]
︸ ︷︷ ︸

(flux into box at bottom)

, (2.57)

which reduces to �x �y �z (∂Fz/∂z). Obviously, similar statements must
apply to the other pairs of sides. That is, the net flux out of the box
is �x �z �y (∂Fy/∂y) through the sides parallel to the xz plane and
�y �z �x (∂Fx/∂x) through the sides parallel to the yz plane. Note that
the product �x �y �z occurs in all of these expressions. Thus the total
flux out of the little box is

� = �x �y �z
(

∂Fx

∂x
+ ∂Fy

∂y
+ ∂Fz

∂z

)
. (2.58)

The volume of the box is �x �y �z, so the ratio of flux to volume is
∂Fx/∂x + ∂Fy/∂y + ∂Fz/∂z, and as this expression does not contain
the dimensions of the box at all, it remains as the limit when we let the
box shrink. (Had we retained terms proportional to (�x)2, (�x �y), etc.,
in the calculation of the flux, they would of course vanish on going to
the limit.)

Now we can begin to see why this limit is going to be independent
of the shape of the box. Obviously it is independent of the proportions
of the rectangular box, but that isn’t saying much. It is easy to see that it
will be the same for any volume that we can make by sticking together
little rectangular boxes of any size and shape. Consider the two boxes in
Fig. 2.23. The sum of the flux �1 out of box 1 and �2 out of box 2 is not

3 This is simply the beginning of a Taylor expansion of the scalar function Fz, in the
neighborhood of (x, y, z). That is, Fz(x + a, y + b, z + c) = Fz(x, y, z)+(

a ∂
∂x + b ∂

∂y + c ∂
∂z

)
Fz + · · · + 1

n!
(

a ∂
∂x + b ∂

∂y + c ∂
∂z

)n
Fz + · · · . The derivatives

are all to be evaluated at (x, y, z). In our case a = �x/2, b = �y/2, c = 0, and we drop
the higher-order terms in the expansion.
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changed by removing the adjoining walls to make one box, for whatever
flux went through that plane was negative flux for one and positive for
the other. So we could have a bizarre shape like Fig. 2.23(c) without
affecting the result. We leave it to the reader to generalize further. Tilted
surfaces can be taken care of if you first prove that the vector sum of the
four surface areas of the tetrahedron in Fig. 2.24 is zero.

a1

y

z

x

a2

a3

a4

Figure 2.24.
You can prove that a1 + a2 + a3 + a4 = 0.

We conclude that, assuming only that the functions Fx, Fy, and Fz
are differentiable, the limit does exist and is given by

div F = ∂Fx

∂x
+ ∂Fy

∂y
+ ∂Fz

∂z
(2.59)

We can also write the divergence in a very compact form using the “∇”
symbol. From Eq. (2.13) we see that the gradient operator (symbolized
by ∇ and often called “del”) can be treated in Cartesian coordinates as a
vector consisting of derivatives:

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
. (2.60)

In terms of this vector operator, we can write the divergence in the
simple form, as you can quickly verify, z

y

P

x

Figure 2.25.
Showing a field that in the neighborhood of point
P has a nonzero divergence.

div F = ∇ · F. (2.61)

If div F has a positive value at some point, we find – thinking of F
as a velocity field – a net “outflow” in that neighborhood. For instance,
if all three partial derivatives in Eq. (2.59) are positive at a point P,
we might have a vector field in that neighborhood something like that
suggested in Fig. 2.25. But the field could look quite different and still
have positive divergence, for any vector function G such that div G = 0
could be superimposed. Thus one or two of the three partial derivatives
could be negative, and we might still have div F > 0. The divergence
is a quantity that expresses only one aspect of the spatial variation of a
vector field.

Example (Field due to a cylinder) Let’s find the divergence of an electric
field that is rather easy to visualize. An infinitely long circular cylinder of radius
a is filled with a distribution of positive charge of density ρ. We know from
Gauss’s law that outside the cylinder the electric field is the same as that of a
line charge on the axis. It is a radial field with magnitude proportional to 1/r,
given by Eq. (1.39) with λ = ρ(πa2). The field inside is found by applying
Gauss’s law to a cylinder of radius r < a. You can do this as an easy problem
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(see Exercise 2.42). You will find that the field inside is directly proportional to
r, and of course it is radial also. The exact values are:

Eout = ρa2

2ε0r
for r > a,

Ein = ρr
2ε0

for r < a. (2.62)
E
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Figure 2.26.
The field inside and outside a uniform cylindrical
distribution of charge.

Figure 2.26 is a section perpendicular to the axis of the cylinder. Rectangular
coordinates aren’t the most natural choice here, but we’ll use them anyway to
get some practice with Eq. (2.59). With r =

√
x2 + y2, the field components are

expressed as follows:

Eout
x =

(x
r

)
Eout = ρa2x

2ε0(x2 + y2)
for r > a,

Eout
y =

(y
r

)
Eout = ρa2y

2ε0(x2 + y2)
for r > a,

Ein
x =

(x
r

)
Ein = ρx

2ε0
for r < a,

Ein
y =

(y
r

)
Ein = ρy

2ε0
for r < a. (2.63)

And Ez is zero everywhere, of course.
Outside the cylinder of charge, div E has the value given by

∂Eout
x

∂x
+ ∂Eout

y

∂y
= ρa2

2ε0

[
1

x2 + y2 − 2x2

(x2 + y2)2 + 1
x2 + y2 − 2y2

(x2 + y2)2

]
= 0.

(2.64)

Inside the cylinder, div E is

∂Ein
x

∂x
+ ∂Ein

y

∂y
= ρ

2ε0
(1 + 1) = ρ

ε0
. (2.65)

We expected both results. Outside the cylinder, where there is no charge, the net
flux emerging from any volume – large or small – is zero, so the limit of the ratio
flux/volume is certainly zero. Inside the cylinder we get the result required by the
fundamental relation Eq. (2.52).

Having gotten some practice with Cartesian coordinates, let’s redo this
example in a much quicker manner by using cylindrical coordinates. Since E
has only a radial component, Eq. (F.2) in Appendix F gives the divergence in
cylindrical coordinates as div E = (1/r) ∂(rEr)/∂r (see Section F.3 for the de-
rivation). Inside the cylinder, the field is Er = ρr/2ε0, so we quickly find
div E = ρ/ε0, as above. Outside the cylinder, the field is Er = ρa2/2ε0r, so we
immediately find div E = 0, which is again correct. All that matters in this latter
case is that the field is proportional to 1/r. Any such field will have div E = 0.
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2.11 The Laplacian
We have now met two scalar functions related to the electric field, the
potential function φ (see Eq. (2.16)) and the divergence, div E. In Carte-
sian coordinates the relationships are expressed as follows:

E = −grad φ = −
(

x̂
∂φ

∂x
+ ŷ

∂φ

∂y
+ ẑ

∂φ

∂z

)
, (2.66)

div E = ∂Ex

∂x
+ ∂Ey

∂y
+ ∂Ez

∂z
. (2.67)

Equation (2.66) shows that the x component of E is Ex = −∂φ/∂x.
Substituting this and the corresponding expressions for Ey and Ez into
Eq. (2.67), we get a relation between div E and φ:

div E = −div grad φ = −
(

∂2φ

∂x2 + ∂2φ

∂y2 + ∂2φ

∂z2

)
. (2.68)

The operation on φ that is indicated by Eq. (2.68), except for the minus
sign, we could call “div grad,” or “taking the divergence of the gradient
of . . . .” The symbol used to represent this operation is ∇2, called the
Laplacian operator, or just the Laplacian. The expression

∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 (2.69)

is the prescription for the Laplacian in Cartesian coordinates. So we have

div E = −∇2φ (2.70)

The notation ∇2 is explained as follows. With the vector operator ∇
given in Eq. (2.60), its square equals

∇ · ∇ = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 , (2.71)

the same as the Laplacian in Cartesian coordinates. So the Laplacian is
often called “del squared,” and we say “del squared φ,” meaning “div
grad φ.” Warning: In other coordinate systems, spherical coordinates,
for instance, the explicit forms of the gradient operator and the Laplacian
operator are not so simply related. This is evident in the list of formulas at
the beginning of Appendix F. It is well to remember that the fundamental
definition of the Laplacian operation is “divergence of the gradient of.”

We can now express directly a local relation between the charge
density at some point and the potential function in that immediate
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neighborhood. Combining Eq. (2.70) with Gauss’s law in differential
form, div E = ρ/ε0, we have

∇2φ = − ρ

ε0
(2.72)

Equation (2.72), sometimes called Poisson’s equation, relates the charge
density to the second derivatives of the potential. Written out in Cartesian
coordinates it is

∂2φ

∂x2 + ∂2φ

∂y2 + ∂2φ

∂z2 = − ρ

ε0
. (2.73)

One may regard this as the differential expression of the relationship
expressed by the integral in Eq. (2.18), which tells us how to find the
potential at a point by summing the contributions of all sources near
and far.4

Example (Poisson’s equation for a sphere) Let’s verify that Eq. (2.72)
holds for the potential due to a sphere with radius R and uniform charge density
ρ. This potential was derived in the second example in Section 2.2. Spherical
coordinates are the best choice here, so we will invoke the expression for the
Laplacian in spherical coordinates, given in Eq. (F.3) in Appendix F. Since the
potential depends only on r, we have ∇2φ = (1/r2)∂(r2 ∂φ/∂r)/∂r.

The potential outside the sphere is φ = ρR3/3ε0r. All that matters here is
the fact that φ is proportional to 1/r, because this makes ∂φ/∂r proportional to
1/r2, from which we immediately see that ∇2φ = 0. This agrees with Eq. (2.72),
because ρ = 0 outside the sphere.

Inside the sphere, we have φ = ρR2/2ε0 − ρr2/6ε0. The constant term
vanishes when we take the derivative, so we have

∇2φ = 1
r2

∂

∂r

(
r2 ∂φ

∂r

)
= 1

r2
∂

∂r

(
r2 · −ρr

3ε0

)
= − 1

r2
ρr2

ε0
= − ρ

ε0
, (2.74)

as desired.

2.12 Laplace’s equation
Wherever ρ = 0, that is, in all parts of space containing no electric charge,
the electric potential φ has to satisfy the equation

∇2φ = 0. (2.75)

This is called Laplace’s equation. We run into it in many branches of
physics. Indeed one might say that from a mathematical point of view the

4 In fact, it can be shown that Eq. (2.73) is the mathematical equivalent of Eq. (2.18).
This means, if you apply the Laplacian operator to the integral in Eq. (2.18), you will
come out with −ρ/ε0. We shall not stop to show how this is done; you’ll have to take
our word for it or figure out how to do it in Problem 2.27.
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theory of classical fields is mostly a study of the solutions of this equa-
tion. The class of functions that satisfy Laplace’s equation are called har-
monic functions. They have some remarkable properties, one of which is
the following.

Theorem 2.1 If φ(x, y, z) satisfies Laplace’s equation, then the aver-
age value of φ over the surface of any sphere (not necessarily a small
sphere) is equal to the value of φ at the center of the sphere.

Proof We can easily prove that this must be true of the electric potential
φ in regions containing no charge. (See Section F.5 in Appendix F for a
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q

S

Figure 2.27.
The work required to bring in q′ and distribute it
over the sphere is q′ times the average, over the
sphere, of the potential φ due to q.

more general proof.) Consider a point charge q and a spherical surface
S over which a charge q′ is uniformly distributed. Let the charge q be
brought in from infinity to a distance R from the center of the charged
sphere, as in Fig. 2.27. The electric field of the sphere being the same as
if its total charge q′ were concentrated at its center, the work required is
qq′/4πε0R.

Now suppose, instead, that the point charge q was there first and the
charged sphere was later brought in from infinity. The work required for
that is the product of q′ and the average over the surface S of the potential
due to the point charge q. Now the work is surely the same in the second
case, namely qq′/4πε0R, so the average over the sphere of the potential
due to q must be q/4πε0R. That is indeed the potential at the center of
the sphere due to the external point charge q. That proves the assertion
for any single point charge outside the sphere. But the potential of many
charges is just the sum of the potentials due to the individual charges,
and the average of a sum is the sum of the averages. It follows that the
assertion must be true for any system of sources lying wholly outside
the sphere.

This property of the potential, that its average over an empty sphere
is equal to its value at the center, is closely related to the following fact
that you may find disappointing.

Theorem 2.2 (Earnshaw’s theorem) It is impossible to construct an
electrostatic field that will hold a charged particle in stable equilibrium
in empty space.

This particular “impossibility theorem,” like others in physics, is
useful in saving fruitless speculation and effort. We can prove it in two
closely related ways, first by looking at the field E and using Gauss’s
law, and second by looking at the potential φ and using the above fact
concerning the average of φ over the surface of a sphere.

Proof First, suppose we have an electric field in which, contrary to the
theorem, there is a point P at which a positively charged particle would
be in stable equilibrium. That means that any small displacement of the
particle from P must bring it to a place where an electric field acts to push
it back toward P. But that means that a little sphere around P must have E
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pointing inward everywhere on its surface, which in turn means that there
is a net inward flux through the sphere. This contradicts Gauss’s law, for
there is no negative source charge within the region. (Our charged test
particle doesn’t count; besides, it’s positive.) In other words, you can’t
have an empty region where the electric field points all inward or all
outward, and that’s what you would need for stable equilibrium. Note
that since this proof involved only Gauss’s law, we could have presented
this theorem back in Chapter 1.

A second proof, using Theorem 2.1, proceeds as follows. A stable
position for a charged particle must be one where the potential φ is
either lower than that at all neighboring points (if the particle is posi-
tively charged) or higher than that at all neighboring points (if the parti-
cle is negatively charged). Clearly neither is possible for a function whose
average value over a sphere is always equal to its value at the center.

Of course, one can have a charged particle in equilibrium in an elec-
trostatic field, in the sense that the force on it is zero. The point where
E = 0 in Fig. 1.10 is such a location. The position midway between two
equal positive charges is an equilibrium position for a third charge, either
positive or negative. But the equilibrium is not stable. (Think what hap-
pens when the third charge is slightly displaced, either transversely or
longitudinally, from its equilibrium position.) It is possible, by the way,
to trap and hold stably an electrically charged particle by electric fields
that vary in time. And it is certainly possible to hold stably a charged par-
ticle within a nonzero charge distribution. For example, a positive charge
located at the center of a solid sphere of uniform negative charge is in
stable equilibrium.

2.13 Distinguishing the physics from the
mathematics

In the preceding sections we have been concerned with mathematical
relations and new ways of expressing familiar facts. It may help to sort
out physics from mathematics, and law from definition, if we try to imag-
ine how things would be if the electric force were not a pure inverse-
square force but instead a force with a finite range, for instance, a force
varying like5

F(r) = e−λr

r2 . (2.76)

Then Gauss’s law in the integral form expressed in Eq. (2.50) would
surely fail, for, by taking a very large surface enclosing some sources, we
would find a vanishingly small field on this surface. The flux would go to
zero as the surface expanded, rather than remain constant. However, we

5 This force technically has an infinite range, but the exponential decay causes it to
become essentially zero far away. So the range is finite, for all practical purposes.
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could still define a field at every point in space. We could calculate the

Figure 2.28.
In a non-inverse-square field, the flux through a
closed surface is not zero.

divergence of that field, and Eq. (2.51), which describes a mathematical
property of any vector field, would still be true. Is there a contradiction
here? No, because Eq. (2.52) would also fail. The divergence of the field
would no longer be the same as the source density. We can understand
this by noting that a small volume empty of sources could still have a net
flux through it owing to the effect of a source outside the volume, if the
field has finite range. As suggested in Fig. 2.28, more flux would enter
the side near the source than would leave the volume.

Thus we may say that Eqs. (2.50) and (2.52) express the same physi-
cal law, the inverse-square law that Coulomb established by direct meas-
urement of the forces between charged bodies, while Eq. (2.51) is an
expression of a mathematical theorem that enables us to translate our
statement of this law from differential to integral form or the reverse. The
relations that connect E, ρ, and φ are gathered together in Fig. 2.29(a).
The analogous expressions in Gaussian units are shown in Fig. 2.29(b).

How can we justify these differential relations between source and
field in a world where electric charge is really not a smooth jelly but
is concentrated on particles whose interior we know very little about?
Actually, a statement like Eq. (2.72), Poisson’s equation, is meaningful
on a macroscopic scale only. The charge density ρ is to be interpreted as
an average over some small but finite region containing many particles.
Thus the function ρ cannot be continuous in the way a mathematician
might prefer. When we let our region Vi shrink down in the course of
demonstrating the differential form of Gauss’s law, we know as physicists
that we musn’t let it shrink too far. That is awkward perhaps, but the fact
is that we make out very well with the continuum model in large-scale

Figure 2.29.
(a) How electric charge density, electric
potential, and electric field are related. The
integral relations involve the line integral and the
volume integral. The differential relations involve
the gradient, the divergence, and div · grad
(equivalently ∇2), the Laplacian operator. The
charge density ρ is in coulomb/meter3, the
potential φ is in volts, the field E is in volt/meter,
and all lengths are in meters. (b) The same
relations in Gaussian units. The charge density
ρ is in esu/cm3, the potential φ is in statvolts, the
field E is in statvolt/meter, and all lengths are in
centimeters.
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electrical systems. In the atomic world we have the elementary particles,
and vacuum. Inside the particles, even if Coulomb’s law turns out to
have some kind of meaning, much else is going on. The vacuum, so far
as electrostatics is concerned, is ruled by Laplace’s equation. Still, we
cannot be sure that, even in the vacuum, passage to a limit of zero size
has physical meaning.

C ds
F
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B

C2

ai

(a)

(b)

(c)

Figure 2.30.
For the subdivided loop, the sum of all the
circulations �i around the sections is equal to
the circulation � around the original curve C.

2.14 The curl of a vector function
Note: Study of this section and the remainder of Chapter 2 can be post-
poned until Chapter 6 is reached. Until then our only application of the
curl will be the demonstration that an electrostatic field is characterized
by curl E = 0, as explained in Section 2.17. The reason we are intro-
ducing the curl now is that the derivation so closely parallels the above
derivation of the divergence.

We developed the concept of divergence, a local property of a vector
field, by starting from the surface integral over a large closed surface.
In the same spirit, let us consider the line integral of some vector field
F(x, y, z), taken around a closed path, some curve C that comes back
to join itself. The curve C can be visualized as the boundary of some
surface S that spans it. A good name for the magnitude of such a closed-
path line integral is circulation; we shall use � (capital gamma) as its
symbol:

� =
∫

C
F · ds. (2.77)

In the integrand, ds is the element of path, an infinitesimal vector locally
tangent to C (Fig. 2.30(a)). There are two senses in which C could be
traversed; we have to pick one to make the direction of ds unambiguous.
Incidentally, the curve C need not lie in a plane – it can be as crooked as
you like.

Now bridge C with a new path B, thus making two loops, C1 and C2,
each of which includes B as part of itself (Fig. 2.30(b)). Take the line inte-
gral around each of these, in the same directional sense. It is easy to see
that the sum of the two circulations, �1 and �2, will be the same as the
original circulation around C. The reason is that the bridge is traversed in
opposite directions in the two integrations, leaving just the contributions
that made up the original line integral around C. Further subdivision into
many loops, C1, . . . , Ci, . . . , CN , leaves the sum unchanged:

∫
C

F · ds =
N∑

i=1

∫
Ci

F · dsi, or � =
N∑

i=1

�i. (2.78)
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In the same manner as in our discussion of divergence in Section 2.8,
we can continue indefinitely to subdivide, now by adding new bridges
instead of new surfaces, seeking in the limit to arrive at a quantity char-
acteristic of the field F in a local neighborhood. When we subdivide

Ci

ai

n

Figure 2.31.
Right-hand-screw relation between the surface
normal and the direction in which the circulation
line integral is taken.

the loops, we make loops with smaller circulation, but also with smaller
area. So it is natural to consider the ratio of loop circulation to loop
area, just as we considered in Section 2.8 the ratio of flux to volume.
However, things are a little different here, because the area ai of the bit
of surface that spans a small loop Ci is really a vector (Fig. 2.30(c)), in
contrast with the scalar volume Vi in Section 2.8. A surface has an orien-
tation in space, whereas a volume does not. In fact, as we make smaller
and smaller loops in some neighborhood, we can arrange to have a loop
oriented in any direction we choose. (Remember, we are not committed
to any particular surface over the whole curve C.) Thus we can pass to
the limit in essentially different ways, and we must expect the result to
reflect this.

Let us choose some particular orientation for the patch as it goes
through the last stages of subdivision. The unit vector n̂ will denote the
normal to the patch, which is to remain fixed in direction as the patch
surrounding a particular point P shrinks down toward zero size. The limit
of the ratio of circulation to patch area will be written this way:

lim
ai→0

�i

ai
or lim

ai→0

∫
Ci

F · ds
ai

. (2.79)

P
Ci

y

z

x

n = x

Figure 2.32.
The patch shrinks around P, keeping its normal
pointing in the x direction.

The rule for sign is that the direction of n̂ and the sense in which Ci
is traversed in the line integral shall be related by a right-hand-screw
rule, as in Fig. 2.31. The limit we obtain by this procedure is a scalar
quantity that is associated with the point P in the vector field F, and
with the direction n̂. We could pick three directions, such as x̂, ŷ, and ẑ,
and get three different numbers. It turns out that these numbers can be
considered components of a vector. We call the vector “curl F.” That is
to say, the number we get for the limit with n̂ in a particular direction is
the component, in that direction, of the vector curl F. To state this in an
equation,

(curl F) · n̂ = lim
ai→0

∫
Ci

F · ds
ai

(2.80)

where n̂ is the unit vector normal to the curve Ci.
For instance, the x component of curl F is obtained by choosing n̂ =

x̂, as in Fig. 2.32. As the loop shrinks down around the point P, we keep
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it in a plane perpendicular to the x axis. In general, the vector curl F
will vary from place to place. If we let the patch shrink down around
some other point, the ratio of circulation to area may have a different
value, depending on the nature of the vector function F. That is, curl F is
itself a vector function of the coordinates. Its direction at each point in
space is normal to the plane through this point in which the circulation
is a maximum. Its magnitude is the limiting value of circulation per unit
area, in this plane, around the point in question.

The last two sentences might be taken as a definition of curl F. Like
Eq. (2.80) they make no reference to a coordinate frame. We have not
proved that the object so named and defined is a vector; we have only
asserted it. Possession of direction and magnitude is not enough to make
something a vector. The components as defined must behave like vec-
tor components. Suppose we have determined certain values for the x, y,
and z components of curl F by applying Eq. (2.80) with n̂ chosen, suc-
cessively, as x̂, ŷ, and ẑ. If curl F is a vector, it is uniquely determined
by these three components. If some fourth direction is now chosen for
n̂, the left side of Eq. (2.80) is fixed and the quantity on the right, the
circulation in the plane perpendicular to the new n̂, had better agree with
it! Indeed, until one is sure that curl F is a vector, it is not even obvi-
ous that there can be at most one direction for which the circulation per
unit area at P is maximum – as was tacitly assumed in the latter defi-
nition. In fact, Eq. (2.80) does define a vector, but we shall not give a
proof of that.

2.15 Stokes’ theorem
From the circulation around an infinitesimal patch of surface we can now
work back to the circulation around the original large loop C:

� =
∫

C
F · ds =

N∑
i=1

�i =
N∑

i=1

ai

(
�i

ai

)
. (2.81)

In the last step we merely multiplied and divided by ai. Now observe
what happens to the right-hand side as N is made enormous and all the
ai areas shrink. From Eq. (2.80), the quantity in parentheses becomes
(curl F) · n̂i, where n̂i is the unit vector normal to the ith patch. So we
have on the right the sum, over all patches that make up the entire surface
S spanning C, of the product “patch area times normal component of
(curl F).” This is simply the surface integral, over S, of the vector curl F:

N∑
i=1

ai

(
�i

ai

)
=

N∑
i=1

ai(curl F) · n̂i −→
∫

S
curl F · da, (2.82)
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because da = ain̂i, by definition. We thus find that

∫
C

F · ds =
∫

S
curl F · da (Stokes’ theorem). (2.83)

x

y

z

a

Figure 2.33.
Circulation around a rectangular patch with
n̂ = ẑ.

The relation expressed by Eq. (2.83) is a mathematical theorem
called Stokes’ theorem. Note how it resembles Gauss’s theorem, the di-
vergence theorem, in structure. Stokes’ theorem relates the line integral of
a vector to the surface integral of the curl of the vector. Gauss’s theorem,
Eq. (2.49), relates the surface integral of a vector to the volume integral
of the divergence of the vector. Stokes’ theorem involves a surface and
the curve that bounds it. Gauss’s theorem involves a volume and the
surface that encloses it.

2.16 The curl in Cartesian coordinates
Equation (2.80) is the fundamental definition of curl F, stated without
reference to any particular coordinate system. In this respect it is like
our fundamental definition of divergence, Eq. (2.47). As in that case, we
should like to know how to calculate curl F when the vector function
F(x, y, z) is explicitly given. To find the rule, we carry out the integration
called for in Eq. (2.80), but we do it over a path of very simple shape,
one that encloses a rectangular patch of surface parallel to the xy plane
(Fig. 2.33). That is, we are taking n̂ = ẑ. In agreement with our rule
about sign, the direction of integration around the rim must be clockwise
as seen by someone looking up in the direction of n̂. In Fig. 2.34 we look
down onto the rectangle from above.

(x, y)

(x + Δx, y + Δy)

x

y

Figure 2.34.
Looking down on the patch in Fig. 2.33.

The line integral of A around such a path depends on the variation
of Ax with y and the variation of Ay with x. For if Ax had the same aver-
age value along the top of the frame, in Fig. 2.34, as along the bottom
of the frame, the contribution of these two pieces of the whole line inte-
gral would obviously cancel. A similar remark applies to the side mem-
bers. To the first order in the small quantities �x and �y, the difference
between the average of Ax over the top segment of path at y+�y and its
average over the bottom segment at y is(

∂Ax

∂y

)
�y. (2.84)

This follows from an argument similar to the one we used with
Fig. 2.22(b):

Ax = Ax(x, y) + �x
2

∂Ax

∂x

(
at midpoint of
bottom of frame

)
,

Ax = Ax(x, y) + �x
2

∂Ax

∂x
+ �y

∂Ax

∂y

(
at midpoint of
top of frame

)
. (2.85)
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These are the average values referred to, to first order in the Taylor expan-
sion. It is their difference, times the length of the path segment �x, that
determines their net contribution to the circulation. This contribution is
−�x �y (∂Ax/∂y). The minus sign comes in because we are integrat-
ing toward the left at the top, so that if Ax is more positive at the top,
it results in a negative contribution to the circulation. The contribution
from the sides is �y �x (∂Ay/∂x), and here the sign is positive, because
if Ay is more positive on the right, the result is a positive contribution to
the circulation.

Thus, neglecting any higher powers of �x and �y, the line integral
around the whole rectangle is

∫
A · ds = −�x ·

(
∂Ax

∂y

)
�y + �y ·

(
∂Ay

∂x

)
�x

= �x �y
(

∂Ay

∂x
− ∂Ax

∂y

)
. (2.86)

x

y

z

Figure 2.35.
For each orientation, the limit of the ratio
circulation/area determines a component of
curl A at that point. To determine all components
of the vector curl A at any point, the patches
should all cluster around that point; here they
are separated for clarity.

Now �x �y is the magnitude of the area of the enclosed rectangle, which
we have represented by a vector in the z direction. Evidently the quantity

∂Ay

∂x
− ∂Ax

∂y
(2.87)

is the limit of the ratio

line integral around patch
area of patch

(2.88)

as the patch shrinks to zero size. If the rectangular frame had been ori-
ented with its normal in the positive y direction, like the left frame in
Fig. 2.35, we would have found the expression

∂Ax

∂z
− ∂Az

∂x
(2.89)

for the limit of the corresponding ratio. And if the frame had been ori-
ented with its normal in the positive x direction, like the right frame in
Fig. 2.35, we would have obtained

∂Az

∂y
− ∂Ay

∂z
. (2.90)

Although we have considered rectangles only, our result is actually
independent of the shape of the little patch and its frame, for reasons
much the same as in the case of the integrals involved in the diver-
gence theorem. For instance, it is clear that we can freely join different
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=

Figure 2.36.
The circulation in the loop on the right is the
sum of the circulations in the rectangles, and
the area on the right is the sum of the
rectangular areas. This diagram shows why the
circulation/area ratio is independent of shape.

rectangles to form other figures, because the line integrals along the
merging sections of boundary cancel one another exactly (Fig. 2.36).

We conclude that, for any of these orientations, the limit of the ratio
of circulation to area is independent of the shape of the patch we choose.
Thus we obtain as a general formula for the components of the vector
curl F, when F is given as a function of x, y, and z:

curl F = x̂
(

∂Fz

∂y
− ∂Fy

∂z

)
+ ŷ

(
∂Fx

∂z
− ∂Fz

∂x

)
+ ẑ

(
∂Fy

∂x
− ∂Fx

∂y

)
.

(2.91)

You may find the following rule easier to remember than the formula
itself. Make up a determinant like this:∣∣∣∣∣∣

x̂ ŷ ẑ
∂/∂x ∂/∂y ∂/∂z
Fx Fy Fz

∣∣∣∣∣∣ . (2.92)

Expand it according to the rule for determinants, and you will get curl F
as given by Eq. (2.91). Note that the x component of curl F depends on
the rate of change of Fz in the y direction and the negative of the rate of
change of Fy in the z direction, and so on.

The symbol ∇×, read as “del cross,” where ∇ is interpreted as the
“vector”

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
, (2.93)

is often used in place of the name curl. If we write ∇ × F and follow
the rules for forming the components of a vector cross product, we get
automatically the vector curl F. So curl F and ∇×F mean the same thing.

2.17 The physical meaning of the curl
The name curl reminds us that a vector field with a nonzero curl has
circulation, or vorticity. Maxwell used the name rotation, and in German
a similar name is still used, abbreviated rot. Imagine a velocity vector
field G, and suppose that curl G is not zero. Then the velocities in this
field have something of this character:

↓←→↑ or ↑→←↓
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superimposed, perhaps, on a general flow in one direction. For instance,
the velocity field of water flowing out of a bathtub generally acquires a
circulation. Its curl is not zero over most of the surface. Something float-

++
+ +q

+

+
+

+
q

+
−

∇ × E

q

q

+
+
+ +

+
+

+

+

Figure 2.37.
The curlmeter.

ing on the surface rotates as it moves along. In the physics of fluid flow,
hydrodynamics and aerodynamics, this concept is of central importance.

To make a “curlmeter” for an electric field – at least in our imagi-
nation – we could fasten positive charges to a hub by insulating spokes,
as in Fig. 2.37. Exploring an electric field with this device, we would
find, wherever curl E is not zero, a tendency for the wheel to turn around
the shaft. With a spring to restrain rotation, the amount of twist could
be used to indicate the torque, which would be proportional to the com-
ponent of the vector curl E in the direction of the shaft. If we can find
the direction of the shaft for which the torque is maximum and clock-
wise, that is the direction of the vector curl E. (Of course, we cannot
trust the curlmeter in a field that varies greatly within the dimensions of
the wheel itself.)

What can we say, in the light of all this, about the electrostatic field
E? The conclusion we can draw is a simple one: the curlmeter will always
read zero! That follows from a fact we have already learned; namely, in
the electrostatic field the line integral of E around any closed path is
zero. Just to recall why this is so, remember from Section 2.1 that the line
integral of E between any two points such as P1 and P2 in Fig. 2.38 is
independent of the path. (This then implies that E can be written as
the negative gradient of the well-defined potential function given by
Eq. (2.4).) As we bring the two points P1 and P2 close together, the line
integral over the shorter path in the figure obviously vanishes – unless
the final location is at a singularity such as a point charge, a case we
can rule out. So the line integral must be zero over the closed loop in
Fig. 2.38(d). But now, if the circulation is zero around any closed path,
it follows from Stokes’ theorem that the surface integral of curl E is zero
over a patch of any size, shape, or location. But then curl E must be zero
everywhere, for if it were not zero somewhere we could devise a patch in
that neighborhood to violate the conclusion. We can sum all of this up
by saying that if E equals the negative gradient of a potential function φ

(which is the case for any electrostatic field E), then

curl E = 0 (everywhere). (2.94)

The converse is also true. If curl E is known to be zero everywhere, then
E must be describable as the gradient of some potential function φ. This
follows from the fact that zero curl implies that the line integral of E
is path-independent (by reversing the above reasoning), which in turn
implies that φ can be defined in an unambiguous manner as the nega-
tive line integral of the field. If curl E = 0, then E could be an electro-
static field.
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Example This test is easy to apply. When the vector function in Fig. 2.3 was
first introduced, it was said to represent a possible electrostatic field. The compo-

P1

P1

P2

P2

(a)

(b)

P1

P2
(c)

P1P2

(d)

Figure 2.38.
If the line integral between P1 and P2 is
independent of path, the line integral around a
closed loop must be zero.

nents were specified by Ex = Ky and Ey = Kx, to which we should add Ez = 0 to
complete the description of a field in three-dimensional space. Calculating curl E
we find

(curl E)x = ∂Ez

∂y
− ∂Ey

∂z
= 0,

(curl E)y = ∂Ex

∂z
− ∂Ez

∂x
= 0,

(curl E)z = ∂Ey

∂x
− ∂Ex

∂y
= K − K = 0. (2.95)

This tells us that E is the (negative) gradient of some scalar potential, which
we know from Eq. (2.8), and which we verified in Eq. (2.17), is φ = −Kxy.
Incidentally, this particular field E happens to have zero divergence also:

∂Ex

∂x
+ ∂Ey

∂y
+ ∂Ez

∂z
= 0. (2.96)

It therefore represents an electrostatic field in a charge-free region.
On the other hand, the equally simple vector function defined by Fx = Ky;

Fy = −Kx; Fz = 0, does not have zero curl. Instead,

(curl F)z = −2K. (2.97)

Hence no electrostatic field could have this form. If you sketch roughly the form
of this field, you will see at once that it has circulation.

Example (Field from a sphere) We can also verify that the electric field
due to a sphere with radius R and uniform charge density ρ has zero curl. From
the example in Section 1.11, the fields inside and outside the sphere are, respec-
tively,

Ein
r = ρr

3ε0
and Eout

r = ρR3

3ε0r2 . (2.98)

As usual, we will work with spherical coordinates when dealing with a sphere.
The expression for the curl in spherical coordinates, given in Eq. (F.3) in
Appendix F, is unfortunately the most formidable one in the list. However, the
above electric field has only a radial component, so only two of the six terms
in the lengthy expression for the curl have a chance of being nonzero. Further-
more, the radial component depends only on r, being proportional to either r or
1/r2. So the two possibly nonzero terms, which involve the derivatives ∂Er/∂φ

and ∂Er/∂θ , are both zero (φ here is an angle, not the potential!). The curl is
therefore zero. This result holds for any radial field that depends only on r. The
particular r and 1/r2 forms of our field are irrelevant.

You can develop some feeling for these aspects of vector functions
by studying the two-dimensional fields pictured in Fig. 2.39. In four of
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Figure 2.39.
Four of these vector fields have zero divergence
in the region shown. Three have zero curl. Can
you spot them?

(a) (d)

(b) (e)

(c) (f)

these fields the divergence of the vector function is zero throughout the
region shown. Try to identify the four. Divergence implies a net flux
into, or out of, a neighborhood. It is easy to spot in certain patterns.
In others you may be able to see at once that the divergence is zero.
In three of the fields the curl of the vector function is zero throughout
the region shown. Try to identify the three by deciding whether a line
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(b)

This is a central field. That is, F is radial
and, for given r, its magnitude is constant.
Any central field has zero curl;  the circulation
is zero around the dashed path, and any other
path. But the divergence is obviously not zero.

div F ≠ 0 curl F = 0

(c)

The circulation evidently could be zero around
the paths shown. Actually, this is the same
field as that in Fig. 2.3 and is a possible
electrostatic field.

    It is not obvious that div F = 0
from this picture alone, but you can see that
it too could be zero.

div F = 0 curl F = 0

(f)

Clearly the circulation around the dashed
path is not zero. There appears also to be
a nonzero divergence, since we see vectors
converging toward the center from all
directions.

div F ≠ 0 curl F ≠ 0

(e)

For  the  same  reason as in (d), we deduce
that  div F is zero. Here the magnitude of  F
is the same everywhere, so the line integral
over the long       leg of the path
shown is                            not canceled by
the integral                        over the short leg,
and the                               circulation is
not zero.

div F = 0 curl F ≠ 0

(d)

Note  that  there  is  no  change  in  the
magnitude  of  F,  to  first  order,  as  you 
advance  in  the  direction  F  points.
That  is  enough  to  ensure  zero  diver-
gence.                             It  appears
that  the                            circulation
could  be                         zero  around
the  path                         shown,  for  F
is  weaker                       on  the  long 
leg  than  on  the  short  leg.  Actually, 
this  is  a  possible  electrostatic  field,
with  F  proportional  to  1/r,  where  r
is  the  distance  to  a  point  outside
the  picture.

div F = 0 curl F = 0

(a)

div F = 0 curl F ≠ 0

Note that the vector remains constant as you
advance in the direction in which it points.
That is, ∂Fy/∂y = 0, with Fx = 0. Hence div F = 0.
Note that the line integral around the dashed path
is not zero.

Figure 2.40.
Discussion of Fig. 2.39.

integral around any loop would or would not be zero in each picture. That
is the essence of curl. After you have studied the pictures, think about
these questions before you compare your reasoning and your conclusions
with the explanation given in Fig. 2.40.

The curl of a vector field will prove to be a valuable tool later on
when we deal with electric and magnetic fields whose curl is not zero.
We have developed it at this point because the ideas involved are so close
to those involved in the divergence. We may say that we have met two
kinds of derivatives of a vector field. One kind, the divergence, involves
the rate of change of a vector component in its own direction, ∂Fx/∂x,
and so on. The other kind, the curl, is a sort of “sideways derivative,”
involving the rate of change of Fx as we move in the y or z direction.
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Surface encloses volume
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∫
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div F dv
∫
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A · ds =
∫

surface

curl A · da φ2 − φ1 =
∫

curve

grad φ · ds

In Cartesian coordinates, with ∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
:

div F = ∂Fx

∂x
+ ∂Fy

∂y
+ ∂Fz

∂z
curl A = x̂

(
∂Az

∂y
− ∂Ay

∂z

)
grad φ = x̂

∂φ

∂x
+ ŷ

∂φ

∂y
+ ẑ

∂φ

∂z

= ∇ · F + ŷ
(

∂Ax

∂z
− ∂Az

∂x

)
= ∇φ

+ ẑ
(

∂Ay

∂x
− ∂Ax

∂y

)
= ∇ × A

Figure 2.41.
Some vector relations summarized.

The relations called Gauss’s theorem and Stokes’ theorem are
summarized in Fig. 2.41. The connection between the scalar potential
function and the line integral of its gradient can also be looked on as
a member of this family of theorems and is included in the third col-
umn. In all three of these theorems, the right-hand side of the equation
involves an integral over an N-dimensional space, while the left-hand
side involves an integral over the (N − 1)-dimensional boundary of the
space. In the “grad” theorem, this latter integral is simply the discrete
sum over two points.

2.18 Applications
As mentioned in Section 1.16, the electrical breakdown of air occurs at a
field of about 3 · 106 V/m. So if you shuffle your feet on a carpet and then



2.18 Applications 101

generate a spark with a grounded object, and if the spark is 1 mm long,
then (assuming that the field is roughly constant over this 1 mm distance)
your potential was given by φ = Ed �⇒ φ = (3 · 106 V/m)(10−3 m) =
3000 V. Conversely, if you rub a balloon on your hair and it achieves a
potential of 3000 V, and if the radius is r = 0.1 m, then the charge on it
is given by φ = kq/r �⇒ q = (3000)(0.1)/(9 · 109) ≈ 3 · 10−8 C, or
about 100 esu.6 Although 3000 V might sound like a dangerous voltage,
it’s quite safe in this case, because one of the factors that determines the
severity of a shock is the amount of charge involved. And there simply
isn’t enough charge residing on the balloon to cause much pain when it
flows off; 3000 V and an unlimited supply of charge would be a different
story!

However, the spark from an object like a balloon can be danger-
ous if it occurs in the presence of a flammable gas, such as the gaso-
line vapors present at a gas station. If a voltage difference is somehow
generated between different objects, a dangerous electrical breakdown
can occur. One way of generating a voltage difference is to get back in
your car while pumping the gas. Triboelectric effects between you and
the car seat can produce charge transfer, causing you and the car to end
up with different potentials, assuming that you don’t touch any of its
metal as you get back out. So don’t get back in your car. Or if you must,
be sure to touch a grounded object far from the hose nozzle after you
get out. There are also triboelectric effects from the gasoline moving
through the hose. The relative motion between the fast-moving gasoline
in the middle of the hose and the stationary boundary layer near the
wall causes a transfer of electrons. The gasoline flowing into the tank
is therefore charged. This is the reason why it is dangerous to fill a gas
container that isn’t grounded, for example one that is sitting in the bed
of a pickup truck. A nongrounded container can achieve a significant
potential.

In the event that there is an unlimited supply of charge, it isn’t the
particular voltage of a given object that makes things dangerous, but
rather the voltage difference between two objects. (In the end, it’s the
current that you need to worry about, but a larger voltage difference
means a larger current, all other things being equal.) If you stand on a
wooden stool with your hands on a small Van de Graaff generator held at
100 kV, then you are also at this high potential. But there are no ill effects
(assuming you don’t mind your hair sticking up, and barring pacemakers,
etc.), because all parts of your body are at the same potential, so there is
no current flowing anywhere. Likewise, when flying birds take a break
and sit on power lines, their potential is very high, but it is essentially
the same throughout their bodies; the potential difference between their

6 This charge can be obtained in a quicker way, using the following rule of thumb, which
you can verify after you learn about capacitance in Chapter 3: the capacitance of a
sphere with a radius of N centimeters is approximately N picofarads, that is, N · 10−12

farads. Multiplying this capacitance by φ gives q.
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feet isn’t large enough to push a noticeable current through their bod-
ies. Also, of course, each bird is touching only one wire. This should be
contrasted with the case of flying deer, whose bodies are large enough to
touch two of the power lines (which have different potentials) simultane-
ously. In the summer of 2011, a flying deer caused a power outage in a
Montana town when it landed on power lines. Well, it was either a flying
deer . . . or a fawn dropped by an eagle.7

Although the potential difference between a bird’s feet on a wire is
insignificant, the potential difference between your feet on the ground
can be quite significant if there is a lightning strike nearby. The main
difference between these two cases is that the resistivity (discussed in
Chapter 4) of the ground is much larger than that of the metal in a wire.
The voltage difference between your feet can be thousands of volts, so
current will travel up one leg and down the other. And there is more
than enough charge in a lightning strike to do damage. So if there is a
threat of lightning, then, after taking all other proper precautions, you
should stand with your feet close together. Livestock are at a bit of a
disadvantage in this regard, since they don’t stand that way.

When the tires of a car roll along the ground, there is a triboelectric
effect, so the car acquires a charge, and hence also a voltage difference
with the ground. When the car stops, this charge leaks off, but it takes
a few seconds. This means that if there is no line at a toll booth, so that
you encounter the toll collector right after stopping, and if you happen to
touch their hand, you may receive (and give) a shock. Toll collectors are
therefore probably happy to see at least a short line of cars.

Helicopters can build up significant charge due to triboelectric effects
between the blades and the air; the potential can reach 100 kV. And because
a helicopter is much larger than the balloon we discussed earlier, it can
hold enough charge to generate a serious (and perhaps lethal) shock. If
a cable is lowered from a hovering helicopter to a person being rescued,
it is critical that the cable touch the ground (or water) before it touches
the person, so that the discharge doesn’t occur through the person. This
is often accomplished by attaching to the bottom of the main cable a
static discharge cable, which has a breakaway safety mechanism in case
it gets snagged.

The signals that travel along neurons take the form of modifications
to the potential difference between the inside and outside of the axon (the
long slender part) of the neuron. A certain enzyme pumps Na+ (sodium)
ions out of the axon, and K+ (potassium) ions into it. But it pumps more
of the former, so the exterior has a positive charge relative to the inte-
rior; its potential is about 70 mV higher. This is the resting potential.
The nerve signal consists of a wave of depolarization, where Na+ ions

7 From photographs, it looks like the deer actually didn’t touch two wires. So perhaps it
instead tripped some sort of safety mechanism when it struck the wire, given that it
was probably traveling at a high speed. In any event, a hypothetical flying deer could
hypothetically touch two wires.
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rush into the axon and then K+ ions rush out. This modification to the
potential is called the action potential. At a given location, it takes a few
milliseconds for the signal to pass, and the potential then returns to its
original value. The speed of the depolarization pulse along the neuron is
roughly 100 m/s. Although this nerve signal is in some sense an electri-
cal signal, it isn’t an actual current. There is no net flow of charge along
the neuron; there is only the transverse motion of the Na+ and K+ ions.
The propagation of the signal depends on the opening and closing of var-
ious enzyme channels, so its speed isn’t remotely close to the speed of
an electrical signal in a metal wire, which is on the order of the speed
of light.

CHAPTER SUMMARY
• For an electrostatic field, the line integral

∫ P2
P1

E · ds is independent of
the path from P1 to P2. This allows us to define uniquely the electric
potential difference:

φ21 = −
∫ P2

P1

E · ds. (2.99)

Relative to infinity, the potential due to a charge distribution is (depend-
ing on whether the distribution is continuous or discrete)

φ(x, y, z) =
∫

ρ(x′, y′, z′) dx′ dy′ dz′

4πε0r
or

∑ qi

4πε0r
.

(2.100)

• In Cartesian coordinates, the gradient of a scalar function (written as
grad f or ∇f ) is

∇f ≡ x̂
∂f
∂x

+ ŷ
∂f
∂y

+ ẑ
∂f
∂z

. (2.101)

The gradient gives the direction in which f has the largest rate of
increase. In terms of the gradient, the differential form of Eq. (2.99) is

E = −∇φ. (2.102)

This relation implies that the lines of the electric field are perpen-
dicular to the surfaces of constant potential.

• The electrostatic potential energy difference of a charge q between
points P1 and P2 equals qφ21. The energy required to assemble a group
of charges from infinity is (depending on whether the distribution is
continuous or discrete)

U = 1
2

∫
ρφ dv or

1
2

N∑
j=1

qj
∑
k �=j

1
4πε0

qk

rjk
. (2.103)
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The factor of 1/2 addresses the double counting of each pair of
charges.

• A dipole consists of two charges ±q located a distance � apart. The
dipole moment is p ≡ q�. At large distances, the potential and field
due to a dipole are

φ(r, θ) = p cos θ

4πε0r2 ,

E(r, θ) = p
4πε0r3

(
2 cos θ r̂ + sin θ θ̂

)
. (2.104)

We verified that the electric field is everywhere perpendicular to the
surfaces of constant potential.

• In Cartesian coordinates, the divergence of a vector function (written
as div F or ∇ · F) is

div F = ∂Fx

∂x
+ ∂Fy

∂y
+ ∂Fz

∂z
. (2.105)

The divergence appears in Gauss’s theorem, or the divergence
theorem, ∫

S
F · da =

∫
V

div F dv. (2.106)

Physically, the divergence equals the flux of F out of a volume, divided
by the volume, in the limit where the volume becomes infinitesimal.
Combining Gauss’s theorem with Gauss’s law, Eq. (1.31), gives

div E = ρ

ε0
. (2.107)

This is the first of Maxwell’s equations.
• In Cartesian coordinates, the Laplacian of a scalar function (written

as div grad f , or ∇ · ∇f , or ∇2f ) is

∇2f = ∂2f
∂x2 + ∂2f

∂y2 + ∂2f
∂z2 . (2.108)

In terms of the Laplacian, Eqs. (2.102) and (2.107) can be combined
to give

∇2φ = − ρ

ε0
. (2.109)

This is called Poisson’s equation. It is the final link in Fig. 2.29, which
shows all the relations among the electrostatic quantities E, φ, and ρ.
A special case of Eq. (2.109) is Laplace’s equation:

∇2φ = 0. (2.110)



Problems 105

If φ satisfies this equation, then the average value of φ over the surface
of any sphere equals the value of φ at the center of the sphere. This
fact (or alternatively Gauss’s law) implies that it is impossible to con-
struct an electrostatic field that will hold a charged particle in stable
equilibrium in empty space.

• In Cartesian coordinates, the curl of a vector function (written as curl F
or ∇ × F) is

curl F =
∣∣∣∣∣∣

x̂ ŷ ẑ
∂/∂x ∂/∂y ∂/∂z
Fx Fy Fz

∣∣∣∣∣∣ . (2.111)

The curl appears in Stokes’ theorem,∫
C

F · ds =
∫

S
curl F · da. (2.112)

Physically, the curl equals the line integral of F around an area, divided
by the area, in the limit where the area becomes infinitesimal. Since
the line integral of an electrostatic field E around any closed path is
zero, Stokes’ theorem implies that curl E = 0. See Appendix F for
a discussion of the various vector operators in different coordinate
systems.

Problems
2.1 Equivalent statements *

It is arbitrary which of the two boxed statements in Section 2.1 we
regard as the corollary of the other. Show that, if the line integral∫

E · ds is zero around any closed path, it follows that the line
integral between two different points is path-independent.

2.2 Combining two shells *
We know from Problem 1.32 that the self-energy of a spherical
shell of radius R with charge Q uniformly distributed over it is

y

x

4

3

2

A

C
B1

3 4 5−q

2q

(distances are in units of   ) 

Figure 2.42.

Q2/8πε0R. What if we put two such shells right on top of each
other, to make a shell with charge 2Q? Since we now just have two
copies of the original system, it seems like the energy should be
twice as large, or Q2/4πε0R. However, the above formula gives an
energy of (2Q)2/8πε0R = Q2/2πε0R. Which answer is correct,
and what is wrong with the reasoning for the wrong answer?

2.3 Equipotentials from four charges *
Two point charges of strength 2q each and two point charges of
strength −q each are symmetrically located in the xy plane as fol-
lows. The two positive charges are at (0, 2�) and (0,−2�), the two
negative charges are at (�, 0) and (−�, 0). Some of the equipo-
tentials in the xy plane have been plotted in Fig. 2.42. (Of course
these curves are really the intersection of some three-dimensional
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equipotential surfaces with the xy plane.) Study this figure until
you understand its general appearance. Now find the value of the
potential φ on each of the curves A, B, and C, as usual taking φ = 0
at infinite distance. Curve A has been arbitrarily chosen to cross the
y axis at y = �, and it can be shown (how?) that curve B crosses
the x axis at x ≈ (3.44)�. Roughly sketch some intermediate equi-
potentials.

2.4 Center vs. corner of a cube **
Consider a charge distribution that has the constant density ρ every-
where inside a cube of edge b and is zero everywhere outside that
cube. Letting the electric potential φ be zero at infinite distance
from the cube of charge, denote by φ0 the potential at the center of
the cube and by φ1 the potential at a corner of the cube. Determine
the ratio φ0/φ1. The answer can be found with very little calculation
by combining a dimensional argument with superposition. (Think
about the potential at the center of a cube with the same charge
density and with twice the edge length.)

2.5 Escaping a cube **
Suppose eight protons are permanently fixed at the corners of a
cube. A ninth proton floats freely near the center of the cube. There
are no other charges around, and no gravity. Is the ninth proton
trapped? Can it find an escape route that is all downhill in potential
energy? Feel free to analyze this numerically/graphically.

2.6 Electrons on a basketball *
A sphere the size of a basketball is charged to a potential of −1000
volts. About how many extra electrons are on it, per square
centimeter of surface?

2.7 Shell field via direct integration **
Consider the electric field E due to a spherical shell of radius
R with charge Q uniformly distributed over its surface. In Sec-

R

r

Figure 2.43.

tion 1.11 we found E by using Gauss’s law. Find E here (both inside
and outside the shell) by directly calculating the potential at a given
value of r by integrating the contributions from the different parts
of the shell, and then using Er = −dφ/dr. The simplest strategy
is to slice the shell into rings, as shown in Fig. 2.43. You will need
to use the law of cosines.

2.8 Verifying the inverse square law ****
As mentioned in Section 1.4, Cavendish and Maxwell conducted
experiments to test the inverse-square nature of Coulomb’s law.
This problem gives the theory behind their experiments.

(a) Assume that Coulomb’s law takes the form of kq1q2/r2+δ .
Given a hollow spherical shell with radius R and uniformly
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distributed charge Q, show that the potential at radius r is (with
f (x) = x1−δ and k ≡ 1/4πε0)

φ(r) = kQ
2(1 − δ2)rR

[
f (R + r) − f (R − r)

]
(for r < R),

φ(r) = kQ
2(1 − δ2)rR

[
f (R + r) − f (r − R)

]
(for r > R).

(2.113)

The calculation requires only a slight modification of the
analogous direct calculation (that is, one that doesn’t use the
Gauss’s-law shortcut) of the potential in the case of the standard
Coulomb 1/r2 law; see Problem 2.7.

Note: We are usually concerned with δ � 1, in which case
the (1 − δ2) factor in the denominators in Eq. (2.113) can
be reasonably approximated by 1. We will ignore it for the
remainder of this problem.

(b) Consider two concentric shells with radii a and b (with a > b)
and uniformly distributed charges Qa and Qb. Show that the
potentials on the shells are given by

φa = kQa

2a2 f (2a) + kQb

2ab

[
f (a + b) − f (a − b)

]
,

φb = kQb

2b2 f (2b) + kQa

2ab

[
f (a + b) − f (a − b)

]
. (2.114)

(c) Show that if the shells are connected, so that they are at the
same potential φ, then the charge on the inner shell is

Qb = 2bφ

k
· bf (2a) − a

[
f (a + b) − f (a − b)

]
f (2a)f (2b) − [

f (a + b) − f (a − b)
]2 . (2.115)

If δ = 0 so that f (x) = x, then Qb equals zero, as it should. So
if Qb is measured to be nonzero, then δ must be nonzero.

For small δ it is possible to expand Qb to first order in δ

by using the approximation f (x) = xe−δ ln x ≈ x(1 − δ ln x),
but this gets very messy. You are encouraged instead to use a
computer to calculate and plot Qb for various values of a, b,
and δ. You can also trivially expand Qb to first order in δ by
using the Series operation in Mathematica.

2.9 φ from integration **
(a) A solid sphere has radius R and uniform volume charge den-

sity ρ. Find the potential at the center by evaluating the integral
in Eq. (2.18).

(b) A spherical shell has radius R and uniform surface charge den-
sity σ . Find the potential at a point on the surface by evaluating
the integral in Eq. (2.18).
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(c) When written in terms of the total charge involved, how do the
above two results compare?

2.10 A thick shell **
(a) A spherical shell with charge Q uniformly distributed through-

out its volume has inner radius R1 and outer radius R2. Calcu-
late (and make a rough plot of) the electric field as a function
of r, for 0 ≤ r ≤ ∞.

(b) What is the potential at the center of the shell? You can let
R2 = 2R1 in this part of the problem, to keep things from
getting too messy. Give your answer in terms of R ≡ R1.

2.11 E for a line, from a cutoff potential **
Consider the electric field E due to an infinite straight wire with
uniform linear charge density λ. In Section 1.12 we found E by
direct integration of Coulomb’s law, and again by using Gauss’s
law. Find E here by calculating the potential and then taking the
derivative.

You will find that the potential (relative to infinity) due to an
infinite wire diverges. But you can get around this difficulty by
instead finding the potential due to a very long but finite wire of
length 2L, at a point lying on its perpendicular bisecting plane. Use
a Taylor series to simplify your result, and then take the derivative
to find E. Explain why this procedure is valid, even though it cuts
off an infinite amount from the potential.

2.12 E and φ from a ring **
(a) Consider a ring with charge Q and radius R. Let point P be a

distance x from the plane of the ring, along the axis through
its center. By adding up the contributions from all the pieces
of the ring, find the electric field E(x) at point P.

(b) In the same manner, find the potential φ(x) at point P.
(c) Show that E = −dφ/dx.
(d) If a charge −q with mass m is released from rest far away along

the axis, what is its speed when it passes through the center of
the ring? Assume that the ring is fixed in place.

2.13 φ at the center of an N-gon **
Use the technique from the second example in Section 2.6 to cal-
culate the potential at the center of a sheet in the shape of a reg-
ular N-gon with surface charge density σ . Let the distance from
the center to the midpoint of a side be a. Show that your answer
reduces to the result in Eq. (2.27) in the N → ∞ limit.

2.14 Energy of a sphere **
A spherical volume of radius R is filled with charge of uniform
density ρ. Exercise 1.61 and the example in Section 1.15 presented
two methods for calculating the energy stored in the system. Cal-
culate the energy in a third way, by using Eq. (2.32).
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2.15 Crossed dipoles *
Two dipoles, each with dipole moment p, are oriented perpen-
dicularly as shown in Fig. 2.44. What is the dipole moment of the
system?

Figure 2.44.

2.16 Disks and dipoles **
Two parallel disks each have radius R and are separated by a dis-
tance �. The surface charge densities are σ and −σ . What is the
electric field at a large distance r along the axis of the disks? Solve
this in two ways.

(a) Treat the disks like a collection of a large number of dipoles
standing next to each other.

(b) Explain why the parts of the two disks that are contained within
the cone in Fig. 2.45 produce canceling fields at point P, and

s

−s

P

Figure 2.45.

then find the field due to the uncanceled part of the top disk.

2.17 Linear quadrupole **
Consider a “linear quadrupole” consisting of two adjacent dipoles
oriented oppositely and placed end to end; see the left quadrupole
in Fig. 2.16. There is effectively a point charge −2q at the center.
By adding up the electric fields from the charges, find the electric
field at a distant point (a) along the axis and (b) along the perpen-
dicular bisector.

2.18 Field lines near the origin **
(a) Two equal positive charges q are located at the points (±a, 0, 0).

Write down the potential φ(x, y) for points in the xy plane, and
then use a Taylor expansion to find an approximate expression
for φ near the origin. (You can set a = 1 to make things
simpler.)

(b) Find the electric field at points near the origin. Then find the
equations for the field lines near the origin by demanding that
the slope dy/dx of a curve at a given point equals the slope
Ey/Ex of the field at that point.

2.19 Equipotentials for a ring ***
(a) A ring with radius R has charge Q uniformly distributed on it.

It lies in the xy plane, with its center at the origin. Find the
electric field at all points on the z axis. For what value of z is
the field maximum?

(b) Make a rough sketch of the equipotential curves everywhere in
space (or rather, everywhere in a plane containing the z axis;
you can represent the ring by two dots where it intersects the
plane). Be sure to indicate what the curves look like very close
to and very far from the ring, and how the transition from close
to far occurs.
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(c) There is a particular z value (along with its negative) at which
the equipotentials make the transition from concave up to con-
cave down. Explain why this z value equals the z value you
found in part (a). Hint: The divergence of E is zero.

2.20 A one-dimensional charge distribution **
Find (and make rough plots of) the electric field and charge distri-
bution associated with the following potential:

φ(x) =

⎧⎪⎨
⎪⎩

0 (for x < 0)

ρ0x2/2ε0 (for 0 < x < �)

ρ0�
2/2ε0 (for � < x).

(2.116)

2.21 A cylindrical charge distribution **
A distribution of charge has cylindrical symmetry. As a function
of the distance r from the symmetry axis, the electric potential is

φ(r) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

3ρ0R2

4ε0
(for r ≤ R)

ρ0

4ε0
(4R2 − r2) (for R < r < 2R)

0 (for 2R ≤ r),

(2.117)

where ρ0 is a quantity with the dimensions of volume charge
density.

(a) Find (and make rough plots of) the electric field and charge
distribution, for all values of r. The derivative operators in
cylindrical coordinates are listed in Appendix F.

(b) From your charge distribution, calculate the total charge per
unit length along the cylinder.

2.22 Discontinuous E and φ **
(a) What kind of charge distribution yields a discontinuous elec-

tric field?
(b) Can you think of a charge distribution (or perhaps the limit of

a charge distribution) that yields a discontinuous potential?

2.23 Field due to a distribution **
Each of the objects described below has uniform volume charge
density ρ. There are no other charges present in addition to the
given object. In each case use ∇ ·E = ρ/ε0 to show that the elec-
tric field takes the stated form.

(a) A rectangular slab has thickness � in the x direction and infinite
extent in the y and z directions. Show that Ex = ρx/ε0 inside
the slab, where x is measured from the midplane of the slab.

(b) An infinitely long cylinder has radius R. Show that Er =
ρr/2ε0 inside the cylinder.
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(c) A sphere has radius R. Show that Er = ρr/3ε0 inside the
sphere.

(d) Given that the above three setups all involve the same charge
density and the same relation ∇ · E = ρ/ε0, why do they give
different results for the electric field?

2.24 Two expressions for the energy **
(a) Prove the identity

∇ · (φE) = (∇φ) · E + φ ∇ · E (2.118)

by explicitly calculating the various derivatives in Cartesian
coordinates.

(b) This identity holds for any scalar function φ and any vector
function E. In particular, it holds for the electric potential and
field. Use this fact to show that Eqs. (1.53) and (2.32) are
equivalent expressions for the energy stored in a charge distri-
bution of finite extent. You will want to apply the divergence
theorem with a wisely chosen volume.

2.25 Never trapped **
A number of positive point charges, with various magnitudes, are
located at fixed positions in space. Show that no matter where an
additional positive charge q is placed, there exists an escape route
to infinity that is all downhill in potential energy. The “impossi-
bility theorem” discussed in Section 2.12 will be helpful, but that
deals only with small displacements, so you will need to extend
the argument.

2.26 The delta function **
In spherical coordinates, consider the Laplacian of the function
f (r) = 1/r, that is, ∇2(1/r). From Appendix F we have ∇2f =
(1/r2)(∂/∂r)(r2 ∂f /∂r) for a function that depends only on r. Since
r2 ∂(1/r)/∂r takes on the constant value of−1, we see that∇2(1/r)
equals zero. Well, almost. It is certainly zero for r �= 0, but we must
be careful at the origin, due to the infinite 1/r2 factor out front.

Show that ∇2(1/r) is not equal to zero at r = 0. Do this by
showing that it is large enough (or more precisely, infinite enough)
to make the volume integral

∫ ∇2(1/r) dv equal to −4π , provided
that the volume contains the origin. The divergence theorem will
be helpful.

2.27 Relations between φ and ρ ***
Figure 2.29 gives two relations between φ and ρ, namely φ =
(1/4πε0)

∫
(ρ/r) dv′ and ∇2φ = −ρ/ε0. Show that these relations

are consistent, by operating on the first one with the Laplacian ∇2
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operator. Be careful that there are two types of coordinates in the
equation, primed and unprimed; it can be written more precisely as

φ(r) = 1
4πε0

∫
ρ(r′) dv′

|r′ − r| . (2.119)

You will want to solve Problem 2.26 first.

2.28 Zero curl *
Consider the electric field, E = (2xy2 + z3, 2x2y, 3xz2). We have
ignored a multiplicative factor with units of V/m4 necessary to
make the units correct. Show that curl E = 0, and then find the
associated potential function φ(x, y, z).

2.29 Ends of the lines *
Explain why electrostatic field lines can’t form closed loops, and
why their ends must be located either at charges or at infinity.

2.30 Curl of a gradient **
The electric field equals the negative gradient of the potential, that
is, E = −∇φ. Show that this implies that the curl of E, which we
can write as ∇ × E, is identically zero. Do this by:

(a) calculating ∇ × ∇φ in Cartesian coordinates;
(b) making judicious use of Stokes’ theorem.

Exercises
2.31 Finding the potential *

The following vector function represents a possible electrostatic
field:

Ex = 6xy, Ey = 3x2 − 3y2, Ez = 0. (2.120)

(We have ignored a multiplicative factor with units of V/m3 nec-
essary to make the units correct.) Calculate the line integral of E
from the point (0, 0, 0) to the point (x1, y1, 0) along the path that
runs straight from (0, 0, 0) to (x1, 0, 0) and thence to (x1, y1, 0).
Make a similar calculation for the path that runs along the other
two sides of the rectangle, via the point (0, y1, 0). You ought to get
the same answer if the assertion above is true. Now you have the
potential function φ(x, y, z). Take the gradient of this function and
see that you get back the components of the given field.

2.32 Line integral the easy way *
Designate the corners of a square, � on a side, in clockwise order,
A, B, C, D. Put charges 2q at A and −3q at B. Determine the value
of the line integral of E, from point C to point D. (No actual inte-
gration needed!) What is the numerical answer if q = 10−9 C and
� = 5 cm?
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2.33 Plot the potential *
Consider the system of two charges shown in Fig. 2.8. Let z be the
coordinate along the line on which the two charges lie, with z = 0
at the location of the positive charge. Make a plot of the potential
φ (or rather 4πε0φ, for simplicity) along this line, from z = −5 m
to z = 15 m.

2.34 Extremum of φ *
A charge of 2 C is located at the origin. Two charges of −1 C each
are located at the points (1, 1, 0) and (−1, 1, 0). If the potential φ is
taken to be zero at infinity (as usual), then it is easy to see that φ is
also zero at the point (0, 1, 0). It follows that somewhere on the y
axis beyond (0, 1, 0) the function φ(0, y, 0) must have a minimum
or a maximum. At that point the electric field E must be zero.
Why? Locate the point, at least approximately.

2.35 Center vs. corner of a square **
A square sheet has uniform surface charge density σ . Letting the
electric potential φ be zero at infinite distance from the square,
denote by φ0 the potential at the center of the square and by φ1
the potential at a corner. Determine the ratio φ0/φ1. The answer
can be found with very little calculation by combining a dimen-
sional argument with superposition. (Think about the potential at
the center of a square with the same charge density and with twice
the edge length.)

2.36 Escaping a cube, toward an edge **
Consider the setup in Problem 2.5. Will the proton escape if it
moves from the center directly toward the midpoint of an edge?
Feel free to analyze this numerically/graphically.

2.37 Field on the earth *
A sphere the size of the earth has 1 C of charge distributed evenly
over its surface. What is the electric field strength just outside the
surface? What is the potential of the sphere, with zero potential at
infinity?

2.38 Interstellar dust *
An interstellar dust grain, roughly spherical with a radius of
3 · 10−7 m, has acquired a negative charge such that its potential
is −0.15 volt. How many extra electrons has it picked up? What is
the strength of the electric field at its surface?

2.39 Closest approach **
By means of a Van de Graaff generator, protons are accelerated
through a potential difference of 5 · 106 volts. The proton beam
then passes through a thin silver foil. The atomic number of silver
is 47, and you may assume that a silver nucleus is so massive com-
pared with the proton that its motion may be neglected. What is
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the closest possible distance of approach, of any proton, to a silver
nucleus? What will be the strength of the electric field acting on
the proton at that position? What will be the proton’s acceleration?

2.40 Gold potential **
Asadistributionofelectriccharge, thegoldnucleuscanbedescribed
as a sphere of radius 6 · 10−15 m with a charge Q = 79e distributed
fairly uniformly through its interior. What is the potential φ0 at
the center of the nucleus, expressed in megavolts? (First derive
a general formula for φ0 for a sphere of charge Q and radius
a. Do this by using Gauss’s law to find the internal and exter-
nal electric field and then integrating to find the potential. You
should redo this here, even though it was done in an example
in the text.)

s
s

R

−s

Figure 2.46.

2.41 A sphere between planes **
A spherical shell with radius R and surface charge density σ is
sandwiched between two infinite sheets with surface charge den-
sities −σ and σ , as shown in Fig. 2.46. If the potential far to the
right at x = +∞ is taken to be zero, what is the potential at the
center of the sphere? At x = −∞?

2.42 E and φ for a cylinder **
For the cylinder of uniform charge density in Fig. 2.26:

(a) show that the expression there given for the field inside the
cylinder follows from Gauss’s law;

(b) find the potential φ as a function of r, both inside and outside
the cylinder, taking φ = 0 at r = 0.

2.43 Potential from a rod **
A thin rod extends along the z axis from z = −d to z = d. The rod
carries a charge uniformly distributed along its length with linear
charge density λ. By integrating over this charge distribution, cal-
culate the potential at a point P1 on the z axis with coordinates
(0, 0, 2d). By another integration find the potential at a general
point P2 on the x axis and locate this point to make the potential
equal to the potential at P1.

2.44 Ellipse potentials ***
The points P1 and P2 in Exercise 2.43 happen to lie on an ellipse
that has the ends of the rod as its foci, as you can readily verify
by comparing the sums of the distances from P1 and from P2 to
the ends of the rod. This suggests that the whole ellipse might be
an equipotential. Test that conjecture by calculating the potential
at the point (3d/2, 0, d), which lies on the same ellipse. Indeed it
is true, though there is no obvious reason why it should be, that
the equipotential surfaces of this system are a family of confocal
prolate spheroids. See if you can prove that. You will have to derive
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a formula for the potential at a general point (x, 0, z) in the xz plane.
Then show that, if x and z are related by the equation x2/(a2−d2)+
z2/a2 = 1, which is the equation for an ellipse with foci at z = ±d,
the potential will depend only on the parameter a (in addition to d),
not on x or z.

2.45 A stick and a point charge **
A stick with length � has charge Q uniformly distributed on it. It
lies along the x axis between the points x = −� and x = 0. A point

x  =  0

Q
Q

x  =  − x  =  

Figure 2.47.
charge also with charge Q lies on the x axis at the point x = �; see
Fig. 2.47.

(a) Let x = a be the point on the x axis between the two objects
where the electric field is zero. Find a.

(b) There happens to be another point where the electric field is
zero (it’s inside the stick). In addition to this one, are there any
other points in space where the electric field is zero? Why or
why not?

(c) Make a rough sketch of the field lines and equipotential curves
everywhere in the plane of the paper. Be sure to indicate how
the lines and curves make the transition from their shapes close
to the objects to their shapes far from them. (Don’t worry about
what’s going on extremely close to the stick.) What do things
look like near the point you found in part (a)?

y

xP

b

q

a

Figure 2.48.

2.46 Right triangle φ **
The right triangle shown in Fig. 2.48 with vertex P at the origin
has base b, altitude a, and uniform density of surface charge σ .
Determine the potential at the vertex P. First find the contribution
of the vertical strip of width dx at x. Show that the potential at P
can be written as φP = (σb/4πε0) ln[(1 + sin θ)/ cos θ ].

2.47 A square and a disk **
Use the result from Exercise 2.46 to answer the following ques-
tion. If a square with surface charge density σ and side s has the
same potential at its center as a disk with the same surface charge
density and diameter d, what must be the ratio s/d? Is your answer
reasonable?

2.48 Field from a hemisphere **
Following the strategy in Problem 2.7, find the electric field at the
center of a hemispherical shell with radius R and uniform surface
charge density σ . That is, find φ as a function of r and then take
the derivative. You might find it easier to Taylor-expand φ before
differentiating. (You already found this electric field in a simpler
manner if you solved Exercise 1.50. The present method is more
involved because we need to do more than calculate φ at just one
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point; we need to know φ as a function of r so that we can take its
derivative.)

2.49 E for a sheet, from a cutoff potential **
Consider the electric field E due to an infinite sheet with uniform
surface charge density σ . In Section 1.13 we found E by using
Gauss’s law. Find E here by calculating the potential and then tak-
ing the derivative.

You will find that the potential (relative to infinity) due to an
infinite sheet diverges. But in the spirit of Problem 2.11 you can get
around this difficulty by instead finding the potential due to a very
large but finite disk with radius R, at a point lying on the perpen-
dicular line through the center. Use a Taylor series to simplify the
potential, and then take the derivative to find E. Explain why this
procedure is valid, even though it cuts off an infinite amount from
the potential.

2.50 Dividing the charge **
We have two metal spheres, of radii R1 and R2, quite far apart
from one another compared with these radii. Given a total amount
of charge Q which we have to divide between the spheres, how
should it be divided so as to make the potential energy of the result-
ing charge distribution as small as possible? To answer this, first
calculate the potential energy of the system for an arbitrary divi-
sion of the charge, q on one sphere and Q − q on the other. Then
minimize the energy as a function of q. You may assume that any
charge put on one of these spheres distributes itself uniformly over
the surface of the sphere, the other sphere being far enough away
so that its influence can be neglected. When you have found the
optimum division of the charge, show that with that division the
potential difference between the two spheres is zero. (Hence they
could be connected by a wire, and there would still be no redis-
tribution. This is a special example of a very general principle we
shall meet in Chapter 3: on a conductor, charge distributes itself so
as to minimize the total potential energy of the system.)

2.51 Potentials on the axis **
A hollow circular cylinder, of radius a and length b, with open
ends, has a total charge Q uniformly distributed over its surface.
What is the difference in potential between a point on the axis at
one end and the midpoint of the axis? Show by sketching some
field lines how you think the field of this thing ought to look.

2.52 Spherical cavity in a slab **
Figure 2.49 shows a cross section of a slab with uniform volume
charge density ρ. It has thickness 2R in one dimension and is infi-
nite in the other two dimensions. A spherical cavity with radius
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R is hollowed out. A few equipotential curves are drawn in the
figure.

(a) Show that an equipotential curve that starts at the center of the
cavity (curve A shown) ends up meeting the surface of the slab
at infinity. Hint: Superpose two oppositely charged objects.

(b) Show that curve A is a straight line inside the cavity, and find
its slope.

(c) Show that a curve that is tangent to the sphere (curve B shown)
ends up a distance R/3 outside the slab at infinity.

A

B

2R

Figure 2.49.

2.53 Field from two shells **
One of two nonconducting spherical shells of radius a carries a
charge Q uniformly distributed over its surface, the other carries
a charge −Q, also uniformly distributed. The spheres are brought
together until they touch. What does the electric field look like,
both outside and inside the shells? How much work is needed to
move them far apart?

2.54 An equipotential for a disk *
For the system in Fig. 2.11 sketch the equipotential surface that
touches the rim of the disk. Find the point where it intersects the
symmetry axis.

2.55 Hole in a disk **
A thin disk, radius 3 cm, has a circular hole of radius 1 cm in the
middle. There is a uniform surface charge of −10−5 C/m2 on the
disk.

(a) What is the potential at the center of the hole? (Assume zero
potential at infinite distance.)

(b) An electron, starting from rest at the center of the hole, moves
out along the axis, experiencing no forces except repulsion by
the charges on the disk. What velocity does it ultimately attain?
(Electron mass = 9.1 · 10−31 kg.)

2.56 Energy of a disk **
Use the result stated in Eq. (2.30) to show that the energy stored in
the electric field of the charged disk described in Section 2.6 equals
(2/3π2ε0)(Q2/a). (Hint: Consider the work done in building the
disk of charge out from zero radius to radius a by adding successive
rings of width dr.) Compare this with the energy required to build
up a hollow spherical shell with radius a and uniform charge Q.

2.57 Field near a disk ****
(a) A disk with radius R has uniform surface charge density σ .

Consider a point P a distance ηR from the center of the disk
(where 0 ≤ η < 1) and an infinitesimal distance away from
the plane of the disk. Very close to the disk, the disk looks



118 The electric potential

essentially like an infinite plane, as far as the E component per-
pendicular to the disk is concerned. So we have E⊥ = σ/2ε0.
Show that the E component parallel to the disk equals

E‖ = σ

2πε0

∫ π/2

0
ln

(√
1 − η2 sin2 θ + η cos θ√
1 − η2 sin2 θ − η cos θ

)
cos θ dθ .

(2.121)

r1

r2

hR

P

q

Figure 2.50.

Hint: Use the technique from the second example in Section 2.6
(but now with E instead of φ) to find the sum of the fields
from the two wedges shown in Fig. 2.50 (two diverging terms
will cancel). The distances r1 and r2 shown can be obtained
with the help of the law of cosines.

(b) Given η, the above integral can be evaluated numerically.
However, if η is very small or very close to 1, it is possible
to make some analytic progress. Show that the leading-order
dependence on η in the limit η → 0 is E‖ = ση/4ε0. And show
that the leading-order dependence on ε (where ε ≡ 1 − η) in
the limit ε → 0 is E‖ = −(σ/2πε0) ln ε. You can verify these
results numerically.

2.58 Energy of a shell *
A hollow spherical shell with radius R has charge Q uniformly dis-
tributed on it. Problem 1.32 presented two methods for calculating
the potential energy of this system. Calculate the energy in a third
way, by using Eq. (2.32).

2.59 Energy of a cylinder ***
Problem 1.24 and Exercise 1.83 presented two methods for calcu-
lating the energy per unit length stored in a cylinder with radius a
and uniform charge density ρ. Calculate the energy in a third way,
by using Eq. (2.32). If you take the φ = 0 point to be at infin-
ity, you will obtain an infinite result. So instead take it to be at a
given radius R outside the cylinder. You will then be calculating
the energy relative to the configuration where the charge is dis-
tributed over a cylinder with radius R. In terms of the total charge
λ per unit length in the final cylinder, show that the energy per unit
length can be written as (λ2/4πε0)

(
1/4 + ln(R/a)

)
.

2.60 Horizontal field lines **
Using the r = r0 sin2 θ expression for the dipole E field lines in
Fig. 2.19, find the locations where the curves are horizontal.

2.61 Dipole field on the axes **
A dipole is centered at the origin and has charges q and −q located
at z = �/2 and z = −�/2, respectively. Find the electric field at
position r along the z axis, and also at position r along the x axis (or
anywhere at radius r in the xy plane). Do this by writing down the
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fields from the two charges and then adding them, making suitable
approximations in the r � � limit. Check that your answers agree
with Eq. (2.36) when θ = 0 and θ = π/2.

2.62 Square quadrupole **
Consider a square quadrupole consisting of two adjacent dipoles
oppositely oriented and placed side by side to form a square, as
shown in Fig. 2.16. If the side length is �, find the electric field
at a large distance r along the diagonal containing the two posi-
tive charges. Be careful to take into account all quantities that are
second order in �/r.

2.63 Two-dimensional dipole ***
Two parallel wires with uniform linear charge densities λ and −λ

are separated by a distance �. Consider the electric field at points in
a given plane perpendicular to the wires. The fields from the wires
fall off like 1/r. So at points far from the wires, we effectively have
a 2D version of a dipole, where the wires act like point charges with
1/r fields instead of the usual 1/r2 Coulomb fields.

Repeat the process in Section 2.7 for this 2D dipole. That is,
find φ(r, θ) and E(r, θ), and also find the shapes of the field-line
and constant-potential curves. (The individual potentials relative
to infinity diverge, so you will want to pick a local point as the
reference point. Any choice will work, but you may as well pick
the point midway between the wires.)

2.64 Field lines near the equilibrium point **
(a) Charges 4q and −q are located at the points (−2a, 0, 0) and

(−a, 0, 0), respectively. Write down the potential φ(x, y) for
points in the xy plane, and then use a Taylor expansion to find
an approximate expression for φ near the origin, which you
can quickly show is the equilibrium point. (You can set a = 1
to make things simpler.)

(b) Find the electric field at points near the origin. Then find the
equations for the field lines near the origin by demanding that
the slope dy/dx of a curve at a given point equals the slope
Ey/Ex of the field at that point.

2.65 A theorem on field lines **
If you solved Exercise 2.64, you probably noted that the final result
is the same as for Problem 2.18. This suggests a theorem. Consider
two point charges with arbitrary values q1 and q2.

(a) First explain why there is exactly one point where E = 0 on
the line containing the charges, except in a couple of special
cases. (What are they?)
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(b) Show that at the point where E = 0, the closeup views of
the equipotentials and field lines always look like Figs. 12.39
and 12.40, independent of the values of q1 and q2. In other
words, the constant-φ lines passing through the equilibrium
point always have slope ±√2. (You will want to look at the
solution to Problem 2.18.)

2.66 Equipotentials for two point charges **
(a) Two point charges Q are located at (±R, 0, 0). Find the electric

field at all points on the z axis. For what value of z is the field
maximum?

(b) Make a rough sketch of the equipotential curves everywhere in
space (or rather, everywhere in the xz plane). Be sure to indi-
cate what the curves look like very close to and very far from
the charges, and how the transition from close to far occurs.

(c) There is a particular point on the z axis (along with its nega-
tive) at which the equipotentials make the transition from con-
cave up to concave down. In Problem 2.19 we saw that in the
analogous setup with a ring, this point coincided with the point
on the z axis where the field was maximum. Does the same
result hold here? Explain why the reasoning we used in Prob-
lem 2.19 (involving the divergence of E) is still valid, or why
it is now invalid.

2.67 Product of ρ and φ **
Consider a charge distribution ρ1(r) and the potential φ1(r) due
to it. Consider another charge distribution ρ2(r) and the potential
φ2(r) due to it. Both distributions have finite extent, but are other-
wise arbitrary and need not have anything to do with each other.
Show that

∫
ρ1φ2 dv = ∫

ρ2φ1 dv, where the integrals are taken
over all space. Solve this in two different ways as follows.

(a) Consider the two collections of charges to be rigid objects that
can be moved around. Start with them initially located very far
apart, and then bring them together. How much work does this
require? Imagine moving collection 1 toward collection 2, and
then the other way around.

(b) Consider the integral
∫

E1E2 dv over all space, where E1 and
E2 are the electric fields due to the two distributions. By using
the vector identity ∇ · (E1φ2) = (∇ · E1)φ2 + E1 · ∇φ2 (and
similarly with the 1s and 2s switched), rewrite the integral∫

E1E2 dv in two different ways.

2.68 E and ρ for a sphere **
In the example in Section 2.9, we used spherical coordinates to
verify the relation div E= ρ/ε0 for a sphere with radius R and
uniform density ρ. Verify this relation by working in Cartesian
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coordinates. You will first need to write out the Cartesian compo-
nents of E.

2.69 E and φ for a slab **
A rectangular slab with uniform volume charge density ρ has thick-
ness 2� in the x direction and infinite extent in the y and z direc-
tions. Let the x coordinate be measured relative to the center plane
of the slab. For values of x both inside and outside the slab:

(a) find the electric field E(x) (you can do this by considering the
amount of charge on either side of x, or by using Gauss’s law);

(b) find the potential φ(x), with φ taken to be zero at x = 0;
(c) verify that ρ(x) = ε0∇ · E(x) and ρ(x) = −ε0∇2φ(x).

x
a−a

E

E0

Figure 2.51.

2.70 Triangular E **
Find the charge density ρ and potential φ associated with the elec-
tric field shown in Fig. 2.51. E is independent of y and z. Assume
that φ = 0 at x = 0.

2.71 A one-dimensional charge distribution **
Find (and make rough plots of) the electric field and charge distri-
bution that go with the following potential: φ(x) = B(�2 − x2) for
|x| ≤ �, and φ(x) = 0 for |x| > �.

2.72 A spherical charge distribution ***
Find (and make rough plots of) the electric field and charge distri-
bution that go with the following potential:

φ =

⎧⎪⎪⎨
⎪⎪⎩

ρ0

4πε0
(x2 + y2 + z2) (for x2 + y2 + z2 < a2)

ρ0

4πε0

(
−a2 + 2a3

(x2 + y2 + z2)1/2

)
(for x2 + y2 + z2 > a2),

(2.122)

where ρ0 is a quantity with the dimensions of volume charge den-
sity. Note that we are not assuming that φ = 0 at infinity.

2.73 Satisfying Laplace *
Does the function f (x, y) = x2 + y2 satisfy the two-dimensional
Laplace’s equation? Does the function g(x, y) = x2 − y2? Sketch
the latter function, calculate the gradient at the points (x, y) =
(0, 1), (1, 0), (0,−1), and (−1, 0), and indicate by little arrows the
directions in which these gradient vectors point.

2.74 Oscillating exponential φ ***
A flat nonconducting sheet lies in the xy plane. The only charges
in the system are on this sheet. In the half-space above the sheet,
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z > 0, the potential is φ =φ0e−kz cos kx, where φ0 and k are con-
stants.

(a) Verify that φ satisfies Laplace’s equation in the space above
the sheet.

(b) What do the electric field lines look like?
(c) Describe the charge distribution on the sheet.

2.75 Curls and divergences *
Calculate the curl and the divergence of each of the following vec-
tor fields. If the curl turns out to be zero, try to discover a scalar
function φ of which the vector field is the gradient.

(a) F = (x + y,−x + y,−2z);
(b) G = (2y, 2x + 3z, 3y);
(c) H = (x2 − z2, 2, 2xz).

2.76 Zero curl *
By explicitly calculating the components of ∇ × E, show that the
vector function specified in Exercise 2.31 is a possible electrostatic
field. (Of course, if you worked that exercise, you have already
proved it in another way by finding a scalar function of which it is
the gradient.) Evaluate the divergence of this field.

2.77 Zero dipole curl *
Verify that the curl of the dipole field in Eq. (2.36) is zero. We
know that it must be zero, of course, because the field is the sum
of the fields from two point charges, but demonstrate this here
by explicitly calculating the curl, using the expression given in
Eq. (F.3) in Appendix F.

S

C

Figure 2.52.

2.78 Divergence of the curl **
If A is any vector field with continuous derivatives, div (curl A) =
0 or, using the “del” notation, ∇ · (∇ × A) = 0. We shall need
this theorem later. The problem now is to prove it. Here are two
different ways in which that can be done.

(a) (Uninspired straightforward calculation in a particular coor-
dinate system.) Using the formula for ∇ in Cartesian coordi-
nates, work out the string of second partial derivatives that
∇ · (∇ × A) implies.

(b) (With the divergence theorem and Stokes’ theorem, no coordi-
nates are needed.) Consider the surface S in Fig. 2.52, a bal-
loon almost cut in two which is bounded by the closed curve
C. Think about the line integral, over a curve like C, of any
vector field. Then invoke Stokes and Gauss with suitable argu-
ments. (The reasoning also works if the curve C is a very tiny
loop on the surface.)
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2.79 Vectors and squrl *
To show that it takes more than direction and magnitude to make a
vector, let’s try to define a vector, which we’ll name squrl F, by a
relation like Eq. (2.80) but with the right-hand side squared:

(squrl F) · n̂ =
[

lim
ai→0

∫
Ci

F · ds
ai

]2

. (2.123)

Prove that this does not define a vector. (Hint: Consider reversing
the direction of n̂.)



3
Electric fields
around conductors

Overview In the first two chapters, we were concerned with
the electric field and potential due to charges whose positions
were fixed and known. We will now study the field and poten-
tial due to charges on conductors, where the charges are free
to move around. This is a more difficult task, because on one
hand we need to know the field to determine the positions of the
charges, but on the other hand we need to know the positions
of the charges to determine the field. Fortunately, there are some
facts and theorems that make this tractable, and indeed in some
cases trivial. The most important fact is that in an electrostatic
setup, the electric field inside the material of a conductor is zero.
Equivalently, all points in a given conductor have the same poten-
tial. This leads to the somewhat surprising effect called electri-
cal shielding; the electric field inside an empty conducting shell is
zero, independent of whatever arbitrary charge distribution exists
outside. We prove the very helpful uniqueness theorem, which
states that, given the values of the potential φ on the surfaces of
a set of conductors, the solution for φ throughout space is unique.
This theorem often makes things so easy that you may wonder if
you’re actually cheating. A byproduct of the theorem is the topic
of image charges, which allow us to construct the electric field
near conductors in certain cases. We define the capacitance coef-
ficient(s) of a set of conductors; these tell us how much charge
resides on a conductor at a given potential. Capacitors are a fun-
damental circuit element, as we will see in Chapter 8. Finally, we
discuss the energy stored in a capacitor.
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3.1 Conductors and insulators
The earliest experimenters with electricity observed that substances dif-
fered in their power to hold the “Electrick Vertue.” Some materials could
be easily electrified by friction and maintained in an electrified state;
others, it seemed, could not be electrified that way, or did not hold the
Vertue if they acquired it. Experimenters of the early eighteenth cen-
tury compiled lists in which substances were classified as “electricks”
or “nonelectricks.” Around 1730, the important experiments of Stephen
Gray in England showed that the Electrick Vertue could be conducted
from one body to another by horizontal string, over distances of several
hundred feet, provided that the string was itself supported from above
by silk threads.1 Once this distinction between conduction and noncon-
duction had been grasped, the electricians of the day found that even a
nonelectrick could be highly electrified if it were supported on glass or
suspended by silk threads. A spectacular conclusion of one of the popu-
lar electric exhibitions of the time was likely to be the electrification of
a boy suspended by many silk threads from the rafters; his hair stood on
end and sparks could be drawn from the tip of his nose.

After the work of Gray and his contemporaries, the elaborate lists
of electricks and nonelectricks were seen to be, on the whole, a division
of materials into electrical insulators and electrical conductors. This dis-
tinction is still one of the most striking and extreme contrasts that nature
exhibits. Common good conductors like ordinary metals differ in their
electrical conductivity from common insulators like glass and plastics by
factors on the order of 1020. To express it in a way the eighteenth-century
experimenters like Gray or Benjamin Franklin would have understood, a
metal globe on a metal post can lose its electrification in a millionth of a
second; a metal globe on a glass post can hold its Vertue for many years.
(To make good on the last assertion we would need to take some precau-
tions beyond the capability of an eighteenth-century laboratory. Can you
suggest some of them?)

The electrical difference between a good conductor and a good insu-
lator is as vast as the mechanical difference between a liquid and a solid.
That is not entirely accidental. Both properties depend on the mobility
of atomic particles: in the electrical case, the mobility of the carriers of
charge, electrons or ions; in the case of the mechanical properties, the
mobility of the atoms or molecules that make up the structure of the
material. To carry the analogy a bit further, we know of substances whose
fluidity is intermediate between that of a solid and that of a liquid –
substances such as tar or ice cream. Indeed some substances – glass
is a good example – change gradually and continuously from a mobile

1 The “pack-thread” Gray used for his string was doubtless a rather poor conductor
compared with metal wire, but good enough for transferring charge in electrostatic
experiments. Gray found, too, that fine copper wire was a conductor, but mostly he
used the pack-thread for the longer distances.
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liquid to a very permanent and rigid solid with a few hundred degrees’
lowering of the temperature. In electrical conductivity, too, we find exam-
ples over the whole wide range from good conductor to good insulator,
and some substances that can change conductivity over nearly as wide a
range, depending on conditions such as their temperature. A fascinating
and useful class of materials called semiconductors, which we shall meet
in Chapter 4, have this property.

Whether we call a material solid or liquid sometimes depends on the
time scale, and perhaps also on the scale of distances involved. Natural
asphalt seems solid enough if you hold a chunk in your hand. Viewed
geologically, it is a liquid, welling up from underground deposits and
even forming lakes. We may expect that, for somewhat similar reasons,
whether a material is to be regarded as an electrical insulator or a
conductor will depend on the time scale of the phenomenon we are
interested in.

3.2 Conductors in the electrostatic field
We shall look first at electrostatic systems involving conductors. That is,
we shall be interested in the stationary state of charge and electric field
that prevails after all redistributions of charge have taken place in the
conductors. Any insulators present are assumed to be perfect insulators.
As we have already mentioned, quite ordinary insulators come remark-
ably close to this idealization, so the systems we shall discuss are not
too artificial. In fact, the air around us is an extremely good insulator.
The systems we have in mind might be typified by some such example as
this: bring in two charged metal spheres, insulated from one another and
from everything else. Fix them in positions relatively near one another.
What is the resulting electric field in the whole space surrounding and
between the spheres, and how is the charge that is on each sphere dis-
tributed? We begin with a more general question: after the charges have
become stationary, what can we say about the electric field inside con-
ducting matter?

In the static situation there is no further motion of charge. You might
be tempted to say that the electric field must then be zero within conduct-
ing material. You might argue that, if the field were not zero, the mobile
charge carriers would experience a force and would be thereby set in
motion, and thus we would not have a static situation after all. Such an
argument overlooks the possibility of other forces that may be acting on
the charge carriers, and that would have to be counterbalanced by an
electric force to bring about a stationary state. To remind ourselves that
it is physically possible to have other than electrical forces acting on the
charge carriers, we need only think of gravity. A positive ion has weight;
it experiences a steady force in a gravitational field, and so does an elec-
tron; also, the forces they experience are not equal. This is a rather absurd
example. We know that gravitational forces are utterly negligible on an
atomic scale.
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There are other forces at work, however, which we may very loosely
call “chemical.” In a battery and in many, many other theaters of chemi-
cal reaction, including the living cell, charge carriers sometimes move
against the general electric field; they do so because a reaction may
thereby take place that yields more energy than it costs to buck the
field. One hesitates to call these forces nonelectrical, knowing as we do
that the structure of atoms and molecules and the forces between them
can be explained in terms of Coulomb’s law and quantum mechanics.
Still, from the viewpoint of our classical theory of electricity, they must
be treated as quite extraneous. Certainly they behave very differently
from the inverse-square force upon which our theory is based. The gen-
eral necessity for forces that are in this sense nonelectrical was already
foreshadowed by our discovery in Chapter 2 that inverse-square forces
alone cannot make a stable, static structure (see Earnshaw’s theorem in
Section 2.12).

The point is simply this: we must be prepared to find, in some cases,
unbalanced, non-Coulomb forces acting on charge carriers inside a con-
ducting medium. When that happens, the electrostatic situation is attained
when there is a finite electric field in the conductor that just offsets the
influence of the other forces, whatever they may be.

Having issued this warning, however, we turn at once to the very
familiar and important case in which there is no such force to worry
about, the case of a homogeneous, isotropic conducting material. In the
interior of such a conductor, in the static case, we can state confidently
that the electric field must be zero.2 If it weren’t, charges would have
to move. It follows that all regions inside the conductor, including all
points just below its surface, must be at the same potential. Outside the
conductor, the electric field is not zero. The surface of the conductor
must be an equipotential surface of this field.

The vanishing of the electric field in the interior of a conductor
implies that the volume charge density ρ also vanishes in the interior.
This follows from Gauss’s law, ∇·E = ρ/ε0. Since the field is identically
zero inside the conductor, its divergence, and hence ρ, are also identically
zero. Of course, as with the field, this holds only in an average sense.
The charge density at the location of, say, a proton is most certainly
not zero.

Imagine that we could change a material from insulator to conduc-
tor at will. (It’s not impossible – glass becomes conducting when heated;
any gas can be ionized by x-rays.) Figure 3.1(a) shows an uncharged
nonconductor in the electric field produced by two fixed layers of charge.

2 In speaking of the electric field inside matter, we mean an average field, averaged over
a region large compared with the details of the atomic structure. We know, of course,
that very strong fields exist in all matter, including the good conductors, if we search
on a small scale near an atomic nucleus. The nuclear electric field does not contribute
to the average field in matter, ordinarily, because it points in one direction on one side
of a nucleus and in the opposite direction on the other side. Just how this average field
ought to be defined, and how it could be measured, are questions we consider in
Chapter 10.
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The electric field is the same inside the body as outside. (A dense body
such as glass would actually distort the field, an effect we will study in
Chapter 10, but that is not important here.) Now, in one way or another,
let mobile charges (or ions) be created, making the body a conductor.
Positive ions are drawn in one direction by the field, negative ions in the
opposite direction, as indicated in Fig. 3.1(b). They can go no farther
than the surface of the conductor. Piling up there, they begin themselves
to create an electric field inside the body which tends to cancel the orig-
inal field. And in fact the movement goes on until that original field is
precisely canceled. The final distribution of charge at the surface, shown
in Fig. 3.1(c), is such that its field and the field of the fixed external
sources combine to give zero electric field in the interior of the conduc-
tor. Because this “automatically” happens in every conductor, it is really
only the surface of a conductor that we need to consider when we are
concerned with the external fields.

(a)

(b)

(c)

With this in mind, let us see what can be said about a system of con-
ductors, variously charged, in otherwise empty space. In Fig. 3.2 we see
some objects. Think of them, if you like, as solid pieces of metal. They
are prevented from moving by invisible insulators – perhaps by Stephen
Gray’s silk threads. The total charge of each object, by which we mean
the net excess of positive over negative charge, is fixed because there
is no way for charge to leak on or off. We denote it by Qk, for the kth
conductor. Each object can also be characterized by a particular value
φk of the electric potential function φ. We say that conductor 2 is “at
the potential φ2.” With a system like the one shown, where no physical
objects stretch out to infinity, it is usually convenient to assign the poten-
tial zero to points infinitely far away. In that case φ2 is the work per unit
charge required to bring an infinitesimal test charge in from infinity and
put it anywhere on conductor 2. (Note, by the way, that this is just the
kind of system in which the test charge needs to be kept small, a point
raised in Section 1.7.)

Because the surface of a conductor in Fig. 3.2 is necessarily a sur-
face of constant potential, the electric field, which is −grad φ, must be
perpendicular to the surface at every point on the surface. Proceeding
from the interior of the conductor outward, we find at the surface an
abrupt change in the electric field; E is not zero outside the surface, and
it is zero inside. The discontinuity in E is accounted for by the pres-
ence of a surface charge, of density σ , which we can relate directly to
E by Gauss’s law. We can use a flat box enclosing a patch of surface
(Fig. 3.3), similar to the cylinder we used when considering the infinite

Figure 3.1.
The object in (a) is a neutral nonconductor. The charges in it, both
positive and negative, are immobile. In (b) the charges have been
released and begin to move. They will move until the final condition,
shown in (c), is attained.
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flat sheet in Section 1.13. However, here there is no flux through the
“bottom” of the box, which lies inside the conductor, so we conclude
that En = σ/ε0 (instead of the σ/2ε0 we found in Eq. (1.40)), where
En is the component of electric field normal to the surface. As we have
already seen, there is no other component in this case, the field being
always perpendicular to the surface. The surface charge must account
for the whole charge Qk. That is, the surface integral of σ over the
whole conductor must equal Qk. In summary, we can make the following
statements about any such system of conductors, whatever their shape
and arrangement:

f1

f3

f2

Q3

Q1

Q2

Figure 3.2.
A system of three conductors: Q1 is the charge
on conductor 1, φ1 is its potential, etc.
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Figure 3.3.
(a) Gauss’s law relates the electric field strength
at the surface of a conductor to the density of
surface charge; E = σ/ε0. (b) Cross section
through surface of conductor and box.

(1) E = 0 inside the material of a conductor;
(2) ρ = 0 inside the material of a conductor;
(3) φ = φk at all points inside the material and on the surface of the kth

conductor;
(4) At any point just outside the conductor, E is perpendicular to the sur-

face, and E = σ/ε0, where σ is the local density of surface charge;
(5) Qk =

∫
Sk

σ da = ε0
∫

Sk
E · da.

E is the total field arising from all the charges in the system, near
and far, of which the surface charge is only a part. The surface charge
on a conductor is obliged to “readjust itself” until relation (4) is fulfilled.
That the conductor presents a special case, in contrast to other surface
charge distributions, is brought out by the comparison in Fig. 3.4.

Example (A spherically symmetric field) A point charge q is located at
an arbitrary position inside a neutral conducting spherical shell. Explain why the
electric field outside the shell is the same as the spherically symmetric field due
to a charge q located at the center of the shell (with the shell removed, although
the point is that this doesn’t matter).

Solution The spherical shell has an inner surface and an outer surface. Between
these surfaces (inside the material of the conductor) we know that the electric
field is zero. So if we draw a Gaussian surface that lies entirely inside the material,
signified by the dashed line in Fig. 3.5, there is zero flux through it, so it must
enclose zero charge. The charge on the inner surface of the shell is therefore −q.
This leaves +q for the outer surface. The charge −q on the inner surface won’t
be uniformly distributed unless the point charge q is located at the center, but
that doesn’t concern us.

The only question is how the +q charge is distributed over the outer surface.
Imagine that we have removed this +q charge, so that we have only the point
charge q and the inner-surface charge −q. The combination of these charges pro-
duces zero field in the material of the conductor. It also produces zero field out-
side the conductor. This is true because field lines must have at least one end on
a charge (the other end may be at infinity); they can’t form closed loops because
the electric field has zero curl. However, in the present setup, external field lines
have no possibility of touching any of the charges on the inside, because the lines
can’t pass through the material of the conductor to reach them, since the field is
zero there. Therefore there can be no field lines outside the conductor.
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Figure 3.4.
(a) An isolated sheet of surface charge with
nothing else in the system. This was treated in
Fig. 1.26. The field was determined as σ/2ε0 on
each side of the sheet by the assumption of
symmetry. (b) If there are other charges in the
system, we can say only that the change in Ex at
the surface must be σ/ε0, with zero change in
Ey. Many fields other than the field of (a) above
could have this property. Two such are shown in
(b) and (c). (d) If we know that the medium on
one side of the surface is a conductor, we know
that on the other side E must be perpendicular
to the surface, with magnitude E = σ/ε0. E
could not have a component parallel to the
surface without causing charge to move.

(a)

E = s/2  0

s

E = s/2  0

(b)
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(d)

If we gradually add back on the outer-surface charge +q, it will distribute
itself in a spherically symmetric manner because it feels no field from the other
charges. Furthermore, due to this spherical symmetry, the outer-surface charge
will produce no field at the other charges (because a uniform shell produces
zero field in its interior), so we don’t have to worry about any shifting of these
charges.

Since the combination of the point charge and the inner-surface charge pro-
duces no field outside the shell, the external field is due only to the spherically
symmetric outer-surface charge. By Gauss’s law, the external field is therefore
radial (with respect to the center of the shell and not the point charge q) and has
magnitude q/4πε0r2. Note that the shape of the inner surface was irrelevant in
the above reasoning. If we have the setup shown in Fig. 3.6, the external field is
still spherically symmetric with magnitude q/4πε0r2.

q

–q on inner
surface

q on outer
surface

Figure 3.5.
A Gaussian surface (dashed line) inside the
material of a conducting spherical shell.

More generally, if the neutral conducting shell takes an odd nonspherical
shape, we can’t say that the external field is spherically symmetric. But we can
say that the external field, whatever it may be, is independent of the location of
the point charge q inside. Whatever the location, the external field equals the field
in a system where the point charge q is absent and where we instead dump a total
charge q on the shell (which will distribute itself in a particular manner).3

3 There is a slight subtlety that arises in this case, namely the effect of the outer-surface
charge on the inner-surface charge. It turns out that, as with the sphere, there is no
effect. We’ll see why in Section 3.3.
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Figure 3.7 shows the field and charge distribution for a simple sys-
tem like the one mentioned at the beginning of this section. There are
two conducting spheres, a sphere of unit radius carrying a total charge
of +1 unit, the other a somewhat larger sphere with total charge zero.
Observe that the surface charge density is not uniform over either of the
conductors. The sphere on the right, with total charge zero, has a nega-
tive surface charge density in the region that faces the other sphere, and a
positive surface charge on the rearward portion of its surface. The dashed
curves in Fig. 3.7 indicate the equipotential surfaces or, rather, their inter-
section with the plane of the figure. If we were to go a long way out, we
would find the equipotential surfaces becoming nearly spherical and the
field lines nearly radial, and the field would begin to look very much like
that of a point charge of magnitude 1 and positive, which is the net charge
on the entire system.

q

Figure 3.6.
The external field is radial even if the cavity
takes an odd shape.

Figure 3.7 illustrates, at least qualitatively, all the features we antic-
ipated, but we have an additional reason for showing it. Simple as the
system is, the exact mathematical solution for this case cannot be obtained

Figure 3.7.
The electric field around two spherical
conductors, one with total charge +1, and one
with total charge zero. Dashed curves are
intersections of equipotential surfaces with the
plane of the figure. Zero potential is at infinity.

Q = +1

f = 1.00
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surface charge

Negative
surface charge

Q = 0

f = 0.25

f = 0.25
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in a straightforward way. Our Fig. 3.7 was constructed from an approx-
imate solution. In fact, the number of three-dimensional geometrical
arrangements of conductors that permit a mathematical solution in closed
form is lamentably small. One does not learn much physics by concen-
trating on the solution of the few neatly soluble examples. Let us instead
try to understand the general nature of the mathematical problem such
a system presents.

3.3 The general electrostatic problem and the
uniqueness theorem

We can state the problem in terms of the potential function φ, for if
φ can be found, we can at once get E from it. Everywhere outside the
conductors, φ has to satisfy the partial differential equation we met in
Section 2.12, Laplace’s equation: ∇2φ = 0. Written out in Cartesian
coordinates, Laplace’s equation reads

∂2φ

∂x2 + ∂2φ

∂y2 + ∂2φ

∂z2 = 0. (3.1)

The problem is to find a function that satisfies Eq. (3.1) and also meets
the specified conditions on the conducting surfaces. These conditions
might have been set in various ways. It might be that the potential of
each conductor φk is fixed or known. (In a real system the potentials
may be fixed by permanent connections to batteries or other constant-
potential “power supplies.”) Then our solution φ(x, y, z) has to assume
the correct value at all points on each of the surfaces. These surfaces in
their totality bound the region in which φ is defined, if we include a large
surface “at infinity,” where we require φ to approach zero. Sometimes
the region of interest is totally enclosed by a conducting surface; then
we can assign this conductor a potential and ignore anything outside it.
In either case, we have a typical boundary-value problem, in which the
value the function has to assume on the boundary is specified for the
entire boundary.

One might, instead, have specified the total charge on each conduc-
tor, Qk. (We could not specify arbitrarily all charges and potentials; that
would overdetermine the problem.) With the charges specified, we have
in effect fixed the value of the surface integral of ∇φ over the surface of
each conductor (using fact (5) from Section 3.2, along with E = −∇φ).
This gives the mathematical problem a slightly different aspect. Or one
can “mix” the two kinds of boundary conditions.

A general question of some interest is this: with the boundary con-
ditions given in some way, does the problem have no solution, one solu-
tion, or more than one solution? We shall not try to answer this question
in all the forms it can take, but one important case will show how such
questions can be dealt with and will give us a useful result. Suppose
the potential of each conductor, φk, has been specified, together with
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the requirement that φ approach zero at infinite distance, or on a con-
ductor that encloses the system. We shall prove that this boundary-value
problem has no more than one solution. It seems obvious, as a matter
of physics, that it has a solution, for if we should actually arrange the
conductors in the prescribed manner, connecting them by infinitesimal
wires to the proper potentials, the system would have to settle down in
some state. However, it is quite a different matter to prove mathemati-
cally that a solution always exists, and we shall not attempt it. Instead,
we shall prove the following theorem.

Theorem 3.1 (Uniqueness theorem) Assuming that there is a solution
φ(x, y, z) for a given set of conductors with potentials φk, this solution
must be unique.

Proof The argument, which is typical of proofs of this sort, runs as
follows. Assume there is another function ψ(x, y, z) that is also a solu-
tion meeting the same boundary conditions. Now Laplace’s equation is
linear. That is, if φ and ψ satisfy Eq. (3.1), then so does φ + ψ or any
linear combination such as c1φ + c2ψ , where c1 and c2 are constants. In
particular, the difference between our two solutions, φ −ψ , must satisfy
Eq. (3.1). Call this function W:

W(x, y, z) ≡ φ(x, y, z) − ψ(x, y, z). (3.2)

Of course, W does not satisfy the boundary conditions. In fact, at the
surface of every conductor W is zero, because φ and ψ take on the same
value, φk, at the surface of a conductor k. Thus W is a solution of another
electrostatic problem, one with the same conductors but with all conduc-
tors held at zero potential.

We can now assert that if W is zero on all the conductors, then W
must be zero at all points in space. For if it is not, it must have either a
maximum or a minimum somewhere – remember that W is zero at infin-
ity as well as on all the conducting boundaries. If W has an extremum at
some point P, consider a sphere centered on that point. As we saw in Sec-
tion 2.12, the average over a sphere of a function that satisfies Laplace’s
equation is equal to its value at the center. This could not be true if the
center is a maximum or minimum. Thus W cannot have a maximum or
minimum;4 it must therefore be zero everywhere. It follows that ψ = φ

everywhere, that is, there can be only one solution of Eq. (3.1) that satis-
fies the prescribed boundary conditions.

In proving this theorem, we assumed that φ and ψ satisfied Laplace’s
equation. That is, we assumed that the region outside the conductors was
empty of charge. However, the uniqueness theorem actually holds even if

4 If you want to demonstrate this without invoking the “average over a sphere” fact, you
can use the related reasoning involving Gauss’s law: if the potential at P is a maximum
(or minimum), then E must point outward (or inward) everywhere around P. This
implies a net flux through a small sphere surrounding P, contradicting the fact that
there are no charges enclosed.
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there are charges present, provided that these charges are fixed in place.
These charges could come in the form of point charges or a continuous
distribution. The proof for this more general case is essentially the same.
In the above reasoning, you will note that we never used the fact that
φ and ψ satisfied Laplace’s equation, but rather only that their differ-
ence W did. So if we instead start with the more general Poisson’s equa-
tions, ∇2φ = −ρ/ε0 and ∇2ψ = −ρ/ε0, where the same ρ appears
in both of these equations, then we can take their difference to obtain
∇2W = 0. That is, W satisfies Laplace’s equation. The proof therefore
proceeds exactly as above, and we again obtain φ = ψ .

As a quick corollary to the uniqueness theorem, we can demonstrate
a remarkable fact as follows.

Corollary 3.2 In the space inside a hollow conductor of any shape
whatsoever, if that space itself is empty of charge, the electric field
is zero.

Proof The potential function inside the conductor, φ(x, y, z), must sat-
isfy Laplace’s equation. The entire boundary of this region, namely the
conductor, is an equipotential, so we have φ =φ0, a constant everywhere
on the boundary. One solution is obviously φ = φ0 throughout the vol-
ume. But there can be only one solution, according to the above unique-
ness theorem, so this is it. And then “φ = constant” implies E= 0,
because E = −∇φ.

This corollary is true whatever the field may be outside the con-
ductor. We are already familiar with the fact that the field is zero inside
an isolated uniform spherical shell of charge, just as the gravitational
field inside the shell of a hollow spherical mass is zero. The corollary
we just proved is, in a way, more surprising. Consider the closed metal
box shown partly cut away in Fig. 3.8. There are charges in the neigh-
borhood of the box, and the external field is approximately as depicted.
There is a highly nonuniform distribution of charge over the surface of
the box. Now the field everywhere in space, including the interior of the
box, is the sum of the field of this charge distribution and the fields of
the external sources. It seems hardly credible that the surface charge has
so cleverly arranged itself on the box that its field precisely cancels the
field of the external sources at every point inside the box. Yet this must
indeed be what has happened, in view of the above proof.

As surprising as this may seem for a hollow conductor, it is really
no more surprising than the fact that the charges on the surface of a
solid conductor arrange themselves so that the electric field is zero inside
the material of the conductor (which we know is the case, otherwise
charges in the interior would move). These two setups are related because
the interior of the solid conductor is neutral (since ∇ · E = ρ/ε0, and
E is identically zero). So if we remove this neutral material from the
solid conductor (a process that can’t change the electric field anywhere,
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–

–

E = 0

Figure 3.8.
The field is zero everywhere inside a closed
conducting box.

because we aren’t moving any particles with net charge), then we end up
with a hollow conductor with zero field inside.

The corollary is also consistent with what we know about field lines.
If there were field lines inside the shell, they would have to start at one
point on the shell and end at another (there can’t be any closed loops
because curl E = 0). But this would imply a nonzero potential differ-
ence between these two points on the shell, contradicting the fact that all
points on the shell have the same potential. Therefore there can be no
field lines inside the shell.

qb

qc

qd

A

r

Figure 3.9.
Point charges are located at the centers of
spherical cavities inside a neutral spherical
conductor. Another point charge is located far
away.

The absence of electric field inside a conducting enclosure is useful,
as well as theoretically interesting. It is the basis for electrical shielding.
For most practical purposes the enclosure does not need to be completely
tight. If the walls are perforated with small holes, or made of metallic
screen, the field inside will be extremely weak except in the immediate
vicinity of a hole. A metal pipe with open ends, if it is a few diameters
long, very effectively shields the space inside that is not close to either
end. We are considering only static fields of course, but for slowly vary-
ing electric fields these remarks still hold. (A rapidly varying field can
become a wave that travels through the pipe. Rapidly means here “in less
time than light takes to travel a pipe diameter.”)

Example (Charges in cavities) A spherical conductor A contains two
spherical cavities. The total charge on the conductor itself is zero. However, there
is a point charge qb at the center of one cavity and qc at the center of the other,
as shown in Fig. 3.9. A considerable distance r away is another charge qd . What
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force acts on each of the four objects, A, qb, qc, qd? Which answers, if any, are
only approximate, and depend on r being relatively large?

Solution The short answer is that the forces on qb and qc are exactly zero,
and the forces on A and qd are exactly equal and opposite, with a magnitude
approximately equal to qd(qb + qc)/4πε0r2. The reasoning is as follows.

Let’s look at qb first; the reasoning for qc is the same. If the charge qb
weren’t present in the lower cavity, then the field inside this cavity would be zero,
due to the uniqueness theorem, as discussed above. This fact is independent of
whatever is going on with qc and qd . If we now reintroduce qb at the center of the
cavity, this induces a total charge −qb on the surface of the cavity (as we saw in
the example in Section 3.2). This charge is uniformly distributed over the surface
because qb is located at the center. This charge therefore doesn’t change the fact
that the field is zero at the center of the cavity. The force on qb is therefore zero.
The same reasoning applies to qc. Note that the force on qb would not be zero if
it were located off-center in the cavity.

Now let’s look at the conductor A. Since the total charge on A is zero, a
charge of qb +qc must be distributed over its outside surface, to balance the −qb
and −qc charges on the surfaces of the cavities. If qd were absent, the field out-
side A would be the symmetrical radial field, E = (qb + qc)/4πε0r2, with the
charge qb + qc uniformly distributed over the outside surface. The distribution
would indeed be uniform because the field inside the material of the conductor
is zero, and because we are assuming that there is no charge external to the con-
ductor. The setup is therefore spherically symmetric, as far as the outside surface
of the conductor is concerned. (Any effect of the interior charges on the outside
surface charge can be felt only through the field. And since the field is zero just
inside the outside surface, there is therefore no effect.)

If we now reintroduce the charge qd , its influence will slightly alter the
distribution of charge on the outside surface of A, but without affecting the total
amount. If qd is positive, then negative charge will be drawn toward the near side
of A, or equivalently positive charge will be pushed to the far side. Hence for large
r, the force on qd will be approximately equal to qd(qb + qc)/4πε0r2, but it will
be slightly more attractive than this; you can check that this is true for either
sign of qd(qb + qc). The force on A must be exactly equal and opposite to the
force on qd .

The exact value of the force on qd is the sum of the force just given, qd(qb+
qc)/4πε0r2, and the force that would act on qd if the total charge on and within
A were zero (it is qb + qc here). This latter force (which is always attractive) can
be determined by applying the “image charge” technique that we will learn about
in the following section; see Problem 3.13.

3.4 Image charges
About the simplest system in which the mobility of the charges in the
conductor makes itself evident is the point charge near a conducting
plane. Suppose the xy plane is the surface of a conductor extending out to
infinity. Let’s assign this plane the potential zero. Now bring in a positive
charge Q and locate it h above the plane on the z axis, as in Fig. 3.10(a).
What sort of field and charge distribution can we expect? We expect the
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positive charge Q to attract negative charge, but we hardly expect the
negative charge to pile up in an infinitely dense concentration at the foot
of the perpendicular from Q. (Why not?) Also, we remember that the
electric field is always perpendicular to the surface of a conductor, at the
conductor’s surface. Very near the point charge Q, on the other hand,
the presence of the conducting plane can make little difference; the field
lines must start out from Q as if they were leaving a point charge radially.
So we might expect something qualitatively like Fig. 3.10(b), with some
of the details still a bit uncertain. Of course the whole thing is bound to
be quite symmetrical about the z axis.
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But how do we really solve the problem? The answer is, by a trick,
but a trick that is both instructive and frequently useful. We find an easily
soluble problem whose solution, or a piece of it, can be made to fit the
problem at hand. Here the easy problem is that of two equal and oppo-
site point charges, Q and −Q. On the plane that bisects the line joining
the two charges, the plane indicated in cross section by the line AA in
Fig. 3.10(c), the electric field is everywhere perpendicular to the plane.
If we make the distance of Q from the plane agree with the distance h in
our original problem, the upper half of the field in Fig. 3.10(c) meets all
our requirements: the field is perpendicular to the plane of the conductor,
and in the neighborhood of Q it approaches the field of a point charge.

The boundary conditions here are not quite those that figured in
our uniqueness theorem in Section 3.3. The potential of the conductor
is fixed, but we have in the system a point charge at which the potential
approaches infinity. We can regard the point charge as the limiting case
of a small, spherical conductor on which the total charge Q is fixed. For
this mixed boundary condition – potentials given on some surfaces, total
charge on others – a uniqueness theorem also holds. If our “borrowed”
solution fits the boundary conditions, it must be the solution.

Figure 3.11 shows the final solution for the field above the plane,
with the density of the surface charge suggested. We can calculate the
field strength and direction at any point by going back to the two-charge
problem, Fig. 3.10(c), and using Coulomb’s law. Consider a point on the
surface, a distance r from the origin. The square of its distance from
Q is r2 + h2, and the z component of the field of Q, at this point, is
−Q cos θ/4πε0(r2 + h2). The “image charge,”−Q, below the plane con-
tributes an equal z component. Thus the electric field here is given by

Ez = −2Q
4πε0(r2 + h2)

cos θ = −2Q
4πε0(r2 + h2)

· h
(r2 + h2)1/2

= −Qh
2πε0(r2 + h2)3/2 . (3.3)

Figure 3.10.
(a) A point charge Q above an infinite plane conductor. (b) The field must
look something like this. (c) The field of a pair of opposite charges.
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Figure 3.11.
Some field lines for the charge above the plane.
The field strength at the surface, given by
Eq. (3.3), determines the surface charge
density σ .
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Returning to the actual setup with the conducting plane, we know
that in terms of the surface charge density σ , the electric field just above
the plane is Ez = σ/ε0. There is no factor of 2 in the denominator here,
because when using Gauss’s law with a small pillbox, there is zero field
below the conducting plane, so there is zero flux out the bottom of the
box. The field is indeed zero below the plane because we can consider
the conducting plane to be the top of a very large conducting sphere, and
we know that the field inside a conductor is zero. Using Ez = σ/ε0, the
density σ is given by

σ = ε0Ez = −Qh
2π(r2 + h2)3/2 . (3.4)

Let us calculate the total amount of charge on the surface by inte-
grating over the distribution:∫ ∞

0
σ · 2πr dr = −Qh

∫ ∞

0

r dr
(r2 + h2)3/2 = Qh

(r2 + h2)1/2

∣∣∣∣∞
0

= −Q.

(3.5)

This result was to be expected. It means that all the flux leaving the
charge Q ends on the conducting plane.

There is one puzzling point. We never said what the charge on the
conducting plane was, but what if we had chosen it to be zero before the
charge Q was put in place above it? (You might have just assumed this
was the case anyway.) How can the conductor now exhibit a net charge
−Q? The answer is that a compensating positive charge, +Q in amount,
must be distributed over the whole plane. The combination of the given
point charge Q and the surface density σ in Eq. (3.4) produces the Ez
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Q

R

Negative charge on top
surface of disk. Total: – Q

Positive charge on top and
bottom of disk. Total: +Q

h

Figure 3.12.
The distribution of charge on a conducting disk
with total charge zero, in the presence of a
positive point charge Q at height h above the
center of the disk. The actual surface charge
density at any point is of course the algebraic
sum of the positive and negative densities
shown.

field in Eq. (3.3), but nothing precludes us from superposing additional
charge on the conducting plane which will produce an additional field.

To see what is going on here, imagine that the conducting plane is
actually a metal disk, not infinite but finite and with a radius R � h. If a
charge +Q were to be spread uniformly over this disk, on both sides (so
Q/2 is on each side), the resulting surface density on each side would
be Q/2πR2, which would cause an electric field of strength Q/2πε0R2

normal to the plane of the disk. Since our disk is a conductor, on which
charge can move, the charge density and the resulting field strength will
be even less than Q/2πε0R2 near the center of the disk because of the
tendency of the charge to spread out toward the rim. In any case the field
of this distribution is smaller in order of magnitude by a factor h2/R2

than the field described by Eq. (3.3), because the latter field behaves like
1/h2 in the vicinity of r = 0. As long as R � h we were justified in
ignoring the former field, and of course it vanishes completely for an
unbounded conducting plane with R = ∞.

Figure 3.12 shows in separate plots the surface charge density σ ,
given by Eq. (3.4), and the distribution of the compensating charge Q
on the upper and lower surfaces of the disk. Here we have made R not
very much larger than h, in order to show both distributions clearly in the
same diagram. Note that the compensating positive charge has arranged
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Figure 3.13.
Equipotentials and field lines for a charged
conducting disk.

f = 0.3f0

f = 0.4f0

f = 0.5f0

f = 0.6f0

f = 0.7f0

f = 0.8f0

f = 0.9f0

itself in exactly the same way on the top and bottom surfaces of the disk,
as if it were utterly ignoring the pile of negative charge in the middle of
the upper surface! Indeed, it is free to do so, for the field of that negative
charge distribution plus that of the point charge Q that induced it has
horizontal component zero at the surface of the disk, and hence has no
influence whatsoever on the distribution of the compensating positive
charge.

The isolated conducting disk mentioned above belongs to another
class of soluble problems, a class that includes any isolated conductor in
the shape of a spheroid, an ellipsoid of revolution. Without going into the
mathematics5 we show in Fig. 3.13 some electric field lines and equipo-
tential surfaces around the conducting disk. The field lines are hyperbo-
las. The equipotentials are oblate ellipsoids of revolution enclosing the
disk. The potential φ of the disk itself, relative to infinity, turns out to be

φ0 = (π/2)Q
4πε0 a

, (3.6)

where Q is the total charge of the disk and a is its radius. (Written this
way, we see that φ0 is larger than the potential of a sphere of charge
Q and radius a, by a factor π/2.) Compare this picture with Fig. 2.12,
the field of a uniformly charged nonconducting disk. In that case the
electric field at the surface was not normal to the surface; it had a radial
component outward. If you could make that disk in Fig. 2.12 a conductor,
the charge would flow outward until the field in Fig. 3.13 was established.

5 Mathematically speaking, this class of problems is soluble because a spheroidal
coordinate system happens to be one of those systems in which Laplace’s equation
takes on a particularly simple form.
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According to the mathematical solution on which Fig. 3.13 is based, the
charge density at the center of the disk would then be just half as great as
it was at the center of the uniformly charged disk. This fact also follows
as a corollary to Problem 3.4.

Figure 3.13 shows us the field not only of the conducting disk, but
also of any isolated oblate spheroidal conductor. To see that, choose one
of the equipotential surfaces of revolution – say the one whose trace in
the diagram is the ellipse marked φ = 0.6 φ0. Imagine that we could
plate this spheroid with copper and deposit charge Q on it. Then the
field shown outside it already satisfies the boundary conditions: electric
field normal to surface; total flux Q/ε0. It is a solution, and in view of
the uniqueness theorem it must be the solution for an isolated charged
conductor of that particular shape. All we need to do is erase the field
lines inside the conductor. We can also imagine copperplating two of the
spheroidal surfaces, putting charge Q on the inner surface, −Q on the
outer. The section of Fig. 3.13 between these two equipotentials shows
us the field between two such concentric spheroidal conductors. The field
is zero elsewhere.

This suggests a general strategy. Given the solution for any electro-
static problem with the equipotentials located, we can extract from it the
solution for any other system made from the first by copperplating one
or more equipotential surfaces. Perhaps we should call the method “a
solution in search of a problem.” The situation was well described by
Maxwell:

“It appears, therefore, that what we should naturally call the inverse prob-
lem of determining the forms of the conductors when the expression for
the potential is given is more manageable than the direct problem of deter-
mining the potential when the form of the conductors is given.”6

If you worked Exercise 2.44, you already possess the raw material
for an important example. You found that a uniform line charge of finite
length has equipotential surfaces in the shape of prolate ellipsoids of rev-
olution. This solves the problem of the potential and field of any isolated
charged conductor of prolate spheroidal shape, reducing it to the rela-
tively easy calculation of the potential due to a line charge. You can try
it in Exercise 3.62.

3.5 Capacitance and capacitors
An isolated conductor carrying a charge Q has a certain potential φ0,
with zero potential at infinity; Q is proportional to φ0. The constant of
proportionality depends only on the size and shape of the conductor.
6 See Maxwell (1891). Every student of physics ought sometime to look into Maxwell’s

book. Chapter VII is a good place to dip in while we are on the present subject. At the
end of Volume I you will find some beautiful diagrams of electric fields, and shortly
beyond the quotation we have just given, Maxwell’s reason for presenting these figures.
One may suspect that he also took delight in their construction and their elegance.
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We call this factor the capacitance of that conductor and denote it by C:

Q = Cφ0 (3.7)

Obviously the units for C depend on the units in which Q and φ0 are
expressed. In our usual SI units, charge is measured in coulombs and
potential in volts, so the capacitance C is measured in coulombs/volt.
This combination of units is given its own name, the farad:

1 farad = 1
coulomb

volt
. (3.8)

Since one volt equals one joule per coulomb, a farad can be expressed in
terms of other units as7

1 farad = 1
C2 s2

kg m2 . (3.9)

For an isolated spherical conductor of radius a we know that φ0 =
Q/4πε0a. Hence the capacitance of the sphere, defined by Eq. (3.7),
must be

C = Q
φ0

= 4πε0a. (3.10)

For an isolated conducting disk of radius a, according to Eq. (3.6), Q =
8ε0aφ0, so the capacitance of such a conductor is C = 8ε0a. It is some-
what smaller than the capacitance of a sphere of the same radius. In other
words, the disk requires a smaller amount of charge to attain a given
potential than does the sphere. This seems reasonable.

The farad happens to be a gigantic unit; the capacitance of an iso-
lated sphere the size of the earth is only

Ce = 4πε0a = 4π

(
8.85 · 10−12 C2 s2

kg m3

)
(6.4 · 106 m)

≈ 7 · 10−4 C2 s2

kg m2 = 7 · 10−4 farad. (3.11)

But this causes no trouble. We deal on more familiar terms with the
microfarad (μF), 10−6 farad, and the picofarad (pF), 10−12 farad. Note
that the units of the constant ε0 can be conveniently expressed as farads/
meter. The capacitance will always involve one factor of ε0 and one net
power of length, so for conductors of a given shape, capacitance scales
as a linear dimension of the object.

That applies to single, isolated conductors. The concept of capac-
itance is also useful whenever we are concerned with charges on and
potentials of a general number of conductors. By far the most common

7 In Gaussian units, Q is measured in esu and φ0 in statvolts, so C is measured in
esu/statvolt. Since in Gaussian units the esu can be written in terms of other
fundamental units, you can show that the unit of capacitance is simply the centimeter,
so it needs no other name.



3.5 Capacitance and capacitors 143

case of interest is that of two conductors oppositely charged, with Q
and −Q, respectively. Here the capacitance is defined as the ratio of the
charge Q to the potential difference between the two conductors. The
object itself, comprising the two conductors, insulating material to hold
the conductors apart, and perhaps electrical terminals or leads, is called
a capacitor. Most electronic circuits contain numerous capacitors. The
parallel-plate capacitor is the simplest example.

Two similar flat conducting plates are arranged parallel to one
another, separated by a distance s, as in Fig. 3.14(a). Let the area of each
plate be A and suppose that there is a charge Q on one plate and −Q on
the other; φ1 and φ2 are the values of the potential at each of the plates.
Figure 3.14(b) shows in cross section the field lines in this system. Away
from the edge, the field is very nearly uniform in the region between the
plates. When it is treated as uniform, its magnitude must be (φ1 −φ2)/s.
The corresponding density of the surface charge on the inner surface of
one of the plates is

σ = ε0E = ε0(φ1 − φ2)

s
. (3.12)

If we may neglect the actual variation of E, and therefore of σ , which
occurs principally near the edge of the plates, we can write a simple
expression for the total charge, Q = Aσ , on one plate:

Q = A
ε0(φ1 − φ2)

s
(neglecting edge effects). (3.13)

Charge –Q

(a)

(b)

s

f2

f2

f1

f1

ChaChaChargergerge –QQQQ

Charge Q

Area A

Figure 3.14.
(a) Parallel-plate capacitor. (b) Cross section
of (a) showing field lines. The electric field is
essentially uniform inside the capacitor.



144 Electric fields around conductors

We should expect Eq. (3.13) to be more nearly accurate the smaller
the ratio of the plate separation s to the lateral dimension of the plates. Of
course, if we were to solve exactly the electrostatic problem, edge and all,
for a particular shape of plate, we could replace Eq. (3.13) by an exact
formula. To show how good an approximation Eq. (3.13) is, there are
listed in Fig. 3.15 values of the correction factor f by which the charge
Q given in Eq. (3.13) differs from the exact result, in the case of two
conducting disks at various separations. The total charge is always a bit
greater than Eq. (3.13) would predict. That seems reasonable as we look
at Fig. 3.14(b), for there is evidently an extra concentration of charge at
the edge, and even some charge on the outer surfaces near the edge.

f2

R

f1

s

Figure 3.15.
The true capacitance of parallel circular plates,
compared with the prediction of Eq. (3.13), for
various ratios of separation to plate radius. The
effect of the edge correction can be represented
by writing the charge Q as

Q = ε0A(φ1 − φ2)

s
f .

For circular plates, the factor f depends on s/R
as follows:

s/R f

0.2 1.286
0.1 1.167
0.05 1.094
0.02 1.042
0.01 1.023

We are not concerned now with the details of such corrections but
with the general properties of a two-conductor system, the capacitor. We
are interested in the relation between the charge Q on one of the plates
and the potential difference between the two plates. For the particular
system to which Eq. (3.13) applies, the quotient Q/(φ1 − φ2) is ε0A/s.
Even if this is only approximate, it is clear that the exact formula will
depend only on the size and geometrical arrangement of the plates. That
is, for a fixed pair of conductors, the ratio of charge to potential difference
will be a constant. We call this constant the capacitance of the capacitor
and denote it usually by C.

Q = C(φ1 − φ2). (3.14)

Thus the capacitance of the parallel-plate capacitor, with edge fields
neglected, is given by

C = ε0A
s

(3.15)

As with the above cases of the sphere and disk, this capacitance contains
one factor of ε0 and one net power of length. Figure 3.16 summarizes
the formulas for capacitance in both SI and Gaussian units. Refer to it
when in doubt. As usual, the differences stem from a factor 4πε0 in any
expression involving charge. Appendix C gives the derivation that 1 cm
(esu/statvolt) is equivalent to 1.11 · 10−12 farad (coulomb/volt).

In defining the capacitance of a system of two conductors, we assume
that their charges are equal and opposite (however, see the discussion
below). This is a reasonable definition, because if we hook up a battery
between two conductors that are initially neutral, then whatever charge
leaves one of them ends up on the other. So when we talk about the
“charge on the capacitor,” we mean the charge on either of the conductors;
the total charge of the system is zero, of course. Also, we define the
capacitance to be a positive quantity. It will automatically come out to
be positive if you remember that in Eq. (3.14) the charges Q and −Q are
associated with the potentials φ1 and φ2, respectively. But if you don’t
want to worry about the signs along the way, you can simply define the
capacitance as C = |Q|/|φ1 − φ2|.
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1 cm = 1.11 × 10–12 farad

C = a C =
cm

cm
statvolts

esu

Q = Cf

A
4ps

cm2

cm

a Q
s

A

Q

–Q

CGS units

C =

coulombs farads

voltsQ = Cf

m

m

m2

sC = 4p  0a

 0 = 8.854 × 10–12 farad/meter

  0A

a Q
s

A

Q

–Q

SI units

Figure 3.16.
Summary of units associated with capacitance.

Any pair of conductors, regardless of shape or arrangement, can be
considered a capacitor. It just happens that the parallel-plate capacitor is
a common arrangement and one for which an approximate calculation
of the capacitance is very easy. Figure 3.17 shows two conductors, one
inside the other. We can call this arrangement a capacitor too. As a prac-
tical matter, some mechanical support for the inner conductor would be
needed, but that does not concern us. Also, to convey electric charge to
or from the conductors we would need leads, which are themselves con-
ducting bodies. Since a wire leading out from the inner body, numbered
1, necessarily crosses the space between the conductors, it is bound to
cause some perturbation of the electric field in that space. To minimize
this we may suppose the lead wires to be extremely thin, so that any
charge residing on them is negligible. Or we might imagine the leads
removed before the potentials are determined.

f2

f1

Q2
(i)

Q2
(o)

Q1

S

Figure 3.17.
A capacitor in which one conductor is enclosed
by the other.

In this system we can distinguish three charges: Q1, the total charge
on the inner conductor; Q(i)

2 , the amount of charge on the inner surface
of the outer conductor; Q(o)

2 , the charge on the outer surface of the outer
conductor. Observe first that Q(i)

2 must equal −Q1. As we have seen in
earlier examples, we know this because a surface such as S in Fig. 3.17
encloses both these charges and no others, and the flux through this
surface is zero. The flux is zero because on the surface S, lying, as it
does, in the interior of a conductor, the electric field is zero.
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Evidently the value of Q1 will uniquely determine the electric field
within the region between the two conductors and thus will determine
the difference between their potentials, φ1 − φ2. For that reason, if we
are considering the two bodies as “plates” of a capacitor, it is only Q1, or
its counterpart Q(i)

2 , that is involved in determining the capacitance. The
capacitance is given by

C = Q1

φ1 − φ2
. (3.16)

Q(o)
2 is here irrelevant, because piling more charge on the outer surface

of the outer conductor increases both φ1 and φ2 by the same amount
(because charge on a single conductor produces no electric field inside
the conductor), thereby leaving the difference φ1 −φ2 unchanged. The
complete enclosure of one conductor by the other makes the capaci-
tance independent of everything outside. If you wish, you can consider
this setup to be the superposition of the system consisting of the Q1

and Q(i)
2 =−Q1 conductors, plus the system consisting of the outer

conductor containing an arbitrary charge Q(o)
2 which doesn’t affect the

difference φ1 − φ2.

Example (Capacitance of two spherical shells) What is the capaci-
tance of a capacitor that consists of two concentric spherical metal shells? The
inner radius of the outer shell is a; the outer radius of the inner shell is b.

Solution Let there be charge Q on the inner shell and charge −Q on the outer
shell. As mentioned above, any additional charge on the outside surface of the
outer shell doesn’t affect the potential difference. The field between the shells is
due only to the inner shell, so it equals Q/4πε0r2. The magnitude of the potential
difference is therefore

�φ =
∫ a

b
E dr =

∫ a

b

Q dr
4πε0r2 = Q

4πε0

(
1
b
− 1

a

)
. (3.17)

The capacitance is then

C = Q
�φ

= 4πε0
1
b
− 1

a

= 4πε0ab
a − b

. (3.18)

We can check this result by considering the limiting case where the gap
between the conductors, a− b, is much smaller than b. In this limit the capacitor
should be essentially the same as a flat-plate capacitor with separation s = a− b
and area A = 4πr2, where r ≈ a ≈ b. And indeed, in this limit Eq. (3.18)
gives C ≈ 4πε0r2/s = ε0A/s, in agreement with Eq. (3.15). If we let r be the
geometric mean of a and b, then the equivalence is exact, because the product ab
in the numerator of C exactly equals r2.
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Also, in the a � b limit, Eq. (3.18) gives C = 4πε0b, which is the correct
result for the capacitance of an isolated sphere with radius b, with its counterpart
at infinity; see Eq. (3.10).

(c) State III

f = 0

f2 = 0

f1 = 0

f3

(b) State II

f = 0

f1 = 0

f2

f3 = 0

(d) Superposition

f = 0

f2

f3

f1

(a) State I

f = 0

f2 = 0

f3 = 0

f1

1

2

3

Figure 3.18.
A general state of this system can be analyzed
as the superposition (d) of three states (a)–(c) in
each of which all conductors but one are at zero
potential.

3.6 Potentials and charges on several conductors
We have been skirting the edge of a more general problem, the relations
among the charges and potentials of any number of conductors of some
given configuration. The two-conductor capacitor is just a special case.
It may surprise you that anything useful can be said about the general
case. In tackling it, about all we can use is the uniqueness theorem and
the superposition principle. To have something definite in mind, con-
sider three separate conductors, all enclosed by a conducting shell, as
in Fig. 3.18. The potential of this shell we may choose to be zero; with
respect to this reference the potentials of the three conductors, for some
particular state of the system, are φ1, φ2, and φ3. The uniqueness theorem
guarantees that, with φ1, φ2, and φ3 given, the electric field is determined
throughout the system. It follows that the charges Q1, Q2, and Q3 on the
individual conductors are likewise uniquely determined.

We need not keep account of the charge on the inner surface of
the surrounding shell, since it will always be −(Q1 +Q2 +Q3). If you
prefer, you can let “infinity” take over the role of this shell, imagining
the shell to expand outward without limit. We have kept it in the picture
because it makes the process of charge transfer easier to follow, for some
people, if we have something to connect to.

Among the possible states of this system are ones with φ2 and φ3
both zero. We could enforce this condition by connecting conductors 2
and 3 to the zero-potential shell, as indicated in Fig. 3.18(a). As before,
we may suppose the connecting wires are so thin that any charge residing
on them is negligible. Of course, we really do not care how the specified
condition is brought about. In such a state, which we shall call state I, the
electric field in the whole system and the charge on every conductor is
determined uniquely by the value of φ1. Moreover, if φ1 were doubled,
that would imply a doubling of the field strength everywhere, and hence
a doubling of each of the charges Q1, Q2, and Q3. That is, with φ2 =
φ3 = 0, each of the three charges must be proportional to φ1. Stated
mathematically:

• State I (φ2 = φ3 = 0):

Q1 = C11φ1; Q2 = C21φ1; Q3 = C31φ1. (3.19)

The three constants, C11, C21, and C31, can depend only on the shape
and arrangement of the conducting bodies.

In just the same way we could analyze states in which φ1 and φ3
are zero, calling such a condition state II (Fig. 3.18(b)). Again, we find
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a linear relation between the only nonzero potential, φ2 in this case, and
the various charges:

• State II (φ1 = φ3 = 0):

Q1 = C12φ2; Q2 = C22φ2; Q3 = C32φ2. (3.20)

Finally, when φ1 and φ2 are held at zero, the field and the charges are
proportional to φ3:

• State III (φ1 = φ2 = 0):

Q1 = C13φ3; Q2 = C23φ3; Q3 = C33φ3. (3.21)

Now the superposition of three states like I, II, and III is also a pos-
sible state. The electric field at any point is the vector sum of the electric
fields at that point in the three cases, while the charge on a conductor is
the sum of the charges it carried in the three cases. In this new state the
potentials are φ1, φ2, and φ3, none of them necessarily zero. In short,
we have a completely general state. The relation connecting charges and
potentials is obtained simply by adding Eqs. (3.19) through (3.21):

Q1 = C11φ1 + C12φ2 + C13φ3,
Q2 = C21φ1 + C22φ2 + C23φ3,
Q3 = C31φ1 + C32φ2 + C33φ3. (3.22)

It appears that the electrical behavior of this system is characterized
by the nine constants C11, C12, . . . , C33. In fact, only six constants are
necessary, for it can be proved that in any system C12 = C21, C13 = C31,
and C23 = C32. Why this should be so is not obvious. Exercise 3.64 will
suggest a proof based on conservation of energy, but for that purpose
you will need an idea developed in Section 3.7. The C’s in Eq. (3.22) are
called the coefficients of capacitance. It is clear that our argument would
extend to any number of conductors.

A set of equations like Eq. (3.22) can be solved for the φ’s in terms
of the Q’s. That is, there is an equivalent set of linear relations of the form

φ1 = P11Q1 + P12Q2 + P13Q3,
φ2 = P21Q1 + P22Q2 + P23Q3,
φ3 = P31Q1 + P32Q2 + P33Q3. (3.23)

The P’s are called the potential coefficients; they could be computed
from the C’s, or vice versa.

We have here a simple example of the kind of relation we can expect
to govern any linear physical system. Such relations turn up in the study
of mechanical structures (connecting the strains with the loads), in the
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analysis of electrical circuits (connecting voltages and currents), and,
generally speaking, wherever the superposition principle can be applied.

1

2

r

s
t

Figure 3.19.
Two capacitor plates inside a conducting box.

Example (Capacitance coefficients for two plates) Figure 3.19 shows
in cross section a flat metal box in which there are two flat plates, 1 and 2,
each of area A. The potential of the box is chosen to be zero. The various dis-
tances separating the plates from each other and from the top and bottom of the
box, labeled r, s, and t in the figure, are to be assumed small compared with
the width and length of the plates, so that it will be a good approximation to
neglect the edge fields in estimating the charges on the plates. In this approxima-
tion, work out the capacitance coefficients, C11, C22, C12, and C21. Check that
C12 = C21.

2

1f1

f2 = 0

f = 0

f = 0

Er = f1 r

Es = f1 s

Et = 0

Figure 3.20.
The situation with the bottom plate grounded to
the box.

Solution With the potential of the box chosen to be zero, we can write, in
general,

Q1 = C11φ1 + C12φ2,

Q2 = C21φ1 + C22φ2. (3.24)

Consider the case where φ2 is made equal to zero by connecting plate 2 to the
box. Then (see Fig. 3.20) the fields in the three regions are Er = φ1/r, Es =
φ1/s, and Et = 0. Gauss’s law with a thin box completely surrounding plate 1
tells us that Q1 = ε0(AEr + AEs). Eliminating the E’s in favor of the φ’s gives

Q1 = ε0Aφ1

(
1
r
+ 1

s

)
�⇒ C11 = ε0A

(
1
r
+ 1

s

)
. (3.25)

Also, Gauss’s law with a box around plate 2 tells us that Q2 = −ε0(AEs + 0).
Hence,

Q2 = − ε0Aφ1
s

�⇒ C21 = − ε0A
s

. (3.26)

We can repeat the above arguments, but now with φ1 = 0 instead of φ2 = 0.
This basically just involves switching the 1’s and 2’s, and letting r → t (but s
remains s). We quickly find

C22 = ε0A
(

1
t
+ 1

s

)
and C12 = − ε0A

s
. (3.27)

As expected, C12 = C21. How do these four coefficients reduce to the C = ε0A/s
capacitance we found for a parallel-plate capacitor in Eq. (3.15)? That is the
subject of Problem 3.23.

3.7 Energy stored in a capacitor
Consider a capacitor of capacitance C, with a potential difference φ

between the plates. The charge Q is equal to Cφ. There is a charge Q
on one plate and −Q on the other. Suppose we increase the charge from
Q to Q+dQ by transporting a positive charge dQ from the negative to the
positive plate, working against the potential difference φ. The work that
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has to be done is dW = φ dQ = Q dQ/C. Therefore to charge the capac-
itor starting from the uncharged state to some final charge Qf requires
the work

W = 1
C

∫ Qf

0
Q dQ = Q2

f
2C

. (3.28)

This is the energy U that is “stored” in the capacitor. Since Qf = Cφ, it
can also be expressed by

U = 1
2

Cφ2 (3.29)

where φ is the final potential difference between the plates. Using Q =
Cφ again, we can also write the energy as U = Qφ/2. This result is
consistent with the energy we would obtain from Eq. (2.32); see Exer-
cise 3.65.

For the parallel-plate capacitor with plate area A and separation s,
we found the capacitance C = ε0A/s and the electric field E = φ/s.
Hence Eq. (3.29) is also equivalent to

U = 1
2

(
ε0A

s

)
(Es)2 = ε0E2

2
· As = ε0E2

2
· (volume). (3.30)

This agrees with our general formula, Eq. (1.53), for the energy stored in
an electric field.8

Equation (3.29) applies as well to the isolated charged conductor,
which can be thought of as the inner plate of a capacitor, enclosed by
an outer conductor of infinite size and potential zero. For the isolated
sphere of radius a, we found C = 4πε0a, so that U = (1/2)Cφ2 =
(1/2)(4πε0a)φ2 or, equivalently, U = (1/2)Q2/C = (1/2)Q2/4πε0a,
agreeing with the calculation in Problem 1.32 for the energy stored in the
electric field of the charged sphere.

The oppositely charged plates of a capacitor will attract one another;
some mechanical force will be required to hold them apart. This is obvi-
ous in the case of the parallel-plate capacitor, for which we could easily
calculate the force on the surface charge. But we can make a more general
statement based on Eq. (3.28), which relates stored energy to charge Q
and capacitance C. Suppose that C depends in some manner on a linear
coordinate x that measures the displacement of one “plate” of a capaci-
tor, which might be a conductor of any shape, with respect to the other.
Let F be the magnitude of the force that must be applied to each plate to
overcome their attraction and keep x constant. Now imagine the distance
x is increased by an increment �x with Q remaining constant and one

8 All this applies to the vacuum capacitor consisting of conductors with empty space in
between. As you may know from the laboratory, most capacitors used in electric
circuits are filled with an insulator or “dielectric.” We are going to study the effect of
that in Chapter 10.
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plate fixed. The external force F on the other plate does work F �x and,
if energy is to be conserved, this must appear as an increase in the stored
energy Q2/2C. That increase at constant Q is

�U = dU
dx

�x = Q2

2
d
dx

(
1
C

)
�x. (3.31)

Equating this to the work F �x we find

F = Q2

2
d
dx

(
1
C

)
. (3.32)

Example (Parallel-plate capacitor) Let’s verify that Eq. (3.32) yields the
correct force on a plate in a parallel-plate capacitor. If the plate separation is x,
Eq. (3.15) gives the capacitance as C = ε0A/x. So Eq. (3.32) gives the (attractive)
force as

F = Q2

2
d
dx

(
x

ε0A

)
= Q2

2ε0A
. (3.33)

Is this correct? We know from Eq. (1.49) that the force (per unit area) on a sheet
of charge equals the density σ times the average of the fields on either side. The
total force on the entire plate of area A is then the total charge Q = σA times the
average of the fields. The field is zero outside the capacitor, and it is σ/ε0 inside.
So the average of the two fields is σ/2ε0. (This is correctly the field due to the
other plate, which is the field that the given plate feels.) The force on the plate is
therefore

F = Q
σ

2ε0
= Q

Q/A
2ε0

= Q2

2ε0A
, (3.34)

as desired.

3.8 Other views of the boundary-value problem
It would be wrong to leave the impression that there are no general meth-
ods for dealing with the Laplacian boundary-value problem. Although
we cannot pursue this question much further, we shall mention some
useful and interesting approaches that you are likely to meet in future
study of physics or applied mathematics.

First, an elegant method of analysis, called conformal mapping, is
based on the theory of functions of a complex variable. Unfortunately it
applies only to two-dimensional systems. These are systems in which φ

depends only on x and y, for example, all conducting boundaries being
cylinders (in the general sense) with elements running parallel to z.
Laplace’s equation then reduces to

∂2φ

∂x2 + ∂2φ

∂y2 = 0, (3.35)
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Figure 3.21.
Field lines and equipotentials for two infinitely
long conducting strips.

with boundary values specified on some lines or curves in the xy plane.
Many systems of practical interest are like this or sufficiently like this
to make the method useful, quite apart from its intrinsic mathematical
interest. For instance, the exact solution for the potential around two long
parallel strips is easily obtained by the method of conformal mapping.
The field lines and equipotentials are shown in a cross-sectional plane
in Fig. 3.21. This provides us with the edge field for any parallel-plate
capacitor in which the edge is long compared with the gap. The field
shown in Fig. 3.14(b) was copied from such a solution. You will be able to
apply this method after you have studied functions of a complex variable
in more advanced mathematics courses.

Second, we mention a numerical method for finding approximate
solutions of the electrostatic potential with given boundary values. Sur-
prisingly simple and almost universally applicable, this method is based
on that special property of harmonic functions with which we are already
familiar: the value of the function at a point is equal to its average over
the neighborhood of the point. In this method the potential function φ

is represented by values at an array of discrete points only, including
discrete points on the boundaries. The values at nonboundary points are
then adjusted until each value is equal to the average of the neighbor-
ing values. In principle one could do this by solving a large number
of simultaneous linear equations – as many as there are interior points.
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But an approximate solution can be obtained by the following procedure,
called a relaxation method. Start with the boundary points of the array,
or grid, set at the values prescribed. Assign starting values arbitrarily to
the interior points. Now visit, in some order, all the interior points. At
each point reset its value to the average of the values at the four (for a
square grid) adjacent grid points. Repeat again and again, until all the
changes made in the course of one sweep over the network of interior
points are acceptably small. If you want to see how this method works,
Exercises 3.76 and 3.77 will provide an introduction. Whether conver-
gence of the relaxation process can be ensured, or even hastened, and
whether a relaxation method or direct solution of the simultaneous equa-
tions is the better strategy for a given problem, are questions in applied
mathematics that we cannot go into here. It is the high-speed computer,
of course, that makes both methods feasible.

3.9 Applications
The purpose of a lightning rod on a building is to provide an alternative
path for the lightning’s current on its way to ground, that is, a path that
travels along a metal rod as opposed to through the building itself. Should
the tip of the rod be pointed or rounded? The larger the field generated
by the tip, the better the chance that a conductive path for the lightning
is formed, meaning that the lightning is more likely to hit the rod than
some other point on the building. On one hand, a pointed tip generates
a large electric field very close to the tip, but on the other hand the field
falls off more quickly than the field due to a more rounded tip (you can
model the tip roughly as a small sphere). It isn’t obvious which of these
effects wins, but experiments suggest that a somewhat rounded tip has a
better chance of being struck.

Capacitors have many uses; we will look at a few here. Capacitors
can be used to store energy, for either slow discharge or fast discharge.
In the slow case, the capacitor acts effectively like a battery. Examples
include shake flashlights and power adapters. For the fast case, capacitors
also have the ability to release their energy very quickly (unlike a normal
battery). Examples include flashbulbs, stun guns, defibrillators, and the
National Ignition Facility (NIF), whose goal is to create sustained fusion.
The capacitor for a flashbulb might store 10 J of energy, while the huge
capacitor bank at the NIF can store 4 · 108 J.

In many electronic devices, capacitors are used to smooth out fluc-
tuations in the voltage in a DC circuit. If a capacitor is placed in parallel
with the load, it acts like a reserve battery. If the voltage from the power
supply dips, the capacitor will (temporarily) continue to push current
through the load.

The dynamic random access memory (DRAM) in your computer
works by storing charge on billions of tiny capacitors. Each capacitor
represents a bit of information; uncharged is 0, charged is 1. However, the
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capacitors are leaky, so their charges must be refreshed many times each
second (64 ms is a common refresh time); hence the adjective “dynamic.”
The memory is lost when the power is shut off. The permanent memory
on the hard disk must therefore use a different method – the orientation
of tiny magnetic domains, as we will see in Chapter 11.

Capacitors are also used for tuning electronic circuits. We will see
in Chapter 8 that the resonant frequency of a circuit containing a resis-
tor, inductor, and capacitor depends on the inductance and capacitance.
Radios, cell phones, wireless computer connections, etc., function by
changing the capacitance of an internal circuit so that the resonant fre-
quency equals the frequency of the desired signal (transmitted by an elec-
tromagnetic wave, which will be discussed in Chapter 9).

Capacitors can be used in power-factor correction in the AC electri-
cal power grid. We will talk about AC circuits in Chapter 8, but the main
point is that by adding capacitors (or inductors) to a load, a larger frac-
tion of the power delivered can actually be used, instead of sloshing back
and forth between the power station and the load. This sloshing wastes
energy by heating up the transmission lines.

A condenser microphone makes use of the fact that the capacitance
of a parallel-plate capacitor depends on the plate separation. (“Conden-
ser” is simply another name for a capacitor.) A small capacitor consists
of a fixed plate and a movable diaphragm. The pressure from the sound
waves in the air moves the diaphragm back and forth, changing the sep-
aration and hence the capacitance. This movement is extremely small,
but is large enough to affect a circuit and generate an electric signal that
can be sent to a speaker. Due to the large resistance of the circuit, the
charge on the capacitor remains essentially constant as the diaphragm
vibrates back and forth. So the voltage changes only because the capaci-
tance changes, that is, φ = Q0/C.

A supercapacitor has a capacitance vastly larger than what can be
produced by a pair of parallel plates. A supercapacitor with the dimen-
sions of a standard D-cell battery can have a capacitance of well over a
farad (and even up to the kilofarad range). Two square plates separated
by 1 mm would need to be 10 km on a side to have a ε0A/s capacitance
of 1 farad! A supercapacitor works by effectively making A very large
and s very small. Two pieces of carbon foam are separated by an insu-
lating membrane and immersed in an electrolyte solution. (Other types,
for example ones using graphene layers, also exist.) The effective area A
is large due to the porous nature of the foam, and the effective distance s
is small (on the order of an atomic length) due to the fact that the elec-
trolyte touches the foam. The voltage is generally only a few volts, so a
supercapacitor is used when there is a need for a steady supply of energy,
as opposed to a burst of energy. That is, it is used as a battery (although
often short-lived, on the order of a minute) instead of, say, a flashbulb
capacitor. The charging time of a supercapacitor is also on the order of a
minute – much faster than a conventional battery.
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CHAPTER SUMMARY
• Assuming there are no other forces involved, the electric field is zero

within the material of a conductor (in the stationary state). Equiva-
lently, the conductor is an equipotential. Just outside the conductor,
the field is perpendicular to the surface and has magnitude E = σ/ε0,
from Gauss’s law.

• The uniqueness theorem states that for a set of conductors at given
potentials, the solution for the potential φ(x, y, z) is unique. This
implies that once we have found a solution (by whatever means), we
know that it must be the solution. A quick corollary is that if the space
inside a hollow conductor of any shape is empty of charge, the electric
field there is zero.

• If a given charge q is located inside a conducting shell, then a total
charge of −q resides on the inner surface of the shell. Any additional
charge resides on the outer surface, and it distributes itself in the same
manner as if neither the given charge q nor the inner-surface charge
−q were present. These results follow from Gauss’s law and the fact
that the electric field is zero inside the material of the conductor.

• The method of image charges is useful for finding the electric field
that satisfies a given set of boundary conditions at conductors. In the
case of a point charge q and an infinite conducting plane, the image
charge −q is located on the other side of the plane, an equal dis-
tance from it. As expected from Gauss’s law, the total charge on the
plane is −q.

• The capacitance C, defined by Q = Cφ, gives a measure of how much
charge a conductor can hold, for a given potential φ. The capacitances
of a sphere and a parallel-plate capacitor are

Csphere = 4πε0r and Cplates = ε0A
s

. (3.36)

If there are many conductors in a system, the charge on each is a linear
function of the various potentials, with the coefficients of capacitance
being the constants of proportionality.

• The energy stored in a capacitor can be written in several ways:

U = 1
2

Cφ2 = Q2

2C
= 1

2
Qφ. (3.37)

q

Figure 3.22.

Problems
3.1 Inner-surface charge density **

A positive point charge q is located off-center inside a conduct-
ing spherical shell, as shown in Fig. 3.22. (You can assume that
the shell is neutral, although this doesn’t matter.) We know from
Gauss’s law that the total charge on the inner surface of the shell
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is −q. Is the surface charge density negative over the entire inner
surface? Or can it be positive on the far side of the inner surface
if the point charge q is close enough to the shell so that it attracts
enough negative charge to the near side? Justify your answer. Hint:
Think about field lines.
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Figure 3.23.

3.2 Holding the charge in place **
The two metal spheres in Fig. 3.23(a) are connected by a wire;
the total charge is zero. In Fig. 3.23(b) two oppositely charged
conducting spheres have been brought into the positions shown,
inducing charges of opposite sign in A and in B. If now C and D
are connected by a wire as in Fig. 3.23(c), it could be argued that
something like the charge distribution in Fig. 3.23(b) ought to per-
sist, each charge concentration being held in place by the attraction
of the opposite charge nearby. What about that? Can you prove it
won’t happen?

3.3 Principal radii of curvature **
Consider a point on the surface of a conductor. The principal radii
of curvature of the surface at that point are defined to be the largest
and smallest radii of curvature there. To find the radii of curva-
ture, consider a plane that contains the normal to the surface at the
given point. Rotate this plane around the normal, and look at the
curve representing the intersection of the plane and the surface.
The radius of curvature is defined to be the radius of the circle that
locally matches up with the curve. For example, a sphere has its
principal radii everywhere equal to the radius R. A cylinder has
one principal radius equal to the cross-sectional radius R, and the
other equal to infinity.

It turns out that the spatial derivative (in the direction of the
normal) of the electric field just outside a conductor can be written
in terms of the principal radii, R1 and R2, as follows:

dE
dx

= −
(

1
R1

+ 1
R2

)
E. (3.38)

(a) Verify this expression for a sphere, a cylinder, and a plane.
(b) Prove this expression. Use Gauss’s law with a wisely chosen

pillbox just outside the surface. Remember that near the sur-
face, the electric field is normal to it.

3.4 Charge distribution on a conducting disk **
There is a very sneaky way of finding the charge distribution on
a conducting circular disk with radius R and charge Q. Our goal
is to find a charge distribution such that the electric field at any
point in the disk has zero component parallel to the disk. From
Problem 1.17 we know that the field at any point P inside a spher-
ical shell with uniform surface charge density is zero. Consider
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the projection of this shell onto the equatorial plane containing P.
Explain why this setup is relevant, and use it to find the desired
charge density on a conducting disk.

3.5 Charge distribution on a conducting stick ****
If we put some charge in a 3D conducting ball, it all heads to the
surface; the volume charge density is zero inside. If we put some
charge on a 2D conducting “ball” (that is, a disk), then we found
in Problem 3.4 that the resulting surface charge density is nonzero
throughout the disk, but that it increases toward the edge. If we put
some charge on a 1D conducting “ball” (that is, a stick), then it
turns out that the same strategy used in Problem 3.4 can be used to
show that the resulting linear charge density on the stick is essen-
tially uniform; see Good (1997). At first glance, this seems absurd,
because if we consider a little piece of charge at an off-center posi-
tion, there is more charge on one side than on the other. So the
electric field at the little piece isn’t zero, as we know it must be in
a conductor.

Your task is to explain what is meant by the above phrase,
essentially uniform, by considering a setup with a very large num-
ber N of point charges, each with initial value Q/N, that are evenly
spaced on the stick, a fixed small distance L/N apart. Determine
roughly (in an order-of-magnitude sense) how much charge needs
to be added to an adjacent point charge so that the field felt by
a given off-center point charge is zero. Then take the N → ∞
limit. Consider the cases where the given point charge is, or isn’t,
very close to an end. (This problem is partly quantitative and partly
qualitative. Feel free to drop all factors of order 1 and just look at
the dependence of various quantities on the given parameters, in
particular N.)

3.6 A charge inside a shell *
Is the following reasoning correct or incorrect (if incorrect, state
the error). A point charge q lies at an off-center position inside
a conducting spherical shell. The surface of the conductor is at
constant potential, so, by the uniqueness theorem, the potential is
constant inside. The field inside is therefore zero, so the charge
experiences no force.

3.7 Inside/outside asymmetry **
If a point charge is located outside a hollow conducting shell, there
is an electric field outside, but no electric field inside. On the other
hand, if a point charge is located inside a hollow conducting shell,
there is an electric field both inside and outside (although the exter-
nal field would be zero in the special case where the shell happened
to have charge exactly equal and opposite to the point charge).
The situation is therefore not symmetric with respect to inside and
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outside. Explain why this is the case, by considering where electric
field lines can begin and end.

3.8 Inside or outside **
A setup consists of a spherical metal shell and a point charge q. We
are interested in the electric field at a given point P. In Fig. 3.24(a),
if the shell is placed in position A around point P, with the charge q

P
q

P

A

B

q

(a)

(b)

Figure 3.24.

outside, then we know that the field at P is zero by the uniqueness
theorem. On the other hand, if the shell is placed in position B
around the charge q, with point P outside, then we know that the
field at P is nonzero (see the example in Section 3.2).

However, we can transition continuously from one of these
cases to the other by increasing the size of shell A until the left
part of it becomes an infinite plane between q and P, and then con-
sidering this plane to be the right part of an infinite shell B, and
then shrinking this shell down to the given size. During this pro-
cess the point P goes from being inside the shell to being outside.
What’s going on here? How can we transition from zero field to
nonzero field at point P?

3.9 Grounding a shell **
A conducting spherical shell has charge Q and radius R1. A larger
concentric conducting spherical shell has charge −Q and radius
R2. If the outer shell is grounded, explain why nothing happens to
the charge on it. If instead the inner shell is grounded, find its final
charge.

3.10 Why leave? ***
In the setup in Problem 3.9, let the inner shell be grounded by
connecting it to a large conducting neutral object very far away
via a very thin wire that passes through a very small hole in the
outer shell. If you think in terms of potentials (as you probably
did if you solved Problem 3.9), then you can quickly see why
some of the charge on the inner shell flows off to infinity. The
potential of the inner shell is initially higher than the potential at
infinity.

However, if you think in terms of forces on the positive charges
on the inner shell, then things aren’t as clear. A small bit of positive
charge will certainly want to hop on the wire and follow the elec-
tric field across the gap to the larger shell. But when it gets to the
larger shell, it seems like it has no reason to keep going to infinity,
because the field is zero outside. And, even worse, the field will
point inward once some positive charge has moved away from the
shells. So it seems like the field will drag back any positive charge
that has left. What’s going on? Does charge actually leave the inner
shell? If so, what is wrong with the above reasoning?
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3.11 How much work? *
A charge Q is located a distance h above a conducting plane, just
as in Fig. 3.10(a). Asked to predict the amount of work that would
have to be done to move this charge out to infinite distance from the
plane, one student says that it is the same as the work required to
separate to infinite distance two charges Q and −Q that are initially
2h apart, hence W = Q2/4πε0(2h). Another student calculates the
force that acts on the charge as it is being moved and integrates
F dx, but gets a different answer. What did the second student get,
and who is right?

3.12 Image charges for two planes **
A point charge q is located between two parallel infinite conduct-
ing planes, a distance d from one and �− d from the other. Where
should image charges be located so that the electric field is every-
where perpendicular to the planes?

A

Q–QR/A
R

R 2/A

  Real
charge

Image
charge

Figure 3.25.

3.13 Image charge for a grounded spherical shell ***
(a) A point charge −q is located at x = a, and a point charge Q is

located at x = A. Show that the locus of points with φ = 0 is
a circle in the xy plane (and hence a spherical shell in space).

(b) What must be the relation among q, Q, a, and A so that the
center of the circle is located at x = 0?

(c) Assuming that the relation you found in part (b) holds, what is
the radius of the circle in terms of a and A?

(d) Explain why the previous results imply the following state-
ment: if a charge Q is externally located a distance A > R
from the center of a grounded conducting spherical shell with
radius R, then the external field due to the shell is the same as
the field of an image point charge −q = −QR/A located a dis-
tance a = R2/A from the center of the shell; see Fig. 3.25. The
total external field is the sum of this field plus the field from
Q. (The internal field is zero, by the uniqueness theorem.)

a

qR/a–q
R

R2/a

  Real
charge

Image
charge

Figure 3.26.

(e) Likewise for the following statement: if a charge −q is inter-
nally located a distance a < R from the center of a grounded
conducting spherical shell with radius R, then the internal field
due to the shell is the same as the field of an image point charge
Q = qR/a located a distance A = R2/a from the center of the
shell; see Fig. 3.26. The total internal field is the sum of this
field plus the field from q. (The external field is zero, because
otherwise the shell would not have the same potential as infin-
ity. Evidently a charge +q flows onto the grounded shell.)

3.14 Force from a conducting shell **
A charge Q is located a distance r > R from the center of a
grounded conducting spherical shell with radius R. Using the result
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from Problem 3.13, find the force from the shell on the charge Q.
Consider the r ≈ R and r → ∞ limits.

3.15 Dipole from a shell in a uniform field ***
If a neutral conducting spherical shell with radius R is placed in
a uniform electric field E, the charge on the shell will redistribute
itself and create a sort of dipole.

(a) Show that the external field due to the redistributed charge on
the shell is in fact exactly equal to the field due to an idealized
dipole at the center of the shell. What is the strength p of the
dipole?

(b) Using the form of the dipole field given in Eq. (2.36), verify
that the total external field (E plus the field from the shell) is
perpendicular to the shell at the surface.

(c) What is the surface charge density as a function of position on
the shell?

Hint: Use the result from Problem 3.13, and consider the uniform
field E to be generated by a charge Q at position x = −A, plus a
charge −Q at position x = A. In the limit where both Q and A go
to infinity (in an appropriate manner), the field at the location of
the shell is finite, essentially uniform, and points in the positive x
direction.

3.16 Image charge for a nongrounded spherical shell **
A charge Q is located a distance r > R from the center of a
nongrounded conducting spherical shell with radius R and total
charge qs. The field external to the shell can be mimicked by the
combination of the image charge discussed in Problem 3.13, plus
a second image charge. What is this second charge, and where is it
located?

C1

C2

C2C1

(b)

(a)

Figure 3.27.

3.17 Capacitance of raindrops *
N charged raindrops with radius a all have the same potential.
Assume that they are far enough apart so that the charge distribu-
tion on each isn’t affected by the others (that is, it is spherically
symmetric). What is the total capacitance of this system? How
does this capacitance compare with the capacitance in the case
where the drops are combined into one big drop?

3.18 Adding capacitors **
(a) Two capacitors, C1 and C2, are connected in series, as shown

in Fig. 3.27(a). Show that the effective capacitance C of the
system is given by

1
C

= 1
C1

+ 1
C2

. (3.39)

Check the C1 → 0 and C1 → ∞ limits.
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(b) If the capacitors are instead connected in parallel, as shown in
Fig. 3.27(b), show that the effective capacitance is given by

C = C1 + C2. (3.40)

Again check the C1 → 0 and C1 → ∞ limits.

These two rules are the opposites of the rules for adding resistors
(see Problem 4.3) and inductors (see Problem 7.13).

3.19 Uniform charge on a capacitor **
Problem 3.4 shows that the charge distribution on an isolated con-
ducting disk is not uniform. But when two oppositely charged disks
(or any other planar shape) are placed very close to each other to
form a capacitor, the charge distribution on each is essentially uni-
form, assuming the separation is small. Can you prove this?

3.20 Distribution of charge on a capacitor **
Consider a parallel-plate capacitor with different magnitudes of
charge on the two plates. Let the charges be Q1 and Q2 (which
we normally set equal to Q and −Q). Find the four amounts of
charge on the inner and outer surfaces of the two plates.

3.21 A four-plate capacitor **
Consider a capacitor made of four parallel plates with large area
A, evenly spaced with small separation s. The first and third are
connected by a wire, as are the second and fourth. What is the
capacitance of this system?

3.22 A three-cylinder capacitor **
A capacitor consists of three concentric cylindrical shells with
radii R, 2R, and 3R. The inner and outer shells are connected by
a wire, so they are at the same potential. The shells start neutral,
and then a battery transfers charge from the middle shell to the
inner/outer shells.

(a) If the final charge per unit length on the middle shell is −λ,
what are the charges per unit length on the inner and outer
shells?

(b) What is the capacitance per unit length of the system?
(c) If the battery is disconnected, what happens to the three

charges-per-length on the shells if λnew is added to the outer
shell?

3.23 Capacitance coefficients and C **
Consider the setup in the example in Section 3.6. Explain why the
relations in Eq. (3.24), which contain four capacitance coefficients,
reduce properly to the simple Q = Cφ statement for a parallel-
plate capacitor, with C given in Eq. (3.15).
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3.24 Human capacitance *
Make a rough estimate of the capacitance of an isolated human
body. (Hint: It must lie somewhere between that of an inscribed
sphere and that of a circumscribed sphere.) By shuffling over a
nylon rug on a dry winter day, you can easily charge yourself up to
a couple of kilovolts – as shown by the length of the spark when
your hand comes too close to a grounded conductor. How much
energy would be dissipated in such a spark?

3.25 Energy of a disk *
Given that the capacitance of an isolated conducting disk of radius
a is 8ε0a, what is the energy stored in the electric field of such
a disk when the net charge on the disk is Q? Compare this with
the energy in the field of a nonconducting disk of the same radius
that has an equal charge Q distributed with uniform density over
its surface. (See Exercise 2.56.) Which ought to be larger? Why?

3.26 Force on a capacitor plate ***
A parallel-plate capacitor consists of a fixed plate and a movable
plate that is allowed to slide in the direction parallel to the plates.
Let x be the distance of overlap, as shown in Fig. 3.28. The sepa-

x(Fixed)

(Movable)

Figure 3.28.

ration between the plates is fixed.

(a) Assume that the plates are electrically isolated, so that their
charges ±Q are constant. In terms of Q and the (variable)
capacitance C, derive an expression for the leftward force on
the movable plate. Hint: Consider how the energy of the sys-
tem changes with x.

(b) Now assume that the plates are connected to a battery, so that
the potential difference φ is held constant. In terms of φ and
the capacitance C, derive an expression for the force.

(c) If the movable plate is held in place by an opposing force,
then either of the above two setups could be the relevant one,
because nothing is moving. So the forces in (a) and (b) should
be equal. Verify that this is the case.

3.27 Force on a capacitor plate, again ***
Repeat the three parts of Problem 3.26, but don’t use the word
“capacitance” in your solution. Instead find the stored energy by
considering the energy density of the electric field. Write the force
in terms of the overlap x, the separation s, the width of the plates �

(in the direction perpendicular to the page), and either the charge
Q (for part (a)) or the density σ (for part (b)).

3.28 Maximum energy storage between spheres **
We want to design a spherical vacuum capacitor, with a given
radius a for the outer spherical shell, that will be able to store the
greatest amount of electrical energy subject to the constraint that
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the electric field strength at the surface of the inner sphere may not
exceed E0. What radius b should be chosen for the inner spherical
conductor, and how much energy can be stored?

3.29 Compressing a sphere **
A spherical conducting shell has radius R and potential φ. If you
want, you can consider it to be part of a capacitor with the other
shell at infinity. You compress the shell down to essentially zero
size (always keeping it spherical) while a battery holds the poten-
tial constant at φ. By calculating the initial and final energies stored
in the system, and also the work done by (or on) you and the bat-
tery, verify that energy is conserved. (Be sure to specify clearly
what your conservation-of-energy statement is, paying careful
attention to the signs of the various quantities.)

3.30 Two ways of calculating energy ***
A capacitor consists of two arbitrarily shaped conducting shells,
with one inside the other. The inner conductor has charge Q, the
outer has charge −Q. We know of two ways of calculating the
energy U stored in this system. We can find the electric field E and
then integrate ε0E2/2 over the volume between the conductors. Or
if we know the potential difference φ, we can write U = Qφ/2 (or
equivalently U = Cφ2/2).

(a) Show that these two methods give the same energy in the case
of two concentric shells.

(b) By using the identity ∇ · (φ∇φ) = (∇φ)2 + φ ∇2φ, show that
the two methods give the same energy for conductors of any
shape.

Exercises

(a)

(b)

q

Vacuum

Thin shell

q

Figure 3.29.

3.31 In or out *
A positive charge q is placed at the center of each of the neutral
cylindrical-ish hollow conducting shells whose cross sections are
shown in Fig. 3.29. (White areas on the page denote vacuum; the
shaded curves denote the metal of the conducting shells.) For each
case, indicate roughly the induced charge distribution on the con-
ductor. Be sure to indicate which part of the surface the charge lies
on. Are your distributions consistent with the fact that there is no
electric field in an empty cavity inside a conducting shell?

3.32 Gravity screen *
What is wrong with the idea of a gravity screen, something that
will “block” gravity the way a metal sheet seems to “block” the
electric field? Think about the difference between the gravitational
source and electrical sources. Note that the walls of the box in
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Fig. 3.8 do not block the field of the outside sources but merely
allow the surface charges to set up a compensating field. Why can’t
something of this sort be contrived for gravity? What would you
need to accomplish it?

3.33 Two concentric shells **
(a) The shaded regions in Fig. 3.30 represent two neutral concen-

tric conducting spherical shells. The white regions represent

q q

Figure 3.30.

vacuum. Two point charges q are located as shown; the inter-
ior one is off-center. Draw a reasonably accurate picture of the
field lines everywhere, and indicate the various charge den-
sities. What quantities are spherically symmetric? (There are
two possible cases for what your picture can look like, depend-
ing on how close the exterior point charge is; see Exercise 3.49.
Take your pick.)

(b) Repeat the above tasks in the case where the two shells are
connected by a wire, so that they are at the same potential.

3.34 Equipotentials **
A point charge is located in the vicinity of a neutral conducting
sphere. Make a rough sketch of a few equipotential surfaces; you
need only indicate the qualitative features. How do the surfaces
make the transition from very small circles (or spheres, in space)
around the point charge to very large circles around the whole sys-
tem? Explain why there must be points on the surface of the sphere
where the electric field is zero.

3.35 Electric field at a corner ***
A very long conducting tube has a square cross section. The charge
per unit length in the longitudinal direction is λ. Explain why the
external electric field diverges at the corners of the tube. Does this
result depend on the specific shape of the tube? What if the cross
section is triangular or hexagonal? Or what if the point in question
is at the tip of a cone or at a kink in a wire?

3.36 Zero flow ***
If you did Exercise 2.50, you found that the charge on each sphere
is proportional to the radius r. As mentioned in that exercise, if the
spheres are connected by a wire, no charge will flow in the wire.
Imagine that one sphere is much smaller than the other. Then, since
the electric field is proportional to 1/r2, the field is much larger at
the surface of the smaller sphere than the larger sphere, because
the charge is proportional only to r. So why doesn’t the charge get
repelled from the smaller sphere and flow through the wire to the
larger sphere? Hint: See Problem 3.10.
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3.37 A charge between two plates **
Two parallel plates are connected by a wire so that they remain at
the same potential. Let one plate coincide with the xz plane and

y

z

x

s

b

Figure 3.31.

the other with the plane y = s. The distance s between the plates
is much smaller than the lateral dimensions of the plates. A point
charge Q is located between the plates at y = b (see Fig. 3.31).
What is the magnitude of the total surface charge on the inner sur-
face of each plate?

Here are some helpful thoughts. The total surface charge on
the inner surface of both plates must of course be −Q (why?), and
we can guess that a larger fraction of it will be found on the nearer
plate. If the charge were very close to the left plate, b � s, the
presence of the plate on the right couldn’t make much difference.
However, we want to know exactly how the charge divides. If you
try to use an image method you will discover that you need an
infinite chain of images, rather like the images you see in a bar-
bershop with mirrors on both walls (see Problem 3.12). It is not
easy to calculate the resultant field at any point on one of the sur-
faces (see Exercise 3.45). Nevertheless, the question we asked can
be answered by a very simple calculation based on superposition.
(Hint: Adding another charge Q anywhere on the plane y = b
would just double the surface charge on each plate. In fact the total
surface charge induced by any number of charges is independent
of their position on the plane y = b. If only we had a sheet of uni-
form charge on this plane the electric fields would be simple, and
we could use Gauss’s law. Take it from there.)

3.38 Two charges and a plane *
A positive point charge Q is fixed a distance � above a horizontal
conducting plane. An equal negative charge −Q is to be located
somewhere along the perpendicular dropped from Q to the plane.
Where can −Q be placed so that the total force on it will
be zero?

3.39 A wire above the earth *
By solving the problem of the point charge and the plane conduc-
tor, we have, in effect, solved every problem that can be constructed
from it by superposition. For instance, suppose we have a straight
wire 200 meters long, uniformly charged with 10−5 C per meter of
length, running parallel to the earth at a height of 5 meters. What is
the field strength at the surface of the earth, immediately below the
wire? (For steady fields the earth behaves like a good conductor.)
You may work in the approximation where the length of the wire
is much greater than its height. What is the electrical force acting
on the wire?
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3.40 Direction of the force **
A point charge q is located a fixed height h above an infinite hor-
izontal conducting plane, as shown in Fig. 3.32. Another point
charge q is located a height z (with z > h) above the plane. The

q

q

h

z

Figure 3.32.

two charges lies on the same vertical line. If z is only slightly larger
than h, then the force on the top charge is clearly upward. But for
larger values of z, is the force still always upward? Try to solve this
without doing any calculations. Hint: Think dipole.

3.41 Horizontal field line **
In the field of the point charge over the plane (Fig. 3.11), if you
follow a field line that starts out from the point charge in a hori-
zontal direction, that is, parallel to the plane, where does it meet
the surface of the conductor? (You’ll need Gauss’s law and a sim-
ple integration.)

3.42 Point charge near a corner **
Locate two charges q each and two charges −q each on the cor-
ners of a square, with like charges diagonally opposite one another.
Show that there are two equipotential surfaces that are planes. In
this way sketch qualitatively the field of the system where a single
point charge is located symmetrically in the inside corner formed
by bending a metal sheet through a right angle. Which configu-
rations of conducting planes and point charges can be solved this
way and which can’t? How about a point charge located on the
bisector of a 120◦ dihedral angle between two conducting
planes?

3.43 Images from three planes **
Imagine the xy plane, the xz plane, and the yz plane all made of
metal and soldered together at the intersections. A single point
charge Q is located a distance d from each of the planes. Sketch
the configuration of image charges you need to satisfy the bound-
ary conditions. What is the direction and magnitude of the force
that acts on the charge Q?

3.44 Force on a charge between two planes **
A point charge q is located between two parallel infinite conduct-
ing planes, a distance b from one and � − b from the other. Using
the results from Problem 3.12 and Section 2.7, find an approximate
expression for the force on the charge in the case where the charge
is very close to one of the planes (that is, b � �).

3.45 Charge on each plane ****
(a) Consider a point charge q located between two parallel infi-

nite conducting planes. The planes are a distance � apart, and
the point charge is distance b from the right plane. Using the
result from Problem 3.12, show that the electric field on the
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inside surface of the right plane, at a point a distance r from
the axis containing all the image charges, is given by

4πε0E = 2qb
(b2 + r2)3/2 +

∞∑
n=1

(
− 2q(2n� − b)(

(2n� − b)2 + r2
)3/2

+ 2q(2n� + b)(
(2n� + b)2 + r2

)3/2

)
.

(3.41)

(b) Since σ = −ε0E, the above expression (divided by −4π)
gives the density on the right plane.9 The task of Exercise 3.37
is to determine (via a slick method) the total charge on each of
the two planes. Complete the same task here (in a much more
complicated manner) by directly integrating the density σ over
the entire right plane. This task is tricky due to the following
complication.

If you integrate each term in the above sum separately, you
will run into difficulty because every term in the (infinite) sum
gives ±q. (This is expected, because the result in Eq. (3.5)
does not depend on the distance from the charge to the plane.)
So the sum is not well defined. What you will need to do is
group the sum in the pairs indicated above, and integrate out
to a fixed large value of r; call it R. After first combining
the terms in each pair (making suitable approximations with
b � R), you will then obtain a sum over n that converges. This
sum can be calculated by converting it to an integral (which is
a valid step in the large-R limit). The process is quite involved,
but the end result is very clean. Your answer will be indepen-
dent of R, so letting R→∞ won’t affect it.

3.46 Sphere and plane image charges *
Using the result from Problem 3.13, show that in the case where
the real charge is very close to the grounded spherical shell (either
inside or outside), the setup reduces correctly (that is, yields the
correct value and location of the image charge) to the image-charge
setup for the infinite plane discussed in Section 3.4.

3.47 Bump on a plane **
An infinite conducting plane has a hemispherical bump on it with
radius R. A point charge Q is located a distance R above the top
of the hemisphere, as shown in Fig. 3.33. With the help of Prob-

Q

R

R

Figure 3.33.

lem 3.13, find the image charges needed to make the electric field
perpendicular to the plane and the hemisphere at all points.

9 The minus sign comes from the fact that a positive field produces flux into a Gaussian
surface containing the right plane.
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3.48 Density at top of bump on a plane ***
If you solved Exercise 3.47, here’s an extension. Assume that the
distance A from the given charge Q to the plane is much larger than
the radius R of the hemisphere. Show that in the A � R limit, the
surface charge density at the top of the hemisphere is three times
as large as the density would be on the plane (at the foot of the
perpendicular from Q) if we simply had a flat plane without the
bump.

3.49 Positive or negative density **
A positive point charge Q is located outside a nongrounded con-
ducting spherical shell with radius R. The net charge on the shell is
also Q. If the point charge is located very close to the shell, the sur-
face charge density on the near part of the shell is negative. But if
the point charge is located far away, the surface density is positive
everywhere (and essentially uniform). Using the results from Prob-
lems 3.13 and 3.16, show that the cutoff between these two cases
occurs when the point charge is a distance R

(
3 +√

5
)
/2 from the

center of the shell, or equivalently R
(
1+√

5
)
/2 from the surface;

this factor is the golden ratio.

3.50 Attractive or repulsive? **
A point charge Q is located a distance r > R from the center
of a nongrounded conducting spherical shell with radius R and
net charge that is also Q. If the point charge is very far from the
shell, then the shell looks essentially like a point charge Q, so
the force between the two objects is repulsive. But if the point
charge is very close to the shell, then the excess negative charge
on the near side of the shell dominates, so the force is attrac-
tive. Using the results from Problems 3.13 and 3.16, show that
the value of r where the force makes the transition from repul-
sive to attractive is r = R

(
1 +√

5
)
/2 ≈ (1.618)R. The factor here

is the golden ratio. (In your solution, don’t panic if you end up
with a quintic equation. Just show that it has a factor of the form
x2 − x − 1.)

s

r

–r

Figure 3.34.

3.51 Conducting sphere in a uniform field ****
A neutral conducting spherical shell with radius R is placed in
a uniform electric field E. Problem 3.15 presents one method of
finding the resulting surface charge density, which comes out to be
σ = 3ε0E cos θ , where θ is measured relative to the direction of
the uniform field E. This problem presents another method.

(a) Consider two solid nonconducting spheres with uniform vol-
ume charge densities ±ρ. Imagine that they are initially placed
right on top of each other, and that one is then manually moved
a distance s, as shown in Fig. 3.34. (Assume that they can
somehow freely pass through each other.) With the centers
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now s apart, find the electric field due to the two spheres in
the region of overlap (where the net density is zero). Ignore
the additional uniform field E for now. The technique from
Problem 1.27 will be useful.

s

Figure 3.35.

(b) With the centers s apart, find the force that one shell exerts on
the other. You may assume that s � R. Hint: In Fig. 3.35, the
part of the top sphere that lies within the dashed-line sphere
experiences no force from the bottom sphere, because this part
is symmetric with respect to the center of the bottom sphere.
So we care only about the force from the bottom sphere on the
shaded part of the top sphere. For small s, all of this region
lies essentially right on the surface of the bottom sphere, so if
you can find the thickness as a function of position, then you
should be able to find the total force.

(c) Now let’s introduce the uniform field E. If the two spheres
are placed in this field, equilibrium will be reached when the
mutual attraction balances the repulsion due to the field E.
What is the resulting separation s between the centers?

Wire

A

A

s

(a)

(b)

s/2

s/2

Figure 3.36.

(d) Given the s you just found, show that the total electric field
(due to the two spheres plus the uniform field E) in the overlap
region is zero. For small s, it then follows that the surface of
the sphere is at constant potential, which means that we have
re-created the conducting-shell boundary condition.

(e) By the uniqueness theorem, the field and surface charge den-
sity for our two-sphere system is the same (for small s) as the
field and surface charge density for a conducting shell. By con-
sidering Fig. 3.34, show that the surface charge density on a
conducting shell in a uniform field E is σ = 3ε0E cos θ .

3.52 Aluminum capacitor *
Two aluminized optical flats 15 cm in diameter are separated by a
gap of 0.04 mm, forming a capacitor. What is the capacitance in
picofarads?

3.53 Inserting a plate **
If the capacitance in Fig. 3.36(a) is C, what is the capacitance in
Fig. 3.36(b), where a third plate is inserted and the outer plates are
connected by a wire?

5 cm

8 cm

Figure 3.37.

3.54 Dividing the surface charge **
Three conducting plates are placed parallel to one another as shown
in Fig. 3.37. The outer plates are connected by a wire. The inner
plate is isolated and has a net surface charge density of σ (the
combined value from the top and bottom faces of the plate). What
are the surface densities, σ1 and σ2, on the top and bottom faces
of the inner plate?
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3.55 Two pairs of plates **
Four conducting plates lie parallel to each other, as shown in
Fig. 3.38. The spacings between them are arbitrary (but small com-
pared with the lateral dimensions). The top two plates are con-
nected by a wire so that they are at the same potential, and likewise
for the bottom two. A total charge Q1 resides on the top two plates,
and a total charge Q2 on the bottom two. What is the charge on
each of the four plates?

Total charge Q2

Total charge Q1

Wire

Wire

Figure 3.38.

3.56 Field just outside a capacitor **
A capacitor consists of two disks with radius R, small separation
s, and surface charge densities ±σ . Find the electric field just out-
side the capacitor, an infinitesimal distance from the center of the
positive disk.

3.57 A 2N-plate capacitor **
Consider the setup in Problem 3.21, but now with 2N parallel
plates instead of four. The first, third, fifth, etc. plates are con-
nected by wires, and likewise for the second, fourth, sixth, etc.
plates. What is the capacitance of this system? What does it equal
in the N → ∞ limit?

Q –Q Q –Q

Wire

Figure 3.39.

3.58 Capacitor paradox **
Two capacitors with the same capacitance C and charge Q are
placed next to each other, as shown in Fig. 3.39. The two posi-
tive plates are then connected by a wire. Will charge flow in the
wire? Consider two possible reasonings:

(A) Before the plates are connected, the potential differences of the
two capacitors are the same (because Q and C are the same).
So the potentials of the two positive plates are equal. There-
fore, no charge will flow in the wire when the plates are con-
nected.

(B) Number the plates 1 through 4, from left to right. Before the
plates are connected, there is zero electric field in the region
between the capacitors, so plate 3 must be at the same poten-
tial as plate 2. But plate 2 is at a lower potential than plate 1.
Therefore, plate 3 is at a lower potential than plate 1, so charge
will flow in the wire when the plates are connected.

Which reasoning is correct, and what is wrong with the wrong rea-
soning?

3.59 Coaxial capacitor **
A capacitor consists of two coaxial cylinders of length L, with
outer and inner radii a and b. Assume L � a − b, so that end
corrections may be neglected. Show that the capacitance is C =
2πε0L/ ln(a/b). Verify that if the gap between the cylinders, a−b,
is very small compared with the radius, this result reduces to one
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that could have been obtained by using the formula for the parallel-
plate capacitor.

3.60 A three-shell capacitor **
A capacitor consists of three concentric spherical shells with radii
R, 2R, and 3R. The inner and outer shells are connected by a wire
(passing through a hole in the middle shell, without touching it),
so they are at the same potential. The shells start neutral, and then
a battery transfers charge from the middle shell to the inner and
outer shells.

(a) If the final charge on the middle shell is −Q, what are the
charges on the inner and outer shells?

(b) What is the capacitance of the system?
(c) If the battery is disconnected, what happens to the three

charges on the shells if charge q is added to the outer shell?

3.61 Capacitance of a spheroid **
Here is the exact formula for the capacitance C of a conductor in
the form of a prolate spheroid of length 2a and diameter 2b:

C = 8πε0aε

ln
(

1 + ε

1 − ε

) , where ε =
√

1 − b2

a2 . (3.42)

First verify that the formula reduces to the correct expression for the
capacitance of a sphere if b → a. Now imagine that the spheroid is
a charged water drop. If this drop is deformed at constant volume
and constant charge Q from a sphere to a prolate spheroid, will
the energy stored in the electric field increase or decrease? (The
volume of the spheroid is (4/3)πab2.)

3.62 Deriving C for a spheroid ***
If you worked Exercise 2.44, use that result to derive the formula
given in Exercise 3.61 for the capacitance of an isolated conductor
of prolate spheroidal shape.

3.63 Capacitance coefficients for shells **
A capacitor consists of two concentric spherical shells. Label the
inner shell, of radius b, as conductor 1; and label the outer shell, of
radius a, as conductor 2. For this two-conductor system, find C11,
C22, and C12.

3.64 Capacitance-coefficient symmetry **
Here are some suggestions that should enable you to construct a
proof that C12 must always equal C21. We know that, when an ele-
ment of charge dQ is transferred from zero potential to a conductor
at potential φ, some external agency has to supply an amount of
energy φ dQ. Consider a two-conductor system in which the two
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conductors have been charged so that their potentials are, respec-
tively, φ1f and φ2f (“f” for “final”). This condition might have been
brought about, starting from a state with all charges and potentials
zero, in many different ways. Two possible ways are of particular
interest.

(a) Keep φ2 at zero while raising φ1 gradually from zero to φ1f.
Then raise φ2 from zero to φ2f while holding φ1 constant at
φ1f.

(b) Carry out a similar program with the roles of 1 and 2 ex-
changed, that is, raise φ2 from zero to φ2f first, and so on.

Compute the total work done by external agencies, for each of the
two charging programs. Then complete the argument.

3.65 Capacitor energy *
We found in Section 3.7 that the energy stored in a capacitor is
U = Qφ/2. Show that Eq. (2.32) yields this same result.

3.66 Adding a capacitor **
A 100 pF capacitor is charged to 100 volts. After the charging bat-
tery is disconnected, the capacitor is connected in parallel with
another capacitor. If the final voltage is 30 volts, what is the capac-
itance of the second capacitor? How much energy was lost, and
what happened to it?

3.67 Energy in coaxial tubes **
Two coaxial aluminum tubes are 30 cm long. The outer diameter
of the inner tube is 3 cm, the inner diameter of the outer tube is
4 cm. When these are connected to a 45 volt battery, how much
energy is stored in the electric field between the tubes?

3.68 Maximum energy storage between cylinders **
We want to design a cylindrical vacuum capacitor, with a given
radius a for the outer cylindrical shell, that will be able to store
the greatest amount of electrical energy per unit length, subject to
the constraint that the electric field strength at the surface of the
inner cylinder may not exceed E0. What radius b should be chosen
for the inner cylindrical conductor, and how much energy can be
stored per unit length?

3.69 Force, and potential squared *
(a) In Gaussian units, show that the square of a potential differ-

ence (φ2−φ1)
2 has the same dimensions as force. (In SI units,

ε0(φ2 −φ1)
2 has the same units as force.) This tells us that the

electrostatic forces between bodies will largely be determined,
as to order of magnitude, by the potential differences involved.
Dimensions will enter only in ratios, and there may be some
constants like 4π . What is the order of magnitude of force you
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expect with 1 statvolt potential difference between something
and something else?

(b) Practically achievable potential differences are rather severely
limited, for reasons having to do with the structure of matter.
The highest man-made difference of electric potential is about
107 volts, achieved by a Van de Graaff electrostatic genera-
tor operating under high pressure. (Billion-volt accelerators
do not involve potential differences that large.) How many
pounds force are you likely to find associated with a “square
megavolt”? These considerations may suggest why electrostatic
motors have not found much application.

s 

–s

s
s/2

Figure 3.40.

3.70 Force and energy for two plates **
Calculate the electrical force that acts on one plate of a parallel-
plate capacitor. The potential difference between the plates is 10
volts, and the plates are squares 20 cm on a side with a separation
of 3 cm. If the plates are insulated so the charge cannot change,
how much external work could be done by letting the plates come
together? Does this equal the energy that was initially stored in the
electric field?

A

y

B

s

b

Figure 3.41.

3.71 Conductor in a capacitor **
(a) The plates of a capacitor have area A and separation s (assumed

to be small). The plates are isolated, so the charges on them
remain constant; the charge densities are ±σ . A neutral con-
ducting slab with the same area A but thickness s/2 is initially
held outside the capacitor; see Fig. 3.40. The slab is released.
What is its kinetic energy at the moment it is completely inside
the capacitor? (The slab will indeed get drawn into the capaci-
tor, as evidenced by the fact that the kinetic energy you calcu-
late will be positive.)

(b) Same question, but now let the plates be connected to a battery
that maintains a constant potential difference. The charge den-
sities are initially ±σ . (Don’t forget to include the work done
by the battery, which you will find to be nonzero.)

3.72 Force on a capacitor sheet ***
The aluminum sheet A shown in Fig. 3.41 is suspended by an insu-
lating thread between the surfaces formed by the bent aluminum
sheet B. The sheets A and B are oppositely charged; the difference
in potential is V . This causes a force F, in addition to the weight
of A, pulling A downward. If we can measure F and know the var-
ious dimensions, we should be able to infer V . As an application
of Eq. (3.32), work out a formula giving V in terms of F and the
relevant dimensions.
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3.73 Force on a coaxial capacitor ***
A cylinder with 4 cm outer diameter hangs, with its axis verti-
cal, from one arm of a beam balance. The lower portion of the
hanging cylinder is surrounded by a stationary cylinder, coaxial,
with inner diameter 6 cm. Calculate the magnitude of the force
tending to pull the hanging cylinder further down when the poten-
tial difference between the two cylinders is held constant at
5 kilovolts.

Line charge
density –λ

Line charge
density λ

r2

r1

f = 0

Figure 3.42.

3.74 Equipotentials for two pipes ***
A typical two-dimensional boundary-value problem is that of two
parallel circular conducting cylinders, such as two metal pipes, of
infinite length and at different potentials. These two-dimensional
problems happen to be much more tractable than three-dimensional
problems, mathematically. In fact, the key to all problems of the
“two-pipe” class is given by the field around two parallel line
charges of equal and opposite linear density; see Fig. 3.42. All
equipotential surfaces in this field are circular cylinders! See if
you can prove this. (And all field lines are circular too, but you
don’t have to prove that here.) It is easiest to work with the poten-
tial, but you must note that one cannot set the potential zero at
infinity in a two-dimensional system. Let zero potential be at the
line midway between the two line charges, that is, at the ori-
gin in the cross-sectional diagram. The potential at any point is
the sum of the potentials calculated for each line charge sep-
arately. This should lead you quickly to the discovery that the
potential is simply proportional to ln(r2/r1) and is therefore con-
stant on a curve traced by a point whose distances from two
points are in a constant ratio. Make a sketch showing some of the
equipotentials.

3.75 Average of six points *
Let φ(x, y, z) be any function that can be expanded in a power
series around a point (x0, y0, z0). Write a Taylor series expansion
for the value of φ at each of the six points (x0 + δ, y0, z0), (x0 −
δ, y0, z0), (x0, y0+δ, z0), (x0, y0−δ, z0), (x0, y0, z0+δ), (x0, y0,
z0 − δ), which symmetrically surround the point (x0, y0, z0) at a
distance δ. Show that, if φ satisfies Laplace’s equation, the average
of these six values is equal to (x0, y0, z0) through terms of the third
order in δ.

3.76 The relaxation method **
Here’s how to solve Laplace’s equation approximately, for given
boundary values, using nothing but arithmetic. The method is the
relaxation method mentioned in Section 3.8, and it is based on the
result of Exercise 3.75. For simplicity we take a two-dimensional
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Figure 3.43.
Replace value at an interior point by 1/4× sum
of its four neighbors: c → (100 + a + d + e)/4;
keep a′ = a, b′ = b, c′ = c, and f ′ = f .
Suggested starting values: a = 50, b = 25,
c = 50, d = 25, e = 50, f = 25, g = 25.

example. In Fig. 3.43 there are two square equipotential boundaries,
one inside the other. This might be a cross section through a capaci-
tor made of two sizes of square metal tubing. The problem is to find,
for an array of discrete points, numbers that will be a good approx-
imation to the values at those points of the exact two-dimensional
potential function φ(x, y). We make the array rather coarse, to keep
the labor within bounds.

Let us assign, arbitrarily, potential 100 to the inner boundary
and zero to the outer. All points on these boundaries retain those
values. You could start with any values at the interior points, but
time will be saved by a little judicious guesswork. We know the
correct values must lie between 0 and 100, and we expect that
points closer to the inner boundary will have higher values than
those closer to the outer boundary. Some reasonable starting values
are suggested in the figure. Obviously, you should take advantage
of the symmetry of the configuration: only seven different inte-
rior values need to be computed. Now you simply go over these
seven interior lattice points in some systematic manner, replacing
the value at each interior point by the average of its four neighbors.
Repeat until all changes resulting from a sweep over the array are
acceptably small. For this exercise, let us agree that it will be time
to quit when no change larger in absolute magnitude than one unit
occurs in the course of the sweep. Enter your final values on the
array, and sketch the approximate course that two equipotentials,
for φ = 25 and φ = 50, would have in the actual continuous φ(x, y).

The relaxation of the values toward an eventually unchanging
distribution is closely related to the physical phenomenon of diffu-
sion. If you start with much too high a value at one point, it will
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“spread” to its nearest neighbors, then to its next nearest neighbors,
and so on, until the bump is smoothed out.

3.77 Relaxation method, numerical ***
The relaxation method is clearly well adapted to numerical com-
putation. Write a program that will deal with the setup in Exer-
cise 3.76 on a finer mesh – say, a grid with four times as many
points and half the spacing. It might be a good idea to utilize a
coarse-mesh solution in assigning starting values for the relaxation
on the finer mesh.



4
Electric currentsOverview In this chapter we discuss charge in motion, or elec-

tric current. The current density is defined as the current per
cross-sectional area. It is related to the charge density by the con-
tinuity equation. In most cases, the current density is proportional
to the electric field; the constant of proportionality is called the con-
ductivity, with the inverse of the conductivity being the resistivity.
Ohm’s law gives an equivalent way of expressing this proportion-
ality. We show in detail how the conductivity arises on a molecular
level, by considering the drift velocity of the charge carriers when
an electric field is applied. We then look at how this applies to
metals and semiconductors. In a circuit, an electromotive force
(emf) drives the current. A battery produces an emf by means of
chemical reactions. The current in a circuit can be found either by
reducing the circuit via the series and parallel rules for resistors,
or by using Kirchhoff’s rules. The power dissipated in a resistor
depends on the resistance and the current passing through it. Any
circuit can be reduced to a Thévenin equivalent circuit involving
one resistor and one emf source. We end the chapter by investi-
gating how the current changes in an RC circuit.

4.1 Electric current and current density
An electric current is charge in motion. The carriers of the charge can
be physical particles like electrons or protons, which may or may not
be attached to larger objects, atoms or molecules. Here we are not con-
cerned with the nature of the charge carriers but only with the net trans-
port of electric charge their motion causes. The electric current in a wire
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is the amount of charge passing a fixed mark on the wire in unit time.
The SI unit of current is the coulomb/second, which is called an ampere
(amp, or A):

1 ampere = 1
coulomb
second

. (4.1)
(a)
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Figure 4.1.
(a) A swarm of charged particles all moving with
the same velocity u. The frame has area a. The
particles that will pass through the frame in the
next �t seconds are those now contained in the
oblique prism (b). The prism has base area a
and altitude u �t cos θ , hence its volume is
au �t cos θ or a · u �t.

In Gaussian units current is expressed in esu/second. A current of 1 A is
the same as a current of 2.998·109 esu/s, which is equivalent to 6.24·1018

elementary electronic charges per second.
It is the net charge transport that counts, with due regard to sign.

Negative charge moving east is equivalent to positive charge moving
west. Water flowing through a hose could be said to involve the trans-
port of an immense amount of charge – about 3 · 1023 electrons per gram
of water! But since an equal number of protons move along with the
electrons (every water molecule contains ten of each), the electric cur-
rent is zero. On the other hand, if you were to charge negatively a nylon
thread and pull it steadily through a nonconducting tube, that would con-
stitute an electric current, in the direction opposite to that of the motion
of the thread.

We have been considering current along a well-defined path, like
a wire. If the current is steady – that is, unchanging in time – it must
be the same at every point along the wire, just as with steady traffic
the same number of cars must pass, per hour, different points along an
unbranching road.

A more general kind of current, or charge transport, involves charge
carriers moving around in three-dimensional space. To describe this we
need the concept of current density. We have to consider average quanti-
ties, for charge carriers are discrete particles. We must suppose, as we did
in defining the charge density ρ, that our scale of distances is such that
any small region we wish to average over contains very many particles
of any class we are concerned with.

Consider first a special situation in which there are n particles per
cubic meter, on the average, all moving with the same vector velocity u
and carrying the same charge q. Imagine a small frame of area a fixed in
some orientation, as in Fig. 4.1(a). How many particles pass through the
frame in a time interval �t? If �t begins the instant shown in Fig. 4.1(a)
and (b), the particles destined to pass through the frame in the next
�t interval will be just those now located within the oblique prism in
Fig. 4.1(b). This prism has the frame area as its base and an edge length
u �t, which is the distance any particle will travel in a time �t. Particles
outside this prism will either miss the window or fail to reach it. The vol-
ume of the prism is the product (base) × (altitude), or au �t cos θ , which
can be written a · u �t. On the average, the number of particles found in
such a volume will be na·u �t. Hence the average rate at which charge is
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passing through the frame, that is, the current through the frame, which
we shall call Ia, is

Ia = q(na · u �t)
�t

= nqa · u. (4.2)

Suppose we had many classes of particles in the swarm, differing in
charge q, in velocity vector u, or in both. Each would make its own con-
tribution to the current. Let us tag each kind by a subscript k. The kth
class has charge qk on each particle, moves with velocity vector uk, and
is present with an average population density of nk such particles per
cubic meter. The resulting current through the frame is then

Ia = n1q1a · u1 + n2q2a · u2 + · · · = a ·
∑

k

nkqkuk. (4.3)

On the right is the scalar product of the vector a with a vector quantity
that we shall call the current density J:

J =
∑

k

nkqkuk (4.4)

The SI unit of current density is amperes per square meter (A/m2),1 or
equivalently coulombs per second per square meter (C s−1m−2), although
technically the ampere is a fundamental SI unit while the coulomb is not
(a coulomb is defined as one ampere-second). The Gaussian unit of cur-
rent density is esu per second per square centimeter (esu s−1cm−2).

Let’s look at the contribution to the current density J from one vari-
ety of charge carriers, electrons say, which may be present with many
different velocities. In a typical conductor, the electrons will have an
almost random distribution of velocities, varying widely in direction and
magnitude. Let Ne be the total number of electrons per unit volume, of all
velocities. We can divide the electrons into many groups, each of which
contains electrons with nearly the same speed and direction. The average
velocity of all the electrons, like any average, would then be calculated
by summing over the groups, weighting each velocity by the number in
the group, and dividing by the total number. That is,

u = 1
Ne

∑
k

nkuk. (4.5)

We use the bar over the top, as in u, to mean the average over a distri-
bution. Comparing Eq. (4.5) with Eq. (4.4), we see that the contribution

1 Sometimes one encounters current density expressed in A/cm2. Nothing is wrong with
that; the meaning is perfectly clear as long as the units are stated. (Long before SI was
promulgated, two or three generations of electrical engineers coped quite well with
amperes per square inch!)
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of the electrons to the current density can be written simply in terms of
the average electron velocity. Remembering that the electron charge is
q = −e, and using the subscript e to show that all quantities refer to this
one type of charge carrier, we can write

Je = −eNeue. (4.6)

This may seem rather obvious, but we have gone through it step by
step to make clear that the current through the frame depends only on
the average velocity of the carriers, which often is only a tiny fraction,
in magnitude, of their random speeds. Note that Eq. (4.6) can also be
written as Je = ρeue, where ρe = −eNe is the volume charge density of
the electrons.

4.2 Steady currents and charge conservation
The current I flowing through any surface S is just the surface integral

I =
∫

S
J · da. (4.7)

We speak of a steady or stationary current system when the cur-
rent density vector J remains constant in time everywhere. Steady cur-
rents have to obey the law of charge conservation. Consider some region
of space completely enclosed by the balloonlike surface S. The surface
integral of J over all of S gives the rate at which charge is leaving the
volume enclosed. Now if charge forever pours out of, or into, a fixed
volume, the charge density inside must grow infinite, unless some com-
pensating charge is continually being created there. But charge creation
is just what never happens. Therefore, for a truly time-independent cur-
rent distribution, the surface integral of J over any closed surface must be
zero. This is completely equivalent to the statement that, at every point
in space,

div J = 0. (4.8)

To appreciate the equivalence, recall Gauss’s theorem and our fundamen-
tal definition of divergence in terms of the surface integral over a small
surface enclosing the location in question.

We can make a more general statement than Eq. (4.8). Suppose the
current is not steady, J being a function of t as well as of x, y, and z.
Then, since

∫
S J · da is the instantaneous rate at which charge is leaving

the enclosed volume, while
∫

V ρ dv is the total charge inside the volume
at any instant, we have ∫

S
J · da = − d

dt

∫
V

ρ dv. (4.9)
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Letting the volume in question shrink down around any point (x, y, z), the
relation expressed in Eq. (4.9) becomes:2

div J = −∂ρ

∂t
(time-dependent charge distribution). (4.10)

The time derivative of the charge density ρ is written as a partial derivative
since ρ will usually be a function of spatial coordinates as well as time.
Equations (4.9) and (4.10) express the (local) conservation of charge: no
charge can flow away from a place without diminishing the amount of
charge that is there. Equation (4.10) is known as the continuity equation.

Example (Vacuum diode) An instructive example of a stationary current
distribution occurs in the plane diode, a two-electrode vacuum tube; see Fig. 4.2.
One electrode, the cathode, is coated with a material that emits electrons copi-

Cathode

Heater

Anode

v

x

y

E

Figure 4.2.
A vacuum diode with plane-parallel cathode and
anode.ously when heated. The other electrode, the anode, is simply a metal plate. By

means of a battery the anode is maintained at a positive potential with respect
to the cathode. Electrons emerge from this hot cathode with very low velocities
and then, being negatively charged, are accelerated toward the positive anode by
the electric field between cathode and anode. In the space between the cathode
and anode the electric current consists of these moving electrons. The circuit is
completed by the flow of electrons in external wires, possibly by the movement
of ions in a battery, and so on, with which we are not here concerned.

In this diode the local density of charge in any region, ρ, is simply −ne,
where n is the local density of electrons, in electrons per cubic meter. The local
current density J is ρv, where v is the velocity of electrons in that region. In the
plane-parallel diode we may assume J has no y or z components. If conditions
are steady, it follows then that Jx must be independent of x, for if div J = 0
as Eq. (4.8) says, ∂Jx/∂x must be zero if Jy = Jz = 0. This is belaboring
the obvious; if we have a steady stream of electrons moving in the x direc-
tion only, the same number per second have to cross any intermediate plane
between cathode and anode. We conclude that ρv is constant. But observe that
v is not constant; it varies with x because the electrons are accelerated by the
field. Hence ρ is not constant either. Instead, the negative charge density is
high near the cathode and low near the anode, just as the density of cars on
an expressway is high near a traffic slowdown and low where traffic is moving at
high speed.

4.3 Electrical conductivity and Ohm’s law
There are many ways of causing charge to move, including what we
might call “bodily transport” of the charge carriers. In the Van de Graaff

2 If the step between Eqs. (4.9) and (4.10) is not obvious, look back at our fundamental
definition of divergence in Chapter 2. As the volume shrinks, we can eventually take ρ

outside the volume integral on the right. The volume integral is to be carried out at one
instant of time. The time derivative thus depends on the difference between ρ

∫
dv at t

and at t + dt. The only difference is due to the change of ρ there, since the boundary of
the volume remains in the same place.
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electrostatic generator (see Problem 4.1) an insulating belt is given a sur-
face charge, which it conveys to another electrode for removal, much as
an escalator conveys people. That constitutes a perfectly good current.
In the atmosphere, charged water droplets falling because of their weight
form a component of the electric current system of the earth. In this sec-
tion we shall be interested in a more common agent of charge transport,
the force exerted on a charge carrier by an electric field. An electric field
E pushes positive charge carriers in one direction, negative charge car-
riers in the opposite direction. If either or both can move, the result is
an electric current in the direction of E. In most substances, and over a
wide range of electric field strengths, we find that the current density is
proportional to the strength of the electric field that causes it. The linear
relation between current density and field is expressed by

J = σE (4.11)

The factor σ is called the conductivity of the material. Its value depends
on the material in question; it is very large for metallic conductors,
extremely small for good insulators. It may depend too on the physi-
cal state of the material – on its temperature, for instance. But with such
conditions given, it does not depend on the magnitude of E. If you dou-
ble the field strength, holding everything else constant, you get twice the
current density.

After everything we said in Chapter 3 about the electric field being
zero inside a conductor, you might be wondering why we are now talking
about a nonzero internal field. The reason is that in Chapter 3 we were
dealing with static situations, that is, ones in which all the charges have
settled down after some initial motion. In such a setup, the charges pile
up at certain locations and create a field that internally cancels an applied
field. But when dealing with currents in conductors, we are not letting the
charges pile up, which means that things can’t settle down. For example,
a battery feeds in electrons at one end of a wire and takes them out at the
other end. If the electrons were not taken out at the other end, then they
would pile up there, and the electric field would eventually (actually very
quickly) become zero inside.

The units of σ are the units of J (namely C s−1m−2) divided by the
units of E (namely V/m or N/C). You can quickly show that this yields
C2 s kg−1m−3. However, it is customary to write the units of σ as the
reciprocal of ohm-meter, (ohm-m)−1, where the ohm, which is the unit
of resistance, is defined below.

In Eq. (4.11), σ may be considered a scalar quantity, implying that
the direction of J is always the same as the direction of E. That is surely
what we would expect within a material whose structure has no “built-
in” preferred direction. Materials do exist in which the electrical con-
ductivity itself depends on the angle the applied field E makes with
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some intrinsic axis in the material. One example is a single crystal of
graphite, which has a layered structure on an atomic scale. For another
example, see Problem 4.5. In such cases J may not have the direction
of E. But there still are linear relations between the components of J and
the components of E, relations expressed by Eq. (4.11) with σ a tensor
quantity instead of a scalar.3 From now on we’ll consider only isotropic
materials, those within which the electrical conductivity is the same in
all directions.

Equation (4.11) is a statement of Ohm’s law. It is an empirical law,
a generalization derived from experiment, not a theorem that must be
universally obeyed. In fact, Ohm’s law is bound to fail in the case of
any particular material if the electric field is too strong. And we shall
meet some interesting and useful materials in which “nonohmic” behav-
ior occurs in rather weak fields. Nevertheless, the remarkable fact is the
enormous range over which, in the large majority of materials, current
density is proportional to electric field. Later in this chapter we’ll explain
why this should be so. But now, taking Eq. (4.11) for granted, we want
to work out its consequences. We are interested in the total current I
flowing through a wire or a conductor of any other shape with well-
defined ends, or terminals, and in the difference in potential between
those terminals, for which we’ll use the symbol V (for voltage) rather
than φ1 − φ2 or φ12.

Now, I is the surface integral of J over a cross section of the conduc-
tor, which implies that I is proportional to J. Also, V is the line integral
of E on a path through the conductor from one terminal to the other,
which implies that V is proportional to E. Therefore, if J is proportional
to E everywhere inside a conductor as Eq. (4.11) states, then I must be
proportional to V . The relation of V to I is therefore another expression
of Ohm’s law, which we’ll write this way:

V = IR (Ohm’s law). (4.12)

The constant R is the resistance of the conductor between the two
terminals; R depends on the size and shape of the conductor and the

3 The most general linear relation between the two vectors J and E would be expressed
as follows. In place of the three equations equivalent to Eq. (4.11), namely, Jx = σEx,
Jy = σEy, and Jz = σEz, we would have Jx = σxxEx + σxyEy + σxzEz,
Jy = σyxEx + σyyEy + σyzEz, and Jz = σzxEx + σzyEy + σzzEz. These relations can be
compactly summarized in the matrix equation,⎛

⎝ Jx
Jy
Jz

⎞
⎠ =

⎛
⎝ σxx σxy σxz

σyx σyy σyz
σzx σzy σzz

⎞
⎠

⎛
⎝ Ex

Ey
Ez

⎞
⎠ .

The nine coefficients σxx, σxy, etc., make up a tensor, which here is just a matrix. In
this case, because of a symmetry requirement, it would turn out that σxy = σyx,
σyz = σzy, σxz = σzx. Furthermore, by a suitable orientation of the x, y, z axes, all the
coefficients could be rendered zero except σxx, σyy, and σzz.
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Figure 4.3.
The resistance of a conductor of length L,
uniform cross-sectional area A, and
conductivity σ . L
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conductivity σ of the material. The simplest example is a solid rod of
cross-sectional area A and length L. A steady current I flows through
this rod from one end to the other (Fig. 4.3). Of course there must be
conductors to carry the current to and from the rod. We consider the
terminals of the rod to be the points where these conductors are attached.
Inside the rod the current density is given by

J = I
A

, (4.13)

and the electric field strength is given by

E = V
L

. (4.14)

The resistance R in Eq. (4.12) is V/I. Using Eqs. (4.11), (4.13), and (4.14)
we easily find that

R = V
I
= LE

AJ
= L

Aσ
. (4.15)

On the way to this simple formula we made some tacit assumptions.
First, we assumed the current density is uniform over the cross section
of the bar. To see why that must be so, imagine that J is actually greater
along one side of the bar than on the other. Then E must also be greater
along that side. But then the line integral of E from one terminal to the
other would be greater for a path along one side than for a path along the
other, and that cannot be true for an electrostatic field.

A second assumption was that J kept its uniform magnitude and
direction right out to the ends of the bar. Whether that is true or not
depends on the external conductors that carry current to and from the
bar and how they are attached. Compare Fig. 4.4(a) with Fig. 4.4(b).
Suppose that the terminal in (b) is made of material with a conductivity
much higher than that of the bar. That will make the plane of the end
of the bar an equipotential surface, creating the current system to which
Eq. (4.15) applies exactly. But all we can say in general about such “end
effects” is that Eq. (4.15) will give R to a good approximation if the width
of the bar is small compared with its length.
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(a)

(b)

Figure 4.4.
Different ways in which the current I might be
introduced into the conducting bar. In (a) it has
to spread out before the current density J
becomes uniform. In (b) if the external conductor
has much higher conductivity than the bar, the
end of the bar will be an equipotential and the
current density will be uniform from the
beginning. For long thin conductors, such as
ordinary wires, the difference is negligible.
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Figure 4.5.
As long as our conductors are surrounded by a
nonconducting medium (air, oil, vacuum, etc.),
the resistance R between the terminals doesn’t
depend on the shape, only on the length of the
conductor and its cross-sectional area.

A third assumption is that the bar is surrounded by an electrically
nonconducting medium. Without that, we could not even define an iso-
lated current path with terminals and talk about the current I and the
resistance R. In other words, it is the enormous difference in conduc-
tivity between good insulators, including air, and conductors that makes
wires, as we know them, possible. Imagine the conducting rod of Fig. 4.3
bent into some other shape, as in Fig. 4.5. Because it is embedded in a
nonconducting medium into which current cannot leak, the problem pre-
sented in Fig. 4.5 is for all practical purposes the same as the one in
Fig. 4.3 which we have already solved. Equation (4.15) applies to a bent
wire as well as a straight rod, if we measure L along the wire.

In a region where the conductivity σ is constant, the steady cur-
rent condition div J = 0 (Eq. (4.8)) together with Eq. (4.11) implies that
div E = 0 also. This tells us that the charge density is zero within that
region. On the other hand, if σ varies from one place to another in the
conducting medium, steady current flow may entail the presence of static
charge within the conductor. Figure 4.6 shows a simple example, a bar
made of two materials of different conductivity, σ1 and σ2. The current
density J must be the same on the two sides of the interface; otherwise
charge would continue to pile up there. It follows that the electric field E
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Figure 4.6.
When current flows through this composite
conductor, a layer of static charge appears at
the interface between the two materials, so as to
provide the necessary jump in the electric field
E. In this example σ2 < σ1, hence E2 must be
greater than E1.

s1 > s2

s1 s2

E1 E2

I I
J

Layer of positive charge

J +
+
+
+
+
+

must be different in the two regions, with an abrupt jump in value at the
interface. As Gauss’s law tells us, such a discontinuity in E must reflect
the presence of a layer of static charge at the interface. Problem 4.2 looks
further into this example.

Instead of the conductivity σ we could have used its reciprocal, the
resistivity ρ, in stating the relation between electric field and current
density:

J =
(

1
ρ

)
E. (4.16)

It is customary to use ρ as the symbol for resistivity and σ as the symbol
for conductivity in spite of their use in some of our other equations for
volume charge density and surface charge density. In the rest of this chap-
ter ρ will always denote resistivity and σ conductivity. Equation (4.15)
written in terms of resistivity becomes

R = ρL
A

(4.17)

The SI unit for resistance is defined to be the ohm (denoted by �), which
is given by Eq. (4.12) as

1 ohm = 1
volt

ampere
. (4.18)

In terms of other SI units, you can show that 1 ohm equals
1 kg m2 C−2 s−1. If resistance R is in ohms, it is evident from Eq. (4.17)
that the resistivity ρ must have units of (ohms) × (meters). The official
SI unit for ρ is therefore the ohm-meter. But another unit of length can
be used with perfectly clear meaning. A unit commonly used for resis-
tivity, in both the physics and technology of electrical conduction, is the
ohm-centimeter (ohm-cm). If one chooses to measure resistivity in ohm-
cm, the corresponding unit for conductivity is written as ohm−1cm−1,
or (ohm-cm)−1, and called “reciprocal ohm-cm.” It should be empha-
sized that Eqs. (4.11) through (4.17) are valid for any self-consistent
choice of units.
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Example (Lengthening a wire) A wire of pure tin is drawn through a die,
reducing its diameter by 25 percent and increasing its length. By what factor is
its resistance increased? It is then flattened into a ribbon by rolling, which results
in a further increase in its length, now twice the original length. What is the
overall change in resistance? Assume the density and resistivity remain constant
throughout.

Solution Let A be the cross-sectional area, and let L be the length. The volume
AL is constant, so L ∝ 1/A. The resistance R = ρL/A is therefore proportional
to 1/A2. If the die reduces the diameter by the factor 3/4, then it reduces A by
the factor (3/4)2. The resistance is therefore multiplied by the factor 1/(3/4)4 =
3.16. In terms of the radius r, the resistance is proportional to 1/r4.

Since A ∝ 1/L, we can alternatively say that the resistance R = ρL/A is
proportional to L2. An overall increase in L by the factor 2 therefore yields an
overall increase in R by the factor 22 = 4.

In Gaussian units, the unit of charge can be expressed in terms of
other fundamental units, because Coulomb’s law with a dimensionless
coefficient yields 1 esu = 1 g1/2 cm3/2 s−1, as you can verify. You can
use this to show that the units of resistance are s/cm. Since Eq. (4.17) still
tells us that the resistivity ρ has dimensions of (resistance) × (length),
we see that the Gaussian unit of ρ is simply the second. The analogous
statement in the SI system, as you can check, is that the units of ρ are
seconds divided by the units of ε0. Hence ε0ρ has the dimensions of time.
This association of a resistivity with a time has a natural interpretation
which will be explained in Section 4.11.

The conductivity and resistivity of a few materials are given in dif-
ferent units for comparison in Table 4.1. The key conversion factor is also
given (see Appendix C for the derivation).

Example (Drift velocity in a copper wire) A copper wire L = 1 km long
is connected across a V = 6 V battery. The resistivity of the copper is ρ =
1.7 · 10−8 ohm-meter, and the number of conduction electrons per cubic meter is
N = 8 · 1028 m−3. What is the drift velocity of the conduction electrons under
these circumstances? How long does it take an electron to drift once around the
circuit?

Solution Equation (4.6) gives the magnitude of the current density as J = Nev,
so the drift velocity is v = J/Ne. But J is given by J = σE = (1/ρ)(V/L).
Substituting this into v = J/Ne yields

v = V
ρLNe

= 6 V
(1.7 · 10−8 ohm-m)(1000 m)(8 · 1028 m−3)(1.6 · 10−19 C)

= 2.8 · 10−5 m/s. (4.19)

This is much slower than the average thermal speed of an electron at room tem-
perature, which happens to be about 105 m/s. The time to drift once around the
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Table 4.1.
Resistivity and its reciprocal, conductivity, for a few materials

Material Resistivity ρ Conductivity σ

Pure copper, 273 K 1.56 · 10−8 ohm-m 6.4 · 107 (ohm-m)−1

1.73 · 10−18 s 5.8 · 1017 s−1

Pure copper, 373 K 2.24 · 10−8 ohm-m 4.5 · 107 (ohm-m)−1

2.47 · 10−18 s 4.0 · 1017 s−1

Pure germanium, 273 K 2 ohm-m 0.5 (ohm-m)−1

2.2 · 10−10 s 4.5 · 109 s1

Pure germanium, 500 K 1.2 · 10−3 ohm-m 830 (ohm-m)−1

1.3 · 10−13 s 7.7 · 1012 s−1

Pure water, 291 K 2.5 · 105 ohm-m 4.0 · 10−6 (ohm-m)−1

2.8 · 10−5 s 3.6 · 104 s−1

Seawater (varies with 0.25 ohm-m 4 (ohm-m)−1

salinity) 2.8 · 10−11 s 3.6 · 1010 s−1

Note: 1 ohm-meter = 1.11 · 10−10 s.

circuit is t = (1000 m)/(2.8 · 10−5 m/s) = 3.6 · 107 s, which is a little over a year.
Note that v is independent of the cross-sectional area. This makes sense, because
if we have two separate identical wires connected to the same voltage source,
they have the same v. If we combine the two wires into one thicker wire, this
shouldn’t change the v.

When dealing with currents in wires, we generally assume that the
wire is neutral. That is, we assume that the moving electrons have the
same density per unit length as the stationary protons in the lattice.
We should mention, however, that an actual current-carrying wire is not
neutral. There are surface charges on the wire, as explained by Marcus
(1941) and demonstrated by Jefimenko (1962). These charges are neces-
sary for three reasons.

First, the surface charges keep the current flowing along the path of
the wire. Consider a battery connected to a long wire, and let’s say we
put a bend in the wire far from the battery. If we then bend the wire in
some other arbitrary manner, the battery doesn’t “know” that we changed
the shape, so it certainly can’t be the cause of the electrons taking a
new path through space. The cause of the new path must be the elec-
tric field due to nearby charges. These charges appear as surface charges
on the wire.

Second, the existence of a net charge on the wire is necessary to
create the proper flow of energy associated with the current. To get a
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handle on this energy flow, we will have to wait until we learn about
magnetic fields in Chapter 6 and the Poynting vector in Chapter 9. But
for now we’ll just say that to have the proper energy flow, there must be
a component of the electric field pointing radially away from the wire.
This component wouldn’t exist if the net charge on the wire were zero.

Third, the surface charge causes the potential to change along the
wire in a manner consistent with Ohm’s law. See Jackson (1996) for more
discussion on these three roles that the surface charges play.

However, having said all this, it turns out that in most of our discus-
sions of circuits and currents in this book, we won’t be interested in the
electric field external to the wires. So we can generally ignore the surface
charges, with no ill effects.

4.4 The physics of electrical conduction
4.4.1 Currents and ions
To explain electrical conduction we have to talk first about atoms and
molecules. Remember that a neutral atom, one that contains as many
electrons as there are protons in its nucleus, is precisely neutral (see
Section 1.3). On such an object the net force exerted by an electric field
is exactly zero. And even if the neutral atom were moved along by some
other means, that would not be an electric current. The same holds for
neutral molecules. Matter that consists only of neutral molecules ought
to have zero electrical conductivity. Here one qualification is in order:
we are concerned now with steady electric currents, that is, direct cur-
rents, not alternating currents. An alternating electric field could cause
periodic deformation of a molecule, and that displacement of electric
charge would be a true alternating electric current. We shall return to
that subject in Chapter 10. For a steady current we need mobile charge
carriers, or ions. These must be present in the material before the elec-
tric field is applied, for the electric fields we shall consider are not nearly
strong enough to create ions by tearing electrons off molecules. Thus the
physics of electrical conduction centers on two questions: how many ions
are there in a unit volume of material, and how do these ions move in the
presence of an electric field?

In pure water at room temperature approximately two H2O molecules
in a billion are, at any given moment, dissociated into negative ions,
OH−, and positive ions, H+. (Actually the positive ion is better described
as OH+

3 , that is, a proton attached to a water molecule.) This provides
approximately 6 · 1013 negative ions and an equal number of positive
ions in a cubic centimeter of water.4 The motion of these ions in the

4 Students of chemistry may recall that the concentration of hydrogen ions in pure water
corresponds to a pH value of 7.0, which means the concentration is 10−7.0 mole/liter.
That is equivalent to 10−10.0 mole/cm3. A mole of anything is 6.02 · 1023 things –
hence the number 6 · 1013 given above.
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applied electric field accounts for the conductivity of pure water given
in Table 4.1. Adding a substance like sodium chloride, whose molecules
easily dissociate in water, can increase enormously the number of ions.
That is why seawater has electrical conductivity nearly a million times
greater than that of pure water. It contains something like 1020 ions per
cubic centimeter, mostly Na+ and Cl−.

In a gas like nitrogen or oxygen at ordinary temperatures there would
be no ions at all except for the action of some ionizing radiation such
as ultraviolet light, x-rays, or nuclear radiation. For instance, ultraviolet
light might eject an electron from a nitrogen molecule, leaving N+

2 , a
molecular ion with a positive charge e. The electron thus freed is a neg-
ative ion. It may remain free or it may eventually stick to some molecule
as an “extra” electron, thus forming a negative molecular ion. The oxy-
gen molecule happens to have an especially high affinity for an extra
electron; when air is ionized, N+

2 and O−
2 are common ion types. In any

case, the resulting conductivity of the gas depends on the number of
ions present at any moment, which depends in turn on the intensity of
the ionizing radiation and perhaps other circumstances as well. So we
cannot find in a table the conductivity of a gas. Strictly speaking, the
conductivity of pure nitrogen shielded from all ionizing radiation would
be zero.5

Given a certain concentration of positive and negative ions in a
material, how is the resulting conductivity, σ in Eq. (4.11), determined?
Let’s consider first a slightly ionized gas. To be specific, suppose its den-
sity is like that of air in a room – about 1025 molecules per cubic meter.
Here and there among these neutral molecules are positive and negative
ions. Suppose there are N positive ions in unit volume, each of mass M+
and carrying charge e, and an equal number of negative ions, each with
mass M− and charge −e. The number of ions in unit volume, 2N, is very
much smaller than the number of neutral molecules. When an ion col-
lides with anything, it is almost always a neutral molecule rather than
another ion. Occasionally a positive ion does encounter a negative ion
and combine with it to form a neutral molecule. Such recombination6

would steadily deplete the supply of ions if ions were not being continu-
ally created by some other process. But in any case the rate of change of
N will be so slow that we can neglect it here.

5 But what about thermal energy? Won’t that occasionally lead to the ionization of a
molecule? In fact, the energy required to ionize, that is, to extract an electron from, a
nitrogen molecule is several hundred times the mean thermal energy of a molecule at
300 K. You would not expect to find even one ion so produced in the entire earth’s
atmosphere!

6 In calling the process recombination we of course do not wish to imply that the two
“recombining” ions were partners originally. Close encounters of a positive ion with a
negative ion are made somewhat more likely by their electrostatic attraction. However,
that effect is generally not important when the number of ions per unit volume is very
much smaller than the number of neutral molecules.
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4.4.2 Motion in zero electric field
Imagine now the scene, on a molecular scale, before an electric field is
applied. The molecules, and the ions too, are flying about with random
velocities appropriate to the temperature. The gas is mostly empty space,
the mean distance between a molecule and its nearest neighbor being
about ten molecular diameters. The mean free path of a molecule, which
is the average distance it travels before bumping into another molecule,
is much larger, perhaps 10−7 m, or several hundred molecular diam-
eters. A molecule or an ion in this gas spends 99.9 percent of its time
as a free particle. If we could look at a particular ion at a particular
instant, say t = 0, we would find it moving through space with some
velocity u.

What will happen next? The ion will move in a straight line at con-
stant speed until, sooner or later, it chances to come close to a molecule,
close enough for strong short-range forces to come into play. In this col-
lision the total kinetic energy and the total momentum of the two bod-
ies, molecule and ion, will be conserved, but the ion’s velocity will be
rather suddenly changed in both magnitude and direction to some new
velocity u′. It will then coast along freely with this new velocity until
another collision changes its velocity to u′′, and so on. After at most a
few such collisions the ion is as likely to be moving in any direction as
in any other direction. The ion will have “forgotten” the direction it was
moving at t = 0.

To put it another way, if we picked 10,000 cases of ions moving hor-
izontally south, and followed each of them for a sufficient time of τ sec-
onds, their final velocity directions would be distributed impartially over
a sphere. It may take several collisions to wipe out most of the direction
memory or only a few, depending on whether collisions involving small
momentum changes or large momentum changes are the more common,
and this depends on the nature of the interaction. An extreme case is
the collision of hard elastic spheres, which turns out to produce a com-
pletely random new direction in just one collision. We need not worry
about these differences. The point is that, whatever the nature of the colli-
sions, there will be some time interval τ , characteristic of a given system,
such that the lapse of τ seconds leads to substantial loss of correlation
between the initial velocity direction and the final velocity direction of
an ion in that system.7 This characteristic time τ will depend on the ion
and on the nature of its average environment; it will certainly be shorter
the more frequent the collisions, since in our gas nothing happens to an
ion between collisions.

7 It would be possible to define τ precisely for a general system by giving a quantitative
measure of the correlation between initial and final directions. It is a statistical
problem, like devising a measure of the correlation between the birth weights of rats
and their weights at maturity. However, we shall not need a general quantitative
definition to complete our analysis.
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4.4.3 Motion in nonzero electric field
Now we are ready to apply a uniform electric field E to the system.
It will make the description easier if we imagine the loss of direction
memory to occur completely at a single collision, as we have said it
does in the case of hard spheres. Our main conclusion will actually
be independent of this assumption. Immediately after a collision an ion
starts off in some random direction. We will denote by uc the velocity
immediately after a collision. The electric force Ee on the ion imparts
momentum to the ion continuously. After time t it will have acquired
from the field a momentum increment Eet, which simply adds vectori-
ally to its original momentum Muc. Its momentum is now Muc + Eet.
If the momentum increment is small relative to Muc, that implies that
the velocity has not been affected much, so we can expect the next col-
lision to occur about as soon as it would have in the absence of the
electric field. In other words, the average time between collisions, which
we shall denote by t, is independent of the field E if the field is not
too strong.

The momentum acquired from the field is always a vector in the
same direction. But it is lost, in effect, at every collision, since the direc-
tion of motion after a collision is random, regardless of the direction
before.

What is the average momentum of all the positive ions at a given
instant of time? This question is surprisingly easy to answer if we look at
it this way. At the instant in question, suppose we stop the clock and ask
each ion how long it has been since its last collision. Suppose we get the
particular answer t1 from positive ion 1. Then that ion must have momen-
tum eEt1 in addition to the momentum Muc

1 with which it emerged
from its last collision. The average momentum of all N positive ions is
therefore

Mu+ = 1
N

∑
j

(
Muc

j + eEtj
)
. (4.20)

Here uc
j is the velocity the jth ion had just after its last collision. These

velocities uc
j are quite random in direction and therefore contribute zero

to the average. The second part is simply Ee times the average of the tj,
that is, times the average of the time since the last collision. That must
be the same as the average of the time until the next collision, and both
are the same8 as the average time between collisions, t. We conclude

8 You may think the average time between collisions would have to be equal to the sum
of the average time since the last collision and the average time to the next. That would
be true if collisions occurred at absolutely regular intervals, but they don’t. They are
independent random events, and for such the above statement, paradoxical as it may
seem at first, is true. Think about it. The question does not affect our main conclusion,
but if you unravel it you will have grown in statistical wisdom; see Exercise 4.23.
(Hint: If one collision doesn’t affect the probability of having another – that’s what
independent means – it can’t matter whether you start the clock at some arbitrary time,
or at the time of a collision.)
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that the average velocity of a positive ion, in the presence of the steady
field E, is

u+ = Eet+
M+

. (4.21)

This shows that the average velocity of a charge carrier is proportional
to the electric force applied to it. If we observe only the average velocity,
it looks as if the medium were resisting the motion with a force pro-
portional to the velocity. This is true because if we write Eq. (4.21) as
Ee − (M+/t+)u+ = 0, we can interpret it as the terminal-velocity state-
ment that the Ee electric force is balanced by a −bu+ drag force, where
b ≡ M+/t+. This −bu force is the kind of frictional drag you feel if you
try to stir thick syrup with a spoon, a “viscous” drag. Whenever charge
carriers behave like this, we can expect something like Ohm’s law, for
the following reason.

In Eq. (4.21) we have written t+ because the mean time between
collisions may well be different for positive and negative ions. The neg-
ative ions acquire velocity in the opposite direction, but since they carry
negative charge their contribution to the current density J adds to that
of the positives. The equivalent of Eq. (4.6), with the two sorts of ions
included, is now

J = Ne
(

eEt+
M+

)
− Ne

(−eEt−
M−

)
= Ne2

(
t+

M+
+ t−

M−

)
E. (4.22)

Our theory therefore predicts that the system will obey Ohm’s law, for
Eq. (4.22) expresses a linear relation between J and E, the other quan-
tities being constants characteristic of the medium. Compare Eq. (4.22)
with Eq. (4.11). The constant Ne2(t+/M+ + t−/M−) appears in the role
of σ , the conductivity.

We made a number of rather special assumptions about this sys-
tem, but looking back, we can see that they were not essential so far as
the linear relation between E and J is concerned. Any system contain-
ing a constant density of free charge carriers, in which the motion of
the carriers is frequently “re-randomized” by collisions or other interac-
tions within the system, ought to obey Ohm’s law if the field E is not too
strong. The ratio of J to E, which is the conductivity σ of the medium,
will be proportional to the number of charge carriers and to the char-
acteristic time τ , the time for loss of directional correlation. It is only
through this last quantity that all the complicated details of the collisions
enter the problem. The making of a detailed theory of the conductivity
of any given system, assuming the number of charge carriers is known,
amounts to making a theory for τ . In our particular example this quan-
tity was replaced by t, and a perfectly definite result was predicted for
the conductivity σ . Introducing the more general quantity τ , and also
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allowing for the possibility of different numbers of positive and negative
carriers, we can summarize our theory as follows:

σ ≈ e2
(

N+τ+
M+

+ N−τ−
M−

)
(4.23)

We use the ≈ sign to acknowledge that we did not give τ a precise defi-
nition. That could be done, however.

Example (Atmospheric conductivity) Normally in the earth’s atmosphere
the greatest density of free electrons (liberated by ultraviolet sunlight) amounts
to 1012 per cubic meter and is found at an altitude of about 100 km where the
density of air is so low that the mean free path of an electron is about 0.1 m. At
the temperature that prevails there, an electron’s mean speed is 105 m/s. What is
the conductivity in (ohm-m)−1?

Solution We have only one type of charge carrier, so Eq. (4.23) gives the con-
ductivity as σ = Ne2τ/m. The mean free time is τ = (0.1 m)/(105 m/s) =
10−6 s. Therefore,

σ = Ne2τ

m
= (1012 m−3)(1.6 · 10−19 C)2(10−6 s)

9.1 · 10−31 kg
= 0.028 (ohm-m)−1.

(4.24)

To emphasize the fact that electrical conduction ordinarily involves
only a slight systematic drift superimposed on the random motion of
the charge carriers, we have constructed Fig. 4.7 as an artificial micro-
scopic view of the kind of system we have been talking about. Positive
ions are represented by gray dots, negative ions by circles. We assume
the latter are electrons and hence, because of their small mass, so much
more mobile than the positive ions that we may neglect the motion of the
positives altogether. In Fig. 4.7(a) we see a wholly random distribution
of particles and of electron speeds. To make the diagram, the location
and sign of a particle were determined by a random-number table. The
electron velocity vectors were likewise drawn from a random distribu-
tion, one corresponding to the “Maxwellian” distribution of molecular
velocities in a gas. In Fig. 4.7(b) we have used the same positions, but
now the velocities all have a small added increment to the right. That
is, Fig. 4.7(b) is a view of an ionized material in which there is a net
flow of negative charge to the right, equivalent to a positive current to
the left. Figure 4.7(a) illustrates the situation with zero average current.
The slightness of the systematic drift is demonstrated by the fact that
it is essentially impossible to determine, by looking at the two figures
separately, which is the one with zero average current.

Obviously we should not expect the actual average of the velocities
of the 46 electrons in Fig. 4.7(a) to be exactly zero, for they are statis-
tically independent quantities. One electron doesn’t affect the behavior
of another. There will in fact be a randomly fluctuating electric current
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(b)(a)

Figure 4.7.
(a) A random distribution of electrons and
positive ions with about equal numbers of each.
Electron velocities are shown as vectors and in
(a) are completely random. In (b) a drift toward
the right, represented by the velocity vector →,
has been introduced. This velocity was added to
each of the original electron velocities, as
shown in the case of the electron in the lower
left corner.

in the absence of any driving field, simply as a result of statistical fluc-
tuations in the vector sum of the electron velocities. This spontaneously
fluctuating current can be measured. It is a source of noise in all electric
circuits, and often determines the ultimate limit of sensitivity of devices
for detecting weak electric signals.

4.4.4 Types of materials
With these ideas in mind, consider the materials whose electrical con-
ductivity is plotted, as a function of temperature, in Fig. 4.8. Glass at
room temperature is a good insulator. Ions are not lacking in its internal
structure, but they are practically immobile, locked in place. As glass is
heated, its structure becomes somewhat less rigid. An ion is able to move
now and then, in the direction the electric field is pushing it. That hap-
pens in a sodium chloride crystal, too. The ions, in that case Na+ and
Cl−, move by infrequent short jumps.9 Their average rate of progress is
proportional to the electric field strength at any given temperature, so
Ohm’s law is obeyed. In both these materials, the main effect of raising
the temperature is to increase the mobility of the charge carriers rather
than their number.

Silicon and germanium are called semiconductors. Their con-
ductivity, too, depends strongly on the temperature, but for a different
reason. At zero absolute temperature, they would be perfect insulators,

9 This involves some disruption of the perfectly orderly array of ions depicted in Fig. 1.7.
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Figure 4.8.
The electrical conductivity of some
representative substances. Note that logarithmic
scales are used for both conductivity and
absolute temperature.
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containing no ions at all, only neutral atoms. The effect of thermal energy
is to create charge carriers by liberating electrons from some of the
atoms. The steep rise in conductivity around room temperature and above
reflects a great increase in the number of mobile electrons, not an increase
in the mobility of an individual electron. We shall look more closely at
semiconductors in Section 4.6.

The metals, exemplified by copper and lead in Fig. 4.8, are even bet-
ter conductors. Their conductivity generally decreases with increasing
temperature, due to an effect we will discuss in Section 4.5. In fact, over
most of the range plotted, the conductivity of a pure metal like copper
or lead is inversely proportional to the absolute temperature, as can be
seen from the 45◦ slope of our logarithmic graph. Were that behavior
to continue as copper and lead are cooled down toward absolute zero,
we could expect an enormous increase in conductivity. At 0.001 K, a
temperature readily attainable in the laboratory, we should expect the
conductivity of each metal to rise to 300,000 times its room tempera-
ture value. In the case of copper, we would be sadly disappointed. As
we cool copper below about 20 K, its conductivity ceases to rise and
remains constant from there on down. We will try to explain that in
Section 4.5.

In the case of lead, normally a somewhat poorer conductor than cop-
per, something far more surprising happens. As a lead wire is cooled
below 7.2 K, its resistance abruptly and completely vanishes. The metal
becomes superconducting. This means, among other things, that an elec-
tric current, once started flowing in a circuit of lead wire, will continue
to flow indefinitely (for years, even!) without any electric field to drive
it. The conductivity may be said to be infinite, though the concept really
loses its meaning in the superconducting state. Warmed above 7.2 K, the
lead wire recovers its normal resistance as abruptly as it lost it. Many
metals can become superconductors. The temperature at which the tran-
sition from the normal to the superconducting state occurs depends on
the material. In high-temperature superconductors, transitions as high as
130 K have been observed.

Our model of ions accelerated by the electric field, their progress
being continually impeded by collisions, utterly fails us here. Somehow,
in the superconducting state all impediment to the electrons’ motion has
vanished. Not only that, magnetic effects just as profound and mysterious
are manifest in the superconductor. At this stage of our study we cannot
fully describe, let alone explain, the phenomenon of superconductivity.
More will be said in Appendix I, which should be intelligible after our
study of magnetism.

Superconductivity aside, all these materials obey Ohm’s law. Dou-
bling the electric field doubles the current if other conditions, includ-
ing the temperature, are held constant. At least that is true if the field
is not too strong. It is easy to see how Ohm’s law could fail in the case
of a partially ionized gas. Suppose the electric field is so strong that the
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additional velocity an electron acquires between collisions is comparable
to its thermal velocity. Then the time between collisions will be shorter
than it was before the field was applied, an effect not included in our the-
ory and one that will cause the observed conductivity to depend on the
field strength.

A more spectacular breakdown of Ohm’s law occurs if the electric
field is further increased until an electron gains so much energy between
collisions that in striking a neutral atom it can knock another electron
loose. The two electrons can now release still more electrons in the same
way. Ionization increases explosively, quickly making a conducting path
between the electrodes. This is a spark. It’s what happens when a spark-
plug fires, and when you touch a doorknob after walking over a rug on
a dry day. There are always a few electrons in the air, liberated by cos-
mic rays if in no other way. Since one electron is enough to trigger a
spark, this sets a practical limit to field strength that can be maintained
in a gas. Air at atmospheric pressure will break down at roughly 3 mega-
volts/meter. In a gas at low pressure, where an electron’s free path is
quite long, as within the tube of an ordinary fluorescent lamp, a steady
current can be maintained with a modest field, with ionization by elec-
tron impact occurring at a constant rate. The physics is fairly complex,
and the behavior far from ohmic.

4.5 Conduction in metals
The high conductivity of metals is due to electrons within the metal that
are not attached to atoms but are free to move through the whole solid.
Proof of this is the fact that electric current in a copper wire – unlike
current in an ionic solution – transports no chemically identifiable sub-
stance. A current can flow steadily for years without causing the slightest
change in the wire. It could only be electrons that are moving, entering
the wire at one end and leaving it at the other.

We know from chemistry that atoms of the metallic elements rather
easily lose their outermost electrons.10 These would be bound to the
atom if it were isolated, but become detached when many such atoms
are packed close together in a solid. The atoms thus become positive
ions, and these positive ions form the rigid lattice of the solid metal,
usually in an orderly array. The detached electrons, which we shall call
the conduction electrons, move through this three-dimensional lattice of
positive ions.

The number of conduction electrons is large. The metal sodium, for
instance, contains 2.5 · 1022 atoms in 1 cm3, and each atom provides one
conduction electron. No wonder sodium is a good conductor! But wait,
there is a deep puzzle here. It is brought to light by applying our simple

10 This could even be taken as the property that defines a metallic element, making
somewhat tautological the statement that metals are good conductors.
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theory of conduction to this case. As we have seen, the mobility of a
charge carrier is determined by the time τ during which it moves freely
without bumping into anything. If we have 2.5 · 1028 electrons of mass me
per cubic meter, we need only the experimentally measured conductivity
of sodium to calculate an electron’s mean free time τ . The conductivity
of sodium at room temperature is σ = 2.1 · 107 (ohm-m)−1. Recalling
that 1 ohm = 1 kg m2 C−2 s−1, we have σ = 2.1 · 107 C2 s kg−1 m−3.
Solving Eq. (4.23) for τ−, with N+ = 0 as there are no mobile positive
carriers, we find

τ− = σme

Ne2 =

(
2.1 · 107 C2 s

kg m3

)(
9.1 · 10−31 kg

)
(

2.5 · 1028 1
m3

)(
1.6 · 10−19 C

)2
= 3 · 10−14 s. (4.25)

This seems a surprisingly long time for an electron to move through the
lattice of sodium ions without suffering a collision. The thermal speed of
an electron at room temperature ought to be about 105 m/s, according to
kinetic theory, which in that time should carry it a distance of 3 · 10−9 m.
Now, the ions in a crystal of sodium are practically touching one another.
The centers of adjacent ions are only 3.8 · 10−10 m apart, with strong
electric fields and many bound electrons filling most of the intervening
space. How could an electron travel nearly ten lattice spaces through
these obstacles without being deflected? Why is the lattice of ions so
easily penetrated by the conduction electrons?

This puzzle baffled physicists until the wave aspect of the electrons’
motion was recognized and explained by quantum mechanics. Here we
can only hint at the nature of the explanation. It goes something like
this. We should not now think of the electron as a tiny charged parti-
cle deflected by every electric field it encounters. It is not localized in
that sense. It behaves more like a spread-out wave interacting, at any
moment, with a larger region of the crystal. What interrupts the progress
of this wave through the crystal is not the regular array of ions, dense
though it is, but an irregularity in the array. (A light wave traveling
through water can be scattered by a bubble or a suspended particle, but
not by the water itself; the analogy has some validity.) In a geometri-
cally perfect and flawless crystal the electron wave would never be scat-
tered, which is to say that the electron would never be deflected; our
time τ would be infinite. But real crystals are imperfect in at least two
ways. For one thing, there is a random thermal vibration of the ions,
which makes the lattice at any moment slightly irregular geometrically,
and the more so the higher the temperature. It is this effect that makes
the conductivity of a pure metal decrease as the temperature is raised.
We see it in the sloping portions of the graph of σ for pure copper and
pure lead in Fig. 4.8. A real crystal can have irregularities, too, in the
form of foreign atoms, or impurities, and lattice defects – flaws in the
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stacking of the atomic array. Scattering by these irregularities limits the
free time τ whatever the temperature. Such defects are responsible for the
residual temperature-independent resistivity seen in the plot for copper
in Fig. 4.8.

In metals Ohm’s law is obeyed exceedingly accurately up to cur-
rent densities far higher than any that can be long maintained. No devi-
ation has ever been clearly demonstrated experimentally. According to
one theoretical prediction, departures on the order of 1 percent might be
expected at a current density of 1013 A/m2. That is more than a million
times the current density typical of wires in ordinary circuits.

4.6 Semiconductors
In a crystal of silicon each atom has four near neighbors. The three-
dimensional arrangement of the atoms is shown in Fig. 4.9. Now silicon,
like carbon which lies directly above it in the periodic table, has four
valence electrons, just the number needed to make each bond between
neighbors a shared electron pair – a covalent bond as it is called in chem-
istry. This neat arrangement makes a quite rigid structure. In fact, this is
the way the carbon atoms are arranged in diamond, the hardest known
substance. With its bonds all intact, the perfect silicon crystal is a per-
fect insulator; there are no mobile electrons. But imagine that we could
extract an electron from one of these bond pairs and move it a few hun-
dred lattice spaces away in the crystal. This would leave a net positive
charge at the site of the extraction and would give us a loose electron. It
would also cost a certain amount of energy. We will take up the question
of energy in a moment.

First let us note that we have created two mobile charges, not just
one. The freed electron is mobile. It can move like a conduction electron

Figure 4.9.
The structure of the silicon crystal. The balls are
Si atoms. A rod represents a covalent bond
between neighboring atoms, made by sharing a
pair of electrons. This requires four valence
electrons per atom. Diamond has this structure,
and so does germanium.

A B

C

D
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in a metal, like which it is spread out, not sharply localized. The quan-
tum state it occupies we call a state in the conduction band. The positive
charge left behind is also mobile. If you think of it as an electron miss-
ing in the bond between atoms A and B in Fig. 4.9, you can see that this
vacancy among the valence electrons could be transferred to the bond
between B and C, thence to the bond between C and D, and so on, just
by shifting electrons from one bond to another. Actually, the motion of
the hole, as we shall call it henceforth, is even freer than this would sug-
gest. It sails through the lattice like a conduction electron. The difference
is that it is a positive charge. An electric field E accelerates the hole in
the direction of E, not the reverse. The hole acts as if it had a mass com-
parable with an electron’s mass. This is really rather mysterious, for the
hole’s motion results from the collective motion of many valence elec-
trons.11 Nevertheless, and fortunately, it acts so much like a real positive
particle that we may picture it as such from now on.

The minimum energy required to extract an electron from a valence
state in silicon and leave it in the conduction band is 1.8 · 10−19 joule, or
1.12 electron-volts (eV). One electron-volt is the work done in moving
one electronic charge through a potential difference of one volt. Since 1
volt equals 1 joule/coulomb, we have12

1 eV = (
1.6 · 10−19 C

)(
1 J/C

) �⇒ 1 eV = 1.6 · 10−19 J (4.26)

The above energy of 1.12 eV is the energy gap between two bands of pos-
sible states, the valence band and the conduction band. States of inter-
mediate energy for the electron simply do not exist. This energy ladder is
represented in Fig. 4.10. Two electrons can never have the same quantum
state – that is a fundamental law of physics (the Pauli exclusion prin-
ciple which you will learn about in quantum mechanics). States ranging
up the energy ladder must therefore be occupied even at absolute zero.
As it happens, there are exactly enough states in the valence band to
accommodate all the electrons. At T = 0, as shown in Fig. 4.10(a), all
of these valence states are occupied, and none of the conduction band
states is.

If the temperature is high enough, thermal energy can raise some
electrons from the valence band to the conduction band. The effect of
temperature on the probability that electron states will be occupied is
expressed by the exponential factor e−�E/kT , called the Boltzmann factor.

11 This mystery is not explained by drawing an analogy, as is sometimes done, with a
bubble in a liquid. In a centrifuge, bubbles in a liquid would go in toward the axis; the
holes we are talking about would go out. A cryptic but true statement, which only
quantum mechanics will make intelligible, is this: the hole behaves dynamically like a
positive charge with positive mass because it is a vacancy in states with negative
charge and negative mass.

12 Technically, “eV” should be written as “eV,” because an electron-volt is the product of
two things: the (magnitude of the) electron charge e and one volt V.
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Figure 4.10.
A schematic representation of the energy bands
in silicon, which are all the possible states for
the electrons, arranged in order of energy. Two
electrons can’t have the same state. (a) At
temperature zero the valence band is full; an
electron occupies every available state. The
conduction band is empty. (b) At T = 500 K
there are 1015 electrons in the lowest conduction
band states, leaving 1015 holes in the valence
band, in 1 cm3 of the crystal.
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Suppose that two states labeled 1 and 2 are available for occupation by
an electron and that the electron’s energy in state 1 would be E1, while
its energy in state 2 would be E2. Let p1 be the probability that the elec-
tron will be found occupying state 1, p2 the probability that it will be
found in state 2. In a system in thermal equilibrium at temperature T , the
ratio p2/p1 depends only on the energy difference, �E = E2 − E1. It is
given by

p2

p1
= e−�E/kT (4.27)

The constant k, known as Boltzmann’s constant, has the value 1.38 ·
10−23 joule/kelvin. This relation holds for any two states. It governs
the population of available states on the energy ladder. To predict the
resulting number of electrons in the conduction band at a given temper-
ature we would have to know more about the number of states avail-
able. But this shows why the number of conduction electrons per unit
volume depends so strongly on the temperature. For T = 300 K the
energy kT is about 0.025 eV. The Boltzmann factor relating states 1 eV
apart in energy would be e−40, or 4 · 10−18. In silicon at room temper-
ature the number of electrons in the conduction band, per cubic cen-
timeter, is approximately 1010. At 500 K one finds about 1015 electrons
per cm3 in the conduction band, and the same number of holes in the
valence band (Fig. 4.10(b)). Both holes and electrons contribute to the
conductivity, which is 0.3 (ohm-cm)−1 at that temperature. Germanium
behaves like silicon, but the energy gap is somewhat smaller, 0.7 eV. At
any given temperature it has more conduction electrons and holes than
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p-type
semiconductor

n-type
semiconductor

Electrons from
phosphorus
impurity atoms
[5 � 1015 cm–3]

Holes left by electrons
attaching to aluminum
impurity atoms
[5 � 1015 cm–3]

Conduction
band
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Electrons and holes
as in pure silicon [1010 cm–3]

Electrons and holes
as in pure silicon [1010 cm–3]

Figure 4.11.
In an n-type semiconductor (a) most of the
charge carriers are electrons released from
pentavalent impurity atoms such as
phosphorus. In a p-type semiconductor (b) the
majority of the charge carriers are holes. A hole
is created when a trivalent impurity atom like
aluminum grabs an electron to complete the
covalent bonds to its four silicon neighbors.
A few carriers of the opposite sign exist in each
case. The number densities in brackets refer to
our example of 5 · 1015 impurity atoms per cm3,
and room temperature. Under these conditions
the number of majority charge carriers is
practically equal to the number of impurity
atoms, while the number of minority carriers is
very much smaller.

silicon, consequently higher conductivity, as is evident in Fig. 4.8. Dia-
mond would be a semiconductor, too, if its energy gap weren’t so large
(5.5 eV) that there are no electrons in the conduction band at any attain-
able temperature.

With only 1010 conduction electrons and holes per cubic centime-
ter, the silicon crystal at room temperature is practically an insulator. But
that can be changed dramatically by inserting foreign atoms into the pure
silicon lattice. This is the basis for all the marvelous devices of semicon-
ductor electronics. Suppose that some very small fraction of the silicon
atoms – for example, 1 in 107 – are replaced by phosphorus atoms. (This
“doping” of the silicon can be accomplished in various ways.) The phos-
phorus atoms, of which there are now about 5 · 1015 per cm3, occupy
regular sites in the silicon lattice. A phosphorus atom has five valence
electrons, one too many for the four-bond structure of the perfect silicon
crystal. The extra electron easily comes loose. Only 0.044 eV of energy
is needed to boost it to the conduction band. What is left behind in this
case is not a mobile hole, but an immobile positive phosphorus ion. We
now have nearly 5 · 1015 mobile electrons in the conduction band, and a
conductivity of nearly 1 (ohm-cm)−1. There are also a few holes in the
valence band, but the number is negligible compared with the number of
conduction electrons. (It is even smaller than it would be in a pure crys-
tal, because the increase in the number of conduction electrons makes
it more likely for a hole to be negated.) Because nearly all the charge
carriers are negative, we call this “phosphorus-doped” crystal an n-type
semiconductor (Fig. 4.11(a)).

Now let’s dope a pure silicon crystal with aluminum atoms as the
impurity. The aluminum atom has three valence electrons, one too few
to construct four covalent bonds around its lattice site. That is cheaply
remedied if one of the regular valence electrons joins the aluminum atom
permanently, completing the bonds around it. The cost in energy is only
0.05 eV, much less than the 1.2 eV required to raise a valence electron up
to the conduction band. This promotion creates a vacancy in the valence
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band, a mobile hole, and turns the aluminum atom into a fixed negative
ion. Thanks to the holes thus created – at room temperature nearly equal
in number to the aluminum atoms added – the crystal becomes a much
better conductor. There are also a few electrons in the conduction band,
but the overwhelming majority of the mobile charge carriers are positive,
and we call this material a p-type semiconductor (Fig. 4.11(b)).

Once the number of mobile charge carriers has been established,
whether electrons or holes or both, the conductivity depends on their
mobility, which is limited, as in metallic conduction, by scattering within
the crystal. A single homogeneous semiconductor obeys Ohm’s law. The
spectacularly nonohmic behavior of semiconductor devices – as in a rec-
tifier or a transistor – is achieved by combining n-type material with
p-type material in various arrangements.

Example (Mean free time in silicon) In Fig. 4.10, a conductivity of
30 (ohm-m)−1 results from the presence of 1021 electrons per m3 in the con-
duction band, along with the same number of holes. Assume that τ+ = τ− and
M+ = M− = me, the electron mass. What must be the value of the mean free
time τ? The rms speed of an electron at 500 K is 1.5 · 105 m/s. Compare the
mean free path with the distance between neighboring silicon atoms, which is
2.35 · 10−10 m.

Solution Since we have two types of charge carriers, the electrons and the
holes, Eq. (4.23) gives

τ = mσ

2Ne2 = (9.1 · 10−31 kg)
(
30 (ohm-m)−1)

2(1021 m−3)(1.6 · 10−19 C)2 ≈ 5.3 · 10−13 s. (4.28)

The distance traveled during this time is vτ = (1.5 · 105 m/s)(5.3 · 10−13 s) ≈
8 · 10−8 m, which is more than 300 times the distance between neighboring sili-
con atoms.

4.7 Circuits and circuit elements
Electrical devices usually have well-defined terminals to which wires can
be connected. Charge can flow into or out of the device over these paths.
In particular, if two terminals, and only two, are connected by wires to
something outside, and if the current flow is steady with constant poten-
tials everywhere, then obviously the current must be equal and oppo-
site at the two terminals.13 In that case we can speak of the current I
that flows through the device, and of the voltage V “between the termi-
nals” or “across the terminals,” which means their difference in electric

13 It is perfectly possible to have 4 A flowing into one terminal of a two-terminal object
with 3 A flowing out at the other terminal. But then the object is accumulating positive
charge at the rate of 1 coulomb/second. Its potential must be changing very rapidly –
and that can’t go on for long. Hence this cannot be a steady, or time-independent,
current.
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potential. The ratio V/I for some given I is a certain number of resis-
tance units (ohms, if V is in volts and I in amps). If Ohm’s law is obeyed

65 ohms

28 cm length of No. 40 nichrome wire

Two 70 ohm resistors and one 30 ohm
resistor

 25 watt 115 volt tungsten light bulb (cold)

0.5 N KCl solution with electrodes of certain
size and spacing

          lb spool of No. 28 enameled copper
      magnet wire (1030 ft)

1
2

(a)

(b)

(c)

(d)

(e )

in all parts of the object through which current flows, that number will
be a constant, independent of the current. This one number completely
describes the electrical behavior of the object, for steady current flow
(DC) between the given terminals. With these rather obvious remarks
we introduce a simple idea, the notion of a circuit element.

Look at the five boxes in Fig. 4.12. Each has two terminals, and
inside each box there is some stuff, different in every box. If any one of
these boxes is made part of an electrical circuit by connecting wires to
the terminals, the ratio of the potential difference between the terminals
to the current flowing in the wire that we have connected to the terminal
will be found to be 65 ohms. We say the resistance between the terminals,
in each box, is 65 ohms. This statement would surely not be true for all
conceivable values of the current or potential difference. As the poten-
tial difference or voltage between the terminals is raised, various things
might happen, earlier in some boxes than in others, to change the volt-
age/current ratio. You might be able to guess which boxes would give
trouble first. Still, there is some limit below which they all behave lin-
early; within that range, for steady currents, the boxes are alike. They are
alike in this sense: if any circuit contains one of these boxes, which box
it is makes no difference in the behavior of that circuit. The box is equiv-
alent to a 65 ohm resistor.14 We represent it by the symbol and
in the description of the circuit of which the box is one component, we
replace the box with this abstraction. An electrical circuit or network is
then a collection of such circuit elements joined to one another by paths
of negligible resistance.

Taking a network consisting of many elements connected together
and selecting two points as terminals, we can regard the whole thing
as equivalent, as far as these two terminals are concerned, to a single
resistor. We say that the physical network of objects in Fig. 4.13(a) is
represented by the diagram of Fig. 4.13(b), and for the terminals A1A2 the
equivalent circuit is Fig. 4.13(c). The equivalent circuit for the terminals
at B1B2 is given in Fig. 4.13(d). If you put this assembly in a box with
only that pair of terminals accessible, it will be indistinguishable from a
resistor of 57.6 ohm resistance.

There is one very important rule – only direct-current measurements
are allowed! All that we have said depends on the current and electric
fields being constant in time; if they are not, the behavior of a circuit

Figure 4.12.
Various devices that are equivalent, for direct current, to a 65 ohm
resistor.

14 We use the term resistor for the actual object designed especially for that function.
Thus a “200 ohm, 10 watt, wire-wound resistor” is a device consisting of a coil of wire
on some insulating base, with terminals, intended to be used in such a way that the
average power dissipated in it is not more than 10 watts.
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element may not depend on its resistance alone. The concept of equiva-
lent circuits can be extended from these DC networks to systems in which
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current and voltage vary with time. Indeed, that is where it is most valu-
able. We are not quite ready to explore that domain.

Little time will be spent here on methods for calculating the equiv-
alent resistance of a network of circuit elements. The cases of series and
parallel groups are easy. A combination like that in Fig. 4.14 is two resis-
tors, of value R1 and R2, in series. The equivalent resistance is

R = R1 + R2 (4.29)

A combination like that in Fig. 4.15 is two resistors in parallel. By an
argument that you should be able to give (see Problem 4.3), the equiva-
lent resistance R is found to be

1
R
= 1

R1
+ 1

R2
or R = R1R2

R1 + R2
. (4.30)

Example (Reducing a network) Let’s use the addition rules in Eqs. (4.29)
and (4.30) to reduce the network shown in Fig. 4.16 to an equivalent single resis-
tor. As complicated as this network looks, it can be reduced, step by step, via
series or parallel combinations. We assume that every resistor in the circuit has
the value 100 ohms.

Using the above rules, we can reduce the network as follows (you should ver-
ify all of the following statements). A parallel combination of two 100 ohm resis-
tors is equivalent to 50 ohms. So in the first figure, the top two circled sections
are each equivalent to 150 ohms, and the bottom one is equivalent to 50 ohms.
In the second figure, the top and bottom circled sections are then equivalent to
160 ohms and 150 ohms. In the third figure, the circled section is then equivalent
to 77.4 ohms. The whole circuit is therefore equivalent to 100+ 77.4+ 150=
327.4 ohms.

Although Eqs. (4.29) and (4.30) are sufficient to handle the compli-
cated circuit in Fig. 4.16, the simple network of Fig. 4.17 cannot be so
reduced, so a more general method is required (see Exercise 4.44). Any
conceivable network of resistors in which a constant current is flowing
has to satisfy these conditions (the first is Ohm’s law, the second and
third are known as Kirchhoff’s rules):

(1) The current through each element must equal the voltage across that
element divided by the resistance of the element.

Figure 4.13.
Some resistors connected together (a); the circuit diagram (b); and the
equivalent resistance between certain pairs of terminals (c) and (d).
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(2) At a node of the network, a point where three or more connecting
wires meet, the algebraic sum of the currents into the node must be

R1

R = R1+R2

R2

=

Figure 4.14.
Resistances in series.

zero. (This is our old charge-conservation condition, Eq. (4.8), in
circuit language.)

(3) The sum of the potential differences taken in order around a loop
of the network, a path beginning and ending at the same node, is
zero. (This is network language for the general property of the static
electric field:

∫
E · ds = 0 for any closed path.)

The algebraic statement of these conditions for any network will
provide exactly the number of independent linear equations needed to
ensure that there is one and only one solution for the equivalent resis-
tance between two selected nodes. We assert this without proving it. It is
interesting to note that the structure of a DC network problem depends
only on the topology of the network, that is, on those features of the dia-
gram of connections that are independent of any distortion of the lines of
the diagram. We will give an example of the use of the above three rules
in Section 4.10, after we have introduced the concept of electromotive
force.

A DC network of resistances is a linear system – the voltages and
currents are governed by a set of linear equations, the statements of the
conditions (1), (2), and (3). Therefore the superposition of different pos-
sible states of the network is also a possible state. Figure 4.18 shows

R = =R1 R2
R1R2

R1+R2

Figure 4.15.
Resistances in parallel.

a section of a network with certain currents, I1, I2, . . . , flowing in the
wires and certain potentials, V1, V2, . . . , at the nodes. If some other set
of currents and potentials, say I′1, . . . , V ′

1, . . . , is another possible state of
affairs in this section of network, then so is the set (I1 + I′1), . . . , (V1 +
V ′

1), . . . . These currents and voltages corresponding to the superposi-
tion will also satisfy the conditions (1), (2), and (3). Some general the-
orems about networks, interesting and useful to the electrical engineer,
are based on this. One such theorem is Thévenin’s theorem, discussed in
Section 4.10 and proved in Problem 4.13.

4.8 Energy dissipation in current flow
The flow of current in a resistor involves the dissipation of energy. If it
takes a force F to push a charge carrier along with average velocity v, any
agency that accomplishes this must do work at the rate F ·v. If an electric
field E is driving the ion of charge q, then F = qE, and the rate at which
work is done is qE · v. The energy thus expended shows up eventually as
heat. In our model of ionic conduction, the way this comes about is quite
clear. The ion acquires some extra kinetic energy, as well as momentum,
between collisions. A collision, or at most a few collisions, redirects its
momentum at random but does not necessarily restore the kinetic energy
to normal. For that to happen the ion has to transfer kinetic energy to the
obstacle that deflects it. Suppose the charge carrier has a considerably
smaller mass than the neutral atom it collides with. The average transfer
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Figure 4.16.
Reduction of a network that consists of series
and parallel combinations only.

of kinetic energy is small when a billiard ball collides with a bowling
ball. Therefore the ion (billiard ball) will continue to accumulate extra
energy until its average kinetic energy is so high that its average loss of
energy in a collision equals the amount gained between collisions. In this
way, by first “heating up” the charge carriers themselves, the work done
by the electrical force driving the charge carriers is eventually passed on
to the rest of the medium as random kinetic energy, or heat.

Figure 4.17.
A simple bridge network. It can’t be reduced in
the manner of Fig. 4.16.

Suppose a steady current I, in amperes, flows through a resistor of
R ohms. In a time �t, a charge of I �t coulombs is transferred through a
potential difference of V volts, where V = IR. Hence the work done in
time �t is (I �t)V = I2R �t in joules (because 1 coulomb × 1 volt = 1
joule). The rate at which work is done (that is, the power) is therefore

P = I2R (4.31)

The unit of power is the watt. In terms of other units, a watt is a joule per
second or equivalently a volt-ampere.

Naturally the steady flow of current in a dc circuit requires some
source of energy capable of maintaining the electric field that drives the
charge carriers. Until now we have avoided the question of the electro-
motive force by studying only parts of entire circuits; we kept the “bat-
tery” out of the picture. In Section 4.9 we shall discuss some sources of
electromotive force.
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4.9 Electromotive force and the voltaic cell
The origin of the electromotive force in a direct-current circuit is some
mechanism that transports charge carriers in a direction opposite to that

I1

I2 I2
I3

I4

I4

I5

V3

V1 V2

I6

I6

Figure 4.18.
Currents and potentials at the nodes of a
network.

in which the electric field is trying to move them. A Van de Graaff elec-
trostatic generator (Fig. 4.19) is an example on a large scale. With every-
thing running steadily, we find current in the external resistance flow-
ing in the direction of the electric field E, and energy being dissipated
there (appearing as heat) at the rate IV0, or I2R. Inside the column of the
machine, too, there is a downward-directed electric field. Here charge
carriers can be moved against the field if they are stuck to a nonconduct-
ing belt. They are stuck so tightly that they can’t slide backward along the
belt in the generally downward electric field. (They can still be removed
from the belt by a much stronger field localized at the brush in the termi-
nal. We need not consider here the means for putting charge on and off
the belt near the pulleys.) The energy needed to pull the belt is supplied
from elsewhere – usually by an electric motor connected to a power line,
but it could be a gasoline engine, or even a person turning a crank. This
Van de Graaff generator is in effect a battery with an electromotive force,
under these conditions, of V0 volts.

In ordinary batteries it is chemical energy that makes the charge car-
riers move through a region where the electric field opposes their motion.
That is, a positive charge carrier may move to a place of higher electric
potential if by so doing it can engage in a chemical reaction that will
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Figure 4.19.
In the Van de Graaff generator, charge carriers
are mechanically transported in a direction
opposite to that in which the electric field would
move them.

yield more energy than it costs to climb the electrical hill.
To see how this works, let us examine one particular voltaic cell.

Voltaic cell is the generic name for a chemical source of electromotive
force. In the experiments of Galvani around 1790 the famous twitching
frogs’ legs had signaled the chemical production of electric current. It
was Volta who proved that the source was not “animal electricity,” as
Galvani maintained, but the contact of dissimilar metals in the circuit.
Volta went on to construct the first battery, a stack of elementary cells,
each of which consisted of a zinc disk and a silver disk separated by
cardboard moistened with brine. The battery that powers your flashlight
comes in a tidier package, but the principle of operation is the same.
Several kinds of voltaic cells are in use, differing in their chemistry but
having common features: two electrodes of different material immersed
in an ionized fluid, or electrolyte.

As an example, we’ll describe the lead–sulfuric acid cell which is
the basic element of the automobile battery. This cell has the important
property that its operation is readily reversible. With a storage battery
made of such cells, which can be charged and discharged repeatedly,
energy can be stored and recovered electrically.

A fully charged lead–sulfuric acid cell has positive plates that hold
lead dioxide, PbO2, as a porous powder, and negative plates that hold
pure lead of a spongy texture. The mechanical framework, or grid, is
made of a lead alloy. All the positive plates are connected together and
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Figure 4.20.
A schematic diagram, not to scale, showing how
the lead–sulfuric acid cell works. The
electrolyte, sulfuric acid solution, permeates the
lead oxide granules in the positive plate and the
spongy lead in the negative plate. The potential
difference between the positive and negative
terminals is 2.1 V. With the external circuit
closed, chemical reactions proceed at the
solid–liquid interfaces in both plates, resulting in
the depletion of sulfuric acid in the electrolyte
and the transfer of electrons through the
external circuit from negative terminal to positive
terminal, which constitutes the current I. To
recharge the cell, replace the load R by a source
with electromotive force greater than 2.1 V, thus
forcing current to flow through the cell in the
opposite direction and reversing both reactions.

to the positive terminal of the cell. The negative plates, likewise con-
nected, are interleaved with the positive plates, with a small separation.
The schematic diagram in Fig. 4.20 shows only a small portion of a
positive and a negative plate. The sulfuric acid electrolyte fills the cell,
including the interstices of the active material, the porosity of which pro-
vides a large surface area for chemical reaction.

The cell will remain indefinitely in this condition if there is no exter-
nal circuit connecting its terminals. The potential difference between its
terminals will be close to 2.1 volts. This open-circuit potential difference
is established “automatically” by the chemical interaction of the con-
stituents. This is the electromotive force of the cell, for which the symbol
E will be used. Its value depends on the concentration of sulfuric acid
in the electrolyte, but not at all on the size, number, or separation of
the plates.

Now connect the cell’s terminals through an external circuit with
resistance R. If R is not too small, the potential difference V between the
cell terminals will drop only a little below its open-circuit value E , and
a current I = V/R will flow around the circuit (Fig. 4.20(b)). Electrons
flow into the positive terminal; other electrons flow out of the negative
terminal. At each electrode chemical reactions are proceeding, the over-
all effect of which is to convert lead, lead dioxide, and sulfuric acid into
lead sulfate and water. For every molecule of lead sulfate thus made,
one charge e is passed around the circuit and an amount of energy eE is
released. Of this energy the amount eV appears as heat in the external
resistance R. The difference between E and V is caused by the resistance
of the electrolyte itself, through which the current I must flow inside the
cell. If we represent this internal resistance by Ri, the system can be quite
well described by the equivalent circuit in Fig. 4.21.
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As discharge goes on and the electrolyte becomes more diluted with
water, the electromotive force E decreases somewhat. Normally, the cell
is considered discharged when E has fallen below 1.75 volts. To recharge

Ri

Ri R + Ri

R

I

I =

V = E – IRi

V

+

(a)

(b)

+

E

E

E

Figure 4.21.
(a) The equivalent circuit for a voltaic cell is
simply a resistance Ri in series with an
electromotive force E of fixed value.
(b) Calculation of the current in a circuit
containing a voltaic cell.

the cell, current must be forced around the circuit in the opposite direc-
tion by connecting a voltage source greater than E across the cell’s termi-
nals. The chemical reactions then run backward until all the lead sulfate
is turned back into lead dioxide and lead. The investment of energy in
charging the cell is somewhat more than the cell will yield on discharge,
for the internal resistance Ri causes a power loss I2Ri whichever way the
current is flowing.

Note in Fig. 4.20(b) that the current I in the electrolyte is produced
by a net drift of positive ions toward the positive plate. Evidently the
electric field in the electrolyte points toward, not away from, the positive
plate. Nevertheless, the line integral of E around the whole circuit is
zero, as it must be for any electrostatic field. The explanation is this:
there are two very steep jumps in potential at the interface of the positive
plate and the electrolyte and at the interface of the negative plate and the
electrolyte. That is where the ions are moved against a strong electric
field by forces arising in the chemical reactions. It is this region that
corresponds to the belt in a Van de Graaff generator.

Every kind of voltaic cell has its characteristic electromotive force,
falling generally in the range of 1 to 3 volts. The energy involved, per
molecule, in any chemical reaction is essentially the gain or loss in the
transfer of an outer electron from one atom to a different atom. That
is never more than a few electron-volts. We can be pretty sure that no
one is going to invent a voltaic cell with a 12 volt electromotive force.
The 12 volt automobile battery consists of six separate lead–sulfuric acid
cells connected in series. For more discussion of how batteries work,
including a helpful analogy, see Roberts (1983).

Example (Lead–acid battery) A 12 V lead–acid storage battery with a 20
ampere-hour capacity rating has a mass of 10 kg.

(a) How many kilograms of lead sulfate are formed when this battery is dis-
charged? (The molecular weight of PbSO4 is 303.)

(b) How many kilograms of batteries of this type would be required to store the
energy derived from 1 kg of gasoline by an engine of 20 percent efficiency?
(The heat of combustion of gasoline is 4.5 · 107 J/kg.)

Solution

(a) The total charge transferred in 20 ampere-hours is (20 C/s)(3600 s) =
72,000 C. From Fig. 4.20(b), the creation of two electrons is associated with
the creation of one molecule of PbSO4. But also the absorption of two elec-
trons is associated with the creation of another molecule of PbSO4. So the
travel of two electrons around the circuit is associated with the creation of
two molecules of PbSO4. The ratio is thus 1 to 1. The charge transferred
per mole of PbSO4 is therefore (6 · 1023)(1.6 · 10−19 C) = 96,000 C. The
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above charge of 72,000 C therefore corresponds to 3/4 of a mole. Since
each mole has a mass of 0.303 kg, the desired mass is about 0.23 kg.

(b) At 12 V, the energy output associated with a charge of 72,000 C is
(12 J/C)(72,000 C) = 864,000 J. Also, 1 kg of gasoline burned at 20 per-
cent efficiency yields an energy of (0.2)(1 kg)(4.5 · 107 J/kg) = 9 · 106 J.
This is equivalent to (9 · 106 J)/(8.64 · 105 J) = 10.4 batteries. Since each
battery has a mass of 10 kg, this corresponds to 104 kg of batteries.

4.10 Networks with voltage sources
4.10.1 Applying Kirchhoff’s rules
A network of resistors could contain more than one electromotive force,
or voltage source. Consider the following example.

Example The circuit in Fig. 4.22 contains two batteries with electromotive

I1
A

B

I3

I2

I2

R2

R1

R3

E1

E2

+

+

Figure 4.22.
A network with two voltage sources.

force E1 and E2, respectively. In each of the conventional battery symbols shown,
the longer line indicates the positive terminal. Assume that R1 includes the inter-
nal resistance of one battery, R2 that of the other. Supposing the resistances
given, what are the currents in this network?

Solution Having assigned directions arbitrarily to the currents I1, I2, and I3 in
the branches, we can impose the requirements stated in Section 4.7. We have one
node and two loops,15 so we obtain three independent Kirchhoff equations:

I1 − I2 − I3 = 0,

E1 − R1I1 − R3I3 = 0,

E2 + R3I3 − R2I2 = 0. (4.32)

To check the signs, note that in writing the two loop equations, we have gone
around each loop in the direction current would flow from the battery in that
loop. The three equations can be solved for I1, I2, and I3. This is slightly messy
by hand, but trivial if we use a computer; the result is

I1 = E1R2 + E1R3 + E2R3
R1R2 + R2R3 + R1R3

,

I2 = E2R1 + E2R3 + E1R3
R1R2 + R2R3 + R1R3

,

I3 = E1R2 − E2R1
R1R2 + R2R3 + R1R3

. (4.33)

If in a particular case the value of I3 turns out to be negative, it simply means
that the current in that branch flows opposite to the direction we had assigned to
positive current.

15 There are actually two nodes, of course, but they give the same information. And there
is technically a third loop around the whole network, but the resulting equation is the
sum of the two other loop equations.
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Alternatively, we can use the “loop” currents shown in Fig. 4.23. The advan-
tages of this method are that (1) the “node” condition in Section 4.7 is automat-
ically satisfied, because whatever current goes into a node also comes out, by

R1

E1 E2

R2

R3

I1 I2

Figure 4.23.
Loop currents for use in Kirchhoff’s rules. Loop
currents automatically satisfy the node
condition.

construction; and (2) there are only two unknowns to solve for instead of three
(although to be fair, the first of the equations in Eq. (4.32) is trivial). The disad-
vantage is that if we want to find the current in the middle branch (I3 above), we
need to take the difference of the loop currents I1 and I2, because with the sign
conventions chosen, these currents pass in opposite directions through R3. But
this is not much of a burden. The two loop equations are now

E1 − R1I1 − R3(I1 − I2) = 0,

E2 − R3(I2 − I1) − R2I2 = 0. (4.34)

Of course, these two equations are just the second two equations in Eq. (4.32),
with I3 = I1 − I2 substituted in from the first equation. So we obtain the same
values of I1 and I2 (and hence I3).
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R3
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Eeq

B

R1

E1

E2

is
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to

(a)

(b)

Figure 4.24.
Make Req equal to the resistance that would be
measured between the terminals in (a) if all
electromotive forces were zero. Make Eeq equal
to the voltage observed between the terminals
in (a) with the external circuit open. Then the
circuit in (b) is equivalent to the circuit in (a).
You can’t tell the difference by any direct-current
measurement at those terminals.

The calculational difference between the two methods in the above
example was inconsequential. But in larger networks the second method
is often more tractable, because it involves simply writing down a loop
equation for every loop you see on the page. This tells you right away
how many unknowns (the loop currents) there are. In either case, all of
the physics is contained in the equations representing the rules given
in Section 4.7. The hardest thing about these equations is making sure
all the signs are correct. The actual process of solving them is easy if
you use a computer. A larger network is technically no more difficult to
solve than a smaller one. The only difference is that the larger network
takes more time, because it takes longer to write down the equations
(which are all of the same general sort) and then type them into the com-
puter.

4.10.2 Thévenin’s theorem
Suppose that a network such as the one in Fig. 4.22 forms part of some
larger system, to which it is connected at two of its nodes. For exam-
ple, let us connect wires to the two nodes A and B and enclose the rest
in a “black box” with these two wires as the only external terminals, as
in Fig. 4.24(a). A general theorem called Thévenin’s theorem assures us
that this two-terminal box is completely equivalent, in its behavior in any
other circuit to which it may be connected, to a single voltage source Eeq
(“eq” for equivalent) with an internal resistance Req. This holds for any
network of voltage sources and resistors, no matter how complicated. It
is not immediately obvious that such an Eeq and Req should exist (see
Problem 4.13 for a proof), but assuming they do exist, their values can be
determined by either experimental measurements or theoretical calcula-
tions, in the following ways.

If we don’t know what is in the box, we can determine Eeq and Req
experimentally by two measurements.
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• Measure the open-circuit voltage between the terminals by connect-
ing them via a voltmeter that draws negligible current. (The “infinite”
resistance of the voltmeter means that the terminals are effectively
unconnected; hence the name “open circuit.”) This voltage equals Eeq.
This is clear from Fig. 4.24(b); if essentially zero current flows through
this simple circuit, then there is zero voltage drop across the resistor
Req. So the measured voltage equals all of the Eeq.

• Measure the short-circuit current Isc between the terminals by con-
necting them via an ammeter with negligible resistance. (The “zero”
resistance of the ammeter means that the terminals are effectively con-
nected by a short circuit.) Ohm’s law for the short-circuited circuit in
Fig. 4.24(b) then yields simply Eeq = IscReq. The equivalent resistance
is therefore given by

Req = Eeq

Isc
. (4.35)

If we do know what is in the box, we can determine Eeq and Req by
calculating them instead of measuring them.
• For Eeq, calculate the open circuit voltage between the two terminals

R

2R

E

Figure 4.25.
Find Eeq and Req for this circuit.

(with nothing connected to them outside the box). In the above exam-
ple, this is just I3R3, with I3 given by Eq. (4.33).

• For Req, connect the terminals by a wire with zero resistance, and cal-
culate the short-circuit current Isc through this wire; Req is then given
by Eeq/Isc. See Problem 4.14 for how this works in the above exam-
ple. There is, however, a second method for calculating Req, which
is generally much quicker: Req is the resistance that would be meas-
ured between the two terminals with all the internal electromotive
forces made zero. In our example that would be the resistance of R1,
R2, and R3 all in parallel, which is R1R2R3/(R1R2 + R2R3 + R1R3).
The reason why this method works is explained in the solution to
Problem 4.13.

Example
(a) Find the Thévenin equivalent Eeq and Req for the circuit shown in Fig. 4.25.

R0V0

R

2R

I1

I2

E

Figure 4.26.
Loop currents for use in Kirchhoff’s rules.

(b) Calculate Eeq and Req again, but now do it the long way. Use Kirchhoff’s
rules to find the current passing through the bottom branch of the circuit in
Fig. 4.26, and then interpret your result in a way that gives you Eeq and Req.

Solution
(a) Eeq is the open-circuit voltage. With nothing connected to the terminals,

the current running around the loop is E/3R. The voltage drop across the
R resistor is therefore (E/3R)(R) = E/3. But this is also the open-circuit
voltage between the two terminals, so Eeq = E/3.

We can find Req in two ways. The quick way is to calculate the resistance
between the terminals with E set equal to zero. In that case we have an R
and a 2R in parallel, so Req = 2R/3.
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Alternatively, we can find Req by calculating the short-circuit current
between the terminals. With the short circuit present, no current takes the
route through the R resistor, so we just have E and 2R in series. The short-
circuit current between the terminals is therefore Isc = E/2R. The equiva-
lent resistance is then given by Req = Eeq/Isc = (E/3)/(E/2R) = 2R/3.

(b) The loop equations for the circuit in Fig. 4.26 are

0 = E − R(I1 − I2) − (2R)I1,

0 = V0 − R(I2 − I1) − R0I2. (4.36)

2R/3

R0V0

E/3

Figure 4.27.
The Thévenin equivalent circuit.

Solving these equations for I2 gives I2 = (E + 3V0)/(2R + 3R0) (as you
can check), which can be written suggestively as

V0 + E
3
= I2

(
R0 + 2R

3

)
. (4.37)

But this is exactly the V = IR statement that we would write down for
the circuit shown in Fig. 4.27, where the total emf is V0 + E/3 and the
total resistance is R0 + 2R/3. Since the result in Eq. (4.37) holds for any
values of V0 and R0, we conclude that the given circuit is equivalent to an
emf Eeq = E/3 in series with a resistor Req = 2R/3. Generalizing this
method is the basic idea behind the first proof of Thévenin’s theorem given
in Problem 4.13.

C

R

Q

I

t

t

RC

Switch closed

Figure 4.28.
Charge and current in an RC circuit. Both
quantities decay by the factor 1/e in time RC.

In analyzing a complicated circuit it sometimes helps to replace a
two-terminal section by its equivalent Eeq and Req. Thévenin’s theorem
assumes the linearity of all circuit elements, including the reversibility
of currents through batteries. If one of our batteries is a nonrechargeable
dry cell with the current through it backward, caution is advisable!

4.11 Variable currents in capacitors and resistors
Let a capacitor of capacitance C be charged to some potential V0 and then
discharged by suddenly connecting it across a resistance R. Figure 4.28
shows the capacitor indicated by the conventional symbol , the resis-
tor R, and a switch which we shall imagine to be closed at time t = 0.
It is obvious that, as current flows, the capacitor will gradually lose its
charge, the voltage across the capacitor will diminish, and this in turn
will lessen the flow of current. Let’s be quantitative about this.

Example (RC circuit) In the circuit in Fig. 4.28, what are the charge Q on
the capacitor and the current I in the circuit, as functions of time?

Solution To find Q(t) and I(t) we need only write down the conditions that
govern the circuit. Let V(t) be the potential difference between the plates, which
is also the voltage across the resistor R. Let the current I be considered positive



216 Electric currents

if it flows away from the positive side of the capacitor. The quantities Q, I, and
V , all functions of the time, must be related as follows:

Q = CV , I = V
R

, −dQ
dt

= I. (4.38)

Eliminating I and V , we obtain the equation that governs the time variation of Q:

dQ
dt

= − Q
RC

. (4.39)

Writing this in the form

dQ
Q

= − dt
RC

, (4.40)

we can integrate both sides, obtaining

ln Q = −t
RC

+ const. (4.41)

The solution of our differential equation is therefore

Q = (another constant) · e−t/RC . (4.42)

If V = V0 at t = 0, then Q = CV0 at t = 0. This determines the constant, and
we now have the exact behavior of Q after the switch is closed:

Q(t) = CV0 e−t/RC . (4.43)

The behavior of the current I is found directly from this:

I(t) = −dQ
dt

= V0
R

e−t/RC . (4.44)

And the voltage at any time is V(t) = I(t)R, or alternatively V(t) = Q(t)/C.
At the closing of the switch the current rises at once to the value V0/R

and then decays exponentially to zero. The time that characterizes this decay
is the constant RC in the above exponents. People often speak of the “RC
time constant” associated with a circuit or part of a circuit. Let’s double
check that RC does indeed have units of time. In SI units, R is measured
in ohms, which from Eq. (4.18) is given by volt/ampere. And C is measured
in farads, which from Eq. (3.8) is given by coulomb/volt. So RC has units
of coulomb/ampere, which is a second, as desired. If we make the circuit in
Fig. 4.28 out of a 0.05 microfarad capacitor and a 5 megohm resistor, both
of which are reasonable objects to find around any laboratory, we would have
RC = (5 · 106 ohm)(0.05 · 10−6 farad) = 0.25 s.

Quite generally, in any electrical system made up of charged con-
ductors and resistive current paths, one time scale – perhaps not the only
one – for processes in the system is set by some resistance–capacitance
product. This has a bearing on our earlier observation on page 187 that
ε0ρ has the dimensions of time. Imagine a capacitor with plates of area
A and separation s. Its capacitance C is ε0A/s. Now imagine the space
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between the plates suddenly filled with a conductive medium of resis-
tivity ρ. To avoid any question of how this might affect the capaci-
tance, let us suppose that the medium is a very slightly ionized gas; a
substance of that density will hardly affect the capacitance at all. This
new conductive path will discharge the capacitor as effectively as did
the external resistor in Fig. 4.28. How quickly will this happen? From
Eq. (4.17) the resistance of the path, R, is ρs/A. Hence the time constant
RC is just (ρs/A)(ε0A/s) = ε0ρ. For example, if our weakly ionized
gas had a resistivity of 106 ohm-meter, the time constant for discharge of
the capacitor would be (recalling the units of ε0 and the ohm) ε0ρ =

Neutral background of
positive ions plus mobile
negative charge carriers

Fixed charge sheets

⊕
⊕
⊕
⊕
⊕
⊕
⊕

(a)

(b)

E

E = 0

This block of negative
charge has moved to
the right

Net charge
density zero

Figure 4.29.
In a conducting medium, here represented by
an n-type conductor, two fixed sheets of charge,
one negative and one positive, can be
neutralized by a slight motion of the entire block
of mobile charge carriers lying between them.
(a) Before the block of negative charge has
moved. (b) After the net charge density has
been reduced to zero at each sheet.

(8.85 · 10−12 C2 s2 kg−1 m−3)(106 kg m3 C−2 s−1) ≈ 10 microseconds.
It does not depend on the size or shape of the capacitor.

What we have here is simply the time constant for the relaxation
of an electric field in a conducting medium by redistribution of charge.
We really don’t need the capacitor plates to describe it. Imagine that
we could suddenly imbed two sheets of charge, a negative sheet and a
positive sheet, opposite one another in a conductor – for instance, in
an n-type semiconductor (Fig. 4.29(a)). What will make these charges
disappear? Do negative charge carriers move from the sheet on the left
across the intervening space, neutralizing the positive charges when they
arrive at the sheet on the right? Surely not – if that were the process,
the time required would be proportional to the distance between the
sheets. What happens instead is this. The entire population of nega-
tive charge carriers that fills the space between the sheets is caused to
move by the electric field. Only a very slight displacement of this cloud
of charge suffices to remove excess negative charge on the left, while
providing on the right the extra negative charge needed to neutralize
the positive sheet, as indicated in Fig. 4.29(b). Within a conductor, in
other words, neutrality is restored by a small readjustment of the entire
charge distribution, not by a few charge carriers moving a long dis-
tance. That is why the relaxation time can be independent of the size
of the system.

For a metal with resistivity typically 10−7 ohm-meter, the time con-
stant ε0ρ is about 10−18 s, orders of magnitude shorter than the mean
free time of a conduction electron in the metal. As a relaxation time this
makes no sense. Our theory, at this stage, can tell us nothing about events
on a time scale as short as that.

4.12 Applications
The transatlantic telegraph cable (see Exercise 4.22) extended about
2000 miles between Newfoundland and Ireland, and was the most expen-
sive and involved electrical engineering project of its time. After many
failures, interrupted by a very short-lived success in 1858, it was finally
completed in 1866. The initial failures were due partly to the fact that
there didn’t exist a consistent set of electrical units, in particular a unit



218 Electric currents

for resistance. A byproduct of the project was therefore the hastening of
a consistent set of units.

Electric shocks can range from barely noticeable, to annoying, to
painful, to lethal. The severity of a shock depends on the current, not the
applied voltage (although for a given resistance, a higher voltage means
a higher current, of course). The duration also matters. The current can
be harmful for two reasons: it can cause burns, and it can cause the heart
to undergo fibrillation, where the normal coordinated contractions are
replaced by uncoordinated ones, which don’t pump any blood. Currents
as small as 50 mA can cause fibrillation. A defibrillator works by passing
a large enough current through the heart so that it briefly freezes up.
With the uncoordinated contractions halted, the heart is then likely to
start beating normally.

A current of 10 mA running through your hand is roughly the “can’t
let go” threshold, where the induced contractions of the muscles prevent
you from letting go of the wire or whatever the voltage source is. And if
you can’t let go, you will inevitably become sweaty, which will reduce
the resistivity of your skin, making things even worse. People who work
with electricity often keep one hand in their pocket, to reduce the chance
of it touching a grounded object and forming a conductive path, and,
even worse, a path that goes across the heart.

If you touch a voltage source, the relation between the voltage and
current depends on the resistance involved, and this can vary greatly,
depending on the conditions. The main things that the resistance depends
on are the resistivity of your skin, and the contact area. Dry skin has
a much higher resistivity than wet skin. In a given scenario, the dry-
skin resistance might be, say, 100,000 �, whereas the wet-skin resistance
might be 1000 �. The shock from a 120 V wall socket in these two cases
will be about 1 mA (hardly noticeable), or about 100 mA (potentially
lethal). It’s best to assume the latter! The variation of resistivity with the
sweatiness of your skin is one of the ingredients in lie-detector machines.
The increase in current is quite remarkable, even if you don’t think you’re
sweating much. If you hook yourself up to an apparatus of this sort
(which can often be found in science museums and the like), and if you
then imagine, say, bungee jumping off a high suspension bridge, the cur-
rent will rise dramatically. It’s like it is magically reading your mind. The
wet interior of our bodies has an even lower resistivity, of course, so spe-
cial precautions must be taken in hospital operating rooms. Even a small
voltage across an exposed heart can create a sufficient current to cause
fibrillation.

If you shuffle your feet across a carpet on a dry day, you can get
charged up to a very high voltage, perhaps 50,000 V. If you then touch
a grounded object, you get a shock in the form of a spark. But even
if you’re quite sweaty, this 50,000 V certainly isn’t lethal, whereas the
120 V from the wall socket might very well be. As mentioned in Section
2.18, the reason is that the amount of charge on you after shuffling across
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the carpet is very small, whereas there is an essentially infinite amount
of charge available from the power company. The current in the case of
the carpet lasts for a very short time before the charge runs out, and this
time interval is too short to do any damage.

A fuse is a safety device that protects against large currents in a
circuit; 20 A is a typical threshold. Such currents can generate enough
heat to start a fire. A fuse consists of a thin strip of metal connected in
series with the circuit. If the current becomes sufficiently large, the I2R
resistance heating will melt the strip, producing a gap in the circuit and
halting the current flow. A fuse needs to be replaced each time it burns
out, but it’s better to burn out a fuse than to burn down a house! A similar
safety device, a circuit breaker, doesn’t need to be replaced; it can simply
be reset. This will be discussed in Section 6.10.

A smoke detector of the “ionization” type works by monitoring a
tiny current. This current is created by a small radioactive source that
emits alpha particles, which ionize the air. These ions constitute the tiny
current. When smoke enters the detector, the ions collect on the smoke
particles and are neutralized. This disrupts the current, telling the alarm
to go off.

Electric eels can generate voltages on the order of 500 V, which is
enough to harm or possibly kill a human. The discharge is brief; a current
of about 1 ampere lasts for a few milliseconds, but this is long enough.
Special electrocyte cells, which take up most of the eel’s body, are able to
generate small voltages of roughly 0.1 V by means of sodium–potassium
pumps (a common mechanism in nerve and muscle cells). Thousands of
these cells are stacked in series (the same basic idea behind a battery) to
produce the 500 V potential, and then many of these stacks are combined
in parallel. The tricky thing is for the eel to discharge all the electrocyte
cells simultaneously; the mechanism for this isn’t entirely understood.

Sprites are faint flashes of light that sometimes occur high above
thunderstorms. They are predominantly red and generally extend verti-
cally, sometimes up to 100 km. There are still many open questions about
how they form, but an important fact is that the air is much less dense
at high altitudes, so the breakdown field is lower. (Electrons have more
time to accelerate between collisions, so they can achieve larger speeds.)
A relatively small field, caused by a dipole distribution of charge in a
thundercloud, can be large enough at high altitudes to cause breakdown.

In a conducting metal wire, current can flow in either direction. The
two directions are symmetrical; if you flip the wire over, it looks the
same. But in a diode, current can flow in only one direction. A semi-
conductor diode consists of an n-type semiconducting region adjacent to
a p-type region (the combination is called a p-n junction). The currents
in these regions arise from the flow of electrons and holes, respectively.
Because of this difference, there is an asymmetry between the two direc-
tions of current flow. This setup therefore has at least some chance of
allowing current to flow in only one direction. And indeed, it can be
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shown that (provided that the voltage isn’t excessively large) current can
flow only in the p-to-n direction. Or, equivalently, electrons can flow only
in the n-to-p direction. The reasoning involves the diffusion of electrons
and holes across the junction, which creates a depletion region, where
there are no mobile charge carriers. Alternatively, electrons can’t flow
from the p region to the n region, because there are no mobile electrons
in the p region to do the flowing.

When a current flows through a diode, electrons give off energy by
dropping from the conduction band down to a hole in the valence band.
This energy takes the form of a photon, and for certain materials the
energy gap corresponds to a photon whose frequency is in the visible
spectrum. Such a diode is called a light-emitting diode (LED). LEDs last
much longer than incandescent bulbs (there is no filament that will burn
out), and they are much more energy efficient (there is less wasted heat,
and fewer wasted photons in nonvisible parts of the spectrum). They are
also generally very small, so they can easily be inserted into circuits.

A transistor is a device that allows a small signal in one part of a
circuit to control a large current in another part. A transistor can be made
with, for example, an n-p-n junction (although the middle region must
be very thin for it to work). This is called a bipolar junction transistor
(BJT). If two terminals are connected to the two n-type materials on the
ends, no current will flow through the transistor, because it effectively
consists of two p-n junctions pointing in opposite directions, But if a
small current is allowed to flow through the middle p-type material by
way of a third terminal, then it turns out (although this is by no means
obvious) that a much larger current will flow through the transistor, that
is, through the original two terminals. A transistor can operate in an “all
or nothing” mode, that is, as a switch that turns a large current on or
off. Or it can operate in a continuous manner, where the resultant current
depends on the small current in the middle p-type material.

Another type of transistor is the field effect transistor (FET). There
are different types of FETs, but in one type a gate runs along the side
of a p-type material. If a positive voltage is applied to the gate, it will
attract electrons and effectively turn a thin layer of the p-type material
into n-type. If terminals are connected to two n-type regions that are
placed at the ends of this layer, then we have a continuous n-type region
running from one terminal to the other, so current can flow. Increas-
ing the gate voltage increases the thickness of the n-type layer, thereby
increasing the current flow between the terminals. The result is an ampli-
fication of the original signal to the gate. And indeed, the transistor is the
main component in the amplifier in your sound system. Although BJTs
were developed first, FETs are by far the dominant transistor in modern
electronics.

Solar cells produce power by making use of the photovoltaic effect.
At a p-n junction of two semiconducting materials, an electric field nat-
urally occurs (see Exercise 4.26) due to the diffusion of electrons from
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the n to p regions, and of holes from the p to n regions. If photons in the
sunlight kick electrons up to the conduction band, they (along with the
holes created) will move under the influence of the field, and a current
will be generated.

CHAPTER SUMMARY
• The current density associated with a given type of charge carrier

is J = nqu. Conservation of charge is expressed by the continuity
equation, div J = −∂ρ/∂t, which says that if the charge in a region
decreases (or increases), there must be current flowing out of (or into)
that region.

• The current density in a conductor is related to the electric field by J =
σE, where σ is the conductivity. This implies a linear relation between
voltage and current, known as Ohm’s law: V = IR. The resistance of
a wire is R = L/Aσ = ρL/A, where ρ is the resistivity.

• An applied electric field results in a (generally) slow drift velocity of
the charge carriers. The conductivity associated with a given type of
charge carrier is σ ≈ Ne2τ/m, where τ is the mean time between
collisions.

• Conduction in semiconductors arises from mobile electrons in the
conduction band, or mobile “holes” in the valence band. The for-
mer dominate in n-type semiconductors, while the latter dominate in
p-type semiconductors. Doping can dramatically increase the number
of electrons or holes.

• It is often possible to reduce a circuit of resistors to a smaller circuit
via the rules for adding resistors in series and parallel:

R = R1 + R2 and
1
R
= 1

R1
+ 1

R2
. (4.45)

More generally, the currents in a circuit can be found via Ohm’s law
(V = IR) and Kirchhoff’s rules (zero net current flow into any node,
and zero net voltage drop around any loop).

• The power dissipated in a resistor is given by P = I2R, which can also
be written as IV or V2/R.

• A voltaic cell, or battery, utilizes chemical reactions to supply an elec-
tromotive force. Since the line integral of the electric field around
a complete circuit is zero, there must be locations where ions move
against the electric field. The forces from the chemical reactions are
responsible for this.

• Thévenin’s theorem states that any circuit is equivalent to a single volt-
age source Eeq and a single resistor Req. The linearity of circuits is
critical in the proof of this theorem.

• If the charge on a capacitor is discharged across a resistor, the charge
and current decrease exponentially with a time constant equal to RC.
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Problems
4.1 Van de Graaff current *

In a Van de Graaff electrostatic generator, a rubberized belt 0.3 m
wide travels at a velocity of 20 m/s. The belt is given a surface
charge at the lower roller, the surface charge density being high
enough to cause a field of 106 V/m on each side of the belt. What
is the current in milliamps?

4.2 Junction charge **
Show that the total amount of charge at the junction of the two
materials in Fig. 4.6 is ε0I(1/σ2 − 1/σ1), where I is the current
flowing through the junction, and σ1 and σ2 are the conductivities
of the two conductors.

4.3 Adding resistors *
(a) Two resistors, R1 and R2, are connected in series, as shown in

Fig. 4.30(a). Show that the effective resistance R of the system

(a)

(b)

R1

R1

R2

R2

Figure 4.30.

is given by

R = R1 + R2. (4.46)

Check the R1 → 0 and R1 → ∞ limits.
(b) If the resistors are instead connected in parallel, as shown in

Fig. 4.30(b), show that the effective resistance is given by

1
R
= 1

R1
+ 1

R2
. (4.47)

Again check the R1 → 0 and R1 → ∞ limits.

4.4 Spherical resistor **
(a) The region between two concentric spherical shells is filled

with a material with resistivity ρ. The inner radius is r1, and
the outer radius r2 is many times larger (essentially infinite).
Show that the resistance between the shells is essentially equal
to ρ/4πr1.

(b) Without doing any calculations, dimensional analysis suggests
that the above resistance should be proportional to ρ/r1,
because ρ has units of ohm-meters and r1 has units of meters.
But is this reasoning rigorous?

4.5 Laminated conductor **
A laminated conductor is made by depositing, alternately, layers
of silver 100 angstroms thick and layers of tin 200 angstroms thick
(1 angstrom = 10−10 m). The composite material, considered on
a larger scale, may be considered a homogeneous but anisotropic
material with an electrical conductivity σ⊥ for currents perpendic-
ular to the planes of the layers, and a different conductivity σ‖ for
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currents parallel to that plane. Given that the conductivity of silver
is 7.2 times that of tin, find the ratio σ⊥/σ‖.

b

a

Figure 4.31.

4.6 Validity of tapered-rod approximation *
(a) The result given in Exercise 4.32 below is only an approxi-

mate one, valid in the limit where the taper is slow (that is,
where a − b is much smaller than the length of the cone).
It can’t be universally valid, because in the b→∞ limit the
resistance of the cone would be zero. But the object shown in
Fig. 4.31 certainly doesn’t have a resistance that approaches
zero as b → ∞. Why isn’t the result valid?

(b) The technique given in the hint in Exercise 4.32 is valid for the
object shown in Fig. 4.32, which has spherical endcaps (with a
common center) as its end faces. The radial distance between
the faces is � and their areas are A1 and A2. Find the resistance
between the end faces.

4.7 Triangles of resistors **
(a) In Fig. 4.33, each segment represents a resistor R (independent

A1

A2

Figure 4.32.

of the length on the page). What is the effective resistance Reff
between A and B? The numbers you encounter in your calcu-
lation should look familiar.

(b) What is Reff in the limit of a very large number of triangles?
You can assume that they spiral out of the page, so that they
don’t run into each other. Your result should agree with a cer-
tain fact you may know concerning the familiar-looking num-
bers in part (a). Hint: In the infinite-triangle limit, if you add on
another triangle to the left of A, the effective resistance along
the new “spoke” must still be Reff.

4.8 Infinite square lattice **
Consider a two-dimensional infinite square lattice of 1 � resistors.
That is, every lattice point in the plane has four 1 � resistors con-
nected to it. What is the equivalent resistance between two adjacent
nodes? This problem is a startling example of the power of sym-
metry and superposition. Hint: If you can determine the voltage
drop between two adjacent nodes when a current of, say, 1 A goes
in one node and comes out the other, then you are done. Consider
this setup as the superposition of two other setups.

A

B

Figure 4.33.

4.9 Sum of the effective resistances ****
N points in space are connected by a collection of resistors, all with
the same value R. The network of resistors is arbitrary (and not nec-
essarily planar), except for the one restriction that it is “connected”
(that is, it is possible to travel between any two points via an unbro-
ken chain of resistors). Two given points may be connected by mul-
tiple resistors (see Fig. 4.34), so the number of resistors emanating
from a given point can be any number greater than or equal to 1.
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n resistors

Figure 4.34.
Consider a particular resistor. The network produces an effec-

tive resistance between the two points at the ends of this resistor.
What is the sum of the effective resistances across all the resistors
in the network? (The result is known as Foster’s theorem.) Solve
this in two steps as follows.

(a) Find the desired sum for the various networks shown in
Fig. 4.34. For example, in the first network, two of the effec-
tive resistances (in units of R) are 2/5 (from a 2 and a 1/2 in
parallel) and two are 3/5 (from a 1 and a 3/2 in parallel), so
the sum of all four effective resistances is 2. Remember that
the sum is over all resistors and not pairs of points, so the two
curved resistors each get counted once.

(b) Based on your results in part (a), and perhaps with the help of
some other networks you can randomly make up, you should
be able to make a conjecture about the general case with N
points and an arbitrary configuration of equal resistors (sub-
ject to the condition that the network is connected). Prove your
conjecture. Note: The solution is extremely tricky, so you may
want to look at the hint given in the first paragraph of the solu-
tion. Even with this hint it is still very tricky.

Rg

G

Figure 4.35.

4.10 Voltmeter, ammeter **
The basic ingredient in voltmeters and ammeters (at least ones
from the old days) is the galvanometer, which is a device that
can measure very small currents. (It works via magnetic effects,
but the exact mechanism isn’t important here.) Inherent in any gal-
vanometer is some resistance Rg, so a physical galvanometer can
be represented by the system shown in Fig. 4.35.

B

C

AR2

R1

E

Figure 4.36.

Consider a circuit such as the one in Fig. 4.36, with all quan-
tities unknown. Let’s say we want to measure experimentally the
current flowing across point A (which is the same as everywhere
else, in this simple circuit), and also the voltage difference between
points B and C. Given a galvanometer with known Rg, and also a
supply of known resistors (ranging from much smaller to much
larger than Rg), how can you accomplish these two tasks? Explain
how to construct your two devices (called an “ammeter” and “volt-
meter,” respectively), and also how you should connect/insert them
in the given circuit. You will need to make sure that you (a) affect
the given circuit as little as possible, and (b) don’t destroy your
galvanometer by passing more current through it than it can handle,



Problems 225

which is generally much less than the current in the given
circuit.

a b

R

R

R

R

R

E

E

E

Figure 4.37.

4.11 Tetrahedron resistance **
A tetrahedron has equal resistors R along each of its six edges. Find
the equivalent resistance between any two vertices. Do this by:

(a) using the symmetry of the tetrahedron to reduce it to an equiv-
alent resistor;

(b) laying the tetrahedron flat on a table, hooking up a battery with
an emf E to two vertices, and writing down the four loop equa-
tions. It’s easy enough to solve this system of equations by
hand, but it’s even easier if you use a computer.

4.12 Find the voltage difference **
What is the potential difference between points a and b in the cir-
cuit shown in Fig. 4.37?

4.13 Thévenin’s theorem ****
Consider an arbitrary circuit A and an additional arbitrary circuit

A B

Various 
R and   E

Various 
R and   E

Figure 4.38.

B connected to A’s external leads, as shown in Fig. 4.38. Prove
Thévenin’s theorem. That is, show that, as far as B is concerned, A
acts the same as a single emf Eeq connected in series with a single
resistor Req; explain how to determine these two quantities. Note
that this result is independent of the exact nature of B. However,
feel free to prove the theorem for just the special case where the
circuit B is a single emf E . We’ll present two proofs. They’re a
bit tricky, so you may want to look at the first few lines to get
started.

80 V

20 V
6 Ω

7 Ω

6 Ω

Figure 4.39.

4.14 Thévenin Req via Isc **
Find the Thévenin equivalent resistance Req for the circuit in
Fig. 4.24(a). Do this by calculating the short-circuit current Isc
between A and B, and then using Req = Eeq/Isc. (You can use
the fact that Eeq = I3R3, where I3 is given in Eq. (4.33).)

4.15 A Thévenin equivalent **
Find the Thévenin equivalent resistance and emf for the circuit
shown in Fig. 4.39. If a 15 � resistor is connected across the ter-
minals, what is the current through it?

Figure 4.40.

4.16 Discharging a capacitor **
A capacitor initially has charge Q. It is then discharged by clos-
ing the switch in Fig. 4.40. You might argue that no charge should
actually flow in the wire, because the electric field is essentially
zero just outside the capacitor; so the charges on the plates feel
essentially no force pushing them off the plates onto the wire.
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Why, then, does the capacitor discharge? State (and justify quanti-
tatively) which parts of the circuits are the (more) relevant ones in
the two setups shown in Fig. 4.41.

(a)

(b)

Very 
large 
radius

Figure 4.41.

4.17 Charging a capacitor **
A battery is connected to an RC circuit, as shown in Fig. 4.42. The
switch is initially open, and the charge on the capacitor is initially
zero. If the switch is closed at t = 0, find the charge on the capac-
itor, and also the current, as functions of time.

4.18 A discharge with two capacitors ***
(a) The circuit in Fig. 4.43 contains two identical capacitors and

two identical resistors. Initially, the left capacitor has charge
Q0 (with the left plate positive), and the right capacitor is
uncharged. If the switch is closed at t = 0, find the charges
on the capacitors as functions of time. Your loop equations
should be simple ones.

(b) Answer the same question for the circuit in Fig. 4.44, in which
we have added one more (identical) resistor. What is the max-

R

C

E

Figure 4.42.

imum (or minimum) charge that the right capacitor achieves?
Note: Your loop equations should now be more interesting.
Perhaps the easiest way to solve them is to take their sum and
difference. This allows you to solve for the sum and difference
of the charges, from which you can obtain each charge indi-
vidually.

Exercises
4.19 Synchrotron current *

In a 6 gigaelectron-volt (1 GeV = 109 eV) electron synchrotron,

R

C C

R

Q = Q0 Q = 0

Figure 4.43.

electrons travel around the machine in an approximately circular
path 240 meters long. It is normal to have about 1011 electrons
circling on this path during a cycle of acceleration. The speed of
the electrons is practically that of light. What is the current? We
give this very simple problem to emphasize that nothing in our
definition of current as rate of transport requires the velocities of
the charge carriers to be nonrelativistic and that there is no rule
against a given charged particle getting counted many times during

R

R

C C

R

Q = Q0 Q = 0

Figure 4.44.

a second as part of the current.

4.20 Combining the current densities **
We have 5 · 1016 doubly charged positive ions per m3, all moving
west with a speed of 105 m/s. In the same region there are 1017 elec-
trons per m3 moving northeast with a speed of 106 m/s. (Don’t ask
how we managed it!) What are the magnitude and direction of J?
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4.21 Current pulse from an alpha particle ***
The result from Exercise 3.37 can help us to understand the flow
of current in a circuit, part of which consists of charged particles
moving through space between two electrodes. The question is,
what is the nature of the current when only one particle traverses
the space? (If we can work that out, we can easily describe any
flow involving a larger number arriving on any schedule.)

(a) Consider the simple circuit in Fig. 4.45(a), which consists of a

I

(a)

(b)

Figure 4.45.

two electrodes in vacuum connected by a short wire. Suppose
the electrodes are 2 mm apart. A rather slow alpha particle,
of charge 2e, is emitted by a radioactive nucleus in the left
plate. It travels directly toward the right plate with a constant
speed of 106 m/s and stops at this plate. Make a quantitative
graph of the current in the connecting wire, plotting current
against time. Do the same for an alpha particle that crosses
the gap moving with the same speed but at an angle of 45◦ to
the normal. (Actually for pulses as short as this the inductance
of the connecting wire, here neglected, would affect the pulse
shape.)

(b) Suppose we had a cylindrical arrangement of electrodes, as
shown in Fig. 4.45(b), with the alpha particles being emitted
from a thin wire on the axis of a small cylindrical electrode.
Would the current pulse have the same shape? (You will need
to solve the cylindrical version of Exercise 3.37.)

4.22 Transatlantic telegraphic cable **
The first telegraphic messages crossed the Atlantic in 1858, by a
cable 3000 km long laid between Newfoundland and Ireland. The
conductor in this cable consisted of seven copper wires, each of
diameter 0.73 mm, bundled together and surrounded by an insulat-
ing sheath.

(a) Calculate the resistance of the conductor. Use 3 · 10−8 ohm-
meter for the resistivity of the copper, which was of somewhat
dubious purity.

(b) A return path for the current was provided by the ocean itself.
Given that the resistivity of seawater is about 0.25 ohm-meter,
see if you can show that the resistance of the ocean return
would have been much smaller than that of the cable. (Assume
that the electrodes immersed in the water were spheres with
radius, say, 10 cm.)

4.23 Intervals between independent events ***
This exercise is more of a math problem than a physics problem, so
maybe it doesn’t belong in this book. But it’s a fun one. Consider
a series of events that happen at independent random times, such
as the collisions in Section 4.4 that led to the issue discussed in
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Footnote 8. Such a process can be completely characterized by the
probability per unit time (call it p) of an event happening. The
definition of p is that the probability of an event happening in an
infinitesimal16 time dt equals p dt.

(a) Show that starting at any particular time (not necessarily the
time of an event), the probability that the next event happens
between t and t + dt later equals e−ptp dt. You can do this by
breaking the time interval t into a large number of tiny inter-
vals, and demanding that the event does not happen in any of
them, but that it does happen in the following dt. (You will
need to use the fact that (1 − x/N)N = e−x in the N → ∞
limit.) Verify that the integral of e−ptp dt correctly equals 1.

(b) Show that starting at any particular time (not necessarily the
time of an event), the average waiting time (also called the
expectation value of the waiting time) to the next event equals
1/p. Explain why this is also the average time between events.

(c) Pick a random point in time, and look at the length of the
time interval (between successive events) that it belongs to.
Explain, using the above results, why the average length of
this interval is 2/p, and not 1/p.

(d) We have found that the average time between events is 1/p,
and also that the average length of the interval surrounding a
randomly chosen point in time is 2/p. Someone might think
that these two results should be the same. Explain intuitively
why they are not.

(e) Using the above probability distribution e−ptp dt properly, show
mathematically why 2/p is the correct result for the average
length of the interval surrounding a randomly chosen point
in time.

4.24 Mean free time in water *
An ion in a liquid is so closely surrounded by neutral molecules
that one can hardly speak of a “free time” between collisions. Still,
it is interesting to see what value of τ is implied by Eq. (4.23) if we
take the observed conductivity of pure water from Table 4.1, and
if we use 6 · 1019 m−3 for N+ and N−; see Footnote 4. A typical
thermal speed for a water molecule is 500 m/s. How far would it
travel in that time τ?

4.25 Drift velocity in seawater *
The resistivity of seawater is about 0.25 ohm-meter. The charge
carriers are chiefly Na+ and Cl− ions, and of each there are about

16 The probability of an event happening in a noninfinitesimal time t is not equal to pt. If t
is large enough, then pt is larger than 1, so it certainly can’t represent a probability. In
that case, pt is the average number of events that occur in time t. But this doesn’t equal
the probability that an event occurs, because there can be double, triple, etc., events in
the time t. We don’t have to worry about multiple events if dt is infinitesimal.
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3 · 1026 per m3. If we fill a plastic tube 2 meters long with seawater
and connect a 12 volt battery to the electrodes at each end, what is
the resulting average drift velocity of the ions?

4.26 Silicon junction diode **
In a silicon junction diode the region of the planar junction bet-
ween n-type and p-type semiconductors can be approximately rep-
resented as two adjoining slabs of uniform charge density, one
negative and one positive. Away from the junction, outside these
charge layers, the potential is constant, its value being φn in the
n-type material and φp in the p-type material. Given that the dif-
ference between φp and φn is 0.3 volt, and that the thickness of
each of the two slabs of charge is 10−4 m, find the charge density
in each of the two slabs, and make a graph of the potential φ as a
function of position x through the junction. What is the strength of

I1

I2

R2

R1

E

Figure 4.46.

the electric field at the midplane?

4.27 Unbalanced current **
As an illustration of the point made in Footnote 13 in Section 4.7,
consider a black box that is approximately a 10 cm cube with two
binding posts. Each of these terminals is connected by a wire to
some external circuits. Otherwise, the box is well insulated from
everything. A current of approximately 1 A flows through this cir-
cuit element. Suppose now that the current in and the current out
differ by one part in a million. About how long would it take,
unless something else happens, for the box to rise in potential by
1000 volts?

4.28 Parallel resistors *
By solving the loop equations for the setup shown in Fig. 4.46,
derive the rule for adding resistors in parallel.

R1 R1

R1 R0

Figure 4.47.

4.29 Keeping the same resistance *
In the circuit shown in Fig. 4.47, if R0 is given, what value must R1
have in order that the input resistance between the terminals shall
be equal to R0?

4.30 Automobile battery *
If the voltage at the terminals of an automobile battery drops from
12.3 to 9.8 volts when a 0.5 ohm resistor is connected across the
battery, what is the internal resistance?

4.31 Equivalent boxes **
A black box with three terminals, a, b, and c, contains nothing
but three resistors and connecting wire. Measuring the resistance

a c

b

20

50

or

10

34 170

85

ca

b

Figure 4.48.

between pairs of terminals, we find Rab = 30 ohms, Rac = 60
ohms, and Rbc = 70 ohms. Show that the contents of the box
could be either of the configurations shown in Fig. 4.48. Is there
any other possibility? Are the two boxes completely equivalent, or
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is there an external measurement that would distinguish between
them?

4.32 Tapered rod *
Two graphite rods are of equal length. One is a cylinder of radius a.
The other is conical, tapering (or widening) linearly from radius a
at one end to radius b at the other. Show that the end-to-end electri-
cal resistance of the conical rod is a/b times that of the cylindrical
rod. Hint: Consider the rod to be made up of thin, disk-like slices,
all in series. (This result is actually only an approximate one, valid
in the limit where the taper is slow. See Problem 4.6 for a discus-
sion of this.)

4.33 Laminated conductor extremum **
(a) Consider the setup in Problem 4.5. For given conductivities

of the two materials, show that the ratio σ⊥/σ‖ is minimum
when the layers have the same thickness (independent of what
the conductivities are).

Give a physical argument why you would expect σ⊥/σ‖ to
achieve a maximum or minimum somewhere between the two
extremes where one thickness is much larger/smaller than the
other.

(b) For given layer thicknesses, show that the ratio σ⊥/σ‖ is max-
imum when the materials have the same conductivity (inde-
pendent of what the thicknesses are).

Give a physical argument why you would expect σ⊥/σ‖ to
achieve a maximum or minimum somewhere between the two
extremes where one conductivity is much larger/smaller than
the other.

4.34 Effective resistances in lattices **
In the spirit of Problem 4.8, find the effective resistance between
two adjacent nodes in an infinite (a) 3D cubic lattice, (b) 2D tri-
angular lattice, (c) 2D hexagonal lattice, (d) 1D lattice. (The last
of these tasks is a little silly, of course.) Assume that the lattices
consist of 1 � resistors.

4.35 Resistances in a cube **
A cube has a resistor R along each edge. Find the equivalent resis-
tance between two nodes that correspond to:

(a) diagonally opposite corners of the cube;
(b) diagonally opposite corners of a face;
(c) adjacent corners.

You do not need to solve a number of simultaneous equations;
instead use symmetry arguments. Hint: If two vertices are at the
same potential, they can be collapsed to one point without chang-
ing the equivalent resistance between the two given nodes.
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R2 R2 R2

R1R1R1

Figure 4.49.

4.36 Attenuator chain **
Some important kinds of networks are infinite in extent. Fig-
ure 4.49 shows a chain of series and parallel resistors stretching off
endlessly to the right. The line at the bottom is the resistanceless
return wire for all of them. This is sometimes called an attenuator
chain, or a ladder network.

The problem is to find the “input resistance,” that is, the equiv-
alent resistance between terminals A and B. Our interest in this A

(a)

(b)

B

A

B

Figure 4.50.

problem mainly concerns the method of solution, which takes an
odd twist and which can be used in other places in physics where
we have an iteration of identical devices (even an infinite chain
of lenses, in optics). The point is that the input resistance (which
we do not yet know – call it R) will not be changed by adding a
new set of resistors to the front end of the chain to make it one
unit longer. But now, adding this section, we see that this new
input resistance is just R1 in series with the parallel combination of
R2 and R.

Use this strategy to determine R. Show that, if voltage V0 is
applied at the input to such a chain, the voltage at successive nodes
decreases in a geometric series. What should the ratio of the resis-
tors be so that the ladder is an attenuator that halves the voltage at
every step? Obviously a truly infinite ladder would not be practical.
Can you suggest a way to terminate it after a few sections without
introducing any error in its attenuation?

1 2

1

2

(a)

(b)

Figure 4.51.

4.37 Some golden ratios *
Find the resistance between terminals A and B in each of the infi-
nite chains of resistors shown in Fig. 4.50. All the resistors have
the same value R. (The strategy from Exercise 4.36 will be useful.)

4.38 Two light bulbs *
(a) Two light bulbs are connected in parallel, and then connected

to a battery, as shown in Fig. 4.51(a). You observe that bulb
1 is twice as bright as bulb 2. Assuming that the brightness
of a bulb is proportional to the power dissipated in the bulb’s
resistor, which bulb’s resistor is larger, and by what factor?
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(b) The bulbs are now connected in series, as shown in Fig. 4.51(b).
Which bulb is brighter, and by what factor? How bright is each
bulb compared with bulb 1 in part (a)?

4.39 Maximum power *
Show that if a battery of fixed emf E and internal resistance Ri is

R1 R2

I2I1

I0

Figure 4.52.

connected to a variable external resistance R, the maximum power
is delivered to the external resistor when R = Ri.

4.40 Minimum power dissipation **
Figure 4.52 shows two resistors in parallel, with values R1 and R2.
The current I0 divides somehow between them. Show that the con-
dition that I1 + I2 = I0, together with the requirement of minimum
power dissipation, leads to the same current values that we would
calculate with ordinary circuit formulas. This illustrates a general
variational principle that holds for direct current networks: the dis-
tribution of currents within the network, for given input current I0,
is always that which gives the least total power dissipation.

4.41 D-cell **
The common 1.5 volt dry cell used in flashlights and innumerable
other devices releases its energy by oxidizing the zinc can which is
its negative electrode, while reducing manganese dioxide, MnO2,
to Mn2O3 at the positive electrode. (It is called a carbon–zinc
cell, but the carbon rod is just an inert conductor.) A cell of size D,
weighing 90 g, can supply 100 mA for about 30 hours.

(a) Compare its energy storage, in J/kg, with that of the lead–acid

R1

R2

Rc  =  20 Ω

R1.5 V I

Ic

Figure 4.53.

battery described in the example in Section 4.9. Unfortunately
the cell is not rechargeable.

(b) How high could you lift yourself with one D-cell powering a
50 percent efficient winch?

4.42 Making an ohmmeter ***
You have a microammeter that reads 50 μA at full-scale deflection,
and the coil in the meter movement has a resistance of 20 ohms.
By adding two resistors, R1 and R2, and a 1.5 volt battery as shown
in Fig. 4.53, you can convert this into an ohmmeter. When the
two outcoming leads of this ohmmeter are connected together, the
meter is to register zero ohms by giving exactly full-scale deflec-
tion. When the leads are connected across an unknown resistance
R, the deflection will indicate the resistance value if the scale is
appropriately marked. In particular, we want half-scale deflection

∞ 15

0 10 20 30 40 50

0 ohms

microamps

Figure 4.54.

to indicate 15 ohms, as shown in Fig. 4.54. What values of R1 and
R2 are required, and where on the ohm scale will the marks be
(with reference to the old microammeter calibration) for 5 ohms
and for 50 ohms?
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4.43 Using symmetry **
This exercise deals with the equivalent resistance Req between ter-
minals T1 and T2 for the network of five resistors shown in

R3

T1

T2

R2R5

R1

R4

Figure 4.55.

Fig. 4.55. One way to derive a formula for Req would be to solve
the network for the current I that flows in at T1 for a given voltage
difference V between T1 and T2; then Req = V/I. The solution
involves rather tedious algebra in which it is easy to make a mis-
take (although it is quick and painless if you use a computer; see
Exercise 4.44), so we’ll tell you most of the answer:

Req = R1R2R3 + R1R2R4 + [?] + R2R3R4 + R5
(
R1R3 + R2R3 + [?] + R2R4

)
R1R2 + R1R4 + [?] + R3R4 + R5

(
R1 + R2 + R3 + R4

) .

(4.48)

By considering the symmetry of the network you should be able to
fill in the three missing terms. Now check the formula by directly
calculating Req in four special cases: (a) R5 = 0, (b) R5 = ∞, (c)
R1 = R3 = 0, and (d) R1 = R2 = R3 = R4 ≡ R, and comparing
your results with what the formula gives.

4.44 Using the loop equations *
Exercise 4.43 presents the (large) expression for the equivalent
resistance between terminals T1 and T2 in Fig. 4.55. Derive this

I3 I1

I2

R2

R1

T1

T2

R4

R5

R3

E

Figure 4.56.

expression by writing down the loop equations involving the cur-
rents shown in Fig. 4.56, and then using Mathematica so solve for
I3. (No need for any messy algebra. Except for some typing, you’re
basically finished with the problem once you write down the loop
equations.)

4.45 Battery/resistor loop **
In the circuit shown in Fig. 4.57, all five resistors have the same
value, 100 ohms, and each cell has an electromotive force of 1.5 V.
Find the open-circuit voltage and the short-circuit current for the
terminals A and B. Then find Eeq and Req for the Thévenin equiva-
lent circuit.

A

B

Figure 4.57.

4.46 Maximum power via Thévenin **
A resistor R is to be connected across the terminals A and B of
the circuit shown in Fig. 4.58. For what value of R will the power
dissipated in the resistor be greatest? To answer this, construct the
Thévenin equivalent circuit and then invoke the result from Exer-
cise 4.39. How much power will be dissipated in R?

4.47 Discharging a capacitor **
Return to the example of the capacitor C discharging through the
resistor R, which was worked out in Section 4.11, and show that
the total energy dissipated in the resistor agrees with the energy
originally stored in the capacitor. Suppose someone objects that
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the capacitor is never really discharged because Q becomes zero
only for t = ∞. How would you counter this objection? You might120 volts

10 ohms

15 ohms

10 ohms

A B

R

Figure 4.58.

find out how long it would take the charge to be reduced to one
electron, with some reasonable assumptions.

4.48 Charging a capacitor **
Problem 4.17 deals with the charging of a capacitor. Using the
results from that problem, show that energy is conserved. That is,
show that the total work done by the battery equals the final energy
stored in the capacitor plus the energy dissipated in the resistor.

4.49 Displacing the electron cloud *
Suppose the conducting medium in Fig. 4.29 is n-type silicon with
1021 electrons per m3 in the conduction band. Assume the initial
density of charge on the sheets is such that the electric field strength
is 3 · 104 V/m. By what distance must the intervening distribution of
electrons be displaced to restore neutrality and reduce the electric
field to zero?



5
The fields of
moving charges

Overview The goal of this chapter is to show that when rela-
tivity is combined with our theory of electricity, a necessary con-
clusion is that a new force, the magnetic force, must exist. In
nonstatic situations, charge is defined via a surface integral. With
this definition, charge is invariant, that is, independent of refer-
ence frame. Using this invariance, we determine how the electric
field transforms between two frames. We then calculate the elec-
tric field due to a charge moving with constant velocity; it does not
equal the spherically symmetric Coulomb field. Interesting field
patterns arise in cases where a charge starts or stops.

The main result of this chapter, derived in Section 5.9, is the
expression for the force that a moving charge (or a group of moving
charges) exerts on another moving charge. On our journey to this
result, we will consider setups with increasing complexity. More
precisely, in calculating the force on a charge q due to another
charge Q, there are four basic cases to consider, depending on
the charges’ motions. (1) If both charges are stationary in a given
frame, then we know from Chapter 1 that Coulomb’s law gives the
force. (2) If the source Q is moving and q is at rest, then we can use
the transformation rule for the electric field mentioned above. (3) If
the source Q is at rest and q is moving, then we can use the trans-
formation rule for the force, presented in Appendix G, to show that
the Coulomb field gives the force, as you would expect. (4) Finally,
the case we are most concerned with: if both charges are moving,
then we will show in Section 5.9 that a detailed consideration of
relativistic effects implies that there exists an additional force that
must be added to the electrical force; this is the magnetic force.
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In short, the magnetic force is a consequence of Coulomb’s law,
charge invariance, and relativity.

5.1 From Oersted to Einstein
In the winter of 1819–1820, Hans Christian Oersted was lecturing on
electricity, galvanism, and magnetism to advanced students at the Univer-
sity of Copenhagen. Electricity meant electrostatics; galvanism referred
to the effects produced by continuous currents from batteries, a subject
opened up by Galvani’s chance discovery and the subsequent experi-
ments of Volta; magnetism dealt with the already ancient lore of lode-
stones, compass needles, and the terrestrial magnetic field. It seemed
clear to some that there must be a relation between galvanic currents and
electric charge, although there was little more direct evidence than the
fact that both could cause shocks. On the other hand, magnetism and
electricity appeared to have nothing whatever to do with one another.
Still, Oersted had a notion, vague perhaps, but tenaciously pursued, that
magnetism, like the galvanic current, might be a sort of “hidden form”
of electricity. Groping for some manifestation of this, he tried before his
class the experiment of passing a galvanic current through a wire that
ran above and at right angles to a compass needle (with the compass
held horizontal, so that the needle was free to spin in a horizontal plane).
It had no effect. After the lecture, something impelled him to try the
experiment with a wire running parallel to the compass needle. The nee-
dle swung wide – and when the galvanic current was reversed it swung
the other way!

The scientific world was more than ready for this revelation. A fer-
ment of experimentation and discovery followed as soon as the word
reached other laboratories. Before long, Ampère, Faraday, and others
had worked out an essentially complete and exact description of the mag-
netic action of electric currents. Faraday’s crowning discovery of electro-
magnetic induction came less than 12 years after Oersted’s experiment.
In the previous two centuries since the publication in 1600 of William
Gilbert’s great work De Magnete, man’s understanding of magnetism had
advanced not at all. Out of these experimental discoveries there grew the
complete classical theory of electromagnetism. Formulated mathemati-
cally by Maxwell in the early 1860s, it was triumphantly corroborated by
Hertz’s demonstration of electromagnetic waves in 1888.

Special relativityhas itshistorical roots inelectromagnetism.Lorentz,
exploring the electrodynamics of moving charges, was led very close to
the final formulation of Einstein. And Einstein’s great paper of 1905 was
entitled not “Theory of Relativity,” but rather “On the Electrodynamics
of Moving Bodies.” Today we see in the postulates of relativity and their
implications a wide framework, one that embraces all physical laws and
not solely those of electromagnetism. We expect any complete physical
theory to be relativistically invariant. It ought to tell the same story in
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all inertial frames of reference. As it happened, physics already had one
relativistically invariant theory – Maxwell’s electromagnetic theory –
long before the significance of relativistic invariance was recognized.
Whether the ideas of special relativity could have evolved in the absence
of a complete theory of the electromagnetic field is a question for the
historian of science to speculate about; probably it can’t be answered. We
can only say that the actual history shows rather plainly a path running
from Oersted’s compass needle to Einstein’s postulates.

Still, relativity is not a branch of electromagnetism, nor a conse-
quence of the existence of light. The central postulate of special rel-
ativity, which no observation has yet contradicted, is the equivalence
of reference frames moving with constant velocity with respect to one
another. Indeed, it is possible, without even mentioning light, to derive
the formulas of special relativity from nothing more than that postulate
and the assumption that all spatial directions are equivalent.1 The uni-
versal constant c then appears in these formulas as a limiting velocity,
approached by an energetic particle but never exceeded. Its value can be
ascertained by an experiment that does not involve light or anything else
that travels at precisely that speed. In other words, we would have special
relativity even if electromagnetic waves could not exist.

Later in this chapter, we are going to follow the historical path from
Oersted to Einstein almost in reverse. We will take special relativity as
given, and ask how an electrostatic system of charges and fields looks in
another reference frame. In this way we shall find the forces that act on
electric charges in motion, including the force that acts between electric
currents. Magnetism, seen from this viewpoint, is a relativistic aspect of
electricity.2 But first, let’s review some of the phenomena we shall be
trying to explain.

5.2 Magnetic forces
Two wires running parallel to one another and carrying currents in the
same direction are drawn together. The force on one of the wires, per
unit length of wire, is inversely proportional to the distance between the
wires (Fig. 5.1(a)). Reversing the direction of one of the currents changes

1 See Mermin (1984a), in which it is shown that the most general law for the addition of
velocities that is consistent with the equivalence of inertial frames must have the form
v = (v1 + v2)/(1 + v1v2/c2), identical to our Eq. (G.8) in Appendix G. To discover
the value of the constant c in our universe we need only measure with adequate
accuracy three lower speeds, v, v1, and v2. For references to other articles on the same
theme, see also Mermin (1984b).

2 The earliest exposition of this approach, to our knowledge, is Page (1912). It was
natural for Page, writing only seven years after Einstein’s revolutionary paper, to
consider relativity more in need of confirmation than electrodynamics. His concluding
sentence reads: “Viewed from another standpoint, the fact that we have been able, by
means of the principle of relativity, to deduce the fundamental relations of
electrodynamics from those of electrostatics, may be considered as some confirmation
of the principle of relativity.”
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the force to one of repulsion. Thus the two sections of wire in Fig. 5.1(b),
which are part of the same circuit, tend to fly apart. There is some sort
of “action at a distance” between the two filaments of steady electric cur-
rent. It seems to have nothing to do with any static electric charge on the
surface of the wire. There may be some such charge and the wires may
be at different potentials, but the force we are concerned with depends
only on the charge movement in the wires, that is, on the two currents.
You can put a sheet of metal between the two wires without affecting
this force at all (Fig. 5.1(c)). These new forces that come into play when
charges are moving are called magnetic.
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Oersted’s compass needle (Fig. 5.2(a)) doesn’t look much like a
direct-current circuit. We now know, however, as Ampère was the first
to suspect, that magnetized iron is full of perpetually moving charges –
electric currents on an atomic scale; we will talk about this in detail in
Chapter 11. A slender coil of wire with a battery to drive current through
it (Fig. 5.2(b)) behaves just like the compass needle under the influence
of a nearby current.

Observing the motion of a free charged particle, instead of a wire
carrying current, we find the same thing happening. In a cathode ray
tube, electrons that would otherwise follow a straight path are deflected
toward or away from an external current-carrying wire, depending on
the relative direction of the current in that wire (Fig. 5.3). This interac-
tion of currents and other moving charges can be described by introduc-
ing a magnetic field. (The electric field, remember, was simply a way
of describing the action at a distance between stationary charges that is
expressed in Coulomb’s law.) We say that an electric current has associ-
ated with it a magnetic field that pervades the surrounding space. Some
other current, or any moving charged particle that finds itself in this
field, experiences a force proportional to the strength of the magnetic
field in that locality. The force is always perpendicular to the velocity,
for a charged particle. The entire force on a particle carrying charge q is
given by

F = qE + qv × B (5.1)

where B is the magnetic field.3

Figure 5.1.
(a) Parallel wires carrying currents in the same direction are pulled
together. (b) Parallel wires carrying currents in opposite directions are
pushed apart. (c) These forces are not affected by putting a metal plate
between the wires.
3 Here we make use of the vector product, or cross product, of two vectors. A reminder:

the vector v × B is a vector perpendicular to both v and B and of magnitude vB sin θ ,
where θ is the angle between the directions of v and B. A right-hand rule determines
the sense of the direction of the vector v × B. In our Cartesian coordinates, x̂ × ŷ = ẑ
and v × B = x̂(vyBz − vzBy) + ŷ(vzBx − vxBz) + ẑ(vxBy − vyBx).
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We shall take Eq. (5.1) as the definition of B. All that concerns
us now is that the magnetic field strength is a vector that determines
the velocity-proportional part of the force on a moving charge. In other
words, the command, “Measure the direction and magnitude of the vec-
tor B at such and such a place,” calls for the following operations: Take
a particle of known charge q. Measure the force on q at rest, to deter-
mine E. Then measure the force on the particle when its velocity is
v; repeat with v in some other direction. Now find a B that will make
Eq. (5.1) fit all these results; that is the magnetic field at the place in
question.

I

(a)

(b)

I

Figure 5.2.
A compass needle (a) and a coil of wire carrying
current (b) are similarly influenced by current in
a nearby conductor. The direction of the current
I is understood to be that in which positive ions
would be moving if they were the carriers of the
current. In the earth’s magnetic field the black
end of the compass would point north.

Clearly this doesn’t explain anything. Why does Eq. (5.1) work?
Why can we always find a B that is consistent with this simple rela-
tion, for all possible velocities? We want to understand why there is a
velocity-proportional force. It is really most remarkable that this force
is strictly proportional to v, and that the effect of the electric field does
not depend on v at all! In the following pages we’ll see how this comes
about. It will turn out that a field B with these properties must exist if the
forces between electric charges obey the postulates of special relativity.
Seen from this point of view, magnetic forces are a relativistic aspect of
charge in motion.

A review of the essential ideas and formulas of special relativity is
provided in Appendix G. This would be a good time to read through it.

5.3 Measurement of charge in motion
How are we going to measure the quantity of electric charge on a mov-
ing particle? Until this question is settled, it is pointless to ask what
effect motion has on charge itself. A charge can only be measured by
the effects it produces. A point charge Q that is at rest can be measured
by determining the force that acts on a test charge q a certain distance
away (Fig. 5.4(a)). That is based on Coulomb’s law. But if the charge we
want to measure is moving, we are on uncertain ground. There is now a
special direction in space, the instantaneous direction of motion. It could
be that the force on the test charge q depends on the direction from Q
to q, as well as on the distance between the two charges. For different
positions of the test charge, as in Fig. 5.4(b), we would observe different
forces. Putting these into Coulomb’s law would lead to different values
for the same quantity Q. Also we have as yet no assurance that the force
will always be in the direction of the radius vector r.

To allow for this possibility, let’s agree to define Q by averaging
over all directions. Imagine a large number of infinitesimal test charges
distributed evenly over a sphere (Fig. 5.4(c)). At the instant the moving
charge passes the center of the sphere, the radial component of force on
each test charge is measured, and the average of these force magnitudes
is used to compute Q. Now this is just the operation that would be needed
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to determine the surface integral of the electric field over that sphere, at
time t. The test charges here are all at rest, remember; the force on q
per unit charge gives, by definition, the electric field at that point. This
suggests that Gauss’s law, rather than Coulomb’s law, offers the natu-
ral way4 to define quantity of charge for a moving charged particle, or
for a collection of moving charges. We can frame such a definition as
follows.

The amount of electric charge in a region is defined by the surface
integral of the electric field E over a surface S enclosing the region. This
surface S is fixed in some coordinate frame F. The field E is measured,
at any point (x, y, z) and at time t in F, by the force on a test charge at
rest in F, at that time and place. The surface integral is to be determined
for a particular time t. That is, the field values used are those measured
simultaneously by observers deployed all over S. (This presents no dif-
ficulty, for S is stationary in the frame F.) Let us denote such a surface
integral, over S at time t, by

∫
S(t) E · da. We define the amount of charge

inside S as ε0 times this integral:

Q = ε0

∫
S(t)

E · da (5.2)

+
–

I

Figure 5.3.
An example of the attraction of currents in the
same direction. Compare with Fig. 5.1(a). We
can also describe it as the deflection of an
electron beam by a magnetic field.

It would be embarrassing if the value of Q so determined depended
on the size and shape of the surface S. For a stationary charge it doesn’t –
that is Gauss’s law. But how do we know that Gauss’s law holds when
charges are moving? Fortunately it does. We can take that as an exper-
imental fact. This fundamental property of the electric field of moving
charges permits us to define quantity of charge by Eq. (5.2). From now
on we can speak of the amount of charge in a region or on a particle,
and that will have a perfectly definite meaning even if the charge is in
motion.

Figure 5.5 summarizes these points in an example. Two protons and
two electrons are shown in motion, at a particular instant of time. It is
a fact that the surface integral of the electric field E over the surface
S1 is precisely equal to the surface integral over S2 evaluated at the same
instant, and we may use this integral, as we have always used Gauss’s law
in electrostatics, to determine the total charge enclosed. Figure 5.6 raises
a new question. What if the same particles had some other velocities? For
instance, suppose the two protons and two electrons combine to form
a hydrogen molecule. Will the total charge appear exactly the same as
before?

4 It is not the only possible way. You could, for instance, adopt the arbitrary rule that the
test charge must always be placed directly ahead (in the direction of motion) of the
charge to be measured. Charge so defined would not have the simple properties we are
about to discuss. and your theory would prove clumsy and complicated.
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Figure 5.4.
(a) The magnitude of a charge at rest is
determined by the force on a test charge at rest
and Coulomb’s law. (b) In the case of a moving
charge, the force, for all we know now, may
depend on the angular position of the test
charge. If so, we can’t use procedure (a). (c) At
the instant Q passes through the center of the
spherical array of test charges, measure the
radial force component on each, and use the
average value of Fr to determine Q. This is
equivalent to measuring the surface
integral of E.

5.4 Invariance of charge
There is conclusive experimental evidence that the total charge in a sys-
tem is not changed by the motion of the charge carriers. We are so
accustomed to taking this for granted that we seldom pause to think
how remarkable and fundamental a fact it is. For proof, we can point to
the exact electrical neutrality of atoms and molecules. We have already
described in Section 1.3 the experimental test of the neutrality of the
hydrogen molecule, which proved that the electron and proton carry
charges equal in magnitude to better than 1 part in 1020. A similar exper-
iment was performed with helium atoms. The helium atom contains two
protons and two electrons, the same charged particles that make up the
hydrogen molecule. In the helium atom their motion is very different.
The protons, in particular, instead of revolving slowly 0.7 angstrom apart,
are tightly bound into the helium nucleus where they move with kinetic
energies in the range of 1 million eV. If motion had any effect on the
amount of charge, we could not have exact cancelation of nuclear and
electronic charge in both the hydrogen molecule and the helium atom.
In fact, the helium atom was shown to be neutral with nearly the same
experimental accuracy.

Another line of evidence comes from the optical spectra of isotopes
of the same element, atoms with different nuclear masses but, nominally
at least, the same nuclear charge. Here again, we find a marked differ-
ence in the motion of the protons within the nucleus, but comparison of
the spectral lines of the two species shows no discrepancy that could be
attributed to even a slight difference in total nuclear charge.

Mass is not invariant in the same way. We know that the energy of
a particle is changed by its motion, by the factor 1/(1 − v2/c2)1/2. If
the constituents of a composite particle are in motion, then the increase
in their energies shows up as an increase in the overall mass of the par-
ticle (even though the masses of the constituents remain the same). To
emphasize the difference between mass and charge, we show in Fig. 5.7
an imaginary experiment. In the box on the right the two massive charged
particles, which are fastened to the end of a pivoted rod, have been set
revolving with speed v. The mass of the system on the right is greater
than the mass of the system on the left, as demonstrated by weighing the
box on a spring balance or by measuring the force required to
accelerate it.5 The total electric charge, however, is unchanged. A real
experiment equivalent to this can be carried out with a mass spectro-
graph, which can reveal quite plainly a mass difference between an

5 In general, the total mass M of a system is given by M2c4 = E2 − p2c2, where E is the
total energy and p is the total momentum. Assuming that the total momentum is zero,
the mass is given in terms of the energy as M = E/c2. This energy can exist in various
forms: rest energy, kinetic energy, and potential energy. For the point we are making,
we have assumed that the elastic-strain potential energy of the rod in the right-hand
box is negligible. If the rod is stiff, this contribution will be small compared with the
v2/c2 term. See if you can show why.
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ionized deuterium molecule (two protons, two neutrons, one electron)
and an ionized helium atom (also two protons, two neutrons, and one
electron). These are two very different structures, within which the com-
ponent particles are whirling around with very different speeds. The dif-
ference in energy shows up as a measurable difference in mass. There is
no detectable difference, to very high precision, in the electric charge of
the two ions.

Proton

Electron

S1

v
v

v

v

S2

Figure 5.5.
Gauss’s law remains valid for the field of moving
charges. The flux of E through S2 is equal to the
flux of E through S1, evaluated at the same
instant of time.

This invariance of charge lends a special significance to the fact of
charge quantization. We emphasized in Chapter 1 the importance – and
the mystery – of the fact that every elementary charged particle has a
charge equal in magnitude to that of every other such particle. We now
observe that this precise equality holds not only for two particles at rest
with respect to one another, but also for any state of relative motion.

The experiments we have described, and many others, show that the
value of our Gauss’s law surface integral

∫
S E · da depends only on the

number and variety of charged particles inside S, and not on how they are
moving. According to the postulate of relativity, such a statement must
be true for any inertial frame of reference if it is true for one. Therefore
if F′ is some other inertial frame, moving with respect to F, and if S′ is a
closed surface in that frame which at time t′ encloses the same charged
bodies that were enclosed by S at time t, we must have∫

S(t)
E · da =

∫
S′(t′)

E′ · da′ (charge invariance). (5.3)
S

Figure 5.6.
Does the flux of E through S depend on the state
of motion of the charged particles? Is the
surface integral of E over S the same as in
Fig. 5.5? Here the particles are bound together
as a hydrogen molecule.

The field E′ is of course measured in F′, that is, it is defined by the
force on a test charge at rest in F′. The distinction between t and t′ must
not be overlooked. As we know, events that are simultaneous in F need
not be simultaneous in F′. Each of the surface integrals in Eq. (5.3) is to
be evaluated at one instant in its frame. If charges lie on the boundary of
S, or of S′, one has to be rather careful about ascertaining that the charges
within S at t are the same as those within S′ at t′. If the charges are well
away from the boundary, as in Fig. 5.8 which is intended to illustrate the
relation in Eq. (5.3), there is no problem in this respect.

Equation (5.3) is a formal statement of the relativistic invariance of
charge. We can choose our Gaussian surface in any inertial frame; the
surface integral will give a number independent of the frame. Invariance
of charge is not the same as charge conservation, which was discussed in
Chapter 4 and is expressed mathematically in the equation

div J = −∂ρ

∂t
. (5.4)

Charge conservation implies that, if we take a closed surface fixed in
some coordinate system and containing some charged matter, and if no
particles cross the boundary, then the total charge inside that surface
remains constant. Charge invariance implies that, if we look at this
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1 – v2/c2
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Figure 5.7.
An imaginary experiment to show the invariance
of charge. The charge in the box is to be
measured by measuring the electric field all
around the box, or, equivalently, by measuring
the force on a distant test charge. Mass is not
invariant in the same way; see the comment in
Footnote 5.

collection of stuff from any other frame of reference, we will measure
exactly the same amount of charge. Energy is conserved, but energy is
not a relativistic invariant. Charge is conserved, and charge is a relativis-
tic invariant. In the language of relativity theory, energy is one compo-
nent of a four-vector, while charge is a scalar, an invariant number, with
respect to the Lorentz transformation. This is an observed fact with far-
reaching implications. It completely determines the nature of the field of
moving charges.
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–

– q1

q2

S�

S

q3

q4

Figure 5.8.
The surface integral of E over S is equal to the
surface integral of E′ over S′. The charge is the
same in all frames of reference.

5.5 Electric field measured in different frames of
reference

If charge is to be invariant under a Lorentz transformation, the electric
field E has to transform in a particular way. “Transforming E” means
answering a question like this: if an observer in a certain inertial frame
F measures an electric field E as so-and-so-many volts/meter, at a given
point in space and time, what field will be measured at the same space-
time point by an observer in a different inertial frame F′? For a certain
class of fields, we can answer this question by applying Gauss’s law to
some simple systems.

In the frame F (Fig. 5.9(a)) there are two stationary sheets of charge
of uniform density σ and −σ , respectively. They are squares b on a
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side lying parallel to the xy plane, and their separation is supposed to
be so small compared with their extent that the field between them can
be treated as uniform. The magnitude of this field, as measured by an
observer in F, is of course just σ/ε0.

F
x

z
(a)

b
b

F

s

v

x

z

F ′

+ + + + + + + + + + + + + + + +

(b)
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− − − − − − − − − − − − − − − − −

+ + + + + + + + + + + + + + + + + +

F

x ′

v

v

z ′
(c)

Figure 5.9.
(a) Two square sheets of surface density +σ
and −σ , stationary in an inertial frame F.
(b) Cross-sectional view in the F frame; F′ is a
different frame moving in the −x̂ direction with
respect to F. (c) Cross section of the charge
sheets as seen in frame F′. The same charge is
on the shorter sheet, so the charge density is
greater: σ ′ = γ σ .

Now consider an inertial frame F′ that moves toward the left, with
respect to F, with velocity v. To an observer in F′, the charged “squares”
are no longer square. Their x′ dimension is contracted from b to
b
√

1 − β2, where β stands for v/c. But total charge is invariant, that
is, independent of reference frame, so the charge density measured in F′
must be greater than σ in the ratio γ ≡ 1/

√
1 − β2. Figure 5.9 shows

the system in cross section, (b) as seen in F and (c) as seen in F′. What
can we say about the electric field in F′ if all we know about the electric
field of moving charges is contained in Eq. (5.3)?

For one thing, we can be sure that the electric field is zero outside
the sandwich, and uniform between the sheets, at least in the limit as
the extent of the sheets becomes infinite. The field of an infinite uniform
sheet could not depend on the distance from the sheet, nor on position
along the sheet. There is nothing in the system to fix a position along the
sheet. But for all we know at this point, the field of a single moving sheet
of positive charge might look like Fig. 5.10(a). However, even if it did, the
field of a sheet of negative charge moving with the same velocity would
have to look like Fig. 5.10(b), and the superposition of the two fields
would still give zero field outside our two charged sheets and a uniform
perpendicular field between them, as in Fig. 5.10(c). (Actually, as we
shall prove before long, the field of a single sheet of charge moving in
its own plane is perpendicular to the sheet, unlike the hypothetical fields
pictured in Fig. 5.10(a) and (b).)

We can apply Gauss’s law to a box stationary in frame F′, the box
shown in cross section in Fig. 5.10(c). The charge content is determined
by σ ′, and the field is zero outside the sandwich. Gauss’s law tells us that
the magnitude of E′

z, which is the only field component inside, must be
σ ′/ε0, or

(
σ/

√
1 − β2

)
/ε0. Hence

E′
z =

Ez√
1 − β2

= γ Ez. (5.5)

Now imagine a different situation with the stationary charged sheets
in the frame F oriented perpendicular to the x axis, as in Fig. 5.11. The
observer in F now reports a field in the x direction of magnitude Ex =
σ/ε0. In this case, the surface charge density observed in the frame F′
is the same as that observed in F. The sheets are not contracted; only
the distance between them is contracted, but that doesn’t enter into the
determination of the field. This time we find by applying Gauss’s law to
the box stationary in F′ the following:

E′
x =

σ ′

ε0
= σ

ε0
= Ex. (5.6)
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That is all very well for the particularly simple arrangement of
charges here pictured; do our conclusions have more general validity?
This question takes us to the heart of the meaning of field. If the electric
field E at a point in space-time is to have a unique meaning, then the way
E appears in other frames of reference, in the same space-time neigh-
borhood, cannot depend on the nature of the sources, wherever they may
be, that produced E. In other words, observers in F, having measured the
field in their neighborhood at some time, ought to be able to predict from
these measurements alone what observers in other frames of reference
would measure at the same space-time point. Were this not true, field
would be a useless concept. The evidence that it is true is the eventual
agreement of our field theory with experiment.

+ + + + + + + + + + + + + + + + + ++++
v

(a)

– – – – – – – – – – – – – – – – – – – – –

(b)
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+ + + + + + + + + + + + + + + + + + + + + + +
s �

Box stationary in F�

(c)

v

F�

z�

x�

Figure 5.10.
(a) Perhaps the field of a single moving sheet of
positive charge looks like this. (It really doesn’t,
but we haven’t proved that yet.) (b) If the field of
the positive sheet looked like Fig. 5.10(a), the
field of a moving negative sheet would look like
this. (c) The superposition of the fields of the
positive and negative sheets would look like
this, even if Figs. 5.10(a) and (b) were correct.

Seen in this light, the relations expressed in Eqs. (5.5) and (5.6)
take on a significance beyond the special case of charges on parallel
sheets. Consider any charge distribution, all parts of which are at rest
with respect to the frame F. If observers in F measure a field Ez in the
z direction, then observers in frame F′ (whose velocity v with respect
to F is parallel to the x axis) will report, for the same space-time point,
a field E′

z = γ Ez. That is, they will get a number, as the result of their
E′

z measurement, that is larger by the factor γ than the number the F
observers got in their Ez measurement. On the other hand, if observers
in F measure a field Ex in the x direction, then observers in F′ report a
field E′

x equal to Ex. Obviously the y and the z directions are equivalent,
both being transverse to the velocity v. Anything we have said about E′

z
applies to E′

y too. (For both of the above orientations of the sheets, Ey
and E′

y are zero, so E′
y = γ Ey does indeed hold, albeit trivially.) What-

ever the direction of E in the frame F, we can treat it as a superposition
of fields in the x, the y, and the z directions, and from the transformation
of each of these predict the vector field E′ at that point in F′.

Let’s summarize this in words appropriate to relative motion in any
direction. Charges at rest in frame F are the source of a field E. Let frame
F′ move with velocity v relative to F. At any point in F, resolve E into
a longitudinal component E‖ parallel to v and a transverse component
E⊥ perpendicular to v. At the same space-time point in F′, the field E′
is to be resolved into E′‖ and E′⊥, with E′‖ being parallel to v and E′⊥
perpendicular thereto. We have now learned that

E′‖ = E‖
E′⊥ = γ E⊥

(for charges at rest in frame F). (5.7)

If you forget where the γ factor goes, just remember the following simple
rule, which is a consequence of charge invariance and length contraction:

• The transverse component of the electric field is smaller in the frame
of the sources than in any other frame.
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Equation (5.7) holds only for fields that arise from charges stationary
in F. As we shall see in Section 6.7, if charges in F are moving, the
prediction of the electric field in F′ involves knowledge of two fields in
F, the electric and the magnetic. But we already have a useful result,
one that suffices whenever we can find any inertial frame of reference
in which all the charges remain at rest. We shall use it in Section 5.6 to
study the electric field of a point charge moving with constant velocity.
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Figure 5.11.
The electric field in another frame of reference
(relative velocity parallel to field direction). (a) In
reference frame F. (b) Cross-sectional view in
reference frame F′.

Example (Tilted sheet) Fixed in the frame F is a sheet of charge, of uniform
surface density σ , that bisects the dihedral angle formed by the xy and the yz
planes. The electric field of this stationary sheet is of course perpendicular to the
sheet. How will this setup be described by observers in a frame F′ that is moving
in the x direction with velocity 0.6c with respect to F? That is, what is the surface
charge density σ ′, and what are the strength and direction of the electric field in
F′? Find the component of the field perpendicular to the sheet in F′, and verify
that Gauss’s law still holds.

Solution The situations in frames F and F′ are shown in Fig. 5.12. Let’s first
find the surface density σ ′. The γ factor associated with v = 0.6c is γ = 5/4,
so in going from F to F′, longitudinal distances are decreased by 4/5. The
distance between points A′ and B′ in F′ is therefore shorter than the distance
between points A and B in F. With the distance � shown, the latter distance
is
√

2�, while the former is
√

1 + (4/5)2 �. Since charge is invariant, the same
amount of charge is contained between A′ and B′ as between A and B. Therefore,
σ ′√1 + (4/5)2� = σ

√
2� �⇒ σ ′ = (1.1043)σ .

Now let’s find the electric field E′. The magnitude of the field E in F is
simply E = σ/2ε0 (by the standard Gauss’s law argument), and it points at a 45◦
angle. So Eq. (5.7) gives the field components in F′ as

E′‖ = E‖ = E/
√

2 and E′⊥ = γ E⊥ = γ E/
√

2. (5.8)

E′ is shown in Fig. 5.12(b). Its magnitude is E′ = (E/
√

2)
√

1 + (5/4)2 =
(1.1319)E, and its slope is (negative) E′⊥/E′‖ = γ . The sheet’s slope is also (pos-

itive) �/(�/γ ) = γ . So the angles θ shown are all equal to tan−1 γ = 51.34◦.
This means that E′ points at an angle of 2θ with respect to the sheet. Equiva-
lently, it points at an angle of 2θ − 90◦ ≈ 12.68◦ with respect to the normal to
the sheet. The normal component of E′ is then

E′
n = E′ cos 12.68◦ = (1.1319E) cos 12.68◦ = (1.1043)E. (5.9)

Therefore, since the same numerical factor appears in the two equations, E′
n =

(1.1043)E and σ ′ = (1.1043)σ , we can multiply both sides of the relation E =
σ/2ε0 by 1.1043 to obtain E′

n = σ ′/2ε0. In other words, Gauss’s law holds in
frame F′. There is also an electric field component parallel to the sheet in F′
(unlike in F), but this doesn’t affect the flux through a Gaussian surface. You can
check that it is no coincidence that the numbers worked out here, by solving the
problem symbolically in terms of γ ; see Exercise 5.12.
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5.6 Field of a point charge moving with constant
velocity

In the frame F in Fig. 5.13(a) the point charge Q remains at rest at the
origin. At every point the electric field E has the magnitude Q/4πε0r2

and is directed radially outward. In the xz plane its components at any
point (x, z) are

Ex = Q
4πε0r2 cos θ = Qx

4πε0(x2 + z2)3/2 ,

Ez = Q
4πε0r2 sin θ = Qz

4πε0(x2 + z2)3/2 . (5.10)
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Figure 5.12.
The setup as viewed in frames F and F′. The
sheet moves to the left in F′.

Consider another frame F′ that is moving in the negative x direction,
with speed v, with respect to frame F. We need the relation between
the coordinates of an event in the two frames, for which we turn to the
Lorentz transformation given in Eq. (G.2) of Appendix G. It simplifies
the description to assume, as we are free to do, that the origins of the two
frames coincide at time zero according to observers in both frames. In
other words, that event, the coincidence of the origins, can be the event
A referred to by Eq. (G.2), with coordinates (xA, yA, zA, tA) = (0, 0, 0, 0)

in frame F and (x′A, y′A, z′A, t′A) = (0, 0, 0, 0) in frame F′. Then event B
is the space-time point we are trying to locate. We can omit the tag B
and call its coordinates in F just (x, y, z, t), and its coordinates in F′ just
(x′, y′, z′, t′). Then Eq. (G.2) of Appendix G becomes

x′ = γ x − γβct, y′ = y, z′ = z, t′ = γ t − γβx
c

. (5.11)

However, that transformation was for an F′ frame moving in the positive
x direction with respect to F, as one can quickly verify by noting that,
with increasing time t, x′ gets smaller. To construct the Lorentz trans-
formation for our problem, in which the F′ frame moves in the opposite
direction, we must either reverse the sign of β or switch the primes. We
choose to do the latter because we want to express x and z in terms of x′
and z′. The Lorentz transformation we need is therefore

x = γ x′ − γβct′, y = y′, z = z′, t = γ t′ − γβx′

c
. (5.12)

According to Eqs. (5.5) and (5.6), E′
z = γ Ez and E′

x = Ex. Using
Eqs. (5.10) and (5.12), we can express the field components E′

z and E′
x in

terms of the coordinates in F′. For the instant t′ = 0, when Q passes the
origin in F′, we have

E′
x = Ex = Q(γ x′)

4πε0[(γ x′)2 + z′2]3/2 ,

E′
z = γ Ez = γ (Qz′)

4πε0[(γ x′)2 + z′2]3/2 . (5.13)
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Note first that E′
z/E′

x = z′/x′. This tells us that the vector E′ makes
the same angle with the x′ axis as does the radius vector r′. Hence E′
points radially outward along a line drawn from the instantaneous posi-
tion of Q, as in Fig. 5.13(b). Pause a moment to let this conclusion sink
in! It means that, if Q passed the origin of the primed system at pre-
cisely 12:00 noon, “prime time,” an observer stationed anywhere in the
primed system will report that the electric field in his vicinity was point-
ing, at 12:00 noon, exactly radially from the origin. This sounds at first
like instantaneous transmission of information! How can an observer a
mile away know where the particle is at the same instant? He can’t. That
wasn’t implied. This particle, remember, has been moving at constant
speed forever, on a “flight plan” that calls for it to pass the origin at
noon. That information has been available for a long time. It is the past
history of the particle that determined the field observed, if you want
to talk about cause and effect. We will investigate in Section 5.7 what
happens when there is an unscheduled change in the flight plan.
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Figure 5.13.
The electric field of a point charge: (a) in a frame
in which the charge is at rest; (b) in a frame in
which the charge moves with constant velocity.

To find the strength of the field, we compute E′2
x + E′2

z , which is the
square of the magnitude of the field, E′2:

E′2 = E′2
x + E′2

z = γ 2Q2(x′2 + z′2)
(4πε0)2[(γ x′)2 + z′2]3

= Q2(x′2 + z′2)
(4πε0)2γ 4[x′2 + (1 − β2)z′2]3

= Q2(1 − β2)2

(4πε0)2(x′2 + z′2)2
(

1 − β2z′2

x′2 + z′2

)3 . (5.14)

(Here, for once, it was neater with β worked back into the expression.)
Let r′ denote the distance from the charge Q, which is momentarily at the
origin, to the point (x′, z′) where the field is measured: r′ = (x′2+z′2)1/2.
Let θ ′ denote the angle between this radius vector and the velocity of the
charge Q, which is moving in the positive x′ direction in the frame F′.
Then since z′ = r′ sin θ ′, the magnitude of the field can be written as

E′ = Q
4πε0r′2

1 − β2

(1 − β2 sin2 θ ′)3/2
(5.15)

There is nothing special about the origin of coordinates, nor about the
x′z′ plane as compared with any other plane through the x′ axis. Therefore
we can say quite generally that the electric field of a charge that has been
in uniform motion is at a given instant of time directed radially from
the instantaneous position of the charge, while its magnitude is given by
Eq. (5.15), with θ ′ the angle between the direction of motion of the charge
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and the radius vector from the instantaneous position of the charge to the
point of observation.

For low speeds the field reduces simply to E′ ≈ Q/4πε0r′2, and is
practically the same, at any instant, as the field of a point charge station-
ary in F′ at the instantaneous location of Q. But if β2 is not negligible,
the field is stronger at right angles to the motion than in the direction
of the motion, at the same distance from the charge. If we were to indi-
cate the intensity of the field by the density of field lines, as is often done,
the lines tend to concentrate in a pancake perpendicular to the direction
of motion. Figure 5.14 shows the density of lines as they pass through
a unit sphere, from a charge moving in the x′ direction with a speed
v/c = 0.866. A simpler representation of the field is shown in Fig. 5.15,
a cross section through the field with some field lines in the x′z′ plane
indicated.6

0.
25

0.
350.

500.
851.

52.
0

x ′

y ′

z ′
b = 0.866

Figure 5.14.
The intensity in various directions of the field of
a moving charge. At this instant, the charge is
passing the origin of the x′y′z′ frame. The
numbers give the field strength relative to
Q/4πε0r′2.

This is a remarkable electric field. It is not spherically symmetri-
cal, which is not surprising because in this frame there is a preferred
direction, the direction of motion of the charge. However, the field is
symmetrical on either side of the plane passing through the charge and
perpendicular to the direction of motion of the charge. That, by the way,
is sufficient to prove that the field of a uniform sheet of charge moving
in its own plane must be perpendicular to the sheet. Think of that field as
the sum of the fields of charge elements spread uniformly over the sheet.
Since each of these individual fields has the fore-and-aft symmetry of
Fig. 5.15 with respect to the direction of motion, their sum could only be
perpendicular to the sheet. It could not look like Fig. 5.10(a).

B

D
A

v

C

Figure 5.15.
Another representation of the field of a uniformly
moving charge.

The task of Exercise 5.15 is to verify that the field in Eq. (5.15)
satisfies Gauss’s law. The inverse-square dependence on r′ is a necessary
but not sufficient condition for Gauss’s law to hold. Additionally, we need
the β dependence to drop out of the surface integral (because the amount
of charge doesn’t depend on the velocity), and it is by no means obvious
that this happens.

Example (Transverse and longitudinal fields) Let’s verify that the elec-
tric field in Eq. (5.15) obeys the relations in Eq. (5.7) for the transverse and lon-
gitudinal fields. Of course, we know that it must, because we used Eq. (5.7) in
deriving Eq. (5.15). But it is a good exercise to double check. As above, the
unprimed frame F is the frame of the charge Q, and the primed frame F′ moves
to the left with speed v = βc.

Consider first the transverse field. The electric field in frame F is simply
E = Q/4πε0r2, in all directions. In frame F′, where the charge moves to the right
with speed βc, the transverse field is obtained by setting θ = π/2 in Eq. (5.15).

6 A two-dimensional diagram like Fig. 5.15 cannot faithfully represent the field intensity
by the density of field lines. Unless we arbitrarily break off some of the lines, the
density of lines in the picture will fall off as 1/r′, whereas the intensity of the field we
are trying to represent falls off as 1/r′2. So Fig. 5.15 gives only a qualitative indication
of the variation of E′ with r′ and θ ′.
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Using γ ≡ 1/
√

1 − β2, this gives E′⊥ = γ Q/4πε0r′2. But r′ = r because there
is no transverse length contraction. Hence E′⊥ = γ E⊥, as desired.

Now consider the longitudinal field. In frame F′, the longitudinal field is
obtained by setting θ = 0 in Eq. (5.15). This gives E′‖ = Q/4πε0γ 2r′2. Accord-

ing to Eq. (5.7), this should equal the field in frame F, namely E‖ = Q/4πε0r2.
And indeed it does, because the longitudinal distances are related by r = γ r′.
That is, the distance is longer in frame F; see Eq. (5.12) with t′ = 0.

Let’s be more explicit about this r= γ r′ relation. When we say that
E′‖ =E‖, we mean that E′‖ and E‖ are related this way when measured at
the same point in space-time by people in the two frames. To visualize this,
imagine a longitudinal stick with length r attached to the charge Q, with person
P sitting on the other end of the stick (and therefore at rest with respect to
the charge). Person P′ is at rest somewhere on the x′ axis in frame F′. Each
person sees the other fly by with speed v. If they both shout out the values
of the longitudinal fields they observe when their locations coincide, they will
shout the same values, namely Q/4πε0r2. Note that P′ measures a smaller
distance to the charge (r′ = r/γ instead of r, due to the length contraction of
the stick), but the field in Eq. (5.15) is suppressed by a factor of γ 2 in the
longitudinal direction, and these two effects exactly cancel.

What if we have an essentially continuous stream of particles mov-
ing in a line? From Gauss’s law we know that the electric field takes the
standard form of λ/2πε0r, where λ is the charge density of the line, as
measured in the given frame. That is, as far as the electric field is con-
cerned, it doesn’t matter that the line of charges is moving longitudinally,
for a given λ. (We’ll see in Section 5.9 that the moving line also creates
a magnetic field, but that doesn’t concern us here.) However, it is by no
means obvious that the sum of the nonspherically symmetric fields in
Eq. (5.15), from all the individual charges, equals λ/2πε0r for any value
of β. The task of Problem 5.5 is to demonstrate this explicitly.

The field in Fig. 5.15 is a field that no stationary charge distribution,
whatever its form, could produce. For in this field the line integral of E′
is in general not zero around a closed path. Consider, for example, the
closed path ABCD in Fig. 5.15. The circular arcs contribute nothing to
the line integral, being perpendicular to the field; on the radial sections,
the field is stronger along BC than along DA, so the circulation of E′
on this path is not zero. But remember, this is not an electrostatic field.
In the course of time the electric field E′ at any point in the frame F′
changes as the source charge moves.

Figure 5.16 shows the electric field at certain instants of time
observed in a frame of reference through which an electron is moving at
constant velocity in the x direction.7 In Fig. 5.16, the speed of the electron
is 0.33c. Its kinetic energy is therefore about 30,000 eV (30 kiloelectron-
volts (keV)). The value of β2 is 1/9, and the electric field does not differ

7 Previously we had the charge at rest in the unprimed frame, moving in the primed
frame. Here we adopt xyz for the frame in which the charge is moving, to avoid
cluttering the subsequent discussion with primes.
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Figure 5.16.
The electric field of a moving charge, shown for
three instants of time; v/c = 1/3.

greatly from that of a charge at rest. In Fig. 5.17, the speed is 0.8c, cor-
responding to a kinetic energy of 335 keV. If the time unit for each dia-
gram is taken as 1.0 · 10−10 s, the distance scale is life-size, as drawn. Of
course, the diagram holds equally well for any charged particle moving
at the specified fraction of the speed of light. We mention the equiva-
lent energies for an electron merely to remind the reader that relativistic
speeds are nothing out of the ordinary in the laboratory.

5.7 Field of a charge that starts or stops
It must be clearly understood that uniform velocity, as we have been using
the term, implies a motion at constant speed in a straight line that has
been going on forever. What if our electron had not been traveling in
the distant past along the negative x axis until it came into view in our
diagram at t = 0? Suppose it had been sitting quietly at rest at the ori-
gin, waiting for the clock to read t = 0. Just prior to t = 0, something
gives the electron a sudden large acceleration, up to the speed v, and it
moves away along the positive x axis at this speed. Its motion from then
on precisely duplicates the motion of the electron for which Fig. 5.17
was drawn (assuming v = 0.8c). But Fig. 5.17 does not correctly rep-
resent the field of the electron whose history was just described. To see
that it cannot do so, consider the field at the point marked P, at time
t = 2, which means 2 · 10−10 s. In 2 · 10−10 s a light signal travels 6 cm.
Since this point lies more than 6 cm distant from the origin, it could not
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Time unit: 10–10 s
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Figure 5.17.
The electric field of a moving charge, shown for
three instants of time; v/c = 4/5. have received the news that the electron had started to move at t = 0!

Unless there is a gross violation of relativity – and we are taking the
postulates of relativity as the basis for this whole discussion – the field
at point P at time t= 2, and indeed at all points outside the sphere of
radius 6 cm centered on the origin, must be the field of a charge at rest at
the origin.

On the other hand, close to the moving charge itself, what happened
in the remote past can’t make any difference. The field must somehow
change, as we consider regions farther and farther from the charge, at
the given instant t = 2, from the field shown in the second diagram of
Fig. 5.17 to the field of a charge at rest at the origin. We can’t deduce more
than this without knowing how fast the news does travel. Suppose – just
suppose – it travels as fast as it can without conflicting with the relativity
postulates. Then if the period of acceleration is neglected, we should
expect the field within the entire 6 cm radius sphere, at t = 2, to be
the field of a uniformly moving point charge. If that is so, the field of
the electron that starts from rest, suddenly acquiring the speed v = 0.8c
at t = 0, must look something like Fig. 5.18. There is a thin spherical
shell (whose thickness in an actual case will depend on the duration of
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Charge started moving
at x = 0, at time t = 0

x = 0

t = 2

x

Figure 5.18.
An electron initially at rest in the laboratory
frame is suddenly accelerated at t = 0 and
moves with constant velocity thereafter. This is
how the electric field looks at the instant t = 2 all
over the laboratory frame.

Charge stopped
moving at x= 0, at t= 0

E F

D

C

B

A

x

q0
f0

t = 2

Figure 5.19.
An electron that has been moving with constant
velocity reaches the origin at t = 0, is abruptly
stopped, and remains at rest thereafter. This is
how the field looks in the laboratory frame at the
instant t = 2. The dashed outline follows a field
line from A to D. Rotating the whole outline
EABCDF around the x axis generates a closed
surface, the total flux through which must be
zero. The flux in through the spherical cap FD
must equal the flux out through the spherical
cap EA. This condition suffices to determine the
relation between θ0 and φ0.

the interval required for acceleration) within which the transition from
one type of field to the other takes place. This shell simply expands with
speed c, its center remaining at x = 0. The arrowheads on the field lines
indicate the direction of the field when the source is a negative charge,
as we have been assuming.

Figure 5.19 shows the field of an electron that had been moving with
uniform velocity until t= 0, at which time it reached x= 0 where it was
abruptly stopped. Now the news that it was stopped cannot reach, by time
t, any point farther than ct from the origin. The field outside the sphere
of radius R= ct must be that which would have prevailed if the electron
had kept on moving at its original speed. That is why we see the “brush”
of field lines on the right in Fig. 5.19 pointing precisely down to the posi-
tion where the electron would be if it hadn’t stopped. (Note that this last
conclusion does not depend on the assumption we introduced in the pre-
vious paragraph, that the news travels as fast as it can.) The field almost
seems to have a life of its own!

It is a relatively simple matter to connect the inner and outer field
lines. There is only one way it can be done that is consistent with Gauss’s
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law. Taking Fig. 5.19 as an example, from some point such as A on the
radial field line making angle θ0 with the x axis, follow the field line
wherever it may lead until you emerge in the outer field on some line
making an angle that we may call φ0 with the x axis. (This line of course
is radial from the extrapolated position of the charge, the apparent source
of the outer field.) Connect A and D to the x axis by circular arcs, arc AE
centered on the source of the inner field, arc DF centered on the apparent
source of the outer field. Rotate the curve EABCDF around the x axis
to generate a surface of revolution. As the surface encloses no charge,
the surface integral of E over the entire surface must be zero. The only
contributions to the integral come from the spherical caps, for the surface
generated by ABCD is parallel to the field, by definition. The field over
the inner cap is that of a point charge at rest at the origin. The field over
the outer cap is the field, as given by Eq. (5.15), of a point charge moving
with constant speed which would have been located, at this moment, at
x= vt= 2v. If you work through Exercise 5.20, you will find that the
condition “flux in through one cap equals flux out through the other”
requires

tan φ0 = γ tan θ0. (5.16)

The presence of γ in this formula is not surprising. We had already
noticed the “relativistic compression” of the field pattern of a rapidly
moving charge, illustrated in Fig. 5.15. The important new feature in
Fig. 5.19 is the zigzag in the field line ABCD. The cause of this is not
the γ in Eq. (5.16), but the fact that the apparent source of the outer field
is displaced from the source of the inner field. If AB and CD belong to
the same field line, the connecting segment BC has to run nearly perpen-
dicular to a radial vector. We have a transverse electric field there, and
one that, to judge by the crowding of the field lines, is relatively intense
compared with the radial field. As time goes on, the zigzag in the field
lines will move radially outward with speed c. But the thickness of the
shell of transverse field will not increase, for that was determined by the
duration of the deceleration process.

The ever-expanding shell of transverse electric field would keep on
going even if at some later time (at t= 3, say) we suddenly accelerated
the electron back to its original velocity. That would only launch a new
outgoing shell, this one looking very much like the field in Fig. 5.18. The
field does have a life of its own! What has been created here before our
eyes is an electromagnetic wave. The magnetic field that is also part of
it was not revealed in this view. Later, in Chapter 9, we shall learn how
the electric and magnetic fields work together in propagating an electri-
cal disturbance through empty space. What we have discovered here is
that such waves must exist if nature conforms to the postulates of special
relativity and if electric charge is a relativistic invariant.

More can be done with our “zigzag-in-the-field-line” analysis.
Appendix H shows how to derive, rather simply, an accurate and simple
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formula for the rate of radiation of energy by an accelerated electric
charge. We must return now to the uniformly moving charge, which has
more surprises in store.

5.8 Force on a moving charge
Equation (5.15) tells us the force experienced by a stationary charge in
the field of another charge that is moving at constant velocity. We now
ask a different question: what is the force that acts on a moving charge,
one that moves in the field of some other charges?

We shall look first into the case of a charged particle moving through
the field produced by stationary charges. (Section 5.9 deals with the case
where both the charged particle and the sources of the field are mov-
ing.) We might have an electron moving between the charged plates of
an oscilloscope, or an alpha particle moving through the Coulomb field
around an atomic nucleus. The sources of the field, in any case, are all at
rest in some frame of reference, F, which we shall call the “lab frame.”
At some place and time in the lab frame we observe a particle carry-
ing charge q that is moving, at that instant, with velocity v through the
electrostatic field. What force appears to act on q?

Force means rate of change of momentum, so we are really asking:
what is the rate of change of momentum of the particle, dp/dt, at this
place and time, as measured in our lab frame of reference, F? The answer
is contained, by implication, in what we have already learned. Let’s look
at the system from a coordinate frame F′ moving, at the time in question,
along with the particle.8 In this “particle frame” F′, the particle will be,
at least momentarily, at rest. It is the other charges that are now moving.
This is a situation we know how to handle. The charge q has the same
value; charge is invariant. The force on the stationary charge q is just
qE′, where E′ is the electric field observed in the frame F′. We have
learned how to find E′ when E is given; Eq. (5.7) provides our rule.
Thus, knowing E, we can find the rate of change of momentum of the
particle as observed in F′. All that remains is to transform this quantity
back to F. So our problem hinges on the question: how does force, that
is, rate of change of momentum, transform from one inertial frame to
another?

The answer to that question is worked out in Eqs. (G.16) and (G.17)
in Appendix G. The force component parallel to the relative motion of
the two frames has the same value in the moving frame as it does in
the rest frame of the particle. A force component perpendicular to the

8 This notation might seem the reverse of the notation we used in Section 5.6, where the
unprimed frame F was the particle frame. However, the notation is consistent in the
sense that we are taking the source(s) of the electric field we are concerned with to be
at rest in the unprimed frame F. In Section 5.6 the source was a single charge, whereas
in the present case the source is an arbitrary collection of charges. We are concerned
with the field due to these charges, not the field due to the “test” particle represented by
the frame F′.
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relative frame velocity is always smaller, by 1/γ , than its value in the
particle’s rest frame. Let us summarize this in Eq. (5.17) using subscripts
‖ and ⊥ to label momentum components, respectively, parallel to and
perpendicular to the relative velocity of F′ and F, as we did in Eq. (5.7):

dp‖
dt

= dp′‖
dt′

dp⊥
dt

= 1
γ

dp′⊥
dt′

(for a particle at rest in frame F′). (5.17)

Note that this is not a symmetrical relation between the primed and
unprimed quantities. The rest frame of the particle, which we have cho-
sen to call F′ in this case (note that we called it F in Appendix G), is
special because the particle is the thing upon which the given force is
acting. If you forget where the γ factor goes, just remember the follow-
ing simple rule (which can be traced to time dilation).

• The transverse component of the force on a particle is larger in the
frame of the particle than in any other frame.

Equipped with the force transformation law, Eq. (5.17), and the
transformation law for electric field components, Eq. (5.7), we return
now to our charged particle moving through the field E, and we discover
an astonishingly simple fact. Consider first E‖, the component of E
parallel to the instantaneous direction of motion of our charged particle.
Transform to a frame F′ moving, at that instant, with the particle. In that
frame the longitudinal electric field is E′‖, and, according to Eq. (5.7),
E′‖ = E‖. So the force dp′‖/dt′ is

dp′‖
dt′

= qE′‖ = qE‖. (5.18)

Back in frame F, observers are measuring the longitudinal force, that
is, the rate of change of the longitudinal momentum component, dp‖/dt.
According to Eq. (5.17), dp‖/dt = dp′‖/dt′, so in frame F the longitudinal
force component they find is

dp‖
dt

= dp′‖
dt′

�⇒ dp‖
dt

= qE‖ (5.19)

Of course, the particle does not remain at rest in F′ as time goes on. It will
be accelerated by the field E′, and so v′, the velocity of the particle in the
inertial frame F′, will gradually increase from zero. However, as we are
concerned with the instantaneous acceleration, only infinitesimal values
of v′ are involved anyway, and the restriction on Eq. (5.17) is rigorously
fulfilled.
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Figure 5.20.
In a frame in which the charges producing the
field E are at rest, the force on a charge q
moving with any velocity is simply qE.

For E⊥, the transverse field component in F, the transformation is
E′⊥ = γ E⊥, so that

dp′⊥
dt′

= qE′⊥ = qγ E⊥. (5.20)

But on transforming the force back to frame F we have dp⊥/dt=
(1/γ )(dp′⊥/dt′), so the γ drops out after all:

dp⊥
dt

= 1
γ

dp′⊥
dt′

�⇒ dp⊥
dt

= 1
γ

(qγ E⊥) �⇒ dp⊥
dt

= qE⊥

(5.21)

The message of Eqs. (5.19) and (5.21) is simply this: the force on a
charged particle in motion through F is q times the electric field E in that
frame, strictly independent of the velocity of the particle. Figure 5.20 is
a reminder of this fact, and of the way we discovered it.

You have already used this result earlier in the book, where you were
simply told that the contribution of the electric field to the force on a
moving charge is qE. Because this is familiar and so simple, you may
think it is obvious and we have been wasting our time proving it. It is
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true that we could have taken it as an empirical fact. It has been verified
over an enormous range, up to velocities so close to the speed of light, in
the case of electrons, that the factor γ is 104. From that point of view it
is a most remarkable law. Our discussion in this chapter has shown that
this fact is also a direct consequence of charge invariance.

In Sections 5.5 and 5.6 we derived the electric field (and hence force)
on a stationary charge due to moving charges. In the present section
we derived the force on a moving charge due to stationary charges. In
both of these cases, something was stationary. In Section 5.9 we will
derive the force in the case where all (or rather most) of the charges are
moving, and in the process we will discover the magnetic field. But first
let’s do an example that gets to the heart of what we will talk about in
Section 5.9.

Example (A charge and a sheet)

(a) In frame F, a point charge q is at rest and is located above an infinite sheet
with uniform surface charge density σ . (This is the “proper” density, as
measured in the frame of the sheet.) The sheet moves to the left with speed
v; see Fig. 5.21(a). We know that if the electric field in frame F due to the

v

q

(a)

(b)

E1

(Frame F )

v
q

(Frame F' )

q

(Frame F )

v
q

v

(Frame F' )

E2

Figure 5.21.
(a) A point charge and a sheet moving relative
to each other. (b) A point charge and a sheet at
rest with respect to each other.

sheet is E1 (which happens to be γ σ/2ε0, but that won’t be important here),
then the force on the point charge equals qE1.

Consider the frame F′ that moves to the left with speed v. The situation
in F′ is also shown in Fig. 5.21(a); the sheet is now stationary and the point
charge moves to the right. By transforming both the force and the electric
field from F to F′, show that the force in F′ equals the electric force (as
expected).

(b) Now consider a similar scenario where both the sheet and the charge are
at rest in F, as shown in Fig. 5.21(b). Let the electric field in frame F due
to the sheet be E2 (which happens to be σ/2ε0, but again, that won’t be
important). As above, F′ moves to the left with speed v. By transforming
both the force and the electric field from F to F′, show that the force in F′
does not equal the electric force. This implies that there must be some other
force in F′; it is the magnetic force.

Solution

(a) From Eq. (5.17) the transverse force on a particle is largest in the frame of
the particle (which is frame F here), so the force in F′ is smaller; it equals
qE1/γ . And from Eq. (5.7) the transverse field is smallest in the frame of
the source (F′ here). Since the field equals E1 in F, it therefore equals E1/γ

in F′. The electric force in F′ is then qE1/γ . We see that the total force in
F′ is completely accounted for by the electric force.

(b) In this scenario the reasoning with the force is the same. The transverse
force on a particle is largest in the frame of the particle (F here), so the
force in F′ is smaller; it equals qE2/γ . However, the reasoning with the
field is the reverse of what it was in part (a). The transverse field is smallest
in the frame of the source (which is now F), so the field in F′ is larger;
it equals γ E2. The electric force in F′ is therefore γ qE2. This is not equal
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to the total force, qE2/γ . Hence there must be some other force in F′ that
partially cancels the γ qE2 electric force and brings it down to the correct
value of qE2/γ . This force is the magnetic force; it arises when a charge is
moving in the vicinity of other moving charges.

The purpose of this example was simply to demonstrate that the transfor-
mation rules for the electric field and the force, Eqs. (5.7) and (5.17), lead
to the conclusion that some other force must be present in F′ in this sec-
ond scenario. Having accomplished this, we’ll stop here, but you can work
things out quantitatively in Problem 5.8.

5.9 Interaction between a moving charge and
other moving charges

Equation (5.1) tells us that there can be a velocity-dependent force on a
moving charge. That force is associated with a magnetic field, the sources
of which are electric currents, that is, other charges in motion. Oersted’s
experiment showed that electric currents could influence magnets, but at
that time the nature of a magnet was totally mysterious. Soon Ampère
and others unraveled the interaction of electric currents with each other,
as in the attraction observed between two parallel wires carrying current
in the same direction. This led Ampère to the hypothesis that a magnetic
substance contains permanently circulating electric currents. If so, Oer-
sted’s experiment could be understood as the interaction of the galvanic
current in the wire with the permanent microscopic currents that gave
the compass needle its special properties. Ampère gave a complete and
elegant mathematical formulation of the interaction of steady currents,
and of the equivalence of magnetized matter to systems of permanent
currents. His brilliant conjecture about the actual nature of magnetism in
iron had to wait a century, more or less, for its ultimate confirmation.

Whether the magnetic manifestations of electric currents arose from
anything more than the simple transport of charge was not clear to Ampère
and his contemporaries. Would the motion of an electrostatically charged
object cause effects like those produced by a continuous galvanic cur-
rent? Later in the century, Maxwell’s theoretical work suggested the
answer should be yes. The first direct evidence was obtained by Henry
Rowland, to whose experiment we shall return at the end of Chapter 6.

From our present vantage point, the magnetic interaction of electric
currents can be recognized as an inevitable corollary to Coulomb’s law.
If the postulates of relativity are valid, if electric charge is invariant, and
if Coulomb’s law holds, then, as we shall now show, the effects we com-
monly call “magnetic” are bound to occur. They will emerge as soon as
we examine the electric interaction between a moving charge and other
moving charges. A simple system will illustrate this.

In the lab frame of Fig. 5.22(a), with spatial coordinates x, y, z, there
is a line of positive charges, at rest and extending to infinity in both direc-
tions. We shall call them ions for short. Indeed, they might represent the
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copper ions that constitute the solid substance of a copper wire. There is
also a line of negative charges that we shall call electrons. These are all
moving to the right with speed v0. In a real wire the electrons would be
intermingled with the ions; we’ve separated them in the diagram for clar-
ity. The linear density of positive charge is λ0. It happens that the linear
density of negative charge along the line of electrons is exactly equal in
magnitude. That is, any given length of “wire” contains at a given instant
the same number of electrons and protons.9 The net charge on the wire
is zero. Gauss’s law tells us there can be no flux from a cylinder that
contains no charge, so the electric field must be zero everywhere out-
side the wire. A test charge q at rest near this wire experiences no force
whatsoever.

Suppose the test charge is not at rest in the lab frame but is moving
with speed v in the x direction. Transform to a frame moving with the test
charge, the x′, y′ frame in Fig. 5.22(b). The test charge q is here at rest,
but something else has changed: the wire appears to be charged! There
are two reasons for that: the positive ions are closer together, and the
electrons are farther apart. Because the lab frame in which the positive
ions are at rest is moving with speed v, the distance between positive ions
as seen in the test charge frame is contracted by

√
1 − v2/c2, or 1/γ . The

linear density of positive charge in this frame is correspondingly greater;
it must be γ λ0. The density of negative charge takes a little longer to
calculate, for the electrons were already moving with speed v0 in the lab
frame. Hence their linear density in the lab frame, which was −λ0, had
already been increased by a Lorentz contraction. In the electrons’ own
rest frame the negative charge density must have been −λ0/γ0, where γ0
is the Lorentz factor that goes with v0.

Now we need the speed of the electrons in the test charge frame
in order to calculate their density there. To find that velocity (v′0 in
Fig. 5.22(b)) we must add the velocity−v to the velocity v0, remembering

Figure 5.22.
A test charge q moving parallel to a current in a wire. (a) In the lab
frame, the wire, in which the positive charges are fixed, is at rest. The
current consists of electrons moving to the right with speed v0. The net
charge on the wire is zero. There is no electric field outside the wire.
(b) In a frame in which the test charge is at rest, the positive ions are
moving to the left with speed v, and the electrons are moving to the right
with speed v′0. The linear density of positive charge is greater than the
linear density of negative charge. The wire appears positively charged,
with an external field E′

r, which causes a force qE′
r on the stationary test

charge q. (c) That force transformed back to the lab frame has the
magnitude qE′

r/γ , which is proportional to the product of the speed v of
the test charge and the current in the wire, −λ0v0.

9 It doesn’t have to, but that equality can always be established, if we choose, by
adjusting the number of electrons per unit length. In our idealized setup, we assume
this has been done.
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to use the relativistic formula for the addition of velocities (Eq. (G.7) in
Appendix G). Let β ′

0 = v′0/c, β0 = v0/c, and β = v/c. Then

β ′
0 = β0 − β

1 − ββ0
. (5.22)

The corresponding Lorentz factor γ ′
0, obtained from Eq. (5.22) with a

little algebra (as you can check), is

γ ′
0 ≡ (1 − β ′2

0 )−1/2 = γ γ0(1 − ββ0). (5.23)

This is the factor by which the linear density of negative charge in the
electrons’ own rest frame (which was −λ0/γ0) is enhanced when it is
measured in the test charge frame. The total linear density of charge in
the wire in the test charge frame, λ′, can now be calculated:

λ′ = γ λ0 − λ0

γ0
γ γ0(1 − ββ0)︸ ︷︷ ︸ = γββ0λ0. (5.24)

factor for
transformation
to test charge
frame

factor for
transformation
to test charge
frame

positive charge
density in
ions' rest
frame

negative charge
density in
electrons' 
rest frame

The wire is positively charged. Gauss’s law guarantees the existence of a
radial electric field whose magnitude E′

r is given by our familiar formula,
Eq. (1.39), for the field of any infinite line charge:

E′
r =

λ′

2πε0r′
= γββ0λ0

2πε0r′
. (5.25)

At the location of the test charge q this field points in the −y′ direction.
The test charge will therefore experience a force

F′
y = qE′

y = −qγββ0λ0

2πε0r′
. (5.26)

Now let’s return to the lab frame, pictured again in Fig. 5.22(c).
What is the magnitude of the force on the charge q as measured there?
If its value is qE′

y in the rest frame of the test charge, observers in the
lab frame will report a force smaller by the factor 1/γ , by Eq. (5.17).
Since r = r′, the force on our moving test charge, measured in the lab
frame, is

Fy =
F′

y

γ
= −qββ0λ0

2πε0r
. (5.27)
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The quantity −λ0v0, or −λ0β0c, is just the total current I in the wire, in
the lab frame, for it is the amount of charge flowing past a given point
per second. We call current positive if it is equivalent to positive charge
flowing in the positive x direction. Our current in this example is nega-
tive. Our result can be written this way:

Fy = qvxI
2πε0rc2 (5.28)

where we have written vx for v to remind us that the velocity of the test
charge q is in the x direction. We have found that, in the lab frame, the
moving test charge experiences a force in the (negative) y direction that
is proportional to the current in the wire, and to the velocity of the test
charge in the x direction. We will see at the beginning of Chapter 6
exactly how this force is related to the magnetic field B. But for now
we simply note that the force is in the direction of v × B if B is a vector
in the ẑ direction, pointing at us out of the diagram.

Wire 1
(a)

Wire 2
At rest Current

Current

1
(b)

2

At rest

At rest

1
(c)

2

Figure 5.23.
(a) Lab frame with two wires carrying current in
opposite directions. As in metal wire, the current
is due to the motion of negative ions (electrons)
only. (b) Rest frame of electrons in wire 1. Note
that in wire 2 positive ions are compressed, but
electron distribution is contracted even more.
(c) Rest frame of electrons in wire 2. Just as
in (b), the other wire appears to these electrons
at rest to be negatively charged.

It is a remarkable fact that the force on the moving test charge does
not depend separately on the velocity or density of the charge carriers
but only on the product, β0λ0 in our example, that determines the charge
transport. If we have a certain current I, say 1 milliamp, it does not mat-
ter whether this current is composed of high-energy electrons moving
with 99 percent of the speed of light, or of electrons in a metal execut-
ing nearly random thermal motions with a slight drift in one direction,
or of charged ions in solution with positive ions moving one way, nega-
tives the other. Or it could be any combination of these, as Exercise 5.30
will demonstrate. Furthermore, the force on the test charge is strictly pro-
portional to the velocity of the test charge v. Finally, our derivation was
in no way restricted to small velocities, either for the charge carriers in
the wire or for the moving charge q. Equation (5.28) is exact, with no
restrictions.

Example (Repelling wires) Let’s see how this explains the mutual repulsion
of conductors carrying currents in opposite directions, as shown in Fig. 5.1(b)
at the beginning of this chapter. Two such wires are represented in the lab frame
in Fig. 5.23(a). Assume the wires are uncharged in the lab frame.10 Then there
is no electrical force from the opposite wire on the positive ions which are
stationary in the lab frame.

Transferring to a frame in which one set of electrons is at rest (Fig. 5.23(b)),
we find that in the other wire the electron distribution is Lorentz-contracted more

10 As mentioned at the end of Section 4.3, there are surface charges on an actual
current-carrying wire. Hence there is an electric force between the wires, in addition
to the magnetic force we are presently concerned with; see Assis et al. (1999).
However, under normal circumstances this electric force is very small compared
with the magnetic force, so we can ignore it. It certainly goes to zero in the limit of
high conductivity, because essentially zero surface charge is needed to maintain a
given current in that case.
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than the positive ion distribution. (As you can show, Eq. (5.24) now involves
the term 1 + ββ0, which leads to a negative net density.) Because of that, the
electrons at rest in this frame will be repelled by the other wire. And when we
transfer to the frame in which those other electrons are at rest (Fig. 5.23(c)), we
find the same situation. They too will be repelled. These repulsive forces will be
observed in the lab frame as well, modified only by the factor γ .

We conclude that the two streams of electrons will repel one another in the
lab frame. The stationary positive ions, although they feel no direct electrical
force from the other wire, will be the indirect bearers of this repulsive force if the
electrons remain confined within the wire. So the wires will be pushed apart, as
in Fig. 5.1(b), until some external force balances the repulsion.

Example (Force on protons moving together) Two protons are moving
parallel to one another a distance r apart, with the same speed βc in the lab
frame. According to Eq. (5.15), at the instantaneous position of one of the pro-
tons, the electric field E caused by the other, as measured in the lab frame, has
magnitude γ e/4πε0r2. But the force on the proton measured in the lab frame
is not γ e2/4πε0r2. Verify this by finding the force in the proton rest frame and
transforming that force back to the lab frame. Show that the discrepancy can be
accounted for by the second term in Eq. (5.1) if there is a magnetic field B that
points in the appropriate direction and that has a magnitude β/c = v/c2 times
the magnitude of the electric field, accompanying the proton as it travels through
the lab frame.11

bc

bc

r

e

e

Figure 5.24.
Two protons moving parallel to each other, a
distance r apart.

Solution In the rest frame of the two protons, the force of repulsion is simply
e2/4πε0r2. The force in the lab frame is therefore (1/γ )(e2/4πε0r2). (Remem-
ber, the force is always largest in the rest frame of the particle on which it acts.)
This is the correct total force in the lab frame. But, as mentioned above, the
repulsive electrical force eE in the lab frame is γ e2/4πε0r2, because Eq. (5.15)
tells us that the electric field due to a moving charge is larger by a factor γ

in the transverse direction. Apparently this must not be the whole force. There
must be an extra attractive force that partially cancels the repulsive electric force
γ e2/4πε0r2, bringing it down to the correct value of e2/γ 4πε0r2. This extra
attractive force must therefore have magnitude (using 1/γ 2 = 1 − β2)

γ e2

4πε0r2 − e2

γ 4πε0r2 = γ

(
1 − 1

γ 2

)
e2

4πε0r2

= γβ2 e2

4πε0r2 = e(βc)
(

β

c
γ e

4πε0r2

)
. (5.29)

We have chosen to write the force in this way, because we can then interpret it
as the qv × B magnetic force in Eq. (5.1), provided that the magnitude of B is
(β/c)(γ e/4πε0r2), which is β/c times the magnitude of the electric field in the
lab frame, and provided that B points out of (or into) the page at the location
of the top (or bottom) proton in Fig. 5.24. The cross product v × B then points

11 The setup in this example is nearly the same as the setup in the example at the end of
Section 5.8, but we will follow this one through to completion.
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in the proper (attractive) direction. Each proton creates a magnetic field at the
location of the other proton. The relative factor of β/c between the magnetic and
electric fields is consistent with the Lorentz transformations we will derive in
Section 6.7.

We see that the magnetic force, through its partial cancelation of the electric
force, allows the following two statements to be consistent: (1) the transverse
electric field due to a charge is smallest in the frame of that charge (by a factor
of γ compared with any other frame), and (2) the transverse force on a particle
is largest in the frame of that particle (by a factor of γ compared with any other
frame). These two statements imply, respectively, that the electric force is larger
in the lab frame than in the protons’ frame, but the total force is smaller in the
lab frame than in the protons’ frame. These two facts are consistent because
the existence of the magnetic force means that the total force isn’t equal to just
the electric force.

You might be tempted to argue that the proton is not “moving through” the
B field of the other proton because that field is “moving right along with it.”
That would be incorrect. In the force law that is the fundamental definition of B,
namely F = qE + qv × B, B is the field at the position of the charge q at an
instant in time, with both position and time measured in the frame in which we
are measuring the force on q. What the “source” of B may be doing at that instant
is irrelevant.

Note that the structure of the reasoning in this example is the same as the
reasoning in the charge-and-wire example above in the text. In both cases we
first found the force in the rest frame of a given point charge. (This was simple in
the present example, but involved a detailed length-contraction argument in the
charge-and-wire example.) We then transformed the force to the lab frame by a
quick division by γ . And finally we determined what the extra (magnetic) force
must be to make the sum of the electric and magnetic forces in the lab frame be
correct. (The lab-frame electric force was trivially zero in the charge-and-wire
example, but not in the present example.) See Exercise 5.29 for more practice
with this type of problem.

Moving parallel to a current-carrying conductor, a charged particle
experiences a force perpendicular to its direction of motion. What if it
moves, instead, at right angles to the conductor? A velocity perpendic-
ular to the wire will give rise to a force parallel to the wire – again, a
force perpendicular to the particle’s direction of motion. To see how this
comes about, let us consider the lab frame of that system and give the test
charge a velocity v in the y direction, as in Fig. 5.25(a). Transferring to
the rest frame of the test charge (Fig. 5.25(b)), we find the positive ions
moving vertically downward. Certainly they cannot cause a horizontal
field at the test-charge position. The x′ component of the field from an
ion on the left will be exactly canceled by the x′ component of the field
of a symmetrically positioned ion on the right.

The effect we are looking for is caused by the electrons. They are all
moving obliquely in this frame, downward and toward the right. Consider
the two symmetrically located electrons e1 and e2. Their electric fields,
relativistically compressed in the direction of the electrons’ motion, have
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Figure 5.25.
(a) The “wire” with its current of moving negative
charges, or “electrons,” is the same as in
Fig. 5.22, but now the test charge is moving
toward the wire. (b) In the rest frame of the test
charge, the positive charges, or “ions,” are
moving in the −ŷ direction. The electrons are
moving obliquely. Because the field of a moving
charge is stronger in directions more nearly
perpendicular to its velocity, an electron on the
right, such as e2, causes a stronger field at the
position of the test charge than does a
symmetrically located electron, e1, on the left.
Therefore the vector sum of the fields has in this
frame a component in the x̂′ direction.
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been represented by a brush of field lines in the manner of Fig. 5.15. You
can see that, although e1 and e2 are equally far away from the test charge,
the field of electron e2 will be stronger than the field of electron e1 at that
location. That is because the line from e2 to the test charge is more nearly
perpendicular to the direction of motion of e2. In other words, the angle
θ ′ that appears in the denominator of Eq. (5.15) is here different for e1
and e2, so that sin2 θ ′2 > sin2 θ ′1. That will be true for any symmetrically
located pair of electrons on the line, as you can verify with the aid of
Fig. 5.26. The electron on the right always wins. Summing over all the
electrons is therefore bound to yield a resultant field E′ in the x̂ direction.
The y′ component of the electrons’ field will be exactly canceled by the
field of the ions. That E′

y is zero is guaranteed by Gauss’s law, for the
number of charges per unit length of wire is the same as it was in the lab
frame. The wire is uncharged in both frames.

The force on our test charge, qE′
x, when transformed back into the

lab frame, will be a force that is proportional to v and that points in the
x̂ direction, which (as in the earlier case of motion parallel to the wire)
is the direction of v × B if B is a vector in the ẑ direction, pointing at us
out of the diagram. We could show that the magnitude of this velocity-
dependent force is given here also by Eq. (5.28): F = qvI/2πε0rc2.
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Figure 5.26.
A closer look at the geometry of Fig. 5.25(b),
showing that, for any pair of electrons
equidistant from the test charge, the one on the
right will have a larger value of sin2 θ ′. Hence,
according to Eq. (5.15), it will produce the
stronger field at the test charge.

The physics needed is all in Eq. (5.15), but there are many factors to keep
straight; see Exercise 5.31.

In this chapter we have seen how the fact of charge invariance
implies forces between electric currents. That does not oblige us to look
on one fact as the cause of the other. These are simply two aspects
of electromagnetism whose relationship beautifully illustrates the more
general law: physics is the same in all inertial frames of reference.

If we had to analyze every system of moving charges by transform-
ing back and forth among various coordinate systems, our task would
grow both tedious and confusing. There is a better way. The overall effect
of one current on another, or of a current on a moving charge, can be
described completely and concisely by working with the magnetic field;
this is the subject of Chapter 6.

We usually end each chapter with a discussion of applications, but
we will save the applications of the magnetic field for Section 6.10, after
we have studied magnetism in depth.

CHAPTER SUMMARY
• Charged particles in a magnetic field experience a magnetic force equal

to F = qv × B.
• Gauss’s law, Q = ε0

∫
E · da, holds for moving charges (by the defi-

nition of charge) as well as for stationary charges. Charge is invariant,
that is, the amount of charge in a system is independent of the frame
in which it is measured. The total charge enclosed in a volume is inde-
pendent of the motion of the charge carriers within.
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• Consider a collection of charges, which are at rest with respect to each
other, moving with respect to the lab frame. These charges are the
source of an electric field. The longitudinal component of this elec-
tric field is the same in the source frame and the lab frame. But the
transverse component is larger in the lab frame. That is, it is smaller
in the source frame than in any other frame:

Elab‖ = Esource‖ and Elab⊥ = γ Esource⊥ . (5.30)

• The field of a point charge moving with constant velocity v = βc is
radial and has magnitude

E = Q
4πε0r2

1 − β2

(1 − β2 sin2 θ)3/2
. (5.31)

If the charge stops moving, the field outside an expanding shell is the
same as if the charge had kept moving, as indicated in Fig. 5.19.

• If a particle moves with respect to the lab frame, then the longitudinal
component of the force on it is the same in its frame and the lab frame.
But the transverse component is smaller in the lab frame. That is, it is
larger in the particle frame than in any other frame:

Flab‖ = Fparticle
‖ and Flab⊥ = 1

γ
Fparticle
⊥ . (5.32)

• The force on a charge q moving through the electric field E arising
from stationary charges is simply qE, as one would expect.

• If a charge is moving with respect to other charges that are also mov-
ing in the lab frame (say, in a wire), then the charge experiences a
magnetic force. This magnetic force can alternatively be viewed as
an electric force in the particle’s frame. This nonzero electric field is
due to the different length contractions of the positive and negative
charges in the wire. In this manner we see that magnetism is a rela-
tivistic effect.

Problems
5.1 Field from a filament *

On a nylon filament 0.01 cm in diameter and 4 cm long there
are 5.0 · 108 extra electrons distributed uniformly over the surface.
What is the electric field strength at the surface of the filament:

(a) in the rest frame of the filament?
(b) in a frame in which the filament is moving at a speed 0.9c in a

direction parallel to its length?

5.2 Maximum horizontal force **
A charge q1 is at rest at the origin, and a charge q2 moves with
speed βc in the x direction, along the line z = b. For what angle θ
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shown in Fig. 5.27 will the horizontal component of the force on
q1 be maximum? What is θ in the β ≈ 1 and β ≈ 0 limits?

q

bc

x
q1

q2

z

z = b

Figure 5.27.

5.3 Newton’s third law **
In the laboratory frame, a proton is at rest at the origin at t = 0. At
that instant a negative pion (charge −e) that has been traveling in
along the x axis at a speed of 0.6c reaches the point x = 0.01 cm.
There are no other charges around. What is the magnitude of the
force on the pion? What is the magnitude of the force on the pro-
ton? What about Newton’s third law? (We’re getting a little ahead
of ourselves with this last question, but see if you can answer it
anyway.)

5.4 Divergence of E **
(a) Show that the divergence of the E field given in Eq. (5.15) is

zero (except at the origin). Work with spherical coordinates.
(b) Now show that the divergence of E is zero by using Cartesian

coordinates and the form of E given in Eq. (5.13). (Careful!
There’s something missing from Eq. (5.13).)

5.5 E from a line of moving charges **
An essentially continuous stream of point charges moves with
speed v along the x axis. The stream extends from −∞ to +∞.
Let the charge density per unit length be λ, as measured in the lab
frame. We know from using a cylindrical Gaussian surface that the
electric field a distance r from the x axis is E = λ/2πε0r. Derive
this result again by using Eq. (5.15) and integrating over all of the
moving charges. You will want to use a computer or the integral
table in Appendix K.

5.6 Maximum field from a passing charge **
In a colliding beam storage ring an antiproton going east passes a
proton going west, the distance of closest approach being 10−10 m.
The kinetic energy of each particle in the lab frame is 93 GeV,
corresponding to γ = 100. In the rest frame of the proton, what is
the maximum intensity of the electric field at the proton due to the
charge on the antiproton? For about how long, approximately, does
the field exceed half its maximum intensity?

5.7 Electron in an oscilloscope **
In the lab frame, the electric field in the region between the two
plates of an oscilloscope is E. An electron enters this region with
a relativistic velocity v0 parallel to the plates. If the length of the
plates is �, what are the electron’s transverse momentum and trans-
verse deflection distance upon exiting (as measured in the lab
frame)? Solve this by working in the lab frame F, and then again by
working in the inertial frame F′ that coincides with the electron’s
frame when it enters the region. (You will need to use Eqs. (G.11)
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and (G.12). You may assume that the transverse motion is nonrel-
ativistic.)

5.8 Finding the magnetic field **
Consider the second scenario in the example at the end of Sec-
tion 5.8. Show that the total force in frame F′ equals the sum of
the electric and magnetic forces, provided that there is a magnetic
field pointing out of the page with magnitude γ vE2/c2.

5.9 “Twice” the velocity **
Suppose that the velocity of the test charge in Fig. 5.22 is chosen
so that in its frame the electrons move backward with speed v0.

(a) Show that the β associated with the test charge’s velocity in
the lab frame must be β = 2β0/(1 + β2

0 ).
(b) Using length contraction, find the net charge density in the

test-charge frame, and check that it agrees with Eq. (5.24).

Exercises
5.10 Capacitor plates in two frames *

A capacitor consists of two parallel rectangular plates with a ver-
tical separation of 2 cm. The east–west dimension of the plates
is 20 cm, the north–south dimension is 10 cm. The capacitor has
been charged by connecting it temporarily to a battery of 300 V.
What is the electric field strength between the plates? How many
excess electrons are on the negative plate? Now give the following
quantities as they would be measured in a frame of reference that
is moving eastward, relative to the laboratory in which the plates
are at rest, with speed 0.6c: the three dimensions of the capacitor;
the number of excess electrons on the negative plate; the electric
field strength between the plates. Answer the same questions for a
frame of reference that is moving upward with speed 0.6c.

5.11 Electron beam *
A beam of 9.5 megaelectron-volt (MeV) electrons (γ ≈ 20),
amounting as current to 0.05 μA, is traveling through vacuum. The
transverse dimensions of the beam are less than 1 mm, and there
are no positive charges in or near it.

(a) In the lab frame, what is the average distance between an
electron and the next one ahead of it, measured parallel to the
beam? What approximately is the average electric field strength
1 cm away from the beam?

(b) Answer the same questions for the electron rest frame.
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5.12 Tilted sheet **
Redo the “Tilted sheet” example in Section 5.5 in terms of a gen-
eral γ factor, to verify that Gauss’s law holds for any choice of the
relative speed of the two frames.

5.13 Adding the fields *
A stationary proton is located on the z axis at z = a. A negative
muon is moving with speed 0.8c along the x axis. Consider the
total electric field of these two particles, in this frame, at the time
when the muon passes through the origin. What are the values at
that instant of Ex and Ez at the point (a, 0, 0) on the x axis?

5.14 Forgetting relativity *
Given β, for what angle θ does the field in Eq. (5.15) take on
the value you would obtain if you forgot about relativity, namely
Q/4πε0r′2? What is θ in the β ≈ 1 and β ≈ 0 limits?

5.15 Gauss’s law for a moving charge **
Verify that Gauss’s law holds for the electric field in Eq. (5.15).
That is, verify that the flux of the field, through a sphere cen-
tered at the charge, is q/ε0. Of course, we used this fact in deriving
Eq. (5.15) in the first place, so we know that it must be true. But
it can’t hurt to double check. You’ll want to use a computer or the
integral table in Appendix K.

5.16 Cosmic rays *
The most extremely relativistic charged particles we know
about are cosmic rays which arrive from outer space. Occasionally
one of these particles has so much kinetic energy that it can initiate
in the atmosphere a “giant shower” of secondary particles, dissi-
pating, in total, as much as 1019 eV of energy (more than 1 joule!).
The primary particle, probably a proton, must have had γ ≈ 1010.
How far away from such a proton would the field rise to 1 V/m
as it passes? Roughly how thick is the “pancake” of field lines at
that distance? (You can use the result from either Problem 5.6 or
Exercise 5.21 that the angular width of the pancake is on the order
of 1/γ .)

5.17 Reversing the motion *
A proton moves in along the x axis toward the origin at a veloc-
ity vx = −c/2. At the origin it collides with a massive nucleus,
rebounds elastically, and moves outward on the x axis with nearly
the same speed. Make a sketch showing approximately how the
electric field of which the proton is the source looks at an instant
10−10 s after the proton reaches the origin.
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5.18 A nonuniformly moving electron *
In Fig. 5.28 you see an electron at time t = 0 and the associated
electric field at that instant. Distances in centimeters are given in
the diagram.

(a) Describe what has been going on. Make your description as
complete and quantitative as you can.

(b) Where was the electron at the time t = −7.5 · 10−10 s?
(c) What was the strength of the electric field at the origin at that

instant?

5.19 Colliding particles **
Figure 5.29 shows a highly relativistic positive particle approach-
ing the origin from the left and a negative particle approaching
with equal speed from the right. They collide at the origin at t = 0,
find some way to dispose of their kinetic energy, and remain there
as a neutral entity. What do you think the electric field looks like at
some time t > 0? Sketch the field lines. How does the field change
as time goes on?

5.20 Relating the angles ***
Derive Eq. (5.16) by performing the integration to find the flux
of E through each of the spherical caps described in the cap-
tion of Fig. 5.19. On the inner cap the field strength is constant,
and the element of surface area may be taken as 2πr2 sin θ dθ .
On the outer cap the field is described by Eq. (5.15), with the
appropriate changes in symbols, and the element of surface area is
2πr2 sin φ dφ.

Feel free to use a computer for the integration. If you want to
do it by hand, a hint is to write sin2 φ as 1 − cos2 φ and then let
x ≡ cos φ. The integral you will need is∫

dx
(a2 + x2)3/2 = x

a2(a2 + x2)1/2 . (5.33)
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1 − b2 Figure 5.29.

5.21 Half of the flux ***
In the field of the moving charge Q, given by Eq. (5.15), we want to
find an angle δ such that half of the total flux from Q is contained
between the two conical surfaces θ ′ = π/2 + δ and θ ′ = π/2 − δ.
If you have done Exercise 5.20 you have already done most of the
work. You should find that for γ � 1, the angle between the two
cones is on the order of 1/γ .

5.22 Electron in an oscilloscope **
The deflection plates in a high-voltage cathode ray oscilloscope
are two rectangular plates, 4 cm long and 1.5 cm wide, and spaced
0.8 cm apart. There is a difference in potential of 6000 V between
the plates. An electron that has been accelerated through a poten-
tial difference of 250 kV enters this deflector from the left, moving
parallel to the plates and halfway between them, initially. We want
to find the position of the electron and its direction of motion when
it leaves the deflecting field at the other end of the plates. We shall
neglect the fringing field and assume the electric field between the
plates is uniform right up to the end. The rest energy of the electron
may be taken as 500 keV.

(a) First carry out the analysis in the lab frame by answering the
following questions:

• What are the values of γ and β?
• What is px in units of mc?
• How long does the electron spend between the plates?

(Neglect the change in horizontal velocity discussed in
Exercise 5.25.)

• What is the transverse momentum component acquired, in
units of mc?

• What is the transverse velocity at exit?
• What is the vertical position at exit?
• What is the direction of flight at exit?
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(b) Now describe this whole process as it would appear in an
inertial frame that moved with the electron at the moment it
entered the deflecting region. What do the plates look like?
What is the field between them? What happens to the electron
in this coordinate system? Your main object in this exercise is
to convince yourself that the two descriptions are completely
consistent.

5.23 Two views of an oscilloscope **
In a high-voltage oscilloscope the source of electrons is a cathode
at potential −125 kV with respect to the anode and the enclosed
region beyond the anode aperture. Within this region there is a
pair of parallel plates 5 cm long in the x direction (the direction of
the electron beam) and 8 mm apart in the y direction. An electron
leaves the cathode with negligible velocity, is accelerated toward
the anode, and subsequently passes between the deflecting plates
at a time when the potential of the lower plate is −120 V, that of
the upper plate +120 V.

Fill in the blanks. Use rounded-off constants: electron rest
energy = 5 · 105 eV, etc. When the electron arrives at the anode,
its kinetic energy is eV, its total energy has increased by
a factor of , and its velocity is c. Its momentum
is kg m/s in the x direction. Beyond the anode the elec-
tron passes between parallel metal plates. The field between the
plates is V/m; the force on the electron is newtons
upward. The electron spends seconds between the plates
and emerges, having acquired y momentum of magnitude py =

kg m/s. Its trajectory now slants upward at an angle θ =
radians.

A fast neutron that just happened to be moving along with
the electron when it passed through the anode reported subsequent
events as follows. “We were sitting there when this capacitor came
flying at us at m/s. It was m long, so it surrounded
us for seconds. That didn’t bother me, but the electric field
of V/m accelerated the electron so that, after the capacitor
left us, the electron was moving away from me at m/s, with
a momentum of kg m/s.”

5.24 Acquiring transverse momentum ***
In the rest frame of a particle with charge q1, another particle with
charge q2 is approaching, moving with velocity v not small com-
pared with c. If it continues to move in a straight line, it will pass
a distance b from the position of the first particle. It is so massive
that its displacement from the straight path during the encounter
is small compared with b. Likewise, the first particle is so mas-
sive that its displacement from its initial position while the other
particle is nearby is also small compared with b.
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(a) Show that the increment in momentum acquired by each par-
ticle as a result of the encounter is perpendicular to v and has
magnitude q1q2/2πε0vb. (Gauss’s law can be useful here.)

(b) Expressed in terms of the other quantities, how large (in order
of magnitude) must the masses of the particles be to justify our
assumptions?

5.25 Decreasing velocity **
Consider the trajectory of a charged particle that is moving with a
speed 0.8c in the x direction when it enters a large region in which
there is a uniform electric field in the y direction. Show that the x
velocity of the particle must actually decrease. What about the x
component of momentum?

5.26 Charges in a wire *
In Fig. 5.22 the relative spacing of the black and gray dots was
designed to be consistent with γ = 1.2 and β0 = 0.8. Calculate
β ′

0. Find the value, as a fraction of λ0, of the net charge density λ′
in the test-charge frame.

5.27 Equal velocities *
Suppose that the velocity of the test charge in Fig. 5.22 is made
equal to that of the electrons, v0. What would then be the linear
densities of positive charge, and of negative charge, in the test-
charge frame?

5.28 Stationary rod and moving charge *
A charge q moves with speed v parallel to a long rod with linear
charge density λ, as shown in Fig. 5.30. The rod is at rest. If the

q

r

v

l(At rest)

Figure 5.30.

charge q is a distance r from the rod, the force on it is simply
F = qE = qλ/2πrε0.

Now consider the setup in the frame that moves along with
the charge q. What is the force on the charge q in this new frame?
Solve this by:

(a) transforming the force from the old frame to the new frame,
without caring about what causes the force in the new frame;

(b) calculating the electric force in the new frame.

5.29 Protons moving in opposite directions ***
Two protons are moving antiparallel to one another, along lines
separated by a distance r, with the same speed βc in the lab frame.
Consider the moment when they have the same horizontal posi-
tion and are a distance r apart, as shown in Fig. 5.31. According to

bc

bc

r

e

e

Figure 5.31.

Eq. (5.15), at the position of each of the protons, the electric field
E caused by the other, as measured in the lab frame, is γ e/4πε0r2.
But the force on each proton measured in the lab frame is not
γ e2/4πε0r2. Verify this by finding the force on one of the pro-
tons in its own rest frame and transforming that force back to the
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lab frame. (You will need to use the velocity addition formula to
find the speed of one proton as viewed by the other). Show that
the discrepancy can be accounted for if each proton is subject to a
magnetic field that points in the appropriate direction and that has
a magnitude β/c = v/c2 times the magnitude of the electric field,
at the instant shown.

5.30 Transformations of λ and I ***
Consider a composite line charge consisting of several kinds of
carriers, each with its own velocity. For each kind, labeled by k, the
linear density of charge measured in frame F is λk, and the velocity
is βkc parallel to the line. The contribution of these carriers to the
current in F is then Ik = λkβkc. How much do these k-type carriers
contribute to the charge and current in a frame F′ that is moving
parallel to the line at velocity −βc with respect to F? By following
the steps we took in the transformations in Fig. 5.22, you should
be able to show that

λ′k = γ

(
λk + βIk

c

)
, I′k = γ (Ik + βcλk). (5.34)

If each component of the linear charge density and current trans-
forms in this way, then so must the total λ and I:

λ′ = γ

(
λ + βI

c

)
, I′ = γ (I + βcλ). (5.35)

You have now derived the Lorentz transformation to a parallel-
moving frame for any line charge and current, whatever its compo-
sition.

5.31 Moving perpendicular to a wire ****
At the end of Section 5.9 we discussed the case where a charge q
moves perpendicular to a wire. Figures 5.25 and 5.26 show qual-
itatively why there is a nonzero force on the charge, pointing in
the positive x direction. Carry out the calculation to show that the
force at a distance � from the wire equals qvI/2πε0�c2. That is,
use Eq. (5.15) to calculate the force on the charge in its own frame,
and then divide by γ to transform back to the lab frame.

Notes: You can use the fact that in the charge q’s frame, the
speed of the electrons in the x direction is v0/γ (this comes from
the transverse-velocity-addition formula). Remember that the β in
Eq. (5.15) is the velocity of the electrons in the charge’s frame, and
this velocity has two components. Be careful with the transverse
distance involved. There are many things to keep track of in this
problem, but the integration itself is easy if you use a computer (or
Appendix K).
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The magnetic fieldOverview Having shown in Chapter 5 that the magnetic force

must exist, we will now study the various properties of the mag-
netic field and show how it can be calculated for an arbitrary
(steady) current distribution. The Lorentz force gives the total force
on a charged particle as F = qE + qv × B. The results from the
previous chapter give us the form of the magnetic field due to a
long straight wire. This form leads to Ampère’s law, which relates
the line integral of the magnetic field to the current enclosed by
the integration loop. It turns out that Ampère’s law holds for a wire
of any shape. When supplemented with a term involving chang-
ing electric fields, this law becomes one of Maxwell’s equations
(as we will see in Chapter 9). The sources of magnetic fields are
currents, in contrast with the sources of electric fields, which are
charges; there are no isolated magnetic charges, or monopoles.
This statement is another of Maxwell’s equations.

As in the electric case, the magnetic field can be obtained
from a potential, but it is now a vector potential ; its curl gives the
magnetic field. The Biot–Savart law allows us to calculate (in prin-
ciple) the magnetic field due to any steady current distribution.
One distribution that comes up often is that of a solenoid (a coil
of wire), whose field is (essentially) constant inside and zero out-
side. This field is consistent with an Ampère’s-law calculation of
the discontinuity of B across a sheet of current. By considering
various special cases, we derive the Lorentz transformations of
the electric and magnetic fields. The electric (or magnetic) field
in one frame depends on both the electric and magnetic fields in
another frame. The Hall effect arises from the qv × B part of the
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Lorentz force. This effect allows us, for the first time, to determine
the sign of the charge carriers in a current.

6.1 Definition of the magnetic field
A charge that is moving parallel to a current of other charges experiences
a force perpendicular to its own velocity. We can see it happening in the
deflection of the electron beam in Fig. 5.3. We discovered in Section 5.9
that this is consistent with – indeed, is required by – Coulomb’s law
combined with charge invariance and special relativity. And we found
that a force perpendicular to the charged particle’s velocity also arises in
motion at right angles to the current-carrying wire. For a given current,
the magnitude of the force, which we calculated for the particular case
in Fig. 5.22(a), is proportional to the product of the particle’s charge q
and its speed v in our frame. Just as we defined the electric field E as the
vector force on unit charge at rest, so we can define another field B by
the velocity-dependent part of the force that acts on a charge in motion.
The defining relation was introduced at the beginning of Chapter 5. Let
us state it again more carefully.

At some instant t a particle of charge q passes the point (x, y, z) in our
frame, moving with velocity v. At that moment the force on the particle
(its rate of change of momentum) is F. The electric field at that time and
place is known to be E. Then the magnetic field at that time and place
is defined as the vector B that satisfies the following vector equation (for
any value of v):

F = qE + qv × B (6.1)

This force F is called the Lorentz force. Of course, F here includes
only the charge-dependent force and not, for instance, the weight of the
particle carrying the charge. A vector B satisfying Eq. (6.1) always exists.
Given the values of E and B in some region, we can with Eq. (6.1) predict
the force on any particle moving through that region with any velocity.
For fields that vary in time and space, Eq. (6.1) is to be understood as
a local relation among the instantaneous values of F, E, v, and B. Of
course, all four of these quantities must be measured in the same inertial
frame.

In the case of our “test charge” in the lab frame of Fig. 5.22(a), the
electric field E was zero. With the charge q moving in the positive x
direction, v = x̂v, we found in Eq. (5.28) that the force on it was in the
negative y direction, with magnitude Iqv/2πε0rc2:

F = −ŷ
Iqv

2πε0rc2 . (6.2)
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Figure 6.1.
The magnetic field of a current in a long straight
wire and the force on a charged particle moving
through that field.

In this case the magnetic field must be

B = ẑ
I

2πε0rc2 (6.3)

for then Eq. (6.1) becomes

F = qv × B = (x̂ × ẑ)(qv)
(

I
2πε0rc2

)
= −ŷ

Iqv
2πε0rc2 , (6.4)

in agreement with Eq. (6.2).
The relation of B to r and to the current I is shown in Fig. 6.1.

Three mutually perpendicular directions are involved: the direction of
B at the point of interest, the direction of a vector r from the wire to
that point, and the direction of current flow in the wire. Here ques-
tions of handedness arise for the first time in our study. Having adopted
Eq. (6.1) as the definition of B and agreed on the conventional rule for
the vector product, that is, x̂ × ŷ = ẑ, etc., in coordinates like those
of Fig. 6.1, we have determined the direction of B. That relation has a
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handedness, as you can see by imagining a particle that moves along
the wire in the direction of the current while circling around the wire in
the direction of B. Its trail, no matter how you look at it, would form a
right-hand helix, like that in Fig. 6.2(a), not a left-hand helix like that
in Fig. 6.2(b).

RH
(a)

(b)
LH

Figure 6.2.
A reminder. The helix in (a) is called a
right-handed helix, that in (b) a left-handed helix.

From the F = qv × B relation, we see that another set of three
(not necessarily mutually perpendicular) vectors consists of the force F
on the charge q, the velocity v of the charge, and the magnetic field B
at the location of the charge. In Fig. 6.1, v happens to point along the
direction of the wire, and F along the direction of r, but these need not
be the directions in general; F will always be perpendicular to both v and
B, but v can point in any direction of your choosing, so it need not be
perpendicular to B.

Consider an experiment like Oersted’s, as pictured in Fig. 5.2(a).
The direction of the current was settled when the wire was connected
to the battery. Which way the compass needle points can be stated if we
color one end of the needle and call it the head of the arrow. By tradition,
long antedating Oersted, the “north-seeking” end of the needle is so des-
ignated, and that is the black end of the needle in Fig. 5.2(a).1 If you com-
pare that picture with Fig. 6.1, you will see that we have defined B so that
it points in the direction of “local magnetic north.” Or, to put it another
way, the current arrow and the compass needle in Fig. 5.2(a) define a
right-handed helix (see Fig. 6.2), as do the current direction and the vec-
tor B in Fig. 6.1. This is not to say that there is anything intrinsically
right-handed about electromagnetism. It is only the self-consistency of
our rules and definitions that concerns us here. Let us note, however, that
a question of handedness could never arise in electrostatics. In this sense
the vector B differs in character from the vector E. In the same way,
a vector representing an angular velocity, in mechanics, differs from a
vector representing a linear velocity.

The SI units of B can be determined from Eq. (6.1). In a magnetic
field of unit strength, a charge of one coulomb moving with a velocity of
one meter/second perpendicular to the field experiences a force of one
newton. The unit of B so defined is called the tesla:

1 tesla = 1
newton

coulomb · meter/second
= 1

newton
amp · meter

. (6.5)

In terms of other units, 1 tesla equals 1 kg C−1 s−1. In SI units, the rela-
tion between field and current in Eq. (6.3) is commonly written as

B = ẑ
μ0I
2πr

(6.6)

1 We now know that the earth’s magnetic field has reversed many times in geologic
history. See Problem 7.19 and the reference there given.
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where B is in teslas, I is in amps, and r is in meters. The constant μ0,
like the constant ε0 we met in electrostatics, is a fundamental constant in
the SI unit system. Its value is defined to be exactly

μ0 ≡ 4π · 10−7 kg m
C2 (6.7)

Of course, if Eq. (6.6) is to agree with Eq. (6.3), we must have

μ0 = 1
ε0c2 �⇒ c2 = 1

μ0ε0
(6.8)

With ε0 given in Eq. (1.3), and c = 2.998 · 108 m/s, you can quickly
check that this relation does indeed hold.

REMARK: Given that we already found the B field due to a current-carrying
wire in Eq. (6.3), you might wonder what the point is of rewriting B in terms of
the newly introduced constant μ0 in Eq. (6.6). The answer is that μ0 is a prod-
uct of the historical development of magnetism, which should be contrasted with
the special-relativistic development we followed in Chapter 5. The connection
between electric and magnetic effects was certainly observed long before the for-
mulation of special relativity in 1905. In particular, as we learned in Section 5.1,
Oersted discovered in 1820 that a current-carrying wire produces a magnetic
field. And μ0 was eventually introduced as the constant of proportionality in
Eq. (6.6). (Or, more accurately, μ0 was assigned a given value, and then Eq. (6.6)
was used to define the unit of current.) But even with the observed connection
between electricity and magnetism, in the mid nineteenth century there was no
obvious relation between the μ0 in the expression for B and the ε0 in the expres-
sion for E. They were two separate constants in two separate theories. But two
developments changed this.

First, in 1861 Maxwell wrote down his set of equations that govern all
of electromagnetism. He then used these equations to show that electromag-
netic waves exist and travel with speed 1/

√
μ0ε0 ≈ 3 · 108 m/s. (We’ll study

Maxwell’s equations and electromagnetic waves in Chapter 9.) This strongly sug-
gested that light is an electromagnetic wave, a fact that was demonstrated exper-
imentally by Hertz in 1888. Therefore, c = 1/

√
μ0ε0, and hence μ0 = 1/ε0c2.

This line of reasoning shows that the speed of light c is determined by the two
constants ε0 and μ0.

The second development was Einstein’s formulation of the special theory
of relativity in 1905. Relativity was the basis of our reasoning in Chapter 5 (the
main ingredients of which were length contraction and the relativistic velocity-
addition formula), which led to the expression for the magnetic field in Eq. (6.3).
A comparison of this equation with the historical expression in Eq. (6.6) yields
μ0 = 1/ε0c2. This line of reasoning shows that μ0 is determined by the two
constants ε0 and c. Of course, having proceeded the way we did in Chapter 5,
there is no need to introduce the constant μ0 in Eq. (6.6) when we already have
Eq. (6.3). Nevertheless, the convention in SI units is to write B in the form given
in Eq. (6.6). If you wish, you can think of μ0 simply as a convenient shorthand
for the more cumbersome expression 1/ε0c2.

Comparing the previous two paragraphs, it is unclear which derivation of
μ0 = 1/ε0c2 is “better.” Is it preferable to take ε0 and μ0 as the fundamental
constants and then derive, with Maxwell’s help, the value of c, or to take ε0 and
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c as the fundamental constants and derive, with Einstein’s help, the value of μ0?
The former derivation has the advantage of explaining why c takes on the value
2.998 · 108 m/s, while the latter has the advantage of explaining how magnetic
forces arise from electric forces. In the end, it’s a matter of opinion, based on
what information you want to start with.

In Gaussian units, Eq. (6.1) takes the slightly different form

F = qE + q
c

v × B. (6.9)

Note that B now has the same dimensions as E, the factor v/c being
dimensionless. With force F in dynes and charge q in esu, the unit of
magnetic field strength is the dyne/esu. This unit has a name, the gauss.
There is no special name for the unit dyne/esu when it is used as a unit of
electric field strength. It is the same as 1 statvolt/cm, which is the term
normally used for unit electric field strength in the Gaussian system. In
Gaussian units, the equation analogous to Eq. (6.3) is

B = ẑ
2I
rc

. (6.10)

If you repeat the reasoning of Chapter 5, you will see that this B is
obtained basically by replacing ε0 by 1/4π and erasing one of the factors
of c in Eq. (6.3). B is in gauss if I is in esu/s, r is in cm, and c is in cm/s.

Example (Relation between 1 tesla and 1 gauss) Show that 1 tesla is
equivalent to exactly 104 gauss.

Solution Consider a setup where a charge of 1 C travels at 1 m/s in a direction
perpendicular to a magnetic field with strength 1 tesla. Equations (6.1) and (6.5)
tell us that the charge experiences a force of 1 newton. Let us express this fact in
terms of the Gaussian force relation in Eq. (6.9). We know that 1 N = 105 dyne
and 1 C = 3 · 109 esu (this “3” isn’t actually a 3; see the discussion below). If
we let 1 tesla = n gauss, with n to be determined, then the way that Eq. (6.9)
describes the given situation is as follows:

105 dyne = 3 · 109 esu
3 · 1010 cm/s

(
100

cm
s

)
(n gauss). (6.11)

Since 1 gauss equals 1 dyne/esu, all the units cancel, and we end up with n = 104,
as desired.

Now, the two 3’s in Eq. (6.11) are actually 2.998’s. This is clear in the
denominator because the 3 comes from the factor of c. To see why it is the case
in the numerator, recall the example in Section 1.4 where we showed that 1 C =
3 · 109 esu. If you redo that example and keep things in terms of the constant k
given in Eqs. (1.2) and (1.3), you will find that the number 3 · 109 is actually√

109k (ignoring the units of k). But in view of the definition of μ0 in Eq. (6.7),
the k = 1/4πε0 expression in Eq. (1.3) can be written as k = 1/(107μ0ε0). And
we know from above that 1/μ0ε0 = c2, hence k = 10−7c2 (ignoring the units).
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So the number 3 · 109 is really
√

109k =
√

102c2 = 10c (ignoring the units), or
2.998 · 109. Since both of the 3’s in Eq. (6.11) are modified in the same way, the
n = 104 result is therefore still exact.

I1

I2

B1r

Figure 6.3.
Current I1 produces magnetic field B1 at
conductor 2. The force on a length l of
conductor 2 is given by Eq. (6.15).

Let us use Eqs. (6.1) and (6.6) to calculate the magnetic force bet-
ween parallel wires carrying current. Let r be the distance between the
wires, and let I1 and I2 be the currents which we assume are flowing in
the same direction, as shown in Fig. 6.3. The wires are assumed to be
infinitely long – a fair assumption in a practical case if they are very long
compared with the distance r between them. We want to predict the force
that acts on some finite length l of one of the wires, due to the entirety of
the other wire. The current in wire 1 causes a magnetic field of strength

B1 = μ0I1

2πr
(6.12)

at the location of wire 2. Within wire 2 there are n2 moving charges per
meter length of wire, each with charge q2 and speed v2. They constitute
the current I2:

I2 = n2q2v2. (6.13)

According to Eq. (6.1), the force on each charge is q2v2B1.2 The
force on each meter length of wire is therefore n2q2v2B1, or simply I2B1.
The force on a length l of wire 2 is then

F = I2B1l (6.14)

Using the B1 from Eq. (6.12), this becomes

F = μ0I1I2l
2πr

(6.15)

Here F is in newtons, and I1 and I2 are in amps. As the factor l/r that
appears both in Eq. (6.15) and below in Eq. (6.16) is dimensionless, l and
r could be in any units.3

2 B1 is the field inside wire 2, caused by the current in wire 1. When we study magnetic
fields inside matter in Chapter 11, we will find that most conductors, including copper
and aluminum, but not including iron, have very little influence on a magnetic field.
For the present, let us agree to avoid things like iron and other ferromagnetic materials.
Then we can safely assume that the magnetic field inside the wire is practically what it
would be in vacuum with the same currents flowing.

3 Equation (6.15) has usually been regarded as the primary definition of the ampere in
the SI system, μ0 being assigned the value 4π · 10−7. That is to say, one ampere is the
current that, flowing in each of two infinitely long parallel wires a distance r apart, will
cause a force of exactly 2 · 10−7 newton on a length l = r of one of the wires. The
other SI electrical units are then defined in terms of the ampere. Thus a coulomb is one
ampere-second, a volt is one joule/coulomb, and an ohm is one volt/ampere.
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The same exercise carried out in Gaussian units, with Eqs. (6.9) and
(6.10), will lead to

F = 2I1I2l
c2r

. (6.16)

Equation (6.15) is symmetric in the labels 1 and 2, so the force on
an equal length of wire 1 caused by the field of wire 2 must be given by
the same formula. We have not bothered to keep track of signs because
we know already that currents in the same direction attract one another.

More generally, we can calculate the force on a small piece of current-
carrying wire that sits in a magnetic field B. Let the length of the small
piece be dl, the linear charge density of the moving charges be λ, and the
speed of these charges be v. Then the amount of moving charge in the piece
is dq = λ dl, and the current is I = λv (in agreement with Eq. (6.13) since
λ = nq). Equation (6.1) tells us that the magnetic force on the piece is

dF = dq v × B = (λ dl)(vv̂) × B = (λv)(dl v̂) × B

�⇒ dF = I dl × B (6.17)

The vector dl gives both the magnitude and direction of the small piece.
The F = I2B1l result in Eq. (6.14) is a special case of this result.

Example (Copper wire) Let’s apply Eqs. (6.13) and (6.15) to the pair of
wires in Fig. 6.4(a). They are copper wires 1 mm in diameter and 5 cm apart. In
copper the number of conduction electrons per cubic meter, already mentioned
in Chapter 4, is 8.45 · 1028, so the number of electrons per unit length of wire
is n = (π/4)(10−3 m)2(8.45 · 1028 m−3) = 6.6 · 1022 m−1. Suppose their mean
drift velocity v is 0.3 cm/s = 0.003 m/s. (Of course their random speeds are
vastly greater.) The current in each wire is then

I = nqv = (6.6 · 1022 m−1)(1.6 · 10−19 C)(0.003 m/s) ≈ 32 C/s.

The attractive force on a 20 cm length of wire is

F = μ0I2l
2πr

= (4π · 10−7 kg m/C2)(32 C/s)2(0.2 m)

2π(0.05 m)
≈ 8 · 10−4 N. (6.18)

This result of 8 · 10−4 N is not an enormous force, but it is easily measurable.
Figure 6.4(b) shows how the force on a given length of conductor could be
observed.

Recall that the μ0 in Eq. (6.18) can alternatively be written as 1/ε0c2.
The c2 in the denominator reminds us that, as we discovered in Chapter 5,
the magnetic force is a relativistic effect, strictly proportional to v2/c2

and traceable to a Lorentz contraction. And with the v in the above exam-
ple less than the speed of a healthy ant, it is causing a quite respectable
force! The explanation is the immense amount of negative charge the
conduction electrons represent, charge that ordinarily is so precisely neu-
tralized by positive charge that we hardly notice it. To appreciate that,
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Figure 6.4.
(a) The current in each copper wire is 32 amps,
and the force F on the 20 cm length of
conductor is 8 · 10−4 newtons. (b) One way to
measure the force on a length of conductor. The
section BCDE swings like a pendulum below the
conducting pivots. The force on the length CD
due to the field of the straight conductor GH is
the only force deflecting the pendulum from the
vertical.

consider the force with which our wires in Fig. 6.4 would repel one
another if the charge of the 6.6 · 1022 electrons per meter were not neu-
tralized at all. As an exercise you can show that the force is just c2/v2

times the force we calculated above, or roughly 4 × 1015 tons per meter
of wire. So full of electricity is all matter! If all the electrons in just one
raindrop were removed from the earth, the whole earth’s potential would
rise by several million volts.

Matter in bulk, from raindrops to planets, is almost exactly neutral.
You will find that any piece of it much larger than a molecule contains
nearly the same number of electrons as protons. If it didn’t, the resulting
electric field would be so strong that the excess charge would be irre-
sistibly blown away. That would happen to electrons in our copper wire
even if the excess of negative charge were no more than 10−10 of the
total. A magnetic field, on the other hand, cannot destroy itself in this
way. No matter how strong it may be, it exerts no force on a stationary
charge. That is why forces that arise from the motion of electric charges
can dominate the scene. The second term on the right in Eq. (6.1) can be
much larger than the first. Thanks to that second term, an electric motor
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can start your car. In the atomic domain, however, where the coulomb
force between pairs of charged particles comes into play, magnetic forces
do take second place relative to electrical forces. They are weaker, gener-
ally speaking, by just the factor we should expect, the square of the ratio
of the particle speed to the speed of light.

Inside atoms we find magnetic fields as large as 10 tesla (or 105

gauss). The strongest large-scale fields easily produced in the labora-
tory are on that order of magnitude too, although fields up to several
hundred tesla have been created for short times. In ordinary electrical
machinery, electric motors for instance, 1 tesla (or 104 gauss) would be
more typical.4 Magnetic resonance imaging (MRI) machines also oper-
ate on the order of 1 tesla. A magnet on your refrigerator might have a
field of around 10 gauss. The strength of the earth’s magnetic field is a
few tenths of a gauss at the earth’s surface, and presumably many times
stronger down in the earth’s metallic core where the currents that cause
the field are flowing. We see a spectacular display of magnetic fields on
and around the sun. A sunspot is an eruption of magnetic field with local
intensity of a few thousand gauss. Some other stars have stronger mag-
netic fields. Strongest of all is the magnetic field at the surface of a neu-
tron star, or pulsar, where in some cases the intensity is believed to reach
the hardly conceivable range of 1010 tesla. On a vaster scale, our galaxy
is pervaded by magnetic fields that extend over thousands of light years
of interstellar space. The field strength can be deduced from observations
in radioastronomy. It is a few microgauss – enough to make the magnetic
field a significant factor in the dynamics of the interstellar medium.

6.2 Some properties of the magnetic field
The magnetic field, like the electric field, is a device for describing how
charged particles interact with one another. If we say that the magnetic
field at the point (4.5, 3.2, 6.0) at 12:00 noon points horizontally in the
negative y direction and has a magnitude of 5 gauss, we are making a
statement about the acceleration a moving charged particle at that point
in space-time would exhibit. The remarkable thing is that a statement of
this form, giving simply a vector quantity B, says all there is to say. With
it one can predict uniquely the velocity-dependent part of the force on
any charged particle moving with any velocity. It makes unnecessary any
further description of the other charged particles that are the sources of

4 Nikola Tesla (1856–1943), the inventor and electrical engineer for whom the SI unit
was named, invented the alternating-current induction motor and other useful
electromagnetic devices. Gauss’s work in magnetism was concerned mainly with the
earth’s magnetic field. Perhaps this will help you to remember which is the larger unit.
For small magnetic fields, it is generally more convenient to work with gauss than with
tesla, even though the gauss technically isn’t part of the SI system of units. This
shouldn’t cause any confusion; you can quickly convert to tesla by dividing by
(exactly) 104. If you’re wary about leaving the familiar ground of SI units, feel free to
think of a gauss as a deci-milli-tesla.



6.2 Some properties of the magnetic field 287

the field. In other words, if two quite different systems of moving charges
happen to produce the same E and B at a particular point, the behavior
of any test particle at the point would be exactly the same in the two
systems. It is for this reason that the concept of field, as an intermediary
in the interaction of particles, is useful. And it is for this reason that we
think of the field as an independent entity.

B

I

Figure 6.5.
Magnetic field lines around a straight wire
carrying current.

Is the field more, or less, real than the particles whose interaction, as
seen from our present point of view, it was invented to describe? That is
a deep question which we would do well to set aside for the time being.
People to whom the electric and magnetic fields were vividly real – Fara-
day and Maxwell, to name two – were led thereby to new insights and
great discoveries. Let’s view the magnetic field as concretely as they did
and learn some of its properties.

So far we have studied only the magnetic field of a straight wire
or filament of steady current. The field direction, we found, is every-
where perpendicular to the plane containing the filament and the point
where the field is observed. The magnitude of the field is proportional
to 1/r. The field lines are circles surrounding the filament, as shown in
Fig. 6.5. The sense of direction of B is determined by our previously
adopted convention about the vector cross-product, by the (arbitrary)
decision to write the second term in Eq. (6.1) as qv × B, and by the
physical fact that a positive charge moving in the direction of a posi-
tive current is attracted to it rather than repelled. These are all consis-
tent if we relate the direction of B to the direction of the current that
is its source in the manner shown in Fig. 6.5. Looking in the direction
of positive current, we see the B lines curling clockwise. Or you may
prefer to remember it as a right-hand-thread relation. Point your right
thumb in the direction of the current and your fingers will curl in the
direction of B.

Let’s look at the line integral of B around a closed path in this field.
(Remember that a similar inquiry in the case of the electric field of a
point charge led us to a simple and fundamental property of all electro-
static fields, that

∫
E · ds = 0 around a closed path, or equivalently that

curl E = 0.) Consider first the path ABCD in Fig. 6.6(a). This lies in a
plane perpendicular to the wire; in fact, we need only work in this plane,
for B has no component parallel to the wire. The line integral of B around
the path shown is zero, for the following reason. Paths BC and DA are
perpendicular to B and contribute nothing. Along AB, B is stronger in the
ratio r2/r1 than it is along CD; but CD is longer than AB by the same fac-
tor, for these two arcs subtend the same angle at the wire. So the two arcs
give equal and opposite contributions, and the whole integral is zero.

It follows that the line integral is also zero on any path that can be
constructed out of radial segments and arcs, such as the path in
Fig. 6.6(b). From this it is a short step to conclude that the line inte-
gral is zero around any path that does not enclose the wire. To smooth
out the corners we would only need to show that the integral around a
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little triangular path vanishes. The same step was involved in the case of
the electric field.

A path that does not enclose the wire is one like the path in Fig. 6.6(c),
which, if it were made of string, could be pulled free. The line integral
around any such path is zero.(a) Path lying in plane

perpendicular to wire

D
C

A
Br1

r2

r

(d) Circular path
enclosing wire

C

(e) Crooked path
enclosing wire

C�

(f) Circular and
crooked path not
enclosing wire

(g) Loop of N turns
enclosing wire

(c) Path that does not
enclose the wire

(b) Path constructed of
radial segments and arcs

Now consider a circular path that encloses the wire, as in Fig. 6.6(d).
Here the circumference is 2πr, and the field is μ0I/2πr and everywhere
parallel to the path, so the value of the line integral around this par-
ticular path is (2πr)(μ0I/2πr), or μ0I. We now claim that any path
looping once around the wire must give the same value. Consider, for
instance, the crooked path C in Fig. 6.6(e). Let us construct the path C′
in Fig. 6.6(f) made of a path like C and a circular path, but not enclos-
ing the wire. The line integral around C′ must be zero, and therefore
the integral around C must be the negative of the integral around the
circle, which we have already evaluated as μ0I in magnitude. The sign
will depend in an obvious way on the sense of traversal of the path. Our
general conclusion is:

∫
B · ds = μ0 × (current enclosed by path) (Ampère’s law).

(6.19)

This is known as Ampère’s law. It is valid for steady currents. In the
Gaussian analog of this expression, the μ0 is replaced with 4π/c, which
quickly follows from a comparison of Eqs. (6.6) and (6.10).

Equation (6.19) holds when the path loops the current filament once.
Obviously a path that loops it N times, like the one in Fig. 6.6(g), will
just give N times as big a result for the line integral.

The magnetic field, as we have emphasized before, depends only
on the rate of charge transport, the number of units of charge passing
a given point in the circuit, per second. Figure 6.7 shows a circuit with
a current of 5 milliamperes. The average velocity of the charge carriers
ranges from 10−6 m/s in one part of the circuit to 0.8 times the speed of
light in another. The line integral of B over a closed path has the same
value around every part of this circuit, namely∫

B · ds = μ0I =
(

4π · 10−7 kg m
C2

)(
0.005

C
s

)
= 6.3 · 10−9 kg m

C s
.

(6.20)

You can check that these units are the same as tesla-meter, which they
must be, in view of the left-hand side of this equation.

Figure 6.6.
The line integral of the magnetic field B over any closed path depends
only on the current enclosed.
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Copper wire; conduction electrons
drifting to left with average

velocity ~10–4 cm/s

High-voltage electron beam
in vacuum; electron velocity

~2.4  × 1010 cm/s5 mA

–300 kV–350 kV

I

Pure water; negative ions moving
right at 3.5 cm/s; positive ions

moving left at 2 cm/s

Van de Graaff generator;
negative charge carried up,

positive charge down,
v ∼ 2000 cm/s

Figure 6.7.
The line integral of B has precisely the same
value around every part of this circuit, although
the velocity of the charge carriers is quite
different in different parts.

What we have proved for the case of a long straight filament of
current clearly holds, by superposition, for the field of any system of
straight filaments. In Fig. 6.8 several wires are carrying currents in dif-
ferent directions. If Eq. (6.19) holds for the magnetic field of one of these
wires, it must hold for the total field, which is the vector sum, at every
point, of the fields of the individual wires. That is a pretty complicated
field. Nevertheless, we can predict the value of the line integral of B
around the closed path in Fig. 6.8 merely by noting which currents the
path encircles, and in which sense.

Example (Magnetic field due to a thick wire) We know that the mag-
netic field outside an infinitesimally thin wire points in the tangential direction
and has magnitude B = μ0I/2πr. But what about a thick wire? Let the wire
have radius R and carry current I with uniform current density; the wire may
be viewed as the superposition of a large number of thin wires running parallel
to each other. Find the field both outside and inside the wire.

Solution Consider an Amperian loop (in the spirit of a Gaussian surface) that
takes the form of a circle with radius r around the wire. Due to the cylindri-
cal symmetry, B has the same magnitude at all points on this loop. Also, B is
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tangential; it has no radial component, due to the symmetric nature of the thin
wires being superposed. So the line integral

∫
B·ds equals B(2πr). Ampère’s law

then quickly gives B = μ0I/2πr. We see that, outside a thick wire, the wire can
be treated like a thin wire lying along the axis, as far as the magnetic field is con-
cerned. This is the same result that holds for the electric field of a charged wire.

Now consider a point inside the wire. Since area is proportional to r2, the
current contained within a radius r inside the wire is Ir = I(r2/R2). Ampère’s
law then gives the magnitude of the (tangential) field at radius r as

2πrB = μ0Ir �⇒ B = μ0(Ir2/R2)

2πr
= μ0Ir

2πR2 (r < R). (6.21)

I4

I1

I3
I5

I2

Figure 6.8.
A superposition of straight current filaments.
The line integral of B around the closed path, in
the direction indicated by the arrowhead, is
equal to μ0(−I4 + I5).

We have been dealing with long straight wires. However, we want
to understand the magnetic field of any sort of current distribution – for
example, that of a current flowing in a closed loop, a circular ring of cur-
rent, to take the simplest case. Perhaps we can derive this field too from
the fields of the individual moving charge carriers, properly transformed.
A ring of current could be a set of electrons moving at constant speed
around a circular path. But here that strategy fails us. The trouble is that
an electron moving on a circular path is an accelerated charge, whereas
the magnetic fields we have rigorously derived are those of charges mov-
ing with constant velocity. We shall therefore abandon our program of
derivation at this point and state the remarkably simple fact: these more
general fields obey exactly the same law, Eq. (6.19). The line integral of
B around a bent wire is equal to that around a long straight wire carrying
the same current. As this goes beyond anything we have so far deduced,
we must look on it here as a postulate confirmed by the experimental
tests of its implications.

You may find it unsettling that the validity of Ampère’s law applied
to an arbitrarily shaped wire simply has to be accepted, given that we
have derived everything up to this point. However, this distinction bet-
ween acceptance and derivation is illusory. As we will see in Chapter 9,
Ampère’s law is a special case of one of Maxwell’s equations. There-
fore, accepting Ampère’s law is equivalent to accepting one of Maxwell’s
equations. And considering that Maxwell’s equations govern all of elec-
tromagnetism (being consistent with countless experimental tests),
accepting them is certainly a reasonable thing to do. Likewise, all of
our derivations thus far in this book (in particular, the ones in Chapter 5)
can be traced back to Coulomb’s law, which is equivalent to Gauss’s
law, which in turn is equivalent to another one of Maxwell’s equations.
Therefore, accepting Coulomb’s law is equivalent to accepting this other
Maxwell equation. In short, everything boils down to Maxwell’s equa-
tions sooner or later. Coulomb’s law is no more fundamental than
Ampère’s law. We accepted the former long ago, so we shouldn’t be
unsettled about accepting the latter now.

To state Ampère’s law in the most general way, we must talk about
volume distributions of current. A general steady current distribution is



6.2 Some properties of the magnetic field 291

described by a current density J(x, y, z) that varies from place to place but
is constant in time. A current in a wire is merely a special case in which
J has a large value within the wire but is zero elsewhere. We discussed
volume distributions of current in Chapter 4, where we noted that, for
time-independent currents, J has to satisfy the continuity equation, or
conservation-of-charge condition,

div J = 0. (6.22)

Take any closed curve C in a region where currents are flowing. The
S

J

J

J J

J

J

J

C

Figure 6.9.
J is the local current density. The surface
integral of J over S is the current enclosed by the
curve C.

total current enclosed by C is the flux of J through the surface spanning
C, that is, the surface integral

∫
S J · da over this surface S (see Fig. 6.9).

A general statement of the relation in Eq. (6.19) is therefore∫
C

B · ds = μ0

∫
S

J · da. (6.23)

Let us compare this with Stokes’ theorem, which we developed in
Chapter 2: ∫

C
F · ds =

∫
S
(curl F) · da. (6.24)

We see that a statement equivalent to Eq. (6.23) is this:

curl B = μ0J (6.25)

This is the differential form of Ampère’s law, and it is the simplest and
most general statement of the relation between the magnetic field and
the moving charges that are its source. As with Eq. (6.19), the Gaussian
analog of this expression has the μ0 replaced by 4π/c. Note that the
form of J in Eq. (6.25) guarantees that Eq. (6.22) is satisfied, because
the divergence of the curl is always zero (see Exercise 2.78).

Example (Curl of B for a thick wire) For the above “thick wire” example,
verify that curl B = μ0J both inside and outside the wire.

Solution We can use the expression for the curl in cylindrical coordinates given
in Eq. (F.2) in Appendix F. The only nonzero derivative in the expression is
∂(rAθ )/∂r, so outside the wire we have

curl B = ẑ
1
r

∂(rBθ )

∂r
= ẑ

1
r

∂

∂r

(
r
μ0I
2πr

)
= 0, (6.26)

which is correct because there is zero current density outside the wire. For the
present purposes, the only relevant fact about the external field is that it is
proportional to 1/r.

Inside the wire we have

curl B = ẑ
1
r

∂(rBθ )

∂r
= ẑ

1
r

∂

∂r

(
r

μ0Ir
2πR2

)
= ẑμ0

I
πR2 = μ0(ẑJ) = μ0J,

(6.27)

as desired.
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Equation (6.25) by itself is not enough to determine B(x, y, z), given
J(x, y, z), because many different vector fields could have the same curl.
We need to complete it with another condition. We had better think about
the divergence of B. Going back to the magnetic field of a single straight
wire, we observe that the divergence of that field is zero. You can’t draw
a little box anywhere, even one enclosing the wire, that will have a net
outward or inward flux. It is enough to note that the boxes V1 and V2 in
Fig. 6.10 have no net flux and can shrink to zero without developing any.
(The 1/r dependence of B isn’t important here. All that matters is that B
points in the tangential direction and that its magnitude is independent of
θ .) For this field then, div B = 0, and hence also for all superpositions of
such fields. Again we postulate that the principle can be extended to the
field of any distribution of currents, so that a companion to Eq. (6.22) is
the condition

div B = 0 (6.28)

You can quickly check that this relation holds for the wire in the above
example, both inside and outside, by using the cylindrical-coordinate
expression for the divergence given in Eq. (F.2) in Appendix F; the only
nonzero component of B is Bθ , but ∂Bθ /∂θ = 0.

V1

V2

Figure 6.10.
There is zero net flux of B out of either box.

We are concerned with fields whose sources lie within some finite
region. We won’t consider sources that are infinitely remote and infinitely
strong. Under these conditions, B goes to zero at infinity. With this pro-
viso, we have the following theorem.

Theorem 6.1 Assuming that B vanishes at infinity, Eqs. (6.25) and
(6.28) together determine B uniquely if J is given.

Proof Suppose both equations are satisfied by two different fields B1
and B2. Then their difference, the vector field D = B1 − B2, is a field
with zero divergence and zero curl everywhere. What could it be like?
Having zero curl, it must be the gradient5 of some potential function
f (x, y, z), that is, D = ∇f . But ∇ · D = 0, too, so ∇ · ∇f or ∇2f = 0
everywhere. Over a sufficiently remote enclosing boundary, f must take
on some constant value f0, because B1 and B2 (and hence D) are essen-
tially zero very far away from the sources. Since f satisfies Laplace’s
equation everywhere inside that boundary, it cannot have a maximum or
a minimum anywhere in that region (see Section 2.12), and so it must
have the value f0 everywhere. Hence D = ∇f = 0, and B1 = B2.

The fact that a vector field is uniquely determined by its curl and
divergence (assuming that it goes to zero at infinity) is known as the

5 This follows from our work in Chapter 2. If curl D = 0, then the line integral of D
around any closed path is zero. This implies that we can uniquely define a potential
function f as the line integral of D from an arbitrary reference point. It then follows
that D is the gradient of f .
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Helmholtz theorem. We proved this theorem in the special case where
the divergence is zero.

In the case of the electrostatic field, the counterparts of Eqs. (6.25)
and (6.28) were

curl E = 0 and div E = ρ

ε0
(6.29)

In the case of the electric field, however, we could begin with Coulomb’s
law, which expressed directly the contribution of each charge to the elec-
tric field at any point. Here we shall have to work our way back to some
relation of that type.6 We shall do so by means of a potential function.

6.3 Vector potential
We found that the scalar potential function φ(x, y, z) gave us a simple
way to calculate the electrostatic field of a charge distribution. If there is
some charge distribution ρ(x, y, z), the potential at any point (x1, y1, z1)

is given by the volume integral

φ(x1, y1, z1) = 1
4πε0

∫
ρ(x2, y2, z2) dv2

r12
. (6.30)

The integration is extended over the whole charge distribution, and r12 is
the magnitude of the distance from (x2, y2, z2) to (x1, y1, z1). The electric
field E is obtained as the negative of the gradient of φ:

E = −grad φ. (6.31)

The same trick won’t work for the magnetic field, because of the
essentially different character of B. The curl of B is not necessarily zero,
so B can’t, in general, be the gradient of a scalar potential. However, we
know another kind of vector derivative, the curl. It turns out that we can
usefully represent B, not as the gradient of a scalar function, but as the
curl of a vector function, like this:

B = curl A (6.32)

By obvious analogy, we call A the vector potential. It is not obvi-
ous, at this point, why this tactic is helpful. That will have to emerge as
we proceed. It is encouraging that Eq. (6.28) is automatically satisfied,
since div curl A = 0, for any A. Or, to put it another way, the fact that
div B = 0 presents us with the opportunity to represent B as the curl of
another vector function.
6 The student may wonder why we couldn’t have started from some equivalent of

Coulomb’s law for the interaction of currents. The answer is that a piece of a current
filament, unlike an electric charge, is not an independent object that can be physically
isolated. You cannot perform an experiment to determine the field from part of a
circuit; if the rest of the circuit isn’t there, the current can’t be steady without violating
the continuity condition.



294 The magnetic field

Example (Vector potential for a wire) As an example of a vector poten-
tial, consider a long straight wire carrying a current I. In Fig. 6.11 we see the
current coming toward us out of the page, flowing along the positive z axis. Out-
side the wire, what is the vector potential A?

y

Current flowing
in z direction

B

^

r

x

q

q

Figure 6.11.
Some field lines around a current filament.
Current flows toward you (out of the plane of the
paper).

Solution We know what the magnetic field of the straight wire looks like.
The field lines are circles, as sketched already in Fig. 6.5. A few are shown in
Fig. 6.11. The magnitude of B is μ0I/2πr. Using a unit vector θ̂ in the tangential
direction, we can write the vector B as

B = μ0I
2πr

θ̂ . (6.33)

We want to find a vector field A whose curl equals this B. Equation (F.2) in
Appendix F gives the expression for the curl in cylindrical coordinates. In view
of Eq. (6.33), we are concerned only with the θ̂ component of the curl expression,
which is (∂Ar/∂z − ∂Az/∂r)θ̂ . Due to the symmetry along the z axis, we can’t
have any z dependence, so we are left with only the −(∂Az/∂r)θ̂ term. Equating
this with the B in Eq. (6.33) gives

∇ × A = B �⇒ −∂Az

∂r
= μ0I

2πr
�⇒ A = −ẑ

μ0I
2π

ln r. (6.34)

This last step can formally be performed by separating variables and integrating.
But there is no great need to do this, because we know that the integral of 1/r
is ln r. The task of Problem 6.4 is to use Cartesian coordinates to verify that the
above A has the correct curl. See also Problem 6.5.

Of course, the A in Eq. (6.34) is not the only function that could serve as
the vector potential for this particular B. To this A could be added any vector
function with zero curl. The above result holds for the space outside the wire.
Inside the wire, B is different, so A must be different also. It is not hard to find
the appropriate vector potential function for the interior of a solid round wire;
see Exercise 6.43.

Our job now is to discover a general method of calculating A, when
the current distribution J is given, so that Eq. (6.32) will indeed yield
the correct magnetic field. In view of Eq. (6.25), the relation between
J and A is

curl (curl A) = μ0J. (6.35)

Equation (6.35), being a vector equation, is really three equations.
We shall work out one of them, say the x-component equation. The x
component of curl B is ∂Bz/∂y − ∂By/∂z. The z and y components of B
are, respectively,

Bz = ∂Ay

∂x
− ∂Ax

∂y
, By = ∂Ax

∂z
− ∂Az

∂x
. (6.36)

Thus the x-component part of Eq. (6.35) reads

∂

∂y

(
∂Ay

∂x
− ∂Ax

∂y

)
− ∂

∂z

(
∂Ax

∂z
− ∂Az

∂x

)
= μ0Jx. (6.37)
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We assume our functions are such that the order of partial differentiation
can be interchanged. Taking advantage of that and rearranging a little,
we can write Eq. (6.37) in the following way:

−∂2Ax

∂y2 − ∂2Ax

∂z2 + ∂

∂x

(
∂Ay

∂y

)
+ ∂

∂x

(
∂Az

∂z

)
= μ0Jx. (6.38)

To make the thing more symmetrical, let’s add and subtract the same
term, ∂2Ax/∂x2, on the left:7

−∂2Ax

∂x2 − ∂2Ax

∂y2 − ∂2Ax

∂z2 + ∂

∂x

(
∂Ax

∂x
+ ∂Ay

∂y
+ ∂Az

∂z

)
= μ0Jx. (6.39)

We can now recognize the first three terms as the negative of the
Laplacian of Ax. The quantity in parentheses is the divergence of A. Now,
we have a certain latitude in the construction of A. All we care about is
its curl; its divergence can be anything we like. Let us require that

div A = 0. (6.40)

In other words, among the various functions that might satisfy our requi-
rement that curl A = B, let us consider as candidates only those that also
have zero divergence. To see why we are free to do this, suppose we had
an A such that curl A = B, but div A = f (x, y, z) �= 0. We claim that,
for any function f , we can always find a field F such that curl F = 0 and
div F = −f . If this claim is true, then we can replace A with the new
field A + F. This field has its curl still equal to the desired value of B,
while its divergence is now equal to the desired value of zero. And the
claim is indeed true, because if we treat −f like the charge density ρ

that generates an electrostatic field, we obviously can find a field F, the
analog of the electrostatic E, such that curl F = 0 and div F = −f ; the
prescription is given in Fig. 2.29(a), without the ε0.

With div A = 0, the quantity in parentheses in Eq. (6.39) drops
away, and we are left simply with

∂2Ax

∂x2 + ∂2Ax

∂y2 + ∂2Ax

∂z2 = −μ0Jx, (6.41)

where Jx is a known scalar function of x, y, z. Let us compare Eq. (6.41)
with Poisson’s equation, Eq. (2.73), which reads

∂2φ

∂x2 + ∂2φ

∂y2 + ∂2φ

∂z2 = − ρ

ε0
. (6.42)

The two equations are identical in form. We already know how to find a
solution to Eq. (6.42). The volume integral in Eq. (6.30) is the

7 This equation is the x component of the vector identity, ∇ × (∇ × A) = −∇2A+
∇(∇ · A). So in effect, what we’ve done here is prove this identity. Of course, we could
have just invoked this identity and applied it to Eq. (6.35), skipping all of the
intermediate steps. But it’s helpful to see the proof.
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prescription. Therefore a solution to Eq. (6.41) must be given by
Eq. (6.30), with ρ/ε0 replaced by μ0Jx:

Ax(x1, y1, z1) = μ0

4π

∫
Jx(x2, y2, z2) dv2

r12
. (6.43)

The other components must satisfy similar formulas. They can all be
combined neatly in one vector formula:

A(x1, y1, z1) = μ0

4π

∫
J(x2, y2, z2) dv2

r12
(6.44)

In more compact notation we have

A = μ0

4π

∫
J dv

r
or dA = μ0

4π

J dv
r

. (6.45)

There is only one snag. We stipulated that div A = 0, in order to
get Eq. (6.41). If the divergence of the A in Eq. (6.44) isn’t zero, then
although this A will satisfy Eq. (6.41), it won’t satisfy Eq. (6.39). That is,
it won’t satisfy Eq. (6.35). Fortunately, it turns out that the A in Eq. (6.44)
does indeed satisfy div A = 0, provided that the current is steady (that
is, ∇ · J = 0), which is the type of situation we are concerned with. You
can prove this in Problem 6.6. The proof isn’t important for what we will
be doing; we include it only for completeness.

Incidentally, the A for the example above could not have been
obtained by Eq. (6.44). The integral would diverge owing to the infinite
extent of the wire. This may remind you of the difficulty we encoun-
tered in Chapter 2 in setting up a scalar potential for the electric field
of a charged wire. Indeed the two problems are very closely related,
as we should expect from their identical geometry and the similarity
of Eqs. (6.44) and (6.30). We found in Eq. (2.22) that a suitable scalar
potential for the line charge problem is −(λ/2πε0) ln r + C, where C is
an arbitrary constant. This assigns zero potential to some arbitrary point
that is neither on the wire nor an infinite distance away. Both that scalar
potential and the vector potential of Eq. (6.34) are singular at the origin
and at infinity. However, see Problem 6.5 for a way to get around this
issue. For an interesting discussion of the vector potential, including its
interpretation as “electromagnetic momentum,” see Semon and Taylor
(1996).

6.4 Field of any current-carrying wire
Figure 6.12 shows a loop of wire carrying current I. The vector potential
A at the point (x1, y1, z1) is given according to Eq. (6.44) by the integral
over the loop. For current confined to a thin wire we may take as the
volume element dv2 a short section of the wire of length dl. The current
density J is I/a, where a is the cross-sectional area and dv2 = a dl.
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(x1, y1, z1)
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I

r12
r12

J

d

Figure 6.12.
Each element of the current loop contributes to
the vector potential A at the point (x1, y1, z1).

Hence J dv2 = I dl, and if we make the vector dl point in the direction of
positive current, we can simply replace J dv2 by I dl. Thus for a thin wire
or filament, we can write Eq. (6.44) as a line integral over the circuit:

A = μ0I
4π

∫
dl
r12

. (6.46)

To calculate A everywhere and then find B by taking the curl of A
might be a long job. It will be more useful to isolate one contribution
to the line integral for A, the contribution from the segment of wire at
the origin, where the current happens to be flowing in the x direction
(Fig. 6.13). We shall denote the length of this segment by dl. Let dA be
the contribution of this part of the integral to A. Then at the general point
(x, y, z), the vector dA, which points in the positive x direction, is

dA = x̂
μ0I
4π

dl√
x2 + y2 + z2

. (6.47)

Let us denote the corresponding part of B by dB. If we consider now a

dBr

x

d

y

z

dA

(x, y, 0)

f

Figure 6.13.
If we find dA, the contribution to A of the
particular element shown, its contribution to B
can be calculated using B = curl A.

point (x, y, 0) in the xy plane, then, when taking the curl of dA to obtain
dB, we find that only one term among the various derivatives survives:

dB = curl (dA) = ẑ
(
−∂Ax

∂y

)

= ẑ
μ0I
4π

y dl
(x2 + y2)3/2 = ẑ

μ0I
4π

sin φ dl
r2 , (6.48)

where φ is indicated in Fig. 6.13. You should convince yourself why the
symmetry of the dA in Eq. (6.47) with respect to the xy plane implies
that curl (dA) must be perpendicular to the xy plane.

With this result we can free ourselves at once from a particular coor-
dinate system. Obviously all that matters is the relative orientation of the



298 The magnetic field

element dl and the radius vector r from that element to the point where
the field B is to be found. The contribution to B from any short segment
of wire dl can be taken to be a vector perpendicular to the plane contain-
ing dl and r, of magnitude (μ0I/4π) sin φ dl/r2, where φ is the angle
between dl and r. This can be written compactly using the cross-product
and is illustrated in Fig. 6.14. In terms of either r̂ or r, we have

dB = μ0I
4π

dl × r̂
r2 or dB = μ0I

4π

dl × r
r3 (Biot–Savart law).

(6.49)

d B

d B =

r

r 2
 dl × rm0 I

4π

dl

f

Figure 6.14.
The Biot–Savart law. The field of any circuit can
be calculated by using this relation for the
contribution of each circuit element.

If you are familiar with the rules of the vector calculus, you can take
a shortcut from Eq. (6.46) to Eq. (6.49) without making reference to a
coordinate system. Writing dB = ∇ × dA, with dA = (μ0I/4π) dl/r,
we can use the vector identity ∇ × (f F) = f∇ × F +∇f × F to obtain

dB = ∇ × μ0I
4π

dl
r
= μ0I

4π

(
1
r
∇ × dl + ∇

(
1
r

)
× dl

)
. (6.50)

But dl is a constant, so the first term on the right-hand side is zero. And
recall that ∇(1/r) = −r̂/r2 (as in going from the Coulomb potential to
the Coulomb field). Thus

dB = μ0I
4π

(
− r̂

r2

)
× dl = μ0I

4π

dl × r̂
r2 . (6.51)

Historically, Eq. (6.49) is known as the Biot–Savart law. The mean-
ing of Eq. (6.49) is that, if B is computed by integrating over the com-
plete circuit, taking the contribution from each element to be given by
this formula, the resulting B will be correct. As we remarked in Footnote
6, the contribution of part of a circuit is not physically identifiable. In
fact, Eq. (6.49) is not the only formula that could be used to get a correct
result for B – to it could be added any function that would give zero when
integrated around a closed path.

The Biot–Savart law is valid for steady currents (or for sufficiently
slowly changing currents).8 There is no restriction on the speed of the
charges that make up the steady current, provided that they are essentially
continuously distributed. The speeds can be relativistic, and the Biot–
Savart law still works fine. If the current isn’t steady (and is changing
rapidly enough) then, although the Biot–Savart law isn’t valid, a some-
what similar law that involves the so-called “retarded time” is valid. We
won’t get into that here, but see Problem 6.28 if you want to get a sense
of what the retarded time is all about.

8 There are actually a few other conditions under which the law is valid, but we won’t
worry about those here. See Griffiths and Heald (1991) for everything you might want
to know about the conditions under which the various laws of electricity and
magnetism are valid.
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We seem to have discarded the vector potential as soon as it per-
formed one essential service for us. Indeed, it is often easier, as a prac-
tical matter, to calculate the field of a current system directly, now that
we have Eq. (6.49), than to find the vector potential first.9 We shall prac-
tice on some examples in Section 6.5. However, the vector potential is
important for deeper reasons. For one thing, it has revealed to us a strik-
ing parallel between the relation of the electrostatic field E to its sources
(static electric charges) and the relation of the magnetostatic field B to
its sources (steady electric currents; that’s what magnetostatic means).
Its greatest usefulness becomes evident in more advanced topics, such as
electromagnetic radiation and other time-varying fields.

(b)

dB

y

x

r

z

(a)

b

q

I

I

dq

Figure 6.15.
The magnetic field of a ring of current.
(a) Calculation of the field on the axis. (b) Some
field lines.

6.5 Fields of rings and coils
We will now do two examples where we use Eq. (6.49) to calculate a
magnetic field. The second example will build on the result of the first.

Example (Circular ring) A current filament in the form of a circular ring of
radius b is shown in Fig. 6.15(a). We could predict without any calculation that
the magnetic field of this source must look something like Fig. 6.15(b), where
we have sketched some field lines in a plane through the axis of symmetry. The
field as a whole must be rotationally symmetrical about this axis, the z axis in
Fig. 6.15(a), and the field lines themselves (ignoring their direction) must be
symmetrical with respect to the plane of the loop, the xy plane. Very close to the
filament the field will resemble that near a long straight wire, since the distant
parts of the ring are there relatively unimportant.

It is easy to calculate the field on the axis, using Eq. (6.49). Each element of
the ring of length dl contributes a dB perpendicular to r. We need only include
the z component of dB, for we know the total field on the axis must point in the
z direction. This brings in a factor of cos θ , so we obtain

dBz = μ0I
4π

dl
r2 cos θ = μ0I

4π

dl
r2

b
r

. (6.52)

Integrating over the whole ring, we have simply
∫

dl = 2πb, so the field on the
axis at any point z is

Bz = μ0I
4π

2πb2

r3 = μ0Ib2

2(b2 + z2)3/2 (field on axis). (6.53)

At the center of the ring, z = 0, the magnitude of the field is

Bz = μ0I
2b

(field at center). (6.54)

Note that the field points in the same direction (upward) everywhere along the
z axis.

9 The main reason for this is that if we want to use A to calculate B at a given point, we
need to know what A is at nearby points too. That is, we need to know A as a function
of the coordinates so that we can calculate the derivatives in the curl. On the other
hand, if we calculate B via Eq. (6.49), we simply need to find B at the one given point.
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Example (Solenoid) The cylindrical coil of wire shown in Fig. 6.16(a) is
usually called a solenoid. We assume the wire is closely and evenly spaced so
that the number of turns in the winding, per meter length along the cylinder, is a
constant, n. Now, the current path is actually helical, but if the turns are many and
closely spaced, we can ignore this and regard the whole solenoid as equivalent
to a stack of current rings. Then we can use Eq. (6.53) as a basis for calculating
the field at any point, such as the point z, on the axis of the coil.

I

I

(a)

(b)

b

r dq
r

z

dq

q2

q1

q

sinq

n turns/m

L

Figure 6.16.
(a) Solenoid. (b) Calculation of the field on the
axis of a solenoid.

Consider the contribution from the current rings included between radii
from the point z that make angles θ and θ + dθ with the axis. The length of this
segment of the solenoid, indicated in Fig. 6.16(b), is r dθ/ sin θ (because r dθ is
the tilted angular span of the segment, and the factor of 1/ sin θ gives the vertical
span). It is therefore equivalent to a ring carrying a current dI = In(r dθ/ sin θ).
Since r = b/ sin θ , Eq. (6.53) gives, for the contribution of this ring to the axial
field:

dBz = (dI)
μ0b2

2r3 =
(

nIr dθ

sin θ

)
μ0b2

2r3 = μ0nI
2

sin θ dθ . (6.55)

Carrying out the integration between the limits θ1 and θ2, gives

Bz = μ0nI
2

∫ θ2

θ1

sin θ dθ = μ0nI
2

(cos θ1 − cos θ2). (6.56)

We have used Eq. (6.56) to make a graph, in Fig. 6.17, of the field strength on
the axis of a coil, the length of which is four times its diameter. The ordinate is
the field strength Bz relative to the field strength in a coil of infinite length with
the same number of turns per meter and the same currents in each turn. For the
infinite coil, θ1 = 0 and θ2 = π , so

Bz = μ0nI (infinitely long solenoid). (6.57)

At the center of the “four-to-one” coil the field is very nearly as large as this, and
it stays pretty nearly constant until we approach one of the ends. Equation (6.57)
actually holds for all points inside an infinite solenoid, not just for points on the
axis; see Problem 6.19.

Figure 6.18 shows the magnetic field lines in and around a coil of these
proportions. Note that some field lines actually penetrate the winding. The cylin-
drical sheath of current is a surface of discontinuity for the magnetic field. Of
course, if we were to examine the field very closely in the neighborhood of the
wires, we would not find any infinitely abrupt kinks, but we would find a very
complicated, ripply pattern around and through the individual wires.

It is quite possible to make a long solenoid with a single turn of a
thin ribbonlike conductor, as in Fig. 6.19. To this, our calculation and the
diagram in Fig. 6.18 apply exactly, the quantity nI being merely replaced
by the current per meter flowing in the sheet. Now the change in direction
of a field line that penetrates the wall occurs entirely within the thickness
of the sheet, as suggested in the inset in Fig. 6.19.

In calculating the field of the solenoid in Fig. 6.16, we treated it
as a stack of rings, ignoring the longitudinal current that must exist in
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Bz, relative to field of coil
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Figure 6.17.
Field strength Bz on the axis, for the solenoid
shown in Fig. 6.18.

Figure 6.18.
Field lines in and around a solenoid.

any coil in which the current enters at one end and leaves at the other.
Let us see how the field is modified if that is taken into account. The
helical coil in Fig. 6.20(c) is equivalent, so far as the field external to the
solenoid is concerned, to the superposition of the stack of current rings
in Fig. 6.20(a) and a single axial conductor in Fig. 6.20(b). Adding the
field of the latter, B′, to the field B of the former, we get the external field
of the coil. It has a helical twist. Some field lines have been sketched in
Fig. 6.20(c). As for the field inside the solenoid, the longitudinal current
I flows, in effect, on the cylinder itself. Such a current distribution, a
uniform hollow tube of current, produces zero field inside the cylinder
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Figure 6.19.
A solenoid formed by a single cylindrical
conducting sheet. Inset shows how the field
lines change direction inside the
current-carrying conductor.
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Figure 6.20.
The helical coil (c) is equivalent to a stack of
circular rings, each carrying current I and shown
in (a), plus a current I parallel to the axis of the
coil as shown in (b). A path around the coil
encloses the current I, the field of which, B′,
must be added to the field B of the rings to form
the external field of the helical coil.

(due to Eq. (6.19) and the fact that a circular path inside the tube encloses
no current), leaving unmodified the interior field we calculated before. If
you follow a looping field line from inside to outside to inside again,
you will discover that it does not close on itself. Field lines generally
don’t. You might find it interesting to figure out how this picture would
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be changed if the wire that leads the current I away from the coil were
brought down along the axis of the coil to emerge at the bottom.

6.6 Change in B at a current sheet
In the setup of Fig. 6.19 we had a solenoid constructed from a single
curved sheet of current. Let’s look at something even simpler, a flat,
unbounded current sheet. You may think of this as a sheet of copper
of uniform thickness in which a current flows with constant density and
direction everywhere within the metal. In order to refer to directions, let
us locate the sheet in the xz plane and let the current flow in the x direc-
tion. As the sheet is supposed to be of infinite extent with no edges, it
is hard to draw a picture of it! We show a broken-out fragment of the
sheet in Fig. 6.21, in order to have something to draw; you must imagine
the rest of it extending over the whole plane. The thickness of the sheet
will not be very important, finally, but we may suppose that it has some
definite thickness d.

If the current density inside the metal is J in C s−1 m−2, then every
length l of height, in the z direction, includes a ribbon of current amount-
ing to J(ld) in C/s. We call Jd the surface current density or sheet current
density and use the symbol J to distinguish it from the volume current
density J. The units10 of J are amps/meter; multiplying J by the length
l of a line segment (perpendicular to the current flow) on the surface
gives the current crossing that segment. If we are not concerned with
what goes on inside the sheet itself, J is a useful quantity. It is J that
determines the change in the magnetic field from one side of the sheet to
the other, as we shall see.

Bz
(–)

y

x

z

d

Bz
(+)

3

4 1

2 I = 

Figure 6.21.
At a sheet of surface current there must be a
change in the parallel component of B from one
side to the other.

The field in Fig. 6.21 is not merely that due to the sheet alone. Some
other field in the z direction is present, from another source. The total
field, including the effect of the current sheet, is represented by the B
vectors drawn in front of and behind the sheet.

Consider the line integral of B around the rectangle 12341 in
Fig. 6.21. One of the long sides is in front of the surface, the other behind
it, with the short sides piercing the sheet. Let B+

z denote the z com-
ponent of the magnetic field immediately in front of the sheet, B−

z the
z component of the field immediately behind the sheet. We mean here
the field of all sources that may be around, including the sheet itself.
The line integral of B around the long rectangle is simply l(B+

z − B−
z ).

(Even if there were some other source that caused a field component
parallel to the short legs of the rectangle, these legs themselves can be
kept much shorter than the long sides, since we assume the sheet is

10 The terms “surface” current density and “volume” current density indicate the
dimension of the space in which the current flows. Since the units of J and J are A/m
and A/m2, respectively, we are using these terms in a different sense than we use them
when talking about surface and volume charge densities, which have dimensions C/m2

and C/m3. For example, to obtain a current from a volume current density, we multiply
it by an area.
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thin, in any case, compared with the scale of any field variation.) The
current enclosed by the rectangle is just J l. Hence Eq. (6.19) yields
l(B+

z − B−
z ) = μ0J l, or

B+
z − B−

z = μ0J . (6.58)

A current sheet of density J gives rise to a jump in the component of B
that is parallel to the surface and perpendicular to J . This may remind
you of the change in electric field at a sheet of charge. There, the per-
pendicular component of E is discontinuous, the magnitude of the jump
depending on the density of surface charge.Current sheet

(a)

z

y

(b)

(c)

Figure 6.22.
Some possible forms of the total magnetic field
near a current sheet. Current flows in the x
direction (out of the page). (a) The field of the
sheet alone. (b) Superposed on a uniform field
in the z direction (this is like the situation in
Fig. 6.21). (c) Superposed on a uniform field in
another direction. In every case the component
Bz changes by μ0J , on passing through the
sheet, with no change in By.

If the sheet is the only current source we have, then of course the
field is symmetrical about the sheet; B+

z is μ0J /2, and B−
z is −μ0J /2.

This is shown in Fig. 6.22(a). Some other situations, in which the effect
of the current sheet is superposed on a field already present from another
source, are shown in Fig. 6.22(b) and (c). Suppose there are two sheets
carrying equal and opposite surface currents, as shown in cross section
in Fig. 6.23, with no other sources around. The direction of current flow
is perpendicular to the plane of the paper, out on the left and in on the
right. The field between the sheets is μ0J , and there is no field at all out-
side. Something like this is found when current is carried by two parallel
ribbons or slabs, close together compared with their width, as sketched
in Fig. 6.24. Often bus bars for distributing heavy currents in power sta-
tions are of this form.

Example (Field from a cylinder of current) A cylindrical shell has radius
R and carries uniformly distributed current I parallel to its axis. Find the magnetic
field outside the shell, an infinitesimal distance away from it. Do this in the
following way.

(a) Slice the shell into infinitely long “rods” parallel to the axis, and then inte-
grate the field contributions from all the rods. You should obtain B =
μ0I/4πR. However, this is not the correct field, because we know from
Ampère’s law that the field outside a wire (or a cylinder) takes the form of
μ0I/2πr. And r = R here.

(b) What is wrong with the above reasoning? Explain how to modify it to obtain
the correct result of μ0I/2πR. Hint: You could have very well performed
the above integral in an effort to obtain the magnetic field an infinitesimal
distance inside the cylinder, where we know the field is zero.

Solution

(a) A cross section of the cylinder is shown in Fig. 6.25. A small piece of the
circumference of the circle represents a rod pointing into and out of the
page. Let the rods be parameterized by the angle θ relative to the point P
at which we are calculating the field. If a rod subtends an angle dθ , then it
contains a fraction dθ/2π of the total current I. So the current in the rod is
I(dθ/2π). The rod is a distance 2R sin(θ/2) from P, which is infinitesimally
close to the top of the cylinder.
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If the current heads into the page, then the field due to the rod shown is
directed up and to the right at P. Only the horizontal (tangential) component
of this field survives, because the vertical component cancels with that from
the corresponding rod on the left side of the cylinder. This brings in a factor
of sin(θ/2), as you can verify. Using the fact that the field from a straight
rod takes the form of μ0I/2πr, we find that the field at point P is directed
to the right and has magnitude (apparently) equal to

B = 2
∫ π

0

μ0(I dθ/2π)

2π
(
2R sin(θ/2)

) sin(θ/2) = μ0I
4π2R

∫ π

0
dθ = μ0I

4πR
. (6.59)
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Figure 6.23.
The magnetic field between plane-parallel
current sheets.

(b) (You should try to solve this on your own before reading further. You may
want to take a look at Exercise 1.67.) As noted in the statement of the prob-
lem, it is no surprise that the above result is incorrect, because the same
calculation would supposedly yield the field just inside the cylinder too.
But we know that the field there is zero. The calculation does, however,
yield the next best thing, namely the average of the correct fields inside and
outside (zero and μ0I/2πR). We’ll see why shortly.

Figure 6.24.
The magnetic field of a pair of copper bus bars,
shown in cross section, carrying current in
opposite directions.

The reason why the calculation is invalid is that it doesn’t correctly
describe the field due to rods on the cylinder very close to the given point
P, that is, for rods characterized by θ ≈ 0. It is incorrect for two reasons.
The closeup view in Fig. 6.26 (with an exaggerated distance from P to the
cylinder, for clarity) shows that the distance from a rod to P is not equal
to 2R sin(θ/2). Additionally, it shows that the field at P does not point per-
pendicular to the line from the rod to the top of the cylinder. It points more
horizontally, so the extra factor of sin(θ/2) in Eq. (6.59) is not correct.

What is true is that if we remove a thin strip from the top of the cylinder
(so we now have a gap in the circle representing the cross-sectional view),
then the above integral is valid for the remaining part of the cylinder. The
strip contributes negligibly to the integral in Eq. (6.59) (assuming it sub-
tends a very small angle), so we can say that the field due to the remaining
part of the cylinder is equal to the above result of μ0I/4πR. By superposi-
tion, the total field due to the entire cylinder is this field of μ0I/4πR plus
the field due to the thin strip. But if the point in question is infinitesimally
close to the cylinder, then the thin strip looks like an infinite sheet of cur-
rent, the field of which we know is μ0J /2 = μ0(I/2πR)/2 = μ0I/4πR.
The desired total field is then

Boutside = Bcylinder minus strip + Bstrip = μ0I
4πR

+ μ0I
4πR

= μ0I
2πR

. (6.60)

The relative sign here is indeed a plus sign, because right above the strip,
the strip’s field points to the right, which is the same as the direction of
the field due to the rest of the cylinder. By superposition we also obtain the
correct field just inside the cylinder:

Binside = Bcylinder minus strip − Bstrip = μ0I
4πR

− μ0I
4πR

= 0. (6.61)

The relative minus sign comes from the fact that right below the strip, the
strip’s field points to the left. For an alternative way of solving this problem,
see Bose and Scott (1985).
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The change in B from one side of a sheet to the other takes place
within the sheet, as we already remarked in connection with Fig. 6.19.
For the same J , the thinner the sheet, the more abrupt the transition. We
looked at a situation very much like this in Chapter 1 when we examined
the discontinuity in the perpendicular component of E that occurs at a
sheet of surface charge. It was instructive then to ask about the force on
the surface charge, and we shall ask a similar question here.

q/2

q/2

dq

R

P
Rod (into and
out of page)

Figure 6.25.
Calculating the magnetic field just outside a
current-carrying cylinder.
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Incorrect
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Incorrect 
distance

Figure 6.26.
For “rods” near the top of the cylinder, the
nonzero height of P above the cylinder cannot
be ignored.

Consider a square portion of the sheet, a length � on a side (a rect-
angle would work fine too). The current included is equal to J �, the
length of current path is �, and the average field that acts on this cur-
rent is (B+

z + B−
z )/2. The force on a length � of current-carrying wire

equals IB� (see Eq. (6.14)), so the force on this portion of the current
distribution is

force on �2 of sheet = IBavg� = (J �)

(
B+

z + B−
z

2

)
�. (6.62)

In view of Eq. (6.58), we can substitute (B+
z −B−

z )/μ0 for J , so that the
force per unit area can be expressed in this way:

force per unit area =
(

B+
z − B−

z

μ0

)(
B+

z + B−
z

2

)

= 1
2μ0

[
(B+

z )2 − (B−
z )2]. (6.63)

The force is perpendicular to the surface and proportional to the
area, like the stress caused by hydrostatic pressure. To make sure of the
sign, we can figure out the direction of the force in a particular case, such
as that in Fig. 6.23. The force is outward on each conductor. It is as if the
high-field region were the region of high pressure. The repulsion of any
two conductors carrying current in opposite directions, as in Fig. 6.24,
can be seen as an example of that.

We have been considering an infinite flat sheet, but things are much
the same in the immediate neighborhood of any surface where there is
a change in B. Wherever the component of B parallel to the surface
changes from B1 to B2, from one side of the surface to the other, we
may conclude not only that there is a sheet of current flowing in the
surface, but also that the surface must be under a perpendicular stress
of (B2

1 − B2
2)/2μ0, measured in N/m2. This is one of the controlling

principles in magnetohydrodynamics, the study of electrically conduct-
ing fluids, a subject of interest both to electrical engineers and to astro-
physicists.

6.7 How the fields transform
A sheet of surface charge, if it is moving parallel to itself, constitutes a
surface current. If we have a uniform charge density of σ on the surface,
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with the surface itself sliding along at speed v, the surface current density
is just J = σv. This is true because the area that slides past a transverse
line with length � during time dt is (v dt)�, which yields a current of
σ(v dt �)/dt = (σv)�. And since the current is also J � by definition,
we have J = σv. This simple idea of a sliding surface will help us to
see how the electric and magnetic field quantities must change when we
transform from one inertial frame of reference to another. We will deal
first with the transverse fields, and then with the longitudinal fields.

s �
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Figure 6.27.
(a) As observed in frame F, the surface charge
density is σ and the surface current density is
σv0. (b) Frame F′ moves in the x direction with
speed v as seen from F. In F′ the surface
charge density is σ ′ and the current
density is σ ′v′0.

Let’s imagine two plane sheets of surface charge, parallel to the xz
plane and moving with speed v0 as in Fig. 6.27. Again, we show frag-
ments of surfaces only in the sketch; the surfaces are really infinite in
extent. In the inertial frame F with coordinates x, y, and z, where the
sheets move with speed v0, the density of surface charge is σ on one
sheet and −σ on the other. Here σ means the amount of charge within
unit area when area is measured by observers stationary in F. (It is not
the density of charge in the rest frame of the charges themselves, which
would be smaller by 1/γ0.) In the frame F the uniform electric field E
points in the positive y direction, and Gauss’s law assures us, as usual,
that its strength is

Ey = σ

ε0
. (6.64)

In this frame F the sheets are both moving in the positive x direction
with speed v0, so that we have a pair of current sheets. The density of
surface current is Jx = σv0 in one sheet, the negative of that in the
other. As in the arrangement in Fig. 6.23, the field between two such
current sheets is

Bz = μ0Jx = μ0σv0. (6.65)

The inertial frame F′ is one that moves, as seen from F, with a speed
v in the positive x direction. What fields will an observer in F′ measure?
To answer this we need only find out what the sources look like in F′.

In F′ the x′ velocity of the charge-bearing sheets is v′0, given by the
velocity addition formula

v′0 = v0 − v
1 − v0v/c2 = c

β0 − β

1 − β0β
. (6.66)

There is a different Lorentz contraction of the charge density in this
frame, exactly as in our earlier example of the moving line charge in
Section 5.9. We can repeat the argument we used then: the density in the
rest frame of the charges themselves is σ(1 − v2

0/c2)1/2, or σ/γ0, and
therefore the density of surface charge in the frame F′ is

σ ′ = σ
γ ′

0
γ0

. (6.67)
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As usual, γ ′
0 stands for (1− v′20 /c2)−1/2. Using Eq. (6.66), you can show

that γ ′
0 = γ0γ (1 − β0β). Hence,

σ ′ = σγ (1 − β0β). (6.68)

The surface current density in the frame F′ is (charge density)× (charge
velocity):

J ′ = σ ′v′0 = σγ (1 − β0β) · c
β0 − β

1 − β0β
= σγ (v0 − v). (6.69)

We now know how the sources appear in frame F′, so we know what
the fields in that frame must be. In saying this, we are again invoking the
postulate of relativity. The laws of physics must be the same in all iner-
tial frames, and that includes the formulas connecting electric field with
surface charge density, and magnetic field with surface current density.
It follows then that

E′
y =

σ ′

ε0
= γ

[
σ

ε0
− σ

ε0

(v0

c

) (v
c

)]
= γ

[
σ

ε0
− v

μ0ε0c2 · μ0σv0

]
,

B′
z = μ0J ′ = γ

[
μ0σv0 − μ0σv

] = γ

[
μ0σv0 − μ0ε0v · σ

ε0

]
. (6.70)

(These expressions might look a bit scary, but don’t worry, they’ll sim-
plify!) We have chosen to write E′

y and B′
z in this way because if we look

back at the values of Ey and Bz in Eqs. (6.64) and (6.65), we see that our
result can be written as follows:

E′
y = γ

(
Ey − v

μ0ε0c2 · Bz

)
,

B′
z = γ

(
Bz − μ0ε0v · Ey

)
. (6.71)

We can further simplify these expressions by using the relation 1/μ0ε0 =
c2 from Eq. (6.8). We finally obtain

E′
y = γ

(
Ey − vBz

)
,

B′
z = γ

(
Bz − v

c2 Ey

)
, (6.72)

or equivalently

E′
y = γ

(
Ey − β(cBz)

)
,

cB′
z = γ

(
(cBz) − βEy

)
. (6.73)

You will note that these are exactly the same Lorentz transformations
that apply to x and t (see Eq. (G.2) in Appendix G). They are symmetric
in Ey and cBz.
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If the sandwich of current sheets had been oriented parallel to the
xy plane instead of the xz plane, we would have obtained relations con-
necting E′

z with Ez and By, and connecting B′
y with By and Ez. Of course,

they would have the same form as the relations above, but if you trace
the directions through, you will find that there are differences in sign,
following from the rules for the direction of B.

Now we must learn how the field components in the direction of
motion change. We discovered in Section 5.5 that a longitudinal compo-
nent of E has the same magnitude in the two frames. That this is true
also of a longitudinal component of B can be seen as follows. Suppose
a longitudinal component of B, a Bx component in the arrangement in
Fig. 6.27, is produced by a solenoid around the x axis in frame F (at rest
in F). The field strength inside a solenoid, as we know from Eq. (6.57),
depends only on the current in the wire, I, which is charge per sec-
ond, and n, the number of turns of wire per meter of axial length. In
the frame F′ the solenoid will be Lorentz-contracted, so the number of
turns per meter in that frame will be greater. But the current, as reckoned
by observers in F′, will be reduced, since, from their point of view, the
F observers who measured the current by counting the number of elec-
trons passing a point on the wire, per second, were using a slow-running
watch. The time dilation just cancels the length contraction in the prod-
uct nI. Indeed any quantity of the dimensions (longitudinal length)−1 ×
(time)−1 is unchanged in a Lorentz transformation. So B′

x = Bx.
Remember the point made early in Chapter 5, in the discussion fol-

lowing Eq. (5.6): the transformation properties of the field are local prop-
erties. The values of E and B at some space-time point in one frame must
uniquely determine the field components observed in any other frame
at that same space-time point. Therefore the fact that we have used an
especially simple kind of source (the parallel uniformly charged sheets,
or the solenoid) in our derivation in no way compromises the generality
of our result. We have in fact arrived at the general laws for the transfor-
mation of all components of the electric and magnetic field, of whatever
origin or configuration.

We give below the full list of transformations. All primed quantities
are measured in the frame F′, which is moving in the positive x direction
with speed v as seen from F. Unprimed quantities are the numbers that
are the results of measurement in F. As usual, β stands for v/c and γ for
(1 − β2)−1/2.

E′
x = Ex E′

y = γ (Ey − vBz) E′
z = γ (Ez + vBy)

B′
x = Bx B′

y = γ
(
By + (v/c2)Ez

)
B′

z = γ
(
Bz − (v/c2)Ey

)
(6.74)

When these equations are written in the alternative form given in
Eq. (6.73), the symmetry between E and cB is evident. If the printer
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had mistakenly interchanged E’s with cB’s, and y’s with z’s, the equa-
tions would come out exactly the same. Certainly magnetic phenom-
ena as we find them in Nature are distinctly different from electrical
phenomena. The world around us is by no means symmetrical with respect
to electricity and magnetism. Nevertheless, with the sources out of the
picture, we find that the fields themselves, E and cB, are connected to
one another in a highly symmetrical way.

It appears too that the electric and magnetic fields are in some sense
aspects, or components, of a single entity. We can speak of the electro-
magnetic field, and we may think of Ex, Ey, Ez, cBx, cBy, and cBz as
six components of the electromagnetic field. The same field viewed in
different inertial frames will be represented by different sets of values
for these components, somewhat as a vector is represented by different
components in different coordinate systems rotated with respect to one
another. However, the electromagnetic field so conceived is not a vec-
tor, mathematically speaking, but rather something called a tensor. The
totality of the equations in the box on page 309 forms the prescription
for transforming the components of such a tensor when we shift from
one inertial frame to another. We are not going to develop that math-
ematical language here. In fact, we shall return now to our old way of
talking about the electric field as a vector field, and the magnetic field
as another vector field coupled to the first in a manner to be explored
further in Chapter 7. To follow up on this brief hint of the unity of the
electromagnetic field as represented in four-dimensional space-time, you
will have to wait for a more advanced course.

We can express the transformation of the fields, Eq. (6.74), in a more
elegant way which is often useful. Let v be the velocity of a frame F′ as
seen from a frame F. We can always resolve the fields in both F and F′
into vectors parallel to and perpendicular to, respectively, the direction
of v. Thus, using an obvious notation:

E = E‖ + E⊥, E′ = E′‖ + E′⊥,

B = B‖ + B⊥, B′ = B′‖ + B′⊥. (6.75)

Then the transformation can be written like this (as you can verify):

E′‖ = E‖ E′⊥ = γ
(
E⊥ + v × B⊥

)
B′‖ = B‖ B′⊥ = γ

(
B⊥ − (v/c2) × E⊥

)
(v is the velocity of F′ with respect to F)

(6.76)

In the special case that led us to Eq. (6.72), v was vx̂, E⊥ was
(σ/ε0)ŷ, and B⊥ was μ0σv0ẑ. You can check that these vectors turn
the “⊥” equations in Eq. (6.76) into the equations in Eq. (6.70); you will
need to use 1/μ0ε0 = c2.
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In Gaussian units, with E in statvolts/cm and B in gauss, the Lorentz
transformation of the fields reads as follows (with β ≡ v/c):

E′‖ = E‖ E′⊥ = γ
(

E⊥ + β × B⊥
)

B′‖ = B‖ B′⊥ = γ
(

B⊥ − β × E⊥
) (6.77)

You can derive these relations by working through the above procedure
in Gaussian units. But a quicker method is to note that, when changing
formulas from SI to Gaussian units, we must replace ε0 with 1/4π (by
looking at the analogous expressions for Coulomb’s law, or equivalently
Gauss’s law), and μ0 with 4π/c (by looking at the analogous expressions
for Ampère’s law). The product μ0ε0 therefore gets replaced with 1/c,
and Eq. (6.71) then leads to Eq. (6.77).

One advantage of the Gaussian system of units is that the transfor-
mations in Eq. (6.77) are more symmetrical than those in Eq. (6.76). This
can be traced to the fact that E and B have the same units in the Gaussian
system. In the SI system, unfortunately, the use of different units for E
and B (due to the definition of B in Eq. (6.1)) tends to obscure the essen-
tial electromagnetic symmetry of the vacuum. The electric and magnetic
fields are after all components of one tensor. The Lorentz transforma-
tion is something like a rotation, turning E partly into B′, and B partly
into E′. It seems quite natural and appropriate that the only parameter
in Eq. (6.77) is the dimensionless ratio β. To draw an analogy that is
not altogether unfair, imagine that it has been decreed that east–west dis-
placement components must be expressed in meters while north–south
components are to be in feet. The transformation effecting a rotation of
coordinate axes would be, to say the least, aesthetically unappealing. Nor
is symmetry restored to Eq. (6.76) when B is replaced, as is often done,
by a vector H, which we shall meet in Chapter 11, and which in the vac-
uum is simply B/μ0.

Having said this, however, we should note that there isn’t anything
disastrous about the extra factor of c that appears in the SI Lorentz trans-
formation. The Lorentz symmetry between E and cB is similar to the
Lorentz symmetry between x and ct. The coordinates x and t have differ-
ent dimensions, but are still related by a Lorentz transformation with an
extra factor of c thrown in.

q
FE

r

l
(Lab frame)

Figure 6.28.
A point charge at rest with respect to a charged
rod.

Example (Stationary charge and rod) A charge q is at rest a distance r
from a long rod with linear charge density λ, as shown in Fig. 6.28. The charges
in the rod are also at rest. The electric field due to the rod takes the standard
form of E = λ/2πε0r, so the force on the charge q in the lab frame is sim-
ply F = qE = qλ/2πε0r. This force is repulsive, assuming q and λ have the
same sign.
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Now consider the setup in the frame that moves to the left with speed v. In
this frame both the charge q and the charges in the rod move to the right with
speed v. What is the force on the charge q in this new frame? Solve this in three
different ways.

(a) Transform the force from the lab frame to the new frame, without caring
about where it comes from in the new frame.

(b) Directly calculate the electric and magnetic forces in the new frame, by
considering the charges in the rod.

(c) Transform the fields using the Lorentz transformations.

Solution

(a) The force on a particle is always largest in the rest frame of the particle. It
is smaller in any other frame by the γ factor associated with the speed v of
the particle. The force in the particle frame (the lab frame) is qλ/2πε0r, so
the force in the new frame is qλ/2γπε0r.

(b) In the new frame (call it F′), the linear charge density in the rod is increased
to γ λ, due to length contraction. So the electric field is E′ = γ λ/2πε0r.
This field produces a repulsive electric force of FE = γ qλ/2πε0r.

qFE

FB
v

r

gl
v

New frame, F�

Figure 6.29.
The electric and magnetic forces in the new
frame.

In F′ the current produced by the rod is the density times the speed, so
I = (γ λ)v. The magnetic field is then B′ = μ0I/2πr = μ0γ λv/2πr,
directed into the page in Fig. 6.29 (assuming λ is positive). The magnetic
force is therefore attractive and has magnitude (using μ0 = 1/ε0c2)

FB = qvB′ = qv · μ0γ λv
2πr

= γ qλv2

2πε0rc2 . (6.78)

The net repulsive force acting on the charge q in the new frame is therefore

FE − FB = γ qλ

2πε0r
− γ qλv2

2πε0rc2 = γ qλ

2πε0r

(
1 − v2

c2

)
= qλ

2γπε0r
,

(6.79)

where we have used 1−v2/c2 ≡ 1/γ 2. This net force agrees with the result
in part (a).

(c) In the lab frame, the charges in the rod aren’t moving, so E⊥ is the only
nonzero field in the Lorentz transformations in Eq. (6.76). It is directed
away from the rod with magnitude λ/2πε0r. Equation (6.76) immediately
gives the electric field in the new frame as E′⊥ = γ E⊥. So E′⊥ has mag-
nitude E′⊥ = γ λ/2πε0r and is directed away from the rod, in agreement
with the electric field we found in part (b).

Equation (6.76) gives the magnetic field in the new frame as B′⊥ =
−γ (v/c2)×E⊥. The velocity v of F′ with respect to the lab frame F points
to the left with magnitude v. We therefore find that B′⊥ points into the page
with magnitude B′⊥ = γ (v/c2)(λ/2πε0r). In terms of μ0 = 1/ε0c2, this
can be written as B′⊥ = μ0γ λv/2πr, in agreement with the magnetic field
we found in part (b). We therefore arrive at the same net force, FE −FB, as
in part (b).
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There is a remarkably simple relation between the electric and mag-
netic field vectors in a special but important class of cases. Suppose a
frame exists – let’s call it the unprimed frame – in which B is zero in
some region (as in the above example). Then in any other frame F′ that
moves with velocity v relative to that special frame, we have, according
to Eq. (6.76),

E′‖ = E‖, E′⊥ = γ E⊥,

B′‖ = 0, B′⊥ = −γ (v/c2) × E⊥. (6.80)

In the last of these equations we can replace B′⊥ with B′, because B′‖ = 0.
We can also replace γ E⊥ with E′⊥, which we can in turn replace with E′
because v × E′‖ = 0 (since E′‖ is parallel to v by definition). The last
equation therefore becomes a simple relation between the full E′ and B′
fields:

B′ = −(v/c2) × E′ (if B = 0 in one frame). (6.81)

This holds in every frame if B = 0 in one frame. Remember that v is the
velocity of the frame in question (the primed frame) with respect to the
special frame in which B = 0.

In the same way, we can deduce from Eq. (6.76) that, if there exists
a frame in which E = 0, then in any other frame

E′ = v × B′ (if E = 0 in one frame). (6.82)

As before, v is the velocity of the frame F′ with respect to the special
frame F in which, in this case, E = 0.

E E

B

q

E

v

B B B

E

Figure 6.30.
The electric and magnetic fields, at one instant
of time, of a charge in uniform motion.

Because Eqs. (6.81) and (6.82) involve only quantities measured in
the same frame of reference, they are easy to apply, whenever the restric-
tion is met, to fields that vary in space. A good example is the field of
a point charge q moving with constant velocity, the problem studied in
Chapter 5. Take the unprimed frame to be the frame in which the charge
is at rest. In this frame, of course, there is no magnetic field. Equation
(6.81) tells us that in the lab frame, where we find the charge moving
with speed v, there must be a magnetic field perpendicular to the elec-
tric field and to the direction of motion. We have already worked out the
exact form of the electric field in this frame: we know the field is radial
from the instantaneous position of the charge, with a magnitude given by
Eq. (5.15). The magnetic field lines must be circles around the direction
of motion, as indicated crudely in Fig. 6.30. When the velocity of the
charge is high (v ≈ c), so that γ � 1, the radial “spokes” that are the
electric field lines are folded together into a thin disk. The circular mag-
netic field lines are likewise concentrated in this disk. The magnitude of
B is then nearly equal to the magnitude of E/c. That is, the magnitude
of the magnetic field in tesla is almost exactly the same as 1/c times
the magnitude of the electric field in volts/meter, at the same point and
instant of time.
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We have come a long way from Coulomb’s law in the last two chap-
ters. Yet with each step we have only been following out consistently the
requirements of relativity and of the invariance of electric charge. We
can begin to see that the existence of the magnetic field and its curi-
ously symmetrical relationship to the electric field is a necessary con-
sequence of these general principles. We remind the reader again that
this was not at all the historical order of discovery and elucidation of
the laws of electromagnetism. One aspect of the coupling between the
electric and magnetic fields, which is implicit in Eq. (6.74), came to light
in Michael Faraday’s experiments with changing electric currents, which
will be described in Chapter 7. That was 75 years before Einstein, in his
epochal paper of 1905, first wrote out our Eq. (6.74).

6.8 Rowland’s experiment
As we remarked in Section 5.9, it was not obvious 150 years ago that
a current flowing in a wire and a moving electrically charged object
are essentially alike as sources of magnetic field. The unified view of
electricity and magnetism that was then emerging from Maxwell’s work
suggested that any moving charge ought to cause a magnetic field, but
experimental proof was hard to come by.

That the motion of an electrostatically charged sheet produces a
magnetic field was first demonstrated by Henry Rowland, the great Ameri-
can physicist renowned for his perfection of the diffraction grating.
Rowland made many ingenious and accurate electrical measurements,
but none that taxed his experimental virtuosity as severely as the detection
and measurement of the magnetic field of a rotating charged disk. The
field to be detected was something like 10−5 of the earth’s field in
magnitude – a formidable experiment, even with today’s instruments! In
Fig. 6.31, you will see a sketch of Rowland’s apparatus and a reproduction
of the first page of the paper in which he described his experiment. Ten
years before Hertz’s discovery of electromagnetic waves, Rowland’s result
gave independent, if less dramatic, support to Maxwell’s theory of the
electromagnetic field.

6.9 Electrical conduction in a magnetic field: the
Hall effect

When a current flows in a conductor in the presence of a magnetic field,
the force qv × B acts directly on the moving charge carriers. Yet we
observe a force on the conductor as a whole. Let’s see how this comes
about. Figure 6.32(a) shows a section of a metal bar in which a steady
current is flowing. Driven by a field E, electrons are drifting to the left
with average speed v, which has the same meaning as the u in our discus-
sion of conduction in Chapter 4. The conduction electrons are indicated,
very schematically, by the gray dots. The black dots are the positive
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Figure 6.31.
The essential parts of Rowland’s apparatus. In
the tube at the left, two short magnetized
needles are suspended horizontally.

ON THE MAGNETIC EFFECT OF ELECTRIC CONVECTION1

[American Journal of Science [3], XV, 30–38, 1878]

The experiments described in this paper were made with a view of deter-
mining whether or not an electrified body in motion produces magnetic effects.
There seems to be no theoretical ground upon which we can settle the question,
seeing that the magnetic action of a conducted electric current may be ascribed
to some mutual action between the conductor and the current. Hence an experi-
ment is of value. Professor Maxwell, in his ‘Treatise on Electricity,’ Art. 770, has
computed the magnetic action of a moving electrified surface, but that the action
exists has not yet been proved experimentally or theoretically.

The apparatus employed consisted of a vulcanite disc 21·1 centimetres in
diameter and ·5 centimetre thick which could be made to revolve around a vertical
axis with a velocity of 61· turns per second. On either side of the disc at a distance
of ·6 cm. were fixed glass plates having a diameter of 38·9 cm. and a hole in
the centre of 7·8 cm. The vulcanite disc was gilded on both sides and the glass
plates had an annular ring of gilt on one side, the outside and inside diameters
being 24·0 cm. and 8·9 cm. respectively. The gilt sides could be turned toward
or from the revolving disc but were usually turned toward it so that the problem
might be calculated more readily and there should be no uncertainty as to the
electrification. The outside plates were usually connected with the earth; and
the inside disc with an electric battery, by means of a point which approached
within one-third of a millimetre of the edge and turned toward it. As the edge
was broad, the point would not discharge unless there was a difference of
potential between it and the edge. Between the electric battery and the disc, . . .

1 The experiments described were made in the laboratory of the Berlin University
through the kindness of Professor Helmholtz, to whose advice they are greatly
indebated for their completeness. The idea of the experiment first occurred to me
in 1868 and was recorded in a note book of that date.
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Figure 6.32.
(a) A current flows in a metal bar. Only a short
section of the bar is shown. Conduction
electrons are indicated (not in true size and
number!) by gray dots, positive ions of the
crystal lattice by black dots. The arrows indicate
the average velocity v of the electrons.
(b) A magnetic field is applied in the x direction,
causing (at first) a downward deflection of the
moving electrons. (c) The altered charge
distribution makes a transverse electric field Et.
In this field the stationary positive ions
experience a downward force.

ions which form the rigid framework of the solid metal bar. Since the
electrons are negative, we have a current in the positive y direction.
The current density J and the field E are related by the conductivity of
the metal, σ , as usual: J = σE. There is no magnetic field in Fig. 6.32(a)
except that of the current itself, which we shall ignore.

Now an external field B in the x direction is switched on. The state of
motion immediately thereafter is shown in Fig. 6.32(b). The electrons are
being deflected downward. But since they cannot escape at the bottom of
the bar, they simply pile up there, until the surplus of negative charge
at the bottom of the bar and the corresponding excess of positive charge
at the top create a downward transverse electric field Et in which the
upward force, of magnitude eEt, exactly balances the downward force
evB. In the steady state (which is attained very quickly!) the average
motion is horizontal again, and there exists in the interior of the metal
this transverse electric field Et, as observed in coordinates fixed in the
metal lattice (Fig. 6.32(c)). This field causes a downward force on the
positive ions. That is how the force, −ev × B, on the electrons is passed
on to the solid bar. The bar, of course, pushes on whatever is holding it.

The condition for zero average transverse force on the moving charge
carriers is

Et + v × B = 0. (6.83)

Suppose there are n mobile charge carriers per m3 and, to be more
general, denote the charge of each by q. Then the current density J is nqv.
If we now substitute J/nq for v in Eq. (6.83), we can relate the transverse
field Et to the directly measurable quantities J and B:

Et = −J × B
nq

. (6.84)

For electrons q = −e, so Et has in that case the direction of J × B, as it
does in Fig. 6.32(c).

The existence of the transverse field can easily be demonstrated.
Wires are connected to points P1 and P2 on opposite edges of the bar
(Fig. 6.33), the junction points being carefully located so that they are
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at the same potential when current is flowing in the bar and B is zero.
The wires are connected to a voltmeter. After the field B is turned on,
P1 and P2 are no longer at the same potential. The potential difference
is Et times the width of the bar, and in the case illustrated P1 is posi-
tive relative to P2. A steady current will flow around the external circuit
from P1 to P2, its magnitude determined by the resistance of the volt-
meter. Note that the potential difference would be reversed if the current
J consisted of positive carriers moving to the right rather than electrons
moving to the left. This is true because the positive charge carriers would
be deflected downward, just as the electrons were (because two things in
the qv × B force have switched signs, namely the q and the v). The field
Et would therefore have the opposite sign, being now directed upward.
Here for the first time we have an experiment that promises to tell us the
sign of the charge carriers in a conductor.

z

P1

P2x
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Figure 6.33.
The Hall effect. When a magnetic field is applied
perpendicular to a conductor carrying current, a
potential difference is observed between points
on opposite sides of the bar – points that, in the
absence of the field, would be at the same
potential. This is consistent with the existence of
the field Et inside the bar. By measuring the
“Hall voltage” one can determine the number of
charge carriers per unit volume, and their sign.

The effect was discovered in 1879 by E. H. Hall, who was studying
under Rowland at Johns Hopkins. In those days no one understood the
mechanism of conduction in metals. The electron itself was unknown.
It was hard to make much sense of the results. Generally the sign of
the “Hall voltage” was consistent with conduction by negative carriers,
but there were exceptions even to that. A complete understanding of the
Hall effect in metallic conductors came only with the quantum theory of
metals, about 50 years after Hall’s discovery.

The Hall effect has proved to be especially useful in the study of
semiconductors. There it fulfills its promise to reveal directly both the
concentration and the sign of the charge carriers. The n-type and p-type
semiconductors described in Chapter 4 give Hall voltages of opposite
sign, as we should expect. As the Hall voltage is proportional to B, an
appropriate semiconductor in the arrangement of Fig. 6.33 can serve,
once calibrated, as a simple and compact device for measuring an
unknown magnetic field. An example is described in Exercise 6.73.

6.10 Applications
A mass spectrometer is used to determine the chemical makeup of a
substance. Its operation is based on the fact that if a particle moves per-
pendicular to a magnetic field, the radius of curvature of the circular path
depends on the particle’s mass (see Exercise 6.29). In the spectrometer,
molecules in a sample are first positively ionized, perhaps by bombarding
them with electrons, which knocks electrons free. The ions are acceler-
ated through a voltage difference and then sent through a magnetic field.
Lighter ions have a smaller radius of curvature. (Even though lighter ions
are accelerated to higher speeds, you can show that the magnetic field
still bends them more compared with heavier ions.) By observing the
final positions, the masses (or technically, the mass-to-charge ratios) of
the various ions can be determined. Uses of mass spectroscopy include
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forensics, drug testing, testing for contaminants in food, and determining
the composition of the atmosphere of planets.

The image in an old television set (made prior to the early 2000s)
is created by a cathode ray tube. The wide end of the tube is the televi-
sion screen. Electrons are fired toward the screen and are deflected by the
magnetic field produced by current-carrying coils. This current is varied
in such a way that the impact point of the electrons on the screen traces
out the entire screen (many times per second) via a sequence of hori-
zontal lines. When the electrons hit the screen, they cause phosphor in
the screen to emit light. A particular image appears, depending on which
locations are illuminated; the intensity of the electron beam is modulated
to create the desired shading at each point (black, white, or something in
between). Color TVs have three different electron beams for the three
primary colors.

Consider two coaxial solenoids, with their currents oriented the
same way, separated by some distance in the longitudinal direction. The
magnetic field lines will diverge as they leave one solenoid, then reach
a maximum width halfway between the solenoids, and then converge as
they approach the other solenoid. Consider a charged particle moving
approximately in a circle perpendicular to the field lines (under the
influence of the Lorentz force), while also drifting in the direction of
the field lines. It turns out that the drifting motion will be reversed
in regions where the field lines converge, provided that they converge
quickly enough. The particle can therefore be trapped in what is called a
magnetic bottle, bouncing back and forth between the ends. A bottle-type
effect can be used, for example, to contain plasma in fusion experiments.

A magnetic bottle can also be created by the magnetic field due to
a current ring. The ring effectively produces a curved magnetic bottle;
the field lines expand near the plane of the ring and converge near the
axis. This is basically what the magnetic field of the earth looks like.
The regions of trapped charged particles are called the Van Allen belts. If
particles approach the ends of the belt, that is, if they approach the earth’s
atmosphere, the collisions with the air molecules cause the molecules to
emit light. We know this light as the northern (or southern) lights, or
alternatively as the aurora borealis (or australis). The various colors
come from the different atomic transitions in oxygen and nitrogen. The
sources of the charged particles are solar wind and cosmic rays. However,
the source can also be man-made: a 1962 high-altitude hydrogen bomb
test, code-named “Starfish Prime,” gave a wide area of the Pacific Ocean
quite a light show. But at least people were “warned” about the test;
the headline of the Honolulu Advertiser read, “N-Blast Tonight May Be
Dazzling: Good View Likely.”

The earth’s atmosphere protects us significantly from solar wind
(consisting mostly of protons and electrons) and from the steady back-
ground of cosmic rays (consisting mostly of protons). But the earth’s
magnetic field also helps out. The charged particles are deflected away
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from the earth by the Lorentz force from the magnetic field. In the event
of a severe solar flare, however, a larger number of particles make it
through the field, disrupting satellites and other electronics. Providing
a way to shield astronauts from radiation is one of the main obsta-
cles to extended space travel. Generating a magnetic field via currents
in superconductors (see Appendix I) is a potential solution. Although
this would certainly be expensive, propelling thick heavy shielding
(the analog of the earth’s atmosphere) into space would also be very
costly.

A railgun is a device that uses the qv × B Lorentz force, instead of
an explosive, to accelerate a projectile. The gun consists of two paral-
lel conducting rails with a conducting object spanning the gap between
them. This object (which is the projectile, or perhaps a larger object hold-
ing the projectile) is free to slide along the rails. A power source sends
current down one rail, across the projectile, and back along the other
rail. The current in the rails produces a magnetic field, and you can use
the right-hand rule to show that the resulting Lorentz force on the pro-
jectile is directed away from the power source. Large-scale rail guns can
achieve projectile speeds of a few kilometers per second and have a range
of hundreds of kilometers.

In one form of electric motor, a DC current flows through a coil that
is free to rotate between the poles of a fixed magnet. The Lorentz force
on the charges moving in the coil produces a torque (see Exercise 6.34),
so the coil is made to rotate. (Alternatively, the coil behaves just like a
magnet with north and south poles, and this magnet interacts with the
field of the fixed magnet.) The coil can then apply a torque to whatever
object the motor is attached to. There are both AC and DC motors, and
different kinds of each. In a brushed DC motor, a commutator causes the
current to change direction every half cycle, so that the torque is always
in the same direction. If for some reason the motor gets stuck and stops
rotating, the back emf (which we will learn about in Chapter 7) drops to
zero. The current through the coil then increases, causing it to heat up.
The accompanying smell will let you know that you are in the process of
burning out your motor.

Solenoids containing superconducting wires can be used to create
very large fields, on the order of 20 T. The superconducting wires allow
a large current to flow with no resistive heating. A magnetic resonance
imaging (MRI) machine uses the physics described in Appendix J to
make images of the inside of your body. Its magnetic field is usually
about one or two tesla. The magnets in the Large Hadron Collider at
CERN are also superconducting. If a defect causes the circuit to become
nonsuperconducting (a result known as a quench), then the circuit will
heat up rapidly and a chain reaction of very bad things is likely. As we
will see in Chapter 7, solenoids store energy, and this energy needs to go
somewhere. In 2008 at CERN, a quench caused major damage and took
the accelerator offline for a year.
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The size of the magnetic field in a superconducting solenoid is lim-
ited by the fact that a superconducting wire can’t support magnetic fields
or electric currents above certain critical values. The largest sustained
magnetic fields in a laboratory are actually created with resistive con-
ductors. The optimal design has the coils of the solenoid replaced by
Bitter plates arranged in a helical pattern. These plates operate in basi-
cally the same manner as coils, but they allow for water cooling via
well-placed holes. A Bitter magnet, which can achieve a field of about
35 T, requires a serious amount of water cooling – around 100 gallons
per second!

If a coil of wire is wrapped around an iron core, the coil’s mag-
netic field is magnified by the iron, for reasons we will see in Chapter 11.
The magnification factor can be 100 or 1000, or even larger. This mag-
nification effect is used in relays, circuit breakers, junkyard magnets (all
discussed below), and many other devices. The combination of a coil and
an iron core (or even a coil without a core) is called an electromagnet.
The main advantage of an electromagnet over a permanent magnet is that
the field can be turned on and off.

An electric relay is a device that uses a small signal to switch on (or
off) a larger signal. (So a relay and a transistor act in the same manner.)
A small current in one circuit passes through an electromagnet. The mag-
netic field of this electromagnet pulls on a spring-mounted iron lever that
closes (or opens) a second circuit. The power source in this second circuit
is generally much larger than in the first. A relay is used, for example, in
conjunction with a thermostat. A small current in the thermostat’s tem-
perature sensor switches on a much larger current in the actual heating
system, which involves, say, a hot-water pump. In years past, relays were
used as telegraph repeaters. The relay took a weak incoming signal at
the end of a long wire and automatically turned it into a strong outgoing
signal, thereby eliminating the need for a human being to receive and
retransmit the information.

A circuit breaker is similar to a fuse (see Section 4.12), in that it
prevents the current in a circuit from becoming too large; 15 A or 20 A
are typical thresholds for a household circuit breaker. If you are running
many appliances in your home at the same time, the total current may
be large enough to cause a wire somewhere inside a wall to overheat and
start a fire. Similarly, a sustained short circuit will almost certainly cause
a fire. One type of circuit breaker contains an electromagnet whose mag-
netic field pulls on an iron lever. The lever is held in place by a spring,
but if the current in the electromagnet becomes sufficiently large, the
force on the lever is large enough to pull it away from its resting posi-
tion. This movement breaks the circuit in one way or another, depend-
ing on the design. The circuit breaker can be reset by simply flipping a
switch that manually moves the lever back to its resting position. This
should be contrasted with a fuse, which must be replaced each time it
burns out.
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Junkyard magnets can have fields in the 1 tesla range. This is fairly
large, but the real key to the magnet’s strength is its large area, which is
on the order of a square meter. If you’ve ever played with a small rare-
earth magnet (with a field of around 1 tesla) and felt how strongly it can
stick to things, imagine playing with one that is a meter in diameter. It’s
no wonder it can pick up a car!

Doorbells (or at least those of the “ding dong” type) consist of a
piston located inside a solenoid. Part of the piston is a permanent mag-
net. A spring holds the piston off to one side (say, to the left), where its
left end rests on a sound bar. When the doorbell button is pressed, a cir-
cuit is completed and current flows through the solenoid. The resulting
magnetic field pulls the piston through the solenoid and causes the right
end to hit another sound bar located off to the right (this is the “ding”
bar). As long as the button is held down, the piston stays there. But when
the button is released, the current stops flowing in the solenoid, and the
spring pushes the piston back to its initial position, where it strikes the
left sound bar (the “dong” bar).

The speakers in your sound system are simple devices in principle,
although they require a great deal of engineering to produce a quality
sound. A speaker converts an electrical signal into sound waves. A coil
of wire is located behind a movable cone (the main part of the speaker
that you see, also called the diaphragm) and attached to its middle. The
coil surrounds one pole of a permanent magnet, and is in turn surrounded
by the other pole (imagine a stamp/cutter for making doughnuts; the coil
is free to slide along the inner cylinder of the stamp). Depending on the
direction of the current in the coil, the permanent magnet pushes the coil
(and hence the cone) one way or the other. The movement of the cone
produces the sound waves that travel to your ears. If the correct current
(with the proper time-varying amplitude to control the volume, and fre-
quency to control the pitch) is fed through the coil, the cone will oscillate
in exactly the manner needed to produce the desired sound. Audible fre-
quencies range from roughly 20 Hz to 20 kHz, so the oscillations will
be quick. The necessary current originates in a microphone, which oper-
ates in the same way as a speaker, but in reverse. That is, a microphone
converts sound waves into an electrical signal. There are many different
types of microphones; we talked about one type in Section 3.9, and we
will talk about another in Section 7.11, after we have covered electromag-
netic induction.

Maglev trains (short for “magnetic levitation”) are vertically sup-
ported, laterally stabilized, and longitudinally accelerated by magnetic
fields. The train has no contact with the track, which means that it can
go faster than a conventional train; speeds can reach 500 km/hr, or 300
mph. There is also less wear and tear. There are two main types of
maglev trains: electromagnetic suspension (EMS) and electrodynamic
suspension (EDS). The EMS system makes use of both permanent mag-
nets and electromagnets. The lateral motion of the train is unstable, so
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sensitive computerized correction is required. The EDS system makes
use of electromagnets (in some cases involving superconductors), along
with magnetic induction (discussed in Chapter 7). An advantage of EDS
is that the lateral motion is stable, but a disadvantage is that the stray
magnetic fields inside the cabin can be fairly large. Additionally, an EDS
train requires a minimum speed to levitate, so wheels are needed at low
speeds. The propulsion mechanism in both systems involves using alter-
nating current to create magnetic fields that continually accelerate (or
decelerate) the train. All maglev trains require a specially built track,
which is a large impediment to adoption.

CHAPTER SUMMARY
• The Lorentz force on a charged particle in an electromagnetic field is

F = qE + qv × B. (6.85)

• The magnetic field due to a current in a long straight wire points in the
tangential direction and has magnitude

B = I
2πε0rc2 = μ0I

2πr
, (6.86)

where

μ0 ≡ 4π · 10−7 kg m
C2 and c2 = 1

μ0ε0
. (6.87)

If a wire carrying current I2 lies perpendicular to a magnetic field B1,
then the magnitude of the force on a length l of the wire is F = I2B1l.
The SI and Gaussian units of magnetic field are the tesla and gauss,
respectively. One tesla equals exactly 104 gauss.

• Ampère’s law in integral and differential form is∫
B · ds = μ0I ⇐⇒ curl B = μ0J. (6.88)

The magnetic field also satisfies

div B = 0. (6.89)

This is the statement that there are no magnetic monopoles, or equiv-
alently that magnetic field lines have no endings.

• The vector potential A is defined by

B = curl A, (6.90)

which leads to div B = 0 being identically true. Given the current
density J, the vector potential can be found via

A = μ0

4π

∫
J dv

r
or A = μ0I

4π

∫
dl
r

(for a thin wire).

(6.91)
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• The contribution to the magnetic field from a piece of a wire carrying
current I is given by the Biot–Savart law:

dB = μ0I
4π

dl × r̂
r2 or dB = μ0I

4π

dl × r
r3 . (6.92)

This law is valid for steady currents.
• The field due to an infinitely long solenoid is zero outside and has

magnitude B = μ0nI inside, where n is the number of turns per unit
length. If a sheet of current has current density J , then the change in
B across the sheet is �B = μ0J .

• The Lorentz transformations give the relations between the E and B
fields in two different frames:

E′‖, = E‖, E′⊥ = γ
(
E⊥ + v × B⊥

)
,

B′‖, = B‖, B′⊥ = γ
(
B⊥ − (v/c2) × E⊥

)
, (6.93)

where v is the velocity of frame F′ with respect to frame F. If there
exists a frame in which B = 0 (for example, if all the charges are at
rest in one frame), then B′ = −(v/c2) × E′ in all frames. Similarly,
if there exists a frame in which E = 0 (for example, the frame of a
neutral current-carrying wire), then E′ = v × B′ in all frames.

• Henry Rowland demonstrated that a magnetic field is produced not
only by a current in a wire, but also by the overall motion of an elec-
trostatically charged object.

• In the Hall effect, an external magnetic field causes the charge carriers
in a current-carrying wire to pile up on one side of the wire. This
causes a transverse electric field inside the wire given by Et = −(J ×
B)/nq. For most purposes, a current of negative charges moving in
one direction acts the same as a current of positive charges moving in
the other direction. But the Hall effect can be used to determine the
sign of the actual charge carriers.

Problems
6.1 Interstellar dust grain **

This problem concerns the electrically charged interstellar dust
grain that was the subject of Exercise 2.38. Its mass, which was
not involved in that problem, may be taken as 10−16 kg. Suppose
it is moving quite freely, with speed v � c, in a plane perpendic-
ular to the interstellar magnetic field, which in that region has a
strength of 3 · 10−6 gauss. How many years will it take to complete
a circular orbit?

6.2 Field from power lines *
A 50 kV direct-current power line consists of two wire conductors
2 m apart. When this line is transmitting 10 MW of power, how
strong is the magnetic field midway between the conductors?
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6.3 Repelling wires **
Suppose that the current I2 in Fig. 6.4(b) is equal to I1, but reversed,
so that CD is repelled by GH. Suppose also that AB and EF lie
vertically above GH, that the lengths BC and CD are 30 and
15 cm, respectively, and that the conductor BCDE, which is 1 mm
diameter copper wire as in Fig. 6.4(a), has a weight of 0.08 N/m. In
equilibrium the deflection of the hanging frame from the vertical is
such that r = 0.5 cm. How large is the current? Is the equilibrium
stable?

6.4 Vector potential for a wire *
Consider the example in Section 6.3, concerning the vector poten-
tial for a long straight wire. Rewrite Eqs. (6.33) and (6.34) in terms
of Cartesian coordinates, and verify that ∇ × A = B.

6.5 Vector potential for a finite wire **
(a) Recall the example in Section 6.3 dealing with a thin infinite

wire carrying current I. We showed that the vector potential
A given in Eq. (6.34), or equivalently in Eq. (12.272) in the
solution to Problem 6.4, correctly produced the desired mag-
netic field B. However, although they successfully produced
B, there is something fundamentally wrong with those expres-
sions for A. What is it? (The infinities at r = 0 and r = ∞ are
technically fine.)

(b) As mentioned at the end of Section 6.3, if you use Eq. (6.44)
to calculate A for an infinite wire, you will obtain an infinite
result. Your task here is instead to calculate A for a finite wire
of length 2L (ignore the return path for the current), at a dis-
tance r from the center. You can then find an approximate
expression for A for large L (is the issue from part (a) fixed?),
and then take the curl to obtain B, and then take the L → ∞
limit to obtain the B field for a truly infinite wire.

6.6 Zero divergence of A ***
Show that the vector potential given by Eq. (6.44) satisfies ∇ ·A =
0, provided that the current is steady (that is, ∇ · J = 0). Hints:
Use the divergence theorem, and be careful about the two types of
coordinates in Eq. (6.44) (the 1’s and 2’s). You will need to show
that ∇1(1/r12) = −∇2(1/r12), where the subscript denotes the set
of coordinates with respect to which the derivative is taken. The
vector identity ∇ · (f F) = f∇ · F + F · ∇f will come in handy.

6.7 Vector potential on a spinning sphere ****
A spherical shell with radius R and uniform surface charge density
σ rotates with angular speed ω around the z axis. Calculate the
vector potential at a point on the surface of the sphere. Do this in
three steps as follows.
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(a) By direct integration, calculate A at the point (R, 0, 0). You
will want to slice the shell into rings whose points are equidis-
tant from (R, 0, 0). The calculation isn’t so bad once you real-
ize that only one component of the velocity survives.

x

z

w1

w2

w

b

(x, 0, z)

Figure 6.34.

(b) Find A at the point (x, 0, z) in Fig. 6.34 by considering the
setup to be the superposition of two shells rotating with the
angular velocity vectors ω1 and ω1 shown. (This works because
angular velocity vectors simply add.)

(c) Finally, determine A at a general point (x, y, z) on the surface
of the sphere.

6.8 The field from a loopy wire *
A current I runs along an arbitrarily shaped wire that connects two
given points, as shown in Fig. 6.35 (it need not lie in a plane). Show
that the magnetic field at distant locations is essentially the same
as the field due to a straight wire with current I running between
the two points.

A

I

B

Figure 6.35.

6.9 Scaled-up ring *
Consider two circular rings of copper wire. One ring is a scaled-up
version of the other, twice as large in all regards (radius, cross-
sectional radius). If currents around the rings are driven by equal
voltage sources, how do the magnetic fields at the centers
compare?

6.10 Rings with opposite currents **
Two parallel rings have the same axis and are separated by a small
distance ε. They have the same radius a, and they carry the same
current I but in opposite directions. Consider the magnetic field at
points on the axis of the rings. The field is zero midway between
the rings, because the contributions from the rings cancel. And the
field is zero very far away. So it must reach a maximum value at
some point in between. Find this point. Work in the approximation
where ε � a.

6.11 Field at the center of a sphere **
A spherical shell with radius R and uniform surface charge den-
sity σ spins with angular frequency ω around a diameter. Find the
magnetic field at the center.

6.12 Field in the plane of a ring **
A ring with radius R carries a current I. Show that the magnetic
field due to the ring, at a point in the plane of the ring, a distance
a from the center (either inside or outside the ring), is given by

B = 2 · μ0I
4π

∫ π

0

(R − a cos θ)R dθ

(a2 + R2 − 2aR cos θ)3/2 . (6.94)
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Hint: The easiest way to handle the cross product in the Biot–
Savart law is to write the Cartesian coordinates of dl and r in terms
of an angle θ in the ring.

This integral can’t be evaluated in closed form (except in terms
of elliptic functions), but it can always be evaluated numerically if
desired. For the special case of a = 0 at the center of the ring,
the integral is easy to do; verify that it yields the result given in
Eq. (6.54).

6.13 Magnetic dipole **
Consider the result from Problem 6.12. In the a � R limit (that
is, very far from the ring), make suitable approximations and show
that the magnitude of the magnetic field in the plane of the ring
is approximately equal to (μ0/4π)(m/a3), where m ≡ πR2I =
(area)I is the magnetic dipole moment of the ring. This is a special
case of a result we will derive in Chapter 11.

6.14 Far field from a square loop ***
Consider a square loop with current I and side length a. The goal
of this problem is to determine the magnetic field at a point a large
distance r (with r � a) from the loop.

(a) At the distant point P in Fig. 6.36, the two vertical sides give

a

a

r

P

I

Figure 6.36.

essentially zero Biot–Savart contributions to the field, because
they are essentially parallel to the radius vector to P. What are
the Biot–Savart contributions from the two horizontal sides?
These are easy to calculate because every little interval in these
sides is essentially perpendicular to the radius vector to P.
Show that the sum (or difference) of these contributions equals
μ0Ia2/2πr3, to leading order in a.

(b) This result of μ0Ia2/2πr3 is not the correct field from the loop
at point P. The correct field is half of this, or μ0Ia2/4πr3. We
will eventually derive this in Chapter 11, where we will show
that the general result is μ0IA/4πr3, where A is the area of a
loop with arbitrary shape. But we should be able to calculate
it via the Biot–Savart law. Where is the error in the reasoning
in part (a), and how do you go about fixing it? This is a nice
one – don’t peek at the answer too soon!

6.15 Magnetic scalar “potential” **
(a) Consider an infinite straight wire carrying current I. We know

that the magnetic field outside the wire is B = (μ0I/2πr) θ̂ .
There are no currents outside the wire, so ∇ × B = 0; verify
this by explicitly calculating the curl.

(b) Since ∇ ×B = 0, we should be able to write B as the gradient
of a function, B = ∇ψ . Find ψ , but then explain why the
usefulness of ψ as a potential function is limited.
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6.16 Copper solenoid **
A solenoid is made by winding two layers of No. 14 copper wire
on a cylindrical form 8 cm in diameter. There are four turns per
centimeter in each layer, and the length of the solenoid is 32 cm.
From the wire tables we find that No. 14 copper wire, which has
a diameter of 0.163 cm, has a resistance of 0.010 ohm/m at 75◦C.
(The coil will run hot!) If the solenoid is connected to a 50 V gen-
erator, what will be the magnetic field strength at the center of the
solenoid in gauss, and what is the power dissipation in watts?

6.17 A rotating solid cylinder **
(a) A very long cylinder with radius R and uniform volume charge

density ρ spins with frequency ω around its axis. What is the
magnetic field at a point on the axis?

(b) How would your answer change if all the charge were concen-
trated on the surface?

6.18 Vector potential for a solenoid **
A solenoid has radius R, current I, and n turns per unit length.
Given that the magnetic field is B = μ0nI inside and B = 0 out-
side, find the vector potential A both inside and outside. Do this in
two ways as follows.

(a) Use the result from Exercise 6.41.
(b) Use the expression for the curl in cylindrical coordinates given

in Appendix F to find the forms of A that yield the correct
values of B = ∇ × A in the two regions.

6.19 Solenoid field, inside and outside ***
Consider an infinite solenoid with circular cross section. The cur-
rent is I, and there are n turns per unit length. Show that the
magnetic field is zero outside and B=μ0nI (in the longitudinal
direction) everywhere inside. Do this in three steps as follows.

(a) Show that the field has only a longitudinal component. Hint:
Consider the contributions to the field from rings that are sym-
metrically located with respect to a given point.

(b) Use Ampère’s law to show that the field has a uniform value
outside and a uniform value inside, and that these two values
differ by μ0nI.

(c) Show that B → 0 as r → ∞. There are various ways to do
this. One is to obtain an upper bound on the field contribu-
tion due to a given ring by unwrapping the ring into a straight
wire segment, and then finding the field due to this straight
segment.

6.20 A slab and a sheet **
A volume current density J = Jẑ exists in a slab between the infi-
nite planes at x = −b and x = b. (So the current is coming out
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of the page in Fig. 6.37.) Additionally, a surface current density
J = 2bJ points in the −ẑ direction on the plane at x = b.

(a) Find the magnetic field as a function of x, both inside and out-
side the slab.

(b) Verify that ∇ × B = μ0J inside the slab. (Don’t worry about
the boundaries.)

x

b–b

y

J
out of 
 page

into page
= 2bJ

Figure 6.37.

6.21 Maximum field in a cyclotron **
For some purposes it is useful to accelerate negative hydrogen ions
in a cyclotron. A negative hydrogen ion, H−, is a hydrogen atom
to which an extra electron has become attached. The attachment
is fairly weak; an electric field of only 4.5 · 108 V/m in the frame
of the ion (a rather small field by atomic standards) will pull an
electron loose, leaving a hydrogen atom. If we want to accelerate
H− ions up to a kinetic energy of 1 GeV (109 eV), what is the
highest magnetic field we dare use to keep them on a circular orbit
up to final energy? (To find γ for this problem you only need the
rest energy of the H− ion, which is of course practically the same
as that of the proton, approximately 1 GeV.)

6.22 Zero force in any frame **
A neutral wire carries current I. A stationary charge is nearby.
There is no electric field from the neutral wire, so the electric force
on the charge is zero. And although there is a magnetic field, the
charge isn’t moving, so the magnetic force is also zero. The total
force on the charge is therefore zero. Hence it must be zero in every
other frame. Verify this, in a particular case, by using the Lorentz
transformations to find the E and B fields in a frame moving par-
allel to the wire with velocity v.

6.23 No magnetic shield **
A student said, “You almost convinced me that the force
between currents, which I thought was magnetism, is explained
by electric fields of moving charges. But if so, why doesn’t the
metal plate in Fig. 5.1(c) shield one wire from the influence of the
other?” Can you explain it?

6.24 E and B for a point charge **
(a) Use the Lorentz transformations to show that the E and B

fields due to a point charge moving with constant velocity v
are related by B = (v/c2) × E.

(b) If v � c, then E is essentially obtained from Coulomb’s law,
and B can be calculated from the Biot–Savart law. Calculate
B this way, and then verify that it satisfies B = (v/c2) ×
E. (It may be helpful to think of the point charge as a tiny
rod of charge, in order to get a handle on the dl in the Biot–
Savart law.)
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6.25 Force in three frames ***
A charge q moves with speed v parallel to a wire with linear
charge density λ (as measured in the lab frame). The charges in
the wire move with speed u in the opposite direction, as shown
in Fig. 6.38. If the charge q is a distance r from the wire, find
the force on it in (a) the given lab frame, (b) its own rest frame,
(c) the rest frame of the charges in the wire. Do this by calculating
the electric and magnetic forces in the various frames. Then check
that the force in the charge’s rest frame relates properly to the
forces in the other two frames. You can use the fact that the
γ factor associated with the relativistic addition of u and v is
γuγv(1 + βuβv).

q
v

l
u

r

Figure 6.38.

6.26 Motion in E and B fields ***
The task of Exercise 6.29 is to show that if a charged particle moves
in the xy plane in the presence of a uniform magnetic field in the
z direction, the path will be a circle. What does the path look like
if we add on a uniform electric field in the y direction? Let the
particle have mass m and charge q. And let the magnitudes of the
electric and magnetic fields be E and B. Assume that the velocity
is nonrelativistic, so that γ ≈ 1 (this assumption isn’t necessary in
Exercise 6.29, because v is constant there). Be careful, the answer
is a bit counterintuitive.

6.27 Special cases of Lorentz transformations ***
Figure 6.39 shows four setups involving two infinite charged sheets
in a given frame F. Another frame F′ moves to the right with speed
v. Explain why these setups demonstrate the six indicated special
cases (depending on which field is set equal to zero) of the Lorentz
transformations in Eq. (6.76). (Note: one of the sheets has been
drawn shorter to indicate length contraction. This is purely sym-
bolic; all of the sheets have infinite length.)

6.28 The retarded potential ****
A point charge q moves with speed v along the line y = r in the
xy plane. We want to find the magnetic field at the origin at the
moment the charge crosses the y axis.

(a) Starting with the electric field in the charge’s frame, use the
Lorentz transformation to show that, in the lab frame, the mag-
nitude of the magnetic field at the origin (at the moment the
charge crosses the y axis) equals B = (μ0/4π)(γ qv/r2).

(b) Use the Biot–Savart law to calculate the magnetic field at the
origin. For the purposes of obtaining the current, you may
assume that the “point” charge takes the shape of a very short
stick. You should obtain an incorrect answer, lacking the γ

factor in the above correct answer.
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Figure 6.39.
Setups in frame F (F′ moves to right at v).
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(c) The Biot–Savart method is invalid because the Biot–Savart
law holds for steady currents (or slowly changing ones, but
see Footnote 8). But the current due to the point charge is
certainly not steady. At a given location along the line of the
charge’s motion, the current is zero, then nonzero, then zero
again.

For non-steady currents, the validity of the Biot–Savart law
can be restored if we use the so-called “retarded time.”11 The
basic idea with the retarded time is that, since information can
travel no faster than the speed of light, the magnetic field at
the origin, at the moment the charge crosses the y axis, must
be related to what the charge was doing at an earlier time.
More precisely, this earlier time (the “retarded time”) is the
time such that if a light signal were emitted from the charge
at this time, then it would reach the origin at the same instant
the charge crosses the y axis. Said in another way, if someone
standing at the origin takes a photograph of the surroundings
at the moment the charge crosses the y axis, then the position
of the charge in the photograph (which will not be on the y
axis) is the charge’s location we are concerned with.12

11 However, there is an additional term in the modified Biot–Savart law, which makes
things more complicated. So we’ll work instead with the vector potential A, which still
has only one term in its modified form. We can then obtain B by taking the curl of A.

12 Due to the finite speed of light, this is quite believable, so we will just accept it as true.
But intuitive motivations aside, the modified retarded-time forms of B and A can be
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Your tasks are to: find the location of the charge in the pho-
tograph; explain why the length of the little stick represent-
ing the charge has a greater length in the photograph than you
might naively think; find this length. For the purposes of calcu-
lating the vector potential A at the origin, we therefore see that
the current extends over a greater length than in the incorrect
calculation above in part (b). Show that this effect produces
the necessary extra γ factor in A, and hence also in B. (Hav-
ing taken into account the retarded time, the expression for A
in Eq. (6.46) remains valid.)13

Exercises
6.29 Motion in a B field **

A particle of charge q and rest mass m is moving with velocity v
where the magnetic field is B. Here B is perpendicular to v, and
there is no electric field. Show that the path of the particle is a
curve with radius of curvature R given by R = p/qB, where p is the
momentum of the particle, γ mv. (Hint: Note that the force qv × B
can only change the direction of the momentum, not the magni-
tude. By what angle �θ is the direction of p changed in a short
time �t?) If B is the same everywhere, the particle will follow a
circular path. Find the time required to complete one revolution.

d

I

Id

P1

P2

2I

Figure 6.40.

6.30 Proton in space *
A proton with kinetic energy 1016 eV (γ = 107) is moving per-
pendicular to the interstellar magnetic field, which in that region
of the galaxy has a strength 3 · 10−6 gauss. What is the radius of
curvature of its path and how long does it take to complete one
revolution? (Use the results from Exercise 6.29.)

6.31 Field from three wires *
Three long straight parallel wires are located as shown in
Fig. 6.40. One wire carries current 2I into the paper; each of
the others carries current I in the opposite direction. What is the
strength of the magnetic field at the point P1 and at the point P2?

6.32 Oersted’s experiment *
Describing the experiment in which he discovered the influence
of an electric current on a nearby compass needle, H. C. Oersted
wrote: “If the distance of the connecting wire does not exceed
three-quarters of an inch from the needle, the declination of the

rigorously derived from Maxwell’s equations, as must be the case for any true
statement about electromagnetic fields.

13 If you want to solve this problem by working with the modified Biot–Savart law, it’s a
bit trickier. You’ll need to use Eq. (14) in the article mentioned in Footnote 8. And
you’ll need to be very careful with all of the lengths involved.
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needle makes an angle of about 45◦. If the distance is increased the
angle diminishes proportionally. The declination likewise varies
with the power of the battery.” About how large a current must have
been flowing in Oersted’s “connecting wire”? Assume the horizon-
tal component of the earth’s field in Copenhagen in 1820 was the
same as it is today, 0.2 gauss.

6.33 Force between wires *
Suppose the current I that flows in the circuit in Fig. 5.1(b) is
20 amperes. The distance between the wires is 5 cm. How large
is the force, per meter of length, that pushes horizontally on one of
the wires?

m

d F

B

B

N = m × B

m = 

Area a

dx
C

I

I

x

z

yyBy

›

I a

Figure 6.41.

6.34 Torque on a loop ***
The main goal of this problem is to find the torque that acts on a
planar current loop in a uniform magnetic field. The uniform field
B points in some direction in space. We shall orient our coordinates
so that B is perpendicular to the x axis, and our current loop lies in
the xy plane, as shown in Fig. 6.41. (You should convince yourself
that this is always possible.) The shape and size of the (planar)
loop are arbitrary; we may think of the current as being supplied
by twisted leads on which any net force will be zero. Consider
some small element of the loop, and work out its contribution to
the torque about the x axis. Only the z component of the force on
it will be involved, and hence only the y component of the field B,
which we have indicated as ŷBy in the diagram. Set up the integral
that will give the total torque. Show that this integral will give,
except for constant factors, the area of the loop.

The magnetic moment of a current loop is defined as a vec-
tor m whose magnitude is Ia, where I is the current and a is the
area of the loop, and whose direction is normal to the loop with
a right-hand-thread relation to the current, as shown in the figure.
(We will meet the current loop and its magnetic moment again in
Chapter 11.) Show now that your result implies that the torque N
on any current loop is given by the vector equation

N = m × B. (6.95)

What about the net force on the loop?

6.35 Determining c ****
The value of 1/

√
μ0ε0 (or equivalently the value of c) can be deter-

mined by electrical experiments involving low-frequency fields
only. Consider the arrangement shown in Fig. 6.42. The force
between capacitor plates is balanced against the force between
parallel wires carrying current in the same direction. A voltage alter-
nating sinusoidally at a frequency f (in cycles per second) is applied
to the parallel-plate capacitor C1 and also to the capacitor C2.
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C1

C2

a

b

0 cos 2p ft

s

h

Figure 6.42.

The charge flowing into and out of C2 constitutes the current in
the rings.

Suppose that C2 and the various distances involved have been
adjusted so that the time-average downward force on the upper
plate of C1 exactly balances the time-average downward force on
the upper ring. (Of course, the weights of the two sides should be
adjusted to balance with the voltage turned off.) Show that under
these conditions the constant 1/

√
μ0ε0 (= c) can be computed

from measured quantities as follows:

1√
μ0ε0

= (2π)3/2a
(

b
h

)1/2 (
C2

C1

)
f . (6.96)

(If you work with Gaussian instead of SI units, you will end up
solving for c instead of 1/

√
μ0ε0.) Assume s � a and h � b.

Note that only measurements of distance and time (or fre-
quency) are required, apart from a measurement of the ratio of
the two capacitances C1 and C2. Electrical units, as such, are not
involved in the result. (The experiment is actually feasible at a fre-
quency as low as 60 cycles/second if C2 is made, say, 106 times C1
and the current rings are made with several turns to multiply the
effect of a small current.)

6.36 Field at different radii *
A current of 8000 amperes flows through an aluminum rod 4 cm
in diameter. Assuming the current density is uniform through the
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cross section, find the strength of the magnetic field at 1 cm, at
2 cm, and at 3 cm from the axis of the rod.

P

4 cm

8 cm

900 amps

Figure 6.43.

6.37 Off-center hole *
A long copper rod 8 cm in diameter has an off-center cylindrical
hole, as shown in Fig. 6.43, down its full length. This conductor
carries a current of 900 amps flowing in the direction “into the
paper.” What is the direction, and strength in gauss, of the magnetic
field at the point P that lies on the axis of the outer cylinder?

6.38 Uniform field in off-center hole **
A cylindrical rod with radius R carries current I (with uniform
current density), with its axis lying along the z axis. A cylindri-
cal cavity with an arbitrary radius is hollowed out from the rod at
an arbitrary location; a cross section is shown in Fig. 6.44. Assume
that the current density in the remaining part stays the same (which
would be the case for a fixed voltage difference between the ends).
Let a be the position of the center of the cavity with respect to the
center of the rod. Show that the magnetic field inside the cylindri-
cal cavity is uniform (in both magnitude and direction). Hint: Show
that the field inside a solid cylinder can be written in the form
B = (μ0I/2πR2)ẑ × r, and then use superposition with another
appropriately chosen cylinder.

6.39 Constant magnitude of B **
How should the current density inside a thick cylindrical wire
depend on r so that the magnetic field has constant magnitude
inside the wire?

a

R

Figure 6.44.

6.40 The pinch effect **
Since parallel current filaments attract one another, one might
think that a current flowing in a solid rod like the conductor in
Problem 6.36 would tend to concentrate near the axis of the rod.
That is, the conduction electrons, instead of distributing themselves
evenly as usual over the interior of the metal, would crowd in toward
the axis and most of the current would be there. What do you think
prevents this from happening? Ought it happen to any extent at
all? Can you suggest an experiment to detect such an effect, if it
should exist?

6.41 Integral of A, flux of B *
Show that the line integral of the vector potential A around a closed
curve C equals the magnetic flux � through a surface S bounded
by the curve. This result is very similar to Ampère’s law, which
says that the line integral of the magnetic field B around a closed
curve C equals (up to a factor of μ0) the current flux I through a
surface S bounded by the curve.
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6.42 Finding the vector potential *
See if you can devise a vector potential that will correspond to a
uniform field in the z direction: Bx = 0, By = 0, Bz = B0.

P

z

I

y
x

2b
2b

2b

(a)

P I

(b)

Figure 6.45.

6.43 Vector potential inside a wire **
A round wire of radius r0 carries a current I distributed uniformly
over the cross section of the wire. Let the axis of the wire be the z
axis, with ẑ the direction of the current. Show that a vector poten-
tial of the form A = A0ẑ(x2 + y2) will correctly give the magnetic
field B of this current at all points inside the wire. What is the value
of the constant, A0?

6.44 Line integral along the axis **
Consider the magnetic field of a circular current ring, at points on
the axis of the ring, given by Eq. (6.53). Calculate explicitly the
line integral of the field along the axis from −∞ to ∞, to check
the general formula ∫

B · ds = μ0I. (6.97)

Why may we ignore the “return” part of the path which would be
necessary to complete a closed loop?

6.45 Field from an infinite wire **
Use the Biot–Savart law to calculate the magnetic field at a dis-
tance b from an infinite straight wire carrying current I.

6.46 Field from a wire frame *
(a) Current I flows around the wire frame in Fig. 6.45(a). What is

the direction of the magnetic field at P, the center of the cube?
(b) Show by using superposition that the field at P is the same as

if the frame were replaced by the single square loop shown in
Fig. 6.45(b).

6.47 Field at the center of an orbit *
An electron is moving at a speed 0.01c on a circular orbit of radius
10−10 m. What is the strength of the resulting magnetic field at the
center of the orbit? (The numbers given are typical, in order of
magnitude, for an electron in an atom.)

6.48 Fields from two rings *
A ring with radius r and linear charge density λ spins with fre-
quency ω. A second ring with radius 2r has the same density λ

and frequency ω. Each ring produces a magnetic field at its center.
How do the magnitudes of these fields compare?

6.49 Field at the center of a disk *
A disk with radius R and surface charge density σ spins with angu-
lar frequency ω. What is the magnetic field at the center?
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6.50 Hairpin field *
A long wire is bent into the hairpin-like shape shown in
Fig. 6.46. Find an exact expression for the magnetic field at the
point P that lies at the center of the half-circle.

P

I
r

Figure 6.46.

6.51 Current in the earth *
The earth’s metallic core extends out to 3000 km, about half the
earth’s radius. Imagine that the field we observe at the earth’s
surface, which has a strength of roughly 0.5 gauss at the north
magnetic pole, is caused by a current flow in a ring around the
“equator” of the core. How big would that current be?

6.52 Right-angled wire **
A wire carrying current I runs down the y axis to the origin, thence
out to infinity along the positive x axis. Show that the magnetic
field at any point in the xy plane (except right on one of the axes)
is given by

Bz = μ0I
4π

(
1
x
+ 1

y
+ x

y
√

x2 + y2
+ y

x
√

x2 + y2

)
. (6.98)

6.53 Superposing right angles **
Use the result from Exercise 6.52, along with superposition, to
derive the magnetic field due to an infinite straight wire. (This is
certainly an inefficient way of obtaining this field!)

6.54 Force between a wire and a loop **
Figure 6.47 shows a horizontal infinite straight wire with current

Wire (current I1 into page)

z

I2

Square

Figure 6.47.

I1 pointing into the page, passing a height z above a square hor-
izontal loop with side length � and current I2. Two of the sides
of the square are parallel to the wire. As with a circular ring, this
square produces a magnetic field that points upward on its axis.
The field fans out away from the axis. From the right-hand rule,
you can show that the magnetic force on the straight wire points to
the right. By Newton’s third law, the magnetic force on the square
must therefore point to the left.

Your tasks: explain qualitatively, by drawing the fields and
forces, why the force on the square does indeed point to the left;
then show that the net force equals μ0I1I2�

2/2πR2, where R =√
z2 + (�/2)2 is the distance from the wire to the right and left

sides of the square. (The calculation of the force on the wire is a
bit more involved. We’ll save that for Exercise 11.20, after we’ve
discussed magnetic dipoles.)

6.55 Helmholtz coils **
One way to produce a very uniform magnetic field is to use a very
long solenoid and work only in the middle section of its interior.
This is often inconvenient, wasteful of space and power. Can you
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suggest ways in which two short coils or current rings might be
arranged to achieve good uniformity over a limited region? Hint:
Consider two coaxial current rings of radius a, separated axially
by a distance b. Investigate the uniformity of the field in the vicin-
ity of the point on the axis midway between the two coils. Deter-
mine the magnitude of the coil separation b that for given coil
radius a will make the field in this region as nearly uniform as
possible.

6.56 Field at the tip of a cone **
A hollow cone (like a party hat) has vertex angle 2θ , slant height
L, and surface charge density σ . It spins around its symmetry axis
with angular frequency ω. What is the magnetic field at
the tip?

6.57 A rotating cylinder *
An infinite cylinder with radius R and surface charge density σ

spins around its symmetry axis with angular frequency ω. Find the
magnetic field inside the cylinder.

6.58 Rotating cylinders **
Two long coaxial aluminum cylinders are charged to a potential
difference of 15 kV. The inner cylinder (assumed to be the pos-
itive one) has an outer diameter of 6 cm, the outer cylinder an
inner diameter of 8 cm. With the outer cylinder stationary the inner
cylinder is rotated around its axis at a constant speed of 30 revo-
lutions per second. Describe the magnetic field this produces and
determine its intensity in gauss. What if both cylinders are rotated
in the same direction at 30 revolutions per second?

6.59 Scaled-down solenoid **
Consider two solenoids, one of which is a tenth-scale model of the
other. The larger solenoid is 2 meters long, 1 meter in diameter,
and is wound with 1 cm diameter copper wire. When the coil is
connected to a 120 V direct-current generator, the magnetic field
at its center is 1000 gauss. The scaled-down model is exactly one-
tenth the size in every linear dimension, including the diameter of
the wire. The number of turns is the same, and it is designed to
provide the same central field.

(a) Show that the voltage required is the same, namely 120 V.
(b) Compare the coils with respect to the power dissipated and the

difficulty of removing this heat by some cooling means.

6.60 Zero field outside a solenoid ***
We showed in the solution to Problem 6.19 that the magnetic field
is zero outside an infinite solenoid with arbitrary (uniform) cross-
sectional shape. We can demonstrate this fact in another way, sim-
ilar in spirit to Problem 1.17.
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Consider a thin cone emanating from an exterior point P, and
look at the two patches where it intersects the solenoid. Consider
also the thin cone symmetrically located on the other side of P (as
shown in Fig. 6.48), along with its two associated patches. Show

P

Figure 6.48.

that the sum of the field contributions due to these four patches is
zero at P.

6.61 Rectangular torus ***
A coil is wound evenly on a torus of rectangular cross section.
There are N turns of wire in all. Only a few are shown in Fig. 6.49.
With so many turns, we shall assume that the current on the sur-
face of the torus flows exactly radially on the annular end faces,
and exactly longitudinally on the inner and outer cylindrical sur-
faces. First convince yourself that on this assumption, symmetry
requires that the magnetic field everywhere should point in a “cir-
cumferential” direction, that is, that all field lines are circles about
the axis of the torus. Second, prove that the field is zero at all points
outside the torus, including the interior of the central hole. Third,
find the magnitude of the field inside the torus, as a function of
radius.

2b

2a

h

Figure 6.49.

6.62 Creating a uniform field ***
For a delicate magnetic experiment, a physicist wants to cancel the
earth’s field over a volume roughly 30 × 30 × 30 cm in size, so
that the residual field in this region will not be greater than 10 milli-
gauss at any point. The strength of the earth’s field in this location
is 0.55 gauss, making an angle of 30◦ with the vertical. It may be
assumed constant to a milligauss or so over the volume in question.
(The earth’s field itself would hardly vary that much over a foot or
so, but in a laboratory there are often local perturbations.) Deter-
mine roughly what solenoid dimensions would be suitable for the
task, and estimate the number of ampere turns (that is, the current
I multiplied by the number of turns N) required in your compen-
sating system.

6.63 Solenoids and superposition ***
A number of simple facts about the fields of solenoids can be found
by using superposition. The idea is that two solenoids of the same
diameter, and length L, if joined end to end, make a solenoid of
length 2L. Two semi-infinite solenoids butted together make an
infinite solenoid, and so on. (A semi-infinite solenoid is one that
has one end here and the other infinitely far away.) Here are some
facts you can prove this way.

(a) In the finite-length solenoid shown in Fig. 6.50(a), the mag-
netic field on the axis at the point P2 at one end is approxi-
mately half the field at the point P1 in the center. (Is it slightly
more than half, or slightly less than half?)
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(b) In the semi-infinite solenoid shown in Fig. 6.50(b), the field
line FGH, which passes through the very end of the winding,
is a straight line from G out to infinity.

(c) The flux of B through the end face of the semi-infinite solenoid
is just half the flux through the coil at a large distance back in
the interior.

P2 P1
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(a)

(b)

r0
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Figure 6.50.

(d) Any field line that is a distance r0 from the axis far back in
the interior of the coil exits from the end of the coil at a radius
r1 = √

2 r0, assuming that r0 < (solenoid radius)/
√

2.

Show that these statements are true. What else can you find out?

6.64 Equal magnitudes **
Suppose we have a situation in which the component of the mag-
netic field parallel to the plane of a sheet has the same magnitude
on both sides, but changes direction by 90◦ in going through the
sheet. What is going on here? Would there be a force on the sheet?
Should our formula for the force on a current sheet apply to cases
like this?

6.65 Proton beam **
A high-energy accelerator produces a beam of protons with kinetic
energy 2 GeV (that is, 2 · 109 eV per proton). You may assume that
the rest energy of a proton is 1 GeV. The current is 1 milliamp,
and the beam diameter is 2 mm. As measured in the laboratory
frame:

(a) what is the strength of the electric field caused by the beam
1 cm from the central axis of the beam?

(b) What is the strength of the magnetic field at the same
distance?

(c) Now consider a frame F′ that is moving along with the pro-
tons. What fields would be measured in F′?

6.66 Fields in a new frame **
In the neighborhood of the origin in the coordinate system x, y,
z, there is an electric field E of magnitude 100 V/m, pointing in
a direction that makes angles of 30◦ with the x axis, 60◦ with the
y axis. The frame F′ has its axes parallel to those just described,
but is moving, relative to the first frame, with a speed 0.6c in the
positive y direction. Find the direction and magnitude of the elec-
tric field that will be reported by an observer in the frame F′. What
magnetic field does this observer report?

6.67 Fields from two ions **
According to observers in the frame F, the following events
occurred in the xy plane. A singly charged positive ion that had
been moving with the constant velocity v = 0.6c in the ŷ direction
passed through the origin at t = 0. At the same instant a similar
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ion that had been moving with the same speed, but in the −ŷ direc-
tion, passed the point (2, 0, 0) on the x axis. The distances are in
meters.

(a) What are the strength and direction of the electric field, at
t = 0, at the point (3, 0, 0)?

(b) What are the strength and direction of the magnetic field at the
same place and time?

6.68 Force on electrons moving together **
Consider two electrons in a cathode ray tube that are moving on
parallel paths, side by side, at the same speed v. The distance
between them, a distance measured at right angles to their velocity,
is r. What is the force that acts on one of them, owing to the pres-
ence of the other, as observed in the laboratory frame? If v were
very small compared with c, you could answer e2/4πε0r2 and let
it go at that. But v isn’t small, so you have to be careful.

(a) The easiest way to get the answer is as follows. Go to a frame
of reference moving with the electrons. In that frame the two
electrons are at rest, the distance between them is still r (why?),
and the force is just e2/4πε0r2. Now transform the force into
the laboratory frame, using the force transformation law,
Eq. (5.17). (Be careful about which is the primed system; is
the force in the lab frame greater or less than the force in the
electron frame?)

(b) It should be possible to get the same answer working entirely
in the lab frame. In the lab frame, at the instantaneous position
of electron 1, there are both electric and magnetic fields arising
from electron 2 (see Fig. 6.30). Calculate the net force on elec-
tron 1, which is moving through these fields with speed v, and
show that you get the same result as in (a). Make a diagram to
show the directions of the fields and forces.

(c) In the light of this, what can you say about the force between
two side-by-side moving electrons, in the limit v → c?

q

λ
r

r

Figure 6.51.

6.69 Relating the forces **
Two very long sticks each have uniform linear proper charge den-
sity λ. (“Proper” means as measured in the rest frame of the given
object.) One stick is stationary in the lab frame, while the other
stick moves to the left with speed v, as shown in Fig. 6.51. They
are 2r apart, and a stationary point charge q lies midway between
them. Find the electric and magnetic forces on the charge q in the
lab frame, and also in the frame of the bottom stick. (Be sure to
specify the directions.) Then verify that the total forces in the two
frames relate properly.
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6.70 Drifting motion **
Figure 6.52 shows the path of a positive ion moving in the xy plane.

10 cm

y

x

Figure 6.52.

There is a uniform magnetic field of 6000 gauss in the z direc-
tion. Each period of the ion’s cycloidal motion is completed in 1
microsecond. What are the magnitude and the direction of the elec-
tric field that must be present? Hint: Think about a frame in which
the electric field is zero.

6.71 Rowland’s experiment ***
Calculate approximately the magnetic field to be expected just
above the rotating disk in Rowland’s experiment. Take the relevant
data from the description on the page of his paper that is repro-
duced in Fig. 6.31. You will need to know also that the potential
of the rotating disk, with respect to the grounded plates above and
below it, was around 10 kilovolts in most of his runs. This informa-
tion is of course given later in his paper, as is a description of a cru-
cial part of the apparatus, the “astatic” magnetometer shown in the
vertical tube on the left. This is an arrangement in which two mag-
netic needles, oppositely oriented, are rigidly connected together
on one suspension so that the torques caused by the earth’s field
cancel one another. The field produced by the rotating disk, acting
mainly on the nearer needle, can then be detected in the presence
of a very much stronger uniform field. That is by no means the only
precaution Rowland had to take. In solving this problem, you can
make the simplifying assumption that the charges in the disk all
travel with their average speed.

6.72 Transverse Hall field *
Show that the Gaussian version of Eq. (6.84) must read Et =
−J × B/nqc, where Et is in statvolts/cm, B is in gauss, n is in
cm−3, and q is in esu.

6.73 Hall voltage **
A Hall probe for measuring magnetic fields is made from
arsenic-doped silicon, which has 2 · 1021 conduction electrons per
m3 and a resistivity of 0.016 ohm-m. The Hall voltage is measured
across a ribbon of this n-type silicon that is 0.2 cm wide, 0.005
cm thick, and 0.5 cm long between thicker ends at which it is
connected into a 1 V battery circuit. What voltage will be meas-
ured across the 0.2 cm dimension of the ribbon when the probe is
inserted into a field of 1 kilogauss?



7
Electromagnetic
induction

Overview In this chapter we study the effects of magnetic fields
that change with time. Our main result will be that a changing mag-
netic field causes an electric field. We begin by using the Lorentz
force to calculate the emf around a loop moving through a mag-
netic field. We then make the observation that this emf can be
written in terms of the rate of change of the magnetic flux through
the loop. The sign of the induced emf is determined by Lenz’s law.
If we shift frames so that the loop is now stationary and the source
of the magnetic field is moving, we obtain the same result for the
emf in terms of the rate of change of flux, as expected. Faraday’s
law of induction states that this result holds independent of the
cause of the flux change. For example, it applies to the case in
which we turn a dial to decrease the magnetic field while keep-
ing all objects stationary. The differential form of Faraday’s law
is one of Maxwell’s equations. Mutual inductance is the effect by
which a changing current in one loop causes an emf in another
loop. This effect is symmetrical between the two loops, as we will
prove. Self-inductance is the effect by which a changing current
in a loop causes an emf in itself. The most commonly used object
with self-inductance is a solenoid, which we call an inductor, sym-
bolized by L. The current in an RL circuit changes in a specific
way, as we will discover. The energy stored in an inductor equals
LI2/2, which parallels the CV2/2 energy stored in a capacitor. Sim-
ilarly, the energy density in a magnetic field equals B2/2μ0, which
parallels the ε0E2/2 energy density in an electric field.
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7.1 Faraday’s discovery
Michael Faraday’s account of the discovery of electromagnetic induction
begins as follows:

1. The power which electricity of tension possesses of causing an
opposite electrical state in its vicinity has been expressed by the general
term Induction; which, as it has been received into scientific language,
may also, with propriety, be used in the same general sense to express the
power which electrical currents may possess of inducing any particular
state upon matter in their immediate neighbourhood, otherwise indiffer-
ent. It is with this meaning that I purpose using it in the present paper.

2. Certain effects of the induction of electrical currents have already
been recognised and described: as those of magnetization; Ampère’s
experiments of bringing a copper disc near to a flat spiral; his repetition
with electromagnets of Arago’s extraordinary experiments, and perhaps a
few others. Still it appeared unlikely that these could be all the effects which
induction by currents could produce; especially as, upon dispensing with
iron, almost the whole of them disappear, whilst yet an infinity of bodies,
exhibiting definite phenomena of induction with electricity of tension, still
remain to be acted upon by the induction of electricity in motion.

3. Further: Whether Ampère’s beautiful theory were adopted, or any
other, or whatever reservation were mentally made, still it appeared very
extraordinary, that as every electric current was accompanied by a corre-
sponding intensity of magnetic action at right angles to the current, good
conductors of electricity, when placed within the sphere of this action,
should not have any current induced through them, or some sensible effect
produced equivalent in force to such a current.

4. These considerations, with their consequence, the hope of obtain-
ing electricity from ordinary magnetism, have stimulated me at various
times to investigate experimentally the inductive effect of electric currents.
I lately arrived at positive results; and not only had my hopes fulfilled, but
obtained a key which appeared to me to open out a full explanation of
Arago’s magnetic phenomena, and also to discover a new state, which
may probably have great influence in some of the most important effects
of electric currents.

5. These results I purpose describing, not as they were obtained, but
in such a manner as to give the most concise view of the whole.

This passage was part of a paper Faraday presented in 1831. It is
quoted from his “Experimental Researches in Electricity,” published in
London in 1839 (Faraday, 1839). There follows in the paper a description
of a dozen or more experiments, through which Faraday brought to light
every essential feature of the production of electric effects by magnetic
action.

By “electricity of tension” Faraday meant electrostatic charges, and
the induction he refers to in the first sentence involves nothing more than
we have studied in Chapter 3: that the presence of a charge causes a redis-
tribution of charges on conductors nearby. Faraday’s question was, why
does an electric current not cause another current in nearby conductors?
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The production of magnetic fields by electric currents had been thor-
oughly investigated after Oersted’s discovery in 1820. The familiar
laboratory source of these “galvanic” currents was the voltaic battery.
The most sensitive detector of such currents was a galvanometer. It con-
sisted of a magnetized needle pivoted like a compass needle or suspended
by a weak fiber between two coils of wire. Sometimes another needle,
outside the coil but connected rigidly to the first needle, was used to
compensate for the influence of the earth’s magnetic field (Fig. 7.1(a)).
The sketches in Fig. 7.1(b)–(e) represent a few of Faraday’s induction
experiments. You must read his own account, one of the classics of exper-
imental science, to appreciate the resourcefulness with which he pressed
the search, the alert and open mind with which he viewed the evidence.

(a)

(b)

Figure 7.1.
Interpretation by the author of some of Faraday’s
experiments described in his “Experimental
Researches in Electricity,” London, 1839.

In his early experiments Faraday was puzzled to find that a steady
current had no detectable effect on a nearby circuit. He constructed var-
ious coils of wire, of which Fig. 7.1(a) shows an example, winding two
conductors so that they should lie very close together while still separated
by cloth or paper insulation. One conductor would form a circuit with the
galvanometer. Through the other he would send a strong current from a
battery. There was, disappointingly, no deflection of the galvanometer.
But in one of these experiments he noticed a very slight disturbance of
the galvanometer when the current was switched on and another when it
was switched off. Pursuing this lead, he soon established beyond doubt
that currents in other conductors are induced, not by a steady current,
but by a changing current. One of Faraday’s brilliant experimental tac-
tics at this stage was to replace his galvanometer, which he realized was
not a good detector for a brief pulse of current, by a simple small coil
in which he put an unmagnetized steel needle; see Fig. 7.1(b). He found
that the needle was left magnetized by the pulse of current induced when
the primary current was switched on – and it could be magnetized in
the opposite sense by the current pulse induced when the primary circuit
was broken.

Here is his own description of another experiment:
In the preceding experiments the wires were placed near to each other, and
the contact of the inducing one with the battery made when the inductive
effect was required; but as the particular action might be supposed to be
exerted only at the moments of making and breaking contact, the induction
was produced in another way. Several feet of copper wire were stretched
in wide zigzag forms, representing the letter W, on one surface of a broad
board; a second wire was stretched in precisely similar forms on a second
board, so that when brought near the first, the wires should everywhere
touch, except that a sheet of thick paper was interposed. One of these wires
was connected with the galvanometer, and the other with a voltaic battery.
The first wire was then moved towards the second, and as it approached,
the needle was deflected. Being then removed, the needle was deflected in
the opposite direction. By first making the wires approach and then recede,
simultaneously with the vibrations of the needle, the latter soon became
very extensive; but when the wires ceased to move from or towards each
other, the galvanometer needle soon came to its usual position.
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As the wires approximated, the induced current was in the contrary
direction to the inducing current. As the wires receded, the induced cur-
rent was in the same direction as the inducing current. When the wires
remained stationary, there was no induced current.

(c)

(d)

(e)

Figure 7.1.
(Continued)

In this chapter we study the electromagnetic interaction that Faraday
explored in those experiments. From our present viewpoint, induction
can be seen as a natural consequence of the force on a charge moving in
a magnetic field. In a limited sense, we can derive the induction law from
what we already know. In following this course we again depart from the
historical order of development, but we do so (borrowing Faraday’s own
words from the end of the passage first quoted) “to give the most concise
view of the whole.”

7.2 Conducting rod moving through a uniform
magnetic field

Figure 7.2(a) shows a straight piece of wire, or a slender metal rod, sup-
posed to be moving at constant velocity v in a direction perpendicular to
its length. Pervading the space through which the rod moves there is a
uniform magnetic field B, constant in time. This could be supplied by a
large solenoid enclosing the entire region of the diagram. The reference
frame F with coordinates x, y, z is the one in which this solenoid is at
rest. In the absence of the rod there is no electric field in that frame, only
the uniform magnetic field B.

The rod, being a conductor, contains charged particles that will move
if a force is applied to them. Any charged particle that is carried along
with the rod, such as the particle of charge q in Fig. 7.2(b), necessarily
moves through the magnetic field B and therefore experiences a force

f = qv × B. (7.1)

With B and v directed as shown in Fig. 7.2, the force is in the positive
x direction if q is a positive charge, and in the opposite direction for the
negatively charged electrons that are in fact the mobile charge carriers in
most conductors. The consequences will be the same, whether negatives
or positives, or both, are mobile.

When the rod is moving at constant speed and things have settled
down to a steady state, the force f given by Eq. (7.1) must be balanced, at
every point inside the rod, by an equal and opposite force. This can only
arise from an electric field in the rod. The electric field develops in this
way: the force f pushes negative charges toward one end of the rod, leav-
ing the other end positively charged. This goes on until these separated
charges themselves cause an electric field E such that, everywhere in the
interior of the rod,

qE = −f. (7.2)
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Then the motion of charge relative to the rod ceases. This charge dis-
tribution causes an electric field outside the rod, as well as inside. The
field outside looks something like that of separated positive and nega-
tive charges, with the difference that the charges are not concentrated
entirely at the ends of the rod but are distributed along it. The external
field is sketched in Fig. 7.3(a). Figure 7.3(b) is an enlarged view of the
positively charged end of the rod, showing the charge distribution on the
surface and some field lines both outside and inside the conductor. That
is the way things look, at any instant of time, in frame F.

(a)

(b)

(c)

x
y

q

z
Frame F

Frame F'

x
y

z

x'
y'

z'

B

B

f

B'

E'

v

v

E = 0

Figure 7.2.
(a) A conducting rod moves through a magnetic
field. (b) Any charge q that travels with the rod is
acted upon by the force qv × B. (c) The
reference frame F′ moves with the rod; in this
frame there is an electric field E′.

Let us observe this system from a frame F′ that moves with the rod.
Ignoring the rod for the moment, we see in this frame F′, indicated in
Fig. 7.2(c), a magnetic field B′ (not much different from B if v is small, by
Eq. (6.76)) together with a uniform electric field, as given by Eq. (6.82),

E′ = v × B′. (7.3)

This is valid for any value of v. When we add the rod to this system,
all we are doing is putting a stationary conducting rod into a uniform
electric field. There will be a redistribution of charge on the surface of
the rod so as to make the electric field zero inside, as in the case of the
metal box of Fig. 3.8, or of any other conductor in an electric field. The
presence of the magnetic field B′ has no influence on this static charge
distribution. Figure 7.4(a) shows some electric field lines in the frame F′.
This field is the sum of the uniform field in Eq. (7.3) and the field due to
the separated positive and negative charges. In the magnified view of the
end of the rod in Fig. 7.4(b), we observe that the electric field inside the
rod is zero.

Except for the Lorentz contraction, which is second order in v/c, the
charge distribution seen at one instant in frame F, Fig. 7.3(b), is the same
as that seen in F′. The electric fields differ because the field in Fig. 7.3
is that of the surface charge distribution alone, while the electric field
we see in Fig. 7.4 is the field of the surface charge distribution plus the
uniform electric field that exists in that frame of reference. An observer in
F says, “Inside the rod there has developed an electric field E = −v×B,
exerting a force qE = −qv × B which just balances the force qv × B
that would otherwise cause any charge q to move along the rod.” An
observer in F′ says, “Inside the rod there is no electric field, because the
redistribution of charge on the rod causes there to be zero net internal
field, as usual in a conductor. And although there is a uniform magnetic
field here, no force arises from it because no charges are moving.” Each
account is correct.

7.3 Loop moving through a nonuniform
magnetic field

What if we made a rectangular loop of wire, as shown in Fig. 7.5, and
moved it at constant speed through the uniform field B? To predict what
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will happen, we need only ask ourselves – adopting the frame F′ – what
would happen if we put such a loop into a uniform electric field. Obvi-
ously two opposite sides of the rectangle would acquire some charge,
but that would be all. Suppose, however, that the field B in the frame
F, though constant in time, is not uniform in space. To make this vivid,
we show in Fig. 7.6 the field B with a short solenoid as its source. This
solenoid, together with the battery that supplies its constant current, is
fixed near the origin in the frame F. (We said earlier there is no electric
field in F; if we really use a solenoid of finite resistance to provide the
field, there will be an electric field associated with the battery and this
circuit. It is irrelevant to our problem and can be ignored. Or we can pack
the whole solenoid, with its battery, inside a metal box, making sure the
total charge is zero.)

(a)

Frame F

v

(b)

x

y

+ + + + + + + +++ ++

+ + + + + + + +++ ++

++++++++++++

Figure 7.3.
(a) The electric field, as seen at one instant of
time, in the frame F. There is an electric field in
the vicinity of the rod, and also inside the rod.
The sources of the field are charges on the
surface of the rod, as shown in (b), the enlarged
view of the right-hand end of the rod.

Now, with the loop moving with speed v in the y direction, in the
frame F, let its position at some instant t be such that the magnetic field
strength is B1 at the left side of the loop and B2 along the right side
(Fig. 7.6). Let f denote the force that acts on a charge q that rides along
with the loop. This force is a function of position on the loop, at this
instant of time. Let’s evaluate the line integral of f, taken around the
whole loop (counterclockwise as viewed from above). On the two sides
of the loop that lie parallel to the direction of motion, f is perpendicu-
lar to the path element ds, so these give nothing. Taking account of the
contributions from the other two sides, each of length w, we have∫

f · ds = qv(B1 − B2)w. (7.4)

If we imagine a charge q to move all around the loop, in a time short
enough so that the position of the loop has not changed appreciably, then
Eq. (7.4) gives the work done by the force f. The work done per unit
charge is (1/q)

∫
f · ds. We call this quantity electromotive force. We use

the symbol E for it, and often shorten the name to emf. So we have

E ≡ 1
q

∫
f · ds (7.5)

E has the same dimensions as electric potential, so the SI unit is the volt,
or joule per coulomb. In the Gaussian system, E is measured in statvolts,
or ergs per esu.

We have noted that the force f does work. However, f is a magnetic
force, and we know that magnetic forces do no work, because the force is
always perpendicular to the velocity. So we seem to have an issue here.
Is the magnetic force somehow doing work? If not, then what is? This is
the subject of Problem 7.2.

The term electromotive force was introduced earlier, in Section 4.9.
It was defined as the work per unit charge involved in moving a charge
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around a circuit containing a voltaic cell. We now broaden the definition
of emf to include any influence that causes charge to circulate around
a closed path. If the path happens to be a physical circuit with resis-
tance R, then the emf E will cause a current to flow according to Ohm’s
law: I = E/R. Note that since curl E = 0 for an electrostatic field,
such a field cannot cause a charge to circulate around a closed path. By
our above definition of electromotive force, an emf must therefore be
nonelectrostatic in origin. See Varney and Fisher (1980) for a discussion
of electromotive force.

(a)

(b)

x'

y'

E' Frame F'

+ + + + + + + + + +++

+ + + + + + + + + ++++

+++++++++++++

Figure 7.4.
(a) The electric field in the frame F′ in which the
rod is at rest. This field is a superposition of a
general field E′, uniform throughout space, and
the field of the surface charge distribution. The
result is zero electric field inside the rod, shown
in magnified detail in (b). Compare with Fig. 7.3.

In the particular case we are considering, f is the force that acts on a
charge moving in a magnetic field, and E has the magnitude

E = vw(B1 − B2). (7.6)

The electromotive force given by Eq. (7.6) is related in a very simple
way to the rate of change of magnetic flux through the loop. (We will be
quantitative about this in Theorem 7.1.) By the magnetic flux through a
loop we mean the surface integral of B over a surface that has the loop for
its boundary. The flux � through the closed curve or loop C in Fig. 7.7(a)
is given by the surface integral of B over S1:

�S1 =
∫

S1

B · da1. (7.7)

We could draw infinitely many surfaces bounded by C. Figure 7.7(b)
shows another one, S2. Why don’t we have to specify which surface to use
in computing the flux? It doesn’t make any difference because

∫
B · da

will have the same value for all surfaces. Let’s take a minute to settle this
point once and for all.

The flux through S2 will be
∫

S2
B · da2. Note that we let the vector

da2 stick out from the upper side of S2, to be consistent with our choice
of side of S1. This will give a positive number if the net flux through C
is upward:

�S2 =
∫

S2

B · da2. (7.8)

We learned in Section 6.2 that the magnetic field has zero divergence:
div B = 0. It follows then from Gauss’s theorem that, if S is any closed
surface (“balloon”) and V is the volume inside it, we have∫

S
B · da =

∫
V

div B dv = 0. (7.9)

Apply this to the closed surface, rather like a kettledrum, formed by join-
ing our S1 to S2, as in Fig. 7.7(c). On S2 the outward normal is opposite
the vector da2 we used in calculating the flux through C. Thus

0 =
∫

S
B · da =

∫
S1

B · da1 +
∫

S2

B · (−da2), (7.10)
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or ∫
S1

B · da1 =
∫

S2

B · da2. (7.11)

This shows that it doesn’t matter which surface we use to compute the
flux through C.
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Figure 7.5.
(a) Here the wire loop is moving in a uniform
magnetic field B. (b) Observed in the frame F′ in
which the loop is at rest, the fields are B′ and E′.

This is all pretty obvious if you realize that div B = 0 implies a kind
of spatial conservation of flux. As much flux enters any volume as leaves
it. (We are considering the situation in the whole space at one instant of
time.) It is often helpful to visualize “tubes” of flux. A flux tube (Fig. 7.8)
is a surface at every point on which the magnetic field line lies in the
plane of the surface. It is a surface through which no flux passes, and
we can think of it as containing a certain amount of flux, as a fiber optic
cable contains fibers. Through any closed curve drawn tightly around a
flux tube, the same flux passes. This could be said about the electric field
E only for regions where there is no electric charge, since div E = ρ/ε0.
The magnetic field always has zero divergence everywhere.

Returning now to the moving rectangular loop, let us find the rate
of change of flux through the loop. In time dt the loop moves a distance
v dt. This changes in two ways the total flux through the loop, which is∫

B · da over a surface spanning the loop. As you can see in Fig. 7.9,
flux is gained at the right, in amount B2wv dt, while an amount of flux
B1wv dt is lost at the left. Hence d�, the change in flux through the loop
in time dt, is

d� = −(B1 − B2)wv dt. (7.12) Figure 7.6.
Here the field B, observed in F, is not uniform. It
varies in both direction and magnitude from
place to place.
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Comparing Eq. (7.12) with Eq. (7.6), we see that, in this case at least, the
electromotive force can be expressed as E = −d�/dt. It turns out that
this is a general result, as the following theorem states.

Theorem 7.1 If the magnetic field in a given frame is constant in time,
then for a loop of any shape moving in any manner, the emf E around
the loop is related to the magnetic flux � through the loop by

E = −d�

dt
(7.13)

C

C

C da1

da2

da1

–da2

S1

S1

S2

S2

(a)

(b)

(c)

Figure 7.7.
(a) The flux through C is � = ∫

S1
B · da1. (b) S2 is

another surface that has C as its boundary.
This will do just as well for computing �.
(c) Combining S1 and S2 to make a closed
surface, for which

∫
B · da must vanish, proves

that
∫

S1
B · da1 =

∫
S2

B · da2.

Proof The loop C in Fig. 7.10 occupies the position C1 at time t, and it
is moving so that it occupies the position C2 at time t + dt. A particular
element of the loop ds has been transported with velocity v to its new
position. S indicates a surface that spans the loop at time t. The flux
through the loop at this instant of time is

�(t) =
∫

S
B · da. (7.14)

The magnetic field B comes from sources that are stationary in our frame
of reference and remains constant in time, at any point fixed in this frame.
At time t + dt a surface that spans the loop is the original surface S, left
fixed in space, augmented by the “rim” dS. (Remember, we are allowed
to use any surface spanning the loop to compute the flux through it.)
Thus

�(t + dt) =
∫

S+dS
B · da = �(t) +

∫
dS

B · da. (7.15)

Hence the change in flux, in time dt, is just the flux
∫

dS B ·da through the
rim dS. On the rim, an element of surface area da can be expressed as
(v dt)× ds, because this cross product has magnitude |v dt||ds| sin θ and
points in the direction perpendicular to both v dt and ds; the sin θ in the
magnitude gives the correct area of the little parallelogram in Fig. 7.10.
So the integral over the surface dS can be written as an integral around
the path C, in this way:

d� =
∫

dS
B · da =

∫
C

B · [(v dt) × ds]. (7.16)

Since dt is a constant for the integration, we can factor it out to obtain

d�

dt
=

∫
C

B · (v × ds). (7.17)

The product a · (b× c) of any three vectors satisfies the relation
a · (b× c) = −(b× a) · c, which you can verify by explicitly writing out
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each side in Cartesian components. Using this identity to rearrange the
integrand in Eq. (7.17), we have

d�

dt
= −

∫
C
(v × B) · ds. (7.18)

Now, the force on a charge q that is carried along by the loop is just

Figure 7.8.
A flux tube. Magnetic field lines lie in the surface
of the tube. The tube encloses a certain amount
of flux �. No matter where you chop it, you will
find that

∫
B · da over the section has the same

value �. A flux tube doesn’t have to be round.
You can start somewhere with any cross
section, and the course of the field lines will
determine how the section changes size and
shape as you go along the tube.

qv × B, so the electromotive force, which is the line integral around the
loop of the force per unit charge, is just

E =
∫

C
(v × B) · ds. (7.19)

Comparing Eq. (7.18) with Eq. (7.19), we get the simple relation given
in Eq. (7.13), valid for arbitrary shape and motion of the loop. (We did
not even have to assume that v is the same for all parts of the loop!) In
summary, the line integral around a moving loop of f/q, the force per
unit charge, is just the negative of the rate of change of flux through the
loop.

The sense of the line integral and the direction in which flux is called
positive are to be related by a right-hand-thread rule. For instance, in
Fig. 7.6, the flux is upward through the loop and is decreasing. Taking
the minus sign in Eq. (7.13) into account, our rule would predict an elec-
tromotive force that would tend to drive a positive charge around the
loop in a counterclockwise direction, as seen looking down on the loop
(Fig. 7.11).

Position of loop
at time t

B1

B2

Position of loop
at time t + dt

v dt
w

Figure 7.9.
In the interval dt, the loop gains an increment of
flux B2wv dt and loses an increment B1wv dt.

There is a better way to look at this question of sign and direction.
Note that if a current should flow in the direction of the induced elec-
tromotive force, in the situation shown in Fig. 7.11, this current itself
would create some flux through the loop in a direction to counteract the
assumed flux change (because the Biot–Savart law, Eq. (6.49), tells us
that the contributions from this current to the B field inside the loop all
point upward in Fig. 7.11). That is an essential physical fact, and not the
consequence of an arbitrary convention about signs and directions. It is a
manifestation of the tendency of systems to resist change. In this context
it is traditionally called Lenz’s law.

Lenz’s law The direction of the induced electromotive force is such
that the induced current creates a magnetic field that opposes the change
in flux.

Another example of Lenz’s law is illustrated in Fig. 7.12. The con-
ducting ring is falling in the magnetic field of the coil. The flux through
the ring is downward and is increasing in magnitude. To counteract this
change, some new flux upward is needed. It would take a current flow-
ing around the ring in the direction of the arrows to produce such flux.
Lenz’s law assures us that the induced emf will be in the correct direction
to cause such a current.
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If the electromotive force causes current to flow in the loop that is
shown in Figs. 7.6 and 7.11, as it will if the loop has a finite resistance,
some energy will be dissipated in the wire. What supplies this energy?
To answer that, consider the force that acts on the current in the loop if
it flows in the sense indicated by the arrow in Fig 7.11. The side on the
right, in the field B2, will experience a force toward the right, while the
opposite side of the loop, in the field B1, will be pushed toward the left.
But B1 is greater than B2, so the net force on the loop is toward the left,
opposing the motion. To keep the loop moving at constant speed, some
external agency has to do work, and the energy thus invested eventually
shows up as heat in the wire (see Exercise 7.30). Imagine what would
happen if Lenz’s law were violated, or if the force on the loop were to
act in a direction to assist the motion of the loop!

C1

C2

S
B

da

da

ds
dS

v dt

Figure 7.10.
The loop moves from position C1 to position C2
in time dt.

B1

B2

v

Figure 7.11.
The flux through the loop is upward and is
decreasing in magnitude as time goes on. The
arrow shows the direction of the electromotive
force, that is, the direction in which positive
charge tends to be driven.

Example (Sinusoidal E) A very common element in electrical machinery
and electrical instruments is a loop or coil that rotates in a magnetic field. Let’s
apply what we have just learned to the system shown in Fig. 7.13, a single loop
rotating at constant speed in a magnetic field that is approximately uniform. The
mechanical essentials, shaft, bearings, drive, etc., are not drawn. The field B is
provided by the two fixed coils. Suppose the loop rotates with angular velocity
ω, in radians/second. If its position at any instant is specified by the angle θ , then
θ = ωt+α, where the constant α is simply the position of the loop at t = 0. The
component of B perpendicular to the plane of the loop is B sin θ . Therefore the
flux through the loop at time t is

�(t) = SB sin(ωt + α), (7.20)

where S is the area of the loop. For the induced electromotive force we then have

E = −d�

dt
= −SBω cos(ωt + α). (7.21)

If the loop instead of being closed is connected through slip rings to external
wires, as shown in Fig. 7.13, we can detect at these terminals a sinusoidally alter-
nating potential difference.

A numerical example will show how the units work out. Suppose the area
of the loop in Fig. 7.13 is 80 cm2, the field strength B is 50 gauss, and the loop is
rotating at 30 revolutions per second. Then ω = 2π · 30, or 188 radians/second.
The amplitude, that is, the maximum magnitude of the oscillating electromotive
force induced in the loop, is

E0 = SBω = (
0.008 m2)(0.005 tesla

)(
188 s−1) = 7.52 · 10−3 V. (7.22)

You should verify that 1 m2 · tesla/s is indeed equivalent to 1 volt.

7.4 Stationary loop with the field source moving
We can, if we like, look at the events depicted in Fig. 7.6 from a frame
of reference that is moving with the loop. That can’t change the physics,
only the words we use to describe it. Let F′, with coordinates x′, y′, z′,
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be the frame attached to the loop, which we now regard as stationary
(Fig. 7.14). The coil and battery, stationary in frame F, are moving in the
−y′ direction with velocity v′ = −v. Let B′

1 and B′
2 be the magnetic field

measured at the two ends of the loop by observers in F′ at some instant
t′. At these positions there will be an electric field in F′. Equation (6.82)
tells us that

E′
1 = v × B′

1 and E′
2 = v × B′

2. (7.23)

For observers in F′ this is a genuine electric field. It is not an elec-
trostatic field; the line integral of E′ around any closed path in F′ is not
generally zero. In fact, from Eq. (7.23) the line integral of E′ around the
rectangular loop is ∫

E′ · ds′ = wv(B′
1 − B′

2). (7.24)

Falling ring

Direction of
induced emf

Figure 7.12.
As the ring falls, the downward flux through the
ring is increasing. Lenz’s law tells us that the
induced emf will be in the direction indicated by
the arrows, for that is the direction in which
current must flow to produce upward flux
through the ring. The system reacts so as to
oppose the change that is occurring.

We can call the line integral in Eq. (7.24) the electromotive force
E ′ on this path. If a charged particle moves once around the path, E ′ is
the work done on it, per unit charge. E ′ is related to the rate of change
of flux through the loop. To see this, note that, while the loop itself is
stationary, the magnetic field pattern is now moving with the velocity
−v of the source. Hence for the flux lost or gained at either end of the
loop, in a time interval dt′, we get a result similar to Eq. (7.12), and we
conclude that

E ′ = −d�′

dt′
. (7.25)

Figure 7.13.
The two coils produce a magnetic field B that is
approximately uniform in the vicinity of the loop.
In the loop, rotating with angular velocity ω, a
sinusoidally varying electromotive force is
induced.

B

I

Area S

θ



354 Electromagnetic induction

E�1

x�

x
y�

y

z�

z

E�2

B�2

B�1

–v

Frame F �

Figure 7.14.
As observed in the frame F′, the loop is at rest
and the field source is moving. The fields B′ and
E′ are both present and are functions of both
position and time.

We can summarize as follows the descriptions in the two frames of
reference, F, in which the source of B is at rest, and F′, in which the loop
is at rest.

• An observer in F says, “We have here a magnetic field that, though
it is not uniform spatially, is constant in time. There is no electric
field. That wire loop over there is moving with velocity v through the
magnetic field, so the charges in it are acted on by a force v×B per
unit charge. The line integral of this force per unit charge, taken around
the whole loop, is the electromotive force E , and it is equal to −d�/dt.
The flux � is

∫
B · da over a surface S that, at some instant of time t

by my clock, spans the loop.”
• An observer in F′ says, “This loop is stationary, and only an electric

field could cause the charges in it to move. But there is in fact an elec-
tric field E′. It seems to be caused by that magnetlike object which
happens at this moment to be whizzing by with a velocity −v, produc-
ing at the same time a magnetic field B′. The electric field is such that∫

E′ · ds′ around this stationary loop is not zero but instead is equal to
the negative of the rate of change of flux through the loop, −d�′/dt′.
The flux �′ is

∫
B′ · da′ over a surface spanning the loop, the values

of B′ to be measured all over this surface at some one instant t′, by my
clock.”

Our conclusions so far are relativistically exact. They hold for any
speed v < c provided we observe scrupulously the distinctions between
B and B′, t and t′, etc. If v � c, so that v2/c2 can be neglected, B′ will
be practically equal to B, and we can safely ignore also the distinction
between t and t′.
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7.5 Universal law of induction
Let’s carry out three experiments with the apparatus shown in Fig. 7.15.
The tables are on wheels so that they can be easily moved. A sensi-
tive galvanometer has been connected to our old rectangular loop, and
to increase any induced electromotive force we put several turns of wire
in the loop rather than one. Frankly though, our sensitivity might still be
marginal, with the feeble source of magnetic field pictured. Perhaps you
can devise a more practical version of the experiment.

Experiment I. With constant current in the coil and table 1 stationary,
table 2 moves toward the right (away from table 1) with speed v. The
galvanometer deflects. We are not surprised; we have already analyzed
this situation in Section 7.3.

Experiment II. With constant current in the coil and table 2 stationary,
table1moves to the left (awayfromtable2)withspeedv.Thegalvanometer
deflects.Thisdoesn’tsurpriseuseither.WehavejustdiscussedinSection7.4
theequivalenceofExperimentsIandII,anequivalencethat isanexampleof
Lorentz invariance or, for the low speeds of our tables, Galilean invariance.
We know that in both experiments the deflection of the galvanometer can
be related to the rate of change of flux of B through the loop.

Experiment III. Both tables remain at rest, but we vary the current I in
the coil by sliding the contact K along the resistance strip. We do this in
such a way that the rate of decrease of the field B at the loop is the same
as it was in Experiments I and II. Does the galvanometer deflect?

Figure 7.15.
We imagine that either table can move or, with
both tables fixed, the current I in the coil can be
gradually changed.

Table 1

I

K

Resista
nce strip

Table 2

Loop

Galvanometer

Coil
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For an observer stationed at the loop on table 2 and measuring the
magnetic field in that neighborhood as a function of time and position,
there is no way to distinguish among Experiments I, II, and III. Im-
agine a black cloth curtain between the two tables. Although there might
be minor differences between the field configurations for II and III, an
observer who did not know what was behind the curtain could not decide,
on the basis of local B measurements alone, which case it was. Therefore
if the galvanometer did not respond with the same deflection in Experi-
ment III, it would mean that the relation between the magnetic and elec-
tric fields in a region depends on the nature of a remote source. Two
magnetic fields essentially similar in their local properties would have
associated electric fields with different values of

∫
E · ds.

We find by experiment that III is equivalent to I and II. The gal-
vanometer deflects, by the same amount as before. Faraday’s experiments
were the first to demonstrate this fundamental fact. The electromotive
force we observe depends only on the rate of change of the flux of B, and
not on anything else. We can state as a universal relation Faraday’s law
of induction:

If C is some closed curve, stationary in coordinates x, y, z; if S is
a surface spanning C; and if B(x, y, z, t) is the magnetic field meas-
ured in x, y, z, at any time t, then

E =
∫

C
E · ds = − d

dt

∫
S

B · da = −d�

dt
(Faraday’s law)

(7.26)

Using the vector derivative curl, we can express this law in differen-
tial form. If the relation∫

C
E · ds = − d

dt

∫
S

B · da (7.27)

is true for any curve C and spanning surface S, as our law asserts, it
follows that, at any point,

curl E = −dB
dt

. (7.28)

To show that Eq. (7.28) follows from Eq. (7.27), we proceed as usual to
let C shrink down around a point, which we take to be a nonsingular
point for the function B. Then in the limit the variation of B over the
small patch of surface a that spans C will be negligible and the surface
integral will approach simply B · a. By definition (see Eq. (2.80)), the
limit approached by

∫
C E · ds as the patch shrinks is a · curl E. Thus

Eq. (7.27) becomes, in the limit,

a · curl E = − d
dt

(B · a) = a ·
(
−dB

dt

)
. (7.29)



7.5 Universal law of induction 357

Since this holds for any infinitesimal a, it must be that1

curl E = −dB
dt

. (7.30)

Recognizing that B may depend on position as well as time, we write
∂B/∂t in place of dB/dt. We have then these two entirely equivalent
statements of the law of induction:

∫
C

E · ds = − d
dt

∫
S

B · da

curl E = −∂B
∂t

(7.31)

With Faraday’s law of induction, we are one step closer to the com-
plete set of Maxwell’s equations. We will obtain the last piece to the
puzzle in Chapter 9.

In Eq. (7.31) the electric field E is to be expressed in our SI units of
volts/meter, with B in teslas, ds in meters, and da in m2. The electromo-
tive force E = ∫

C E · ds will then be given in volts. In Gaussian units the
relation expressed by Eq. (7.31) looks like this:∫

C
E · ds = −1

c
d
dt

∫
S

B · da,

curl E = −1
c

∂B
∂t

. (7.32)

Here E is in statvolts/cm, B is in gauss, ds and da are in cm and cm2,
respectively, and c is in cm/s. The electromotive force E = ∫

C E · ds will
be given in statvolts.

The magnetic flux �, which is
∫

C B · da, is expressed in tesla-m2

in our SI units, and in gauss-cm2, a unit exactly 108 times smaller, in
Gaussian units (because 1 m2 = 104 cm2 and 1 tesla = 104 gauss,
exactly). The SI flux unit is assigned a name of its own, the weber.

When in doubt about the units, you may find one of the following
equivalent statements helpful:

• Electromotive force in statvolts equals:
1/c times rate of change of flux in gauss-cm2/s.

• Electromotive force in volts equals:
rate of change of flux in tesla-m2/s.

• Electromotive force in volts equals:
10−8 times rate of change of flux in gauss-cm2/s.

1 If that isn’t obvious, note that choosing a in the x direction will establish that
(curl E)x = −dBx/dt, and so on.
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Figure 7.16.
Alternating current in the coils produces a
magnetic field which, at the center, oscillates
between 50 gauss upward and 50 gauss
downward. At any instant the field is
approximately uniform within the circle C.

Bmax = 50 gauss
C 10 cm radius

If these seem confusing, don’t try to remember them. Just remember that
you can look them up on this page.

The differential expression, curl E = −∂B/∂t, brings out rather
plainly the point we tried to make earlier about the local nature of the
field relations. The variation in time of B in a neighborhood completely
determines curl E there – nothing else matters. That does not completely
determine E itself, of course. Without affecting this relation, any elec-
trostatic field with curl E = 0 could be superposed.

Example (Sinusoidal B field) As a concrete example of Faraday’s law, sup-
pose coils like those in Fig. 7.13 are supplied with 60 cycles per second alternat-
ing current, instead of direct current. The current and the magnetic field vary as
sin(2π · 60 s−1 · t), or sin(377 s−1 · t). Suppose the amplitude of the current is
such that the magnetic field B in the central region reaches a maximum value of
50 gauss, or 0.005 tesla. We want to investigate the induced electric field, and the
electromotive force, on the circular path 10 cm in radius shown in Fig. 7.16. We
may assume that the field B is practically uniform in the interior of this circle, at
any instant of time. So we have

B = (0.005 T) sin(377 s−1 · t). (7.33)

The flux through the loop C is

� = πr2B = π · (0.1 m)2 · (0.005 T) sin(377 s−1 · t)

= 1.57 · 10−4 sin(377 s−1 · t) T m2. (7.34)
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Using Eq. (7.26) to calculate the electromotive force, we obtain

E = −d�

dt
= −(377 s−1) · 1.57 · 10−4 cos(377 s−1 · t) T m2

= −0.059 cos(377 s−1 · t) V. (7.35)

The maximum attained by E is 59 millivolts. The minus sign will ensure that
Lenz’s law is respected, if we have defined our directions consistently. The vari-
ation of both � and E with time is shown in Fig. 7.17.

(a)

(b)

Time

Time

Φmax

max = 0.059 volt

Φ

 = 1.57 . 10–4 tesla-m2
 = 15,700 gauss-cm2

Figure 7.17.
(a) The flux through the circle C. (b) The
electromotive force associated with the path C.

What about the electric field itself? Usually we cannot deduce E from a
knowledge of curl E alone. However, our path C is here a circle around the center
of a symmetrical system. If there are no other electric fields around, we may
assume that, on the circle C, E lies in that plane and has a constant magnitude.
Then it is a trivial matter to predict its magnitude, since

∫
C E · ds = 2πrE = E ,

which we have already calculated. In this case, the electric field on the circle
might look like Fig. 7.18(a) at a particular instant. But if there are other field
sources, it could look quite different. If there happened to be a positive and a
negative charge located on the axis as shown in Fig. 7.18(b), the electric field in
the vicinity of the circle would be the superposition of the electrostatic field of
the two charges and the induced electric field.

A consequence of Faraday’s law of induction is that Kirchhoff’s
loop rule (which states that

∫
E · ds = 0 around a closed path) is no

longer valid in situations where there is a changing magnetic field. Fara-
day has taken us beyond the comfortable realm of conservative elec-
tric fields. The voltage difference between two points now depends on
the path between them. Problem 7.4 provides an instructive example of
this fact.

A note on the terminology: the term “potential difference” is gener-
ally reserved for electrostatic fields, because it is only for such fields that
we can uniquely define a potential function φ at all points in space, with
the property that E = −∇φ. For these fields, the potential difference
between points a and b is given by φb − φa = − ∫ b

a E · ds. The term
“voltage difference” applies to any electric field, not necessarily electro-
static, and it is defined similarly as Vb − Va = − ∫ b

a E · ds. If there are
changing magnetic fields involved, this line integral will depend on the
path between a and b. The voltage difference is what a voltmeter meas-
ures, and we can hook up a voltmeter to any type of circuit, of course, no
matter what kinds of electric fields it involves. But if there are changing
magnetic fields, Problem 7.4 shows that it matters how we hook it up.
See Romer (1982) for more discussion of this issue.

7.6 Mutual inductance
Two circuits, or loops, C1 and C2 are fixed in position relative to one
another (Fig. 7.19). By some means, such as a battery and a variable
resistance, a controllable current I1 is caused to flow in circuit C1. Let
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B1(x, y, z) be the magnetic field that would exist if the current in C1
remained constant at the value I1, and let �21 denote the flux of B1
through the circuit C2. Thus

�21 =
∫

S2

B1 · da2, (7.36)

where S2 is a surface spanning the loop C2. With the shape and relative
position of the two circuits fixed, �21 will be proportional to I1:

�21

I1
= constant ≡ M21. (7.37)

Suppose now that I1 changes with time, but slowly enough so that

+

–

(a)

(b)

r

E

E

Figure 7.18.
The electric field on the circular path C. (a) In
the absence of sources other than the
symmetrical, oscillating current. (b) Including the
electrostatic field of two charges on the axis.

the field B1 at any point in the vicinity of C2 is related to the current I1 in
C1 (at the same instant of time) in the same way as it would be related for
a steady current. (To see why such a restriction is necessary, imagine that
C1 and C2 are 10 meters apart and we cause the current in C1 to double
in value in 10 nanoseconds!) The flux �21 will change in proportion as
I1 changes. There will be an electromotive force induced in circuit C2, of
magnitude

E21 = −d�21

dt
�⇒ E21 = −M21

dI1

dt
. (7.38)

In Gaussian units there is a factor of c in the denominator here. But we
can define a new constant M′

21 ≡ M21/c so that the relation between E21
and dI1/dt remains of the same form.

We call the constant M21 the coefficient of mutual inductance. Its
value is determined by the geometry of our arrangement of loops. The
units will of course depend on our choice of units for E , I, and t. In SI

Figure 7.19.
Current I1 in loop C1 causes a certain flux �21
through loop C2.

C1

I1

C2
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units, with E in volts and I in amperes, the unit for M21 is volt · amp−1 · s,
or ohm · s. This unit is called the henry;2

1 henry = 1
volt · second

amp
= 1 ohm · second. (7.39)

That is, the mutual inductance M21 is one henry if a current I1 changing
at the rate of 1 ampere/second induces an electromotive force of 1 volt in
circuit C2. In Gaussian units, with E in statvolts and I in esu/second, the
unit for M21 is statvolt · (esu/second)−1 · second. Since 1 statvolt equals
1 esu/cm, this unit can also be written as second2/cm.

Example (Concentric rings) Figure 7.20 shows two coplanar, concentric
B1

C1

C2

R1
R2

I1

Figure 7.20.
Current I1 in ring C1 causes field B1, which is
approximately uniform over the region of the
small ring C2.

rings: a small ring C2 and a much larger ring C1. Assuming R2 � R1, what
is the mutual inductance M21?

Solution At the center of C1, with I1 flowing, the field B1 is given by
Eq. (6.54) as

B1 = μ0I1
2R1

. (7.40)

Since we are assuming R2 � R1, we can neglect the variation of B1 over the
interior of the small ring. The flux through the small ring is then

�21 = (πR2
2)

μ0I1
2R1

= μ0π I1R2
2

2R1
. (7.41)

The mutual inductance M21 in Eq. (7.37) is therefore

M21 = �21
I1

= μ0πR2
2

2R1
, (7.42)

and the electromotive force induced in C2 is

E21 = −M21
dI1
dt

= −μ0πR2
2

2R1

dI1
dt

. (7.43)

Since μ0 = 4π · 10−7 kg m/C2, we can write M21 alternatively as

M21 = (2π2 · 10−7 kg m/C2)R2
2

R1
. (7.44)

The numerical value of this expression gives M21 in henrys. In Gaussian units,
you can show that the relation corresponding to Eq. (7.43) is

E21 = −1
c

2π2R2
2

cR1

dI1
dt

, (7.45)

2 The unit is named after Joseph Henry (1797–1878), the foremost American physicist of
his time. Electromagnetic induction was discovered independently by Henry,
practically at the same time as Faraday conducted his experiments. Henry was the first
to recognize the phenomenon of self-induction. He developed the electromagnet and
the prototype of the electric motor, invented the electric relay, and all but invented
telegraphy.
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with E21 in statvolts, the R’s in cm, and I1 in esu/second. M21 is the coefficient
of the dI1/dt term, namely 2π2R2

2/c2R1 (in second2/cm). Appendix C states,
and derives, the conversion factor from henry to second2/cm.

Incidentally, the minus sign we have been carrying along doesn’t tell us
much at this stage. If you want to be sure which way the electromotive force will
tend to drive current in C2, Lenz’s law is your most reliable guide.

If the circuit C1 consisted of N1 turns of wire instead of a single
ring, the field B1 at the center would be N1 times as strong, for a given
current I1. Also, if the small loop C2 consisted of N2 turns, all of the same
radius R2, the electromotive force in each turn would add to that in the
next, making the total electromotive force in that circuit N2 times that of
a single turn. Thus for multiple turns in each coil the mutual inductance
will be given by

M21 = μ0πN1N2R2
2

2R1
. (7.46)

This assumes that the turns in each coil are neatly bundled together,
the cross section of the bundle being small compared with the coil radius.
However, the mutual inductance M21 has a well-defined meaning for two
circuits of any shape or distribution. As we wrote in Eq. (7.38), M21 is the
(negative) ratio of the electromotive force in circuit 2, caused by chang-
ing current in circuit 1, to the rate of change of current I1. That is,

M21 = − E21

dI1/dt
. (7.47)

7.7 A reciprocity theorem
In considering the circuits C1 and C2 in the preceding example, we might
have inquired about the electromotive force induced in circuit C1 by a
changing current in circuit C2. That would involve another coefficient of
mutual inductance, M12, given by (ignoring the sign)

M12 = E12

dI2/dt
. (7.48)

M12 is related to M21 by the following remarkable theorem.

Theorem 7.2 For any two circuits,

M12 = M21 (7.49)

This theorem is not a matter of geometrical symmetry. Even the
simple example in Fig. 7.20 is not symmetrical with respect to the two
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circuits. Note that R1 and R2 enter in different ways into the expression
for M21; Eq. (7.49) asserts that, for these two dissimilar circuits, if

M21 = πμ0N1N2R2
2

2R1
, then M12 = πμ0N1N2R2

2
2R1

(7.50)

also – and not what we would get by switching 1’s and 2’s everywhere!

Proof In view of the definition of mutual inductance in Eq. (7.37), our
goal is to show that �12/I2 = �21/I1, where �12 is the flux through
some circuit C1 due to a current I2 in another circuit C2, and �21 is the
flux through C2 due to a current I1 in C1. We will use the vector potential.
Stokes’ theorem tells us that∫

C
A · ds =

∫
S
(curl A) · da. (7.51)

In particular, if A is the vector potential of a magnetic field B, in other
words, if B = curl A, then we have

∫
C

A · ds =
∫

S
B · da = �S (7.52)

That is, the line integral of the vector potential around a loop is equal to
the flux of B through the loop.

Now, the vector potential is related to its current source as follows,
according to Eq. (6.46):

A21 = μ0I1

4π

∫
C1

ds1

r21
, (7.53)

where A21 is the vector potential, at some point (x2, y2, z2), of the mag-
netic field caused by current I1 flowing in circuit C1; ds1 is an element of
the loop C1; and r21 is the magnitude of the distance from that element
to the point (x2, y2, z2).

C1

I r21

C2(x2, y2, z2)

ds 1

ds2

Figure 7.21.
Calculation of the flux �21 that passes through
C2 as a result of current I1 flowing in C1.

Figure 7.21 shows the two loops C1 and C2, with current I1 flowing
in C1. Let (x2, y2, z2) be a point on the loop C2. Then Eqs. (7.52) and
(7.53) give the flux through C2 due to current I1 in C1 as

�21 =
∫

C2

ds2 · A21 =
∫

C2

ds2 · μ0I1

4π

∫
C1

ds1

r21

= μ0I1

4π

∫
C2

∫
C1

ds2 · ds1

r21
. (7.54)

Similarly, the flux through C1 due to current I2 flowing in C2 is given by
the same expression with the labels 1 and 2 reversed:

�12 = μ0I2

4π

∫
C1

∫
C2

ds1 · ds2

r12
. (7.55)
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Now r12 = r21, for these are just distance magnitudes, not vectors.
The meaning of each of the integrals above is as follows: take the scalar
product of a pair of line elements, one on each loop, divide by the dis-
tance between them, and sum over all pairs. The only difference between
Eqs. (7.54) and (7.55) is the order in which this operation is carried out,
and that cannot affect the final sum. Hence �21/I1 = �12/I2, as desired.
Thanks to this theorem, we need make no distinction between M12 and
M21. We may speak, henceforth, of the mutual inductance M of any two
circuits.

Theorems of this sort are often called “reciprocity” theorems. There
are some other reciprocity theorems on electric circuits not unrelated to
this one. This may remind you of the relation Cjk = Ckj mentioned in
Section 3.6 and treated in Exercise 3.64. (In the spirit of that exercise,
see Problem 7.10 for a second proof of the above M12 = M21 theorem.)
A reciprocity relation usually expresses some general symmetry law that
is not apparent in the superficial structure of the system.

2b

2a

h

Complete winding
contains N turns

Figure 7.22.
Toroidal coil of rectangular cross section. Only a
few turns are shown.

7.8 Self-inductance
When the current I1 is changing, there is a change in the flux through
circuit C1 itself, and consequently an electromotive force is induced. Call
this E11. The induction law holds, whatever the source of the flux:

E11 = −d�11

dt
, (7.56)

where �11 is the flux through circuit 1 of the field B1 due to the current
I1 in circuit 1. The minus sign expresses the fact that the electromotive
force is always directed so as to oppose the change in current – Lenz’s
law, again. Since �11 will be proportional to I1 we can write

�11

I1
= constant ≡ L1. (7.57)

Equation (7.56) then becomes

E11 = −L1
dI1

dt
. (7.58)

The constant L1 is called the self-inductance of the circuit. We usually
drop the subscript “1.”

Example (Rectangular toroidal coil) As an example of a circuit for which
L can be calculated, consider the rectangular toroidal coil of Exercise 6.61, shown
here again in Fig. 7.22. You found (if you worked that exercise) that a current I
flowing in the coil of N turns produces a field, the strength of which, at a radial
distance r from the axis of the coil, is given by B = μ0NI/2πr. The total flux
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through one turn of the coil is the integral of this field over the cross section of
the coil:

�(one turn) = h
∫ b

a

μ0NI
2πr

dr = μ0NIh
2π

ln
(

b
a

)
. (7.59)

The flux threading the circuit of N turns is N times as great:

� = μ0N2Ih
2π

ln
(

b
a

)
. (7.60)

Hence the induced electromotive force E is

E = −d�

dt
= −μ0N2h

2π
ln

(
b
a

)
dI
dt

. (7.61)

Thus the self-inductance of this coil is given by

L = μ0N2h
2π

ln
(

b
a

)
. (7.62)

Since μ0 = 4π · 10−7 kg m/C2, we can rewrite this in a form similar to Eq. (7.44):

L = (2 · 10−7 kg m/C2)N2h ln
(

b
a

)
. (7.63)

The numerical value of this expression gives L in henrys. In Gaussian units, you
can show that the self-inductance is

L = 2N2h
c2 ln

(
b
a

)
. (7.64)

You may think that one of the rings we considered earlier would have
made a simpler example to illustrate the calculation of self-inductance.
However, if we try to calculate the inductance of a simple circular loop of
wire, we encounter a puzzling difficulty. It seems a good idea to simplify
the problem by assuming that the wire has zero diameter. But we soon
discover that, if finite current flows in a filament of zero diameter, the flux
threading a loop made of such a filament is infinite! The reason is that the
field B, in the neighborhood of a filamentary current, varies as 1/r, where
r is the distance from the filament, and the integral of B×(area) diverges
as

∫
(dr/r) when we extend it down to r = 0. To avoid this we may let

the radius of the wire be finite, not zero, which is more realistic anyway.
This may make the calculation a bit more complicated, in a given case,
but that won’t worry us. The real difficulty is that different parts of the
wire (at different distances from the center of the loop) now appear as
different circuits, linked by different amounts of flux. We are no longer
sure what we mean by the flux through the circuit. In fact, because the
electromotive force is different in the different filamentary loops into
which the circuit can be divided, some redistribution of current density
must occur when rapidly changing currents flow in the ring. Hence the
inductance of the circuit may depend somewhat on the rapidity of change
of I, and thus not be strictly a constant as Eq. (7.58) would imply.
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We avoided this embarrassment in the toroidal coil example by
ignoring the field in the immediate vicinity of the individual turns of the
winding. Most of the flux does not pass through the wires themselves,
and whenever that is the case the effect we have just been worrying about
will be unimportant.

R

B

L

A

C

I

+
–

(a)

(b)

Figure 7.23.
A simple circuit with inductance (a) and
resistance (b).

7.9 Circuit containing self-inductance
Suppose we connect a battery, providing electromotive force E0, to a coil,
or inductor, with self-inductance L, as in Fig. 7.23(a). The coil itself,
the connecting wires, and even the battery will have some resistance.
We don’t care how this is distributed around the circuit. It can all be
lumped together in one resistance R, indicated on the circuit diagram
of Fig. 7.23(b) by a resistor symbol with this value. Also, the rest of
the circuit, especially the connecting wires, contribute a bit to the self-
inductance of the whole circuit; we assume that this is included in L. In
other words, Fig. 7.23(b) represents an idealization of the physical cir-
cuit. The inductor L, symbolized by , has no resistance; the resis-
tor R has no inductance. It is this idealized circuit that we shall now
analyze.

If the current I in the circuit is changing at the rate dI/dt, an electro-
motive force L dI/dt will be induced, in a direction to oppose the change.
Also, there is the constant electromotive force E0 of the battery. If we
define the positive current direction as the one in which the battery tends
to drive current around the circuit, then the net electromotive force at any
instant is E0 − L dI/dt. This drives the current I through the resistor R.
That is,

E0 − L
dI
dt

= RI. (7.65)

We can also describe the situation in this way: the voltage difference
between points A and B in Fig. 7.23(b), which we call the voltage across
the inductor, is L dI/dt, with the upper end of the inductor positive if
I in the direction shown is increasing. The voltage difference between
B and C, the voltage across the resistor, is RI, with the upper end of
the resistor positive. Hence the sum of the voltage across the inductor
and the voltage across the resistor is L dI/dt + RI. This is the same as
the potential difference between the battery terminals, which is E0 (our
idealized battery has no internal resistance). Thus we have

E0 = L
dI
dt

+ RI, (7.66)

which is merely a restatement of Eq. (7.65).
Before we look at the mathematical solution of Eq. (7.65), let’s pre-

dict what ought to happen in this circuit if the switch is closed at t= 0.
Before the switch is closed, I = 0, necessarily. A long time after the
switch has been closed, some steady state will have been attained, with
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current practically constant at some value I0. Then and thereafter,
dI/dt ≈ 0, and Eq. (7.65) reduces to

E0 = RI0. (7.67)

The transition from zero current to the steady-state current I0 cannot
occur abruptly at t = 0, for then dI/dt would be infinite. In fact, just
after t = 0, the current I will be so small that the RI term in Eq. (7.65)
can be ignored, giving

dI
dt

= E0

L
. (7.68)

The inductance L limits the rate of rise of the current.
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I
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Figure 7.24.
(a) How the current must behave initially, and
after a very long time has elapsed. (b) The
complete variation of current with time in the
circuit of Fig. 7.23.

What we now know is summarized in Fig. 7.24(a). It only remains to
find how the whole change takes place. Equation (7.65) is a differential
equation very much like Eq. (4.39) in Chapter 4. The constant E0 term
complicates things slightly, but the equation is still straightforward to
solve. In Problem 7.14 you can show that the solution to Eq. (7.65) that
satisfies our initial condition, I = 0 at t = 0, is

I(t) = E0

R

(
1 − e−(R/L)t

)
. (7.69)

The graph in Fig. 7.24(b) shows the current approaching its asymp-
totic value I0 exponentially. The “time constant” of this circuit is the
quantity L/R. If L is measured in henrys and R in ohms, this comes out in
seconds, since henrys= volt · amp−1 · second, and ohms= volt · amp−1.

I = I0

I = I0e–(R/L)(t – t1)

L

R
I

(a)

(b)

t1 t

Figure 7.25.
(a) LR circuit. (b) Exponential decay of current in
the LR circuit.

What happens if we open the switch after the current I0 has been
established, thus forcing the current to drop abruptly to zero? That would
make the term L dI/dt negatively infinite! The catastrophe can be more
than mathematical. People have been killed opening switches in highly
inductive circuits. What happens generally is that a very high induced
voltage causes a spark or arc across the open switch contacts, so that the
current continues after all. Let us instead remove the battery from the
circuit by closing a conducting path across the LR combination, as in
Fig. 7.25(a), at the same time disconnecting the battery. We now have a
circuit described by the equation

0 = L
dI
dt

+ RI, (7.70)

with the initial condition I = I0 at t = t1, where t1 is the instant at which
the short circuit was closed. The solution is the simple exponential decay
function

I(t) = I0e−(R/L)(t−t1) (7.71)

with the same characteristic time L/R as before.
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7.10 Energy stored in the magnetic field
During the decay of the current described by Eq. (7.71) and Fig. 7.25(b),
energy is dissipated in the resistor R. Since the energy dU dissipated in
any short interval dt is RI2 dt, the total energy dissipated after the closing
of the switch at time t1 is given by

U =
∫ ∞

t1
RI2 dt =

∫ ∞

t1
RI2

0e−(2R/L)(t−t1) dt

= −RI2
0

(
L

2R

)
e−(2R/L)(t−t1)

∣∣∣∣∞
t1

= 1
2

LI2
0 . (7.72)

The source of this energy was the inductor with its magnetic field.
Indeed, exactly that amount of work had been done by the battery to build
up the current in the first place – over and above the energy dissipated
in the resistor between t = 0 and t = t1, which was also provided by
the battery. To see that this is a general relation, note that, if we have an
increasing current in an inductor, work must be done to drive the current
I against the induced electromotive force L dI/dt. Since the electromotive
force is defined to be the work done per unit charge, and since a charge
I dt moves through the inductor in time dt, the work done in time dt is

dW = L
dI
dt

(I dt) = LI dI = 1
2

L d(I2). (7.73)

Therefore, we may assign a total energy

U = 1
2

LI2 (7.74)

to an inductor carrying current I. With the eventual decay of this current,
that amount of energy will appear somewhere else.

It is natural to regard this as energy stored in the magnetic field of the
inductor, just as we have described the energy of a charged capacitor as
stored in its electric field. The energy of a capacitor charged to potential
difference V is (1/2)CV2 and is accounted for by assigning to an element
of volume dv, where the electric field strength is E, an amount of energy
(ε0/2)E2 dv. It is pleasant, but hardly surprising, to find that a similar
relation holds for the energy stored in an inductor. That is, we can ascribe
to the magnetic field an energy density (1/2μ0)B2, and summing the
energy of the whole field will give the energy (1/2)LI2.

Example (Rectangular toroidal coil) To show how the energy density
B2/2μ0 works out in one case, we can go back to the toroidal coil whose induc-
tance L we calculated in Section 7.8. We found in Eq. (7.62) that

L = μ0N2h
2π

ln
(

b
a

)
. (7.75)
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The magnetic field strength B, with current I flowing, was given by

B = μ0NI
2πr

. (7.76)

To calculate the volume integral of B2/2μ0 we can use a volume element con-
sisting of the cylindrical shell sketched in Fig. 7.26, with volume 2πrh dr. As this
shell expands from r = a to r = b, it sweeps through all the space that contains
magnetic field. (The field B is zero everywhere outside the torus, remember.) So,

1
2μ0

∫
B2 dv = 1

2μ0

∫ b

a

(
μ0NI
2πr

)2
2πrh dr = μ0N2hI2

4π
ln

(
b
a

)
. (7.77)

Comparing this result with Eq. (7.75), we see that, indeed,

1
2μ0

∫
B2 dv = 1

2
LI2. (7.78)

The task of Problem 7.18 is to show that this result holds for an arbitrary circuit
with inductance L.

h

B

2b

2a
dr

r

Figure 7.26.
Calculation of energy stored in the magnetic
field of the toroidal coil of Fig. 7.22.

The more general statement, the counterpart of our statement for the
electric field in Eq. (1.53), is that the energy U to be associated with any
magnetic field B(x, y, z) is given by

U = 1
2μ0

∫
entire
field

B2 dv (7.79)

With B in tesla and v in m3, the energy U will be given in joules, as
you can check. In Eq. (7.74), with L in henrys and I in amperes, U will
also be given in joules. The Gaussian equivalent of Eq. (7.79) for U in
ergs, B in gauss, and v in cm3 is

U = 1
8π

∫
entire
field

B2 dv. (7.80)

The Gaussian equivalent of Eq. (7.74) remains U = LI2/2, because the
reasoning leading up to that equation is unchanged.

7.11 Applications
An electrodynamic tether is a long (perhaps 20 km) straight conducting
wire that has one end connected to a satellite. The other end hangs down
toward (or up away from) the earth. As the satellite and tether orbit the
earth, they pass through the earth’s magnetic field. Just as with the mov-
ing rod in Section 7.2, an emf is generated along the wire. If this were the
whole story, charge would simply pile up on the ends. But the satellite
is moving through the ionosphere, which contains enough ions to yield
a return path for the charge. A complete circuit is therefore formed, so
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the emf can be used to provide power to the satellite. However, the cur-
rent in the wire will experience a Lorentz force, and you can show that
the direction is opposite to the satellite’s motion. On the other hand, if
a power source on the satellite drives current in the opposite direction
along the tether, the Lorentz force will be in the same direction as the
satellite’s motion. So the tether can serve as a (gentle) propulsion device.

If you drop a wire hoop into a region containing a horizontal mag-
netic field, the changing flux will induce a current in the hoop. From
Lenz’s law and the right-hand rule, the resulting Lorentz force on the
current is upward, independent of whether the hoop is entering or leav-
ing the region of the magnetic field. So the direction of the force is always
opposite to that of the velocity. If you drop a solid metal sheet into the
region, loops (or eddies) of current will develop in the sheet, and the
same braking effect, known as eddy-current braking, will occur. This
braking effect has many applications, from coin vending machines to
trains to amusement park rides. The loss in kinetic energy shows up as
resistive heating. Eddy currents are also used in metal detectors, both of
the airport security type and the hunting-for-buried-treasure type. The
metal detector sends out a changing magnetic field, which induces eddy
currents in any metal present. These currents produce their own changing
magnetic field, which is then detected by the metal detector.

An electric guitar generates its sound via magnetic induction. The
strings are made of a material that is easily magnetized, and they vibrate
back and forth above pickups. A pickup is a coil of wire wrapped around
a permanent magnet. This magnet causes the string to become magne-
tized, and the string’s magnetic field then produces a flux through the
coil. Because the string is vibrating, this flux is changing, so an emf is
induced in the coil. This sends an oscillating current (with the same fre-
quency as the string’s vibration) to an amplifier, which then amplifies the
sound. Without the amplifier, the sound is barely audible. Electric guitars
with nylon (or otherwise nonmagnetic) strings won’t work!

A shake flashlight is a nice application of Faraday’s law. As you
shake the flashlight, a permanent magnet passes back and forth through
a coil. The induced emf in the coil produces a current that deposits charge
on a capacitor, where it can be stored. A bridge rectifier (consisting of a
certain configuration of four diodes) changes the alternating-current emf
from your shaking motion to a direct-current emf, so that positive charge
always flows toward the positive side of the capacitor, independent of
which way the magnet is moving through the coil. When you flip the
light switch, you allow current to flow from the capacitor through the
light bulb.

An electric generator is based on the circuit in Fig. 7.13. An external
torque causes the loop of wire to rotate, and the changing flux through
the loop induces an oscillating (that is, alternating) emf. In practice, how-
ever, in most generators the rotating part (which is effectively the turbine)
contains a permanent magnet that produces a changing flux through coils
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of wire arranged around the perimeter. In any case, it is Faraday’s law
at work. The force causing the turbine to rotate can come from various
sources: water pressure from a dam, air pressure on a windmill, steam
pressure from a coal plant or nuclear reactor, etc.

The alternator in a car engine is simply a small electric generator.
In addition to turning the wheels, the engine also turns a small magnet
inside the alternator, producing an alternating current. However, the car’s
battery requires direct current, so a rectifier converts the ac to dc. On an
even smaller scale, the magnet in one type of bicycle-light generator is
made to rotate due to the friction force from the tire. The power generated
is usually only a few watts – a small fraction of the total power output
from the rider. But don’t think that you could make much money by
harnessing all of your power on a stationary bike. If a professional cyclist
sold the power he could generate during one hour of hard pedaling, he
would earn about 5 cents.

Hybrid cars, which are powered by both gasoline and a battery,
use regenerative braking to capture the kinetic energy of the car when
the brakes are applied. The motor acts as a generator. More precisely, the
friction force between the tires and the ground provides a torque on the
gears in the motor, which in turn provide a torque on the magnet inside
the generator.

A microphone is basically the opposite of a speaker (see Section
6.10). It converts sound waves into an electrical signal. A common type,
called a dynamic microphone, makes use of electromagnetic induction.
A coil of wire is attached to a diaphragm and surrounds one pole of a per-
manent magnet, in the same manner as in a speaker. When a sound wave
causes the diaphragm to vibrate, the coil likewise vibrates. Its motion
through the field of the magnet causes changing flux through the coil.
An emf, and hence current, are therefore induced in the coil. This cur-
rent signal is sent to a speaker, which reverses the process, turning the
electrical signal back into sound waves. Alternatively, the signal is sent to
a device that stores the information; see the discussion of cassette tapes
and hard disks in Section 11.12.

A ground-fault circuit interrupter (GFCI) helps prevent (or at least
mitigate) electric shocks. Under normal conditions, the current coming
out of the “hot” slot in a wall socket (the short slot) equals the current
flowing into the neutral slot (the tall slot). Now let’s say you are receiving
an electric shock. In a common type of shock, some of the current is
taking an alternate route to ground – through you instead of through the
neutral wire. The GFCI monitors the difference between the currents in
the hot and neutral wires, and if it detects a difference of more than 5 or
10 mA, it trips the circuit (quickly, in about 30 ms). This monitoring is
accomplished by positioning a toroidal coil around the two wires to and
from the slots. The currents in these wires travel in opposite directions,
so when the currents agree, there is zero net current in the pair. But
if there is a mismatch in the (oscillating) currents, then the nonzero net



372 Electromagnetic induction

current will produce a changing magnetic field circling around the wires.
So there will be a changing magnetic field in the toroidal coil, which
will induce a detectable current in the coil. A signal is then sent to a
mechanism that trips the circuit. Having survived the shock, you can
reset the GFCI by pressing the reset button on the outlet. As with a circuit
breaker (see Section 6.10), nothing needs to be replaced after the circuit
is tripped. In contrast, a fuse (see Section 4.12) needs to be replaced
after it burns out. However, the purpose of a GFCI is different. A GFCI
protects people by preventing tiny currents from traveling through them
(even 50 mA can disrupt the functioning of a heart), while a fuse or a
circuit breaker protects buildings by preventing large currents (on the
order of 20 A), which can generate heat and cause fires.

A transformer changes the voltage in a circuit. Imagine two sole-
noids, A and B, both wound around the same cylinder. Let B (the secondary
winding) have ten times the number of turns as A (the primary winding).
If a sinusoidal voltage source is connected to A, it will cause a changing
flux through A, and hence also through B, with the latter flux being ten
times the former. The induced emf in B will therefore be ten times the
emf in A. By adjusting the ratio of the number of turns, the voltage can be
stepped up or stepped down by any factor. In practice, the solenoids in a
transformer aren’t actually right on top of each other, but instead wrapped
around different parts of an iron core, which funnels the magnetic field
lines along the core from one solenoid to the other. The ease with which
ac voltages can be stepped up or down is the main reason why the electric
grid uses ac. It is necessary to step up the voltage for long-distance
transmission (and hence step down the current, for a given value of
the power P= IV), because otherwise there would be prohibitively large
energy losses due to the I2R resistance heating in the wires.

An ignition system coil in your car converts the 12 volts from the
battery into the 30,000 or so volts needed to cause the arcing (the spark)
across the spark plugs. Like a transformer, the ignition coil has primary
and secondary windings, but the mechanism is slightly different. Instead
of producing an oscillating voltage, it produces a one-time surge in volt-
age, whose original source was the 12 volt dc battery. It does this in two
steps. First, the battery produces a steady current through a circuit con-
taining the primary winding. A switch is then opened, and the current
drops rapidly to zero (the rate is controlled by inserting a capacitor in the
circuit, in parallel with the switch). This changing current creates a large
back emf in the primary coil, say 300 volts. Second, if the secondary
winding has, say, 100 times as many turns as the primary, then the trans-
former reasoning in the preceding paragraph leads to 30,000 volts in the
secondary coil. This is enough to cause arcing in the spark plug. This
two-step process means that we don’t need to have 30,000/12 ≈ 3000 as
many turns in the secondary coil!

A boost converter (or step-up converter) increases the voltage in a
dc circuit. It is used, for example, to power a 3 volt LED lamp with a
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1.5 volt battery. The main idea behind the converter is the fact that induc-
tors resist sudden changes in current. Consider a circuit where current
flows from a battery through an inductor. If a switch is opened down-
stream from the inductor, and if an alternative path is available through a
capacitor, then current will still flow for a brief time through the inductor
onto the capacitor. Charge will therefore build up on the capacitor. This
process is repeated at a high frequency, perhaps 50 kHz. Even if the back
voltage from the capacitor is higher than the forward voltage from the
battery, a positive current will still flow briefly onto the capacitor each
time the switch is opened. (Backward current can be prevented with a
diode.) The capacitor then serves as a higher-voltage effective battery
for powering the LED.

The magnetic field of the earth cannot be caused by a permanent
magnet, because the interior temperature is far too hot to allow the iron
core to exist in a state of permanent magnetization. Instead, the field
is caused by the dynamo effect (see Problem 7.19 and Exercise 7.47).
A source of energy is needed to drive the dynamo, otherwise the field
would decay on a time scale of 20,000 years or so. This source isn’t
completely understood; possibilities include tidal forces, gravitational
setting, radioactivity, and the buoyancy of lighter elements. The dynamo
mechanism requires a fluid region inside the earth (this region is the outer
core) and also a means of charge separation (perhaps friction between
layers) so that currents can exist. It also requires that the earth be rotat-
ing, so that the Coriolis force can act on the fluid. Computer models
indicate that the motion of the fluid is extremely complicated, and also
that the reversal of the field (which happens every 200,000 years, on
average) is likewise complicated. The poles don’t simply rotate into each
other. Rather, all sorts of secondary poles appear on the surface of the
earth during the process, which probably takes a few thousand years.
Who knows where all the famous explorers and their compasses would
have ended up if a reversal had been taking place during the last thou-
sand years! In recent years, the magnetic north pole has been moving at
the brisk rate of about 50 km per year. This speed isn’t terribly unusual,
though, so it doesn’t necessarily imply that a reversal is imminent.

CHAPTER SUMMARY
• Faraday discovered that a current in one circuit can be induced by a

changing current in another circuit.

• If a loop moves through a magnetic field, the induced emf equals
E = vw(B1 −B2), where w is the length of the transverse sides, and
the B’s are the fields at these sides. This emf can be viewed as a con-
sequence of the Lorentz force acting on the charges in the transverse
sides.
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• More generally, the emf can be written in terms of the magnetic
flux as

E = −d�

dt
. (7.81)

This is known as Faraday’s law of induction, and it holds in all cases:
the loop can be moving, or the source of the magnetic field can be
moving, or the flux can be changed by some other arbitrary means. The
sign of the induced emf is determined by Lenz’s law: the induced cur-
rent flows in the direction that produces a magnetic field that opposes
the change in flux. The differential form of Faraday’s law is

∇ × E = −∂B
∂t

. (7.82)

This is one of Maxwell’s equations.
• If we have two circuits C1 and C2, a current I1 in one circuit will

produce a flux �21 through the other. The mutual inductance M21 is
defined by M21 = �21/I1. It then follows that a changing I1 produces
an emf in C2 equal to E21 = −M21 dI1/dt. The two coefficients of
mutual inductance are symmetric: M12 = M21.

• The self-inductance L is defined analogously. A current I in a circuit
will produce a flux � through the circuit, and the self-inductance is
defined by L = �/I. The emf is then E = −L dI/dt.

• If a circuit contains an inductor, and if a switch is opened (or closed),
the current can’t change discontinuously, because that would create an
infinite value of E = −L dI/dt. The current must therefore gradually
change. If a switch is closed in an RL circuit, the current takes the form

I = E0

R

(
1 − e−(R/L)t

)
. (7.83)

The quantity L/R is the time constant of the circuit.
• The energy stored in an inductor equals U = LI2/2. It can be shown

that this is equivalent to the statement that a magnetic field contains an
energy density of B2/2μ0 (just as an electric field contains an energy
density of ε0E2/2).

Problems
7.1 Current in a bottle **

An ocean current flows at a speed of 2 knots (approximately 1 m/s)
in a region where the vertical component of the earth’s magnetic
field is 0.35 gauss. The conductivity of seawater in that region is
4 (ohm-m)−1. On the assumption that there is no other horizontal
component of E than the motional term v×B, find the density
J of the horizontal electric current. If you were to carry a bottle
of seawater through the earth’s field at this speed, would such a
current be flowing in it?
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7.2 What’s doing work? ***
In Fig. 7.27 a conducting rod is pulled to the right at speed v while
maintaining contact with two rails. A magnetic field points into the
page. From the reasoning in Section 7.3, we know that an induced
emf will cause a current to flow in the counterclockwise direction
around the loop. Now, the magnetic force qu×B is perpendicular
to the velocity u of the moving charges, so it can’t do work on them.
However, the magnetic force f in Eq. (7.5) certainly looks like it is
doing work. What’s going on here? Is the magnetic force doing
work or not? If not, then what is? There is definitely something
doing work because the wire will heat up.

v

(B into page)

Rod

Figure 7.27.
7.3 Pulling a square frame **

A square wire frame with side length � has total resistance R. It
is being pulled with speed v out of a region where there is a uni-
form B field pointing out of the page (the shaded area in Fig. 7.28).
Consider the moment when the left corner is a distance x inside
the shaded area.
(a) What force do you need to apply to the square so that it moves

with constant speed v?
(b) Verify that the work you do from x = x0 (which you can

assume is less than �/
√

2) down to x = 0 equals the energy
dissipated in the resistor.

x

v

       B 
  out of page

Resistance
       R

Figure 7.28.

7.4 Loops around a solenoid **
We can think of a voltmeter as a device that registers the line inte-
gral

∫
E · ds along a path C from the clip at the end of its (+)

lead, through the voltmeter, to the clip at the end of its (−) lead.
Note that part of C lies inside the voltmeter itself. Path C may
also be part of a loop that is completed by some external path
from the (−) clip to the (+) clip. With that in mind, consider the
arrangement in Fig. 7.29. The solenoid is so long that its exter-
nal magnetic field is negligible. Its cross-sectional area is 20 cm2,
and the field inside is toward the right and increasing at the rate of
100 gauss/s. Two identical voltmeters are connected to points on
a loop that encloses the solenoid and contains two 50 ohm resis-
tors, as shown. The voltmeters are capable of reading microvolts
and have high internal resistance. What will each voltmeter read?
Make sure your answer is consistent, from every point of view,
with Eq. (7.26).

7.5 Total charge **
A circular coil of wire, with N turns of radius a, is located in the
field of an electromagnet. The magnetic field is perpendicular to
the coil (that is, parallel to the axis of the coil), and its strength has
the constant value B0 over that area. The coil is connected by a pair
of twisted leads to an external resistance. The total resistance of



376 Electromagnetic induction

Figure 7.29. – +

+–

50 Ω

50 Ω

dB
dt

this closed circuit, including that of the coil itself, is R. Suppose the
electromagnet is turned off, its field dropping more or less rapidly
to zero. The induced electromotive force causes current to flow
around the circuit. Derive a formula for the total charge Q = ∫

I dt
that passes through the resistor, and explain why it does not depend
on the rapidity with which the field drops to zero.

7.6 Growing current in a solenoid **

An infinite solenoid has radius R and n turns per unit length. The
current grows linearly with time, according to I(t) = Ct. Use the
integral form of Faraday’s law to find the electric field at radius r,
both inside and outside the solenoid. Then verify that your answers
satisfy the differential form of the law.

7.7 Maximum emf for a thin loop ***

A long straight stationary wire is parallel to the y axis and passes
through the point z = h on the z axis. A current I flows in this
wire, returning by a remote conductor whose field we may neglect.
Lying in the xy plane is a thin rectangular loop with two of its
sides, of length �, parallel to the long wire. The length b of the
other two sides is very small. The loop slides with constant speed
v in the x̂ direction. Find the magnitude of the electromotive force
induced in the loop at the moment the center of the loop has posi-
tion x. For what values of x does this emf have a local maxi-
mum or minimum? (Work in the approximation where b � x,
so that you can approximate the relevant difference in B fields by a
derivative.)
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7.8 Faraday’s law for a moving tilted sheet ****
Recall the “tilted sheet” example in Section 5.5, in which a charged
sheet was tilted at 45◦ in the lab frame. We calculated the electric
field in the frame F′ moving to the right with speed v (which was
0.6c in the example). The goal of this problem is to demonstrate
that Faraday’s law holds in this setup.

v

x�

z�

Figure 7.30.

(a) For a general speed v, find the component of the electric field
that is parallel to the sheet in frame F′ (in which the sheet
moves to the left with speed v). If you solved Exercise 5.12,
you’ve already done most of the work.

(b) Use the Lorentz transformations to find the magnetic
field in F′.

(c) In F′, verify that
∫

E · ds = −d�/dt holds for the rectangle
shown in Fig. 7.30 (this rectangle is fixed in F′).

7.9 Mutual inductance for two solenoids **
Figure 7.31 shows a solenoid of radius a1 and length b1 located
inside a longer solenoid of radius a2 and length b2. The total
number of turns is N1 on the inner coil, N2 on the outer. Work
out an approximate formula for the mutual inductance M.

7.10 Mutual-inductance symmetry **
In Section 7.7 we made use of the vector potential to prove that
M12 = M21. We can give a second proof, this time in the spirit of
Exercise 3.64. Imagine increasing the currents in two circuits grad-
ually from zero to the final values of I1f and I2f (“f” for “final”).
Due to the induced emfs, some external agency has to supply power
to increase (or maintain) the currents. The final currents can be
brought about in many different ways. Two possible ways are of
particular interest.

(a) Keep I2 at zero while raising I1 gradually from zero to I1f.
Then raise I2 from zero to I2f while holding I1 constant at I1f.

(b) Carry out a similar program with the roles of 1 and 2 exchanged,
that is, raise I2 from zero to I2f first, and so on.

2a2 2a1

b2

b1

N1 turns

N2 turns

Figure 7.31.
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Compute the total work done by external agencies, for each of the
two programs. Then complete the argument. See Crawford (1992)
for further discussion.

7.11 L for a solenoid *
Find the self-inductance of a long solenoid with radius r, length �,
and N turns.

7.12 Doubling a solenoid *
(a) Two identical solenoids are connected end-to-end to make

a solenoid of twice the length. By what factor is the self-
inductance increased? The answer quickly follows from the
formula for a solenoid’s L, but you should also explain in
words why the factor is what it is.

(b) Same question, but now with the two solenoids placed right
on top of one another. (Imagine that one solenoid is slightly
wider and surrounds the other.) They are connected so that the
current flows in the same direction in each.

7.13 Adding inductors *
(a) Two inductors, L1 and L2, are connected in series, as shown in

Fig. 7.32(a). Show that the effective inductance L of the system
is given by

L = L1 + L2. (7.84)

Check the L1 → 0 and L1 → ∞ limits.
(b) If the inductors are instead connected in parallel, as shown in

Fig. 7.32(b), show that the effective inductance is given by

1
L
= 1

L1
+ 1

L2
. (7.85)

Again check the L1 → 0 and L1 → ∞ limits.

(a)

(b)

L1

L1

L2

L2

Figure 7.32.

7.14 Current in an RL circuit **
Show that the expression for the current in an RL circuit given in
Eq. (7.69) follows from Eq. (7.65).

7.15 Energy in an RL circuit *
Consider the RL circuit discussed in Section 7.9. Show that the
energy delivered by the battery up to an arbitrary time t equals
the energy stored in the magnetic field plus the energy dissipated
in the resistor. To do this, multiply Eq. (7.65) by I to obtain I2R =
I(E0 − L dI/dt), and then integrate this equation.

7.16 Energy in a superconducting solenoid *
A superconducting solenoid designed for whole-body imaging by
nuclear magnetic resonance is 0.9 meters in diameter and 2.2 meters
long. The field at its center is 3 tesla. Estimate roughly the energy
stored in the field of this coil.
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7.17 Two expressions for the energy *
Two different expressions for the energy stored in a long solenoid
are LI2/2 and (B2/2μ0)(volume). Show that these expressions are
consistent.

7.18 Two expressions for the energy (general) ***
The task of Problem 2.24 was to demonstrate that two different
expressions for the electrostatic energy,

∫
(ε0E2/2) dv and∫

(ρφ/2) dv, are equivalent (as they must be, if they are both valid).
The latter expression can quickly be converted to Cφ2/2 in the case
of oppositely charged conductors in a capacitor (see Exercise 3.65).

The task of this problem is to demonstrate the analogous rela-
tion for the magnetic energy, that is, to show that if a circuit (of
finite extent) with self-inductance L contains current I, then∫
(B2/2μ0) dv equals LI2/2. This is a bit trickier than the elec-

trostatic case, so here are some hints: (1) a useful vector identity
is ∇ · (A×B)=B · (∇ ×A)−A · (∇ ×B), (2) the vector poten-
tial and magnetic field satisfy ∇ ×A=B, (3) ∇ ×B=μ0J,
(4) �= ∫

A · dl from Eq. (7.52), and (5) L is defined by � = LI.

7.19 Critical frequency of a dynamo ***
A dynamo like the one in Exercise 7.47 has a certain critical speed
ω0. If the disk revolves with an angular velocity less than ω0, noth-
ing happens. Only when that speed is attained is the induced E
large enough to make the current large enough to make the mag-
netic field large enough to induce an E of that magnitude. The criti-
cal speed can depend only on the size and shape of the conductors,
the conductivity σ , and the constant μ0. Let d be some characteris-
tic dimension expressing the size of the dynamo, such as the radius
of the disk in our example.

(a) Show by a dimensional argument that ω0 must be given by a
relation of this form: ω0 = K/μ0σd2, where K is some dimen-
sionless numerical factor that depends only on the arrange-
ment and relative size of the various parts of the dynamo.

(b) Demonstrate this result again by using physical reasoning that
relates the various quantities in the problem (R, E , E, I, B,
etc.). You can ignore all numerical factors in your calculations
and absorb them into the constant K.

Additional comments: for a dynamo of modest size made
wholly of copper, the critical speedω0 would be practically unattain-
able. It is ferromagnetism that makes possible the ordinary dc gen-
erator by providing a magnetic field much stronger than the current
in the coils, unaided, could produce. For an earth-sized dynamo,
however, with d measured in hundreds of kilometers rather than
meters, the critical speed is very much smaller. The earth’s mag-
netic field is almost certainly produced by a nonferromagnetic
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dynamo involving motions in the fluid metallic core. That fluid
happens to be molten iron, but it is not even slightly ferromagnetic
because it is too hot. (That will be explained in Chapter 11.) We
don’t know how the conducting fluid moves, or what configuration
of electric currents and magnetic fields its motion generates in the
core. The magnetic field we observe at the earth’s surface is the
external field of the dynamo in the core. The direction of the earth’s
field a million years ago is preserved in the magnetization of rocks
that solidified at that time. That magnetic record shows that the field
has reversed its direction nearly 200 times in the last 100 million
years. Although a reversal cannot have been instantaneous (see
Exercise 7.46), it was a relatively sudden event on the geological
time scale. The immense value of paleomagnetism as an indelible
record of our planet’s history is well explained in Chapter 18 of
Press and Siever (1978).

Exercises
7.20 Induced voltage from the tides *

Faraday describes in the following words an unsuccessful attempt
to detect a current induced when part of a circuit consists of water
moving through the earth’s magnetic field (Faraday, 1839, p. 55):

I made experiments therefore (by favour) at Waterloo Bridge, extend-
ing a copper wire nine hundred and sixty feet in length upon the para-
pet of the bridge, and dropping from its extremities other wires with
extensive plates of metal attached to them to complete contact with the
water. Thus the wire and the water made one conducting circuit; and
as the water ebbed or flowed with the tide, I hoped to obtain currents
analogous to those of the brass ball. I constantly obtained deflections
at the galvanometer, but they were irregular, and were, in succession,
referred to other causes than that sought for. The different condition
of the water as to purity on the two sides of the river; the difference
in temperature; slight differences in the plates, in the solder used, in
the more or less perfect contact made by twisting or otherwise; all pro-
duced effects in turn: and though I experimented on the water passing
through the middle arches only; used platina plates instead of copper;
and took every other precaution, I could not after three days obtain any
satisfactory results.

Assume the vertical component of the field was 0.5 gauss,
make a reasonable guess about the velocity of tidal currents in the
Thames, and estimate the magnitude of the induced voltage Fara-
day was trying to detect.

7.21 Maximum emf *
What is the maximum electromotive force induced in a coil of
4000 turns, average radius 12 cm, rotating at 30 revolutions per
second in the earth’s magnetic field where the field intensity is
0.5 gauss?
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7.22 Oscillating E and B *
In the central region of a solenoid that is connected to a radio-
frequency power source, the magnetic field oscillates at 2.5 · 106

cycles per second with an amplitude of 4 gauss. What is the ampli-
tude of the oscillating electric field at a point 3 cm from the axis?
(This point lies within the region where the magnetic field is nearly
uniform.)

Figure 7.33.

7.23 Vibrating wire *
A taut wire passes through the gap of a small magnet (Fig. 7.33),
where the field strength is 5000 gauss. The length of wire within
the gap is 1.8 cm. Calculate the amplitude of the induced alternat-
ing voltage when the wire is vibrating at its fundamental frequency
of 2000 Hz with an amplitude of 0.03 cm, transverse to the mag-
netic field.

7.24 Pulling a frame **
The shaded region in Fig. 7.34 represents the pole of an electro-
magnet where there is a strong magnetic field perpendicular to
the plane of the paper. The rectangular frame is made of a 5 mm
diameter aluminum rod, bent and with its ends welded together.
Suppose that by applying a steady force of 1 newton, starting at
the position shown, the frame can be pulled out of the magnet in
1 second. Then, if the force is doubled, to 2 newtons, the frame
will be pulled out in seconds. Brass has about twice the
resistivity of aluminum. If the frame had been made of a 5 mm
brass rod, the force needed to pull it out in 1 second would be

newtons. If the frame had been made of a 1 cm diameter
aluminum rod, the force required to pull it out in 1 second would
be newtons. You may neglect in all cases the inertia of the
frame.

Figure 7.34.

7.25 Sliding loop **
A long straight stationary wire is parallel to the y axis and passes
through the point z = h on the z axis. A current I flows in this
wire, returning by a remote conductor whose field we may neglect.
Lying in the xy plane is a square loop with two of its sides, of
length b, parallel to the long wire. This loop slides with constant
speed v in the x̂ direction. Find the magnitude of the electromotive
force induced in the loop at the moment when the center of the
loop crosses the y axis.

7.26 Sliding bar **
A metal crossbar of mass m slides without friction on two long
parallel conducting rails a distance b apart; see Fig. 7.35. A resistor
R is connected across the rails at one end; compared with R, the
resistance of bar and rails is negligible. There is a uniform field B
perpendicular to the plane of the figure. At time t = 0 the crossbar
is given a velocity v0 toward the right. What happens afterward?
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(a) Does the rod ever stop moving? If so, when?
(b) How far does it go?
(c) How about conservation of energy?

bBmR

Figure 7.35.

7.27 Ring in a solenoid **
An infinite solenoid with radius b has n turns per unit length. The
current varies in time according to I(t) = I0 cos ωt (with posi-
tive defined as shown in Fig. 7.36). A ring with radius r < b and
resistance R is centered on the solenoid’s axis, with its plane per-
pendicular to the axis.

(a) What is the induced current in the ring?
(b) A given little piece of the ring will feel a magnetic force. For

what values of t is this force maximum?
(c) What is the effect of the force on the ring? That is, does the

force cause the ring to translate, spin, flip over, stretch/
shrink, etc.?

Positive I

b

r

Figure 7.36.

7.28 A loop with two surfaces **
Consider the loop of wire shown in Fig. 7.37. Suppose we want
to calculate the flux of B through this loop. Two surfaces bounded
by the loop are shown in parts (a) and (b) of the figure. What is
the essential difference between them? Which, if either, is the cor-
rect surface to use in performing the surface integral

∫
B · da to

find the flux? Describe the corresponding surface for a three-turn
coil. Show that this is all consistent with our previous assertion
that, for a compact coil of N turns, the electromotive force is just
N times what it would be for a single loop of the same size and
shape.

7.29 Induced emf in a loop ***
Calculate the electromotive force in the moving loop in
Fig. 7.38 at the instant when it is in the position shown. Assume
the resistance of the loop is so great that the effect of the current
in the loop itself is negligible. Estimate very roughly how large a
resistance would be safe, in this respect. Indicate the direction in
which current would flow in the loop, at the instant shown.

7.30 Work and dissipated energy **
Suppose the loop in Fig. 7.6 has a resistance R. Show that who-
ever is pulling the loop along at constant speed does an amount of
work during the interval dt that agrees precisely with the energy
dissipated in the resistance during this interval, assuming that the
self-inductance of the loop can be neglected. What is the source of
the energy in Fig. 7.14 where the loop is stationary?
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7.31 Sinusoidal emf **
Does the prediction of a simple sinusoidal variation of electromo-
tive force for the rotating planar loop in Fig. 7.13 depend on the
loop being rectangular, on the magnetic field being uniform, or on
both? Explain. Can you suggest an arrangement of rotating loop
and stationary coils that will give a definitely nonsinusoidal emf?
Sketch the voltage–time curve you would expect to see on the oscil-
loscope, with that arrangement.

(a)

(b)

Figure 7.37.

8 cm

v = 5 m/s

10 cm

15 cm

100 amperes

Figure 7.38.

7.32 Emfs and voltmeters **
The circular wire in Fig. 7.39(a) encircles a solenoid in which the
magnetic flux d�/dt is increasing at a constant rate E0 out of the
page. So the clockwise emf around the loop is E0.

In Fig. 7.39(b) the solenoid has been removed, and a capacitor
has been inserted in the loop. The upper plate is positive. The volt-
age difference between the plates is E0, and this voltage is main-
tained by someone physically dragging positive charges from the
negative plate to the positive plate (or rather, dragging electrons
the other way). So this person is the source of the emf.

In Fig. 7.39(c) the above capacitor has been replaced by N
little capacitors, each with a voltage difference of E0/N. The figure
shows N = 12, but assume that N is large, essentially infinite. As
above, the emf is maintained by people dragging charges from one
plate to the other in every capacitor. This setup is similar to the
setup in Fig. 7.39(a), in that the emf is evenly distributed around
the circuit.

By definition, the voltage difference between two points is
given by Vb − Va ≡ − ∫ b

a E · ds. This is what a voltmeter mea-
sures. For each of the above three setups, find the voltage differ-
ence Vb − Va along path 1 (shown in part (a) of the figure), and
also the voltage difference Va − Vb along path 2. Comment on the
similarities and differences in your results, and also on each of the
total voltage drops in a complete round trip.

7.33 Getting a ring to spin **
A nonconducting thin ring of radius a carries a static charge q.
This ring is in a magnetic field of strength B0, parallel to the ring’s
axis, and is supported so that it is free to rotate about that axis.
If the field is switched off, how much angular momentum will be
added to the ring? Supposing the mass of the ring to be m, show
that the ring, if initially at rest, will acquire an angular velocity
ω = qB0/2m. Note that, as in Problem 7.5, the result depends only
on the initial and final values of the field strength, and not on the
rapidity of change.
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7.34 Faraday’s experiment ***
The coils that first produced a slight but detectable kick in Fara-
day’s galvanometer he describes as made of 203 feet of copper
wire each, wound around a large block of wood; see Fig. 7.1(a).
The turns of the second spiral (that is, single-layer coil) were inter-
posed between those of the first, but separated from them by twine.
The diameter of the copper wire itself was 1/20 inch. He does not
give the dimensions of the wooden block or the number of turns in
the coils. In the experiment, one of these coils was connected to a
“battery of 100 plates.” (Assume that one plate is roughly 1 volt.)
See if you can make a rough estimate of the duration in seconds
(it will be small) and magnitude in amperes of the pulse of current
that passed through his galvanometer.

dt
dΦ

+
–

+
–

___a
b

a

b

a

b

Wire

Path 1

Path 2

(a)

(b)

(c)

Figure 7.39.

7.35 M for two rings **
Derive an approximate formula for the mutual inductance of two
circular rings of the same radius a, arranged like wheels on the
same axle with their centers a distance b apart. Use an approxima-
tion good for b � a.

7.36 Connecting two circuits **
Part (a) of Fig. 7.40 shows two coils with self-inductances L1 and
L2. In the relative position shown, their mutual inductance is M.
The positive current direction and the positive electromotive force
direction in each coil are defined by the arrows in the figure. The
equations relating currents and electromotive forces are

E1 = −L1
dI1

dt
± M

dI2

dt
and E2 = −L2

dI2

dt
± M

dI1

dt
. (7.86)

(a) Given that M is always to be taken as a positive constant, how
must the signs be chosen in these equations? What if we had
chosen, as we might have, the other direction for positive cur-
rent, and for positive electromotive force, in the lower coil?

(b) Now connect the two coils together, as in part (b) of the figure,
to form a single circuit. What is the self-inductance L′ of this
circuit, expressed in terms of L1, L2, and M? What is the self-
inductance L′′ of the circuit formed by connecting the coils as
shown in (c)? Which circuit, (b) or (c), has the greater self-
inductance?

(c) Considering that the self-inductance of any circuit must be a
positive quantity (why couldn’t it be negative?), see if you can
draw a general conclusion, valid for any conceivable pair of
coils, concerning the relative magnitude of L1, L2, and M.

7.37 Flux through two rings **
Discuss the implications of the theorem �21/I1 = �12/I2 in the
case of the large and small concentric rings in Fig. 7.20. With
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fixed current I1 in the outer ring, obviously �21, the flux through
the inner ring, decreases if R1 is increased, simply because the
field at the center gets weaker. But with fixed current in the inner
ring, why should �12, the flux through the outer ring, decrease
as R1 increases, holding R2 constant? It must do so to satisfy our
theorem.

E1

E2

L1

L1

I1

I2

M

(a)

L� = ?

(b)

L� = ?

(c)

Figure 7.40.

7.38 Using the mutual inductance for two rings ***
Can you devise a way to use the theorem �21/I1 = �12/I2 to find
the magnetic field strength due to a ring current at points in the
plane of the ring at a distance from the ring much greater than the
ring radius? (Hint: Consider the effect of a small change �R1 in
the radius of the outer ring in Fig. 7.20; it must have the same effect
on �12/I2 as on �21/I1.)

7.39 Small L *
How could we wind a resistance coil so that its self-inductance
would be small?

7.40 L for a cylindrical solenoid **
Calculate the self-inductance of a cylindrical solenoid 10 cm in
diameter and 2 m long. It has a single-layer winding containing
a total of 1200 turns. Assume that the magnetic field inside the
solenoid is approximately uniform right out to the ends. Estimate
roughly the magnitude of the error you will thereby incur. Is the
true L larger or smaller than your approximate result?

7.41 Opening a switch **
In the circuit shown in Fig. 7.41 the 10 volt battery has negligi-
ble internal resistance. The switch S is closed for several seconds,
then opened. Make a graph with the abscissa time in milliseconds,
showing the potential of point A with respect to ground, just before
and then for 5 milliseconds after the opening of switch S. Show
also the variation of the potential at point B in the same period
of time.

7.42 RL circuit **
A coil with resistance of 0.01 ohm and self-inductance 0.50 milli-
henry is connected across a large 12 volt battery of negligible inter-
nal resistance. How long after the switch is closed will the current
reach 90 percent of its final value? At that time, how much energy,
in joules, is stored in the magnetic field? How much energy has
been withdrawn from the battery up to that time?

7.43 Energy in an RL circuit **
Consider the RL circuit discussed in Section 7.9. Show that the
energy delivered by the battery up to an arbitrary time t equals
the energy stored in the magnetic field plus the energy dissipated
in the resistor. Do this by using the expression for I(t) in Eq. (7.69)
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and explicitly calculating the relevant integrals. This method is
rather tedious, so feel free to use a computer to evaluate the inte-
grals. See Problem 7.15 for a much quicker method.

10 volts
150 ohms

50 ohms

0.1 henry

A

B

S

Figure 7.41.

7.44 Magnetic energy in the galaxy *
A magnetic field exists in most of the interstellar space in our galaxy.
There is evidence that its strength in most regions is between 10−6

and 10−5 gauss. Adopting 3 · 10−6 gauss as a typical value, find,
in order of magnitude, the total energy stored in the magnetic field
of the galaxy. For this purpose you may assume the galaxy is a
disk roughly 1021 m in diameter and 1019 m thick. To see whether
the magnetic energy amounts to much, on that scale, you might
consider the fact that all the stars in the galaxy are radiating about
1037 joules/second. How many years of starlight is the magnetic
energy worth?

7.45 Magnetic energy near a neutron star *
It has been estimated that the magnetic field strength at the surface
of a neutron star, or pulsar, may be as high as 1010 tesla. What is the
energy density in such a field? Express it, using the mass–energy
equivalence, in kilograms per m3.

7.46 Decay time for current in the earth **
Magnetic fields inside good conductors cannot change quickly. We
found that current in a simple inductive circuit decays exponen-
tially with characteristic time L/R; see Eq. (7.71). In a large con-
ducting body such as the metallic core of the earth, the “circuit” is
not easy to identify. Nevertheless, we can find the order of magni-
tude of the decay time, and what it depends on, by making some
reasonable approximations.a

a

I

Figure 7.42.

Consider a solid doughnut of square cross section, as shown
in Fig. 7.42, made of material with conductivity σ . A current I
flows around it. Of course, I is spread out in some manner over the
cross section, but we shall assume the resistance is that of a wire
of area a2 and length πa, that is, R ≈ π/aσ . For the field B we
adopt the field at the center of a ring with current I and radius a/2.
For the stored energy U, a reasonable estimate would be B2/2μ0
times the volume of the doughnut. Since dU/dt = −I2R, the decay
time of the energy U will be τ ≈ U/I2R. Show that, except for
some numerical factor depending on our various approximations,
τ ≈ μ0a2σ . The radius of the earth’s core is 3000 km, and its
conductivity is believed to be 106 (ohm-m)−1, roughly one-tenth
that of iron at room temperature. Evaluate τ in centuries.

7.47 A dynamo **
In this question the term dynamo will be used for a generator that
works in the following way. By some external agency – the shaft
of a steam turbine, for instance – a conductor is driven through
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a magnetic field, inducing an electromotive force in a circuit of
which that conductor is part. The source of the magnetic field is
the current that is caused to flow in that circuit by that electro-
motive force. An electrical engineer would call it a self-excited dc
generator. One of the simplest dynamos conceivable is sketched in
Fig. 7.43. It has only two essential parts. One part is a solid metal
disk and axle which can be driven in rotation. The other is a two-
turn “coil” which is stationary but is connected by sliding contacts,
or “brushes,” to the axle and to the rim of the revolving disk. One
of the two devices pictured is, at least potentially, a dynamo. The
other is not. Which is the dynamo?

Figure 7.43.

Note that the answer to this question cannot depend on any
convention about handedness or current directions. An intelligent
extraterrestrial being inspecting the sketches could give the answer,
provided only that it knows about arrows! What do you think deter-
mines the direction of the current in such a dynamo? What will
determine the magnitude of the current?



8
Alternating-current
circuits

Overview In earlier chapters we encountered resistors, capac-
itors, and inductors. We will now study circuits containing all three
of these elements. If such a circuit contains no emf source, the
current takes the form of a decaying oscillation (in the case of
small damping). The rate of decay is described by the Q factor. If
we add on a sinusoidally oscillating emf source, then the current
will reach a steady state with the same frequency of oscillation
as the emf source. However, in general there will be a phase dif-
ference between the current and the emf. This phase, along with
the amplitude of the current, can be determined by three methods.
The first method is to guess a sinusoidal solution to the differential
equation representing the Kirchhoff loop equation. The second is
to guess a complex exponential solution and then take the real
part to obtain the actual current. The third is to use complex volt-
ages, currents, and impedances. These complex impedances can
be combined via the same series and parallel rules that work for
resistors. As we will see, the third method is essentially the same
as the second method, but with better bookkeeping; this makes it
far more tractable in the case of complicated circuits. Finally, we
derive an expression for the power dissipated in a circuit, which
reduces to the familiar V2/R result if the circuit is purely resistive.

8.1 A resonant circuit
A mass attached to a spring is a familiar example of an oscillator.
If the amplitude of oscillation is not too large, the motion will be a sinu-
soidal function of the time. In that case, we call it a harmonic oscillator.
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m

x

Figure 8.1.
A mechanical damped harmonic oscillator.

The characteristic feature of any mechanical harmonic oscillator is a
restoring force proportional to the displacement of a mass m from its
position of equilibrium, F = −kx (Fig. 8.1). In the absence of other exter-
nal forces, the mass, if initially displaced, will oscillate with unchanging
amplitude at the angular frequency ω = √

k/m. But usually some kind
of friction will bring it eventually to rest. The simplest case is that of a
retarding force proportional to the velocity of the mass, dx/dt. Motion
in a viscous fluid provides an example. A system in which the restoring
force is proportional to some displacement x and the retarding force is
proportional to the time derivative dx/dt is called a damped harmonic
oscillator.

An electric circuit containing capacitance and inductance has the
essentials of a harmonic oscillator. Ohmic resistance makes it a damped
harmonic oscillator. Indeed, thanks to the extraordinary linearity of actual
electric circuit elements, the electrical damped harmonic oscillator is
more nearly ideal than most mechanical oscillators. The system we shall
study first is the “series RLC” circuit shown in Fig. 8.2. Note that there

R

C LV

I

Figure 8.2.
A “series RLC” circuit.

is no emf in this circuit. We will introduce an E (an oscillating one) in
Section 8.2.

Let Q be the charge, at time t, on the capacitor in this circuit. The
potential difference, or voltage across the capacitor, is V , which obvi-
ously is the same as the voltage across the series combination of induc-
tor L and resistor R. We take V to be positive when the upper capacitor
plate is positively charged, and we define the positive current direction
by the arrow in Fig. 8.2. With the signs chosen that way, the relations
connecting charge Q, current I, and voltage across the capacitor V are

I = −dQ
dt

, Q = CV , V = L
dI
dt

+ RI. (8.1)

We want to eliminate two of the three variables Q, I, and V . Let us
write Q and I in terms of V . From the first two equations we obtain
I = −C dV/dt, and the third equation becomes V = −LC(d2V/dt2) −
RC(dV/dt), or

d2V
dt2

+
(

R
L

)
dV
dt

+
(

1
LC

)
V = 0. (8.2)

This equation takes exactly the same form as the F = ma equation for a
mass on the end of a spring immersed in a fluid in which the damping
force is −bv, where b is the damping coefficient and v is the velocity.
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The F = ma equation for that system is −kx−bẋ = mẍ. We can compare
this with Eq. (8.2) (after multiplying through by L):

L
d2V
dt2

+ R
dV
dt

+
(

1
C

)
V = 0 ⇐⇒ m

d2x
dt2

+ b
dx
dt

+ kx = 0. (8.3)

We see that the inductance L is the analog of the mass m; this element
provides the inertia that resists change. The resistance R is the analog of
the damping coefficient b; this element causes energy dissipation. And
the inverse of the capacitance, 1/C, is the analog of the spring constant
k; this element provides the restoring force. (There isn’t anything too
deep about the reciprocal form of 1/C here; we could have just as easily
defined a quantity C′ ≡ 1/C, with V = C′Q.)

Equation (8.2) is a second-order differential equation with constant
coefficients. We shall try a solution of the form

V(t) = Ae−αt cos ωt, (8.4)

where A, α, and ω are constants. (See Problem 8.3 for an explanation
of where this form comes from.) The first and second derivatives of this
function are

dV
dt

= Ae−αt[− α cos ωt − ω sin ωt
]
,

d2V
dt2

= Ae−αt[(α2 − ω2) cos ωt + 2αω sin ωt
]
. (8.5)

Substituting back into Eq. (8.2), we cancel out the common factor Ae−αt

and are left with(
α2 − ω2) cos ωt + 2αω sin ωt − R

L
(α cos ωt + ω sin ωt)

+ 1
LC

cos ωt = 0. (8.6)

This will be satisfied for all t if, and only if, the coefficients of sin ωt and
cos ωt are both zero. That is, we must require

2αω − Rω

L
= 0 and α2 − ω2 − α

R
L
+ 1

LC
= 0. (8.7)

The first of these equations gives a condition on α:

α = R
2L

(8.8)

while the second equation requires that

ω2 = 1
LC

− α
R
L
+ α2 �⇒ ω2 = 1

LC
− R2

4L2 (8.9)



8.1 A resonant circuit 391

We are assuming that the ω in Eq. (8.4) is a real number, so ω2

cannot be negative. Therefore we succeed in obtaining a solution of the
form assumed in Eq. (8.4) only if R2/4L2 ≤ 1/LC. In fact, it is the case
of “light damping,” that is, low resistance, that we want to examine, so
we shall assume that the values of R, L, and C in the circuit are such that
the inequality R < 2

√
L/C holds. However, see the end of this section

for a brief discussion of the R = 2
√

L/C and R > 2
√

L/C cases.
The function Ae−αt cos ωt is not the only possible solution; Be−αt

sin ωt works just as well, with the same requirements, Eqs. (8.8) and
(8.9), on α and ω, respectively. The general solution is the sum of these:

V(t) = e−αt(A cos ωt + B sin ωt) (8.10)

The arbitrary constants A and B could be adjusted to fit initial con-
ditions. That is not very interesting. Whether the solution in any given
case involves the sine or the cosine function, or some superposition, is
a trivial matter of how the clock is set. The essential phenomenon is a
damped sinusoidal oscillation.

The variation of voltage with time is shown in Fig. 8.3(a). Of course,
this cannot really hold for all past time. At some time in the past the
circuit must have been provided with energy somehow, and then left
running. For instance, the capacitor might have been charged, with the
circuit open, and then connected to the coil.

In Fig. 8.3(b) the time scale has been expanded, and the dashed
curve showing the variation of the current I has been added. For V let
us take the damped cosine, Eq. (8.4). Then the current as a function of
time is given by

I(t) = −C
dV
dt

= ACω
(

sin ωt + α

ω
cos ωt

)
e−αt. (8.11)

The ratio α/ω is a measure of the damping. This is true because if α/ω

is very small, many oscillations occur while the amplitude is decaying
only a little. For Fig. 8.3 we chose a case in which α/ω ≈ 0.04. Then the
cosine term in Eq. (8.11) doesn’t amount to much. All it does, in effect, is
shift the phase by a small angle, tan−1(α/ω). So the current oscillation is
almost exactly one-quarter cycle out of phase with the voltage oscillation.

The oscillation involves a transfer of energy back and forth from
the capacitor to the inductor, or from electric field to magnetic field. At
the times marked 1 in Fig. 8.3(b) all the energy is in the electric field.
A quarter-cycle later, at 2, the capacitor is discharged and nearly all this
energy is found in the magnetic field of the coil. Meanwhile, the circuit
resistance R is taking its toll, and as the oscillation goes on, the energy
remaining in the fields gradually diminishes.

The relative damping in an oscillator is often expressed by giving
a number called Q. This number Q (not to be confused with the charge
on the capacitor!) is said to stand for quality or quality factor. In fact, no
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one calls it that; we just call it Q. The less the damping, the larger the
number Q. For an oscillator with frequency ω, Q is the dimensionless
ratio formed as follows:

Q = ω · energy stored
average power dissipated

(8.12)

Or you may prefer to remember Q as follows:
• Q is the number of radians of the argument ωt (that is, 2π times the

number of cycles) required for the energy in the oscillator to diminish
by the factor 1/e.

In our circuit the stored energy is proportional to V2 or I2 and, therefore,
to e−2αt. So the energy decays by 1/e in a time t = 1/2α, which covers
ωt = ω/2α radians. Hence, for our RLC circuit, using Eq. (8.8),

Q = ω

2α
= ωL

R
. (8.13)

You should verify that Eq. (8.12) gives the same result.
What is Q for the oscillation represented in Fig. 8.3? The energy

decreases by a factor 1/e when V decreases by a factor 1/
√

e ≈ 0.6. As a
rough estimate, this decrease occurs after about two oscillations, which is
roughly 13 radians. So Q ≈ 13.

A special case of the above circuit is where R = 0. In this case we
have the completely undamped oscillator, whose frequency ω0 is given
by Eq. (8.9) as

ω0 = 1√
LC

(8.14)

Mostly we deal with systems in which the damping is small enough to
be ignored in calculating the frequency. As we can see from Eq. (8.9),
and as Problem 8.5 and Exercise 8.18 will demonstrate, light damping
has only a second-order effect on ω. Note that in view of Eq. (8.3), the
1/
√

LC frequency for our undamped resonant circuit is the analog of the
familiar

√
k/m frequency for an undamped mechanical oscillator.

For completeness we review briefly what goes on in the overdamped
circuit, in which R > 2

√
L/C. Equation (8.2) then has a solution of the

form V = Ae−βt for two values of β, the general solution being

V(t) = Ae−β1t + Be−β2t. (8.15)

Figure 8.3.
(a) The damped sinusoidal oscillation of voltage in the RLC circuit. (b) A
portion of (a) with the time scale expanded and the graph of the current I
included. (c) The periodic transfer of energy from electric field to
magnetic field and back again. Each picture represents the condition at
times marked by the corresponding number in (b).
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There are no oscillations, only a monotonic decay (after perhaps one
local extremum, depending on the initial conditions). The task of Prob-
lem 8.4 is to find the values of β1 and β2.

In the special case of “critical” damping, where R = 2
√

L/C, we
have β1 = β2. It turns out (see Problem 8.2) that in this case the solution
of the differential equation, Eq. (8.2), takes the form,

V(t) = (A + Bt)e−βt. (8.16)

This is the condition, for given L and C, in which the total energy in the
circuit is most rapidly dissipated; see Exercise 8.23.

You can see this whole range of behavior in Fig. 8.4, where V(t) is

(a)

(b)

R = 60 ohms

R = 20 ohmsV

V

V

V

R = 200 ohms

R = 600 ohms

1098765
Time (μs)

43210

C = 0.01 microfarad

L = 100 microhenrys
L

R

C V

Figure 8.4.
(a) With the capacitor charged, the switch is
closed at t = 0. (b) Four cases are shown, one
of which, R = 200 ohms, is the case of critical
damping.

plotted for two underdamped circuits, a critically damped circuit, and an
overdamped circuit. The capacitor and inductor remain the same; only
the resistor is changed. The natural angular frequency ω0 = 1/

√
LC is

106 s−1 for this circuit, corresponding to a frequency in cycles per second
of 106/2π , or 159 kilocycles per second.

The circuit is started off by charging the capacitor to a potential
difference of, say, 1 volt and then closing the switch at t= 0. That is,
V = 1 at t= 0 is one initial condition. Also, I = 0 at t= 0, because the
inductor will not allow the current to rise discontinuously. Therefore, the
other initial condition on V is dV/dt= 0, at t= 0. Note that all four decay
curves start the same way. In the heavily damped case (R= 600 ohms)
most of the decay curve looks like the simple exponential decay of an
RC circuit. Only the very beginning, where the curve is rounded over so
that it starts with zero slope, betrays the presence of the inductance L.

8.2 Alternating current
The resonant circuit we have just discussed contained no source of energy
and was, therefore, doomed to a transient activity, an oscillation that
must sooner or later die out (unless R = 0 exactly). In an alternating-
current circuit we are concerned with a steady state, a current and voltage
oscillating sinusoidally without change in amplitude. Some oscillating
electromotive force drives the system.

The frequency f of an alternating current is ordinarily expressed
in cycles per second (or Hertz (Hz), after the discoverer1 of electro-
magnetic waves). The angular frequency ω = 2π f is the quantity that
usually appears in our equations. It will always be assumed to be in radi-
ans/second. That unit has no special name; we write it simply s−1. Thus
our familiar (in North America) 60 Hz current has ω = 377 s−1. But, in
general, ω can take on any value we choose; it need not have anything to
do with the frequency ω we found in the previous section in Eq. (8.9).

1 In 1887, at the University of Karlsruhe, Heinrich Hertz demonstrated electromagnetic
waves generated by oscillating currents in a macroscopic electric circuit. The
frequencies were around 109 cycles per second, corresponding to wavelengths around
30 cm. Although Maxwell’s theory, developed 15 years earlier, had left little doubt that
light must be an electromagnetic phenomenon, in the history of electromagnetism
Hertz’s experiments were an immensely significant turning point.
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Our goal in this section is to determine how the current behaves in
a series RLC circuit with an oscillating voltage source. To warm up, we
consider a few simpler circuits first. In Section 8.3 we provide an alter-
native method for solving the RLC circuit. This method uses complex
exponentials in a rather slick way. In Sections 8.4 and 8.5 we generalize
this complex-exponential method in a manner that allows us to treat an
alternating-current circuit (involving resistors, inductors, and capacitors)
in essentially the same simple way that we treat a direct-current circuit
involving only resistors.

8.2.1 RL circuit
Let us apply an electromotive force E = E0 cos ωt to a circuit containing
inductance and resistance. We might generate E by a machine schemat-
ically like the one in Fig. 7.13, having provided some engine or motor
to turn the shaft at the constant angular speed ω. The symbol at the left
in Fig. 8.5 is a conventional way to show the presence of an alternat-

R

L

I

0 cos w t

Figure 8.5.
A circuit with inductance, driven by an
alternating electromotive force.

ing electromotive force in a circuit. It suggests a generator connected in
series with the rest of the circuit. But you need not think of an electro-
motive force as located at a particular place in the circuit. It is only the
line integral around the whole circuit that matters. Figure 8.5 could just
as well represent a circuit in which the electromotive force arises from a
changing magnetic field over the whole area enclosed by the circuit.

We set the sum of voltage drops over the elements of this circuit
equal to the electromotive force E , exactly as we did in developing
Eq. (7.66). The equation governing the current is then

L
dI
dt

+ RI = E0 cos ωt. (8.17)

There may be some transient behavior, depending on the initial con-
ditions, that is, on how and when the generator is switched on. But we
are interested only in the steady state, when the current is oscillating
obediently at the frequency of the driving force, with the amplitude and
phase necessary to keep Eq. (8.17) satisfied. To show that this is possible,
consider a current described by

I(t) = I0 cos(ωt + φ) (8.18)

To determine the constants I0 and φ, we put this into Eq. (8.17):

−LI0ω sin(ωt + φ) + RI0 cos(ωt + φ) = E0 cos ωt. (8.19)

The functions sin ωt and cos ωt can be separated out:

− LI0ω(sin ωt cos φ + cos ωt sin φ)

+ RI0(cos ωt cos φ − sin ωt sin φ) = E0 cos ωt. (8.20)
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Figure 8.6.
The current I1 in the circuit of Fig. 8.5, plotted
along with the electromotive force E on the
same time scale. Note the phase difference.

E = E0 cos w t

t

I =
E0

R 2 + w2L2
cos  w t − tan−1 w L

R

Setting the coefficients of sin ωt and cos ωt separately equal to zero gives,
respectively,

−LI0ω cos φ − RI0 sin φ = 0 �⇒ tan φ = −ωL
R

(8.21)

and

−LI0ω sin φ + RI0 cos φ − E0 = 0, (8.22)

which gives

I0 = E0

R cos φ − ωL sin φ

= E0

R(cos φ + tan φ sin φ)
= E0 cos φ

R
. (8.23)

Since Eq. (8.21) implies2

cos φ = R√
R2 + ω2L2

, (8.24)

we can write I0 as

I0 = E0√
R2 + ω2L2

(8.25)

In Fig. 8.6 the oscillations of E and I are plotted on the same graph.
Since φ is a negative angle, the current reaches its maximum a bit later
than the electromotive force. One says, “The current lags the voltage in
an inductive circuit.” The quantity ωL, which has the dimensions of resis-
tance and can be expressed in ohms, is called the inductive reactance.

2 The tan φ expression in Eq. (8.21) actually gives only the magnitude of cos φ and not
the sign, since φ could lie in the second or fourth quadrants. But since the convention
is to take I0 and E0 positive, Eq. (8.23) tells us that cos φ is positive. The angle φ

therefore lies in the fourth quadrant, at least for an RL circuit.
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8.2.2 RC circuit
If we replace the inductor L by a capacitor C, as in Fig. 8.7, we have a
circuit governed by the equation

−Q
C

+ RI = E0 cos ωt, (8.26) Q

R

C

I

I

E0 cos wt

Figure 8.7.
An alternating electromotive force in a circuit
containing resistance and capacitance.

where we have defined Q to be the charge on the bottom plate of the
capacitor, as shown. We again consider the steady-state solution

I(t) = I0 cos(ωt + φ). (8.27)

Since I = −dQ/dt, we have

Q = −
∫

I dt = − I0

ω
sin(ωt + φ). (8.28)

Note that, in going from I to Q by integration, there is no question
of adding a constant of integration, for we know that Q must oscillate
symmetrically about zero in the steady state. Substituting Q back into
Eq. (8.26) leads to

I0

ωC
sin(ωt + φ) + RI0 cos(ωt + φ) = E0 cos ωt. (8.29)

Just as before, we obtain conditions on φ and I0 by requiring that the
coefficients of sin ωt and cos ωt separately vanish. Alternatively, we can
avoid this process by noting that, in going from Eq. (8.19) to Eq. (8.29),
we have simply traded −ωL for 1/ωC. The results analogous to
Eqs. (8.21) and (8.25) are therefore

tan φ = 1
RωC

and I0 = E0√
R2 + (1/ωC)2

(8.30)

Note that the phase angle is now positive, that is, it lies in the first quad-
rant. (The result in Eq. (8.23) is unchanged, so cos φ is again positive.
But tan φ is now also positive.) As the saying goes, the current “leads
the voltage” in a capacitive circuit. What this means is apparent in the
graph of Fig. 8.8.

E = E0 cos w t

cos  w t + tan–1I =
E0

R 2 + 

1
RwC

wC
1 2

Figure 8.8.
The current in the RC circuit. Compare the
phase shift here with the phase shift in the
inductive circuit in Fig. 8.6. The maximum in I
occurs here a little earlier than the
maximum in E .
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8.2.3 Transients
Mathematically speaking, the solution for the RL circuit,

I(t) = E0√
R2 + ω2L2

cos
(

ωt − tan−1 ωL
R

)
, (8.31)

is a particular integral of the differential equation, Eq. (8.17). To this
could be added a complementary function, that is, any solution of the
homogeneous differential equation,

L
dI
dt

+ RI = 0. (8.32)

This is true because Eq. (8.17) is linear in I, so the superposition of the
particular and complementary functions is still a solution; the comple-
mentary function simply increases the right-hand side of Eq. (8.17) by
zero, and therefore doesn’t affect the equality. Now, Eq. (8.32) is just
Eq. (7.70) of Chapter 7, whose solution we found, in Section 7.9, to be
an exponentially decaying function,

I(t) ∼ e−(R/L)t. (8.33)

The physical significance is this: a transient, determined by some initial
conditions, is represented by a decaying component of I(t), of the form
of Eq. (8.33). After a time t � L/R, this will have vanished, leaving only
the steady sinusoidal oscillation at the driving frequency, represented by
the particular integral, Eq. (8.31). This oscillation is entirely independent
of the initial conditions; all memory of the initial conditions is lost.

I

I Q
C

L

VC

VL

Figure 8.9.
The inductor and capacitor in series are
equivalent to a single reactive element that is
either an inductor or a capacitor, depending on
whether ω2LC is greater or less than 1.

8.2.4 RLC circuit
To solve for the current in a series RLC circuit, a certain observation
will be helpful. The similarity of our results for the RL circuit and the
RC circuit suggests a way to look at the inductor and capacitor in series.
Suppose an alternating current I = I0 cos(ωt + φ) is somehow caused to
flow through such a combination (shown in Fig. 8.9). The voltage across
the inductor, VL, will be

VL = L
dI
dt

= −I0ωL sin(ωt + φ). (8.34)

The voltage VC across the capacitor, with sign consistent with the sign
of VL, is

VC = −Q
C

= 1
C

∫
I dt = I0

ωC
sin(ωt + φ). (8.35)
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The voltage across the combination is then

VL + VC = −
(

ωL − 1
ωC

)
I0 sin(ωt + φ). (8.36)

For a given ω, the combination is evidently equivalent to a single ele-
ment, either an inductor or a capacitor, depending on whether the quan-
tity ωL− 1/ωC is positive or negative. Suppose, for example, that ωL >

1/ωC. Then the combination is equivalent to an inductor L′ such that

ωL′ = ωL − 1
ωC

. (8.37)

Equivalence means only that the relation between current and voltage, for
steady oscillation at the particular frequency ω, is the same. This allows
us to replace L and C by L′ in any circuit driven at this frequency. The
main point here is that the voltages across the inductor and capacitor are
both proportional to sin(ωt + φ), so they are always in phase with each
other (or rather, exactly out of phase).

This can be applied to the simple RLC circuit in Fig. 8.10. We need

R

L

E0 cos w t C

Figure 8.10.
The RLC circuit driven by a sinusoidal
electromotive force.

only recall Eqs. (8.21) and (8.25), the solution for the RL circuit driven
by the electromotive force E0 cos ωt, and replace ωL by ωL − 1/ωC:

I(t) = E0√
R2 + (ωL − 1/ωC)2

cos(ωt + φ) (8.38)

where

tan φ = 1
RωC

− ωL
R

(8.39)

These expressions are also correct if 1/ωC > ωL, in which case we
equivalently have a capacitor C′ such that 1/ωC′ = 1/ωC − ωL.

Of course, we could have just solved the RLC circuit from scratch.
The loop equation is

L
dI
dt

− Q
C

+ RI = E0 cos ωt. (8.40)

Instead of either Eq. (8.19) or Eq. (8.29), we now have all three types of
terms (involving L, C, and R) on the left-hand side. The coefficient of
the sin(ωt + φ) term is −I0(ωL − 1/ωC), so we see that we can simply
use our results for the RL circuit, with ωL replaced by ωL−1/ωC, as we
observed above.

8.2.5 Resonance
For fixed amplitude E0 of the electromotive force, and for given circuit
elements L, C, and R, Eq. (8.38) tells us that we get the greatest current
when the driving frequency ω is such that

ωL − 1
ωC

= 0, (8.41)
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which is the same as saying that ω= 1/
√

LC=ω0, the resonant fre-
quency of the undamped LC circuit. In that case Eq. (8.38) reduces to

I(t) = E0 cos ωt
R

. (8.42)

That is exactly the current that would flow if the circuit contained the
resistor alone. The reason for this is that when ω = 1/

√
LC, the voltages

across the inductor and capacitor are always equal and opposite. Since
they cancel, they are effectively not present, and we simply have a circuit
consisting of a resistor and the applied emf E0 cos ωt.

Example Consider the circuit of Fig. 8.4(a), connected now to a source or
generator of alternating emf, E = E0 cos ωt. The driving frequency ω may be
different from the resonant frequency ω0 = 1/

√
LC, which, for the given capac-

itance (0.01 microfarads) and inductance (100 microhenrys), is 106 radians/s (or
106/2π cycles per second). Figure 8.11 shows the amplitude of the oscillating
current as a function of the driving frequency ω, for three different values of the
circuit resistance R. It is assumed that the amplitude E0 of the emf is 100 volts
in each case. Note the resonance peak at ω = ω0, which is most prominent and
sharp for the lowest resistance value, R = 20 ohms. This is the same value of R
for which, running as a damped oscillator without any driving emf, the circuit
behaved as shown in the top graph of Fig. 8.4(b).

Figure 8.11.
An emf of 100 volts amplitude is applied to a
series RLC circuit. The circuit elements are the
same as in the example of the damped circuit in
Fig. 8.4. Circuit amplitude is calculated by
Eq. (8.38) and plotted, as a function of ω/ω0, for
three different resistance values.
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Note that we have encountered three (generally different) frequen-
cies up to this point:

• the frequency of the applied oscillating emf, which can take on any
value we choose;

• the resonant frequency, ω0 = 1/
√

LC, for which the amplitude of the
oscillating current is largest;

• the frequency (in the underdamped case) of the transient behavior,
given by Eq. (8.9). For light damping, this frequency is approximately
equal to the resonant frequency, ω0 = 1/

√
LC.

8.2.6 Width of the I0(ω) curve
The Q factor of the circuit in the above example with R = 20 ohms, given
in Eq. (8.13) as3 ω0L/R, is (106 · 10−4)/20, or 5, in this case. Generally
speaking, the higher the Q of a circuit, the narrower and higher the peak
of its response as a function of driving frequency ω. To be more precise,
consider frequencies in the neighborhood of ω0, writing ω = ω0 + �ω.
Then, to first order in �ω/ω0, the expression ωL − 1/ωC that occurs in
the denominator in Eq. (8.38) can be approximated this way:

ωL − 1
ωC

= ω0L
(

1 + �ω

ω0

)
− 1

ω0C(1 + �ω/ω0)
, (8.43)

and since ω0 is 1/
√

LC, this becomes

ω0L
(

1 + �ω

ω0
− 1

1 + �ω/ω0

)
≈ ω0L

(
2
�ω

ω0

)
, (8.44)

where we have used the approximation, 1/(1 + ε) ≈ 1 − ε. Exactly at
resonance, the quantity inside the square root sign in Eq. (8.38) is just R2.
As ω is shifted away from resonance, the quantity under the square root
will have doubled when |ωL − 1/ωC| = R, or when, approximately,

2|�ω|
ω0

= R
ω0L

= 1
Q

. (8.45)

This means that the current amplitude will have fallen to 1/
√

2 times
the peak when |�ω|/ω0 = 1/2Q. These are the “half-power” points,
because the energy or power is proportional to the amplitude squared,
as we shall explain in Section 8.6. One often expresses the width of
a resonance peak by giving the full width, 2�ω, between half-power
points. Evidently that is just 1/Q times the resonant frequency itself. Cir-
cuits with very much higher Q than this one are quite common. A radio
receiver may select a particular station and discriminate against others

3 The ω in Eq. (8.13) is the frequency of the freely decaying damped oscillator,
practically the same as ω0 for moderate or light damping. We use ω0 here in the
expression for Q. In the present discussion, ω is any frequency we may choose to apply
to this circuit.
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Figure 8.12.
The variation of phase angle with frequency, in
the circuit of Fig. 8.11.
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by means of a resonant circuit with a Q of several hundred. It is quite
easy to make a microwave resonant circuit with a Q of 104, or even 105.

The angle φ, which expresses the relative phase of the current and
emf oscillations, varies with frequency in the manner shown in Fig. 8.12.
At a very low frequency the capacitor is the dominant hindrance to cur-
rent flow, and φ is positive. At resonance, φ = 0. The higher the Q, the
more abruptly φ shifts from positive to negative angles as the frequency
is raised through ω0.

To summarize what we know about Q, we have encountered two
different meanings:

• In an RLC circuit with an applied oscillating emf, 1/Q gives a meas-
ure of the width of the current and power curves, as functions of ω.
The higher the Q, the narrower the curves. More precisely, the width
(at half maximum) of the power curve is ω0/Q.

• If we remove the emf source, the current and energy will decay; Q
gives a measure of how slow this decay is. The higher the Q, the more
oscillations it takes for the amplitude to decrease by a given factor.
More precisely, the energy decreases by a factor 1/e after Q radians
(or Q/2π cycles). Equivalently, as Exercise 8.17 shows, the current
decreases by a factor of e−π after Q cycles. (It’s hard to pass up a
chance to mention a result of e−π !)

8.3 Complex exponential solutions
In Section 8.2 we solved for the current in the series RLC circuit (includ-
ing a voltage source E0 cos ωt) in Fig. 8.10 by guessing a sinusoidal form
for the current I(t). In the present section we will solve for the current
in a different way, using complex numbers. This method is extremely
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powerful, and it forms the basis of what we will do in the remainder of
this chapter.

Our strategy will be the following. We will write down the Kirchhoff
loop equation as we did above, but instead of solving it directly, we will
solve a slightly modified equation in which the E0 cos ωt voltage source
is replaced by E0eiωt. We will guess an exponential solution of the form
Ĩ(t) = Ĩeiωt and solve for Ĩ, which will turn out to be a complex num-
ber.4 Of course, our solution for Ĩ(t) cannot possibly be the current we
are looking for, because Ĩ(t) is complex, whereas an actual current must
be real. However, if we take the real part of Ĩ(t), we will obtain (for rea-
sons we will explain) the desired current I(t) that actually flows in the
circuit. Let’s see how all this works. Our goal is to reproduce the I(t) in
Eqs. (8.38) and (8.39).

The Kirchhoff loop equation for the series RLC circuit in
Fig. 8.10 is5

L
dI(t)

dt
+ RI(t) + Q(t)

C
= E0 cos ωt. (8.46)

If we take clockwise current to be positive, then Q(t) is the integral of
I(t), that is, Q(t) = ∫

I(t) dt. Consider now the modified equation where
cos ωt is replaced by eiωt,

L
dĨ(t)

dt
+ RĨ(t) + Q̃(t)

C
= E0eiωt. (8.47)

If Ĩ(t) is a (complex) solution to this equation, then if we take the real
part of the entire equation, we obtain (using the facts that differentiation
and integration with respect to t commute with taking the real part)

L
d
dt

Re[Ĩ(t)] + R Re[Ĩ(t)] + 1
C

∫
Re[Ĩ(t)] dt = E0 cos ωt. (8.48)

We have used the remarkable mathematical identity, eiθ = cos θ+i sin θ ,
which tells us that cos ωt is the real part of eiωt. (See Appendix K for a
review of complex numbers.)

Equation (8.48) is simply the statement that I(t)≡Re[Ĩ(t)] is a
solution to our original differential equation in Eq. (8.46). Our goal is
therefore to find a complex function Ĩ(t) that satisfies Eq. (8.47), and
then take the real part. Note the critical role that linearity played here.

4 The tilde on the I terms denotes a complex number. Note that Ĩ(t) has time
dependence, whereas Ĩ does not. More precisely, Ĩ = Ĩ(0). When writing Ĩ(t), be
careful not to drop the t argument, because that will change the meaning to Ĩ (although
the meaning is generally clear from the context). There will actually be a total of four
different versions of the letter I that we will encounter in this method. They are
summarized in Fig. 8.13.

5 We are now taking Q to be the charge on the top plate of the capacitor (for no deep
reason). You should verify that if we instead took Q to be the charge on the bottom
plate, then two minus signs would end up canceling, and we would still arrive at
Eq. (8.48). After all, that equation for Ĩ(t) can’t depend on our arbitrary convention
for Q.
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If our differential equation were modified to contain a term that wasn’t
linear in I(t), for example RI(t)2, then this method wouldn’t work,
because Re[Ĩ(t)2] is not equal to

(
Re[Ĩ(t)])2. The modified form of

Eq. (8.48) would not be the statement that I(t) ≡ Re[Ĩ(t)] satisfies the
modified form of Eq. (8.46).

A function of the form Ĩ(t) = Ĩeiωt will certainly yield a solution to
Eq. (8.47), because the eiωt factor will cancel through the whole equation,
yielding an equation with no time dependence. Now, if Ĩ(t) = Ĩeiωt, then
Q̃(t), which is the integral of Ĩ(t), equals Ĩeiωt/iω. (There is no need for a
constant of integration because we know that Q oscillates around zero.)
So Eq. (8.47) becomes

LiωĨeiωt + RĨeiωt + Ĩeiωt

iωC
= E0eiωt. (8.49)

Canceling the eiωt, solving for Ĩ, and getting the i out of the denominator
by multiplying by 1 in the form of the complex conjugate divided by
itself, yields

Ĩ = E0

iωL + R + 1/iωC
= E0

[
R − i(ωL − 1/ωC)

]
R2 + (ωL − 1/ωC)2 . (8.50)

The term in the square brackets is a complex number written in a + bi
form, but it will be advantageous to write it in “polar” form, that is, as
a magnitude times a phase, Aeiφ . The magnitude is A = √

a2 + b2, and
the phase is φ = tan−1(b/a); see Problem 8.7. So we have

Ĩ = E0

R2 + (ωL − 1/ωC)2 ·
√

R2 + (ωL − 1/ωC)2 eiφ

= E0√
R2 + (ωL − 1/ωC)2

eiφ ≡ I0eiφ , (8.51)

where

I0 = E0√
R2 + (ωL − 1/ωC)2

and tan φ = 1
RωC

− ωL
R

. (8.52)

The actual current I(t) is obtained by taking the real part of the full

I(t)

Times eiwt 

R
eal part

Amplitude

M
agnitude

M
agnitude

I0

I(t) I

Figure 8.13.
Relations among the various usages of the
letter “I.”

Ĩ(t) = Ĩeiωt solution:

I(t) = Re
[
Ĩeiωt] = Re

[
I0eiφeiωt] = I0 cos(ωt + φ)

= E0√
R2 + (ωL − 1/ωC)2

cos(ωt + φ), (8.53)

in agreement with Eqs. (8.38) and (8.39). I0 is the amplitude of the cur-
rent, and φ is the phase relative to the applied voltage.

As mentioned above, there are four different types of I’s that appear
in this procedure: Ĩ(t), Ĩ, I(t), and I0. These are related to each other in
the following ways (summarized in Fig. 8.13).
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• The two complex quantities, Ĩ(t) and Ĩ, are related by a simple factor
of eiωt: Ĩ(t) = Ĩeiωt; Ĩ equals Ĩ(0).

• I(t), which is the actual current, equals the real part of Ĩ(t): I(t) =
Re[Ĩ(t)].

• I0 is the magnitude of both Ĩ(t) and Ĩ: I0 = |Ĩ(t)| and I0 = |Ĩ|.
• I0 is the amplitude of I(t): I(t) = I0 cos(ωt + φ).

Although the above method involving complex exponentials might
take some getting used to, it is much cleaner and quicker than the method
involving trig functions that we used in Section 8.2. Recall the system
of equations that we needed to solve in Eqs. (8.21)–(8.25). We had to
demand that the coefficients of sin ωt and cos ωt in Eq. (8.20) were
independently zero. That involved a fair bit of algebra. In the present
complex-exponential method, the eiωt terms cancel in Eq. (8.49), so we
are left with only one equation, which we can quickly solve. The point
here is that the derivative of an exponential gives back an exponential,
whereas sines and cosines flip flop under differentiation. Of course, from
the relation eiθ = cos θ + i sin θ , we know that exponentials can be writ-
ten in terms of trig functions, and vice versa via cos θ = (eiθ + e−iθ )/2
and sin θ = (eiθ − e−iθ )/2i. So any task that can be accomplished with
exponential functions can also be accomplished with trig functions. But
exponentials invariably make the calculations much easier.

In the event that the applied voltage isn’t a nice sinusoidal function,
our method of guessing exponentials (or trig functions) is still applica-
ble, due to two critical things: (1) Fourier analysis and (2) the linearity of
the differential equation in Eq. (8.46). You will study the all-important
subject of Fourier analysis in your future math and physics courses, but
for now we simply note that Fourier analysis tells us that any reason-
ably well-behaved function for the voltage source can be written as the
(perhaps infinite) sum of exponentials, or equivalently trig functions.
And then linearity tells us that we can just add up the solutions for all
these exponential voltage sources to obtain the solution for the origi-
nal voltage source. In effect, this is what we did when we took the real
part of Ĩ(t) to obtain the actual current I(t). We would have arrived at
the same answer if we wrote the applied voltage E0 cos ωt as E0(eiωt +
e−iωt)/2, then found the solutions for these two exponential voltages,
and then added them together. So the strategy of taking the real part is
just a special case of the strategy of superposing solutions via Fourier
analysis.

8.4 Alternating-current networks
In this section we will generalize the results from Section 8.3, where
our circuit involved only one loop. Complex numbers provide us with
a remarkably efficient way of dealing with arbitrary alternating-current
networks. An alternating-current network is any collection of resistors,
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capacitors, and inductors in which currents flow that are oscillating
steadily at the constant frequency ω. One or more electromotive forces, at
this frequency, drive the oscillation. Figure 8.14 is a diagram of one such

I2
I1

I3
L2

Figure 8.14.
An alternating-current network.

network. The source of alternating electromotive force is represented by
the symbol . In a branch of the network, for instance the branch that
contains the inductor L2, the current as a function of time is

I2(t) = I02 cos(ωt + φ2). (8.54)

Since the frequency is a constant for the whole network, two numbers,
such as the amplitude I02 and the phase constant φ2 above, are enough
to determine for all time the current in a particular branch. Similarly, the
voltage across a branch oscillates with a certain amplitude and phase:

V2(t) = V02 cos(ωt + θ2). (8.55)

If we have determined the currents and voltages in all branches of
a network, we have analyzed it completely. To find them by construct-
ing and solving all the appropriate differential equations is possible, of
course; and if we were concerned with the transient behavior of the net-
work, we might have to do something like that. For the steady state at
some given frequency ω, we can use a far simpler and more elegant
method. It is based on two ideas:

(1) An alternating current or voltage can be represented by a complex
number;

(2) Any one branch or element of the circuit can be characterized, at a
given frequency, by the relation between the voltage and current in
that branch.

As we saw above, the first idea exploits the identity, eiθ = cos θ +
i sin θ . To carry it out we adopt the following rule for the representation:

An alternating current I(t) = I0 cos(ωt + φ) is to be represented
by the complex number I0eiφ , that is, the number whose real part is
I0 cos φ and whose imaginary part is I0 sin φ.

Going the other way, if the complex number x + iy represents a
current I(t), then the current as a function of time is given by the
real part of the product (x + iy)eiωt. Equivalently, if I0eiφ repre-
sents a current I(t), then I(t) is given by the real part of the product
I0eiφeiωt, which is I0 cos(ωt + φ).

Figure 8.15 is a reminder of this two-way correspondence. Since a
complex number z = x + iy can be graphically represented on the two-
dimensional plane, it is easy to visualize the phase constant as the angle
tan−1(y/x) and the amplitude I0 as the modulus

√
x2 + y2.
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COMPLEX NUMBER
REPRESENTATION

CURRENT AS A
FUNCTION OF TIME

Multiply by eiwt

and take real part

f

I0 cos(wt + f) I0 e
if = x + iy

y

x

I 0

Figure 8.15.
Rules for representing an alternating current by
a complex number.

What makes all this useful is the following fact. The representation
of the sum of two currents is the sum of their representations. Consider
the sum of two currents I1(t) and I2(t) that meet at a junction of wires in
Fig. 8.14. At any instant of time t, the sum of the currents is given by

I1(t) + I2(t) = I01 cos(ωt + φ1) + I02 cos(ωt + φ2)

= (I01 cos φ1 + I02 cos φ2) cos ωt

− (I01 sin φ1 + I02 sin φ2) sin ωt. (8.56)

On the other hand, the sum of the complex numbers that, according to
our rule, represent I1(t) and I2(t) is

I01eiφ1 + I02eiφ2 = (I01 cos φ1 + I02 cos φ2) + i(I01 sin φ1 + I02 sin φ2).
(8.57)

If you multiply the right-hand side of Eq. (8.57) by cos ωt + i sin ωt and
take the real part of the result, you will get just what appears on the right
in Eq. (8.56). This is no surprise, of course, because what we’ve just done
is show (the long way) that

Re
[
I01ei(ωt+φ1) + I02ei(ωt+φ2)

]
= Re

[(
I01eiφ1 + I02eiφ2

)(
eiωt)].

(8.58)

The left-hand side of this equation is what appears in Eq. (8.56), and the
right-hand side is the result of multiplying Eq. (8.57) by eiωt = cos ωt +
i sin ωt and taking the real part. f1

w

I01eif1

I02eif2

I01eif1 I02eif2+

f2

Parallelogram
rotates at w

Figure 8.16.
As these three vectors rotate around in the
plane with the same frequency ω, the horizontal
projection of the long vector (the sum) always
equals the sum of the horizontal projections of
the other two vectors.

Figure 8.16 shows geometrically what is going on. The real part of
a number in the complex plane is its projection onto the x axis. So the
current I1(t) = I01 cos(ωt + φ1) is the horizontal projection of the com-
plex number I01ei(ωt+φ1), and this complex number can be visualized as
the vector I01eiφ1 rotating around in the plane with angular frequency ω

(because the angle increases according to ωt). Likewise for the current
I2(t) = I02 cos(ωt+φ2). Now, the sum of the projections of two vectors is
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the projection of the sum. So we can alternatively obtain the total current
I1(t) + I2(t) by finding the projection of the sum of the representations,
which is the complex number I01eiφ1 + I02eiφ2 , as this sum rotates around
in the plane with frequency ω. We see that the validity of the statement,
“The representation of the sum of two currents is the sum of their repre-
sentations,” boils down to the geometrical fact that the parallelogram in
Fig. 8.16 keeps the same shape as it rotates around in the plane.

This means that, instead of adding or subtracting the periodic func-
tions of time themselves, we can add or subtract the complex numbers
that represent them. Or, putting it another way, the algebra of alternat-
ing currents turns out to be the same as the algebra of complex num-
bers with respect to addition. The correspondence does not extend to
multiplication. The complex number I01I02ei(φ1+φ2) does not represent
the product of the two current functions in Eq. (8.56), because the real
part of the product of two complex numbers is not equal to the product
of the real parts (the latter omits the contribution from the product of the
imaginary parts).

However, it is only addition of currents and voltages that we need to
carry out in analyzing the network. For example, at the junction where
I1(t) meets I2(t) in Fig. 8.14, there is the physical requirement that at
every instant the net flow of current into the junction shall be zero. Hence
the condition

I1(t) + I2(t) + I3(t) = 0 (8.59)

must hold, where I1(t), I2(t), and I3(t) are the actual periodic functions
of time. Thanks to our correspondence, this can be expressed in the sim-
ple algebraic statement that the sum of three complex numbers is zero.
Voltages can be handled in the same way. Instantaneously, the sum of
voltage drops around any loop in the network must equal the electro-
motive force in the loop at that instant. This condition relating periodic
voltage functions can likewise be replaced by a statement about the sum
of some complex numbers, the representations of the various oscillating
functions, V1(t), V2(t), etc.

8.5 Admittance and impedance
The relation between current flow in a circuit element and the voltage
across the element can be expressed as a relation between the complex
numbers that represent the voltage and the current. Look at the inductor–
resistor combination in Fig. 8.5. The voltage oscillation is represented
by6 Ṽ = E0 and the current by Ĩ = I0eiφ , where I0 = E0/

√
R2 + ω2L2

and tan φ = −ωL/R. The phase difference φ and the ratio of current

6 As in Section 8.3, we will indicate complex voltages (and currents) by putting a tilde
over them, to avoid confusion with the actual voltages (or currents) V(t) which, as we
have noted, are given by the real part of Ṽeiωt .
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amplitude to voltage amplitude are properties of the circuit at this fre-
quency. We define a complex number Y as follows:

Y = eiφ
√

R2 + ω2L2
, with φ = tan−1

(
−ωL

R

)
. (8.60)

Then the relation

Ĩ = YṼ (8.61)

holds, where Ṽ is the complex number (which happens to be just the
real number E0 in the present case) that represents the voltage across the
series combination of R and L, and Ĩ is the complex number that rep-
resents the current. Y is called the admittance. The same relation can
be expressed with the reciprocal of Y , denoted by7 Z and called the
impedance:

Ṽ =
(

1
Y

)
Ĩ �⇒ Ṽ = ZĨ (8.62)
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Figure 8.17.
Ṽ and Ĩ are complex numbers that represent the
voltage across a circuit element and the current
through it. The relative phase of current and
voltage oscillation is manifest here in the angle
between the “vectors.” (a) In the resistor, current
and voltage are in phase. (b) In the inductor,
current lags the voltage. (c) In the capacitor,
current leads the voltage.

In Eqs. (8.61) and (8.62) we do make use of the product of two
complex numbers, but only one of the numbers is the representation of an
alternating current or voltage. The other is the impedance or admittance.
Our algebra thus contains two categories of complex numbers, those that
represent admittances and impedances, and those that represent currents
and voltages. The product of two “impedance numbers,” like the product
of two “current numbers,” doesn’t represent anything.

The impedance is measured in ohms. Indeed, if the circuit element
had consisted of the resistance R alone, the impedance would be real and
equal simply to R, so that Eq. (8.62) would resemble Ohm’s law for a
direct-current circuit: V = RI.

The admittance of a resistanceless inductor is the imaginary quantity
Y = −i/ωL. This can be seen by letting R go to zero in Eq. (8.60), which
yields φ = −π/2 ⇒ eiφ = −i. The factor −i means that the current
oscillation lags the voltage oscillation by π/2 in phase. On the complex
number diagram, if the voltage is represented by Ṽ (Fig. 8.17(b)), the cur-
rent might be represented by Ĩ, located as shown there. For the capacitor,
we have Y = iωC, as can be seen from the expression for the current in
Eq. (8.30). In this case Ṽ and Ĩ are related as indicated in Fig. 8.17(c); the
current leads the voltage by π/2. The inset in each of the figures shows
how the relative sign of Ṽ and Ĩ is to be specified. Unless that is done
consistently, leading and lagging are meaningless. Note that we always
define the positive current direction so that a positive voltage applied to a

7 We won’t put a tilde over Y or Z, even though they are complex numbers, because we
will rarely have the need to take their real parts (except when finding the phase φ). So
we won’t need to worry about confusion between two different types of impedances.
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Table 8.1.
Complex impedances

Symbol Admittance, Y Impedance, Z = 1/Y

R
1
R

R

L
1

iωL
iωL

C iωC
1

iωC
I = YV V = ZI

resistor causes positive current (Fig. 8.17(a)). The properties of the three
basic circuit elements are summarized in Table 8.1.

V
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Figure 8.18.
Combining admittances in parallel.
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Figure 8.19.
Combining impedances in series.

We can build up any circuit from these elements. When elements
or combinations of elements are connected in parallel, it is convenient
to use the admittance, for in that case admittances add. In Fig. 8.18 two
black boxes with admittances Y1 and Y2 are connected in parallel. Since
the voltages across each box are the same and since the currents add,
we have

Ĩ = Ĩ1 + Ĩ2 = Y1Ṽ + Y2Ṽ = (Y1 + Y2)Ṽ , (8.63)

which implies that the equivalent single black box has an admittance
Y = Y1 + Y2. From Fig. 8.19 we see that the impedances add for ele-
ments connected in series, because the currents are the same and the
voltages add:

Ṽ = Ṽ1 + Ṽ2 = Z1 Ĩ + Z2 Ĩ = (Z1 + Z2)Ĩ, (8.64)

which implies that the equivalent single black box has an impedance
Z = Z1 + Z2. It sounds as if we are talking about a direct-current net-
work! In fact, we have now reduced the ac network problem to the dc
network problem, with only this difference: the numbers we deal with
are complex numbers.

Example (Parallel RLC circuit) Consider the “parallel RLC” circuit in
Fig. 8.20. The combined admittance of the three parallel branches is

Y = 1
R
+ iωC − i

ωL
. (8.65)

The voltage is simply E0, so the complex current is

Ĩ = YṼ =
[

1
R
+ i

(
ωC − 1

ωL

)]
E0. (8.66)

The amplitude I0 of the current oscillation I(t) is the modulus of the complex
number Ĩ, and the phase angle relative to the voltage is tan−1[Im(Y)/Re(Y)].
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Assuming that the voltage is given as usual by E0 cos ωt (that is, with no phase),
we have

I(t) = E0

√
(1/R)2 + (ωC − 1/ωL)2 cos(ωt + φ),

tan φ = RωC − R
ωL

. (8.67)

You can compare these results with the results in Eqs. (8.38) and (8.39) for the
series RLC circuit. For both of these circuits, you are encouraged to check limit-
ing cases for the R, L, and C values.

LE0 cos w t
C

R

Figure 8.20.
A parallel resonant circuit. Add the complex
admittances of the three elements, as in
Eq. (8.65).

Let’s now analyze a more complicated circuit. We will examine in
detail what the various complex voltages and currents look like in the
complex plane and how they relate to each other.

Example Consider the circuit in Fig. 8.21. Our goal will be to find the complex

LR

C

E0 cos w t

Figure 8.21.
What are the complex voltages and currents
across each of the three elements in this circuit?

voltage across, and current through, each of the three elements. We will then
draw the associated vectors in the complex plane and verify that the relations
among them are correct. To keep the calculations from getting out of hand, we
will arrange for all three of the complex impedances to have magnitude R. If we
take R and ω as given, this can be arranged by letting L = R/ω and C = 1/ωR.
The three impedances are then

ZR = R, ZL = iωL = iR, ZC = 1/iωC = −iR. (8.68)

With these values, the impedance of the entire circuit is

Z = ZC + ZRZL
ZR + ZL

= R
(
−i + 1 · i

1 + i

)
= R

1 − i
2

. (8.69)

Assuming that the applied voltage is given as usual by E0 cos ωt (with no extra
phase), the applied complex voltage ṼE is simply the real number E0. The total
complex current Ĩ (which is also the complex current ĨC through the capacitor)
is therefore given by

ṼE = ĨZ �⇒ Ĩ = E0
Z

= E0
R

2
1 − i

= E0
R

(1 + i). (8.70)

The complex voltage across the capacitor is then

ṼC = ĨCZC = E0
R

(1 + i) · (−iR) = E0(1 − i). (8.71)

The complex voltages across the resistor and inductor are the same, and their
common value equals E0 minus the complex voltage across the capacitor:

ṼR = ṼL = E0 − ṼC = E0 − E0(1 − i) = iE0. (8.72)
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The complex current through the resistor is therefore

ĨR = ṼR
ZR

= iE0
R

, (8.73)

and the complex current through the inductor is

ĨL = ṼR
ZL

= iE0
iR

= E0
R

. (8.74)

Our results for the three complex voltages (along with the E0 source) and the
three complex currents are drawn in the complex plane in Fig. 8.22. (The Ṽ’s
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Figure 8.22.
The various complex voltages and currents for
the circuit in Fig. 8.21.

and Ĩ’s have different units, so the relative size of the two groups of vectors is
meaningless.) There are various true statements we can make about the vectors:
(1) E0 equals the sum of ṼC and either ṼL or ṼR, (2) ĨC equals the sum of ĨR
and ĨL, (3) ĨL is 90◦ behind ṼL as the vectors rotate counterclockwise around in
the plane, (4) ĨR is in phase with ṼR, and (5) ĨC is 90◦ ahead of ṼC.

As time goes on, the vectors in Fig. 8.22 all rotate around in the com-
plex plane with the same angular speed ω. The vectors keep the same
rigid shape with respect to each other. The horizontal projections (the
real parts) are the actual quantities that exist in the real world. Equiva-
lently, the actual quantities are given by IR(t) = Re[ĨReiωt], etc. The eiωt

factor increases the phase by ωt, so this is what causes the vectors to
rotate around in the plane. Figure 8.22 gives the vectors at t = 0 (assum-
ing the applied voltage equals E0 cos ωt with no extra phase), or at any
time for which ωt is a multiple of 2π .

As mentioned in Section 8.4, the critical thing to realize about this
rotation around in the plane is that since, for example, the vector ĨC
always equals the sum of vectors ĨR and ĨL (because the system rotates
as a rigid “object”), the horizontal projections also always satisfy this
relation. That is, IC(t) = IR(t) + IL(t). In other words, the Kirchhoff
node condition is satisfied at the node below the capacitor. Likewise,
since the applied voltage ṼE always equals ṼC plus ṼR (or ṼL), we have
VE (t) = VC(t) + VR(t). So the Kirchhoff loop condition is satisfied. In
short, if the complex voltages and currents satisfy Kirchhoff’s rules at a
particular time, then the actual voltages and currents satisfy Kirchhoff’s
rules at all times.

As noted earlier in this section, the i’s in ZL and ZC in Table 8.1
are consistent with the ±π/2 phases between the voltages and currents.
Let’s verify this for Fig. 8.22. In the case of the inductor, we have

ṼL = ĨLZL �⇒ ṼL = ĨL(iωL) �⇒ ṼL = ĨL(eiπ/2ωL), (8.75)

which means that ṼL is π/2 ahead of ĨL. The opposite is true for the
capacitor. More generally, we can write Ṽ = ĨZ for the entire circuit
or any subpart, just as we can for a network containing only resistors.
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If the complex voltage Ṽ , complex current Ĩ, and impedance Z are written
in polar form as8

Ṽ = V0eiφV , Ĩ = I0eiφI , Z = |Z|eiφZ , (8.76)

then, by looking at the modulus and phase of the two sides of the Ṽ = ĨZ
equation, we obtain

V0 = I0|Z| and φV = φI + φZ (8.77)

The former of these statements looks just like Ohm’s law, V = IR. The
latter says that the voltage is φZ ahead of the current. You are encouraged
at this point to solve Problem 8.9, the task of which is to draw all the
complex voltages and currents for the series and parallel RLC circuits in
Figs. 8.10 and 8.20.

We should emphasize that the above methods are valid only for lin-
ear circuit elements, elements in which the current is proportional to the
voltage. In other words, our circuit must be described by a linear dif-
ferential equation. You can’t even define an impedance for a nonlinear
element. Nonlinear circuit elements are very important and interesting
devices. If you have studied some in the laboratory, you can see why
they will not yield to this kind of analysis.

This is all predicated, too, on continuous oscillation at constant fre-
quency. The transient behavior of the circuit is a different problem. How-
ever, for linear circuits the tools we have just developed have some utility,
even for transients. The reason, as we noted at the end of Section 8.3, is
that by superposing steady oscillations of many frequencies we can rep-
resent a nonsteady behavior, and the response to each of the individual
frequencies can be calculated as if that frequency were present alone.

We have encountered three different methods for dealing with steady
states in circuits containing a sinusoidal voltage source. Let’s summarize
them.

Method 1 (Trig functions)
This is the method we used in Section 8.2. The steps are as follows.

• Write down the differential equation expressing the fact that the volt-
age drop around each loop in a circuit is zero. The various voltage
drops take the form of IR, L dI/dt, and Q/C. Write the differential
equation in terms of only one quantity, say the current I(t).

• Guess a trig solution of the form I(t) = I0 cos(ωt + φ). There will be
many such currents if there are many loops.

8 We have written the modulus of Z as |Z| rather than Z0 to signify that Z isn’t the same
type of quantity as Ṽ and Ĩ. The quantities V0 and I0 are the amplitudes of the actual
voltage and current oscillations, and we don’t want to give the impression that Z
represents an oscillatory function.
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• Use the trig sum formulas to expand cos(ωt+φ) and sin(ωt+φ), and
then demand that the coefficients of cos ωt and sin ωt are separately
identically equal to zero. This yields solutions for I0 and φ.

Method 2 (Exponential functions)
This is the method we used in Section 8.3. The steps are as follows.

• As in Method 1, write down the differential equation for the voltage
drop around each loop, and then write it in terms of only, say, the
current I(t).

• Replace the E0 cos ωt voltage source with E0eiωt, and then guess a
complex solution for the current of the form Ĩ(t) ≡ Ĩeiωt. The actual
current in the circuit will be given by the real part of this. That is,
I(t) = Re[Ĩ(t)]. There will be many such currents if there are many
loops.

• The solution for Ĩ can be written in the general polar form, Ĩ = I0eiφ ,
The actual current is then

I(t) = Re[Ĩ(t)] = Re[Ĩeiωt] = Re[I0eiφeiωt] = I0 cos(ωt + φ).
(8.78)

I0 is the amplitude of the current, and φ is the phase relative to the
voltage source.

Method 3 (Complex impedances)
This is the method we used in Sections 8.4 and 8.5. The steps are as
follows.

• Assign impedances of R, iωL, and 1/iωC to the resistors, inductors,
and capacitors in the circuit, and then use the standard rules for adding
impedances in series and in parallel (the same rules as for simple resis-
tors).

• Write down Ṽ = ĨZ for the entire circuit or any subpart, just as you
would for a network containing only resistors. With the complex quan-
tities written in polar form, Ṽ = ĨZ quickly yields V0 = I0|Z| and
φV = φI + φZ . The former of these statements looks just like Ohm’s
law, V = IR. The latter says that the voltage is φZ ahead of the current.

• The Ṽ and Ĩ vectors rotate around in the complex plane with the same
angular speed ω. The horizontal projections (the real parts) are the
actual quantities that exist in the real world. Since the vectors keep the
same rigid shape with respect to each other, it follows that if the com-
plex voltages and currents satisfy Kirchhoff’s rules at a given time, the
actual voltages and currents satisfy Kirchhoff’s rules at all times.

• This third method is actually just a more systematic version of the
second method. But for circuits involving more than one loop, the third
method is vastly more tractable than the second, which in turn is much
more tractable than the first.



8.6 Power and energy in AC circuits 415

8.6 Power and energy in alternating-current
circuits

If the voltage across a resistor R is V0 cos ωt, the current is
I = (V0/R) cos ωt. The instantaneous power, that is, the instantaneous
rate at which energy is being dissipated in the resistor, is given by

PR = RI2 = V2
0

R
cos2 ωt. (8.79)

Since the average of cos2 ωt over many cycles is 1/2 (because it has the
same average as sin2 ωt, and sin2 ωt + cos2 ωt = 1), the average power
dissipated in the resistor is

PR = 1
2

V2
0

R
. (8.80)

It is customary to express voltage and current in ac circuits by giving
not the amplitude but 1/

√
2 times the amplitude. This is often called the

root-mean-square (rms) value: Vrms = V0/
√

2. That takes care of the
factor 1/2 in Eq. (8.80), so that

PR = V2
rms
R

(8.81)

For example, the common domestic line voltage in North America is
120 volts, which corresponds to an amplitude 120

√
2 = 170 volts. The

potential difference between the terminals of the electric outlet in your
room (if the voltage is up to normal) is

V(t) = 170 cos(377 s−1 · t), (8.82)

where we have used the fact that the frequency is 60 Hz. An ac ammeter
is calibrated to read 1 amp when the current amplitude is 1.414 amps.

Equation (8.81) holds in the case of a single resistor. More generally,
the instantaneous rate at which energy is delivered to a circuit element (or
a combination of circuit elements) is VI, the product of the total instan-
taneous voltage across the element(s) and the current, with due regard to
sign. Consider this aspect of the current flow in the simple LR circuit in
Fig. 8.5. In Fig. 8.23 we have redrawn the current and voltage graphs and
added a curve proportional to the product VI. Positive VI means energy
is being transferred into the LR combination from the source of electro-
motive force, or generator. Note that VI is negative in certain parts of the
cycle. In those periods some energy is being returned to the generator.
This is explained by the oscillation in the energy stored in the magnetic
field of the inductor. This stored energy, LI2/2, goes through a maximum
twice in each full cycle.
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Figure 8.23.
The instantaneous power VI is the rate at which
energy is being transferred from the source of
electromotive force on the left to the circuit
elements on the right. The time average of this
is indicated by the horizontal dashed line.
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The average power P delivered to the LR circuit corresponds to the
horizontal dashed line. To calculate its value, let’s take a look at the prod-
uct VI, with V = E0 cos ωt and I = I0 cos(ωt + φ):

VI = E0I0 cos ωt cos(ωt + φ)

= E0I0(cos2 ωt cos φ − cos ωt sin ωt sin φ). (8.83)

The term proportional to cos ωt sin ωt has a time average zero, as is obvi-
ous if you write it as (1/2) sin 2ωt, while the average of cos2 ωt is 1/2.
Thus for the time average we have

P = VI = 1
2
E0I0 cos φ. (8.84)

If both current and voltage are expressed as rms values, in volts and
amps, respectively, then

P = VrmsIrms cos φ (8.85)

In this circuit all the energy dissipated goes into the resistance R. Natu-
rally, any real inductor has some resistance. For the purpose of analyzing
the circuit, we included that with the resistance R. Of course, the heat
evolves at the actual site of the resistance.

The power P equals the product of the actual voltage V(t) and actual
current I(t). These quantities in turn are the real parts of the complex
voltage Ṽ(t) and complex current Ĩ(t). Does this mean that the power
equals the real part of the product Ṽ(t)Ĩ(t)? Definitely not, because the
product of the real parts doesn’t equal the real part of the product;
the real part of the product also has a contribution from the product of
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the imaginary parts of Ṽ(t) and Ĩ(t). As we mentioned in Section 8.4, it
doesn’t make any sense to form the product of two complex quantities
(excluding products with impedances and admittances, which are a dif-
ferent type of number; they aren’t functions of time that we solve for).
The point is that, since our original differential equations were linear in
voltages and currents, we must keep things that way. The product of two
of these quantities doesn’t have anything to do with the actual solution to
the differential equation.

There was nothing special about our LR circuit, so Eq. (8.85) holds
for a general circuit (or subpart of a circuit), provided that Vrms is the
total rms voltage across the circuit, Irms is the rms current through the
circuit, and φ is the phase between the instantaneous current and voltage.
Equation (8.85) reduces to Eq. (8.81) in the special case where the circuit
consists of a single resistor. In that case, the current across the resistor
is in phase with the voltage, so φ = 0. Additionally, Irms = Vrms/R, so
Eq. (8.85) simplifies to Eq. (8.81). In the case where a resistor is part of a
larger circuit, remember that the Vrms in Eq. (8.85) is the voltage across
the entire circuit (or whatever part we’re concerned with), while the Vrms
in Eq. (8.81) is the voltage across only the resistor; see Problem 8.14.

(b)
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Figure 8.24.
An actual network (a) ready to be connected to
a source of electromotive force, and (b) the
circuit diagram.

Example To get some more practice with the methods we developed in Sec-
tion 8.5, we’ll analyze the circuit in Fig. 8.24(a). A 10,000 ohm, 1 watt resistor
(this rating gives the maximum power the resistor can safely absorb) has been
connected up with two capacitors of capacitance 0.2 and 0.5 microfarads. We
propose to plug this into the 120 volt, 60 Hz outlet. Question: Will the 1 watt
resistor get too hot? In the course of finding out whether the average power dis-
sipated in R exceeds the 1 watt rating, we’ll calculate some of the currents and
voltages we might expect to measure in this circuit. One way to work through the
circuit is outlined below.

Admittance of C2 = iωC2 = i(377)(2 · 10−7) = 0.754 · 10−4i ohm−1

Admittance of the resistor = 1
R
= 10−4 ohm−1

Admittance of = 10−4(1 + 0.754i) ohm−1

Impedance of = 1
10−4(1 + 0.754i)

= 104(1 − 0.754i)
12 + 0.7542

= (6380 − 4810i) ohms

Impedance of C1 = − i
ωC

= − i
(377)(5 · 10−7)

= −5300i ohms

Impedance of entire circuit = (6380 − 10,110i) ohms

I1 = 120
6380 − 10,110i

= 120(6380 + 10,110i)
(6380)2 + (10,110)2 = (5.36 + 8.49i) · 10−3 amp
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Since 120 volts is the rms voltage, we obtain the rms current. That is, the mod-
ulus of the complex number I1, which is [(5.36)2 + (8.49)2]1/2 · 10−3 amp
or 10.0 milliamps, is the rms current. An ac milliammeter inserted in series
with the line would read 10 milliamps. This current has a phase angle φ =
tan−1(0.849/0.536) or 1.01 radians with respect to the line voltage. From
Eq. (8.85), the average power delivered to the entire circuit is then

P = (120 volts)(0.010 amp) cos 1.01 = 0.64 watt. (8.86)

In this circuit the resistor is the only dissipative element, so this must be the
average power dissipated in it. Just as a check, we can find the voltage V2 across
the resistor. If V1 is the voltage across C1, we have

V1 = I1

( −i
ωC

)
= (5.36 + 8.49i)(−5300i)10−3 = (45.0 − 28.4i) volts;

V2 = 120 − V1 = (75.0 + 28.4i) volts. (8.87)

The current I2 in R will be in phase with V2, of course, so the average power in
R will be

P = V2
2

R
= (75.0)2 + (28.4)2

104 = 0.64 watt, (8.88)

which checks. Thus the rating of the resistor isn’t exceeded, for what that assur-
ance is worth. Actually, whether the resistor will get too hot depends not only
on the average power dissipated in it, but also on how easily it can get rid of the
heat. The power rating of a resistor is only a rough guide.

8.7 Applications
The resonance of electrical circuits has numerous applications in the
modern world. Our lives wouldn’t be the same without it. Any wire-
less communication, from radios to cell phones to computers to GPS
systems, is made possible by resonance. If you have a radio sitting on
your desk, it is being bombarded by electromagnetic waves (discussed in
Chapter 9) with all sorts of frequencies. If you want to pick out a partic-
ular frequency emitted by a radio station, you can “tune” your radio to
that frequency by adjusting the radio’s resonant frequency. This is nor-
mally done by adjusting the capacitance of the internal circuit by using
varactors – diodes whose capacitance can be controlled by an applied
voltage. Assuming that the resistance of the circuit is small, two things
will happen when the resonant frequency matches the frequency of the
radio station: there will be a large oscillation in the circuit at the radio
station’s frequency, and there will also be a negligible oscillation at all
the other frequencies that are bombarding the radio. A high Q value of
the circuit leads to both of these effects, due to the facts that the height of
the peak in Fig. 8.11 is proportional to Q (as you can show) and that the
width is proportional to 1/Q. The oscillation in the circuit can then be
demodulated (see the AM/FM discussion in Section 9.8) and amplified
and sent to the speakers, creating the sound that you hear. Resonance
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provides us with an astonishingly simple and automatic mechanism for
finding needles in haystacks.

Figure 8.25.
A magnetron. The cavities have both a
capacitance and an inductance.

The microwaves in a microwave oven are created by a magnetron.
This device consists of a ring-like chamber with a number (often eight)
of cavities around the perimeter (Fig. 8.25). These cavities have both
a capacitance and an inductance (and also a small resistance), so they
act like little resonant LC circuits. Their size is chosen so that the reso-
nant frequency is about 2.5 GHz. The charge on the tips of the little LC
cavities alternates in sign around the perimeter of the ring. Charge (and
hence energy) is added to the system by emitting electrons from the cen-
ter of the ring. These electrons are attracted toward the positive tips. If
this were the whole story, the effect would be to reduce the charge in the
system. But there is a clever way of reversing the effect: by applying an
appropriate magnetic field, the paths of the electrons can be bent by just
the right amount to make them hit the negative tips. Charge is therefore
added to the system instead of subtracted. The microwave radiation can
be extracted by, say, inducing a current in small coils contained in the
LC cavities.

The electricity that comes out of your wall socket is alternating cur-
rent (ac) as opposed to direct current (dc). The rms voltage in North
America is 120 V, and the frequency is 60 Hz. (In Europe the values
are 230 V and 50 Hz, respectively.) The fundamental reason we use ac
instead of dc is that, in the case of ac, it is easy to increase or decrease the
voltage via a transformer. This is critical for the purpose of transmitting
power over long distances, because for a given power P = IV supplied by
a power plant, a large V implies a small I, which in turn implies a small
I2R power loss in the long transmission lines. It is much more difficult to
change the voltage in the case of dc. This was the deciding factor during
the “War of Currents” in the 1880s, when ac and dc power were battling
for dominance. Because dc power had to be shipped at the same low volt-
age at which it was used, dc power plants needed to be located within a
few miles of the load. This had obvious disadvantages: cities would need
to contain many power plants, and conversely a dam located far from a
populated area would be useless. However, modern developments have
made the conversion of dc voltages easier, so high-voltage, direct current
(HVDC) power transmission is used in some instances. For both ac and
dc, the long-haul voltages are on the order of a few hundred kilovolts.
The War of Currents pitted (among many other people) Thomas Edison
on the dc side against Nikola Tesla on the ac side.

Most of the electricity produced in power plants is three-phase. That
is, there are three separate wires carrying voltages that are 120◦ out
of phase. This can be achieved, for example, by having three loops of
wire in Fig. 7.13 instead of just the one shown. There are various advan-
tages to three-phase power, one of which is that it delivers a more steady
power compared with single-phase, which has two moments during each
cycle when the voltage is zero. However, this is mainly relevant for large



420 Alternating-current circuits

machinery. Most households are connected to only one of the phases (or
between two of them) in the power grid.

The ac power delivered to your home works fine for many electrical
devices. For example, a toaster and an incandescent light bulb require
only the generation of I2R power, which is created by either ac or dc.
But many other devices require dc, because the direction of the current
in the electronic circuits matters. A power adapter converts ac to dc,
while generally also lowering the voltage. The voltage is lowered by a
transformer, and then the conversion to dc is accomplished by a bridge
rectifier, which consists of a combination of four diodes that lets the
current flow in only one direction. Additionally, a capacitor helps smooth
out the dc voltage by storing charge and then releasing it when the voltage
would otherwise dip.

As mentioned in Section 3.9, it is advantageous to perform power-
factor correction in the ac electrical power grid. The larger the imaginary
part of an impedance of, say, an electrical motor, the larger the phase
angle φ, and hence the smaller the cos φ factor in Eq. (8.85), which is
known as the power factor. At first glance, this doesn’t seem to present
a problem, because the unused power simply sloshes back and forth
between the power station and the motor. However, for a given amount
of net power consumed, a smaller power factor means that the current I
will need to be larger. This in turn means that there will be larger I2R
power losses in the (generally long) transmission lines. For this reason,
industries are usually charged a higher rate if their power factor is below
0.95. In an inductive circuit (for example, a motor with its many wind-
ings), the power factor can be increased by adding capacitance to the
circuit, because this will reduce the magnitude of the imaginary part of
the impedance.

CHAPTER SUMMARY

• The loop equation for a series RLC circuit (with no emf source) yields
a linear differential equation involving three terms, one for each ele-
ment. In the underdamped case, the solution for the voltage across the
capacitor is

V(t) = e−αt(A cos ωt + B sin ωt), (8.89)

where

α = R
2L

and ω2 = 1
LC

− R2

4L2 . (8.90)



Problems 421

The solutions for the overdamped and critically damped cases take
other forms. The quality factor of a circuit is given by

Q = ω · energy stored
average power dissipated

. (8.91)

• If we add to the series RLC circuit a sinusoidal emf source, E(t) =
E0 cos ωt, then the solution for the current is I(t) = I0 cos(ωt + φ),
where

I0 = E0√
R2 + (ωL − 1/ωC)2

and tan φ = 1
RωC

− ωL
R

. (8.92)

This is the steady-state solution that survives after the transient solu-
tion from Section 8.1 has decayed away. I0 is maximum when ω equals
the resonant frequency, ω0 = 1/

√
LC. The width of the I0(ω) curve

around the resonance peak is on the order of ω0/Q.
• The series RLC circuit can also be solved by replacing the E0 cos ωt

term in the Kirchhoff differential equation with E0eiωt, and then guess-
ing an exponential solution of the form Ĩ(t) = Ĩeiωt. The actual current
I(t) is obtained by taking the real part of Ĩ(t).

• In alternating-current networks, currents and voltages can be repre-
sented by complex numbers. The real part of the complex number is
the actual current or voltage. The complex current and voltage are
related to each other via the complex admittance or impedance: Ĩ =
YṼ or Ṽ = ZĨ. The admittances and impedances for the three circuit
elements R, L, C are given in Table 8.1. Admittances add in parallel,
and impedances add in series.

• We have presented three different methods for solving alternating-
current networks. See the summary at the end of Section 8.5.

• The average power delivered to a circuit is

P = 1
2
E0I0 cos φ = VrmsIrms cos φ, (8.93)

where the rms values are 1/
√

2 times the peak values. This reduces to
PR = V2

rms/R in the case of a single resistor.

Problems
8.1 Linear combinations of solutions *

Homogeneous linear differential equations have the property that
the sum, or any linear combination, of two solutions is again a
solution. (“Homogeneous” means there’s a zero on one side of
the equation.) Consider, for example, the second-order equation
(although the property holds for any order),

Aẍ + Bẋ + Cx = 0. (8.94)
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Show that if x1(t) and x2(t) are solutions, then the sum x1(t)+x2(t)
is also a solution. Show that this property does not hold for the
nonlinear differential equation Aẍ + Bẋ2 + Cx = 0.

8.2 Solving linear differential equations **
Consider the nth-order homogeneous linear differential equation

an
dnx
dtn

+ an−1
dn−1x
dtn−1 + · · · + a1

dx
dt

+ a0x = 0. (8.95)

Show that the solutions take the form of x(t) = Aierit, where the ri
depend on the aj coefficients. Hint: If the (d/dt) derivatives were
replaced by the letter z, then we would have an nth-order poly-
nomial in z, which we know can be factored, by the fundamental
theorem of algebra. (You can assume that the roots of this poly-
nomial are distinct. Things are a little more complicated if there
are double roots; this is discussed in the solution.)

8.3 Underdamped motion ***
A second-order homogeneous linear differential equation can be
written in the general form of

ẍ + 2αẋ + ω2
0x = 0, (8.96)

where α and ω0 are constants. (For the series RLC circuit in Sec-
tion 8.1, Eq. (8.2) gives these constants as α = R/2L and ω2

0 =
1/LC.) From Problem 8.2 we know that there are two independent
exponential solutions to this equation. Find these two solutions,
and then show that, in the underdamped case where α < ω0, the
general solution can be written in the form of Eq. (8.10).

8.4 Overdamped RLC circuit **
Find the constants β1 and β2 in Eq. (8.15) by plugging an expo-
nential trial solution into Eq. (8.2). If R is very large, what does
the solution look like for large t?

8.5 Change in frequency **
For the decaying signal shown in Exercise 8.19, estimate the per-
centage by which the frequency differs from the natural frequency
1/
√

LC of the circuit.

8.6 Limits of an RLC circuit ***
(a) In the R → 0 limit, verify that the solution in Eq. (8.4) cor-

rectly reduces to the solution for an LC circuit. That is, show
that the voltage behaves like cos ω0t.

(b) In the L → 0 limit, verify that the solution in Eq. (8.15) cor-
rectly reduces to the solution for an RC circuit. That is, show
that the voltage behaves like e−t/RC. You will need to use the
results from Problem 8.4.
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(c) In the C → ∞ limit, verify that the solution in Eq. (8.15) cor-
rectly reduces to the solution for an RL circuit. That is, show
that the voltage behaves like e−(R/L)t, up to an additive con-
stant. What is the physical meaning of this constant?

8.7 Magnitude and phase *
Show that a+bi can be written as I0eiφ , where I0 = √

a2 + b2 and
φ = tan−1(b/a).

8.8 RLC circuit via vectors ***
(a) The loop equation for the series RLC in Fig. 8.26 is

E0

L

R

C

Q

I

Figure 8.26.

L
dI
dt

+ RI + Q
C

= E0 cos ωt, (8.97)

where we have taken positive I to be clockwise and Q to be the
charge on the right plate of the capacitor. If I takes the form of
I(t) = I0 cos(ωt + φ), show that Eq. (8.97) can be written as

ωLI0 cos(ωt + φ + π/2) + RI0 cos(ωt + φ)

+ I0

ωC
cos(ωt + φ − π/2) = E0 cos ωt. (8.98)

(b) At any given time, the four terms in Eq. (8.98) can be consid-
ered to be the real parts of four vectors in the complex plane.
Draw the appropriate quadrilateral that represents the fact that
the sum of the three terms on the left side of the equation
equals the term on the right side.

(c) Use your quadrilateral to determine the amplitude I0 and phase
φ of the current, and check that they agree with the values in
Eqs. (8.38) and (8.39).

8.9 Drawing the complex vectors **
For the series and parallel RLC circuits in Figs. 8.10 and 8.20, draw
the vectors representing all of the complex voltages and currents.
For the sake of making a concrete picture, assume that R = |ZL| =
2|ZC|. The vectors all rotate around in the complex plane, so you
can draw them at whatever instant in time you find most conve-
nient.

R

L

C

Figure 8.27.

8.10 Real impedance *
Is it possible to find a frequency at which the impedance at the
terminals of the circuit in Fig. 8.27 will be purely real?

8.11 Light bulb *
A 120 volt (rms), 60 Hz line provides power to a 40 watt light bulb.
By what factor will the brightness decrease if a 10 μF capacitor is
connected in series with the light bulb? (Assume that the bright-
ness is proportional to the power dissipated in the bulb’s resistor.)
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8.12 Fixed voltage magnitude **
Let VAB ≡ VB − VA in the circuit in Fig. 8.28. Show that |VAB|2 =
V2

0 for any frequency ω. Find the frequency for which VAB is 90◦
out of phase with V0.

V0

C

A

R

B

R

C

Figure 8.28.

8.13 Low-pass filter **
In Fig. 8.29 an alternating voltage V0 cos ωt is applied to the termi-
nals at A. The terminals at B are connected to an audio amplifier of
very high input impedance. (That is, current flow into the amplifier
is negligible.) Calculate the ratio |Ṽ1|2/V2

0 . Here |Ṽ1| is the abso-
lute value of the complex voltage amplitude at terminals B. Choose
values for R and C to make |Ṽ1|2/V2

0 = 0.1 for a 5000 Hz signal.
This circuit is the most primitive of “low-pass” filters, providing
attenuation that increases with increasing frequency. Show that,
for sufficiently high frequencies, the signal power is reduced by a
factor 1/4 for every doubling of the frequency. Can you devise a
filter with a more drastic cutoff – such as a factor 1/16 per octave?

8.14 Series RLC power **
Consider the series RLC circuit in Fig. 8.10. Show that the aver-
age power delivered to the circuit, which is given in Eq. (8.84),
equals the average power dissipated in the resistor, which is given
in Eq. (8.80). (These equations are a little easier to work with than
the equivalent rms equations, Eqs. (8.85) and (8.81).)

A

R

C

B

V0 V1

Figure 8.29.

8.15 Two inductors and a resistor **
The circuit in Fig. 8.30 has two equal inductors L and a resis-
tor R. The frequency of the emf source, E0 cos ωt, is chosen to be
ω = R/L.

(a) What is the total complex impedance of the circuit? Give it in
terms of R only.

(b) If the total current through the circuit is written as I0 cos(ωt +
φ), what are I0 and φ?

(c) What is the average power dissipated in the circuit?

L

LR

E0 cos w t

Figure 8.30.

Exercises
8.16 Voltages and energies *

Consider the LC circuit in Fig. 8.31. Initial conditions have beenLC

Figure 8.31.

set up so that the voltage change across the capacitor (proceeding
around the loop in a clockwise manner) equals V0 cos ωt, where
ω = 1/

√
LC. At t = 0, what are the voltage changes (proceeding

clockwise) across the capacitor and inductor? Where is the energy
stored? Answer the same questions for t = π/2ω.
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1 millisecond

105 ohms

20 volts
L

R
C

Figure 8.32.

8.17 Amplitude after Q cycles *
In the RLC circuit in Section 8.1, show that the current (or voltage)
amplitude decreases by a factor of e−π ≈ 0.043 after Q cycles.

8.18 Effect of damping on frequency **
Using Eqs. (8.9) and (8.13), express the effect of damping on the
frequency of a series RLC circuit, by writing ω in terms of Q and
ω0 = 1/

√
LC. Suppose enough resistance is added to bring Q from

∞ down to 1000. By what percentage is the frequency ω thereby
shifted from ω0? How about if Q is brought from ∞ down to 5?

LC

sh

a

b

Figure 8.33.

8.19 Decaying signal **
The coil in the circuit shown in Fig. 8.32 is known to have an induc-
tance of 0.01 henry. When the switch is closed, the oscilloscope
sweep is triggered. The 105 ohm resistor is large enough (as you
will discover) so that it can be treated as essentially infinite for
parts (a) and (b) of this problem.

(a) Determine as well as you can the value of the capacitance C.
(b) Estimate the value of the resistance R of the coil.
(c) What is the magnitude of the voltage across the oscilloscope

input a long time, say 1 second, after the switch has been
closed?

8.20 Resonant cavity **
A resonant cavity of the form illustrated in Fig. 8.33 is an essen-
tial part of many microwave oscillators. It can be regarded as a
simple LC circuit. The inductance is that of a rectangular toroid
with one turn; see Eq. (7.62). This inductor is connected directly
to a parallel-plate capacitor. Find an expression for the resonant
frequency of this circuit, and show by a rough sketch the configu-
ration of the magnetic and electric fields.
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8.21 Solving an RLC circuit ***
In the resonant circuit in Fig. 8.34 the dissipative element is a

R� LC

Figure 8.34.

resistor R′ connected in parallel, rather than in series, with the
LC combination. Work out the equation, analogous to Eq. (8.2),
that applies to this circuit. Find also the conditions on the solution
analogous to those that hold in the series RLC circuit. If a series
RLC and a parallel R′LC circuit have the same L, C, and Q (quality
factor, not charge), how must R′ be related to R?

8.22 Overdamped oscillator **
For the circuit in Fig. 8.4(a), determine the values of β1 and β2
for the overdamped case, with R = 600 ohms. Determine also the
ratio of B to A, the constants in Eq. (8.15). You can use the results
from Problem 8.4.

8.23 Energy in an RLC circuit ***
For the damped RLC circuit of Fig. 8.2, work out an expression for
the total energy stored in the circuit (the energy in the capacitor
plus the energy in the inductor) at any time t, for all three of the
underdamped, overdamped, and critically damped cases; you need
not simplify your answers. If R is varied while L and C are kept
fixed, show that the critical damping condition, R = 2

√
L/C, is

the one in which the total energy is most quickly dissipated. (The
exponential behavior is all that matters here.) The results from
Problem 8.4 will be useful.

8.24 RC circuit with a voltage source **
A voltage source E0 cos ωt is connected in series with a resistor R
and a capacitor C. Write down the differential equation expressing
Kirchhoff’s law. Then guess an exponential form for the current,
and take the real part of your solution to find the actual current.
Determine how the amplitude and phase of the current behave for
very large and very small ω, and explain the results physically.

8.25 Light bulb **
How large an inductance should be connected in series with a
120 volt (rms), 60 watt light bulb if it is to operate normally when
the combination is connected across a 240 volt, 60 Hz line? (First
determine the inductive reactance required. You may neglect the
resistance of the inductor and the inductance of the light bulb.)

t

t

t

t

R, L, C, E

Figure 8.35.

8.26 Label the curves **
The four curves in Fig. 8.35 are plots, in some order, of the applied
voltage and the voltages across the resistor, inductor, and capaci-
tor of a series RLC circuit. Which is which? Whose impedance is
larger, the inductor’s or the capacitor’s?
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8.27 RLC parallel circuit **
A 1000 ohm resistor, a 500 picofarad capacitor, and a 2 millihenry
inductor are connected in parallel. What is the impedance of this
combination at a frequency of 10 kilocycles per second? At a fre-
quency of 10 megacycles per second? What is the frequency at
which the absolute value of the impedance is greatest?

R

C

L

Figure 8.36.

8.28 Small impedance *
Consider the circuit in Fig. 8.36. The frequency is chosen to be
ω = 1/

√
LC. Given L and C, how should you pick R so that the

impedance of the circuit is small?

8.29 Real impedance *
Is it possible to find a frequency at which the impedance at the
terminals of the circuit in Fig. 8.37 will be purely real?

L

R C

Figure 8.37.

8.30 Equal impedance? *
Do there exist values of R, L, and C for which the two circuits
in Fig. 8.38 have the same impedance? (The resistor R has the
same value in both.) Can you give a physical explanation why or
why not?

R

R

C

L

Figure 8.38.

8.31 Zero voltage difference **
Show that, if the condition R1R2 = L/C is satisfied by the compo-
nents of the circuit in Fig. 8.39, the difference in voltage between
points A and B will be zero at any frequency. Discuss the suitabil-
ity of this circuit as an ac bridge for measurement of an unknown
inductance.

8.32 Finding L **
In the laboratory you find an inductor of unknown inductance
L and unknown internal resistance R. Using a dc ohmmeter, an
ac voltmeter of high impedance, a 1 microfarad capacitor, and a
1000 Hz signal generator, determine L and R as follows. According
to the ohmmeter, R is 35 ohms. You connect the capacitor in series
with the inductor and the signal generator. The voltage across both
is 10.1 volts. The voltage across the capacitor alone is 15.5 volts.
You note also, as a check, that the voltage across the inductor alone
is 25.4 volts. How large is L? Is the check consistent?

V0

C

A
B

L

R2

R1

Figure 8.39.

8.33 Equivalent boxes ***
Show that the impedance Z at the terminals of each of the two
circuits in Fig. 8.40 is (ignoring the units)

Z = 5000 + 16 · 10−3ω2 − 16iω
1 + 16 · 10−6ω2 . (8.99)

Since they present, at any frequency, the identical impedance, the
two black boxes are completely equivalent and indistinguishable
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from the outside. See if you can discover the general rules for find-
ing the resistances and capacitance in the bottom box, given the
resistances and capacitance in the top box.

1000 ohms
4000 ohms

Z

1 microfarad

5000 ohms

1250 ohms

0.64 microfarad

Z

Figure 8.40.

8.34 LC chain **
The box in Fig. 8.41(a) with four terminals contains a capacitor
C and two inductors of equal inductance L connected as shown.
An impedance Z0 is to be connected to the terminals on the right.
For given frequency ω, find the value that Z0 must have if the
resulting impedance between the terminals on the left (the “input”
impedance) is to be equal to Z0.

(You will find that the required value of Z0 is a pure resistance
R0 provided that ω2 < 2/LC. A chain of such boxes could be con-
nected together to form a ladder network resembling the ladder of
resistors in Exercise 4.36. If the chain is terminated with a resistor
of the correct value R0, its input impedance at frequency ω will be
R0, no matter how many boxes make up the chain.)

What is Z0 in the special case ω = √
2/LC? It helps in under-

standing that case to note that the contents of the box (a) can be
equally well represented by box (b).

8.35 RC circuit **
A 2000 ohm resistor and a 1 microfarad capacitor are connected in
series across a 120 volt (rms), 60 Hz line.

(a) What is the total impedance?
(b) What is the rms value of the current?
(c) What is the average power dissipated in the circuit?
(d) What will be the reading of an ac voltmeter connected across

the resistor? Across the capacitor?
(e) The left and right plates of a cathode ray tube are connected

across the resistor, and the top and bottom plates are connected
across the capacitor. The horizontal and vertical axes of the
tube’s screen therefore indicate the voltages across the resistor
and capacitor, respectively. Sketch the pattern that you expect
to see on the screen. From the given information, is it possible
to determine the direction in which the pattern is traced out?

LL
Z0

C

(a)

(b)

L L
C
2

C
2

Figure 8.41.

8.36 High-pass filter **
Consider the setup in Problem 8.13, but with the capacitor replaced
by an inductor. Calculate the ratio |Ṽ1|2/V2

0 . Choose values for R
and L to make |Ṽ1|2/V2

0 = 0.1 for a 100 Hz signal. This circuit is
the most primitive of “high-pass” filters, providing attenuation that
increases with decreasing frequency. Show that, for sufficiently
low frequencies, the signal power is reduced by a factor 1/4 for
every halving of the frequency.
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8.37 Parallel RLC power **
Repeat the task of Problem 8.14, but now for the parallel RLC cir-
cuit in Fig. 8.20.

R
R

C

E0 cos  w t

Figure 8.42.

8.38 Two resistors and a capacitor **
The circuit in Fig. 8.42 has two equal resistors R and a capacitor C.
The frequency of the emf source, E0 cos ωt, is chosen to be ω =
1/RC.

(a) What is the total complex impedance of the circuit? Give it in
terms of R only.

(b) If the total current through the circuit is written as I0 cos(ωt +
φ), what are I0 and φ?

(c) What is the average power dissipated in the circuit?



9
Maxwell’s
equations and
electromagnetic
waves

Overview In the course of our study of electromagnetism, we
have been gradually putting together the pieces of the puzzle of
Maxwell’s equations. In this chapter we find the final piece, known
as the displacement current. We do this by exposing a contradic-
tion in our present theory and then resolving it. Once we write
down the full set of Maxwell’s equations, we quickly discover that
in vacuum they lead to wave solutions with a set of specific proper-
ties. These waves are light waves, and unlike other waves you are
familiar with, they require no medium to support their propagation.
Traveling electromagnetic waves carry energy, and more generally
the Poynting vector describes the energy flow in an arbitrary elec-
tromagnetic field. Standing electromagnetic waves, which are the
superposition of traveling waves, carry no net energy. By examin-
ing how the electric and magnetic fields transform between frames,
we find that a light wave in one frame looks like a light wave in any
other frame.

9.1 “Something is missing”
Let us review the relations between charges and fields. As we learned
in Chapter 2, a statement equivalent to Coulomb’s law is the differential
form of Gauss’s law,

div E = ρ

ε0
(9.1)

connecting the electric charge density ρ and the electric field E. This
holds for moving charges as well as stationary charges. That is, ρ can be
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a function of time as well as position. As we emphasized in Chapter 5,
the fact that Eq. (9.1) holds for moving charges is consistent with charge
invariance: no matter how an isolated charged particle may be moving,
its charge, as measured by the integral of E over a surface surrounding
it, appears the same in every frame of reference.

Electric charge in motion is electric current. Because charge is never
created or destroyed, the charge density ρ and the current density J
always satisfy the condition

div J = −∂ρ

∂t
(9.2)

We first wrote down this “equation of continuity” as Eq. (4.10).
If the current density J is constant in time, we call it a stationary

current distribution. The magnetic field of such a current satisfies the
equation

curl B = μ0J (stationary current distribution). (9.3)

We worked with this relation in Chapter 6.

I

C B

B

I
S

R

Figure 9.1.
Having been charged with the right-hand plate
positive, the capacitor is being discharged
through the resistor. There is a magnetic field B
around the wire. The integral of curl B, over the
surface S that passes through the wire, has the
value μ0I.

Now we are interested in charge distributions and fields that are
changing in time. Suppose we have a charge distribution ρ(x, y, z, t) with
∂ρ/∂t �= 0. For instance, we might have a capacitor that is discharging
through a resistor. According to Eq. (9.2), ∂ρ/∂t �= 0 implies

div J �= 0. (9.4)

But according to Eq. (9.3), since the divergence of the curl of any vector
function is identically zero (see Exercise 2.78),

div J = 1
μ0

div (curl B) = 0. (9.5)

The contradiction shows that Eq. (9.3) cannot be correct for a system in
which the charge density is varying in time. Of course, no one claimed
it was; a stationary current distribution, for which Eq. (9.3) does hold, is
one in which not even the current density J, let alone the charge density
ρ, is time-dependent.

The problem can be posed in somewhat different terms by consider-
ing the line integral of magnetic field around the wire that carries charge
away from the capacitor plate in Fig. 9.1. According to Stokes’ theorem,∫

C
B · dl =

∫
S

curl B · da. (9.6)

The surface S passes right through the conductor in which a current
I is flowing. Inside this conductor, curl B has a finite value, namely μ0J,
and the integral on the right comes out equal to μ0I. That is to say, if the
curve C is close to the wire and well away from the capacitor gap, the
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Figure 9.2.
The white arrows show the current flow in the
conductors. The surface S′, which like S has the
curve C for its edge, has no current passing
through it.

I I

S�

S

C

magnetic field there is not different from the field around any wire car-
rying the same current. Now, the surface S′ in Fig. 9.2 is also a surface
spanning C, and has an equally good claim to be used in the statement
of Stokes’ theorem, Eq. (9.6). Through this surface, however, there flows
no current at all! Nevertheless, curl B cannot be zero over all of S′ with-
out violating Stokes’ theorem. Therefore, on S′, curl B must depend on
something other than the current density J.

We can only conclude that Eq. (9.3) has to be replaced by some other
relation, in the more general situation of changing charge distributions.
Let’s write instead

curl B = μ0J + (?) (9.7)

and see if we can discover what (?) must be.
Another line of thought suggests the answer. Remember that the

Lorentz-transformation laws of the electromagnetic field, Eq. (6.73), are
symmetrical in E and cB. Now, in Faraday’s induction phenomenon, a
changing magnetic field is accompanied by an electric field, in a manner
described by Eq. (7.31):

curl E = −∂B
∂t

(9.8)

This is a local relation connecting the electric and magnetic fields in
empty space – charges are not directly involved. If symmetry with respect
to E and cB is to prevail, we must expect that a changing electric field
can give rise to a magnetic field. There ought to be an induction phe-
nomenon described by an equation like Eq. (9.8), but with the roles of
E and cB switched. Writing Eq. (9.8) as curl E = −(1/c)∂(cB)/∂t
and then reversing the roles of E and cB, we obtain curl (cB) =
−(1/c)∂E/∂t �⇒ curl B = −(1/c2)∂E/∂t. It will turn out that we need
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to change the sign in order for Eq. (9.13) below to work out correctly, but
that is all:

curl B = 1
c2

∂E
∂t

�⇒ curl B = μ0ε0
∂E
∂t

, (9.9)

where we have used the relation c2 = 1/μ0ε0 from Eq. (6.8). The second
of the expressions in Eq. (9.9) is the standard way of writing the relation
in SI units.

This provides the missing term that is called for in Eq. (9.7). To try
it out, write

curl B = μ0J + μ0ε0
∂E
∂t

(9.10)

and take the divergence of both sides:

div (curl B) = div (μ0J) + div
(

μ0ε0
∂E
∂t

)
. (9.11)

The left side is necessarily zero, as already remarked. In the second term
on the right we can interchange the order of differentiation with respect
to space coordinates and time. Thus

div
(

μ0ε0
∂E
∂t

)
= μ0ε0

∂

∂t
(div E) = μ0ε0

∂

∂t

(
ρ

ε0

)
= μ0

∂ρ

∂t
, (9.12)

by Eq. (9.1). The right-hand side of Eq. (9.11) now becomes

μ0div J + μ0
∂ρ

∂t
, (9.13)

which is zero by virtue of the continuity condition, Eq. (9.2).
The new term resolves the difficulty raised in Fig. 9.2. As charge

flows out of the capacitor, the electric field, which at any instant has
the configuration in Fig. 9.3, diminishes in intensity. In this case, ∂E/∂t
points opposite to E. The vector function μ0ε0(∂E/∂t) is represented by
the black arrows in Fig. 9.4. With curl B = μ0J + μ0ε0(∂E/∂t), the
integral of curl B over S′ now has the same value as it does over S. On S′
the second term contributes everything; on S the first term, the term with
J, is practically all that counts.

9.2 The displacement current
Observe that the vector field μ0ε0(∂E/∂t) appears to form a continuation
of the conduction current distribution. Maxwell called it the displace-
ment current, and the name has stuck although it no longer seems very
appropriate. To be precise, we can define a displacement current density
Jd, to be distinguished from the conduction current density J, by writing
Eq. (9.10) this way:

curl B = μ0(J + Jd), (9.14)
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Figure 9.3.
The electric field at a particular instant. The
magnitude of E is decreasing everywhere as
time goes on.
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Figure 9.4.
The conduction current (white arrows) and the
displacement current (black arrows).
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and defining

Jd ≡ ε0
∂E
∂t

. (9.15)

We needed the new term to make the relation between current and
magnetic field consistent with the continuity equation, in the case of
conduction currents changing in time. If it belongs there, it implies the
existence of a new induction effect in which a changing electric field
is accompanied by a magnetic field. If the effect is real, why didn’t
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Element of
conduction current

Element of
conduction current

Element of
displacement current

P

Element of
conduction current

Figure 9.5.
In the case of slowly varying fields, the total
contribution to the magnetic field at any point,
from all displacement currents, is zero. The
magnetic field at P can be calculated by the
Biot–Savart formula applied to conduction
current elements only.

Faraday discover it? For one thing, he wasn’t looking for it, but there is a
more fundamental reason why experiments like Faraday’s could not have
revealed any new effects attributable to the last term in Eq. (9.10). In any
apparatus in which there are changing electric fields, there are present,
at the same time, conduction currents, charges in motion. The magnetic
field B, everywhere around the apparatus, is just about what you would
expect those conduction currents to produce. In fact, it is almost exactly
the field you would calculate if, ignoring the fact that the circuits may
not be continuous, you use the Biot–Savart formula, Eq. (6.49), to find
the contribution of each conduction current element to the field at some
point in space.

Consider, for example, the point P in the space between our dis-
charging capacitor plates, Fig. 9.5. Each element of conduction current,
in the wires and on the surface of the plates, contributes to the field at P,
according to the Biot–Savart formula. Must we include also the elements
of displacement current density Jd? The answer is rather surprising. We
may include Jd, but if we are careful to include the entire displacement
current distribution, its net effect will be zero for relatively slowly vary-
ing fields.

To see why this is so, note that the vector function Jd, indicated by
the black arrows in Fig. 9.4, has the same form as the electric field E in
Fig. 9.3. This electric field is practically an electrostatic field, except that
it is slowly dying away. We expect therefore that its curl is practically
zero, which would imply that curl Jd must be practically zero. More pre-
cisely, we have curl E = −∂B/∂t, and with the displacement current
Jd = ε0(∂E/∂t), we get, by interchanging the order of differentiation,

curl Jd = ε0 curl
(

∂E
∂t

)
= ε0

∂

∂t
(curl E) = −ε0

∂2B
∂t2

. (9.16)
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This will be negligible for sufficiently slow changes in field. We may
call a slowly changing field quasi-static. Now, if Jd is a vector field with-
out any curl, it can be made up, in the same way that the electrostatic
field can be made of the radial fields of point charges, by superposing
radial currents flowing outward from point sources or in toward point
“sinks” (Fig. 9.6). But the magnetic field of any radial, symmetrical cur-(a)

J

J

(b)

Figure 9.6.
Showing what is meant by a radial current
distribution. The current density J for the point
source in (a), or for the point “sink” in (b), is like
the electric field of a point charge. Any current
distribution with curl J = 0 could be made by
superposing such sources and sinks, and must
therefore have zero magnetic field.

rent distribution, calculated via Biot–Savart, is zero. To understand why,
consider the radial line through a given location. At this location, the
Biot–Savart contributions from a pair of points symmetrically located
with respect to this line are equal and opposite, as you can verify. The
contributions therefore cancel in pairs, yielding zero field at the given
location.

In the quasi-static field, then, the conduction currents alone are the
only sources needed to account for the magnetic field. In other words, if
Faraday had arranged something like Fig. 9.5, and had been able to meas-
ure the magnetic field at P, by using a compass needle, say, he would not
have been surprised. He would not have needed to invent a displacement
current to explain it.

To see this new induction effect, we need rapidly changing fields.
In fact, we need changes to occur in the time it takes light to cross the
apparatus. That is why the direct demonstration had to wait for Hertz,
whose experiment came roughly 25 years after the law itself had been
worked out by Maxwell.

9.3 Maxwell’s equations
James Clerk Maxwell (1831–1879), after immersing himself in the
accounts of Faraday’s electrical researches, set out to formulate math-
ematically a theory of electricity and magnetism. Maxwell could not
exploit relativity – that came 50 years later. The electrical constitution of
matter was a mystery, the relation between light and electromagnetism
unsuspected. Many of the arguments that we have used to make our next
step seem obvious were unthinkable then. Nevertheless, as Maxwell’s
theory developed, the term we have been discussing, ∂E/∂t, appeared
quite naturally in his formulation. He called it the displacement cur-
rent. Maxwell was concerned with electric fields in solid matter as well
as in vacuum, and when he talks about a displacement current he is
often including some charge in motion, too. We’ll clarify that point in
Chapter 10 when we study electric fields in matter. Indeed, Maxwell
thought of space itself as a medium, the “aether,” so that even in the
absence of solid matter, the displacement current was occurring in some-
thing. But never mind – his mathematical equations were perfectly clear
and unambiguous, and his introduction of the displacement current was
a theoretical discovery of the first rank.

Maxwell’s description of the electromagnetic field was essentially
complete. We have arrived by different routes at various pieces of it,
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which we shall now assemble in the form traditionally called Maxwell’s
equations:

curl E= −∂B
∂t

curl B= μ0ε0
∂E
∂t

+ μ0J

div E= ρ

ε0

div B= 0

(9.17)

These are written for fields in the presence of electric charge of density
ρ and electric current, that is, charge in motion, of density J.

The first equation is Faraday’s law of induction. The second expresses
the dependence of the magnetic field on the displacement current den-
sity, or rate of change of electric field, and on the conduction current
density, or rate of motion of charge. (If ∂E/∂t = 0, this equation reduces
to Ampère’s law.) The third equation is equivalent to Coulomb’s law; it
is the differential form of Gauss’s law. The fourth equation states that
there are no sources of magnetic field except currents; that is, there are
no magnetic monopoles. We shall have more to say about this aspect of
Nature in Chapter 11.

Note that the lack of symmetry in these equations, with respect to B
and E (or rather cB and E; see Eq. (9.19)), is entirely due to the presence
of electric charge and electric conduction current. In empty space, the
terms with ρ and J are zero, and Maxwell’s equations become

curl E= −∂B
∂t

div E= 0

curl B= μ0ε0
∂E
∂t

div B = 0

(9.18)

Remembering that μ0ε0 = 1/c2, we can write the two “induction” equa-
tions as

curl E = −1
c

∂(cB)

∂t
and curl (cB) = 1

c
∂E
∂t

, (9.19)

where the symmetry between cB and E is clear. This symmetry, after
all, is what led us to the displacement current in the first place; see the
paragraph preceding Eq. (9.9).

In Eq. (9.18) the displacement current term is all important. Its pres-
ence, along with its counterpart in the first equation, implies the possibil-
ity of electromagnetic waves, as we will see in Section 9.4. Recognizing
this, Maxwell went on to develop with brilliant success an electromag-
netic theory of light.
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In Gaussian units Maxwell’s equations look like this:

curl E= −1
c

∂B
∂t

curl B= 1
c

∂E
∂t

+ 4π

c
J

div E= 4πρ

div B= 0

(9.20)

And in empty space, with ρ and J equal to zero, these become

curl E= −1
c

∂B
∂t

div E= 0

curl B= 1
c

∂E
∂t

div B = 0

(9.21)

9.4 An electromagnetic wave
We are going to construct a rather simple electromagnetic field that will
satisfy Maxwell’s equations for empty space, Eq. (9.18). Suppose there
is an electric field E, everywhere parallel to the z axis, whose intensity
depends only on the space coordinate y and the time t. Let the depen-
dence have this particular form:1

E = ẑE0 sin(y − vt), (9.22)

in which E0 and v are simply constants. This field fills all space – at
least all the space we are presently concerned with. We’ll need a mag-
netic field, too. We shall assume that it has an x component only, with a
dependence on y and t similar to that of Ez:

B = x̂B0 sin(y − vt), (9.23)

where B0 is another constant.
Figure 9.7 may help you to visualize these fields. It is difficult to

represent graphically two such fields filling all space. Remember that
nothing varies with x or z; whatever is happening at a point on the y
axis is happening everywhere on the perpendicular plane through that
point. As time goes on, the entire field pattern slides steadily to the right,

1 There is technically an issue with the units here, because the argument of the sine
function should be dimensionless. We should really be writing it as sin(ky − ωt) or
something similar; see the example in Section 9.5. However, the present form makes
things a little less cluttered, without affecting the final results.
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Figure 9.7.
The wave described by Eqs. (9.22) and (9.23) is
shown at three different times. It is traveling to
the right, in the positive y direction.
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thanks to the particular form of the argument of the sine function in
Eqs. (9.22) and (9.23); that argument, y− vt, has the same value at y+�y
and t+�t as it had at y and t, providing �y= v�t. In other words,
we have here a plane wave traveling with the constant speed v in the ŷ
direction.

We’ll show now that this electromagnetic field satisfies Maxwell’s
equations if certain conditions are met. It is easy to see that div E and
div B are both zero for this field. The other derivatives involved are

curl E = x̂
∂Ez

∂y
= x̂E0 cos(y − vt),

∂E
∂t

= −vẑE0 cos(y − vt);

curl B = −ẑ
∂Bx

∂y
= −ẑB0 cos(y − vt),

∂B
∂t

= −vx̂B0 cos(y − vt). (9.24)

Substituting into the two “induction” equations of Eq. (9.18) and cancel-
ing the common factor, cos(y − vt), we find the conditions that must be
satisfied are

E0 = vB0 and B0 = μ0ε0vE0. (9.25)

Together these require that

v = ± 1√
μ0ε0

and E0 = ± B0√
μ0ε0

(9.26)

Using μ0ε0 = 1/c2 these relations become

v = ±c and E0 = ±cB0 (9.27)

We have now learned that our electromagnetic wave must have the
following properties.

(1) The field pattern travels with speed c. In the case v = −c, it trav-
els in the opposite, or −ŷ, direction. When in 1862 Maxwell first
arrived (by a more obscure route) at this result, the constant c in
his equations expressed only a relation among electrical quantities
as determined by experiments with capacitors, coils, and resistors.
To be sure, the dimensions of this constant were those of veloc-
ity, but its connection with the actual speed of light had not yet
been recognized. The speed of light had most recently been meas-
ured by Fizeau in 1857. Maxwell wrote, “The velocity of transverse
undulations in our hypothetical medium, calculated from the electro-
magnetic experiments of MM. Kohlrausch and Weber, agrees so
exactly with the velocity of light calculated from the optical exper-
iments of M. Fizeau, that we can scarcely avoid the inference that
light consists in the transverse undulations of the same medium which
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is the cause of electric and magnetic phenomena.” The italics are
Maxwell’s.

(2) At every point in the wave at any instant of time, the electric field
strength equals c times the magnetic field strength. In our SI units,
B is expressed in tesla and E in volts/meter. If the electric field
strength is 1 volt/meter, the associated magnetic field strength is
1/(3 · 108) = 3.33 · 10−9 tesla. (In Gaussian units, the electric and
magnetic field strengths are equal, with no need for the factor of c.)

(3) The electric field and the magnetic field are perpendicular to one
another and to the direction of travel, or propagation. To be sure, we
had already assumed this when we constructed our example, but it is
not hard to show that it is a necessary condition, given that the fields
do not depend on the coordinates perpendicular to the direction of
propagation. Note that, if v=−c, which would make the direction of
propagation −ŷ, we must have E0 =−cB0. This preserves the hand-
edness of the essential triad of directions, the direction of E, the
direction of B, and the direction of propagation. We can describe
this without reference to a particular coordinate frame as follows:
the wave always travels in the direction of the vector E × B.

Any plane electromagnetic wave in empty space has these three
properties.

9.5 Other waveforms; superposition of waves
In the example we have just studied, the function sin(y − vt) was chosen
merely for its simplicity. The “waviness” of the sinusoidal function has
nothing to do with the essential property of wave motion, which is the
propagation unchanged of a form or pattern – any pattern. It was not the
nature of the function but the way y and t were combined in its argument
that caused the pattern to propagate. If we replace the sine function by
any other function, f (y − vt), we obtain a pattern that travels with speed
v in the ŷ direction. Moreover, Eq. (9.25) will apply as before (as you
should check by working out the steps analogous to those in Eq. (9.24)),
and our wave will have the three general properties just listed.

Here is another example, the plane electromagnetic wave pictured in
Fig. 9.8, which is described mathematically as follows:

E = E0ŷ

1 + (x + ct)2

�2

, B = −(E0/c)ẑ

1 + (x + ct)2

�2

, (9.28)

where � is a fixed length that we have chosen as � = 1 foot for the
purposes of drawing Fig. 9.8. (The speed of light is very nearly 1 foot/
nanosecond.) This electromagnetic field satisfies Maxwell’s equations,
Eq. (9.18). It is a plane wave because nothing depends on y or z. It is
traveling in the direction −x̂, as we recognize at once from the + sign
in the argument x + ct. That is indeed the direction of E × B. In this
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Figure 9.8.
The wave described by Eq. (9.28) is traveling
in the negative x direction. It is shown
3 nanoseconds before its peak passes the
origin.
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wave nothing is oscillating or alternating; it is simply an electromagnetic
pulse with long tails. At time t = 0, the maximum field strengths, E = E0
(in volts/meter) and B = E0/c (which correctly has units of tesla) will
be experienced by an observer at the origin, or at any other point on
the yz plane. In Fig. 9.8 we have shown the field as it was at t = −3
nanoseconds, with the distances marked off in feet.

Maxwell’s equations for E and B in empty space are linear. The
superposition of two solutions is also a solution. Any number of electro-
magnetic waves can propagate through the same region without affecting
one another. The field E at a space-time point is the vector sum of the
electric fields of the individual waves, and the same goes for B.

Example (Standing wave) An important example is the superposition of
two similar plane waves traveling in opposite directions. Consider a wave travel-
ing in the ŷ direction, described by

E1 = ẑE0 sin
2π

λ
(y − ct), B1 = x̂

E0
c

sin
2π

λ
(y − ct). (9.29)

This wave differs in only minor ways from the wave in Eqs. (9.22) and (9.23).
We have introduced the wavelength λ of the periodic function, and we have used
B0 = E0/c.

Now consider another wave:

E2 = ẑE0 sin
2π

λ
(y + ct), B2 = −x̂

E0
c

sin
2π

λ
(y + ct). (9.30)
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This is a wave with the same amplitude and wavelength, but propagating in the
−ŷ direction. With the two waves both present, Maxwell’s equations are still
satisfied, the electric and magnetic fields now being

E = E1 + E2 = ẑE0

[
sin

(
2πy
λ

− 2πct
λ

)
+ sin

(
2πy
λ

+ 2πct
λ

)]
,

B = B1 + B2 = x̂
E0
c

[
sin

(
2πy
λ

− 2πct
λ

)
− sin

(
2πy
λ

+ 2πct
λ

)]
. (9.31)

Remembering the formula for the sine of the sum of two angles, you can easily
reduce Eq. (9.31) to

E = 2ẑE0 sin
2πy
λ

cos
2πct

λ
, B = −2x̂

E0
c

cos
2πy
λ

sin
2πct

λ
. (9.32)

The field described by Eq. (9.32) is called a standing wave. Figure 9.9 sug-
gests what it looks like at different times. The factor c/λ is the frequency (in
time) with which the field oscillates at any position x, and 2πc/λ is the corres-
ponding angular frequency. According to Eq. (9.32), whenever 2ct/λ equals an
integer, which happens every half-period, we have sin 2πct/λ = 0, and the mag-
netic field B vanishes everywhere. On the other hand, whenever 2ct/λ equals an
integer plus one-half, we have cos 2πct/λ = 0, and the electric field vanishes
everywhere. The maxima of B and the maxima of E occur at different places as
well as at different times. In contrast with the traveling wave, the standing wave
has its electric and magnetic fields “out of step” in both space and time.

In the above standing wave, note that E= 0 at all times on the plane
y= 0 and on every other plane for which y equals an integral number of
half-wavelengths. Imagine that we could cover the xz plane at y= 0 with
a sheet of perfectly conducting metal. At the surface of a perfect conduc-
tor, the electric field component parallel to the surface must be zero –
otherwise an infinite current would flow. That imposes a drastic bound-
ary condition on any electromagnetic field in the surrounding space. But
our standing wave, which is described by Eq. (9.32), already satisfies
that condition, as well as satisfying Maxwell’s equations in the entire
space y > 0. Therefore it provides a ready-made solution to the problem
of a plane electromagnetic wave reflected, at normal incidence, from a
flat conducting mirror (see Fig. 9.10). The incident wave is described
by Eq. (9.30), for y > 0, the reflected wave by Eq. (9.29). There is no
field at all behind the mirror, or if there is, it has nothing to do with the
field in front. Immediately in front of the mirror there is a magnetic field
parallel to the surface, given by Eq. (9.32): B=−2x̂(E0/c) sin(2πct/λ).
The jump in B from this value in front of the conducting sheet to zero
behind shows that an alternating current must be flowing in the sheet (see
Section 6.6).

Figure 9.9 (see p. 444).
A standing wave, resulting from the
superposition of a wave traveling in the positive
y direction, Eq. (9.29), and a similar wave
traveling in the negative y direction, Eq. (9.30).
Beginning with the top figure, the fields are
shown at four different times, separated
successively by one-eighth of a full period.

You could install a conducting sheet at any other plane where E, as
given by Eq. (9.32), is permanently zero, and thus trap an electromag-
netic standing wave between two mirrors. That arrangement has many
applications, including lasers. In fact, with an understanding of the
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Figure 9.10.
A standing wave produced by reflection at a
perfectly conducting sheet.
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properties of the simple plane electromagnetic wave, you can analyze a
surprisingly wide variety of electromagnetic devices, including interfer-
ometers, rectangular hollow wave guides, and strip lines.

9.6 Energy transport by electromagnetic waves
9.6.1 Power density
The energy the earth receives from the sun has traveled through space
in the form of electromagnetic waves that satisfy Eq. (9.18). Where is
this energy when it is traveling? How is it deposited in matter when it
arrives?

In the case of a static electric field, such as the field between the
plates of a charged capacitor, we found that the total energy of the system
could be calculated by attributing to every volume element dv an amount
of energy (ε0E2/2) dv and adding it all up. Look back at Eq. (1.53). Like-
wise, the energy invested in the creation of a magnetic field could be cal-
culated by assuming that every volume element dv in the field contains
(B2/2μ0) dv units of energy. See Eq. (7.79). The idea that energy actually
resides in the field becomes more compelling when we observe sunlight,
which has traveled through a vacuum where there are no charges or cur-
rents, making something hot.

We can use this idea to calculate the rate at which an electromag-
netic wave delivers energy. Consider a traveling plane wave (not a stand-
ing wave) of any form, at a particular instant of time. Assign to every
infinitesimal volume element dv an amount of energy (1/2)(ε0E2 +
B2/μ0) dv, E and B being the electric and magnetic fields in that volume
element at that instant. Since 1/μ0ε0 = c2, this energy can be written
alternatively as (ε0/2)(E2 + c2B2) dv. Now assume that this energy sim-
ply travels with speed c in the direction of propagation. In this way we
can find the amount of energy that passes, per unit time, through unit
area perpendicular to the direction of propagation.

Let us apply this to the sinusoidal wave described by Eqs. (9.22) and
(9.23). At the instant t= 0, we have E2 =E2

0 sin2 y. Also, B2 =
(E0/c)2 sin2 y, since, as we subsequently found, B0 must equal ±E0/c.
The energy density in this field is therefore

ε0

2

(
E2

0 sin2 y + c2
(

E0

c

)2

sin2 y

)
= ε0E2

0 sin2 y. (9.33)

The mean value of sin2 y averaged over a complete wavelength is just
1/2. The mean energy density in the field is then ε0E2

0/2, and ε0E2
0c/2

is the mean rate at which energy flows through a “window” of unit area
perpendicular to the y direction. (This follows from the fact that, dur-
ing a time t, a tube with length ct and cross-sectional area A is the vol-
ume that passes through a window with area A. The volume per area per
time is therefore (ct)A/At = c.) We can say more generally that, for any
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continuous, repetitive wave, whether sinusoidal or not, the rate of energy
flow per unit area, which we call the power density S, is given by

S = ε0E2c (9.34)

Here E2 is the mean square electric field strength, which was E2
0/2 for

the sinusoidal wave of amplitude E0. S will be in joules per second per
square meter, or equivalently watts per square meter, if E is in volts per
meter and c is in meters per second.

In Gaussian units the formula for power density is

S = E2c
4π

, (9.35)

where S is in ergs per second per square centimeter if E is in statvolts per
centimeter and c is in centimeters per second.

If you want to write Eq. (9.34) without reference to c, then substi-
tuting c = 1/

√
μ0ε0 yields

S = E2
√

μ0/ε0
(9.36)

This expression for S is based only on the physics that was known in 1861
when Maxwell wrote down his set of equations. That is, it invokes noth-
ing about the nature of light; you can repeat the above derivation by using
the expression for v in Eq. (9.26) without introducing the speed of light,
c. The fact that 1/

√
μ0ε0 can indeed be replaced by c was conjectured

by Maxwell in 1862, demonstrated experimentally by Hertz in 1888, and
explained theoretically by Einstein in 1905 through his special theory of
relativity. The last of these routes was the one we took in Chapters 5 and
6, where we showed that μ0 = 1/ε0c2.

The constant
√

μ0/ε0 in Eq. (9.36) has the dimensions of resistance,
and its value is 376.73 ohms. Rounding it off to 377 ohms, we have a
convenient and easily remembered formula:

S(watts/meter2) = E2(volts/meter)2

377 ohms
(9.37)

The units here reduce to: watts = volt2/ohm, which are the same as in
the standard P = V2/R expression for the power in an ordinary resistor.
If you need help in remembering the number 377, it happens to be the
number of radians per second in 60 hertz, and also the 14th Fibonacci
number.

When the electromagnetic wave encounters an electrical conductor,
the electric field causes currents to flow. This generally results in energy
being dissipated within the conductor at the expense of the energy in the
wave. The total reflection of the incident wave in Fig. 9.10 was a special
case in which the conductivity of the reflecting surface was infinite.
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If the resistivity of the reflector is not zero, the amplitude of the reflected
wave will be less than that of the incident wave. Aluminum, for exam-
ple, reflects visible light, at normal incidence, with about 92 percent
efficiency. That is, 92 percent of the incident energy is reflected, the
amplitude of the reflected wave being

√
0.92 or 0.96 times that of the

incident wave. The lost 8 percent of the incident energy ends up as heat
in the aluminum, where the current driven by the electric field of the
wave encounters ohmic resistance. What counts, of course, is the resis-
tivity of aluminum at the frequency of the light wave, in this case about
5 · 1014 Hz. That may be somewhat different from the dc or low-frequency
resistivity of the metal. Still, the reflectivity of most metals for visible
light is essentially due to the same highly mobile conduction electrons
that make metals good conductors of steady current. It is no accident that
good conductors are generally shiny. But why clean copper looks reddish
while aluminum looks “silvery” can’t be explained without a detailed
theory of each metal’s electronic structure.

Energy can also be absorbed when an electromagnetic wave meets
nonconducting matter. Little of the light that strikes a black rubber tire is
reflected, although the rubber is an excellent insulator for low-frequency
electric fields. Here the dissipation of the electromagnetic energy involves
the action of the high-frequency electric field on the electrons in the
molecules of the material. In the broadest sense, that applies to the absorp-
tion of light in everything around us, including the retina of the eye.

Some insulators transmit electromagnetic waves with very little
absorption. The transparency of glass for visible light, with which we
are so familiar, is really a remarkable property. In the purest glass fibers
used for optical transmission of audio and video signals, a wave travels
as much as a hundred kilometers, or more than 1011 wavelengths, before
most of the energy is lost. However transparent a material medium may
be, the propagation of an electromagnetic wave within the medium dif-
fers in essential ways from propagation through the vacuum. The mat-
ter interacts with the electromagnetic field. To take that interaction into
account, Eq. (9.18) must be modified in a way that will be explained in
Chapter 10.

9.6.2 The Poynting vector
With the help of Maxwell’s equations, we can produce a more general
version of the power density given in Eq. (9.34). That result was valid
only for traveling waves. The present result will be valid for arbitrary
electromagnetic fields. Furthermore, it will be valid as a function of time
(and space), and not just as a time average. As above, our starting point
will be the fact that the energy density of an electromagnetic field, which
we label U , is given by ε0E2/2+B2/2μ0. Consider the rate of change of
U . If we write E2 and B2 as E · E and B · B, then

∂U
∂t

= ε0
∂E
∂t

· E + 1
μ0

∂B
∂t

· B. (9.38)
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The product rule works for vectors just as it does for regular functions,
as you can check by explicitly writing out the Cartesian components. We
can rewrite the time derivatives here with the help of the two “induction”
Maxwell equations in free space, ∇ × B = μ0ε0 ∂E/∂t and ∇ × E =
−∂B/∂t. This yields

∂U
∂t

= 1
μ0

(∇ × B) · E − 1
μ0

(∇ × E) · B. (9.39)

The right-hand side of this expression conveniently has the same form as
the right-hand side of the vector identity

∇ · (C × D) = (∇ × C) · D − (∇ × D) · C. (9.40)

Hence ∂U/∂t = (1/μ0)∇ · (B × E). For reasons that will become clear,
let’s switch the order of B and E, which brings in a minus sign. We
then have

∂U
∂t

= − 1
μ0

∇ · (E × B). (9.41)

If we now define the Poynting vector S by

S ≡ E × B
μ0

(Poynting vector), (9.42)

then we can write our result as

−∂U
∂t

= ∇ · S. (9.43)

This equation should remind you of another one we have encountered. It
has exactly the same form as the continuity equation,

−∂ρ

∂t
= ∇ · J. (9.44)

Therefore, just as J gives the current density (the flow of charge per time
per area), we can likewise say that S gives the power density (the flow
of energy per time per area). Equivalently, Eqs. (9.43) and (9.44) are the
statements of conservation of energy and charge, respectively. Energy (or
charge) can’t just disappear; if the energy in a given region decreases, it
must be the case that energy flowed out of that region, and into another
region.

If you don’t trust the analogy with J, you can work with the integral
form of Eq. (9.43). The integral of the energy density U over a given vol-
ume V is simply the total energy U contained in that volume. So we have

dU
dt

= d
dt

∫
V
U dv =

∫
V

∂U
∂t

dv = −
∫

V
∇ · S dv = −

∫
S

S · da, (9.45)



450 Maxwell’s equations and EM waves

where we have used the divergence theorem. This shows that the rate
of change of the energy in a given volume V equals the negative of the
flux of the vector S outward through the closed surface S that bounds
V . (Remember that da is defined to be the outward-pointing normal.)
The minus sign in Eq. (9.45) makes sense; a positive outward flux of S
means that U is decreasing. Since Eq. (9.45) holds for an arbitrary closed
volume, the natural interpretation of S is that it gives the rate of energy
flow per area through any surface, closed or not.

The Poynting vector S gives the power density for an arbitrary elec-
tromagnetic field, not just for the special case of a traveling wave. For
any electromagnetic field, at any given point at any instant in time, the
direction of S gives the direction of the energy flow, and the magnitude
of S gives the energy per time per area flowing through a small frame.
The units of S are joules per second per square meter, or watts per square
meter.

In the special case of a traveling wave (sinusoidal or not), we know
from the third property listed in Section 9.4 that the velocity points in
the direction of E × B. This equals the direction of S, as must be the
case. We also know that a traveling wave has B perpendicular to E, with
B = E/c. The magnitude of S is therefore S = E(E/c)/μ0. Using μ0 =
1/ε0c2, we obtain S = ε0E2c. This is the instantaneous power density. Its
average value is simply S = ε0E2c, in agreement with Eq. (9.34). (In that
equation we were using S, without the line over it, to denote the average
power density.)

Interestingly, there can also be energy flow in a static electromag-
netic field. Consider a very long stick with uniform linear charge den-
sity λ, moving with speed v in the longitudinal direction, say, rightward.
Close to the stick and not too close to the ends, the stick creates E and B
fields that are essentially static, with E pointing radially and B pointing
tangentially. Their cross product is therefore nonzero, so the Poynting
vector is nonzero. Hence there is energy flow, and it moves in the same
direction as the stick moves (for either sign of λ), as you can show with
the right-hand rule. The energy density at a given point (not too close to
the ends) doesn’t change, because energy flows into a given volume from
the left at the same rate it flows out to the right. However, near the ends
the fields are changing, so there is a net energy flow into or out of a given
volume. (Think of a uniform caravan of cars moving along the highway.
The density of cars changes only at points near the ends of the caravan.)
The rightward flow of energy is consistent with the fact that the whole
system is moving to the right.

The Poynting vector (named after John Henry Poynting) falls into a
wonderful class of phonetically accurate theorems/results. Others are the
Low energy theorem (after F. E. Low) dealing with low-energy photons,
and the Schwarzschild radius of a black hole (after Karl Schwarzschild,
whose last name means “black shield” in German).
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Example (Energy flow into a capacitor) A capacitor has circular plates
with radius R and is being charged by a constant current I. The electric field
E between the plates is increasing, so the energy density is also increasing. This
implies that there must be a flow of energy into the capacitor. Calculate the Poynt-
ing vector at radius r inside the capacitor (in terms of r and E), and verify that
its flux equals the rate of change of the energy stored in the region bounded by
radius r.

I

E
B

B
E

I

S
r

Figure 9.11.
The changing vertical electric field inside the
capacitor induces a tangential magnetic field.
The cross product of E and B yields an
inward-pointing Poynting vector, consistent with
the increasing energy density.

Solution If the Poynting vector is to be nonzero, there must be a nonzero mag-
netic field inside the capacitor. And indeed, because the electric field is changing,
there is an induced magnetic field due to the ∇×B = ε0μ0 ∂E/∂t Maxwell equa-
tion. If we integrate this equation over the area of a disk with radius r inside the
capacitor (see Fig. 9.11) and use Stokes’ theorem on the left-hand side, we obtain

∫
B · ds = ε0μ0

∂E
∂t

(area) �⇒ B(2πr) = ε0μ0
∂E
∂t

(πr2)

�⇒ B = ε0μ0r
2

∂E
∂t

. (9.46)

This magnetic field points tangentially around the circle of radius r. Since E is
increasing upward, B is directed counterclockwise when viewed from above, as
you can check via the right-hand rule. The Poynting vector S = (E×B)/μ0 then
points radially inward everywhere on the circle of radius r. So the direction is
correct; energy is flowing into the region bounded by radius r.

Let’s now find the magnitude of S. Since E is perpendicular to B, the mag-
nitude of S is

S = EB
μ0

= E
μ0

(
ε0μ0r

2
∂E
∂t

)
= ε0r

2
E

∂E
∂t

. (9.47)

To find the total energy per time (that is, the power) flowing past radius r, we
must multiply S by the lateral area of the cylinder of radius r; that is, we must
find the flux of S. If the separation between the plates is h, the lateral area is
2πrh. The total power flowing into the cylinder of radius r is then

P =
(

ε0r
2

E
∂E
∂t

)
2πrh = (πr2h)ε0E

∂E
∂t

= d
dt

(
(volume)

ε0E2

2

)
= dU

dt
.

(9.48)

So the Poynting-vector flux does indeed equal the rate of change of the stored
energy. In the special case where r equals the radius of the capacitor, R, we
obtain the total power flowing into the capacitor. Note that S and P are largest at
r = R, and zero at r = 0, as expected.

REMARK: You might be worried that although we found there to be a nonzero
magnetic field inside the capacitor, we didn’t take into account the resulting
magnetic energy density, B2/2μ0. We used only the electric ε0E2/2 part of the
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density. However, a constant current I implies a constant dσ/dt (where ±σ are
the charge densities on the plates), which in turn implies a constant ∂E/∂t, which
in turn implies a constant B, from Eq. (9.46). The magnetic energy density is
therefore constant and thus doesn’t affect the dU/dt in Eq. (9.48). We can there-
fore rightfully ignore it. On the other hand, if I isn’t constant, then things are
more complicated. However, for “everyday” rates of change of I, it is a very
good approximation to say that the magnetic energy density in a capacitor is
much smaller than the electric energy density; see Exercise 9.30.

At the end of Section 4.3 we mentioned that the energy flow in a
circuit is due to the Poynting vector. We can now say more about this.
There are two important parts to the energy flow. The first is the flow
that yields the resistance heating. The current in a conducting wire is
caused by a longitudinal E field inside the wire; recall J = σE. Since
the curl of E is zero, this same longitudinal E component must also exist
right outside the surface of the wire. As you can show in Exercise 9.28,
the Poynting-vector flux through a cylinder right outside the wire exactly
accounts for the IV resistance heating.

The second part is the energy flow along the wire. As discussed at
the end of Section 4.3, there are surface charges on the wire. These create
an electric field perpendicular to the wire, which in turn creates a Poynt-
ing vector parallel to the wire, as you can verify. This gives an energy
flow along the wire; see Galili and Goihbarg (2005). More generally, the
energy flow need not be constrained to lie near the wire if the wire loops
around in space. Energy can flow across open space too, from one part
of a circuit to another; see Jackson (1996).

If there are other electric fields present in the system, there can
be a third part to the energy flow, now away from the wire. See
Problem 9.10.

9.7 How a wave looks in a different frame
A plane electromagnetic wave is traveling through the vacuum. Let E and
B be the electric and magnetic fields measured at some place and time
in F, by an observer in F. What field will be measured by an observer
in a different frame who happens to be passing that point at that time?
Suppose that frame F′ is moving with speed v in the x̂ direction rela-
tive to F, with its axes parallel to those of F. We can turn to Eq. (6.74)
for the transformations of the field components. Let us write them
out again:

E′
x = Ex, E′

y = γ (Ey − vBz), E′
z = γ (Ez + vBy);

B′
x = Bx, B′

y = γ
(
By + (v/c2)Ez

)
, B′

z = γ
(
Bz − (v/c2)Ey

)
.

(9.49)
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The key to our problem is the way two particular scalar quantities
transform, namely, E · B and E2 − B2. Let us use Eq. (9.49) to calculate
E′ · B′ and see how it is related to E · B:

E′ · B′ = E′
xB′

x + E′
yB′

y + E′
zB

′
z

= ExBx + γ 2
[
EyBy +�����

(v/c2)EyEz −���vByBz − (v/c)2EzBz

]
+ γ 2

[
EzBz −�����

(v/c2)EyEz +���vByBz − (v/c)2EyBy

]
= ExBx + γ 2(1 − β2)(EyBy + EzBz) = E · B. (9.50)

The scalar product E · B is not changed in the Lorentz transformation of
the fields; it is an invariant. A similar calculation, which will be left to
the reader as Exercise 9.32, shows that E2

x +E2
y +E2

z − c2(B2
x +B2

y +B2
z )

is also unchanged by the Lorentz transformation. We therefore have

E′ · B′ = E · B and E′2 − c2B′2 = E2 − c2B2 (9.51)

The invariance of these two quantities is an important general prop-
erty of any electromagnetic field, not just the field of an electromag-
netic wave with which we are concerned at the moment. For the wave
field, its implications are especially simple and direct. We know that the
plane wave has B perpendicular to E, and cB = E. Each of our two
invariants, E · B and E2 − c2B2, is therefore zero. And if an invariant
is zero in one frame, it must be zero in all frames. We see that any
Lorentz transformation of the wave will leave E and cB perpendicular
and equal in magnitude. A light wave looks like a light wave in any iner-
tial frame of reference. That should not surprise us. It could be said that
we have merely come full circle, back to the postulates of relativity, Ein-
stein’s starting point. Indeed, according to Einstein’s own autobiograph-
ical account, he had begun 10 years earlier (at age 16!) to wonder what
one would observe if one could “catch up” with a light wave. With the
transformations in Eq. (9.49), which were given in Einstein’s 1905 paper,
the question can be answered. Consider a traveling wave with amplitudes
given by Ey = E0, Ex = Ez = 0, Bz = E0/c, Bx = By = 0. This is a wave
traveling in the x̂ direction, as we can tell from the fact that E×B points
in that direction. Using Eq. (9.49) and the relation γ = 1/

√
1 − β2, we

find that

E′
y = E0

√
1 − β

1 + β
, B′

z =
E0

c

√
1 − β

1 + β
. (9.52)

As observed in F′ the amplitude of the wave is reduced. The wave veloc-
ity, of course, is c in F′, as it is in F. The electromagnetic wave has no
rest frame. In the limit β = 1, the amplitudes E′

y and B′
z observed in F′

are reduced to zero. The wave has vanished!
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9.8 Applications
The power density of sunlight when it reaches the earth (or rather, the top
of the atmosphere) is about 1360 W/m2, on average. You can show that
this implies that the total power output of the sun is about 4 · 1026 W. If
the power in one square kilometer of sunlight were converted to electric-
ity at 15 percent efficiency, the result would be 200 megawatts. However,
assuming that the sun is shining for only 6 hours per day on average, this
would yield an average of 50 megawatts. Effects of atmosphere absorp-
tion and latitude would further reduce the result somewhat, but there
would still be enough electrical power for a city of 25,000 people.

The cosmic microwave background (CMB) radiation (see Exercise
9.25) was discovered by Penzias and Wilson in 1965. This radiation is
left over from the big bang and fills all of space. About 300,000 years
after the big bang, the universe became transparent to photons, shortly
after the hot plasma of electrons and ions cooled to the point where sta-
ble atoms could form. The CMB photons have been traveling freely ever
since. The wavelength was shorter back then, but it has been continually
expanding along with the expansion of the universe. The radiation con-
sists of a distribution of wavelengths, but the peak is around 2 mm. It
looks nearly the same in all directions, but its slight anisotropies yield
information about what the early universe looked like.

Comets generally have two kinds of tails. The dust tail consists of
dust that is pushed away from the comet by the radiation pressure from
the sunlight. (The sunlight carries energy, so it also carries momen-
tum; see Problem 9.11.) The dust drifts relatively slowly away from the
comet, so this results in the tail curving and drifting behind the comet.
The ion tail consists of ions that are blown away from the comet by the
sun’s solar wind (consisting of charged particles). These ions move very
quickly away from the comet, so the ion tail always points essentially
radially away from the sun, independent of the comet’s location around
the sun.

Radio frequency identification (RFID) tags have many uses: anti-
theft tags, inventory tracking, tollbooth transponders, chip timing in road
races, library books, and so on. Although some RFID tags contain their
own power source, most (called “passive RFID”) do not. They are pow-
ered by resonant inductive coupling: a small coil and capacitor in the tag
constitute an LC circuit with a particular resonant frequency. A “reader”
transmits a radio wave with this frequency, and the (changing) magnetic
field in this wave induces a current in the tag’s circuit. This powers a
small microchip, which then transmits a specific identification message
back to the reader.

Cell phones, radios, and many other communication devices make
use of electromagnetic waves in the radio frequency part of the spectrum,
usually from about 1 MHz to a few GHz. A pure sinusoidal wave at a
given frequency contains minimal information, so if we want to transmit
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useful information, we must modify the wave in some manner. The two
simplest ways of modifying the wave are amplitude modulation (AM) and
frequency modulation (FM). In the case of AM, the carrier wave (with a
frequency in the 1 MHz range) has its amplitude modulated by the sound
wave (with a much smaller frequency in the 1 kHz range) that is being
sent. The larger the value of the sound wave at a given instant, the larger
the amplitude of the transmitted wave. The sound wave is in some sense
the envelope of the transmitted wave. The receiver is able to extract the
amplitude information and can then reconstruct the original sound wave;
a plot of the amplitude of the transmitted wave as a function of time is
effectively a plot of the original sound wave as a function of time.

In the case of FM, the carrier wave (with a frequency of around
100 MHz, as you know from your FM radio dial) has its frequency mod-
ulated by the sound wave that is being sent. The larger the value of the
sound wave at a given instant, the more the carrier-wave frequency shifts
relative to a particular value. The receiver is able to extract the frequency
information and can then reconstruct the original sound wave; a plot of
the frequency as a function of time is effectively a plot of the origi-
nal sound wave as a function of time. Note that this frequency is well
defined, because even if a time interval is fairly short on the time scale of
the sound wave, a very large number of the carrier-wave oscillations still
fit into it. One method of extracting the frequency information is called
slope detection. In this method, the resonant frequency of the receiver
is chosen to be slightly shifted from that of the carrier wave, so that the
span of the carrier wave’s frequencies lies on the steep side part of the
resonance peak. If the span lies, say, on the left side of the peak, then the
response of the receiver’s circuit increases (approximately linearly) as
the frequency of the carrier wave increases. So we simply need to meas-
ure the amplitude of the current in the circuit, and we will obtain the
frequency of the carrier wave (up to some factor). The thing that makes
all of this possible is resonance, which enables the receiver to respond to
a narrow range of frequencies and ignore all others.

CHAPTER SUMMARY

• Because the divergence of the curl of a vector is identically zero, the
differential form of Ampère’s law, curl B = μ0J, implies that div J
is identically zero. This is inconsistent with the continuity equation,
div J = −∂ρ/∂t (which follows from conservation of charge), in situ-
ations where ρ changes with time. Therefore, curl B = μ0J cannot be
correct. The correct expression has an extra term, μ0ε0 ∂E/∂t, on the
right-hand side. With this term, div J correctly equals −∂ρ/∂t.
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• The quantity ε0 ∂E/∂t is called the displacement current. This is the
last piece of the puzzle, and we can now write down the complete set
of Maxwell’s equations:

curl E = −∂B
∂t

,

curl B = μ0ε0
∂E
∂t

+ μ0J,

div E = ρ

ε0
,

div B = 0. (9.53)

These are, respectively, (1) Faraday’s law, (2) Ampère’s law with the
addition of the displacement current, (3) Gauss’s law, and (4) the state-
ment that there are no magnetic monopoles.

• A possible form of a traveling electromagnetic wave is

E = ẑE0 sin(y − vt) and B = x̂B0 sin(y − vt), (9.54)

where

v = ± 1√
μ0ε0

= ±c and E0 = ± B0√
μ0ε0

= ±cB0. (9.55)

In general, we can produce a traveling wave by replacing the sin(y− vt)
function with any function f (y− vt), provided that (1) v = ±c, (2)
E0 = ±cB0, and (3) E and B are perpendicular to each other and also
to the direction of propagation.

• A standing wave is formed by adding two waves traveling in opposite
directions. In a standing wave there are (unlike in a traveling wave)
positions where E is zero at all times, and times when E is zero at all
positions. Likewise for B.

• The power density (energy per unit area per unit time) of a sinusoidal
electromagnetic wave can be written in various forms:

S = ε0E2c = E2
√

μ0/ε0
= E2(volts/meter)2

377 ohms
. (9.56)

More generally, the Poynting vector,

S = E × B
μ0

, (9.57)

gives the power density of an arbitrary electromagnetic field at every
point.

• Using the fact that the E and B fields transform according to the
Lorentz transformations, we can derive two invariants:

E′ · B′ = E · B and E′2 − c2B′2 = E2 − c2B2. (9.58)

These imply that if in one frame E and B are perpendicular and E =
cB, then these two relations are also true in any other frame. That is,
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a light wave in one inertial frame looks like a light wave in any other
inertial frame.

Problems
9.1 The missing term **

Due to the contradiction between Eqs. (9.2) and (9.5), we know
that there must be an extra term in the ∇ ×B relation, as we found
in Eq. (9.10). Call this term W. In the text, we used the Lorentz
transformations to motivate a guess for W. Find W here by taking
the divergence of both sides of ∇ × B = μ0J + W. Assume that
the only facts you are allowed to work with are (1) ∇ · E = ρ/ε0,
(2) ∇ · B = 0, (3) ∇ · J = −∂ρ/∂t, and (4) ∇ × B = μ0J in the
case of steady currents.

9.2 Spherically symmetric current *
A spherically symmetric (and constant) current density flows radi-
ally inward to a spherical shell, causing the charge on the shell to
increase at the constant rate dQ/dt. Verify that Maxwell’s equa-
tion, ∇ × B = μ0J +μ0ε0 ∂E/∂t, is satisfied at points outside the
shell.

9.3 A charge and a half-infinite wire **
A half-infinite wire carries current I from negative infinity to the
origin, where it builds up at a point charge with increasing q (so
dq/dt = I). Consider the circle shown in Fig. 9.12, which has

I
q
q

q
b

Figure 9.12.

radius b and subtends an angle 2θ with respect to the charge. Cal-
culate the integral

∫
B ·ds around this circle. Do this in three ways.

(a) Find the B field at a given point on the circle by using the Biot–
Savart law to add up the contributions from the different parts
of the wire.

(b) Use the integrated form of Maxwell’s equation (that is, the
generalized form of Ampère’s law including the displacement
current), ∫

C
B · ds = μ0I + μ0ε0

∫
S

∂E
∂t

· da, (9.59)

with S chosen to be a surface that is bounded by the circle and
doesn’t intersect the wire, but is otherwise arbitrary. (You can
invoke the result from Problem 1.15.)

(c) Use the same strategy as in (b), but now let S intersect the wire.

9.4 B in a discharging capacitor, via conduction current **
As mentioned in Exercise 9.15, the magnetic field inside a dis-
charging capacitor can be calculated by summing the contribu-
tions from all elements of conduction current. This calculation is
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extremely tedious. We can, however, get a handle on the contribu-
tion from the plates’ conduction current in a much easier way that
doesn’t involve a nasty integral. If we make the usual assumption
that the distance s between the plates is small compared with their
radius b, then any point P inside the capacitor is close enough to
the plates so that they look essentially like infinite planes, with a
surface current density equal to the density at the nearest point.

(a) Determine the current that crosses a circle of radius r in the
capacitor plates, and then use this to find the surface current
density. Hint: The charge on each plate is essentially uniformly
distributed at all times.

(b) Combine the field contributions from the wires and the plates
to show that the field at a point P inside the capacitor, a dis-
tance r from the axis of symmetry, equals B = μ0Ir/2πb2.
(Assume s � r, so that you can approximate the two wires as
a complete infinite wire.)

9.5 Maxwell’s equations for a moving charge ***
In part (b) of Problem 6.24 we dealt with approximate expres-
sions for the electric and magnetic fields due to a slowly moving
charge, valid in the limit v� c. In this problem we will use the
exact forms. The exact E, for any value of v, is given in Eq. (5.13)
or Eq. (5.15). The Lorentz transformation then gives2 the exact B
as B = (1/c2)v × E; see Problem 6.24(a). Verify that these exact
expressions for E and B satisfy Maxwell’s equations in vacuum.
That is:

(a) Show that ∇ · B = 0. (We already showed in Problem 5.4 that
∇ ·E = 0.) The vector identity for ∇ · (A×B) in Appendix K
will come in handy.

(b) Show that ∇ × E = −∂B/∂t. (The ∇ × B = ∂E/∂t calcula-
tion is nearly the same, so you can skip that.) Note: Although
the calculation is doable if you use the spherical-coordinate
expression for E in Eq. (5.15) (don’t forget that both r and
θ vary with time), it’s a bit easier if you use the Cartesian-
coordinate expression in Eq. (5.13).

9.6 Oscillating field in a solenoid ***
A solenoid with radius R has n turns per unit length. The current
varies with time according to I(t) = I0 cos ωt. The magnetic field
inside the solenoid, B(t) = μ0nI(t), therefore changes with time.
In this problem you will need to make use of wisely chosen Fara-
day/Ampère loops.

2 If you want to derive the magnetic field for a fast-moving charge via the Biot–Savart
law, you need to incorporate the so-called “retarded time” arising from the finite speed
of light. We won’t get into that here, but see Problem 6.28 for a special case.
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(a) Changing B fields cause E fields. Assuming that the B field is
given by B0(t) ≡ μ0nI0 cos ωt, find the electric field at radius
r inside the solenoid.

(b) Changing E fields cause B fields. Find the B field (at radius
r inside the solenoid) caused by the changing E field that you
just found. More precisely, find the difference between the B at
radius r and the B on the axis. Label this difference as �B(r, t).

(c) The total B field does not equal μ0nI0 cos ωt throughout the
solenoid, due to the �B(r, t) difference you just found.3 What
is the ratio �B(r, t)/B0(t)? Explain why we are justified in
making the statement, “The magnetic field inside the solenoid
is essentially equal to the naive μ0nI0 cos ωt value, provided
that the changes in the current occur on a time scale that is long
compared with the time it takes light to travel across the width
of the solenoid.” (This time is very short, so for an “everyday”
value of ω, the field is essentially equal to μ0nI0 cos ωt.)

9.7 Traveling and standing waves **
Consider the two oppositely traveling electric-field waves,

E1 = x̂E0 cos(kz − ωt) and E2 = x̂E0 cos(kz + ωt). (9.60)

The sum of these two waves is the standing wave, 2x̂E0 cos kz cos ωt.

(a) Find the magnetic field associated with this standing electric
wave by finding the B fields associated with each of the above
traveling E fields, and then adding them.

(b) Find the magnetic field by instead using Maxwell’s equations
to find the B field associated with the standing electric wave,
2x̂E0 cos kz cos ωt.

9.8 Sunlight *
The power density in sunlight, at the earth, is roughly
1 kilowatt/m2. How large is the rms magnetic field strength?

9.9 Energy flow for a standing wave **
(a) Consider the standing wave in Eq. (9.32). Draw plots of the

energy density U(y, t) at ωt values of 0, π/4, π/2, 3π/4, and π .
(b) Make a plot of the y component of the Poynting vector, Sy(y, t),

at ωt values of π/4, π/2, and 3π/4. Explain why these plots
are consistent with how the energy sloshes back and forth
between the different energy plots.

9.10 Energy flow from a wire **
A very thin straight wire carries a constant current I from infinity
radially inward to a spherical conducting shell with radius R. The

3 Of course, this �B(r, t) difference causes another E field, and so on. So we would get
an infinite series of corrections if we kept going. But as long as the current doesn’t
change too quickly, the higher-order terms are negligible.
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increase in the charge on the shell causes the electric field in the
surrounding space to increase, which means that the energy density
increases. This implies that there must be a flow of energy from
somewhere. This “somewhere” is the wire. Verify that the total
flux of the Poynting vector away from a thin tube surrounding the
wire equals the rate of change of the energy stored in the electric
field. (You can assume that the radius of the wire is much smaller
than the radius of the tube, which in turn is much smaller than the
radius of the shell.)

9.11 Momentum in an electromagnetic field **
We know from Section 9.6 that traveling electromagnetic waves
carry energy. But the theory of relativity tells us that anything that
transports energy must also transport momentum. Since light may
be considered to be made of massless particles (photons), the rela-
tion p = E/c must hold; see Eq. (G.19). In terms of E and B, find
the momentum density of a traveling electromagnetic wave. That
is, find the quantity that, when integrated over a given volume,
yields the momentum contained in the wave in that volume.

Although we won’t prove it here, the result that you just found
for traveling waves is a special case of the more general result that
the momentum density equals 1/c2 times the energy flow per area
per time. This holds for any type of energy flow (matter or field).
In particular, it holds for any type of electromagnetic field; even
a static field with a nonzero E × B/μ0 Poynting vector carries
momentum. For a nice example of this, see Problem 9.12.

9.12 Angular momentum paradox ***
A setup consists of three very long coaxial cylindrical objects: a
nonconducting cylindrical shell with radius a and total (uniform)
charge Q, another nonconducting cylindrical shell with radius b >

a and total (uniform) charge −Q, and a solenoid with radius R > b;
see Fig. 9.13. (This setup is a variation of the setup in Boos (1984).)

I

Q

a

b

R

−Q

Solenoid

Figure 9.13.

The current in the solenoid produces a uniform magnetic field B0
in its interior. The solenoid is fixed, but the two cylinders are free
to rotate (independently) around the axis. They are initially at rest.
Imagine that the current in the solenoid is then decreased to zero.
(If you want to be picky about keeping the system isolated from
external torques, you can imagine the current initially flowing in a
superconductor which becomes a normal conductor when heated
up.) The changing B field inside the solenoid will induce an E field
at the locations of the two cylinders.

(a) Find the angular momentum gained by each cylinder by the
time the magnetic field has decreased to zero.

(b) You should find that the total change in angular momentum of
the cylinders is not zero. Does this mean that angular
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momentum isn’t conserved? If it is conserved, verify this quan-
titatively. You may assume that the two cylinders are massive
enough so that they don’t end up spinning very quickly, which
means that we can ignore the B fields they generate. Hint: See
Problem 9.11.

Exercises
9.13 Displacement-current flux *

The flux of the real current through the surface S in Fig. 9.4 is
simply I. Verify explicitly that the flux of the displacement current,
Jd ≡ ε0(∂E/∂t), through the surface S′ also equals I. What about
the sign of the flux? As usual, work in the approximation where
the spacing between the capacitor plates is small.

I

S

Q(t)

Figure 9.14.

9.14 Sphere with a hole **
A current I flows along a wire toward a point charge, causing the
charge to increase with time. Consider a spherical surface S cen-
tered at the charge, with a tiny hole where the wire is, as shown in
Fig. 9.14. The circumference C of this hole is the boundary of the
surface S. Verify that the integral form of Maxwell’s equation,∫

C
B · ds =

∫
S

(
μ0ε0

∂E
∂t

+ μ0J
)
· da, (9.61)

is satisfied.

9.15 Field inside a discharging capacitor **
The magnetic field inside the discharging capacitor shown in
Fig. 9.1 can in principle be calculated by summing the contri-
butions from all elements of conduction current, as indicated in
Fig. 9.5. That might be a long job. If we can assume symmetry
about this axis, it is very much easier to find the field B at a point

P
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r

b

I

Figure 9.15.

by using the integral law,∫
C

B · ds =
∫

S

(
μ0ε0

∂E
∂t

+ μ0J
)
· da, (9.62)

applied to a circular path through the point. Use this to show that
the field at P, which is midway between the capacitor plates in
Fig. 9.15, and a distance r from the axis of symmetry, equals B =
μ0Ir/2πb2. You may assume that the distance s between the plates
is small compared with their radius b. (Compare this with the cal-
culation of the induced electric field E in the example of Fig. 7.16.)

9.16 Changing flux from a moving charge **
In terms of the electric field E of a point charge moving with
constant velocity v, the Lorentz transformation gives the magnetic
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field as B = (v/c2) × E. Verify that Maxwell’s equation in inte-
gral form,

∫
B · ds = (1/c2)(d�E/dt), holds for the circle shown

in Fig. 9.16. (We can therefore think of the magnetic field as beingv

q
q

q

r

Figure 9.16.

induced by the changing electric field of the moving charge.) Hint:
Indicate geometrically the new electric flux that passes through the
circle after the charge has moved a small distance to the right.

9.17 Gaussian conditions *
Start with the source-free, or “empty-space,” Maxwell’s equations
in Gaussian units in Eq. (9.21). Consider a wave described by
Eqs. (9.22) and (9.23), but now with E0 in statvolts/cm and B0 in
gauss. What conditions must E0, B0, and v meet to satisfy Maxwell’s
equations?

9.18 Associated B field *
If the electric field in free space is E = E0(x̂ + ŷ) sin[(2π/λ)(z +
ct)] with E0 = 20 volts/m, then the magnetic field, not including
any static magnetic field, must be what?

9.19 Find the wave *
Write out formulas for E and B that specify a plane electromag-
netic sinusoidal wave with the following characteristics. The wave
is traveling in the direction −x̂; its frequency is 100 megahertz
(MHz), or 108 cycles per second; the electric field is perpendicular
to the ẑ direction.

9.20 Kicked by a wave **
A free proton was at rest at the origin before the wave described by
Eq. (9.28) came past. Let the amplitude E0 equal 100 kilovolts/m.
Where would you expect to find the proton at time t = 1 microsec-
ond? The proton mass is 1.67 · 10−27 kg. Hint: Since the duration
of the pulse is only a few nanoseconds, you can neglect the dis-
placement of the proton during the passage of the pulse. Also, if
the velocity of the proton is not too large, you may ignore the effect
of the magnetic field on its motion. The first thing to calculate is
the momentum acquired by the proton during the pulse.

v
E

B

d

Figure 9.17.

9.21 Effect of the magnetic field **
Suppose that in Exercise 9.20 the effect of the magnetic field was
not entirely negligible. How would it change the direction of the
proton’s final velocity? (It suffices to give the dependence on the
various parameters; you can ignore any numerical factors.)

9.22 Plane-wave pulse **
Consider the plane-wave pulse of E and B fields shown in Fig. 9.17;
E points out of the page, and B points downward. The fields are
uniform inside a “slab” region and are zero outside. The slab has
length d in the x direction and large (essentially infinite) lengths
in the y and z directions. It moves with speed v (to be determined)
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in the x direction. This slab can be considered to be a small sec-
tion of the transition shell in Appendix H. However, you need not
worry about how these fields were generated. All that matters is
that the electromagnetic field is self-sustaining via the two “induc-
tion” Maxwell equations.

(a) With the dashed rectangular loop shown (which is fixed in
space, while the slab moves), use the integral form of one of
Maxwell’s equations to obtain a relation between E and B.

(b) Make a similar argument, with a loop perpendicular to the
plane of the page, to obtain another relation between E and
B. (Be careful with the signs.) Then solve for v.

9.23 Field in a box ***
Show that the electromagnetic field described by

E = E0ẑ cos kx cos ky cos ωt,
B = B0(x̂ cos kx sin ky − ŷ sin kx cos ky) sin ωt (9.63)

will satisfy the empty-space Maxwell equations in Eq. (9.18) if
E0 = √

2cB0 and ω = √
2ck. This field can exist inside a square

metal box enclosing the region −π/2k < x < π/2k and −π/2k <

y < π/2k, with arbitrary height in the z direction. Roughly what
do the electric and magnetic fields look like?

9.24 Satellite signal *
From a satellite in stationary orbit, a signal is beamed earthward
with a power of 10 kilowatts and a beam width covering a region
roughly circular and 1000 km in diameter. What is the electric field
strength at the receivers, in millivolts/meter?

9.25 Microwave background radiation **
Of all the electromagnetic energy in the universe, by far the largest
amount is in the form of waves with wavelengths in the millimeter
range. This is the cosmic microwave background radiation discov-
ered by Penzias and Wilson in 1965. It apparently fills all space,
including the vast space between galaxies, with an energy density
of 4 · 10−14 joule/m3. Calculate the rms electric field strength in
this radiation, in volts/m. Roughly how far away from a 1 kilo-
watt radio transmitter would you find a comparable electromag-
netic wave intensity?

9.26 An electromagnetic wave **
Here is a particular electromagnetic field in free space:

Ex = 0, Ey = E0 sin(kx + ωt), Ez = 0; (9.64)
Bx = 0, By = 0, Bz = −(E0/c) sin(kx + ωt).
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(a) Show that this field can satisfy Maxwell’s equations if ω and k
are related in a certain way.

(b) Suppose ω = 1010 s−1 and E0 = 1 kV/m. What is the wave-
length? What is the energy density in joules per cubic meter,
averaged over a large region? From this calculate the power
density, the energy flow in joules per square meter per second.

9.27 Reflected wave **
A sinusoidal wave is reflected at the surface of a medium whose
properties are such that half the incident energy is absorbed. Con-
sider the field that results from the superposition of the incident
and the reflected wave. An observer stationed somewhere in this
field finds the local electric field oscillating with a certain ampli-
tude E. What is the ratio of the largest such amplitude noted by any
observer to the smallest amplitude noted by any observer? (This is
called the voltage standing wave ratio, or, in laboratory jargon,
VSWR.)

9.28 Poynting vector and resistance heating **
A longitudinal E field inside a wire causes a current via J = σE.
And since the curl of E is zero, this same longitudinal E compo-
nent must also exist right outside the surface of the wire. Show that
the Poynting vector flux through a cylinder right outside the wire
accounts for the IV resistance heating.

9.29 Energy flow in a capacitor **
A capacitor is charged by having current flow in a thin straight wire
from the middle of one circular plate to the middle of the other (as
opposed to wires coming in from infinity, as in the example in Sec-
tion 9.6.2). The electric field inside the capacitor increases, so the
energy density also increases. This implies that there must be a
flow of energy from somewhere. As in Problem 9.10, this “some-
where” is the wire. Verify that the flux of the Poynting vector away
from the wire equals the rate of change of the energy stored in
the field. (Of course, we would need to place a battery somewhere
along the wire to produce the current flow, and this battery is where
the energy flow originates. See Galili and Goihbarg (2005).)

9.30 Comparing the energy densities **
Consider the capacitor example in Section 9.6.2, but now let the
current change in a way that makes the electric field inside the
capacitor take the form of E(t) = E0 cos ωt. The induced mag-
netic field is given in Eq. (9.46). Show that the energy density of
the magnetic field is much smaller than the energy density of the
electric field, provided that the time scale of ω (namely 2π/ω) is
much longer than the time it takes light to travel across the diam-
eter of the capacitor disks. (As in Problem 9.6, we are ignoring
higher-order effects.)
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9.31 Field momentum of a moving charge ***
Consider a charged particle in the shape of a small spherical
shell with radius a and charge q. It moves with a nonrelativistic
speed v. The electric field due to the shell is essentially given by
the simple Coulomb field, and the magnetic field is then given
by Eq. (6.81). Using the result from Problem 9.11, integrate the
momentum density over all space. Show that the resulting total
momentum of the electromagnetic field can be written as mv, where
m ≡ (4/3)(q2/8πε0a)/c2.

An interesting aside: for nonrelativistic speeds, the total energy
in the electromagnetic field is dominated by the electric energy.
So from Problem 1.32 the total energy in the field equals U =
(q2/8πε0a). Using the above value of m, we therefore find that
U = (3/4)mc2. This doesn’t agree with Einstein’s U = γ mc2 result,
with γ ≈ 1 for a nonrelativistic particle. The qualitative resolution
to this puzzle is that, although we correctly calculated the elec-
tromagnetic energy, this isn’t the total energy. There must be other
forces at play, of course, because otherwise the Coulomb repulsion
would cause the particle to fly apart.

9.32 A Lorentz invariant ***
Starting from the field transformation given by Eq. (6.76), show
that the scalar quantity E2 − c2B2 is invariant under the transfor-
mation. In other words, show that E′2 − c2B′2 =E2 − c2B2. You
can do this using only vector algebra, without writing out x, y, z
components of anything. (The resolution into parallel and perpen-
dicular vectors is convenient for this, since E⊥ ·E‖ = 0,
B‖ × E‖ = 0, etc.)



10
Electric fields in
matter

Overview In this chapter we study how electric fields affect,
and are affected by, matter. We concern ourselves with insulators,
or dielectrics, characterized by a dielectric constant. The study
of electric fields in matter is largely the study of dipoles. We dis-
cussed these earlier in Chapter 2, but we will derive their proper-
ties in more generality here, showing in detail how the multipole
expansion comes about. The net dipole moment induced in mat-
ter by an electric field can come about in two ways. In some cases
the electric field polarizes the molecules; the atomic polarizabil-
ity quantifies this effect. In other cases a molecule has an inher-
ent dipole moment, and the external field serves to align these
moments. In any case, a material can be described by a polariza-
tion density P. The electric susceptibility gives (up to a factor of
ε0) the ratio of P to the electric field. The effect of the polarization
density is to create a surface charge density on a dielectric mater-
ial. This explains why the capacitance of a capacitor is increased
when it is filled with a dielectric; the surface charge on the dielec-
tric partially cancels the free charge on the capacitor plates.

We study the special case of a uniformly polarized sphere,
which interestingly has a uniform electric field in its interior. We
then extend this result to the case of a dielectric sphere placed in
a uniform electric field. By considering separately the free charge
and bound charge, we are led to the electric displacement vec-
tor D, whose divergence involves only the free charge (unlike
the electric field, whose divergence involves all the charge, by
Gauss’s law). We look at the effects of temperature on the polar-
ization density, how the polarization responds to rapidly changing
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fields, and how the bound-charge current affects the “curl B”
Maxwell equation. Finally, we consider an electromagnetic wave
in a dielectric. We find that only a slight modification to the vacuum
case is needed.

10.1 Dielectrics
The capacitor we studied in Chapter 3 consisted of two conductors, insu-
lated from one another, with nothing in between. The system of two con-
ductors was characterized by a certain capacitance C, a constant relating
the magnitude of the charge Q on the capacitor (positive charge Q on
one plate, equal negative charge on the other) to the difference in electric
potential between the two conductors, φ1 −φ2. Let’s denote the potential
difference by φ12:

C = Q
φ12

. (10.1)

For the parallel-plate capacitor, two flat plates each of area A and sepa-
rated by a distance s, we found that the capacitance is given by

C = ε0A
s

. (10.2)

Capacitors like this can be found in some electrical apparatus. They are
called vacuum capacitors and consist of plates enclosed in a highly evac-
uated bottle. They are used chiefly where extremely high and rapidly
varying potentials are involved. Far more common, however, are capac-
itors in which the space between the plates is filled with some non-
conducting solid or liquid substance. Most of the capacitors you have
worked with in the laboratory are of that sort; there are dozens of them in
any television screen. For conductors embedded in a material medium,
Eq. (10.2) does not agree with experiment. Suppose we fill the space
between the two plates shown in Fig. 10.1(a) with a slab of plastic, as

s

C
s

=

C
s

>

s
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A

(a)

(b)

0A
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Figure 10.1.
(a) A capacitor formed by parallel conducting
plates. (b) The same plates with a slab of
insulator in between.

in Fig. 10.1(b). Experimenting with this new capacitor, we still find a
simple proportionality between charge and potential difference, so that
we can still define a capacitance by Eq. (10.1). But we find C to be
substantially larger than Eq. (10.2) would have predicted. That is, we
find more charge on each of the plates, for the same potential difference,
plate area, and distance of separation. The plastic slab must be the cause
of this.

It is not hard to understand in a general way how this comes about.
The plastic slab consists of molecules, the molecules are composed of
atoms, which in turn are made of electrically charged particles – electrons
and atomic nuclei. The electric field between the capacitor plates acts on
those charges, pulling the negative charges up, if the upper plate is pos-
itive as in Fig. 10.2, and pushing the positive charges down. Nothing
moves very far. (There are no free electrons around, already detached
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Figure 10.2.
How a dielectric increases the charge on the
plates of a capacitor. (a) Space between the
plates empty; Q0 = C0φ12. (b) Space between
the plates filled with a nonconducting material,
that is, a dielectric. Electric field pulls negative
charges up and pushes positive charges down,
exposing a layer of uncompensated negative
charge on the upper surface of the dielectric
and a layer of uncompensated positive charge
on the lower surface. The total charge at the
top, including charge Q on the upper plate, is
the same as in (a). Q itself is now greater than
Q0; Q = κQ0. This Q is the amount of charge
that will flow through the resistor R if the
capacitor is discharged by throwing the switch.

from atoms and ready to travel, as there would be in a metallic conduc-
tor.) There will be some slight displacement of the charges nevertheless,
for an atom is not an infinitely rigid structure. The effect of this within the
plastic slab is that the negative charge distribution, viewed as a whole,
and the total positive charge distribution (the atomic nuclei) are very
slightly displaced relative to one another, as indicated in Fig. 10.2(b).
The interior of the block remains electrically neutral, but a thin layer
of uncompensated negative charge has emerged at the top, with a corre-
sponding layer of uncompensated positive charge at the bottom.

In the presence of the induced layer of negative charge below the
upper plate, the charge Q on the plate itself will increase. In fact, Q must
increase until the total charge at the top, the algebraic sum of Q and the
induced charge layer, equals Q0 (the charge on the upper plate before
the plastic was inserted). We shall be able to prove this when we return
to this problem in Section 10.8 after settling some questions about the
electric field inside matter. The important point now is that the charge
Q in Fig. 10.2(b) is larger than Q0 and that this Q is the charge of the
capacitor in the relation Q = Cφ12. It is the charge that came out of
the battery, and it is the amount of charge that would flow through the
resistor R were we to discharge the capacitor by throwing the switch in
the diagram. If we did that, the induced charge layer, which is not part of
Q, would simply disappear into the slab.

According to this explanation, the ability of a particular material
to increase the capacitance ought to depend on the amount of electric
charge in its structure and the ease with which the electrons can be dis-
placed with respect to the atomic nuclei. The factor by which the capac-
itance is increased when an empty capacitor is filled with a particular
material, Q/Q0 in our example, is called the dielectric constant of that
material. The symbol κ is usually used for it:

Q = κQ0 ⇐⇒ C = κC0 (10.3)

The material itself is often called a dielectric when we are talking about
its behavior in an electric field. But any homogeneous nonconducting
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Table 10.1.
Dielectric constants of various substances

Dielectric
Substance Conditions constant (κ)
Air gas, 0 ◦C, 1 atm 1.00059
Methane, CH4 gas, 0 ◦C, 1 atm 1.00088
Hydrogen chloride, HCl gas, 0 ◦C, 1 atm 1.0046
Water, H2O gas, 110 ◦C, 1 atm 1.0126

liquid, 20 ◦C 80.4
Benzene, C6H6 liquid, 20 ◦C 2.28
Methanol, CH3OH liquid, 20 ◦C 33.6
Ammonia, NH3 liquid, −34 ◦C 22.6
Mineral oil liquid, 20 ◦C 2.24
Sodium chloride, NaCl solid, 20 ◦C 6.12
Sulfur, S solid, 20 ◦C 4.0
Silicon, Si solid, 20 ◦C 11.7
Polyethylene solid, 20 ◦C 2.25–2.3
Porcelain solid, 20 ◦C 6.0-8.0
Paraffin wax solid, 20 ◦C 2.1–2.5
Pyrex glass 7070 solid, 20 ◦C 4.00

substance can be so characterized. Table 10.1 lists the measured values
of the dielectric constants for a miscellaneous assortment of substances.

Every dielectric constant in the table is larger than 1. We should
expect that if our explanation is correct. The presence of a dielectric
could reduce the capacitance below that of the empty capacitor only if
its electrons moved, when the electric field was applied, in a direction
opposite to the resulting force. For oscillating electric fields, by the way,
some such behavior would not be absurd. But for the steady fields we are
considering here it can’t work that way.

The dielectric constant of a perfect vacuum is, of course, exactly 1.0
by our definition. For gases under ordinary conditions, κ is only a lit-
tle larger than 1.0, simply because a gas is mostly empty space. Ordinary
solids and liquids usually have dielectric constants ranging from 2 to 6 or
so. Note, however, that liquid ammonia is an exception to this rule, and
water is a spectacular exception. Actually liquid water is slightly con-
ductive, but that, as we shall have to explain later, does not prevent our
defining and measuring its dielectric constant. The ionic conductivity of
the liquid is not the reason for the gigantic dielectric constant of water.
You can discern this extraordinary property of water in the dielectric con-
stant of the vapor if you remember that it is really the difference between
κ and 1 that reveals the electrical influence of the material. Compare the
values of κ given in the table for water vapor and for air.

Once the dielectric constant of a particular material has been deter-
mined, perhaps by measuring the capacitance of one capacitor filled with
it, we are able to predict the behavior, not merely of two-plate capacitors,
but of any electrostatic system made up of conductors and pieces of that
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dielectric of any shape. That is, we can predict all electric fields that will
exist in the vacuum outside the dielectrics for given charges or potentials
on the conductors in the system.

The theory that enables us to do this was fully worked out by the
physicists of the nineteenth century. Lacking a complete picture of the
atomic structure of matter, they were more or less obliged to adopt a
macroscopic description. From that point of view, the interior of a dielec-
tric is a featureless expanse of perfectly smooth “mathematical jelly”
whose single electrical property distinguishing it from a vacuum is a
dielectric constant different from unity.

If we develop only a macroscopic description of matter in an elec-
tric field, we shall find it hard to answer some rather obvious-sounding
questions – or, rather, hard to ask these questions in such a way that they
can be meaningfully answered. For instance, what is the strength of the
electric field inside the plastic slab of Fig. 10.1(b) when there are certain
charges on the plates? Electric field strength is defined by the force on a
test charge. How can we put a test charge inside a perfectly dense solid,
without disturbing anything, and measure the force on it? What would
that force mean if we did measure it? You might think of boring a hole
and putting the test charge in the hole with some room to move around,
so that you can measure the force on it as on a free particle. But then you
will be measuring not the electric field in the dielectric, but the electric
field in a cavity in the dielectric, which is quite a different thing.

Fortunately another line of attack is available to us, one that leads
up from the microscopic or atomic level. We know that matter is made of
atoms and molecules; these in turn are composed of elementary charged
particles. We know something about the size and structure of these atoms,
and we know something about their arrangement in crystals and flu-
ids and gases. Instead of describing our dielectric slab as a volume of
structureless but nonvacuous jelly, we shall describe it as a collection
of molecules inhabiting a vacuum. If we can find out what the elec-
tric charges in one molecule do when that molecule is all by itself in
an electric field, we should be able to understand the behavior of two
such molecules a certain distance apart in a vacuum. It will only be nec-
essary to include the influence, on each molecule, of any electric field
arising from the other. This is a vacuum problem. Now all we have to do
is extend this to a population of, say, 1020 molecules occupying a cubic
centimeter or so of vacuum, and we have our real dielectric. We hope to
do this without generating 1020 separate problems.

This program, if carried through, will reward us in two ways. We
shall be able at last to say something meaningful about the electric and
magnetic fields inside matter, answering questions such as the one raised
above. What is more valuable, we shall understand how the macroscopic
electric and magnetic phenomena in matter arise from, and therefore
reveal, the nature of the underlying atomic structure. We are going to
study electric and magnetic effects separately. We begin with dielectrics.
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Since our first goal is to describe the electric field produced by an atom
or molecule, it will help to make some general observations about the
electrostatic field external to any small system of charges.

10.2 The moments of a charge distribution
An atom or molecule consists of some electric charges occupying a small
volume, perhaps a few cubic angstroms (10−30 m3) of space. We are
interested in the electric field outside that volume, which arises from
this rather complicated charge distribution. We shall be particularly con-
cerned with the field far away from the source, by which we mean far
away compared with the size of the source itself. What features of the
charge structure mainly determine the field at remote points? To answer
this, let’s look at some arbitrary distribution of charges and see how we
might go about computing the field at a point outside it. The discussion
in this and the following section generalizes our earlier discussion of
dipoles in Section 2.7.
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Figure 10.3.
Calculation of the potential, at a point A, of a
molecular charge distribution.

Figure 10.3 shows a charge distribution of some sort located in the
neighborhood of the origin of coordinates. It might be a molecule con-
sisting of several positive nuclei and quite a large number of electrons. In
any case we shall suppose it is described by a given charge density func-
tion ρ(x, y, z); ρ is negative where the electrons are and positive where
the nuclei are. To find the electric field at distant points we can begin by
computing the potential of the charge distribution. To illustrate, let’s take
some point A out on the z axis. (Since we are not assuming any special
symmetry in the charge distribution, there is nothing special about the z
axis.) Let r be the distance of A from the origin. The electric potential at
A, denoted by φA, is obtained as usual by adding the contributions from
all elements of the charge distribution:

φA = 1
4πε0

∫
ρ(x′, y′, z′) dv′

R
. (10.4)

In the integrand, dv′ is an element of volume within the charge distribu-
tion, ρ(x′, y′, z′) is the charge density there, and R in the denominator is
the distance from A to this particular charge element. The integration is
carried out in the coordinates x′, y′, z′, of course, and is extended over all
the region containing charge. We can express R in terms of r and the dis-
tance r′ from the origin to the charge element. Using the law of cosines
with θ the angle between r′ and the axis on which A lies, we have

R = (r2 + r′2 − 2rr′ cos θ)1/2. (10.5)

With this substitution for R, the integral becomes

φA = 1
4πε0

∫
ρ dv′(r2 + r′2 − 2rr′ cos θ)−1/2. (10.6)
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Now we want to take advantage of the fact that, for a distant point like
A, r′ is much smaller than r for all parts of the charge distribution.
This suggests that we should expand the square root in Eq. (10.5) in pow-
ers of r′/r. Writing

(r2 + r′2 − 2rr′ cos θ)−1/2 = 1
r

[
1 +

(
r′2

r2 − 2r′

r
cos θ

)]−1/2

(10.7)

and using the expansion (1 + δ)−1/2 = 1 − δ/2 + 3δ2/8 − · · · , we get,
after collecting together terms of the same power in r′/r, the following:

(r2 + r′2 − 2rr′ cos θ)−1/2

= 1
r

[
1 + r′

r
cos θ +

(
r′

r

)2
(3 cos2 θ − 1)

2
+O

[(
r′

r

)3 ]]
,

(10.8)

where the last term here indicates terms of order at least (r′/r)3. These
are very small if r′ � r. Now, r is a constant in the integration, so we can
take it outside and write the prescription for the potential at A as follows:

φA = 1
4πε0

⎡
⎢⎢⎢⎣1

r

∫
ρ dv′︸ ︷︷ ︸
K0

+ 1
r2

∫
r′ cos θ ρ dv′︸ ︷︷ ︸

K1

(10.9)

+ 1
r3

∫
r′2 (3 cos2 θ − 1)

2
ρ dv′︸ ︷︷ ︸

K2

+ · · ·

⎤
⎥⎥⎥⎦ .

Each of the integrals above, K0, K1, K2, and so on, has a value that
depends only on the structure of the charge distribution, not on the dis-
tance to point A. Hence the potential for all points along the z axis can
be written as a power series in 1/r with constant coefficients:

φA = 1
4πε0

[
K0

r
+ K1

r2 + K2

r3 + · · ·
]

. (10.10)

This power series is called the multipole expansion of the potential,
although we have calculated it only for a point on the z axis here. To fin-
ish the problem we would have to get the potential φ at all other points, in
order to calculate the electric field as −grad φ. We have gone far enough,
though, to bring out the essential point: The behavior of the potential at
large distances from the source will be dominated by the first term in the
above series whose coefficient is not zero.

Let us look at these coefficients more closely. The coefficient K0 is∫
ρ dv′, which is simply the total charge in the distribution. If we have

equal amounts of positive and negative charge, as in a neutral molecule,
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K0 will be zero. For a singly ionized molecule, K0 will have the value e.
If K0 is not zero, then no matter how large K1, K2, etc., may be, if we go
out to a sufficiently large distance, the term K0/r will win out. Beyond
that, the potential will approach that of a point charge at the origin and
so will the field. This is hardly surprising.
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+e

+e

−3e

z

z

−2e

+2e

z

−2e

+e

+e

Suppose we have a neutral molecule, so that K0 is equal to zero. Our
interest now shifts to the second term, with coefficient K1 =∫

r′ cos θ ρ dv′. Since r′ cos θ is simply z′, this term measures the rel-
ative displacement, in the direction toward A, of the positive and neg-
ative charge. It has a nonzero value for the distributions sketched in
Fig. 10.4, where the densities of positive and negative charge have been
indicated separately. In fact, all the distributions shown have approxi-
mately the same value of K1. Furthermore – and this is a crucial point
– if any charge distribution is neutral, the value of K1 is independent
of the position chosen as origin. That is, if we replace z′ by z′ + z′0,
in effect shifting the origin, the value of the integral is not changed:∫
(z′ + z′0)ρ dv′ = ∫

z′ρ dv′ + z′0
∫

ρ dv′, and the latter integral is always
zero for a neutral distribution.

Evidently, if K0 = 0 and K1 �= 0, the potential along the z axis will
vary asymptotically (that is, with ever-closer approximation as we go out
to larger distances) as 1/r2. We recognize this dependence on r from the
dipole discussion in Section 2.7. We expect the electric field strength to
behave asymptotically like 1/r3, in contrast with the 1/r2 dependence
of the field from a point charge. Of course, we have discussed only the
potential on the z axis. We will return to the question of the exact form
of the field after getting a general view of the situation.

If K0 and K1 are both zero, and K2 is not, the potential will behave
like 1/r3 at large distances, and the field strength will fall off with the
inverse fourth power of the distance. Figure 10.5 shows a charge distri-
bution for which K0 and K1 are both zero (and would be zero no matter
what direction we had chosen for the z axis), while K2 is not zero.

The quantities K0, K1, K2,. . . are related to what are called the
moments of the charge distribution. Using this language, we call K0,
which is simply the net charge, the monopole moment, or monopole
strength. K1 is one component of the dipole moment of the distribution.
The dipole moment has the dimensions (charge) × (displacement); it is
a vector, and our K1 is its z component. The third constant K2 is related
to the quadrupole moment of the distribution, the next to the octupole
moment, and so on. The quadrupole moment is not a vector, but a ten-
sor. The charge distribution shown in Fig. 10.5 has a nonzero quadrupole
moment. You can quickly show that K2 = 3ea2, where a is the distance
from each charge to the origin.

Figure 10.4.
Some charge distributions with K0 = 0, K1 �= 0. That is, each has net
charge zero, but nonzero dipole moment.
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Example (Sphere monopole) The external potential due to a spherical shell
with uniform surface charge density is Q/4πε0r. Therefore, its only nonzero
moment is the monopole moment. That is, all of the Ki terms except K0 in
Eq. (10.10) are zero. Using the integral forms given in Eq. (10.9), verify that
K1 and K2 are zero.

Solution For a surface charge density, the ρ dv′ in the Ki integrals turns into
σ da′ = σ(2πR sin θ)(R dθ). Since we’re trying to show that the integrals are
zero, the various constants in σ da′ don’t matter. Only the angular dependence,
sin θ dθ , is relevant. So we have

K1 ∝
∫ π

0
cos θ sin θ dθ = −1

2
cos2 θ

∣∣∣∣π
0
= 0,

K2 ∝
∫ π

0
(3 cos2 θ − 1) sin θ dθ = (− cos3 θ + cos θ

) ∣∣∣∣π
0
= 0, (10.11)

as desired. Intuitively, it is clear from symmetry that K1 is zero; for every bit of
charge with height z′, there is a corresponding bit of charge with height −z′. But
it isn’t as intuitively obvious that K2 vanishes.

As mentioned above, K1 and K2 are only components of the complete dipole
vector and quadrupole tensor. But the other components can likewise be shown
to equal zero, as we know they must. If you want to calculate the general form
of the complete quadrupole tensor, one way is to write the R in Eq. (10.5) as
R =

√
(x − x′)2 + (y − y′)2 + (z − z′)2, and then perform a Taylor expansion as

we did above. See Problem 10.6.

z

x

+e

+e

−e −e

Figure 10.5.
For this distribution of charge, K0 = K1 = 0, but
K2 �= 0. It is a distribution with nonzero
quadrupole moment.

The advantage to us of describing a charge distribution by this hier-
archy of moments is that it singles out just those features of the charge
distribution that determine the field at a great distance. If we were con-
cerned only with the field in the immediate neighborhood of the distri-
bution, it would be a fruitless exercise. For our main task, understanding
what goes on in a dielectric, it turns out that only the monopole strength
(the net charge) and the dipole strength of the molecular building blocks
are important. We can ignore all other moments. And if the building
blocks are neutral, we have only their dipole moments to consider.

10.3 The potential and field of a dipole
The dipole contribution to the potential at the point A, at distance r from
the origin, is given by (1/4πε0r2)

∫
r′ cos θ ρ dv′. We can write r′ cos θ ,

which is just the projection of r′ on the direction toward A, as r̂ · r′. Thus
we can write the potential without reference to any arbitrary axis as

φA = 1
4πε0r2

∫
r̂ · r′ρ dv′ = r̂

4πε0r2 ·
∫

r′ρ dv′, (10.12)

which will serve to give the potential at any point with location rr̂. The
integral on the right in Eq. (10.12) is the dipole moment of the charge



10.3 The potential and field of a dipole 475

p

E

r

z

x

q

f =
p cos q

Ex =
3p sin q cos q

Ez =
p(3 cos2 q  – 1)

4p  0r 2

4p  0r 3

4p  0r 3

Figure 10.6.
The electric field of a dipole, indicated by some
field lines.

distribution. It is a vector, obviously, with the dimensions (charge) ×
(distance). We shall denote the dipole moment vector by p:

p =
∫

r′ρ dv′ (10.13)

The dipole moment p = q� in Section 2.7 is a special case of this result.
If we have two point charges ±q located at positions z = ±�/2, then ρ is
nonzero only at these two points. So the integral in Eq. (10.13) becomes
a discrete sum: p = q(ẑ�/2)+ (−q)(−ẑ�/2) = (q�)ẑ, which agrees with
the p = q� result in Eq. (2.35). The dipole vector points in the direction
from the negative charge to the positive charge.

Using the dipole moment p, we can rewrite Eq. (10.12) as

φ(r) = r̂ · p
4πε0r2 . (10.14)

The electric field is the negative gradient of this potential. To see what
the dipole field is like, locate a dipole p at the origin, pointing in the z
direction (Fig. 10.6). With this arrangement,

φ = p cos θ

4πε0r2 (10.15)
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in agreement with the result in Eq. (2.35).1 The potential and the field
are, of course, symmetrical around the z axis. Let’s work with Cartesian
coordinates in the xz plane, where cos θ = z/(x2 + z2)1/2. In that plane,

φ = pz
4πε0(x2 + z2)3/2 . (10.16)

The components of the electric field are readily derived:

Ex = −∂φ

∂x
= 3pxz

4πε0(x2 + z2)5/2 = 3p sin θ cos θ

4πε0r3 , (10.17)

Ez = −∂φ

∂z
= p

4πε0

[
3z2

(x2 + z2)5/2 − 1
(x2 + z2)3/2

]
= p(3 cos2 θ − 1)

4πε0r3 .

The dipole field can be described more simply in the polar coordi-
nates r and θ . Let Er be the component of E in the direction of r̂, and let
Eθ be the component perpendicular to r̂ in the direction of increasing θ .
You can show in Problem 10.4 that Eq. (10.17) implies

Er = p
2πε0r3 cos θ , Eθ = p

4πε0r3 sin θ , (10.18)

in agreement with the result in Eq. (2.36). Alternatively, you can quickly
derive Eq. (10.18) directly by working in polar coordinates and taking the
negative gradient of the potential given by Eq. (10.15). This is the route
we took in Section 2.7.

Proceeding out in any direction from the dipole, we find the electric
field strength falling off as 1/r3, as we had anticipated. Along the z axis
the field is parallel to the dipole moment p, with magnitude p/2πε0r3;
that is, it has the value p/2πε0r3. In the equatorial plane the field points
antiparallel to p and has the value −p/4πε0r3. This field may remind you
of the field in the setup with a point charge over a conducting plane, with
its image charge, from Section 3.4. That of course is just the two-charge
dipole we discussed in Section 2.7. In Fig. 10.7 we show the field of this
pair of charges, mainly to emphasize that the field near the charges is
not a dipole field. This charge distribution has many multipole moments,
indeed infinitely many, so it is only the far field at distances r � s that
can be represented as a dipole field.

To generate a complete dipole field right into the origin we would
have to let s shrink to zero while increasing q without limit so as to keep
p = qs finite. This highly singular abstraction is not very interesting.
We know that our molecular charge distribution will have complicated
near fields, so we could not easily represent the near region in any case.
Fortunately we shall not need to.

1 Note that the angle θ here has a different meaning from the angle θ in Fig. 10.3 and
Eqs. (10.5)–(10.9), where it indicated the position of a point in the charge distribution.
The present θ indicates the position of a given point (at which we want to calculate φ

and E) with respect to the dipole direction.
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s

Figure 10.7.
The electric field of a pair of equal and opposite
point charges approximates the field of a dipole
for distances large compared with the
separation s.

10.4 The torque and the force on a dipole in an
external field

Suppose two charges, q and −q, are mechanically connected so that s, the
distance between them, is fixed. You may think of the charges as stuck
on the end of a short nonconducting rod of length s. We shall call this
object a dipole. Its dipole moment p is simply qs. Let us put the dipole
in an external electric field, that is, the field from some other source.
The field of the dipole itself does not concern us now. Consider first a
uniform electric field, as in Fig. 10.8(a). The positive end of the dipole
is pulled toward the right, the negative end toward the left, by a force of
strength qE. The net force on the object is zero, and so is the torque, in
this position.

A dipole that makes some angle θ with the field direction, as in
Fig. 10.8(b), obviously experiences a torque. In general, the torque N
around an axis through some chosen origin is r×F, where F is the force
applied at a position r relative to the origin. Taking the origin in the
center of the dipole, so that r = s/2, we have

N = r × F+ + (−r) × F−. (10.19)

N is a vector perpendicular to the figure, and its magnitude is given by

N = s
2

qE sin θ + s
2

qE sin θ = sqE sin θ = pE sin θ . (10.20)

This can be written simply as

N = p × E (10.21)

When the total force on the dipole is zero, as it is in this case, the torque is
independent of the choice of origin (as you should verify), which there-
fore need not be specified.
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The orientation of the dipole in Fig. 10.8(a) has the lowest energy.
Work has to be done to rotate it into any other position. Let us calculate
the work required to rotate the dipole from a position parallel to the field,
through some angle θ0, as shown in Fig. 10.8(c). Rotation through an
infinitesimal angle dθ requires an amount of work N dθ . Thus the total
work done is∫ θ0

0
N dθ =

∫ θ0

0
pE sin θ dθ = pE(1 − cos θ0). (10.22)

This makes sense, because each charge moves a distance (s/2)(1−
cos θ0) against the field. The force is qE, so the work done on each charge
is (qE)(s/2)(1−cos θ0). Doubling this gives the result in Eq. (10.22). To
reverse the dipole, turning it end over end, corresponds to θ0 = π and
requires an amount of work equal to 2pE.

E

F+ = q EF– = –q E

–q q

p

s

(a)

p

E

r

q

F+
F+

F–

s

2

(b)

q

q0

p

E

(c)

Figure 10.8.
(a) A dipole in a uniform field. (b) The torque on
the dipole is N = p × E; the vector N points into
the page. (c) The work done in turning the
dipole from an orientation parallel to the field to
the orientation shown is pE(1 − cos θ0).

The net force on the dipole in any uniform field is zero, obviously,
regardless of its orientation. In a nonuniform field the forces on the two
ends of the dipole will generally not be exactly equal and opposite, and
there will be a net force on the object. A simple example is a dipole
in the field of a point charge Q. If the dipole is oriented radially, as in
Fig. 10.9(a), with the positive end nearer the positive charge Q, the net
force will be outward, and its magnitude will be

F = (q)
Q

4πε0r2 + (−q)
Q

4πε0(r + s)2 . (10.23)

For s � r, we need only evaluate this to first order in s/r:

F = qQ
4πε0r2

[
1 − 1(

1 + s
r

)2

]
≈ qQ

4πε0r2

[
1 − 1

1 + 2s
r

]

≈ qQ
4πε0r2

[
1 −

(
1 − 2s

r

)]
= sqQ

2πε0r3 . (10.24)

In terms of the dipole moment p, this is simply

F = pQ
2πε0r3 . (10.25)

With the dipole at right angles to the field, as in Fig. 10.9(b), there is
also a force. Now the forces on the two ends, though equal in magnitude,
are not exactly opposite in direction. In this case there is a net upward
force.

It is not hard to work out a general formula for the force on a dipole
in a nonuniform electric field. The force depends essentially on the gra-
dients of the various components of the field. In general, the x component
of the force on a dipole of moment p is

Fx = p · grad Ex (10.26)

with corresponding formulas for Fy and Fz; see Problem 10.7. All three
components can be collected into the concise statement, F = (p · ∇)E.
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10.5 Atomic and molecular dipoles; induced
dipole moments

Consider the simplest atom, the hydrogen atom, which consists of a
nucleus and one electron. If you imagine the negatively charged elec-
tron revolving around the positive nucleus like a planet around the sun –
as in the original atomic model of Niels Bohr – you will conclude that
the atom has, at any one instant of time, an electric dipole moment. The
dipole moment vector p points parallel to the electron–proton radius vec-
tor, and its magnitude is e times the electron–proton distance. The direc-
tion of this vector will be continually changing as the electron, in this
picture of the atom, circles around its orbit. To be sure, the time average
of p will be zero for a circular orbit, but we should expect the periodi-
cally changing dipole moment components to generate rapidly oscillating
electric fields and electromagnetic radiation.

(a)

r

F

s

(b)

F–

F+

F

Q

Q

Figure 10.9.
The force on a dipole in a nonuniform field.
(a) The net force on the dipole in this position is
radially outward. (b) The net force on the dipole
in this position is upward.

The absence of such radiation in the normal hydrogen atom was
one of the baffling paradoxes of early quantum physics. Modern quan-
tum mechanics tells us that it is better to think of the hydrogen atom
in its lowest energy state (the usual condition of most of the hydrogen
atoms in the universe) as a spherically symmetrical structure with the
electronic charge distributed, in the time average, over a cloud surround-
ing the nucleus. Nothing is revolving in a circle or oscillating. If we could
take a snapshot with an exposure time shorter than 10−16 s, we might
discern an electron localized some distance away from the nucleus. But
for processes involving times much longer than that, we have, in effect,
a smooth distribution of negative charge surrounding the nucleus and
extending out in all directions with steadily decreasing density. The total
charge in this distribution is just −e, the charge of one electron. Roughly
half of it lies within a sphere of radius 0.5 angstrom (0.5 · 10−10 m). The
density decreases exponentially outward; a sphere only 2.2 angstroms in
radius contains 99 percent of the charge. The electric field in the atom is
just what a stationary charge distribution of this form, together with the
positive nucleus, would produce.

A similar picture is the best one to adopt for other atoms and
molecules. We can treat the nuclei in molecules as point charges; for
our present purposes their size is too small to matter. The entire elec-
tronic structure of the molecule is to be pictured as a single cloud of
negative charge of smoothly varying density. The shape of this cloud,
and the variation of charge density within it, will of course be different
for different molecules. But at the fringes of the cloud the density will
always fall off exponentially, so that it makes some sense to talk of the
size and shape of the molecular charge distribution.

Quantum mechanics makes a crucial distinction between stationary
states and time-dependent states of an atom. The state of lowest energy
is a time-independent structure, a stationary state. It has to be, accord-
ing to the laws of quantum mechanics. It is that state of the atom or
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molecule that concerns us here. Of course, atoms can radiate electro-
magnetic energy. That happens with the atom in a nonstationary state in
which there is an oscillating electric charge.

Figure 10.10.
The time-average distribution in the normal
hydrogen atom. Shading represents density of
electronic (negative) charge.

Figure 10.10 represents the charge distribution in the normal hydro-
gen atom. It is a cross section through the spherically symmetrical cloud,
with the density suggested by shading. Obviously the dipole moment of
such a distribution is zero. The same is true of any atom in its state of
lowest energy, no matter how many electrons it contains, for in all such
states the electron distribution has spherical symmetry. It is also true of
any ionized atom, though an ion of course has a monopole moment, that
is, a net charge.

EEE

Figure 10.11.
In an electric field, the negative charge is pulled
one way and the positive nucleus is pulled the
other way. The distortion is grossly exaggerated
in this picture. To distort the atom that much
would require a field of 1010 volts/m.

So far we have found nothing very interesting. But now let us put
the hydrogen atom in an electric field supplied by some external source,
as in Fig. 10.11. The electric field distorts the atom, pulling the negative
charge down and pushing the positive nucleus up. The distorted atom
will have an electric dipole moment because the “center of gravity” of
the negative charge will no longer coincide with the positive nucleus,
but will be displaced from the nucleus by some small distance �z. The
electric dipole moment of the atom is now e �z.

How much distortion will be caused by a field of given strength E?
Remember that electric fields already exist in the unperturbed atom, of
strength e/4πε0a2 in order of magnitude, where a is a typical atomic
dimension. We should expect the relative distortion of the atom’s struc-
ture, measured by the ratio �z/a, to have the same order of magnitude as
the ratio of the perturbing field E to the internal fields that hold the atom
together. We predict, in other words, that

�z
a

≈ E
e/4πε0a2 . (10.27)

If you don’t trust this reasoning, Exercise 10.30 gives an alternative
method for finding the relation between �z and E.

Now a is a length of order 10−10 m, and e/4πε0a2 is approximately
1011 volts/m, a field thousands of times more intense than any large-scale
steady field we could make in the laboratory. Evidently the distortion
of the atom is going to be very slight indeed, in any practical case. If
Eq. (10.27) is correct, it follows that the dipole moment p of the distorted
atom, which is just e �z, will be

p = e �z ≈ 4πε0a3E. (10.28)

Since the atom was spherically symmetrical before the field E was
applied, the dipole moment vector p will be in the direction of E. The
factor that relates p to E is called the atomic polarizability, and is usually
denoted by α:

p = αE (10.29)
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Table 10.2.
Atomic polarizabilities (α/4πε0), in units of 10−30 m3

Element H He Li Be C Ne Na Ar K
α/4πε0 0.66 0.21 12 9.3 1.5 0.4 27 1.6 34

It is common to work instead with the quantity α/4πε0, which has
the dimensions of volume. The reason for this is that a direct compari-
son between p and E isn’t quite a fair one, because electric fields con-
tain a somewhat arbitrary factor of 1/4πε0 multiplying the factors of
charge and distance in Coulomb’s law. A more reasonable comparison
would therefore involve p and 4πε0E. These quantities have dimensions
of (charge) × (distance) and (charge)/(distance)2, respectively. Equation
(10.29) then yields p/(4πε0E) = α/4πε0. This quantity is often also
called the atomic polarizability, so the term is a little ambiguous. It is
best to say explicitly whether you are working with α or α/4πε0.

According to our estimate in Eq. (10.28), we have α ≈ 4πε0a3, so
α/4πε0 is in order of magnitude an atomic volume, something like a3 ≈
10−30 m3. Its value for a particular atom will depend on the details of the
atom’s electronic structure. An exact quantum-mechanical calculation
of the polarizability of the hydrogen atom predicts α/4πε0 = (9/2)a3

0,
where a0 is the Bohr radius, 0.52 · 10−10 m, the characteristic distance in
the H-atom structure in its normal state. The values of α/4πε0 for several
species of atoms, experimentally determined, are given in Table 10.2.
The examples given are arranged in order of increasing number of elec-
trons. Note the wide variations in α/4πε0. If you are acquainted with the
periodic table of the elements, you may discern something systematic
here. Hydrogen and the alkali metals lithium, sodium, and potassium,
which occupy the first column of the periodic table, have large values
of α/4πε0, and these increase steadily with increasing atomic number,
from hydrogen to potassium. The noble gases have much smaller atomic
polarizabilities, but these also increase as we proceed, within the family,
from helium to neon to krypton. Apparently the alkali atoms, as a class,
are easily deformed by an electric field, whereas the electronic struc-
ture of a noble gas atom is much stiffer. It is the loosely bound outer, or
“valence,” electron in the alkali atom structure that is responsible for the
easy polarizability.

CH4

a = 2.6 × 10–30 m3
4p  0

Figure 10.12.
The methane molecule, made of four hydrogen
atoms and a carbon atom.

A molecule, too, develops an induced dipole moment when an elec-
tric field is applied to it. The methane molecule depicted in Fig. 10.12 is
made from four hydrogen atoms arranged at the corners of a tetrahedron
around the central carbon atom. This object has an electrical polarizabil-
ity, determined experimentally, of

α

4πε0
= 2.6 · 10−30 m3. (10.30)
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It is interesting to compare this with the sum of the polarizabilities of
a carbon atom and four isolated hydrogen atoms. Taking the data from
Table 10.2, we find αC/4πε0 + 4αH/4πε0 = 4.1 · 10−30 m3. Evidently
the binding of the atoms into a molecule has somewhat altered the elec-
tronic structure. Measurements of atomic and molecular polarizabilities
have long been used by chemists as clues to molecular structure.

C

H

Cl

Br

F

Figure 10.13.
A molecule with no symmetry whatsoever,
bromochloroflouromethane. This is methane
with three different halogens substituted for
three of the hydrogens. The bond lengths and
the tetrahedron edges are all a bit different.

10.6 Permanent dipole moments
Some molecules are so constructed that they have electric dipole moments
even in the absence of an electric field. They are unsymmetrical in their
normal state. The molecule shown in Fig. 10.13 is an example. A simpler
example is provided by any diatomic molecule made out of dissimilar
atoms, such as hydrogen chloride, HCl. There is no point on the axis of
this molecule about which the molecule is symmetrical fore and aft; the
two ends of the molecule are physically different. It would be a pure acci-
dent if the center of gravity of the positive charge and that of the negative
charge happened to fall at the same point along the axis. When the HCl
molecule is formed from the originally spherical H and Cl atoms, the
electron of the H atom shifts partially over to the Cl structure, leaving the
hydrogen nucleus partially denuded. So there is some excess of positive
charge at the hydrogen end of the molecule and a corresponding excess
of negative charge at the chlorine end. The magnitude of the resulting
electric dipole moment, p = 3.4 · 10−30 coulomb-meter, is equivalent to
shifting one electron about 0.2 angstrom (using s = p/e).

By contrast, the hydrogen atom in a field of 1 megavolt per meter,
with the polarizability listed in Table 10.2, acquires an induced moment
less than 10−34 coulomb-meter. Permanent dipole moments, when they
exist, are as a rule enormously larger than any moment that can be induced
by ordinary laboratory electric fields.2 Because of this, the distinction
between polar molecules, as molecules with “built-in” dipole moments
are called, and nonpolar molecules is very sharp.

We said at the beginning of Section 10.5 that the hydrogen atom
had, at any instant of time, a dipole moment. But then we dismissed it as
being zero in the time average, on account of the rapid motion of the elec-
tron. Now we seem to be talking about molecular dipole moments as if
a molecule were an ordinary stationary object like a baseball bat whose
ends could be examined at leisure to see which was larger! Molecules
move more slowly than electrons, but their motion is rapid by ordinary
standards. Why can we credit them with “permanent” electric dipole
moments? If this inconsistency was bothering you, you are to be com-
mended. The full answer can’t be given without some quantum

2 There is a good reason for this. The internal electric fields in atoms and molecules, as
we remarked in Section 10.5, are naturally on the order of e/4πε0(10−10 m)2, which is
roughly 1011 volts/m! We cannot apply such a field to matter in the laboratory for the
closely related reason that it would tear the matter to bits.
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mechanics, but the difference essentially involves the time scale of the
motion. The time it takes a molecule to interact with its surroundings
is generally shorter than the time it takes the intrinsic motion of the
molecule to average out the dipole moment smoothly. Hence the molecule
really acts as if it had the moment we have been talking about. A very
short time qualifies as permanent in the world of one molecule and its
neighbors.
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?
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Some common polar molecules are shown in Fig. 10.14, with the
direction and magnitude of the permanent dipole moment indicated for
each. The water molecule has an electric dipole moment because it is
bent in the middle, the O–H axes making an angle of about 105◦ with
one another. This is a structural oddity with the most far-reaching con-
sequences. The dipole moment of the molecule is largely responsible for
the properties of water as a solvent, and it plays a decisive role in chem-
istry that goes on in an aqueous environment. It is hard to imagine what
the world would be like if the H2O molecule, like the CO2 molecule,
had its parts arranged in a straight line; probably we wouldn’t be here
to observe it. We hasten to add that the shape of the H2O molecule
is not a capricious whim of Nature. Quantum mechanics has revealed
clearly why a molecule made of an eight-electron atom joined to two
one-electron atoms must prefer to be bent.

The behavior of a polar substance as a dielectric is strikingly differ-
ent from that of material composed of nonpolar molecules. The dielectric
constant of water is about 80, that of methyl alcohol 33, while a typi-
cal nonpolar liquid might have a dielectric constant around 2. In a non-
polar substance the application of an electric field induces a slight dipole
moment in each molecule. In the polar substance dipoles are already
present in great strength but, in the absence of a field, are pointing in
random directions so that they have no large-scale effect. An applied
electric field merely aligns them to a certain degree. In either process,
however, the macroscopic effects will be determined by the net amount
of polarization per unit volume.

10.7 The electric field caused by polarized matter
10.7.1 The field outside matter
Suppose we build up a block of matter by assembling a very large num-
ber of molecules in a previously empty region of space. Suppose too
that each of these molecules is polarized in the same direction. For the
present we need not concern ourselves with the nature of the molecules
or with the means by which their polarization is maintained. We are

Figure 10.14.
Some well-known polar molecules. The observed value of the
permanent dipole moment p is given in units of 10−30 coulomb-meters.
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interested only in the electric field they produce when they are in this
condition; later we can introduce any fields from other sources that might
be around. If you like, you can imagine that these are molecules with
permanent dipole moments that have been lined up neatly, all pointing
the same way, and frozen in position. All we need to specify is N, the
number of dipoles per cubic meter, and the moment of each dipole p. We
shall assume that N is so large that any macroscopically small volume
dv contains quite a large number of dipoles. The total dipole strength in
such a volume is pN dv. At any point far away from this volume element
compared with its size, the electric field from these particular dipoles
would be practically the same if they were replaced by a single dipole
moment of strength pN dv. We shall call pN the density of polarization,
and denote it by P, a vector quantity with the units C-m/m3 (or C/m2):

P ≡ pN = dipole moment
volume

. (10.31)

P dv is the dipole moment to be associated with any small-volume ele-
ment dv for the purpose of computing the electric field at a distance. By
the way, our matter has been assembled from neutral molecules only;
there is no net charge in the system or on any molecule, so we have only
the dipole moments to consider as sources of a distant field.
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dz
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Figure 10.15.
A column of polarized material (a) produces the
same field, at an external point A, as two
charges, one at each end of the column (b).

Figure 10.15 shows a slender column, or cylinder, of this polarized
material. Its cross section is da, and it extends vertically from z1 to z2.
The polarization density P within the column is uniform over the length
and points in the positive z direction. We are about to calculate the elec-
tric potential, at some external point, due to this column of polariza-
tion. An element of the cylinder, of height dz, has a dipole moment
P dv = P da dz. Its contribution to the potential at the point A can be
written down by referring back to our formula Eq. (10.15) for the poten-
tial of a dipole, that is,

dφA = P da dz cos θ

4πε0r2 . (10.32)

The potential due to the entire column is

φA = P da
4πε0

∫ z2

z1

dz cos θ

r2 . (10.33)

This is simpler than it looks: dz cos θ is just −dr, so that the integrand is
a perfect differential, d(1/r). The result of the integration is then

φA = P da
4πε0

(
1
r2

− 1
r1

)
(10.34)

Equation (10.34) is precisely the same as the expression for the
potential at A that would be produced by two point charges, a positive
charge of magnitude P da sitting on top of the column at a distance r2
from A, and a negative charge of the same magnitude at the bottom of
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s = –P

s = P

Figure 10.16.
A block of polarized material (a) is equivalent to
two sheets of charge (b), as far as the field
outside is concerned.

the column. The source consisting of a column of uniformly polarized
matter is equivalent, at least so far as its field at all external points is con-
cerned, to two concentrated charges. Note that nowhere have we assumed
that A is far away from the column, that is, that r1 and r2 are much larger
than the height of the column, z2 − z1. All that is required is that the
distance from A to any point in the column is much larger than the size
of the dipoles (assumed to be very small) and also much larger than the
width of the column (also assumed to be small), for then Eq. (10.32)
will be valid.

We can prove Eq. (10.34) in another way without any mathematics.
Consider a small section of the column of height dz, containing a dipole
moment P da dz. Let us make an imitation or substitute for this by tak-
ing an unpolarized insulator of the same size and shape and sticking a
charge P da on top of it and a charge −P da on the bottom. This little
block now has the same dipole moment as that bit of our original col-
umn, and therefore it will make an identical contribution to the field at
any remote point A. (The field inside our substitute, or very close to it,
may be different from the field of the original – we don’t care about that.)
Now make a whole set of such blocks and stack them up to imitate the
polarized column; see Fig. 10.15(b). They must give the same field at
A as the whole column does, for each block gave the same contribution
as its counterpart in the original. Now see what we have! At every joint
the positive charge on the top of one block coincides with the negative
charge on the bottom of the block above it, making the charge equal zero.
The only charges left uncompensated are the negative charge −P da on
the bottom of the bottom block and the positive charge P da on the top
of the top block. Seen from a distant point such as A (“distant” compared
with the size of a block, not necessarily the whole column), these look
like point charges. We conclude, as before, that two such charges pro-
duce at A exactly the same field as does our whole column of polarized
material.

With no further calculation we can extend this to a slab, or right
cylinder, of any proportions uniformly polarized in a direction perpen-
dicular to its parallel faces; see Fig. 10.16(a). The slab can simply be sub-
divided into a bundle of columns, and the potential outside will be the
sum of the contributions of the columns, each of which can be replaced
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by a charge at either end. The charges on the top, P da on each column
end of area da, make up a uniform sheet of surface charge of density

σ = P (in coulomb/meter2). (10.35)

We conclude that the potential everywhere outside a uniformly polarized
slab or cylinder (not necessarily far away) is precisely what would result
from two sheets of surface charge located where the top and bottom sur-
faces of the slab were located, carrying the constant surface charge den-
sity σ = P and σ = −P, respectively; see Fig. 10.16(b).

We are not quite ready to say anything about the field inside the
slab. However, we do know the potential at all points on the surface of
the slab – top, bottom, or sides. Any two such points, A and B, can be
connected by a path running entirely through the external field, so that
the line integral

∫
E · ds is entirely determined by the external field. It

must be the same as the integral along the path A′B′ in Fig. 10.16(b).
A point literally on the surface of the dielectric might be within range
of the intense molecular fields, the near field of the molecule that we
have left out of our account. Let’s agree to define the boundary of the
dielectric as a surface far enough out from the outermost atomic nucleus
– 10 or 20 angstroms would be margin enough – so that at any point
outside this boundary, the near fields of the individual atoms make a
negligible contribution to the whole line integral from A to B.

With this in mind, let’s look at a rather thin, wide plate of polar-
ized material, of thickness t, shown in cross section in Fig. 10.17(a).
Figure 10.17(b) shows, likewise in cross section, the equivalent sheets of
charge. For the system of two charge sheets, we know the field, of course,
in the space both outside and between the sheets. The field strength
inside, well away from the edges, must be just σ/ε0, pointing down, and
the potential difference between points A′ and B′ is therefore σ t/ε0. The
same potential difference must exist between corresponding points A and
B on our polarized slab, because the entire external field is the same in
the two systems.P

E = s/  0

s = P

s = −P

B

A�

A

B�

(b)

(a)

+ + + + + + + + + + + + + + + + +

− − − − − − − − − − − − − − − − −

t

t

Figure 10.17.
(a) The line integral of E from A to B must be the
same over all paths, internal or external,
because the internal microscopic or atomic
electric fields also are conservative (curl E = 0).
The equivalent charge sheets (b) have the same
external field.

10.7.2 The field inside matter
We can now address the field inside polarized matter. Is the internal field
the same in the two systems in Fig. 10.17? Certainly not, because the slab
is full of positive nuclei and electrons, with fields on the order of 1011

volts per meter pointing in one direction here, another direction there.
But one thing is the same: the line integral of the field, reckoned over
any internal path from A to B, must be just φB − φA, which, as we have
seen, is the same as φB′ − φA′ , which is equal to σ t/ε0, or Pt/ε0. This
must be so because the introduction of atomic charges, no matter what
their distribution, cannot destroy the conservative property of the electric
field, expressed in the statement that

∫
E · ds is independent of path, or

curl E = 0.
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B
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P

Figure 10.18.
Over any path from A to B, the line integral of
the actual microscopic field is the same.

We know that in Fig. 10.17(b) the potential difference between the
top and bottom sheets is nearly constant, except near the edges, because
the interior electric field is practically uniform. Therefore in the central
area of our polarized plate the potential difference between top and bot-
tom must likewise be constant. In this region the line integral

∫ B
A E · ds

taken from any point A on top of the slab to any point B on the bottom,
by any path, must always yield the same value Pt/ε0. Figure 10.18 is a
“magnified view” of the central region of the slab, in which the polar-
ized molecules have been made to look something like H2O molecules
all pointing the same way. We have not attempted to depict the very
intense fields that exist between and inside the molecules. (The field
ten angstroms away from a water molecule is on the order of a hundred
megavolts per meter, as you can discover from Fig. 10.14 and Eq. (10.18).)
You must imagine some rather complicated field configurations in the
neighborhood of each molecule. Now, the E in

∫
E · ds represents the

total electric field at a given point in space, inside or outside a molecule;
it includes these complicated and intense fields just mentioned. We have
reached the remarkable conclusion that any path through this welter of
charges and fields, whether it dodges molecules or penetrates them, must
yield the same value for the path integral, namely the value we find in
the system of Fig. 10.17(b), where the field is quite uniform and has the
strength P/ε0.

This tells us that the spatial average of the electric field within our
polarized slab must be −P/ε0. By the spatial average of a field E over
some volume V , which we might denote by 〈E〉V , we mean precisely this:

〈E〉V = 1
V

∫
V

E dv. (10.36)

One way to sample impartially the field in many equal volumes dv
into which V might be divided would be to measure the field along each
line in a bundle of closely spaced parallel lines. We have just seen that
the line integral of E along any or all such paths is the same as if we were
in a constant electric field of strength −P/ε0. That is the justification for
the conclusion that, within the polarized dielectric slab of Figs. 10.17 and
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10.18, the spatial average of the field due to all the charges that belong to
the dielectric is

〈E〉 = − P
ε0

(10.37)

This average field is a macroscopic quantity. The volume over which
we take the average should be large enough to include very many
molecules, otherwise the average will fluctuate from one such volume to
the adjoining one. The average field 〈E〉 defined by Eq. (10.36) is really
the only kind of macroscopic electric field in the interior of a dielectric
that we can talk about. It provides the only satisfactory answer, in the
context of a macroscopic description of matter, to the question, What is
the electric field inside a dielectric material?

We may call the E in the integrand on the right, in Eq. (10.36), the
microscopic field. If we imagine that we could measure the field values
we need for the path integral, we will be measuring electric fields in vac-
uum, in the presence, of course, of electric charge. We will need very
tiny instruments, for we may be called on to measure the field at a par-
ticular point just inside one end of a certain molecule. Have we any right
to talk in this way about taking the line integral of E along some path
that skirts the southwest corner of a particular molecule and then tunnels
through its neighbor? Yes. The justification is the massive evidence that
the laws of electromagnetism work down to a scale of distances much
smaller than atomic size. We can even describe an experiment that would
serve to measure the average of the microscopic electric field along a
path defined well within the limits of atomic dimensions. All we have to
do is shoot an energetic charged particle, an alpha particle for example,
through the material. From the net change in its momentum, the average
electric field that acted on it, over its whole path, could be inferred.

Let us review the properties of the average, or macroscopic, field 〈E〉
defined by Eq. (10.36). Its line integral

∫ B
A 〈E〉·ds between any two points

A and B that are reasonably far apart is independent of the path. It follows
that curl 〈E〉 = 0 and that 〈E〉 is the negative gradient of a potential 〈φ〉.
This potential function 〈φ〉 is itself a smoothed-out average, in the sense
of Eq. (10.36), of the microscopic potential φ. (The latter rises to several
million volts in the interior of every atomic nucleus!) The surface inte-
gral of 〈E〉, ∫ 〈E〉 · da, over any surface that encloses a reasonably large
volume, is equal to 1/ε0 times the charge within that volume.3 That is to
say, 〈E〉 obeys Gauss’s law, a statement we can also make in differential

3 We state this without proof, postponing consideration of the relation of the surface
integral of an average field to the average of surface integrals of the microscopic field
to Chapter 11, where the question arises in Section 11.8 in connection with the
magnetic field inside matter. (See Fig. 11.18.)
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form: div 〈E〉 = 〈ρ〉/ε0, with the understanding that 〈ρ〉 too is a local
average over a suitably macroscopic volume. In short, the spatial aver-
age quantities 〈E〉, 〈φ〉, and 〈ρ〉 are related to one another in the same
way as are the microscopic electric field, potential, and charge density in
vacuum.

From now on, when we speak of the electric field E inside any piece
of matter much larger than a molecule, we will mean an average, or
macroscopic, field as defined by Eq. (10.36), even when the brackets 〈 〉
are omitted.

10.8 Another look at the capacitor
At the beginning of this chapter we explained in a qualitative way how
the presence of a dielectric between the plates of a capacitor increases its
capacitance. Now we are ready to analyze quantitatively the dielectric-
filled capacitor. What we have just learned about the electric field inside
matter is the key to the problem. We identified as the macroscopic field
E, the spatial average of the microscopic field. The line integral of that
macroscopic E between any two points A and B is path-independent and
equal to the potential difference. Looking back at Fig. 10.2(a) we observe
that the field E in the empty capacitor must have had the value φ12/s. But
the potential difference between the plates, φ12, which was established
by the battery, was exactly the same in the dielectric-filled capacitor in
Fig. 10.2(b). Hence the field E in the dielectric, understood now as the
macroscopic field, must have had the same value too, for it extends and is
uniform over the same distance s. (The layers in the diagram are actually
negligible in thickness compared with s.)

The fact that the E fields are the same implies that the total charge
on and near the top plate in the dielectric-filled capacitor must be the
same as it was in the empty capacitor, namely Q0. To prove that, we
need only invoke Gauss’s law for a suitable imaginary box enclosing the
charge layers, as indicated in Fig. 10.19. Now, the charge is made up
of two parts, the charge on the plate Q (which will flow off when the
capacitor is discharged) and Q′, the charge that belongs to the dielectric.
The charge on the plate is given by Q = κQ0. That was our definition
of κ . Therefore, if Q+Q′ = Q0 as we have just concluded, we must have

Q′ = Q0 − Q = Q0(1 − κ). (10.38)

We can think of this system as the superposition of a vacuum capac-
itor and a polarized dielectric slab, Fig. 10.19(b) and (c). In the vacuum
capacitor with charge κQ0, the electric field E′′ would be κ times the
field E. In the isolated polarized dielectric slab the field E′ is −P/ε0, as
stated in Eq. (10.37). The superposition of these two objects creates the
actual field E. That is,

E = E′′ + E′ = κE − P
ε0

, (10.39)
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Figure 10.19.
The dielectric-filled capacitor of Fig. 10.2(b). The
field E, which is the average, or macroscopic,
field in the dielectric, is φ12/s, equal to the field
in the empty capacitor of Fig. 10.2(a). The
charge inside the Gauss box must equal Q0, the
charge on the plate of the empty capacitor. The
system can be regarded as the superposition of
a vacuum capacitor (b) and a polarized
dielectric (c).
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which can be rearranged like this:

P
ε0E

= κ − 1 (10.40)

The ratio P/ε0E (which is dimensionless) is called the electric suscepti-
bility of the dielectric material and is denoted by χe (Greek chi):

χe ≡ P
ε0E

�⇒ P = χeε0E (10.41)

From Eq. (10.40) we have

χe = κ − 1 �⇒ κ = 1 + χe (10.42)

In most materials under ordinary circumstances, it is the field E in
the dielectric that causes P. The relation is quite linear. That is to say,
the electric susceptibility χe is a constant characteristic of the partic-
ular material and is not dependent on the strength of the electric field
or the size or shape of the electrodes. We call such materials, in which
P is proportional to E, linear dielectrics. Cases are known, however,
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usually involving materials composed of polar molecules, in which polar-
ization can be literally frozen in. A block of ice polarized by an externally
applied electric field and then cooled in liquid helium will retain its polar-
ization indefinitely after the external field is removed, thus providing a
real example of the hypothetical polarized slab in Fig. 10.18.
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Q3

Q2

Q1

Emed

Emed = Evac
1

Q3

Q2

k

k

Figure 10.20.
For the same charges on the conductors, the
presence of the dielectric medium reduces all
electric field intensities (and hence all potential
differences) by the factor 1/κ. The charges Q1,
Q2, and Q3 are the charges that would actually
flow off the conductors if we were to discharge
the system.

In addition to frozen-in polarization, there are two other cases where
the P ∝ E relation doesn’t hold. First, we can have a nonisotropic crys-
tal, that is, one in which the polarization responds differently to electric
fields in different directions. Each component of P is then a (usually lin-
ear) function of, in general, all three components of E. In other words,
the P and E vectors are related by a full matrix instead of a simple con-
stant of proportionality. So they need not point in the same direction;
see the discussion in Footnote 3 in Chapter 4 dealing with the analogous
case involving J and E. However, we will assume that the dielectrics in
this chapter are isotropic, unless otherwise stated.

Second, the P ∝ E relation doesn’t hold if, as mentioned above,
the proportionality factor χeε0 depends on the strength E of the electric
field. In this case χeε0 is a function of E, which means that P is a non-
linear function of E. If you want, you can consider the linear-dielectric
P = χeε0E relation to be the first term in the Taylor series of P as a
function of E. But the nice thing is that, in most materials, this first term
is all we need. As with isotropy, we will assume that our dielectrics are
linear, unless otherwise stated. Note that in using definite values of κ

(that is, ones that are independent of E) to describe the various mater-
ials in Table 10.1, we are already assuming (correctly) that they are lin-
ear dielectrics. Furthermore, we are assuming (again correctly) that the
materials are homogeneous and isotropic (on a macroscopic scale); that
is, they have the same properties at all points and in all directions.

Strictly speaking, filling a vacuum capacitor with dielectric mater-
ial increases its capacitance by the precise factor κ characteristic of that
material only if we fill all the surrounding space too, or at least all the
space where there is any electric field. In the example we discussed, it
was tacitly assumed that the plates were so large compared with their
distance of separation that “edge effects,” including the small amount
of charge that would be on the outside of the plates near the edge (see
Fig. 3.14(b)), could be neglected. A quite general statement can be made
about a system of conductors of any shape or arrangement that is entirely
immersed in a homogeneous dielectric – for instance, in a large tank of
oil. With any charges, Q1, Q2, etc., on the various conductors, the macro-
scopic electric field Emed at any location in the medium is just 1/κ times
the field Evac that would exist at that location with the same charges on
the same conductors in vacuum (Fig. 10.20). This has important con-
sequences in semiconductors. When silicon, for example, is doped with
phosphorus to make an n-type semiconductor, the high dielectric con-
stant of the silicon crystal (see Table 10.1) greatly reduces the electrical
attraction between the outermost electron of the phosphorus atom and the
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rest of the atom. This makes it easy for the electron to leave the residual
P− ion and join the conduction band, as in Fig. 4.11(a).

This brings us to a more general problem. What if the space in
our system is partly filled with dielectric and partly empty, with electric
fields in both parts? We’ll begin with a somewhat artificial but instructive
example, a polarized solid sphere in otherwise empty space.

10.9 The field of a polarized sphere
The solid sphere in Fig. 10.21(a) is supposed to be uniformly polarized,

P

cos q

q

z

x
y

da

dar0

(a)

(b)

Figure 10.21.
(a) Divide the polarized sphere into polarized
rods, and replace each rod by patches of charge
on the surface of the sphere. (b) A ball of
positive volume charge density and a ball of
negative volume charge density, slightly
displaced, are equivalent to a distribution of
charge on the spherical surface.

as if it had been carved out of the substance of the slab in Fig. 10.16(a).
What must the electric field be like, both inside and outside the sphere?
We take P as usual to denote the density of polarization, constant in mag-
nitude and direction throughout the volume of the sphere. The polarized
material could be divided, like the slab in Fig. 10.16(a), into columns par-
allel to P, and each of these replaced by a charge of magnitude
P× (column cross section) at top and bottom. Thus the field we seek
is that of a surface charge distribution spread over a sphere with density
σ = P cos θ . The factor cos θ enters, as should be evident from the figure,
because a column of cross section da intercepts on the sphere a patch of
surface of area da/ cos θ . Figure 10.21(b) is a cross section through this
shell of equivalent surface charge in which the density of charge has been
indicated by the varying thickness of the black semicircle above (positive
charge density) and the light semicircle below (negative charge density).

If it has not already occurred to you, this figure may suggest that
we think of the polarization P as having arisen from the slight upward
displacement of a ball filled uniformly with positive charge of volume
density ρ, relative to a ball of negative charge of density −ρ. That would
leave uncompensated positive charge poking out at the top and nega-
tive charge showing at the bottom, varying in amount precisely as cos θ

over the whole boundary.4 In the interior, where the positive and nega-
tive charge densities still overlap, they would exactly cancel one another.
Taking this view, we see a very easy way to calculate the field outside the
shell of surface charge. Any spherical charge distribution, as we know,
has an external field the same as if its entire charge were concentrated at
the center. So the superposition of two spheres of total charge Q and −Q,
with their centers separated by a small displacement s, will produce an
external field the same as that of two point charges Q and −Q, a distance
s apart. This is just a dipole with dipole moment p0 =Qs.

A microscopic description of the polarized substance leads us to the
same conclusion. In Fig. 10.22(a) the molecular dipoles actually respon-
sible for the polarization P have been crudely represented as consisting
individually of a pair of charges q and −q, a distance s apart, to make

4 This follows from the fact that the thickness of the “semicircle” at a given point is the
radial component of the vertical vector representing the displacement s of the top
sphere relative to the bottom sphere. You can quickly show that this radial component
is s cos θ .
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Figure 10.22.
A sphere of lined-up molecular dipoles (a) is
equivalent to superposed, slightly displaced,
spheres of positive (b) and negative (c) charges.

a dipole moment p = qs. With N of these per cubic meter, we have
P = Np = Nqs, and the total number of such dipoles in the sphere is
(4π/3)r3

0N. The positive charges, considered separately (Fig. 10.22(b)),
are distributed throughout a sphere with total charge content
Q = (4π/3)r3

0Nq, and the negative charges occupy a similar sphere with
its center displaced (Fig. 10.22(c)). Clearly each of these charge distri-
butions can be replaced by a point charge at its center, if we are con-
cerned with the field well outside the distribution. “Well outside” means
far enough away from the surface so that the actual graininess of the
charge distribution doesn’t matter, and of course that is something we
always have to ignore when we speak of the macroscopic fields.

p0 =
4pr0

3 P
3

r0

Figure 10.23.
The field outside a uniformly polarized sphere is
exactly the same as that of a dipole located at
the center of the sphere.

So, for present purposes, the picture of overlapping spheres of uni-
form charge density and the description in terms of actual dipoles in a
vacuum are equivalent,5 and show that the field outside the distribution
is the same as that of a single dipole located at the center. The moment
of this dipole p0 is simply the total polarization in the sphere:

p0 = Qs = 4π

3
r3

0Nqs = 4π

3
r3

0P. (10.43)

The quantities Q and s have, separately, no significance and may now be
dropped from the discussion.

The external field of the polarized sphere is that of a central dipole
p0, not only at a great distance from the sphere but also right down to
the surface, macroscopically speaking. All we had to do to construct
Fig. 10.23, a representation of the external field lines, was to block out a
circular area from Fig. 10.6.

The internal field is a different matter. Let’s look at the electric
potential, φ(x, y, z). We know the potential at all points on the spherical

5 This may have been obvious enough, but we have labored the details in this one case to
allay any suspicion that the “smooth-charge-ball” picture, which is so different from
what we know the interior of a real substance to be like, might be leading us astray.
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boundary because we know the external field. It is just the dipole poten-
tial, p0 cos θ/4πε0r2, which on the spherical boundary of radius r0
becomes

φ = p0
cos θ

4πε0r2
0
= Pr0 cos θ

3ε0
, (10.44)

where we have used Eq. (10.43). Since r0 cos θ = z, we see that the
potential of a point on the sphere depends only on its z coordinate:

φ = Pz
3ε0

. (10.45)

The problem of finding the internal field has boiled down to this:
Eq. (10.45) gives the potential at every point on the boundary of the
region, inside which φ must satisfy Laplace’s equation. According to the
uniqueness theorem we proved in Chapter 3, that suffices to determine φ

throughout the interior. If we can find a solution, it must be the solution.
Now the function Cz, where C is any constant, satisfies Laplace’s equa-
tion, so Eq. (10.45) has actually handed us the solution to the potential
in the interior of the sphere. That is, φin = Pz/3ε0. The electric field
associated with this potential is uniform and points in the −z direction:

Ez = −∂φin

∂z
= − ∂

∂z

(
Pz
3ε0

)
= − P

3ε0
. (10.46)

As the direction of P was the only thing that distinguished the z axis, we
can write our result in more general form:

Ein = − P
3ε0

(10.47)

This is the macroscopic field E in the polarized material.

P

E = –
3 0

P

Figure 10.24.
The field of the uniformly polarized sphere, both
inside and outside.

Figure 10.24 shows both the internal and external fields. At the upper
pole of the sphere, the strength of the upward-pointing external field is,
from Eq. (10.17) or Eq. (10.18) for the field of a dipole,

Ez = 2p0

4πε0r3 = 2(4πr3
0P/3)

4πε0r3
0

= 2P
3ε0

(outside, at top), (10.48)

which is just twice the magnitude of the downward-pointing internal
field.

This example illustrates the general rules for the behavior of the field
components at the surface of a polarized medium. E is discontinuous at
the boundary of a polarized medium, exactly as it would be at a surface
in vacuum that carried a surface charge density σ = P⊥. The symbol P⊥
stands for the component of P normal to the surface outward (which in
the present case is P⊥ = P cos θ ). It follows that E⊥, the normal com-
ponent of E, must change abruptly by an amount P⊥/ε0; whereas E‖,
the component of E parallel to the boundary, remains continuous, that is,
has the same value on both sides of the boundary (Fig. 10.25). Indeed,
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at the north pole of our sphere, the net change in Ez is 2P/3ε0 −
(−P/3ε0), or P/ε0.

E

E

E||

E||

E⊥

E⊥
P⊥

P||

P

Figure 10.25.
The change in E at the boundary of a polarized
dielectric: E‖ is the same on both sides of the
boundary; E⊥ increases by P⊥/ε0 in going from
dielectric to vacuum. (Note that E and P/ε0 are
not drawn to the same scale.)

Example (Continuity of E‖) For our polarized sphere, let’s check that the
component of E parallel to the surface is continuous from inside to outside every-
where on the sphere. From Eq. (10.47) the internal field has magnitude P/3ε0 and
points downward, so Ein‖ is obtained by simply tacking on a factor of sin θ . That

is, Ein‖ = P sin θ/3ε0. The tangential component of the external dipole field is
given by the Eθ in Eq. (10.18):

Eout‖ = p0 sin θ

4πε0r3 = (4πr3
0P/3) sin θ

4πε0r3
0

= P sin θ

3ε0
, (10.49)

which equals Ein‖ , as desired.

Note that, for 0 < θ < π , the sin θ factor is positive, so Ein‖ and Eout‖ point in

the positive θ̂ direction, that is, away from the north pole. Similarly, for
π < θ < 2π , Ein‖ and Eout‖ point in the negative θ̂ direction, which again is away

from the north pole (because positive θ̂ is directed clockwise around the full cir-
cle). A quick glance at Fig. 10.24 shows that the field lines are consistent with
these facts.

The task of Exercise 10.36 is to use the explicit forms of the internal and
external fields to show that E⊥ has a discontinuity of P⊥/ε0 everywhere on the
surface of the sphere.

None of these conclusions depends on how the polarization of the
sphere was caused. Assuming any sphere is uniformly polarized,
Fig. 10.24 shows its field. Onto this can be superposed any field from
other sources, thus representing many possible systems. This will not
affect the discontinuity in E at the boundary of the polarized medium.
The above rules therefore apply in any system, the discontinuity in E
being determined solely by the existing polarization.

10.10 A dielectric sphere in a uniform field
As an example, let us put a sphere of dielectric material characterized
by a dielectric constant κ into a homogeneous electric field E0 like the
field between the parallel plates of a vacuum capacitor, Fig. 10.26. Let

– – – – – – – – – – –

+ + + + + + + + + + +

P
E = ?

E0

Figure 10.26.
The sources of the field E0 remain fixed. The
dielectric sphere develops some polarization P.
The total field E is the superposition of E0 and
the field of this polarized sphere.

the sources of this field, the charges on the plates, be far from the sphere
so that they do not shift as the sphere is introduced. Then whatever the
field may be in the vicinity of the sphere, it will remain practically E0 at
a great distance. This is what is meant by putting a sphere into a uniform
field. The total field E is no longer uniform in the neighborhood of the
sphere. It is the sum of the uniform field E0 of the distant sources and a
field E′ generated by the polarized matter itself:

E = E0 + E′. (10.50)
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This relation is valid both inside and outside the sphere. The field E′
depends on the polarization P of the dielectric, which in turn depends on
the value of E inside the sphere:

P = χeε0Ein = (κ − 1)ε0Ein. (10.51)

Remember that the E that appears in this expression involving χe is the
total electric field.

We don’t know yet what the total field E is; we know only that
Eq. (10.51) has to hold at any point inside the sphere. If the sphere
becomes uniformly polarized, an assumption that will need to be jus-
tified by our results, the relation between the polarization P of the sphere
and its own field at points inside, E′

in, is given by Eq. (10.47):6

E′
in = − P

3ε0
. (10.52)

Substituting the P from Eq. (10.51) into Eq. (10.52) quickly gives E′
in

in terms of Ein; we obtain E′
in = −(κ − 1)Ein/3. Substituting this into

Eq. (10.50) gives the total field inside the sphere as

Ein = E0 − κ − 1
3

Ein �⇒ Ein =
(

3
2 + κ

)
E0 (10.53)

Because κ is greater than 1, the factor 3/(2 + κ) will be less than 1; the
field inside the dielectric is weaker than E0. The polarization is

P = (κ − 1)ε0Ein �⇒ P = 3
(

κ − 1
κ + 2

)
ε0E0 (10.54)

The assumption of uniform polarization is now seen to be self-consistent.7

To compute the total field Eout outside the sphere we must add vectorially
to E0 the field of a central dipole with dipole moment equal to P times
the volume of the sphere. Some field lines of E, both inside and outside
the dielectric sphere, are shown in Fig. 10.27.

Figure 10.27.
The total field E, both inside and outside the
dielectric sphere.

To summarize, we found Ein by effectively equating two different
expressions for the field E′

in caused by the polarized matter. One expres-
sion is simply the statement of superposition, E′

in = Ein −E0. The other
expression is E′

in = −(κ − 1)Ein/3, which comes from the facts that E′
in

is proportional to P (in the case of a sphere) and that P is proportional to
Ein (in a linear dielectric).
6 In Eq. (10.47) we were using the symbol Ein, without the prime, for this field. In that

case it was the only field present.
7 That is what makes this system easy to deal with. For a dielectric cylinder of finite

length in a uniform electric field, the assumption would not work. The field E′ of a
uniformly polarized cylinder – for instance one with its length about equal to its
diameter – is not uniform inside the cylinder. (What must it look like?) Therefore
Ein = E0 + E′

in cannot be uniform – but in that case P = χeEin could not be
uniform after all. In fact, it is only dielectrics of ellipsoidal shape, of which the
sphere is a special case, that acquire uniform polarization in a uniform field.
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10.11 The field of a charge in a dielectric medium,
and Gauss’s law

Suppose that a very large volume of homogeneous linear dielectric has
somewhere within it a concentrated charge Q, not part of the regular
molecular structure of the dielectric. Imagine, for instance, that a small
metal sphere has been charged and then dropped into a tank of oil. As
was stated at the end of Section 10.8, the electric field in the oil is simply
1/κ times the field that Q would produce in a vacuum:

E = Q
4πε0κr2 . (10.55)

The product ε0κ is commonly denoted by ε, so we can write

E = Q
4πεr2 where ε ≡ κε0 �⇒ κ = ε

ε0
. (10.56)

The quantity ε is known as the permittivity of the dielectric. The vacuum
permittivity, also called the permittivity of free space, is simply ε0.

It is interesting to see how Gauss’s law works out. The surface inte-
gral of E (which is the macroscopic, or space average, field, remember)
taken over a sphere surrounding Q, gives Q/κε0, or Q/ε, if we believe
Eq. (10.55), and not Q/ε0. Why not? The answer is that Q is not the
only charge inside the sphere. There are also all the charges that make
up the atoms and molecules of the dielectric. Ordinarily any volume of
the oil would be electrically neutral. But now the oil is radially polar-
ized, which means that the charge Q, assuming it is positive, has pulled
in toward itself the negative charge in the oil molecules and pushed away
the positive charges. Although the displacement may be only very slight
in each molecule, still on the average any sphere we draw around Q
will contain more oil-molecule negative charge than oil-molecule pos-
itive charge. Hence the net charge in the sphere, including the “foreign”
charge Q at the center, is less than Q. In fact, it is Q/κ .

It is often useful to distinguish between the foreign charge Q and
the charges that make up the dielectric itself. Over the former we have
some degree of control – charge can be added to or removed from an
object, such as the plate of a capacitor. This is often called free charge.
The other charges, which are integral parts of the atoms or molecules
of the dielectric, are usually called bound charge. Structural charge
might be a better name. These charges are not mobile; they are more
or less elastically bound, contributing, by their slight displacement, to
the polarization.

One can devise a vector quantity that is related by something like
Gauss’s law to the free charge only. In the system we have just exam-
ined (a point charge Q immersed in a dielectric), the vector κE has this
property. That is,

∫
κE · da, taken over some closed surface S, equals

Q/ε0 if S encloses Q, and zero if it does not. By superposition, this must
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hold for any collection of free charges described by a free-charge density
ρfree(x, y, z) in an infinite homogeneous linear dielectric medium:∫

S
κE · da = 1

ε0

∫
V

ρfree dv, (10.57)

where V is the volume enclosed by the surface S. An integral relation
like this implies a “local” relation between the divergence of the vector
field κE and the free charge density:

div (κE) = ρfree

ε0
. (10.58)

Since κ has been assumed to be constant throughout the medium,
Eq. (10.58) tells us nothing new. However, it can help us to isolate the
role of the bound charge. In any system whatsoever, the fundamental
relation (namely Gauss’s law) between electric field E and total charge
density ρfree + ρbound remains valid:

div E = 1
ε0

(ρfree + ρbound). (10.59)

Subtracting Eq. (10.59) from Eq. (10.58) yields

div (κ − 1)E = −ρbound

ε0
. (10.60)

According to Eq. (10.40), (κ − 1)E = P/ε0 for a linear dielectric, so
Eq. (10.60) implies that

div P = −ρbound (10.61)

Equation (10.61) states a local relation. It cannot depend on condi-
tions elsewhere in the system, nor on how the particular arrangement of
bound charges is maintained. Any arrangement of bound charge that has
a certain local excess, per unit volume, of nuclear protons over atomic
electrons must represent a polarization with a certain divergence. So,
although we derived Eq. (10.61) by using relations pertaining to linear
dielectrics, it must in fact hold universally, not just in an unbounded lin-
ear dielectric. It doesn’t matter how the polarization comes about. (See
Problem 10.11 for a general proof.) You can get a feeling for the identity
expressed in Eq. (10.61) by imagining a few polar molecules arranged to
give a polarization with a positive divergence (Fig. 10.28). The dipoles
point outward, which necessarily leaves a little concentration of nega-
tive charge in the middle. Of course, Eq. (10.61) refers to averages over
volume elements so large that P and ρbound can be treated as smoothly
varying quantities.
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Figure 10.28.
Molecular dipoles arranged so that div P > 0.
Note the concentration of negative charge in the
middle, consistent with Eq. (10.61).

From Eqs. (10.59) and (10.61), both of which are true in any system
whatsoever, we get the relation

div (ε0E + P) = ρfree. (10.62)
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This is quite independent of any relation between E and P; it is not lim-
ited to linear dielectrics (where P is proportional to E).

It is customary to give the combination ε0E + P a special name, the
electric displacement vector, and its own symbol, D. That is, we define
D by

D ≡ ε0E + P (10.63)

and Eq. (10.62) becomes

div D = ρfree (10.64)

This relation, or equivalently Eq. (10.62), holds in any situation in which
the macroscopic quantities P, E, and ρ can be defined.

If additionally we are dealing with a linear dielectric, then by com-
paring Eqs. (10.58) and (10.64) we see that D is simply κε0E, or

D = εE (for a linear dielectric). (10.65)

This alternatively follows from Eq. (10.63) by using Eq. (10.41) to write
P as χeε0E, and then using Eq. (10.42) to write 1 + χe as κ .

The appearance of Eq. (10.64) may suggest that we should look on
D as a vector field whose source is the free charge distribution ρfree (up
to a factor of ε0), in the same sense that the total charge distribution ρ

is the source of E. That would be wrong. The electrostatic field E is
uniquely determined – except for the addition of a constant field – by
the charge distribution ρ because, supplementing the law div E = ρ/ε0,
there is another universal condition, curl E = 0. It is not true, in general,
that curl D = 0. Thus the distribution of free charge is not sufficient to
determine D through Eq. (10.64). Something else is needed, such as the
boundary conditions at various dielectric surfaces. The boundary con-
ditions on D are of course merely an alternative way of expressing the
boundary conditions involving E and P, already stated near the end of
Section 10.9 and in Fig. 10.25.

Example (Continuity of D⊥) For our polarized sphere in Section 10.9, we
saw that E‖ was continuous across the boundary whereas E⊥ was not. These
boundary conditions hold for any shape of polarized material. It turns out that the
opposite conditions are true for D. That is, D⊥ is continuous across the boundary
whereas D‖ is not. You can derive these boundary conditions in Problem 10.12.
For now, let’s just verify that D⊥ is continuous across the boundary of our polar-
ized sphere.

Inside the sphere, we have E = −P/3ε0, so the displacement vector is
D = ε0(−P/3ε0) + P = 2P/3. The radial component of this is

Din⊥ ≡ Din
r = 2P cos θ

3
. (10.66)

Outside the sphere, E is the field due to a dipole with p0 = (4πR3/3)P. The
radial component of the dipole field is Er = p0 cos θ/2πε0R3. In terms of P this
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becomes Er = 2P cos θ/3ε0. Since P = 0 outside the sphere, the external D is
obtained by simply multiplying the external E by ε0. Therefore

Dout⊥ ≡ Dout
r = 2P cos θ

3
. (10.67)

This equals the above Din⊥, as desired.
The task of Exercise 10.41 is to use the explicit forms of the internal and

external fields to find the discontinuity in D‖ everywhere on the surface of the
sphere.

In the approach we have taken to electric fields in matter, the intro-
duction of D is an artifice that is not, on the whole, very helpful. We
have mentioned D because it is hallowed by tradition, beginning with
Maxwell,8 and the student is sure to encounter it in other books, many of
which treat it with more respect than it deserves.

Our essential conclusions about electric fields in matter can be sum-
marized as follows:

(1) Matter can be polarized, its condition being described completely,
so far as the macroscopic field is concerned, by a polarization den-
sity P, which is the dipole moment per unit volume. The contribu-
tion of such matter to the electric field E is the same as that of a
charge distribution ρbound, existing in vacuum and having the den-
sity ρbound = −div P. In particular, at the surface of a polarized sub-
stance, where there is a discontinuity in P, this reduces to a surface
charge of density σ = −�P⊥. Add any free charge distribution that
may be present, and the electric field is the field that this total charge
distribution would produce in vacuum. This is the macroscopic field
E both inside and outside matter, with the understanding that inside
matter it is the spatial average of the true microscopic field.

(2) If P is proportional to E in a material, we call the material a linear
dielectric. We define the electric susceptibility χe and the dielec-
tric constant κ characteristic of that material as χe = P/ε0E and
κ = 1 + χe. Free charges immersed in a linear dielectric give rise to
electric fields that are 1/κ times as strong as the same charges would
produce in vacuum.

10.12 A microscopic view of the dielectric
The polarization P in the dielectric is simply the large-scale manifesta-
tion of the electric dipole moments of the atoms or molecules of which

8 The prominence of D in Maxwell’s formulation of electromagnetic theory, and his
choice of the name displacement, can perhaps be traced to his inclination toward a kind
of mechanical model of the “aether.” Whittaker has pointed out in his classic text
(Whittaker, 1960) that this inclination may have led Maxwell himself astray at one
point in the application of his theory to the problem of reflection of light from a
dielectric.
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the material is composed. P is the mean dipole moment density, the
total vector dipole moment per unit volume – averaged, of course, over
a region large enough to contain an enormous number of atoms. If there
is no electric field to establish a preferred direction, P will be zero. That
will surely be true for an ordinary liquid or a gas, and for solids too if
we ignore the possibility of “frozen-in” polarization mentioned in Sec-
tion 10.8. In the presence of an electric field in the medium, polariza-
tion can arise in two ways. (1) Every atom or molecule will acquire an
induced dipole moment proportional to, and in the direction of, the field
E that acts on that atom or molecule. (2) If molecules with permanent
dipole moments are present in the medium, their orientations will no
longer be perfectly random; alignment of their dipole moments in the
field direction will be favored slightly over alignment in the opposite
direction. Both effects (1) and (2) lead to polarization in the direction E,
that is, to a positive value of χe ≡ P/ε0E, the electric susceptibility.

Let us consider first the induced atomic moments in a medium in
which the atoms or molecules are rather far apart. An example is a gas at
atmospheric density, in which there are something like 3 · 1025 molecules
per cubic meter. We shall assume that the field E that acts on an indi-
vidual molecule is the same as the average, or macroscopic, field E in
the medium. In making this assumption, we are neglecting the field at
a molecule that is produced by the induced dipole moment of a nearby
molecule. Let α be the polarizability of every molecule and N the mean
number of molecules per cubic meter. The dipole moment induced in
each molecule is p = αE, and the resulting polarization of the medium,
P, is simply

P = Np = NαE. (10.68)

This gives us at once the electric susceptibility χe,

χe = P
ε0E

= Nα

ε0
, (10.69)

and the dielectric constant κ ,

κ = 1 + χe = 1 + Nα

ε0
. (10.70)

The methane molecule in Fig. 10.12 has a polarizability value (or
rather an α/4πε0 value) of 2.6 · 10−30 m3. At standard conditions of 0 ◦C
and atmospheric pressure there are approximately 2.8 · 1025 molecules in
1 m3. According to Eq. (10.70), the dielectric constant of methane at that
density ought to have the value

κ = 1 + Nα

ε0
= 1 + 1

ε0
(2.8 · 1025 m−3)(4πε0 · 2.6 · 10−30 m3)

= 1.00091. (10.71)
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Up to rounding errors in the numbers we used, this agrees with the value
of κ listed for methane in Table 10.1. The agreement is hardly surpris-
ing, for the value of α/4πε0 given in Fig. 10.12 was probably deduced
originally by applying the simple theory we have just developed to an
experimentally measured dielectric constant.

We have already noted in Section 10.5 that the atomic polarizabil-
ity α/4πε0, which has the dimensions of volume, is in order of mag-
nitude about equal to the volume of an atom. That being so, the product
Nα/4πε0, which is just χe/4π according to Eq. (10.69), is about equal to
the fraction of the volume of the medium that is taken up by atoms. Now
the density of a gas under standard conditions is roughly one-thousandth
of the density of the same substance condensed to liquid or solid. In the
case of methane the ratio is close to 1/1000; in the case of air, 1/700. The
gas is about 99.9 percent empty space. In the solid or liquid, on the other
hand, the molecules are practically touching one another. The fraction of
the volume they occupy is not much less than unity. This tells us that,
in condensed matter generally, the induced polarization will result in a
value of χe/4π of order of magnitude unity. In fact, as our brief list in
Table 10.1 suggests, and as a more extensive tabulation would confirm,
the value of χe/4π = (κ − 1)/4π for most nonpolar liquids and solids
ranges from about 0.1 to 1. We can now see why.

We can see, too, why an exact theory of the susceptibility χe of a
solid or liquid is not so easy to develop. When the atoms are crowded
together until they almost “touch,” the effect of one atom on its neigh-
bors cannot be neglected. The distance b between nearest neighbors is
approximately N−1/3. Let an electric field E induce a dipole moment
p = Eα in each atom. This dipole p on one atom will cause a field of
strength E′ ∼ p/4πε0b3 at the location of the next atom. But 1/b3 ≈ N,
hence E′ ∼ EαN/4πε0 . As we have just explained, in condensed matter
αN/4πε0 is necessarily of order unity. Hence E′ is not small, and cer-
tainly not negligible, compared with E. Just what the effective field is
that polarizes an atom in this situation is a question with no very obvious
answer.9

Molecules with permanent electric dipole moments, polar molecules,
respond to an electric field by trying to line up parallel to it. So long as
the dipole moment p is not pointing in the direction of E, there is a torque
p×E tending to turn p into the direction of E. (Look back at Eq. (10.21)
and Fig. 10.8(b).) Of course, the torque is zero if p happens to be pointing
exactly opposite to E, but that condition is unstable. Torque on the electric
dipole is torque on the molecule itself. A state of lowest energy will
have been attained if and when all the polar molecules have rotated to
bring their dipole moments into the E direction. While settling down
to that state of perfect alignment they will have given off some energy,

9 An elementary, approximate, treatment of this problem, leading to what is called the
Clausius–Mossotti relation, can be found in Section 9.13 in the first edition of this
book.
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through rotational friction, to their surroundings. The resulting polariza-
tion would be gigantic. In water there are about 3.3 · 1028 molecules/m3;
the dipole moment of each (Fig. 10.14) is 6.1 · 10−30 C-m. With complete
alignment of the dipoles, P would be 0.2 C/m2. If Fig. 10.24 were a
picture of a water droplet thus polarized, the field strength just outside
the drop, of order P/ε0 from Eq. (10.48), would exceed 1010 V/m!

This does not happen. Nothing approaching complete alignment is
attained in any reasonable applied field E. Why not? The reason is essen-
tially the same as the reason why the molecules of air in a room are not
found all lying on the floor – which is, after all, the arrangement of lowest
potential energy. We must think about temperature and about the energy
of thermal agitation that every molecule exhibits at a given absolute tem-
perature T . In magnitude, that energy is kT , where k is the universal
constant called Boltzmann’s constant. At room temperature, kT amounts
to 4 · 10−21 joule. In a system all at temperature T , the mean transla-
tional energy of a molecule – or, for that matter, of any object small or
large – is (3/2)kT . More to the point here, the mean rotational energy of
a molecule is just kT . Now, the air molecules do not all gather near the
floor because the change in gravitational potential energy in elevating by
a couple of meters a molecule of mass 5 · 10−26 kg is only, as you can
readily compute, about 10−24 joule, less than 1/1000 of kT . On the other
hand, the air near the floor is slightly more dense than the air near the
ceiling, even when there is no temperature gradient. That is just the well-
known change of barometric pressure with height. Air near the floor is
fractionally more dense (when the difference is slight) by just mgh/kT ,
mgh being the difference in gravitational potential energy between the
two levels.

Similarly, in our dielectric we shall find a slight excess of molecular
dipoles in the orientation of lower potential energy, that is, pointing in
the direction of E, or with a component in that direction. The fractional
excess in the favored directions will be, in order of magnitude, pE/kT .
The numerator represents the difference in potential energy. Actually the
work required to turn a dipole from the direction of E to the opposite
direction is 2pE (see Eq. (10.22)), but averaging over angles would bring
in other numerical factors that we are leaving out. With N dipoles per
unit volume, the polarization P, which would be Np if they were totally
aligned, will be smaller by something like the factor pE/kT . The polar-
ization to be expected is therefore, in order of magnitude,

P ≈ Np
(

pE
kT

)
= Np2

kT
E, (10.72)

and the susceptibility is

χe = P
ε0E

≈ Np2

ε0kT
. (10.73)
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For water at room temperature, the quantity on the right in Eq. (10.73)
is about 35, whereas with κ = 80, the actual value of χe is 79. Evidently a
factor of roughly 2.3 is needed on the right in Eq. (10.73), in this case, to
convert our order-of-magnitude estimate into a correct prediction. Deriv-
ing that factor theoretically is quite difficult, for the interactions of neigh-
boring molecules complicate matters even more than in the case of the
nonpolar dielectric.

If you apply an electric field of 104 V/m to water, the resulting polar-
ization, P = χeε0E = 7 · 10−6 C/m2, is equivalent to the alignment of
1.1 · 1024 H2O dipoles per cubic meter, or about one molecule in 30,000.
Even so, this polarization is an order of magnitude greater than that
caused by the same field in any nonpolar dielectric.

10.13 Polarization in changing fields
So far we have considered only electrostatic fields in matter. We need
to look at the effects of electric fields that are varying in time, like the
field in a capacitor used in an alternating-current circuit. The important
question is, will the changes in polarization keep up with the changes in
the field? Will the ratio of P to E, at any instant, be the same as in a static
electric field? For very slow changes we should expect no difference but,
as always, the criterion for slowness depends on the particular physical
process. It turns out that induced polarization and the orientation of per-
manent dipoles are two processes with quite different response times.

The induced polarization of atoms and molecules occurs by the
distortion of the electronic structure. Little mass is involved, and the
structure is very stiff; its natural frequencies of vibration are extremely
high. To put it another way, the motions of the electrons in atoms and
molecules are characterized by periods on the order of 10−16 s – something
like the period of a visible light wave. To an atom, 10−14 s is a long time.
It has no trouble readjusting its electronic structure in a time like that.
Because of this, strictly nonpolar substances behave practically the same
from direct current (zero frequency) up to frequencies close to those
of visible light. The polarization keeps in step with the field, and the
susceptibility χe = P/ε0E is independent of frequency.

The orientation of a polar molecule is a process quite different from
the mere distortion of the electron cloud. The whole molecular frame-
work has to rotate. On a microscopic scale, it is rather like turning a
peanut end for end in a bag of peanuts. The frictional drag tends to make
the rotation lag behind the torque and to reduce the amplitude of the
resulting polarization. Where on the time scale this effect sets in varies
enormously from one polar substance to another. In water, the “response
time” for dipole reorientation is something like 10−11 s. The dielectric
constant remains around 80 up to frequencies on the order of 1010 Hz.
Above 1011 Hz, κ falls to a modest value typical of a nonpolar liquid.
The dipoles simply cannot follow so rapid an alternation of the field.



10.14 The bound-charge current 505

100
Water, 20�C

Frequency of oscillating electric field (cycles/sec)

D
ie

le
ct

ri
c 

co
ns

ta
nt

, k

Ice, –1�C

Ice, –40�C

80

60

40

20

102 104 106 108 1010 1012

Figure 10.29.
The variation with frequency of the dielectric
constant of water and ice. Based on information
from Smyth (1955) for water data, and Auty and
Cole (1952) for ice data.

In other substances, especially solids, the characteristic time can be much
longer. In ice just below the freezing point, the response time for electri-
cal polarization is around 10−5 s. Figure 10.29 shows some experimental
curves of dielectric constant versus frequency for water and ice.

10.14 The bound-charge current
Wherever the polarization in matter changes with time, there is an elec-
tric current, a genuine motion of charge. Suppose there are N dipoles per
cubic meter of dielectric, and that in the time interval dt each changes
from p to p + dp. Then the macroscopic polarization density P changes
from P = Np to P + dP = N(p + dp). Suppose the change dp was
effected by moving a charge q through a distance ds, in each atom:
q ds = dp. Then during the time dt there was actually a charge cloud of
density ρ = Nq, moving with velocity v = ds/dt. This is a conduction
current of a certain density J in coulombs per second per square meter:

J = ρv = Nq
ds
dt

= N
dp
dt

�⇒ J = dP
dt

(10.74)

The connection between rate of change of polarization and current den-
sity, J = dP/dt, is independent of the details of the model. A changing
polarization is a conduction current, not essentially different from any
other. Note that if we take the divergence of both sides of Eq. (10.74) and
use Eq. (10.61), we obtain div J = d(div P)/dt = −dρbound/dt, which is
consistent with the continuity equation in Eq. (4.10).

Naturally, such a current is a source of magnetic field. If there are
no other currents around, we should write Maxwell’s equation, curl B =
μ0ε0(∂E/∂t) + μ0J, as

curl B = μ0ε0
∂E
∂t

+ μ0
∂P
∂t

. (10.75)
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The only difference between an “ordinary” conduction current den-
sity and the current density ∂P/∂t is that one involves free charge in
motion, the other bound charge in motion. There is one rather obvious
practical distinction – you can’t have a steady bound-charge current, one
that goes on forever unchanged. Usually we prefer to keep account sepa-
rately of the bound-charge current and the free-charge current, retaining
J as the symbol for the free-charge current density only. Then to include
all the currents in Maxwell’s equation we have to write it this way:

curl B = μ0ε0
∂E
∂t

+ μ0
∂P
∂t

+ μ0J. (10.76)

bound-charge
current density

free-charge
current density

In a linear dielectric medium, we can write ε0E+P = εE, allowing
a shorter version of Eq. (10.76):

curl B = μ0ε
∂E
∂t

+ μ0J. (10.77)

More generally, Eq. (10.76) can also be abbreviated by introduc-
ing the vector D, previously defined in any medium as ε0E + P (which
reduces to εE in a linear dielectric):

curl B = μ0
∂D
∂t

+ μ0J (10.78)

The term ∂D/∂t is usually referred to as the displacement current. Actu-
ally, the part of it that involves ∂P/∂t represents, as we have seen, an
honest conduction current, real charges in motion. The only part of the
total current density that is not simply charge in motion is the ∂E/∂t part,
the true vacuum displacement current which we discussed in Chapter 9.
Incidentally, if we want to express all components of the full current den-
sity in units corresponding to those of J, we can factor out the μ0 and
write Eq. (10.76) as follows:

curl B = μ0

(
ε0

∂E
∂t

+ ∂P
∂t

+ J
)

. (10.79)

free- 
charge
current 
density

bound- 
charge
current 
density

vacuum 
displacement
current 
density

Involved in the distinction between bound charge and free charge is a
question we haven’t squarely faced: can one always identify unambigu-
ously the “molecular dipole moments” in matter, especially solid mat-
ter? The answer is no. Let us take a microscopic view of a thin wafer
of sodium chloride crystal. The arrangement of the positive sodium ions
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Figure 10.30.
An ionic lattice, with charges grouped in pairs as
“molecules,” in two ways: polarization vector
directed downward (a), or upward (b). The
systems are physically identical; the difference
is only in the description.

and the negative chlorine ions was shown in Fig. 1.7. Figure 10.30 is
a cross section through the crystal, which extends on out to the right
and the left. If we choose to, we may consider an adjacent pair of ions
as a neutral molecule with a dipole moment. Grouping them as in
Fig. 10.30(a), we describe the medium as having a uniform macroscopic
polarization density P, a vector directed downward. At the same time, we
observe that there is a layer of positive charge over the top of the crystal
and a layer of negative charge over the bottom, which, not having been
included in our molecules, must be accounted free charge.

Now we might just as well have chosen to group the ions as in
Fig. 10.30(b). According to that description, P is a vector upward, but
we have a negative free-charge layer on top of the crystal and a pos-
itive free-charge layer beneath. Either description is correct. You will
have no trouble finding another one, also correct, in which P is zero and
there is no free charge. Each description predicts E = 0. The macro-
scopic field E is an observable physical quantity. It can depend only on
the charge distribution, not on how we choose to describe the charge
distribution.

This example teaches us that in the real atomic world the distinction
between bound charge and free charge is more or less arbitrary, and so,
therefore, is the concept of polarization density P. The molecular dipole
is a well-defined notion only where molecules as such are identifiable –
where there is some physical reason for saying, “This atom belongs to
this molecule and not to that.” In many crystals such an assignment is
meaningless. An atom or ion may interact about equally strongly with
all its neighbors; one can only speak of the whole crystal as a single
molecule.

10.15 An electromagnetic wave in a dielectric
In Eq. (9.17) we wrote out Maxwell’s equations for the electric and mag-
netic fields in vacuum, including source terms – charge density ρ and
current density J. Now we want to consider an electromagnetic field in
an unbounded dielectric medium. The dielectric is a perfect insulator,
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we shall assume, so there is no free-charge current. That is, the last term
on the right in Eqs. (10.76) through (10.79), the free-charge current den-
sity J, will be zero. No free charge is present either, but there could be
a nonzero density of bound charge if div E is not zero. Let us agree to
consider only fields with div E = 0. Then ρ, both bound and free, will be
zero throughout the medium. No change is called for in the first induc-
tion equation, curl E = −∂B/∂t. For the second equation, we now take
Eq. (10.77) without the free-charge-current term: curl B = μ0ε(∂E/∂t).
The dielectric constant ε takes account of the bound-charge current as
well as the vacuum displacement current. Our complete set of equations
has become

curl E = −∂B
∂t

, div E = 0;

curl B = μ0ε
∂E
∂t

, div B = 0. (10.80)

These differ from Eq. (9.18) only in the replacement of ε0 with ε in the
second induction equation.

As we did in Section 9.4, let us construct a wavelike electromagnetic
field that can be made to satisfy Maxwell’s equations. This time we give
our trial wave function a slightly more general form:

E = ẑE0 sin(ky − ωt),
B = x̂B0 sin(ky − ωt). (10.81)

The angle (ky−ωt) is called the phase of the wave. For a point that
moves in the positive y direction with speed ω/k, the phase ky−ωt
remains constant. In other words, ω/k is the phase velocity of this wave.
This term is used when it is necessary to distinguish between two veloci-
ties, phase velocity and group velocity. There is no difference in the case
we are considering, so we shall call ω/k simply the wave velocity, the
same as v in our discussion in Section 9.4. At any fixed location, such
as y = y0, the fields oscillate in time with angular frequency ω. At any
instant of time, such as t = t0, the phase differs by 2π at planes one
wavelength λ apart, where λ = 2π/k.

The divergence equations in Eq. (10.80) are quickly seen to be satis-
fied by the wave in Eq. (10.81). For the curl equations, the space and time
derivatives we need are those listed in Eq. (9.24) with small alterations:

curl E = x̂E0k cos(ky − ωt),
∂E
∂t

= −ẑE0ω cos(ky − ωt),

curl B = −ẑB0k cos(ky − ωt),
∂B
∂t

= −x̂B0ω cos(ky − ωt).

(10.82)
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Substituting these into Eq. (10.80), we find that the curl equations are
satisfied if

ω

k
= ± 1√

μ0ε
and E0 = ± B0√

μ0ε
(10.83)

The wave velocity v=ω/k differs from the velocity of light in vac-
uum (which is c= 1/

√
μ0ε0) by the factor

√
ε0/ε = 1/

√
κ . Since κ > 1,

we have v < c. The electric and magnetic field amplitudes, E0 and B0,
which were related by E0 = cB0 for the wave in vacuum, here are related
by E0 = vB0, where v= 1/

√
μ0ε. For a given magnetic amplitude B0, the

electric amplitude E0 is smaller in the dielectric than in vacuum. In other
respects the wave resembles our plane wave in vacuum: B is perpendic-
ular to E, and the wave travels in the direction of E × B. Of course, if
we compare a wave in a dielectric with a wave of the same frequency in
vacuum, the wavelength λ in the dielectric will be less than the vacuum
wavelength by 1/

√
κ since frequency×wavelength= velocity.

Light traveling through glass provides an example of the wave just
described. In optics it is customary to define n, the index of refraction
of a medium, as the ratio of the speed of light in vacuum to the speed
of light in that medium. We have now discovered that n is nothing more
than

√
κ . In fact, we have now laid most of the foundation for a classical

theory of optics. Of course, we must be careful to use the appropriate
value of κ . Take water, for example. If we use the κ = 80 value from
Table 10.1, we obtain n ≈ 9. But the actual index of refraction of water
is n = 1.33. What’s going on here? Hint: The answer is contained in a
figure in this chapter.

10.16 Applications
The pollination of flowers by bees is helped by polarization effects.
When bees travel through the air, they become positively charged due to
triboelectric effects with the air; air molecules strip off electrons from the
bee when its wings collide with the molecules. When the bee gets close to
the pollen on the anther of the flower, the bee’s charge polarizes the pollen,
which then experiences a dipole attraction toward the bee. The pollen
jumps to the bee and lands on the bee’s hairs (while maintaining zero
net charge, because the hairs aren’t conductive). When the bee then gets
close to the stigma of a flower, it induces a negative charge on the stigma.
The electric field from the somewhat pointed stigma wins out over the
field from the somewhat rounded bee, so the pollen jumps to the stigma.
Note the lack of symmetry between the anther and the stigma; the anther
gives up the pollen, while the stigma attracts it. This lack of symmetry
arises mainly from the fact that the stigma has a more conductive path to
ground than the anther has, so it can acquire a net negative charge when
the bee is near. The stigma’s attraction to the pollen is therefore of the
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monopole–dipole type, whereas the anther’s attraction to the pollen is of
the smaller dipole–dipole type.

The ability of the gecko lizard to stick to a window or walk upside
down on a ceiling is due to the van der Waals force. This force is an inter-
action between dipoles in the gecko’s feet and dipoles on the surface. The
force falls off rapidly with distance, being proportional to 1/r7. Equiva-
lently, the potential energy is proportional to 1/r6. (In short, quantum
fluctuations create random dipole moments in a given molecule. The
resulting E ∝ 1/r3 field induces a dipole moment p ∝ E ∝ 1/r3 in
a neighboring molecule. The resulting (p · ∇)E force on this molecule is
then proportional to 1/r7.) The key for geckos, therefore, is to make the
distance r be as small as possible. They do this by having hundreds of
thousands of tiny hairs (called setae) on their feet, each of which contains
hundreds of even tinier hairs called spatulae. These spatulae are able to
penetrate the nooks and crannies on the surface, making the various dis-
tances r extremely small. If all of a gecko’s spatulae are engaged, it could
walk on a ceiling with a few hundred pounds strapped to it!

The main ingredient in soaps and detergents is a surfactant. This is
a molecule in the form of a long chain with a polar end and a nonpolar
end. The polar end is attracted to the polar water molecules (it is called
hydrophilic), whereas the nonpolar end isn’t (it is called hydrophobic).
The nonpolar end is instead attracted to other hydrophobic molecules,
such as oils and other grime on you or your clothes. More precisely,
the hydrophobic ends/molecules aren’t actually attracted to each other.
Rather, the attraction of all the polar molecules to themselves has the
effect of forcing all the hydrophobic ends/molecules into little clumps,
called micelles. This gives the appearance of an attraction. (The same
reasoning leads to the everyday fact that oil and water don’t mix.) The
clumps (with the oils and nonpolar surfactant ends in the interior, and the
polar surfactant ends on the surface) float around in the water and can be
eliminated by discarding the water, that is, by rinsing. So your laundry
detergent won’t work without water!

The large dipole moment of a water molecule is what allows a
microwave oven to heat your food. The alternating electric field of the
microwave radiation (created by a magnetron; see Section 8.7) causes
the water dipoles to rotate back and forth. This jiggling of the molecules
causes them to bump into each other, which results in the thermal energy
(the heat) that you observe. The specific microwave frequency that is
used (usually about 2.5 GHz, which corresponds to a wavelength of
about 12 cm) has nothing to do with the resonant vibrational frequency
of a free water molecule in vapor, which is about 20 GHz. There isn’t
anything special about the 12 cm wavelength, although if it were much
shorter the waves wouldn’t penetrate the food as well. The water
molecules in ice can’t rotate as easily, so that’s why it takes a while to
defrost frozen food. You can’t just crank up the power because, if one
part of the food thaws first, then it will absorb energy much faster than
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the remaining frozen part. You will then end up with, for example, thor-
oughly cooked meat right next to frozen meat. The defrost cycle in a
microwave oven functions by simply shutting off for periods of time,
allowing the heat to diffuse.

When some materials, such as quartz, are put under stress and bent,
a voltage difference arises between different parts. This is known as the
piezoelectric effect. (Conversely, if a voltage difference is applied to dif-
ferent parts, the material will bend.) What happens is that the molecules
are stretched or squashed, and for certain configurations this results in the
molecules acquiring a dipole moment. The material therefore behaves
like a polarized dielectric; there are net surface charges, so the result is
effectively a capacitor with a voltage difference between the plates. The
piezoelectric property of quartz allows your wristwatch to keep time.
A tiny quartz crystal, which is the analog of the pendulum in a pendulum
clock, is cut so that it vibrates with a specific resonant frequency, usually
215 = 32,768 Hz. (This power of 2 makes it easy for a chain of frequency
dividers to generate the desired 1 Hz frequency.) Via the piezoelectric
effect, an electric signal with this 32,768 Hz frequency is sent to a cir-
cuit. The circuit then amplifies the signal and sends it back to the crystal,
providing the necessary driving force to keep the resonant oscillation
going. Quartz has a very high Q value, so only a tiny amount of input
energy is needed. That is why the battery can last so long. The oscilla-
tions are initially produced by the random ac noise in the circuit. This
ac noise contains at least a little bit of the resonant frequency, which the
crystal responds to.

CHAPTER SUMMARY
• If a capacitor is filled with a dielectric (an insulator), the capacitance

increases by a factor κ , known as the dielectric constant. This is a
consequence of the fact that the polarization of the molecules in the
dielectric causes layers of charge to form near the capacitor plates,
partially canceling the free charge.

• The potential due to a charge distribution can be written as the sum of
terms with increasing powers of 1/r. The coefficients of these terms
are called moments. A net charge has a monopole moment. Two oppo-
site monopoles create a dipole. Two opposite dipoles create a quadru-
pole, and so on. The potential and field due to a dipole are given by

φ(r, θ) = p cos θ

4πε0r2 , E(r, θ) = p
4πε0r3

(
2 cos θ r̂ + sin θ θ̂

)
.

(10.84)

• The torque on an electric dipole is N= p×E. The force is Fx =
p · ∇Ex, and likewise for the y and z components.
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• An external electric field will cause an atom to become polarized. The
atomic polarizability α is defined by p = αE. However, the quantity
α/4πε0, with has the dimensions of volume, is also commonly called
the atomic polarizability. In order of magnitude, α/4πε0 equals an
atomic volume.

• Some molecules have a permanent dipole moment; the moment exists
even in the absence of an external electric field. These are called polar
molecules. An external electric field causes the dipoles to align (at
least partially), which leads to an overall polarization of the material.

• The polarization per unit volume is given by P = pN. Uniformly
polarized matter is equivalent to a surface charge density σ = P, or
σ = P cos θ if the surface is tilted with respect to the direction of P.

• When we talk about the electric field inside matter, we mean the spa-
tial average, 〈E〉 = (1/V)

∫
E dv. Inside a uniformly polarized slab,

this average is −P/ε0.
• The electric susceptibility χe is defined by

χe ≡ P
ε0E

�⇒ χe = κ − 1. (10.85)

• The field inside a uniformly polarized sphere is −P/3ε0. If a dielectric
sphere is placed in a uniform electric field E0, the resulting polariza-
tion is uniform and is given by P = 3ε0(κ − 1)E0/(κ + 2).

• For any material, div P = −ρbound. Combining this with Gauss’s law,
div E = ρtotal/ε0, gives

div D = ρfree, where D ≡ ε0E + P. (10.86)

D is known as the electric displacement vector. If additionally we are
dealing with a linear dielectric, then

D ≡ εE, where ε ≡ κε0. (10.87)

• If an external electric field is applied to a dielectric containing polar
molecules, the polarizations tend to align with the field, but thermal
energy generally prevents the alignment from being large. The suscep-
tibility is given roughly by χe ≈ Np2/ε0kT .

• In a rapidly changing electric field, the induced polarization of atoms
and molecules can keep up with the field at high frequencies. How-
ever, the polarization arising from polar molecules cannot, because it
is much more difficult to rotate a molecule as a whole than simply to
stretch it.

• The bound-charge current density satisfies Jbound = dP/dt. This rep-
resents a true current, but when writing the “curl B” Maxwell equa-
tion it is often convenient to separate this current from the free-charge
current:

curl B = μ0

(
ε0

∂E
∂t

+ ∂P
∂t

+ Jfree

)
≡ μ0

(
∂D
∂t

+ Jfree

)
. (10.88)
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• An electromagnetic wave in a dielectric travels with speed
v= 1/

√
μ0ε. This is slower than the speed c= 1/

√
μ0ε0 in vacuum

by the factor 1/
√

κ . The index of refraction equals the inverse of this:
n=√

κ . The E and B fields are still perpendicular to each other and to
the direction of travel. Their amplitudes are related by E0 = vB0.

Problems
10.1 Leaky cell membrane **

In Section 4.11 we discussed the relaxation time of a capacitor
filled with a material having a resistivity ρ. If you look back at
that discussion you will notice that we dodged the question of the
dielectric constant of the material. Now you can repair that omis-
sion, by introducing κ properly into the expression for the time
constant. A leaky capacitor important to us all is formed by the
wall of a living cell, an insulator (among its many other functions!)
that separates two conducting fluids. Its electrical properties are of
particular interest in the case of the nerve cell, for the propagation
of a nerve impulse is accompanied by rapid changes in the electric
potential difference between interior and exterior.
(a) The cell membrane typically has a capacitance around 1 micro-

farad per square centimeter of membrane area. It is believed
the membrane consists of material having a dielectric constant
about 3. What thickness does this imply?

(b) Other electrical measurements have indicated that the resis-
tance of 1 cm2 of cell membrane, measured from the conduct-
ing fluid on one side to that on the other, is around 1000 ohms.
Show that the time constant of such a leaky capacitor is inde-
pendent of the area of the capacitor. How large is it in this
case? Where would the resistivity ρ of such membrane mater-
ial fall on the chart of Fig. 4.8?

10.2 Force on a dielectric **
A rectangular capacitor with side lengths a and b has separation
s, with s much smaller than a and b. It is partially filled with a
dielectric with dielectric constant κ . The overlap distance is x; see
Fig. 10.31. The capacitor is isolated and has constant charge Q.

s

Q

−Q

b

x

Figure 10.31.

(a) What is the energy stored in the system? (Treat the capacitor
like two capacitors in parallel.)

(b) What is the force on the dielectric? Does this force pull the
dielectric into the capacitor or push it out?

10.3 Energy of dipoles **
Find the potential energy of the first and third dipole configura-
tions in Exercise 10.29 (the second and fourth require only a slight
modification), by explicitly looking at the potential energy of the
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relevant pairs of point charges in the dipoles, and then making suit-
able approximations. Let the charges q and −q in each dipole be
separated by a distance �, and let the centers of the dipoles be sep-
arated by a distance d (with � � d).

10.4 Dipole polar components **
Show that Eq. (10.18) follows from Eq. (10.17). Hint: You can write
the Cartesian unit vectors in terms of the polar unit vectors, or
you can project the vector (Ex, Ez) onto the radial and tangential
directions.

10.5 Average field **
(a) (This problem builds on the results from Problem 1.28.) Given

an arbitrary collection of charges inside a sphere of radius R,
show that the average electric field over the volume of the
sphere is given by Eavg = −p/4πε0R3, where p is the total
dipole moment, measured relative to the center.

(b) For the specific case of the dipole shown in Fig. 10.32(a), find

(a)

(b)

R

q

–q

R

q

–q

Figure 10.32.

the average electric field over both the surface and the volume
of the sphere of radius R.

(c) Repeat for the case shown in Fig. 10.32(b).

10.6 Quadrupole tensor ***
You should see the quadrupole tensor at least once in your life, so
here it is. Calculate the general form of the quadrupole tensor by
writing the R in Eq. (10.5) in Cartesian form as

R =
√

(x1 − x′1)2 + (x2 − x′2)2 + (x3 − x′3)2, (10.89)

and then performing a Taylor expansion as we did in Section 10.2.
(It’s a little cleaner to work with x1, x2, x3 instead of x, y, z.) Your
goal is to write the 1/r3 part of the potential in a form that has
all of its dependence on the primed coordinates collected into a
matrix. (By analogy, the 1/r2 part of the potential in Eq. (10.12)
has all of its dependence on the primed coordinates collected into
the vector p given by Eq. (10.13).)

10.7 Force on a dipole **
Derive Eq. (10.26). As usual, work in the approximation where the
dipole length s is small. Hint: Let the two charges be at positions r
and r + s.

10.8 Force from an induced dipole **
Between any ion and any neutral atom there is a force that arises as
follows. The electric field of the ion polarizes the atom; the field
of that induced dipole reacts on the ion. Show that this force is
always attractive, and that it varies with the inverse fifth power of
the distance of separation r. Derive an expression for the associated
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potential energy, with zero energy corresponding to infinite separa-
tion. For what distance r does this potential energy have the same
magnitude as kT at room temperature (which is 4 · 10−21 joule)
if the ion is singly charged and the atom is a sodium atom? (See
Table 10.2.)

10.9 Polarized water **
The electric dipole moment of the water molecule is given in
Fig. 10.14. Imagine that all the molecular dipoles in a cup of water
could be made to point down. Calculate the magnitude of the
resulting surface charge density at the upper water surface, and
express it in electrons per square centimeter.

10.10 Tangent field lines ***
Assume that the uniform field E0 that causes the electric field in
Fig. 10.27 is produced by large capacitor plates very far away. Con-
sider the special set of field lines that are tangent to the sphere.
These lines hit each of the distant capacitor plates in a circle of
radius r. What is r in terms of the radius R and dielectric constant κ

of the sphere? Hint: Consider a well-chosen Gaussian surface that
has the horizontal great circle of the sphere as part of its boundary.

10.11 Bound charge and divergence of P ***
Derive Eq. (10.61) by considering the volume integral of both sides
of the equation. Assume that the dipoles consist of charges ±q sep-
arated by a distance s. Hint: Consider a small patch of the surface
bounding a given volume. What causes there to be a net bound
charge inside the volume due to the dipoles near this patch?

10.12 Boundary conditions on D **
Using D ≡ ε0E + P and div D = ρfree, derive the general rules for
the discontinuities (if any) in D‖ and D⊥ across the surface of an
arbitrarily shaped polarized material (with no free charge).

10.13 Q for a leaky capacitor ***
Consider an oscillating electric field, E0 cos ωt, inside a dielectric
medium that is not a perfect insulator. The medium has dielec-
tric constant κ and conductivity σ . This could be the electric field
in some leaky capacitor that is part of a resonant circuit, or it
could be the electric field at a particular location in an electro-
magnetic wave. Show that the Q factor, as defined by Eq. (8.12), is
ωε/σ for this system, and evaluate it for seawater at a frequency of
1000 MHz. You will need to use the result from Exercise 10.42.
(The conductivity is given in Table 4.1, and the dielectric constant
may be assumed to be the same as that of pure water at the same
frequency. See Fig. 10.29.) What does your result suggest about
the propagation of decimeter waves through seawater?
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10.14 Boundary conditions on E and B **
Find the boundary conditions on E‖, E⊥, B‖, and B⊥ across the
interface between two linear dielectrics. Assume that there are no
free charges or free currents present.

Exercises
10.15 Densities on a capacitor **

Consider the setup of Problem 10.2. In terms of the various param-
eters given there, find the charge densities on the left and right parts
of the capacitor. You should find that as x increases, the charge den-
sities on both parts of plates decrease. At first glance this seems a
bit absurd, so try to explain intuitively how it is possible.

10.16 Leyden jar **
In 1746 a Professor Musschenbroek in Leiden charged water in a
bottle by touching a wire, projecting from the neck of the bottle,
to his electrostatic machine. When his assistant, who was holding
the bottle in one hand, tried to remove the wire with the other, he
got a violent shock. Thus did the simple capacitor force itself on
the attention of electrical scientists. The discovery of the “Leyden
jar” revolutionized electrical experimentation. In 1747 Benjamin
Franklin was already writing about his experiments with
“Mr. Musschenbroek’s wonderful bottle.” The jar was really noth-
ing but glass with a conductor on each side of it. To see why it
caused such a sensation, estimate roughly the capacitance of a jar
made of a 1 liter bottle with walls 2 mm thick, the glass having a
dielectric constant 4. What diameter sphere, in air, would have the
same capacitance?

10.17 Maximum energy storage **
Materials to be used as insulators or dielectrics in capacitors are
rated with respect to dielectric strength, defined as the maximum
internal electric field the material can support without danger of
electrical breakdown. It is customary to express the dielectric
strength in kilovolts per mil. (One mil is 0.001 inch, or 0.00254
cm.) For example, Mylar (a Dupont polyester film) is rated as hav-
ing a dielectric strength of 14 kilovolts/mil when it is used in a thin
sheet – as it would be in a typical capacitor. The dielectric con-
stant κ of Mylar is 3.25. Its density is 1.40 g/cm3. Calculate the
maximum amount of energy that can be stored in a Mylar-filled
capacitor, and express it in joules/kg of Mylar. Assuming the elec-
trodes and case account for 25 percent of the capacitor’s weight,
how high could the capacitor be lifted by the energy stored in it?
Compare the capacitor as an energy storage device with the battery
in Exercise 4.41.
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10.18 Partially filled capacitors **
Figure 10.33 shows three capacitors of the same area and plate sep-
aration. Call the capacitance of the vacuum capacitor C0. Each of
the others is half-filled with a dielectric, with the same dielectric
constant κ , but differently disposed, as shown. Find the capaci-
tance of each of these two capacitors. (Neglect edge effects.)

C0

C = ?

C = ?

Figure 10.33.

10.19 Capacitor roll **
You have a supply of polyethylene tape, with dielectric constant 2.3,
that is 2.25 inches wide and 0.001 inch thick; you also have a supply
of aluminum tape that is 2 inches wide and 0.0005 inch thick. You
want to make a capacitor of about 0.05 microfarad capacitance, in
the form of a compact cylindrical roll. Describe how you might
do this, estimating the amount of tape of each kind that would be
needed, and the overall diameter of the finished capacitor. (It may
help to look at Problem 3.21 and Exercise 3.57.)

10.20 Work in a dipole field *
How much work is done in moving unit positive charge from A to
B in the field of the dipole p shown in Fig. 10.34?

B

p
A

45� 45�

a

Figure 10.34.

10.21 A few dipole moments *
What is the magnitude and direction of the dipole moment vector
p of each of the charge distributions in parts (a), (b), and (c) of
Fig. 10.35?

10.22 Fringing field from a capacitor *
A parallel-plate capacitor, with a measured capacitance C = 250
picofarads (250 · 10−12 F), is charged to a potential difference of
2000 volts. The plates are 1.5 cm apart. We are interested in the
field outside the capacitor, the “fringing” field which we usually
ignore. In particular, we would like to know the field at a distance
from the capacitor large compared with the size of the capacitor
itself. This can be found by treating the charge distribution on the
capacitor as a dipole. Estimate the electric field strength

(a) at a point 3 meters from the capacitor in the plane of the plates;
(b) at a point the same distance away, in a direction perpendicular

to the plates.

10.23 Dipole field plus uniform field **
A dipole of strength p = 6 · 10−10 C-m is located at the origin,
pointing in the ẑ direction. To its field is added a uniform electric
field of strength 150 kV/m in the ŷ direction. At how many places,
located where, is the total field zero?

10.24 Field lines **
A field line in the dipole field is described in polar coordinates by
the very simple equation r = r0 sin2 θ , in which r0 is the radius



518 Electric fields in matter

at which the field line passes through the equatorial plane of the
dipole. Show that this is true by demonstrating that at any point on
that curve the tangent has the same direction as the dipole field.

10.25 Average dipole field on a sphere **
By direct integration, show that the average of the dipole field,
over the surface of a sphere centered at the dipole, is zero. You
will want to work with the Cartesian components of E, but feel
free to write these components in terms of spherical coordinates,
as in Eq. (10.17).
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Figure 10.35.

10.26 Quadrupole for a square **
Calculate the quadrupole matrix Q (see the result of Problem 10.6)
for the configuration of charges in Fig. 10.5. Then show that the
potential at a point at (large) radius r on the z ≡ x3 axis equals
3ea2/4πε0r3, where a is the distance from all the charges to the
origin. What is the potential at the point

(
r/
√

2
)
(1, 0, 1)?

10.27 Pascal’s triangle and the multipole expansion **
(a) If two monopoles with opposite sign are placed near each other,

they make a dipole. Likewise, if two dipoles with opposite sign
are placed near each other, they make a quadrupole, and so
on. Explain how this fact was used in Fig. 10.36 to obtain
each of the configurations from the one above it. Note that the
magnitudes of the charges form Pascal’s triangle. This triangle
provides a very simple way of generating successively higher
terms in the multipole expansion.

(b) If the bottom configuration in Fig. 10.36 is indeed an octupole,
then the leading-order term in the potential at the point P in
Fig. 10.37 must be of order 1/r4. (This is two orders of 1/r
higher than the 1/r2 dipole potential.) Verify this. That is, use
a Taylor series to show that the order 1, 1/r, 1/r2, and 1/r3

terms in the potential vanish. Define r to be the distance to the
rightmost charge, and assume r � a. This problem is easy if
you use the Series operation in Mathematica, but you should
work it out by hand. It is interesting to see how each of the
terms vanishes.

As you will discover, this result is related to a nice little the-
orem about the sum

∑N
k=0

(N
k

)
km(−1)k, where m can take on

any value from 0 to N − 1. You are encouraged to think about
this, although you don’t need to prove it here. Hint: Expand
(1 − x)N with the binomial theorem, and take the derivative.
Then multiply by x and take the derivative again. Repeat this
process as needed, and then set x = 1.

10.28 Force on a dipole **
What are the magnitude and direction of the force on the central
dipole caused by the field of the other two dipoles in Fig. 10.38?
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10.29 Energy of dipole pairs **
Shown in Fig. 10.39 are four different arrangements of the elec-
tric dipole moments of two neighboring polar molecules. Find the
potential energy of each arrangement, the potential energy being
defined as the work done in bringing the two molecules together
from infinite separation while keeping their moments in the
specified orientation. That is not necessarily the easiest way to cal-
culate it. You can always bring them together one way and then
rotate them.

1

1–1

1 1–2

Monopole

Dipole

Quadrupole

3 1–1 –3

Octupole

Figure 10.36.

10.30 Polarized hydrogen **
A hydrogen atom is placed in an electric field E. The proton
and the electron cloud are pulled in opposite directions. Assume
simplistically (since we are concerned only with a rough result
here) that the electron cloud takes the form of a uniform sphere
with radius a, with the proton a distance �z from the center, as
shown in Fig. 10.40. Find �z, and show that your result agrees with
Eq. (10.27).

10.31 Mutually induced dipoles **
Two polarizable atoms A and B are a fixed distance apart. The
polarizability of each atom is α. Consider the following intrigu-
ing possibility. Atom A is polarized by an electric field, the source
of which is the electric dipole moment pB of atom B. This dipole
moment is induced in atom B by an electric field, the source of
which is the dipole moment pA of atom A. Can this happen? If so,
under what conditions? If not, why not?

10.32 Hydration *
The phenomenon of hydration is important in the chemistry of
aqueous solutions. This refers to the fact that an ion in solution
gathers around itself a cluster of water molecules, which cling to
it rather tightly. The force of attraction between a dipole and a
point charge is responsible for this. Estimate the energy required to
separate an ion carrying a single charge e from a water molecule,
assuming that initially the ion is located 1.5 angstroms from the
effective location of the H2O dipole. (This distance is actually a
rather ill-defined quantity, since the water molecule, viewed from
close up, is a charge distribution, not an infinitesimal dipole.) Which
part of the water molecule will be found nearest to a negative ion?
See Fig. 10.14 for the dipole moment of the water molecule.

–q 3q –3q q

a raa P
Octupole

Figure 10.37.
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10.33 Field from hydrogen chloride *
A hydrogen chloride molecule is located at the origin, with the
H–Cl line along the z axis and Cl uppermost. What is the direc-
tion of the electric field, and its strength in volts/m, at a point
10 angstroms up from the origin, on the z axis? At a point 10
angstroms out from the origin, on the y axis? (p is given in
Fig. 10.14.)

pp
p

b b

Figure 10.38.

(a)

(b)

(c)

(d )

p p

d

Figure 10.39.

10.34 Hydrogen chloride dipole moment **
In the hydrogen chloride molecule the distance between the chlo-
rine nucleus and the proton is 1.28 angstroms. Suppose the electron
from the hydrogen atom is transferred entirely to the chlorine atom,
joining with the other electrons to form a spherically symmetrical
negative charge that is centered on the chlorine nucleus. How does
the electric dipole moment of this model compare with the actual
HCl dipole moment given in Fig. 10.14? Where must the actual
“center of gravity” of the negative charge distribution be located
in the real molecule? (The chlorine nucleus has a charge 17e, and
the hydrogen nucleus has a charge e.)

10.35 Some electric susceptibilities **
From the values of κ given for water, ammonia, and methanol in
Table 10.1, we know that the electric susceptibility χe for each liq-
uid is given by χe = κ−1. Our theoretical prediction in Eq. (10.73)
can be written χe = CNp2/ε0kT , with the factor C as yet unknown,
but expected to have order of magnitude unity. The densities of the
liquids are 1.00, 0.82, and 1.33 g/cm3, respectively; their molecular
weights are 18, 17, and 32. Taking the value of the dipole moment
from Fig. 10.14, find for each case the value of C required to fit the
observed value of χe.

10.36 Discontinuity in E⊥ **
Consider the polarized sphere from Section 10.9. Using the forms
of the internal and external electric fields, show that E⊥ has a dis-
continuity of P⊥/ε0 = P cos θ/ε0 everywhere on the surface of the
sphere.

Δz

e

a

Electron cloud
   (charge –e)

E

Proton

Figure 10.40.

10.37 E at the center of a polarized sphere **
If you don’t trust the E = −P/3ε0 result we obtained in Sec-
tion 10.9 for the field inside a uniformly polarized sphere, you
will find it more believable if you check it in a special case. By
direct integration of the contributions from the σ = P cos θ sur-
face charge density, show that the field at the center is directed
downward (assuming P points upward) with magnitude P/3ε0.

10.38 Uniform field via superposition **
In Section 10.9, the fact that the electric field is uniform inside the
polarized sphere was deduced from the form of the potential on the
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boundary. You can also prove it by superposing the internal fields
of two balls of charge whose centers are separated.

(a) Show that, inside a spherical uniform charge distribution, E is
proportional to r.

(b) Now take two spherical distributions with density ρ and −ρ,
centers at C1 and C2, and show that the resultant field is con-
stant and parallel to the line from C1 to C2. Verify that the field
can be written as −P/3ε0.

(c) Analyze in the same way the field of a long cylindrical rod that
is polarized perpendicular to its axis.

10.39 Conducting-sphere limit **
Our formula for the dielectric sphere in Section 10.10 can actually
serve to describe a metal sphere in a uniform field. To demonstrate
this, investigate the limiting case κ → ∞, and show that the exter-
nal field then takes on a form that satisfies the perfect-conductor
boundary conditions. What about the internal field? Make a sketch
of some field lines for this limiting case. What is the radius of a
conducting sphere with polarizability equal to that of the hydrogen
atom, given in Table 10.2?

10.40 Continuity of D *
Use the definition of D, namely D ≡ ε0E+P, to show that D is con-
tinuous across the faces of a uniformly polarized slab. Assume that
the polarization is perpendicular to the faces, and that the thickness
of the slab is small compared with the other two dimensions.

10.41 Discontinuity in D‖ **
Consider the polarized sphere from Section 10.9. Using the forms
of the internal and external electric fields, find the discontinuity in
D‖ across the surface of the sphere, as a function of θ .

10.42 Energy density in a dielectric **
By considering how the introduction of a dielectric changes the
energy stored in a capacitor, show that the correct expression for
the energy density in a dielectric must be εE2/2. Then compare the
energy stored in the electric field with that stored in the magnetic
field in the wave studied in Section 10.15.

10.43 Reflected wave ***
A block of glass, refractive index n=√

κ , fills the space y > 0, its
surface being the xz plane. A plane wave traveling in the positive
y direction through the empty space y < 0 is incident upon this
surface. The electric field in this wave is ẑEi sin(ky−ωt). There is a
transmitted wave inside the glass block, with an electric field given
by ẑEt sin(k′y − ωt). There is also a reflected wave in the space
y < 0, traveling away from the glass in the negative y direction.
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Its electric field is ẑEr sin(ky+ωt). Of course, each wave has its
magnetic field, of amplitude, respectively, Bi, Bt, and Br.

The total magnetic field must be continuous at y = 0; and the
total electric field, being parallel to the surface, must be continuous
also (see Problem 10.14). Show that these requirements, and the
relation of Bt to Et given in Eq. (10.83) (with the “0” subscript
changed to “t”), suffice to determine the ratio of Er to Ei. When
a light wave is incident normally at an air–glass interface, what
fraction of the energy is reflected if the index n is 1.6?



11
Magnetic fields in
matter

Overview Magnetic fields in matter are a bit more involved than
electric fields in matter. Our main goal in this chapter is to under-
stand the three types of magnetic materials: diamagnetic materials,
which are weakly repelled by a solenoid; paramagnetic mater-
ials, which are somewhat strongly attracted; and ferromagnetic
materials, which are very strongly attracted. As was the case in
Chapter 10, we will need to understand dipoles. The far field of a
magnetic dipole has the same form as that of an electric dipole, with
the magnetic dipole moment replacing the electric dipole moment.
However, the near fields are fundamentally different due to the
absence of magnetic charge. We will find that diamagnetism is
due to the fact that an applied magnetic field causes the mag-
netic dipole moment arising from the orbital motion of electrons
in atoms to pick up a contribution pointing opposite to the applied
field. In contrast, in the case of paramagnetism, the spin dipole
moment is the relevant one, and it picks up a contribution point-
ing in the same direction as the applied field. Ferromagnetism
is similar to paramagnetism, although a certain quantum phe-
nomenon makes the overall effect much larger; a ferromagnetic
dipole moment can exist in the absence of an external magnetic
field. Magnetized materials can be described by the magnetization
M, the curl of which gives the bound currents (which arise from
both orbital motion and spin). By considering separately the free
and bound currents, we are led to the field H (also called the
“magnetic field”) whose curl involves only the free current (unlike the
magnetic field B, whose curl involves all the current, by
Ampère’s law).
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Figure 11.1.
(a) A coil designed to produce a strong
magnetic field. The water-cooled winding is
shown in cross section. (b) A graph of the field
strength Bz on the axis of the coil.
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11.1 How various substances respond to a
magnetic field

Imagine doing some experiments with a very intense magnetic field. To
be definite, suppose we have built a solenoid of 10 cm inside diameter,
40 cm long, like the one shown in Fig. 11.1. Its outer diameter is 40 cm,
most of the space being filled with copper windings. This coil will pro-
vide a steady field of 3.0 tesla, or 30,000 gauss, at its center if supplied
with 400 kilowatts of electric power – and something like 30 gallons
of water per minute, to carry off the heat. We mention these practical
details to show that our device, though nothing extraordinary, is a pretty
respectable laboratory magnet. The field strength at the center is nearly
105 times the earth’s field, and probably 5 or 10 times stronger than the
field near any iron bar magnet or horseshoe magnet you may have experi-
mented with, although some rare-earth magnets can have fields of around
1 tesla.

The field will be fairly uniform near the center of the solenoid,
falling, on the axis at either end, to roughly half its central value. It will
be rather less uniform than the field of the solenoid in Fig. 6.18, since our
coil is equivalent to a “nested” superposition of solenoids with length–
diameter ratio varying from 4:1 to 1:1. In fact, if we analyze our coil in
that way and use the formula that we derived for the field on the axis
of a solenoid with a single-layer winding (see Eq. (6.56)), it is not hard
to calculate the axial field exactly. A graph of the field strength on the
axis, with the central field taken as 3.0 tesla = 30 kilogauss, is included
in Fig. 11.1. The intensity just at the end of the coil is 1.8 tesla, and in
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that neighborhood the field is changing with a gradient of approximately
17 tesla/m, or 1700 gauss/cm.

Maximum force
in this region

Figure 11.2.
An arrangement for measuring the force on a
substance in a magnetic field.

Let’s put various substances into this field and see if a force acts
on them. Generally, we do detect a force. It vanishes when the current
in the coil is switched off. We soon discover that the force is strongest
not when our sample of substance is at the center of the coil where the
magnetic field Bz is strongest, but when it is located near the end of
the coil where the gradient dBz/dz is large. From now on let us support
each sample just inside the upper end of the coil. Figure 11.2 shows one
such sample, contained in a test tube suspended by a spring which can
be calibrated to indicate the extra force caused by the magnetic field.
Naturally we have to do a “blank” experiment with the test tube and sus-
pension alone, to allow for the magnetic force on everything other than
the sample.

We find in such an experiment that the force on a particular sub-
stance – metallic aluminum, for instance – is proportional to the mass of
the sample and independent of its shape, as long as the sample is not too
large. (Experiments with a small sample in this coil show that the force
remains practically constant over a region a few centimeters in extent,
inside the end of the coil; if we use samples no more than 1 to 2 cm3 in
volume, they can be kept well within this region.) We can express our
quantitative results, for a given substance, as so many newtons force per
kilogram of sample, under the conditions Bz = 1.8 tesla, dBz/dz = 17
tesla/m.

But first the qualitative results, which are a bit bewildering. For
a large number of quite ordinary pure substances, the force observed,
although easily measurable, seems ridiculously small, despite all our
effort to provide an intense magnetic field. Typically, the force is 0.1
or 0.2 newtons per kilogram, that is, no more than a few percent of the
weight of the sample (which is 9.8 newtons per kilogram). It is directed
upward for some samples, downward for others. This has nothing to do
with the direction of the magnetic field, as we can verify by reversing the
current in the coil. Instead, it appears that some substances are always
pulled in the direction of increasing field intensity, others in the direc-
tion of decreasing field intensity, irrespective of the field direction.

We do find some substances that are attracted to the coil with con-
siderably greater force. For instance, copper chloride crystals are pulled
downward with a force of 2.8 newtons per kilogram of sample. Liquid
oxygen behaves spectacularly in this experiment; it is pulled into the coil
with a force nearly eight times its weight. In fact, if we were to bring
an uncovered flask of liquid oxygen up to the bottom end of our coil,
the liquid would be lifted right out of the flask. (Where do you think it
would end up?) Liquid nitrogen, on the other hand, proves to be quite
unexciting; it is pushed away from the coil with the feeble force of 0.1
newtons per kilogram. In Table 11.1 we have listed some results that one
might obtain in such an experiment. The substances, including those
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Table 11.1.
Force per kilogram near the upper end of the coil in our experiment,
where Bz = 1.8 tesla and dBz/dz = 17 tesla/m

Substance Formula Force (newtons)

Diamagnetic
Water H2O −0.22
Copper Cu −0.026
Sodium chloride NaCl −0.15
Sulfur S −0.16
Diamond C −0.16
Graphite C −1.10
Liquid nitrogen N2 −0.10 (78 K)

Paramagnetic
Sodium Na 0.20
Aluminum Al 0.17
Copper chloride CuCl2 2.8
Nickel sulfate NiSO4 8.3
Liquid oxygen O2 75 (90 K)

Ferromagnetic
Iron Fe 4000
Magnetite Fe3O4 1200

Direction of force: downward (into coil), +; upward, −.
All measurements were made at a temperature of 20◦C unless otherwise stated.
The three types of magnetism are defined in the text.

already mentioned, have been chosen to suggest, as best one can with
a sparse sampling, the wide range of magnetic behavior we find in ordi-
nary materials. Note that our convention for the sign of the force is that
a positive force is directed into the coil.

As you know, a few substances, of which the most familiar is metal-
lic iron, seem far more “magnetic” than any others. In Table 11.1 we give
the force per kilogram that would act on a piece of iron put in the same
position in the field as the other samples. Since 1 newton is about 0.22
pounds, the force per kilogram is roughly 900 pounds, or nearly 1 pound
for a 1 gram sample! (We would not have been so naive as to approach
our magnet with a gram of iron suspended in a test tube from a deli-
cate spring – a different suspension would have to be used.) Observe that
there is a factor of more than 105 between the force per kilogram on iron
and the force per kilogram on copper, elements not otherwise radically
different. Incidentally, this suggests that reliable magnetic measurements
on a substance like copper may not be easy. A few parts per million con-
tamination by metallic iron particles would utterly falsify the result.

There is another essential difference between the behavior of the
iron and the magnetite and that of the other substances in the table. Sup-
pose we make the obvious test, by varying the field strength of the mag-
net, to ascertain whether the force on a sample is proportional to the
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field. For instance, we might reduce the solenoid current by half, thereby
halving both the field intensity Bz and its gradient dBz/dz. We would
find, in the case of every substance above iron in the table, that the force
is reduced to one-fourth its former value, whereas the force on the iron
sample, and that on the magnetite, would be reduced only to one-half or
perhaps a little less. Evidently the force, under these conditions at least,
is proportional to the square of the field strength for all the other sub-
stances listed, but nearly proportional to the field strength itself for Fe
and Fe3O4.

It appears that we may be dealing with several different phenomena
here, and complicated ones at that. As a small step toward understanding,
we can introduce some classification.

(1) Diamagnetism First, those substances that are feebly repelled by
our magnet – water, sodium chloride, diamond, etc. – are called dia-
magnetic. The majority of inorganic compounds and practically all
organic compounds are diamagnetic. It turns out, in fact, that diamag-
netism is a property of every atom and molecule. When the opposite
behavior is observed, it is because the diamagnetism is outweighed
by a different and stronger effect, one that leads to attraction.

(2) Paramagnetism Substances that are attracted toward the region of
stronger field are called paramagnetic. In some cases, notably metals
such as aluminum, sodium, and many others, the paramagnetism is
not much stronger than the common diamagnetism. In other mater-
ials, such as the NiSO4 and the CuCl2 on our list, the paramagnetic
effect is much stronger. In these substances also, it increases as the
temperature is lowered, leading to quite large effects at temperatures
near absolute zero. The increase of paramagnetism with lowering
temperature is responsible in part for the large force recorded for liq-
uid oxygen. If you think all this is going to be easy to explain, observe
that copper is diamagnetic while copper chloride is paramagnetic,
but sodium is paramagnetic while sodium chloride is diamagnetic.

(3) Ferromagnetism Finally, substances that behave like iron and
magnetite are called ferromagnetic. In addition to the common met-
als of this class – iron, cobalt, and nickel – quite a number of ferro-
magnetic alloys and crystalline compounds are known. Indeed cur-
rent research in ferromagnetism is steadily lengthening the list.

In this chapter we have two tasks. One is to develop a treatment
of the large-scale phenomena involving magnetized matter, in which the
material itself is characterized by a few parameters and the experimen-
tally determined relations among them. It is like a treatment of dielectrics
based on some observed relation between electric field and bulk polar-
ization. We sometimes call such a theory phenomenological; it is more
of a description than an explanation. Our second task is to try to under-
stand, at least in a general way, the atomic origin of the various magnetic
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effects. Even more than dielectric phenomena, the magnetic effects, once
understood, reveal some basic features of atomic structure.

One general fact stands out in Table 11.1. Very little energy, on
the scale of molecular energies, is involved in diamagnetism and para-
magnetism. Take the extreme example of liquid oxygen. To pull 1 kilo-
gram (although the sample size would certainly be much smaller) of
liquid oxygen away from our magnet, energy would have to be expended
amounting, in joules, to 75 newtons times a distance of roughly 0.1 meters
(since the field strength falls off substantially over a distance of a few
centimeters). In order of magnitude, let us say the energy is 10 joules.
There are 2 · 1025 molecules in 1 kilogram of the liquid, so this is less
than 10−24 joules per molecule. Just to vaporize 1 kilogram of liquid oxy-
gen requires 50,000 calories, or about 10−20 joules per molecule, using
1 calorie= 4.18 joules. (Most of that energy is used in separating the
molecules from one another.) Whatever may be happening in liquid oxy-
gen at the molecular level as a result of the magnetic field, it is apparently
a very minor affair in terms of energy.

Even a strong magnetic field has hardly any effect on chemical pro-
cesses, including biochemical. You could put your hand and forearm into
our 3 tesla solenoid without experiencing any significant sensation or
consequence. It is hard to predict whether your arm would prove to be
paramagnetic or diamagnetic, but the force on it would be no more than a
fraction of an ounce in any case. Conversely, the presence of someone’s
hand close to the sample in Fig. 11.2 would perturb the field and change
the force on the sample by no more than a few parts in a million. In whole-
body imaging with nuclear magnetic resonance, the body is pervaded by
a magnetic field of a few tesla in strength with no physiological effects
whatsoever. It appears that the only hazards associated with large-scale,
strong, steady magnetic fields arise from metal objects in the vicinity. For
example, implants containing metal may heat up, move within the body,
or malfunction. And there is also the danger that a loose iron object will
be snatched by the fringing field and hurled into the magnet. Be careful
what you bring into a magnetic resonance imaging (MRI) room!

In its interaction with matter, the magnetic field plays a role utterly
different from that of the electric field. The reason is simple and fun-
damental. Atoms and molecules are made of electrically charged parti-
cles that move with velocities generally small compared with the speed
of light. A magnetic field exerts no force at all on a stationary electric
charge; on a moving charged particle the force is proportional to v2/c2.1

1 This factor of v2/c2 follows from Eq. (5.28). The current I in that equation involves the
velocity of charges, and we are assuming that all velocities here are of the same order
of magnitude. Of course, if we have a charged particle moving in a region where the
electric field is zero and the magnetic field is nonzero, then the magnetic field
dominates. But for general random motions of the charges (both the charges creating
the fields and the charges affected by the fields), the magnetic force is smaller by a
factor of v2/c2.
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Said in a sloppier way, in SI units the 1/4πε0 factor in Coulomb’s law
for the electric field is large, while the μ0/4π factor in the Biot–Savart
law for the magnetic field is small. Electric forces overwhelmingly dom-
inate the atomic scene. As we have remarked before, magnetism appears,
in our world at least, to be a relativistic effect. The story would be dif-
ferent if matter were made of magnetically charged particles. We must
explain now what magnetic charge means and what its apparent absence
signifies.

11.2 The absence of magnetic “charge”
The magnetic field outside a magnetized rod such as a compass nee-
dle looks very much like the electric field outside an electrically polar-
ized rod, a rod that has an excess of positive charge at one end, negative
charge at the other (Fig. 11.3). It is conceivable that the magnetic field
has sources that are related to it in the same way as electric charge is
related to the electric field. Then the north pole of the compass needle
would be the location of an excess of one kind of magnetic charge, and
the south pole would be the location of an excess of the opposite kind.
We might call “north charge” positive and “south charge” negative, with
magnetic field directed from positive to negative, a rule like that adopted
for electric field and electric charge. Historically, that is how our con-
vention about the positive direction of magnetic field was established.2

What we have called magnetic charge has usually been called magnetic
pole strength.

This idea is perfectly sound as far as it goes. It becomes even more
plausible when we recall that the fundamental equations of the elec-
tromagnetic field are symmetrical in E and cB. Why, then, should we
not expect to find symmetry in the sources of the field? With magnetic
charge as a possible source of the static magnetic field B, we would have
div B ∝ η, where η stands for the density of magnetic charge, in com-
plete analogy to the electric charge density ρ. Two positive magnetic
charges (or north poles) would repel one another, and so on.

The trouble is, that is not the way things are. Nature for some rea-
son has not made use of this opportunity. The world around us appears
totally asymmetrical in the sense that we find no magnetic charges at
all. No one has yet observed an isolated excess of one kind of magnetic
charge – an isolated north pole for example. If such a magnetic monopole
existed it could be recognized in several ways. Unlike a magnetic dipole,

2 In Chapter 6, remember, we established the positive direction of B by reference to a
current direction (direction of motion of positive charge) and a right-hand rule. Now
north pole means “north-seeking pole” of the compass needle. We know of no reason
why the earth’s magnetic polarity should be one way rather than the other. Franklin’s
designation of “positive” electricity had nothing to do with any of this. So the fact that
it takes a right-hand rule rather than a left-hand rule to make this all consistent is the
purest accident.
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Figure 11.3.
(a) Two oppositely charged disks (the electrodes
showing in cross section as solid black bars)
have an electric field that is the same as that of
a polarized rod. That is, if you imagine such a
rod to occupy the region within the dashed
boundary, its external field would be like that
shown. The electric field here was made visible
by a multitude of tiny black fibers, suspended in
oil, which oriented themselves along the field
direction. This elegant method of demonstrating
electric field configurations is due to Harold M.
Waage, Palmer Physical Laboratory, Princeton
University, who kindly prepared the original
photograph for this illustration (Waage, 1964).
(b) The magnetic field around a magnetized
cylinder, shown by the orientation of small
pieces of nickel wire, immersed in glycerine.
(This attempt to improve on the traditional iron
filings demonstration by an adaptation of
Waage’s technique was not very successful –
the nickel wires tend to join in long strings that
are then pulled in toward the magnet.)
Theoretically constructed diagrams of the fields
in the two systems are shown later in Fig. 11.22.

(a)

(b)
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it would experience a force if placed in a uniform magnetic field. Thus an
elementary particle carrying a magnetic charge would be steadily accel-
erated in a static magnetic field, as a proton or an electron is steadily
accelerated in an electric field. Reaching high energy, it could then be
detected by its interaction with matter. A traveling magnetic monopole
is a magnetic current; it must be encircled by an electric field, as an elec-
tric current is encircled by a magnetic field. With strategies based on
these unique properties, physicists have looked for magnetic monopoles
in many experiments. The search was renewed when a development in
the theory of elementary particles suggested that the universe ought to
contain at least a few magnetic monopoles, left over from the “big bang”
in which it presumably began. But not one magnetic monopole has yet
been detected, and it is now evident that if they exist at all they are
exceedingly rare. Of course, the proven existence of even one magnet-
ically charged particle would have profound implications, but it would
not alter the fact that in matter as we know it, the only sources of the
magnetic field are electric currents. As far as we know,

div B = 0 (everywhere) (11.1)

This takes us back to the hypothesis of Ampère, his idea that mag-
netism in matter is to be accounted for by a multitude of tiny rings of
electric current distributed through the substance. We begin by studying
the magnetic field created by a single current loop at points relatively far
from the loop.

11.3 The field of a current loop
A closed conducting loop, not necessarily circular, lies in the xy plane
encircling the origin, as in Fig. 11.4(a). A steady current I flows around
the loop. We are interested in the magnetic field this current creates – not
near the loop, but at distant points like P1 in the figure. We assume that
r1, the distance to P1, is much larger than any dimension of the loop. To
simplify the diagram we have located P1 in the yz plane; it will turn out
that this is no restriction. This is a good place to use the vector potential.
We shall compute first the vector potential A at the location P1, that is,
A(0, y1, z1). From this it will be obvious what the vector potential is at
any other point (x, y, z) far from the loop. Then by taking the curl of A
we can get the magnetic field B.

For a current confined to a wire, Eq. (6.46) gives A as

A(0, y1, z1) = μ0I
4π

∫
loop

dl2
r12

. (11.2)

When we used this equation in Section 6.4, we were concerned only with
the contribution of a small segment of the circuit; now we have to inte-
grate around the entire loop. Consider the variation in the denominator
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Figure 11.4.
(a) Calculation of the vector potential A at a
point far from the current loop. (b) Side view,
looking in along the x axis, showing that
r12 ≈ r1 − y2 sin θ if r1 � y2. (c) Top view, to
show that

∫
loop y2 dx2 is the area of the loop.
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r12 as we go around the loop. If P1 is far away, the first-order variation
in r12 depends only on the coordinate y2 of the segment dl2, and not on
x2. This is true because, from the Pythagorean theorem, the contribution
to r12 from x2 is of second order, whereas the side view in Fig. 11.4(b)
shows the first-order contribution from y1. Thus, neglecting quantities
proportional to (x2/r12)

2, we may treat r12 and r′12, which lie on top of
one another in the side view, as equal. And in general, to first order in the
ratio (loop dimension/distance to P1), we have

r12 ≈ r1 − y2 sin θ . (11.3)

Look now at the two elements of the path dl2 and dl′2 shown in
Fig. 11.4(a). For these the dy2 displacements are equal and opposite, and
as we have already pointed out, the r12 distances are equal to first order.
To this order then, the dy2 contributions to the line integral will cancel,
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and this will be true for the whole loop. Hence A at P1 will not have a
y component. Obviously it will not have a z component either, for dz2 is
always zero since the current path itself has nowhere a z component.

However, A at P1 will have an x component. The x component of the
vector potential comes from the dx2 part of the path integral:

A(0, y1, z1) = x̂
μ0I
4π

∫
dx2

r12
. (11.4)

Without spoiling our first-order approximation, we can turn Eq. (11.3)
into

1
r12

= 1
r1

(
1 − (y2/r1) sin θ

) ≈ 1
r1

(
1 + y2 sin θ

r1

)
, (11.5)

and using this for the integrand, we have

A(0, y1, z1) = x̂
μ0I

4πr1

∫ (
1 + y2 sin θ

r1

)
dx2. (11.6)

In the integration, r1 and θ are constants. Obviously
∫

dx2 around the
loop vanishes. Now

∫
y2 dx2 around the loop is just the area of the loop,

regardless of its shape; see Fig. 11.4(c). So we get finally

A(0, y1, z1) = x̂
μ0I sin θ

4πr2
1

× (area of loop). (11.7)

The intuitive reason why this result is nonzero is that the parts of the loop
that are closer to P1 give larger contributions to the integral, because they
have a smaller r12. There is partial, but not complete, cancelation from
corresponding pieces of the loop with the same x2 value but opposite dx2
values.

Here is a simple but crucial point: since the shape of the loop hasn’t
mattered, our restriction on P1 to the yz plane cannot make any essential
difference. Therefore we must have in Eq. (11.7) the general result we
seek, if only we state it generally: the vector potential of a current loop
of any shape, at a distance r from the loop that is much greater than the
size of the loop, is a vector perpendicular to the plane containing r and
the normal to the plane of the loop, of magnitude

A = μ0Ia sin θ

4πr2 , (11.8)

where a stands for the area of the loop.
This vector potential is symmetrical around the axis of the loop,

which implies that the field B will be symmetrical also. The explanation
is that we are considering regions so far from the loop that the details of
the shape of the loop have negligible influence. All loops with the same
current× area product produce the same far field. We call the product Ia
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the magnetic dipole moment of the current loop, and denote it by m. Its
units are amp-m2. The magnetic dipole moment is a vector, its direction
defined to be that of the normal to the loop, or that of the vector a, the
directed area of the region surrounded by the loop:

m = Ia (11.9)

As for sign, let us agree that the direction of m and the sense of positive
current flow in the loop are to be related by a right-hand-screw rule,
illustrated in Fig. 11.5. (The dipole moment of the loop in Fig. 11.4(a)

m = Ia

a

I

I

Figure 11.5.
By definition, the magnetic moment vector is
related to the current by a right-hand-screw rule
as shown here.

points downward, according to this rule.) The vector potential for the
field of a magnetic dipole m can now be written neatly with vectors:

A = μ0

4π

m × r̂
r2 (11.10)

where r̂ is a unit vector in the direction from the loop to the point for
which A is being computed. You can check that this agrees with our
convention about sign. Note that the direction of A will always be that of
the current in the nearest part of the loop.

Figure 11.6 shows a magnetic dipole located at the origin, with the

m
y

q

z

ry

Ax

Ay

A

z

x
I

x2 + y2

Figure 11.6.
A magnetic dipole located at the origin. At every
point far from the loop, A is a vector parallel to
the xy plane, tangent to a circle around the z
axis.

dipole moment vector m pointed in the positive z direction. To express
the vector potential at any point (x, y, z), we observe that r2 = x2+y2+z2,
and sin θ = √

x2 + y2/r. The magnitude A of the vector potential at that
point is given by

A = μ0

4π

m sin θ

r2 = μ0

4π

m
√

x2 + y2

r3 . (11.11)

Since A is tangent to a horizontal circle around the z axis, its compo-
nents are

Ax = A

(
−y√

x2 + y2

)
= −μ0

4π

my
r3 ,

Ay = A

(
x√

x2 + y2

)
= μ0

4π

mx
r3 ,

Az = 0. (11.12)

Let’s evaluate B for a point in the xz plane, by finding the compo-
nents of curl A and then (not before!) setting y = 0:

Bx = (∇ × A)x = ∂Az

∂y
− ∂Ay

∂z
=− μ0

4π

∂

∂z
mx

(x2 + y2 + z2)3/2 = μ0

4π

3mxz
r5 ,

By = (∇ × A)y = ∂Ax

∂z
− ∂Az

∂x
= μ0

4π

∂

∂z
−my

(x2 + y2 + z2)3/2 = μ0

4π

3myz
r5 ,
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Bz = (∇ × A)z = ∂Ay

∂x
− ∂Ax

∂y

= μ0

4π
m

[ −2x2 + y2 + z2

(x2 + y2 + z2)5/2 + x2 − 2y2 + z2

(x2 + y2 + z2)5/2

]
= μ0

4π

m(3z2 − r2)

r5 .

(11.13)

In the xz plane, we have y = 0, sin θ = x/r, and cos θ = z/r. The field
components at any point in that plane are thus given by

Bx = μ0

4π

3m sin θ cos θ

r3 ,

By = 0,

Bz = μ0

4π

m(3 cos2 θ − 1)

r3 . (11.14)
B

m

Figure 11.7.
Some magnetic field lines in the field of a
magnetic dipole, that is, a small loop of current.

Now turn back to Section 10.3, where in Eq. (10.17) we expressed
the components in the xz plane of the field E of an electric dipole p,
which was situated exactly like our magnetic dipole m. The expressions
are essentially identical, the only changes being p → m and 1/ε0 → μ0.
We have thus found that the magnetic field of a small current loop has,
at remote points, the same form as the electric field of two separated
charges. We already know what that field, the electric dipole field, looks
like. Figure 11.7 is an attempt to suggest the three-dimensional form of
the magnetic field B arising from our current loop with dipole moment
m. As in the case of the electric dipole, the field is described somewhat
more simply in spherical polar coordinates:

Br = μ0m
2πr3 cos θ , Bθ = μ0m

4πr3 sin θ , Bφ = 0. (11.15)

The magnetic field close to a current loop is entirely different from
the electric field close to a pair of separated positive and negative charges,
as the comparison in Fig. 11.8 shows. Note that between the charges the
electric field points down, while inside the current ring the magnetic
field points up, although the far fields are alike. This reflects the fact
that our magnetic field satisfies ∇ · B = 0 everywhere, even inside the
source. The magnetic field lines don’t end. By near and far we mean,
of course, relative to the size of the current loop or the separation of
the charges. If we imagine the current ring shrinking in size, the current
meanwhile increasing so that the dipole moment m = Ia remains con-
stant, we approach the infinitesimal magnetic dipole, the counterpart of
the infinitesimal electric dipole described in Chapter 10.

11.4 The force on a dipole in an external field
Consider a small circular current loop of radius r, placed in the magnetic
field of some other current system, such as a solenoid. In Fig. 11.9, a field
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E

B

(a)

Figure 11.8.
(a) The electric field of a pair of equal and
opposite charges. Far away it becomes the field
of an electric dipole. (b) The magnetic field of a
current ring. Far away it becomes the field of a
magnetic dipole.
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B is drawn that is generally in the z direction. It is not a uniform field.
Instead, it gets weaker as we proceed in the z direction; this is evident
from the fanning out of the field lines. Let us assume, for simplicity,
that the field is symmetric about the z axis. Then it resembles the field
near the upper end of the solenoid in Fig. 11.1. The field represented in
Fig. 11.9 does not include the magnetic field of the current ring itself. We
want to find the force on the current ring caused by the other field, which
we shall call, for want of a better name, the external field. The net force
on the current ring due to its own field is certainly zero, so we are free to
ignore its own field in this discussion.

y

I

z

x

m

rr
Br

B

Bz

Figure 11.9.
A current ring in an inhomogeneous magnetic
field. (The field of the ring itself is not shown.)
Because of the radial component of the field,
Br, there is a force on the ring as a whole.

If you study the situation in Fig. 11.9, you will soon conclude that
there is a net force on the current ring. It arises because the external field
B has an outward component Br everywhere around the ring. (The ver-
tical component Bz produces a force in the horizontal plane that simply
stretches or compresses the ring – negligibly, assuming the ring is fairly
rigid.) Therefore if the current flows in the direction indicated, each ele-
ment of the loop, dl, must be experiencing a downward force of magni-
tude IBr dl (see Eq. (6.14)). If Br has the same magnitude at all points
on the ring, as it must in the symmetrically spreading field assumed, the
total downward force will have the magnitude

F = 2πrIBr. (11.16)

z

z + Δz

z

B

r

Figure 11.10.
Gauss’s theorem can be used to relate Br and
∂Bz/∂z, leading to Eq. (11.18).

Now, Br can be directly related to the gradient of Bz. Since div B = 0
at all points, the net flux of magnetic field out of any volume is zero.
Consider a pancake-like cylinder of radius r and height �z (Fig. 11.10).
The outward flux from the side is 2πr(�z)Br and the net outward flux
from the end surfaces is

πr2[−Bz(z) + Bz(z + �z)], (11.17)

which to the first order in the small distance �z is πr2(∂Bz/∂z)�z. Set-
ting the total outward flux equal to zero gives 0 = πr2(∂Bz/∂z)�z +
2πrBr�z, or

Br = − r
2

∂Bz

∂z
. (11.18)

As a check on the sign, note that, according to Eq. (11.18), Br is positive
when Bz is decreasing upward; a glance at the figure shows that to be
correct.

The force on the dipole (with upward taken to be positive) can now
be expressed in terms of the gradient of the component Bz of the external
field:

F = −2πrI
(
− r

2
∂Bz

∂z

)
= πr2I

∂Bz

∂z
. (11.19)

In the present case, ∂Bz/∂z is negative, so the force is correctly down-
ward. In the factor πr2I we recognize the magnitude m of the magnetic
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dipole moment of our current ring. So the force on the ring can be
expressed very simply in terms of the dipole moment:

F = m
∂Bz

∂z
(11.20)

We haven’t proved it, but you will not be surprised to hear that for small
loops of any other shape the force depends only on the current× area
product, that is, on the dipole moment. The shape doesn’t matter. Of
course, we are discussing only loops small enough so that only the first-
order variation of the external field, over the span of the loop, is
significant.

Our ring in Fig. 11.9 has a magnetic dipole moment m pointing
upward, and the force on it is downward. Obviously, if we could reverse
the current in the ring, thereby reversing m, the force would reverse its
direction. The situation can be summarized as follows.
• Dipole moment parallel to external field: force acts in direction of

increasing field strength.
• Dipole moment antiparallel to external field: force acts in direction of

decreasing field strength.
• Uniform external field: zero force.

Quite obviously, this is not the most general situation. The moment
m could be pointing at some odd angle with respect to the field B, and
the different components of B could be varying, spatially, in different
ways. Given all the similarities between electric and magnetic dipoles,
it is tempting to say that the force on a magnetic dipole should take the
same form as the force on an electric dipole, given in Eq. (10.26). That is,
the x component of the force on a magnetic dipole m should be given by

Fx = m · ∇Bx (incorrect), (11.21)

with corresponding formulas for Fy and Fz. All three components can be
combined into the compact relation,

F = (m · ∇)B (incorrect). (11.22)

You can check in Problem 11.4 that in the above setup with the ring, this
force reduces to the force in Eq. (11.20).

However, this argument by analogy is risky, because, although the
fields due to electric and magnetic dipoles look the same at large dis-
tances, the dipoles themselves look very different up close. One consists
of two point charges, the other of a loop of current. The far field is irrel-
evant when dealing with the force on a dipole. It turns out that, although
Eq. (11.22) gives the correct force on a magnetic dipole in many cases,
it is not correct in general. The correct expression for the force turns
out to be

F = ∇(m · B) (11.23)
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You can check in Problem 11.4 that in the above setup, this also reduces
to the force in Eq. (11.20). At first glance it might seem like Eq. (11.23)
comes out of the blue, but there is actually very good motivation for it.
We will see in Section 11.6 that the energy of a magnetic dipole in a
magnetic field is −m · B. (But see Feynman et al. (1977), chap. 15, for a
discussion of a subtlety about this energy.) So Eq. (11.23) is the familiar
statement that the force equals the negative gradient of the energy.

Under what conditions are the force expressions in Eqs. (11.22) and
(11.23) equal? Using the “∇(A ·B)” vector identity in Appendix K, along
with the fact that m has no spatial dependence, we find

∇(m · B) = (m · ∇)B + m × (∇ × B). (11.24)

Our two expressions for the force are therefore equal if ∇×B = 0.3 If we
deal only with static setups where ∂E/∂t = 0, then the relevant Maxwell
equation reduces to Ampère’s law, ∇ ×B = μ0J. So we see that the two
expressions for the force agree if the setup involves no currents at the
location of the dipole (other than the current in the dipole loop itself).
This was the case in the above example. However, Problem 11.4 presents
a setup where Eqs. (11.22) and (11.23) yield different forces; the task of
that problem is to calculate the force explicitly and show that it agrees
with Eq. (11.23).

In Eqs. (11.20) and (11.23) the force is in newtons, with the magnetic
field gradient in tesla/meter and the magnetic dipole moment m given by
Eq. (11.9): m = Ia, where I is in amps and a in m2. There are several
equivalent ways to express the units of m. From Eq. (11.9) the units are

[m] = amp-m2. (11.25)

But, as you can see from Eq. (11.20), we also have

[m] = newtons
tesla/m

= newton-m
tesla

= joules
tesla

. (11.26)

Looking back at the three cases summarized on p. 538, we can begin
to see what must be happening in the experiments described at the begin-
ning of this chapter. A substance located at the position of the sample in
Fig. 11.2 would be attracted into the solenoid if it contained magnetic
dipoles parallel to the field B of the coil. It would be pushed out of
the solenoid if it contained dipoles pointing in the opposite direction,
antiparallel to the field. The force would depend on the gradient of the
axial field strength, and would be zero at the midpoint of the solenoid.
Also, if the total strength of dipole moments in the sample were propor-
tional to the field strength B, then in a given position the force would be
proportional to B times ∂B/∂z, and hence to the square of the solenoid
current. This is the observed behavior in the case of the diamagnetic

3 This is a sufficient condition, but not necessary. Technically all we need is for ∇ × B to
be parallel to m. But if we want the two expressions to be equal for any orientation of
m, then we need ∇ × B = 0.
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and the paramagnetic substances. It looks as if the ferromagnetic sam-
ples must have possessed a magnetic moment nearly independent of field
strength, but we must set them aside for a special discussion anyway.

How does the application of a magnetic field to a substance evoke
in the substance magnetic dipole moments with total strength propor-
tional to the applied field? And why should they be parallel to the field
in some substances, and oppositely directed in others? If we can answer
these questions, we shall be on the way to understanding the physics of
diamagnetism and paramagnetism.

(a)

(b)

(c)

Electron

Total charge − e

m

m = evr

Massive nucleus

− e
r

r

v

v

+

2

I = ev
2pr

Figure 11.11.
(a) A model of an atom in which one electron
moves at speed v in a circular orbit.
(b) Equivalent procession of charge. The
average electric current is the same as if the
charge −e were divided into small bits, forming
a rotating ring of charge. (c) The magnetic
moment is the product of current and area.

11.5 Electric currents in atoms
We know that an atom consists of a positive nucleus surrounded by neg-
ative electrons. To describe it fully we would need the concepts of quan-
tum physics. Fortunately, a simple and easily visualized model of an atom
is very helpful for understanding diamagnetism. It is a planetary model
with the electrons in orbits around the nucleus, like the model in Bohr’s
first quantum theory of the hydrogen atom.

We begin with one electron moving at constant speed on a circular
path. Since we are not attempting here to explain atomic structure, we
shall not inquire into the reasons why the electron has this particular
orbit. We ask only, if it does move in such an orbit, what magnetic effects
are to be expected? In Fig. 11.11 we see the electron, visualized as a
particle carrying a concentrated electric charge −e, moving with speed v
on a circular path of radius r. In the middle is a positive nuclear charge,
making the system electrically neutral. But the nucleus, because of its
relatively great mass, moves so slowly that its magnetic effects can be
neglected.

At any instant, the electron and the positive charge would appear as
an electric dipole, but on the time average the electric dipole moment is
zero, producing no steady electric field at a distance. We discussed this
point in Section 10.5. The magnetic field of the system, far away, is not
zero on the time average. Instead, it is just the field of a current ring. This
is because, when considering the time average, it can’t make any differ-
ence whether we have all the negative charge gathered into one lump,
going around the track, or distributed in bits, as in Fig. 11.11(b), to make
a uniform endless procession. The current is the amount of charge that
passes a given point on the ring, per second. Since the electron makes
v/2πr revolutions per second, the current is

I = ev
2πr

. (11.27)

The orbiting electron is equivalent to a ring current of this magnitude
with the direction of positive flow opposite to v, as shown in Fig. 11.11(c).
Its far field is therefore that of a magnetic dipole, of strength
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m = πr2I = evr
2

. (11.28)

Let us note in passing a simple relation between the magnetic moment
m associated with the electron orbit, and the orbital angular momentum
L. The angular momentum is a vector of magnitude L = mevr, where me
denotes the mass of the electron,4 and it points downward if the electron
is revolving in the sense shown in Fig. 11.11(a). Note that the product vr
occurs in both m and L. With due regard to direction, we can write

m = −e
2me

L (11.29)

This relation involves nothing but fundamental constants, which should
make you suspect that it holds quite generally. Indeed that is the case,
although we shall not prove it here. It holds for elliptical orbits, and it
holds even for the rosette-like orbits that occur in a central field that is
not inverse-square. Remember the important property of any orbit in a
central field: angular momentum is a constant of the motion. It follows
then, from the general relation expressed by Eq. (11.29) (derived by us
only for a special case), that wherever angular momentum is conserved,
the magnetic moment also remains constant in magnitude and direction.
The factor

−e
2me

or
magnetic moment

angular momentum
(11.30)

is called the orbital magnetomechanical ratio for the electron.5 The inti-
mate connection between magnetic moment and angular momentum is
central to any account of atomic magnetism.

Why don’t we notice the magnetic fields of all the electrons orbiting
in all the atoms of every substance? The answer must be that there is a
mutual cancelation. In an ordinary lump of matter there must be as many
electrons going one way as the other. This is to be expected, for there is
nothing to make one sense of rotation intrinsically easier than another,
or otherwise to distinguish any unique axial direction. There would have
to be something in the structure of the material to single out not merely
an axis, but a sense of rotation around that axis!

We may picture a piece of matter, in the absence of any external
magnetic field, as containing revolving electrons with their various orbital
angular momentum vectors and associated orbital magnetic moments

4 Our choice of the symbol m for magnetic moment makes it necessary, in this chapter,
to use a different symbol for the electron mass. For angular momentum we choose the
symbol L, because L is traditionally used in atomic physics for orbital angular
momentum, which is what we consider here. We shall be dealing with speeds v much
less than c, so the nonrelativistic expression for L will suffice.

5 Many people use the term gyromagnetic ratio for this quantity. Some call it the
magnetogyric ratio. Whatever the name, it is understood that the magnetic moment is
the numerator.
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distributed evenly over all directions in space. Consider those orbits that
happen to have their planes approximately parallel to the xy plane, of
which there will be about equal numbers with m up and m down. Let’s
find out what happens to one of these orbits when we switch on an exter-
nal magnetic field in the z direction.

We will start by analyzing an electromechanical system that doesn’t
look much like an atom. In Fig. 11.12 there is an object of mass M and
electric charge q, tethered to a fixed point by a cord of fixed length r. This
cord provides the centripetal force that holds the object in its circular
orbit. The magnitude of that force F0 is given, as we know, by

F0 = Mv2
0

r
. (11.31)

In the initial state, Fig. 11.12(a), there is no external magnetic field. Now,

r
F0

v0
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Charge q

r

B = 0

F0 =
Mv0
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E

E

E
E

E = r dB
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v
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v0 +
 Δv

B = B1
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Δv = qE Δt qr B1=

(a) Initial state

(b) Intermediate state, B increasing in downward direction

(c) Final state, after time Δt 

Figure 11.12.
The growth of the magnetic field B induces an
electric field E that accelerates the revolving
charged body.

by means of some suitable large solenoid, we begin creating a field B in
the negative z direction, uniform over the whole region at any given time.
While this field is growing at the rate dB/dt, there will be an induced
electric field E all around the path, as indicated in Fig. 11.12(b). To find
the magnitude of this field E we note that the rate of change of flux
through the circular path is

d�

dt
= πr2 dB

dt
. (11.32)

This determines the line integral of the electric field, which is really all
that matters (we only assume for symmetry and simplicity that it is the
same all around the path). Faraday’s law, E = −d�/dt, gives (ignoring
the signs) ∫

E · dl = πr2 dB
dt

. (11.33)

The left-hand side equals 2πrE, so we find that

E = r
2

dB
dt

. (11.34)

We have ignored signs so far, but if you apply to Fig. 11.12 your favorite
rule for finding the direction of an induced electromotive force, you will
see that E must be in a direction to accelerate the body, if q is a posi-
tive charge. The acceleration along the path, dv/dt, is determined by the
force qE:

M
dv
dt

= qE = qr
2

dB
dt

, (11.35)

so that we have a relation between the change in v and the change in B:

dv = qr
2M

dB. (11.36)
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Figure 11.13.
The change in the magnetic moment vector is
opposite to the direction of B, for both directions
of motion.

The radius r being fixed by the length of the cord, the factor qr/2M is
a constant. Let �v denote the net change in v in the whole process of
bringing the field up to the final value B1. Then

�v =
∫ v0+�v

v0

dv = qr
2M

∫ B1

0
dB = qrB1

2M
. (11.37)

Note that the time has dropped out – the final velocity is the same whether
the change is made slowly or quickly.

The increased speed of the charge in the final state means an increase
in the upward-directed magnetic moment m. A negatively charged body
would have been decelerated under similar circumstances, which would
have decreased its downward moment. In either case, then, the appli-
cation of the field B1 has brought about a change in magnetic moment
opposite to the field. From Eq. (11.28), the magnitude of the change in
magnetic moment �m is

�m = qr
2

�v = q2r2

4M
B1. (11.38)

Likewise for charges, either positive or negative, revolving in the
other direction, the induced change in magnetic moment is opposite to
the change in applied magnetic field. Figure 11.13 shows this for a posi-
tive charge. It appears that the following relation holds for either sign of
charge and either direction of revolution:

�m = −q2r2

4M
B1 (11.39)

In this example we forced r to be constant by using a cord of fixed
length. Let us see how the tension in the cord has changed. We shall
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assume that B1 is small enough so that �v � v0. In the final state we
require a centripetal force of magnitude

F1 = M(v0 + �v)2

r
≈ Mv2

0
r

+ 2Mv0�v
r

, (11.40)

neglecting the term proportional to (�v)2. But now the magnetic field
itself provides an inward force on the moving charge, given by q(v0 +
�v)B1. Using Eq. (11.37) to express qB1 in terms of �v, we find that this
extra inward force has the magnitude (v0 +�v)(2M�v/r) which, to first
order in �v/v0, is 2Mv0 �v/r. That is just what is needed, according to
Eq. (11.40), to avoid any extra demand on our cord! Hence the tension in
the cord remains unchanged at the value F0.

This points to a surprising conclusion: our result, Eq. (11.39), must
be valid for any kind of tethering force, no matter how it varies with
radius. Our cord could be replaced by an elastic spring without affecting
the outcome – the radius would still be unchanged in the final state. Or
to go at once to a system we are interested in, it could be replaced by the
Coulomb attraction of a nucleus for an electron. Or it could be the effec-
tive force that acts on one electron in an atom containing many electrons,
which has a still different dependence on radius.

Let us apply this to an electron in an atom, substituting the electron
mass me for M, and e2 for q2. Now �m is the magnetic moment induced
by the application of a field B1 to the atom. In other words, �m/B1 is
a magnetic polarizability, defined in the same way as the electric polar-
izability α we introduced in Section 10.5. Remember that α/4πε0 had
the dimensions of volume and turned out to be, in order of magnitude,
10−30 m3, roughly the volume of an atom. By Eq. (11.39), the magnetic
polarizability due to one electron in an orbit of radius r is

�m
B1

= −e2r2

4me
. (11.41)

Taking the orbit radius r to be the Bohr radius, 0.53 · 10−10 m, we find

�m
B1

= − (1.6 · 10−19 C)2(0.53 · 10−10 m)2

4(9.1 · 10−31 kg)
= −2 · 10−29 C2 m2

kg
.

(11.42)

However, this comparison between �m and B1 isn’t quite a fair one,
because magnetic fields contain a somewhat arbitrary factor of μ0/4π

multiplying the factors of current and distance; see the Biot–Savart law
in Eq. (6.49). (An analogous issue arose with the electric polarizability
in Section 10.5.) A more reasonable comparison would therefore involve
(μ0/4π)�m and B1. Since μ0/4π = 1 · 10−7 kg m/C2, the numerical
value of the ratio is simply modified by a factor of 10−7, and we have

μ0

4π

�m
B1

= −2 · 10−36 m3. (11.43)
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This has the dimensions of volume, just like the electric polarizability
α/4πε0. However, it is five or six orders of magnitude smaller than typ-
ical electric polarizabilities, as sampled in Table 10.2. We can be a little
more precise about this disparity. Using Eq. (11.41), we have (recalling
μ0 = 1/ε0c2)

μ0

4π

�m
B1

= − r2

4
μ0e2

4πme
= − r2

4

(
1

4πε0

e2

mec2

)
≡ − r2

4
r0. (11.44)

The quantity in parentheses has the dimensions of length and is known
as the classical electron radius,6 r0 = 2.8 · 10−15 m. Since the electric
polarizability is given by α/4πε0 ≈ r3, where r is an atomic radius, we
see that the magnetic polarizability is smaller than the electric polariz-
ability by the ratio (roughly, up to a factor of 4 and other factors of order
1 that our models ignore) of the classical electron radius r0 to an atomic
radius r.

Example Let us see if Eq. (11.41) will account for the force on our diamag-
netic samples listed in Table 11.1. The total number of electrons is about the same
in one gram of almost anything. It is about one electron for every two nucle-
ons (recall that the atomic weight is about twice the atomic number for most of
the elements), or N = 3 · 1026 electrons per kilogram of matter. This follows
from the fact that the mass of a nucleon is 1.67 · 10−27 kg, so there are 6 · 1026

nucleons in a kilogram. Equivalently, hydrogen has an atomic weight of 1, so the
number of nucleons in one gram is Avogadro’s number, 6.02 · 1023.

Of course, the r2 in Eq. (11.41) must now be replaced by a mean square orbit
radius 〈r2〉, where the average is taken over all the electrons in the atom, some of
which have larger orbits than others. Actually 〈r2〉 varies remarkably little from
atom to atom through the whole periodic table, and a2

0, the square of the Bohr
radius which we have just used, remains a surprisingly good estimate. Adopting
that, we would predict, using Eq. (11.42), that a field of 1.8 tesla would induce in
1 kg of substance a magnetic moment of magnitude

�m = N
e2r2

4me
B1 = (3 · 1026)(2 · 10−29 C2 m2/kg)(1.8 tesla)

= 1.1 · 10−2 joule
tesla

(or amp-m2), (11.45)

which in a gradient of 17 tesla/m would give rise to a force of magnitude

F = �m
∂Bz

∂z
=

(
1.1 · 10−2 joule

tesla

)(
17

tesla
m

)
= 0.18 newtons. (11.46)

This agrees quite well, indeed better than we had any right to expect, with the
values for the several purely diamagnetic substances listed in Table 11.1. As far as
the sign of the force goes, we know from Eq. (11.39) that the magnetic moment is

6 This radius is obtained by setting the rest energy of the electron, mec2, equal to (in
order of magnitude) the electrostatic potential energy of a ball with radius r0 and
charge e. See Exercise 1.62.
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antiparallel to the external magnetic field. The discussion in Section 11.4 there-
fore tells us that the force acts in the direction of decreasing field strength, that
is, outward from the solenoid. This agrees with the behavior of the diamagnetic
samples, because the convention in Table 11.1 was that “−” meant outward.

We can see now why diamagnetism is a universal phenomenon, and
a rather inconspicuous one. It is about the same in molecules as in atoms.
The fact that a molecule can be a much larger structure than an atom –
it may be built of hundreds or thousands of atoms – does not generally
increase the effective mean-square orbit radius. The reason is that in a
molecule any given electron is pretty well localized on an atom. There
are some interesting exceptions, and we included one in Table 11.1 –
graphite. The anomalous diamagnetism of graphite is due to an unusual
structure that permits some electrons to circulate rather freely within a
planar group of atoms in the crystal lattice. For these electrons 〈r2〉 is
extraordinarily large.

As mentioned at the beginning of this section, diamagnetism (and
likewise paramagnetism and ferromagnetism) can be explained only with
quantum mechanics. A purely classical theory of diamagnetism does
not exist; see O’Dell and Zia (1986). Nevertheless, the above discus-
sion is helpful for understanding the critical property of diamagnetism,
namely that the change in the magnetic moment is directed opposite to
the applied magnetic field.

11.6 Electron spin and magnetic moment
In addition to its orbital angular momentum, the electron possesses
another kind of angular momentum that has nothing to do with its orbital
motion. It behaves in many ways as if it were continually rotating around
an axis of its own. This property is called spin. While diamagnetism is
a result of the orbital angular momentum of electrons, paramagnetism is
a result of their spin angular momentum (as is ferromagnetism, which
we will discuss in Section 11.11). A consequence of these origins is that
a diamagnetic moment points antiparallel to the external magnetic field,
whereas a paramagnetic moment points parallel to the external field (in
an average sense, as we will see).

When the magnitude of the spin angular momentum is measured,
the same result is always obtained: h/4π , where h is Planck’s constant,
6.626 · 10−34 kg m2/s. Electron spin is a quantum phenomenon. Its sig-
nificance for us now lies in the fact that there is associated with this
intrinsic, or “built-in,” angular momentum a magnetic moment, like-
wise of invariable magnitude. This magnetic moment points in the direc-
tion you would expect if you visualize the electron as a ball of negative
charge spinning around its axis. That is, the magnetic moment vector
points antiparallel to the spin angular momentum vector, as indicated in
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Fig. 11.14. The magnetic moment, however, is twice as large, relative to
the angular momentum, as it is in the case of orbital motion.

There is no point in trying to devise a classical model of this object;
its properties are essentially quantum mechanical. We need not even go
so far as to say it is a current loop. What matters is only that it behaves
like one in the following respects: (1) it produces a magnetic field that,
at a distance, is that of a magnetic dipole; (2) in an external field B it
experiences a torque equal to that which would act on a current loop of
equivalent dipole moment; (3) within the space occupied by the electron,
div B = 0 everywhere, as in the ordinary sources of magnetic field with
which we are already familiar.

Angular momentum,

Negative charge

Magnetic moment,

= 0.53 � 10−34 kg m2/sh
4p

= 0.93 � 10−23  J/T
4pme

eh

Figure 11.14.
The intrinsic angular momentum, or spin, and
the associated magnetic moment, of the
electron. Note that the ratio of magnetic moment
to angular momentum is e/me, not e/2me as it is
for orbital motion; see Eq. (11.29). This has no
classical explanation.

Since the magnitude of the spin magnetic moment is always the
same, the only thing an external field can influence is its direction. (Con-
trast this with the changing magnitude of the orbital magnetic moment
in Section 11.5.) A magnetic dipole in an external field experiences a
torque. If you worked through Exercise 6.34, you proved that the torque
N on a current loop of any shape, with dipole moment m, in a field B, is
given by

N = m × B (11.47)

For those who have not been through that demonstration, let’s take time
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Figure 11.15.
Calculation of the torque on a current loop in a
magnetic field B. The magnetic moment of the
current loop is m.

out to calculate the torque in a simple special case. In Fig. 11.15 we
see a rectangular loop of wire carrying current I. The loop has a mag-
netic moment m, of magnitude m = Iab. The torque on the loop arises
from the forces F1 and F2 that act on the horizontal wires. Each of these
forces has the magnitude F = IbB, and its moment arm is the distance
(a/2) sin θ . We see that the magnitude of the torque on the loop is

N = 2(IbB)
a
2

sin θ = (Iab)B sin θ = mB sin θ . (11.48)

The torque acts in a direction to bring m parallel to B; it is represented
by a vector N in the positive x direction, in the situation shown. All this
is consistent with the general formula, Eq. (11.47). Note that Eq. (11.47)
corresponds exactly to the formula we derived in Section 10.4 for the
torque on an electric dipole p in an external field E, namely, N = p×E.
The orientation with m in the direction of B, like that of the electric
dipole p parallel to E, is the orientation of lowest energy. Similarly, the
work required to rotate a dipole m from an orientation parallel to B,
through an angle θ0, is mB(1− cos θ0); see Eq. (10.22). This equals 2mB
for a rotation from parallel to antiparallel.

If the electron spin moments in a substance are free to orient them-
selves, we expect them to prefer the orientation in the direction of any
applied field B, the orientation of lowest energy. Suppose every electron
in a kilogram of material takes up this orientation. We have already cal-
culated that there are roughly 3 · 1026 electrons in a kilogram of anything.
The spin magnetic moment of an electron, ms, is given in Fig. 11.14 as



548 Magnetic fields in matter

ms = 9.3 · 10−24 joules
tesla

(or amp-m2). (11.49)

The total magnetic moment of our lined-up spins in one kilogram will be
(3 · 1026) × (9.3 · 10−24) or 2800 joules/tesla. From Eq. (11.20), the force
per kilogram, in our coil where the field gradient is 17 tesla/m, would be
4.7 · 104 newtons. This is a little over 10,000 pounds, or equivalently 10
pounds for a tiny 1 gram sample!

Obviously this is much greater than the force recorded for any of the
paramagnetic samples. Our assumptions were wrong in two ways. First,
the electron spin moments are not all free to orient themselves. Second,
thermal agitation prevents perfect alignment of any spin moments that
are free. Let us look at these two issues in turn.

In most atoms and molecules, the electrons are associated in pairs,
with the spins in each pair constrained to point in opposite directions
regardless of the applied magnetic field. As a result, the magnetic
moments of such a pair of electrons exactly cancel one another. All that
is left is the diamagnetism of the orbital motion which we have already
explored. The vast majority of molecules are purely diamagnetic. A few
molecules (really very few) contain an odd number of electrons. In such
a molecule, total cancelation of spin moments in pairs is clearly impos-
sible. Nitric oxide, NO, with 15 electrons in the molecule is an example;
it is paramagnetic. The oxygen molecule O2 contains 16 electrons, but its
electronic structure happens to favor noncancelation of two of the elec-
tron spins. In single atoms the inner electrons are generally paired, and
if there is an outer unpaired electron, its spin is often paired off with
that of a neighbor when the atom is part of a compound or crystal. Cer-
tain atoms, however, do contain unpaired electron spins which remain
relatively free to orient in a field even when the atom is packed in with
others. Important examples are the elements ranging from chromium to
copper in the periodic table, a sequence that includes iron, cobalt, and
nickel. Another group of elements with this property is the rare earth
sequence around gadolinium. Compounds or alloys of these elements
are generally paramagnetic, and in some cases ferromagnetic. The num-
ber of free electron spins involved in paramagnetism is typically one or
two per atom. We can think of each paramagnetic atom as equipped with
one freely swiveling magnetic moment m, which in a field B would be
found pointing, like a tiny compass needle, in the direction of the field –
if it were not for thermal disturbances.

Thermal agitation tends always to create a random distribution of
spin axis directions. The degree of alignment that eventually prevails rep-
resents a compromise between the preference for the direction of lowest
energy and the disorienting influence of thermal motion. We have met
this problem before. In Section 10.12 we considered the alignment, by
an electric field E, of the electric dipole moments of polar molecules.
It turned out to depend on the ratio of two energies: pE, the energetic
advantage of orientation of a dipole moment p parallel to E as compared
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with an average over completely random orientations, and kT , the mean
thermal energy associated with any form of molecular motion at absolute
temperature T . Only if pE were much larger than kT would nearly com-
plete alignment of the dipole moments be attained. If pE is much smaller
than kT , the equilibrium polarization is equivalent to perfect alignment
of a small fraction, approximately pE/kT , of the dipoles. We can take
this result over directly for paramagnetism. We need only replace pE by
mB, the energy involved in the orientation of a magnetic dipole moment
m in a magnetic field B. Providing mB/kT is small, it follows that the
total magnetic moment, per unit volume, resulting from application of
the field B to N dipoles per unit volume will be approximately

M ≈ Nm
(

mB
kT

)
= Nm2

kT
B. (11.50)

The induced moment is proportional to B and inversely proportional to
the temperature.

For one electron spin moment (m = 9.3 · 10−24 joule/tesla) in our
field of 1.8 tesla, mB is 1.7 · 10−23 joule. For room temperature, kT is
4 · 10−21 joule; in that case mB/kT is indeed small. But if we could lower
the temperature to 1 K in the same field, mB/kT would be about unity.
With further lowering of the temperature we could expect to approach
complete alignment, with total moment approaching Nm. These con-
ditions are quite frequently achieved in low-temperature experiments.
Indeed, paramagnetism is both more impressive and more interesting
at very low temperatures, in contrast to dielectric polarization. Molec-
ular electric dipoles would be totally frozen in position, incapable of any
reorientation. The electron spin moments are still remarkably free.

11.7 Magnetic susceptibility
We have seen that both diamagnetic and paramagnetic substances develop
a magnetic moment proportional to the applied field. At least, that is true
under most conditions. At very low temperatures, in fairly strong fields,
the induced paramagnetic moment can be observed to approach a lim-
iting value as the field strength is increased, as we have noted. Setting
this “saturation” effect aside, the relation between moment and applied
field is linear, so that we can characterize the magnetic properties of a
substance by the ratio of induced moment to applied field. The ratio is
called the magnetic susceptibility. Depending on whether we choose the
moment of 1 kg of material, of 1 m3 of material, or of 1 mole, we define
the specific susceptibility, the volume susceptibility, or the molar sus-
ceptibility. Our discussion in Section 11.5 suggests that for diamagnetic
substances the specific susceptibility, based on the induced moment per
kilogram, should be nearly the same from one substance to another. How-
ever, the volume susceptibility, based on the induced magnetic moment
per cubic meter, is more relevant to our present concerns.
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The magnetic moment per unit volume we shall call the magnetic
polarization, or the magnetization, using for it the symbol M:

M = magnetic moment
volume

. (11.51)

Since the magnetic moment m has units of amps×meter2, the magneti-
zation M has units of amps/meter. Now, magnetization M and the quo-
tient B/μ0 have the same dimensions. One way to see this is to recall that
the dimensions of the field B of a magnetic dipole are given in Eq. (11.14)
by μ0(magnetic dipole moment)/(distance)3, while M, as we have just
defined it, has the dimensions (magnetic dipole moment)/(volume). If
we now define the volume magnetic susceptibility, denoted by χm,
through the relation

M = χm
B
μ0

(warning: see remarks below), (11.52)

the susceptibility will be a dimensionless number, negative for diamag-
netic substances, positive for paramagnetic. This is exactly analogous to
the procedure, expressed in Eq. (10.41), by which we defined the elec-
tric susceptibility χe as the ratio of electric polarization P to the product
ε0E. For the paramagnetic contribution, if any, to the susceptibility (let us
denote it χpm), we can use Eq. (11.50) to write down a formula analogous
to Eq. (10.73):

χpm = M
B/μ0

≈ μ0Nm2

kT
, (11.53)

where N refers to the number of spin dipoles per unit volume. Of course,
the full susceptibility χm includes the ever-present diamagnetic contri-
bution, which is negative, and derivable from Eq. (11.41).

Unfortunately, Eq. (11.52) is not the customary definition of volume
magnetic susceptibility. In the usual definition, another field H, which
we shall meet in Section 11.10, appears instead of B. Although illogical,
the definition in terms of H has a certain practical justification, and the
tradition is so well established that we shall eventually have to bow to
it. But in this chapter we want to follow as long as we can a path that
naturally and consistently parallels the description of the electric fields
in matter. A significant parallel is this: the macroscopic field B inside
matter will turn out to be the average of the microscopic B, just as the
macroscopic E turned out to be the average of the microscopic E.

The difference in definition is of no practical consequence as long
as χm is a number very small compared with unity. The values of χm
for purely diamagnetic substances, solid or liquid, lie typically between
−0.5 · 10−5 and −1.0 · 10−5. Even for oxygen under the conditions given
in Table 11.1, the paramagnetic susceptibility is less than 10−2. This
means that the magnetic field caused by the dipole moments in the sub-
stance, at least as a large-scale average, is very much weaker than the
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applied field B. That gives us some confidence that in such systems we
may assume the field that acts on the atomic dipole to orient them is the
same as the field that would exist there in the absence of the sample.
However, we shall be interested in other systems in which the field of the
magnetic moments is not small. Therefore we must study, just as we did
in the case of electric polarization, the magnetic fields that magnetized
matter itself produces, both inside and outside the material.

11.8 The magnetic field caused by magnetized
matter

A block of material that contains, evenly distributed through its volume,
a large number of atomic magnetic dipoles all pointing in the same direc-
tion, is said to be uniformly magnetized. The magnetization vector M is
simply the product of the number of oriented dipoles per unit volume and
the magnetic moment m of each dipole. We don’t care how the alignment
of these dipoles is maintained. There may be some field applied from
another source, but we are not interested in that. We want to study only
the field produced by the dipoles themselves.

M

mArea da

(a)

(b)

(c)

(d)

(e)

dz

I = M dz

I
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I
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I

dz

Equivalent, as sources of external field

Figure 11.16.
The thin slab, magnetized perpendicular to its
broad surface, is equivalent to a ribbon of
current so far as its external field is concerned.

Consider first a slab of material of thickness dz, sliced out perpen-
dicular to the direction of magnetization, as shown in Fig. 11.16(a). The
slab can be divided into little tiles, as indicated in Fig. 11.16(b). One such
tile, which has a top surface of area da, contains a total dipole moment
amounting to M da dz, since M is the dipole moment per unit volume.
The magnetic field this tile produces at all distant points – distant com-
pared with the size of the tile – is just that of any dipole with the same
magnetic moment. We could construct a dipole of that strength by bend-
ing a conducting ribbon of width dz into the shape of the tile, and sending
around this loop a current I = M dz; see Fig. 11.16(c). That will give the
loop a dipole moment:

m = I × area = (M dz) da, (11.54)

which is the same as that of the tile.
Let us substitute such a current loop for every tile in the slab, as

indicated in Fig. 11.16(d). The current is the same in all of these, and
therefore, at every interior boundary we find equal and opposite currents,
equivalent to zero current. Our “egg-crate” of loops is therefore equiva-
lent to a single ribbon running around the outside, carrying the current
I =M dz; see Fig. 11.16(e). Now, these tiles can be made quite small, so
long as we don’t subdivide all the way down to molecular size. They
must be large enough so that their magnetization does not vary apprecia-
bly from one tile to the next. Within that limitation, we can state that the
field at any external point, even close to the slab, is the same as that of
the current ribbon.

It remains only to reconstruct a whole block from such laminations,
or slabs, as in Fig. 11.17(a). The entire block is then equivalent to the
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wide ribbon in Fig. 11.17(b), around which flows a current M dz, in C/s,
in every strip dz, or, stated more simply, a surface current of density J ,
in C/(s-m), given by

J = M (11.55)

The magnetic field B at any point outside the magnetized block in
Fig. 11.17(a), and even close to the block provided we don’t approach
within molecular distances, is the same as the field B′ at the correspond-
ing point in the neighborhood of the wide current ribbon in Fig. 11.17(b).

But what about the field inside the magnetized block? Here we face
a question like the one we met in Chapter 10. Inside matter the magnetic
field is not at all uniform if we observe it on the atomic scale, which we
have been calling microscopic. It varies sharply in both magnitude and
direction between points only a few angstroms apart. This microscopic
field B is simply a magnetic field in vacuum, for from the microscopic
viewpoint, as we emphasized in Chapter 10, matter is a collection of
particles and electric charge in otherwise empty space. The only large-
scale field that can be uniquely defined inside matter is the spatial average
of the microscopic field.

(b)

(a)

M

B

B�

  = M

Figure 11.17.
A uniformly magnetized block is equivalent to a
band of surface current.

Because of the absence of effects attributable to magnetic charge,
we believe that the microscopic field itself satisfies div B = 0. If that
is true, it follows quite directly that the spatial average of the internal
microscopic field in our block is equal to the field B′ inside the equivalent
hollow cylinder of current.

To demonstrate this, consider the long rod uniformly magnetized
parallel to its length, shown in Fig. 11.18(a). We have just shown that

Figure 11.18.
(a) A uniformly magnetized cylindrical rod.
(b) The equivalent hollow cylinder, or sheath, of
current. Its field is B′. (c) We can sample the
interior of the rod, and thus obtain a spatial
average of the microscopic field, by closely
spaced parallel surfaces, S1, S2,. . . .

B

S

(a)

S�

B�

S�

S1
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S3 S1
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(c)

M
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  =
 M
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the external field will be the same as that of the long cylinder of current
(practically equivalent to a single-layer solenoid) shown in Fig. 11.18(b).
The surface S in Fig. 11.18(a) indicates a closed surface that includes a
portion S1 passing through the interior of the rod. Because div B = 0
for the internal microscopic field, as well as for the external field, div B
is zero throughout the entire volume enclosed by S. It then follows from
Gauss’s theorem that the surface integral of B over S must be zero. The
surface integral of B′ over the closed surface S′ in Fig. 11.18(b) is zero
also. Over the portions of S and S′ external to the cylinders, B and B′
are identical. Therefore the surface integral of B over the internal disk
S1 must be equal to the surface integral of B′ over the internal disk S′1.
This must hold also for any one of a closely spaced set of parallel disks,
such as S2, S3, etc., indicated in Fig. 11.18(c), because the field outside the
cylinder in this neighborhood is negligibly small, so that the outside parts
don’t change anything. Now, taking the surface integral over a series of
equally spaced planes like this is a perfectly good way to compute the
volume average of the field B in that neighborhood, for it samples all
volume elements impartially. It follows that the spatial average of the
microscopic field B inside the magnetized rod is equal to the field B′
inside the current sheath of Fig. 11.18(b).

It is instructive to compare the arguments we have just developed
with our analysis of the corresponding questions in Chapter 10.
Figure 11.19 displays these developments side by side. You will see that
they run logically parallel, but that at each stage there is a difference
that reflects the essential asymmetry epitomized in the observation that
electric charges are the source of electric fields, while moving electric
charges are the source of magnetic fields. For example, in the arguments
about the average of the microscopic field, the key to the problem in the
electric case is the assumption that curl E = 0 for the microscopic elec-
tric field. In the magnetic case, the key is the assumption that div B = 0
for the microscopic magnetic field.

If the magnetization M within a volume of material is not uniform
but instead varies with position as M(x, y, z), the equivalent current dis-
tribution is given simply by

J = curl M (11.56)

Let’s see how this comes about in one situation. Suppose there is a mag-
netization in the z direction that gets stronger as we proceed in the y direc-
tion. This is represented in Fig. 11.20(a), which shows a small region in
the material subdivided into little blocks. The blocks are supposed to be
so small that we may consider the magnetization uniform within a single
block. Then we can replace each block by a current ribbon, with surface
current density J = Mz. The current I carried by such a ribbon, if the
block is �z in height, is J�z or Mz�z. Now, each ribbon has a bit more
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is equivalent to:

(More generally, for nonuniform magnetization,
magnetized matter is equivalent to a current distribution
J = curl M.)

A uniformly magnetized block can
be divided into such layers. Hence
the block has the
same external
field as the wide
ribbon of surface
current with    = M. 

because a bit of magnetized matter,
volume da · dz, has dipole moment
                                       equal to that of:

is equivalent to

because a bit of polarized matter, volume
da · dz, has dipole moment equal to that of:

q = P da+

− q = − P da

A uniformly polar-
ized block can be
subdivided into
such rods. Hence
the block has the
same external field

as two sheets of surface charge with

        Consider a wide, thin, uniformly polarized slab and its
equivalent sheets of surface charge.

(More generally, for nonuniform polarization, polarized
matter is equivalent to a charge distribution r = − div P.)

PROOF THAT THE EQUIVALENCE EXTENDS TO
THE SPATIAL AVERAGE OF THE INTERNAL FIELDS

Consider a long uniformly magnetized column and its
equivalent cylinder of surface

current.

        Conclusion:  〈B〉 = B′ ; the spatial average of
the internal magnetic field is equal to the field B′ that
would be produced at that point in empty space by the
equivalent charge  distribution described above (together
with any external sources).

        Conclusion:  〈E〉 = E′ ; the spatial average of
the internal electric field is equal to the field E′ that
would be produced at that point in empty space by the
equivalent charge distribution described above (together
with any external sources).

da
Current

M dz

I = M dz

S�1

for the internal field, then    B . da = 0. But  B = B′ on the 
surface external to the column. Hence     B . da =     B′ . da′
over any interior portion of surface, like S1, S2, etc.
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Near the middle the
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B′ is uniform. If ∇.B = 0
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Figure 11.19.
The electric (a) and magnetic (b) cases
compared.
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Figure 11.20.
Nonuniform magnetization is equivalent to a
volume current density.

current density than the one to the left of it. The current in each loop is
greater than the current in the loop to the left by

�I = �z �Mz = �z
∂Mz

∂y
�y. (11.57)

At every interface in this row of blocks there is a net current in the x
direction of magnitude �I; see Fig. 11.20(c). To get the current per unit
area flowing in the x direction we have to multiply by the number of
blocks per unit area, which is 1/(�y �z). Thus

Jx = �I
(

1
�y �z

)
= ∂Mz

∂y
. (11.58)

Another way of getting an x-directed current is to have a y compo-
nent of magnetization that varies in the z direction. If you trace through
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that case, using a vertical column of blocks, you will find that the net
x-directed current density is given by

Jx = −∂My

∂z
. (11.59)

In general then, by superposition of these two situations,

Jx = ∂Mz

∂y
− ∂My

∂z
= (curl M)x, (11.60)

which is enough to establish Eq. (11.56). In Section 11.10 we will rela-
bel the J in Eq. (11.56) as Jbound, because it arises from the orbital and
spin angular momentum of electrons within atoms. The present Jbound =
curl M result for a magnetized material then clearly parallels the
−ρbound = div P result for a polarized material that we derived in
Eq. (10.61).

Example Show that the J = M result for the magnetized slab in Fig. 11.17
follows from J = curl M, by integrating J = curl M over an appropriate area.
What about the more general case where M isn’t parallel to the boundary of
the slab?

M

M

(a)

(b)

Figure 11.21.
The surface integral over a thin rectangle at the
boundary, combined with Stokes’ theorem,
shows that J = M follows from J = curl M.

Solution Consider a thin rectangle, with one of its long sides inside the mater-
ial and the other outside, as in Fig. 11.21(a). If we integrate J = curl M over the
surface S of this rectangle, we can use Stokes’ theorem to write

∫
S

J · da =
∫

S
curl M · da �⇒ IS =

∫
C

M · ds, (11.61)

where IS is the current passing through S. This current can be written as J �,
where � is the height of the rectangle. This is true because we can make the rect-
angle arbitrarily thin, so any current passing through it must arise from a surface
current density J . The integral

∫
C M · ds simply equals M� (if the integral runs

around the loop in the clockwise direction), because M is nonzero only along
the left side of the rectangle. Equation (11.61) therefore gives J � = M� �⇒
J = M, as desired. If M points upward, the surface current density flows into
the page.

If we have the more general case shown in Fig. 11.21(b), where the surface is
tilted with respect to the direction of M, then integrating over the area of the thin
rectangle still gives IS = ∫

C M · ds. But now only the component of M parallel
to the long side of the rectangle survives in the dot product. Call this component
M‖. The above reasoning then quickly yields J = M‖. (Compare this with the
surface charge density σ = P⊥ for an electrically polarized material.) You can
also arrive at this result by taking into account all the tiny current loops, as we did
in Fig. 11.16. In short, the same number of current loops fit into a given height,
but the relevant surface area is larger if the surface is tilted. So the surface current
density is smaller.
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11.9 The field of a permanent magnet
The uniformly polarized spheres and rods we talked about in Chapter 10
are seldom seen, even in the laboratory. Frozen-in electric polarization
can occur in some substances, although it is usually disguised by some
accumulation of free charge. To make Fig. 11.3(a), which shows how the
field of a polarized rod would look, it was necessary to use two charged
disks. On the other hand, materials with permanent magnetic polariza-
tion, that is, permanent magnetization, are familiar and useful. Perma-
nent magnets can be made from many alloys and compounds of ferro-
magnetic substances. What makes this possible is a question we leave
for Section 11.11, where we dip briefly into the physics of ferromag-
netism. In this section, taking the existence of permanent magnets for
granted, we want to study the magnetic field B of a uniformly magne-
tized cylindrical rod and compare it carefully with the electric field E of
a uniformly polarized rod of the same shape.

Figure 11.22 shows each of these solid cylinders in cross section.
The polarization, in each case, is parallel to the axis, and it is uniform.
That is, the polarization P and the magnetization M have uniform mag-
nitude and direction everywhere within their respective cylinders. In the
magnetic case this implies that every cubic millimeter of the permanent
magnet has the same number of lined-up electron spins, pointing in the
same direction. (A very good approximation to this can be achieved with
modern permanent magnet materials.)

By the field inside the cylinder we mean, of course, the macro-
scopic field defined as the space average of the microscopic field. With
this understanding, we show in Fig. 11.22 the field lines both inside and

Figure 11.22.
(a) The electric field E outside and inside a
uniformly polarized cylinder. (b) The magnetic
field B outside and inside a uniformly
magnetized cylinder. In each case, the interior
field shown is the macroscopic field, that is, the
local average of the atomic or microscopic field.

(a) (b)

E

P
M
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outside the rods. By the way, these rods are not supposed to be near one
another; we only put the diagrams together for convenient comparison.
Each rod is isolated in otherwise field-free space. (Which do you think
would more seriously disturb the field of the other, if they were close
together?)

Outside the rods the fields E and B look alike. In fact the field lines
follow precisely the same course. That should not surprise you if you
recall that the electric dipole and the magnetic dipole have similar far
fields. Each little chunk of the magnet is a magnetic dipole, each little
chunk of the polarized rod (sometimes called an electret) is an electric
dipole, and the field outside is the superposition of all their far fields.

The field B, inside and out, is the same as that of a cylindrical sheath
of current. In fact, if we were to wind very evenly, on a cardboard cylin-
der, a single-layer solenoid of fine wire, we could hook a battery up to it
and duplicate the exterior and interior field B of the permanent magnet.
(The coil would get hot and the battery would run down, whereas elec-
tron spins provide the current free and frictionless!) The electric field E,
both inside and outside the polarized rod, is that of two disks of charge,
one at each end of the cylinder.

Observe that the interior fields E and B are essentially different in
form: B points to the right, is continuous at the ends of the cylinder,
and suffers a sharp change in direction at the cylindrical surface. (These
three facts are consistent with the B field that arises from a cylindrical
sheath of current.) On the other hand, E points to the left, passes through
the cylindrical surface as if it weren’t there, but is discontinuous at the
end surfaces. (These three facts are consistent with the E field that arises
from two disks of charge.) These differences arise from the essential
difference between the “inside” of the physical electric dipole and the
“inside” of the physical magnetic dipole seen in Fig. 11.8. By physical,
we mean the ones Nature has actually provided us with.

If the external field were our only concern, we could use either pic-
ture to describe the field of our magnet. We could say that the magnetic
field of the permanent magnet arises from a layer of positive magnetic
charge – a surface density of north magnetic poles on the right-hand
end of the magnet, and a layer of negative magnetic charge, south poles,
on the other end. We could adopt a scalar potential function φmag, such
that B = −grad φmag. The potential function φmag would be related to
the fictitious pole density as the electric potential is related to charge
density. The simplicity of the scalar potential compared with the vector
potential is rather appealing. Moreover, the magnetic scalar potential can
be related in a very neat way to the currents that are the real source of
B, and thus one can use the scalar potential without any explicit use of
the fictitious poles. You may want to use this device if you ever have to
design magnets or calculate magnetic fields.

We must abandon the magnetic pole fiction, however, if we want to
understand the field inside the magnetic material. That the macroscopic
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magnetic field inside a permanent magnet is, in a very real sense, like
the field in Fig. 11.22(b) rather than the field in Fig. 11.22(a) has been
demonstrated experimentally by deflecting energetic charged particles in
magnetized iron, as well as by the magnetic effects on slow neutrons,
which pass even more easily through the interior of matter. 10 cm

C
Magnetized disk

1 cm

0.3 cm

(a)

(c)

1 cm

I = 450 amp

B = 280 gauss
B = 0.288
       gauss

C

M

(1.6 × 1022 electron spins/cm3)
M = 1.5 . 105 A/m

A C

(b)

Figure 11.23.
(a) A disk uniformly magnetized parallel to its
axis. (b) Cross-sectional view of disk. (c) The
equivalent current is a band of current
amounting to 450 amps flowing around the rim
of the disk. The magnetic field B is the same as
the magnetic field of a very short solenoid, or
approximately that of a simple ring of current of
1 cm radius.

Example (Disk magnet) Figure 11.23(a) shows a small disk-shaped perma-
nent magnet, in which the magnetization is parallel to the axis of symmetry.
Although many permanent magnets take the form of bars or horseshoes made of
iron, flat disk magnets of considerable strength can be made with certain rare-
earth elements. The magnetization M is given as 1.5 · 105 joules/(tesla-m3), or
equivalently amps/meter. The magnetic moment of the electron is 9.3 · 10−24

joule/tesla, so this value of M corresponds to 1.6 · 1028 lined-up electron spins
per cubic meter. The disk is equivalent to a band of current around its rim,
of surface density J =M. The rim being �= 0.3 cm wide, the current I
amounts to

I = J � = M� = (1.5 · 105 amp/m)(3 · 10−3 m) = 450 amps. (11.62)

This is rather more current than you draw by short-circuiting an automobile bat-
tery! The field B at any point in space, including points inside the disk, is simply
the field of this band of current. For instance, near the center of the disk, B is
approximately (using Eq. (6.54))

B = μ0I
2r

= (4π · 10−7 kg m/C2)(450 C/s)
2(0.01 m)

= 2.8 · 10−2 tesla, (11.63)

or 280 gauss. The approximation consists in treating the 0.3 cm wide band of cur-
rent as if it were concentrated in a single thin ring. (The corresponding approx-
imation in an electrical setup would be to treat the equivalent charge sheets as
large compared with their separation.) As for the field at a distant point, it would
be easy to compute it for the ring current, but we could also, for an approximate
calculation, proceed as we did in the electrical example. That is, we could find
the total magnetic moment of the object, and find the distant field of a single
dipole of that strength.

11.10 Free currents, and the field H
It is often useful to distinguish between bound currents and free cur-
rents. Bound currents are currents associated with molecular or atomic
magnetic moments, including the intrinsic magnetic moment of particles
with spin. These are the molecular current loops envisioned by Ampère,
the source of the magnetization we have just been considering. Free cur-
rents are ordinary conduction currents flowing on macroscopic paths –
currents that can be started and stopped with a switch and measured with
an ammeter.
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The current density J in Eq. (11.56) is the macroscopic average of
the bound currents, so let us henceforth label it Jbound:

Jbound = curl M. (11.64)

At a surface where M is discontinuous, such as the side of the magne-
tized block in Fig. 11.17, we have a surface current density J which also
represents bound current.

We found that B, both outside matter and, as a space average, inside
matter, is related to Jbound just as it is to any current density. That is,
curl B = μ0Jbound. But that was in the absence of free currents. If we
bring these into the picture, the field they produce simply adds on to the
field caused by the magnetized matter and we have

curl B = μ0(Jbound + Jfree) = μ0Jtotal. (11.65)

Let us express Jbound in terms of M, through Eq. (11.64). Then
Eq. (11.65) becomes

curl B = μ0(curl M) + μ0Jfree, (11.66)

which can be rearranged as

curl
(

B
μ0

− M
)
= Jfree. (11.67)

If we now define a vector function H(x, y, z) at every point in space by
the relation

H ≡ B
μ0

− M (11.68)

then Eq. (11.67) can be written as

curl H = Jfree (11.69)

In other words, the vector H, defined by Eq. (11.68), is related (up
to a factor of μ0) to the free current in the way B is related to the total
current, bound plus free. The parallel is not complete, however, for we
always have div B = 0, whereas our vector function H does not neces-
sarily have zero divergence.

This surely has reminded you of the vector D which we introduced, a
bit grudgingly, in Chapter 10. Recall that D is related (up to a factor of ε0)
to the free charge as E is related to the total charge. Although we rather
disparaged D, the vector H is really useful, for a practical reason that is
worth understanding. In short, the reason is that in our two equations,
div D = ρfree and curl H = Jfree, the charge density ρfree is difficult to
measure, while the current density Jfree is easy. Let’s look at this in more
detail.

In electrical systems, what we can easily control and measure are
the potential differences of bodies, and not the amounts of free charge
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on them. Thus we control the electric field E directly. D is out of our
direct control, and since it is not a fundamental quantity in any sense,
what happens to it is not of much concern. In magnetic systems, how-
ever, it is precisely the free currents that we can most readily control. We
lead them through wires, measure them with ammeters, channel them in
well-defined paths with insulation, and so on. We have much less direct
control, as a rule, over magnetization, and hence over B. So the auxiliary
vector H is useful, even if D is not.

The integral relation equivalent to Eq. (11.69) is∫
C

H · dl =
∫

S
Jfree · da = Ifree (11.70)

where Ifree is the total free current enclosed by the path C. Suppose we
wind a coil around a piece of iron and send through this coil a certain
current I, which we can measure by connecting an ammeter in series
with the coil. This is the free current, and it is the only free current in
the system. Therefore one thing we know for sure is the line integral of
H around any closed path, whether that path goes through the iron or
not. The integral depends only on the number of turns of our coil that
are linked by the path, and not on the magnetization in the iron. The
determination of M and B in this system may be rather complicated.
It helps to have singled out one quantity that we can determine quite
directly. Figure 11.24 illustrates this property of H by an example, and is a
reminder of the units we may use in a practical case. H has the same units
as B/μ0, or equivalently the same units as M, which are amps/meter.
This is consistent with the fact that curl H equals Jfree, which has units
of amps/meter2. It is also consistent with the fact that

∫
H · dl equals

Ifree, which has units of amps.
We consider B the fundamental magnetic field vector because the

absence of magnetic charge, which we discussed in Section 11.2, implies
div B = 0 everywhere, even inside atoms and molecules. From div B = 0
it follows, as we showed in Section 11.8, that the average macroscopic
field inside matter is B, not H. The implications of this have not always
been understood or heeded in the past. However, H has the practical
advantage we have already explained. In some older books you will
find H introduced as the primary magnetic field. B is then defined as
μ0(H + M), and given the name magnetic induction. Even some writ-
ers who treat B as the primary field feel obliged to call it the magnetic
induction because the name magnetic field was historically preempted
by H. This seems clumsy and pedantic. If you go into the laboratory and
ask a physicist what causes the pion trajectories in his bubble chamber to
curve, you will probably receive the answer “magnetic field,” not “mag-
netic induction.” You will seldom hear a geophysicist refer to the earth’s
magnetic induction, or an astrophysicist talk about the magnetic induc-
tion in the galaxy. We propose to keep on calling B the magnetic field.
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Figure 11.24.
Illustrating the relation between free current and
the line integral of H.
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As for H, although other names have been invented for it, we shall call it
the field H, or even the magnetic field H.

It is only the names that give trouble, not the symbols. Everyone
agrees that in the SI system the relation connecting B, M, and H is that
stated in Eq. (11.68). In empty space we have H = B/μ0, for M must be
zero where there is no matter.

In the description of an electromagnetic wave, it is common to use
H and E, rather than B and E, for the magnetic and electric fields. For
the plane wave in free space that we studied in Section 9.4, the rela-
tion between the magnetic amplitude H0 in amps/meter and the electric
amplitude E0 in volts/meter involves the constant

√
μ0/ε0 which has the

dimensions of resistance and the approximate value 377 ohms. For its
exact value, see Appendix E. We met this constant before in Section 9.6,
where it appeared in the expression for the power density in the plane
wave, Eq. (9.36). The condition that corresponds to E0 and B0, as stated
by Eq. (9.26), becomes

E0(volt/meter) = H0(amp/meter) × 377 ohms. (11.71)

This makes a convenient system of units for dealing with electromagnetic
fields in vacuum whose sources are macroscopic alternating currents and
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voltages. But remember that the basic magnetic field inside matter is B,
not H, as we found in Section 11.9. That is not a matter of mere definition,
but a consequence of the absence of magnetic charge.

The way in which H is related to B and M is reviewed in Fig. 11.25,
for both the SI and the Gaussian systems of units. These relations hold
whether M is proportional to B or not. However, if M is proportional to
B, then it will also be proportional to H. In fact, the traditional definition
of the volume magnetic susceptibility χm is not the logically preferable
one given in Eq. (11.52), but rather

M = χmH (if M ∝ B), (11.72)

which we shall reluctantly adopt from here on. If χm � 1, which is
commonly the case, there is negligible difference between the two defi-
nitions; see Exercise 11.38.

The permanent magnet in Fig. 11.22(b) is an instructive example
of the relation of H to B and M. To obtain H at some point inside the
magnetized material, we have to add vectorially to B/μ0 at that point the
vector −M. Figure 11.26 depicts this for a particular point P. It turns out
that the lines of H inside the magnet look just like the lines of E inside the
polarized cylinder of Fig. 11.22(a). The reason for this is the following.
In the permanent magnet there are no free currents at all. Consequently,
the line integral of H, according to Eq. (11.70), must be zero around any
closed path. You can see that this will be the case if the H lines look
like the E lines in Fig. 11.22(a), for we know the line integral of that
electrostatic field is zero around any closed path.

Said in a different way, if magnetic poles, rather than electric cur-
rents, really were the source of the magnetization, then the macroscopic
magnetic field inside the magnetized material would look just like the
macroscopic electric field inside the polarized material (because that
field is produced by electric poles). The similarity of magnetic polar-
ization and electric polarization would be complete. The B field in a
(hypothetical) setup with magnetic poles looks like the H field in a (real)
setup with current loops.

In the example of the permanent magnet, Eq. (11.72) does not apply.
The magnetization vector M is not proportional to H but is determined,
instead, by the previous treatment of the material. How this can come
about will be explained in the following section.

For any material in which M is proportional to H, so that Eq. (11.72)
applies as well as the basic relation, Eq. (11.68), we have

B = μ0(H + M) = μ0(1 + χm)H. (11.73)

Hence B is proportional to H. The factor of proportionality, μ0(1+χm),
is called the magnetic permeability and denoted usually by μ:

B = μH where μ ≡ μ0(1 + χm). (11.74)
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The permeability μ, rather than the susceptibility χ , is customarily used
in describing ferromagnetism.

11.11 Ferromagnetism
Ferromagnetism has served and puzzled man for a long time. The lode-
stone (magnetite) was known in antiquity, and the influence on history
of iron in the shape of compass needles was perhaps second only to
that of iron in the shape of swords. For a century our electrical tech-
nology depended heavily on the circumstance that one abundant metal
happens to possess this peculiar property. Nevertheless, it was only with
the development of quantum mechanics that anything like a fundamental
understanding of ferromagnetism was achieved.

We have already described some properties of ferromagnets. In a
very strong magnetic field the force on a ferromagnetic substance is in
such a direction as to pull it into a stronger field, as for paramagnetic
materials, but instead of being proportional to the product of the field
B and its gradient, the force is proportional to the gradient itself. As
we remarked at the end of Section 11.4, this suggests that, if the field
is strong enough, the magnetic moment acquired by the ferromagnet
reaches some limiting magnitude. The direction of the magnetic moment
vector must still be controlled by the field, for otherwise the force would
not always act in the direction of increasing field intensity.

In permanent magnets we observe a magnetic moment even in the
absence of any externally applied field, and it maintains its magnitude
and direction even when external fields are applied, if they are not too
strong. The field of the permanent magnet itself is always present, of
course, and you may wonder whether it could not keep its own sources
lined up. However, if you look again at Fig. 11.22(b) and Fig. 11.26, you
will notice that M is generally not parallel to either B or H. This suggests
that the magnetic dipoles must be clamped in direction by something
other than purely magnetic forces.

H

(b)

(a)

B/m0

−M

H = B/m0 − M

H line
P

M

B line

Figure 11.26.
(a) The relation of B, H, and M at a point inside
the magnetized cylinder of Fig. 11.22(b).
(b) Relation of vectors at point P.

The magnetization observed in ferromagnetic materials is much
larger than we are used to in paramagnetic substances. Permanent mag-
nets quite commonly have fields in the range of a few thousand gauss.
A more characteristic quantity is the limiting value of the magnetization,
the magnetic moment per unit volume, that the material acquires in a
very strong field. This is called the saturation magnetization.

Example We can deduce the saturation magnetization of iron from the data in
Table 11.1. In a field with a gradient of 17 tesla/m, the force on 1 kg of iron was
4000 newtons. From Eq. (11.20), which relates the force on a dipole to the field
gradient, we find

m = F
dB/dz

= 4000 newtons
17 tesla/m

= 235 joules/tesla (for 1 kg). (11.75)
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To get the moment per cubic meter we multiply m by the density of iron,
7800 kg/m3. The magnetization M is thus

M = (235 joules/tesla-kg)(7800 kg/m3)

= 1.83 · 106 joules/(tesla-m3). (11.76)

It is μ0M, not M, that we should compare with field strengths in tesla. In the
present case, μ0M has the value of 2.3 tesla.

It is more interesting to see how many electron spin moments this magne-
tization corresponds to. Dividing M by the electron moment given in Fig. 11.14,
namely 9.3 · 10−24 joule/tesla, we get about 2 · 1029 spin moments per cubic
meter. Now, 1 m3 of iron contains about 1029 atoms. The limiting magnetiza-
tion seems to correspond to about two lined-up spins per atom. As most of the
electrons in the atom are paired off and have no magnetic effect at all, this indi-
cates that we are dealing with substantially complete alignment of those few
electron spins in the atom’s structure that are at liberty to point in the same
direction.

A very suggestive fact about ferromagnets is this: a given ferromag-
netic substance, pure iron for example, loses its ferromagnetic proper-
ties quite abruptly if heated to a certain temperature. Above 770 ◦C,
pure iron acts like a paramagnetic substance. Cooled below 770 ◦C, it
immediately recovers its ferromagnetic properties. This transition tem-
perature, called the Curie point after Pierre Curie who was one of its
early investigators, is different for different substances. For pure nickel it
is 358 ◦C.

What is this ferromagnetic behavior that so sharply distinguishes
iron below 770 ◦C from iron above 770 ◦C, and from copper at any tem-
perature? It is the spontaneous lining up in one direction of the atomic
magnetic moments, which implies alignment of the spin axes of certain
electrons in each iron atom. By spontaneous, we mean that no exter-
nal magnetic field need be involved. Over a region in the iron large
enough to contain millions of atoms, the spins and magnetic moments
of nearly all the atoms are pointing in the same direction. Well below the
Curie point – at room temperature, for instance, in the case of iron –
the alignment is nearly perfect. If you could magically look into the
interior of a crystal of metallic iron and see the elementary magnetic
moments as vectors with arrowheads on them, you might see something
like Fig. 11.27.

Figure 11.27.
The orderliness of the spin directions in a small
region in a crystal of iron. Each arrow represents
the magnetic moment of one iron atom.

It is hardly surprising that a high temperature should destroy this
neat arrangement. Thermal energy is the enemy of order, so to speak.
A crystal, an orderly arrangement of atoms, changes to a liquid, a much
less orderly arrangement, at a sharply defined temperature, the melting
point. The melting point, like the Curie point, is different for different
substances. Let us concentrate here on the ordered state itself. Two or
three questions are obvious.
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Question 1 What makes the spins line up and keeps them lined up?

Question 2 How, if there is no external field present, can the spins
choose one direction rather than another? Why didn’t all the moments
in Fig. 11.27 point down, or to the right, or to the left?

Question 3 If the atomic moments are all lined up, why isn’t every piece
of iron at room temperature a strong magnet?

A

B

E D

C

Figure 11.28.
An atom A and its nearest neighbors in the
crystal lattice. (Of course, the lattice is really
three-dimensional.)

The answers to these three questions will help us to understand, in
a general way at least, the behavior of ferromagnetic materials when
an external field, neither very strong nor very weak, is applied. That
includes a very rich variety of phenomena that we haven’t even
described yet.

Answer 1 For some reason connected with the quantum mechanics of
the structure of the iron atom, it is energetically favorable for the spins
of adjacent iron atoms to be parallel. This is not due to their magnetic
interaction. It is a stronger effect than that, and moreover it favors parallel
spins whether like this ↑↑ or like this →→ (dipole interactions don’t
work that way – see Exercise 10.29). Now if atom A (Fig. 11.28) wants
to have its spin in the same direction as that of its neighbors, atoms B, C,
D, and E, and each of them prefers to have its spin in the same direction
as the spin of its neighbors, including atom A, you can readily imagine
that if a local majority ever develops there will be a strong tendency to
“make it unanimous,” and then the fad will spread.

Answer 2 Accident somehow determines which of the various equivalent
directions in the crystal is chosen, if we commence from a disordered
state – as, for example, if the iron is cooled through its Curie point
without any external field applied. Pure iron consists of body-centered
cubic crystals. Each atom has eight nearest neighbors. The symmetry
of the environment imposes itself on every physical aspect of the atom,
including the coupling between spins. In iron the cubic axes happen to
be the axes of easiest magnetization. That is, the spins like to point in
the same direction, but they like it even better if that direction is one of
the six directions ±x̂, ±ŷ, ±ẑ (Fig. 11.29). This is important because it
means that the spins cannot easily swivel around en masse from one of
the easy directions to an equivalent one at right angles. To do so, they
would have to swing through less favorable orientations on the way. It
is just this hindrance that makes permanent magnets possible.

“Medium”

“Hard”

“Easy” directions

z

x

y

Figure 11.29.
In iron the energetically preferred direction of
magnetization is along a cubic axis of the
crystal.

Answer 3 An apparently unmagnetized piece of iron is actually com-
posed of many domains, in each of which the spins are all lined up one
way, but in a direction different from that of the spins in neighboring
domains. On the average over the whole piece of “unmagnetized” iron,
all directions are equally represented, so no large-scale magnetic field
results. Even in a single crystal the magnetic domains establish them-
selves. The domains are usually microscopic in the everyday sense of the
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word. In fact, they can be made visible under a low-power microscope.
That is still enormous, of course, on an atomic scale, so a magnetic
domain typically includes billions of elementary magnetic moments.
Figure 11.30 depicts a division into domains. The division comes about

Figure 11.30.
Possible arrangement of magnetic domains in
a single uniform crystal of iron.

because it is cheaper in energy than an arrangement with all the spins
pointing in one direction. The latter arrangement would be a permanent
magnet with a strong field extending out into the space around it. The
energy stored in this exterior field is larger than the energy needed
to turn some small fraction of the spins in the crystal, namely those
at a domain boundary, out of line with their immediate neighbors.
The domain structure is thus the outcome of an energy-minimization
contest.

If we wind a coil of wire around an iron rod, we can apply a mag-
netic field to the material by passing a current through the wire. In this
field, moments pointing parallel to the field will have a lower energy
than those pointing antiparallel, or in some other direction. This favors
some domains over others; those that happen to have a favorably ori-
ented moment direction7 will tend to grow at the expense of the others,
if that is possible. A domain grows like a club, that is, by expanding its
membership. This happens at the boundaries. Spins belonging to an unfa-
vored domain, but located next to the boundary with a favored domain,
simply switch allegiance by adopting the favored direction. That merely
shifts the domain boundary, which is nothing more than the dividing
surface between the two classes of spins. This happens rather easily
in single crystals. That is, a very weak applied field can bring about,
through boundary movement, a very large domain growth, and hence a
large overall change in magnetization. Depending on the grain structure
of the material, however, the movement of domain boundaries can be
difficult.

circumference

To galvanometer

I

H =
NI

N turns

Figure 11.31.
Arrangement for investigating the relation
between B and M, or B and H, in a
ferromagnetic material.

If the applied field does not happen to lie along one of the “easy”
directions (in the case of a cubic crystal, for example), the exhaustion
of the unfavored domains still leaves the moments not pointing exactly
parallel to the field. It may now take a considerably stronger field to pull
them into line with the field direction so as to create, finally, the maxi-
mum magnetization possible.

Let us look at the large-scale consequences of this, as they appear
in the magnetic behavior of a piece of iron under various applied fields.
A convenient experimental arrangement is an iron torus, around which
we wind two coils (Fig. 11.31). This affords a practically uniform field
within the iron, with no end effects to complicate matters. By measuring

7 We tend to use spins and moments almost interchangeably in this discussion. The
moment is an intrinsic aspect of the spin, and if one is lined up so is the other. To be
meticulous, we should remind the reader that in the case of the electron the magnetic
moment and angular momentum vectors point in opposite directions (Fig. 11.14).
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the voltage induced in one of the coils, we can determine changes in flux
�, and hence in B inside the iron. If we keep track of the changes in B,
starting from B = 0, we always know what B is. A current through the
other coil establishes H, which we take as the independent variable. If
we know B and H, we can always compute M. It is more usual to plot
B rather than M, as a function of H. A typical B-H curve for iron is
shown in Fig. 11.32. Note the different units on the axes; B is measured
in tesla while H is measured in amps/meter. If there were no iron in the
coil, B would equal μ0H, so H = 1 amp/meter would be worth exactly
B = 4π · 10−7 tesla. Or equivalently, H = 300 amps/meter would yield
B ≈ 4 · 10−4 tesla. But with the iron present, the resulting B field is
much larger. We see from the figure that when H = 300 amps/meter, B
has risen to more than 1 tesla. Of course, B and H here refer to an average
throughout the whole iron ring; the fine domain structure as such never
exhibits itself.
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Figure 11.32.
Magnetization curve for fairly pure iron. The
dashed curve is obtained as H is reduced from
a high positive value.Starting with unmagnetized iron, B= 0 and H = 0, increasing H

causes B to rise in a conspicuously nonlinear way, slowly at first, then
more rapidly, then very slowly, finally flattening off. What actually
becomes constant in the limit is not B but M. In this graph, however, since
M=B/μ0−H, and H �B/μ0, the difference between B and μ0M is not
appreciable.

The lower part of the B-H curve is governed by the motion of domain
boundaries, that is, by the growth of “right-pointing” domains at the
expense of “wrong-pointing” domains. In the upper flattening part of the
curve, the atomic moments are being pulled by “brute force” into line
with the field. The iron here is an ordinary polycrystalline metal, so only
a small fraction of the microcrystals will be fortunate enough to have an
easy direction lined up with the field direction.
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Figure 11.33.
Alnico V is an alloy of aluminum, nickel, and
cobalt that is used for permanent magnets.
Compare this portion of its magnetization curve
with the corresponding portion of the
characteristic for a “soft” magnetic material,
shown in Fig. 11.32.

If we now slowly decrease the current in the coil, thus lowering H,
the curve does not retrace itself. Instead, we find the behavior given by
the dashed curve in Fig. 11.32. This irreversibility is called hysteresis.
It is largely due to the domain boundary movements being partially irre-
versible. The reasons are not obvious from anything we have said, but are
well understood by physicists who work on ferromagnetism. The irre-
versibility is a nuisance, and a cause of energy loss in many technical
applications of ferromagnetic materials – for instance, in alternating-
current transformers. But it is indispensable for permanent magnetiza-
tion, and for such applications, one wants to enhance the irreversibility.
Figure 11.33 shows the corresponding portion of the B-H curve for a
good permanent magnet alloy. Note that H has to become about 50,000
amps/meter in the reverse direction before B is reduced to zero. If the
coil is simply switched off and removed, we are left with B at 1.3 tesla,
called the remanence. Since H is zero, this is essentially the same as
μ0M. The alloy has acquired a permanent magnetization, that is, one
that will persist indefinitely if it is exposed only to weak magnetic fields.
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All the information that is stored on magnetic tapes and disks owes its
permanence to this physical phenomenon.

11.12 Applications
Lodestone is magnetite (which is a type of iron oxide) that has been mag-
netized. Most magnetite isn’t lodestone; the earth’s magnetic field is too
weak to create the observed magnetization. (And additionally, a partic-
ular crystal structure in the magnetite is needed.) A much stronger field
is required, and this is the field produced by the brief but large electric
current in a lightning strike. So without lightning, there would be no
magnetic compasses, and the explorers throughout history would have
had a much more difficult time!

Red pigments in paint often contain iron oxide grains. When the
paint is wet, the grains’ magnetic dipole moments are free to rotate and
align themselves with the earth’s magnetic field. But when the paint
dries, they are locked in place. The direction of the dipole moments in
a painting therefore gives the direction of the earth’s magnetic field at
the time the painting was made. By studying paintings whose positions
are fixed, such as murals, we can gather information on how the earth’s
magnetic field has changed over time, assuming that the creation dates
are known. (This doesn’t work with framed paintings that have been
moved around, or with murals that have undergone restoration!) Con-
versely, knowing the direction of the dipoles in a given painting can help
determine the creation date; this can be very useful for archaeological
purposes.

A common application of ferromagnetic materials is the magnifica-
tion of the magnetic field from a coil of wire. If a coil is wrapped around a
ferromagnetic core (usually iron-based), the coil’s magnetic field causes
the spins in the core material to align with the field, thereby producing
a much larger field than the coil would produce by itself. The magnifi-
cation factor (which is just the relative permeability, μ/μ0) depends on
various things, but for ferromagnetic materials it can be 100 or 1000, or
even larger. This magnification effect is used in the electromagnets in
relays, circuit breakers, junkyard magnets, and many other devices (see
Section 6.10).

Many data storage devices, from cassette tapes to computer hard
disks to credit cards, rely on the existence of ferromagnetic materials.
(There are many other types of storage devices too. For example, CDs
and DVDs operate by reflecting laser light off tiny pits in a plastic disk
coated with aluminum. And flash memory makes use of a special kind
of transistor.) A cassette tape (RIP) was the dominant format for music
recording in the 1980s. The cassette consists of a long plastic tape coated
with iron oxide, wound around two small reels. The read/write head is
a tiny electromagnet. In the writing (recording) mode, a current passes
through the coil of the electromagnet, producing a magnetic field that
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aligns the magnetic dipoles on the tape as it moves past. The tape there-
fore encodes the information in the current in the original signal.8 Con-
versely, in the reading (playback) mode, the magnetic field of the dipoles
in the tape induces a current in the electromagnet as the magnetic
domains in the tape move past. This induced current contains the same
information as what is on the tape. It can then be amplified and sent to a
speaker.

A computer hard disk operates under the same general principle as a
cassette tape, although there are some differences. Instead of a long tape,
the hard disk, as the name suggests, takes the form of a disk on which
the magnetic data is encoded in very narrow circular tracks. The mag-
netic domains are much smaller, and the average linear speed relative
to the read/write head is much larger. The information at a given loca-
tion on a disk can be accessed much more quickly than on a linear tape,
because there is no need to run through the tape to gain access to a given
point. Another important difference is that the cassette tape is an analog
device, whereas the hard disk is a digital one. That is, as the current in the
cassette’s write-head electromagnet changes smoothly, the induced mag-
netization of the tape also changes smoothly, and this smoothly varying
function contains the desired information. But in a hard disk, the mag-
netization is “all or nothing”; the write-head electromagnet either does
nothing or completely saturates a magnetic domain. The abrupt changes
(or lack thereof) in the magnetization are what is detected by the read
head. So the information that comes out is just a string of yes’s or no’s,
that is, 1’s or 0’s. In modern computers the reading is done with a sep-
arate magnetoresistive head, whose resistance depends on the magnetic
field from the disk. This type of head is better able to read the tiny mag-
netic features on the disk. As incredibly useful as magnetic data stor-
age is, beware that it isn’t permanent. Hard-disk data can degrade on
the order of 10 years. If you really want your data to last, you can use
CDs that are made with a layer of gold. These are designed to last 300
years, although the supporting hardware will certainly be replaced long
before then.

As discussed in Exercise 11.25, magnetic bacteria contain crystals
of iron (often in the form of magnetite) that keep the bacteria aligned
with the earth’s magnetic field. The alignment is passive, that is, it would
work even if a bacterium were dead. The point of the alignment is not
to indicate which way is north, but rather which way is down. Except
near the magnetic equator, the earth’s magnetic field is inclined verti-
cally. In the simplest scenario, bacteria follow the downward field lines
to the oxygen-deprived regions (which they like) in the mud. (However,

8 The process is complicated due to hysteresis; the magnetization tends to keep its
original value and doesn’t respond linearly to the applied magnetic field. This is
remedied by adding a bias signal to the original signal. The purpose of this bias signal
(whose frequency is high – usually around 100 kHz) is basically to average out the
positive and negative effects of the hysteresis.
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other mechanisms allow them also to seek out oxygen-deprived layers of
water higher up.) The orientation of the magnetization of the crystals is
opposite in bacteria in the northern and southern hemispheres, so they
all do indeed swim downward. If a bacterium is transported to the other
hemisphere, it will swim upward. Near the magnetic equator, there are
roughly equal numbers of each type, and presumably another navigation
mechanism takes over.

Many other creatures, such as homing pigeons, sea turtles, and rain-
bow trout, also use the earth’s magnetic field to navigate. The exact
mechanism isn’t known, but with pigeons, for example, the beak most
likely contains tiny crystals of magnetite that transmit a signal to the
brain. The mechanism differs from the one in bacteria in that it is active
(that is, a signal needs to be sent) rather than passive; in bacteria the
torque on the magnetic crystals simply rotates the bacteria. Also, for
pigeons the purpose of the magnetite is to indicate which way is north
(or south, etc.), and not which way is down, as in the case of bacteria. A
bacterium wants to make a beeline along a magnetic field line to the mud,
whereas a pigeon has no great desire to make a beeline for the ground!

A ferrofluid consists of tiny (on the order of a nanometer) ferro-
magnetic particles suspended in a fluid. A surfactant (discussed in Sec-
tion 10.16) keeps the particles evenly distributed in the fluid, so that they
don’t all clump together in the presence of a magnetic field. When a
magnetic field is applied, a ferrofluid can take on bizarre shapes, with
spikes and valleys brought about by the complicated balancing of mag-
netic, gravitational, and surface-tension forces. Aside from making cool
shapes, ferrofluids have many useful applications – in magnetic reso-
nance imaging, as seals in devices with rotating parts, and as a means of
heat transfer. The ability to transfer heat efficiently is due to the temper-
ature dependence of the magnetic susceptibility. In a speaker, for exam-
ple, heat is generated near the voice coil, and the hotter ferrofluid (with
a smaller magnetization than the colder ferrofluid) will experience a
smaller magnetic force, and can therefore be displaced toward a heat sink.

Magnetorheological fluids are similar to ferrofluids, except that the
magnetic particles are larger. When a magnetic field is applied, the par-
ticles tend to line up along the field lines, which increases the viscosity
in the orthogonal direction. One application is in shock absorbers, where
an electromagnet constantly adjusts the stiffness of the fluid, depending
on the instantaneous road condition.

If you hold one permanent magnet above another, you can pick up
the bottom one. So the magnetic force from the top magnet does work
on the bottom magnet. However, isn’t it the case that magnetic forces do
no work, because the qv × B Lorentz force is always perpendicular to
the velocity v? Actually, no. Magnetic forces can do work in some cases.
More precisely, the no-magnetic-work conclusion holds only if the force
is governed by the qv × B Lorentz force law, which applies to point
charges moving through space. This force law has nothing to do with
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the force on a magnetic dipole arising from a quantum mechanical spin,
which cannot be viewed as a tiny current loop. The force on a dipole
is instead given by ∇(m ·B). Although we motivated this force law in
Section 11.4 by considering a current loop, it can in fact be derived from
fundamental physical principles (relativity, quantum mechanics, and a
few other things), with no reference to moving charges or the Lorentz
force. The ∇(m ·B) force has a potential energy associated with it, and
the change in this potential energy equals the work done on the dipole.
If you picked up an actual current ring by holding another current ring
above it, then, as the bottom ring moved upward, you can show that
the current in it would decrease (which the spin of an electron can’t
do). A battery (or something) would be needed to maintain the cur-
rent, and this battery would be the agency doing the work, because the
no-magnetic-work conclusion would hold in this case. See Problem 7.2
for a related setup and a detailed discussion of why the magnetic Lorentz
force ends up doing zero net work on moving charges.

Most permanent magnets are made of a combination of iron and
other elements, such as nickel, cobalt, and oxygen. But in recent years
permanent magnets made of rare-earth elements such as neodymium
and samarium (combined with other more common elements) have come
into wide usage. Rare-earth magnets are generally a bit stronger than
iron-based ones. The fields are often in the 1–1.5 tesla range, whereas the
field of an iron magnet is usually less than 0.5 tesla (although it can reach
1 tesla for some types). Additionally, the crystal structure of a rare-earth
magnet is highly anisotropic. As discussed in the answer to Question 2 in
Section 11.11, this means that it is difficult to change the direction of the
individual magnetic dipole moments. It is therefore difficult to demagne-
tize a rare-earth magnet. Rare-earth magnets have replaced standard iron
magnets in many electronic devices.

CHAPTER SUMMARY
• There are three types of magnetism. (1) Diamagnetism arises from

the orbital angular momentum of electrons; a diamagnetic moment
points antiparallel to the external magnetic field. (2) Paramagnetism
arises from the spin angular momentum of electrons; a paramagnetic
moment points parallel to the external magnetic field (in an average
sense). (3) Ferromagnetism also arises from the spin angular momen-
tum of electrons, but the interactions involved can be explained only
with quantum mechanics; a ferromagnetic moment can exist in the
absence of an external magnetic field.

• The force on a diamagnetic material points in the direction of decreas-
ing magnetic field strength, while the force on a paramagnetic material
points in the direction of increasing magnetic field strength. The force
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on a ferromagnetic material can point either way, but in a field strong
enough to wash out any initial magnetization that may have existed,
the force points in the direction of increasing magnetic field strength.

• Unlike electric fields, magnetic fields are caused by currents, not poles.
The absence of magnetic poles can be stated as div B = 0.

• The magnetic moment of a current loop is m = Ia. The vector poten-
tial due to the loop can be written as A = (μ0/4π)m× r̂/r2, and the
magnetic dipole field in spherical coordinates is

Br = μ0m
2πr3 cos θ , Bθ = μ0m

4πr3 sin θ . (11.77)

• The force on a magnetic dipole is F = ∇(m ·B). This takes a different
form compared with the force on an electric dipole.

• The magnetic moment due to the orbital motion of an electron is m =
−(e/2me)L, where L is the orbital angular momentum. The diamag-
netic moment induced in an external field B is m = −(e2r2/4me)B.

• Electrons also contain spin angular momentum and a spin dipole
moment. Paramagnetism arises from the (partial) alignment of the
spins. The torque on a dipole moment is N = m × B.

• In many cases the diamagnetic and paramagnetic dipole magnetiza-
tions M are proportional to the applied external field B. The magnetic
susceptibility can be defined by M = χmB/μ0, although a different
definition in terms of H (see below) is the conventional one. The para-
magnetic susceptibility is given approximately by χpm = μ0Nm2/kT .

• The magnetic field due to a uniformly magnetized slab is equivalent,
both inside and outside, to the magnetic field due to a current on the
“side” surface with density J = M. If the magnetization is not con-
stant, then we more generally have J = curl M.

• The magnetic field H is defined by

H ≡ B
μ0

− M. (11.78)

This field satisfies

curl H = Jfree ⇐⇒
∫

C
H · dl = Ifree. (11.79)

If M is proportional to B, then the accepted definition of the magnetic
susceptibility is M = χmH. The magnetic permeability is defined by

B = μH, where μ ≡ μ0(1 + χm). (11.80)

• Like paramagnetism, ferromagnetism arises from the spin angular
momentum of electrons, but in a more inherently quantum-mechanical
way that allows magnetization to exist even in the absence of an exter-
nal magnetic field. A ferromagnetic material is divided into different
domains where the spins are aligned. Increasing the external magnetic
field can shift the boundaries of these domains. However, this process
is not exactly reversible – an effect called hysteresis.
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Problems
11.1 Maxwell’s equations with magnetic charge ***

Write out Maxwell’s equations as they would appear if we had
magnetic charge and magnetic currents as well as electric charge
and electric currents. Invent any new symbols you need and define
carefully what they stand for. Be particularly careful about + and
− signs.

11.2 Magnetic dipole **
In Chapter 6 we calculated the field at a point on the axis of a
current ring of radius b; see Eq. (6.53). Show that for z � b this
approaches the field of a magnetic dipole, and find how far out on
the axis one has to go before the field has come within 1 percent
of the field that an infinitesimal dipole of the same dipole moment
would produce at that point.

11.3 Dipole in spherical coordinates **
Derive Eq. (11.15) by using spherical coordinates to take the curl
of the expression for A in Eq. (11.10). You will want to use a vector
identity from Appendix K.

11.4 Force on a dipole **
(a) In Section 11.4 we found that the force on the magnetic dipole

in the setup shown in Fig. 11.9 was Fz = mz(∂Bz/∂z). Verify
that this force is what the more general expression in
Eq. (11.22), F = (m · ∇)B, reduces to for our ring setup.
The motivation for this form of F is that it parallels the force
on an electric dipole.

(b) Verify that Fz = mz(∂Bz/∂z) is also what an alternative force
expression, F = ∇(m · B), reduces to for our ring setup. The
motivation for this form of F is that −m · B is the energy of a
dipole in a magnetic field.

I

x

a/2

a/2

y

B = z B0 x 

Figure 11.34.

(c) Only one of the preceding forms of F can be the correct gen-
eral expression for all possible setups. Determine the correct
one by finding the force on the current loop shown in Fig. 11.34.
The magnetic field points in the z direction (perpendicular to
the page) and is proportional to x, that is, B = ẑB0x.

11.5 Converting χm **
In SI units, the magnetic moment is defined by m = Ia, and the
magnetic susceptibility is defined by χm = μ0M/B. (The non-
accepted definition of χm in Eq. (11.52) will suffice for the present
purposes.) In Gaussian units, the corresponding definitions are m =
Ia/c and χm = M/B. In both systems χm is dimensionless. Show
that, for a given setup, the χm in SI units equals 4π times the χm
in Gaussian units.
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11.6 Paramagnetic susceptibility of liquid oxygen **
How large is the magnetic moment of 1 g of liquid oxygen in a
field of 1.8 tesla, according to the data in Table 11.1? Given that
the density of liquid oxygen is 850 kg/m3 at 90 K, what is its
paramagnetic susceptibility χm?

11.7 Rotating shell **
A sphere with radius R has uniform magnetization M. Show that
the surface current density is the same as that generated by a spher-
ical shell with radius R and uniform surface charge density σ , rotat-
ing with a specific angular speed ω. How must the various param-
eters be related? (Note that the result of Problem 11.8 below then
tells us what the field of a rotating charged spherical shell is, both
inside and outside.)

11.8 B inside a magnetized sphere ***
In Section 10.9 we determined the electric field inside a uniformly
polarized sphere by finding the potential on the surface and then
using the uniqueness theorem to find the potential inside. We can
use a similar strategy to find the magnetic field inside a uniformly
magnetized sphere. Here are the steps.

(a) The field due to magnetic dipole, given in Eq. (11.15), takes
the same form as the field due to an electric dipole, given in
Eq. (10.18). Explain why this implies that the external mag-
netic field due to a uniformly magnetized sphere with radius R
is the same as the field due to a magnetic dipole m0 located at
the center, with magnitude m0 = (4πR3/3)M.

(b) If m0 points in the z direction, then Eq. (11.12) gives the Carte-
sian components of the vector potential A on the surface of
the sphere. After looking back at Section 6.3, explain why
the uniqueness theorem applies, and find A inside the sphere.
Then take the curl to find B. How do the features of this B
compare with those of the E inside a polarized sphere?

11.9 B at the north pole of a solid rotating sphere **
A solid sphere with radius R has uniform volume charge density ρ

and rotates with angular speed ω. Use the results from Problems
11.7 and 11.8 to show that the magnetic field at the “north pole” of
the sphere equals 2μ0ρωR2/15.

11.10 Surface current on a cube **
A cube of magnetite 5 cm on an edge is magnetized to saturation
in a direction perpendicular to two of its faces. Find the magnitude
of the ribbon of bound-charge current that flows around the cir-
cuit consisting of the other four faces of the cube. The saturation
magnetization in magnetite is 4.8 · 105 joules/tesla-m3. Would the
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field of this cubical magnet seriously disturb a compass 2 meters
away?

11.11 An iron torus *
An iron torus of inner diameter 10 cm, outer diameter 12 cm, has
20 turns of wire wound on it. Use the B-H curve in Fig. 11.32
to estimate the current required to produce a field of 1.2 tesla in
the iron.

Exercises
11.12 Earth dipole **

At the north magnetic pole the earth’s magnetic field is vertical
and has a strength of 0.62 gauss. The earth’s field at the surface
and further out is approximately that of a central dipole.

(a) What is the magnitude of the dipole moment in joules/tesla?
(b) Imagine that the source of the field is a current ring on the

“equator” of the earth’s metallic core, which has a radius of
3000 km, about half the earth’s radius. How large would the
current have to be?

11.13 Disk dipole **
A disk with radius R has uniform surface charge density σ and
spins with angular speed ω. Far away, it looks like a magnetic
dipole. What is the magnetic dipole moment?

11.14 Sphere dipole **
A sphere of radius R carries charge Q distributed uniformly over
the surface, with density σ = Q/4πR2. This shell of charge is
rotating about an axis of the sphere with angular speed ω. Find its
magnetic moment. (Divide the sphere into narrow bands of rotat-
ing charge; find the current to which each band is equivalent, and
its dipole moment, and then integrate over all bands.)

11.15 A solenoid as a dipole **
A solenoid like the one described in Section 11.1 is located in the
basement of a physics laboratory. Physicists on the top floor of the
building, 60 feet higher and displaced horizontally by 80 feet, com-
plain that its field is disturbing their measurements. Assuming that
the solenoid is operating under the conditions described, and treat-
ing it as a simple magnetic dipole, give a rough estimate (order of
magnitude is fine) of the field strength at the location of the com-
plaining physicists. Comment, if you see any grounds for doing so,
on the merit of their complaint.

11.16 Dipole in a uniform field **
A magnetic dipole of strength m is placed in a homogeneous mag-
netic field of strength B0, with the dipole moment directed
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opposite to the field. Show that, in the combined field, there is a
certain spherical surface, centered on the dipole, through which no
field lines pass. The external field, one may say, has been “pushed
out” of this sphere. The field lines outside the sphere have been
drawn in Fig. 11.35. Roughly what do the field lines inside the
sphere look like? What is the strength of the field immediately
outside the sphere, at the equator?

Figure 11.35.

So far as its effect on the external field is concerned, the dipole
could be replaced by currents flowing in the spherical surface, if
we could provide just the right current distribution. (See Problems
11.7 and 11.8, although the exact distribution isn’t necessary for
this problem.) What is the field inside the sphere in this case? Why
can you be sure? (This is an important configuration in the study
of superconductivity. A superconducting sphere, in fact, does push
out all field from its interior.)

11.17 Trapezoid dipole **
A current I runs around the trapezoidal loop shown in
Fig. 11.36. The left and right sides are nearly parallel, and they
point toward a distant point P. Using the Biot–Savart law, find the
magnetic field at P, and check that it is consistent with the field
in Eq. (11.15). Work in the approximation where a and b are much
smaller than r. (If you think that it’s silly to consider a trapezoid
when we could alternatively consider the seemingly simpler shape
of a square, you should look at Problem 6.14.)

11.18 Field somewhat close to a solenoid **
A solenoid has length � and radius R (with � � R). Consider a
point P a distance � off to the side, as shown in Fig. 11.37. Show
that up to numerical factors, the magnetic field at P behaves like
B0R2/�2, where B0 is the field inside the solenoid.

a

b

r

P

I

Figure 11.36.

11.19 Using reciprocity **
The magnetic dipole m in Fig. 11.38 oscillates at frequency ω and
has amplitude m0. Some of its flux links the nearby circuit C1,
inducing in C1 an electromotive force, E1 sin ωt. It would be easy to
compute E1 if we knew how much flux from the dipole is enclosed
by C1, but that might be hard to calculate. Suppose that all we
know about C1 is this: if a current I1 were flowing in C1, it would
produce a magnetic field B1 at the location of m. We are told the
value of B1/I1, but nothing more about C1, not even its shape or
location. Show that this information suffices to relate E1 to m0 by
the simple formula E1 = (ω/I1)B1 · m0. Hint: Represent m as
a small loop of area A carrying current I2. Call this circuit C2.
Consider the voltage induced in C2 by a varying current in C1;
then invoke the reciprocity of mutual inductance, which we proved
in Section 7.7.
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11.20 Force between a wire and a loop ***
In Exercise 6.54 we calculated the force on the square loop in
Fig. 6.47 due to the magnetic field from the infinite wire. Verify
that Newton’s third law holds by calculating the force on the wire
due to the magnetic field from the square loop. You can assume
that the objects are far apart, so that you can use the dipole approx-
imation for the field from the loop.

P

Figure 11.37.

m = m0 cos w t

C1

Figure 11.38.

11.21 Dipoles on a chessboard ***
Imagine that a magnetic dipole of strength m is located at the center
of every square on a chessboard, with dipoles on white squares
pointing up, dipoles on black squares pointing down. The side of
a square is s. To answer the following questions you will have to
write a little program.

(a) Compute the work required to remove any particular one of
the dipoles to infinity, leaving the other 63 fixed in position
and orientation. Thus determine which of the dipoles are in
this respect most tightly bound.

(b) How much work must be done to disperse all 64 dipoles to
infinite separation from one another?

11.22 Potential momentum **
Someone who knows a little about the quantum theory of the atom
might be troubled by one point in our analysis in Section 11.5 of
the effect of a magnetic field on the orbital velocity of an atomic
electron. When the velocity changes, while r remains constant, the
angular momentum mvr changes. But the angular momentum of an
electron orbit is supposed to be precisely an integral multiple of the
constant h/2π , h being the universal quantum constant, Planck’s
constant. How can mvr change without violating this fundamental
quantum law?

The resolution of this paradox is important for the quantum
mechanics of charged particles, but it is not peculiar to quantum
theory. When we consider conservation of energy for a particle
carrying charge q, moving in an external electrostatic field E, we
always include, along with the kinetic energy mv2/2, the potential
energy qφ, where φ is the scalar electric potential at the location of
the particle. We should not be surprised to find that, when we con-
sider conservation of momentum, we must consider not only the
ordinary momentum Mv, but also a quantity involving the vector
potential of the magnetic field, A.

It turns out that the momentum must be taken as Mv+ qA,
where A is the vector potential of the external field evaluated at the
location of the particle. We might call Mv the kinetic momentum
and qA the potential momentum. (In relativity the inclusion of the
qA term is an obvious step because, just as energy and momentum
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(times c) make up a “four-vector,” so do φ and cA, the scalar and
vector potentials of the field.) The angular momentum that con-
cerns us here must then be, not just

r × (Mv), but r × (Mv + qA). (11.81)

(a)

r

m2

m1

q2

q1

(b)

m1

m2

Figure 11.39.

Go back now to the case of the charge revolving at the end of
the cord in Fig. 11.12. Check first that a vector potential appropriate
to a field B in the negative z direction is A = (B/2)(x̂y− ŷx). Then
find what happens to the angular momentum r× (Mv+qA) as the
field is turned on.

11.23 Energy of a dipole configuration ***
We want to find the energy required to bring two dipoles from
infinite separation into the configuration shown in Fig. 11.39(a),
defined by the distance apart r and the angles θ1 and θ2. Both
dipoles lie in the plane of the paper. Perhaps the simplest way
to compute the energy is this: bring the dipoles in from infin-
ity while keeping them in the orientation shown in Fig. 11.39(b).
This takes no work, for the force on each dipole is zero. Now
calculate the work done in rotating m1 into its final orientation
while holding m2 fixed. Then calculate the work required to rotate
m2 into its final orientation. Thus show that the total work done,
which we may call the potential energy of the system, is equal to
(μ0m1m2/4πr3)(sin θ1 sin θ2 − 2 cos θ1 cos θ2).

11.24 Octahedron energy **
Two opposite vertices of a regular octahedron of edge length b
are located on the z axis. At each of these vertices, and also at
each of the other four vertices, is a dipole of strength m pointing
in the ẑ direction. Using the result for Exercise 11.23, calculate the
potential energy of this system.

11.25 Rotating a bacterium *
In magnetite, Fe3O4, the saturation magnetization M0 is 4.8 · 105

joule/(tesla-m3). The magnetic bacteria discovered in 1975 by
R. P. Blakemore contain crystals of magnetite, approximately cubi-
cal, of dimension 5 · 10−8 m. A bacterium, itself about 10−6 m in
size, may contain from 10 to 20 such crystals strung out as a chain.
This magnet keeps the whole cell aligned with the earth’s mag-
netic field, and thus controls the direction in which the bacterium
swims; see Blakemore and Frankel (1981). Calculate the energy
involved in rotating a cell containing such a magnet through 90◦ in
the earth’s field (assuming initial alignment), and compare it with
the energy of thermal agitation, kT .

11.26 Electric vs. magnetic dipole moments **
The electric dipole moment of a polar molecule is typically 10−30

or 10−29 C-m in order of magnitude (see Fig. 10.14). The magnetic
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moment of an atom or molecule with an unpaired electron spin
is 10−23 amp-m2 (see Fig. 11.14). What (roughly) is the ratio of
the forces from these two moments on a charge q at a given dis-
tance moving with speed v = c/100? Your result should provide a
reminder that on the atomic scale, magnetism is a relatively feeble
effect.

11.27 Diamagnetic susceptibility of water **
From the data in Table 11.1, determine the diamagnetic suscepti-
bility of water.

11.28 Paramagnetic susceptibility of water **
The water molecule H2O contains ten electrons with spins paired
off and, consequently, zero magnetic moment. Its electronic struc-
ture is purely diamagnetic. However, the hydrogen nucleus, the
proton, is a particle with intrinsic spin and magnetic moment. The
magnetic moment of the proton is about 700 times smaller than
that of the electron. In water the two proton spins in a molecule are
not locked antiparallel but are practically free to orient individu-
ally, subject only to thermal agitation.

(a) Using Eq. (11.53), calculate the resulting paramagnetic sus-
ceptibility of water at 20 ◦C.

(b) How large is the magnetic moment induced in 1 liter of water
in a field of 1.5 tesla?

(c) If you wrapped a single turn of wire around a 1 liter flask,
about how large a current, in microamps, would produce an
equivalent magnetic moment?

11.29 Work on a paramagnetic material **
Show that the work done per kilogram in pulling a paramagnetic
material from a region where the magnetic field strength is B to
a region where the field strength is negligibly small is χB2/2μ0,
χ being the specific susceptibility. Show that the work on a given
sample can be written as FB/(2 ∂B/∂z), where F is the force at the
initial location. Then calculate exactly how much work would be
required to remove one gram of liquid oxygen from the position
referred to in Section 11.1. (Of course, this applies only if χ is a
constant over the range of field strengths involved.)

11.30 Greatest force in a solenoid ***
A cylindrical solenoid has a single-layer winding of radius r0. It
is so long that near one end the field may be taken to be that of
a semi-infinite solenoid. Show that the point on the axis of the
solenoid where a small paramagnetic sample will experience the
greatest force is located a distance r0/

√
15 in from the end.
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11.31 Boundary conditions for B **
Use the result from Problem 11.8 to show that the radial compo-
nent of B is continuous across the boundary of a uniformly mag-
netized sphere, while the tangential component has a discontinuity
of μ0Jθ , where Jθ is the surface current density at position θ on
the sphere.

11.32 B at the center of a solid rotating sphere **
A solid sphere with radius R has uniform volume charge density ρ

and rotates with angular speed ω. Use the results from Problems
11.7 and 11.8 to show that the magnetic field at the center of the
sphere equals μ0ρωR2/3.

11.33 Spheres of frozen magnetization **
A remarkable permanent magnet alloy of samarium and cobalt
has a saturation magnetization of 7.5 · 105 joule/tesla-m3, which
it retains undiminished in external fields up to 1.5 tesla. It provides
a good approximation to rigidly frozen magnetization. Consider a
sphere of uniformly magnetized samarium-cobalt 1 cm in radius.

(a) What is the strength of its magnetic field B just outside the
sphere at one of its poles? You can invoke the result from Prob-
lem 11.8.

(b) What is the strength of its magnetic field B at its magnetic
equator?

(c) Imagine two such spheres magnetically stuck together with
unlike poles touching. How much force must be applied to sep-
arate them?

11.34 Muon deflection **
An iron plate 0.2 m thick is magnetized to saturation in a direction
parallel to the surface of the plate. A 10 GeV muon moving perpen-
dicular to that surface enters the plate and passes through it with
relatively little loss of energy. Calculate approximately the angular
deflection of the muon’s trajectory, given that the rest-mass energy
of the muon is 200 MeV and that the saturation magnetization in
iron is equivalent to 1.5 · 1029 electron moments per cubic meter.

11.35 Volume integral of near field *
In the case of an electric dipole made of two charges Q and −Q
separated by a distance s, the volume of the near region, where
the field is essentially different from the ideal dipole field, is pro-
portional to s3. The field strength in this region is proportional to
Q/s2, at similar points as s is varied. The dipole moment is p = Qs,
so that if we shrink s while holding p constant, the product of vol-
ume and field strength does what? Carry through the correspond-
ing argument for the magnetic field of a current loop. The moral
is: if we are concerned with the space average field in any volume
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containing dipoles, the essential difference between the insides of
electric and magnetic dipoles cannot be ignored, even when we are
treating the dipoles otherwise as infinitesimal.

11.36 Equilibrium orientations **
Three magnetic compasses are placed at the corners of a horizon-
tal equilateral triangle. As in any ordinary compass, each compass
needle is a magnetic dipole constrained to rotate in a horizontal
plane. In this case the earth’s magnetic field has been precisely
annulled. The only field that acts on each dipole is that of the other
two dipoles. What orientation will they eventually assume? (Use
symmetry arguments!) Can your answer be generalized for N com-
passes at the vertices of an N-gon?

11.37 B inside a magnetized sphere **
In Problem 11.8 we found the magnetic field B inside a sphere with
uniform magnetization M. The task of this exercise is to rederive
that result by making use of the result from Section 10.9 for a uni-
formly polarized sphere, namely E = −P/3ε0. To do this, consider
the following equations that are valid for static fields:

∇ · (ε0E + P) = ρfree, ∇ · B = 0,
∇ × E = 0, ∇ × (B/μ0 − M) = Jfree. (11.82)

(The first and last of these are Eqs. (10.62) and (11.67).) If addi-
tionally ρfree = 0 and Jfree = 0, which is the case for our polarized
and magnetized spheres, the right-hand sides of all the equations
are zero. Rewrite the two magnetic equations in terms of H, and
then take advantage of the resulting similarity with the electric
equations.

6 cm

6 cm

1500 turns

Figure 11.40.

11.38 Two susceptibilities *
Let us denote by χ ′

m the magnetic susceptibility defined by
Eq. (11.52), to distinguish it from the susceptibility χm in the con-
ventional definition, Eq. (11.72). Show that

χm = χ ′
m/(1 − χ ′

m). (11.83)

11.39 Magnetic moment of a rock **
The direction of the earth’s magnetic field in geological ages past
can be deduced by studying the remanent magnetization in rocks.
The magnetic moment of a rock specimen can be determined by
rotating it inside a coil and measuring the alternating voltage
thereby induced. The two coils in Fig. 11.40 are connected in series.
Each has 1500 turns and a mean radius of 6 cm. The rock is rotated
at 1740 revolutions per minute by a shaft perpendicular to the plane
of the diagram. Assume that the magnetic moment lies in the plane
of the page.
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Figure 11.41.
(a) How large is the magnetic moment of the rock if the amplitude

of the induced electromotive force is 1 millivolt? The formula
derived in Exercise 11.19 is useful here.

(b) In order of magnitude, what is the minimum amount of ferro-
magnetic material required to produce an effect that large?

11.40 Deflecting high-energy particles ***
For deflecting a beam of high-energy particles in a certain exper-
iment, one requires a magnetic field of 1.6 tesla intensity, main-
tained over a rectangular region 3 m long in the beam direction, 60
cm wide, and 20 cm high. A suitable magnet might be designed
along the lines indicated in parts (a) and (b) of Fig. 11.41; part
(b) shows the cross section of two horizontal coils. Taking the
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dimensions as given (you can make rough estimates for any other
lengths you need), and referring to the additional comments below,
determine:

(a) the total number of ampere turns required in the two coils to
produce a 1.6 tesla field in the gap;

(b) the power in kilowatts that must be supplied;
(c) the number of turns that each coil should contain, and the cor-

responding cross-sectional area of the wire, so that the desired
field will be attained when the coils are connected in series to
a 400 volt dc power supply.

For use in (a), a portion of the B-H curve for Armco magnet
iron is shown in Fig. 11.41(d). All that you need to determine is
the line integral of H around a path like abcdea. In the gap, H =
B/μ0. In the iron, you may assume that B has the same intensity
as in the gap. The field lines will look something like those in
Fig. 11.41(c). You can estimate roughly the length of path in the
iron. This is not very critical, for you will find that the long path
bcdea contributes a relatively small amount to the line integral,
compared with the contribution of the air path ab. In fact, it is
not a bad approximation, at lower field strengths, to neglect H in
the iron.

For (b), let each coil contain N turns, and assume the resistiv-
ity of copper is ρ = 2.0 · 10−8 ohm-m. You will find that the power
required for a given number of ampere turns is independent of N;
that is, it is the same for many turns of fine wire or a few turns of
thick wire, provided that the total cross section of copper is fixed
as specified (1500 cm2 in our setup). The designer therefore selects
N and conductor cross section to match the magnet to the voltage
of the intended power source.



12
Solutions to the
problems

12.1 Chapter 1
1.1 Gravity vs. electricity

(a) The general expressions for the magnitudes of the gravitational and
electrical forces are

Fg = Gm1m2
r2 and Fe = q1q2

4πε0r2 . (12.1)

For two protons, the ratio of these forces is

Fg

Fe
= 4πε0Gm2

q2

=
4π

(
8.85 · 10−12 s2 C2

kg m3

)(
6.67 · 10−11 m3

kg s2

)(
1.67 · 10−27 kg

)2

(1.6 · 10−19 C)2

= 8.1 · 10−37 ≈ 10−36, (12.2)

which is extremely small. Note that this ratio is independent of r. To
get a sense of how large the number 1036 is, imagine forming a row of
neutrons stretching from the earth to the sun. If you made ten billion
copies of this, you would have about 1036 neutrons.

(b) If r = 10−15 m, the electrical force is

Fe = 1
4πε0

q2

r2 =
(

9 · 109 kg m3

s2 C2

)
(1.6 · 10−19 C)2

(10−15 m)2 = 230 N.

(12.3)

Since 1 N is equivalent to about 0.22 pounds, this force is roughly
50 pounds! This is balanced by the similarly huge “strong” force that
holds the nucleus together.
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1.2 Zero force from a triangle
First note that the desired point cannot be located in the interior of the
triangle, because the components of the fields along the symmetry axis

–e

+e +e

1 1

2

3

y

P

Figure 12.1.

would all point in the same direction (toward the negative ion). Let the
sides of the triangle be 2 units long. Consider a point P that lies a distance
y (so y is defined to be a positive number) beyond the side containing the
two positive ions, as shown in Fig. 12.1. P is a distance y + √

3 from the
negative ion, and

√
1 + y2 from each of the positive ions. If the electric

field equals zero at P, then the upward field due to the negative ion must
cancel the downward field due to the two positive ions. This gives (ignor-
ing the factor of e/4πε0)

1

(y +√
3)2

= 2 · 1
12 + y2

(
y√

12 + y2

)
�⇒ y = (1 + y2)3/2

2(y +√
3)2

,

(12.4)

where the y/
√

1 + y2 factor in the first equality arises from taking the
vertical component of the titled field lines due to the positive ions. Equa-
tion (12.4) can be solved numerically, and the result is y ≈ 0.1463. It can
also be solved by iteration: evaluate the right side for some guessed initial
y, then replace y with that calculated value. For this equation the process
converges rapidly to y ≈ 0.1463.

A second point with E = 0 lies somewhere beyond the negative
ion. To locate it, let y now be the distance (so y is still a positive quan-
tity) from the same origin as before (the midpoint of the side connect-
ing the two positive ions). We obtain the same equation as above, except
that +√3 is replaced with −√3. The numerical solution is now y ≈
6.2045. This corresponds to a distance 6.2045−√

3 ≈ 4.4724 beyond the
negative ion.

The existence of each of these points with zero field follows from
a continuity argument. For the upper point: the electric field just above
the negative ion points downward. But the field at a large distance above
the setup points upward, because the triangle looks effectively like a point
charge with net charge +e from afar. Therefore, by continuity there must
be an intermediate point where the field makes the transition from pointing

q

x

dx

L

qq

Figure 12.2.

downward to pointing upward. So E = 0 at this point. A similar continuity
argument holds for the lower point.

1.3 Force from a cone
(a) Consider a thin ring around the cone, located a slant distance x

away from the tip, with width dx, as shown in Fig. 12.2. If we look
at all the bits of charge in this ring, the horizontal components of
their forces cancel in pairs from diametrically opposite points. So
we are left with only the vertical components, which brings in a
factor of cos θ . (Equivalently, we can just say that the field is directed
vertically, from symmetry.) The vertical component of the force due
to a small piece of charge dQ in the ring is q(dQ) cos θ/4πε0x2.
Integrating over the entire ring simply turns the dQ into the total
charge in the ring. The total (vertical) force due to the ring is therefore
q(Qring) cos θ/4πε0x2.
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The radius of the ring is x sin θ , so its area is 2π(x sin θ)dx. The
charge in the ring is then Qring = σ2πx sin θ dx. Integrating over all
the rings from x = 0 to x = L gives a total force on q equal to

F =
∫ L

0

q(σ2πx sin θ dx) cos θ

4πε0x2 = qσ sin θ cos θ

2ε0

∫ L

0

dx
x

. (12.5)

But this integral diverges, so the force is infinite. In short, for small x
the largeness of the 1/x2 factor in Coulomb’s law wins out over the
smallness of the x factor in the area of a ring (but just barely; the above
integral diverges very slowly like a log).

(b) The only difference now is that the integral starts at L/2 instead of
zero. So we have

F = qσ sin θ cos θ

2ε0

∫ L

L/2

dx
x

= qσ sin θ cos θ

2ε0
(ln 2). (12.6)

Since sin θ cos θ = (1/2) sin 2θ , this force is maximized when 2θ =
90◦ �⇒ θ = 45◦, in which case it equals qσ(ln 2)/4ε0. The force
correctly equals zero when θ = 90◦ (q is at the center of a hole in a
flat disk) and also when θ = 0 (the cone is infinitesimally thin and
hence contains zero charge).

Note that the force F is independent of L. If we imagine scaling
the size by a factor of, say, 5, then a patch of the expanded cone has
52 times the charge as the corresponding patch of the original cone
(because areas are proportional to distances squared), and this exactly
cancels the factor of 1/52 from the 1/r2 in Coulomb’s law.

1.4 Work for a rectangle
The two basic arrangements are shown in Fig. 12.3. In each case there–e+e

+e–e

b

a

–e+e

–e+e

b

a

Figure 12.3.

are six pairs of charges. Two of the separations are a, two are b, and two
are

√
a2 + b2. In the first arrangement, the energy of the system (which

equals the work required to bring the charges together) is given by

U = e2

4πε0

(
−2 · 1

a
− 2 · 1

b
+ 2 · 1√

a2 + b2

)
. (12.7)

Each of the first two terms has a larger magnitude than the third, so U is
negative for any values of a and b. In the second arrangement, the energy
is given by

U = e2

4πε0

(
2 · 1

a
− 2 · 1

b
− 2 · 1√

a2 + b2

)
. (12.8)

We quickly see that this is negative if b = a, and positive if b � a.
So the energy can be positive if b is large enough compared with a. For
convenience, let a = 1. Then U = 0 when

1 − 1
b
= 1√

1 + b2
�⇒ (b − 1)2

b2 = 1
1 + b2

�⇒ b4 − 2b3 + b2 − 2b + 1 = 0. (12.9)
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We can solve this numerically, and the root we are concerned with is b ≈
1.883, or more generally b = (1.883)a. If b is larger than this, then U is
positive.

1.5 Stable or unstable?
Let the four corners be located at the points (±a,±a). Then the four dis-
tances from these points to the point (x, y) are

√
(±a − x)2 + (±a − y)2.

Ignoring the common factor of −Qq/4πε0, the code for the Mathematica
Series expansion (to second order in x and y) for the energy U(x, y) of
the −Q charge is as follows:

Series[
1/Sqrt[(a-x)^2+(a-y)^2]+
1/Sqrt[(a-x)^2+(-a-y)^2]+
1/Sqrt[(-a-x)^2+(a-y)^2]+
1/Sqrt[(-a-x)^2+(-a-y)^2],
{x,0,2},{y,0,2}]

This yields an energy of (to second order)

U(x, y) = −Qq
4πε0a

(
2
√

2 + x2 + y2

2
√

2 a2

)
. (12.10)

We see that the energy decreases with x and y, so the equilibrium is unsta-
ble for any direction of motion of the −Q charge in the xy plane. This
instability is consistent with a theorem that we will prove in Section 2.12.

Note that U(x, y) reduces properly when x = y = 0, in which case
the −Q charge is

√
2 a away from the four q charges. Note also that the

lack of terms linear in x or y is consistent with the fact that the force on
the −Q charge is zero at the center of the square (the force involves the
derivative of the energy). As far as motion in the xy plane near the origin is
concerned, you can think of the charge roughly as a ball sitting on top of an
inverted bowl.

1.6 Zero potential energy for equilibrium
(a) By symmetry, the force on Q is zero, so we need only worry about the

force on the q charges. And again by symmetry, we need only worry
about one of these. The force on the right q (ignoring the 1/4πε0
since it will cancel) equals qQ/d2 + q2/(2d)2. Setting this equal to
zero gives Q = −q/4.

(b) As in part (a), we need only worry about the force on one of the q
charges. The force on the top q (ignoring the 1/4πε0) equals qQ/d2+
2(q2/(

√
3d)2)(

√
3/2), where the last factor is the cos 30◦ involved in

taking the vertical component of the force. We have used the fact that
a side of the equilateral triangle has length

√
3d. Setting the force

equal to zero gives Q = −q/
√

3.
(c) We have three pairs of charges in part (a), so the potential energy is

1
4πε0

(
q2

2d
+ 2 · qQ

d

)
= 1

4πε0

(
q2

2d
+ 2 · q(−q/4)

d

)
= 0.

(12.11)
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We have six pairs of charges in part (b), so the potential energy is

1
4πε0

(
3 · q2

√
3d

+ 3 · qQ
d

)
= 1

4πε0

(
3 · q2

√
3d

+ 3 · q(−q/
√

3)

d

)

= 0. (12.12)

These are both equal to zero, as desired.

(d) Consider an arbitrary set of charges in equilibrium, and imagine mov-
ing them out to infinity by uniformly expanding the size of the con-
figuration, so that all relative distances stay the same. For example, in
part (b) we will simply expand the equilateral triangle until it becomes
infinitely large. At a later time, let f be the factor by which all dis-
tances have increased. Then because the electrostatic force is propor-
tional to 1/r2, the forces between all pairs of charges have decreased
by a factor 1/f 2. So the net force on any charge is 1/f 2 of what it
was at the start. But it was zero at the start, so it is zero at any later
time. Therefore, since the force on any charge is always zero, zero
work is needed to bring it out to infinity. The initial potential energy
of the system is thus zero, as desired. (You can quickly show with a
counterexample that the converse of our result is not true.)

From this reasoning, we see that the particular inverse-square nature
of the electrostatic force is irrelevant. Any power-law force leads to the
same result. But a force such as e−αr does not. For further discussion
of this topic, see Crosignani and Di Porto (1977).

1.7 Potential energy in a two-dimensional crystal
Consider the potential energy of a given ion due to the full infinite plane.
Call it U0. If we sum over all ions (or a very large number N) to find the
total U of these ions, we obtain NU0. However, we have counted each pair

Figure 12.4.

twice, so we must divide by 2 to obtain the actual total energy. Dividing
by N then gives the energy per ion as (NU0/2)/N = U0/2.

Equivalently, we can calculate the potential energy of a given ion
due to only the half-plane above it and the half-line to the right of it;
see Fig. 12.4. Looking at only half of the ions like this is equivalent to
the above division by 2. Physically, this strategy corresponds to how you
might actually build up the lattice. Imagine that the half-plane above and
the half-line to the right have already been put in position. The question
is, how much energy is involved in bringing in a new ion? This is sim-
ply the potential energy due to the ions already in place. We can then
continue adding on new ions in the same line, onward to the left (as in
Exercise 1.42), and then eventually we can move down to the next line.

If we index the ions by the coordinates (m, n), then the potential
energy of the ion at (0, 0) due to the half-line to the right of it and the
half-plane above it is given by

U = e2

4πε0a

⎛
⎝ ∞∑

m=1

(−1)m

m
+

∞∑
n=1

∞∑
m=−∞

(−1)m+n√
m2 + n2

⎞
⎠ . (12.13)
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Taking the limits to be 1000 instead of ∞ yields decent enough results via
Mathematica. We obtain

U = e2

4πε0a
(−0.693 − 0.115) = − (0.808)e2

4πε0a
. (12.14)

This result is negative, which means that it requires energy to move the
ions away from each other. This makes sense, because the four nearest
neighbors are of the opposite sign.

1.8 Oscillating in a ring
Consider a small piece of the ring with length R dθ . Using the law of
cosines in Fig. 12.5, the distance from the point (r, 0) to this piece is

q

R

q

R dq

r

Figure 12.5.

√
R2 + r2 − 2Rr cos θ . The potential energy of the charge q, as a func-

tion of r, is therefore

U(r) = 2
∫ π

0

1
4πε0

q(λR dθ)√
R2 + r2 − 2Rr cos θ

= qλ

2πε0

∫ π

0

dθ√
1 + r2/R2 − 2(r/R) cos θ

. (12.15)

Using the given Taylor series with ε ≡ r2/R2 −2(r/R) cos θ , and keeping
terms only to order r2, yields

U(r) = qλ

2πε0

∫ π

0

[
1 − 1

2

(
r2

R2 − 2r
R

cos θ

)

+ 3
8

((
−2r

R
cos θ

)2
+ · · ·

)]
dθ

= qλ

2πε0

∫ π

0

(
1 + r2

2R2

(
3 cos2 θ − 1

))
dθ , (12.16)

where we have used the fact that the term linear in cos θ integrates to zero.
As far as cos2 θ goes, we can simply replace it with 1/2, because that is its
average value. We therefore obtain

U(r) = qλ

2ε0
+ qλr2

8ε0R2 . (12.17)

The force on the charge q is then

F(r) = −dU
dr

= − qλr
4ε0R2 , (12.18)

which is a Hooke’s law type force, being proportional to the displacement.
The F = ma equation for the charge is

F = ma �⇒ − qλr
4ε0R2 = mr̈ �⇒ r̈ = −

(
qλ

4ε0mR2

)
r. (12.19)
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The angular frequency of small oscillations is the square root of the (neg-
ative of the) coefficient of r, so ω =

√
qλ/4ε0mR2. In terms of the charge

Q on the ring, we have λ = Q/2πR, so ω =
√

qQ/8πε0mR3. If r = 0.1 m,
m = 0.01 kg, and q and Q are both one microcoulomb, then you can show
that ω = 21 s−1, which is a little over 3 Hz.

1.9 Field from two charges
(a) The field cannot be zero anywhere between two charges of opposite

sign, or anywhere closer to the greater charge than to the lesser charge.
Hence the point we seek must lie to the right of the −q charge; that
is, its x value must satisfy x > a. It is important to be clear about
this before plunging into the algebra. The field will vanish there if
(ignoring the 4πε0)

2q
x2 − q

(x − a)2 = 0 �⇒ x2 − 4xa + 2a2 = 0

�⇒ x = (2 ±√
2)a. (12.20)

The positive root locates the point of vanishing field at x = (2.414)a.
The other root lies between the charges, and gives a second location
where the magnitudes of the two fields are equal. But in this case the
fields point in the same direction instead of canceling.

Note that in order to have any chance of the field being zero at a
given point, the point must lie on the x axis. This follows from the
fact that if the point does not lie on the x axis, then the fields from
the 2q and −q charges point in different directions, so it is impossible
for them to cancel each other. The x = (2.414)a point is therefore the
only point at which the field is zero.

(b) At the point (a, y) in Fig. 12.6, with y positive, the field component
2q –q

a

(a, y)

Figure 12.6.

Ey has the value (ignoring the 4πε0)

Ey = 2q
a2 + y2

(
y√

a2 + y2

)
− q

y2 , (12.21)

where the factor in parentheses yields the vertical component of the
titled field due to the 2q charge. Ey vanishes when 2y3 = (a2+y2)3/2,

which can be written as 22/3y2 = a2+y2. Hence y = a/
√

22/3 − 1 =
(1.305)a. The value y = −(1.305)a also works, by symmetry. (Alter-
natively, if y is negative, there is a plus sign in front of the second
term in Eq. (12.21).)

The existence of such a point where Ey = 0 follows from a conti-
nuity argument: at a point on the line x = a just above the −q charge,
this charge dominates, so the field points downward. But for large pos-
itive values of y, the 2q charge dominates, so the field points upward.
By continuity, the field must make the transition between these two
directions and point horizontally at some intermediate y value. This
reasoning does not apply if we consider instead the field at points on
a vertical line through the 2q charge. Indeed, the field points upward
(for positive y) everywhere on that line.

1.10 45-degree field line
Let’s parameterize the line by the angle θ shown in Fig. 12.7. A little piece

dq

dx

P

q

Figure 12.7. of the line that subtends an angle dθ is a distance �/ cos θ from the given
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point P, and its length is dx = d(� tan θ) = � dθ/ cos2 θ . The magnitude
of the field contribution at point P is therefore

dE = 1
4πε0

(� dθ/ cos2 θ)λ

(�/ cos θ)2 = 1
4πε0

λ dθ

�
. (12.22)

The horizontal component of this is obtained by multiplying by sin θ . The
total horizontal component of the field at P is then

Ex =
∫ π/2

0

1
4πε0

λ dθ

�
sin θ = λ

4πε0�

∫ π/2

0
sin θ dθ = λ

4πε0�
.

(12.23)

Similarly, the vertical component of the field contribution in Eq. (12.22)
is obtained by multiplying by cos θ . And since

∫ π/2
0 cos θ dθ equals 1

just like the sin θ integral, we see that Ex and Ey at point P both equal
λ/4πε0�. The field therefore points up at a 45◦ angle, as desired.

The Ey = λ/4πε0� result is consistent with the fact that the field
from a full infinite line is λ/2πε0�, which follows from a direct integration

q

r

R

dy

Figure 12.8.

or a quick application of Gauss’s law. By superposition, two half-infinite
lines placed end-to-end yield a full infinite line, so the Ey from the latter
must be twice the Ey from the former.

Note that since � is the only length scale in the problem, both compo-
nents must be proportional to λ/ε0� (assuming that they are finite). Their
ratio, and hence the angle of the field, is therefore independent of �. But it
takes a calculation to show that the angle is 45◦.

1.11 Field at the end of a cylinder
(a) We will solve this problem by slicing up the cylindrical shell into a

series of rings stacked on top of each other. (As an exercise, you can

q

dy =

r dq

r dq
cosq

Figure 12.9.

also calculate the field by slicing up the cylindrical shell into half-
infinite parallel strips.) In Fig. 12.8 each little piece of a ring gives
a field contribution of dq/4πε0r2. By symmetry, only the vertical
component survives, and this brings in a factor of sin θ . Integrating
over dq simply yields the total charge q in the ring, so we find that the
vertical component of the field due to a ring is

Ering = q
4πε0r2 sin θ . (12.24)

But q is given by σ(area) = σ(2πR dy), where (see Fig. 12.9 for a
zoomed-in view) dy = r dθ/ cos θ = r dθ/(R/r) = r2 dθ/R. The
field from a ring subtending an angle dθ is therefore

Ering = σ(2πR)(r2 dθ/R)

4πε0r2 sin θ = σ sin θ dθ

2ε0
. (12.25)

Integrating this from θ = 0 to θ = π/2 quickly gives a total field
of E = σ/2ε0. Note that this result is independent of R; see the final
paragraph of the solution to Problem 1.3.
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An interesting corollary of this E = σ/2ε0 result is that if we cap
the end of the cylinder with a flat disk with radius R and the same
charge density σ , then the field inside the cylinder, just below the
center of the disk, is zero. This follows from the fact that the disk
looks essentially like an infinite plane from up close, and the field due
to an infinite plane is σ/2ε0 on either side.

(b) If we slice up the solid cylinder into concentric cylindrical shells with
thickness dR, then the effective surface charge density of each shell
is ρ dR. The above result then tells us that the field from each shell is
(ρ dR)/2ε0. Integrating over R simply turns the dR into an R, so the
total field is ρR/2ε0.

Rz

r

q

Figure 12.10.

1.12 Field from a hemispherical shell
Consider a ring defined by the angle θ down from the top of the hemi-
sphere, subtending an angle dθ . Its area is 2π(R sin θ)(R dθ), so its charge
is σ(2πR2 sin θ dθ). From the law of cosines, the length r in Fig. 12.10 is
r =

√
R2 + z2 − 2Rz cos θ . The x and y components of the fields from the

various parts of the ring will cancel in pairs, so we need only worry about
the z component from each little piece. From Fig. 12.11 the field from each

R

R  cos q  –  z

z

r

q

f

Figure 12.11.

piece points downward at an angle φ below the horizontal. So the z com-
ponent involves a factor of − sin φ, where sin φ = (R cos θ − z)/r. Adding
up the z components from all the parts of the ring gives the field from
the ring as

dEz = −σ(2πR2 sin θ dθ)

4πε0r2 · (R cos θ − z)
r

(12.26)

The angle θ runs from 0 to π/2, so integrating over all the rings and using
r =

√
R2 + z2 − 2Rz cos θ gives a total field of

Ez(z) = −σR2

2ε0

∫ π/2

0

sin θ(R cos θ − z)dθ

(R2 + z2 − 2Rz cos θ)3/2 . (12.27)

This integral happens to be doable in closed form. From Mathematica or
Appendix K we obtain

Ez(z) = σR2

2ε0
· R − z cos θ

z2
√

R2 + z2 − 2Rz cos θ

∣∣∣∣π/2

0

= σR2

2ε0z2

(
R√

R2 + z2
− R − z√

(R − z)2

)
. (12.28)

There are two possibilities for the value of the second term, depending on
the sign of R − z. We find

Ez(z) = σR2

2ε0z2

(
1√

1 + z2/R2
− 1

)
(z < R),

Ez(z) = σR2

2ε0z2

(
1√

1 + z2/R2
+ 1

)
(z > R).

(12.29)
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The first of these results is always negative, so the field always points
downward if z < R (assuming σ is positive). Intuitively, it isn’t so obvious
which way the field points in the case where z is slightly smaller than R.
On the other hand, if z > R then the field obviously points upward. Ez is
discontinuous at z = R, with a jump of σ/ε0. This is consistent with an
application of Gauss’s law with a pillbox spanning the surface.

In terms of the total charge Q = 2πR2σ on the hemisphere, the factor
out front in Eq. (12.29) equals Q/4πε0z2. So the above fields correctly
approach ±Q/4πε0z2 in the z → ±∞ limits (the hemisphere looks like a
point charge from far away).

For z → 0, you can use 1/
√

1 + ε ≈ 1 − ε/2 to Taylor-expand the
1/

√
1 + z2/R2 term in the first result in Eq. (12.29). This yields a field

of −σ/4ε0 = −Q/8πε0R2 at the center of the hemisphere, which agrees
with the result from Exercise 1.50, if you have solved that. This field of
σ/4ε0 is half the size of the σ/2ε0 field from an infinite sheet. You should
convince yourself why it must be smaller (consider the amount of charge
subtended by a given solid angle), although the factor of 1/2 isn’t obvious.

Note that for −R < z < R the field is an even function of z. There
is a quick way of seeing this. Hint: Superpose a complete spherical shell
with charge density −σ on top of the given hemispherical shell, and use
the fact that a complete spherical shell has no field inside.

1.13 A very uniform field
(a) At height z above the lower ring, the field due to a charge dQ on

the lower ring has magnitude dQ/4πε0(r2 + z2). But only the z
component survives, by symmetry, and this brings in a factor of
z/

√
r2 + z2. Integrating over the entire ring simply turns the dQ into

Q, so the upward vertical field due to the bottom ring is Ez =Qz/
4πε0(r2 + z2)3/2.

The same type of reasoning holds with the top (negative) ring, with
z replaced by h − z. And this field also points upward (at locations
below it). So the total field at height z is

Ez = Q
4πε0

(
z

(r2 + z2)3/2 + h − z
(r2 + (h − z)2)3/2

)
. (12.30)

(b) Ez doesn’t change if z is replaced by h − z. Equivalently, if we define
z′ ≡ z−h/2 to be the coordinate relative to the midpoint, then the field
doesn’t change when we replace z′ with (h−z)−h/2 = h/2−z = −z′.
This means that the field is an even function of z′. So it is symmetric
with respect to z = h/2, as desired. The point z = h/2 is therefore
a local extremum. As an exercise, you can also demonstrate this fact
by imagining flipping the whole setup upside down and then negat-
ing the charge on each ring (which brings you back to the original
setup).

Via Mathematica, the second derivative of Ez is

d2Ez

dz2 = 15z3

(r2 + z2)7/2 − 9z
(r2 + z2)5/2

+ 15(h − z)3

(r2 + (h − z)2)7/2 − 9(h − z)
(r2 + (h − z)2)5/2 . (12.31)
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As stated in the problem, we want this to be zero at z = h/2. Things
simplify fairly quickly when setting it equal to zero with z = h/2.
You can show that the result is r = h/

√
6 ≈ (0.41)h. So the diameter

z

z

z

z

h–h 2h

h
–h 2h

–h 2h

h–h 2h
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0.2

0.4

0.6

r  =  h

r = h

r = (0.3)h

r = (0.1)h

6

20

40

h

Figure 12.12.

should be chosen to be about 0.82 times the separation between the
rings. Plots of Ez are shown in Fig. 12.12 in units of Q/4πε0h2 for
values of r that are much smaller, smaller, equal to, and larger than
h/
√

6. (Note the different scales on the vertical axes.) The r = h/
√

6
value marks the transition between z = h/2 being a local minimum or
a local maximum of the field. For very small values of r, the field is
very large near the rings, because the rings look essentially like point
charges at distances larger than a few multiples of r.

1.14 Hole in a plane
(a) By symmetry, only the component of the electric field perpendicu-

lar to the plane survives. A small piece of charge dq at radius r in
the plane produces a field with magnitude dq/4πε0(r2 + z2) at the
given point. To obtain the component perpendicular to the plane, we
must multiply this by z/

√
r2 + z2. Slicing up the plane into rings with

charge dq = (2πr dr)σ , we find that the total field from the plane
(minus the hole) is

E(z) =
∫ ∞

R

2πσ zr dr
4πε0(r2 + z2)3/2 = − 2πσ z

4πε0
√

r2 + z2

∣∣∣∣r=∞
r=R

= σ z

2ε0
√

R2 + z2
. (12.32)

Note that if R = 0 (so that we have a uniform plane without a hole),
then E = σ/2ε0, which is the familiar field due to an infinite plane.

(b) If z � R, then Eq. (12.32) gives E(z) ≈ σ z/2ε0R. So F = ma for the
charge −q yields

(−q)E = mz̈ �⇒ z̈ +
(

qσ

2ε0mR

)
z = 0. (12.33)

This equation represents simple harmonic motion. The frequency of
small oscillations is the square root of the coefficient of the z term:

ω =
√

qσ

2ε0mR
. (12.34)

For the parameters given in the problem, this frequency equals

ω =
√√√√ (10−8 C)(10−6 C/m2)

2
(

8.85 · 10−12 s2 C2

kg m3

)
(10−3 kg)(0.1 m)

= 2.4 s−1,

(12.35)

which is about 0.4 Hz. The charged particle would have to be con-
strained to lie on the line L because the equilibrium is unstable in the
transverse directions.
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(c) Integrating the magnitude of the force, qE, to obtain the difference in
potential energy between the center of the hole and position z (tech-
nically, U = − ∫

F dz and F = (−q)E if you want to worry about the
signs) gives

U(z) =
∫ z

0
qE(z′)dz′ =

∫ z

0

qσ z′ dz′

2ε0
√

R2 + z′2

= qσ

2ε0

√
R2 + z′2

∣∣∣∣z
0
= qσ

2ε0

(√
R2 + z2 − R

)
. (12.36)

By conservation of energy, the speed at the center of the hole is given
by mv2/2 = U(z). Therefore,

v =
√

qσ

mε0

(√
R2 + z2 − R

)
. (12.37)

For large z this reduces to v = √
qσ z/mε0. We can also obtain this

last result by noting that, for large z, the magnitude of the force arising
from the field in Eq. (12.32) reduces to F = qσ/2ε0. This is constant,
so the acceleration has the constant magnitude of a = qσ/2mε0. The
standard 1D kinematic result of v = √

2az then gives v = √
qσ z/mε0,

as above.

1.15 Flux through a circle
(a) The claim stated in the problem (that the flux is the same through any

surface that is bounded by the circle and that stays to the right of the
origin) is true because otherwise there would be nonzero net flux into
or out of the closed surface formed by the union of two such surfaces.

b
q

q

E

Figure 12.13.

This would violate Gauss’s law, because the closed surface contains
no charge.

For the case of the flat disk, the magnitude of the field at the
angle β shown in Fig. 12.13 is q/4πε0r2 = q/4πε0(�/ cos β)2.
Only the horizontal component is relevant for the flux, and this
brings in a factor of cos β. The radius of a constant-β ring on
the disk is � tan β, so if the ring subtends an angle dβ, its area
is da = 2π(� tan β) d(� tan β) = 2π� tan β(� dβ/ cos2 β). The total
flux through the disk is therefore∫

Ex da =
∫

E cos β da =
∫ θ

0

q cos2 β

4πε0�2 cos β · 2π�2 tan β dβ

cos2 β

= q
2ε0

∫ θ

0
sin β dβ = q

2ε0
(1 − cos θ). (12.38)

For θ → 0 this correctly equals zero, and for θ → π/2 it equals
q/2ε0, which is correctly half of the total flux of q/ε0 due to q. Note
that the flux is independent of �; this is the familiar consequence of
the 1/r2 nature of Coulomb’s law. Only the angle θ matters.

(b) The field everywhere on the spherical cap is q/4πε0R2, where
R = �/ cos θ is the radius of the sphere. The field is normal to the
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sphere, so we don’t have to worry about taking a component. The
radius of a constant-β ring on the cap is R sin β, so the area of the
ring is 2π(R sin β)(R dβ). The total flux through the spherical cap is
therefore∫

E da =
∫ θ

0

q
4πε0R2 · 2πR2 sin β dβ

= q
2ε0

∫ θ

0
sin β dβ = q

2ε0
(1 − cos θ), (12.39)

in agreement with the result in part (a). The same limiting cases work
out, and we can now also consider the θ → π limit (without the
surface crossing the charge, as would happen with the flat disk). In
this case we have a very small circle on the left side of the origin. Our
sphere is nearly a complete sphere, except for a small hole where the
circle is. Equation (12.39) gives a flux of q/ε0 for θ → π , which is
correctly the total flux due to the charge q.

1.16 Gauss’s law and two point charges
(a) The field at position x on the x axis is (dropping terms of order x2)

Ex(x) = q
4πε0(� + x)2 − q

4πε0(� − x)2

≈ q
4πε0�2

(
1

1 + 2x/�
− 1

1 − 2x/�

)

≈ q
4πε0�2

(
(1 − 2x/�) − (1 + 2x/�)

)

= − qx
πε0�3 . (12.40)

To find the field at position y on the y axis, we must take the vertical
component of the fields from the two charges, which brings in a factor
of y/

√
�2 + y2. The field is therefore (dropping terms of order y2)

Ey(y) = 2 · q
4πε0(�2 + y2)

· y√
�2 + y2

≈ qy
2πε0�3 . (12.41)

The y axis can be chosen to be any axis perpendicular to the line of
the charges, so this result holds for any point on the perpendicular-
bisector plane of the charges.

(b) Although we found the field components in part (a) only for points on
the x axis or on the perpendicular-bisector plane, the results are actu-
ally valid for all points in space near the origin. That is, Ex(x, y) ≈
−qx/πε0�3, independent of y. And Ey(x, y) ≈ qy/2πε0�3, indepen-
dent of x. You can check these facts by writing out the exact expres-
sions for the fields. For example, in Eq. (12.41) the � values for the
two charges become �± x, and this doesn’t change the result, to lead-
ing order. Alternatively, note that, due to symmetry, Ex(x, y) is an
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even function of y. This means that Ex(x, y) has no linear dependence
on y. The variation with y therefore starts only at order y2, which is
negligible for small y. So Ex is essentially independent of y near the x
axis. Similar reasoning works with Ey as a function of x.

For convenience, define C ≡ q/2πε0�3. Then the longitudinal and
transverse field components have magnitudes 2Cx and Cy, respectively.
The two circular faces of the small cylinder have a combined area
of acirc = 2πr2

0. And the cylindrical boundary has an area of
acyl = (2πr0)(2x0) = 4πr0x0. There is inward flux through the
circles; this flux comes from Ex only, which has magnitude 2Cx0.
And there is outward flux through the cylindrical part; this flux comes
from Ey only, which has magnitude Cr0. The net outward flux is
therefore

−(2πr2
0)(2Cx0) + (4πr0x0)(Cr0) = 0, (12.42)

as desired.

B�

B

b a
A

A�
P

Figure 12.14.

1.17 Zero field inside a spherical shell
Let a be the distance from point P to patch A, and let b be the distance
from P to patch B; see Fig. 12.14. (Since the cones are assumed to be thin,
it doesn’t matter exactly which points in the patches we use to define these
distances.) Draw the “perpendicular” bases of the cones, and call them A′
and B′, as shown. The ratio of the areas of A′ and B′ is a2/b2, because
areas are proportional to lengths squared. The key point is that the angle
between the planes of A and A′ is the same as the angle between the planes
of B and B′. This is true because the chord between A and B (that is, the
line perpendicular to A′ and B′) meets the circle at equal angles at its ends.
The ratio of the areas of A and B is therefore also equal to a2/b2. So the
charge on patch A is a2/b2 times the charge on patch B.

The magnitudes of the fields due to the two patches take the general
form of q/4πε0r2. We just found that the q for A is a2/b2 times the q
for B. But we also know that the r2 for A is a2/b2 times the r2 for B. So
the values of q/4πε0r2 for the two patches are equal. The fields at P due
to A and B (which can be treated essentially like point masses, because
the cones are assumed to be thin) are therefore equal in magnitude (and
opposite in direction, of course). If we draw enough cones to cover the
whole shell, the contributions to the field from little patches over the whole
shell cancel in pairs, so we are left with zero field at P. This holds for any
point P inside the shell.

1.18 Fields at the surfaces
(a) From Gauss’s law, the field due to the sphere is the same as if all

of the charge were concentrated at the center, in a point charge q =
(4πR3/3)ρ. Therefore,

E = q
4πε0R2 = (4πR3/3)ρ

4πε0R2 = Rρ

3ε0
. (12.43)

(b) Again from Gauss’s law, the field due to the cylinder is the same as
if all of the charge were concentrated on the axis with linear charge
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density λ = πR2ρ. This λ follows from the fact that the amount
of charge in a length L of the cylinder can be written as both λL
(by definition) and πR2Lρ (because πR2L is the relevant volume).
Therefore,

E = λ

2πε0R
= πR2ρ

2πε0R
= Rρ

2ε0
. (12.44)

(c) Again from Gauss’s law, the field due to the slab is the same as if
all of the charge were concentrated on a sheet with surface charge
density σ = 2Rρ. As above, this σ follows from the fact that the
amount of charge in an area A of the slab can be written as both σA

Right face of slab 
(into and out of page)

P

Sphere

Cylinder

Figure 12.15.

(by definition) and 2RAρ (because 2R · A is the relevant volume).
Therefore,

E = σ

2ε0
= 2Rρ

2ε0
= Rρ

ε0
. (12.45)

The fields of the sphere, cylinder, and slab are therefore in the ratio of
1/3 to 1/2 to 1. (These numbers can be traced to the dimensionality of
the sphere’s volume, the cylinder’s cross-sectional area, and the slab’s
thickness.) The size order makes sense, because in Fig. 12.15 the slab
completely contains the cylinder, which in turn completely contains
the sphere. So at point P, the field from the slab must be greater than
the field from the cylinder, which in turn must be greater than the
field from the sphere (because in each case the extra charge creates a
nonzero field pointing to the right).

1.19 Sheet on a sphere
The electric field due to the sheet is σ/2ε0, where σ = ρx is the effective
charge per area. This follows from exactly the same Gauss’s law argu-
ment as in the case of a thin sheet. The field at point B on top of the
sheet is the sum of this σ/2ε0 field plus the Coulomb field due to the
sphere, but at radius R + x. The field at point A underneath the sheet is
the difference (because now the sheet’s field points downward) between
the σ/2ε0 field and the Coulomb field due to the sphere, at radius R.
The charge in the sphere is (4/3)πR3ρ0, so the field is larger above the
sheet if

(4/3)πR3ρ0
4πε0(R + x)2 + ρx

2ε0
>

(4/3)πR3ρ0
4πε0R2 − ρx

2ε0

⇐⇒ ρx >
Rρ0

3

(
1 − 1

(1 + x/R)2

)

⇐⇒ ρx >
Rρ0

3

(
2x
R

)

⇐⇒ ρ >
2
3
ρ0, (12.46)

where we have used 1/(1 + ε)2 ≈ 1/(1 + 2ε) ≈ 1 − 2ε to go from the
second to the third line.
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This problem is basically the same problem as the “mine shaft” prob-
lem: if you descend in a mine shaft, does the gravitational field increase
or decrease? The answer is that it decreases if ρcrust > (2/3)ρavg, where
ρcrust is the mass density of the earth’s crust (assumed to be roughly con-
stant) and ρavg is the average mass density of the entire earth (of which
the crust is a negligible part). The two problems are equivalent because
the gravitational and electrical fields both fall off as 1/r2, and because the
nearby crust behaves essentially like a large flat plane.

We know that there must exist a cutoff value of ρcrust for which the
field does not depend on the depth, for the following reason. If ρcrust
is very small (imagine the limit where the crust is essentially massless;
equivalently, pretend that the boundary of the earth is a few miles up in the
air), then descending in a mine shaft will decrease the r in the gravitational
force F = GmM/r2, while barely decreasing the M (this M is the mass
contained inside radius r); so F will increase. On the other hand, if ρcrust
is very large (imagine the limit of a thin spherical shell), then descending
will barely decrease the r in GmM/r2, while significantly decreasing the
M; so F will decrease. By continuity, there must be a value of ρcrust for
which F does not change as you descend. However, the above factor of
2/3 is by no means obvious.

1.20 Thundercloud
(a) Assuming that the cloud is large enough to be treated roughly like an

infinite plane, an opposite charge will be induced on the ground, so
the field is E = σ/ε0, where σ is the charge per area in the cloud.
Therefore,

σ = ε0E =
(

8.85 · 10−12 s2 C2

kg m3

)(
3000

V
m

)
≈ 2.7 · 10−8 C

m2 .

(12.47)

You can check that the units work out by using 1 V/m = 1 N/C.

(b) Let h be the rainfall depth, which is h = 2.5 · 10−3 m here. If r is the
drop radius, then the number of drops that land on a patch of area A on
the ground is N = Ah/(4πr3/3). The total charge initially in the cloud
above this patch is σA, so the charge q on each drop is q = (σA)/N =
σA/(3Ah/4πr3) = 4πr3σ/3h. This charge causes a radial field of
strength q/4πε0r2 at the surface of each drop, which equals

q
4πε0r2 = 4πr3σ/3h

4πε0r2 = σ

ε0

r
3h

= E
r

3h

=
(

3000
V
m

)
5 · 10−4 m

3(2.5 · 10−3 m)
= 200

V
m

. (12.48)

This is only the field caused by the net charge on the drop. Even an
uncharged drop has, in the field E, charges on its surface, of opposite
sign on top and bottom. The associated field is described in Chapter 10;
see Fig. 10.27.
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Note that the field at the surface of a drop is proportional to r3/r2 =
r, from Eq. (12.48); this is the standard result for a sphere with uni-
form volume density. So the larger the drop, the larger the field. The-
oretically, if the field just outside a drop is large enough, electrons can
be ripped away from air molecules. This causes the air to be conduct-
ing, and a spark could jump from a drop when it gets near the ground.
How large a raindrop would be required for this “arcing” to happen?
The electrical breakdown of air is about 3 · 106 V/m. This is 1.5 · 104

times the above field of 200 V/m, so we need the radius to be 1.5 ·104

 Real
cylinder

Imaginary
cylinder

Figure 12.16.

times the above 5 · 10−4 m radius, which gives 7.5 m. Needless to say,
if raindrops were this large we would have more to worry about than
sparks jumping from them!

1.21 Field in the end face
Gauss’s law, combined with cylindrical symmetry, tells us that the field
inside a full infinite (in both directions) cylindrical shell is zero. A full
infinite cylinder is the superposition of two half-infinite cylinders placed
end-to-end. Assume (in search of a contradiction) that the field in the end
face of a half-infinite cylinder has a nonzero radial component. Then when
we put two half-infinite cylinders together to make a full infinite cylinder,
the radial components of the fields from the two half-infinite cylinders
will add, yielding a nonzero field inside the resulting full infinite cylinder.
This contradicts the fact that the field inside a full infinite cylindrical
shell is zero. We therefore conclude that the field in the end face of a
half-infinite cylinder must have zero radial component, as desired.

Figure 12.16 shows a rough sketch of a few field lines due to the half-
infinite cylinder. In the inside of the (half imaginary) full infinite cylinder,
the field lines must be symmetric with respect to the end face, because
otherwise they wouldn’t cancel with the field from the other half-infinite
cylinder when it is placed end-to-end.

1.22 Field from a spherical shell, right and wrong
(a) Let the rings be parameterized by the angle θ down from the top of

the sphere, as shown in Fig. 12.17. The width of a ring is R dθ , and its

q/2
dq

R

P

Figure 12.17.

circumference is 2π(R sin θ). So its area is 2πR2 sin θ dθ . All points
on the ring are a distance 2R sin(θ/2) from the given point P, which
is infinitesimally close to the top of the shell. Only the vertical com-
ponent of the field survives, and this brings in a factor of sin(θ/2),
as you should check. The total field at the top of the shell is therefore
apparently equal to (writing sin θ as 2 sin(θ/2) cos(θ/2))

1
4πε0

∫ π

0

σ2πR2 sin θ dθ(
2R sin(θ/2)

)2 sin(θ/2) = σ

4ε0

∫ π

0
cos(θ/2) dθ

= σ

2ε0
sin(θ/2)

∣∣∣∣π
0
= σ

2ε0
.

(12.49)

(b) As noted in the statement of the problem, it is no surprise that the
above result is incorrect, because the same calculation would
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supposedly yield the field just inside the shell too, where we know
it equals zero instead of σ/ε0. The calculation does, however, give the
next best thing, namely the average of these two values. We’ll see why
shortly.

The reason why the calculation is invalid is that it doesn’t correctly
describe the field arising from points on the shell very close to the
point P, that is, for rings characterized by θ ≈ 0. It is incorrect for two
reasons. The closeup view in Fig. 12.18 shows that the distance from
a ring to the given point P is not equal to 2R sin(θ/2). Additionally, it
shows that the field does not point along the line from the particular

2R sin (q/2)

P

Intersection
of ring with
page

Correct
E direction

Incorrect
E direction

Correct 
distance

Incorrect 
distance

Figure 12.18.

point on the ring to the top of the shell. It points more vertically,
toward P, so the extra factor of sin(θ/2) in Eq. (12.49) is not correct.
No matter how close P is to the shell, we can always zoom in close
enough so that the picture looks like the one in Fig. 12.18. The only
difference is that the more we need to zoom in, the straighter the arc
of the circle is. In the limit where P is very close to the shell, the
arc is essentially a straight line (we drew it curved for the sake of the
illustration).

What is true is that if we remove a tiny circular patch from the top
of the shell (whose radius is much larger than the distance from P
to the shell, but much smaller than the radius of the shell), then the
integral in part (a) is valid for the remaining part of the shell. From
the form of the integrand in Eq. (12.49), we see that the tiny patch
contributes negligibly to the integral. So we can say that the field due
to the remaining part of the shell is essentially equal to the above
result of σ/2ε0. By superposition, the total field due to the entire shell
equals this field of σ/2ε0 plus the field due to the tiny circular patch.
But if the point in question is infinitesimally close to the shell, then
this tiny patch looks like an infinite plane, the field of which we know
is σ/2ε0. The desired total field is therefore

Eoutside = Eshell minus patch + Epatch = σ

2ε0
+ σ

2ε0
= σ

ε0
. (12.50)

By superposition we also obtain the correct field just inside the shell:

Einside = Eshell minus patch − Epatch = σ

2ε0
− σ

2ε0
= 0. (12.51)

The relative minus sign arises because the field from the shell-minus-
patch is continuous across the hole, but the field from the patch is not;
it points in different directions on either side of the patch.

1.23 Field near a stick
A piece of the stick with length dr at a distance r from the given point
P produces a contribution to E‖ equal to (λ dr)/4πε0r2. When this is

Ph

(1+h) (1–h)

Figure 12.19.

integrated over the parts of the stick on either side of P, both integrals
diverge. However, the divergences cancel because the contribution from
the short piece with length (1 − η)� in Fig. 12.19 cancels the contribution
from the closest (1−η)� part of the long piece with length (1+η)�. So in
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the end we just need to integrate over the long piece from r = (1 − η)� to
r = (1 + η)�.1 The result is

E‖ =
∫ (1+η)�

(1−η)�

λ dr
4πε0r2 = λ

4πε0�

(
1

1 − η
− 1

1 + η

)

= λ

4πε0�
· 2η

1 − η2 . (12.52)

This equals zero when η = 0, as it should. It diverges as η → 1 near
the end of the stick. If we let η ≡ 1 − ε (so ε� is the distance from the
end), then to leading order in ε we have 1 − η2 = 1 − (1 − ε)2 ≈ 2ε. So
E‖ ≈ λ/4πε0(ε�). It makes sense that this diverges like 1/ε�, because, as
we get close to the end, the short piece in Fig. 12.19 cancels only a small
part of the long piece. So we need to integrate the 1/r2 field from the long
piece almost down to r = 0 (more precisely, down to ε�). And the integral
of 1/r2 diverges like 1/r near r = 0.

1.24 Potential energy of a cylinder
Consider the setup at an intermediate stage when the cylinder has radius r.
The charge per unit length is λr = ρπr2, and the electric field at radius r′
external to the cylinder is E = λr/2πε0r′. So the work done in bringing a
charge dq in from radius R down to radius r is (the minus sign here comes
from the fact that the external agency opposes the field)

dW = −
∫ r

R
(dq)E dr′ = −

∫ r

R
dq

λr

2πε0r′ dr′ = λr dq
2πε0

ln
(

R
r

)
.

(12.53)

As we build up the cylinder, the charge increments dq (the cylindrical
shells) are equal to (2πr dr)�ρ, where � is the length of the part of
the cylinder we are considering. The total work done in building up
the cylinder from r= 0 to r= a is therefore (using the integral table in
Appendix K)

W =
∫

dW =
∫ a

0

λr dq
2πε0

ln
(

R
r

)
=

∫ a

0

(ρπr2)(2πr�ρ dr)
2πε0

ln
(

R
r

)

= πρ2�

ε0

∫ a

0
r3 ln

(
R
r

)
dr = πρ2�

ε0

(
r4

16
+ r4

4
ln

(
R
r

))∣∣∣∣∣
a

0

= πρ2�

ε0

(
a4

16
+ a4

4
ln

(
R
a

))
. (12.54)

Finding the potential energy per unit length means simply erasing the �.
If we define λ ≡ λa as the charge per unit length in the finished cylinder,

1 If the given point doesn’t lie exactly on the stick, then there is actually no divergence.
But it is still worth mentioning the canceling divergences, because E‖ is well defined
even if the point does lie exactly on the stick (whereas E⊥ isn’t, for an infinitely thin
stick).
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then ρ = λ/πa2. Substituting this into Eq. (12.54) gives the energy per
unit length (relative to the cylinder at radius R) as

λ2

4πε0

(
1
4
+ ln

(
R
a

))
. (12.55)

As mentioned in the statement of the problem, this diverges as R → ∞.
If R = a, so that all of the charge is initially on the surface of the given
cylinder, we see that the energy per unit length needed to turn the initial
surface charge density into a uniform volume density is λ2/16πε0. In the
more general case where R > a, the log term in the result therefore repre-
sents the energy needed to bring the charge in from a shell of radius R to a
shell of radius a. As an exercise, you can verify this directly by gradually
bringing in infinitesimally thin shells of charge.

1.25 Two equal fields
Let L be the line from the top of the shell to the rings. The short thick
segments in Fig. 12.20 represent cross-sectional slices of the rings on the

q

q

q
a

a

L

Figure 12.20.

shell and the sheet. The important point to note is that the surfaces of
both rings lie at the same angle, α = 90◦ − θ , with respect to the line L
(because, in short, vertical is perpendicular to horizontal, and tangential
is perpendicular to radial). If this angle were 90◦, then the width of each
ring would simply be � dθ (we haven’t indicated dθ in the figure, lest it get
too cluttered), where � is the distance from the top of the shell to the given
ring (on either the shell or the sheet). But a general α causes this width
to increase to � dθ/ sin α = � dθ/ cos θ . The radius of the ring is � sin θ ,
so the area of the ring is (� dθ/ cos θ)(2π� sin θ). We care only about the
vertical component of the fields from the various pieces of the ring, and
this brings in a factor of cos θ . So the vertical component of the field at
the top of the shell due to a given ring is

dE = (� dθ/ cos θ)(2π� sin θ)σ

4πε0�2 cos θ = σ sin θ dθ

2ε0
. (12.56)

This is independent of �, so it is the same for the ring on the shell and the
ring on the sheet. Integrating over θ , from 0 to π/2, gives the same result
of σ/2ε0 for the total field due to either the shell or the sheet.

To sum up, the fields from the rings on the shell and sheet that are
associated with the same θ and dθ are equal for two reasons: (1) the fields
are independent of �, because area is proportional to length squared, so the
�2 in the area cancels the �2 in Coulomb’s law; and (2) the fields have the
same θ dependence, because both rings cut the line L at the same angle.

1.26 Stable equilibrium in electron jelly
The only things we need to know about the equilibrium positions of the
protons are (1) they are located along a diameter, because otherwise the
force from the other proton wouldn’t cancel the force from the jelly, which
is directed toward the center, (2) they are on opposite sides of the center
(and at equal radii, as you can quickly show), because otherwise the force
on the proton closer to the center would point radially inward, and (3) they
are inside the jelly sphere, because otherwise the negative force from the
effective −2e electron charge at the center of the sphere would be larger
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than the force from the more distant +e proton charge. So the setup looks
something like the one shown in Fig. 12.21.

–2e jelly

ee

Figure 12.21.

To show that the equilibrium is stable, we must consider both radial
and transverse displacements. If we move one of the protons radially out-
ward, then the repulsive force from the other proton decreases, while the
attractive force from the jelly increases (because it grows like r, since
the charge inside radius r is proportional to r3, and there is a 1/r2 in
Coulomb’s law). The proton is therefore pulled back toward the equi-
librium position. Similar reasoning holds if the proton is moved radially
inward. Hence the equilibrium is stable in the radial direction.

If we move one of the protons transversely, as shown in Fig. 12.22,
then both forces (from the jelly and the other proton) don’t change in mag-
nitude, to first order in the small distance moved (because the Pythagorean
theorem involves the square of the small distance). The magnitudes of the
forces are therefore still equal, just as they were at the equilibrium posi-

ee

–2e jelly

Figure 12.22.

tion (by definition). But the slope of the jelly force is twice as large, so
its negative y component is twice as large as the proton force’s positive
y component. The net force is therefore negative, so the proton is pulled
back toward the equilibrium position. Hence the equilibrium is stable in
the transverse direction also.

Note that if the sphere of electron jelly were replaced by a negative
point charge at the center (which would have to be −e/4 if an equilibrium
configuration is to exist), then the equilibrium would still be stable under
transverse displacements, but not under radial ones, as you can check.
This is consistent with the “no stable electrostatic equilibrium” theorem
we will prove in Section 2.12. This theorem doesn’t apply to the original
jelly setup because that setup has a nonzero volume charge density, and
the theorem holds only in empty space.

1.27 Uniform field in a cavity
At radius r inside a sphere with density ρ, the electric field is due to the
charge inside radius r. So the field is

E = (4πr3/3)ρ

4πε0r2 = ρr
3ε0

. (12.57)

The field points radially outward (for positive ρ), so we can write the E

R1

r1– r2

r2

r1

Figure 12.23.

vector compactly as E = ρr1/3ε0, where r1 is measured relative to the
center of the sphere.

The hollow cavity can be considered to be the result of superposing
a sphere with radius R2 and charge density −ρ onto the larger sphere with
radius R1 and density ρ. If we look at the negative sphere by itself, then
the same reasoning as above shows that the field in the interior (due to
only this sphere) is E = −ρr2/3ε0, where r2 is measured relative to the
center of this sphere.

Consider now an arbitrary point in the cavity, as shown in Fig. 12.23.
By superposition, the field at this point is

E = ρr1
3ε0

− ρr2
3ε0

= ρ(r1 − r2)

3ε0
= ρa

3ε0
, (12.58)
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where a ≡ r1 − r2 is the vector from the center of the larger sphere to the
center of the cavity. This result is independent of the position inside the
cavity, as desired. See Exercise 1.75 for a related problem.

The same reasoning also holds in lower-dimensional analogs. For
example, we can carve out an infinite cylindrical cavity from an infinite
uniform cylinder of charge (with their axes parallel). Using Gauss’s law
with a cylinder of length �, the field at radius r inside a uniform cylinder
has magnitude

E = πr2�ρ

2πr�ε0
= ρr

2ε0
. (12.59)

The field points radially outward, so we can again write E compactly in
vector form as E = ρr/2ε0. The only difference between this case and
the above case with the sphere is a factor of 2 instead of 3. This doesn’t
affect the logic leading to the uniform field, so we again find that the field
is uniform inside the cavity. The important property of the field is that it
is proportional to the vector r.

Dropping down one more dimension, we can carve out a slab cavity
from a larger slab, both of which are infinite in the two transverse direc-
tions. (So we are simply left with two slabs separated by some space.)
Consider a given point located a distance r from the center plane of a uni-
form slab. Using Gauss’s law with a volume of cross-sectional area A that
extends a distance r on either side of the center plane of the uniform slab,
the field at the given point has magnitude

E = (2r)Aρ

2Aε0
= ρr

ε0
. (12.60)

The field points outward from the central plane, so we can again write
E compactly in vector form as E = ρr/ε0. As above, we find that the
field is proportional to the vector r, so the same result of uniformity holds
inside the slab cavity. Of course, in retrospect this result for the slab is easy
to see, because we know that the field from an infinite sheet (or slab) is
independent of the distance from the sheet. The field is therefore uniform
inside the slab cavity, because the distance from the two remaining slabs
on either side doesn’t matter.

1.28 Average field on/in a sphere
(a) Let us put a total amount of charge Q evenly distributed over the spher-

ical shell of radius R. We know that the force that this shell exerts on
the internal point charge q is zero, because a spherical shell creates
zero field in its interior. By Newton’s third law, the point charge also
exerts zero force on the spherical shell. But, by definition, this force
also equals Q times the average field over the shell. The average field
is therefore zero.

Mathematically, the average field over the shell is given by the inte-
gral (1/4πR2)

∫
E da. The da area element here is a scalar, and the

result of the integral is a vector, which we showed equals zero. This
integral should be contrasted with the flux integral

∫
E · da. Here da

is a vector, and the result of the integral is a scalar, which we know
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equals q/ε0 from Gauss’s law. You should think carefully about what
each of these integrals means physically.

(b) Again let us put a total amount of charge Q evenly distributed over the
spherical shell of radius R. We know that the force that this shell exerts
on the external point charge q equals qQ/4πε0r2, because a spherical
shell looks like a point charge from the outside. By Newton’s third
law, the point charge also exerts a force of qQ/4πε0r2 on the spherical
shell. But, by definition, this force also equals Q times the average
field over the shell. The average field therefore equals q/4πε0r2. It
points away from the charge q (if q is positive). As in part (a), you
should contrast the integrals

∫
E da and

∫
E · da.

(c) From part (a), the average electric field over any shell that lies outside
radius r is zero, so we can ignore that region. From part (b), the aver-
age field over the volume of the sphere inside radius r has magnitude
q/4πε0r2, because all shells have this common average. We are inter-
ested in the average field over the entire volume of the larger sphere of
radius R. Since this volume is R3/r3 times as large as the volume of
the smaller sphere of radius r, the average field over the larger sphere
is smaller by a factor r3/R3. The average field over the entire sphere
of radius R therefore has magnitude qr/4πε0R3, as desired. By sym-
metry, the field points along the radial line, and it is easy to see that
it points inward, because more locations within the sphere have the
field pointing generally in that direction. In vector form, the average
field can be written as −qr/4πε0R3.

Note that this qr/4πε0R3 field has the same magnitude as the field
at radius r inside a solid sphere of radius R with charge q uniformly
distributed throughout its volume; see the example in Section 1.11.

1.29 Pulling two sheets apart
(a) We are assuming that A is large and � is small, so that we can treat

the sheets as effectively infinitely large, which means that we can
ignore the complicated nature of the field near the edges of the sheets.
The electric field is therefore essentially zero outside the sheets and
σ/ε0 between them (pointing from the positive sheet to the negative
sheet). This follows from superposing the σ/2ε0 fields (with appro-
priate signs) from each sheet individually.

From Eq. (1.49) the attractive force per area on each sheet has mag-
nitude (1/2)(σ/ε0+0)σ = σ 2/2ε0. (You can also obtain this by sim-
ply multiplying the density σ of one sheet by the field σ/2ε0 from the
other.) The force that you must apply to one of the sheets to drag it
away from the other is therefore F = σ 2A/2ε0, so the work you do
over a distance x is W = σ 2Ax/2ε0.

(b) The field between the sheets takes on the value σ/ε0, independent of
their separation (assuming that it is small compared with the linear
size of the sheets). And the field is zero outside. In moving one of the
sheets by a distance x, you create a region with volume Ax where the
field is now σ/ε0 instead of zero. Since the energy density is ε0E2/2,
the increase in energy stored in the electric field is

�U = ε0E2

2
(Ax). (12.61)
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This increase in energy comes from the work you do, so this result
must agree with the work calculated in part (a). And indeed, since
E = σ/ε0 we have

�U = ε0(σ/ε0)2

2
(Ax) = σ 2Ax

2ε0
, (12.62)

as desired.

1.30 Force on a patch
The net force on the patch is due to the field Eother from all the other
charges in the system, because an object can’t exert a net force on itself.
This field Eother need not be perpendicular to the patch; it can point in any
direction. But we know that the perpendicular component will be discon-
tinuous across the surface. We assume that the patch is small enough so
that the field is uniform over the location of the patch (on either side).

The force on the patch equals Eother times the charge on the patch,
which is σA, where A is the area. So the total force is F = Eother(σA). The
force per area is then F/A = σEother. In view of the result stated in the
problem, our goal is to show that Eother = (E1 + E2)/2. That is, we want
to show that the field due to all the other charges equals the average of the
actual fields on either side of the patch with all the charges, including the
patch, taken into account. We can demonstrate this as follows.

Very close to the patch, the patch looks essentially like an infinite
plane, so it produces a perpendicular field with magnitude σ/2ε0 on either
side, pointing away from the patch (if σ is positive). Let the plane of the
patch be perpendicular to the x axis. By superposition, the total field E1
on one side of the patch (due to all the other charges plus the patch) is
E1 = Eother + (σ/2ε0)x̂. The total field E2 on the other side of the patch
is E2 = Eother − (σ/2ε0)x̂. Adding these two relations gives

E1 + E2 = 2Eother �⇒ Eother = E1 + E2
2

, (12.63)

as desired. In effect, taking the average of the fields is simply a way of
getting rid of the discontinuity caused by the patch.

REMARK: If the above derivation seemed a little too quick, that’s because
it was. There is one issue that we glossed over, although fortunately it
doesn’t affect the result. The issue involves the force component parallel
to the surface (the reasoning involving the perpendicular component was
fine). The component of Eother parallel to the surface (let’s call it Eother‖ )
doesn’t take on a unique value over the area of the patch, even if the patch
is very small. Eother‖ actually diverges near the edge of the patch (see Exer-
cise 1.66; the basic idea here is the same). So when we say that the parallel
component of the force per area is σEother‖ , what Eother‖ are we referring

to? The value we are concerned with is the average of Eother‖ over the
patch, so we must figure out what this average is. As an exercise, you can
show that it simply equals the parallel component of the entire field E‖,
which does take on a unique value over the patch, assuming that the patch
is very small. (Hint: The patch can’t exert a net parallel force on itself.)
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But E‖ is continuous across the patch, so it equals both E1,‖ and E2,‖, and
hence trivially (E1,‖ + E2,‖)/2. So the result for the force, involving the
average of the fields, is still valid.

1.31 Decreasing energy?
No, it doesn’t make sense. The point-charge configuration should have
more energy, because the charge on the two point charges should want
to fly apart and spread itself out over the spherical shell (assuming it is
constrained to remain on the shell). And indeed, the point-charge configu-
ration not only has more energy, but infinitely more energy, if the charges
are true points. The error in the reasoning is that we included only the
energy of the point charges due to each other; we forgot to include their
self-energies, which are large if the charges occupy small volumes. (From
the example in Section 1.15, the energy of a solid sphere with radius a is
(3/5)Q2/4πε0a.) It takes a large amount of work to compress a charge
distribution down to a small size.

1.32 Energy of a shell
(a) There is no field inside the sphere, so all of the energy is stored in the

external field. This field is Q/4πε0r2, so the energy is

U = ε0
2

∫ ∞
R

(
Q

4πε0r2

)2
4πr2 dr = Q2

8πε0

∫ ∞
R

1
r2 dr = Q2

8πε0R
.

(12.64)

Note that this is smaller than the analogous result of (3/5)Q2/4πε0R
for a solid sphere, given in the example in Section 1.15. This must be
the case, because the external fields are the same in the two setups,
but the solid sphere has an additional internal field. This is consistent
with the fact that if the solid sphere were suddenly made conducting,
all of the charge would flee to the surface because that state has a
smaller energy.

(b) At an intermediate stage when the shell has charge q on it, the external
field is the same as the field from a point charge q at the center. So the
work needed to bring in from infinity an additional charge dq (in the
form of an infinitesimally thin shell) is q dq/4πε0R. Integrating this
from q = 0 to q = Q gives a total energy of

U =
∫ Q

0

q dq
4πε0R

= Q2

8πε0R
. (12.65)

q

y

R

E1

E2

r

r – b cos q

be e

Figure 12.24.

We have used the fact that all of the infinitesimally thin shells are
located at radius R.

1.33 Deriving the energy density
In Fig. 12.24 the left proton is located at the origin, and the angle θ is
measured relative to the horizontal. The fields at the position shown are

E1 = e
4πε0r2 and E2 = e

4πε0R2 , (12.66)
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where R is given by the law of cosines as R = (r2 + b2 − 2rb cos θ)1/2.
The dot product E1 · E2 equals E1E2 cos ψ , where from Fig. 12.24 we
have cos ψ = (r − b cos θ)/R. The desired integral is therefore

ε0

∫
E1 · E2 dv

= ε0

∫
E1E2 cos ψ dv

= ε0

∫ 2π

0

∫ π

0

∫ ∞
0

e
4πε0r2

e
4πε0R2

r − b cos θ

R
r2 sin θ dr dθ dφ

= (2π)e2

16π2ε0

∫ π

0

∫ ∞
0

r − b cos θ

(r2 + b2 − 2rb cos θ)3/2 dr sin θ dθ

= e2

8πε0

∫ π

0

[
− 1

(r2 + b2 − 2rb cos θ)1/2

∣∣∣∣∞
r=0

]
sin θ dθ

= e2

8πε0

∫ π

0

[
1
b

]
sin θ dθ

= e2

8πε0b

∫ π

0
sin θ dθ

= e2

4πε0b
, (12.67)
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y (for small dr)  

Figure 12.25.

as desired. We appear to have gotten lucky with the above r integrand
being a perfect differential. However, there is a quick way to see how this
comes about. In the fourth line above, we can keep things in terms of R
and ψ and write the r integrand as (cos ψ/R2)dr. But from Fig. 12.25, we
see that if we increase r by dr while holding θ constant, R increases by
dR = dr cos ψ . The r integrand can therefore be rewritten as dR/R2. The
integral of this is simply −1/R, as we found in the fifth line above.

If we have n charges instead of two, then the energy U involves the
integral of E2 = (E1 +E2 +· · ·+En)2. As above, we ignore the terms of
the form E2

i , because these give the self-energies of the particles. Each of
the cross terms of the form Ei ·Ej can be handled in exactly the same way
as above, and hence yields e2/4πε0r, where r is the separation between
particles i and j. B

A

Path 1

Path 2

Figure 12.26.

12.2 Chapter 2
2.1 Equivalent statements

We are given that
∫

E · ds = 0 for any path starting and ending at point
A in Fig. 12.26. Let the closed path be divided into paths 1 and 2 by
point B. Then

∫ B

A, path 1
E · ds +

∫ A

B, path 2
E · ds = 0. (12.68)
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It follows that ∫ B

A, path 1
E · ds = −

∫ A

B, path 2
E · ds

=
∫ B

A, path 2
E · ds, (12.69)

because running the path backwards negates ds. The integral from A to B
is therefore independent of the path.

In words, what the above equations say is simply this: if two things
(the integral from A to B along path 1, and the integral from B to A along
path 2) add up to zero, then they must be negatives of each other. Negating
one of them then makes it equal to the other.

2.2 Combining two shells
The Q2/2πε0R answer is correct. The thing missing from the Q2/4πε0R
answer is the energy of each shell due to the potential of the other. Ignoring
the self-energies of the shells, the energy required to build up the second
shell, with the first one already in place, is Qφ, where φ = Q/4πε0R is
the potential due to the first shell at its surface. This gives Q2/4πε0R,
which, when added to the incorrect Q2/4πε0R answer involving just the
self-energies, gives the correct Q2/2πε0R answer. Alternatively, you can
obtain the missing Q/4πε0R energy by considering the energies of both
shells due to the other, and then dividing by 2, due to the double counting;
this is the “2” that appears in Eq. (2.32).

We could have alternatively phrased the question with shells of charge
Q and −Q. Each of the two self-energies is still Q2/8πε0R, so the incor-
rect reasoning again gives Q2/4πε0R. But the total energy must be zero,
of course, because in the end we have a shell with zero charge on it.
And indeed, if the Q shell is already in place, then the energy required
to build up the −Q shell is (−Q)φ = −Q2/4πε0R. When this is added
to the Q2/4πε0R answer involving just the self-energies, we correctly
obtain zero.

2.3 Equipotentials from four charges
The general expression for the potential φ(x, y) is

4πε0φ(x, y) = 2q√
x2 + (y − 2�)2

+ 2q√
x2 + (y + 2�)2

− q√
(x − �)2 + y2

− q√
(x + �)2 + y2

. (12.70)

The equipotential curve A passes through the point (0, �). The potential at
this point is (ignoring the factor of q/4πε0�)

φA = 2
1
+ 2

3
− 1√

2
− 1√

2
= 1.252. (12.71)

Curve B passes through the point (3.44�, 0). The potential there is

φB = 2 · 2√
3.442 + 22

− 1
2.44

− 1
4.44

= 0.370. (12.72)



12.2 Chapter 2 613

Curve C passes through the origin. The potential there is

φC = 2 · 2
2
− 2 · 1

1
= 0. (12.73)

At locations where the equipotentials intersect, the slope of φ is zero
in two independent directions, so φ must locally be a flat plane; the inter-

–1 0 1 2 3 4 5
–3

–2

–1

0

1

2

3

Figure 12.27.

section is a saddle point. And since E is the negative gradient of φ, this
implies that E = 0 where the curves intersect. (At the saddle point at the
origin, it is clear that E = 0 by symmetry.) Figure 12.27 shows a few
more of the equipotential curves. Far away from the charges, the curves
are approximately circular.

You can show that E = 0 at the point (3.44�, 0) by finding the total
Ex component due to the four charges at points on the x axis, and then
demanding that Ex = 0, which can be solved numerically. Equivalently,
you can set y = 0 in Eq. (12.70) and then demand that ∂φ/∂x = 0. The
resulting equation will, of course, be the statement that Ex = 0, as you
should explicitly verify.

2.4 Center vs. corner of a cube
Dimensional analysis tells us that for a given charge density ρ, the poten-
tial φ0 at the center of a cube of edge s must be proportional to Q/s,
where Q is the total charge, ρs3. (This is true because the potential has the
dimensions of q/4πε0r, and Q is the only charge in the setup, and s is the
only length scale.) Hence φ0 is proportional to ρs3/s = ρs2. So for fixed
ρ, we have φ0 ∝ s2.

Equivalently, if we imagine increasing the size of the cube by a factor
f in each direction, then the integral φ ∝ ∫

(ρ dv)/r picks up a factor of
f 3 in the dv and a factor of f in the r, yielding a net factor of f 2 in the
numerator.

A cube of edge 2b can be considered to be built up from eight cubes
of edge b. The center of the large cube coincides with a corner of all eight
of the smaller cubes. So the potential at the center of the large cube is
8φ1. But, from the above result that φ ∝ s2, this center potential must
also be 22 = 4 times the center potential φ0 of the edge-b cube. Hence
8φ1 = 4φ0, or φ0 = 2φ1. It therefore takes twice as much work to bring in
a charge from infinity to the center as it does to a corner. From the second
example in Section 2.2, the analogous statement for a solid sphere is that
it takes 3/2 as much work to bring in a charge from infinity to the center
as it does to the surface. But that problem can’t be solved via the above
scaling/superposition argument.

The above result for the cube actually holds more generally for any
rectangular parallelepiped with uniform charge density. All of the steps in
the above logic are still valid, so the potential at the center is twice the
potential at a corner.

2.5 Escaping a cube
Intuitively, the easiest escape route should be via the midpoint of a face,
because that path has the largest closest approach to any of the corners.
Let the cube have side length 2�. Then the potential at the center (ignor-
ing the factor of e/4πε0�) is 8/

√
3 = 4.6188, and the potential at the

midpoint of a face is 4/
√

2 + 4/
√

6 = 4.4614. This is smaller than at the
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center, and it is certainly downhill from there on out, because the fields of
all eight charges will be pushing the proton outward. But is it all down-
hill on the path from the center to the midpoint of the face? At a dis-
tance x from the center to the midpoint of a face, the potential is (ignoring
the e/4πε0�)

φ(x) = 4√
12 + 12 + (1 + x)2

+ 4√
12 + 12 + (1 − x)2

. (12.74)

If you plot this as a function of x, you will see that it is indeed a decreasing
function, although it is very flat near x = 0. So the proton can in fact
escape. (See Problem 2.25 for a general theorem.) If you want, you can
calculate the derivative of φ(x) and plot that; you will see that it is always
negative (for x > 0).

The proton will of course not escape if it moves from the center
directly toward a corner of the cube, because the potential is infinite there.
But what if it heads directly toward the midpoint of an edge? That is the
task of Exercise 2.36.

2.6 Electrons on a basketball
Assume that the diameter is about 1 foot (0.3 m), so r ≈ 0.15 m (the actual
value is 0.12 m). With V0 = 1000 V, we are told that

Q
4πε0r

= −V0 �⇒ Q = −4πε0rV0. (12.75)

The charge per square meter is then Q/4πr2 = −ε0V0/r. The number of
extra electrons per square meter is therefore

ε0V0
er

=
(

8.85 · 10−12 s2 C2

kg m3

)
(1000 V)

(1.6 · 10−19 C)(0.15 m)
≈ 3.7 · 1011 m−2. (12.76)

So the number per square centimeter is 3.7 · 107 cm−2.

R

r
q

P

Figure 12.28.

2.7 Shell field via direct integration
Let a given point P be a distance r from the center of the shell, and
consider the ring that makes the angle θ shown in Fig. 12.28. The dis-
tance from P to any point on the ring is given by the law of cosines as
� =

√
R2 + r2 − 2rR cos θ . The area of the ring is its width (which is

R dθ ) times its circumference (which is 2πR sin θ ). The charge on the ring
is therefore (R dθ)(2πR sin θ)σ , so the potential at P due to the ring is
(using σ = Q/4πR2)

φring = (R dθ)(2πR sin θ)σ

4πε0�
= Q sin θ dθ

8πε0
√

R2 + r2 − 2rR cos θ
. (12.77)

The total potential at P is therefore

φ(r) = Q
8πε0

∫ π

0

sin θ dθ√
R2 + r2 − 2rR cos θ

= Q
8πε0rR

√
R2 + r2 − 2rR cos θ

∣∣∣∣π
0

. (12.78)
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The sin θ in the numerator is what made this integral easily doable. We
must now consider two cases. If r < R (so P is inside the shell),
we have

φ(r) = Q
8πε0rR

[
(r + R) − (R − r)

] = Q
4πε0R

. (12.79)

And if r > R (so P is outside the shell), we have

φ(r) = Q
8πε0rR

[
(r + R) − (r − R)

] = Q
4πε0r

. (12.80)

We see that if P is inside the shell, then the potential is constant, so the
electric field is zero. If P is outside the shell, then

E(r) = −dφ

dr
= Q

4πε0r2 . (12.81)

Since a solid sphere can be built up from spherical shells, the above results
imply that the field outside a solid sphere with charge Q equals Q/4πε0r2,
and the field inside equals Qr/4πε0r2, where Qr is the charge that lies
inside radius r. These results are valid even if the charge distribution varies
with r, as long as it is spherically symmetric. See Problem 2.8 for an
extension of the above method.

R

r
q

P

Figure 12.29.

2.8 Verifying the inverse-square law
(a) As in Problem 2.7, our strategy for calculating the potential at a point

P, due to the spherical shell, will be to slice the shell into rings, as
shown in Fig. 12.29. The distance from P to any point on the ring
is given by the law of cosines as � =

√
R2 + r2 − 2rR cos θ . The

area of the ring is (R dθ)(2πR sin θ), so the charge on it is dq =
σ(R dθ)(2πR sin θ).

If Coulomb’s law takes the form of F(r) = kq1q2/r2+δ , then the
potential due to a point charge dq at distance � is k dq/

(
(1+ δ)�1+δ

)
,

as you can verify by taking the negative derivative. Using the above
value of dq, along with σ = Q/4πR2, we see that the potential at P
due to the ring at angle θ equals

φring = kσ(R dθ)(2πR sin θ)

(1 + δ)�1+δ
= kQ sin θ dθ

2(1 + δ)�1+δ
. (12.82)

Using the above value of �, the total potential at P is therefore

φ(r) =
∫ π

0

kQ sin θ dθ

2(1 + δ)
(
R2 + r2 − 2rR cos θ

)(1+δ)/2

= kQ
2(1 − δ2)rR

(
R2 + r2 − 2rR cos θ

)(1−δ)/2
∣∣∣∣π
0

. (12.83)

The sin θ in the numerator is what made this integral easily doable,
even with the messy exponent in the denominator. We must now con-
sider two cases. If r < R, we have (with f (x) = x1−δ)
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φ(r) = kQ
2(1 − δ2)rR

[
f (R + r) − f (R − r)

]
. (12.84)

And if r > R we have

φ(r) = kQ
2(1 − δ2)rR

[
f (r + R) − f (r − R)

]
. (12.85)

If δ = 0 so that f (x) = x, these two results reduce to kQ/R and kQ/r,
respectively, as they should (see Problem 2.7).

(b) The potential at radius a due to the shell of radius a is found from
either Eq. (12.84) or Eq. (12.85) to be (kQa/2a2)f (2a), where we
have ignored the factor of (1 − δ2). The potential at radius a due
to the smaller shell of radius b is found from Eq. (12.85) to be
(kQb/2ab)

[
f (a + b) − f (a − b)

]
. So we have

φa = kQa

2a2 f (2a) + kQb
2ab

[
f (a + b) − f (a − b)

]
. (12.86)

Similarly, the potential at radius b due to the shell of radius b is
found from either Eq. (12.84) or Eq. (12.85) to be (kQb/2b2)f (2b).
The potential at radius b due to the larger shell of radius a is found
from Eq. (12.84) to be (kQa/2ab)

[
f (a + b) − f (a − b)

]
. So we have

φb = kQb

2b2 f (2b) + kQa

2ab

[
f (a + b) − f (a − b)

]
. (12.87)

If δ = 0 so that f (x) = x, these two results reduce to

φa = kQa

a
+ kQb

a
and φb = kQb

b
+ kQa

a
, (12.88)

which are correct, as you can check (note the asymmetry in the
denominators).

(c) If we replace the left-hand sides of Eqs. (12.86) and (12.87) with a given
common value φ, then we have two equations in the two unknowns,
Qa and Qb. We can eliminate Qa by multiplying Eq. (12.86) by
a
[
f (a+b)− f (a−b)

]
and Eq. (12.87) by bf (2a), and then subtracting

the former from the latter. The result is

φ
(

bf (2a) − a
[
f (a + b) − f (a − b)

])
= kQb

2b

(
f (2a)f (2b) − [

f (a + b) − f (a − b)
]2

)
. (12.89)

Therefore (again, with f (x) = x1−δ),

Qb = 2bφ

k
· bf (2a) − a

[
f (a + b) − f (a − b)

]
f (2a)f (2b) − [

f (a + b) − f (a − b)
]2 . (12.90)
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If we had kept the factor of (1−δ2), it would appear in the numerator.
As stated in the problem, if δ = 0 so that f (x) = x, then Qb equals
zero, as it should. If we pick specific numerical values for a and b,
for example a = 1.0 and b = 0.5, then via Mathematica we find
that to first order in δ, the lengthy fraction in Eq. (12.90) behaves like
≈ (0.26)δ. For small δ, the charge on the outer shell is essentially
given by the standard Coulomb value of Qa = aφ/k. So for a = 1.0
and b = 0.5, the fraction of the charge that ends up on the inner shell
is Qb/Qa = [(2bφ/k) · (0.26)δ]/(aφ/k) = (0.26)δ.

2.9 φ from integration
(a) All points in a spherical shell at radius r are a distance r from the

center, so integrating over all the shells gives

φcenter =
∫

dq
4πε0r

=
∫ R

0

(4πr2 dr)ρ
4πε0r

= R2ρ

2ε0
. (12.91)

q/2 dq

R

Figure 12.30.

(b) Let’s find φ at the “north pole” of the shell. Consider a ring whose
points lie at an angle θ down from the pole. All points in the ring are
a distance 2R sin(θ/2) from the pole; see Fig. 12.30. The area of the
ring is (2πR sin θ)(R dθ), so integrating over all the rings gives (using
sin θ = 2 sin(θ/2) cos(θ/2))

φsurface =
∫ π

0

σ(2πR sin θ)(R dθ)

4πε02R sin(θ/2)
= σR

2ε0

∫ π

0
cos(θ/2)

= σR
ε0

sin(θ/2)

∣∣∣∣π
0
= σR

ε0
. (12.92)

(c) Since Q = (4πR3/3)ρ for the solid sphere in part (a), and Q =
(4πR2)σ for the shell in part (b), the two results can be written as
φcenter = (3/2)(Q/4πε0R) and φsurface = Q/4πε0R. The former is
therefore 3/2 times the latter. This is consistent with the result from
the second example in Section 2.2, because we know that φsurface for
our spherical shell is the same as the potential on the surface of a solid
sphere with the same charge Q and radius R.

2.10 A thick shell
(a) • For 0 ≤ r ≤ R1, the field is E(r) = 0, because the electric field

inside a shell is zero.

• For R1 ≤ r≤R2, the field is E(r)=Qr/4πε0r2, where Qr is the
charge inside radius r. Charge is proportional to volume, and
volume is proportional to radius cubed, so Qr =Q(r3 −R3

1)/

(R3
2 − R3

1). Therefore,

E(r) = Qr

4πε0r2 = Q

4πε0(R3
2 − R3

1)

(
r − R3

1
r2

)
. (12.93)

If R1 = 0, in which case we have an entire sphere, the field is
proportional to r. This agrees with the result from the example in
Section 1.11.
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• For R2 ≤ r ≤ ∞, the field is simply E(r) = Q/4πε0r2, because
the shell looks like a point charge from the outside.

These forms of E(r) agree at the transition points at R1 and R2, as
they should. A complete (rough) plot of E(r) is shown in Fig. 12.31.
You can show that E(r) is indeed concave downward for R1 < r < R2

r

E(r)

Q

4π  0R2
2

R1 R2

Figure 12.31.

by calculating the second derivative.

(b) With R2 = 2R1 ≡ 2R, the potential at r = 0 is

φ(0) = −
∫ 0

∞
E dr

= −
∫ R2

∞
Q

4πε0r2 dr −
∫ R1

R2

Q

4πε0(R3
2 − R3

1)

(
r − R3

1
r2

)
dr

−
∫ 0

R1

(0)dr

= Q
4πε0(2R)

− Q
4πε0

(
(2R)3 − R3

)
(

r2

2
+ R3

r

) ∣∣∣∣R
2R

= Q
4πε0R

[
1
2
− 1

7

(
3
2
− 5

2

)]
= 9

14
· Q

4πε0R
. (12.94)

If we write this as (9/7)
(
Q/4πε0(2R)

)
, we see that the factor of

9/7 for our thick shell correctly lies between the factor of 1 that is
relevant for a thin shell of radius 2R and the factor of 3/2 that is
relevant for a solid sphere of radius 2R (see the second example in
Section 2.2). The external field is the same in all cases, but the solid
sphere has a nonzero field extending all the way down to the origin.
More work is therefore required in that case to bring in a charge all the
way to r = 0.

2.11 E for a line, from a cutoff potential
A small length dx of the wire has charge λ dx, so the potential (relative to
infinity) at a point a distance r from the center of the finite wire equals

φ(r) = 1
4πε0

∫ L

−L

λ dx√
x2 + r2

. (12.95)

From Appendix K or Mathematica, or by using an x = r sinh z substitution
(although this gets a little messy), this integral becomes

φ(r) = λ

4πε0
ln

(√
x2 + r2 + x

)∣∣∣∣L−L
= λ

4πε0
ln

(√
L2 + r2 + L√
L2 + r2 − L

)
.

(12.96)

In the L � r limit we have

√
L2 + r2 = L

√
1 + r2

L2 ≈ L

(
1 + r2

2L2

)
= L + r2

2L
. (12.97)
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To leading order in r/L, we can then write φ(r) as

φ(r) = λ

4πε0
ln

(
2L

r2/2L

)
= 2λ

4πε0
ln

(
2L
r

)
. (12.98)

The total length of the wire, 2L, appears in the numerator of the log. How-
ever, this quantity is irrelevant because it simply introduces a constant
additive term to φ(r), which yields zero when we take the derivative to
find E(r). So φ(r) is effectively equal to −(λ/2πε0) ln(r), although tech-
nically it makes no sense to take the log of a dimensionful quantity. The
(radial) field is therefore

E(r) = −dφ

dr
= λ

2πε0r
, (12.99)

as desired. See Exercise 2.49 for the analogous procedure involving a sheet
of charge.

This procedure of truncating the wire is valid for the following rea-
son. Since the field from a point charge falls off like 1/r2, we know that
the field from a very long wire is essentially equal to the field from an in-
finite wire; the extra infinite pieces at the two ends of the infinite wire give
a negligible contribution. (The process of taking the radial component fur-
ther helps the convergence, but it isn’t necessary.) Therefore, the field we
found for the above finite wire is essentially the same as the field for an
infinite wire (provided that L is large enough to make the approximation in
Eq. (12.97) valid). Mathematically, the field in Eq. (12.99) is independent
of L, so when we finally take the L → ∞ limit, nothing changes.

Equivalently, we showed that, although the potential in Eq. (12.98)
depends logarithmically on L, the field in Eq. (12.99) is independent of L.
As far as the field is concerned, it doesn’t matter that lengthening the wire
changes the potential at every point, because the potentials all change by
the same amount. The variation with r remains the same, so E = −dφ/dr
doesn’t change. As an analogy, we can measure the gravitational poten-
tial energy mgy with respect to the floor. If we shift the origin to be
the ceiling instead, then the potential energy at every point changes. But
it changes by the same amount everywhere, so the gravitational force
is still mg.

R

x

r

dQ

q P

Figure 12.32.

2.12 E and φ from a ring
(a) The setup is shown in Fig. 12.32. The magnitude of the field due to

a little bit of charge dQ on the ring is dQ/4πε0r2. The component
of this field that is perpendicular to the x axis will cancel with the
analogous component from the diametrically opposite dQ. Therefore,
we care only about the component along the x axis. This component is

EdQ = dQ
4πε0r2 cos θ = dQ

4πε0r2 · x
r

. (12.100)

Adding up all the dQ charges simply gives the total charge Q, so the
total field is

E(x) = Qx
4πε0r3 = Qx

4πε0(x2 + R2)3/2 . (12.101)
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If x → ∞ then E(x) → Q/4πε0x2, which is correct because the ring
looks like a point charge from far away. And if x = 0 then E(x) = 0,
which is correct because the field components cancel by symmetry.

(b) We don’t have to worry about components here, because the potential
is a scalar. The potential due to a little piece dQ is dQ/4πε0r. Adding
up all the dQ charges again just gives Q, so the total potential is

φ(x) = Q
4πε0r

= Q

4πε0
√

x2 + R2
. (12.102)

If x → ∞ then φ(x) → dQ/4πε0x, which is correct because again
the ring looks like a point charge from far away. And if x = 0 then
φ(x) = Q/4πε0R, which is correct because all points on the ring are
a distance R from the origin.

(c) The negative of the derivative of φ(x) is

−dφ

dx
= − d

dx

(
Q

4πε0
√

x2 + R2

)

= − Q
4πε0

(
−1

2

)
(x2 + R2)−3/2(2x)

= Qx
4πε0(x2 + R2)3/2 , (12.103)

which is correctly the field E(x) in Eq. (12.101).

(d) The initial kinetic and potential energies are both zero, so conserva-
tion of energy gives the speed at the center via

0 + 0 = 1
2

mv2 + (−q)φ(0) �⇒ 0 = 1
2

mv2 − qQ
4πε0R

�⇒ v =
√

qQ
2πε0mR

. (12.104)

If R → 0 then v → ∞ (the ring is essentially a point charge, and
we know that the speed would be infinite in that case, because the
potential goes to infinity close to the charge). And if R → ∞ then
v → 0. This is believable, although not entirely obvious. If we instead
had a ring with constant linear charge density (so that Q ∝ R), then v
would be independent of R.aq

dr

r

Figure 12.33.

2.13 φ at the center of an N-gon
In Fig. 12.33, the area of the little piece of the wedge shown is r dr dθ . The
potential at the center due to this piece is σ(r dr dθ)/4πε0r = σ dr dθ/

4πε0. Integrating this from r = 0 up to the length R of the wedge gives a
contribution to the potential equal to σR dθ/4πε0. But R equals a/ cos θ ,
so the potential at the center due to the wedge is σa dθ/(4πε0 cos θ).
The N-gon consists of 2N triangles, in each of which θ runs from 0 to
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2π/2N = π/N. So the potential at the center due to the entire N-gon is
(using Appendix K for the integral)

φ = 2N · σa
4πε0

∫ π/N

0

dθ

cos θ
= Nσa

2πε0
ln

(
1 + sin θ

cos θ

) ∣∣∣∣π/N

0

= Nσa
2πε0

ln
(

1 + sin(π/N)

cos(π/N)

)
. (12.105)

In the N → ∞ limit, we can set the cosine term equal to 1 and the sine
term equal to π/N. The Taylor series ln(1 + ε) ≈ ε then gives

φ ≈ Nσa
2πε0

· π

N
= σa

2ε0
, (12.106)

in agreement with Eq. (2.27).

2.14 Energy of a sphere
Nonzero ρ exists only inside the sphere, so we need only deal with the
potential inside the sphere. The second example in Section 2.2 gives this
potential as φ = ρR2/2ε0 − ρr2/6ε0. Equation (2.32) therefore gives

U = 1
2

∫
ρφ dv = 1

2

∫ R

0
ρ

(
ρR2

2ε0
− ρr2

6ε0

)
4πr2 dr

= πρ2

ε0

∫ R

0

(
R2r2 − r4

3

)
dr = πρ2

ε0

(
R5

3
− R5

15

)

= 4πρ2R5

15ε0
. (12.107)

In terms of the charge Q = (4πR3/3)ρ, you can show that this can be
written as (3/5)Q2/4πε0R, in agreement with the two other calculations
mentioned in the problem.

2.15 Crossed dipoles
First solution We can consider the given setup to consist of two dipoles
represented by the dashed lines in Fig. 12.34. If the length of the orig-

q

q

–q

–q

/2

/  2

Figure 12.34.

inal dipoles is �, then each of the new dipoles has length �/
√

2, and
hence a dipole moment q(�/

√
2). The total dipole moment is twice this,

or
√

2q� = √
2p. This result can also be obtained by treating each of the

original dipoles as a vector with magnitude p, pointing from the negative
charge to the positive charge, and then simply adding the vectors. We will
talk more about the vector nature of the dipole in Chapter 10.

Note that the slight sideways displacement between the two new
dipoles doesn’t affect the field at large distances. Any changes in r and
θ are higher order in 1/r, and therefore bring in modifications to the field
only at order at least (1/r)(1/r3).

REMARK: The more that one of the given dipoles is rotated with respect
to the other, the smaller the resulting dipole moment is. If the angle
between the given dipoles is β, you can show that the resulting dipole
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moment is 2p cos(β/2). This reduces correctly in the above case where
β = 90◦. If β = 180◦ we obtain a dipole moment of zero, as we should
because the charges exactly cancel each other. (All higher moments are
obviously equal to zero too.) However, if we have β = 180◦ but then
shift one of the dipoles sideways, as shown in Fig. 12.35(a), then the

(a)

(b)

Figure 12.35.

dipole moment is still zero, but we end up with a nonzero quadrupole
moment. Note that if β is very close, but not exactly equal, to 180◦, as in
Fig. 12.35(b), then, even though the configuration may look roughly like
a quadrupole, it is still a dipole because the dipole moment is nonzero.
At sufficiently large distances, the dipole field dominates the quadrupole
field.

Second solution Alternatively, we can find the net dipole moment by
finding the sum of the potentials due to the two given dipoles. If a point
is located at angle θ with respect to the vertical dipole (in the plane of the
page), then it is located at angle θ − 90◦ with respect to the horizontal
dipole. So Eq. (2.35) gives the total potential at the point as (making use
of the trig sum formula for cosine)

φ = p cos θ

4πε0r2 + p cos(θ − 90◦)
4πε0r2 = p(cos θ + sin θ)

4πε0r2

=
√

2p cos(θ − 45◦)
4πε0r2 ≡

√
2p cos θ ′
4πε0r2 , (12.108)

where θ ′ ≡ θ − 45◦. This simply says that we have a dipole with strength√
2p oriented along the θ ′ = 0 direction, which corresponds to the θ =

45◦ direction. Of course, this φ is valid only for points in the plane of the
page. So technically all we’ve done here is show that if the setup looks
like a dipole from afar, then the dipole moment must be

√
2p.

2.16 Disks and dipoles
(a) A little bit of charge dq on the top disk and the corresponding bit −dq

below it on the bottom disk form a dipole. The field due to this dipole
at a distant point (with r � �) on the axis is (dq)�/2πε0r3 from
Eq. (2.36). All of the dipoles that make up the disks give essentially
this same field at a distance point; the slight sideways displacement
among them is inconsequential, to leading order. The total field is

s

–s

Figure 12.36.

therefore obtained by replacing dq with the total charge on the disk:

E = (σπR2)�

2πε0r3 = σR2�

2ε0r3 . (12.109)

(b) Consider the corresponding parts of the two disks contained in a com-
mon thin cone, as shown in Fig. 12.36. If the distances to the top
and bottom parts are rt and rb, respectively, then the bottom piece
has an area, and hence charge, that is larger by a factor r2

b/r2
t . This

factor exactly cancels the effect of the r2 in Coulomb’s law, so the
two parts give canceling fields. The given cone can be divided into
many of these thin cones, all yielding zero net field. Thus the parts of
the two disks that are contained within the given cone produce zero
net field.
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We are therefore concerned only with the leftover ring in the top
disk. Let r be measured from the point on the axis that is midway
between the disks (although the exact origin won’t matter here). From
similar triangles in Fig. 12.37, the thickness b of the ring is given

bR – b

r – /2

Figure 12.37.

by b/� = (R − b)/(r − �/2). Since b � R and � � r, we can
ignore the b and � on the right-hand side, which leaves us with b/� ≈
R/r �⇒ b ≈ R�/r. The charge in the ring is then given by essentially
σ(2πR)(R�/r). If r is large, the ring looks like a point charge, so the
desired field is

E = σ(2πR)(R�/r)
4πε0r2 = σR2�

2ε0r3 , (12.110)

in agreement with the result in part (a).

2.17 Linear quadrupole
(a) Let � be the separation between the charges, so the whole quadrupole

has length 2�. Along the axis the field is radial, and at a distance r
from the center it equals (with ε ≡ �/r and k ≡ 1/4πε0)

Er = kq
(r − �)2 − 2kq

r2 + kq
(r + �)2

= kq
r2

[
1

1 − 2ε + ε2 − 2 + 1
1 + 2ε + ε2

]

≈ kq
r2

[(
1 + 2ε + 3ε2)− 2 + (

1 − 2ε + 3ε2)]
= kq

r2

[
6ε2] = 6kq�2

r4 . (12.111)

We have indeed correctly inverted the above fractions (at least to order
ε2), because (1− 2ε + ε2)(1+ 2ε + 3ε2) = 1+O(ε3), and likewise
for the other term. This field is positive, which makes sense because if
we think in terms of the original dipoles, the closer dipole repels more
than the farther dipole attracts. The �2/r4 dependence is a factor of
�/r smaller than the �/r3 dependence for a dipole. This is consistent
with the multipole-expansion discussion in Section 2.7.

qr

q

q

–2q

r1

Figure 12.38.

(b) Along the perpendicular bisector, symmetry tells us that the field is
again radial. Since the two end charges contribute the same radial
field, the total field in Fig. 12.38 at a distance r from the center is
(again with ε ≡ �/r and k ≡ 1/4πε0)

Er = 2kq

r2
1

cos θ − 2kq
r2 = 2kq

r2 + �2
r√

r2 + �2
− 2kq

r2

= 2kq
r2

[
1

(1 + ε2)3/2 − 1
]
≈ 2kq

r2

[(
1 − 3

2
ε2

)
− 1

]

= 2kq
r2

[
−3

2
ε2

]
= −3kq�2

r4 . (12.112)
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This is negative, which makes sense because the point in question is
closer to the −2q charge than to the two q charges, and also because
the field from the −2q charge points in the radial direction.

Recall that the dipole field points tangentially at locations on the
perpendicular-bisector plane. The above quadrupole field is funda-
mentally different in that (among other things) it points radially at
locations on the perpendicular-bisector plane. The angular depen-
dence of the quadrupole field is more complicated than that of the
dipole field, as we will see in Section 10.2.

2.18 Field lines near the origin
(a) Setting a = 1 and ignoring the factor of q/4πε0, the potential due to

the two positive charges, at locations in the xy plane, is

φ(x, y) = 1√
(x + 1)2 + y2

+ 1√
(x − 1)2 + y2

. (12.113)

Using the Taylor expansion 1/
√

1 + ε ≈ 1−ε/2+3ε2/8, and keeping
terms up to second order in x and y, we have

φ(x, y) = 1√
1 + (2x + x2 + y2)

+ 1√
1 + (−2x + x2 + y2)

≈
(

1 − 1
2

(
2x + x2 + y2)+ 3

8

(
2x + · · · )2

)

+
(

1 − 1
2

(−2x + x2 + y2)+ 3
8

(−2x + · · · )2
)

= 2 + 2x2 − y2. (12.114)

(Alternatively, you can obtain this from the Series operation in
Mathematica.) If we had included the z dependence, there would be
an extra −z2 tacked on this result. In terms of all the given parameters,
you can show that

φ(x, y) ≈ q
4πε0a

(
2 + 2x2 − y2

a2

)
. (12.115)

x

y

Figure 12.39.

Some level surfaces of the function 2x2 − y2 are shown in Fig. 12.39.
The origin is a saddle point; it is a minimum with respect to variations
in the x direction, and a maximum with respect to variations in the y
direction. The constant-φ lines passing through the equilibrium point
are given by y = ±√2x (near the origin). If we zoom in closer to
the origin, the curves keep the same general shape; the picture looks
the same, with the only change being the φ value associated with
each curve.

(b) The electric field is the negative gradient of the potential, so we have

E = −∇φ = q
4πε0a3 (−4x, 2y). (12.116)
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The field lines are the curves whose tangents are the E field vectors, by
definition. Equating the slope of a curve with the slope of the tangent
E vector, and separating variables and integrating, gives

dy
dx

= Ey

Ex
�⇒ dy

dx
= − y

2x
�⇒

∫
dy
y

= −1
2

∫
dx
x

�⇒ ln y = −1
2

ln x + A �⇒ y = B√
x

, (12.117)

where A is a constant of integration and B ≡ eA. Different values

x

y

Figure 12.40.

of B give different field lines. Technically, this y = B/
√

x result is
valid only in the first quadrant. But since the setup is symmetric with
respect to the yz plane, and also with respect to rotations around the
x axis, the general form of the field lines in the xy plane is shown in
Fig. 12.40. If we zoom in closer to the origin, the lines keep the same
general shape.

If we include the z dependence, then the correct expression for the
field near the origin has the (−4x, 2y) vector in Eq. (12.116) replaced
with (−4x, 2y, 2z). As a check on this, the divergence of this vector is
zero, which is correct because ∇ ·E = ρ/ε0 and because there are no
charges at the origin. Although the abbreviated vector in Eq. (12.116)
is sufficient for making a picture of what the field lines look like, it has
nonzero divergence, so its utility goes only so far. See Exercise 2.65
for an extension of this problem. z r

dQ

q

R

Figure 12.41.

2.19 Equipotentials for a ring
(a) At a given point on the z axis, the magnitude of the field due to a lit-

tle piece of charge dQ on the ring in Fig. 12.41 is dQ/4πε0r2. The
horizontal component of this field will cancel with the horizontal
component from the diametrically opposite dQ. Therefore, we care
only about the vertical component, which brings in a factor of cos θ .
So we have

EdQ = dQ
4πε0r2 cos θ = dQ

4πε0r2 · z
r

. (12.118)

Adding up all the dQ charges simply gives the total charge Q. The
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–2
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Figure 12.42.

total field is then

E(z) = Qz
4πε0r3 = Qz

4πε0(z2 + R2)3/2 . (12.119)

If z → ∞ then E(z) → Q/4πε0z2, which is correct because
the ring looks like a point mass from far away. And if z = 0 then
E(z) = 0, which is correct because the field components cancel by
symmetry. Taking the derivative of E(z), you can quickly show that
the maximum occurs at z = R/

√
2.

(b) A sketch of some equipotential curves is shown in Fig. 12.42. The
ring is represented by the two dots; we have chosen R = 1. The full
surfaces are obtained by rotating the curves around the z axis. Close to
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the ring, the curves are circles around the dots, which means that the
equipotentials are tori in 3D space. Far away, the curves become cir-
cles (or spheres in 3D) around the whole setup. The transition betweenE

z

Constant f

x

E

Figure 12.43.

the tori and the spheres occurs where the equipotentials cross at the
origin, as shown.

(c) Consider a point on the z axis where the equipotential curve is concave
up. Just to the left of this point, the E field, which is the negative
gradient of φ, points upward and slightly to the right; see Fig. 12.43.
So it has a positive x component. Similarly, just to the right, E has
a negative x component. Therefore Ex decreases as x increases across
x = 0. In other words, ∂Ex/∂x is negative at x = 0. Likewise, at points
where the equipotential curve is concave down, ∂Ex/∂x is positive.
At the transition point from concave up to concave down, ∂Ex/∂x
must make the transition from negative to positive. That is, it must be
zero. Since the equipotential surface is symmetric around the z axis,
∂Ey/∂y must also be zero at the transition point.
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There are no charges in the free space at the transition point, so ∇ ·
E = ρ/ε0 tells us that ∂Ex/∂x+∂Ey/∂y+∂Ez/∂z = 0. Since we just
found that the x and y derivatives are zero, we see that ∂Ez/∂z must
also be zero. In other words, the transition point is an extremum of Ez,
so it coincides with the point we found in part (a). See Exercise 2.66
for a variation on this problem.

2.20 A one-dimensional charge distribution
The electric field is given by E = −∇φ, so we quickly find Ex(x) =
−ρ0x/ε0 (and Ey = Ez = 0) in the region 0 < x < �, and E = 0
in the other two regions. Note that Ex is continuous at x = 0 but not at
x = �. This implies that there must be a surface charge density on the
plane at x = �.

To obtain the charge distribution, we can use ρ = −ε0∇2φ, or equiv-
alently ρ = ε0∇·E. Either of these quickly gives ρ(x) = −ρ0 in the region
0 < x < �, and ρ = 0 in the other two regions. But as mentioned above,
there is also a surface charge density σ on the plane at x = �. This doesn’t
contradict the volume densities we just found, because those ρ values have
nothing to say about the ρ values at the boundaries between the regions. If
you tried to calculate −ε0∇2φ or ε0∇ · E at x = 0 and x = �, you would
obtain results that are, respectively, undefined and infinite. The latter is
consistent with the fact that a surface charge occupies zero volume.

To determine the surface density σ on the plane at x = �, we can
look at the discontinuity in the field across the plane. The field just to
the left is −ρ0�/ε0, and just to the right is zero. Gauss’s law tells us that
the change in the field at the surface, which is ρ0�/ε0, must equal σ/ε0.
Hence σ = ρ0�. Note that this surface density is equal and opposite to
the effective surface density of the charged volume with density −ρ0 and
thickness �. The external field (for x < 0 and x > �) is therefore the
same as the field from two oppositely charged sheets, which is zero, in
agreement with the field we found above. Indeed, working backward from
this external field would be another way of concluding that σ = −ρ0�.

Figure 12.44(a) shows a view of the slab and sheet; plots of φ(x),
Ex(x), and ρ(x) are shown in Figs. 12.44(b)–(d). As mentioned above, the
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first derivative of φ (which is related to the field) is not well defined at
r = �. And the second derivative (which is related to the density) is not
well defined at x = 0 and is infinite at x = �, consistent with the fact that
we have a finite amount of charge in a zero-volume object (the sheet).

2.21 A cylindrical charge distribution
(a) The given φ(r) is shown in Fig. 12.45(a). The electric field is the
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negative gradient of φ. For a function that depends only on r, the
gradient in cylindrical coordinates is simply ∇φ = r̂(∂φ/∂r). Outside
the R ≤ r ≤ 2R region, φ is constant, so E is zero. Inside the R < r <

2R region, we have

E = −∇φ = −r̂
∂

∂r

(
ρ0
4ε0

(4R2 − r2)

)
= ρ0r

2ε0
r̂. (12.120)

The plot of Er is shown in Fig. 12.45(b). Note the discontinuities at
r = R and r = 2R.

The charge density is given by ∇ · E = ρ/ε0, or equivalently
∇2φ = −ρ/ε0. For a function that depends only on r, the divergence
in cylindrical coordinates is (1/r)∂(rEr/∂r). Outside the R ≤ r ≤ 2R
region, E is constant (in fact zero), so ρ is zero. Inside the R < r < 2R
region, we have

ρ = ε0∇ · E = ε0
1
r

∂

∂r

(
r · ρ0r

2ε0

)
= ρ0. (12.121)

But we’re not done. The discontinuities in Er at r = R and r = 2R
imply that there are surface charge densities there. From Gauss’s law,
the change in the field across a surface equals σ/ε0. At r = R the field
jumps up by ρ0R/2ε0, so the surface density must be σR = ρ0R/2.
And at r = 2R the field drops down by ρ0(2R)/2ε0, so the surface
density must be σ2R = −ρ0R. Since a surface takes up zero volume,
the volume densities of these surface charges are infinite, as indicated
by the spikes in Fig. 12.45(c).

(b) The cross-sectional area of the R < r < 2R region is π(2R)2−πR2 =
3πR2. So the volume density ρ0 in this region yields a charge in a
length � of the cylinder equal to

ρ0�(3πR2) = 3πR2ρ0�. (12.122)

The surface at r = R yields a charge in length � equal to

σR(2πR)� = (ρ0R/2)(2πR)� = πR2ρ0�. (12.123)

And the surface at r = 2R yields a charge in length � equal to

σ2R(2π · 2R)� = (−ρ0R)(4πR)� = −4πR2ρ0�. (12.124)
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Adding up the above three charges and dividing by �, we see that
the total charge per unit length is zero. This makes sense, because
otherwise there would be a nonzero field outside the cylinder, whereas

ΔE

b

Figure 12.46.

we know that the field is zero for r > 2R. Note that the σR surface
density on the inner surface yields the same charge that we would
obtain if the volume density ρ0 also existed in the r < R region. This
is why the Er in the R < r < 2R region in Fig. 12.45(b) is proportional
to r (that is, the slope passes through the origin).

2.22 Discontinuous E and φ

(a) We know that if there are no other fields present, a sheet with surface
charge density σ yields an electric field σ/2ε0 pointing away from
the sheet on either side. More generally, if there are other fields super-
posed on the sheet’s field, the difference in the normal component of
the field on either side of the sheet is σ/ε0.

This discontinuity is consistent with the relation ρ = ε0∇ · E. If
the field varies only in the x direction, then this relation becomes
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ρ = ε0(dE/dx). If E(x) looks like the curve shown in Fig. 12.46,
then at the jump we have dE/dx = �E/b. So ρ = ε0(dE/dx) gives
ρ = ε0(�E/b) �⇒ �E = ρb/ε0. If we let b → 0 and ρ → ∞
while keeping the product ρb finite, then we have a sheet with surface
density σ = ρb, and �E = σ/ε0, as desired.

(b) Consider two sheets with surface charge densities −σ and σ , sepa-
rated by a distance s. The electric field between them is σ/ε0, so the
potential difference is φ = Es = σ s/ε0, with the positive sheet at
the higher potential. If we let s → 0 and σ → ∞ while keeping the
product σ s finite, then we have a finite change in φ over zero distance,
that is, a discontinuity.

However, this limiting scenario is much less physical than the one
in part (a). In part (a), surface densities with finite σ = ρb and “infi-
nite” ρ exist in approximate form on the surfaces of conductors. To
a good approximation the thickness of the charge layer is zero. We
can have an infinite ρ with a finite amount of charge. Here in part (b),
however, situations with finite σ s and “infinite” σ actually require an
infinite amount of charge in any finite patch of area.2

At least mathematically, the discontinuity in φ is consistent with
the relation ρ = −ε0∇2φ. In one dimension this relation is ρ =
−ε0 d2φ/dx2. If φ looks like the curve shown in Fig. 12.47(a), then
the first derivative dφ/dx (which is just −E) looks something like the
curve shown in Fig. 12.47(b). It is zero, then rises to the large value
of �φ/s (if w � s, essentially all of the change in φ occurs over the s
interval), then decreases back to zero. The second derivative d2φ/dx2

therefore looks something like the curve shown in Fig. 12.47(c). It
is zero, then jumps to the large value of �φ/ws, then drops back
to zero, then drops down to −�φ/ws, then jumps back up to zero.

2 A line of charge technically has an infinite σ (just like a sheet has an infinite ρ).
Indeed, two oppositely charged lines positioned very close to each other do yield an
abrupt change in potential over a short distance. (Two point charges would do the
same.) But this isn’t so interesting, because all of the important behavior is contained
in a very small region.
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So the relation ρ = −ε0 d2φ/dx2 tells us that the large values of the
density have magnitude ρ = ε0(�φ/sw), which can be rewritten as
�φ = (

(ρw)/ε0
)
s. The interpretation of this equation is that we have

two very thin sheets with thickness w and effective surface charge
density ±σ = ±ρw (the negative sheet is on the left), which create
a field E = (ρw)/ε0 between them. When this is multiplied by the
sheet separation s we obtain the potential difference �φ.

2.23 Field due to a distribution
(a) By symmetry, the electric field points in the x direction and depends

only on x. So ∇ ·E = ρ/ε0 becomes dEx/dx = ρ/ε0. Integrating this
gives the field inside the slab as Ex = ρx/ε0 + A, where A is a con-
stant of integration. Physically, the A term is the result of superposing
the field of an infinite sheet (or slab) with surface charge density σ ,
parallel to the given slab and lying outside it. This sheet creates a
constant field σ/2ε0 ≡ A that simply gets added to the field from the
given slab. The only thing we assumed in the above reasoning was
planar symmetry. An additional sheet satisfies this symmetry, so it is
no surprise that its effect is included in the final answer. However,
since we are told that there are no other charges present, we must
have A = 0.

(b) By symmetry, the electric field points in the radial direction and
depends only on r. In cylindrical coordinates,∇·E equals (1/r)d(rEr)/
dr for a function that depends only on r. So ∇ · E = ρ/ε0 gives the
field inside the cylinder as

1
r

d(rEr)

dr
= ρ

ε0
�⇒ d(rEr)

dr
= ρr

ε0

�⇒ rEr = ρr2

2ε0
+ B �⇒ Er = ρr

2ε0
+ B

r
. (12.125)

Physically, the B term is the result of superposing the field of a line
of charge, with linear charge density λ, along the axis of the cylinder.
This line creates a field λ/2πε0r ≡ B/r that gets added to the field
from the cylinder. The only thing we assumed in the above reason-
ing was cylindrical symmetry. An additional line of charge along the
axis satisfies this symmetry, so again it is no surprise that its effect is
included in the final answer. But as in part (a), since we are told that
there are no other charges present, we must have B = 0.

(c) By symmetry, the electric field points in the radial direction and de-
pends only on r. In spherical coordinates, ∇·E equals (1/r2)d(r2Er)/
dr for a function that depends only on r. So ∇ · E = ρ/ε0 gives the
field inside the sphere as

1
r2

d(r2Er)

dr
= ρ

ε0
�⇒ d(r2Er)

dr
= ρr2

ε0

�⇒ r2Er = ρr3

3ε0
+ C �⇒ Er = ρr

3ε0
+ C

r2 . (12.126)
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Physically, the C term is the result of superposing the field of a point
charge q at the center of the sphere. This charge creates a field
q/4πε0r2 ≡ C/r2 that gets added to the field from the sphere. The
only thing we assumed in the above reasoning was spherical symme-
try. An additional point charge at the origin satisfies this symmetry,
so again it is no surprise that its effect is included in the final answer.
But again, since we are told that there are no other charges present,
we must have C = 0.

In parts (b) and (c), we actually didn’t need to be told that there were
no other charges present, because the line charge and the point charge
yield a nonzero value of ρ (in fact infinite, since they have a finite
amount of charge in zero volume), so they violate our assumption
of uniform volume charge density inside the object. In part (a) the
additional sheet was located outside the slab, so it didn’t affect the ρ

inside. Of course, we could superpose a spherical or cylindrical shell
outside our given sphere or cylinder, but these create zero field in their
interiors. You should think about what is different about a “ball” in the
1D case.

In parts (b) and (c), how did we solve an equation involving a uni-
form density ρ and then end up with a density that wasn’t uniform
(containing an extra line or point)? This occurred because our calcula-
tions in Eqs. (12.125) and (12.126) aren’t valid at r = 0. Problem 2.26
deals with the complications at r = 0 in the spherical case.

(d) There are an infinite number of solutions to the equation ∇·E = ρ/ε0,
but only a certain subset satisfy the symmetry of the given setup. For
example, consider the spherical case in part (c), and imagine super-
posing additional charges at arbitrary locations outside the sphere.
Then the field inside the sphere equals Er = ρr/3ε0 plus the standard
Coulomb fields from all the charges located outside. This is a perfectly
valid solution to ∇ · E = ρ/ε0 in the interior. But it doesn’t respect
the spherical symmetry of the original setup. If we keep superpos-
ing external charges in a particular manner until we just so happen to
create an entire infinite uniform cylinder containing the sphere, then
the field inside the sphere is now given by the cylindrical solution
in part (b).

The point is that when we solved ∇ · E = ρ/ε0 in the above three
cases, we were actually demanding not only that the density equaled
ρ inside the object, but also that it equaled zero outside. A shortcut to
incorporating this information (or at least the important aspect of it)
was simply to demand that the solution possessed a certain symmetry.
If we had an unsymmetrical object, then we wouldn’t be able to take
this shortcut. In any case, when determining E at a given point, the
density throughout all space matters, even though when determining
∇ · E at a given point only the local density matters. In short, there
are many different vector fields that have the same divergence in a
given region in space. In 1D, these fields differ by an arbitrary addi-
tive constant. But in 2D and 3D, the degeneracy in the solutions is
much larger.
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2.24 Two expressions for the energy
(a) In Cartesian coordinates we have

∇ · (φE) = ∂(φEx)

∂x
+ ∂(φEy)

∂y
+ ∂(φEz)

∂z

=
(

∂φ

∂x
Ex + ∂φ

∂y
Ey + ∂φ

∂z
Ez

)
+

(
φ

∂Ex

∂x
+φ

∂Ey

∂y
+φ

∂Ez

∂z

)

=
(

∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z

)
· (Ex, Ey, Ez) + φ

(
∂Ex

∂x
+ ∂Ey

∂y
+ ∂Ez

∂z

)
= (∇φ) · E + φ ∇ · E, (12.127)

as desired.
(b) If φ and E are the electric potential and field, then ∇φ = −E and

∇ · E = ρ/ε0. So the above identity becomes

∇ · (φE) = −E · E + φ
ρ

ε0
. (12.128)

Let’s now integrate both sides over the volume of a very large sphere
with radius R. On the left-hand side we can use the divergence the-
orem to write the volume integral

∫
V ∇ · (φE) as a surface integral∫

S φ E · da. We obtain (using E · E = E2)∫
S
φ E · da = −

∫
V

E2 dv +
∫

V

ρφ

ε0
dv. (12.129)

If the surface integral is zero, then the resulting equation can be
written as

ε0
2

∫
V

E2 dv = 1
2

∫
V

ρφ dv, (12.130)

which is the desired result. And indeed, the surface integral is zero for
the following reason. Since we are assuming that all sources lie within
a finite region, we can enclose them in a sphere of some radius r.
If we let the radius R of our integration surface S go to infinity, the
charges inside the sphere of radius r look effectively like a point
charge from far away. On S, the field E will therefore vanish at least
as fast as 1/R2 (faster if the net charge of the distribution is zero),
and φ will vanish at least as fast as 1/R. Since the surface area of
S grows like R2, the surface integral over S will vanish at least as
fast as R2/R3 = 1/R. It therefore vanishes as R → ∞. (If the
sources were not confined to a finite region, then we could not be sure
that any of these integrals would converge when extended over all
space.)

Note that the result we have proved holds only as an integral state-
ment over all space. It does not hold in differential form, that is, as the
local statement that ε0E2 = ρφ. This is no surprise, because we can
easily have a point in space where ρ = 0 but E �= 0, in which case
the two integrands in our result are certainly not equal at that point.
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2.25 Never trapped
From Earnshaw’s theorem in Section 2.12, we know that there exists a
direction in which the potential energy initially decreases. That is, there
exists a direction in which the electric field points outward. But if the
charge q heads in that direction, how do we know that it won’t later
encounter a point where heading farther outward would entail increasing
the potential energy? We know that there must always be a route for which
the potential energy decreases, for the following reason.

Consider the field line (due to all the fixed charges) that the charge q
is initially on, for which the potential energy decreases. If we follow this
field line, where do we end up? We can’t end up back where we started,
because that would imply a nonzero curl for the electric field. And we
can’t end up at one of the fixed positive charges, because all of the field
lines point outward near them. The only other option for where we can end
up is at infinity. We have therefore constructed an escape path, as desired.
See Problem 2.29 for more discussion on where field lines can end.

Note that this reasoning breaks down if there are negative charges
among the given fixed charges, because field lines can end at negative
charges. And indeed, if a negative charge is sufficiently large, our positive
charge q will certainly be trapped.

In Problem 2.5 we explicitly showed that the path through the center
of a face of the cube was an escape route. You might think that if you
surround the charge q with enough fixed positive charges on the surface
of a sphere, then it won’t be able to squeeze through a “face.” However, if
you have a very large number of equal fixed charges, then you essentially
have a uniform sphere. And we know that the field inside a sphere is zero.
So our charge q has no trouble getting from the center to the vicinity of
the midpoint of a face.

2.26 The delta function
The Laplacian ∇2 operator is shorthand for the divergence of the gradient.
From Appendix F, the gradient of a function that depends only on r equals
(∂f /∂r)r̂. So we have ∇(1/r) = −r̂/r2. The volume integral of ∇2(1/r)
is therefore (using the divergence theorem)∫

V
∇2

(
1
r

)
dv =

∫
V
∇ · ∇

(
1
r

)
dv =

∫
V
∇ · −r̂

r2 dv = −
∫

S

r̂
r2 · da.

(12.131)

Since ∇2(1/r) = 0 everywhere away from the origin, any volume contain-
ing the origin will yield the same integral. Choosing a sphere of radius R
gives

∫
∇2

(
1
r

)
dv = −

∫
r̂
r2 · da = −

∫
1

R2 da = −4πR2

R2 = −4π ,

(12.132)

as desired. A function that is (1) zero everywhere except at one point and
(2) infinite enough at that one point so that it has a nonzero integral, is
called a delta function (up to numerical factors).
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Note that for any function F(r), the integral
∫ ∇2(1/r)F(r)dv equals

−4πF(0). This is true because ∇2(1/r) is zero everywhere except the
origin, so the only value of F(r) that matters is F(0). We can then pull
this constant value outside the integral. The integral of the product of a
function F(r) and ∇2(1/r) basically picks out the value of the function at
the origin.

2.27 Relations between φ and ρ

The derivatives in the ∇2 operator we are using are with respect to the
unprimed coordinates, because the φ on the left-hand side of the given
relation depends on r. Let us write ∇2 as ∇2

r , to make this explicit.
We have

∇2
r φ(r) = 1

4πε0
∇2

r

∫
ρ(r′) dv′
|r′ − r| = 1

4πε0

∫
∇2

r

(
1

|r′ − r|
)

ρ(r′) dv′.

(12.133)

We claim that ∇2
r
(
1/|r′ −r|) = ∇2

r′
(
1/|r′ −r|). That is, the Laplacian ∇2

r
of 1/|r′−r| with respect to the unprimed coordinates equals the Laplacian
∇2

r′ of 1/|r′ − r| with respect to the primed coordinates. You can verify

this by writing |r′−r| as
√

(x′ − x)2 + (y′ − y)2 + (z′ − z)2 and explicitly
calculating the derivatives in Cartesian coordinates. We now have

∇2
r φ(r) = 1

4πε0

∫
∇2

r′
(

1
|r′ − r|

)
ρ(r′) dv′. (12.134)

Asmentioned in thesolution toProblem2.26, the integral
∫ ∇2(1/r)F(r) dv

equals −4πF(0). If the r were not present on the right-hand side of
Eq. (12.134), we would have exactly the same type of integral, in which
case the right-hand side would equal (1/4πε0)

(−4πρ(0)
)
. The presence

of the r term simply shifts the origin (equivalently, you can define a new
coordinate system with the particular r value as the origin), so we instead
end up with

∇2
r φ(r) = 1

4πε0

(−4πρ(r)
) = −ρ(r)

ε0
, (12.135)

as desired. Physically, we already knew why the two relations, φ =
(1/4πε0)

∫
(ρ/r) dv′ and ∇2φ = −ρ/ε0, are equivalent: they are both

obtained from Coulomb’s inverse-square law. The first is obtained by inte-
gration and superposition (see Section 2.5), while the second is obtained
via Gauss’s law (see Section 2.11), which in turn is equivalent to the
inverse-square law (see Section 1.10). But it’s nice to see how the equiva-
lence can be demonstrated in a strict mathematical sense.

2.28 Zero curl
The curl of E is given by

curl E =
∣∣∣∣∣∣

x̂ ŷ ẑ
∂/∂x ∂/∂y ∂/∂z

2xy2 + z3 2x2y 3xz2

∣∣∣∣∣∣
= x̂(0 − 0) + ŷ(3z2 − 3z2) + ẑ(4xy − 4xy) = 0. (12.136)
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To find the associated potential φ, we could evaluate the (negative) line
integral of E from a given reference point to a general point (x, y, z). But
an easier method is simply to find a function φ that satisfies E = −∇φ.
Looking at the x component of this relation, we see that we need 2xy2 +
z3 = −∂φ/∂x. Hence φ must take the form

φ = −x2y2 − xz3 + f (y, z). (12.137)

The arbitrary function f (y, z) won’t ruin the 2xy2+ z3 = −∂φ/∂x equality
because ∂f (y, z)/∂x = 0. Similarly, the y component of E = −∇φ yields
2x2y = −∂φ/∂y, so φ must take the form

φ = −x2y2 + f (x, z). (12.138)

And the z component yields 3xz2 = −∂φ/∂z, so φ must take the form

φ = −xz3 + f (x, y). (12.139)

You can quickly check that the only function consistent with all three of
these forms is φ = −x2y2 − xz3 + C, where C is an arbitrary constant.
If the curl of E weren’t zero, then there would exist no function consistent
with the three required forms.

2.29 Ends of the lines
If an electrostatic field line forms a closed loop, then the field will do
nonzero work on a charge during a round trip. But we know that this can’t
be the case because the electric force is conservative. Equivalently, if a
field line forms a closed loop, then the line integral

∫
E · ds around the

loop will be nonzero. So the integral
∫
(∇ × E) · da will also be nonzero,

by Stokes’ theorem. But this contradicts the fact that curl E is zero for an
electrostatic field.

A field line can end only on a charge or at infinity (that is, it never
ends), for the following reason. If a field line ends at a point in space where
there is no charge, then the divergence of E will be nonzero there, because
a field line goes into a given small volume but doesn’t come out. But we
are assuming that the charge density is zero at this point, so this violates
Gauss’s law, ∇ · E = ρ/ε0.

However, we should promptly make note of the fact that the preced-
ing reasoning is a bit sloppy. A single field line carries no flux, so tech-
nically there would be no violation of Gauss’s law if a single field line
(or a finite number of them) ended in free space. Instead of field lines, we
should be talking about narrow bundles of flux (or “flux tubes,” but that
term is usually reserved for magnetic flux). If a bundle of flux ends in free
space, then that would be a true violation of Gauss’s law. So a better way
of saying things is that a very thin bundle must end up either on a charge
or at infinity. Well, that is if it remains a thin bundle. . .

Admittedly, we’re getting a little picky here, but consider the setup in
Problem 2.18 dealing with the field from two equal point charges (although
the specifics of the setup aren’t critical). The field is zero midway between
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the charges, so if we look at the field line that leaves one of the charges
and heads directly toward the other, where does it end up? In some sense,
it ends at the E = 0 point. But this is mainly a matter of semantics.
We could just as well have the line continue outward from the E = 0
location along any of the lines fanning out in the perpendicular-bisector
plane.

Even if the field line ends at this point, we don’t care. As noted above,
a single field line is irrelevant; it has no strength; it yields no flux (so it
escapes the above Gauss’s-law reasoning); it has “measure zero,” so there
is zero probability that an idealized point particle could actually be on it.
If we think (more correctly) in terms of thin bundles of flux, then we can
consider a bundle that starts out at one of our two charges, and that has
as its axis the line joining the two charges. But then look at what happens
to this bundle! From Fig. 12.40 in the solution to Problem 2.18, we see
that near the E = 0 point the bundle fans out and becomes a pancake
spanning the entire perpendicular-bisector plane between the charges. We
have a funnel-like surface of revolution generated by rotating one of the
field lines around the x axis. No matter how thin the bundle starts off, it
ends up as a pancake (assuming that it contains the x axis). In this more
physical sense of thinking of field lines in terms of bundles of flux, our
problematic field line isn’t well defined. As an exercise, you can use the
results from Problem 2.18 to show that the flux heading inward through
the thin part of the bundle does indeed equal the flux heading outward
along the pancake part of the “bundle.”

In short, the only statements about an electrostatic field E that we
have at our disposal are ∇ × E = 0 and ∇ · E = ρ/ε0 (along with their
integral forms). So we should be wary about making statements that don’t
involve circulation or flux.

2.30 Curl of a gradient
(a) Using the determinant expression for the cross product, we have

∇ × E = −∇ × ∇φ = −
∣∣∣∣∣∣

x̂ ŷ ẑ
∂/∂x ∂/∂y ∂/∂z

∂φ/∂x ∂φ/∂y ∂φ/∂z

∣∣∣∣∣∣ . (12.140)

The x component of this is −∂2φ/∂y∂z + ∂2φ/∂z∂y. But partial dif-
ferentiation is commutative (that is, the order doesn’t matter), so this
component equals zero. Likewise for the y and z components.

(b) Using the given relation E = −∇φ along with Stokes’ theorem,
we have

∫
S
(∇ × E) · da = −

∫
S
(∇ × ∇φ) · da = −

∫
C
∇φ · ds, (12.141)

where C is the closed curve that bounds the surface S. But ∇φ · ds is
the change in φ over the interval ds. When we integrate this we obtain
the total change in φ between the limits of integration. But these limits
are the same point because the curve is closed. So the integral is zero.
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Hence
∫

S(∇ × E) · da = 0. And since this holds for any surface S, it
must be the case that ∇ × E = 0 at all points.

The logic here basically boils down to the mathematical fact that
the boundary of a boundary is zero. Curve C is the boundary of sur-
face S. And the fact that C itself has no boundary (it is a closed curve
with no endpoints) is why

∫
C ∇φ · ds equals zero. (Similarly, a sur-

face S that encloses a volume V has no boundary. This fact provides a
solution to Exercise 2.78.)

12.3 Chapter 3
3.1 Inner-surface charge density

The charge density is negative over the entire inner surface. This is true
because if there were a location with positive density, then electric field
lines would start there, pointing away from it into the spherical cavity.
But where could these field lines end? They can’t end at infinity, because
that’s outside the shell. And they can’t end at a point in empty space,
because that would violate Gauss’s law; there would be nonzero flux into
a region that contains no charge (see Problem 2.29 for a more detailed
discussion of this). They also can’t end on the positive point charge q,
because the field lines point outward from q. And finally they can’t end
on the shell, because that would imply a nonzero line integral of E (and
hence a nonzero potential difference) between two points on the shell.
But we know that all points on the conducting shell are at the same
potential. Therefore, such a field line (pointing inward from the inner
surface) can’t exist. So all of the inner surface charge must be negative.
Every field line inside the cavity starts at the point charge q and ends on
the shell.

3.2 Holding the charge in place
Consider a path that runs from conductor B across the gap to conductor
D, then through the interior of the wire that connects D to C, then across
the gap to A, then finally via the other wire down to B. The line integral of
E around any closed path must be zero, if E is a static electric field. But
if the fields are as shown in Fig. 3.23(c), the line integral over the closed
path just described is not zero. Each gap makes a positive contribution;
but in the conductors, including the connecting wires, E is zero. So the
proposed situation cannot represent a static charge distribution.

Although the above reasoning is perfectly valid, you might be looking
for a more “cause and effect” reason why the charge redistributes itself.
What happens is this: the charge that C induces on A (and likewise that
D induces on B) isn’t enough to keep all of C’s charge in place when the
wire is connected. The self-repulsion of the charges within C wins out
over the attraction from A. The quantitative details are contained (for the
most part) in Problem 3.13. The main point is that the induced charge on
A is smaller than the charge on C, and the charge that A is able to keep
on C is smaller still. So there is a nonzero amount of charge on C that
gets repelled away down the wire. Of course, once this happens, then the
charge on A decreases, and the whole system cascades down to zero charge
everywhere.
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3.3 Principal radii of curvature
(a) For a sphere with radius R, we have 1/R1 + 1/R2 = 2/R. The field

outside the sphere is E = q/4πε0r2, so dE/dr = −2q/4πε0r3 =
−(2/r)E. At the surface of the sphere this equals−(2/R)E, as desired.

For a cylinder with radius R, we have 1/R1 + 1/R2 = 1/R + 1/∞ =
1/R. The field outside the cylinder is E = λ/2πε0r, so dE/dr =
−λ/2πε0r2 = −(1/r)E. At the surface of the cylinder this equals
−(1/R)E, as desired.

For a plane we have 1/R1+1/R2 = 2/∞ = 0. The field from a plane
takes on the constant value of E = σ/2ε0, so dE/dx = 0, as desired.

(b) Consider a pillbox with an approximately rectangular base that lies
just outside the surface of the conductor. Let the edges of the base
(with lengths �1 and �2) be aligned parallel to the directions of the
principal curvatures. Let the sides of the pillbox (with height dx) be
normal to the surface, so that they follow the field lines. One of the
cross sections is shown in Fig. 12.48.

R1

1

dx

Figure 12.48.

Note that the top face of the box is larger than the bottom face
(assuming the principal radii are positive). From similar triangles in
Fig. 12.48, the top edges are longer than the bottom edges by factors
of (R1 + dx)/R1 and (R2 + dx)/R2. So the area of the top face is

Atop =
(

1+ dx
R1

)
�1 ·

(
1+ dx

R2

)
�2 ≈ �1�2

(
1 + dx

(
1

R1
+ 1

R2

))
,

(12.142)

where we have dropped the (dx)2 term. Now, the net flux through the
box is zero because it contains no charges. There is no flux through
the sides since they are parallel to the field lines, so equating the flux
inward through the bottom with the flux outward through the top gives

EbotAbot = EtopAtop

�⇒ Ebot�1�1 = Etop�1�2

(
1 + dx

(
1

R1
+ 1

R2

))

�⇒ Etop = Ebot

(
1 + dx

(
1

R1
+ 1

R2

))−1

�⇒ Etop ≈ Ebot

(
1 − dx

(
1

R1
+ 1

R2

))
. (12.143)

The change in the field from bottom to top is dE = Etop − Ebot, so
we have

dE = −Ebot

(
1

R1
+ 1

R2

)
dx �⇒ dE

dx
= −

(
1

R1
+ 1

R2

)
E,

(12.144)

where we have written Ebot as E. This result is valid for negative radii
of curvature as well (that is, where the surface is concave). The top
surface is now smaller than the bottom surface, but the derivation is
exactly the same. We could also have one positive and one negative
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radius. The above result is also perfectly valid inside a hollow con-
ducting shell, although if there are no charges enclosed, the relation
is trivial because both dE and E are zero. Inside the material of a
conductor, the relation is trivial in any case, because dE and E are
always zero.

3.4 Charge distribution on a conducting disk
Recall the argument in Problem 1.17 that showed why the field inside a
spherical shell is zero. In Fig. 12.49 the two cones that define the charges

P

q1

q2

r2

x2

r1

x1a
a

Figure 12.49.

q1 and q2 on the surface of the shell are similar, so the areas of the end
patches are in the ratio of r2

1/r2
2. This factor exactly cancels the 1/r2 effect

in Coulomb’s law, so the fields from the two patches are equal and oppo-
site at point P. The field contributions from the entire shell therefore can-
cel in pairs.

Let us now project the charges residing on the upper and lower hemi-
spheres onto the equatorial plane containing P. The charges q1 and q2
in the patches mentioned above end up in the shaded patches shown in
Fig. 12.49. The (horizontal) fields at point P from these shaded patches
have magnitudes q1/4πε0x2

1 and q2/4πε0x2
2. But due to the similar trian-

gles in the figure, x1 and x2 are in the same ratio as r1 and r2. Hence the
two forces have equal magnitudes, just as they did in the case of the spher-
ical shell. The forces from all of the various parts of the disk therefore
again cancel in pairs, so the horizontal field is zero at P. Since P was arbi-
trary, we see that the horizontal field is zero everywhere in the disk formed
by the projection of the charge from the original shell. We have therefore
accomplished our goal of finding a charge distribution that produces zero
electric field component parallel to the disk.

Since the spherical shell has a larger slope near the sides, more charge
is above a given point in the equatorial plane near the edge, compared
with at the center. The density of the conducting disk therefore grows
with r. We can be quantitative about this. In Fig. 12.50, let θ be measured

Disk

q

r dr

dr

R

cosq

Figure 12.50.

down from the top of the shell, and let r be the radius of a given point
in the disk. Consider a patch with area A at radius r in the plane of the
disk. The patch above it on the shell is tilted at an angle θ , so its area
is A/ cos θ . The density in the disk is therefore proportional to 1/ cos θ .
But cos θ =

√
R2 − r2/R, so the density takes the form of σR/

√
R2 − r2,

where σ is determined by requiring that the total charge be Q:

Q =
∫ R

0

σR√
R2 − r2

2πr dr = −2πσR
√

R2 − r2
∣∣∣∣R
0
= 2πσR2.

(12.145)

Hence σ = Q/2πR2, and the desired surface charge density of the con-
ducting disk is

σdisk = Q

2πR
√

R2 − r2
. (12.146)

Note that the density at the center of the disk is Q/2πR2, which is exactly
half of the density Q/πR2 of a nonconducting disk with radius R and
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charge Q. See Friedberg (1993) and Good (1997) for further discussion of
this problem.

Another way of obtaining the above σ = Q/2πR2 result, without
doing the integral in Eq. (12.145), is to note that the σR/

√
R2 − r2

form of the density implies that the density at the center of the disk
is σ . But this equals the density at the top of the hemispherical shell,
because the shell isn’t tilted there. And since the shell’s density is uniform,
we have (2πR2)σ = Q, because the area of the hemisphere is 2πR2.
Hence σ = Q/2πR2. (Projecting the bottom hemisphere too wouldn’t
change the final result for the distribution in the disk, given that the total
charge is Q.)

The density diverges at the edge of the conducting disk, but the total
charge has the finite value Q. It is fairly intuitive that the density should
grow as r increases, because charges repel each other toward the edge of
the disk. However, one should be careful with this type of reasoning. In
the lower-dimensional analog involving a one-dimensional rod of charge,
the density is actually essentially uniform, all the way out to the end; see
Problem 3.5.

3.5 Charge distribution on a conducting stick
There are three basic cases, although we can actually group them all
together in our reasoning. As shown in Fig. 12.51, a point charge at a

P

P

P

Midpoint

Figure 12.51.
The shaded region indicates the part of the stick
whose field is left over after the canceling of the
fields from the regions of equal length on either
side of P.

given point P can be close to the center, or not close to the center or an
end, or close to an end. If the N charges on the line are all equal, then in
all three cases the segments of equal length on either side of P produce
canceling fields, so the unbalanced field comes from the regions indicated
by the shading in the figure.

Let’s get a handle on this unbalanced field. Let the point charge at P
be the nth charge from the left end. Then the unbalanced field comes from
the charges (all equal to Q/N) that are a distance of at least n(L/N) to
the right of point P. The unbalanced field is therefore (ignoring the 4πε0
since it will cancel throughout this problem)

E = Q/N
(L/N)2

(
1
n2 + 1

(n + 1)2 + 1
(n + 2)2 + · · ·

)
. (12.147)

This sum can be approximated by an integral (even for small n since we
are concerned only with a rough value). In the case where n � N (that is,
where P is very close to the left end), the sum effectively extends out to
infinity, so the integral equals 1/n. On the other hand, if n is of order N,
then the integral doesn’t extend out to infinity. However, we are concerned
with an upper bound on the unbalanced field, and an upper bound on the
sum is certainly 1/n. So, in all cases, the unbalanced field is less than
or (roughly) equal to QN/nL2. (For most of the stick, we can say that
n is of order N, which means that the unbalanced field is bounded by
something of order Q/L2. This makes sense because the unbalanced piece
has a charge on the order of Q, and a distance from P on the order of L.)

So the question is: how much charge dq do we need to add to the
point charge immediately to the left of P, so that its rightward-pointing
field increases by an amount on the order of QN/nL2, to balance out the
field due to the shaded region in Fig. 12.51? The answer is: not much, due
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to the close spacing of the charges. The field due to the adjacent point
charge will increase by dq/(L/N)2, so if we want this to equal QN/nL2,
we need dq = Q/nN. This increase is 1/n times the original charge Q/N.

This modification will of course affect the fields at other locations,
so we will need to make iterative corrections. But the general size of the
correction to the nth charge will be (less than or equal to) of order Q/nN.
Since the sum of the reciprocals of the integers grows logarithmically, we
see that the sum of the changes to all N charges will be of order Q(ln N)/N.
In the N → ∞ limit, this goes to zero, which means that we need to add
on essentially zero charge, compared with the original charge Q on the
stick. In other words, the final charge density is essentially uniform.

Very close to the end of the stick, where n is of order 1, the correc-
tion dq = Q/nN is of the same rough size as the original point-charge
value Q/N. But this region near the end takes up a negligible fraction of
the whole length. To see why, let N equal one billion, and consider the
end region where the resulting charges differ from Q/N by at most, say,
0.1 percent. Since dq = Q/nN, this region extends (roughly) out to the
point charge with n = 1000. The region therefore has a length that is
(roughly) one millionth of the total length. In the N → ∞ limit (however
physical that limit may be), the dq corrections vanish at any finite dis-
tance away from the end, which means that the stick’s density is exactly
uniform. The point is that the relative size of the dq correction depends
on a given charge’s index n, as opposed to its distance from the end. And
compared with an N that heads to infinity, any given number n is infinites-
imally small.

It is also possible to demonstrate the general result of this problem by
keeping the sizes of the point charges fixed and imagining moving them
slightly to balance the fields. The result is that, for large N, the charges
barely need to move in order to balance out the fields.

The moral of this problem is that due to the 1/r2 nature of the field
from a point charge (although you can show that any power larger than 1
in the denominator would be sufficient), and due to the very small separa-
tion between the charges, it takes only very minor changes in the nearby
charge values to create large changes in the local fields, thereby canceling
the unbalanced field due to a macroscopic amount of charge a macro-

Spherical shell

Projections
onto line

Rings

P

Figure 12.52.

scopic distance away. You are encouraged to see how the above reasoning
is modified when applied to the 2D case (with a plane built up from lines
of charge, whose fields fall off like 1/r), and also the 3D case (with a vol-
ume built up from planes of charge, whose fields don’t fall off at all). See
Andrews (1997) and Griffiths and Li (1996) for further discussion of this
problem.

REMARK: As mentioned in the statement of the problem, the uniform
density of the stick can also be demonstrated (in a much quicker manner)
by using the technique from Problem 3.4 and Good (1997). If we have
a spherical shell with uniform surface charge density, and if we project
the two rings in Fig. 12.52 onto the horizontal axis (the stick), then you
can check that the two resulting line segments produce canceling fields at
point P. You can also check that this projection produces a uniform charge
distribution on the stick. (In short, for a given horizontal width dx of a
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ring, a ring with a smaller radius has a smaller circumference but a larger
tilt angle of the surface, and these effects exactly cancel when finding the
area of the ring.) Since we can consider the stick to be completely built
up from these pairs of line segments (with a smaller piece to the right
of P, and a larger piece to the left), the field at P is therefore zero. It is
amusing how this method of dividing the stick into canceling pairs of little
segments is much more useful than the seemingly more natural method
involving segments equidistant from P, which is the one we used above
in Fig. 12.51.

There is actually no need to make use of the above projection of a
sphere (which in turn makes use of the 1/r2 nature of the electric force) to
demonstrate that a uniform stick yields zero net field at any given point P.
Given a uniform stick, and given a 1/rd force law with d > 1, we can
divide the stick into pairs of corresponding little segments whose field
contributions cancel at P. We can start with corresponding little segments
at the ends of the stick and then work our way inward to P. For a given pair
of canceling segments, the segment that is farther from P will be longer
(assuming d > 0, so that the field falls off with distance). More impor-
tantly, if d > 1 it will be enough longer so that (as you can show) the pairs
will eventually be essentially the same distance from P when they get
very close to P; P is therefore located at the center of the effective stick
that is left over after ignoring all the canceled corresponding pairs. The
net field at P is therefore zero. In contrast, if d = 1, then, as we work our
way inward toward P, you can show that the corresponding little segments
maintain the same ratio of their distances from P. Since these distances
remain unequal (assuming P isn’t located exactly at the center of the orig-
inal stick), P remains off-center in the effective stick that is left over after
ignoring the canceled pairs. The field at P is therefore nonzero. Hence the
charge distribution on a conducting stick, in a world with a 1/r electric
force, is not uniform. Can you determine what it is?

3.6 A charge inside a shell
The reasoning is incorrect. The charge will feel a force. The error is that
the reasoning takes a solution for one boundary condition and applies
it to a situation with another boundary condition. A consequence of the
uniqueness theorem is that if we have a surface with constant potential
and no charges inside, then the constant-φ solution must be the solution.
This (true) statement has nothing to do with the given setup containing a
point charge. So for the given setup, we can draw no conclusions from the
above statement, no matter how true it is. (Physically, there is a nonzero
force because the dominant effect is that the charges induced on the nearer
part of the shell will attract the given point charge.)

3.7 Inside/outside asymmetry
Electrostatic field lines can begin and end only at charges or at infinity.
Also, there can be no closed loops since curl E = 0. See Problem 2.29.

If the point charge is located outside the shell, the field lines can have
their ends at the point charge, the shell, or infinity. There can’t be any field
lines inside the shell because they would have to start at one point on the
shell and end at another. This would imply a nonzero potential difference
between these two points, contradicting the fact that all points on the shell
have the same potential.
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If the point charge is located inside the shell, the field lines starting
at the point charge must end up on the shell. And there can be field lines
outside the shell because they can have one end on the shell and the other
end at infinity.

We see that the basic difference between inside and outside is that the
inside region has only one boundary (the shell), while the outside region
has two (the shell and infinity). The former case therefore requires the
existence of an additional termination point (a charge) if field lines are
to exist.

3.8 Inside or outside
As we increase the size of shell A, the field at P remains zero. When we hit
the infinite-plane transition between the two cases, the field is still zero. As
we then transition to a very large shell B surrounding the charge q, the field
at P is very small. One way of seeing this is that there is a large amount of
induced negative charge on the shell close to the charge q (almost as much
as on the infinite plane), and this charge nearly completely shields the field
of the charge q at point P. Alternatively, from the example in Section 3.2,
a point charge inside a conducting spherical shell looks like an equal point
charge at the center, as far as the external field goes. And the center of a
very large shell B is very far to the left. So the field at P due to the effective
point charge at the distant center is very small.

As we decrease the size of B, the field at P increases because not
as much induced charge can pile up (due to the mutual repulsion and
increased curvature), or equivalently because the center of B moves closer.
The field at P therefore increases to a finite value. In short, the field goes
from being zero to nonzero by transitioning in a perfectly reasonable con-
tinuous manner.

Although the above reasoning is correct, you might still be wondering
about the lack of symmetry between inside and outside. If a charge is
outside a conductor, then there is no field on the other side (the inside).
But if a charge is inside a conductor, then there is a field on the other side
(the outside). Why should inside and outside be different? Sure, outside is
bigger, but should that really matter? Actually, yes.

Consider a neutral conductor with no other charges around, and let’s
say we want to put a charge either inside or outside. To create a positive
charge, we can take a neutral object and split it into positive and neg-
ative pieces, and then get rid of the negative piece. If we do this out-
side the conductor, then we (1) start with zero field inside the conductor
(and outside, too), then (2) create two opposite charges outside and sepa-
rate them; the field is still zero inside (but not outside now), then (3) get
rid of the negative charge by bringing it out to infinity; the field is still
zero inside.

However, if we try to do this inside the conductor, then we (1) start
with zero field outside the conductor (and inside, too), then (2) create two
opposite charges inside and separate them; the field is still zero outside
(but not inside now), then (3) get rid of the negative charge by. . . uh oh,
it’s stuck inside the conductor, so we can’t bring it out to infinity. If we do
so, then the charge has to cross the conductor and enter a different region.
This breaks the symmetry with the other case, so it’s no surprise that we



12.3 Chapter 3 643

end up with a different result. More precisely, the amount of charge inside
the conductor abruptly changes. In the first case, the amount of charge
outside the conductor doesn’t change when the negative charge is brought
out to infinity. See Nan-Xian (1981) for further discussion of this. Prob-
lem 3.7 presents another way in which inside and outside fundamentally
differ.

3.9 Grounding a shell
The field outside the outer shell is zero, so the potential at the outer shell
is the same as the potential at infinity. The charge will therefore not move
when the outer shell is grounded. If some negative charge did flow off,
then there would be a net positive charge on the two shells, and hence an
outward-pointing field for r > R2. This would drag the negative charge
back onto the outer shell. Likewise, if some positive charge flowed off,
then there would be an inward-pointing field for r > R2 which would drag
the positive charge back onto the shell.

If the inner shell is grounded, it must end up with the amount of
charge that makes its potential equal to the potential at infinity. Let the final
charge be Qf. Then the electric field between the shells equals Qf/r2 (we’ll
ignore the 1/4πε0 in this problem since it will cancel). So the potential
of the outer shell relative to the inner shell is −Qf(1/R1 − 1/R2). Sim-
ilarly, the electric field outside the outer shell equals (−Q + Qf)/r2, so
the potential of the outer shell relative to infinity is (−Q + Qf)(1/R2). If
the inner shell and infinity are at the same potential, then the previous two
potential differences must be equal. This gives

Qf

(
1

R1
− 1

R2

)
= (Q − Qf)

1
R2

�⇒ Qf = R1
R2

Q. (12.148)

Intuitively, if none of the charge leaves (so Qf = Q), then the inner shell
is at a higher potential than the outer shell, which in turn is at the same
potential as infinity in this case. On the other hand, if all of the charge
leaves (so Qf = 0), then the inner shell is at the same potential as the
outer shell, which in turn is at a lower potential than infinity in this case.
So, by continuity, there must be a value of Qf that makes the potential of
the inner shell equal to the potential at infinity.

3.10 Why leave?
Charge will indeed flow off the inner shell out to infinity, up to the (very
short) time when the charge on the shell equals the value calculated in
Problem 3.9. The error in the opposing logic is the following. If we con-
sider one small point charge, then this charge would be happy to hang out
on the wire right at the hole in the outer shell. However, if we try to do the
same thing with another small point charge, then we can’t put both of them
in the same place, because they will repel each other. So we certainly can’t
pile up charge right at the hole in the outer shell. What if we stretch out
the charge and create a linear density along the wire? Could the charges
stabilize in a linear distribution, partially between the shells and partially
outside the outer shell?

To answer this, we must use the fact that a very thin wire has essen-
tially zero capacitance (see Exercise 3.59; the outer radius in that setup



644 Solutions to the problems

can be assigned some arbitrary fixed value). So charge can’t pile up on the
wire. If we give the wire a tiny radius, then in a static situation only a tiny
bit of charge can pile up. The very strong forces (which go like 1/d2, from
Coulomb’s law) between nearby charges on the wire will make the linear
charge density λ nearly uniform (see Problem 3.5). So in a sense we have
an essentially rigid stick of (a tiny bit of) charge extending from the inner
shell out to a very large radius. The question is: what is the direction of
the net force on this stick? Will it be drawn inward or be pushed outward?
There are competing effects, because the field E1(r) between the shells
points outward, and the field E2(r) outside the outer shell points inward
(at least once some charge has left the inner shell, leaving behind a net
negative charge on the two shells). We are ignoring the forces between the
charges in the stick here, because they are internal.

Assuming constant density λ, the outward force on the stick equals∫ R2
R1

E1λ dr, and the inward force equals
∫∞

R2
E2λ dr (this is negative since

E2 is negative). The stick won’t move if these two forces add up to zero:

∫ R2

R1

E1λ dr +
∫ ∞

R2

E2λ dr = 0

�⇒
∫ R2

R1

E1 dr =
∫ R2

∞
E2 dr

�⇒ φ(R1) − φ(R2) = φ(∞) − φ(R2)

�⇒ φ(R1) = φ(∞). (12.149)

We see that the stick won’t move if the potential at the inner shell equals
the potential at infinity. So charge will flow off the inner shell until the
time when this condition is met, at which point the charge equals the value
calculated in Problem 3.9.

If the wire does have a nonzero capacitance, then things are different.
If we have, say, a little spherical bulge in the wire somewhere outside, then
charge will build up there, but only until the potential equals the potential
everywhere else along the wire.

As an exercise, you can think about an analogous setup involving two
large capacitor sheets separated by a small distance, with charges ±Q, and
with one sheet grounded by connecting it to infinity via a very thin wire
that passes through a very small hole in the other sheet.

Note that the above reasoning took advantage of the fact that
∫

E dr
has two interpretations. It equals the potential difference φ, of course. But
if we multiply it by a constant λ, it also equals the total force on a uni-
form stick. Basically, multiply

∫
E dr by q and you get the total work

done on a charged particle moving between two given points. Multiply
it by λ and you get the total force on a charged stick lying between the
two points.

3.11 How much work?
When the charge Q is a distance x above the plane, the force required to
balance the electrostatic force and move the charge upward (at constant
speed) is Q2/4πε0(2x)2, because the force is the same as if the plane



12.3 Chapter 3 645

were replaced by an image charge −Q at a distance 2x. The second student
therefore calculates the work as

W =
∫

F dx =
∫ ∞

h

Q2 dx
4πε0(2x)2 = Q2

4πε0(4h)
. (12.150)

This is the correct answer. Concerning the first student’s reasoning, if two
real charges Q and −Q are pulled apart symmetrically, the total work done
is Q2/4πε0(2h), but the agency moving Q supplies only half of it. The
agency moving −Q supplies the other half.

Note that these two real charges must indeed be pulled apart symmet-
rically if we want to mimic the behavior of the conducting plane, because
we need the field always to be perpendicular to the given plane. If we
instead hold −Q fixed and move only Q, then the agency moving Q does
in fact do all of the work (which is Q2/4πε0(2h)). But this setup is not
the one we are interested in, because the field isn’t perpendicular to the
given plane.

Another way to see why the actual work is half of the first student’s
Q2/4πε0(2h) answer is to look at the energy stored in the electric field. If
we actually have two real point charges and no plane, then the field exists
throughout all space. But in the case of the conducting plane, the field
exists only in the half-space on one side of the plane. So the stored energy
is half of what it is in the case of the two real point charges.

3.12 Image charges for two planes
In the setup in Section 3.4 we had only one conducting plane, so one
image charge was sufficient to cause the total electric field to be perpen-
dicular to the plane. Let’s see what happens with two planes. In Fig. 12.53
the two given planes are indicated by the bold lines, and the given real
charge is labeled R. It turns out that we will need an infinite number of
image charges, as shown. Solid dots are positive, hollow dots are negative
(assuming the given real charge is positive). The reason for all these image
charges is the following.

In order to have the E field be perpendicular to the right plane, we
need the image charge labeled 1. And likewise, in order to have E be per-
pendicular to the left plane, we need image charge 2. So far, we just have
two copies of the one-plane setup.

However, image charge 1 ruins the orthogonality of the field with the
left plane, so we need image charge 3 to remedy this. Likewise, image

R

13 57 2 46 8 9

Figure 12.53.
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charge 2 ruins the orthogonality of the field with the right plane, so we
need image charge 4 to remedy this.

But then we need images charges 5 and 6 to remedy the effects of
3 and 4, respectively. And so on. The effects of the charges far away are
small, so the process converges. That is, if we have 1000 such charges, the
field will be very nearly perpendicular everywhere to the two given planes.

If you want, you can group the charges into two sets – the odds and
evens, as indicated by the connecting lines in Fig. 12.53. Each odd charge
corrects the effect of the previous odd charge, with respect to alternating
planes. Likewise for the evens.

In the special case where the given real charge is located midway
between the two planes, all the image charges are similarly located midway
between the (imaginary) planes in Fig. 12.53. So the net force on the given
charge is zero, as it should be.

3.13 Image charge for a grounded spherical shell
(a) The potential at an arbitrary point in the xy plane is (ignoring the

1/4πε0)

φ = Q√
(x − A)2 + y2

− q√
(x − a)2 + y2

. (12.151)

Setting this equal to zero, putting one term on either side of the equa-
tion, and squaring gives

Q2(x2 − 2ax + a2 + y2) = q2(x2 − 2Ax + A2 + y2). (12.152)

Since the coefficients of x2 and y2 are equal, this equation describes
a circle. More precisely, the equation can be written in the form of
x2 + y2 − 2Bx = C, which in turn can be written as (x − B)2 + y2 =
C + B2, by completing the square. This equation describes a circle
with its center at (B, 0) and with radius

√
C + B2.

(b) Expanding Eq. (12.152) gives

(Q2 − q2)x2 + (Q2 − q2)y2 − 2(Q2a − q2A)x = q2A2 − Q2a2.

(12.153)

The center of the circle is located at x = 0 if the coefficient of x is
zero, that is, if Q2a = q2A.

Q

P

R

–q

q

Figure 12.54.

Alternatively, we can work in terms of the angle θ shown in
Fig. 12.54. Using the law of cosines to determine the distances from a
point P on the circle to the two charges (assuming the center is located
at x = 0), we see that the potential at P is zero if

Q√
R2 + A2 − 2RA cos θ

= q√
R2 + a2 − 2Ra cos θ

�⇒ Q2(R2 + a2 − 2Ra cos θ) = q2(R2 + A2 − 2RA cos θ).

(12.154)
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If this equation is to be true for all values of θ , then the coefficient
of cos θ must be the same on both sides. This yields Q2a = q2A,
as above.

(c) If Q2a = q2A, then dividing Eq. (12.153) by Q2 − q2 tells us that the
radius of the circle is given by

R2 = q2A2 − Q2a2

Q2 − q2 = (Q2a/A)A2 − Q2a2

Q2 − (Q2a/A)
= aA. (12.155)

The radius is therefore the geometric mean of the distances from the
two charges to the center of the circle.

Alternatively, we can work with the angle θ shown in Fig. 12.54. If
Q2a = q2A, then Eq. (12.154) gives

Q2(R2 + a2) = q2(R2 + A2)

�⇒ Q2(R2 + a2) = (Q2a/A)(R2 + A2)

�⇒ A(R2 + a2) = a(R2 + A2)

�⇒ R2(A − a) = aA(A − a)

�⇒ R2 = aA. (12.156)

(d) Having derived R2 = aA, we can eliminate a from the relation
Q2a = q2A to obtain Q2(R2/A)= q2A�⇒ q=QR/A. Putting all the
results together, we see that if we have a charge Q at x=A and a
charge −q=−QR/A at x= a=R2/A, then the entire surface of the
sphere of radius R centered at the origin will be at zero potential.
But this is exactly the boundary condition for a grounded conducting
sphere. The uniqueness theorem therefore tells us that the two setups
(point charge outside grounded conducting sphere, and point charge
near image charge) have exactly the same field in the exterior of
the sphere. (This reasoning doesn’t apply to the interior, because the
setups are different there; one contains an image charge, the other
doesn’t. The uniqueness theorem requires the same charge distribution
in the relevant region in both setups.) The results for this problem
look a little cleaner if we let A= nR, where n is a numerical factor.
The image charge then has the value −q=−Q/n and is located at
radius R/n.

(e) Again using R2 = aA, we can eliminate A from the relation Q2a =
q2A to obtain Q2a = q2(R2/a) �⇒ Q = qR/a. Putting all the results
together, we see that if we have a charge −q at x = a and a charge
Q = qR/a at x = A = R2/a, then the entire surface of the sphere of
radius R centered at the origin will be at zero potential. As above, we
conclude that the two setups (point charge inside grounded conduct-
ing sphere, and point charge near image charge) have the same field
in the interior of the sphere. If we let a = R/n, then the image charge
has the value Q = nq and is located at radius nR.

3.14 Force from a conducting shell
From Problem 3.13, the field at the location of the charge Q is the same
as the field of an image charge −QR/r located a distance a = R2/r from
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the center of the shell. This image charge is a distance r − R2/r from the
given charge Q, so Coulomb’s law gives the force on Q as

F = 1
4πε0

Q(−QR/r)
(r − R2/r)2 = − 1

4πε0

Q2Rr
(r2 − R2)2 . (12.157)

The minus sign indicates an attractive force.
If r ≈ R, then the shell looks essentially like a plane from up close,

so we should obtain the same force as in the image-charge setup with the
infinite plane in Section 3.4. Let r ≡ R + h, where h � R. Then writing
(r2 − R2)2 as (r + R)2(r − R)2, the force in Eq. (12.157) becomes

F = − 1
4πε0

Q2R(R + h)

(2R + h)2(h)2 ≈ − 1
4πε0

Q2

4h2 . (12.158)

As expected, this is the force between the real charge Q and an image
charge −Q, a distance 2h apart (h on either side of the plane).

In the r → ∞ limit the force in Eq. (12.157) becomes

F ≈ − 1
4πε0

Q2Rr
(r2)2 ≈ − 1

4πε0

Q2R
r3 . (12.159)

This expression can be understood as follows. Far away from the shell, the
shell looks essentially like a point charge, with the charge being that of
the image charge, −QR/r. And Eq. (12.159) does indeed take the form of
F ≈ −Q(QR/r)/4πε0r2.

3.15 Dipole from a shell in a uniform field
(a) From Problem 3.13, the external field due to the shell equals the

field due to two image charges: a charge −QR/A at x=−R2/A
and a charge QR/A at x=R2/A. In the A→∞ limit, the sepa-
ration 2R2/A between these image charges goes to zero, so the
configuration becomes an idealized dipole with dipole moment p=
(QR/A)(2R2/A)= (2Q/A2)R3. This dipole points in the positive x
direction.

At the location of the shell, the total field of the distant ±Q point
charges equals 2Q/4πε0A2. But we are told that this field equals E,
so we must have 2Q/A2 = 4πε0E. We can therefore write the dipole
moment as p = 4πε0ER3. Hence the external field due to the shell
is exactly the same as the field due to an idealized dipole with dipole
moment p = 4πε0ER3. Note that since Q/A2 ∝ E, the charge Q
must go to infinity like A2, as the length A goes to infinity.

(b) Using p = 4πε0ER3, Eq. (2.36) tells us that the field due to the
shell, just outside the shell (that is, at radius R), equals E(2 cos θ r̂ +
sin θ θ̂), where θ is measured with respect to the positive x direc-
tion. (Although the dipole field is valid everywhere, our image-charge
application of it is valid only outside the shell.) Note that this result is
independent of R.

The total electric field just outside the shell is the sum of the shell’s
field plus the original uniform field, Eu = Ex̂. You can quickly show
that x̂ can be written in terms of the spherical-coordinate unit vectors
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as x̂ = cos θ r̂ − sin θ θ̂ . So the uniform field is Eu = E(cos θ r̂ −
sin θ θ̂). The total field is therefore Etot = 3E cos θ r̂. This correctly
has no θ̂ component; the field must be perpendicular to the surface of
the conductor.

(c) The surface charge density σ is proportional to the (normal) field at
the surface. More precisely, Gauss’s law tells us that the field just
outside the shell is Er = σ/ε0. So σ = ε0Er = 3ε0E cos θ .

3.16 Image charge for a nongrounded spherical shell
We know from Problem 3.13 that an image charge of −QR/r located at
radius R2/r causes the entire shell to have potential zero. Since the image
charge produces the same external field as the shell, Gauss’s law implies
that the charge on the actual shell is −QR/r, whereas we are told that
the charge is qs. We can remedy this by placing another image charge of
qs + QR/r at the center. The total charge on the actual shell is now qs,
as desired. Furthermore the boundary condition of constant potential on
the shell is still satisfied, by symmetry, because the second image charge
is located at the center. So by the uniqueness theorem, the field from our
two image charges mimics the (external) field from the shell.

Physically, the image charge from Problem 3.13 creates a field that,
when combined with the original charge Q, is perpendicular to the shell.
So if we dump some additional charge (qs + QR/r in this case) on the
shell, it will distribute itself symmetrically, because there is no tangential
field that would cause the distribution to be lopsided. And this symmet-
rical distribution has the same (external) field as a point charge at the
center.

3.17 Capacitance of raindrops
The capacitance of each of the N drops is 4πε0a. Since we can put N times
as much charge on N spheres at a given potential as we can put on one
sphere at the same potential, the capacitance of the N spheres is simply
N(4πε0a). Equivalently, if there is a total charge Q on the N raindrops,
then each one has charge Q/N. If the potential of each is φ, then

φ = Q/N
4πε0a

�⇒ Q = (4πε0Na)φ �⇒ C = 4πε0Na. (12.160)

If the drops combine into one big drop, then, since the total volume remains
the same, the new radius is given by (4/3)πr3 = N(4/3)πa3 �⇒ r =
N1/3a. The capacitance of this single sphere is 4πε0(N1/3a). This is
smaller than the capacitance of the system with N drops by the factor N2/3.

You should think physically about why the capacitance of the big
drop is smaller. Hint: Consider a point P on the surface of one of the
small drops, and then bring in all the other small drops from far away and
put them in a spherical clump, with P arranged to be on the surface of the
clump. What happens to the potential at P?

3.18 Adding capacitors
(a) When capacitors are connected in series, the charges on them are

equal, because the charge on the top plate of the bottom capacitor
must be the negative of the charge on the bottom plate of the top
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capacitor (because these two plates are isolated from the rest of the
circuit, so the net charge on them must always be zero). Let ±Q be
this common charge, which is also the charge on the overall effective
capacitor.

The total voltage (that is, the potential difference) φ across the
effective capacitor is the sum of the voltages across the two capac-
itors, so φ = φ1 + φ2. But we know that φ = Q/C, φ1 = Q/C1, and
φ2 = Q/C2, where the same Q appears everywhere here. Plugging
these expressions into φ = φ1 + φ2 gives

Q
C

= Q
C1

+ Q
C2

�⇒ 1
C

= 1
C1

+ 1
C2

. (12.161)

If C1 → 0 then C → 0 also. This makes sense because, for a
given Q (common to all of the capacitors), the voltage Q/C1 across
C1 is huge, which means that the overall voltage Q/C is likewise huge,
since it is at least as large. So C must be very small.

If C1 → ∞ then C → C2. This makes sense because, for a given
Q (common to all of the capacitors), the voltage Q/C1 across C1 is
tiny, which means that the overall voltage Q/C is essentially equal to
the voltage Q/C2 across C2. So C ≈ C2.

(b) When capacitors are connected in parallel, the voltages across them
are equal, because the voltage drop from the top of the overall circuit
to the bottom can’t depend on the path. Let φ be this common volt-
age, which is of course also the voltage drop in the overall effective
capacitor.

The total charge Q on the effective capacitor is the sum of the
charges on the top plates of the two capacitors, so Q = Q1 + Q2. But
we know that Q=Cφ, Q1 =C1φ, and Q2 =C2φ, where the same
φ appears everywhere here. Plugging these expressions into Q =
Q1 + Q2 gives

Cφ = C1φ + C2φ �⇒ C = C1 + C2. (12.162)

In short, in the series case the charges on the two capacitors are the
same, and the voltages add; whereas in the parallel case the voltages
are the same, and the charges add.

If C1 → 0 then C → C2. This makes sense because, for a given
φ (common to all of the capacitors), the charge C1φ on C1 is tiny,
which means that the overall charge Cφ is essentially equal to the
charge C2φ on C2. So C ≈ C2.

If C1 → ∞ then C → ∞ also. This makes sense because, for a
given φ (common to all of the capacitors), the charge C1φ on C1 is
huge, which means that the overall charge Cφ is likewise huge, since
it is at least as large. So C must be very large.

As remarked in the statement of the problem, the above series/
parallel rules are the opposites of the rules for adding resistors and
inductors. However, there isn’t anything too deep here. If we instead
labeled capacitors with the quantity C′ defined by φ = C′Q, then the
series/parallel rules for adding C′’s would be the same as for resistors
and inductors.
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3.19 Uniform charge on a capacitor
Since each plate is an equipotential, the potential difference is the same
between any point on one plate and the corresponding point on the other
plate. If this difference is φ, then φ = Es, where E is the field (normal to
the plates) and s is the plate separation. So E must be the same everywhere
between the plates. But E = σ/ε0, where ±σ are the local charge densities
of the two plates. Hence σ must be the same everywhere on each plate
(ignoring edge effects).

The above reasoning shows why the density is uniform. However,
consider two oppositely charged conducting disks, initially located far
apart, with their distributions given by the nonuniform result in
Eq. (12.146). If they are brought together to make a capacitor, what actu-
ally causes the distribution to shift and become uniform? If you look at
Fig. 3.13, you will see that the field lines start out perpendicular to the
disk, but then they fan out. So if you bring the disks together with their
charges glued in place, the field at each disk, due to the other disk, will
have a slight sideways component, for any nonzero separation s. If the
charges are then unglued, this sideways component will drag the charges
in the direction that makes the distribution uniform.

3.20 Distribution of charge on a capacitor
First solution If E is the electric field between the plates, then the charge
densities on the inner surfaces must be ±σ , where E = σ/ε0 �⇒ σ =
ε0E. This follows from using a Gaussian pillbox at either plate, with one
side of the pillbox lying inside the conducting plate where the field is
zero. The charges on the inner surfaces are therefore equal and opposite.
Alternatively, consider the Gaussian surface indicated by the dashed box
in Fig. 12.55. Since there is no flux out of the top or bottom, the net charge

Q1

Q2

E = 0

E = 0

Figure 12.55.

enclosed must be zero. Hence there are equal and opposite charges on the
inner surfaces.

We now claim that the charges on the outer two surfaces must be
equal (with the same sign). Consider a point P inside one of the plates; the
field is zero at P. The two oppositely charged inner surfaces of the plates
produce zero net field at P, because they lie on the same side of P. The
two outer surfaces of the plates must therefore also produce zero net field
at P. Since these two surfaces lie on opposite sides of P, they must have
equal charge densities. The four surface charges therefore take the forms
shown in Fig. 12.56 (the fields in the various regions are also shown). So

Qout

Qout

Qin

−Qin
Q2

total

Q1
total

sin__E  =

sout

sout

___E  =

___E  =

E = 0

E = 0

0

0

0

Figure 12.56.

we have

Q1 = Qout + Qin,

Q2 = Qout − Qin. (12.163)

These equations quickly yield

Qout = Q1 + Q2
2

and Qin = Q1 − Q2
2

. (12.164)

In the special case where Q1 = Q2 ≡ Q, we have Qout = Q and
Qin = 0; all the charge lies on the outer surfaces. In the special case
where Q1 = −Q2 ≡ Q (which is the normal case for a capacitor), we
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have Qout = 0 and Qin = Q; all the charge lies on the inner surfaces.
In all cases, the field between the plates is determined solely by Qin via
E = σ/ε0 = Qin/Aε0.

Second solution We can solve for the charges on the four plates by
letting the four surface densities be σa, σb, σc, σd , and then explicitly
writing down the electric fields in the various regions. The field due to an
infinite sheet has magnitude σ/2ε0 and points away from the sheet (if σ is
positive). So up to a factor of 1/2ε0, the fields in the five different regions
take the forms shown in Fig. 12.57, with upward taken to be positive.

(E = 0)

(E = 0)

sa+sb+sc+sd

–sa+sb+sc+sd

–sa–sb+sc+sd

–sa–sb–sc+sd

–sa–sb–sc–sd

sa

sb

sc

sd

Figure 12.57.
The fields in the five regions defined by two
capacitor plates, up to a factor of 1/2ε0.

The E = 0 regions inside the conductors tell us that −σa + σb +
σc + σd = 0 and −σa − σb − σc + σd = 0. Adding these equations gives
σa = σd , and subtracting them gives σc = −σb. So the charges on the
four plates take the form of Qout, Qin, −Qin, Qout, as in the first solution
above.

3.21 A four-plate capacitor
Assume that the total charge on the first and third plates is positive. An
equal and opposite negative charge resides on the second and fourth plates.
Let the charge densities on the first two plates be labeled σ1 and −σ2. Then
by left–right symmetry, the charge densities on the third and fourth plates
are σ2 and −σ1. (If we reverse left and right, and then reverse the signs of
all charges, we should end up with the same setup.)

The total charge is zero, so there is no field outside the plates. Gauss’s
law with a pillbox spanning the first plate then tells us that the field
between the first and second plates is σ1/ε0. The potential difference

s1 __s1__ s1__

s1 –s1–s2 s2

1 2 3 4

Wire Wire

0 0 0

Figure 12.58.

between these plates is therefore φ = σ1s/ε0. But since the first and third
plates have the same potential (due to the connecting wire), the potential
difference between the second and third plates must also be σ1s/ε0. So
the field between the second and third plates is also σ1/ε0, but directed
to the left. Similarly, the field between the third and fourth plates is also
σ1/ε0, directed to the right. The fields are shown in Fig. 12.58.

A Gaussian surface spanning the second plate tells us that its charge
density −σ2 is given −σ2 = −2σ1. The charge density on the third plate
is then σ2 = 2σ1. The total charge on the two positive plates is therefore
Q = (σ1 + 2σ1)A �⇒ σ1 = Q/3A. The φ = σ1s/ε0 potential-difference
statement between the positive and negative (pairs of) plates in the capac-
itor can then be written as

φ = (Q/3A)s
ε0

�⇒ Q =
(

3Aε0
s

)
φ �⇒ C = 3Aε0

s
. (12.165)

Note that this is larger than the capacitance we would obtain if we juxta-
posed the two pairs of plates to create two plates with area 2A. If we keep
the separation s, then the capacitance of the resulting standard two-plate
capacitor would be C = ε0(2A)/s. The physical reason for the factor of 3
in Eq. (12.165) versus this factor of 2 is the following.

In our original setup with the four parallel plates, the density±2σ1 on
the interior plates gets split evenly between the two sides of these plates.
(This follows from using a Gaussian surface that has one boundary lying
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inside the conducting plate where the field is zero, and using the fact that
the fields on either side of the plate have the same magnitude.) So if we
give the plates a small thickness, the setup is shown in Fig. 12.59. We

s1 __s1__ s1__

s1 s1 s1 –s1–s1 –s1

1 2 3 4

Wire Wire

0 0 0

Figure 12.59.

effectively have three identical area-A capacitors, but with the orientation
of the middle one reversed. If we had simply juxtaposed the pairs of plates,
then we would have the equivalent of only two area-A capacitors (with the
same orientation).

3.22 A three-cylinder capacitor
(a) Let λ1 and λ3 be the final charges per length on the inner and outer

cylindrical shells, respectively. The outward-pointing field between
the inner and middle shells is due only to the inner shell, and it equals
λ1/r (ignoring the 1/2πε0 since it will cancel). Integrating this gives
the potential difference between the inner and middle shells as
λ1 ln(2R/R)= λ1 ln 2, with the inner shell at the higher potential.

If the inner and outer shells are at the same potential, then λ1 ln 2
must also be the potential difference between the outer and middle
shells, with the outer shell at the higher potential. The field between
the middle and outer shells must therefore point inward. This field is
due to the inner two shells. The charges per length on these shells are
λ1 and −λ, so the field points inward with magnitude (λ − λ1)/r.
The potential difference between the outer two shells is then (λ −
λ1) ln(3R/2R) = (λ − λ1) ln(3/2), with the outer shell at the higher
potential.

Equating the inner-middle and outer-middle potential differences
gives

λ1 ln 2 = (λ − λ1) ln(3/2)

�⇒ λ1
(

ln 2 + ln(3/2)
) = λ ln(3/2)

�⇒ λ1 = λ
ln(3/2)

ln 3
≈ (0.37)λ. (12.166)

And then λ3 = λ − λ1 ≈ (0.63)λ to make the total charge per length
on the inner and outer shells equal to λ.

(b) The potential difference between the inner/outer shells and the middle
shell is φ = λ1(ln 2)/2πε0 (bringing the 1/2πε0 back in). But λ1 =
λ ln(3/2)/ ln 3, so we can solve for λ in terms of φ. We obtain λ =
φ · 2πε0(ln 3/ ln 2)/ ln(3/2). Since λ is the charge per unit length, we
see that the capacitance per unit length is 2πε0(ln 3/ ln 2)/ ln(3/2) ≈
2πε0(3.91).

(c) Note that λ3 didn’t appear anywhere in the calculation in part (a).
It can therefore take on any value, and the potential differences will
still be equal, provided that λ1 ≈ (0.37)λ. So if we add charge per
length λnew to the outer shell, it will simply stay there, uniformly
distributed on the outside surface of the shell. It will raise the potential
everywhere inside by the same amount (which depends on where the
φ = 0 point is chosen). But since this change is uniform inside, all
differences remain the same. So it actually doesn’t matter that the
battery was disconnected.
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3.23 Capacitance coefficients and C
For a standard parallel-plate capacitor, we don’t have a box surround-
ing the plates. Equivalently, the separation s between the plates is much
smaller than the distances r and t to the box. So we should be able to
recover the C value in Eq. (3.15) by taking the r → ∞ and t → ∞ lim-
its in the four capacitance coefficients from the example in Section 3.6.
In these limits, the 1/r and 1/t terms in C11 and C22 are negligible, so
Eq. (3.24) becomes

Q1 = ε0A
s

φ1 − ε0A
s

φ2,

Q2 = − ε0A
s

φ1 + ε0A
s

φ2. (12.167)

Now, when we write Q = Cφ for a capacitor, what we really mean is
Q = C �φ, where �φ is the difference in the potentials of the two plates
(or whatever objects), and where ±Q are the charges on the plates. We
can obtain a potential difference of �φ if we set φ1 = �φ/2 and φ2 =
−�φ/2 in Eq. (12.167). This gives

Q = ε0A
s

(
�φ

2

)
− ε0A

s

(
−�φ

2

)
= ε0A

s
�φ,

−Q = − ε0A
s

(
�φ

2

)
+ ε0A

s

(
−�φ

2

)
= − ε0A

s
�φ. (12.168)

These equations are both identical to the Q = (ε0A/s)�φ statement for a
parallel-plate capacitor, as desired.

3.24 Human capacitance
Let’s assume the capacitance is roughly that of a conducting sphere with
0.5 m radius. Then

C = 4πε0r = 4π

(
8.85 · 10−12 s2 C2

kg m3

)
(0.5 m)

≈ 5.6 · 10−11 F = 56 pF. (12.169)

If you are charged to, say, 2 kV, the stored energy is

U = 1
2

CV2 = 1
2

(
5.6 · 10−11 F

)(
2000 V

)2 = 1.1 · 10−4 J. (12.170)

This is a very small amount of energy, enough to raise the temperature of
one milliliter (one gram) of water by only about 2.6 · 10−5 ◦C. (It takes
one calorie, or 4.2 joules, to raise one gram of water by 1 ◦C.)

3.25 Energy of a disk
The energy stored in the field of the conducting disk is

U = Q2

2C
= Q2

2(8ε0a)
= Q2

16ε0a
. (12.171)

For a uniformly charged nonconducting disk, we found in Exercise 2.56
that U = (2/3π2ε0)(Q2/a). The ratio of this to the conducting-disk result
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is (2/3π2ε0)/(1/16ε0) = 32/3π2 = 1.081. The field of the uniform
charge distribution therefore has 8 percent more energy. It makes sense
that this energy is larger, because on the conducting disk the charge dis-
tributes itself to minimize the energy. If a uniformly charged disk is mod-
ified to be conducting, the charge will redistribute itself. But not the other
way around.

3.26 Force on a capacitor plate
(a) The energy of the capacitor can be written in many ways: Cφ2/2,

Qφ/2, or Q2/2C. We want to write the force in terms of Q and C, so
let’s pick the last of these. Since we are assuming that Q is constant,
the change in the energy is dU = (Q2/2)d(1/C). Now, the plates
act like a capacitor consisting of just the overlap region with width x,
because all of the charge will reside in that region (neglecting edge
effects). This is true because if there were leftover charge on one plate
outside the overlap region, it would be attracted to the corresponding
leftover opposite charge on the other plate. All of the charge therefore
ends up in the effectively neutral overlap region.

As x increases, the capacitance increases (because the area in-
creases), so dU is negative. This decrease in energy must go some-
where. If nothing is holding the movable plate back, then the energy
will show up as kinetic energy of this plate. If the movable plate is
attached to another object, then it will do work on this object (increas-
ing the potential and/or kinetic energy, etc.). Equating the magnitude
of the change in energy (which is−dU) with the work done on another
object, we find the magnitude of the force to be

−dU = F dx �⇒ −Q2

2
d
(

1
C

)
= F dx �⇒ F = −Q2

2
d
dx

(
1
C

)
.

(12.172)

If the movable plate doesn’t move at all, then there is no change in
energy, but the force is still there, because we could imagine moving
the plate by an infinitesimal amount.

(b) Things are a little trickier when the voltage is held constant, because
the battery is now part of the system. As x increases, the energy of the
capacitor now increases. This is true because the energy is Cφ2/2;
since we are assuming that φ is constant, the increase in energy is
(dC)φ2/2. And again, C increases because the area increases.

If this were the whole story, then we would have a violation of
conservation of energy, because energy would appear out of nowhere.
But the point is that the battery does work. And it does more work
than Cφ2/2, with the excess being the work that the movable plate can
do on an external object. The battery effectively transfers charge from
one plate to the other, so the work it does is (dQ)φ. But since Q = Cφ,
and since we are assuming that φ is constant, we have dQ = (dC)φ.
Hence the work done by the battery is (dC)φ2.

We found above that the increase in the capacitor’s energy is
(dC)φ2/2. So half of the battery’s (dC)φ2 work shows up in the
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capacitor. The remaining (dC)φ2/2 must be the work done on an
external object. Therefore,

dC
2

φ2 = F dx �⇒ F = φ2

2
dC
dx

. (12.173)

(c) The results in parts (a) and (b) are equal because

−Q2

2
d
dx

(
1
C

)
= Q2

2

(
1

C2
dC
dx

)
= 1

2

(
Q2

C2

)
dC
dx

= φ2

2
dC
dx

.

(12.174)

Note: End effects do not spoil the accuracy of our results, because
the sideways displacement of the top plate leaves the end fields them-
selves unaltered. It simply lengthens the region where the field is
nicely uniform. That is, we can safely ignore the end fields in cal-
culating dC/dx, even when they would affect C itself. Nevertheless,
the origin of the force just calculated lies in the very end fields that
our method permits us to ignore, for it is only at the ends that we find
sideways components of the electric field; see Fig. 12.60.

Force leftward
on top plate here

Force rightward
on bottom plate here

Figure 12.60.

3.27 Force on a capacitor plate, again
(a) The effective area of the capacitor is �x, so if Q is the fixed charge in

the overlap region (which is where the charge wants to reside; see the
solution to Problem 3.26), the charge density is σ = Q/�x. Note that
σ is a function of x. The electric field inside the capacitor is E = σ/ε0,
and the volume is V = �xs, so the stored energy as a function of x is

U = ε0
2

E2V = ε0
2

(
Q/�x
ε0

)2
(�xs) = Q2s

2ε0�x
. (12.175)

As mentioned in the solution to Problem 3.26, this decreases with x,
and we have

−dU = F dx �⇒ F = −dU
dx

�⇒ F = Q2s
2ε0�x2 . (12.176)

Using C = ε0(�x)/s, you can quickly verify that this agrees with the
answer to part (a) of Problem 3.26.

(b) The potential difference φ equals Es = (σ/ε0)s. So if φ is held con-
stant, then in the overlap region the density σ and the field σ/ε0
remain constant. The stored energy is now

U = ε0
2

(
σ

ε0

)2
(�xs) = σ 2�xs

2ε0
, (12.177)

which increases with x. This increase is made possible by the fact that
the battery does work. The battery needs to increase the charge Q on
the plates because the density σ remains constant while the area �x
increases. If the battery drags charge dq from the negative plate to the
positive plate, the work it does is

dW = (dq)φ = (σ · � dx)
σ s
ε0

= σ 2�s
ε0

dx. (12.178)
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From the above expression for U, we see that dU is half of dW. Half
of the battery’s work shows up as stored energy in the capacitor. The
other half must be the work done on an external object that the plate
pulls on with a force F. So we have

dW − dU = F dx �⇒ σ 2�s
2ε0

dx = F dx �⇒ F = σ 2�s
2ε0

,

(12.179)

independent of x. Using C = ε0(�x)/s and φ = σ s/ε0, you can show
that this agrees with the answer to part (b) of Problem 3.26.

(c) The results in parts (a) and (b) are equal because, for a given value of
x, we have Q = σ�x.

3.28 Maximum energy storage between spheres
First, note that the stored energy should indeed achieve a maximum for
some value of b between 0 and a, due to the following reasoning. The
energy is zero when b = a, because there is zero volume containing a
nonzero field. And the energy is essentially zero when b ≈ 0, because the
charge on the inner sphere must be very small (otherwise the field at the
surface, which is proportional to 1/b2, would exceed E0); this implies that
the field is very small in the region between the spheres (except very close
to the inner sphere, where it is E0). Therefore, since the energy is zero at
b = a and b ≈ 0, it must achieve a maximum at some intermediate value.

For convenience, let b ≡ ka. If E0 is the field at radius ka, then, since
E ∝ 1/r2, the field equals E0(ka)2/r2 at larger values of r (but less than
a). So the energy stored in the field is

U = ε0
2

∫
E2 dv = ε0

2

∫ a

ka

(
E0

k2a2

r2

)2

4πr2 dr

= 2πε0k4a4E2
0

∫ a

ka

dr
r2 = 2πε0a3E2

0(k3 − k4).

(12.180)

As noted above, this equals zero when k = 0 or k = 1. Taking the deriva-
tive to find the maximum gives 3k2 − 4k3 = 0 �⇒ k = 3/4. Hence
b = 3a/4. The stored energy is then

U = 2πε0a3E2
0

[(
3
4

)3
−

(
3
4

)4
]
= 27

128
πε0a3E2

0. (12.181)

Alternatively, we can solve the problem using capacitance. From the
example in Section 3.5, the capacitance of the system is

C = 4πε0ab/(a − b) = 4πε0ak/(1 − k).

If Q is the charge on the inner sphere, then E0 = Q/4πε0(ka)2 �⇒ Q =
4πε0(ka)2E0. The stored energy is then

U = Q2

2C
=

(
4πε0(ka)2E0

)2

2 · 4πε0ak/(1 − k)
= 2πε0a3E2

0(k3 − k4), (12.182)

in agreement with Eq. (12.180).
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3.29 Compressing a sphere
The energy of a capacitor is Cφ2/2. Since the capacitance of a sphere is
4πε0r, we see that the initial and final energies stored in the system are
(for r = R and r = 0, respectively)

Ui = 1
2
(4πε0R)φ2 = 2πε0Rφ2 and Uf = 1

2
(4πε0 · 0)φ2 = 0.

(12.183)

To find the work done by (or on) the battery, note that the final charge on
the shell is zero, because Q = Cφ and because C = 0 when r = 0. So all
of the initial charge Qi is transferred through a potential difference of −φ

back to the battery. The work done by the battery is therefore

Wbatt = Qi(−φ) = −Qiφ = −(Ciφ)φ = −4πε0Rφ2. (12.184)

Since the work done by the battery is negative, this means that work is
actually done on the battery; the energy of the battery increases. Basically,
every bit of charge dq that leaves the shell gives away (to the battery or
in general whatever is maintaining the potential difference) the energy of
(dq)φ that it had.

Now let’s find the work that you do. You have to apply a force to
the shell to compress it down in size. The force you apply to a given patch
must balance the electric force that the rest of the shell exerts on the patch.
As we showed in Section 1.14, the electric force per unit area is σ times
the average of the fields on either side. That is, F/A = σ(E1 + E2)/2.
The field is zero inside and σ/ε0 just outside, so your force per unit area
is (σ )(σ/ε0)/2. Your total radially inward force over the entire area A of
the shell, when the radius is r, is then

Fyou = σ 2A
2ε0

= (Q/A)2A
2ε0

= Q2

2ε0A
= (Cφ)2

2ε0A
= (4πε0rφ)2

2ε0(4πr2)
= 2πε0φ2.

(12.185)

Since φ is constant, this force is constant. Your work over the distance
from r = R down to r = 0 is therefore

Wyou = FyouR = 2πε0Rφ2. (12.186)

Now, the conservation-of-energy statement is

Ui + Wyou + Wbatt = Uf. (12.187)

That is, the final energy equals the initial energy plus (or minus) the energy
that was added to (or subtracted from) the system. And indeed, we have

2πε0Rφ2 + 2πε0Rφ2 − 4πε0Rφ2 = 0. (12.188)

Said in another way, the initial energy stored in the shell plus the energy
you put into the system all goes into the battery in the end.
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3.30 Two ways of calculating energy
(a) Let the shells have radii r1 and r2 (with r1 < r2). The electric field

between them is E = Q/4πε0r2, and it is zero elsewhere. The first
method of calculating the energy of the system therefore gives

U = ε0
2

∫
E2 dv = ε0

2

∫ r2

r1

(
Q

4πε0r2

)2
4πr2 dr

= Q2

8πε0

∫ r2

r1

dr
r2 = Q2

8πε0

(
1
r1

− 1
r2

)
. (12.189)

The magnitude of the potential difference between the shells is

φ =
∫

E dr =
∫ r2

r1

Q
4πε0r2 dr = Q

4πε0

(
1
r1

− 1
r2

)
, (12.190)

which is the familiar result. We then quickly see that the second
method of calculating the energy via Qφ/2 also yields the result in
Eq. (12.189), as desired.

(b) The electric field is zero both inside the inner conductor (by the
uniqueness theorem) and outside the outer conductor (see the discus-
sion in the example in Section 3.2), so the energy is confined to the
volume between the conductors. If we integrate the given identity
over this volume, we obtain∫

V
∇ · (φ∇φ) dv =

∫
V
(∇φ)2 dv +

∫
V

φ ∇2φ dv. (12.191)

In the first term we can use the divergence theorem to write the inte-
gral as a surface integral. In the second term (and in the first) we can
use E = −∇φ. And the third term equals zero due to Poisson’s equa-
tion, ∇2φ = −ρ/ε0, since there is no charge between the conductors.
So we have

−
∫

S
φ E · da =

∫
V

E2 dv, (12.192)

where the surface S is the boundary of the volume V between the
conductors. S consists of two parts: a boundary S1 just outside the
inner conductor, and a boundary S2 just inside the outer conduc-
tor. The potential φ takes on a constant value over each of these
boundaries, because they coincide with conductors. Let these two
constant values be φ1 and φ2. Then the left-hand side of Eq. (12.192)
becomes

−
∫

S
φ E · da = −φ1

∫
S1

E · da − φ2

∫
S2

E · da. (12.193)

Now, the surface S1 encloses the charge Q on the inner conductor,
so Gauss’s law tells us that

∫
S1

E · da = −Q/ε0. (The minus sign
comes from the fact that da was defined to point outward from our
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volume V , which means inward toward the inner conductor. This is
opposite to the direction of da if we were considering S1 to be a
surface surrounding the inner conductor.) Likewise, the surface S2
also encloses the charge Q on the inner conductor (this time with the
standard orientation), so Gauss’s law tells us that

∫
S2

E · da = Q/ε0.
Equation (12.193) therefore gives

−
∫

S
φ E · da = Q

ε0

(
φ1 − φ2

) ≡ Qφ

ε0
, (12.194)

where φ is defined to be the potential difference between the conduc-
tors. Plugging this result into Eq. (12.192) yields

Qφ

ε0
=

∫
V

E2 dv �⇒ 1
2

Qφ = ε0
2

∫
V

E2 dv, (12.195)

as desired. If we instead have two conductors (with charges Q1, Q2
and potentials φ1, φ2) inside a third conductor (with charge −Q1−Q2
and potential φ3), then you can show that the above procedure leads to

1
2

Q1(φ1 − φ3) + 1
2

Q2(φ2 − φ3) = ε0
2

∫
V

E2 dv. (12.196)

You should convince yourself that the left-hand side is the energy
required to transfer charge from the outer conductor to the two inner
conductors, in the correct proportion. If Q1 = −Q2 we have a stan-
dard two-conductor capacitor, with (1/2)Q�φ on the left.

12.4 Chapter 4
4.1 Van de Graaff current

The field on either side of the belt is given by E = σ/2ε0. Hence

σ = 2ε0E = 2
(

8.85 · 10−12 C
V m

)(
106 V

m

)
= 1.77 · 10−5 C

m2 .

(12.197)

The current equals σ times the area per time that is swept out by the belt.
The area swept out in time dt is �(v dt), where � is the belt’s width. So the
area per time is �v. The current is therefore

I = σ�v =
(

1.77 · 10−5 C
m2

) (
0.3 m

) (
20

m
s

)
= 1.06 · 10−4 C

s
= 0.106 mA. (12.198)

4.2 Junction charge
Let the junction have area A, and let Q be the desired amount of charge
on it. Gauss’s law tells us that A(E2 − E1) = Q/ε0. In the steady state,
the current density J is the same in both regions (otherwise charge would
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continue to pile up at the junction), so we have E1 = J/σ1 and E2 = J/σ2.
Therefore,

A
(

J
σ2

− J
σ1

)
= Q

ε0
�⇒ Q = ε0(AJ)

(
1
σ2

− 1
σ1

)
= ε0I

(
1
σ2

− 1
σ1

)
.

(12.199)

If σ1 = σ2, then Q correctly equals zero. If σ1 → ∞, then Q =
ε0I/σ2. This makes sense because there is essentially no field (external
field plus field from junction charge) in the left region (otherwise there
would be infinite current), so the charge Q at the junction is the amount
necessary to produce the required field in the right region, as you can
verify. If σ1 → 0, then Q → −∞. This makes sense because a huge field
is necessary in the left region to create a nonzero J, so a large negative
charge at the junction is necessary to mostly cancel this huge field and
bring it down to the finite value needed in the right region. Physically
what happens is that if there is initially no charge at the junction, the huge
external field causes charge to flow away from the junction in the right
region, leaving behind a negative charge density at the interface, which in
turn decreases the field in the right region. This continues until the field
in the right region has the value J/σ2.

4.3 Adding resistors
(a) When resistors are connected in series, the currents across them are

equal, because charge can’t pile up between them. Let I be this com-
mon current. The total voltage V across the effective resistor is the
sum of the voltages across the two resistors, so V = V1+V2. We know
that V = IR, V1 = IR1, and V2 = IR2, where the same I appears
everywhere here. Plugging these expressions into V = V1 + V2 gives

IR = IR1 + IR2 �⇒ R = R1 + R2. (12.200)

If R1 → 0 then R → R2. This makes sense because, for a given I,
the voltage IR1 across R1 is tiny, which means that the overall voltage
IR is essentially equal to the voltage IR2 across R2. So R ≈ R2.

If R1 → ∞ then R → ∞ also. This makes sense because, for
a given I, the voltage IR1 across R1 is huge, which means that the
overall voltage IR is likewise huge, since it is at least as large. So R
must be very large.

(b) When resistors are connected in parallel, the voltages across them are
equal, because the voltage drop from the left side of the overall circuit
to the right side can’t depend on the path. Let V be this common volt-
age, which is of course also the voltage drop in the overall effective
resistor.

The total current I across the effective resistor is the sum of the
currents across the two resistors, so I = I1 + I2. But we know that
I = V/R, I1 = V/R1, and I2 = V/R2, where the same V appears
everywhere here. Plugging these expressions into I = I1 + I2 gives

V
R

= V
R1

+ V
R2

�⇒ 1
R
= 1

R1
+ 1

R2
. (12.201)
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In short, in the series case the currents across the two resistors are the
same, and the voltages add; whereas in the parallel case the voltages
are the same, and the currents add.

If R1 → 0 then R → 0 also. This makes sense because, for a given
V , the current V/R1 across R1 is huge, which means that the overall
current V/R is likewise huge, since it is at least as large. So R must be
very large.

If R1 → ∞ then R → R2. This makes sense because, for a given
V , the current V/R1 across R1 is tiny, which means that the over-
all current V/R is essentially equal to the current V/R2 across R2.
So R ≈ R2.

4.4 Spherical resistor
(a) Using Eq. (4.17), the resistance across a thin shell with radius r and

thickness dr is dR = ρ dr/4πr2. The shells are in series, so integrat-
ing this from r1 to r2 gives a total resistance of

R =
∫ r2

r1

ρ dr
4πr2 = ρ

4π

(
1
r1

− 1
r2

)
−→ ρ

4πr1
, (12.202)

in the limit where r2 � r1.
(b) Without any calculations, it is reasonable to think that the resistance

might be proportional to ρ/r1, based on dimensions. However, this
isn’t completely rigorous, because there is another dimensionful quan-
tity in the problem, namely r2. And the exact answer in Eq. (12.202)
does depend on r2. But in the r2 → ∞ limit, any term involving r2
must be either 0 or ∞. So all we can say from dimensional analysis is
that the desired resistance is 0, ∞, or finite and proportional to ρ/r1.
A little thought tells us that it can’t be zero, because R certainly isn’t
zero for a finite r2, and R increases with r2. So only the second two
options are possible.

In the other extreme where we keep r2 fixed and let r1 → 0, all
of the above reasoning applies, so we know that the resistance must
either be ∞, or finite and proportional to ρ/r2. It turns out that in this
case the ∞ option is the correct one, which is evident from the exact
answer in Eq. (12.202).

4.5 Laminated conductor
The ratio of conductivities, 7.2/1, and the ratio of layer thicknesses, 1/2,
are the only two things that matter. Let us arbitrarily pick σs = 1 and
σt = 1/7.2 (ignoring the units). The resistance of an object with length L
and cross-sectional area A can be written in either of the equivalent forms,
ρL/A or L/σA. Since we are interested in a relation between σ values, we
will use the latter.

For perpendicular currents, the layers are in series, so the resistances
add:

R⊥ = Rs + Rt �⇒ L
σ⊥A

= Ls
σsA

+ Lt
σtA

�⇒ 1
σ⊥

= 1
σs

Ls
L

+ 1
σt

Lt
L

. (12.203)
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Ls and Lt are in the same ratio as the given layer thicknesses, so plugging
in the numbers yields

1
σ⊥

= 1 · 1
3
+ 7.2 · 2

3
= 5.13 �⇒ σ⊥ = 0.195. (12.204)

For parallel currents, the layers are in parallel, so the resistance add via
reciprocals:

1
R‖

= 1
Rs

+ 1
Rt

�⇒ σ‖A
L

= σsAs
L

+ σtAt
L

�⇒ σ‖ = σs
As
A

+ σt
At
A

. (12.205)

It is now As and At that are in the same ratio as the given layer thicknesses.
Plugging in the numbers yields

σ‖ = 1 · 1
3
+ 1

7.2
· 2

3
= 0.426. (12.206)

Therefore,

σ⊥
σ‖

= 0.195
0.426

= 0.457. (12.207)

Physically, it makes sense that the conductivity is larger in the par-
allel direction, due to the following reasoning. Consider the case where
the layer thicknesses are equal, and where one conductivity is much larger
than the other. Let’s say they take on the values σ1 = 1 and σ2 = 100.
Then σ⊥ is approximately equal to 2, because the “2” region offers essen-
tially no resistance, so the total resistance should be half (equivalently, the
conductivity should be twice) what it would be if the conductor were made
entirely of the “1” material. And σ‖ is approximately equal to 50, because
the “1” region carries essentially no current, so the total resistance should
be twice (equivalently, the conductivity should be half) what it would be
if the conductor were made entirely of the “2” material. We see that σ‖
is indeed (much) larger than σ⊥. As an exercise, you can give a general
proof that σ‖ is always greater than or equal to σ⊥. Further considerations

2a 2b

Figure 12.61.

along these lines are left for Exercise 4.33.

4.6 Validity of tapered-rod approximation
(a) The error in the reasoning is that the current doesn’t fan out uniformly

in the cone. If we are to build up the cone from cross-sectional slices
and then add up the resistances from these slices, all parts of a given
slice must be at the same potential. Equivalently, if you solve Exer-
cise 4.32 by writing down the resistance of each slice, you will be
assuming that the current flows perpendicular to each slice. This is
clearly not the case for the slice shown in Fig. 12.61.

(b) The current does diverge symmetrically in the object with the spher-
ical endcaps. If we slice the object into pieces with a given radius,
then all points in a given slice are the same distance from the left
endcap. Let the endcaps be located at radii r1 and r2 from their com-
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mon center, and let a (partial) spherical slice at radius r have area A.
Since the area of a spherical slice is proportional to the radius, we
have A/r2 = A1/r2

1 �⇒ A = A1(r2/r2
1). Using Eq. (4.17), the total

resistance between the endcaps is

R =
∫ r2

r1

ρ dr
A

=
∫ r2

r1

ρ dr

A1(r2/r2
1)

= ρr2
1

A1

∫ r2

r1

dr
r2 = ρr2

1
A1

(
1
r1

− 1
r2

)

= ρ(r2 − r1)

A1

r1
r2

= ρ�

A1

√
A1√
A2

= ρ�√
A1A2

, (12.208)A1

A2

Figure 12.62.

where we have again used the fact that A ∝ r2.
Alternatively, we can consider the object to be the sum of a large

number of thin objects arranged in “parallel,” as shown in Fig. 12.62.
All of these objects have the same length (which wasn’t the case
for the conical object in part (a)). And they all have a slow taper,
so we can apply the result from Exercise 4.32 to each one. If you
do that exercise, you will note that the resistance can be written as
R = ρ�/

√
α1α2 where α1 and α2 are the areas of the end faces.

When we combine a large number N of these thin objects in parallel,
the resistance goes down by a factor N. So we have

R = ρ�

N
√

α1α2
= ρ�√

(Nα1)(Nα2)
= ρ�√

A1A2
, (12.209)

as above.

4.7 Triangles of resistors
(a) In Fig. 12.63, resistors a and b are in series and can be replaced by

A

B

a

b

c

d

e
f

g

Figure 12.63.

2R. This combination is in parallel with c, so c can be replaced with
(2/3)R. This is in series with d, which yields (5/3)R. This in turn is
in parallel with e, so e can be replaced by (5/8)R. Continuing in this
manner, g can be replaced by (13/21)R, the next spoke by (34/55)R,
the next by (89/144)R, and finally the effective resistance across AB
equals (233/377)R. The numbers in the fractions here are the familiar
Fibonacci numbers, defined by the recursion relation fn+1 = fn +
fn−1; 233 and 377 are the 13th and 14th Fibonacci numbers.

We can easily prove by induction that if the equivalent resistance
across a given spoke (incorporating all of the resistors on its coun-
terclockwise side) takes the form of (fn/fn+1)R, then the equivalent
resistance across the next spoke equals (fn+2/fn+3)R. This is true
because the effective resistance across the bottom resistor in Fig. 12.64
is (ignoring the R)fn

fn +1

1

1

Figure 12.64.

1
1
1
+ 1

1 + fn
fn+1

= 1

1 + fn+1
fn + fn+1

= 1

1 + fn+1
fn+2

= fn+2
fn+1 + fn+2

= fn+2
fn+3

, (12.210)
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as desired. If there are N triangles (N = 6 here), the effective resis-
tance across the last (or first) spoke is (f2N+1/f2N+2)R.

(b) We’ll use the letter r for Reff since it is quicker to write. If the resis-
tance approaches the value r, then adding on another triangle must
still yield an effective resistance of r. The effective resistance across
the left spoke in Fig. 12.65 must therefore be r. This gives (ignoring

r

A

A'

B

1

1

Figure 12.65.

the R)

r = 1
1
1
+ 1

r + 1

�⇒ r = r + 1
r + 2

�⇒ r2 + r − 1 = 0

�⇒ r = −1 +√
5

2
≈ 0.618. (12.211)

This is the limit of the ratio of consecutive Fibonacci numbers; it is
also the inverse of the golden ratio. Even for fairly small Fibonacci
numbers, the ratio is close to 0.618. In the above case of six triangles,
233/377 agrees with (−1 +√

5)/2 to the fifth decimal place.

4.8 Infinite square lattice
Let the two adjacent nodes be labeled N1 and N2. Consider a setup where
a current of 1 A flows into the lattice at N1 and heads out to infinity in
the two-dimensional plane. If you want, you can imagine a return lead
connected around a rim very far away. By symmetry, the current in each
of the four resistors connected to N1 is 1/4 A (all flowing away from N1).
In particular, there is a current of 1/4 A flowing from N1 to N2.

Consider a second setup where a current of 1 A comes in from infin-
ity in the two-dimensional plane and flows out of the lattice at N2. Again,
you can imagine a return lead connected around a rim very far away. By
symmetry, the current in each of the four resistors connected to N2 is
1/4 A (all flowing toward N2). In particular, there is a current of 1/4 A
flowing from N1 to N2.

If we superpose the above two setups, we now have 1 A entering the
lattice at N1, 1 A leaving the lattice at N2, and no current at infinity. This
is exactly the setup we wanted to create. The total current flowing from N1
to N2 is 1/4+1/4 = 1/2 A. This current flows across a 1 � resistor, so the
voltage drop from N1 to N2 is 1/2 V. The effective resistance is defined by
V = IReff, where I is the current that enters and leaves the circuit (which
is 1 A here). So we have 1/2 V = (1 A)Reff, which gives Reff = 1/2 �.
Unfortunately, this quick method works only if the nodes are adjacent.

4.9 Sum of the effective resistances
(a) As stated in the problem, the sum of the effective resistances across

the four resistors in the first network is 2. In the second network, three
of the effective resistances (in units of R) are 2/3, and two are simply 1.
So the sum is 4. In the third network, all four effective resistances are
3/4, so the sum is 3. In the fourth network, the effective resistance
across the diagonal is 1/2, and the other four resistances are 5/8. So
the sum is 3. In the fifth network, the effective resistance across each
of the n resistors is 1/n, so the sum is 1. In all cases, the sum of
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the effective resistances across all of the resistors is N − 1 (times R),
where N is the number of points. So that’s our conjecture. Now to
prove it.

(b) Here’s the hint: if you solved Problem 4.8, you saw that a useful tech-
nique for finding the effective resistance between two nodes, call them
A and B, is to consider the superposition of a setup where a current
I enters at A and another setup where a current I exits at B. But in
each of these separate setups, we can’t just put in (or take out) current
without also taking out (or putting in) current somewhere else. (We
could do so in the infinite network in Problem 4.8 because the current
could just sail off to infinity.) Let’s take out (and put in) the current in
a symmetric manner, in the following way.

• Setup #1. Put in a current (N − 1)I/N at node A and take out a
current I/N at the other N − 1 nodes.

• Setup #2. Take out a current (N − 1)I/N at node B and put in a
current I/N at the other N − 1 nodes.

The superposition of these two setups involves a current I entering
at A and a current I exiting at B, and nothing happening at the other
N − 2 nodes. That’s the hint. Try to prove the conjecture without
reading further.

Continuing onward. . . consider two nodes, A and B, that are
connected by one or more of the resistors R. If we put in a current
I at A, and take out a current I at B, then the effective resistance
between A and B is V/I, where V is the potential difference between
the two nodes. The situation where a current I goes in at A and comes
out at B can be considered as the superposition of the above two
setups.

In setup #1, label the current going from A to B, across a particular
one of the resistors R (if more than one resistor connects A and B),
as IA

A→B. In setup #2, label the current going from A to B, across
the same resistor, as IB

A→B. The superscript here denotes the node
at which the current of (N − 1)I/N enters or leaves. Remember that
the two setups are defined independently and have nothing to do with
each other.

In the combined setup, the current going from A to B, across the
given resistor, is IA

A→B + IB
A→B. Since this current passes along a

resistor R, the voltage difference between A and B is V = (IA
A→B +

IB
A→B)R. The effective resistance between A and B is therefore

RAB = V
I
= (IA

A→B + IB
A→B)R

I
. (12.212)

We must now add up these RAB contributions across all the resistors.
Let the desired sum be S. Then

S = R
I

∑
(IA

A→B + IB
A→B), (12.213)
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Figure 12.66.

where the sum runs over all the resistors (and again, not just over
all pairs AB connected by a resistor, because some pairs may be
connected by more than one resistor). Let’s write this sum in a more
symmetric form. By reversing the roles of A and B (it doesn’t matter
which node the current goes in and which it comes out), we can also
write

S = R
I

∑
(IB

B→A + IA
B→A). (12.214)

Adding the previous two equations and rearranging the grouping gives

2S = R
I

∑
(IA

A→B + IB
B→A) + R

I

∑
(IA

B→A + IB
A→B). (12.215)

Consider the first sum. For concreteness let’s look at the fourth net-
work discussed in part (a). The sum runs over the five resistors, and
for each resistor the terms IA

A→B and IB
B→A are the two influxes of cur-

rent at the ends of the resistor, as shown in Fig. 12.66. Remember that
each of these IC

C→D type terms equals the current that flows between
nodes C and D when a current (N − 1)I/N is put in at C and a cur-
rent I/N is taken out of the other N − 1 nodes. Figure 12.66 suggests
replacing the sum over resistors with a sum over nodes. That is, in the
following equation the terms on the left-hand side are grouped by the
five resistors (as in the first sum in Eq. (12.215)), while the terms on
the right-hand side are grouped by the four nodes:(

I1
1→2 + I2

2→1
)+ (

I2
2→3 + I3

3→2
)+ (

I3
3→4 + I4

4→3
)

+ (
I4
4→1 + I1

1→4
)+ (

I2
2→4 + I4

4→2
)

= (
I1
1→2 + I1

1→4
)+ (

I2
2→1 + I2

2→4 + I2
2→3

)+ (
I3
3→2 + I3

3→4
)

+ (
I4
4→1 + I4

4→2 + I4
4→3

)
. (12.216)

The first term on the right-hand side, I1
1→2 + I1

1→4, is (by defini-
tion) the sum of the currents emanating from node 1 when we put in
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a current (N − 1)I/N at node 1 and take out a current I/N from the
other N − 1 nodes (N = 4 here). So this term must equal (N − 1)I/N.
And likewise the other terms on the right-hand side associated with
the other nodes all equal (N − 1)I/N. The sum of these N terms, each
equaling (N − 1)I/N, is therefore (N − 1)I.

Similarly, the second sum in Eq. (12.215) equals (N − 1)I. The
same reasoning holds – you can just replace “put in” with “take out.”
Equation (12.215) therefore gives

2S = 2 · R
I
(N − 1)I �⇒ S = (N − 1)R, (12.217)

as desired.

REMARK: The R/2 result for the tetrahedron in Problem 4.11 below
is consistent with this result, because N = 4 and there are six resistors.
Likewise for the 7R/12 result for the cube in Exercise 4.35(c), because
N = 8 and there are 12 resistors. The R/2 result for the infinite square
grid in Problem 4.8 is also consistent with this result, for the following
reason. If we have a very large number N of nodes in the square grid,
then the number of resistors is 2N, neglecting boundary effects. (This
is true because each node is connected to four resistors, but this double
counts the number of resistors since each resistor has two nodes at its
ends.) So the sum of the effective resistances across all these resistors
is (2N)(R/2) = NR, which is essentially equal to (N − 1)R (in a
multiplicative sense) for N → ∞. Said in another way, if the effective
resistance were anything but R/2, the sum would have no chance of
equaling (N − 1)R in the N → ∞ limit.

A more general result, which requires only a slight modification of
the above proof, is the following. If the resistors are not necessarily
identical, then we can still can say that

∑
(rk/Rk) = N − 1, where

the sum runs over all the resistors in the network, and where rk is
the effective resistance across the kth resistor (indexed in an arbitrary
manner), and Rk is the actual resistance of the kth resistor. In our
special case above where all the Rk have the same value R, we can
take the R out of the sum to obtain

∑
rk = (N − 1)R, in agreement

with Eq. (12.217).

4.10 Voltmeter, ammeter
Ammeter To measure the current across point A, we need to cut the wire
at A and insert the galvanometer (so now A is represented by two points
in Fig. 12.67), or ideally just unclip two leads and clip them to the ends

B

C

R2

R1

A

A

Rg

G

Rsh

Figure 12.67.

of the galvanometer. However, if this is the only thing we do, we will
certainly affect the circuit because we have just added additional resis-
tance to it (unless Rg is much smaller than the resistance of the rest of
the circuit, which we can’t assume in general). Furthermore, the current
passing through the galvanometer might very well be larger than its limit.
We can fix both of these issues by connecting a very small known resis-
tor in parallel with the galvanometer, as shown in Fig. 12.67. Virtually
all of the current in the circuit will then pass through this small resistor,
called a “shunt” resistor, Rsh. This fixes the problem of affecting the circuit
(because the overall resistance of the parallel combination is very small),
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and also the problem of overloading the galvanometer (because hardly any
of the current passes through it).3

The components of an ammeter are shown in Fig. 12.68. If Rsh is cho-

Rg

Rg)

Rsh

(Rsh<<

Ammeter

G

Figure 12.68.

sen to be 1/N times as large as Rg (where N is a large number, say 1000),
then N times as much current flows through the shunt as through the gal-
vanometer. So if the galvanometer measures a small current Ig, we con-
clude that the total current flowing across A is I = Ig + NIg = (N + 1)Ig.
We therefore simply need to relabel all the readings on the galvanometer
by a factor of N + 1, and we have constructed our ammeter.

Voltmeter To measure the voltage difference between points B and C,
we need to add the galvanometer in parallel with the given resistor R2
between these points. However, if this is the only thing we do, we will
certainly affect the circuit because we have just added another path for the
current to take (unless Rg is much larger than R2, which we can’t assume

B

C

AR2

R1

Rg

Rser

G

Figure 12.69.

in general). Furthermore, the current passing through the galvanometer
might very well be larger than its limit. We can fix both of these issues by
connecting a very large known resistor Rser in series with the galvanome-
ter, as shown in Fig. 12.69. Virtually none of the current in the circuit
will then pass through the alternative galvanometer path. This fixes the
problem of affecting the circuit (because the overall resistance of the par-
allel combination between B and C is essentially unchanged), and also
the problem of overloading the galvanometer (because hardly any of the
current passes through it).4

The components of a voltmeter are shown in Fig. 12.70. If Rser is
chosen to be N times as large as Rg (where N is a large number, say 1000),
then the voltage drop across Rser is N times as large as the voltage drop
across Rg. So if the galvanometer measures a small current Ig, we con-
clude that the total voltage drop between B and C is V = IgRg+Ig(NRg) =
(N + 1)IgRg. We therefore simply need to relabel all the readings on the
galvanometer by a factor of (N+1)Rg (so now the units are different), and
we have constructed our voltmeter.

Rg Rser

G

Rg)(Rser >>

Voltmeter

Figure 12.70.

To summarize: An ammeter is made by combining a small resistor
in parallel with a galvanometer, and the combination is then inserted in
series with the given circuit. A voltmeter is made by combining a large
resistor in series with a galvanometer, and the combination is then inserted
in parallel with the given circuit. In both cases, there is minimal disruption
to the given circuit, and the current passing through the galvanometer is
very small.

3 The precise conditions on Rsh are that (1) Rsh is much smaller than Rg, so that only a
small fraction of the current goes through the galvanometer, and (2) Rsh is much
smaller than the resistance R1 + R2 of the original circuit. If this latter condition isn’t
met, then although our ammeter will give an exact measurement of the current flowing
across A with the ammeter inserted in the circuit, this current won’t equal the current in
the original circuit without the ammeter.

4 The precise condition on Rser is that Rser + Rg is much larger than the resistor R2 in
the circuit. (Without making any assumptions about Rg, this means that Rser is much
larger than R2.) If this condition isn’t met, then although our voltmeter will give an
exact measurement of the voltage difference between B and C with the voltmeter
connected in parallel, this voltage won’t equal the voltage in the original circuit
without the voltmeter.
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4.11 Tetrahedron resistance
(a) Let the two vertices be A and B. By symmetry, the other two ver-

tices are at the same potential, so we can collapse them to one point

A B

D

C

A B

C,D

Figure 12.71.

(because no current will flow in the resistor connecting them). We
then have the equivalent network in Fig. 12.71, and the effective resis-
tance quickly comes out to be R/2. Note that the sum of the effective
resistances across all six resistors equals 6(R/2) = 3R, which is con-
sistent with the general result in Problem 4.9.

(b) The four loop equations for Fig. 12.72 are (dividing through by R in

I2 I3

I1

I4

A B

E

Figure 12.72.

all of them)

E/R − (I4 − I1) = 0,

−(I1 − I4) − (I1 − I2) − (I1 − I3) = 0,

−I2 − (I2 − I3) − (I2 − I1) = 0,

−I3 − (I3 − I2) − (I3 − I1) = 0. (12.218)

The last two equations are symmetric in “2” and “3.” Taking their
difference yields I2 = I3 (as expected from the symmetry). The third
equation then gives I1 = 2I2, whereupon the second equation gives
I4 = 4I2, or equivalently I4 = 2I1. Finally, the first equation gives
E/R − (I4 − I4/2) = 0 �⇒ E = I4(R/2). Since I4 is the current
through the battery, this implies that the effective resistance between
A and B is R/2, in agreement with part (a).

4.12 Find the voltage difference
With the loop currents shown in Fig. 12.73, the three clockwise loop
equations are

0 = E − I1R − E − (I1 − I2)R,

0 = E − I2R − (I2 − I3)R − (I2 − I1)R,

0 = −E − (I3 − I2)R − I3R. (12.219)

These equations simplify to

0 = −2I1 + I2,

0 = E/R − 3I2 + I3 + I1,

0 = −E/R − 2I3 + I2. (12.220)

The third equation plus twice the second gets rid of the I3 terms: 0 =
E/R − 5I2 + 2I1. Adding this to the first equation then gives 0 = E/R −
4I2. So I2 = E/4R, from which we quickly obtain I1 = E/8R and I3 =
−3E/8R. The potential difference between points a and b is then

Vb − Va = (I2 − I3)R =
(
E/4R − (−3E/8R)

)
R = 5E/8. (12.221)

This is positive, so b is at the higher potential. This makes sense by looking
at the orientation of all the batteries.
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4.13 Thévenin’s theorem
We present two proofs. The first one is a direct “practical” type of proof.
The second is rather slick. The second proof works for an arbitrary cir-
cuit B, but in the first proof we restrict B to consist of a single emf, for
simplicity. The key ingredient in both proofs is the linearity of the circuit. I1

I2

I3

a b

R

R

R

R

R

Figure 12.73.

First proof We will assume that the circuit B is a single emf E , although
our reasoning can be extended to a general circuit B. Given the circuit A
and the external emf E , imagine using Kirchhoff’s rules to write down the
loop equations for all the loop currents. We’ll label the loop current pass-
ing through the external emf E as I. For the example shown in Fig. 12.74,
the loop equations are

0 = E + E2 − (I − I2)R4,

0 = −E2 + E1 − I1R1 − (I1 − I2)R2,

0 = E3 − (I2 − I)R4 − (I2 − I1)R2 − I2R3. (12.222)

All of these equations have the same form. They all involve terms that are
products of I and R values, and also terms that are linear in the emfs (the
emfs inside A, along with E). These equations can be grouped together
into one big matrix equation of the form MI = E , where M is a (sym-
metric) matrix whose entries are functions of the R values (linear func-
tions, although this isn’t important), I is the vector of loop currents (I, I1,
I2, . . . , In), and E is a vector whose entries are linear functions of the emfs
(this linearity is important). For the above example we have⎛

⎝ R4 0 −R4
0 R1 + R2 −R2

−R4 −R2 R2 + R3 + R4

⎞
⎠

⎛
⎝ I

I1
I2

⎞
⎠ =

⎛
⎝ E + E1

E1 − E2
E3

⎞
⎠ .

(12.223)

The solution for all the currents is given by I = M−1E . However, we are
not concerned with the exact nature of the inverse matrix M−1. The only
things we care about are that M−1 depends only on the R values, and that
each loop current is linear in the emfs (because E is linear in the emfs). In
particular, the current I passing through the external emf E takes the form
(with m being the number of internal emfs, which need not be equal to the
number n of loop currents),

I = aE + a1E1 + a2E2 + · · · + amEm, (12.224)

where the a values are functions of only the R values. This can be writ-
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I1

I

I2

R1

R2

E1

R3

R42E

3E

E

Figure 12.74.

ten as

E + Eeq = IReq, (12.225)

where

Req = 1
a

and Eeq = a1E1 + · · · + amEm

a
. (12.226)

But Eq. (12.225) is exactly the same equation that we would obtain if the
circuit A consisted of a single emf Eeq in series with a single resistor Req.



672 Solutions to the problems

A

Various 
R’s and 
E ’s

Various 
R’s and 
E ’s

B
I

I

I

I

I

I

b

a

b

a

b

a

(a)

BA

Same 
R’s but
no E ’s

(b)

E

I = 0

A B

Same 
R’s and
now –E ’s

(c)

B

Same 
R’s and
original E ’s

b

a

(d)

A –E

Add on –E
’s o

f

orig
inal c

ircu
it

Negate E ’s everywhere

(Initial setup)

(Final Thévenin equivalent)

Add adjustable       , remove E ’s from BE

Same 
R’s and 
E ’s

Same 
R’s but
no E ’s

Same 
R’s but
no E ’s

Figure 12.75.
For any external emf E , the current I is therefore the same in the original
circuit as in the simple circuit involving Eeq and Req. The two circuits are
therefore equivalent.

How do we determine the values of Req and Eeq? Since Req depends
only on the R values, and not on any of the emfs, we can determine Req by
picking any convenient set of values for the internal emfs. If we pick them
all to be zero, we see that Req is obtained by finding the resistance between
the terminals when all of the internal emfs are set equal to zero. This is the
claim we made, without proof, in Section 4.10.2.5 Having found Req, we
can determine Eeq by setting E = 0 and calculating the current I (which is
the short-circuit current Isc). Equation (12.225) then gives Eeq = IscReq.
Alternatively, Eeq equals the open-circuit voltage.

As an exercise, you can extend this reasoning to the case where B is
a general circuit instead of a single emf. Hint: The loop currents in circuit
A can be solved for in terms of the resistances and emfs solely in A, plus
the loop current I in the “connecting” loop. Likewise for B. You can then
write down the connecting-loop equation for I; this equation will break up
into two separate pieces depending only on A and only on B.

Second proof In the complete circuit in Fig. 12.75(a), let the current that
flows in the horizontal wires be I. There are three steps to the proof, as

5 Although it might seem obvious that this is what Req must be, it was necessary to
demonstrate first that Req is independent of the emfs. Otherwise the value of Req when
all the internal emfs are set equal to zero might not be the value for another set of emfs.
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outlined in the figure and discussed in detail below. Although we are often
concerned only with the case where the circuit B is a single emf source
(possibly with a resistor in series), the proof below works for a general
circuit B.

The first step is to change the circuit by removing all of the internal
emfs from B (or equivalently, by adding on the negatives of all these emfs
right next to them), and also inserting an emf E as shown in Fig. 12.75(b)
and then adjusting it until the current in the horizontal wires is zero. Since
the current is now zero, and since B now has no internal emfs, the volt-
age across the a, b terminals of A is (by definition) the open-circuit volt-
age Vopen

A . Therefore, the emf E that we added must be equal to −Vopen
A ,

because the current is zero.
Second, in Fig. 12.75(c) let us remove all of the internal emfs from A

(or equivalently, add on their negatives). Additionally, in B let us add on
the negatives of the original emfs. The internal emfs in A are now zero,
and the internal emfs in B are now the negatives of what they were initially.
This second step can be looked at as simply adding on the negative of all
of the original circuit emfs. By linearity, this has the effect of adding on
a current equal to the negative of the original current I. Since the current
in the circuit was zero before we performed this second step, it is now −I
(the negative sign means counterclockwise), as shown.

The third step is to negate the emfs everywhere (that is, in B and in
the inserted emf; all the emfs in A are zero). This yields the circuit shown
in Fig. 12.75(d). The circuit B and the current I are now exactly what they
were originally. We conclude that from B’s point of view, the circuit A is
equivalent to a voltage source Eeq that equals −E = Vopen

A , in series with
a resistor Req that is obtained by ignoring all of the voltage sources in A.
This completes the proof.

4.14 Thévenin Req via Isc
If we connect A and B with a wire with zero resistance, then we can ignore
the resistor R3 in Fig. 4.24. The circuit therefore looks like the one shown

I1 I2

B

R1

E2

E1

R2

A

Figure 12.76.

in Fig. 12.76. The two loop equations are

0 = E1 − I1R1,

0 = E2 − I2R2, (12.227)

so the loop currents are simply I1 = E1/R1 and I2 = E2/R2. The short-
circuit current between A and B is then

Isc = I1 − I2 = E1
R1

− E2
R2

= E1R2 − E2R1
R1R2

. (12.228)

As mentioned in Section 4.10.2, Eeq equals the open-circuit voltage,
which in the present setup is I3R3, with I3 given in Eq. (4.33). The equiv-
alent resistance is therefore

Req = Eeq

Isc
= I3R3

Isc
= E1R2 − E2R1

R1R2 + R2R3 + R1R3
· R3 · R1R2

E1R2 − E2R1

= R1R2R3
R1R2 + R2R3 + R1R3

, (12.229)
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in agreement with the result of the other (much quicker) method of calcu-
lating Req presented right before the example in Section 4.10.2.

80 V

20 V

6 Ω

7 Ω

6 Ω
a b

Figure 12.77.

4.15 A Thévenin equivalent
The equivalent resistance Req is quick to find. Ignoring the emfs (that is,
setting them equal to zero and shorting them out) yields a circuit with a
parallel combination of two 6 � resistors in series with a 7 � resistor. So
Req = 3 � + 7 � = 10 �.

To find Eeq, note that in the open circuit, no current flows through the
7 � resistor, so the open-circuit voltage is the same as the voltage between
nodes a and b in Fig. 12.77. The only current flowing is around the closed
loop, so Kirchhoff’s rule gives (with clockwise I defined to be positive)

80 V − (6 �)I − 20 V − (6 �)I = 0 �⇒ I = 5 A. (12.230)

The voltage drop from b to a is then Vb−Va = 20 V+(6 �)(5 A) = 50 V.
Alternatively, the drop through the top branch (where the path from b to
a goes against the current) is −(6 �)(5 A) + 80 V = 50 V. So 50 V is the

50 V 10 Ω

Figure 12.78.

desired Eeq. We therefore have the Thévenin equivalent circuit shown in
Fig. 12.78.

If we connect a 15 � resistor across the terminals, we can use the
Thévenin equivalent circuit to find immediately from Fig. 12.79 that the
current through the 15 � resistor is (50 V)/(10 � + 15 �) = 2 A.

If you don’t trust that the Thévenin circuit produces the same current
through the external resistor as the original circuit does, you can directly
calculate the current in the original circuit by using Kirchhoff’s rules.
With the two loop currents shown in Fig. 12.80, we have

50 V 10 Ω

15 Ω

Figure 12.79.

80 V − (6 �)I1 − 20 V − (6 �)(I1 − I2) = 0,

20 V − (7 �)I2 − (15 �)I2 − (6 �)(I2 − I1) = 0. (12.231)

Solving this system of equations gives I2 = 2 A, as desired. We also find
I1 = 6 A; this current exists in the original circuit, but it doesn’t apply to
the Thévenin equivalent circuit. Note that the closed-circuit voltage across
the terminals is (15 �)(2 A) = 30 V. Also, the voltage drop from b to a is
now 44 V (you should check that all three possible paths yield this drop).
Neither of these voltages of 30 V or 44 V (which depend on our specific
choice for the external resistor) equals the open-circuit voltage of 50 V
(which is associated with an infinite external resistor).

4.16 Discharging a capacitor
The important point to realize is that, although the field is very small out-
side the capacitor (except right near the edges, where it is relatively large),
the line integral of the field, along any path starting at one plate and ending
up at the other, must be equal to (plus or minus) the potential difference
between the plates. This is due to the fact that the electric field is a conser-
vative field, or equivalently that it has zero curl (for static situations). For
some paths there is a large field for a small distance, and for other paths
there is a small field for a large distance.

In Fig. 4.41(a), there is essentially no contribution to the line inte-
gral along the parts of the wire parallel to the plates. But the field along
the short segment on the left is essentially equal to the field E inside the
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capacitor. So the line integral equals Es, just as it does for a path inside
the capacitor.

80 V

20 V

6 Ω

15 Ω

7 Ω

6 Ω
a b

I1

I2

Figure 12.80.

In Fig. 4.41(b), it turns out that essentially all of the line integral
comes from the vertical parts of the wire. This can be seen in two ways.
First, at points very far away from the capacitor, the capacitor looks essen-
tially like a dipole, because the two plates can be considered to be the
result of placing a large number of dipoles next to each other. And we
know from Eq. (2.36) that the field from a dipole (both the radial and tan-
gential components) falls off like 1/r3. So the very large semicircular part
of the wire (the length of which is proportional to r) contributes nothing
as r → ∞. The full contribution must therefore come from the straight
parts of the wire. And furthermore it must come from the region close to
the capacitor, from the same 1/r3 reasoning.

A second line of reasoning is the following. If you want, you can
explicitly calculate the field outside the capacitor, along the axis. (You
just need to know the field from a disk; see Section 2.6.) And then you
can integrate this along each of the two arms. You will obtain a result of
σ s/2ε0 for each, where σ is the surface density on each plate. (You will
find that the integral is dominated by the initial part of the wire out to a
few multiples of the diameter (or general length scale) of the capacitor.)
With the two arms, the total line integral along the vertical part of the
wire is σ s/ε0. And this equals the field inside the capacitor, σ/ε0, times
the distance between the plates, s, as desired.

There is actually no need to calculate the field outside the capacitor
explicitly in order to do the line integral. There is a much easier way. Hint:
In each arm, the line integral is the sum of the line integrals of the fields
due to the two plates. These two (oppositely signed) integrals are the same,
except that one starts at zero and one starts at s.

4.17 Charging a capacitor
Let I(t) be the clockwise current, and let Q(t) be the charge on the left
plate of the capacitor. Demanding that the total voltage drop around the
loop is zero gives E − Q/C − RI = 0. But I = dQ/dt, so we have

E − Q
C

− R
dQ
dt

= 0 �⇒ dQ
dt

= − 1
RC

(
Q − CE

)
. (12.232)

We can solve this differential equation by separating variables and inte-
grating:∫ Q

0

dQ′
Q′ − CE = −

∫ t

0

dt′
RC

�⇒ ln
(
Q′ − CE

)∣∣∣Q
0
= − t

RC

�⇒ ln
(

Q − CE
−CE

)
= − t

RC
�⇒ Q(t) = CE

(
1 − e−t/RC)

.

(12.233)

As a double check, we have Q(0) = 0, which is correct. And Q(∞) =
CE , which is correct because eventually the voltage across the capacitor
equals E .

Alternatively, you can avoid separating variables and integrating if
you note that Eq. (12.232) can be written as dQ̃/dt = −(1/RC)Q̃, where
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Q̃ is defined by Q̃ ≡ Q−CE . This has the simple solution, Q̃ = Ae−t/RC ,
where the initial conditions quickly give the constant of integration as
A = −CE . Using the Q̃ ≡ Q − CE definition, we then have Q − CE =
−CEe−t/RC �⇒ Q = CE

(
1 − e−t/RC)

, as above.
The current is

I(t) = dQ
dt

= E
R

e−t/RC . (12.234)

This equals E/R at t = 0 (the capacitor provides no back emf right at the
start). And it equals zero at t = ∞, as it should.

4.18 A discharge with two capacitors
(a) Let Q1 and Q2 be the charges on the (left plates of the) left and right

capacitors. And let I1 and I2 be the left and right loop currents, with
counterclockwise positive, as shown in Fig. 12.81. Then the two loop

R

C C

R

Q = Q0 Q = 0

I1 I2

Figure 12.81.

equations are

Q1
C

− I1R = 0, and
Q2
C

− I2R = 0. (12.235)

But I1 = −dQ1/dt and I2 = −dQ2/dt, so we have

Q1
C

+ R
dQ1
dt

= 0, and
Q2
C

+ R
dQ2
dt

= 0. (12.236)

These two equations are decoupled (that is, each equation involves
only one of the Q’s), so we can solve for Q1 and Q2 separately. Sepa-
rating variables and integrating each equation (or just realizing that we
have exponential solutions), we find that both Q1 and Q2 are propor-
tional to e−t/RC . Given the initial charges of Q0 and 0, we see that the
charges as functions of time are Q1(t) = Q0e−t/RC , and Q2(t) = 0.

The left capacitor simply discharges by sending current around the
left loop. The right loop effectively isn’t there. Basically, the current
has no desire to pass through a second resistor, when it is possible to
pass through only one resistor on its journey to the other side of the
left capacitor. At the junction at the bottom of the circuit, the path
with resistance R around the right loop has infinitely more resistance
than the path with zero resistance that goes straight up the middle of
the circuit.

(b) The two loop equations are now

Q1
C

− I1R − (I1 − I2)R = 0 and
Q2
C

− I2R − (I2 − I1)R = 0.

(12.237)

These equations are coupled; they both involve both Q1 and Q2. If we
add them, we obtain

(Q1 + Q2)

C
− (I1 + I2)R = 0 �⇒ (Q1 + Q2)

C
+R

d(Q1 + Q2)

dt
= 0.

(12.238)
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This equation involves only the combination Q1 + Q2 of the charges.
The solution is Q1 + Q2 = Ae−t/RC , where A is a constant, deter-
mined by the initial conditions. Similarly, if we take the difference,
we obtain

(Q1 −Q2)

C
−3(I1 − I2)R = 0 �⇒ (Q1 −Q2)

C
+3R

d(Q1 −Q2)

dt
= 0.

(12.239)

The solution here is Q1 − Q2 = Be−t/3RC, where B is another con-
stant. Having solved for Q1 + Q2 and Q1 − Q2, we can take the sum
and difference of these results to obtain

Q1(t) = ae−t/RC + be−t/3RC and Q2(t) = ae−t/RC − be−t/3RC,

(12.240)

where a ≡ A/2 and b ≡ B/2. The initial condition Q2(0) = 0 quickly
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Figure 12.82.

gives a = b. And then the initial condition Q1(0) = Q0 gives a =
b = Q0/2. So the desired charges as functions of time are

Q1(t) = Q0
2

(
e−t/RC + e−t/3RC)

,

Q2(t) = Q0
2

(
e−t/RC − e−t/3RC)

. (12.241)

Note that Q1(t) decreases monotonically with time, but Q2(t) reaches
a maximum negative value at some finite time (it is zero at both
t = 0 and t = ∞). Setting the derivative of Q2(t) equal to zero
gives tmax = RC(3/2) ln 3 ≈ (1.65)RC. Plugging this back into Q2(t)
yields a maximum negative value of −Q0/3

√
3 ≈ −(0.19)Q0. Plots

of Q1(t) and Q2(t) are shown in Fig. 12.82(a).

With the third resistor added to the circuit, the current must pass
through two resistors, no matter what path it takes to reach the other
side of the left capacitor. (And the right capacitor will also have an
effect, once it acquires charge.) So some of the current goes around
the right loop. This puts positive charge on the right plate of the right
capacitor and negative charge on its left plate (which is the plate that
determines the sign of Q2, by our convention). This negative charge
reaches a maximum value at tmax ≈ (1.65)RC, and then at this time
the current I2(t) in the right loop changes sign, from being positive
(counterclockwise) to being negative (clockwise). You can show that
the clockwise current reaches a maximum value at a time of 2tmax ≈
(3.3)RC. Immediately after the switch is closed, equal currents pass
through the middle and right resistors, because there is initially no
voltage across the right capacitor, so these two resistors are in parallel.
But once the right capacitor acquires charge, this equality is lost. Plots
of I1(t) and I2(t) (the negative derivatives of Q1 and Q2) are shown
in Fig. 12.82(b).
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12.5 Chapter 5
5.1 Field from a filament

(a) The magnitude of the excess charge is

Q = Ne = (
5 · 108)(1.6 · 10−19 C

) = 8 · 10−11 C. (12.242)

The linear charge density is then

λ = Q
�
= 8 · 10−11 C

0.04 m
= 2 · 10−9 C/m. (12.243)

The electric field is therefore

E = λ

2πε0r
= 2 · 10−9 C/m

2π
(

8.85 · 10−12 s2 C2

kg m3

)(
5 · 10−5 m

)
= 7.2 · 105 V/m. (12.244)

The field is directed radially toward the wire.
(b) In this frame the charge density (and hence field) is larger by a

factor γ = 1/
√

1 − (0.9)2 = 2.29. So the field is E′ = γ E =
1.65 · 106 V/m. It is still directed radially toward the wire.

5.2 Maximum horizontal force
The magnitude of the electric field is given in Eq. (5.15), with r′ = b/ sin θ .
We are concerned with the horizontal component, so this brings in a
factor of cos θ . We therefore want to maximize the function

Ex ∝ sin2 θ cos θ

(1 − β2 sin2 θ)3/2
. (12.245)

Setting the derivative equal to zero and simplifying yields

(1 − β2 sin2 θ)(2 cos2 θ − sin2 θ) + 3β2 sin2 θ cos2 θ = 0. (12.246)

Using cos2 θ = 1 − sin2 θ and solving for sin2 θ gives

sin θ =
√

2
3 − β2 . (12.247)

If β ≈ 1 then θ ≈ 90◦, which is reasonable. The largeness of the field near
90◦ wins out over the smallness of the cos θ factor involved in taking the
horizontal component. However, if θ = 90◦ exactly, then the horizontal
force is zero.

If β ≈ 0 then sin θ ≈ √
2/3 �⇒ θ ≈ 54.7◦ (or 125.3◦). You can

quickly check from scratch that this is the correct result in the nonrela-
tivistic case, where the horizontal component of the force is proportional
to sin2 θ cos θ .

5.3 Newton’s third law
The electric field of the stationary proton at the position of the pion takes
the simple Coulomb form of E = e/4πε0r2. So the force on the pion is

F = eE = 1
4πε0

e2

r2 =
(

9 · 109 kg m3

s2 C2

) (
1.6 · 10−19 C

)2(
10−4 m

)2 = 2.3 · 10−20 N.

(12.248)
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From Eq. (5.15), with θ ′ = 0, the field of the moving pion at the
position of the proton is E = (1 − β2)e/4πε0r2. So the force on the
proton is smaller than the force on the pion by a factor of 1 − β2. Hence
the force on the proton equals (0.64)(2.3 · 10−20 N) = 1.47 · 10−20 N.

We see that Newton’s third law, applied to the charges, does not hold.
Equivalently (since F = dp/dt), the total momentum of the proton plus
pion is not conserved. However, the sacred fact that is still true is that
the total momentum of the entire system is conserved. And the system
here consists of the two charges plus the electromagnetic field. We will
learn in Chapter 9 that there is momentum in the field, and the field is
changing here. The total momentum (proton plus pion plus field) is indeed
conserved. This is not a two-body system!

5.4 Divergence of E
(a) The field in Eq. (5.15) points radially, so from Eq. (F.3) in Appendix F

the divergence is (1/r2)∂(r2Er)/∂r, where we have dropped the pri-
mes on the coordinates. The 1/r2 dependence of Er implies that
∂(r2Er)/∂r = 0, as desired.

Note that the θ dependence of Er is irrelevant here. If Er is the only
nonzero component, then it can be an arbitrary function of θ (and φ),
and the divergence of E will still be zero. This is clear if you consider
a volume with its “sides” lying along the radial direction, and with its
two endcaps at constant r values. The angular dependence does not
change the fact that if Er ∝ 1/r2, then any flux that enters through
the inner endcap also exits through the outer endcap, because this
property holds for each angle individually.

(b) The components in Eq. (5.13) are valid for a point in the xz plane.
(Again, we drop the primes on the coordinates.) But we must remem-
ber that in general the y coordinate is nonzero. Since the divergence
involves derivatives, and since derivatives involve values at nearby
points, we need to consider points with nonzero y values. The Ey com-
ponent is analogous to the Ez component (these are the two transverse
directions), so it has a γ Qy in the numerator. And all three compo-
nents now have a [(γ x)2 + y2 + z2]3/2 in the denominator. (When
y = 0, this field properly reduces to the two components in Eq. (5.13),
and it is properly symmetric with respect to y and z.) For convenience,
let’s label the denominator as D3/2. Then we have

4πε0
γ Q

∇ · E = ∂

∂x

(
x

D3/2

)
+ ∂

∂y

(
y

D3/2

)
+ ∂

∂z

(
z

D3/2

)

=
(

1
D3/2 − 3γ 2x2

D5/2

)
+

(
1

D3/2 − 3y2

D5/2

)

+
(

1
D3/2 − 3z2

D5/2

)

=
(

3
D3/2 − 3

(
(γ x)2 + y2 + z2)

D5/2

)

=
(

3
D3/2 − 3D

D5/2

)
= 0, (12.249)
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as desired. Note that this wouldn’t have worked out if the exponent
in the denominator hadn’t been 3/2, or equivalently if the net power
of length in the fraction hadn’t been −2. This is consistent with the
Er ∝ 1/r2 reasoning in part (a).

5.5 E from a line of moving charges
To find the field at point P in Fig. 12.83, consider a small interval of the

P
qdq

dq

r

Figure 12.83.
charges at angle θ , subtending an angle dθ , as shown. This angle is the
complement of the angle in Eq. (5.15), so the field at P due to the small
interval with charge dq is

dE = dq
4πε0�2

1 − β2

(1 − β2 cos2 θ)3/2 , (12.250)

where � = r/ cos θ . The length of the small interval is d(r tan θ) =
r dθ/ cos2 θ . (This can also be obtained from the zoomed-in view in
Fig. 12.84, which shows the length to be (� dθ)/ cos θ , with � = r/ cos θ .)

q

to P

cosq
 dq

 dq

Figure 12.84. So the charge is dq = λ(r dθ/ cos2 θ). By symmetry, only the field com-
ponent perpendicular to the stream will survive; this brings in a factor of
cos θ . So the total field at the given point P is radial and has magnitude

E =
∫ π/2

−π/2

dq
4πε0�2

1 − β2

(1 − β2 cos2 θ)3/2 cos θ

= 1
4πε0

∫ π/2

−π/2

λ(r dθ/ cos2 θ)

(r/ cos θ)2
1 − β2

(1 − β2 cos2 θ)3/2 cos θ

= λ(1 − β2)

4πε0r

∫ π/2

−π/2

cos θ dθ

(1 − β2 cos2 θ)3/2 . (12.251)

Using the integral table in Appendix K, this becomes

λ(1 − β2)

4πε0r
· sin θ

(1 − β2)
√

1 − β2 cos2 θ

∣∣∣∣π/2

−π/2
= λ(1 − β2)

4πε0r
· 2
(1 − β2)

= λ

2πε0r
, (12.252)

as desired.

5.6 Maximum field from a passing charge
In the rest frame of the proton, the antiproton flies by with a speed β that
is obtained from applying the velocity-addition formula to the lab-frame
velocities: β = 2βlab/(1+β2

lab). The γ factor associated with this speed is
γ = (1+β2

lab)/(1−β2
lab), as you can verify. With βlab ≈ 1, this becomes

γ ≈ 2/(1 − β2
lab) = 2γ 2

lab = 2 · 104.
The maximum value of the field in Eq. (5.15) is achieved when θ =

90◦, in which case the value is
(
Q/4πε0r2)/√1 − β2 = γ Q/4πε0r2.
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(We’ve dropped the primes on the coordinates.) The desired maximum
strength of the field is therefore

Emax = 1
4πε0

γ e
r2 =

(
9 · 109 kg m3

s2 C2

) (
2 · 104)(1.6 · 10−19 C

)
(
10−10 m

)2

= 2.88 · 1015 V/m. (12.253)

From Eq. (5.15), the field achieves half of the maximum intensity
when the (1 − β2 sin2 θ)3/2 factor in the denominator equals twice its
minimum value, which is (1 − β2)3/2. (We will find that θ will be very
close to π/2, so the variation in r in Eq. (5.15) can be ignored.) It’s a little
easier to work in terms of the small angle α defined by α ≡ π/2 − θ . We
then have sin2 θ = cos2 α = 1− sin2 α ≈ 1− α2. The (1− β2 sin2 θ)3/2

factor can then be written as

(
1 − β2(1 − α2)

)3/2 = (
1 − β2 + β2α2)3/2 ≈

(
1
γ 2 + α2

)3/2
,

(12.254)

where we have used 1 − β2 ≡ 1/γ 2 and β2 ≈ 1. Therefore, the field
achieves half of the maximum intensity at the α for which(

1
γ 2 + α2

)3/2
= 2

(
1
γ 2

)3/2
�⇒ 1

γ 2 + α2 = 22/3 1
γ 2

�⇒ α2 = 22/3 − 1
γ 2 . (12.255)

Hence

α ≈ 0.766
γ

= 0.766
2 · 104 = 3.83 · 10−5. (12.256)

At r = 10−10 m, the angle ±α spans a distance of r(2α) = 7.7 · 10−15 m,
which is traversed in a time of essentially 2rα/c = 2.6 · 10−23 s. Note that
Eq. (12.256) says that the angular width of the “pancake” of field lines is
on the order of 1/γ .

5.7 Electron in an oscilloscope
Lab frame Let the x direction be the direction of the electron’s ini-
tial velocity. In the lab frame F, Eq. (G.11) tells us that the momentum

is px = γ mv0, where γ = 1/

√
1 − v2

0/c2. This momentum is constant
throughout the motion because there is no field and hence no force in the
x direction. The time spent between the plates is t = �/v0 (ignoring the
effect discussed in Exercise 5.25, since the transverse motion is nonrela-
tivistic). The transverse force, which has the constant value of eE (we’ll
just deal with the magnitude here), equals the rate of change of transverse
momentum. So the final transverse momentum is

py = (eE)t = eE�

v0
. (12.257)
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Since py = γ mvy, the transverse velocity upon exiting is vy = py/γ m =
eE�/γ mv0. (The γ factor here involves the entire speed, which is essen-
tially v0, and not the transverse speed vy.) Since the transverse force is
constant, and since we are assuming that the transverse velocity is non-
relativistic, the transverse acceleration is also constant. The average trans-
verse velocity is therefore half of the vy we just found. That is, vy =
eE�/2γ mv0. The transverse distance traveled is then

y = vyt = eE�

2γ mv0

�

v0
= eE�2

2γ mv2
0

. (12.258)

It makes sense intuitively that this result grows with e, E, and �; and that
it decreases with m and v0. Note that the angle of deflection upon exiting,
which is given by py/px or equivalently vy/vx, equals eE�/γ mv2

0. This
is twice the value of y/x, as is always the case for constant transverse
acceleration, as you can check.

Electron frame Now consider the frame F′ in which the electron is
initially at rest. (We’ll call this the electron frame, even though the electron
will gradually accelerate away from it in the transverse direction.) The
plates move to the left with speed v0, and their length is length-contracted
down to �/γ . So they are above and below the electron for a time t′ =
(�/γ )/v0. The field in the electron frame F′ is larger than the field in
the lab frame F by a factor γ so6 E′ = γ E. The transverse momentum
acquired is therefore

p′y = eE′t′ = e(γ E)
t
γ

= eEt = eE�

v0
. (12.259)

But from Eq. (G.12) we see that the transverse momentum is unaffected by
a Lorentz transformation, so py in the lab frame also equals eE�/v0. This
agrees with the result in Eq. (12.257). In short, the transverse momenta
are equal because the field E′ is larger than E by a factor γ , but the time t′
is shorter than t by a factor γ , so these two effects exactly cancel.

In frame F′ the electron is nonrelativistic, so the final v′y is simply
v′y = p′y/m = eE�/mv0 (note that this is larger than the final vy in the lab
frame, by a factor γ ). The average transverse velocity is then v′y = v′y/2 =
eE�/2mv0. The total transverse distance traveled is therefore

y′ = v′yt′ = eE�

2mv0

�

γ v0
= eE�2

2γ mv2
0

. (12.260)

But from Eq. (G.2) we see that the transverse distance is also unaffected by
a Lorentz transformation, so y in the lab frame also equals eE�2/2γ mv2

0.
(Hence the “as measured in the lab frame” qualifier in the statement of
the problem wasn’t actually necessary.) This agrees with the result in
Eq. (12.258). In short, the transverse distances are equal because the speed

6 Remember that the field is smallest in the frame of the sources; see Eq. (5.7). The
relation E′ = γ E is also consistent with the fact that the force on the electron is larger
in the electron frame than in any other frame; see Eq. (5.17).
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v′y is larger than vy by a factor γ , but the time t′ is shorter than t by a factor
γ , so these two effects exactly cancel.

If you want to use the kinematic expression y = ayt2/2 in each frame,
then you will again find that y′ = y, because in the electron frame F′, the
time t′ is shorter by a factor γ , but the acceleration a′y is larger by a factor
γ 2 (because it takes a time that is γ shorter to achieve a final velocity that
is γ larger).

You should think about how all of the following facts relate: com-
pared with the corresponding quantities in the lab frame, t′ is smaller by a
factor γ , p′y and y′ are the same, E′ and v′y are larger by a factor γ , and a′y
is larger by a factor γ 2.

5.8 Finding the magnetic field
In the example at the end of Section 5.8, we found that the total force
was qE2/γ and the electric force was γ qE2. Assuming that q and σ are
positive, these forces are both repulsive. If the sum of the electric and
magnetic forces is to equal the total force, we need the magnetic force to
be attractive with magnitude

γ qE2 − qE2
γ

= γ qE2

(
1 − 1

γ 2

)
= γ qE2

(
v2

c2

)
= qv

(
γ vE2

c2

)
.

(12.261)

Since the magnetic force is given by qv × B, the qv(γ vE2/c2) attractive
force is exactly the force that arises from a magnetic field pointing out of
the page with magnitude γ vE2/c2, as desired.

5.9 “Twice” the velocity
(a) If the test charge sees the electrons moving backward with speed v0,

then the electrons see the test charge moving forward with speed v0.
So the test charge moves with speed v0 with respect to the electrons,
which in turn move (by definition) with speed v0 with respect to the
lab. This is exactly the situation where the velocity-addition formula
applies. Relativistically adding β0 with itself gives the β of the test
charge with respect to the lab frame as β = 2β0/(1+β2

0 ), as desired.
You can check that relativistically subtracting β0 from 2β0/(1 + β2

0 )

yields β0. This gives another way of solving the problem.

(b) First, note that the γ factor associated with the above value of β is

γ = 1√
1 − β2

= 1√√√√1 −
(

2β0

1 + β2
0

)2
= 1 + β2

0
1 − β2

0
. (12.262)

In the test-charge frame, the test charge sees the positive ions moving
backward with speed β (because they were at rest in the lab frame).
Their separation is contracted by a factor γ , so their density is in-
creased by a factor γ to (1+β2

0 )λ0/(1−β2
0 ). The test charge sees the

electrons move with the same speed β0 that they had in the lab frame
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(the direction is opposite, but that doesn’t matter here). So the electron
charge density is still −λ0. The net density that the test charge sees is
therefore

λ′ = λ0
1 + β2

0
1 − β2

0
− λ0 = 2β2

0λ0

1 − β2
0

. (12.263)

This agrees with Eq. (5.24), because in that equation we have

λ′ = γββ0λ0 =
(

1 + β2
0

1 − β2
0

)(
2β0

1 + β2
0

)
β0λ0 = 2β2

0λ0

1 − β2
0

, (12.264)

as desired.

12.6 Chapter 6
6.1 Interstellar dust grain

The grain in Exercise 2.38 has a radius of 3 · 10−7 m and is charged to a
potential of −0.15 V. Since φ = q/4πε0r, we have q = 4πε0rφ, which
gives

q = 4π

(
8.85 · 10−12 s2 C2

kg m3

)
(3 · 10−7 m)(−0.15 V) = −5 · 10−18 C.

(12.265)

Moving through a magnetic field B, the grain experiences a transverse
force qvB. If its path is a circle (which it is; see Problem 6.26 or Exer-
cise 6.29) of radius R, then F = ma gives qvB = mv2/R �⇒ v/R =
qB/m. So the “cyclotron” frequency, ω = v/R, equals

ω = qB
m

= (5 · 10−18 C)(3 · 10−10 T)

10−16 kg
= 1.5 · 10−11 s−1. (12.266)

The period is then T = 2π/ω = 4.2 · 1011 s ≈ 13,000 years. Note that this
is independent of the speed v and the radius R (which are proportional to
each other, for given q, B, m).

6.2 Field from power lines
The power is P = IV , so the current equals

I = P
V

= 107 J/s
5 · 104 J/C

= 200 A. (12.267)

The field due to one wire is then

B = μ0I
2πr

=
(
4π · 10−7 kg m/C2)(200 A)

2π(1 m)
= 4 · 10−5 T. (12.268)

The other wire causes an equal field (in the same direction), so the total
field midway between the wires is 8 · 10−5 tesla, or 0.8 gauss.

6.3 Repelling wires
We first need to find the location of the center of mass of BCDE. This can
be done in various ways. Since the vertical sides are twice as long as the
bottom side, the object is equivalent to a mass (2m + 2m) located 15 cm
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below the top, plus a mass m located 30 cm below the top. The center of
mass is 1/(4+ 1) of the way between these two effective masses, which
means 3 cm below the 4m, or 18 cm below the top.

The total weight is (0.75 m)(0.08 N/m) = 0.06 N. If F is the repulsive
magnetic force between CD and GH, then balancing the torques around
BE gives F(0.30 m) = (0.06 N)(0.18 m) sin θ , where θ is the angle that
BC makes with the vertical. Therefore,7

F = (0.06 N) · 18
30

· 0.5
30

= 6 · 10−4 N. (12.269)

We know from Eq. (6.15) that the force on a length � of wire due to the
magnetic field from an infinite wire carrying the same current is F =
μ0I2�/2πr. Setting this equal to 6 · 10−4 N gives

(4π · 10−7 kg m/C2)I2(0.15 m)

2π(0.005 m)
= 6 · 10−4 N �⇒ I = 10 A.

(12.270)

The equilibrium is stable, because a larger angle yields a smaller magnetic
torque and a larger gravitational torque, which makes the angle decrease.
And likewise a smaller angle yields a larger magnetic torque and a smaller
gravitational torque, which makes the angle increase.

If you solve for I symbolically, you can show that I = (
2πgλmr2(h+

�)/μ0h�
)1/2, where λm is the mass density per unit length of the wire (so

gλm is the weight per unit length), h is the height of BC, � is the length of
CD, and r is the deflection distance. We see that I is proportional to r, and
also that I decreases if both h and � are scaled up by the same factor.

6.4 Vector potential for a wire
Since the unit vector θ̂ equals − sin θ x̂ + cos θ ŷ, and since sin θ = y/r
and cos θ = x/r, we can write B in terms of Cartesian coordinates as

B = μ0I
(−(y/r)x̂ + (x/r)ŷ

)
2πr

= μ0I
2π

(−yx̂ + xŷ
x2 + y2

)
. (12.271)

The vector potential A(x, y, z) can be written as (using ln r2 = 2 ln r)

A = −ẑ
μ0I
4π

ln r2 = −ẑ
μ0I
4π

ln(x2 + y2). (12.272)

The components of ∇ × A are

(∇ × A)x = ∂Az

∂y
− ∂Ay

∂z
= μ0I

2π

−y
x2 + y2 ,

(∇ × A)y = ∂Ax

∂z
− ∂Az

∂x
= μ0I

2π

x
x2 + y2 ,

(∇ × A)z = ∂Ay

∂x
− ∂Ax

∂y
= 0, (12.273)

which are correctly equal to the components of B.

7 Although we’ve made a few (quite reasonable) small-angle approximations in this
reasoning, you can show that the following result happens to be exact.
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6.5 Vector potential for a finite wire
(a) In both of Eqs. (6.34) and (12.272) we took the log of a quantity

with dimensions, either length or length squared. But it makes no
sense to take the log of a dimensionful quantity. Any function that
can be represented by a Taylor series (with more than one term) can
only be a function of a dimensionless quantity, because otherwise we
would be adding quantities with different dimensions in the Taylor
series. And a meter plus a square meter makes no sense. So the ln r
in Eq. (6.34) should really be ln(r/a), where a is some length. But,
having said this, you will quickly find that when taking the curl of A
to find B, the a cancels out. It therefore doesn’t matter what the value
of a is, and that’s why we got away with ignoring it. Equivalently,
ln(r/a) equals ln r − ln a, and adding on a constant doesn’t affect the
derivative.

But this raises the following question: what does a particular value
of a have to do with an infinitely long and infinitesimally thin wire?
Such a wire has no natural length scale (other than 0 and ∞), so there
is no way that a particular finite value of a could possibly arise from a
calculation involving the wire. If a parameter doesn’t exist at the start

P

q
dq

r

L L

Figure 12.85.

of a calculation, then it doesn’t exist at the end either. We’ll answer
this question after solving part (b).

(b) Consider a small element of the current at angle θ and subtending an
angle dθ , as shown in Fig. 12.85. If � is the distance from the point
P in question to the small element, then Fig. 12.86 shows that the
length of the element is � dθ/ cos θ . The expression for A in Eq. (6.46)
therefore gives

A = μ0I
4π

∫
dl
r12

= 2 · μ0I
4π

∫ θ0

0

� dθ/ cos θ

�
x̂, (12.274)

where θ0 = tan−1(L/r). The �’s cancel, so we just have
∫

dθ/ cos θ ,q

to P

cosq

 dq

 dq

Figure 12.86.

which the integral table in Appendix K gives as ln[(1+ sin θ)/ cos θ ].
We therefore obtain (the lower limit of the integration gives zero con-
tribution)

A = μ0I
2π

ln
(

1 + sin θ0
cos θ0

)
x̂ = μ0I

2π
ln

(
1 + L/

√
L2 + r2

r/
√

L2 + r2

)
x̂

= μ0I
2π

ln

(√
L2 + r2 + L

r

)
x̂. (12.275)

In the L � r limit, the r2 term in the numerator is negligible,
so A simplifies to A = (μ0I/2π) ln(2L/r)x̂. If we write this as
A = −(μ0I/2π) ln(r/2L)x̂, then we see that the length a referred
to in part (a) is simply the total length of the wire. Since this is
the only length scale of the wire, a has no choice but to be some
multiple of L.

Of course, replacing the 2L by, say, 5L or by any other constant
length would still yield an expression for A that would produce the
correct B field. So it doesn’t make any sense to say that 2L gives the
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“correct” value of A. (We know that the same type of statement is true
for the electrostatic potential φ, because we can add on an arbitrary
constant there, too.) But it is reassuring to see how the technically
necessary parameter a in ln(r/a) arises for a finite wire.

Since the final result for B is independent of L (or rather, since
it has a dependence on L that goes to zero as L → ∞, if we use
the exact form of A in Eq. (12.275)), we can take the L → ∞ limit
and nothing changes. Note that if you calculate B directly by using
the Biot–Savart law (see Exercise 6.45), the integral converges, so
there is no need to truncate the integral by giving the wire a finite
length.

6.6 Zero divergence of A
Let us first show that ∇1(1/r12) = −∇2(1/r12). This follows from explic-
itly calculating the derivatives in Cartesian coordinates. With

r12 = [
(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2]1/2, (12.276)

the x component of ∇1(1/r12) is

∂

∂x1

[
(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2]−1/2 = x2 − x1

r3
12

. (12.277)

Similarly, the x component of ∇2(1/r12) is (x1 − x2)/r3
12. These are the

negatives of each other, as promised. Likewise for the y and z components.
In calculating ∇ · A, it is understood that the ∇ operator here is ∇1,

because A is a function of the “1” coordinates. So taking the divergence
of Eq. (6.44) yields (the steps are explained below)

∇1 · A1 = μ0
4π

∫
∇1 ·

(
J2
r12

)
dv2

= μ0
4π

∫ (
1

r12
∇1 · J2 + J2 · ∇1

(
1

r12

))
dv2

= μ0
4π

∫ (
− 1

r12
∇2 · J2 − J2 · ∇2

(
1

r12

))
dv2

= −μ0
4π

∫
∇2 ·

(
J2
r12

)
dv2

= −μ0
4π

∫
S

(
J2
r12

)
· da2

= 0, (12.278)

as desired. In the first line, we were able to bring the ∇1 operator inside
the integral because the integral is with respect to the “2” coordinates.
In the second line we used the given vector identity. The first terms in
the second and third lines are equal because they are both zero so the
minus sign doesn’t matter (∇1 · J2 is zero because J2 doesn’t depend on
the “1” coordinates, and ∇2 · J2 is zero because the current is assumed
to be steady); and the second terms are equal due to the above result
for the gradients of 1/r12. In the fourth line we used the given vector
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identity in reverse. In the fifth line we used the divergence theorem, with
S being a surface at infinity. In the sixth line we used the fact that there is
zero net current flowing out of a sphere at infinity, which is the statement
of global conservation of charge. (We generally assume the more strict
condition that the current is actually zero at infinity, in which case the sur-
face integral is certainly zero). Note that the main goal in the above string
of equations was simply to exchange the ∇1 operator for the ∇2 opera-
tor, because this allowed us to apply the divergence theorem to the dv2
integral.

6.7 Vector potential on a spinning sphere
(a) Consider the contribution to A at the point (R, 0, 0) from the ring

shown in Fig. 12.87; A is given by (μ0/4π)
∫

J dV/r. As the ring

x

z

R

q

Figure 12.87.

rotates around the z axis along with the sphere, all of its points have a
positive velocity component vy (into the page). Points with y < 0 have
a positive vx component, and points with y > 0 have a negative vx
component. These vx components cancel in pairs in the above integral,
so we need only worry about the vy components.

It turns out that all points on the ring have the same vy. This can be
seen by noting that the total speed v is related to the distance

√
x2 + y2

from the z axis by v = ω
√

x2 + y2. But in finding the vy component of
the velocity, we must multiply by x/

√
x2 + y2. So vy at all points on

the ring equals ωx, where x is the common x coordinate of the points.
Therefore, for the present purposes, we can consider the ring simply
to be sliding with speed vy = ωx = ωR cos θ in the y direction. Hence
A at the point (R, 0, 0) has only a y component.

The area of the ring is da = (2πR sin θ)(R dθ). If we imagine
the ring to have a slight thickness dr filled with volume charge den-
sity ρ, then the Jy dV part of A can be written as (ρvy)(da dr) =
(ρ dr)(vy da) = σvy da. (We have used the fact that J can be writ-
ten as ρv, as you should check.) The point (R, 0, 0) is a distance
r = 2R sin(θ/2) from all points on the ring, so we have

Ay = μ0
4π

∫
Jy dV

r
= μ0

4π

∫ π

0

σ(ωR cos θ) · (2πR sin θ)(R dθ)

2R sin(θ/2)

= μ0R2σω

4

∫ π

0

sin θ cos θ dθ

sin(θ/2)
. (12.279)

Writing sin θ as 2 sin(θ/2) cos(θ/2) and cos θ as 1 − 2 sin2(θ/2), we
obtain

Ay = μ0R2σω

2

∫ π

0
cos(θ/2)

(
1 − 2 sin2(θ/2)

)
dθ

= μ0R2σω

2

(
2 sin(θ/2) − (4/3) sin3(θ/2)

)∣∣∣∣π
0

= μ0R2σω

3
. (12.280)
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(b) The rotation around the ω1 vector in Fig. 6.34 contributes nothing
to A, because for every piece of the sphere moving one way there is
another piece moving the other way, at the same distance r from the
point (x, 0, z). So the contributions to the integral expression for A
cancel in pairs.

We therefore need only worry about the ω2 rotation. But this is just
the setup from part (a), with the only change being that the magnitude
of ω is now |ω2| = ω cos β. A still has only a y component (into the
page), so Eq. (12.280) gives (using R cos β = x)

Ay = μ0R2σ(ω cos β)

3
= μ0xRσω

3
. (12.281)

(c) All points on the spherical shell with the same value of z (in other
words, a horizontal circle) have the same magnitude of A, by symme-
try. Only the direction differs; A points tangentially around the circle.
If the radius of this circle is r (which was just x in part (b)), then from
part (b) the magnitude of A is A = μ0rRσω/3. Figure 12.88 shows

x

r

y

A

a

a
(x, y,  z)

(Top view)

Figure 12.88.

a top view, looking down along the z axis. The components of A are
(−A sin α, A cos α, 0), so the desired value of A at an arbitrary point
on the surface of the sphere is

A = μ0Rσω

3
(−r sin α, r cos α, 0) = μ0Rσω

3
(−y, x, 0). (12.282)

At this point, you have all the information needed to use the strategy
in Problem 11.8(b) to find the magnetic field inside our rotating hollow
spherical shell. But we’ll save that for Chapter 11 because it builds on
a strategy used in Chapter 10.

6.8 The field from a loopy wire
The Biot–Savart law gives the field contribution from a piece dl of the
wire as dB = (μ0/4π)I dl × r̂/r2. At a point very far from the wire, the
r̂ vector and r distance are essentially the same for all points in the wire.
So when we integrate over the entire wire, we can take these quantities
outside the integral. The field due to the wire is therefore

B = μ0
4π

∫
I dl × r̂

r2 = μ0I
4πr2

(∫
dl

)
× r̂ = μ0I

4πr2 l × r̂, (12.283)

where l is the vector from one point to the other. This result is simply the
result for the field due to a straight wire between the two points, as desired.

6.9 Scaled-up ring
The resistance of each ring takes the form of R = ρL/A, where ρ is
the resistivity, L is the circumference, and A is the cross-sectional area.
The resistance of the larger ring is therefore half that of the smaller ring,
because L scales like length, and A scales like length squared. Hence the
current in the larger ring is twice that in the smaller ring, because the volt-
age is the same. But Eq. (6.54) gives the magnetic field at the center of a
ring as μ0I/2r. Since the larger ring has twice the current and twice the
radius, the field at the center is the same.
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6.10 Rings with opposite currents
On the axis, let z = 0 correspond to the point midway between the rings.
Then from Eq. (6.53) the field on the axis at a general value of z has
magnitude

Bz = μ0Ia2

2
(
a2 + (z − ε/2)2

)3/2 − μ0Ia2

2
(
a2 + (z + ε/2)2

)3/2 . (12.284)

We could use a Taylor series to calculate this difference to lowest order in
ε. But it’s easier to use the fact that, by definition, the difference is simply ε

times the (negative of the) derivative of the function μ0Ia2/2(a2+z2)3/2.
So we have

Bz = −ε
d
dz

(
μ0Ia2

2(a2 + z2)3/2

)
= 3εμ0Ia2

2
z

(a2 + z2)5/2 . (12.285)

We want to maximize this function of z. Using the quotient rule and setting
the numerator of the derivative equal to zero gives

0 = (a2 + z2)5/2(1) − z(5/2)(a2 + z2)3/2(2z)

�⇒ 0 = (a2 + z2) − 5z2 �⇒ z = a/2. (12.286)

The maximum value turns out to be 24εμ0I/
(
25
√

5a2).

6.11 Field at the center of a sphere
In Fig. 12.89, let the axis of rotation point vertically, and consider a ring

q

w

dw

R

Length d

dB

Figure 12.89.

on the shell located at an angle θ down from the vertical, subtending an
angle dθ . The width of the ring is dw = R dθ , and the velocity of any
point on it is v = ω(R sin θ). The amount of charge that passes by a given
point in time dt is dq = σ(dw)(v dt) = σ(R dθ)(ωR sin θ)dt. The current
produced by the ring is therefore I = dq/dt = σωR2 sin θ dθ .

From the Biot–Savart law, a small piece of the ring with length dl
at the location shown in Fig. 12.89 produces a dB field at the origin that
points up to the left as shown, with magnitude (μ0/4π)I dl/R2. When we
integrate over the whole ring, the horizontal components of the dB vectors
cancel, and we are left with only a vertical component. This brings in a
factor of sin θ . For a given ring, the dl in the Biot–Savart law integrates up
to the length of the ring, which is l = 2π(R sin θ). The contribution to the
field from a given ring at angle θ , subtending an angle dθ , is therefore

ẑ
μ0
4π

Il
R2 sin θ = ẑ

μ0
4π

(σωR2 sin θ dθ)(2πR sin θ)

R2 sin θ

= ẑ
1
2
μ0σωR sin3 θ dθ . (12.287)

Integrating this from 0 to π gives the total field at the origin. You can
either look up the integral in a table, or write sin3 θ as sin θ(1 − cos2 θ).
The result is

B = ẑ
1
2
μ0σωR

∫ π

0
sin3 θ dθ = ẑ

1
2
μ0σωR

(
− cos θ + cos3 θ

3

)∣∣∣∣∣
π

0

= ẑ
2
3
μ0σωR. (12.288)
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Interestingly, the magnetic field takes on this same value everywhere
inside the sphere; see Problems 11.7 and 11.8.

The field in Eq. (12.288) happens to be 4/3 as large as the field at the
center of a spinning disk with the same R, σ , ω values, which is Bdisk =
ẑμ0σωR/2; see Exercise 6.49.

6.12 Field in the plane of a ring
Let the current flow counterclockwise around the ring in Fig. 12.90.
Consider a small piece of the ring at angle θ with respect to the line to

q

dq

P

I

a

r

dl

Figure 12.90.

the point P in question, and subtending an angle dθ . In Cartesian coor-
dinates (with x horizontal, y vertical, and z pointing out of the page), we
have dl = (R dθ)(− sin θ , cos θ , 0) and r = (a−R cos θ ,−R sin θ , 0). The
cross product of these two vectors is

dl × r = (R dθ)

∣∣∣∣∣∣
x̂ ŷ ẑ

− sin θ cos θ 0
a − R cos θ −R sin θ 0

∣∣∣∣∣∣ = (R dθ)(R − a cos θ)ẑ.

(12.289)

Note that if P is outside the ring (that is, a > R), then cos θ = R/a is
the cutoff angle between the field contributions pointing into or out of the
page. This is correctly the angle at which the r vector is tangent to the
ring; the small piece of current is then parallel to r and therefore produces
no magnetic field at the point P. If P is inside the ring (that is, a < R),
then dl × r points out of the page for all θ .

The law of cosines tells us that r = (a2 + R2 − 2aR cos θ)1/2, so the
Biot–Savart law gives

B = μ0I
4π

∫
dl × r

r3 = 2 · μ0I
4π

∫ π

0

(R − a cos θ)R dθ

(a2 + R2 − 2aR cos θ)3/2 ,

(12.290)

with positive corresponding to pointing out of the page. The factor of 2 out
front comes from the fact that we are integrating only from 0 to π . It turns
out that B points into the page if P is outside the ring (and if the current
is counterclockwise, as shown in Fig. 12.90); the contributions from the
closer points on the ring “win,” so the net field points into the page.

In the special case where a = 0 we have

B = μ0I
2π

∫ π

0

(R)R dθ

(R2)3/2 = μ0I
2π

· π

R
= μ0I

2R
, (12.291)

as desired.

6.13 Magnetic dipole
Factoring out a few powers of a in the numerator and denominator in
Eq. (6.94) yields

B = −μ0IR
2πa2

∫ π

0

(
cos θ − R

a

)(
1 + R2

a2 − 2R
a

cos θ

)−3/2

dθ .

(12.292)
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Ignoring the very small R2/a2 term and using (1 + ε)−3/2 ≈ 1 − 3ε/2
gives

B ≈ −μ0IR
2πa2

∫ π

0

(
cos θ − R

a

)(
1 + 3

2
· 2R

a
cos θ

)
dθ . (12.293)

The leading-order term (the one not involving a factor of R/a) is zero since∫ π
0 cos θ dθ = 0. We therefore have (dropping the R2/a2 term)

B ≈ −μ0IR
2πa2

∫ π

0

R
a

(
3 cos2 θ − 1

)
dθ . (12.294)

You can calculate this integral, or you can just note that the average value
of cos2 θ from 0 to π is 1/2. Replacing cos2 θ with 1/2 yields

B ≈ −μ0IR
2πa2 · R

a
· π

2
= −μ0

4π

πR2I
a3 ≡ −μ0

4π

m
a3 , (12.295)

as desired. The minus sign here comes from the sign convention in Prob-
lem 6.12. But in general the direction of the field is determined by the
contribution from the current in the nearer side of the ring.

6.14 Far field from a square loop
(a) All parts of the horizontal sides are essentially perpendicular to the

radius vector to P, so in the Biot–Savart law we can set the sin θ term
in the cross product equal to 1. The two horizontal sides therefore give
Biot–Savart contributions of ±(μ0/4π)Ia/(r ± a/2)2. These contri-
butions point in opposite directions, so to leading order in a the net
field at P is

B = μ0Ia
4πr2

(
1

(1 − a/2r)2 − 1
(1 + a/2r)2

)

≈ μ0Ia
4πr2

(
1

(1 − a/r)
− 1

(1 + a/r)

)

≈ μ0Ia
4πr2

((
1 + a

r

)
−

(
1 − a

r

))
= μ0Ia2

2πr3 , (12.296)

as desired. The sign is determined by the edge that is closest to P.
The field points into the page if the current is counterclockwise in
Fig. 6.36.

(b) We made two approximations in the reasoning that led to the above
result. One is inconsequential, the other is critical. The inconsequen-
tial approximation is that we set the sin θ term in the Biot–Savart law
equal to 1. But the horizontal edges aren’t exactly perpendicular to the
radius vector to P at all points. However, you can show that the tiny
correction is smaller than the leading-order result of order a2/r3, by a
factor of order a2/r2. So the correction term is of order a4/r5, which
is too small to matter. (Using the same r value for all points on a given
edge yields the same type of error.)

The critical approximation we made is that we neglected the field
contributions from the two vertical sides. True, these sides are nearly
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parallel to the radius vector to P, so the cross product in the Biot–
Savart law is very small. But it isn’t small enough to neglect. The
point is that the small contributions from the two vertical sides point
in the same direction (both out of the page in Fig. 6.36), whereas
the larger contributions from the two horizontal sides point in oppo-
site directions. And the sum of the small contributions is of the same
order of magnitude as the difference of the (nearly identical) larger
contributions. Things quickly work out quantitatively as follows.

In Fig. 6.36 the fields from both of the vertical edges point out
of the page with magnitude (μ0/4π)(Ia/r2)

(
(a/2)/r

)
, where the last

factor comes from the cross product in the Biot–Savart law; the sine
of the angle between a vertical edge and the radius vector to P is
essentially equal to (a/2)/r. Doubling this result because there are
two vertical sides gives μ0Ia2/4πr3. This field points out of the page,
so it partially cancels the into-the-page result from part (a). The net
field therefore points into the page with magnitude μ0Ia2/4πr3, as
we wanted to show.

6.15 Magnetic scalar “potential”
(a) The curl in cylindrical coordinates is given in Appendix F. Since B

has only a θ̂ component, and since this component has only r depen-
dence, the only term in the curl that has a chance of being nonzero is
(1/r)

(
∂(rBθ )/∂r)ẑ. But Bθ ∝ 1/r, so this term is zero, as desired.

Alternatively, we can use Cartesian coordinates. With the symme-
try axis pointing along the z axis, the tangential B field lies in the
xy plane and is proportional to the vector ±(−y, x, 0). (This direc-
tion can be deduced from the fact that the dot product with the radial
vector (x, y, 0) must be zero.) We need the magnitude of B to be
μ0I/2πr, so B must equal [μ0I/2π(x2 + y2)](−y, x, 0). The only
component of the curl that has a chance of being nonzero is the z com-
ponent, which is ∂By/∂x − ∂Bx/∂y. You can quickly check that this
equals zero.

(b) In cylindrical coordinates, the θ̂ component of the gradient of a func-
tion ψ is given in Appendix F as (1/r)(∂ψ/∂θ)θ̂ . So we want

1
r

∂ψ

∂θ
= μ0I

2πr
�⇒ ∂ψ

∂θ
= μ0I

2π
�⇒ ψ = μ0I

2π
θ . (12.297)

We therefore see that B can be written as ∇ψ . However, the problem
with this ψ is that it is multi-valued. For example, for given r and z,
the values θ = 0, 2π , 4π , etc., all correspond to the same point in
space. So ψ cannot be used as a potential that uniquely labels each
point in space. In a limited region, however, it can be of use.

6.16 Copper solenoid
Since there are two layers, the average diameter of the turns in the coil is
(8 + 2 · 0.163) cm ≈ 8.3 cm. The total length of the wire is

(
π · 8.3

cm
turn

)(
4

turns
cm

)(
32

cm
layer

)
(2 layers) ≈ 6700 cm = 67 m.

(12.298)
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The resistance is R = (67 m)(0.01 �/m) = 0.67 �, so the current is I =
(50 V)/(0.67 �) = 75 A. The power is then P = IV = (75 A)(50 V) =
3750 J/s.

From Eq. (6.56) the field at the center of the solenoid is B=
μ0nI cos θ , where n = 8 turns/cm = 800 turns/m, I = 75 A, and θ =
tan−1(4/16). So we have

B = μ0nI cos θ =
(

4π · 10−7 kg m
C2

) (
800 m−1)(75 A) cos 14◦

= 0.0732 T, (12.299)

or 732 gauss. The field of an infinitely long solenoid would be μ0nI, which
equals 754 gauss.

6.17 A rotating solid cylinder
(a) Let’s slice up the solid cylinder into a collection of thin shells with

thickness dr. The effective surface charge density of such a shell is
σr = ρ dr. Now, if a cylindrical shell with radius r and surface charge
density σr spins with frequency ω, the surface current density is Jr =
σrvr = σrωr. This is true because the area that crosses a segment of
length � in time dt is �(vr dt), so the charge per time is σr�vr . The
current per length (which is J by definition) is therefore σrvr .

In terms of Jr , the interior magnetic field due to the current running
around the cylinder is Br = μ0Jr . This is just the continuum limit of
the B = μ0nI expression for a solenoid. Putting the above results
together, the interior field due to one of the shells is

Br = μ0Jr = μ0(σrvr) = μ0(ρ dr)(ωr) = μ0ρωr dr. (12.300)

The axis is inside all of the shells, so integrating over all the shells
from r = 0 to r = R gives the total magnetic field on the axis as
B = μ0ρωR2/2.

Alternatively, we can solve this problem with Ampère’s law. Con-
sider the loop indicated by the dashed line in Fig. 12.91. To find the

R

r

dr

Figure 12.91.

current enclosed, we can use the fact that J = ρvr (which you should
verify). Hence J = ρωr. The current passing through a thin strip
with width dr and height � at radius r is then dI = J� dr = ρω�r dr.
Integrating from r = 0 to r = R gives the current enclosed as
I = ρω�R2/2. The field is zero outside the cylinder (because the
cylinder is a superposition of solenoids), so the only contribution to
the line integral in Ampère’s law comes from the side of the loop lying
along the axis. Therefore B� = μ0(ρω�R2/2) �⇒ B = μ0ρωR2/2,
as above.

(b) If all the charge is located on the surface, then the surface charge
density is given by σ2πR = ρπR2, because these are two different
expressions for the charge per unit length along the cylinder. Hence
σ = ρR/2. The magnetic field on the axis (or anywhere inside) is then

B = μ0J = μ0(σωR) = μ0(ρR/2)ωR = μ0ρωR2/2, (12.301)

which equals the B in part (a). The reason for this is the following.
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Consider taking the charge on one of the many shells in the solid
cylinder and moving it out to the surface. How does this affect the
field on the axis? It doesn’t, because the field depends only on J , and
J doesn’t change if we move the charge outward. The same amount of
charge makes one revolution in the same amount of time, independent
of the radius of the shell at which it resides (because all shells rotate
with the same ω). We can therefore take every shell and move its
charge out to the surface without affecting the field on the axis.

6.18 Vector potential for a solenoid
First, note that A must have only a θ̂ component, that is, it must point in
the tangential direction around the axis of the solenoid. This follows from
the fact that each dA contribution points in the same direction as the J
current that produces it. (See Eq. (6.44), although that equation relies on
the div A = 0 assumption in Eq. (6.40).) And every piece of current in the
system points in the θ̂ direction. Furthermore, Aθ can have no dependence
on θ or z, by symmetry. So the one nonzero component, Aθ , must be a
function only of r. Our goal is therefore to find the function Aθ (r).

(a) From Problem 6.41 we know that the magnetic flux is given by � =∫
C A · dl. If we take the curve C to be a circle with radius r inside the

solenoid, this relation becomes

B(πr2) = Aθ (2πr) �⇒ Aθ = (μ0nI)(πr2)

2πr
= μ0nIr

2
(inside).

(12.302)

If the curve C is a circle outside the solenoid, we obtain

B(πR2) = Aθ (2πr) �⇒ Aθ = (μ0nI)(πR2)

2πr
= μ0nIR2

2r
(outside).

(12.303)

(b) Since we have only one component, Aθ (r), the only nonzero term in
the expression for the curl in cylindrical components given in
Appendix F is ẑ(1/r)∂(rAθ )/∂r. So inside the solenoid, B = ∇ × A
becomes

ẑμ0nI = ẑ
1
r

∂(rAθ )

∂r
�⇒ ∂(rAθ )

∂r
= μ0nIr

�⇒ rAθ = μ0nIr2

2
�⇒ Aθ = μ0nIr

2
(inside), (12.304)

in agreement with the result in part (a). Outside the solenoid, B =
∇ × A becomes

0 = ẑ
1
r

∂(rAθ )

∂r
�⇒ ∂(rAθ )

∂r
= 0

�⇒ rAθ = C �⇒ Aθ = C
r

(outside). (12.305)

We see that any field proportional to 1/r yields zero curl outside
the solenoid. The field in Eq. (12.303) is a special case of this. All
fields that are proportional to 1/r yield the same zero curl, but not the
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same line integral around a circle of radius r. This is due to the fact
that the curl of 1/r diverges at the origin; you should think about how
Stokes’ theorem comes into play. The issue here is similar to the one
discussed in Problem 2.26.

P

Figure 12.92.

Inside the solenoid, if we had included a constant of integration in
Eq. (12.304), we would have obtained an additional term of the form
C/r. Although this wouldn’t affect the B = μ0nIẑ result at points
away from the origin, it would yield an infinite B at r = 0. So we
must reject this term.

6.19 Solenoid field, inside and outside
(a) First solution The longitudinal nature of the field follows from con-

sidering the contributions from two loops on either side of a given
point P, equidistant from P. Figure 6.15 shows the field due to one
ring, so the fields due to two rings are shown in Fig. 12.92. At any
point P on the plane midway between the rings, the magnetic field
points in the longitudinal direction, because the radial components
cancel, as shown. This argument holds both inside and outside the
solenoid, although we will find in part (c) that the field outside is
actually zero. You should convince yourself why there are cancela-
tion effects that make it possible for the field to be zero outside, but
not inside.

Second solution We can show that the Biot–Savart contributions
from corresponding small intervals of two symmetrically located cir-
cles sum to a longitudinal vector. This argument (along with all the
other results in this problem) actually holds for a solenoid with a

P M

r1

r2

r1 – r2

–r2

r1 + r2

dl

dl

Figure 12.93.

cross-section of arbitrary uniform shape. To see why, consider the
Biot–Savart dl × r cross products involved in calculating the field at
point P in Fig. 12.93 due to the two dl pieces shown. The point M is
midway between the two pieces, and the various vectors are labeled
as shown. The sum of the two dl × r contributions is

dl × (r1 + r2) + dl × (r1 − r2) = 2 dl × r1. (12.306)

Now, r1 points in a transverse direction (that is, perpendicular to the
axis) because both M and P lie on the plane midway between the
loops. And dl points in a transverse direction too, of course. Since
the cross product of two vectors is perpendicular to both vectors, we
see that dl × r1 points in the longitudinal direction, as desired. This
reasoning holds both inside and outside the solenoid.

(b) Having shown that the field is longitudinal, we will now show that it
is uniform inside (and outside) the solenoid. It is certainly uniform in
the longitudinal direction, by symmetry. So the task is to show that it
is uniform in the transverse direction. Consider a rectangular Ampe-
rian loop lying completely inside the solenoid, with two sides pointing
in the longitudinal direction, and two sides pointing in a transverse
direction, as shown in Fig. 12.94. This loop encloses zero current,
so the line integral of B must be zero. The line integral is nonzero
only along the longitudinal sides (this would effectively be true even
if there existed a component of B in the transverse direction, because
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the contributions would cancel on the two transverse sides of the rect-
angle). So the field must have the same value on the longitudinal sides.
Since the rectangle can have an arbitrary width and be positioned at
an arbitrary location inside the solenoid, we conclude that the field
must be uniform inside the solenoid. The same reasoning holds out-
side the solenoid, so the field is uniform there too (with a different
value, as we will see).

Figure 12.94.

We must now determine how these two uniform values (inside and
outside) are related. If we draw a rectangular Amperian loop with one
longitudinal side inside the solenoid and the other outside (let these
sides have length �), as shown in Fig. 12.95, the loop now encloses a
current of nI�. Ampère’s law therefore gives (taking positive current
to point into the page)

Bin� − Bout� = μ0nI� �⇒ Bin = Bout + μ0nI. (12.307)

Note that since the transverse width of the rectangle can have any
size, this argument by itself shows that the field is uniform inside and
outside. We technically didn’t need to include the previous paragraph.

(c) The Bin = Bout +μ0nI result, combined with the above results about
uniformity, implies that if we can show that the field is zero at any
point outside the solenoid, then we have shown that B = 0 everywhere
outside, and B = μ0nI everywhere inside. And indeed, we can show
that B = 0 at infinity, as follows.

Figure 12.95.

Consider the field at a point P due to a particular loop of the sole-
noid. Let P be a large distance from the loop (large compared with the
size of the loop). The field due to the loop is smaller than the field due
to a straight wire segment that has the same length b = 2πa as the
loop (where a is the radius of the solenoid) and that is oriented per-
pendicular to the vector to P. (This is true because the current moves
in different directions around the loop, so the Biot–Savart contribu-
tions partially, or actually mostly, cancel.) Therefore, an upper bound
on the field due to the solenoid is the field due to an infinite set of
straight wire segments with length b, lined up side by side. Only the
longitudinal components of the fields due to these wires will survive,
but we don’t need to use this fact. It turns out that we can obtain a suf-
ficiently small upper bound on the field by adding up the magnitudes
of the fields due to the wire segments. This certainly overestimates
the net field. The magnitude of the field due to a distant wire segment
is (μ0/4π)Ib/(x2 + r2), where r is the perpendicular distance from P
to the solenoid, and x is the distance shown in Fig. 12.96. There are n

P

r

x

Figure 12.96.

wire segments per unit length, so an upper bound on the field due to
the solenoid is

Bbound = μ0nIb
4π

∫ ∞
−∞

dx
x2 + r2 . (12.308)

The integral here equals (1/r) tan−1(x/r)
∣∣∞−∞ = π/r. So in the r →

∞ limit, our upper bound on B is zero; B must therefore be zero
at r = ∞, as we wanted to show. Due to the overestimates we made
above, the field actually goes to zero much faster than 1/r, but
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(Sheet) (Slab) (Total)

m0Jb m0Jb

2m0Jb
m0Jx m0J(b+x)

b–b
x

B

Figure 12.97. our coarse estimates were good enough to get the job done. Another
method is to use the fact that the field due to a ring behaves like 1/d3

at large distances d. In Eq. (6.53), we showed this for points on the
axis. You can think about how to treat a general point in space; we
will discuss this in Chapter 11.

This problem can also be solved by skipping part (c), and instead
combining the results of parts (a) and (b) with the result in Eq. (6.57)
for the field on the axis. The important point to note is that we need
to calculate the actual value of B at at least one point (because part
(b) involves only differences in B values), and the easiest options are
a point on the axis or a point at infinity.

6.20 A slab and a sheet
(a) The total magnetic field equals the field due to the thin sheet plus the

field due to the thick slab. The field due to the thin sheet is simply
μ0J /2 = μ0(2bJ)/2 = μ0Jb. (This can be found via an Ampe-
rian loop with a side on either side of the sheet.) It points upward on
the left, and downward on the right; see the step function shown in
Fig. 12.97. (The direction can be found by imagining the sheet to be
built up from a series of parallel wires.)

x

BB

b

h

−b

y

J
Out of 
 page

2x

Figure 12.98.

To find the magnetic field due to the thick slab, consider an Ampe-
rian loop centered in the slab, as shown in Fig. 12.98. The slab is
symmetric under translations in the y direction, so the field must be
independent of y. Also, the slab is symmetric under rotations by 180◦
around the z axis, so the y component of the field must be an odd
function of x, otherwise the field wouldn’t look the same after a rota-
tion by 180◦. (Additionally, you can rule out x and z components by
considering the slab to be built up from wires.)

The current enclosed in the Amperian loop is I = h(2x)J. Since
only the left and right sides contribute to the line integral, we have∫

B · ds = μ0I �⇒ 2Bh = μ0(2xhJ) �⇒ B = μ0Jx.

(12.309)

Outside the slab, the slab looks like a sheet (from the same Ampe-
rian argument that is used for an actual sheet). So on either side, the
field has a constant value equal to the value at the boundary, namely
±μ0Jb. The slab’s field is shown in Fig. 12.97. The total field, which
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is the sum of the sheet’s field and the slab’s field, is also shown. It
equals zero outside the slab, and μ0J(b + x)ŷ inside.

Alternatively, the interior field of the slab can be found by consid-
ering the two sub-slabs on either side of a given position. At position
x there is a slab with thickness b + x on the left which is equivalent
to a sheet with surface charge density Jleft = J(b + x). And likewise
there is a slab with thickness b − x on the right which is equivalent
to a sheet with surface charge density Jright = J(b − x). The left
“sheet” produces a field μ0J /2 = μ0J(b + x)/2 upward, and the
right “sheet” produces a field μ0J /2 = μ0J(b − x)/2 downward.
The net interior field of the slab is therefore μ0Jx upward (so if x is
negative, this points downward).

(b) Inside the slab, the curl of B is

∇ × B =
⎛
⎝ x̂ ŷ ẑ

∂/∂x ∂/∂y ∂/∂z
0 μ0J(b + x) 0

⎞
⎠ = μ0Jẑ = μ0J,

(12.310)

as desired. Outside the slab, B and J are both zero, so ∇ × B =
μ0J is trivially true. At the boundary at x = b, the By component is
discontinuous, so the ∂By/∂x derivative in the curl is infinite. This is
consistent with the fact that a nonzero J implies an infinite J.

6.21 Maximum field in a cyclotron
We must determine the electric field in the frame of the moving ion. In
the lab frame there is no electric field, just a magnetic field B⊥. (The
longitudinal electric field that increases the speed of the ions is relatively
small.) So the Lorentz transformation in Eq. (6.76) tells us that the elec-
tric field in the frame of the moving ion is E⊥ = γ v × B⊥. Since the
kinetic energy equals the rest energy, the total energy equals 2mc2, which
means that γ = 2. Hence β = √

3/2. The condition E⊥ < 4.5 · 108 V/m
therefore gives

γ vB < 4.5 · 108 V/m �⇒ B <
4.5 · 108 V/m

(2)(
√

3/2 · 3 · 108 m/s)
= 0.866 T,

(12.311)

or 8660 gauss.
Alternatively, we can think in terms of forces. The force in the lab

frame has magnitude qvB and points in the transverse direction. Since the
transverse force is always larger by a factor γ in the frame of the particle,
the force in the ion’s frame is γ qvB. This must be an electric force because
the ion isn’t moving in its frame. Therefore, qE = γ qvB �⇒ E = γ vB,
as above.

6.22 Zero force in any frame
Let the given frame be F, and consider a frame F′ moving with velocity v
with respect to F. The only nonzero field in frame F is B⊥, so Eq. (6.76)
gives the fields in frame F′ as

E′⊥ = γ v × B⊥ and B′⊥ = γ B⊥, (12.312)
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where B⊥ = μ0I/2πr, although we won’t need to use this explicit form.
In Eq. (6.76) v is the velocity of F′ with respect to F, so if v points to
the right, the situations in the two frames are shown in Fig. 12.99, with

q

v

I

(Frame F )

B

(Into page)

q

I'

E'

(Frame F' )

B'

(Into page)

Figure 12.99.

the charge q moving to the left in F′. (If v is large enough, then I′ may be
negative, but that isn’t important.) In frame F, B⊥ points into the page at
the location of the charge. So in frame F′, B′⊥ = γ B⊥ also points into the
page, and E′⊥ = γ v × B⊥ points toward the wire.

In frame F′, the charge is moving with velocity −v, so the magnetic
force is q(−v)× B′⊥ = q(−v)× (γ B⊥). And the electric force is qE′⊥ =
q(γ v×B⊥). These two forces are negatives of each other, so the total force
is zero, as desired. This reasoning is actually valid for any v in the plane
of the page. You can also quickly check that the case with v perpendicular
to the page works out.

6.23 No magnetic shield
The analysis in Section 5.9 showed that a test charge moving parallel to a
wire containing current experiences a force which, as observed in the rest
frame of the test charge, is due to an electric field. To understand why the
introduction of a conductor, such as a metal plate, between the wire and
the test charge has no effect, let us view the situation from the rest frame
of the test charge. In that frame, the conducting plate, which is stationary
in the lab frame, is moving. It is moving through a magnetic field and
an electric field, and these are related precisely so as to make the total
force on any charge in the plate zero (see Problem 6.22). Hence there is
no redistribution whatsoever of electrons in the plate.

Problem 6.22 works things out quantitatively, but to understand the
setup qualitatively, let the line L on the plate be defined as the projection of
the wire onto the plate. Consider the case where the test charge is moving
in, say, the same direction as the current. Then you should verify that in
the frame of the test charge, the electric force from the wire tends to attract
the plate’s charge to L, and the magnetic force from the wire tends to repel
the plate’s charge from L. These effects turn out to cancel exactly.

On the other hand, if we caused the plate to move along with the same
velocity as the test charge, it would make a difference. An observer in the
frame of the test charge would say that we have introduced a stationary
plate into an electrostatic field (and a magnetic field, but that doesn’t affect
the stationary plate), with a consequent redistribution of charge on the
plate and a resulting alteration of the total electric field. An observer in
the lab frame, where there is no electric field from the wire, would say
that the electrons in the moving plate have redistributed themselves under
the influence of the qv × B force, and the new charge distribution itself
produces an electric field. You should verify that these two effects act in
the same direction. That is, they both attract charge to the line L, or they
both repel it, depending on the relative sign of the current and the test
charge’s velocity.

6.24 E and B for a point charge
(a) In the frame of the charge, the electric field is given by Coulomb’s

law (exactly), and there is no magnetic field. If the charge moves with
velocity v with respect to the lab frame, then the lab frame moves
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with velocity −v with respect to the charge frame. So the exact same
reasoning that led to Eq. (6.81) now gives

Blab = −
(−v

c2

)
× Elab. (12.313)

(The rule for the signs here is that the velocity in the parentheses is
the velocity of the frame whose fields appear in the equation, with
respect to the frame in which B is zero.) Canceling the minus signs
and dropping the “lab” subscript yields the desired result.

(b) The exact shape of the essentially point-like charge can’t matter, so
let’s assume that it takes the shape of a tiny rod. If the rod has a small
length l, then the Biot–Savart law gives the magnetic field due to the
charge as B = (μ0/4π)Il × r̂/r2. If the rod has linear charge density
λ, then the current is I = λv. The vector Il therefore has length λvl;
and the direction is along v, so the complete vector is simply λvl. But
λl is the charge q, so the Il vector equals qv. The magnetic field due
to the charge is therefore (using μ0 = 1/ε0c2)

B = μ0
4π

Il × r̂
r2 = 1

4πε0c2
qv × r̂

r2 = v
c2 × qr̂

4πε0r2 = v
c2 × E,

(12.314)

as desired.

6.25 Force in three frames
(a) Let’s call the three frames (of the lab, charge q, and charges in the

wire) L, Q, and W, respectively. In the given frame L (see Fig. 12.100),
the repulsive electric force is simply FE = qE = qλ/2πε0r. Since

qFE FB
v

u

r

l

Figure 12.100.

I = λu, the magnetic field is B = μ0I/2πr = (λu)/2πr(ε0c2),
where we have used μ0 = 1/ε0c2. This field points out of the page,
so by the right-hand rule the magnetic force qvB is also repulsive. The
total force on the charge q in the lab frame L is therefore

F = FE + FB = qλ

2πε0r

(
1 + uv

c2

)
≡ qλ

2πε0r

(
1 + βuβv

)
. (12.315)

(b) We’ll solve this by calculating the charge density in Q. You should
check that the Lorentz transformations give the same result. In frame
Q (see Fig. 12.101), the charge q is at rest and the charges in the wire
move to the left with speed (u + v)/(1 + uv/c2), which we label as
u ⊕ v. There is a magnetic field in this frame, but it doesn’t come

q
FE

u v

r

lQ

Figure 12.101.

into play because q is stationary. So we need only worry about the
electric force.

To find the charge density on the wire, we can compare the densities
in frames L and Q via frame W. (Remember that length contraction
is applicable only if one of the frames involved is the rest frame of
the object.) Due to length contraction, the density in L is larger than
the density in W by the factor γu. And likewise the density in Q is
larger than the density in W by the factor γu⊕v = γuγv(1 + βuβv).
Therefore, the density λQ in Q is larger than the density λ in L by the
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factor γv(1 + βuβv). That is, λQ = λγv(1 + βuβv). So the repulsive
(electric) force on the charge q in its own frame Q is

F = FE = qλQ

2πε0r
= qλ

2πε0r
γv

(
1 + βuβv

)
. (12.316)

(c) In frame W (see Fig. 12.102), the wire’s charges are at rest and the
q

FE
u v

r

lW

Figure 12.102. charge q moves to the right with speed u ⊕ v. But this speed doesn’t
matter because there is no magnetic field in this frame. So we care
only about the electric force. The charge density λW in W is smaller
than the density λ in frame L by the factor γu. That is, λW = λ/γu.
So the repulsive (electric) force on the charge q in the frame W of the
charges on the wire is

F = FE = qλW
2πε0r

= qλ

2πε0r
1
γu

. (12.317)

Now let’s check that these three forces relate properly. The force on
a particle is largest in its rest frame. It is smaller in any other frame
by the relative γ factor. And indeed, the force in frame Q in part (b)
is the largest of the three forces. It is larger than the force in frame L
in part (a) by the factor γv, which is correct because v is the speed of
L with respect to Q. And the force in frame Q is larger than the force
in frame W in part (c) by the factor γuγv(1+ βuβv) = γu⊕v, which is
correct because u ⊕ v is the speed of W with respect to Q.

6.26 Motion in E and B fields
Newton’s third law says that dp/dt = FB+FE , which yields (with p = mv
since the velocity is nonrelativistic)

d(mv)

dt
= qv × B + qE �⇒ dv

dt
= q

m
v × B + q

m
E. (12.318)

With v = (vx, vy, 0) and B = (0, 0, B), we have v × B = B(vy,−vx, 0).
So with E = (0, E, 0), the x and y components of Eq. (12.318) can be
written as

dvx

dt
= qB

m
vy and

dvy

dt
= −qB

m
vx + qE

m
. (12.319)

Taking the derivative of the second of these equations (which gets rid of
the E term), and then substituting in the value of dvx/dt from the first,
gives

d2vy

dt2
= −

(
qB
m

)2
vy. (12.320)

This is a simple-harmonic-oscillator type equation, for which the general
solution takes the form

vy(t) = v0 cos(ωt + φ), where ω = qB
m

. (12.321)



12.6 Chapter 6 703

The second of the equations in Eq. (12.319) then quickly gives vx(t) =
v0 sin(ωt + φ) + E/B. The quantities v0 and φ are arbitrary constants,
determined by the initial conditions, although we will see in a moment
that v0 has a simple interpretation.

Integrating vx(t) and vy(t) to find x and y gives (up to arbitrary addi-
tive constants)

(
x(t), y(t)

) = v0
ω

(
− cos(ωt + φ), sin(ωt + φ), 0

)
+

(
Et
B

, 0, 0
)

.

(12.322)

This says that, relative to the point (Et/B, 0, 0), the particle moves in a
circle with radius v0/ω. From the above expressions for vx and vy, we see
that v0 is the speed of the circularly moving particle in the frame moving
along with the point (Et/B, 0, 0). So in terms of the momentum p = mv
in this frame (which is constant, unlike in the lab frame), the radius of the
circle can be written as r = v0/ω = (p/m)/(qB/m) = p/qB. Back in the
lab frame, we have the type of path shown in Fig. 12.103. It is a circle that x

y

P

B
(Out of page)E

Figure 12.103.

drifts in the x direction with speed E/B.
We can perform a double check on this result. Given that the particle

simply moves in a circle in the frame F′ moving with velocity (E/B)x̂ with
respect to the lab frame F, it must be the case that there is no electric field
in F′. And indeed, the transformation for E′⊥ in Eq. (6.76) gives

E′⊥ = γ (E⊥ + v × B⊥) = γ
(

Eŷ + (E/B)x̂ × Bẑ
)

= γ (Eŷ − Eŷ) = 0. (12.323)

Note that the drift is in the x direction, even though the electric field
points in the y direction. This is somewhat counterintuitive, because you
might think that the particle should generally head in the direction of the
electric field. What happens is that as the particle speeds up in the direc-
tion of the electric field (the y direction), the magnetic force qvB becomes
larger. At a point such as P in Fig. 12.103, the large magnetic force has
a component in the negative y direction, and it happens to win out over
the electric force and cause the particle to slow down in the y direction.
Eventually vy becomes zero at the top of the arc, and the particle reverses
its y motion and heads downward.

As exercises, you can find the net force at the top and bottom points,
and also the y component of the force when the particle crosses the x axis.
Your results should be consistent with the circular motion in the frame F′.
(Remember that the motion is assumed to be nonrelativistic.) You can also
find the radii of curvature at the top and bottom points.

x

y

E
B

(Out of page)

Figure 12.104.

From the above v0 sin(ωt + φ) + E/B expression for vx, we see
that if the electric field is weak (more precisely, if E/B < v0), then
there are times when vx is negative; the path looks like the one shown
in Fig. 12.103. If, on the other hand, the electric field is strong (more pre-
cisely, if E/B > v0), then vx is always positive; the path looks like the one
shown in Fig. 12.104.
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Figure 12.105.
Setups in frame F′.
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6.27 Special cases of Lorentz transformations
Figure 12.105 shows the four setups as viewed in frame F′.
Setup 1 There is no length contraction in the longitudinal direction, so
the charge densities σ and σ ′ in the two frames are equal. Since the electric
fields are given by E‖ = σ/ε0 and E′‖ = σ ′/ε0, the longitudinal fields are
therefore equal: E′‖ = E‖.

Setup 2 In frame F, the magnetic field is B‖ = μ0J , with J = σu,
where u is the speed of the sheets into and out of the page in frame F.
(As in Section 6.6 this can be shown by drawing an Amperian rectangular
loop with sides on either side of the sheet.) In frame F′, the longitudinal
magnetic field is B′‖ = μ0J ′, where J ′ is the current density perpendic-
ular to the page. This current density equals σ ′u′, where u′ is the speed
perpendicular to the page. But σ ′u′ = σu �⇒ J ′ = J because the
charge density is larger due to length contraction (σ ′ = γ σ ), while the
transverse speed is smaller due to the transverse velocity addition formula
(u′ = u/γ ; see the discussion following Eq. (G.10)). Therefore B′‖ = B‖.

In the case where u is small, it is easy to see that the transverse speed
should be smaller in F′, due to time dilation (this is the argument we
made with the solenoid in Section 6.7). Note that each sheet also produces
a magnetic field perpendicular to the page, due to the longitudinal speed v.
But these fields cancel in the region between the sheets, so we can ignore
them. In any event, they wouldn’t change the above B′‖ = B‖ result.
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Setup 3 First relation: due to length contraction, we have σ ′ = γ σ , so
the field E′⊥ = σ ′/ε0 is γ times the field E⊥ = σ/ε0.

Second relation: since both sheets move to the left with speed v in
frame F′, and since they have opposite charge, the magnetic field has mag-
nitude B′⊥ = μ0J ′, where J ′ = σ ′v. It points out of the page. The direc-
tion of the B′⊥ = −γ (v/c2) × E⊥ relation therefore works out correctly
(remember that v, which is the velocity of F′ with respect to F, points to
the right). Due to length contraction, we have σ ′ = γ σ , so

B′⊥ = μ0J ′ = μ0(σ ′v) = μ0(γ σ )v

= 1
ε0c2 γ σv = γ

v
c2

σ

ε0
= γ

v
c2 E⊥. (12.324)

Hence the magnitude of the relation works out correctly too.

Setup 4 First relation: in frame F, only the top sheet is moving. The
magnetic field is directed into the page with magnitude B⊥ = μ0J /2,
where J = σv. In frame F′, only the bottom sheet is moving (to the left).
The magnetic field is again directed into the page, but now has magnitude
B′⊥ = μ0J ′/2, where J ′ = σ ′v. Due to length contraction, the charge
density on the moving bottom sheet is σ ′ = γ σ . Hence B′⊥ = γ B⊥.

Second relation: in frame F′, the top and bottoms sheets have densi-
ties σ/γ and γ σ , respectively. The electric field therefore points upward
with magnitude E′⊥ = σ(γ − 1/γ )/2ε0. The direction of the E′⊥ =
γ v×B⊥ relation therefore works out correctly (remember that v points to
the right). And we have

E′⊥ = σ(γ − 1/γ )

2ε0
= γ σ(1 − 1/γ 2)

2ε0
= γ σβ2

2ε0

= γ σv2

2ε0c2 = γ v
1

ε0c2
σv
2

= γ v
μ0J

2
= γ vB⊥, (12.325)

so the magnitude of the relation works out correctly too.

6.28 The retarded potential
(a) When the charge crosses the y axis, as shown in Fig. 12.106, the

v

r

y

x

Figure 12.106.

electric field at the origin in the charge’s frame equals Echarge =
−ŷq/4πε0r2. The lab frame moves with velocity v = −vx̂ with
respect to the charge, so the relevant Lorentz transformation in
Eq. (6.76), namely B⊥, lab = −γ (v/c2) × E⊥, charge, gives

B⊥, lab = −γ
(−vx̂)

c2 ×
( −ŷq

4πε0r2

)
= −ẑ

γ qv
4πε0c2r2 = −ẑ

μ0
4π

γ qv
r2 , (12.326)

where we have used μ0 = 1/ε0c2. The −ẑ direction points into the
page. There is no longitudinal field, so this is the entire Blab field.

(b) Let the little segment of current have length �. Assuming � is very
small, the r̂ and r in the Biot–Savart law in Eq. (6.49) are essen-
tially constant, so they can be pulled outside the integral. The dl
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integral then simply gives the l for the stick, which equals �x̂. We
therefore have

Blab = μ0I
4π

(�x̂) × r̂
r2 = μ0(λv)

4π

�x̂ × (−ŷ)

r2

= −μ0
4π

(λ�)vẑ
r2 = −ẑ

μ0
4π

qv
r2 , (12.327)

where we have used the fact that λ� equals the charge q on the stick.
As promised, this result is a factor of γ smaller than the result in
part (a).

(c) Consider the position of the charge shown in Fig. 12.107. If we want a

v

r

y

x

ct

vt

q

Figure 12.107.

photon to travel from the charge to the origin in the same time t that it
takes the charge to reach the y axis, then the two long legs of the right
triangle shown must have lengths ct and vt. The Pythagorean theorem
then gives (ct)2 = (vt)2 + r2 �⇒ t = r/

√
c2 − v2. The charge is

therefore a distance vt = rv/
√

c2 − v2 from the y axis. This is small
if v is small, and it goes to infinity as v → c.

If � is the proper length of the little stick representing the charge,
then the length in the lab frame is �/γ . However, this won’t be the
length in the photograph mentioned in the statement of the problem,
because if photons are released simultaneously (in the lab frame) from
different points on the stick, they won’t reach the origin at the same
time. The photon from the front end will arrive first, because it starts
closer to the origin. So in the photograph, the photon from the front
end must have been emitted later (because the photograph simply
records information on the set of photons that hit the camera simulta-
neously). Equivalently, the photon from the back end must have had a
head start. How much of a head start?

In Fig. 12.108, the distances from points B and C to the origin are
essentially equal (assuming the stick is very short). So if the back
photon is emitted at the instant shown, we want the front photon to be
emitted at some later time τ (when the front of the stick is at C) such
that the distance AB is cτ . The back photon will then be at B at the
same time the front photon is emitted from the stick at C, which means
that the two photons will arrive at the origin at the same time. Triangle
ABC is similar to the large right triangle in the figure, so we have

�/γ + vτ
cτ

= ct
vt

�⇒ τ = �v
γ (c2 − v2)

= γ �v
c2 . (12.328)

Figure 12.108.
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The length of the stick in the photograph, which is AC, is therefore

�

γ
+ vτ = �

γ
+ v

γ �v
c2 = γ �

(
1
γ 2 + v2

c2

)
= γ �. (12.329)

So the length of the stick in the photograph is γ 2 times the actual
length �/γ in the lab frame.

Now, the current produced by the stick is the linear density times
the speed. If the density is λ in the stick’s frame, then it is γ λ in
the lab frame, due to the length contraction of the stick. The current
is therefore I = (γ λ)v. In the expression for the vector potential A
in Eq. (6.46), we need to multiply this current by its length in the
photograph, which we just found to be γ �. We also need to divide by
the distance r12 in Eq. (6.46), which is r/ cos θ here. Since sin θ =
v/c, we have cos θ =

√
1 − v2/c2 = 1/γ . So the distance r12 equals

γ r. Therefore, the vector potential at the origin at the moment the
charge crosses the y axis is (using λ� = q)

A = μ0I
4π

∫
dl
r12

= μ0(γ λv)
4π

γ �x̂
γ r

= μ0
4π

γ qv
r

x̂. (12.330)

We can now take the curl of A to obtain B. Equation (F.2) in
Appendix F gives the expression for the curl in cylindrical coordi-
nates (the x direction here is the axial direction). The only nonzero
derivative in the lengthy expression is ∂Ax/∂r, so we have

B = ∇ × A = −∂Ax

∂r
θ̂ = − ∂

∂r

(μ0
4π

γ qv
r

)
θ̂ = μ0

4π

γ qv
r2 θ̂ ,

(12.331)

where θ̂ points into the page. This agrees with Eq. (12.326).
Note that this result is independent of the length � of the little

stick, as long as it is small. The charge can therefore take any shape,
and the result will still be valid. For example, a sphere can be con-
sidered to be a collection of adjacent sticks with various lengths,
all of which yield the same extra factor of γ . No matter how small
and point-like we make the charge, the lengthening effect from the
retarded time always exists. The vector potential in Eq. (12.330) is a
special case of a more general result for moving charges, known as the
Liénard–Wiechert vector potential. There is also a corresponding
Liénard–Wiechert scalar potential.

12.7 Chapter 7
7.1 Current in a bottle

The magnitude of v×B is vB = (1 m/s)(3.5 · 10−5 T) = 3.5 · 10−5 V/m.
So the effective electric field is E = 3.5 · 10−5 V/m, and the current den-
sity is

J = σE = (
4 (ohm-m)−1)(3.5 · 10−5 V/m) = 1.4 · 10−4 A/m2.

(12.332)
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If a bottle of seawater were carried at this speed, a current would flow only
long enough to separate enough charge to establish an electric field equal
and opposite to v × B. To find roughly how long this takes, consider the
charge that would pile up per m2 of surface in time t. From the definition
of J (charge per area per time), this charge density is simply Jt. It is pos-
itive on one side, negative on the other. (This result isn’t exact, because
J decreases continuously to zero as the charge piles up, rather than drop-
ping suddenly to zero from a constant value. But we’re just trying to make
a rough estimate.) The resulting field depends somewhat on the shape of
the bottle, but in order of magnitude it equals Jt/ε0 = (σE)t/ε0. (This
“σ” is conductivity, not surface charge density.) The charge stops flowing
when this field equals E, that is, when

σ t
ε0

= 1 �⇒ t = ε0
σ

=
8.85 · 10−12 s2 C2

kg m3

4 (ohm-m)−1 = 2.2 · 10−12 s.

(12.333)

So, except for a completely negligible time at the start, there would be no
current flowing in the bottle.

7.2 What’s doing work?
Figure 12.109 shows the situation. For simplicity, we assume that the
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uy

FR

FB,x

Figure 12.109.

mobile charges are positive; this doesn’t affect the result. The important
point to realize is that there are two components to a given charge’s veloc-
ity u, namely the horizontal component ux = v due to the motion of the
rod, and the vertical component uy due to the current along the rod. This
means that the magnetic force FB points up and to the left, perpendicular
to u, as shown. Its magnitude is FB = quB, and its two components have
magnitudes FB,x = quyB and FB,y = quxB = qvB. The latter of these
is what we called f in Eq. (7.5). Assuming that the current is steady and
the charge isn’t accelerating, the total force on it equals zero. So if you are
applying the force to the rod, then your force is given by Fyou = FB,x,
and the resistive force on the charges is given by FR = FB,y. (All of these
quantities are magnitudes, so they are defined to be positive.)

Which forces do work? As mentioned in the problem, the magnetic
force does no work because FB is perpendicular to u. But if you wish,
you can break this zero work into two equal and opposite pieces. The
vertical component of FB does work at a rate FB,yuy = (quxB)uy. And
the horizontal component does work at a rate −FB,xux = −(quyB)ux.
These two rates are equal and opposite, as they must be. You also do work,
because there is a component of u in the direction in which you are pulling.
The rate at which you do work is Fyouux. And due to the balancing of all
the forces, this positive rate is equal and opposite to the negative rate at
which FB,x does work. The resistive force also does work, and the rate
is −FRuy. This negative rate is equal and opposite to the positive rate at
which FB,y does work.

We see that the magnetic force does zero net work, while the positive
work you do is canceled by the negative work the resistive force does.
While it is true that that a component of FB does positive work (the vertical
component, which we called f in Section 7.3), the other component of FB
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does an equal and opposite amount of negative work. So it would hardly
be accurate to say that the magnetic force does work.

This setup is essentially the same as the setup in which you push a
block up a frictionless inclined plane at constant speed u, by applying a
horizontal force, as shown in Fig. 12.110. This figure is simply Fig. 12.109

u

Fyou

FN

Fgrav

Figure 12.110.

with the forces relabeled. The normal force replaces the magnetic force,
and gravity replaces the resistive force. The vertical component of the
normal force does positive work, but the horizontal component does an
equal and opposite amount of negative work. You are the entity pumping
energy into the system (which shows up as gravitational potential energy),
just as you were the entity pumping energy into the above circuit (which
showed up as heat). Although the vertical component of the normal force
is the only force actually lifting the block upward, the entire normal force
does zero net work. Conversely, you are not lifting the block upward, but
you do in fact do positive work.

7.3 Pulling a square frame
(a) The length of the border of the shaded region that lies inside the square

is 2x. So in a time dt, a thin rectangle of flux with area (2x)(v dt)
disappears from the square. Hence the magnitude of the emf is

E = d�

dt
= B(2xv dt)

dt
= 2Bxv. (12.334)

The induced current in the square is therefore I = 2Bxv/R. It flows
counterclockwise, to generate a B field pointing out of the page to
oppose the change in flux.

The force on a current-carrying wire is F = I�B. Consider the
upper segment of the square with length � = √

2x that lies inside the
shaded region. From the right-hand rule, the magnetic force on the
current points up to the left. Likewise, the force on the lower segment
inside the shaded region points down to the left. The vertical com-
ponents cancel, so we care only about the leftward components. This
brings in a factor of cos 45◦ = 1/

√
2. The total leftward force on the

square is
therefore

F = 2I�B cos 45◦ = 2 · 2Bxv
R

· √2x · B · 1√
2
= 4B2x2v

R
. (12.335)

If the square moves with constant velocity, your force must be right-
ward with the same magnitude.

(b) The work you do is

W =
∫

F dx =
∫ x0

0

4B2x2v
R

dx = 4B2x3
0v

3R
. (12.336)

(Technically, the integral goes from x0 to 0, but your displacement is
−dx. So your work still comes out to be positive, as must be the case.)
The total energy dissipated in the resistor is (using dt = dx/v)∫

I2R dt =
∫ (

2Bxv
R

)2
R dt =

∫
4B2x2v

R
dx, (12.337)
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which is the same as the integral in the above expression for W. So
your work does indeed equal the energy dissipated in the resistor.

7.4 Loops around a solenoid
Let VM1 and R1 be the upper voltmeter and resistor, and let VM2 and R2
be the lower ones in Fig. 12.111. The induced emf around a loop enclosing

P1

I

I
P2

R2

R1

VM1

VM2

Figure 12.111.

the solenoid is (ignoring the sign)

E = d�

dt
= A

dB
dt

= (0.002 m2)(0.01 T/s) = 2 · 10−5 V, (12.338)

or 20 microvolts. The loop containing the resistors encloses the solenoid,
so it has a current of I = E/R = (2 · 10−5 V)/(100 �) = 2 · 10−7 A, or
0.2 microamps. Since the flux is increasing, Lenz’s law tells us that the
current in the loop is clockwise.

The loop that includes VM1 and R1 encloses no changing flux, so
voltage differences in the loop are path independent. The voltage drop
across R1 is IR = (2 · 10−7 A)(50 �) = 10 μV, with the more positive
end connected to the (−) lead on VM1, because the current flows across
R1 in the direction from P2 to P1. Therefore, VM1 will read −10 μV.

Alternatively, the line integral of E around the loop from P1 to P2
via VM1, and then from P2 back to P1 via R1, equals zero, because
the loop encloses no changing flux. But the latter part of this integral is
+10 μV (because the current, and hence the field, points from P2 to P1).
So the former part must be −10 μV, and this is, by definition, the reading
on VM1.

Likewise, the loop that includes VM2 and R2 encloses no changing
flux. The voltage drop across R2 is 10 μV, but now the more positive end
is connected to the (+) lead on VM2, because the current flows across R2
in the direction from P1 to P2. Therefore, VM2 will read +10 μV.

We can arrive at these conclusions in other ways, too. For example,
consider the loop containing R1 and VM2. This loop encloses changing
flux. The line integral of E around the loop from P1 to P2 via VM2, and
then from P2 to P1 via R1, equals 20 μV, from Eq. (12.338). But the latter
part of this integral is +10 μV. So the former part must be +10 μV, and
this is, by definition, the reading on VM2.

The moral of this problem is that if a setup contains changing flux,
it makes no sense to talk about the voltage difference (that is, the value of
− ∫

E ·ds) between two points. It is necessary to state the path over which
− ∫

E · ds is calculated. Someone looking at VM1 will give an answer of
−10 μV for the voltage difference VP1 − VP2 , while someone looking at
VM2 will give an answer of +10 μV for VP1 − VP2 . However, if the wire
connecting VM2 to P1 instead passes in front of the solenoid, then VM2
will read −10 μV just like VM1. In magnetostatics (that is, setups with
constant currents), we don’t have to specify the path, so we can uniquely
label every point in a circuit with a definite potential. But not so if there is
changing flux.

7.5 Total charge
The magnetic flux through the coil is � = Nπa2B, so the induced emf
equals E = d�/dt = Nπa2(dB/dt). We ignore the signs for now.
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The current is I = E/R = (Nπa2/R)(dB/dt), so the total charge pass-
ing through the resistor is

Q =
∫

I dt =
∫

Nπa2

R
dB
dt

dt = Nπa2

R

∫ 0

B0

dB = −Nπa2B0
R

.

(12.339)

Since we haven’t been keeping track of the signs, the minus sign here
doesn’t mean much. The correct statement to make, by Lenz’s law, is that
a total positive charge of Nπa2B0/R flows in the direction that produces
magnetic flux in the direction of the initial flux. That is, the current and
the original flux are related by the right-hand rule.

We see that Q depends only on the net change in B, and not on
the rate at which this change comes about. Intuitively, if B changes more
slowly, then E (and hence I) is smaller, so less charge passes through the
resistor during a given time interval. But the process takes longer, so this
allows more charge to pass through. These two competing effects exactly
cancel.

In the event that essentially all of the circuit is represented by the
coil, the resistance R is proportional to the number of turns N. The total
charge Q in Eq. (12.339) is then independent of N. Additionally, you can
show that Q is proportional to the volume taken up by the wire in one ring
of the coil.

7.6 Growing current in a solenoid
The integral form of Faraday’s law is

∫
E · ds = −(d/dt)

∫
B · da. Inside

the solenoid, the magnetic field is B = μ0nI, so the magnetic flux through
a circle with radius r is � = B(πr2) = (μ0nCt)(πr2). Faraday’s law
then gives the magnitude of the tangential component of E as (ignoring
the signs)

Eθ (2πr) = d
dt

[
(μ0nCt)(πr2)

] �⇒ Eθ = μ0nCr
2

. (12.340)

From Lenz’s law, Eθ points in the tangential direction opposite to the cur-
rent flow around the solenoid.

Outside the solenoid, the magnetic flux is � = (μ0nCt)(πR2),
because the field is nonzero only inside the solenoid. So Faraday’s law
gives

Eθ (2πr) = d
dt

[
(μ0nCt)(πR2)

] �⇒ Eθ = μ0nCR2

2r
. (12.341)
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Figure 12.112.

The direction is again opposite to the current flow.
To check that the differential form of the law, namely ∇ × E =

−∂B/∂t, is satisfied, we can use the expression for the curl in cylindri-
cal coordinates given in Appendix F. Since E has only a θ component
and since this component depends only on r, only one term in the curl
survives, and we have ∇ × E = ẑ(1/r)∂(rEθ )/∂r. Now, when working
with the integral form of Faraday’s law, it is usually easiest to take care of
the signs with Lenz’s law. But when working with the differential form,
we should pay attention to the actual signs of the various quantities. In
Fig. 12.112, the positive ẑ direction is out of the page, and the positive
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θ̂ direction is counterclockwise. If the current is counterclockwise, then
B points in the ẑ direction, while the induced E points in the negative θ̂

direction. So the Eθ that we want to use is the negative of the Eθ given in
Eqs. (12.340) and (12.341). Therefore, inside the solenoid we have

∇ × E = ẑ
1
r

∂

∂r

(
r · −μ0nCr

2

)
= −μ0nCẑ, (12.342)

which does indeed equal −∂B/∂t = −∂(μ0nCtẑ)/∂t. And outside the
solenoid we have

∇ × E = ẑ
1
r

∂

∂r

(
r · −μ0nCR2

2r

)
= 0, (12.343)

which again equals −∂B/∂t because B = 0 outside the solenoid.
The above calculations involve only the electric field that arises due to

the changing magnetic field. There may very well be other fields present.
We can add on any field with ∇ × E = 0, that is, any electrostatic field.
For example, a line of charge along the axis would add on a radial field
with magnitude λ/2πε0r.

7.7 Maximum emf for a thin loop
The setup is shown in Fig. 12.113. At a general position x in the xy plane,

x

y

z

h

b

r
B

I

v

Figure 12.113.

the magnitude of B is μ0I/2πr, where r =
√

h2 + x2. Only the z compo-
nent matters in the flux, and this brings in a factor of x/r. So

Bz(x) = μ0I
2πr

x
r
= μ0I

2π

x
h2 + x2 . (12.344)

A plot of Bz(x) ∝ x/(h2 + x2) is shown in Fig. 12.114. Note that Bz is
an increasing function of x, for small x. This is because the increase in
the tilt of the B vector matters more than the decrease in the magnitude of
B arising from the increase in r (because r hardly changes near x = 0).
Conversely, Bz is a decreasing function of x, for large x. This is because

– 2h– 4h 2h 4h

x
h2 + x2
_____

x

Bz

– 0.2

0.4

–0.4

0.2

∝

Figure 12.114.

the decrease in the magnitude of B arising from the increase in r matters
more than the increase in the tilt of the B vector (because the tilt hardly
changes for large x).

If we take x to represent the position of the center of the thin loop,
then the leading and trailing edges are at positions x + b/2 and x − b/2,
respectively. So our standard argument, involving the flux gained at the
leading edge and lost at the trailing edge, yields

E = d�

dt
=

(
Bz(x + b/2) − Bz(x − b/2)

)
v�

= μ0Iv�
2π

(
x + b/2

h2 + (x + b/2)2 − x − b/2
h2 + (x − b/2)2

)

≈ μ0Iv�
2π

· b
d
dx

(
x

h2 + x2

)
= μ0Iv�b

2π
· h2 − x2

(h2 + x2)2 ,

(12.345)
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where we have used the definition of the derivative to approximate the
difference in the B fields. With the signs of the various quantities indi-
cated in Fig. 12.113, positive E is clockwise when viewed from above. For
x < h, the flux is increasing, so a clockwise current is induced, which
creates downward flux to oppose the change. Conversely, for x > h the
flux is decreasing, so a counterclockwise current is induced, which cre-
ates upward flux to oppose the change.

The plot of E(x) ∝ dBz(x)/dx ∝ (h2 − x2)/(h2 + x2)2 is shown in
Fig. 12.115. It is zero at x = h, consistent with the fact that Bz achieves an

–2h–4h 2h 4h

(h2+x2)2

h2–x2______

0.2

0.4

0.6

0.8

1.0 E∝

Figure 12.115.

extremum (a maximum) there. This extremum implies that the Bz values
at the leading and trailing edges of the loop are essentially equal, thereby
yielding no change in flux.

To find where E achieves a local maximum or minimum, we must set
the derivative equal to zero. This gives

dE
dx

= 0 �⇒ (h2 + x2)2(−2x) − (h2 − x2)2(h2 + x2)(2x) = 0

�⇒ x = 0 or x = ±√3 h. (12.346)

The x = 0 root corresponds to the maximum clockwise emf, and the x =
±√3 h roots corresponds to the maximum counterclockwise emf (which
is much smaller). These three points correspond to the points where Bz
is changing the fastest (locally) in Fig. 12.114, because at these points the
difference in the Bz values at the leading and trailing edges is largest. Said
in a different way, these three points are the inflection points of the Bz(x)
plot, where the second derivative of Bz equals zero. Indeed, Eq. (12.346)
is the statement that dE/dx = 0, which is equivalent to d2Bz/dx2 = 0,
because E is proportional to dBz/dx.

7.8 Faraday’s law for a moving tilted sheet
(a) As in the example in Section 5.5, the components of the electric field

in the new frame F′ are E′‖ = E‖ = E/
√

2 and E′⊥ = γ E⊥ = γ E/
√

2
(where E = σ/2ε0, but we won’t need this). So the magnitude of the
electric field in F′ is E′ = (E/

√
2)

√
1 + γ 2. To find the component

E′
p parallel to the sheet, Fig. 5.12 shows that we must multiply the

magnitude by sin(2θ − 90◦), where tan θ = γ . This trig factor can
alternatively be written as − cos 2θ , which in turn can be written as
1 − 2 cos2 θ . So we have (using tan θ = γ �⇒ cos θ = 1/

√
1 + γ 2)

v

x'

z'

Ep'

Ep'

B'

B'

E

E

q

Figure 12.116.

E′
p = E′ sin(2θ − 90◦) = E√

2

√
1 + γ 2

(
1 − 2 cos2 θ

)
= E√

2

√
1 + γ 2

(
1 − 2

1 + γ 2

)
= E√

2

γ 2 − 1√
1 + γ 2

= E√
2

γ 2β2√
1 + γ 2

, (12.347)

where we have used γ 2 = 1/(1−β2). On the left side of the sheet, E′
p

points up along the sheet, and on the right side it points down along
the sheet, as shown in Fig. 12.116 (assuming the sheet is positively
charged).
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(b) The Lorentz transformations in Eq. (6.76) give the transverse mag-
netic field as B′⊥ = −γ (v/c2) × E⊥, where the velocity v of F′ with
respect to the lab frame F points to the right. On the left side of the
sheet, E⊥ points up, and on the right side it points down. So the right-
hand rule tells us that B′⊥ points into the page on the left, and out of
the page on the right. In both cases it has magnitude

B′⊥ = γ v
c2 E⊥ = γ v

c2
E√
2

. (12.348)

(c) Let’s first check that the signs work out with Faraday’s law applied
to the given rectangle. As the sheet moves to the left in F′, the area
with flux into the page decreases, and the area with flux out of the
page increases. (Remember that the rectangle is fixed in F′.) So the
flux increases out of the page. The induced emf should therefore be
clockwise, to counteract the change and produce flux into the page.
This is consistent with the directions of E′

p we found in part (a).
Now let’s see if the numbers work out. If the sides of the rectan-

gle parallel to the sheet have length �, then
∫

E · ds simply equals
2E′

p�. (There is zero net contribution involving E′
n and the other two

sides.) To find the rate of change of the magnetic flux, note that, as
the sheet moves to the left, only the component of the velocity that
is perpendicular to the sheet causes a change in the two areas of flux.
This component is v sin θ . So in a small time dt, the area that is swept
through is (v sin θ dt)�. Since the magnetic field goes from pointing
one way to pointing the opposite way, the change in the field is 2B′⊥.
The change in flux in a time dt is therefore d� = (�v sin θ dt)(2B′⊥).
Ignoring the signs, since we already checked that they work out, we
see that

∫
E · ds = −d�/dt is true if∫

E · ds = d�

dt

⇐⇒ 2E′
p� = 2�v sin θ B′⊥ dt

dt

⇐⇒ 2

(
E√
2

γ 2β2√
1 + γ 2

)
� = 2�v

(
γ√

1 + γ 2

)(
γ v
c2

E√
2

)
.

(12.349)

Since β ≡ v/c, you can quickly check that all the factors match up on
both sides of this equation.

Note that if the sheet is horizontal in the lab frame, then in F′ there
is no parallel E′

p field. This is consistent with the fact that, although
there is a nonzero B′⊥ field in F′, the flux doesn’t change because the
sheet is moving parallel to itself and therefore sweeps out zero area.
In the other extreme, if the sheet is vertical in the lab frame, then both
E′

p and B′⊥ are zero, so Faraday’s law is trivially satisfied.
For small speeds v, you might think that you could solve this prob-

lem by ignoring the various relativistic γ factors, that is, by setting
γ = 1. But you would run into difficulty, because the magnetic field
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in Eq. (12.348) would be B′⊥ = (v/c2)E/
√

2, but the parallel elec-
tric field E′

p in the second line of Eq. (12.347) would be zero. So you
would conclude that there is changing flux but no emf, in violation
of Faraday’s law. The error is that, even for small v, we can’t set γ

equal to 1, because this neglects effects of order v2/c2 (as is evident
in the third line of Eq. (12.347)). And v2/c2 is exactly the order of the
magnetic-flux term on the right-hand side of Eq. (12.349).

7.9 Mutual inductance for two solenoids
Let current I2 flow in the outer solenoid. The field inside is approxi-
mately uniform in the region occupied by the inner solenoid, and the
value is roughly that of an infinite solenoid, namely B2 = μ0n2I2 =
μ0(N2/b2)I2. The flux through the inner solenoid is

�12 = N1πa2
1B2 = N1πa2

1
μ0N2I2

b2
. (12.350)

The mutual inductance is obtained by erasing the I2, so we have

M = μ0πa2
1N1N2

b2
. (12.351)

If we want to obtain a better approximation for M, we can use
Eq. (6.56) to find the field at the center of a finite solenoid of length
b2 and radius a2. The correction factor is cos

(
tan−1(a2/(b2/2)

) = b2/√
b2

2 + 4a2
2. This will still not yield an exact result, because the inner

solenoid extends over a nonzero volume in which the field varies somewhat.
But for the proportions shown in the figure, the approximation will be
pretty good. The flux, and hence mutual inductance, will also be smaller

by the factor b2
/√

b2
2 + 4a2

2, so the above M becomes

M = μ0πa2
1N1N2√

b2
2 + 4a2

2

. (12.352)

In the limit b2 � a2 this of course reduces to the value in Eq. (12.351).
If you try to determine M by the reverse method of calculating the

flux through the outer solenoid due to the field from the inner solenoid,
you have to be careful. The field from the inner solenoid is B1 =
μ0N1I1/b1. Inside the inner solenoid, this field exists within a cross-
sectional area of πa2

1. So the flux through a ring of the outer solenoid, in
the middle region, is B1(πa2

1). If the entirety of the flux stays within the
outer cylinder all the way out to the end (it actually doesn’t; see below),
then all N2 rings have this same flux, so the total flux through the outer
cylinder is N2 · B1(πa2

1) = μ0πa2
1N1N2I1/b1. The mutual inductance is

obtained by erasing the I1, so we obtain an M that does not agree with the
μ0πa2

1N1N2/b2 result in Eq. (12.351); the denominators differ.
The error is that the B1 field doesn’t stay inside the outer cylinder; it

leaks out through the side. A more accurate approximation is to say that
it leaks out immediately after it exits the inner solenoid. (The field lines
diverge on a length scale of the diameter, and we’re assuming that the
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lengths of the solenoids are fairly long compared with their diameters.) In
this case, the relevant number of turns in the outer cylinder is the number
that exist within the span of b1, which is b1n2 = b1(N2/b2). Replacing
N2 with this value in our incorrect result turns it into the (approximately)
correct result in Eq. (12.351).

The first solution above was simpler because the B2 field lines diverge
very little over the span of the inner cylinder, whereas the B1 field lines
diverge greatly over the span of the outer cylinder.

7.10 Mutual-inductance symmetry
The induced emfs in circuits 1 and 2 are, respectively,

E1 = −L1
dI1
dt

− M12
dI2
dt

and E2 = −L2
dI2
dt

− M21
dI1
dt

.

(12.353)

(A different sign convention for the currents might yield minus signs in
front of the M terms, but they both have the same sign in any case.) The
external agency must provide opposing emfs in the two circuits to balance
these emfs, so the sum of the power inputs (voltage times current) in the
two circuits by the external agency is given by

P =
(

L1I1
dI1
dt

+ M12I1
dI2
dt

)
+

(
L2I2

dI2
dt

+ M21I2
dI1
dt

)
. (12.354)

The total energy input equals the time integral of P. The two L terms
are total differentials, so these terms yield final energies of L1I2

1f/2 and
L2I2

2f/2, independent of how the changes in the currents come about. But
the two M terms are not total differentials, so they depend on the exact
procedure.

(a) If we keep I2 at zero and increase I1, then since both I2 and dI2/dt
are zero, both of the M terms are zero, so no extra work is required. In
the second stage of this program, where I1 is held constant at I1f, the
M21 term is zero, but the M12 term integrates to M12I1fI2f. The total
work done during this program is therefore

W1 = 1
2

L1I2
1f +

1
2

L2I2
2f + M12I1fI2f. (12.355)

This equals the total energy in the final system, because we are assum-
ing there are no dissipative elements (and also no radiative effects if
the currents change slowly; see Appendix H).

(b) The same reasoning holds for the second program; we simply need to
switch the labels 1 and 2. The final energy of the system is therefore

W2 = 1
2

L1I2
1f +

1
2

L2I2
2f + M21I2fI1f. (12.356)
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The final energy must be independent of the procedure by which the
currents are brought to their final values of I1f and I2f (assuming slow
changes, so that we can ignore radiative effects). So by comparing W1
and W2 we find M12 = M21, as desired.

7.11 L for a solenoid
The field in the interior of the solenoid is B = μ0nI = μ0(N/�)I, so the
flux through the N turns is

� = N(πr2)B = μ0πr2N2

�
I. (12.357)

Since the self-inductance is defined by L ≡ �/I, we simply need to erase
the I in this result. So we have L = μ0πr2N2/�.

7.12 Doubling a solenoid
(a) From Problem 7.11, the self-inductance of a solenoid is L=

μ0πr2N2/�. In the present scenario, both N and � are doubled, so
L increases by a factor of 22/2 = 2.

In words: the self-inductance equals the flux � divided by the cur-
rent I. When we double the length of the solenoid, the field inside
stays the same (it equals μ0nI = μ0(N/�)I). But we now have twice
as many turns, so the flux increases by a factor of 2.

(b) In this scenario, N is doubled, but � remains the same. So the self-
inductance L = μ0πr2N2/� increases by a factor of 22 = 4.

In words: when we put one solenoid on top of the other, the number
of turns per unit length, n, doubles. So the field inside doubles. And
we now have twice as many turns. So we have twice the field going
through twice the number of turns. The flux therefore increases by a
factor of 4.

7.13 Adding inductors
(a) When inductors are connected in series, the currents I across them are

equal, because charge can’t pile up between them. The dI/dt values for
the two inductors are therefore also equal. The total voltage V across
the effective inductor is the sum of the voltages across the two induc-
tors, so V = V1 +V2. We know that V = L dI/dt, V1 = L1 dI/dt, and
V2 = L2 dI/dt, where the same I appears everywhere here. Plugging
these expressions into V = V1 + V2 gives

L
dI
dt

= L1
dI
dt

+ L2
dI
dt

�⇒ L = L1 + L2. (12.358)

If L1 → 0 then L → L2. This makes sense because, for a given
dI/dt, the voltage L1 dI/dt across L1 is tiny, which means that the
overall voltage L dI/dt is essentially equal to the voltage L2 dI/dt
across L2. So L ≈ L2.

If L1 → ∞ then L → ∞ also. This makes sense because, for a
given dI/dt, the voltage L1 dI/dt across L1 is huge, which means that
the overall voltage L dI/dt is likewise huge, since it is at least as large.
So L must be very large.
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(b) When inductors are connected in parallel, the voltages across them
are equal, because the voltage drop from the left side of the overall
circuit to the right side can’t depend on the path. Let V be this com-
mon voltage, which is of course also the voltage drop in the overall
effective inductor.

The total current I across the effective inductor is the sum of the
currents across the two inductors, so I = I1+I2 �⇒ dI/dt = dI1/dt+
dI2/dt. But we know that dI/dt=V/L, dI1/dt=V/L1, and dI2/dt=
V/L2, where the same V appears everywhere here. Plugging these
expressions into dI/dt = dI1/dt + dI2/dt gives

V
L
= V

L1
+ V

L2
�⇒ 1

L
= 1

L1
+ 1

L2
. (12.359)

In short, in the series case the currents across the two inductors are the
same, and the voltages add; whereas in the parallel case the voltages
are the same, and the currents add.

If L1 → 0 then L → 0 also. This makes sense because, for a given
V , the dI1/dt value of V/L1 is huge, which means that the overall
dI/dt value of V/L is likewise huge, since it is at least as large. So L
must be very large.

If L1 → ∞ then L → L2. This makes sense because, for a given
V , the dI1/dt value of V/L1 is tiny, which means that the overall
dI/dt value of V/L is essentially equal to the dI2/dt value of V/L2.
So L ≈ L2.

7.14 Current in an RL circuit
We can separate variables in Eq. (7.65) and integrate:

E0 − L
dI
dt

= RI �⇒
∫ I

0

L dI′
E0 − RI′ =

∫ t

0
dt′

�⇒ −L
R

ln(E0 − RI′)
∣∣∣∣I
0
= t �⇒ ln

(E0 − RI
E0

)
= −(R/L)t

�⇒ 1 − R
E0

I = e−(R/L)t �⇒ I(t) = E0
R

(
1 − e−(R/L)t

)
,

(12.360)

as desired. Alternatively, we can solve Eq. (7.65) in a quick manner by
shifting the I variable. Equation (7.65) can be written as dI/dt=
−(R/L)(I − E0/R), which in turn can be written as

d(I − E0/R)

dt
= −R

L

(
I − E0/R

)
, (12.361)

where we have used the fact that dE0/dt = 0 since E0 is a constant. This
is a simple differential equation in the variable I−E0/R, so we can imme-
diately write down the solution:

I − E0/R = De−(R/L)t, (12.362)



12.7 Chapter 7 719

where D is determined by the initial conditions. Since I = 0 at t = 0, we
must have D = −E0/R. This yields the same I(t) as in Eq. (12.360).

7.15 Energy in an RL circuit
If we integrate the equation I2R = I(E0−L dI/dt) up to a time t, we obtain
(writing one of the I’s as dQ/dt)∫ t

0
I2R dt = E0

∫ t

0

dQ
dt

dt − L
∫ t

0
I

dI
dt

dt

�⇒
∫ t

0
I2R dt = E0Q − 1

2
LI2. (12.363)

This is the statement that the energy dissipated in the resistor equals the
energy delivered by the battery minus the energy stored in the inductor, as
desired.

Of course, we can go in the other direction too, by differentiating
instead of integrating. If we start with the conservation-of-energy state-
ment, E0Q = LI2/2 + ∫ t

0 I2R dt, and then take the time derivative, we
obtain E0I = LI dI/dt + I2R. Dividing by I gives E0 = L dI/dt + IR,
which is just the loop equation in Eq. (7.66).

7.16 Energy in a superconducting solenoid
The energy density is

B2

2μ0
= (3 T)2

2
(
4π · 10−7 kg m/C2

) = 3.6 · 106 J/m3. (12.364)

We’ll work in the approximation where the B field is uniform inside the
solenoid and zero outside. The volume is πr2� = π(0.45 m)2(2.2 m) =
1.4 m3, so the total energy in the field is (3.6 · 106 J/m3)(1.4 m3) =
5 · 106 J. This is enough energy to raise a 2000 kg car 250 meters off the
ground. But at 10 cents per kilowatt hour, the energy costs only about a
penny.

A more accurate estimate could be made, if it were needed, by con-
sulting a table of the inductance of finite solenoids, calculating the current
required to produce the given central field, and then computing LI2/2. The
result, when that is carried out in this case, is nearly the same – only a few
percent smaller.

7.17 Two expressions for the energy
The internal field of a solenoid is B = μ0nI = μ0(N/�)I, and the volume
is V = πr2�. From Problem 7.11, the self-inductance of a long solenoid is
L = μ0πr2N2/�. So the two expressions give the same energy if

1
2

LI2 = 1
2μ0

B2V

⇐⇒ 1
2

(
μ0πr2N2

�

)
I2 = 1

2μ0

(
μ0NI

�

)2
πr2�, (12.365)

which is indeed true.
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7.18 Two expressions for the energy (general)
The vector identity is made-to-order, with no need even to change the
letters. Since ∇ × A = B and ∇ × B = μ0J, we have

∇ · (A × B) = B · B − A · μ0J. (12.366)

Integrating this over a volume and using the divergence theorem gives∫
S
(A × B) · da =

∫
V

B2 dv − μ0

∫
V

A · J dv. (12.367)

If the currents are contained in a finite region, and if we take the surface
S to infinity, then the surface integral on the left-hand side is zero. This
follows from the fact that there is an r2 in the denominator of the Biot–
Savart law, and an r in the denominator of the analogous expression for A
in Eq. (6.44). This means that A×B falls off at least as fast as 1/r3. Since
the area of the surface S grows only like r2, the surface integral therefore
goes to zero as r → ∞. So Eq. (12.367) becomes∫

V
B2 dv = μ0

∫
V

A · J dv. (12.368)

The volume integral
∫

V A · J is zero everywhere except where there is
current, so we can replace this integral with a line integral over the wire
in the system. Using the fourth and fifth of the given hints, this yields
(however, see the remark below)∫

V
A · J dv =

∫
A · I dl = I

∫
A · dl = I� = I(LI). (12.369)

Equation (12.368) then becomes∫
V

B2 dv = μ0LI2 �⇒ 1
2μ0

∫
V

B2 dv = 1
2

LI2, (12.370)

as desired. The volume integral runs over all space, although there is neg-
ligible contribution from regions far away (assuming that the currents are
contained in a finite region).

REMARK: We glossed over a certain issue in deriving Eq. (12.369). We
assumed that A takes on a particular value at a given location along the
wire. However, A varies over the wire’s cross section. For example, it is
proportional to r2 for a straight wire, from Exercise 6.43. So although
A · J is well defined, A · dl is not. However, the result in Eq. (12.369)
isn’t affected, because we can get around this issue by dividing the wire
into a large number of very thin tubes of current (like the fibers in a fiber
optic cable). Then A is essentially constant over the tiny cross section of
each tube. (A will undoubtedly vary along the length of the tube, but that
is perfectly fine.) Let the current in each tube be labeled as In, where the
index n runs over all the tubes. Then the contribution to Eq. (12.369) from
a given tube is In(LI). The second I here is indeed the entire I of the whole
wire, because that is what appears in the � = LI definition of L. Summing
over all the little tubes simply turns the In into I, so we end up with the
same result,

∫
V A · J dv = LI2.
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Note that there is a slight ambiguity in �; all the little tubes aren’t in
exactly the same location, so there will be different fluxes through each of
their circuits. This is the issue we discussed at the end of Section 7.8; it is
unclear what is meant by the self-inductance of a circuit. But we haven’t
let that worry us so far, so we won’t start worrying about it now.

7.19 Critical frequency of a dynamo
(a) The units of the three relevant quantities are

σ :
C2 s

kg m3 , μ0 :
kg m
C2 , d : m, (12.371)

where we have used the fact that the units of σ are (ohm-m)−1. Our
goal is to combine these quantities to make the units of ω0, namely
inverse seconds. The coulombs and kilograms cancel out in the prod-
uct μ0σ . The meters then cancel if we multiple by d2. That leaves
only seconds in the numerator, so we just need to take the inverse,
yielding 1/μ0σd2, up to a numerical factor.

(b) We will ignore all numerical factors in the following reasoning, so any
“=” signs below should be taken with a grain of salt. The resistance
of the current path in the dynamo scales like 1/σd, by dimensional
analysis or equivalently because R = �/σA, where � ∝ d and A ∝ d2.
Ignoring numerical factors, we will set R = 1/σd. To maintain a
current I, we need an emf of E = IR. Hence E = I/σd. But since
voltage equals the line integral of the electric field, E is given by Ed,
up to numerical factors. So we have8 Ed = I/σd �⇒ E = I/σd2.

Now, the effective electric field causing the charges to move in the
disk is E = vB (because the force is qvB), where v = ω0d. Therefore,
I/σd2 = (ω0d)B. Finally, the magnetic field produced by the current
I is, in order of magnitude, B = μ0I/d (because B = μ0I/2πr for a
wire). So we arrive at

I
σd2 = (ω0d)

μ0I
d

�⇒ ω0 = K
μ0σd2 , (12.372)

where we have introduced the factor K to represent all the numerical
factors we dropped.

For copper at room temperature, we have σ ≈ 6 · 107 (ohm-m)−1.
If we take d = 1 m then we obtain ω0 = K(0.013) s−1. This seems
rather slow. However, it turns out that the factor K is generally much
larger than 1, for various reasons. For one, the above form of B for a
wire tells us that we should be using μ0/2π instead of μ0. This would
increase K by 2π . But far more importantly, in the dynamo we met
in Exercise 7.47, the resistance R is larger than 1/σd by something
like d2/A, where A is the cross-sectional area of the wire of the coil.
And the sliding contacts will probably have a resistance much larger
than 1/σd.

8 In a standard wire with a given thickness, we have I ∝ E. The reason why I ∝ Ed2

here is that we are scaling the “wire” in all dimensions, so the cross-sectional area
grows like d2, allowing more current through.
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12.8 Chapter 8
8.1 Linear combinations of solutions

If x1(t) and x2(t) are solutions to the given linear equation, then

Aẍ1 + Bẋ1 + Cx1 = 0,

Aẍ2 + Bẋ2 + Cx2 = 0. (12.373)

If we add these two equations, and switch from the dot notation to the d/dt
notation, then we have (using the fact that the sum of the derivatives is the
derivative of the sum)

A
d2(x1 + x2)

dt2
+ B

d(x1 + x2)

dt
+ C(x1 + x2) = 0. (12.374)

But this is just the statement that x1 + x2 is a solution to our differential
equation, as we wanted to show. This technique clearly works for any lin-
ear combination of x1 and x2, not just their sum. Note that the right-hand
side of the equation needs to be zero, otherwise we wouldn’t end up with
the same term on the right-hand side when we add the equations. Hence
the “homogeneous” qualifier in the statement of the problem.

Now consider the nonlinear equation

Aẍ + Bẋ2 + Cx = 0. (12.375)

If x1 and x2 are solutions to this equation, and if we add the differential
equations applied to each of them, we obtain

A
d2(x1 + x2)

dt2
+ B

[(
dx1
dt

)2
+

(
dx2
dt

)2
]
+ C(x1 + x2) = 0. (12.376)

This is not the statement that x1 + x2 is a solution, which is instead the
(false) statement that

A
d2(x1 + x2)

dt2
+ B

(
d(x1 + x2)

dt

)2
+ C(x1 + x2) = 0. (12.377)

The preceding two equations differ by the cross term in the middle term in
Eq. (12.377), namely 2B(dx1/dt)(dx2/dt). In general this term is nonzero,
so Eq. (12.377) isn’t valid, and we conclude that x1 + x2 isn’t a solution.
No matter what the order of the differential equation is, we see that these
cross terms will arise if and only if the equation isn’t linear.

This property of homogeneous linear differential equations – that the
sum of two solutions is again a solution – is extremely useful. It means
that we can build up solutions from other solutions. Systems that are gov-
erned by linear equations are much easier to deal with than systems that
are governed by nonlinear equations. In the latter, the various solutions
aren’t related in an obvious way. Each one sits in isolation, in a sense.
General relativity is an example of a theory that is governed by nonlinear
equations, and solutions are indeed very hard to come by.
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8.2 Solving linear differential equations
The fundamental theorem of algebra states that any nth-order polynomial,

anzn + an−1zn−1 + · · · + a1z + a0, (12.378)

can be factored into

an(z − r1)(z − r2) · · · (z − rn), (12.379)

where the ri roots are in general complex. This is believable, but by no
means obvious. The proof is rather involved, so we’ll just accept it here.

Now, because differentiation by t commutes with multiplication by
a constant, we can factor Eq. (8.95) just as we can factor Eq. (12.378).
That is, the fundamental theorem of algebra tells us that we can rewrite
Eq. (8.95) as

an

(
d
dt

− r1

)(
d
dt

− r2

)
· · ·

(
d
dt

− rn

)
x = 0. (12.380)

Furthermore, because all of these factors commute with each other, we
can shuffle the order and make any one of the factors be the rightmost
one. So any solution to the equation(

d
dt

− ri

)
x = 0 ⇐⇒ dx

dt
= rix (12.381)

is a solution to the original equation, Eq. (8.95). But the solutions to these
n first-order equations are simply the exponential functions, x(t) = Aierit.
(These certainly work, although if you want to show this from scratch, you
can solve dx/dt = rix by separating variables and integrating.) We have
therefore found n different solutions. And from Problem 8.1, we know that
any linear combination of these solutions is also a solution.

There are two issues we have glossed over. First, there may be double
(or triple, etc.) roots to the “characteristic equation” in Eq. (12.379). If r
is a double root, it turns out that, in addition to Aert, another solution is
Btert. And a triple root would also have Ct2ert as a solution. And so on.
You can verify this by direct differentiation, but here’s a general proof. If
y(t) is an arbitrary function, then (d/dt − r)(yert) = (dy/dt)ert. So we
inductively obtain (d/dt − r)n(yert) = (dny/dtn)ert. This equals zero if
dny/dtn = 0, which is satisfied by any polynomial of degree n − 1 or
less. Hence, for example, (d/dt − r)3[(A + Bt + Ct2)ert] = 0, as we
claimed above.

Second, we have found n solutions, but how do we know we have
found them all? Perhaps none of the factors in Eq. (12.380) alone makes
the left-hand side zero, but maybe some combination of them does? We
know that this doesn’t happen when dealing with the normal multipli-
cation of the factors in Eq. (12.379), but maybe something odd happens
when dealing with derivatives? It turns out that this isn’t the case, although
it’s harder to show. One way is to invoke the Fourier-analysis fact that any
(reasonably well behaved) function can be written as the sum, or inte-
gral, of exponential functions. And for an exponential function, it is easy
enough to show that Eq. (12.380) is zero only if one of the factors applied
to it is zero.
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8.3 Underdamped motion
Plugging an exponential solution x(t) = Ceγ t into the given differential
equation gives

γ 2Ceγ t + 2αγ Ceγ t + ω2
0Ceγ t = 0 �⇒ γ 2 + 2αγ + ω2

0 = 0.

(12.382)

The roots of this quadratic equation are

γ1,2 = −α ±
√

α2 − ω2
0, (12.383)

where the subscripts 1 and 2 correspond to the + and − roots, respectively.
Our two exponential solutions are therefore x1(t) = C1eγ1t and x2(t) =
C2eγ2t.

There are three cases to consider, depending on whether the quantity
α2−ω2

0 is positive, zero, or negative. We will generally be concerned with
the underdamped case where α < ω0, but see Problem 8.4 for a discus-
sion of the overdamped case. If α < ω0, the discriminant in Eq. (12.383)
is negative, so the γ ’s have an imaginary part. Let’s define the real quan-
tity ω by

ω ≡
√

ω2
0 − α2. (12.384)

Then the γ ’s in Eq. (12.383) become γ1,2 = −α ± iω, and our two expo-
nential solutions now look like

x1(t) = C1e(−α+iω)t and x2(t) = C2e(−α−iω)t. (12.385)

Since the given differential equation is linear, the most general solution is
the sum of these two solutions, which is

x(t) = e−αt
(

C1eiωt + C2e−iωt
)

. (12.386)

Now comes the sneaky part (or the obvious part, depending on how
you look at it): x(t) must of course be real if it represents a physical
quantity (charge, current, voltage, position, angle, etc.) The two terms
in Eq. (12.386) must therefore be complex conjugates of each other, so
that their imaginary parts cancel. This implies that C2 = C∗

1, where
the star denotes complex conjugation. If we write C1 in “polar” form as
C1 = Ceiφ , then C2 = C∗

1 = Ce−iφ , so x(t) becomes

x(t) = e−αtC
(
ei(ωt+φ) + e−i(ωt+φ)

)
= e−αtC · 2 cos(ωt + φ)

≡ Ae−αt cos(ωt + φ), (12.387)

where A ≡ 2C. Applying the trig sum formula to cos(ωt + φ) turns it
into a linear combination of cos ωt and sin ωt terms, which is the desired
form in Eq. (8.10). In the case of the RLC circuit in Section 8.1, we have
α = R/2L and ω2

0 = 1/LC. So the α in Eq. (12.387) agrees with the α in
Eq. (8.8). And the frequency ω in Eq. (12.384) agrees with the frequency
in Eq. (8.9).

Note that by demanding that x be real (which led to the addition of
the two complex conjugates in Eq. (12.387)), we are basically just taking
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the real part of either of the two solutions in Eq. (12.386). So in the end,
you can skip much of the above reasoning and simply take the real part of
an exponential solution that you obtain. This “taking the real part” strategy
is discussed in detail in Section 8.3.

8.4 Overdamped RLC circuit
Plugging the trial solution V(t) = Ae−βt into Eq. (8.2) gives (after can-
celing the factor of Ae−βt)

β2 − R
L

β + 1
LC

= 0. (12.388)

The roots of this quadratic equation are

β1,2 = 1
2

⎛
⎝R

L
±

√
R2

L2 − 4
LC

⎞
⎠ = R

2L

(
1 ±

√
1 − 4L

R2C

)
, (12.389)

where the subscripts 1 and 2 correspond to the + and − roots, respectively.
So we have found two exponential solutions: Ae−β1t and Be−β2t. Since
the differential equation in Eq. (8.2) is linear, the most general solution
for V(t) is a linear combination of these two solutions, that is,

V(t) = Ae−β1t + Be−β2t. (12.390)

We see from Eq. (12.389) that the roots are real if R ≥ 2
√

L/C. In this case
we have exponentially decaying motion instead of the (decaying) oscilla-
tory motion in Eq. (8.10), relevant to the underdamped case.

If R is large (more precisely, if R2 � L/C), then in Eq. (12.389) we
can use the Taylor series

√
1 − ε ≈ 1 − ε/2 to write the β’s as

β1,2 = R
2L

(
1 ±

(
1 − 2L

R2C

))
�⇒ β1 ≈ R

L
and β2 ≈ 1

RC
.

(12.391)

Since R is large, we have β1 � β2. The Ae−β1t part of the solution there-
fore goes to zero much faster than the Be−β2t part. For large t (more pre-
cisely, for t � L/R), the solution therefore looks like V(t) ≈ Be−t/RC .
This is exactly the same behavior that the RC circuit had in Section 4.11.
So apparently we have essentially an RC circuit with no L. This makes
physical sense, because a very large R means a very small current I, and
hence a very small dI/dt. The voltage L dI/dt across the inductor is there-
fore negligible, which means that the inductor can be ignored.

8.5 Change in frequency
By looking at the oscillation plot, we can make the rough estimate that the
amplitude decreases by a factor of 1/e after about two oscillations. This
means that the exponential factor e−αt equals e−1 after two periods. Each
oscillation takes a time of 2π/ω, so α is given in terms of ω by

αt = 1 �⇒ α(2 · 2π/ω) = 1 �⇒ α = ω

4π
. (12.392)
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From the expressions for α and ω in Eqs. (8.8) and (8.9), we then have

ω2 = 1
LC

− R2

4L2 = 1
LC

− α2 = 1
LC

−
( ω

4π

)2

�⇒ ω = 1√
LC

· 1√
1 + 1/(4π)2

≈ 1√
LC

(
1 − 1

32π2

)
, (12.393)

where we have used the Taylor series, 1/
√

1 + ε ≈ 1 − ε/2. The fre-
quency therefore differs from the natural frequency 1/

√
LC by only about

0.3 percent. The moral here is that unless the oscillation very quickly
damps out to zero, the frequency is essentially equal to the natural fre-
quency. Even if the amplitude decreases four times as fast as in the given
plot (so that αt = 1 after half an oscillation), you can quickly show that
the percentage difference in the frequency is still only about 5 percent. In
any case, the frequency is always smaller than the natural frequency.

8.6 Limits of an RLC circuit
(a) If R = 0, the α in Eq. (8.8) equals zero, and the ω in Eq. (8.9) equals

1/
√

LC ≡ ω0. So the solution in Eq. (8.4) is simply V(t) = A cos ω0t.
The charge sloshes back and forth between the two plates of the capac-
itor, passing through the inductor in the process. Looking back at
Eq. (8.2), we see that if R ≈ 0 the second term is negligible com-
pared with the first and third terms, which are the two terms relevant
to an LC circuit.

(b) If L → 0, then R > 2
√

L/C, so we are in the overdamped regime.
Equation (12.389) in the solution to Problem 8.4 gives the values of
the β’s that appear in Eq. (8.15). For small L we can use the Taylor
series

√
1 − ε ≈ 1 − ε/2 (just as we did in Eq. (12.391)) to write the

β’s in Eq. (12.389) as

β1,2 = R
2L

(
1 ±

(
1 − 2L

R2C

))
�⇒ β1 ≈ R

L
and β2 ≈ 1

RC
.

(12.394)

Since L is small, β1 is very large. So the Ae−β1t part of the solution
goes to zero much faster than the Be−β2t part. The solution therefore
quickly becomes essentially equal to V(t) ≈ Be−t/RC , which is the
solution for an RC circuit, as desired. This makes sense, because if
L ≈ 0, the voltage L dI/dt across the inductor is zero, which means
that the inductor can be ignored. Looking back at Eq. (8.2), we see
that if L ≈ 0, the first term is negligible compared with the second
and third terms, which are the two terms relevant to an RC circuit.

(c) If C → ∞, then R > 2
√

L/C, so we are again in the overdamped
regime. For large C we can apply the same Taylor series to Eq. (12.389)
as in part (b), so the β’s are again β1 ≈ R/L and β2 ≈ 1/RC. If
C → ∞ then β2 → 0. So the Be−β2t part of the solution is essentially
equal to the constant B. Hence V(t) ≈ Ae−(R/L)t + B. Ignoring the
B term, this is the solution for an RL circuit, as desired. This makes
sense, because if C → ∞, the voltage Q/C across the capacitor is
zero (for any finite Q), which means that the capacitor can be ignored.
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Looking back at Eq. (8.2), we see that if C → ∞ the third term is
negligible compared with the first and second terms, which are the
two terms relevant to an RL circuit.

The physical meaning of B is the following. If C → ∞, the capaci-
tor is an infinite reservoir of charge, whose potential V = Q/C essen-
tially doesn’t change when a finite amount of charge is added or sub-
tracted. Imagine that there is an initial current in the inductor. This
current will gradually decay according to e−(R/L)t, and after a while
it will be essentially zero. However, there will now be charge on the
capacitor, and this charge (and hence the voltage, which will be very
small if C is very large) will very slowly leak off according to e−t/RC ,
which is essentially constant on any finite time scale if C → ∞. In
the event that the initial charge on the capacitor approaches infinity,
with the voltage Q/C being some finite constant (the B from above),
the lingering state will be one where an essentially constant current
flows through the circuit, decaying negligibly according to e−t/RC .
What we found above is that the circuit will approach this state in an
e−(R/L)t manner.

8.7 Magnitude and phase
If φ = tan−1(b/a), then φ is given by the triangle in Fig. 12.117. So we

b

a

f

a2 + b2

Figure 12.117.

have cos φ = a/
√

a2 + b2 and sin φ = b/
√

a2 + b2. Using the relation
eiφ = cos φ + i sin φ (see Section K.5 in Appendix K), we can write
I0eiφ as

I0eiφ = I0(cos φ + i sin φ)

=
√

a2 + b2

(
a√

a2 + b2
+ i

b√
a2 + b2

)

= a + bi, (12.395)

as desired.

8.8 RLC circuit via vectors
(a) For convenience, let’s repeat Eq. (8.98) here:

ωLI0 cos(ωt + φ + π/2) + RI0 cos(ωt + φ)

+ I0
ωC

cos(ωt + φ − π/2) = E0 cos ωt. (12.396)

With I(t) = I0 cos(ωt+φ) we have L dI/dt = −ωLI0 sin(ωt+φ). And
since the trig sum formula gives cos(ωt+φ+π/2) = − sin(ωt+φ),
the first term in Eq. (12.396) is correct. The second term is correct
by definition. In the third term we have Q = ∫

I dt. (With our sign
conventions for I and Q, there is no minus sign here.) So Q/C =
(I0/ωC) sin(ωt + φ). (As mentioned after Eq. (8.28) in the text, the
constant of integration is zero.) And since the trig sum formula gives
cos(ωt + φ − π/2) = sin(ωt + φ), the third term Eq. (12.396) is also
correct.

Equation (12.396) tells us that the voltage across the inductor, VL,
is 90◦ ahead of the voltage across the resistor, VR (which is in phase
with the current), which in turn is 90◦ ahead of the voltage across the
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capacitor, VC. The applied voltage is (in general) in phase with none
of these. It is φ behind VR, although we will find that φ can be pos-
itive or negative. If φ is negative, then the applied voltage is actually
ahead of VR, and hence also ahead of the current.

VC
VL = wLI0

VR = RI0

= I0

wC
___

Figure 12.118.

(b) Since eiθ = cos θ + i sin θ , the real part of a complex number Aeiθ

equals A cos θ . Equivalently, if a complex number is represented by
a vector in the complex plane (with length A and angle θ relative
to the horizontal axis), then its real part equals its projection onto
the horizontal axis, because the projection brings in a factor of cos θ .
Since all four of the terms in Eq. (12.396) involve the cosine of some
angle, they all can be considered to be the horizontal projections of
four vectors with the given lengths and angles (phases).

Consider a moment in time when the phase of VC is zero (or a
multiple of 2π ). Then the vector representing VC in the complex plane
points to the right with magnitude I0/ωC, as shown in Fig. 12.118. The
phase of VR is 90◦ larger, so VR is represented by a vector pointing
upward with magnitude RI0. The phase of VL is yet 90◦ larger, so VL
is represented by a vector pointing leftward with magnitude ωLI0.

Putting these vectors tail to head, the sum is shown in Fig. 12.119.
If the vector sum has length E0, and if its phase is φ behind the phasewLI0

w

RI0

I0

wC
___

f

E0

Figure 12.119.

of VR (or ahead, if φ is negative) as shown, then the horizontal pro-
jections will add up properly and Eq. (12.396) will be satisfied. From
Fig. 12.119 we see that φ is positive (or negative) if I0/ωC is larger
than (or smaller than) ωLI0. The cutoff between these cases occurs
when ω = 1/

√
LC.

The important point to note is that, as time goes by, the whole
quadrilateral rotates around in the complex plane, due to the ωt term
in all four of the phases in Eq. (12.396). The shape of the quadrilateral
doesn’t change as it rotates. The fact that the quadrilateral is closed
means that the horizontal projections of the VC, VR, and VL vectors
will always add up to the horizontal projection of the E0 vector. That
is, Eq. (12.396) will always be satisfied if it is initially satisfied.

(c) To find the values of I0 and φ (for a given ω) that cause Eq. (12.396)
to be satisfied, we just need to do a little geometry with our quadri-
lateral. If we consider the right triangle with the dashed line side in
Fig. 12.119, we quickly see that

(RI0)2 + (I0/ωC − ωLI0)2 = E2
0 �⇒ I0 = E0√

R2 + (1/ωC − ωL)2
,

tan φ = I0/ωC − ωLI0
RI0

�⇒ tan φ = 1
RωC

− ωL
R

.

(12.397)

These results agree with Eqs. (8.38) and (8.39), as desired. For a given
ω, if I0 and φ take on these values, then Eq. (12.396) will be satisfied.

The phase φ is positive if ω < 1/
√

LC, which means that the cur-
rent I(t) (or equivalently VR) is ahead of the applied E ; the capacitor’s
effect dominates the inductor’s. On the other hand, φ is negative if
ω > 1/

√
LC, which means that the current I(t) (or equivalently VR)
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is behind the applied E ; the inductors’s effect dominates the capaci-
tor’s. (You should check these facts intuitively in the cases where the
circuit contains only a capacitor or only an inductor.) In any case, φ

lies in the range −π/2 ≤ φ ≤ π/2, with equality achieved if R = 0. wLI0

w LI0

wLI0

RI0

RI0

RI0

I0

w C
___

I0

w C
___

I0

w C
___

f

–f

(Small w)

(Resonance)

(Large w)

E0

E0

E0

Figure 12.120.

For given values of L, R, C, and E0, it is instructive to look at how
the frequency ω affects the shape of the quadrilateral. For this pur-
pose, it is more convenient to consider a moment in time when the
E vector is horizontal, as shown in Fig. 12.120. The quadrilateral can
take three basic shapes, as shown. For ω < 1/

√
LC, the VC side is

longer; for ω = 1/
√

LC, the magnitudes of VC and VL are equal;
and for ω > 1/

√
LC, the VL side is longer. The current amplitude I0

is proportional to the length of the VR side, so we see geometrically
why I0 is maximum on resonance, that is, when ω = 1/

√
LC.

8.9 Drawing the complex vectors
Series circuit For the series circuit in Fig. 8.10, the vectors are shown in
Fig. 12.121. The current through all three elements (and the applied volt-
age source) is the same, and we have chosen the instant in time when this
common complex current points along the real axis (so this is the instant
when the actual current reaches its maximum value). The ṼR voltage vec-
tor also points along the real axis, because it is in phase with ĨR. ṼL is 90◦
ahead of ĨL, so ṼL points along the positive imaginary axis. And ṼC is
90◦ behind ĨC, so ṼC points along the negative imaginary axis. From the
given information about the impedances, ṼR and ṼL have the same length,
and this length is twice that of ṼC (because in general Ṽ = ĨZ, and all the

Ĩ’s are the same here).
The voltage ṼE is the sum of the voltages across the three elements.

Using what we know about the relative lengths of the voltages, we find
|ṼE | = (

√
5/2)|ṼR|. Since the current lags the applied voltage, the phase

angle φ is negative. This is consistent with Eq. (8.39), because we are
given that |ZL| > |ZC| �⇒ ωL > 1/ωC. The angle φ is given by tan φ =
−1/2 �⇒ φ = −26.6◦.

VR

VL

Ve

IL IR IC

VC

w

Length = E 0

f

, ,

Figure 12.121.

If you wanted, you could have picked the instant when ṼE points
along the real axis, in which case all the vectors would be rotated clock-
wise by an angle |φ|. The vectors look a little simpler the way we have
drawn them, because more of them lie along the axes. The relative size of
the Ĩ and Ṽ vectors in the figure doesn’t mean much, because they have
different units. But if the size of 1 volt on the page corresponds to the size
of 1 amp, then, since we have drawn ĨR slightly shorter than ṼR, we have
apparently chosen R to be slightly larger than 1 ohm.

Parallel circuit For the parallel circuit in Fig. 8.20, the vectors are
shown in Fig. 12.122. In this circuit the voltage through all three elements
(and the applied voltage source) is the same. We have chosen the instant
in time when this common complex voltage points along the real axis (so
this is the instant when the actual voltage reaches its maximum value).
The ĨR current vector also points along the real axis. ṼL is 90◦ ahead
of ĨL, so ĨL points along the negative imaginary axis. And ṼC is 90◦
behind ĨC, so ĨC points along the positive imaginary axis. From the given
information about the impedances, ĨR and ĨL have the same length, and
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this length is half that of ĨC (because Ṽ = ĨZ, and now all the Ṽ’s are
the same).

The total current Ĩ (which we could denote by ĨE to parallel the above
notation in the series case) is the sum of the currents across the three

VE VC VR VL

IL

IR

I

IC

w

Length = E0

f

, , ,

Figure 12.122.

elements. Using what we know about the relative lengths of the currents,
we find |Ĩ| = √

2|ĨR|. Since the total current leads the applied voltage,
the phase angle φ is positive. This is consistent with Eq. (8.67), because
as above, we are given that ωL > 1/ωC. The angle φ is given by tan φ =
1 �⇒ φ = 45◦.

Again, the relative size of the Ĩ and Ṽ vectors doesn’t mean much.
But if the sizes of the various units match up the natural way, we have
again chosen R to be slightly larger than 1 ohm. Note that, in the present
case, choosing the instant when ṼE points along the real axis leads to most
of the vectors lying along the axes.

8.10 Real impedance
The impedances of the two branches are R+ iωL and 1/iωC. Adding these
in parallel gives a total impedance of

Z = 1
1

R + iωL
+ iωC

. (12.398)

This is real if its reciprocal is real:

1
Z
= 1

R + iωL
+ iωC = R − iωL

R2 + ω2L2 + iωC. (12.399)

Setting the imaginary part equal to zero gives

ωL
R2 + ω2L2 = ωC �⇒ ω2 = 1

LC
− R2

L2 . (12.400)

So the answer is “yes,” provided that R2 < L/C. Note that ω = 0 is
also a solution. In this case, the capacitor lets through no current (its
impedance is infinite), and the inductor is effectively just a short-circuit
wire (its impedance is zero). So we effectively have only the resistor.

8.11 Light bulb
The resistance of the light bulb is obtained from P = V2

rms/R �⇒ R =
(120 V)2/(40 W) = 360 �. Since ω = 2πν = 2π(60 s−1) = 377 s−1, the
impedance of the capacitor is ZC = 1/iωC = −i/(377 s−1)(10−5 F) =
−265i �. The magnitude of the total impedance is then

|Z| =
√

Z2
R + Z2

C =
√

(360 �)2 + (265 �)2 = 447 �. (12.401)

The rms current through the light bulb was originally Irms = (120 V)/

(360 �), but now it is (120 V)/(447 �) (Ohm’s law works with |Z|; see
Eq. (8.77)). So it has decreased by a factor 360/447 = 0.81. Since the
power is proportional to the square of the current (it can be written as
I2
rmsR), the brightness has therefore decreased by a factor (0.81)2 = 0.65.
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8.12 Fixed voltage magnitude
Both branches have the same voltage difference V0 and the same impedance
R + 1/iωC, so the complex current in both branches is given by

V0 = Ĩ(R + 1/iωC) �⇒ Ĩ = V0
R + 1/iωC

. (12.402)

The complex voltage at A is ṼA = V0 − Ĩ(1/iωC), and at B it is ṼB =
V0 − ĨR. Therefore (using the above value of Ĩ),

ṼAB ≡ ṼB − ṼA = Ĩ(−R + 1/iωC)

= V0
−R + 1/iωC
R + 1/iωC

= V0
1 − iωRC
1 + iωRC

. (12.403)

The numerator and denominator here have the same magnitude, so
|VAB|2 = V2

0 , as desired. For a 90◦ phase difference, we need (1 −
iωRC)/(1 + iωRC) = ±i, since e±iπ/2 = ±i. We quickly find that if
ω = 1/RC, so that ωRC = 1, then

ṼAB = V0

(
1 − i
1 + i

)
= −iV0. (12.404)

A phase of 90◦ in the other direction, with ṼAB = iV0, would require
ωRC = −1, which isn’t possible since all of these quantities are positive.

8.13 Low-pass filter
Let I0 be the amplitude of the current through the resistor, which is also
essentially the current through the capacitor. Then the complex Ṽ = ĨZ
statement for the voltage between the terminals at A is V0 = Ĩ(R+1/iωC).
And the statement for the terminals at B is Ṽ1 = Ĩ(1/iωC). Therefore,

Ṽ1
V0

= 1
1 + iωRC

�⇒
∣∣∣∣∣ Ṽ1
V0

∣∣∣∣∣
2

= 1
1 + ω2R2C2 . (12.405)

(It technically isn’t necessary to take the magnitude of V0 here, because
the normal convention is to take V0 to be real. But it looks a little nicer
this way.) This equals 0.1 when ω2R2C2 = 9. At 5000 Hz this gives

RC = 3
ω

= 3
2π · 5000 s−1 ≈ 1 · 10−4 s. (12.406)

This is satisfied by, for example, R = 1000 � and C = 0.1 μF.
The power is proportional to V2. If ω is large (more precisely, if

ωRC � 1), we can ignore the “1” in the denominator of Eq. (12.405). We
then have |Ṽ1/V0|2 ∝ 1/ω2. Doubling ω decreases this by a factor of 4.

The physical reason why V1 decreases with increasing frequency is
the following. For very low frequency, the impedance of the capacitor is
very large. The fixed impedance of the resistor is negligible in comparison,
so essentially all of the V0 voltage drop occurs across the capacitor, which
is the voltage that V1 registers. On the other hand, for very high frequency,
the impedance of the capacitor is very small; it is essentially a short circuit.
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Therefore, essentially all of the V0 voltage drop occurs across the resistor.
Very little occurs across the capacitor which, again, is the voltage that V1
registers.

The circuit in Fig. 12.123 has |V2/V0|2 ∝ 1/ω4, for large ω. (We’ll

RR

C C V2

V1

V0

Figure 12.123.

drop the tildes on the V’s.) This is true because for large ω we have
|V1/V0|2 ∝ 1/ω2; we are still able to invoke the above result because neg-
ligible current goes through the new circuit elements on the right (because
the left capacitor has negligible impedance for large ω, while the right
resistor has a fixed value). And then we can use the same reasoning to say
that |V2/V1|2 ∝ 1/ω2. So |V2/V0|2 = |V2/V1|2|V1/V0|2 ∝ (1/ω2)2 =
1/ω4. Each new loop decreases the output voltage by 1/ω2.

To derive this 1/ω4 result from scratch, we can set up the loop cur-
rents shown in Fig. 12.124. We haven’t drawn a current in the right-hand

RR

CC
V2V0 I1 I2

Figure 12.124.

loop, because the current through the right-hand terminals is assumed to
be very small. The three loop equations are (dropping the tildes)

V0 − I1R − (I1 − I2)(1/iωC) = 0,

−I2R − I2(1/iωC) − (I2 − I1)(1/iωC) = 0,

−V2 + I2(1/iωC) = 0. (12.407)

If ω is large, the first equation yields V0 ∝ I1. Similarly, if ω is large, the
second equation yields I1 ∝ ωI2. And the third equation yields I2 ∝ ωV2
in any case. So we have V0 ∝ I1, I1 ∝ ωI2, and I2 ∝ ωV2. These three
expressions yield V0 ∝ ω2V2. Therefore, |V2/V0|2 ∝ 1/ω4, as desired.

8.14 Series RLC power
The current I(t) and phase φ for the series RLC circuit are given in
Eqs. (8.38) and (8.39). Since tan φ = (1/ωC − ωL)/R, we have

cos φ = R√
R2 + (ωL − 1/ωC)2

. (12.408)

Equation (8.84) therefore gives the average power delivered to the cir-
cuit as

P = 1
2
E0I0 cos φ

= 1
2
E0 · E0√

R2 + (ωL − 1/ωC)2
· R√

R2 + (ωL − 1/ωC)2

= 1
2

E2
0 R

R2 + (ωL − 1/ωC)2 . (12.409)

The average power dissipated in the resistor is given by Eq. (8.80), where
V0 is the voltage across only the resistor. Since this voltage is given simply
by V0 = I0R, we have

PR = 1
2

V2
0

R
= 1

2
(I0R)2

R
= 1

2
I2
0R = 1

2

(
E0√

R2 + (ωL − 1/ωC)2

)2

R

= 1
2

E2
0 R

R2 + (ωL − 1/ωC)2 , (12.410)

in agreement with Eq. (12.409).
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8.15 Two inductors and a resistor
(a) The impedance of the inductor is ZL = iωL. But since ω = R/L here,

we have ZL = iR. Using the standard rules for adding impedances in
series and parallel, the total impedance of the circuit is

Z = ZL + ZRZL
ZR + ZL

= iR + R(iR)

R + iR
= R

−1 + 2i
1 + i

. (12.411)

This can also be written as Z = R(1 + 3i)/2.
(b) The complex current is

Ĩ = E0
Z

= E0
R

1 + i
−1 + 2i

= E0
R

1 − 3i
5

= E0
R

√
10
5

eiφ , (12.412)

where tan φ = −3. Therefore,

I0 =
√

10
5

E0
R

and φ = tan−1(−3) ≈ −71.6◦. (12.413)

Formally,

I(t) = Re
[
Ĩeiωt

]
= Re

[√
10
5

E0
R

eiφeiωt

]
=

√
10
5

E0
R

cos(ωt + φ).

(12.414)

(c) Since tan φ = −3 implies cos φ = 1/
√

10, Eq. (8.84) gives the aver-
age power dissipated in the circuit as

1
2
E0I0 cos φ = 1

2
E0

(√
10
5

E0
R

)
1√
10

= E2
0

10R
. (12.415)

Alternatively, we can find the power dissipated by finding the volt-
age VR across the resistor and then using PR = (1/2)V2

R/R. (The
resistor is the only place where power is dissipated.) The complex
voltage across the resistor equals E0 minus the complex voltage across
the upper inductor, VL. This latter voltage is

ṼL = ĨZL = Ĩ(iR) =
(E0

R
1 − 3i

5

)
iR = E0

3 + i
5

. (12.416)

Hence

ṼR = E0 − ṼL = E0

(
1 − 3 + i

5

)
= E0

2 − i
5

. (12.417)

The magnitude of this is VR = |ṼR| = E0/
√

5. Therefore,

PR = 1
2

V2
R

R
= 1

2

E2
0 /5

R
= E2

0
10R

, (12.418)

in agreement with the above result.
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12.9 Chapter 9
9.1 The missing term

If we take the divergence of ∇ × B = μ0J + W and use the fact that the
divergence of the curl is identically zero, we obtain 0 = μ0∇ · J+∇ ·W.
The continuity equation then gives ∇ ·W = μ0(∂ρ/∂t). Gauss’s law turns
this into

∇ · W = μ0ε0
(
∂(∇ · E)/∂t

) �⇒ ∇ · W = ∇ · [μ0ε0(∂E/∂t)
]
.

(12.419)

Therefore, W = μ0ε0(∂E/∂t) + Z, where Z is a vector function whose
divergence is identically zero. If we are allowed to work only with the
given facts, then the only vector Z whose divergence we know is identi-
cally zero is B. So the Maxwell equation must take the form of

∇ × B = μ0J + μ0ε0
∂E
∂t

+ kB, (12.420)

where k is some constant. However, in the simple case of steady currents,
we know that Ampère’s law, ∇ × B = μ0J, is valid. Therefore k must
equal 0, and we arrive at the desired result.

9.2 Spherically symmetric current
As we showed near the end of Section 9.2, the magnetic field due to
a spherically symmetric current density is zero. So the left-hand side
of the given Maxwell equation is zero. Our goal is therefore to show
that J = −ε0 ∂E/∂t. The electric field E points outward (if Q is pos-
itive) with magnitude Q/4πε0r2, so ∂E/∂t = r̂(dQ/dt)/4πε0r2. And
the current density J points inward. The rate at which charge crosses
any spherical boundary is dQ/dt, so the current density at radius r is
J = −r̂(dQ/dt)/4πr2. It therefore is indeed true that J = −ε0 ∂E/∂t.

9.3 A charge and a half-infinite wire
(a) Consider a given point P on the circle. In finding the field at P, there

are various ways to parameterize the Biot–Savart integral. Let’s work
in terms of the angle α shown in Fig. 12.125, where α runs from α0 ≡

q

a
b

r

P

dl

Figure 12.125.

π/2 − θ up to π/2. The distance from a small segment of the wire to
the center of the given circle is l = b tan α, so a short segment of the
wire has length dl = d(b tan α) = b dα/ cos2 α. The cross product in
the Biot–Savart law brings in a factor of the sine of the angle between
dl and the r̂ vector to P, which is the same as cos α. So the B field at
P has magnitude

B = μ0I
4π

∫
dl cos α

r2 = μ0I
4π

∫ π/2

α0

(b dα/ cos2 α) cos α

(b/ cos α)2

= μ0I
4πb

∫ π/2

α0

cos α dα = μ0I
4πb

(1 − sin α0) = μ0I
4πb

(1 − cos θ).

(12.421)

This B field is tangential to the circle, so the line integral simply
brings in a factor of 2πb. Therefore,

∫
B · ds = (μ0I/2)(1 − cos θ).

This correctly gives 0 for θ = 0, and μ0I for θ = π .
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(b) The μ0I term is in Eq. (9.59) zero in this case because the current
doesn’t pass through the surface. To calculate the displacement-current
term, we will invoke from Problem 1.15 the result that the electric
field flux through the circle is �E = (q/2ε0)(1 − cos θ). Therefore,

μ0ε0

∫
S

∂E
∂t

· da = μ0ε0
∂

∂t

∫
S

E · da = μ0ε0
∂�E
∂t

= μ0ε0
dq/dt
2ε0

(1 − cos θ) = μ0I
2

(1 − cos θ).

(12.422)

Since Eq. (9.59) tells us that this equals
∫

B · ds, we obtain the same
result for the line integral as in part (a). And the signs agree, given the
standard right-hand convention for ds and da.

(c) We now need to include the μ0I term, because the flux passes through
the surface. To calculate the displacement-current term, note that the
union of the present surface and the surface in part (b) is a surface
that completely encloses the charge q. So the sum of the electric
field flux through both surfaces equals the total flux emanating
from the charge q, which is q/ε0. The flux through the present
surface is therefore q/ε0 − (q/2ε0)(1− cos θ) = (q/2ε0)(1+ cos θ).
(Alternatively, the method of Problem 1.15 yields this result if θ is
replaced with π − θ .) But we must be careful about the sign; this
flux pierces the surface in the direction opposite to the direction in
which the current in the wire pierces it. The right-hand side of the
integrated Maxwell equation is therefore

μ0I + μ0ε0

∫
S

∂E
∂t

· da = μ0I − μ0ε0
dq/dt
2ε0

(1 + cos θ)

= μ0I
(

1 − 1
2
(1 + cos θ)

)

= μ0I
2

(1 − cos θ), (12.423)

as desired.

9.4 B in a discharging capacitor, via conduction current
(a) In a small time dt, a charge I dt flows onto the positive plate. The frac-

tion of this charge that ends up in the annular region between radius r
and the edge of the plate at radius b is π(b2 − r2)/πb2 = 1 − r2/b2.
So this fraction of the current is what crosses a circle of radius r. The
circumference of this circle is 2πr, so the surface current density (cur-
rent per length) is J = I(1 − r2/b2)/(2πr). If the point P is close to
the plate, then the plate acts essentially like an infinite plane with this
surface current density.

(b) From Section 6.6, an isolated infinite sheet of current produces a field
on both sides with magnitude μ0J /2. And since we have two plates
with opposite currents, the sum of the two fields at point P equals
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μ0J . (You can verify that they add, not cancel.) So the field at P due
to the conduction current in the two disks is

Bdisks = μ0J = μ0I(1 − r2/b2)

2πr
= μ0I

2πr
− μ0Ir

2πb2 . (12.424)

This field points perpendicular to the surface current, in the tangential
direction around the disks.

The field due to the (essentially continuous) wire is the standard
Bwire = μ0I/2πr. Both Bdisks and Bwire point in the tangential direc-
tion, but you can quickly show by the right-hand rule that they point
in opposite directions. So the net field is the difference of the magni-
tudes, which yields B = μ0Ir/2πb2, as desired.

9.5 Maxwell’s equations for a moving charge
(a) We can use the B = (1/c2)v × E expression for B, along with the

identity

∇ · (A × B) = B · (∇ × A) − A · (∇ × B), (12.425)

to say that

∇ · B = 1
c2 ∇ · (v × E) = 1

c2 E · (∇ × v) − 1
c2 v · (∇ × E).

(12.426)

The first term here is zero because v is constant. The second term
is zero because ∇ × E points in the φ̂ direction (that is, tangential
around the line of motion), so its dot product with v is zero. This
φ̂ direction follows from the expression in Eq. (F.3) for the curl in
spherical coordinates (∂Er/∂θ is the only nonzero derivative). Alter-
natively, we show in part (b) that ∇ × E points in the Cartesian ŷ
direction (at locations in the xz plane), which is orthogonal to v ∝ x̂.

(b) Let’s calculate ∇ × E first, and then ∂B/∂t. Without loss of gen-
erality, we can do the calculation for a point in the xz plane. Now,
Eq. (5.13) is valid for points in the xz plane. But since we’re going
to be taking derivatives (which, by definition, involve nearby points),
we should be careful and include the Ey component, and also the y
dependence of all the coordinates. (It will turn out that we could have
ignored anything to do with y, but it is better to play it safe.) With
D ≡ (γ x)2 + y2 + z2, the generalization of Eq. (5.13) to any point in
space is (dropping the primes on the coordinates)

(
Ex, Ex, Ez

) = γ Q
4πε0D3/2 (x, y, z). (12.427)

Let’s calculate the y component of ∇ × E. It equals

(∇ × E)y = γ Q
4πε0

(
∂

∂z

(
x

D3/2

)
− ∂

∂x

(
z

D3/2

))

= γ Q
4πε0

(
−3xz
D5/2 + 3γ 2xz

D5/2

)
. (12.428)
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Using γ 2 − 1 = γ 2v2/c2, we arrive at

∇ × E = γ Q
4πε0

3γ 2v2xz
c2D5/2 ŷ. (12.429)

The z component of ∇ × E looks similar, with a factor of xy in the
numerator. But since this includes a factor of y, it equals zero for
points in the xz plane. So we can ignore it. And you can quickly show
that the x component of ∇ × E is identically zero.

Now let’s calculate ∂B/∂t. We have

∂B
∂t

= 1
c2

∂

∂t
(v × E) = 1

c2 v × ∂E
∂t

. (12.430)

For points in the xz plane, ∂E/∂t has both x̂ and ẑ components, but
since we’re taking the cross product with v = vx̂, we care only about
the ẑ component. The relevant time derivatives are dz/dt = 0 and
dx/dt = −v. The latter follows from the fact that (x, y, z) are defined
to be the coordinates relative to the charge. So, as the charge moves
to the right, x decreases. Equivalently, x takes the form of x = x0 − vt
for some x0, so dx/dt = −v. We therefore have

∂Ez

∂t
= γ Q

4πε0

∂

∂t

(
z

D3/2

)
= γ Q

4πε0
z(−3/2)D−5/22γ 2x(−v)

= γ Q
4πε0

3γ 2xzv
D5/2 . (12.431)

Equation (12.430) then gives

∂B
∂t

= vx̂
c2 × γ Q

4πε0

3γ 2xzv
D5/2 ẑ = − γ Q

4πε0

3γ 2v2xz
c2D5/2 ŷ. (12.432)

Comparing this result with Eq. (12.429) gives ∇ × E = −∂B/∂t, as
desired.

9.6 Oscillating field in a solenoid
(a) To find E, we can use Faraday’s law (that is, the integral form of

Maxwell’s ∇ ×E = −∂B/∂t equation) applied to a circle with radius
r centered on the axis. Assume that the axis of the solenoid is vertical.
We define positive B as pointing upward, and positive E as counter-
clockwise when viewed from above. Then B(0) B(r)

r

Figure 12.126.

∫
E · ds = −d�B

dt
�⇒ 2πrE = − d

dt

(
πr2 · μ0nI0 cos ωt

)
�⇒ E(r, t) = 1

2
rμ0nI0ω sin ωt. (12.433)

(b) Now consider a rectangular loop that has one side lying along the
solenoid’s axis, and one side at radius r; see Fig. 12.126. There is
changing E flux through this rectangle, due to the above E(r, t). So we
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want to use the integral form of Maxwell’s ∇ × B = μ0ε0∂E/∂t
equation: ∫

B · ds = μ0ε0
d�E

dt
. (12.434)

If the rectangle has length � in the direction along the axis, then the
electric flux is

�E =
∫

E · da =
∫ r

0

1
2

r′μ0nI0ω sin ωt · (� dr′)

= 1
4

r2μ0nI0ω� sin ωt. (12.435)

We have defined the area vector a to point into the page, to match up
with positive E being defined to point into the page (in the right half
of the solenoid). We must therefore evaluate the line integral

∫
B ·

ds in a clockwise sense, to be consistent with the right-hand rule.
So the integral equals �

(
B(0, t) − B(r, t)

) ≡ �(−�B(r, t)). Hence
Eq. (12.434) yields

�
(
B(0, t) − B(r, t)

) = μ0ε0
d
dt

(
1
4

r2μ0nI0ω� sin ωt
)

�⇒ �B(r, t) = −μ0ε0

(
1
4

r2μ0nI0ω2 cos ωt
)

. (12.436)

(c) Since B0(t) = μ0nI0 cos ωt, we have

�B(r, t)
B0(t)

= −μ0ε0r2ω2

4
= − r2ω2

4c2 , (12.437)

where we have used μ0ε0 = 1/c2. (The negative sign in Eq. (12.437)
isn’t important for the overall conclusion of this problem.) The period
of the current oscillation is given by T = 2π/ω. So ω = 2π/T , and
�B(r, t)/B0(t) becomes −r2π2/c2T2. Ignoring the numerical factor,
we see that �B(r, t)/B0(t) is very small if r2/c2T2 is very small, or
equivalently if T is very large compared with r/c. But r/c is the time
it takes light to travel across (half of) the solenoid, as desired.

9.7 Traveling and standing waves
(a) The traveling B fields must point in the ±ŷ directions because they

must be perpendicular to both the associated E field and the direction
of propagation, which is ±ẑ. The magnitudes of the B fields are E0/c.
The signs are determined by the fact that E×B points in the direction
of propagation. The two magnetic waves are therefore

B1 = ŷ(E0/c) cos(kz − ωt),

B2 = −ŷ(E0/c) cos(kz + ωt). (12.438)

The sum of these waves is B = ŷ(2E0/c) sin kz sin ωt.
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(b) We use the Maxwell equation ∇ × E = −∂B/∂t to find B. The curl
of E = 2x̂E0 cos kz cos ωt is

∇ × E =
∣∣∣∣∣∣

x̂ ŷ ẑ
∂/∂x ∂/∂y ∂/∂z

2E0 cos kz cos ωt 0 0

∣∣∣∣∣∣
= −ŷ2kE0 sin kz cos ωt. (12.439)

Setting this equal to −∂B/∂t gives B = ŷ(2kE0/ω) sin kz sin ωt. But
we know that ω/k = c, because the (kz − ωt) factor in the waves can
be written as k

(
z − (ω/k)t

)
, and the coefficient of t is the speed of
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Figure 12.127.

the wave. So the 2kE0/ω factor in B equals 2E0/c, in agreement with
the result in part (a). We have ignored the constant of integration in B
because we are concerned only with the varying part of the field. But
a constant B field can certainly be superposed. (It must be constant in
time, but it can vary with position, as long as the rest of Maxwell’s
equations are satisfied.)

Alternatively, you can find B via the Maxwell equation ∇ × B =
μ0ε0∂E/∂t (with μ0ε0 = 1/c2). You should check that this gives the
same result.

9.8 Sunlight
Equation (9.37) gives the power density as S = E2/(377 �). So we have

E2

377 �
= 103 J

m2 s
�⇒ Erms = 614

V
m

. (12.440)

The rms magnetic field strength is then Brms = Erms/c = 2.0 · 10−6 T,
or 0.02 gauss. This is roughly 1/20 of the earth’s magnetic field (which
varies over the surface).

9.9 Energy flow for a standing wave
(a) For convenience, let k ≡ 2π/λ, ω ≡ 2πc/λ, and A ≡ 2E0. Then the

given standing wave can be written as

E = ẑA sin ky cos ωt, B = −x̂(A/c) cos ky sin ωt. (12.441)

The energy density is (using μ0 = 1/ε0c2)

U = ε0E2

2
+ B2

2μ0
= ε0A2

2

(
sin2 ky cos2 ωt + cos2 ky sin2 ωt

)
.

(12.442)

At the five given times, the cos2 ωt and sin2 ωt terms take on values of
0, 1/2, or 1. So the energy densities at the five times are, respectively
(in units of ε0A2/2), sin2 ky, 1/2, cos2 ky, 1/2, and finally back to
sin2 ky. The plots are shown in Fig. 12.127. These plots show that the
energy sloshes back and forth between regions where ky is close to
odd multiples of π/2 and regions where it is close to even multiples
of π/2.
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(b) The Poynting vector for the standing wave is

S = 1
μ0

E × B = −ŷ
A2

μ0c
sin ky cos ky sin ωt cos ωt

= −ŷ
ε0A2c

4
sin 2ky sin 2ωt, (12.443)

where we have used the double-angle formula for sine, and also the
relation μ0 = 1/ε0c2. We quickly see that the values of Sy for ωt
values of π/4, π/2, and 3π/4 are, respectively (in units of ε0A2c/4),
− sin 2ky, 0, and sin 2ky. The plots are shown in Fig. 12.128. These
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plots show how the energy flows from one picture to the next in
Fig. 12.127.

For example, consider the point ky = π at time ωt = π/4 in
Fig. 12.128. Points to the left of this y value have a positive Sy (that is,
a rightward flow of energy), and points to the right have a negative Sy.
In other words, energy flows into the region around ky = π . This is
consistent with Fig. 12.127; at ωt = π/4, the ky = π point is halfway
through the transition between zero energy density and maximum
energy density. Similarly, at ωt = π/2 there is no flow of energy any-
where. At this time, the energy density reaches an extremum every-
where, so the flow is instantaneously at rest.

9.10 Energy flow from a wire
To have a nonzero Poynting vector, we need to have a nonzero magnetic
field, which in our setup is the magnetic field due to the wire. Consider a
thin tube of radius b around the wire. The magnetic field B at the surface
of this tube is tangential and has magnitude μ0I/2πb. The electric field E
on the surface of the tube due to the spherical shell (not the wire; see the
remark at the end of the solution) is essentially parallel to the tube, with
magnitude Q/4πε0r2, where r is the distance to the center of the shell.
You can quickly verify via the right-hand rule that if the current flows
toward the shell, the Poynting vector S = (E × B)/μ0 points away from
the wire. So the direction of the energy flow is correct.

Let’s check that things work out quantitatively. Since E is perpendic-
ular to B, we have

S = EB
μ0

= 1
μ0

Q
4πε0r2

μ0I
2πb

= QI
(4πε0r2)(2πb)

. (12.444)

We need to integrate this over the surface of the tube. A piece of the tube
that has length dr in the longitudinal direction has area da = 2πb dr. So
we have∫

S da =
∫ ∞

R

QI
(4πε0r2)(2πb)

2πb dr =
∫ ∞

R

QI
4πε0r2 dr

= Q(dQ/dt)
4πε0R

= d
dt

(
Q2

8πε0R

)
. (12.445)

This is correct, because the energy stored in the electric field is Q2/8πε0R.
This can be seen in various ways. One way is to integrate ε0E2/2 over the
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volume external to the shell. But a quicker way is to use U = (1/2)
∫

ρφ dv.
Since ρ is nonzero only on the spherical shell, and since the potential
takes on the constant value of φ = Q/4πε0R there, we have

U = 1
2
φ

∫
ρ dv = 1

2
Q

4πε0R
Q = Q2

8πε0R
, (12.446)

as desired. (Equivalently, you can use U = Q2/2C.) The flux of S there-
fore does indeed equal the rate of change of the energy stored in the elec-
tric field. Note that the magnetic field is constant, so we don’t have to
worry about its energy since it doesn’t change.

In the example in Section 9.6.2, we found that energy flows into the
capacitor through the opening between the edges of the disks. But where
does this energy flow originate? As in this problem, it originates at the
wires carrying the current to (and from) the capacitor. (Of course, backing
up another step, the initial energy source must be a battery or some other
emf.) Problem 2.16 gives the field external to the capacitor, along the axis.
As an exercise you can show that the flow works out quantitatively.

REMARK: In the above solution, we said that the electric field near the
wire is directed antiparallel to the current. But doesn’t the electric field
inside the wire point parallel to the current (due to J = σE), and doesn’t
this then imply that the electric field very close to the wire has a tangen-
tial component parallel to the current (because curl E = 0), instead of
antiparallel? Yes, and yes. However, as long as our wire is very thin (so
that the capacitance is small) and the conductivity σ is very high (so that
the required E field is small), we can still consider a thin (but not too thin)
tube with radius b such that the field on the surface is essentially equal
to the field due to the shell. This is true because, although there may be
strong fields very close to the wire due to the surface charges that maintain
the E field inside, these fields fall off quickly with distance. As mentioned
at the end of Section 9.6.2, there are three types of Poynting-vector energy
flow here. There is a flow parallel to the wire, and this flow branches off
into a flow toward the wire to provide the resistance heating, plus another
flow away from the wire to increase the energy density of the electric field
throughout space.

9.11 Momentum in an electromagnetic field
The Poynting vector, S = (E × B)/μ0, gives the amount of energy flow
per area per time. Since p = E/c, the momentum flow per area per time
is S/c = (E × B)/μ0c. That is, the amount of momentum that passes
through a cross-sectional area A during a time t is p = (At)(E × B)/μ0c.
This is the momentum that would be gained by an object that absorbed all
of the wave.

We can also write the momentum p in terms of the momentum den-
sity, which we will label as p̃. The volume of the wave that passes through
an area A during a time t is A(ct), because the wave travels at speed c.
The amount of momentum that passes through the area A during time t is
therefore p = p̃(Act), by definition. Equating this with the above expres-
sion for p gives the momentum density as p̃ = (E × B)/μ0c2.
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It is possible to show that electromagnetic waves carry momentum,
without invoking relativity and by using only properties of waves. How-
ever, it’s a bit tricky, although the main idea is contained in Exercise 9.21.

9.12 Angular momentum paradox
(a) From Faraday’s law, the induced electric field at radius r inside the

solenoid is given by (ignoring the signs)

E = d�B
dt

�⇒ E · 2πr = πr2 dB
dt

�⇒ E = r
2

dB
dt

. (12.447)

By Lenz’s law, since the magnetic field initially points out of the page
in Fig. 9.13, and since it decreases over time, the induced E is counter-
clockwise. So the inner cylinder will rotate counterclockwise, and the
outer (negative) cylinder will rotate clockwise. The force on a small
piece of charge dq on one of the (nonconducting) cylinders is E dq,
so the torque on the piece is rE dq. The magnitude of the total torque
on a cylinder is therefore rEQ, where r equals either a or b. Using
the above form of E, the total torques on the two cylinders are then
(a2Q/2)(dB/dt) counterclockwise on the inner cylinder at radius a,
and (b2Q/2)(dB/dt) clockwise on the outer cylinder at radius b.

To find the total change in angular momentum of the cylinders, we
must integrate the torques with respect to time. But the integral of
dB/dt is simply B0 (or technically −B0, but we’ve already taken care
of the signs). The final angular momenta of the cylinders are therefore
a2QB0/2 counterclockwise and b2QB0/2 clockwise.

(b) Taking clockwise as positive, the total final angular momentum of the
cylinders is

Lfinal
cylinders =

QB0(b2 − a2)

2
. (12.448)

This is not zero. The initial angular momentum of the cylinders was
initially zero because they were initially at rest, so it appears that
angular momentum isn’t conserved. However, while it is indeed true
that the angular momentum of the two cylinders isn’t conserved, the
total angular momentum of the entire system is in fact conserved. So
we must ask ourselves, what else does the system consist of?

From Problem 9.11, we know that an electromagnetic field carries
momentum if E×B is nonzero. This means that it is also possible for
the field to carry angular momentum. From Problem 9.11 the momen-
tum density is p̃ = (E×B)/μ0c2. Both E and B must be nonzero for
this to be nonzero. There is no B field anywhere in the final state
(assuming the cylinders are rotating very slowly), so the resolution to
our paradox must be that there is nonzero angular momentum in the
field in the initial state. The E field is nonzero only between the two
cylinders, where it takes on the value E = (Q/�)/2πε0r, where � is
the length (assumed to be long) of the cylinders. This field is radial,
so it is perpendicular to the B field, which points out of the page. The
momentum density therefore has magnitude

p̃ = EB0
μ0c2 = QB0

2πr�ε0μ0c2 = QB0
2πr�

, (12.449)
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where we have used μ0ε0 = 1/c2. From the right-hand rule, p̃ points
in the clockwise direction. The angular momentum is obtained by
multiplying the momentum by r, so the angular momentum density
is rp̃. Therefore, the total initial angular momentum contained in the
field in the region between the two cylinders points in the clockwise
direction and has magnitude

Linitial
field =

∫
rp̃ dv =

∫ b

a
r
(

QB0
2πr�

)
(2πr� dr)

= QB0

∫ b

a
r dr = QB0(b2 − a2)

2
. (12.450)

This is the total initial angular momentum of the system (which is all
contained in the field), and it equals the final angular momentum we
found above in Eq. (12.448) (which is all contained in the cylinders).
So the angular momentum of the system is indeed conserved.

Here’s another paradox (you should cover up the next paragraph so
you can have some fun thinking about this): what if we eliminate the
cylinder with radius b, so that we have only one cylinder with charge
Q and radius a (along with the solenoid). The final angular momen-
tum of the remaining cylinder will still be −a2QB0/2 (the negative
sign means counterclockwise). But the initial angular momentum of
the field inside the solenoid is QB0(R2 − a2)/2, from the above rea-
soning; the E field now extends out to (and beyond) radius R, so we
can replace b with R in Eq. (12.450). These initial and final angu-
lar momenta aren’t equal, so it appears that angular momentum isn’t
conserved. Is this the case? Explain why or why not. (A qualitative
explanation is fine.)

Angular momentum is still conserved. In the reasoning in the pre-
vious paragraph, we took into account only the angular momentum
of the field inside the solenoid. But there is now angular momentum
outside too, because we have a nonzero external electric field. (In the
original setup, we avoided this complication by choosing two cylin-
ders with opposite charges.) You might argue that we’re still saved
from having to worry about any external angular momentum because
the external B field is zero. However, this is not the case. No matter
how long the solenoid is, the field lines still have to loop back around
from one end to the other. To be sure, the external B field will be small
if the length of the solenoid is large. But it will still be large enough
to have an effect, as we will see below.

If angular momentum is to be conserved, the initial angular momen-
tum must contain an additional −R2QB0/2 (counterclockwise) con-
tribution from the external field, so that the total initial angular
momentum (from both the internal and external fields) will agree
with what we know the final is, namely −a2QB0/2 from the cylin-
der. This is consistent with the a→ 0 limiting case. The external
E field is independent of a (neglecting end effects), assuming that
we keep the charge on the cylinder as Q. So the external angular
momentum, whatever it is, is likewise independent of a. In the a → 0
limit, the final angular momentum is certainly zero, because all of
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the mass is located right on the axis. The initial angular momentum
of the field must therefore be zero (assuming angular momentum is
conserved), which means that the external-field angular momentum
must be equal and opposite to the internal-field angular momentum.
And the latter equals R2QB0/2, from the reasoning in the original
setup, with b → R and a → 0 in Eq. (12.450). This argument shows
that the angular momentum in the small external field can’t just be
ignored.

If you’re still wondering where exactly in the external field this
angular momentum exists, consider the following dimensional argu-
ment. (We’ll need to invoke a few things from Chapter 11, although
we technically know enough to derive the results here from scratch.)
Let the solenoid and cylinder have length �. The E field very far away
(r � �) behaves like 1/r2, because the cylinder looks like a point
charge. And the B field behaves like 1/r3, because the solenoid looks
effectively like a single loop, so we can invoke the general 1/r3 mag-
netic dipole behavior from Chapter 11. You can then quickly show that
very large values of r contribute negligibly to the angular momentum.
(The r factor in the angular momentum and the r2 dr in the volume
integral aren’t enough to outweigh the 1/r5 factor from the product of
the fields.)

Essentially all of the external contribution therefore comes from
r values within order � from the solenoid. We claim that, in this
region, E and B are both of order 1/�2. More precisely, for E, the
cylinder looks roughly like a line, so E ∼ λ/2πε0r ∼ (Q/�)/ε0� =
Q/ε0�2. For B, we invoke the result from Exercise 11.18 in Chap-
ter 11 that states that B behaves like B0R2/�2, where B0 is the inter-
nal field. The momentum density therefore behaves like EB/μ0c2 ∼
(Q/ε0�2)(B0R2/�2)/μ0c2 = R2QB0/�4. We must multiply this by
r ∼ � to obtain the angular momentum density, and then by the vol-
ume ∼ �3 to obtain the total angular momentum. All of the � factors
cancel, and we end up with a result that behaves like R2QB0. This is
independent of � and has the same dependence on the other param-
eters as the desired quantity, −R2QB0/2. The direction is correct too,
because the “returning” external B field lines point generally in the
direction opposite to the internal B field lines.

12.10 Chapter 10
10.1 Leaky cell membrane

(a) We are given the capacitance per area as C/A= 1 μF/cm2 =
0.01 F/m2. Since C = κε0A/s, the thickness s is

s = κε0
C/A

=
(3)

(
8.85 · 10−12 s2 C2

kg m3

)
0.01 F/m2 = 2.7 · 10−9 m. (12.451)

(b) Since we are dealing with a dielectric, the time constant derived in
Section 4.11 becomes

t = RC = ρs
A

· κε0A
s

= κε0ρ. (12.452)
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We see that t = RC is independent of A, because R ∝ 1/A and C ∝
A. (Basically, if a given patch of the membrane leaks its charge on
a given time scale, then putting a bunch of these patches together
shouldn’t change the time scale, because each patch doesn’t care that
there are others next to it.) Using the information given for 1 cm2 of
the membrane, we have t = RC = (1000 �)(10−6 F) = 10−3 s.

Since R = ρs/A, the resistivity is given by

ρ = RA
s

= (1000 �)(10−4 m2)

2.7 · 10−9 m
≈ 4 · 107 ohm-m. (12.453)

From Fig. 4.8, this is a little more than 100 times the resistivity of
pure water.

10.2 Force on a dielectric
(a) The equivalent capacitance of two capacitors in parallel is simply the

sum of the capacitances. (The rule is opposite to that for resistors;
see Problem 3.18.) The capacitance of the part with the dielectric is
κ times what it would be if there were vacuum there. So the total
capacitance is given by

C = C1 + C2 = ε0A1
s

+ κε0A2
s

= ε0a(b − x)
s

+ κε0ax
s

= ε0a
s

[
b + (κ − 1)x

]
. (12.454)

The stored energy is then

U = Q2

2C
= Q2s

2ε0a[b + (κ − 1)x] . (12.455)

Note that as x changes, the charge stays constant (by assumption), but
the potential does not. So the Qφ/2 and Cφ2/2 forms of the energy
aren’t useful.

(b) The force is

F = −dU
dx

= Q2s(κ − 1)

2ε0a[b + (κ − 1)x]2 . (12.456)

The positive sign here means that the force points in the direction of
increasing x. That is, the dielectric slab is pulled into the capacitor.
But it’s risky to trust this sign blindly. Physically, the force points in
the direction of decreasing energy. And we see from the above expres-
sion for U that the energy decreases as x increases (because κ > 1).

The force F is correctly zero if κ = 1, because in that case we
don’t actually have a dielectric. The κ → ∞ limit corresponds to
a conductor. In that case, both U and F are zero. Basically, all of
the charge on the plates shifts to the overlap x region, and compen-
sating charge gathers there in the dielectric, so in the end there is no
field anywhere. Note that F decreases as x increases. You should think
about why this is the case. Hint: First convince yourself why the force
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should be proportional to the product of the charge densities (and not
the total charges) on the two parts of the plates. And then look at
Exercise 10.15.

10.3 Energy of dipoles
The first configuration is shown in Fig. 12.129(a). There are four relevant

q

–q

d

(a)

(b)

d

Figure 12.129.

(non-internal) pairs of charges, so the potential energy is (with � � d)

U = 1
4πε0

(
2 · q2

d
− 2 · q2√

d2 + �2

)
= 2q2

4πε0d

(
1 − 1√

1 + �2/d2

)

≈ 2q2

4πε0d

(
1 −

(
1 − �2

2d2

))
= q2�2

4πε0d3 ≡ p2

4πε0d3 , (12.457)

where we have used 1/
√

1 + ε ≈ 1 − ε/2. The second configuration is
shown in Fig. 12.129(b). The potential energy is now

1
4πε0

(
2 · q2

d
− q2

d − �
− q2

d + �

)
= q2

4πε0d

(
2 − 1

1 − �/d
− 1

1 + �/d

)

≈ q2

4πε0d

(
2 −

(
1 + �

d
+ �2

d2

)
−

(
1 − �

d
+ �2

d2

))

= q2

4πε0d

(
−2�2

d2

)
= − p2

2πε0d3 , (12.458)

where we have used 1/(1 + ε) ≈ 1 − ε + ε2. Note that we needed to
go to second order in the Taylor expansions here. By looking at the initial
expressions for U for each setup, it is clear why the first U is positive, but
not so clear why the second U is negative. However, in the limit where the
dipoles nearly touch, the second U is certainly negative.

10.4 Dipole polar components
Remember that our convention for the angle θ is that it is measured down
from the z axis in Fig. 10.6. So the radial unit vector is given by r̂ =
sin θ x̂+ cos θ ẑ. The tangential unit vector, which is perpendicular to r̂, is
then given by θ̂ = cos θ x̂ − sin θ ẑ; this makes the dot product of r̂ and θ̂

equal to zero, and you can check that the overall sign is correct. Inverting
these expressions for r̂ and θ̂ gives

x̂ = sin θ r̂ + cos θ θ̂ and ẑ = cos θ r̂ − sin θ θ̂ . (12.459)

Therefore,

E = Exx̂ + Ezẑ

= Ex(sin θ r̂ + cos θ θ̂) + Ez(cos θ r̂ − sin θ θ̂)

= r̂(Ex sin θ + Ez cos θ) + θ̂(Ex cos θ − Ez sin θ)

= p
4πε0r3

(
r̂
[
(3 sin θ cos θ) sin θ + (3 cos2 θ − 1) cos θ

]
+ θ̂

[
(3 sin θ cos θ) cos θ − (3 cos2 θ − 1) sin θ

])
. (12.460)
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Using sin2 θ + cos2 θ = 1 in the r̂ term, E quickly simplifies to

E = p
4πε0r3

(
2 cos θ r̂ + sin θ θ̂

)
, (12.461)

as desired. Alternatively, Er equals the projection of E = (Ex, Ez) onto
r̂ = (sin θ , cos θ). Since r̂ is a unit vector, this projection equals the dot
product E · r̂. Therefore,

Er = E · r̂ = (Ex, Ez) · (sin θ , cos θ) = Ex sin θ + Ez cos θ , (12.462)

in agreement with the third line in Eq. (12.460). Likewise,

Eθ = E · θ̂ = (Ex, Ez) · (cos θ ,− sin θ) = Ex cos θ − Ez sin θ , (12.463)

again in agreement with the third line in Eq. (12.460).

10.5 Average field
(a) From part (c) of Problem 1.28 we know that the average electric field

over the volume of a sphere of radius R, due to a given charge q at
radius r < R, has magnitude qr/4πε0R3 and points toward the center
(if q is positive). In vector form, this average field can be written as
−qr/4πε0R3. If we sum this over all the charges inside the sphere,
then the numerator becomes

∑
qiri (or

∫
rρ dv if we have a contin-

uous charge distribution). But this sum is, by definition, the dipole
moment p, where p is measured relative to the center. So the average
field over the volume of the sphere is Eavg = −p/4πε0R3, as desired.
Note that all that matters here is the dipole moment; the monopole
moment (the total charge) doesn’t come into play.

(b) Since Eavg is proportional to 1/R3, and since volume is proportional
to R3, the total integral of E over the volume of a sphere is indepen-
dent of R (provided that R is large enough to contain all the charges).
This means that if we increase the radius by dR, we don’t change the
integral of E. This implies that the average value of E over the sur-
face of any sphere containing all the charges equals zero. (We actu-
ally already knew this from part (a) of Problem 1.28. Each individual
charge yields zero average field over the surface.) A special case of
this result is the centered point-dipole case in Exercise 10.25.

So for the specific case shown in Fig. 10.32(a), the average value
of the field over the surface of the sphere is zero. And since the
dipole moment has magnitude p = 2q� and points upward, the result
from part (a) tells us that the average value over the volume of the
sphere, Eavg = −p/4πε0R3, has magnitude q�/2πε0R3 and points
downward.

(c) The average value of the field over the surface of the sphere in
Fig. 10.32(b) is not zero. From part (b) of Problem 1.28, the aver-
age field due to each charge has magnitude q/4πε0�2 and points
downward. So the average field over the surface, due to both charges,
has magnitude q/2πε0�2 and points downward. Since this is inde-
pendent of the radius of the sphere, the average field over the vol-
ume of a sphere with R < � also has magnitude q/2πε0�2 and points
downward.
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The moral of all this is that “outside” the dipole, the field points in
various directions and averages out over the surface of a sphere. But
“inside” the dipole, the field points generally in one direction, so the
average is nonzero over the surface of a sphere.

Note that volume average of E is continuous as R crosses the R = �

cutoff between the two cases in parts (a) and (b); in both cases it has
magnitude q/2πε0�2. If we multiply this by �/� and use p = q�, we
can write it as p/2πε0�3. Multiplying by the volume 4π�3/3 then
tells us that the total volume integral of E, over a sphere of radius
�, has magnitude 2p/3ε0 and points downward. In other words, for
a fixed value of p, even the limit of an idealized dipole still has a
nonzero value of

∫
E dv, despite the fact that the only shells yielding

nonzero contributions are infinitesimal ones.

10.6 Quadrupole tensor
Our goal is to find the potential φ(r) at the point r = (x1, x2, x3). As
in Section 10.2, primed coordinates will denote the position of a point
in the charge distribution. The distance from r to a particular point r′ =
(x′1, x′2, x′3) in the distribution is

R =
√

(x1 − x′1)2 + (x2 − x′2)2 + (x3 − x′3)2

= r

√
1 + r′2

r2 − 2
∑

xix′i
r2 = r

√
1 + r′2

r2 − 2
∑

x̂ix′i
r

, (12.464)

where we have used
∑

x2
i = r2 and

∑
x′2i = r′2, and where (x̂1, x̂2, x̂3) =

(x1, x2, x3)/r is the unit vector r̂ in the r direction. Assuming that r′ is
much smaller than r, we can use the expansion (1 + δ)−1/2 = 1 − δ/2 +
3δ2/8 − · · · to write (dropping terms of order 1/r4 and higher)

1
R
= 1

r

[
1 +

∑
x̂ix′i
r

+ 3
(∑

x̂ix′i
)2

2r2 − r′2
2r2

]

= 1
r

[
1 +

∑
x̂ix′i
r

+ 3
(∑

x̂ix′i
)2

2r2 −
(∑

x̂2
i
)
r′2

2r2

]
. (12.465)

In the last term here, we have multiplied by 1 in the form of the square of
the length of a unit vector, for future purposes. It is easier to understand
this result for 1/R if we write it in terms of vectors and matrices:

1
R
= 1

r
+ 1

r2 (x̂1, x̂2, x̂3) ·
⎛
⎜⎝

x′1
x′2
x′3

⎞
⎟⎠ (12.466)

+ 1
2r3 (x̂1, x̂2, x̂3) ·

⎛
⎜⎜⎝

3x′21 − r′2 3x′1x′2 3x′1x′3
3x′2x′1 3x′22 − r′2 3x′2x′3
3x′3x′1 3x′3x′2 3x′23 − r′2

⎞
⎟⎟⎠

⎛
⎜⎝

x̂1

x̂2

x̂3

⎞
⎟⎠ .
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You should verify that this is equivalent to Eq. (12.465). If desired, the
diagonal terms of this matrix can be written in a slightly different form.
Since r′2 = x′21 + x′22 + x′23 , the upper left entry equals 2x′21 − x′22 − x′23 .
Likewise for the other two diagonal entries. Note that there are only five
independent entries in the matrix, because it is symmetric and has trace
zero.

To obtain φ(r), we must compute the integral,

φ(r) = 1
4πε0

∫
ρ(r′)dv′

R
. (12.467)

In other words, we must compute the volume integral of Eq. (12.466) times
ρ(r′), and then tack on a 1/4πε0. When the 1/r term is integrated, it
simply gives q/r, where q is the total charge in the distribution. To write
the other two terms in a cleaner way, define the vector p to be the vector
whose entries are the ρ dv′ integrals of the entries in the above (x′1, x′2, x′3)

vector. And likewise define the matrix Q to be the ρ dv′ integral of the
above matrix. For example, the first component of p and the upper-left
entry of Q are

p1 =
∫

x′1ρ(r′)dv′ and Q11 =
∫ (

3x′21 − r′2
)
ρ(r′)dv′,

(12.468)

and so on. We can then write the result for the potential at an arbitrary
point r in the compact form,

φ(r) = 1
4πε0

[
q
r
+ r̂ · p

r2 + r̂ · Qr̂
2r3

]
. (12.469)

The advantage of Eq. (12.469) over Eq. (10.9) in the text is the following.
The latter gives the correct value of φ at points on the z axis. However, if
we want to find φ at another point, we must redefine θ as the angle with
respect to the direction to the new point, and then recalculate all the Ki.
The present result in Eq. (12.469) has the benefit that, although it involves
calculating a larger number of quantities, it is valid for any choice of the
point r. The quantities q, p, and Q depend only on the distribution, and
not on the point r at which we want to calculate the potential. Conversely,
the quantities r̂ and r in Eq. (12.469) depend only on r and not on the
distribution. So, for a given charge distribution, we can calculate (with
respect to a given set of coordinate axes) p and Q once and for all. We then
simply need to plug our choice of r into Eq. (12.469), and this correctly
gives φ(r) up to order 1/r3.

In the special case where r lies on the z ≡ x3 axis, we have r̂ =
(0, 0, 1). Since only x̂3 is nonzero, only Q33 (the lower right entry in
Q) survives in the dot product r̂ · Qr̂. Furthermore, if θ is the angle of
r′ with respect to the x3 axis, then we have x′3 = r′ cos θ . So Q33 =∫

r′2(3 cos2 θ−1)ρ dv′. When the 1/2r3 factor in Eq. (12.469) is included,
we correctly arrive at the result Eq. (10.9).

For a spherical shell, which we know has only a monopole moment,
you can quickly verify that all of the entries in Q are zero. The off-diagonal
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entries are zero from symmetry, and the diagonal elements are zero due
to the example in Section 10.2 combined with the previous paragraph.
Alternatively, the average value of, say, x′21 over the surface of a sphere
equals r′2/3, because it has the same average value as x′22 and x′23 , and the
sum of all three averages is r′2. If you want to get some practice with Q,
Exercise 10.26 deals with the quadrupole arrangement in Fig. 10.5.

10.7 Force on a dipole
Let the dipole consist of a charge −q at position r and a charge q at posi-
tion r + s. Then the dipole vector is p = qs. If the dipole is placed in an
electric field E, the net force on it is

F = (−q)E(r) + qE(r + s). (12.470)

The x component of this is Fx = (−q)Ex(r)+qEx(r+s). Now, the change
in a function f due to a small displacement s is ∇f · s, by the definition of
the gradient (or at least that’s one way of defining it). So we can write Fx as

Fx = q
[
Ex(r + s) − Ex(r)

] = q∇Ex · s
= (qs) · ∇Ex ≡ p · ∇Ex, (12.471)

as desired. Likewise for the other two components.

10.8 Force from an induced dipole
If q is the charge of the ion, then the magnitude of the electric field of the
ion at the location of the atom is E = q/4πε0r2. If the polarizability of
the atom is α, then the induced dipole moment of the atom is p = αE =
αq/4πε0r2. This dipole moment points along the line from the ion to the
atom (see Fig. 12.130), so the magnitude of the field of the induced dipole

EdipoleEion

IonAtom

p q

r

Figure 12.130.

at the location of the ion is Edipole = 2p/4πε0r3. The magnitude of the
force on the ion is therefore

F = qEdipole = 2pq
4πε0r3 = 2(αq/4πε0r2)q

4πε0r3 = 2αq2

(4πε0)2r5 . (12.472)

You can quickly show that the force is attractive for either sign of q. The
potential energy relative to infinity is

U(r) = −
∫ r

∞
F(r′)dr′ = −

∫ r

∞
− 2αq2 dr′

(4πε0)2r′5 = − αq2

2(4πε0)2r4 .

(12.473)

The polarizability of sodium is given by α/4πε0 = 27 · 10−30 m3. If the
magnitude of the potential energy equals |U| = 4 · 10−21 J, then solving
for r and setting q = e gives

r =
[

(α/4πε0)q2

2(4πε0)|U|

]1/4

=
⎡
⎢⎣ (27 · 10−30 m3)(1.6 · 10−19 C)2

2 · 4π
(

8.85 · 10−12 s2 C2

kg m3

)
(4 · 10−21 J)

⎤
⎥⎦

1/4

= 9.4 · 10−10 m. (12.474)

If r is larger than this, then (on average) the thermal energy is sufficient to
kick the ion out to infinity.
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10.9 Polarized water
We must determine the number, n, of molecules of water per cubic cen-
timeter. A mole of something with molecular mass M has a mass of M
grams. (Equivalently, since the proton mass is 1.67 · 10−24 g, it takes
1/(1.67 · 10−24) = 6 · 1023 protons to make 1 gram, and this number is
essentially Avogadro’s number.) Water has a molecular weight of 18, so
the number of water molecules per gram (= cm3) is n = (6 · 1023/mole)/
(18 cm3/mole) = 3.33 · 1022 cm−3. The dipole moment of water can be
written as p = 6.13 · 10−28 C-cm. Assuming the dipoles all point down,
the polarization density is therefore

P = np = (3.33 · 1022 cm−3)(6.13 · 10−28 C-cm) = 2.04 · 10−5 C/cm2.

(12.475)

From the reasoning in Section 10.7, this is the surface charge density,
σ . The number of electrons per square centimeter it corresponds to is
σ/e = (2.04 · 10−5 C/cm2)/(1.6 · 10−19 C) = 1.3 · 1014 cm−2. This is
somewhat smaller than the number of surface molecules per square cen-
timeter, which equals n2/3 = 1.0 · 1015 cm−2 because each edge of the
1 cm3 cube is (approximately) n1/3 molecules long.

10.10 Tangent field lines
Consider the Gaussian surface indicated by the heavy line in Fig. 12.131.
The side part of the surface is constructed to follow the field lines, so

–s  = –   0E0

s  =   0E0

E0

E = 0

3E0

κ + 2

Figure 12.131.

there is no flux there. Likewise, there is no flux through the top circular
face, because the field is zero outside the capacitor plates. So the only flux
comes from the great circle inside the sphere. From Eq. (10.53) the field
inside the sphere has the uniform value of 3E0/(2+ κ). So the flux out of
the Gaussian surface equals −πR2 · 3E0/(2 + κ), where the minus arises
because the flux is inward.

The total charge enclosed in the Gaussian surface comes from two
places: the negative charge in the circle on the upper capacitor plate,
and the positive charge on the upper hemisphere. The former is simply
qcap = (−σ)πr2 = (−ε0E0)πr2, where we have used the fact that the
charge densities on the capacitor plates are what cause the uniform field
E0; hence E0 = σ/ε0. The latter charge is just qsph = PπR2, where P is
the polarization, because the top patch of the column in Fig. 10.21(a) has
a charge of P da (where da is the horizontal cross-sectional area), inde-
pendent of the tilt angle of the actual end face. And all the da areas sim-
ply add up to the great-circle area, πR2. (Or you could just integrate the
P cos θ surface density over the hemisphere.) Using the value of P from
Eq. (10.54), Gauss’s law gives

� = 1
ε0

(
qcap + qsph

)
�⇒ −πR2 3E0

κ + 2
= 1

ε0

(
−ε0E0πr2 + 3

κ − 1
κ + 2

ε0E0 · πR2
)

�⇒ −3R2 1
κ + 2

= −r2 + 3R2 κ − 1
κ + 2

�⇒ r = R

√
3κ

κ + 2
. (12.476)
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As a check, we have r = R when κ = 1. In this case, our dielectric is
just vacuum, so the field remains E0 everywhere; the field lines are all
straight. Also, we have r = √

3R when κ → ∞. In this limit the sphere
is a conductor. The factor of

√
3 isn’t so obvious. Note that, in the case of

a conductor, a field line can’t actually be tangent to the surface, because
field lines must always be perpendicular to the surface of a conductor.
What happens is that the external field approaches zero along the equator
(the zero vector is, in some sense, both parallel and perpendicular to the
surface). But a tiny distance away from the equator, the field is nonzero, so
it is meaningful to ask where that field line ends up on the distant capacitor
plates.

10.11 Bound charge and divergence of P
If we take the volume integral of both sides of Eq. (10.61) and use the
divergence theorem, we see that our goal is to show that

∫
S P · da =

−qbound, where qbound is the bound charge enclosed within the surface S.
Assume that the polarization P arises from N dipoles per unit vol-

ume, each with a dipole moment p = qs. Then P = Np = Nqs. If the
dipoles point in random directions, so that P = 0, then there is no extra
bound charge in a given volume. But if they are aligned, so that P �= 0,
and if additionally P varies with position, then there may be a net bound
charge in the volume. The reasoning is as follows.

Consider a collection of dipoles, as shown in Fig. 12.132. The vertical

– q qs

s

(Inside S) (Outside S)

Figure 12.132.

line represents a patch of the right-hand surface of S. How much extra
negative charge is there inside S, that is, to the left of the line? If a given
dipole lies entirely inside or outside S, then it contributes nothing to the
net charge. But if a dipole is cut by the vertical line, then there is an extra
charge of −q inside S.

How many dipoles are cut by the line? Any dipole whose center lies
within s/2 of the line gets cut by it. So the center must lie in a slab with
thickness s, indicated by the shaded region in the figure. The two extreme
dipole positions are indicated by the boxes. If the area of a given patch of
the surface is da, then any dipole whose center lies in a slab of volume
s da will contribute a charge of −q to S. Since there are N dipoles per unit
volume, we see that N(s da) dipoles are cut by the line. The extra charge
associated with the patch is therefore dqbound = N(s da)(−q), which can
be written as dqbound = −(Nqs)da = −P da.

If a dipole is tilted at an angle θ with respect to the normal to the
patch, then the volume of the relevant slab is decreased by a factor of
cos θ . If we tack this factor onto P, it simply turns P into the component
P⊥ perpendicular to the surface. So in general the extra charge inside the
volume, near a given patch with area da, equals dqbound = −P⊥da, which
can be written as the dot product, dqbound = −P ·da. Integrating this over
the entire surface gives the total enclosed bound charge as

qbound = −
∫

P · da, (12.477)

as desired.
Although we motivated this result in Section 10.11 by considering

dielectrics, this problem shows (as mentioned in the text) that this result is
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quite independent of dielectrics. No matter how the polarization P comes
about, the result in Eq. (12.477) is still valid. (You can manually twist the
dipoles in whatever way you want, provided that P changes slowly on the
length scale of the dipoles, so that we can talk about smooth averages.)
To emphasize what we said in the text, the logical route to Eq. (10.62) is
to start with Eqs. (10.59) and (10.61), both of which are universally true,
and then Eq. (10.62) immediately follows. No mention has been made of
dielectrics. But if we are in fact dealing with a (linear) dielectric, then
P = χeε0E, and we can use 1 + χe = κ to say that additionally

ε0E + P = ε0E + χeε0E = κε0E ≡ εE. (12.478)

In all cases the relation D ≡ ε0E + P holds, but that is just a definition.

10.12 Boundary conditions for D
D⊥ is continuous. This follows from div D = ρfree; there is no free charge
in the setup, so the divergence of D is zero. The divergence theorem then
tells us that

∫
D · da = 0 for any closed surface. That is, there is zero

flux through any surface. So if we draw a pancake-like pillbox with one
face just inside the slab and one face just outside, the inward flux through
one face must equal the outward flux through the other. Hence Din⊥A =
Dout⊥ A �⇒ Din⊥ = Dout⊥ . That is, D⊥ is continuous across the boundary.

For D‖, we know that E‖ is continuous across the boundary, because
all we have at the boundary is a layer of bound charge, which produces no
discontinuity in E‖. So D ≡ ε0E+P tells us that the discontinuity in D‖ is
the same as the discontinuity in P‖. Since P = 0 outside, the discontinuity
in P‖ is simply −Pin‖ . That is, the change in D‖ when going from inside to

outside is −Pin‖ .

10.13 Q for a leaky capacitor
From Exercise 10.42, the energy density in the electric field is εE2/2.
And it is the same for the magnetic field, by plugging B = √

μ0εE into
B2/2μ0. The total energy density is therefore εE2, or εE2

0 cos2 ωt. But the
time average of cos2 ωt is 1/2, so the average energy density is εE2

0/2.
The energy in the fields will decay due to ohmic resistance. To cal-

culate this power dissipation, consider a tube of cross-sectional area A and
length L. The power dissipated in this tube is

P = I2R = (JA)2(ρL/A) = J2ρ(AL)

= (σE)2 1
σ

(volume) = σE2(volume). (12.479)

The power dissipated per unit volume is therefore σE2. The time average
of this is σE2

0/2. Hence

Q = ω · (energy stored)

power loss
= ω(εE2

0/2)

σE2
0/2

= ωε

σ
, (12.480)
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as desired. From Table 4.1, the conductivity of seawater is σ =
4 (ohm-m)−1. And from Fig. 10.29, the dielectric constant κ is still about
80 at a frequency of 1000 MHz (109 Hz). Therefore, since ε = κε0,
we have

Q =
(2π · 109s−1)

(
80 · 8.85 · 10−12 s2 C2

kg m3

)
4 (ohm-m)−1 = 1.1. (12.481)

Since Q equals the number of radians of ωt required for the energy to
decrease by a factor of 1/e, we see that by the end of one cycle (2π radi-
ans) there is practically no energy left. The wavelength corresponding to
1000 MHz is (c/

√
κ)/ν = 0.033 m. So microwave radar won’t find sub-

marines!

10.14 Boundary conditions on E and B
With no free charges or currents, the equations describing the system are

∇ · D = 0, ∇ × E = −∂B/∂t;

∇ · B = 0, ∇ × B = μ0 ∂D/∂t. (12.482)

The two equations involving D come from Eqs. (10.64) and (10.78) with
ρfree and Jfree set equal to zero. The other two equations are two of
Maxwell’s equations. We can now apply the standard arguments. For the
perpendicular components, we can apply the divergence theorem to the
two “div” equations, with the volume chosen to be a squat pillbox, of van-
ishing thickness, spanning the surface. Our equations tell us that the net
flux out of the volume is zero, so the perpendicular field on one side must
equal the perpendicular field on the other. And for the parallel compo-
nents, we can apply Stokes’ theorem to the two “curl” equations, with the
area chosen to be a thin rectangle, of vanishing area, spanning the surface.
Our equations tell us that the line integral around the rectangle is zero,
so the parallel field on one side must equal the parallel field on the other.
(The finite non-zero entries on the right-hand sides of the curl equations
are inconsequential, because they provide zero contribution when inte-
grated over the area of an infinitesimally thin rectangle.) The above four
equations therefore yield (with 1 and 2 labeling the two regions)

D1,⊥ = D2,⊥, E1,‖ = E2,‖;

B1,⊥ = B2,⊥, B1,‖ = B2,‖. (12.483)

Since D = εE for a linear dielectric, the first of these equations gives

ε1E1,⊥ = ε2E2,⊥. (12.484)

So E⊥ is discontinuous. But the other three components are continuous
across the boundary. That is, the entire B field is continuous, as is the
parallel component of E.

Note that we are assuming that the materials aren’t magnetic. After
reading Section 11.10, you can show that in magnetic materials there is a
discontinuity in B‖.
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12.11 Chapter 11
11.1 Maxwell’s equations with magnetic charge

Maxwell’s equations with only electric charge and electric current are
given in Eq. (9.17). If magnetic charge existed, the last equation would
have to be replaced, as discussed in Section 11.2, by ∇ · B = b1η, where
η is the magnetic charge density, and b1 is a constant that depends on
how the unit of magnetic charge is chosen. With the conventional defini-
tion of the direction of B, a positive magnetic charge would be attracted
to the north pole of the earth, so it would behave like the north pole of a
compass.

Magnetic charge in motion with velocity v would constitute a mag-
netic current. Let K be the magnetic current density. Then K = ηv, in
analogy with J = ρv. Conservation of magnetic charge would then be
expressed by the “continuity equation,” ∇ · K = −∂η/∂t, in analogy with
∇ · J = −∂ρ/∂t.

A magnetic current would be the source of an electric field, just as
an electric current is the source of a magnetic field. So we must add to the
right side of the first Maxwell equation in Eq. (9.17) a term proportional
to K. (Equivalently, if we didn’t add such a term, we would end up with a
contradiction, similar to the one in Section 9.1, arising from the fact that
∇ · (∇ × E) = 0 is identically zero.) Let this new term be b2K. Then
we have

∇ × E = −∂B
∂t

+ b2K. (12.485)

To determine the constant b2, we can take the divergence of both sides of
this equation. The left-hand side is identically zero because ∇ · (∇×E) =
0, so we have (using the continuity equation)

0 = −∇ ·
(

∂B
∂t

)
+ b2∇ · K

= − ∂

∂t
(∇ · B) + b2

(
−∂η

∂t

)

= − ∂

∂t
(b1η) − b2

∂η

∂t

= −(b1 + b2)
∂η

∂t
. (12.486)

Therefore b2 must equal −b1. So the generalized Maxwell’s equations
take the form (with b ≡ b1 = −b2),

∇ × E = −∂B
∂t

− bK,

∇ × B = μ0ε0
∂E
∂t

+ μ0J,

∇ · E = ρ

ε0
,

∇ · B = bη. (12.487)

The constant b can be chosen arbitrarily. Two common conventions are
b = 1 and b = μ0.
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11.2 Magnetic dipole
If we treat the current loop like an exact dipole, then the dipole moment
is m = Ia = Iπb2. Equation (11.15) gives the magnetic field at position z
along the axis of the dipole as μ0m/2πz3, which here equals μ0(Iπb2)/

2πz3 = μ0Ib2/2z3.
If we treat the current loop (correctly) as a loop of finite size, then

Eq. (6.53) gives the field at position z on the axis as Bz = μ0Ib2/2(z2 +
b2)3/2. For z � b we can ignore the b2 term in the denominator, yielding
Bz ≈ μ0Ib2/2z3, which agrees with the above result for the idealized
dipole.

The correct result is smaller than the idealized-dipole result by the
factor z3/(z2 + b2)3/2. This factor approaches 1 as z → ∞. It is larger
than a given number η (we are concerned with η = 0.99) if

z3

(z2 + b2)3/2 > η �⇒ z2

z2 + b2 > η2/3 �⇒ z >
η1/3b√
1 − η2/3

.

(12.488)

For η = 0.99 this gives z > (12.2)b. You can show that if we want the
factor to be larger than 1 − ε (so ε = 0.01 here), then to a good approx-
imation (in the limit of small ε) we need z/b >

√
3/2ε. And indeed,√

3/2(0.01) = √
150 = 12.2.

11.3 Dipole in spherical coordinates
Using the ∇× (A×B) vector identity from Appendix K, with m constant,
we find (ignoring the μ0/4π for now)

B ∝ ∇ × [
m × (r̂/r2)

] = m
(∇ · (r̂/r2)

)− (m · ∇)(r̂/r2). (12.489)

But the divergence of r̂/r2 is zero (except at r = 0), because we know
that the divergence of the Coulomb field is zero; alternatively we can just
use the expression for the divergence in spherical coordinates. So we are
left with only the second term. Therefore, using the expression for ∇ in

q

q

q

r

m
m cos q

m  sin q

Figure 12.133.

spherical coordinates,

B ∝ −
(

mr
∂

∂r
+ mθ

1
r

∂

∂θ

)
r̂
r2 . (12.490)

In the ∂/∂r term here, the vector r̂ doesn’t depend on r, but r2 does, of
course, so mr(∂/∂r)(r̂/r2) = −2mr r̂/r3. In the ∂/∂θ term, r2 doesn’t
depend of θ , but the vector r̂ does. If we increase θ by dθ , then r̂
changes direction by the angle dθ . Since r̂ has length 1, it therefore
picks up a component with length dθ in the θ̂ direction. See Fig. F.3 in
Appendix F; that figure is relevant to the oppositely defined θ in cylindrical
coordinates, but the result is the same. Hence ∂ r̂/∂θ = θ̂ . So we have
(mθ /r)(∂/∂θ)(r̂/r2) = mθ θ̂/r3.

Finally, in Fig. 12.133 we see that the components of the fixed vec-
tor m = mẑ relative to the local r̂-θ̂ basis are mr = m cos θ , and mθ =
−m sin θ . The negative sign here comes from the fact that m points
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partially in the direction of decreasing θ (at least for the right half of the
sphere). Putting this all together, and bringing the μ0/4π back in, gives

B = −μ0
4π

(
−2(m cos θ)

r̂
r3 + (−m sin θ)

θ̂

r3

)

= r̂
μ0m
2πr3 cos θ + θ̂

μ0m
4πr3 sin θ , (12.491)

in agreement with Eq. (11.15).

11.4 Force on a dipole
(a) The expression (m · ∇)B is shorthand for

(m · ∇)B =
(

mx
∂

∂x
+ my

∂

∂y
+ mz

∂

∂z

)
(Bx, By, Bz). (12.492)

The operator in parentheses is to be applied to each of the three com-
ponents of B, generating the three components of a vector. In the setup
in Fig. 11.9 with the ring and diverging B field, mz is the only nonzero
component of m. Also, Bx and By are identically zero on the z axis,
so ∂Bx/∂z and ∂By/∂z are both zero (or negligibly small close to the
z axis). Therefore only one of the nine possible terms in Eq. (12.492)
survives, and we have

(m · ∇)B =
(

0, 0, mz
∂Bz

∂z

)
, (12.493)

as desired.
(b) The expression ∇(m · B) is shorthand for

∇(m · B) =
(

∂

∂x
,

∂

∂y
,

∂

∂z

)
(mxBx + myBy + mzBz). (12.494)

Each derivative acts on the whole sum in the parentheses. But again,
only mz is nonzero. Also, on the z axis, Bz doesn’t depend on x or
y, to first order (because, by symmetry, Bz achieves a maximum or
minimum on the z axis, so the slope as a function of x and y must be
zero). Hence ∂Bz/∂x and ∂Bz/∂y are both zero (or negligibly small
close to the z axis). So again only one term survives and we have

∇(m · B) =
(

0, 0, mz
∂Bz

∂z

)
, (12.495)

as desired.
(c) Let’s first see what the two expressions yield for the force on the given

square loop. Then we will calculate what the force actually is. The
dipole moment m points out of the page with magnitude I(area), so
we have m = ẑIa2. Using the above expressions for (m · ∇)B and
∇(m · B) in Eqs. (12.492) and (12.494), we obtain

(m · ∇)B =
(

0 + 0 + (Ia2)
∂

∂z

)
(0, 0, B0x) = (0, 0, 0) (12.496)
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and

∇(m · B) =
(

∂

∂x
,

∂

∂y
,

∂

∂z

) (
0 + 0 + (Ia2)B0x

) = (Ia2B0, 0, 0).

(12.497)

We see that the first expression yields zero force on the loop, while
the second yields a force of Ia2B0 in the positive x direction.

Let’s now explicitly calculate the force. We quickly find that the
net force on the top side of the square is zero (the right half cancels
the left half). Likewise for the bottom side. Alternatively, the corres-
ponding pieces of the top and bottom sides have canceling forces.
So we need only look at the left and right sides. By the right-hand
rule, the force on the right side is directed to the right with magnitude
IB� = I(B0a/2)(a) = IB0a2/2. The force on the left side also points
to the right (both I and B switch sign) with the same magnitude. The
total force is therefore F = IB0a2 in the positive x direction, in agree-
ment with Eq. (12.497). So ∇(m · B) is the correct expression for the
force. (Actually, all that we’ve done is rule out the (m ·∇)B force. But
∇(m · B) is in fact correct in all cases.)

11.5 Converting χm
Consider a setup in which the SI quantities are M = 1 amp/m and B = 1
tesla. Then χm = μ0M/B = 4π · 10−7. You can verify that the units do
indeed cancel so that χm is dimensionless.

How would someone working with Gaussian units describe this
setup? Since 1 amp/m equals (3 · 109 esu/s)/(100 cm), this would be the
value of M in Gaussian units if there weren’t the extra factor of c in the
definition of m. This factor reduces the value of all dipole moments m (and
hence all magnetizations M) by 3 · 1010 cm/s. The value of M in Gaussian
units is therefore

M = 3 · 109 esu/s
100 cm

1
3 · 1010 cm/s

= 10−3 esu
cm2 . (12.498)

Both of the factors of 3 here are actually 2.998, so this result is exact.
The magnetic field in Gaussian units that corresponds to 1 tesla is

104 gauss, so the susceptibility in Gaussian units for the given setup is

χm = M
B

= 10−3 esu/cm2

104 gauss
= 10−7 esu

cm2 gauss
= 10−7. (12.499)

The units do indeed cancel, because the expression for the Lorentz force
tells us that a gauss has the units of force per charge. So the units of χm are
esu2/(cm2 ·force). And these units cancel, as you can see by looking at the
units in Coulomb’s law. The above value of χm in SI units was 4π · 10−7,
which is 4π times the Gaussian value, as desired.

11.6 Paramagnetic susceptibility of liquid oxygen
Equation (11.20) gives the force on a magnetic moment as F = m(∂Bz/∂z).
Using the data in Table 11.1, and taking upward to be positive for all
quantities, the magnetic moment of a 10−3 kg sample is
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m = F
∂Bz/∂z

= −7.5 · 10−2 N
−17 T/m

= 4.4 · 10−3 J/T. (12.500)

The magnetic susceptibility is defined via M = χmB/μ0. (The accepted
M = χmH definition would give essentially the same result, because χm
will turn out to be very small. See Exercise 11.38.) The volume of 1 gram
of liquid oxygen is V = (10−3 kg)/(850 kg/m3) = 1.18 · 10−6 m3. So

χm = M
B/μ0

= (m/V)

B/μ0
= mμ0

BV

= (4.4 · 10−3 J/T)(4π · 10−7 kg m/C2)

(1.8 T)(1.18 · 10−6 m3)
= 2.6 · 10−3. (12.501)

11.7 Rotating shell
For the magnetized sphere, we know from Eq. (11.55) that near the equa-
tor the surface current density is equal to M, because the sphere looks
essentially like a cylinder there (the surface is parallel to M). But away
from the equator, the surface is tilted with respect to M. From the exam-
ple at the end of Section 11.8, the surface current density is given by
J = M‖ �⇒ J (θ) = M sin θ , where θ is the angle down from the
top of the sphere (assuming that M points up).

Now consider a rotating sphere with uniform surface charge den-
sity σ . The surface current density at any point is J = σv, where v =
ω(R sin θ) is the speed due to the rotation. Hence J (θ) = σωR sin θ . The
J (θ) expressions for the magnetized and rotating spheres have the same
functional dependence on θ , so they will be equal for all θ provided that
M = σωR.

11.8 B inside a magnetized sphere
(a) The field in Eq. (11.15) is obtained from the field in Eq. (10.18) by

letting p → m and ε0 → 1/μ0. If we replace all the electric dipoles
p in a polarized sphere with magnetic dipoles m, then at an external
point, the field from each dipole is simply multiplied by (m/p)(μ0ε0).
The integral over all the dipole fields is multiplied by this same factor,
so the new magnetic field at any external point equals (m/p)(μ0ε0)

times the old electric field. We know from Section 10.9 that the old
external electric field is the same as the field due to an electric dipole
with strength p0 = (4πR3/3)P, with P = Np, located at the center.
You can quickly check that (m/p)(μ0ε0) times this field is the same
as the magnetic field due to a magnetic dipole with strength m0 =
(4πR3/3)M, with M = Nm.

(b) If m0 points in the z direction, then from Eq. (11.12) the Cartesian
components of A at points (x, y, z) on the surface of the sphere are

Ax = −μ0
4π

m0y
R3 = −μ0

My
3

,

Ay = μ0
4π

m0x
R3 = μ0

Mx
3

,

Az = 0. (12.502)
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Note that the result from Problem 11.7 then tells us that the A on
the surface of a spinning spherical shell equals (μ0σωR/3)(−y, x, 0).
This agrees with the A we found in a different manner in Problem 6.7.

Recall from Section 6.3 that Ax satisfies ∇2Ax = −μ0Jx. And
similarly for Ay. But J = 0 inside the sphere, so both Ax and Ay satisfy
Laplace’s equation there. By the uniqueness theorem, this means that
if we can find a solution to Laplace’s equation inside the sphere that
satisfies the boundary conditions on the surface of the sphere, then we
know that we have found the solution. And just as with the φ for the
polarized sphere in Section 10.9, the solutions for Ax and Ay are easy
to come by. They are simply the functions given in Eq. (12.502); their
second derivatives are zero, so they each satisfy Laplace’s equation.
The magnetic field inside the sphere is then

B = ∇ × A = μ0M
3

∣∣∣∣∣∣
x̂ ŷ ẑ

∂/∂x ∂/∂y ∂/∂z
−y x 0

∣∣∣∣∣∣ =
2μ0M

3
ẑ. (12.503)

Like the E inside the polarized sphere, this B is uniform and points
vertically. But that is where the similarities end. This B field points
upward, whereas the old E field pointed downward. Additionally, the
numerical factor here is 2/3, whereas it was (negative) 1/3 in E.
The 2/3 is exactly what is needed to make the component normal
to the surface be continuous, and to make the tangential component
have the proper discontinuity (see Exercise 11.31).

Equation (12.503), combined with the result from Problem 11.7,
tells us that the field throughout the interior of a spinning spherical
shell is uniform and has magnitude 2μ0σωR/3. This is consistent
with the result from Problem 6.11 for the field at the center of the
sphere.

11.9 B at the north pole of a spinning sphere
From Problem 11.7, we know that the magnetic field due to a spinning
shell with radius r and uniform surface charge density σ is the same (both
inside and outside) as the field due to a sphere with uniform magnetization
Mr = σωr. And then from Problem 11.8 we know that the external field
of a magnetized sphere is that of a dipole with strength m = (4πr3/3)Mr
located at the center. So the (radial) field at radius R outside a spinning
shell with radius r (at a point located above the north pole) is

B = μ0m
2πR3 = μ0

2πR3
4πr3(σωr)

3
= 2μ0σωr4

3R3 . (12.504)

We can consider the solid spinning sphere to be the superposition
of many spinning shells with radii ranging from r = 0 to r = R, with
uniform surface charge density σ = ρ dr. The north pole of the solid
sphere is outside all of the shells, so we can use the above dipole form of
B for every shell. The total field at the north pole (that is, at radius R) is
therefore

B =
∫ R

0

2μ0(ρ dr)ωr4

3R3 = 2μ0ρωR2

15
. (12.505)
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This field is 2/5 as large as the field at the center of the sphere; see
Exercise 11.32. In terms of the total charge Q = (4πR3/3)ρ, we can write
B as B = μ0ωQ/10πR.

11.10 Surface current on a cube
Equation (11.55) gives the surface current density as J = M. Since the
units of magnetization (J/Tm3) can also be written as A/m, we have J =
4.8 · 105 A/m. This current density spans a ribbon that is � = 0.05 m wide,
so the current is I = J � = (4.8 · 105 A/m)(0.05 m) = 24,000 A.

The dipole moment of the cube is

m = MV = (4.8 · 105 J T−1 m−3)(0.05 m)3 = 60 J/T. (12.506)

The field at a distance of 2 meters, along the axis, is given by Eq. (11.15) as

B = μ0m
2πr3 = (4π · 10−7 kg m/C2)(60 J/T)

2π(2 m)3 = 1.5 · 10−6 T, (12.507)

or 0.015 gauss. This is about 30 times smaller than the earth’s field of
≈ 0.5 gauss, so it wouldn’t disturb a compass much.

11.11 An iron torus
From Fig. 11.32, a B field of 1.2 tesla requires an H field of about 120 A/m.
Consider the line integral

∫
H · dl around the “middle” circle of the sole-

noid, with diameter 11 cm. If I is the current in the wire, then NI = 20I is
the free current enclosed by our circular loop. Therefore,∫

H · dl = Ifree �⇒ (120 A/m) · π(0.11 m) = 20I �⇒ I = 2.1 A.

(12.508)



A
Differences
between SI and
Gaussian units

In this appendix we discuss the differences between the SI and Gaussian
systems of units. First, we will look at the units in each system, and then
we will talk about the clear and not so clear ways in which they differ.

A.1 SI units
Consider the SI system, which is the one we use in this book. The four
main SI units that we deal with are the meter (m), kilogram (kg), second
(s), and coulomb (C). The coulomb actually isn’t a fundamental SI unit;
it is defined in terms of the ampere (A), which is a measure of current
(charge per time). The coulomb is a derived unit, defined to be 1 ampere-
second.

The reason why the ampere, and not the coulomb, is the fundamental
unit involving charge is one of historical practicality. It is relatively easy
to measure current via a galvanometer (see Section 7.1). More crudely,
a current can be determined by measuring the magnetic force that two
pieces of a current-carrying wire in a circuit exert on each other (see
Fig. 6.4). Once we determine the current that flows onto an object during
a given time, we can then determine the charge on the object. On the
other hand, although it is possible to measure charge directly via the
force that two equally charged objects exert on each other (imagine two
balls hanging from strings, repelling each other, as in Exercise 1.36), the
setup is a bit cumbersome. Furthermore, it tells us only what the product
of the charges is, in the event that they aren’t equal. The point is that it is
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easy to measure current by hooking up an ammeter (the main component
of which is a galvanometer) to a circuit.1

The exact definition of an ampere is: if two parallel wires carrying
equal currents are separated by 1 meter, and if the force per meter on one
wire, due to the entirety of the other wire, is 2 · 10−7 newtons, then the
current in each wire is 1 ampere. The power of 10 here is an arbitrary
historical artifact, as is the factor of 2. This force is quite small, but by
decreasing the separation the effect can be measured accurately enough
with the setup shown in Fig. 6.4.

Having defined the ampere in this manner, and then having defined
the coulomb as 1 ampere-second (which happens to correspond to the
negative of the charge of about 6.24 · 1018 electrons), a reasonable thing
to do, at least in theory, is to find the force between two 1 coulomb
charges located, say, 1 meter apart. Since the value of 1 coulomb has
been fixed by the definition of the ampere, this force takes on a particular
value. We are not free to adjust it by tweaking any definitions. It happens
to be about 9 · 109 newtons – a seemingly arbitrary number, but in fact
related to the speed of light. (It has the numerical value of c2/107; we
see why in Section 6.1.) This (rather large) number therefore appears
out in front of Coulomb’s law. We could label this constant with one
letter, such as “k,” but for various reasons it is labeled as 1/4πε0,
with ε0 = 8.85 · 10−12 C2 s2 kg−1 m−3. These units are what are needed
to make the right-hand side of Coulomb’s law, F = (1/4πε0)q1q2/r2,
have units of newtons (namely kg m s−2). In terms of the fundamental
ampere unit, the units of ε0 are A2 s4 kg−1 m−3.

The upshot of all this is that because we made the choice to define
current via the Lorentz force (specifically, the magnetic part of the Lorentz
force) between two wires carrying current I, the Coulomb force between
two objects of charge q ends up being a number that we just have to accept.
We can make the pre-factor be a nice simple number in either one of these
force laws, but not both.2 The SI system gives preference to the Lorentz
force, due to the historical matters of practicality mentioned above.

It turns out that there are actually seven fundamental units in the
SI system. They are listed in Table A.1. The candela isn’t relevant to
our study of electromagnetism, and the mole and kelvin come up only
occasionally. So for our purposes the SI system consists of essentially
just the first four units.

1 If we know the capacitance of an object, then we can easily measure the charge on it
by measuring the voltage with a voltmeter. But the main component of a voltmeter is
again a galvanometer, so the process still reduces to measuring a current.

2 The Biot–Savart law, which allows us to calculate the magnetic field that appears in
the Lorentz force, contains what appears to be a messy pre-factor, namely μ0/4π .
But since μ0 is defined to be exactly 4π · 10−7 kg m/C2, this pre-factor takes on the
simple value of 10−7 kg m/C2.
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Table A.1.
SI base units

Quantity Name Symbol

Length meter m
Mass kilogram kg
Time second s
Electric current ampere A
Thermodynamic temperature kelvin K
Amount of substance mole mol
Luminous intensity candela cd

A.2 Gaussian units
What do the units look like in the Gaussian system? As with the SI sys-
tem, the last three of the above units (or their analogs) rarely come up,
so we will ignore them. The first two units are the centimeter and gram.
These differ from the SI units simply by a few powers of 10, so it is easy
to convert from one system to the other. The third unit, the second, is the
same in both systems.

The fourth unit, that of charge, is where the two systems fundamen-
tally diverge. The Gaussian unit of charge is the esu (short for “electro-
static unit”), which isn’t related to the coulomb by a simple power of 10.
The reason for this non-simple relation is that the coulomb and esu are
defined in different ways. The coulomb is a derivative unit of the ampere
(which is defined via the Lorentz force) as we saw above, whereas the
esu is defined via the Coulomb force. In particular, it is defined so that
Coulomb’s law,

F = k
q1q2r̂

r2 , (A.1)

takes on a very simple form with k = 1. The price to pay for this simple
form of the Coulomb force is the not as simple form of the Lorentz force
between two current-carrying wires (although it isn’t so bad; like the
Coulomb force in SI units, it just involves a factor of c2; see Eq. (6.16)).
This is the opposite of the situation with the SI system, where the Lorentz
force is the “nice” one. Again, in each system we are free to define things
so that one, but not both, of the Lorentz force and Coulomb force takes
on a nice form.

A.3 Main differences between the systems
In Section A.2 we glossed over what turns out to be the most important
difference between the SI and Gaussian systems. In the SI system, the
constant in Coulomb’s law,

kSI ≡ 1
4πε0

= 8.988 · 109 N m2

C2 , (A.2)
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has nontrivial dimensions, whereas in the Gaussian system the constant

kG = 1 (A.3)

is dimensionless. We aren’t just being sloppy and forgetting to write the
units; k is simply the number 1. Although the first thing that may strike
you about the two k constants is the large difference in their numeri-
cal values, this difference is fairly inconsequential. It simply changes the
numerical size of various quantities. The truly fundamental and critical
difference is that kSI has units whereas kG does not. We could, of course,
imagine a system of units where k = 1 dyne-cm2/esu2. This definition
would parallel the units of kSI, with the only difference being the numer-
ical value. But this is not what the Gaussian system does.

The reason why the dimensionlessness of kG creates such a profound
difference between the two systems is that it allows us to solve for the esu
in terms of other Gaussian units. In particular, from looking at the units
in Coulomb’s law, we can write (using 1 dyne = 1 g · cm/s2)

dyne = (dimensionless) · esu2

cm2 �⇒ esu =
√

g · cm3

s2 . (A.4)

The esu is therefore not a fundamental unit. It can be expressed in terms
of the gram, centimeter, and second. In contrast, the SI unit of charge, the
coulomb, cannot be similarly expressed. Since kSI has units of N m2/C2,
the C’s (and everything else) cancel in Coulomb’s law, and we can’t solve
for C in terms of other units.

For our purposes, therefore, the SI system has four fundamental
units (m, kg, s, A), whereas the Gaussian system has only three (cm,
g, s). We will talk more about this below, but first let us summarize the
three main differences between the SI and Gaussian systems. We state
them in order of increasing importance.

(1) The SI system uses kilograms and meters, whereas the Gaussian sys-
tem uses grams and centimeters. This is the most trivial of the three
differences, because all it does is introduce some easily dealt with
powers of 10.

(2) The SI unit of charge (the coulomb) is defined via the ampere, which
in turn is defined in terms of the force between current-carrying
wires. The Gaussian unit of charge (the esu) is defined directly in
terms of Coulomb’s law. This latter definition is the reason why
Coulomb’s law takes on a nicer form in Gaussian units. The differ-
ences between the two systems now involve more than simple powers
of 10. However, although these differences can sometimes be a has-
sle, they aren’t terribly significant. They are just numbers – no differ-
ent from powers of 10, except a little messier. All of the conversions
you might need to use are listed in Appendix C.
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(3) In Gaussian units, the k in Coulomb’s law is chosen to be dimension-
less, whereas in SI units the k (which involves ε0) has units.3 The
result is that the esu can be expressed in terms of other Gaussian
units, whereas the analogous statement is not true for the coulomb.
This is the most important difference between the two systems.

A.4 Three units versus four
Let us now discuss in more detail the issue of the number of units in
each system. The Gaussian system has one fewer because the esu can
be expressed in terms of other units via Eq. (A.4). This has implica-
tions with regard to checking units at the end of a calculation. In short,
less information is gained when checking units in the Gaussian system,
because the charge information is lost when the esu is written in terms
of the other units. Consider the following example.

In SI units the electric field due to a sheet of charge is given
in Eq. (1.40) as σ/2ε0. In Gaussian units the field is 2πσ . Recalling
the units of ε0 in Eq. (1.3), the units of the SI field are kg m C−1s−2

(or kg m A−1s−3 if you want to write it in terms of amperes, but we
use coulombs here to show analogies with the esu). This correctly has
dimensions of (force)/(charge). The units of the Gaussian 2πσ field are
simply esu/cm2, but since the esu is given by Eq. (A.4), the units are
g1/2cm−1/2 s−1. These are the true Gaussian units of the electric field
when written in terms of fundamental units.

Now let’s say that two students working in the Gaussian system are
given a problem where the task is to find the electric field due to a thin
sheet with charge density σ , mass m, volume V , moving with a nonrela-
tivistic speed v. The first student realizes that most of this information is
irrelevant and solves the problem correctly, obtaining the answer of 2πσ

(ignoring relativistic corrections). The second student royally messes
things up and obtains an answer of σ 3Vm−1v−2. Since the fundamen-
tal Gaussian units of σ are g1/2 cm−1/2 s−1, the units of this answer are

σ 3V
mv2 −→

(
g1/2 cm−1/2 s−1)3

(cm)3

(g)(cm/s)2 = g1/2

cm1/2 s
, (A.5)

which are the correct Gaussian units of electric field that we found above.
More generally, in view of Eq. (A.4) we see that any answer with the
units of (g1/2 cm−1/2 s−1)

(
esu g−1/2 cm−3/2 s

)n has the correct units for
the field. The present example has n = 3.

There are, of course, also many ways to obtain incorrect answers in
the SI system that just happen by luck to have the correct units. Correct-
ness of the units doesn’t guarantee correctness of the answer. But the

3 To draw a more accurate analogy: in SI units the defining equation for the ampere
(from which the coulomb is derived) contains the dimensionful constant μ0 in the
force between two wires.
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point is that because the charge information is swept under the rug in
Gaussian units, we have at our disposal the information of only three
fundamental units instead of four. Compared with the SI system, there is
therefore a larger class of incorrect answers in the Gaussian system that
have the correct units.

A.5 The definition of B
Another difference between the SI and Gaussian systems of units is the
way in which the magnetic field is defined. In SI units the Lorentz force
(or rather the magnetic part of it) is F= qv × B, whereas in Gaussian
units it is F= (q/c)v × B. This means that wherever a B appears in
an SI expression, a B/c appears in the corresponding Gaussian expres-
sion (among other possible modifications). Or equivalently, a Gaussian B
turns into an SI cB. This difference, however, is a trivial definitional one
and has nothing to do with the far more important difference discussed
above, where the esu can be expressed in terms of other Gaussian units.

In the Gaussian system, E and B have the same dimensions. In the
SI system they do not; the dimensions of E are velocity times the dimen-
sions of B. In this sense the Gaussian definition of B is more natural,
because it makes sense for two quantities to have the same dimensions if
they are related by a Lorentz transformation, as the E and B fields are;
see Eq. (6.76) for the SI case and Eq. (6.77) for the Gaussian case. After
all, the Lorentz transformation tells us that the E and B fields are sim-
ply different ways of looking at the same field, depending on the frame
of reference. However, having a “cB” instead of a “B” in the SI Lorentz
transformation can’t be so bad, because x and t are also related by a
Lorentz transformation, and they don’t have the same dimensions (the
direct correspondence is between x and ct). Likewise for p and E (where
the direct correspondence is between pc and E). At any rate, this issue
stems from the arbitrary choice of whether a factor of c is included in the
expression for the Lorentz force. One can easily imagine an SI-type sys-
tem (where charge is a distinct unit) in which the Lorentz force takes the
form F = qE + (q/c)v × B, yielding the same dimensions for E and B.

A.6 Rationalized units
You might wonder why there are factors of 4π in the SI versions of
Coulomb’s law and the Biot–Savart law; see Eqs. (1.4) and (6.49). These
expressions would certainly look a bit less cluttered without these fac-
tors. The reason is that the presence of 4π ’s in these laws leads to the
absence of such factors in Maxwell’s equations. And for various rea-
sons it is deemed more important to have Maxwell’s equations be the
“clean” ones without the 4π factors. The procedure of inserting 4π into
Coulomb’s law and the Biot–Savart law, in order to keep them out of
Maxwell’s equations, is called “rationalizing” the units. Of course, for
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people concerned more with applications of Coulomb’s law than with
Maxwell’s equations, this procedure might look like a step in the wrong
direction. But since Maxwell’s equations are the more fundamental equa-
tions, there is logic in this convention.

It is easy to see why the presence of 4π factors in Coulomb’s law
and the Biot–Savart law leads to the absence of 4π factors in Gauss’s
law and Ampère’s law, which are equivalent to two of Maxwell’s equa-
tions (or actually one and a half; Ampère’s law is supplemented with
another term). In the case of Gauss’s law, the absence of the 4π basi-
cally boils down to the area of a sphere being 4πr2 (see the derivation
in Section 1.10). In the case of Ampère’s law, the absence of the 4π is a
consequence of the reasoning in Sections 6.3 and 6.4, which again boils
down to the area of a sphere being 4πr2 (because Eq. (6.44) was writ-
ten down by analogy with Eq. (6.30)). Or more directly: the 1/4π in the
Biot–Savart law turns into a 1/2π in the field from an infinite straight
wire (see Eq. (6.6)), and this 2π is then canceled when we take the line
integral around a circle with circumference 2πr.

If there were no factors of 4π in Coulomb’s law or the Biot–Savart
law, then there would be factors of 4π in Maxwell’s equations. This is
exactly what happens in the Gaussian system, where the “curl B” and
“div E” Maxwell equations each involve a 4π ; see Eq. (9.20). Note,
however, that one can easily imagine a Gaussian-type system (that is,
one where the pre-factor in Coulomb’s law is dimensionless) that has
factors of 4π in Coulomb’s law and the Biot–Savart law, and none in
Maxwell’s equations. This is the case in a variation of Gaussian units
called Heaviside–Lorentz units.



B
SI units of common
quantities

We begin this appendix with the definitions of all of the derived SI units
relevant to electromagnetism (for example, the joule, ohm, etc.). We then
list the units of all of the main quantities that appear in this book (basi-
cally, anything that has earned the right to be labeled with its own letter).

In SI units the ampere is the fundamental unit involving charge. The
coulomb is a derived unit, being defined as one ampere-second. However,
since most people find it more natural to think in terms of charge than
current, we treat the coulomb as the fundamental unit in this appendix.
The ampere is then defined as one coulomb/second.

For each of the main quantities listed, we give the units in terms of
the fundamental units (m, kg, s, C, and occasionally K), and then also
in terms of other derived units in certain forms that come up often. For
example, the units of electric field are kg m C−1s−2, but they are also
newtons/coulomb and volts/meter.

The various derived units are as follows:

newton (N) = kg m
s2

joule (J) = newton-meter = kg m2

s2

ampere (A) = coulomb
second

= C
s

volt (V) = joule
coulomb

= kg m2

C s2
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farad (F) = coulomb
volt

= C2 s2

kg m2

ohm (�) = volt
ampere

= kg m2

C2 s

watt (W) = joule
second

= kg m2

s3

tesla (T) = newton
coulomb · meter/second

= kg
C s

henry (H) = volt
ampere/second

= kg m2

C2

The main quantities are listed by chapter.

Chapter 1

charge q: C

k in Coulomb’s law:
kg m3

C2 s2 = N m2

C2

ε0:
C2 s2

kg m3 = C2

N m2 = C
V m

= F
m

E field (force per charge):
kg m
C s2 = N

C
= V

m

flux � (E field times area):
kg m3

C s2 = N m2

C
= V m

charge density λ, σ , ρ:
C
m

,
C

m2 ,
C

m3

Chapter 2

potential φ (energy per charge):
kg m2

C s2 = J
C

= V

dipole moment p: C m

Chapter 3

capacitance C (charge per potential):
C2 s2

kg m2 = C
V

= F



SI units of common quantities 771

Chapter 4

current I (charge per time):
C
s
= A

current density J (current per area):
C

m2 s
= A

m2

conductivity σ (current density per field):
C2 s

kg m3 = 1
� m

resistivity ρ (field per current density):
kg m3

C2 s
= � m

resistance R (voltage per current):
kg m2

C2 s
= V

A
= �

power P (energy per time):
kg m2

s3 = J
s
= W

Chapter 5

speed of light c:
m
s

Chapter 6

B field (force per charge-velocity):
kg
C s

= T

μ0 :
kg m
C2 = T m

A

vector potential A:
kg m
C s

= T m

surface current density J (current per length):
C

m s
= A

m

Chapter 7

electromotive force E :
kg m2

C s2 = J
C

= A � = V

flux � (B field times area):
kg m2

C s
= T m2

inductance M, L:
kg m2

C2 = V s
A

= H
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Chapter 8

frequency ω:
1
s

quality factor Q: 1 (dimensionless)

phase φ: 1 (dimensionless)

admittance Y (current per voltage):
C2 s

kg m2 = A
V

= 1
�

impedance Z (voltage per current):
kg m2

C2 s
= V

A
= �

Chapter 9

power density S (power per area):
kg
s3 = J

m2 s
= W

m2

Chapter 10

dielectric constant κ: 1 (dimensionless)

dipole moment p: C m

torque N:
kg m2

s2 = N m

atomic polarizability α/4πε0: m3

polarization density P:
C

m2

electric susceptibility χe: 1 (dimensionless)

permittivity ε:
C2 s2

kg m3 = C2

N m2

displacement vector D:
C

m2

temperature T: K

Boltzmann’s constant k:
kg m2

s2 K
= J

K
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Chapter 11

magnetic moment m:
C m2

s
= A m2 = J

T

angular momentum L:
kg m2

s

Planck’s constant h:
kg m2

s
= J s

magnetization M (m per volume):
C

m s
= A

m
= J

T m3

magnetic susceptibility χm: 1 (dimensionless)

H field:
C

m s
= A

m

permeability μ:
kg m
C2 = T m

A



C
Unit conversions In this appendix we list, and then derive, the main unit conversions

between the SI and Gaussian systems. As you will see below, many of the
conversions involve simple plug-and-chug calculations involving conver-
sions that are already known. However, a few of them (charge, B field, H
field) require a little more thought, because the relevant quantities have
different definitions in the two systems.

C.1 Conversions
Except for the first five (nonelectrical) conversions below, we technic-
ally shouldn’t be using “=” signs, because they suggest that the units in
the two systems are actually the same, up to a numerical factor. This is
not the case. All of the electrical relations involve charge in one way or
another, and a coulomb cannot be expressed in terms of an esu. This is
a consequence of the fact that the esu is defined in terms of the other
Gaussian units; see Appendix A for a discussion of how the coulomb
and esu differ. The proper way to express, say, the sixth relation below is
“1 coulomb is equivalent to 3 · 109 esu.” But we’ll generally just use the
“=” sign, and you’ll know what we mean.

The “[3]” in the following relations stands for the “2.998” that
appears in the speed of light, c= 2.998 · 108 m/s. The coulomb-esu dis-
cussion below explains how this arises.

time: 1 second = 1 second

length: 1 meter = 102 centimeter

mass: 1 kilogram = 103 gram
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force: 1 newton = 105 dyne

energy: 1 joule = 107 erg

charge: 1 coulomb = [3] · 109 esu

E potential: 1 volt = 1
[3] · 102 statvolt

E field: 1 volt/meter = 1
[3] · 104 statvolt/cm

capacitance: 1 farad = [3]2 · 1011 cm

resistance: 1 ohm = 1
[3]2 · 1011 s/cm

resistivity: 1 ohm-meter = 1
[3]2 · 109 s

inductance: 1 henry = 1
[3]2 · 1011 s2/cm

B field: 1 tesla = 104 gauss

H field: 1 amp/meter = 4π · 10−3 oersted

C.2 Derivations
C.2.1 Force: newton vs. dyne

1 newton = 1
kg m

s2 = (1000 g)(100 cm)

s2 = 105 g cm
s2 = 105 dynes.

(C.1)

C.2.2 Energy: joule vs. erg

1 joule = 1
kg m2

s2 = (1000 g)(100 cm)2

s2 = 107 g cm2

s2 = 107 ergs.

(C.2)

C.2.3 Charge: coulomb vs. esu
From Eqs. (1.1) and (1.2), two charges of 1 coulomb separated by a dis-
tance of 1 m exert a force on each other equal to 8.988 · 109 N ≈ 9 · 109 N,
or equivalently 9 · 1014 dynes. How would someone working in Gaussian
units describe this situation? In Gaussian units, Coulomb’s law gives the
force simply as q2/r2. The separation is 100 cm, so if 1 coulomb equals N
esu (with N to be determined), the 9 · 1014 dyne force between the charges
can be expressed as

9 · 1014 dyne = (N esu)2

(100 cm)2 �⇒ N2 = 9 · 1018 �⇒ N = 3 · 109.

(C.3)
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So 1 coulomb equals 3 · 109 esu. If we had used the more exact value of k
in Eq. (1.2), the “3” in this result would have been replaced by

√
8.988 =

2.998, which is precisely the 2.998 that appears in the speed of light,
c = 2.998 · 108 m/s. The reason for this is the following.

If you follow through the above derivation while keeping things in
terms of k ≡ 1/4πε0, you will see that the number 3 · 109 is actually√{k} · 105 · 104, where we have put the braces around k to signify that it
is just the number 8.988 · 109 without the SI units. (The factors of 105 and
104 come from the conversions to dynes and centimeters, respectively.)
But we know from Eq. (6.8) that ε0 = 1/μ0c2, so we have k = μ0c2/4π .
Furthermore, the numerical value of μ0 is {μ0} = 4π · 10−7, so the
numerical value of k is {k} = {c}2 · 10−7. Therefore, the number N that
appears in Eq. (C.3) is really

N =
√
{k} · 109 =

√
({c}2 · 10−7)109 = {c} · 10 = 2.998 · 109 ≡ [3] · 109.

(C.4)

C.2.4 Potential: volt vs. statvolt

1 volt = 1
J
C

= 107 erg
[3] · 109 esu

= 1
[3] · 102

erg
esu

= 1
[3] · 102 statvolt.

(C.5)

C.2.5 Electric field: volt/meter vs. statvolt/centimeter

1
volt

meter
=

1
[3] · 102 statvolt

100 cm
= 1

[3] · 104
statvolt

cm
. (C.6)

C.2.6 Capacitance: farad vs. centimeter

1 farad = 1
C
V

= [3] · 109 esu
1

[3] · 102 statvolt
= [3]2 · 1011 esu

statvolt
. (C.7)

We can alternatively write these Gaussian units as centimeters. This is
true because 1 statvolt = 1 esu/cm (because the potential from a point
charge is q/r), so 1 esu/statvolt = 1 cm. We therefore have

1 farad = [3]2 · 1011 cm. (C.8)

C.2.7 Resistance: ohm vs. second/centimeter

1 ohm = 1
V
A

= 1
V

C/s
=

1
[3] · 102 statvolt

[3] · 109 esu/s
= 1

[3]2 · 1011
s

esu/statvolt

= 1
[3]2 · 1011

s
cm

, (C.9)

where we have used 1 esu/statvolt = 1 cm.
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C.2.8 Resistivity: ohm-meter vs. second

1 ohm-meter =
(

1
[3]2 · 1011

s
cm

)
(100 cm) = 1

[3]2 · 109 s. (C.10)

C.2.9 Inductance: henry vs. second2/centimeter

1 henry = 1
V

A/s
= 1

V
C/s2 =

1
[3] · 102 statvolt

[3] · 109 esu/s2

= 1
[3]2 · 1011

s2

esu/statvolt
= 1

[3]2 · 1011
s2

cm
, (C.11)

where we have used 1 esu/statvolt = 1 cm.

C.2.10 Magnetic field B: tesla vs. gauss
Consider a setup in which a charge of 1 C travels at 1 m/s in a direction
perpendicular to a magnetic field with strength 1 tesla. Equation (6.1)
tells us that the force on the charge is 1 newton. Let us express this fact
in terms of the Gaussian force relation in Eq. (6.9), which involves a
factor of c. We know that 1 N = 105 dyne and 1 C = [3] · 109 esu. If
we let 1 tesla = N gauss, then the way that Eq. (6.9) describes the given
situation is

105 dyne = [3] · 109 esu
[3] · 1010 cm/s

(
100

cm
s

)
(N gauss). (C.12)

Since 1 gauss equals 1 dyne/esu, all the units cancel (as they must), and
we end up with N = 104, as desired. This is an exact result because the
two factors of [3] cancel.

C.2.11 Magnetic field H: ampere/meter vs. oersted
The H field is defined differently in the two systems (there is a μ0 in the
SI definition), so we have to be careful. Consider a B field of 1 tesla in
vacuum. What H field does this B field correspond to in each system? In
the Gaussian system, B is 104 gauss. But in Gaussian units H =B in vac-
uum, so H = 104 oersted, because an oersted and a gauss are equivalent
units. In the SI system we have (you should verify these units)

H = B
μ0

= 1 tesla
4π · 10−7 kg m/C2 = 107

4π

A
m

. (C.13)

Sincethis isequivalent to104 oersted,wearriveat1amp/meter= 4π · 10−3

oersted. Going the other way, 1 oersted equals roughly 80 amp/meter.



D
SI and Gaussian
formulas

The following pages provide a list of all the main results in this book, in
both SI and Gaussian units. After looking at a few of the corresponding
formulas, you will discover that transforming from SI units to Gaussian
units involves one or more of the three types of conversions discussed
below.

Of course, even if a formula takes exactly the same form in the two
systems of units, it says two entirely different things. For example, the
formula relating force and electric field is the same in both systems: F =
qE. But in SI units this equation says that a charge of 1 coulomb placed
in an electric field of 1 volt/meter feels a force of 1 newton, whereas in
Gaussian units it says that a charge of 1 esu placed in an electric field
of 1 statvolt/centimeter feels a force of 1 dyne. When we say that two
formulas are the “same,” we mean that they look the same on the page,
even though the various letters mean different things in the two systems.

The three basic types of conversions from SI to Gaussian units are
given in Sections D.1 to D.3. We then list the formulas in Section D.4 by
chapter.

D.1 Eliminating ε0 and μ0
Our starting point in this book was Coulomb’s law in Eq. (1.4). The SI
expression for this law contains the factor 1/4πε0, whereas the Gaus-
sian expression has no factor (or rather just a 1). To convert from SI
units to Gaussian units, we therefore need to set 4πε0 = 1, or equiva-
lently ε0 = 1/4π (along with possibly some other changes, as we will
see below). That is, we need to erase all factors of 4πε0 that appear, or
equivalently replace all ε0’s with 1/4π’s. In many formulas this change
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is all that is needed. A few examples are: Gauss’s law, Eq. (1.31) in the
list in Section D.4;1 the field due to a line or sheet, Eqs. (1.39) and (1.40);
the energy in an electric field, Eq. (1.53); and the capacitance of a sphere
or parallel plates, Eqs. (3.10) and (3.15).

A corollary of the ε0 → 1/4π rule is the μ0 → 4π/c2 rule. We
introduced μ0 in Chapter 6 via the definition μ0 ≡ 1/ε0c2, so if we
replace ε0 with 1/4π , we must also replace μ0 with 4π/c2. An example
of this μ0 → 4π/c2 rule is the force between two current-carrying wires,
Eq. (6.15).

It is also possible to use these rules to convert formulas in the other
direction, from Gaussian units to SI units, although the process isn’t quite
as simple. The conversion must (at least for conversions where only ε0
and μ0 are relevant) involve multiplying by some power of 4πε0 (or
equivalently 4π/μ0c2). And there is only one power that will make the
units of the resulting SI expression correct, because ε0 has units, namely
C2 s2 kg−1 m−3. For example, the Gaussian expression for the field due
to a sheet of charge is 2πσ in Eq. (1.40) in the list below, so the SI
expression must take the form of 2πσ(4πε0)

n. You can quickly show
that 2πσ(4πε0)

−1 = σ/2ε0 has the correct units of electric field (it suf-
fices to look at the power of any one of the four units: kg, m, s, C).

D.2 Changing B to B/c
If all quantities were defined in the same way in the two systems of units
(up to factors of 4πε0 and 4π/μ0c2), then the above rules involving ε0
and μ0 would be sufficient for converting from SI units to Gaussian units.
But unfortunately certain quantities are defined differently in the two sys-
tems, so we can’t convert from one system to the other without knowing
what these arbitrary definitions are.

The most notable example of differing definitions is the magnetic
field. In SI units the Lorentz force (or rather the magnetic part of it) is
F = qv × B, while in Gaussian units it is F = (q/c)v × B. To convert
from an SI formula to a Gaussian formula, we therefore need to replace
every B with a B/c (and likewise for the vector potential A). An example
of this is the B field from an infinite wire, Eq. (6.6). In SI units we have
B = μ0I/2πr. Applying our rules for μ0 and B, the Gaussian B field is
obtained as follows:

B = μ0I
2πr

−→
(

B
c

)
=

(
4π

c2

)
I

2πr
�⇒ B = 2I

rc
, (D.1)

which is the correct result. Other examples involving the B → B/c rule
include Ampère’s law, Eqs. (6.19) and (6.25); the Lorentz transforma-
tions, Eq. (6.76); and the energy in a magnetic field, Eq. (7.79).

1 The “double” equations in the list in Section D.4, where the SI and Gaussian formulas
are presented side by side, are labeled according to the equation number that the SI
formula has in the text.
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D.3 Other definitional differences
The above two conversion procedures are sufficient for all formulas up to
and including Chapter 9. However, in Chapters 10 and 11 we encounter
a number of new quantities (χe, D, H, etc.), and many of these quantities
are defined differently in the two systems of units,2 mainly due to histor-
ical reasons. For example, after using the ε0 → 1/4π rule in Eq. (10.41),
we see that we need to replace χe by 4πχe in going from SI to Gaussian
units. The Gaussian expression is then given by

χe = P
ε0E

−→ (4πχe) =
(

4π

1

)
P
E
�⇒ χe = P

E
, (D.2)

which is correct. This χe → 4πχe rule is consistent with Eq. (10.42).
Similarly, Eq. (10.63) shows that D is replaced by D/4π .

On the magnetic side of things, a few examples are the following.
Equation (11.9) shows that m (and hence M) is replaced by cm when
going from SI to Gaussian units (because m = Ia → cm = Ia ⇒
m = Ia/c, which is the correct Gaussian expression). Also, Eqs. (11.69)
and (11.70) show that H is replaced by (c/4π)H. Let’s check that
Eq. (11.68) is consistent with these rules. The SI expression for H is
converted to Gaussian as follows:

H = 1
μ0

B − M −→
( c

4π
H
)
=

(
c2

4π

)(
B
c

)
− (cM)

�⇒ H = B − 4πM, (D.3)

which is the correct Gaussian expression. Although it is possible to
remember all the different rules and then convert things at will, there
are so many differing definitions in Chapters 10 and 11 that it is prob-
ably easiest to look up each formula as you need it. But for Chapters 1–9,
you can get a lot of mileage out of the first two rules above, namely (1)
ε0 → 1/4π , μ0 → 4π/c2, and (2) B → B/c.

D.4 The formulas
In the pages that follow, the SI formula is given first, followed by the
Gaussian equivalent.

2 The preceding case with B is simply another one of these differences, but we have
chosen to discuss it separately because the B field appears so much more often in this
book than other such quantities.
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Chapter 1

Coulomb’s law (1.4): F = 1
4πε0

q1q2r̂
r2 F = q1q2r̂

r2

potential energy (1.9): U = 1
4πε0

q1q2

r
U = q1q2

r

electric field (1.20): E = 1
4πε0

qr̂
r2 E = qr̂

r2

force and field (1.21): F = qE (same)

flux (1.26): � =
∫

E · da (same)

Gauss’s law (1.31):
∫

E · da = q
ε0

∫
E · da = 4πq

field due to line (1.39): Er = λ

2πε0r
Er = 2λ

r

field due to sheet (1.40): E = σ

2ε0
E = 2πσ

�E across sheet (1.41): �E = σ

ε0
n̂ �E = 4πσ n̂

field near shell (1.42): Er = σ

ε0
Er = 4πσ

F/(area) on sheet (1.49):
F
A
= 1

2

(
E1 + E2

)
σ (same)

energy in E field (1.53): U = ε0

2

∫
E2 dv U = 1

8π

∫
E2 dv

Chapter 2

electric potential (2.4): φ = −
∫

E · ds (same)

field and potential (2.16): E = −∇φ (same)

potential and density (2.18): φ =
∫

ρ dv
4πε0r

φ =
∫

ρ dv
r

potential energy (2.32): U = 1
2

∫
ρφ dv (same)

dipole potential (2.35): φ = q� cos θ

4πε0r2 φ = q� cos θ

r2

dipole moment (2.35): p = q� (same)
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dipole field (2.36): E = q�

4πε0r3

(
2 cos θ r̂ + sin θ θ̂

)
E = q�

r3

(
2 cos θ r̂ + sin θ θ̂

)

divergence theorem (2.49):
∫

S
F · da =

∫
V

div F dv (same)

E and ρ (2.52): div E = ρ

ε0
div E = 4πρ

E and φ (2.70): div E = −∇2φ (same)

φ and ρ (2.72): ∇2φ = − ρ

ε0
∇2φ = −4πρ

Stokes’ theorem (2.83):
∫

C
F · ds =

∫
S

curl F · da (same)

Chapter 3
charge and capacitance (3.7): Q = Cφ (same)

sphere C (3.10): C = 4πε0a C = a

parallel-plate C (3.15): C = ε0A
s

C = A
4πs

energy in capacitor (3.29): U = 1
2

Cφ2 (same)

Chapter 4

current, current density (4.7): I =
∫

J · da (same)

J and ρ (4.10): div J = −∂ρ

∂t
(same)

conductivity (4.11): J = σE (same)

Ohm’s law (4.12): V = IR (same)

resistivity (4.16): J =
(

1
ρ

)
E (same)

resistance, resistivity (4.17): R = ρL
A

(same)

power (4.31): P = IV = I2R (same)

R, C time constant (4.43): τ = RC (same)
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Chapter 5
Lorentz force (5.1): F = qE + qv × B F = qE + q

c
v × B

charge in a region (5.2): Q = ε0

∫
E · da Q = 1

4π

∫
E · da

E transformations (5.7): E′‖ = E‖, E′⊥ = γ E⊥ (same)

E from moving Q (5.15): E′ = Q
4πε0r′2

1 − β2

(1 − β2 sin2 θ ′)3/2
E′ = Q

r′2
1 − β2

(1 − β2 sin2 θ ′)3/2

F transformations (5.17):
dp‖
dt

= dp′‖
dt′

,
dp⊥
dt

= 1
γ

dp′⊥
dt′

(same)

F from current (5.28): Fy = qvxI
2πε0rc2 Fy = 2qvxI

rc2

Chapter 6

B due to wire (6.3), (6.6): B = ẑ
I

2πε0rc2 = ẑ
μ0I
2πr

B = ẑ
2I
rc

speed of light (6.8): c2 = 1
μ0ε0

(no analog)

F on a wire (6.14): F = IBl F = IBl
c

F between wires (6.15): F = μ0I1I2l
2πr

F = 2I1I2l
c2r

Ampère’s law (6.19):
∫

B · ds = μ0I
∫

B · ds = 4π

c
I

(differential form) (6.25): curl B = μ0J curl B = 4π

c
J

vector potential (6.32): B = curl A (same)

A and J (6.44): A = μ0

4π

∫
J dv

r
A = 1

c

∫
J dv

r

Biot–Savart law (6.49): dB = μ0I
4π

dl × r̂
r2 dB = I

c
dl × r̂

r2

B in solenoid (6.57): Bz = μ0nI Bz = 4πnI
c

�B across sheet (6.58): �B = μ0J �B = 4πJ
c

F/(area) on sheet (6.63):
F
A
= (B+

z )2 − (B−
z )2

2μ0

F
A
= (B+

z )2 − (B−
z )2

8π
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E, B transforms (6.76): E′‖ = E‖ (same)

B′‖ = B‖ (same)

E′⊥ = γ
(
E⊥ + β × cB⊥

)
E′⊥ = γ

(
E⊥ + β × B⊥

)
cB′⊥ = γ

(
cB⊥ − β × E⊥

)
B′⊥ = γ

(
B⊥ − β × E⊥

)
Hall Et field (6.84): Et = −J × B

nq
Et = −J × B

nqc

Chapter 7

electromotive force (7.5): E = 1
q

∫
f · ds (same)

Faraday’s law (7.26): E = −d�

dt
E = −1

c
d�

dt

(differential form) (7.31): curl E = −∂B
∂t

curl E = −1
c

∂B
∂t

mutual inductance (7.37), (7.38): E21 = −M21
dI1

dt
(same)

self-inductance (7.57), (7.58): E11 = −L1
dI1

dt
(same)

L of toroid (7.62): L = μ0N2h
2π

ln
(

b
a

)
L = 2N2h

c2 ln
(

b
a

)
R, L time constant (7.69): τ = L/R (same)

energy in inductor (7.74): U = 1
2

LI2 (same)

energy in B field (7.79): U = 1
2μ0

∫
B2 dv U = 1

8π

∫
B2 dv

Chapter 8

RLC time constant (8.8): τ = 1
α
= 2L

R
(same)

RLC frequency (8.9): ω =
√

1
LC

− R2

4L2 (same)

Q factor (8.12): Q = ω · energy
power

(same)

I0 for series RLC (8.38): I0 = E0√
R2 + (ωL − 1/ωC)2

(same)
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φ for series RLC (8.39): tan φ = 1
RωC

− ωL
R

(same)

resonant ω (8.41): ω0 = 1√
LC

(same)

width of I curve (8.45):
2|�ω|

ω0
= 1

Q
(same)

admittance (8.61): Ĩ = YṼ (same)

impedance (8.62): Ṽ = ZĨ (same)

impedances (Table 8.1): R, iωL, −i/ωC (same)

average power in R (8.81): PR = V2
rms
R

(same)

average power (general) (8.85): P = VrmsIrms cos φ (same)

Chapter 9

displacement current (9.15): Jd = ε0
∂E
∂t

Jd = 1
4π

∂E
∂t

Maxwell’s equations (9.17): curl E = −∂B
∂t

curl E = −1
c

∂B
∂t

curl B = μ0ε0
∂E
∂t

+ μ0J curl B = 1
c

∂E
∂t

+ 4π

c
J

div E = ρ

ε0
div E = 4πρ

div B = 0 (same)

speed of wave (9.26), (9.27): v = 1√
μ0ε0

= c v = c

E, B amplitudes (9.26), (9.27): E0 = B0√
μ0ε0

= cB0 E0 = B0

power density (9.34): S = ε0E2c S = E2c
4π

Poynting vector (9.42): S = E × B
μ0

S = c
4π

E × B

invariant 1 (9.51): E′ · B′ = E · B (same)

invariant 2 (9.51): E′2 − c2B′2 = E2 − c2B2 E′2 − B′2 = E2 − B2
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Chapter 10

dielectric constant (10.3): κ = Q/Q0 (same)

dipole moment (10.13): p =
∫

r′ρ dv′ (same)

dipole potential (10.14): φ(r) = r̂ · p
4πε0r2 φ(r) = r̂ · p

r2

dipole (Er, Eθ ) (10.18):
p

4πε0r3 (2 cos θ , sin θ)
p
r3 (2 cos θ , sin θ)

torque on dipole (10.21): N = p × E (same)

force on dipole (10.26): Fx = p · grad Ex (same)

polarizability (10.29): p = αE (same)

polarization density (10.31): P = pN (same)

φ due to column (10.34): φ = P da
4πε0

(
1
r2

− 1
r1

)
φ = P da

(
1
r2

− 1
r1

)
surface density (10.35): σ = P (same)

average field (10.37): 〈E〉 = − P
ε0

〈E〉 = −4πP

susceptibility (10.41): χe = P
ε0E

χe = P
E

χe and κ (10.42): χe = κ − 1 χe = κ − 1
4π

E in polar sphere (10.47): Ein = − P
3ε0

Ein = −4πP
3

permittivity (10.56): ε = κε0 (no analog)

P divergence (10.61): div P = −ρbound (same)

displacement D (10.63): D = ε0E + P D = E + 4πP

D divergence (10.64): div D = ρfree div D = 4πρfree

D for linear (10.65): D = εE D = κE

χe for weak E (10.73): χe ≈ Np2

ε0kT
χe ≈ Np2

kT

bound current J (10.74): Jbound = ∂P
∂t

(same)

curl of B (10.78): curl B = μ0
∂D
∂t

+ μ0J curl B = 1
c

∂D
∂t

+ 4π

c
J
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speed of wave (10.83): v = c√
κ

(same)

E, B amplitudes (10.83): E0 = cB0√
κ
= vB0 E0 = B0√

κ

Chapter 11

dipole moment (11.9): m = Ia m = Ia
c

vector potential (11.10): A = μ0

4π

m × r̂
r2 A = m × r̂

r2

dipole (Br, Bθ ) (11.15):
μ0m
4πr3 (2 cos θ , sin θ)

m
r3 (2 cos θ , sin θ)

force on dipole (11.23): F = ∇(m · B) (same)

orbital m for e (11.29): m = −e
2me

L m = −e
2mec

L

polarizability (11.41):
�m
B

= −e2r2

4me

�m
B

= − e2r2

4mec2

torque on dipole (11.47): N = m × B (same)

polarization density (11.51): M = m
volume

(same)

susceptibility χm (11.52): M = χm
B
μ0

M = χmB

χpm for weak B (11.53): χpm ≈ μ0Nm2

kT
χpm ≈ Nm2

kT

surface density J (11.55): J = M J = Mc

volume density J (11.56): J = curl M J = c curl M

H field (11.68): H = B
μ0

− M H = B − 4πM

curl of H (11.69): curl H = Jfree curl H = 4π

c
Jfree

(integrated form) (11.70):
∫

H · dl = Ifree

∫
H · dl = 4π

c
Ifree

χm (accepted def.) (11.72): M = χmH (same)

permeability (11.74): μ = μ0(1 + χm) μ = 1 + 4πχm

B and H (11.74): B = μH (same)
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Appendix H

tangential Eθ (H.3): Eθ = qa sin θ

4πε0c2R
Eθ = qa sin θ

c2R

power (H.7): Prad = q2a2

6πε0c3 Prad = 2q2a2

3c3



E
Exact relations
among SI and
Gaussian units

In 1983 the General Conference on Weights and Measures officially
redefined the meter as the distance that light travels in vacuum during
a time interval of 1/299,792,458 of a second. The second is defined in
terms of a certain atomic frequency in a way that does not concern us
here. The nine-digit integer was chosen to make the assigned value of c
agree with the most accurate measured value to well within the uncer-
tainty in the latter. Henceforth the velocity of light is, by definition,
299,792,458 meters/second. An experiment in which the passage of a
light pulse from point A to point B is timed is to be regarded as a mea-
surement of the distance from A to B, not a measurement of the speed of
light.

While this step has no immediate practical consequences, it does
bring a welcome simplification of the exact relations connecting various
electromagnetic units. As we learn in Chapter 9, Maxwell’s equations for
the vacuum fields, formulated in SI units, have a solution in the form of
a traveling wave with velocity c = (μ0ε0)

−1/2. The SI constant μ0 has
always been defined exactly as 4π · 10−7 kg m/C2, whereas the value of
ε0 has depended on the experimentally determined value of the speed of
light, any refinement of which called for adjustment of the value of ε0.
But now ε0 acquires a permanent and perfectly precise value of its own,
through the requirement that

(μ0ε0)
−1/2 = 299,792,458 meters/second. (E.1)

In the Gaussian system no such question arises. Wherever c is
involved, it appears in plain view, and all other quantities are defined
exactly, beginning with the electrostatic unit of charge, the esu, whose
definition by Coulomb’s law involves no arbitrary factor.
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With the adoption of Eq. (E.1) in consequence of the redefinition
of the meter, the relations among the units in the systems we have been
using can be stated with unlimited precision. These relations are listed at
the beginning of Appendix C for the principal quantities we deal with.
In the list the symbol [3] stands for the precise decimal 2.99792458.

The exact numbers are uninteresting and for our work quite unnec-
essary. It is sheer luck that [3] happens to be so close to 3, an accidental
consequence of the length of the meter and the second. When 0.1 per-
cent accuracy is good enough we need only remember that “300 volts is
a statvolt” and “3 · 109 esu is a coulomb.” Much less precisely, but still
within 12 percent, a capacitance of 1 cm is equivalent to 1 picofarad.

An important SI constant is (μ0/ε0)
1/2, which is a resistance in

ohms. Since ε0 = 1/μ0c2, this resistance equals μ0c. Using the exact
values of μ0 and c, we find (μ0/ε0)

1/2 = 40π ·[3] ohms ≈ 376.73 ohms.
One tends to remember it, and even refer to it, as “377 ohms.” It is the
ratio of the electric field strength E, in volts/meter, in a plane wave in vac-
uum, to the strength, in amperes/meter, of the accompanying magnetic
field H. For this reason the constant (μ0/ε0)

1/2 is sometimes denoted by
Z0 and called, rather cryptically, the impedance of the vacuum. In a plane
wave in vacuum in which Erms is the rms electric field in volts/meter, the
mean density of power transmitted, in watts/m2, is E2

rms/Z0.
The logical relation of the SI electrical units to one another now

takes on a slightly different aspect. Before the redefinition of the meter,
it was customary to designate one of the electrical units as primary, in
this sense: its precise value could, at least in principle, be established by
a procedure involving the SI mechanical and metrical units only. Thus
the ampere, to which this role has usually been assigned, was defined in
terms of the force in newtons between parallel currents, using the relation
in Eq. (6.15). This was possible because the constant μ0 in that relation
has the precise value 4π · 10−7 kg m/C2. Then with the ampere as the
primary electrical unit, the coulomb was defined precisely as 1 ampere-
second. The coulomb itself, owing to the presence of ε0 in Coulomb’s
law, was not eligible to serve as the primary unit. Now with ε0 as well
as μ0 assigned an exact numerical value, the system can be built up with
any unit as the starting point. All quantities are in this sense on an equal
footing, and the choice of a primary unit loses its significance. Never a
very interesting question anyway, it can now be relegated to history.



F
Curvilinear
coordinates

We begin this appendix by listing the main vector operators (gradient,
divergence, curl, Laplacian) in Cartesian, cylindrical, and spherical coor-
dinates. We then talk a little about each operator – define things, derive
a few results, give some examples, etc. You will note that some of the
expressions below are rather scary looking. However, you won’t have to
use their full forms in this book. In the applications that come up, invari-
ably only one or two of the terms in the expressions are nonzero.

F.1 Vector operators
F.1.1 Cartesian coordinates

ds = dx x̂ + dy ŷ + dz ẑ,

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
,

∇f = ∂f
∂x

x̂ + ∂f
∂y

ŷ + ∂f
∂z

ẑ,

∇ · A = ∂Ax

∂x
+ ∂Ay

∂y
+ ∂Az

∂z
,

∇ × A =
(

∂Az

∂y
− ∂Ay

∂z

)
x̂ +

(
∂Ax

∂z
− ∂Az

∂x

)
ŷ +

(
∂Ay

∂x
− ∂Ax

∂y

)
ẑ,

∇2f = ∂2f
∂x2 + ∂2f

∂y2 + ∂2f
∂z2 . (F.1)
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F.1.2 Cylindrical coordinates

ds = dr r̂ + r dθ θ̂ + dz ẑ,

∇ = r̂
∂

∂r
+ θ̂

1
r

∂

∂θ
+ ẑ

∂

∂z
,

∇f = ∂f
∂r

r̂ + 1
r

∂f
∂θ

θ̂ + ∂f
∂z

ẑ,

∇ · A = 1
r

∂(rAr)

∂r
+ 1

r
∂Aθ

∂θ
+ ∂Az

∂z
,

∇ × A =
(

1
r

∂Az

∂θ
− ∂Aθ

∂z

)
r̂ +

(
∂Ar

∂z
− ∂Az

∂r

)
θ̂

+ 1
r

(
∂(rAθ )

∂r
− ∂Ar

∂θ

)
ẑ,

∇2f = 1
r

∂

∂r

(
r
∂f
∂r

)
+ 1

r2
∂2f
∂θ2 + ∂2f

∂z2 . (F.2)

F.1.3 Spherical coordinates

ds = dr r̂ + r dθ θ̂ + r sin θ dφ φ̂,

∇ = r̂
∂

∂r
+ θ̂

1
r

∂

∂θ
+ φ̂

1
r sin θ

∂

∂φ
,

∇f = ∂f
∂r

r̂ + 1
r

∂f
∂θ

θ̂ + 1
r sin θ

∂f
∂φ

φ̂,

∇ · A = 1
r2

∂(r2Ar)

∂r
+ 1

r sin θ

∂(Aθ sin θ)

∂θ
+ 1

r sin θ

∂Aφ

∂φ
,

∇ × A = 1
r sin θ

(
∂(Aφ sin θ)

∂θ
− ∂Aθ

∂φ

)
r̂ + 1

r

(
1

sin θ

∂Ar

∂φ
− ∂(rAφ)

∂r

)
θ̂ ,

+ 1
r

(
∂(rAθ )

∂r
− ∂Ar

∂θ

)
φ̂,

∇2f = 1
r2

∂

∂r

(
r2 ∂f

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂f
∂θ

)
+ 1

r2 sin2 θ

∂2f
∂φ2 .

(F.3)

F.2 Gradient
The gradient produces a vector from a scalar. The gradient of a func-
tion f , written as ∇f or grad f , may be defined1 as the vector with the
1 We used a different definition in Section 2.3, but we will show below that the two

definitions are equivalent.
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property that the change in f brought about by a small change ds in
position is

df = ∇f · ds. (F.4)

The vector ∇f depends on position; there is a different gradient vector
associated with each point in the parameter space.

You might wonder whether a vector that satisfies Eq. (F.4) actually
exists. We are claiming that if f is a function of, say, three variables, then
at every point in space there exists a unique vector, ∇f , such that for any
small displacement ds from a given point, the change in f equals ∇f · ds.
It is not immediately obvious why a single vector gets the job done for all
possible displacements ds from a given point. But the existence of such
a vector can be demonstrated in two ways. First, we can explicitly con-
struct ∇f ; we will do this below in Eq. (F.5). Second, any (well-behaved)
function looks like a linear function up close, and for a linear function
a vector ∇f satisfying Eq. (F.4) does indeed exist. We will explain why
in what follows. However, before addressing this issue, let us note an
important property of the gradient.

From the definition in Eq. (F.4), it immediately follows (as mentioned
in Section 2.3) that ∇f points in the direction of steepest ascent of f .
This is true because we can write the dot product ∇f · ds as |∇f ||ds| cos θ ,
where θ is the angle between the vector ∇f and the vector ds. So for a
given length of the vector ds, this dot product is maximized when θ = 0.
We therefore want the displacement ds to point in the direction of ∇f , if
we want to produce the maximum change in f .

If we consider the more easily visualizable case of a function of
two variables, the function can be represented by a surface above the
xy plane. This surface is locally planar; that is, a sufficiently small bug
walking around on it would think it is a (generally tilted) flat plane. If we
look at the direction of steepest ascent in the local plane, and then project
this line onto the xy plane, the resulting line is the direction of ∇f ; see
Fig. 2.5. The function f is constant along the direction perpendicular to
∇f . The magnitude of ∇f equals the change in f per unit distance in the
parameter space, in the direction of ∇f . Equivalently, if we restrict the
parameter space to the one-dimensional line in the direction of steepest
ascent, then the gradient is simply the standard single-variable derivative
in that direction.

We could alternatively work “backwards” and define the gradient as
the vector that points in the direction (in the parameter space) of steep-
est ascent, with its magnitude equal to the rate of change in that direc-
tion. It then follows that the general change in f , for any displacement
ds in the parameter space, is given by Eq. (F.4). This is true because
the dot product picks out the component of ds along the direction of ∇f .
This component causes a change in f , whereas the orthogonal component
does not.
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Figure F.1 shows how this works in the case of a function of two vari-
ables. We have assumed for simplicity that the local plane representing

x

y

f (x, y)

P

Components of ds
associated with Q

ds associated with P
(direction of gradient)

Q

Figure F.1.
Only the component of ds in the direction of the
gradient causes a change in f .

the surface of the function intersects the xy plane along the x axis. (We
can always translate and rotate the coordinate system so that this is true
at a given point.) The gradient then points in the y direction. The point
P shown lies in the direction straight up the plane from the given point.
The projection of this direction onto the xy plane lies along the gradient.
The point Q is associated with a ds interval that doesn’t lie along the gra-
dient in the xy plane. This ds can be broken up into an interval along the
x axis, which causes no change in f , plus an interval in the y direction,
or equivalently the direction of the gradient, which causes the change in
f up to the point Q.

The preceding two paragraphs explain why the vector ∇f defined by
Eq. (F.4) does in fact exist; any well-behaved function is locally linear,
and a unique vector ∇f at each point will get the job done in Eq. (F.4) if f
is linear. But as mentioned above, we can also demonstrate the existence
of such a vector by simply constructing it. Let’s calculate the gradient in
Cartesian coordinates, and then in spherical coordinates.

F.2.1 Cartesian gradient
In Cartesian coordinates, a general change in f for small displacements
can be written as df = (∂f /∂x)dx + (∂f /∂y)dy + (∂f /∂z)dz. This is just
the start of the Taylor series in three variables. The interval ds is simply
(dx, dy, dz), so if we want ∇f · ds to be equal to df , we need

∇f =
(

∂f
∂x

,
∂f
∂y

,
∂f
∂z

)
≡ ∂f

∂x
x̂ + ∂f

∂y
ŷ + ∂f

∂z
ẑ, (F.5)

in agreement with the ∇f expression in Eq. (F.1). In Section 2.3 we took
Eq. (F.5) as the definition of the gradient and then discussed its other
properties.

F.2.2 Spherical gradient
In spherical coordinates, a general change in f is given by df =
(∂f /∂r)dr + (∂f /∂θ)dθ + (∂f /∂φ)dφ. However, the interval ds takes
a more involved form compared with the Cartesian ds. It is

ds = (dr, r dθ , r sin θ dφ) ≡ dr r̂ + r dθ θ̂ + r sin θ dφ φ̂. (F.6)

If we want ∇f · ds to be equal to df , then we need

∇f =
(

∂f
∂r

,
1
r

∂f
∂θ

,
1

r sin θ

∂f
∂φ

)
≡ ∂f

∂r
r̂ + 1

r
∂f
∂θ

θ̂ + 1
r sin θ

∂f
∂φ

φ̂, (F.7)

in agreement with Eq. (F.3).
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We see that the extra factors (compared with the Cartesian case)
in the denominators of the gradient come from the coefficients of the
unit vectors in the expression for ds. Similarly, the form of the gradient
in cylindrical coordinates in Eq. (F.2) can be traced to the fact that the
interval ds equals dr r̂+ r dθ θ̂ + dz ẑ. Since the extra factors that appear
in ds show up in the denominators of the ∇-operator terms, and since
the ∇ operator determines all of the other vector operators, we see that
every result in this appendix can be traced back to the form of ds in the
different coordinate systems. For example, the big scary expression listed
in Eq. (F.3) for the curl in spherical coordinates is a direct consequence
of the ds = dr r̂ + r dθ θ̂ + r sin θ dφ φ̂ interval.

Note that the consideration of units tells us that there must be a factor
of r in the denominators in the ∂f /∂θ and ∂f /∂φ terms in the spherical
gradient, and in the ∂f /∂θ term in the cylindrical gradient.

F.3 Divergence
The divergence produces a scalar from a vector. The divergence of a
vector function was defined in Eq. (2.47) as the net flux out of a given
small volume, divided by the volume. In Section 2.10 we derived the
form of the divergence in Cartesian coordinates, and it turned out to be
the dot product of the ∇ operator with a vector A, that is, ∇ · A. We use
the same method here to derive the form in cylindrical coordinates. We
then give a second, more mechanical, derivation. A third derivation is
left for Exercise F.2.

F.3.1 Cylindrical divergence, first method
Consider the small volume that is generated by taking the region in the
r-θ plane shown in Fig. F.2 and sweeping it through a span of z values (r  + Δr) Δq

r Δq

q

dq

Δr

r

Figure F.2.
A small region in the r-θ plane.

from a particular z up to z + �z (the ẑ axis points out of the page). Let’s
first look at the flux of a vector field A through the two faces perpendic-
ular to the ẑ direction. As in Section 2.10, only the z component of A is
relevant to the flux through these faces. In the limit of a small volume, the
area of these faces is r �r �θ . The inward flux through the bottom face
equals Az(z) r �r �θ , and the outward flux through the top face equals
Az(z+�z) r �r �θ . We have suppressed the r and θ arguments of Az for
simplicity, and we have chosen points at the midpoints of the faces, as in
Fig. 2.22. The net outward flux is therefore

�z faces = Az(z + �z) r �r �θ − Az(z) r �r �θ

=
(

Az(z + �z) − Az(z)
�z

)
r �r �θ �z

= ∂Az

∂z
r �r �θ �z. (F.8)



796 Curvilinear coordinates

Upon dividing this net outward flux by the volume r �r �θ �z, we obtain
∂Az/∂z, in agreement with the third term in ∇ · A in Eq. (F.2). This was
exactly the same argument we used in Section 2.10. The z coordinate
in cylindrical coordinates is, after all, basically a Cartesian coordinate.
However, things get more interesting with the r coordinate.

Consider the flux through the two faces (represented by the curved
lines in Fig. F.2) that are perpendicular to the r̂ direction. The key point
to realize is that the areas of these two faces are not equal. The upper
right one is larger. So the difference in flux through these faces depends
not only on the value of Ar, but also on the area. The inward flux through
the lower left face equals Ar(r)

[
r �θ �z

]
, and the outward flux through

the upper right face equals Ar(r + �r)
[
(r + �r)�θ �z

]
. As above, we

have suppressed the θ and z arguments for simplicity, and we have chosen
points at the midpoints of the faces. The net outward flux is therefore

�r faces = (r + �r)Ar(r + �r)�θ �z − rAr(r)�θ �z

=
(

(r + �r)Ar(r + �r) − rAr(r)
�r

)
�r �θ �z

= ∂(rAr)

∂r
�r �θ �z. (F.9)

Upon dividing this net outward flux by the volume r �r �θ �z, we have
a leftover r in the denominator, so we obtain (1/r)

(
∂(rAr)/∂r

)
, in agree-

ment with the first term in Eq. (F.2).
For the last two faces, the ones perpendicular to the θ̂ direction, we

don’t have to worry about different areas, so we quickly obtain

�θ faces = Aθ (θ + �θ)�r �z − Aθ (θ)�r �z

=
(

Aθ (θ + �θ) − Aθ (θ)

�θ

)
�r �θ �z

= ∂Aθ

∂θ
�r �θ �z. (F.10)

Upon dividing this net outward flux by the volume r �r �θ �z, we again
have a leftover r in the denominator, so we obtain (1/r)(∂Aθ /∂θ), in
agreement with the second term in Eq. (F.2).

If you like this sort of calculation, you can repeat this derivation
for the case of spherical coordinates. However, it’s actually not too hard
to derive the general form of the divergence for any set of coordinates;
see Exercise F.3. You can then check that this general formula reduces
properly for spherical coordinates.
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F.3.2 Cylindrical divergence, second method
Let’s determine the divergence in cylindrical coordinates by explicitly
calculating the dot product,

∇ · A =
(

r̂
∂

∂r
+ θ̂

1
r

∂

∂θ
+ ẑ

∂

∂z

)
·
(

r̂Ar + θ̂Aθ + ẑAz

)
. (F.11)

At first glance, it appears that ∇ ·A doesn’t produce the form of the diver-
gence given in Eq. (F.2). The second two terms work out, but it seems
like the first term should simply be ∂Ar/∂r instead of (1/r)

(
∂(rAr)/∂r

)
.

However, the dot product does indeed correctly yield the latter term,
because we must remember that, in contrast with Cartesian coordinates,
in cylindrical coordinates the unit vectors themselves depend on position.
This means that in Eq. (F.11) the derivatives in the ∇ operator also act on
the unit vectors in A. This issue doesn’t come up in Cartesian coordinates
because x̂, ŷ, and ẑ are fixed vectors, but that is more the exception than
the rule. Writing A in the abbreviated form (Ar, Aθ , Az) tends to hide
important information. The full expression for A is r̂Ar + θ̂Aθ + ẑAz.
There are six quantities here (three vectors and three components), and
if any of these quantities vary with the coordinates, then these varia-
tions cause A to change. The derivatives of the unit vectors that are
nonzero are

∂ r̂
∂θ

= θ̂ and
∂ θ̂

∂θ
= −r̂. (F.12)

To demonstrate these relations, we can look at what happens to r̂ and
θ̂ if we rotate them through an angle dθ . Since the unit vectors have
length 1, we see from Fig. F.3 that r̂ picks up a component of length

q

q

dq

dq

dq

r

r

r

q

q

(Length = 1)

–

Figure F.3.
How the r̂ and θ̂ unit vectors depend on θ .

dθ in the θ̂ direction, and θ̂ picks up a component of length dθ in the
−r̂ direction. The other seven of the nine possible derivatives are zero
because none of the unit vectors depends on r or z, and furthermore ẑ
doesn’t depend on θ .

Due to the orthogonality of the unit vectors, we quickly see that, in
addition to the three “corresponding” terms that survive in Eq. (F.11),
one more term is nonzero:

θ̂ · 1
r

∂

∂θ
(r̂Ar) = θ̂ · 1

r

(
∂ r̂
∂θ

Ar + r̂
∂Ar

∂θ

)
= θ̂ · 1

r
θ̂Ar + 0 = Ar

r
.

(F.13)

Equation (F.11) therefore becomes

∇ · A = ∂Ar

∂r
+ 1

r
∂Aθ

∂θ
+ ∂Az

∂z
+ Ar

r
. (F.14)

The sum of the first and last terms here can be rewritten as the first term
in ∇ · A in Eq. (F.2), as desired.
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F.4 Curl
The curl produces a vector from a vector. The curl of a vector function
was defined in Eq. (2.80) as the net circulation around a given small
area, divided by the area. (The three possible orientations of the area
yield the three components.) In Section 2.16 we derived the form of the
curl in Cartesian coordinates, and it turned out to be the cross product
of the ∇ operator with the vector A, that is, ∇ × A. We’ll use the same
method here to derive the form in cylindrical coordinates, after which
we derive it a second way, analogous to the above second method for the
divergence. Actually, we’ll calculate just the z component; this should
make the procedure clear. As an exercise you can calculate the other two
components.

F.4.1 Cylindrical curl, first method
The z component of ∇ × A is found by looking at the circulation around
a small area in the r-θ plane (or more generally, in some plane parallel
to the r-θ plane). Consider the upper right and lower left (curved) edges
in Fig. F.2. Following the strategy in Section 2.16, the counterclockwise
line integral along the upper right edge equals Aθ (r+�r)

[
(r+�r)�θ ],

and the counterclockwise line integral along the lower left edge equals
−Aθ (r)

[
r �θ

]
. We have suppressed the θ and z arguments for simplicity,

and we have chosen points at the midpoints of the edges. Note that we
have correctly incorporated the fact that the upper right edge is longer
than the lower left edge (the same issue that came up in the above calcu-
lation of the divergence). The net circulation along these two edges is

Cθ sides = (r + �r)Aθ (r + �r)�θ − rAθ (r)�θ

=
(

(r + �r)Aθ (r + �r) − rAθ (r)
�r

)
�r �θ

= ∂(rAθ )

∂r
�r �θ . (F.15)

Upon dividing this circulation by the area r �r �θ , we have a leftover r
in the denominator, so we obtain (1/r)

(
∂(rAθ )/∂r

)
, in agreement with

the first of the two terms in the z component of ∇ × A in Eq. (F.2).
Now consider the upper left and lower right (straight) edges. The

counterclockwise line integral along the upper left edge equals −Ar(θ +
�θ)�r, and the counterclockwise line integral along the lower right
edge equals Ar(θ)�r. The net circulation along these two edges is

Cr sides = −Ar(θ + �θ)�r + Ar(θ)�r

= −
(

Ar(θ + �θ) − Ar(θ)

�θ

)
�r �θ

= −∂Ar

∂θ
�r �θ . (F.16)
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Upon dividing this circulation by the area r �r �θ , we again have a left-
over r in the denominator, so we obtain −(1/r)(∂Ar/∂θ), in agreement
with Eq. (F.2).

F.4.2 Cylindrical curl, second method
Our goal is to calculate the cross product,

∇ × A =
(

r̂
∂

∂r
+ θ̂

1
r

∂

∂θ
+ ẑ

∂

∂z

)
×

(
r̂Ar + θ̂Aθ + ẑAz

)
, (F.17)

while remembering that some of the unit vectors depend on the coor-
dinates according to Eq. (F.12). As above, we’ll look at just the z com-
ponent. This component arises from terms of the form r̂ × θ̂ or θ̂ × r̂.
In addition to the two obvious terms of this form, we also have the one
involving θ̂ × (∂ θ̂/∂θ), which from Eq. (F.12) equals θ̂ × (−r̂) = ẑ. The
complete z component of the cross product is therefore

(∇ × A)z = r̂ × ∂(θ̂Aθ )

∂r
+ θ̂ × 1

r
∂(r̂Ar)

∂θ
+ θ̂ × 1

r
∂(θ̂Aθ )

∂θ

= ẑ
(

∂Aθ

∂r
− 1

r
∂Ar

∂θ
+ Aθ

r

)
. (F.18)

The sum of the first and last terms here can be rewritten as the first term
in the z component of ∇ × A in Eq. (F.2), as desired.

F.5 Laplacian
The Laplacian produces a scalar from a scalar. The Laplacian of a func-
tion f (written as ∇2f or ∇·∇f ) is defined as the divergence of the gradient
of f . Its physical significance is that it gives a measure of how the average
value of f over the surface of a sphere compares with the value of f at
the center of the sphere. Let’s be quantitative about this.

Consider the average value of a function f over the surface of a
sphere of radius r. Call it favg,r. If we choose the origin of our coordi-
nate system to be the center of the sphere, then favg,r can be written as
(with A being the area of the sphere)

favg,r = 1
A

∫
f dA = 1

4πr2

∫
f r2d� = 1

4π

∫
f d�, (F.19)

where d� = sin θ dθ dφ is the solid-angle element. We are able to
take the r2 outside the integral and cancel it because r is constant over
the sphere. This expression for favg,r is no surprise, of course, because
the integral of d� over the whole sphere is 4π . But let us now take the
d/dr derivative of both sides of Eq. (F.19), which will alow us to invoke
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the divergence theorem. On the right-hand side, the integration doesn’t
involve r, so we can bring the derivative inside the integral. This yields
(using r̂ · r̂ = 1)

dfavg,r

dr
= 1

4π

∫
∂f
∂r

d� = 1
4π

∫
r̂
∂f
∂r

· r̂ d� = 1
4πr2

∫
r̂
∂f
∂r

· r̂ r2d�.

(F.20)

(Again, we are able to bring the r2 inside the integral because r is con-
stant over the sphere.) But r̂ r2d� is just the vector area element of the
sphere, da. And r̂(∂f /∂r) is the r̂ component of ∇f in spherical coordi-
nates. The other components of ∇f give zero when dotted with da, so we
can write

dfavg,r

dr
= 1

4πr2

∫
∇f · da. (F.21)

The divergence theorem turns this into

dfavg,r

dr
= 1

4πr2

∫
∇ · ∇f dV �⇒ dfavg,r

dr
= 1

4πr2

∫
∇2f dV

(F.22)

There are two useful corollaries of this result. First, if∇2f = 0 every-
where, then dfavg,r/dr = 0 for all r. In other words, the average value
of f over the surface of a sphere doesn’t change as the sphere grows
(while keeping the same center). So all spheres centered at a given point
have the same average value of f . In particular, they have the same aver-
age value that an infinitesimal sphere has. But the average value over
an infinitesimal sphere is simply the value at the center. Therefore, if
∇2f = 0, then the average value of f over the surface of a sphere (of any
size) equals the value at the center:

∇2f = 0 �⇒ favg,r = fcenter. (F.23)

This is the result we introduced in Section 2.12 and proved for the special
case of the electrostatic potential φ.

Second, we can derive an expression for how f changes, for small
values of r. Up to this point, all of our results have been exact. We will
now work in the small-r approximation. In this limit we can say that ∇2f
is essentially constant throughout the interior of the sphere (assuming
that f is well-enough behaved). So its value everywhere is essentially
the value at the center. The volume integral in Eq. (F.22) then equals
(4πr3/3)(∇2f )center, and we have

dfavg,r

dr
= 1

4πr2
4πr3

3
(∇2f )center �⇒ dfavg,r

dr
= r

3
(∇2f )center. (F.24)
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Since (∇2f )center is a constant, we can quickly integrate both sides of this
relation to obtain

favg,r = fcenter + r2

6
(∇2f )center (for small r), (F.25)

where the constant of integration has been chosen to give equality at
r = 0. We see that the average value of f over a (small) sphere grows
quadratically, with the quadratic coefficient being 1/6 times the value of
the Laplacian at the center.

Let’s check this result for the function f (r, θ , φ)= r2, or equivalently
f (x, y, z) = x2 + y2 + z2. By using either Eq. (F.1) or Eq. (F.3) we obtain
∇2f = 6. If our sphere is centered at the origin, then Eq. (F.25) gives
favg,r = 0 + (r2/6)(6) = r2, which is correct because f takes on the
constant value of r2 over the sphere. In this simple case, the result is
exact for all r.

F.5.1 Cylindrical Laplacian
Let’s explicitly calculate the Laplacian in cylindrical coordinates by cal-
culating the divergence of the gradient of f . As we’ve seen in a few cases
above, we must be careful to take into account the position dependence
of some of the unit vectors. We have

∇ · ∇f =
(

r̂
∂

∂r
+ θ̂

1
r

∂

∂θ
+ ẑ

∂

∂z

)
·
(

r̂
∂f
∂r

+ θ̂
1
r

∂f
∂θ

+ ẑ
∂f
∂z

)
. (F.26)

In addition to the three “corresponding” terms, we also have the term
involving θ̂ · (∂ r̂/∂θ), which from Eq. (F.12) equals θ̂ · θ̂ = 1. So this
fourth term reduces to (1/r)(∂f /∂r). The Laplacian is therefore

∇2f = ∂

∂r

(
∂f
∂r

)
+ 1

r
∂

∂θ

(
1
r

∂f
∂θ

)
+ ∂

∂z

(
∂f
∂z

)
+ 1

r
∂f
∂r

= ∂2f
∂r2 + 1

r2
∂2f
∂θ2 + ∂2f

∂z2 + 1
r

∂f
∂r

. (F.27)

The sum of the first and last terms here can be rewritten as the first term
in the ∇2f expression in Eq. (F.2), as desired.

Exercises
F.1 Divergence using two systems **

(a) The vector A = x x̂ + y ŷ in Cartesian coordinates equals the
vector A = r r̂ in cylindrical coordinates. Calculate ∇ · A in
both Cartesian and cylindrical coordinates, and verify that the
results are equal.

(b) Repeat (a) for the vector A = x x̂ + 2y ŷ. You will need to find
the cylindrical components of A, which you can do by using
x̂ = r̂ cos θ − θ̂ sin θ and ŷ = r̂ sin θ + θ̂ cos θ . Alternatively,
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you can project A onto the unit vectors, r̂ = x̂ cos θ + ŷ sin θ

and θ̂ = −x̂ sin θ + ŷ cos θ .

F.2 Cylindrical divergence ***
Calculate the divergence in cylindrical coordinates in the follow-
ing way. We know that the divergence in Cartesian coordinates is
∇ · A = ∂Ax/∂x + ∂Ay/∂y + ∂Az/∂z. To rewrite this in terms of
cylindrical coordinates, show that the Cartesian derivative opera-
tors can be written as (the ∂/∂z derivative stays the same)

∂

∂x
= cos θ

∂

∂r
− sin θ

1
r

∂

∂θ
,

∂

∂y
= sin θ

∂

∂r
+ cos θ

1
r

∂

∂θ
, (F.28)

and that the components of A can be written as (Az stays the same)

Ax = Ar cos θ − Aθ sin θ ,

Ay = Ar sin θ + Aθ cos θ . (F.29)

Then explicitly calculate ∇ · A = ∂Ax/∂x + ∂Ay/∂y + ∂Az/∂z. It
gets to be a big mess, but it simplifies in the end.

F.3 General expression for divergence ***
Let x̂1, x̂2, x̂3 be the (not necessarily Cartesian) basis vectors of
a coordinate system. For example, in spherical coordinates these
vectors are r̂, θ̂ , φ̂. Note that the ds line elements listed at the
beginning of this appendix all take the form of

ds = f1 dx1 x̂1 + f2 dx2 x̂2 + f3 dx3 x̂3, (F.30)

where the f factors are (possibly trivial) functions of the coordi-
nates. For example, in Cartesian coordinates, f1, f2, f3 are 1, 1, 1;
in cylindrical coordinates they are 1, r, 1; and in spherical coor-
dinates they are 1, r, r sin θ . As we saw in Section F.2, these val-
ues of f determine the form of ∇ (the f factors simply end up in
the denominators), so they determine everything about the various
vector operators. Show, by applying the first method we used in
Section F.3, that the general expression for the divergence is

∇ · A = 1
f1f2f3

[
∂(f2f3A1)

∂x1
+ ∂(f1f3A2)

∂x2
+ ∂(f1f2A3)

∂x3

]
. (F.31)

Verify that this gives the correct result in the case of spherical
coordinates. (The general expression for the curl can be found in a
similar way.)
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F.4 Laplacian using two systems **
(a) The function f = x2 + y2 in Cartesian coordinates equals the

function f = r2 in cylindrical coordinates. Calculate ∇2f in
both Cartesian and cylindrical coordinates, and verify that the
results are equal.

(b) Repeat (a) for the function f = x4 + y4. You will need to
determine what f looks like in cylindrical coordinates.

F.5 “Sphere” averages in one and two dimensions **
Equation (F.25) holds for a function f in 3D space, but analogous
results also hold in 2D space (where the “sphere” is a circle bound-
ing a disk) and in 1D space (where the “sphere” is two points
bounding a line segment). Derive those results. Although it is pos-
sible to be a little more economical in the calculations by stripping
off some dimensions at the start, derive the results in a 3D manner
exactly analogous to the way we derived Eq. (F.25). For the 2D
case, the relevant volume is a cylinder, with f having no depen-
dence on z. For the 1D case, the relevant volume is a rectangular
slab, with f having no dependence on y or z. The 1D result should
look familiar from the standard 1D Taylor series.

F.6 Average over a cube ***
By using the second-order Taylor expansion for a function of three
Cartesian coordinates, show that the average value of a function
f over the surface of a cube of side 2� (with edges parallel to the
coordinate axes) is

favg = fcenter + 5�2

18
(∇2f )center. (F.32)

You should convince yourself why the factor of 5/18 here is cor-
rectly larger than the 1/6 in Eq. (F.25) and smaller than (

√
3)2/6.



G
A short review of
special relativity

G.1 Foundations of relativity
We assume that the reader has already been introduced to special
relativity. Here we shall review the principal ideas and formulas that are
used in the text beginning in Chapter 5. Most essential is the concept of
an inertial frame of reference for space-time events and the transforma-
tion of the coordinates of an event from one inertial frame to another.

A frame of reference is a coordinate system laid out with measuring
rods and provided with clocks. Clocks are everywhere. When something
happens at a certain place, the time of its occurrence is read from a clock
that was at, and stays at, that place. That is, time is measured by a local
clock that is stationary in the frame. The clocks belonging to the frame
are all synchronized. One way to accomplish this (not the only way) was
described by Einstein in his great paper of 1905. Light signals are used.
From a point A, at time tA, a short pulse of light is sent out toward a
remote point B. It arrives at B at the time tB, as read on a clock at B,
and is immediately reflected back toward A, where it arrives at t′A. If
tB = (tA + t′A)/2, the clocks at A and B are synchronized. If not, one
of them requires adjustment. In this way, all clocks in the frame can be
synchronized. Note that the job of observers in this procedure is merely
to record local clock readings for subsequent comparison.

An event is located in space and time by its coordinates x, y, z, t
in some chosen reference frame. The event might be the passage of a
particle at time t1, through the space point (x1, y1, z1). The history of
the particle’s motion is a sequence of such events. Suppose the sequence
has the special property that x = vxt, y = vyt, z = vzt, at every time t,
with vx, vy, and vz constant. That describes motion in a straight line at
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constant speed with respect to this frame. An inertial frame of reference
is a frame in which an isolated body, free from external influences, moves
in this way. An inertial frame, in other words, is one in which Newton’s
first law is obeyed. Behind all of this, including the synchronization of
clocks, are two assumptions about empty space: it is homogeneous (that
is, all locations in space are equivalent) and it is isotropic (that is, all
directions in space are equivalent).

Two frames, let us call them F and F′, can differ in several ways.
One can simply be displaced with respect to the other, the origin of coor-
dinates in F′ being fixed at a point in F that is not at the F coordinate
origin. Or the axes in F′ might not be parallel to the axes in F. As for the
timing of events, if F and F′ are not moving with respect to one another,
a clock stationary in F is stationary also in F′. In that case we can set all
F′ clocks to agree with the F clocks and then ignore the distinction. Dif-
ferences in frame location and frame orientation only have no interesting
consequences if space is homogeneous and isotropic. Suppose now that
the origin of frame F′ is moving relative to the origin of frame F. The
description of a sequence of events by coordinate values and clock times
in F can differ from the description of the same events by space coordi-
nate values in F′ and times measured by clocks in F′. How must the two
descriptions be related? In answering that we shall be concerned only
with the case in which F is an inertial frame and F′ is a frame that is
moving relative to F at constant velocity and without rotating. In that
case F′ is also an inertial frame.

Special relativity is based on the postulate that physical phenomena
observed in different inertial frames of reference appear to obey exactly
the same laws. In that respect one frame is as good as another; no frame
is unique. If true, this relativity postulate is enough to determine the
way a description of events in one frame is related to the description
in a different frame of the same events. In that relation there appears a
universal speed, the same in all frames, whose value must be found by
experiment. Sometimes added as a second postulate is the statement that
a measurement of the velocity of light in any frame of reference gives the
same result whether the light’s source is stationary in that frame or not.
One may regard this as a statement about the nature of light rather than
an independent postulate. It asserts that electromagnetic waves in fact
travel with the limiting speed implied by the relativity postulate. The
deductions from the relativity postulate, expressed in the formulas of
special relativity, have been precisely verified by countless experiments.
Nothing in physics rests on a firmer foundation.

G.2 Lorentz transformations
Consider two events, A and B, observed in an inertial frame
F. Observed, in this usage, is short for “whose space-time coordinates are
determined with the measuring rods and clocks of frame F.” (Remember
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that our observers are equipped merely with pencil and paper, and we
must post an observer at the location of every event!) The displacement
of one event from the other is given by the four numbers

xB − xA, yB − yA, zB − zA, tB − tA. (G.1)

The same two events could have been located by giving their coordi-
nates in some other frame F′. Suppose F′ is moving with respect to F in
the manner indicated in Fig. G.1. The spatial axes of F′ remain parallel
to those in F, while, as seen from F, the frame F′ moves with speed v in
the positive x direction. This is a special case, obviously, but it contains
most of the interesting physics.

Event A, as observed in F′, occurred at x′A, y′A, z′A, t′A, the last of these
numbers being the reading of a clock belonging to (that is, stationary in)
F′. The space-time displacement, or interval between events A and B in
F′, is not the same as in F. Its components are related to those in F by
the Lorentz transformation,

x′B − x′A = γ (xB − xA) − βγ c(tB − tA),

y′B − y′A = yB − yA,

z′B − z′A = zB − zA,

t′B − t′A = γ (tB − tA) − βγ (xB − xA)/c. (G.2)

In these equations c is the speed of light, β = v/c, and γ =
1/

√
1 − β2. The inverse transformation has a similar appearance – as

it should if no frame is unique. It can be obtained from Eq. (G.2) sim-
ply by exchanging primed and unprimed symbols and reversing the sign
of β, as you can verify by explicitly solving for the quantities xB − xA

and tB − tA.
Two events A and B are simultaneous in F if tB − tA = 0. But that

does not make t′B − t′A = 0 unless xB = xA. Thus events that are simul-
taneous in one inertial frame may not be so in another. Do not confuse
this fundamental “relativity of simultaneity” with the obvious fact that
an observer not equally distant from two simultaneous explosions will
receive light flashes from them at different times. The times t′A and t′B are
recorded by local clocks at each event, clocks stationary in F′ that have
previously been perfectly synchronized.

Consider a rod stationary in F′ that is parallel to the x′ axis and
extends from x′A to x′B. Its length in F′ is just x′B − x′A. The rod’s length as
measured in frame F is the distance xB − xA between two points in the
frame F that its ends pass simultaneously according to clocks in F. For
these two events, then, tB − tA = 0. With this condition the first of the
Lorentz transformation equations above gives us at once

xB − xA = (x′B − x′A)/γ . (G.3)



G.2 Lorentz transformations 807

1

1

2

2

3

3

1

1
2

2
3

4

4

5 6 x

x

1

1

2

2

3 4 5 6

1 2 3 4

(b)

(a)

x�

x�

F�

F�

y�

y�

F

F

y

y

1 2 3 4 5 6

v

v

Figure G.1.
Two frames moving with relative speed v. The
“E” is stationary in frame F. The “L” is stationary
in frame F′. In this example β = v/c = 0.866;
γ = 2. (a) Where everything was, as determined
by observers in F at a particular instant of time t
according to clocks in F. (b) Where everything
was, as determined by observers in F′ at a
particular instant of time t′ according to
clocks in F′.

Question: Suppose the clocks in the two frames
happened to be set so that the left edge of the E
touched the left edge of the L at t = 0 according
to a local clock in F, and at t′ = 0 according to a
local clock in F′. Let the distances be in feet and
take c as 1 foot/nanosecond. What is the
reading t of all the F clocks in (a)? What is the
reading t′ of all the F′ clocks in (b)?

Answer: t = 4.62 nanoseconds; t′ = 4.04
nanoseconds. If you don’t agree, study the
example again.

This is the famous Lorentz contraction. Loosely stated, lengths between
fixed points in F′, if parallel to the relative velocity of the frames, are
judged by observers in F to be shorter by the factor 1/γ . This statement
remains true if F′ and F are interchanged. Lengths perpendicular to the
relative velocity measure the same in the two frames.
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Consider one of the clocks in F′. It is moving with speed v through
the frame F. Let us record as t′A its reading as it passes one of our local
clocks in F; the local clock reads at that moment tA. Later this moving
clock passes another F clock. At that event the local F clock reads tB,
and the reading of the moving clock is recorded as t′B. The two events are
separated in the F frame by a distance xB − xA = v(tB − tA). Substituting
this into the fourth equation of the Lorentz transformation, Eq. (G.2), we
obtain

t′B − t′A = γ (tB − tA)(1 − β2) = (tB − tA)/γ . (G.4)

According to the moving clock, less time has elapsed between the two
events than is indicated by the stationary clocks in F. This is the time
dilation that figures in the “twin paradox.” It has been verified in many
experiments, including one in which an atomic clock was flown around
the world.

Remembering that “moving clocks run slow, by the factor 1/γ ,” and
that “moving graph paper is shortened parallel to its motion by the factor
1/γ ,” you can often figure out the consequences of a Lorentz transforma-
tion without writing out the equations. This behavior, it must be empha-
sized, is not a peculiar physical property of our clocks and paper, but is
intrinsic in space and time measurement under the relativity postulate.

G.3 Velocity addition
The formula for the addition of velocities, which we use in Chapter 5,
is easily derived from the Lorentz transformation equations. Suppose an
object is moving in the positive x direction in frame F with velocity ux.
What is its velocity in the frame F′? To simplify matters let the moving
object pass the origin at t= 0. Then its position in F at any time t is
simply x= uxt. To simplify further, let the space and time origins of F
and F′ coincide. Then the first and last of the Lorentz transformation
equations become

x′ = γ x − βγ ct and t′ = γ t − βγ x/c. (G.5)

By substituting uxt for x on the right side of each equation, and dividing
the first by the second, we get

x′

t′
= ux − βc

1 − βux/c
. (G.6)

On the left we have the velocity of the object in the F′ frame, u′x. The
formula is usually written with v instead of βc.

u′x =
ux − v

1 − uxv/c2 . (G.7)
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By solving Eq. (G.7) for ux you can verify that the inverse is

ux = u′x + v
1 + u′xv/c2 , (G.8)

and that in no case will these relations lead to a velocity, either ux or
u′x, larger than c. As with the inverse Lorentz transformation, you can
also obtain Eq. (G.8) from Eq. (G.7) simply by exchanging primed and
unprimed symbols and reversing the sign of v.

A velocity component perpendicular to v, the relative velocity of the
frames, transforms differently, of course. Analogous to Eq. (G.5), the
second and last of the Lorentz transformation equations are

y′ = y and t′ = γ t − βγ x/c. (G.9)

If we have x = uxt and y = uyt in frame F (in general the object can
be moving diagonally), then we can substitute these into Eq. (G.9) and
divide the first equation by the second to obtain

y′

t′
= uy

γ (1 − βux/c)
�⇒ u′y =

uy

γ (1 − uxv/c2)
. (G.10)

In the special case where ux = 0 (which means that the velocity points
in the y direction in frame F), we have u′y = uy/γ . That is, the y speed
is slower in the frame F′ where the object is flying by diagonally. In the
special case where ux = v (which means that the object travels along
with the F′ frame, as far as the x direction is concerned), you can show
that Eq. (G.10) reduces to u′y = γ uy �⇒ uy = u′y/γ . This makes sense;
the object has u′x = 0, so this result is analogous to the preceding u′y =
uy/γ result for the ux = 0 case. In effect we have simply switched the
primed and unprimed labels. These special cases can also be derived
directly from time dilation.

G.4 Energy, momentum, force
A dynamical consequence of special relativity can be stated as follows.
Consider a particle moving with velocity u in an inertial frame F. We
find that energy and momentum are conserved in the interactions of this
particle with others if we attribute to the particle a momentum and an
energy given by

p = γ m0u and E = γ m0c2, (G.11)

where m0 is a constant characteristic of that particle. We call m0 the rest
mass (or just the mass) of the particle. It could have been determined
in a frame in which the particle is moving so slowly that Newtonian
mechanics applies – for instance, by bouncing the particle against some
standard mass. The factor γ multiplying m0 is (1 − u2/c2)−1/2, where u
is the speed of the particle as observed in our frame F.
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Given p and E, the momentum and energy of a particle as observed
in F, what is the momentum of that particle, and its energy, as observed
in another frame F′? As before, we assume F′ is moving in the positive x
direction, with speed v, as seen from F. The transformation turns out to
be this:

p′x = γ px − βγ E/c,
p′y = py,

p′z = pz,
E′ = γ E − βγ cpx. (G.12)

Note that βc is here the relative velocity of the two frames, as it was in
Eq. (G.2), not the particle velocity.

Compare this transformation with Eq. (G.2). The resemblance would
be perfect if we considered cp instead of p in Eq. (G.12), and ct rather
than t in Eq. (G.2). A set of four quantities that transform in this way is
called a four-vector.

The meaning of force is rate of change of momentum. The force
acting on an object is simply dp/dt, where p is the object’s momentum in
the chosen frame of reference and t is measured by clocks in that frame.
To find how forces transform, consider a particle of mass m0 initially at
rest at the origin in frame F upon which a force f acts for a short time
�t. We want to find the rate of change of momentum dp′/dt′, observed
in a frame F′. As before, we shall let F′ move in the x direction as seen
from F. Consider first the effect of the force component fx. In time �t,
px will increase from zero to fx�t, while x increases by

�x = 1
2

(
fx
m0

)
(�t)2, (G.13)

and the particle’s energy increases by �E = (fx�t)2/2m0; this is the
kinetic energy it acquires, as observed in F. (The particle’s speed in F is
still so slight that Newtonian mechanics applies there.) Using the first of
Eqs. (G.12) we find the change in p′x:

�p′x = γ�px − βγ�E/c, (G.14)

and using the fourth of Eqs. (G.2) gives

�t′ = γ�t − βγ�x/c. (G.15)

Now both �E and �x are proportional to (�t)2, so when we take the
limit �t → 0, the last term in each of these equations will drop out,
giving

dp′x
dt′

= lim
�t′→0

�p′x
�t′

= γ (fx �t)
γ �t

= fx. (G.16)
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Conclusion: the force component parallel to the relative frame
motion has the same value in the moving frame as in the rest frame of the
particle.

A transverse force component behaves differently. In frame F, �py =
fy�t. But now �p′y = �py, and �t′ = γ�t, so we get

dp′y
dt′

= fy�t
γ�t

= fy
γ

. (G.17)

A force component perpendicular to the relative frame motion, observed
in F′, is smaller by the factor 1/γ than the value determined by observers
in the rest frame of the particle.

The transformation of a force from F′ to some other moving frame
F′′ would be a little more complicated. We can always work it out, if we
have to, by transforming to the rest frame of the particle and then back to
the other moving frame.

We conclude our review with a remark about Lorentz invariance. If
you square both sides of Eq. (G.12) and remember that γ 2 − β2γ 2 = 1,
you can easily show that

c2(p′2x + p′2y + p′2z ) − E′2 = c2(p2
x + p2

y + p2
z ) − E2. (G.18)

Evidently this quantity c2p2 − E2 is not changed by a Lorentz transfor-
mation. It is often called the invariant four-momentum (even though it
has dimensions of energy squared). It has the same value in every frame
of reference, including the particle’s rest frame. In the rest frame the par-
ticle’s momentum is zero and its energy E is just m0c2. The invariant
four-momentum is therefore −m2

0c4. It follows that in any other frame

E2 = c2p2 + m2
0c4. (G.19)

The invariant constructed in the same way with Eq. (G.2) is

(xB − xA)
2 + (yB − yA)

2 + (zB − zA)
2 − c2(tB − tA)

2. (G.20)

Two events, A and B, for which this quantity is positive are said to have a
spacelike separation. It is always possible to find a frame in which they
are simultaneous. If the invariant is negative, the events have a timelike
separation. In that case a frame exists in which they occur at different
times, but at the same place. If this “invariant interval” is zero, the two
events can be connected by a flash of light.



H
Radiation by an
accelerated charge

A particle with charge q has been moving in a straight line at constant
speed v0 for a long time. It runs into something, let us imagine, and
in a short period of constant deceleration, of duration τ , the particle is
brought to rest. The graph of velocity versus time in Fig. H.1 describes
its motion. What must the electric field of this particle look like after
that? Figure H.2 shows how to derive it.

We shall assume that v0 is small compared with c. Let t = 0 be
the instant the deceleration began, and let x = 0 be the position of the
particle at that instant. By the time the particle has completely stopped
it will have moved a little farther on, to x = v0τ/2. That distance, indi-
cated in Fig. H.2, is small compared with the other distances that will be
involved.

We now examine the electric field at a time t = T � τ . Observers
farther away from the origin than R = cT cannot have learned that the
particle was decelerated. Throughout that region, region I in Fig. H.2, the
field must be that of a charge that has been moving and is still moving at
the constant speed v0. That field, as we discovered in Section 5.7, appears
to emanate from the present position of the charge, which for an observer
anywhere in region I is the point x = v0T on the x axis. That is where the
particle would be now if it hadn’t been decelerated. On the other hand,
for any observer whose distance from the origin is less than c(T − τ),
that is to say, for any observer in region II, the field is that of a charge at
rest close to the origin (actually at x = v0τ/2).

What must the field be like in the transition region, the spherical
shell of thickness cτ? Gauss’s law provides the key. A field line such
as AB lies on a cone around the x axis that includes a certain amount
of flux from the charge q. If CD makes the same angle θ with the axis,
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the cone on which it lies includes that same amount of flux. (Because
v0 is small, the relativistic compression of field lines visible in Fig. 5.15

0

t = 0 t = Tt = τ

v

v

Figure H.1.
Velocity-time diagram for a particle that traveled
at constant speed v0 until t = 0. It then
experienced a constant negative acceleration of
magnitude a = v0/τ , which brought it to rest at
time t = τ . We assume v0 is small compared
with c.

and Fig. 5.19 is here negligible.) Hence AB and CD must be parts of the
same field line, connected by a segment BC. This tells us the direction
of the field E within the shell; it is the direction of the line segment
BC. This field E within the shell has both a radial component Er and a
transverse component Eθ . From the geometry of the figure their ratio is
easily found:

Eθ

Er
= v0T sin θ

cτ
. (H.1)

Now Er must have the same value within the shell thickness that it does
in region II near B. (Gauss’s law again!) Therefore Er = q/4πε0R2 =
q/4πε0c2T2, and substituting this into Eq. (H.1) we obtain

Eθ = v0T sin θ

cτ
Er = qv0 sin θ

4πε0c3Tτ
. (H.2)
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2
1x =    v0t (where

the particle is
now at rest)

x = v0T (where the
particle would be now
if it hadn’t stopped)
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ct
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 c
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−
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Eq

v0 T sin q

q
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Figure H.2.
Space diagram for the instant t = T � τ , a long
time after the particle has stopped. For
observers in region I, the field must be that of a
charge located at the position x = v0T; for
observers in region II, it is that of a particle at
rest close to the origin. The transition region is a
shell of thickness cτ .
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But v0/τ = a, the magnitude of the (negative) acceleration, and cT = R,
so our result can be written as follows:

Eθ = qa sin θ

4πε0c2R
(H.3)

A remarkable fact is here revealed: Eθ is proportional to 1/R, not to
1/R2! As time goes on and R increases, the transverse field Eθ will even-
tually become very much stronger than Er. Accompanying this transverse
(that is, perpendicular to R) electric field will be a magnetic field of
strength Eθ /c perpendicular to both R and E. This is a general property
of an electromagnetic wave, explained in Chapter 9.

Let us calculate the energy stored in the transverse electric field
above, in the whole spherical shell. The energy density is

ε0E2
θ

2
= q2a2 sin2 θ

32π2ε0R2c4 . (H.4)

The volume of the shell is 4πR2cτ , and the average value of sin2 θ over a
sphere1 is 2/3. The total energy of the transverse electric field is therefore

2
3

4πR2cτ
q2a2

32π2ε0R2c4 = q2a2τ

12πε0c3 . (H.5)

To this we must add an equal amount (see Section 9.6.1) for the energy
stored in the transverse magnetic field:

Total energy in transverse electromagnetic field = q2a2τ

6πε0c3 . (H.6)

The radius R has canceled out. This amount of energy simply travels
outward, undiminished, with speed c from the site of the deceleration.
Since τ is the duration of the deceleration, and is also the duration of the
electromagnetic pulse a distant observer measures, we can say that the
power radiated during the acceleration process was

Prad = q2a2

6πε0c3 (H.7)

As it is the square of the instantaneous acceleration that appears in
Eq. (H.7), it doesn’t matter whether a is positive or negative. Of course
it ought not to, for stopping in one inertial frame could be starting in

1 Our polar axis in Fig. H.2 is the x axis: cos2 θ = x2/R2. With a bar denoting an
average over the sphere, x2 = y2 = z2 = R2/3. Hence cos2 θ = 1/3, and
sin2 θ = 1 − cos2 θ = 2/3. Or you can just do an integral; the area of a circular strip
around the x axis is proportional to sin θ , so you end up integrating sin3 θ .
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another. Speaking of different frames, Prad itself turns out to be Lorentz-
invariant, which is sometimes very handy. That is because Prad is energy/
time, and energy transforms like time, each being the fourth component
of a four-vector, as noted in Appendix G.

We have here a more general result than we might have expected.
Equation (H.7) correctly gives the instantaneous rate of radiation of
energy by a charged particle moving with variable acceleration – for
instance, a particle vibrating in simple harmonic motion. It applies to a
wide variety of radiating systems from radio antennas to atoms and nuclei.

Exercises
H.1 Ratio of energies *

An electron moving initially at constant (nonrelativistic) speed v
is brought to rest with uniform deceleration a lasting for a time
t = v/a. Compare the electromagnetic energy radiated during the
deceleration with the electron’s initial kinetic energy. Express the
ratio in terms of two lengths, the distance light travels in time t and
the classical electron radius r0, defined as e2/4πε0mc2.

H.2 Simple harmonic moton **
An elastically bound electron vibrates in simple harmonic motion
at frequency ω with amplitude A.

(a) Find the average rate of loss of energy by radiation.
(b) If no energy is supplied to make up the loss, how long will it

take for the oscillator’s energy to fall to 1/e of its initial value?
(Answer: 6πε0mc3/e2ω2.)

H.3 Thompson scattering **
A plane electromagnetic wave with frequency ω and electric field
amplitude E0 is incident on an isolated electron. In the resulting
sinusoidal oscillation of the electron the maximum acceleration
is E0e/m (the maximum force divided by m). How much power
is radiated by this oscillating charge, averaged over many cycles?
(Note that it is independent of the frequency ω.) Divide this aver-
age radiated power by ε0E2

0c/2, the average power density (power
per unit area of wavefront) in the incident wave. This gives a con-
stant σ with the dimensions of area, called a scattering cross sec-
tion. The energy radiated, or scattered, by the electron, and thus
lost from the plane wave, is equivalent to that falling on an area σ .
(The case here considered, involving a free electron moving non-
relativistically, is often called Thomson scattering after J. J. Thom-
son, the discoverer of the electron, who first calculated it.)

H.4 Synchrotron radiation **
Our master formula, Eq. (H.7), is useful for relativistically mov-
ing particles, even though we assumed v0 � c in the derivation.
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All we have to do is transform to an inertial frame F′ in which
the particle in question is, at least temporarily, moving slowly,
apply Eq. (H.7) in that frame, then transform back to any frame
we choose. Consider a highly relativistic electron (γ � 1) moving
perpendicular to a magnetic field B. It is continually accelerated
perpendicular to the field, and must radiate. At what rate does
it lose energy? To answer this, transform to a frame F′ moving
momentarily along with the electron, find E′ in that frame, and P′

rad.
Now show that, because power is (energy)/(time), Prad =P′

rad. This
radiation is generally called synchrotron radiation. (Answer: Prad =
γ 2e4B2/6πε0m2c.)



I
SuperconductivityThe metal lead is a moderately good conductor at room temperature. Its

resistivity, like that of other pure metals, varies approximately in pro-
portion to the absolute temperature. As a lead wire is cooled to 15 K its
resistance falls to about 1/20 of its value at room temperature, and the
resistance continues to decrease as the temperature is lowered further.
But as the temperature 7.22 K is passed, there occurs without forewarn-
ing a startling change: the electrical resistance of the lead wire van-
ishes! So small does it become that a current flowing in a closed ring
of lead wire colder than 7.22 K – a current that would ordinarily die out
in much less than a microsecond – will flow for years without meas-
urably decreasing. This phenomenon has been directly demonstrated.
Other experiments indicate that such a current could persist for billions
of years. One can hardly quibble with the flat statement that the resistiv-
ity is zero. Evidently something quite different from ordinary electrical
conduction occurs in lead below 7.22 K. We call it superconductivity.

Superconductivity was discovered in 1911 by the great Dutch low-
temperature experimenter Kamerlingh Onnes. He observed it first in mer-
cury, for which the critical temperature is 4.16 K. Since then hundreds
of elements, alloys, and compounds have been found to become super-
conductors. Their individual critical temperatures range from roughly a
millikelvin up to the highest yet discovered, 138 K. Curiously, among
the elements that do not become superconducting are some of the best
normal conductors such as silver, copper, and the alkali metals.

Superconductivity isessentiallyaquantum-mechanicalphenomenon,
and a rather subtle one at that. The freely flowing electric current consists
of electrons in perfectly orderly motion. Like the motion of an electron
in an atom, this electron flow is immune to small disturbances – and for
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a similar reason: a finite amount of energy would be required to make
any change in the state of motion. It is something like the situation in
an insulator in which all the levels in the valence band are occupied and
separated by an energy gap from the higher energy levels in the conduction
band. But unlike electrons filling the valence band, which must in total
give exactly zero net flow, the lowest energy state of the superconducting
electrons can have a net electron velocity, hence current flow, in some
direction. Why should such a strange state become possible below a
certain critical temperature? We can’t explain that here.1 It involves the
interaction of the conduction electrons not only with each other, but also
with the whole lattice of positive ions through which they are moving.
That is why different substances can have different critical temperatures,
and why some substances are expected to remain normal conductors right
down to absolute zero.

In the physics of superconductivity, magnetic fields are even more
important than you might expect. We must state at once that the phenom-
ena of superconductivity in no way violate Maxwell’s equations. Thus
the persistent current that can flow in a ring of superconducting wire is
a direct consequence of Faraday’s law of induction, given that the resis-
tance of the ring is really zero. For if we start with a certain amount of
flux �0 threading the ring, then because

∫
E ·ds around the ring remains

always zero (otherwise there would be infinite current due to the zero
resistance), d�/dt must be zero. The flux cannot change; the current I in
the ring will automatically assume whatever value is necessary to main-
tain the flux at �0. Figure I.1 outlines a simple demonstration of this, and
shows how a persistent current can be established in an isolated super-
conducting circuit.

Superconductors can be divided into two types. In Type 1 supercon-
ductors, the magnetic field inside the material itself (except very near the
surface) is always zero. That is not a consequence of Maxwell’s equa-
tions, but a property of the superconducting state, as fundamental, and
once as baffling, a puzzle as the absence of resistance. The condition
B = 0 inside the bulk of a Type 1 superconductor is automatically main-
tained by currents flowing in a thin surface layer. In Type 2 supercon-
ductors, quantized magnetic flux tubes may exist for a certain range of
temperature and external magnetic field. These tubes are surrounded by
vortices of current (essentially little solenoids) which allow the magnetic
field to be zero in the rest of the material. Outside the flux tubes the
material is superconducting.

A strong magnetic field destroys superconductivity, although Type 2
superconductors generally can tolerate much larger magnetic fields than

1 The abrupt emergence of a state of order at a certain critical temperature reminds us
of the spontaneous alignment of electron spins that occurs in iron below its Curie
temperature (mentioned in Section 11.11). Such cooperative phenomena always
involve a large number of mutually interacting particles. A more familiar cooperative
phenomenon is the freezing of water, also characterized by a well-defined critical
temperature.
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String
(a)

(b)

(c)

Liquid
helium
4.2 K

I

Magnet

Ring of solder (lead–tin
alloy); normal conductor;
current zero; permanent
magnet causes flux Φ0
through ring.

Ring cooled below its critical
temperature. (Some helium
has boiled away.) Flux through
ring unchanged. Ring is now
a superconductor.

Magnet removed. Persistent
current I now flows in ring
to maintain flux at value Φ0.
Compass needle responds to
field of persistent current.

Figure I.1.
Establishing a persistent current in a
superconducting ring. The ring is made of
ordinary solder, a lead–tin alloy. (a) The ring, not
yet cooled, is a normal conductor with ohmic
resistance. Bringing up the permanent magnet
will induce a current in the ring that will quickly
die out, leaving the magnetic flux from the
magnet, in amount �, passing through the ring.
(b) The helium bath is raised without altering the
relative position of the ring and the permanent
magnet. The ring, now cooled below its critical
temperature, is a superconductor with
resistance zero. (c) The magnet is removed.
The flux through the zero resistance ring cannot
change. It is maintained at the value � by a
current in the ring that will flow as long as the
ring remains below the critical temperature. The
magnetic field of the persistent current can be
demonstrated with the compass.

Type 1. None of the superconductors known before 1957 could stand
more than a few hundred gauss. That discouraged practical applications
of zero-resistance conductors. One could not pass a large current through
a superconducting wire because the magnetic field of the current itself
would destroy the superconducting state. But then a number of Type 2
superconductors were discovered that could preserve zero resistance in
fields up to 10 tesla or more. A widely used Type 2 superconductor is
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an alloy of niobium and tin that has a critical temperature of 18 K and
if cooled to 4 K remains superconducting in fields up to 25 tesla. Type
2 superconducting solenoids are now common that produce steady mag-
netic fields of 20 tesla without any cost in power other than that incident
to their refrigeration. Uses of superconductors include magnetic reso-
nance imaging (MRI) machines (which are based on the physics dis-
cussed in Appendix J) and particle accelerators. There are also good
prospects for the widespread use of superconductors in large electrical
machinery, maglev trains, and the long-distance transmission of electri-
cal energy.

In addition to the critical magnetic field, the critical temperature is
also a factor in determining the large-scale utility of a superconductor. In
particular, a critical temperature higher than 77 K allows relatively cheap
cooling with liquid nitrogen (as opposed to liquid helium at 4 K). Prior to
1986, the highest known critical temperature was 23 K. Then a new type
of superconductor (a copper oxide, or cuprate) was observed with a criti-
cal temperature of 30 K. The record critical temperature was soon pushed
to 138 K. These superconductors are called high-temperature supercon-
ductors. Unfortunately, although they are cheaper to cool, their utility is
limited because they tend to be brittle and hence difficult to shape into
wires. However, in 2008 a new family of high-temperature superconduc-
tors was discovered, with iron as a common element. This family is more
ductile than cuprates, but the highest known critical temperature is 55 K.
The hope is that this will eventually cross the 77 K threshold.

The mechanism that leads to high-temperature superconductivity
is more complex than the mechanism for low-temperature supercon-
ductivity. In contrast with the well-established BCS theory (named after
Bardeen, Cooper, and Schrieffer; formulated in 1957) for low-temperature
superconductors, a complete theory of high-temperature superconduc-
tors does not yet exist. All known high-temperature superconductors are
Type 2, but not all Type 2 superconductors are high-temperature. Indeed,
low-temperature Type 2 superconductors (being both ductile and tolerant
of large magnetic fields) are the ones presently used in MRI machines
and other large-scale applications.

At the other end of the scale, the quantum physics of superconduc-
tivity makes possible electrical measurements of unprecedented sensitiv-
ity and accuracy – including the standardization of the volt in terms of an
easily measured oscillation frequency. To the physicist, superconductiv-
ity is a fascinating large-scale manifestation of quantum mechanics. We
can trace the permanent magnetism of the magnet in Fig. I.1 down to the
intrinsic magnetic moment of a spinning electron – a kind of supercur-
rent in a circuit less than 10−10 m in size. The ring of solder wire with
the persistent current flowing in it is, in some sense, like a gigantic atom,
the motion of its associated electrons, numerous as they are, marshaled
into the perfectly ordered behavior of a single quantum state.



J
Magnetic resonanceThe electron has angular momentum of spin, J. Its magnitude is always

the same, h/4π , or 5.273 · 10−35 kg m2/s. Associated with the axis of
spin is a magnetic dipole moment μ of magnitude 0.9285 · 10−23 joule/
tesla (see Section 11.6). An electron in a magnetic field experiences
a torque tending to align the magnetic dipole in the field direction. It
responds like any rapidly spinning gyroscope: instead of lining up with
the field, the spin axis precesses around the field direction. Let us see
why any spinning magnet does this. In Fig. J.1 the magnetic moment μ

is shown pointing opposite to the angular momentum J, as it would for
a negatively charged body like an electron. The magnetic field B (the
field of some solenoid or magnet not shown) causes a torque equal to
μ × B. This torque is a vector in the negative x̂ direction at the time
of our picture. Its magnitude is given by Eq. (11.48); it is μB sin θ . In
a short time �t, the torque adds to the angular momentum of our top a
vector increment �J in the direction of the torque vector and of magni-
tude μB sin θ �t. The horizontal component of J, in magnitude J sin θ ,
is thereby rotated through a small angle �ψ given by

�ψ = �J
J sin θ

= μB �t
J

. (J.1)

As this continues, the upper end of the vector J will simply move around
the circle with constant angular velocity ωp:

ωp = �ψ

�t
= μB

J
. (J.2)
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This is the rate of precession of the axis of spin. Note that it is the same
for any angle of tip; sin θ has canceled out.

B

z

y

x

J

ΔJΔf

m

q
J sin q

Figure J.1.
The precession of a magnetic top in an external
field. The angular momentum of spin J and the
magnetic dipole moment μ are oppositely
directed, as they would be for a negatively
charged rotor.

For the electron, μ/J has the value 1.761 · 1011 s−1tesla−1. In a field
of 1 gauss (10−4 tesla) the spin vector precesses at 1.761 · 107 radians/s,
or 2.80 · 106 revolutions per second. The proton has exactly the same
intrinsic spin angular momentum as the electron, h/4π , but the associ-
ated magnetic moment is smaller. That is to be expected since the mass
of the proton is 1836 times the mass of the electron; as in the case of
orbital angular momentum (see Eq. (11.29)), the magnetic moment of an
elementary particle with spin ought to be inversely proportional to its
mass, other things being equal. Actually the proton’s magnetic moment
is 1.411 · 10−26 joule/tesla, only about 660 times smaller than the electron
moment, which shows that the proton is in some way a composite par-
ticle. In a field of 1 gauss the proton spin precesses at 4258 revolutions
per second. About 40 percent of the stable atomic nuclei have intrinsic
angular momenta and associated magnetic dipole moments.

B

mm

We can detect the precession of magnetic dipole moments through
their influence on an electric circuit. Imagine a proton in a magnetic field
B, with its spin axis perpendicular to the field, and surrounded by a small
coil of wire, as in Fig. J.2. The precession of the proton causes some
alternating flux through the coil, as would the end-over-end rotation of a
little bar magnet. A voltage alternating at the precession frequency will
be induced in the coil. As you might expect, the voltage thus induced
by a single proton would be much too feeble to detect. But it is easy to
provide more protons – 1 cm3 of water contains about 7 · 1022 protons
(we’re concerned with the two hydrogen atoms in each water molecule),
and all of them will precess at the same frequency. Unfortunately they
will not all be pointing in the same direction at the same instant. In fact,
their spin axes and magnetic moments will be distributed so uniformly
over all possible directions that their fields will very nearly cancel one
another. But not quite, if we introduce another step. If we apply a strong
magnetic field B to water, for several seconds there will develop a slight
excess of proton moments pointing in the direction of B, the direction
they energetically favor. The fractional excess will be μB/kT in order of
magnitude, as in ordinary paramagnetism. It may be no more than one
in a million, but these uncanceled moments, if they are now caused to
precess in our coil, will induce an observable signal.

A simple method for observing nuclear spin precession in weak
fields, such as the earth’s field, is described in Fig. J.3. Many other
schemes are used to observe the spin precession of electrons and of

Figure J.2.
A precessing magnetic dipole moment at the center of a coil causes a
periodic change in the flux through the coil, inducing an alternating
electromotive force in the coil. Note that the flux from the dipole m that
links the coil is that which loops around outside it. See Exercise J.1.
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Amplifier

z

S1

S2

B0

Be

m

Figure J.3.
Apparatus for observing proton spin precession
in the earth’s field Be. A bottle of water is
surrounded by two orthogonal coils. With switch
S2 open and switch S1 closed, the large solenoid
creates a strong magnetic field B0. As in
ordinary paramagnetism (Section 11.6), the
energy is lowered if the dipoles point in the
direction of the field, but thermal agitation
causes disorder. Our dipoles here are the
protons (hydrogen nuclei) in the molecules of
water. When thermal equilibrium has been
attained, which in this case takes several
seconds, the magnetization is what you would
get by lining up with the magnetic field the small
fraction μB0/kT of all the proton moments. We
now switch off the strong field B0 and close
switch S2 to connect the coil around the bottle to
the amplifier. The magnetic moment m now
precesses in the xy plane around the remaining,
relatively weak, magnetic field Be, with
precession frequency given by Eq. (J.2). The
alternating y component of the rotating vector m
induces an alternating voltage in the coil which
can be amplified and observed. From its
frequency, Be can be very precisely determined.
This signal itself will die away in a few seconds
as thermal agitation destroys the magnetization
the strong field B0 had brought about. Magnetic
resonance magnetometers of this and other
types are used by geophysicists to explore the
earth’s field, and even by archaeologists to
locate buried artifacts.

nuclei. They generally involve a combination of a steady magnetic field
and oscillating magnetic fields with frequency in the neighborhood of
ωp. For electron spins (electron paramagnetic resonance, or EPR) the
frequencies are typically several thousand megahertz, while for nuclear
spins (nuclear magnetic resonance, or NMR) they are several tens of
megahertz. The exact frequency of precession, or resonance, in a given
applied field can be slightly shifted by magnetic interactions within a
molecule. This has made NMR, in particular, useful in chemistry. The
position of a proton in a complex molecule can often be deduced from
the small shift in its precession frequency.

Magnetic fields easily penetrate ordinary nonmagnetic materials,
and that includes alternating magnetic fields if their frequency or the
electric conductivity of the material is not too great. A steady field of
2000 gauss applied to the bottle of water in our example would cause
any proton polarization to precess at a frequency of 8.516 · 106 revolu-
tions per second. The field of the precessing moments would induce a
signal of 8.516 MHz frequency in the coil outside the bottle. This applies
as well to the human body, which, viewed as a dielectric, is simply an
assembly of more or less watery objects. In NMR imaging (or magnetic
resonance imaging, MRI) the interior of the body is mapped by means of
nuclear magnetic resonance. The concentration of hydrogen atoms at a
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particular location is revealed by the radiofrequency signal induced in an
external coil by the precessing protons. The location of the source within
the body can be inferred from the precise frequency of the signal if the
steady field B, which determines the frequency according to Eq. (J.2),
varies spatially with a known gradient.

Exercises
J.1 Emf from a proton **

At the center of the four-turn coil of radius a in Fig. J.2 is a sin-
gle proton, precessing at angular rate ωp. Derive a formula for
the amplitude of the induced alternating electromotive force in the
coil, given that the proton moment is 1.411 · 10−26 joule/tesla.

J.2 Emf from a bottle ***
(a) If the bottle in Fig. J.3 contains 200 cm3 of H2O at room tem-

perature, and if the field B0 is 1000 gauss, how large is the net
magnetic moment m?

(b) Using the result of Exercise J.1, make a rough estimate of the
signal voltage available from a coil of 500 turns and 4 cm
radius when the field strength Be is 0.4 gauss.



K
Helpful
formulas/facts

K.1 Fundamental constants
speed of light c 2.998 · 108 m/s

elementary charge e 1.602 · 10−19 C

4.803 · 10−10 esu

electron mass me 9.109 · 10−31 kg

proton mass mp 1.673 · 10−27 kg

Avogadro’s number NA 6.022 · 10−23 mole−1

Boltzmann constant k 1.381 · 10−23 J/K

Planck constant h 6.626 · 10−34 J s

gravitational constant G 6.674 · 10−11 m3/(kg s2)

electron magnetic moment μe 9.285 · 10−24 J/T

proton magnetic moment μp 1.411 · 10−26 J/T

permittivity of free space ε0 8.854 · 10−12 C2/(N m2)

permeability of free space μ0 1.257 · 10−6 T m/A

The exact numerical value of μ0 is 4π · 10−7 (by definition).

The exact numerical value of ε0 is (4π · [3]2 · 109)−1, where [3]≡
2.99792458 (see Appendix E).
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K.2 Integral table∫
dx

x2 + r2 = 1
r

tan−1
(x

r

)
(K.1)

∫
dx√

1 − x2
= sin−1 x (K.2)

∫
dx√

x2 − 1
= ln

(
x +

√
x2 − 1

)
(K.3)

∫
dx√

x2 + a2
= ln

(√
x2 + a2 + x

)
(K.4)

∫
dx

(a2 + x2)3/2 = x
a2(a2 + x2)1/2 (K.5)

∫
ln x dx = x ln x − x (K.6)

∫
xn ln

(a
x

)
dx = xn+1

(n + 1)2 + xn+1

n + 1
ln

(a
x

)
(K.7)∫

xe−x dx = −(x + 1)e−x (K.8)

∫
x2e−x dx = −(x2 + 2x + 2)e−x (K.9)

∫
sin3 x dx = − cos x + cos3 x

3
(K.10)

∫
cos3 x dx = sin x − sin3 x

3
(K.11)

∫
dx

cos x
= ln

(
1 + sin x

cos x

)
(K.12)

∫
dx

sin x
= ln

(
1 − cos x

sin x

)
(K.13)

∫
cos x dx

(1 − a2 cos2 x)3/2 = sin x

(1 − a2)
√

1 − a2 cos2 x
(K.14)

∫
sin x dx

(1 − a2 sin2 x)3/2
= − cos x

(1 − a2)
√

1 − a2 sin2 x
(K.15)

∫
cos x dx(

1 − b2 sin2(x − a)
)3/2 = (2 − b2) sin x + b2 sin(2a − x)

2(1 − b2)
√

1 − b2 sin2(a − x)
(K.16)

∫
sin x(a cos x − b) dx

(a2 + b2 − 2ab cos x)3/2 = −a + b cos x

b2
√

a2 + b2 − 2ab cos x
(K.17)
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K.3 Vector identities
∇ · (∇ × A) = 0

∇ · (f A) = f∇ · A + A · ∇f

∇ · (A × B) = B · (∇ × A) − A · (∇ × B)

∇ × (∇f ) = 0

∇ × (f A) = f∇ × A + (∇f ) × A

∇ × (∇ × A) = ∇(∇ · A) −∇2A

∇ × (A × B) = A(∇ · B) − B(∇ · A) + (B · ∇)A − (A · ∇)B

A × (B × C) = B(A · C) − C(A · B)

∇(A · B) = (A · ∇)B + (B · ∇)A + A × (∇ × B) + B × (∇ × A)

K.4 Taylor series
The general form of a Taylor series is

f (x0 + x) = f (x0) + f ′(x0)x + f ′′(x0)

2! x2 + f ′′′(x0)

3! x3 + · · · . (K.18)

This equality can be verified by taking successive derivatives and then
setting x= 0. For example, taking the first derivative and then setting
x= 0 gives f ′(x0) on the left, and also f ′(x0) on the right, because the
first term is a constant and gives zero when differentiated, the second
term gives f ′(x0), and all the rest of the terms give zero once we set x= 0
because they all contain at least one power of x. Likewise, if we take
the second derivative of each side and then set x= 0, we obtain f ′′(x0)

on both sides. And so on for all derivatives. Therefore, since the two
functions on each side of Eq. (K.18) are equal at x= 0 and also have
their nth derivatives equal at x= 0 for all n, they must in fact be the
same function (assuming that they are nicely behaved functions, which
we generally assume in physics).

Some specific Taylor series that come up often are listed below;
they are all expanded around x0 = 0. We use these series countless times
throughout this book when checking how expressions behave in the
limit of some small quantity. The series are all derivable via Eq. (K.18),
but sometimes there are quicker ways of obtaining them. For example,
Eq. (K.20) is most easily obtained by taking the derivative of Eq. (K.19),
which itself is simply the sum of a geometric series.

1
1 − x

= 1 + x + x2 + x3 + · · · (K.19)

1
(1 − x)2 = 1 + 2x + 3x2 + 4x3 + · · · (K.20)

ln(1 − x) = −x − x2

2
− x3

3
− · · · (K.21)
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ex = 1 + x + x2

2! +
x3

3! + · · · (K.22)

cos x = 1 − x2

2! +
x4

4! − · · · (K.23)

sin x = x − x3

3! +
x5

5! − · · · (K.24)

√
1 + x = 1 + x

2
− x2

8
+ · · · (K.25)

1√
1 + x

= 1 − x
2
+ 3x2

8
+ · · · (K.26)

(1 + x)n = 1 + nx +
(

n
2

)
x2 +

(
n
3

)
x3 + · · · (K.27)

K.5 Complex numbers
The imaginary number i is defined to be the number for which i2 =
−1. (Of course, −i also has its square equal to −1.) A general complex
number z with both real and imaginary parts can be written in the form
a + bi, where a and b are real numbers. Such a number can be described
by the point (a, b) in the complex plane, with the x and y axes being the
real and imaginary axes, respectively.

The most important formula involving complex numbers is

eiθ = cos θ + i sin θ . (K.28)

This can quickly be proved by writing out the Taylor series for both sides.
Using Eq. (K.22), the first, third, fifth, etc. terms on the left-hand side of
Eq. (K.28) are real, and from Eq. (K.23) their sum is cos θ . Similarly, the
second, fourth, sixth, etc. terms are imaginary, and from Eq. (K.24) their
sum is i sin θ . Writing it all out, we have

eiθ = 1 + iθ + (iθ)2

2! + (iθ)3

3! + (iθ)4

4! + (iθ)5

5! + · · ·

=
(

1 − θ2

2! +
θ4

4! + · · ·
)
+ i

(
θ − θ3

3! +
θ5

5! + · · ·
)

= cos θ + i sin θ , (K.29)

as desired.
Letting θ → −θ in Eq. (K.28) yields e−iθ = cos θ − i sin θ . Com-

bining this with Eq. (K.28) allows us to solve for cos θ and sin θ in terms
of the complex exponentials:

cos θ = eiθ + e−iθ

2
, sin θ = eiθ − e−iθ

2i
. (K.30)
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A complex number z described by the Cartesian coordinates (a, b) in
the complex plane can also be described by the polar coordinates (r, θ).
The radius r and angle θ are given by the usual relation between Carte-
sian and polar coordinates (see Fig. K.1),

b

a
x

y

q

a2
 + b

2

r  =

Figure K.1.
Cartesian and polar coordinates in the complex
plane.

r =
√

a2 + b2 and θ = tan−1(b/a). (K.31)

Using Eq. (K.28), we can write z in polar form as

a + bi = (r cos θ) + (r sin θ)i = r(cos θ + i sin θ) = reiθ . (K.32)

We see that the quantity in the exponent (excluding the i) equals the angle
of the vector in the complex plane.

The complex conjugate of z, denoted by z∗ (or by z̄), is defined to
be z∗ ≡ a − bi, or equivalently z∗ ≡ re−iθ . It is obtained by reflecting
the Cartesian point (a, b) across the real axis. Note that either of these
expressions for z∗ implies that r can be written as r=√

zz∗. The radius
r is known as the magnitude or absolute value of z, and is commonly
denoted by |z|. The complex conjugate of a product is the product of the
complex conjugates, that is, (z1z2)

∗ = z∗1z∗2. You can quickly verify this
by writing z1 and z2 in polar form. The Cartesian form works too, but that
takes a little longer. The same result holds for the quotient of two com-
plex
numbers.

As an example of the use of Eq. (K.28), we can quickly derive the
double-angle formulas for sine and cosine. We have

cos 2θ + i sin 2θ = ei2θ = (
eiθ )2 = (cos θ + i sin θ)2

= (cos2 θ − sin2 θ) + i(2 sin θ cos θ). (K.33)

Equating the real parts of the expressions on either end of this equation
gives cos 2θ = cos2 θ − sin2 θ . And equating the imaginary parts gives
sin 2θ = 2 sin θ cos θ . This method easily generalizes to other trig sum
formulas.

K.6 Trigonometric identities

sin 2θ = 2 sin θ cos θ , cos 2θ = cos2 θ − sin2 θ (K.34)

sin(α + β) = sin α cos β + cos α sin β (K.35)

cos(α + β) = cos α cos β − sin α sin β (K.36)

tan(α + β) = tan α + tan β

1 − tan α tan β
(K.37)
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cos
θ

2
= ±

√
1 + cos θ

2
, sin

θ

2
= ±

√
1 − cos θ

2
(K.38)

tan
θ

2
= ±

√
1 − cos θ

1 + cos θ
= 1 − cos θ

sin θ
= sin θ

1 + cos θ
(K.39)

The hyperbolic trig functions are defined by analogy with Eq. (K.30),
with the i’s omitted:

cosh x = ex + e−x

2
, sinh x = ex − e−x

2
(K.40)

cosh2 x − sinh2 x = 1 (K.41)
d
dx

cosh x = sinh x,
d
dx

sinh x = cosh x (K.42)
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representation by complex number, 406–408
alternating-current circuit, 405–414

power and energy in, 415–418
alternating electromotive force, 395
alternator, 371
aluminum, doping of silicon with, 203–204
ammeter, 224
ammonia molecule, dipole moment of, 483
ampere (unit of current), 178, 283, 762–763, 790
Ampère, Andre-Marie, 2, 236, 238, 259, 531
Ampère’s law, 288

differential form, 291
amplitude modulation (AM), 455
Andrews, M., 640
angular momentum

conservation of, in changing magnetic field,
580

of electron spin, 546–547

orbital, relation to magnetic moment, 541

precession of, 822–823

anode of vacuum diode, 181

antimatter, 3

antineutron, 3

antiproton, 3

Assis, A. K. T., 263

atom, electric current in, 540

atomic polarizability, 480–482

aurora borealis, 318

Auty, R. P., 505

B, magnetic field, 239, 278

and M, and H inside magnetized cylinder, 565

bacteria, magnetic, 571, 580

battery, lead–sulfuric acid, 209–212

B-H curve, 569–570

Biot–Savart law, 298, 435

Bitter plates, 320

Blakemore, R. P., 580

Bloomfield, L. A., 35

Bohr radius a0, 55, 481, 544

Boltzmann factor, 202

Boltzmann’s constant k, 202, 503

Boos, F. L., 460

boost converter, 372

Bose, S. K., 305

bound and free charge, 497–498

arbitrariness of the distinction, 506–507

bound-charge current, 505–507

bound-charge density, 498

bound currents, 559–560

boundary of dielectric, change in E at, 494–495

boundary-value problem, 132, 151–153

bridge network, 208, 233

capacitance, 141–147

of cell membrane, 513

coefficients of, 148

of prolate spheroid, 171

units of, 142

illustrated, 145

capacitor, 141–147

dielectric-filled, 489–492

energy stored in, 149–151

parallel-plate, 143–144, 467
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capacitor (cont.)
uses of, 153
vacuum, 467

capacitor plate, force on, 151, 162
carbon monoxide molecule, dipole moment of,

483
cartesian coordinates, 791
cassette tape, 570
cathode of vacuum diode, 181
Cavendish, Henry, 11
centimeter (as unit of capacitance), 145
CH3OH (methanol) molecule, dipole moment

of, 483
charge

electric, see electric charge
magnetic, absence of, 529
in motion, see moving charge

charge density, linear, 28
charge distribution

cylindrical, field of, 83
electric, 20–22
moments of, 74, 471–474
spherical, field of, 26–28
on a surface, 29

charged balloon, 32
charged disk, 68–71

field lines and equipotentials of, 72
potential of, 69

charged wire
potential of, 68

circuit breaker, 320
circuit element, 205
circuits

LR, 366–367
RC, 215–216
RLC, 389, 398, 410
alternating-current, 394–418
direct-current, 204–207
equivalent, 206
resonant, 388–394

circulation, 90
Clausius–Mossotti relation, 502
CO (carbon monoxide) molecule, dipole

moment of, 483
coefficients

of capacitance, 148
of potential, 148

coil
cylindrical (solenoid), magnetic field of,

300–303, 338
toroidal

energy stored in, 369
inductance of, 364

Cole, R. H., 505
comets, 454
compass needle, 239
complex exponential solutions, 402–405
complex-number representation of alternating

current, 406–408
complex numbers, review of, 828–829
conduction, electrical, 181–204

ionic, 189–195
in metals, 198–200
in semiconductors, 200–204

conduction band, 201–202
conductivity, electrical, 182–188

anisotropic, 182
of metals, 198–200
units for, 182
of various materials, 188, 195–197

conductors, electrical, 125–141
charged, system of, 128
properties of, 129
spherical, field around, 131

conformal mapping, 151
conservation of electric charge, 4–5,

180–181
distinguished from charge invariance, 242

conservative forces, 12
continuity equation, 181
copper, resistivity of, 188, 196–197
copper chloride, paramagnetism of, 526
corona discharge, 37
coulomb (SI unit of charge), 8, 762

relation to esu, 9
Coulomb, Charles de, 10
Coulomb’s law, 7–11, 259

tests of, 10–11
Crandall, R. E., 11
Crawford, F. S., 378
critical damping, 394
Crosignani, B., 590
cross product (vector product) of two vectors,

238

Curie, Pierre, 566
Curie point, 566
curl, 90–99, 798–799

in Cartesian coordinates, 93–95, 100
physical meaning of, 95

curlmeter, 96
current density J, 177–180
current loop

magnetic dipole moment of, 534
magnetic field of, 531–535
torque on, 547

current ring, magnetic field of, 299
current sheet, 303–306

magnetic field of, 303–304
currents

alternating, 394–418
bound and free, 559–560
bound-charge, 505–507
displacement, 433–436
electric, see electric currents
fluctuations of, random, 195

curvilinear coordinates, 791–801
cylinder, magnetized, compared with cylinder

polarized, 557
cylindrical coordinates, 792

damped harmonic oscillator, 389
damped sinusoidal oscillation, 392
damping of resonant circuit, 388–394

critical, 394
Davis, L., Jr., 11
decay of proton, 6
decay time for earth’s magnetic field, 386
deer, flying, 102
“del” notation, 83, 95, 100
detergent, 510
deuterium molecule, 242
Di Porto, P., 590
diamagnetic substances, 526
diamagnetism, 527, 540, 546

of electron orbits, 545
diamond

crystal structure of, 200
wide band gap of, 203

dielectric constant κ , 468
of various substances, 469

dielectric sphere in uniform field,
495–496

dielectrics, 467–471
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diode, 219
silicon junction, 229
vacuum, 181

dipole
comparison of electric and magnetic, 535–536
electric, see electric dipole
magnetic, see magnetic dipole

dipole moment
electric, see electric dipole moment
magnetic, see magnetic dipole moment

disk
conducting, field of, 140
charged, 68–72

displacement, electric, D, 499, 560–561
displacement current, 433–436
distribution of electric charge, 20–22
divergence, 78–79, 795–797

in Cartesian coordinates, 81–83, 100
divergence theorem, 79–80, 100
domains, magnetic, 567
doorbell, 321
doping of silicon, 203–204
dot product of two vectors, 12
dynamic random access memory (DRAM), 153
dynamo, 379, 386
dyne (Gaussian unit of force), 8

ε0, permittivity of free space, 8
Earnshaw’s theorem, 87
earth’s magnetic field, 280, 577

decay time of, 386
possible source of, 380

eddy-current braking, 370
Edison, Thomas, 419
Einstein, Albert, 2, 236, 281, 314
electret, 558
electric charge, 1–11, 242

additivity of, 10, 13
conservation of, 4–5, 180–181
distribution of, 20–22
free and bound, 497–498, 506–507
fundamental quantum of, 8
invariance of, 241–243
quantization of, 5–7, 242
sign of, 4

electric currents, 177–189
and charge conservation, 180–181

energy dissipation in flow of, 207–208
parallel, force between, 283
variable

in capacitors and resistors, 215–216
in inductors and resistors, 366–367

electric dipole
potential and field of, 73–77, 474–476
torque and force on, in external field,

477–478
electric dipole moment, 74, 473, 475

induced, 479–482
permanent, 482–483

electric displacement D, 499, 560–561
electric eels, 219
electric field

definition of, 17
in different reference frames, 243–246
of dipole, 75, 476
of Earth, 36
energy stored in, 33
of flat sheet of charge, 29
flux of, 22–26

Gauss’s law, 23–26
inside hollow conductor, 134
of line charge, 28
line integral of, 59–61
macroscopic, 488–489
in matter, spatial average of, 487
microscopic, 488
of point charge with constant velocity,

247–251
relation to φ and ρ, 89
transformation of, 245, 310
units of, 17
visualization of, 18–20

electric field lines, 18, 19, 71, 72, 76–77
electric generator, 370
electric guitar, 370
electric potential, see potential, electric
electric quadrupole moment, 74, 473
electric susceptibility χe, 490, 501, 503
electrical breakdown, 36, 100
electrical conduction, see conduction, electrical
electrical conductivity, see conductivity,

electrical
electrical conductors, see conductors, electrical
electrical insulators, 125–126

electrical potential energy, 13–16
of a system of charges, 33, 63

electrical shielding, 135
electrodynamic tether, 369
electromagnet, 320

design of, 584
electromagnetic field components,

transformation of, 310
electromagnetic force, range of, 11
electromagnetic induction, 343–357
electromagnetic wave, 254, 438–453

in dielectric, 507–509
in different reference frames, 452–453
energy transport by, 446–452
general properties of, 440–441
reflection of, 445, 447, 521
standing, 442–446
traveling pulse, 441

electromotive force, 209–211, 347, 357
alternating, 395

electron, 3, 5, 6, 198–204, 540–549
charge of, 8
magnetic moment of, 547
valence, 200

electron motion, wave aspect of, 199
electron orbit, 540–545

diamagnetism of, 545
magnetic moment of, 540–541

electron paramagnetic resonance (EPR),
823

electron radius, classical, 52, 545
electron spin, 546–549

angular momentum of, 546–547
electronic paper, 37
electrostatic field, 61, see also electric field

equilibrium in, 88
electrostatic unit (esu) of charge, 8, 765
energy, see also potential energy, electrical

in alternating-current circuit, 415–418
dissipation of, in resistor, 207–208
electrical, of ionic crystal, 14–16
stored

in capacitor, 150
in electric field, 33
in inductor, 368
in magnetic field, 369

of system of charges, 11–14
energy gap, 201
equilibrium of charged particle, 88
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equipotential surfaces, 71, 131
in field of conducting disk, 140
in field of dipole, 76
in field of uniformly charged disk, 72

equivalence of inertial frames, 237, 805
equivalent circuit, 206

for voltaic cell, 211
esu (electrostatic unit), 8, 765

Faller, J. E., 11
farad (unit of capacitance), 142
Faraday, Michael, 2, 236, 314

discovery of induction by, 343–345
reconstruction of experiment by, 384
Waterloo Bridge experiment by, 380

Faraday’s law of induction, 356–357
ferrofluid, 572
ferromagnetic substances, 526
ferromagnetism, 527, 565–568
Feynman, R. P., 37, 539
field

electric, see electric field
magnetic, see magnetic field
meaning of, 245

Fisher, L. H., 348
fluctuations of current, random, 195
flux

of electric field, definition of, 22–26
magnetic, 348–351

flux tube, 349, 351
force components, Lorentz transformation of,

810–811
application of, 255–257

force(s)
between parallel currents, 283
on capacitor plate, 151, 162
conservative, 12
on electric dipole, 478
electromotive, 209–211, 347, 357, 395
with finite range, 88
on layer of charge, 30–32, 46
magnetic, 237–239
on magnetic dipole, 535–539
on moving charged particle, 255–267, 278

Foster’s theorem, 224
Frankel, R. B., 580
Franklin, Benjamin, 10, 516, 529

free and bound charge, 497–498
arbitrariness of the distinction, 506–507

free currents, 559–560
frequency modulation (FM), 455
Friedberg, R., 639
fundamental constants, 825
fuse, 219

Galili, I., 452, 464
Galvani, Luigi, 209, 236
galvanic currents, 236
galvanometer, 224, 344
Gauss, C. F., 286
gauss (unit of magnetic field strength), 282
Gaussian units, 762–768
Gauss’s law, 23–26, 80, 88

applications of, 26–30, 88, 243–245, 254,
262, 266, 488, 812

and fields in a dielectric, 497–498
Gauss’s theorem, 79–80, 100
gecko, 510
generator, electric, 370
germanium, 202

conductivity of, 195
crystal structure of, 200
resistivity of, 188

Gilbert, William, 236
Goihbarg, E., 452, 464
golden ratio, 49, 168, 231, 665
Goldhaber, A. S., 11
Good, R. H., 157, 639, 640
gradient, 63–65, 792–795
graphite

anisotropic conductivity of, 183
diamagnetism of, 546

gravitation, 3, 10, 28, 39, 163
gravitational field and Gauss’s law, 25
Gray, Stephen, 125
Griffiths, D. J., 298, 640
ground-fault circuit interrupter (GFCI), 371
gyromagnetic ratio, 541

H, magnetic field, 560–565
and B, and M inside magnetized cylinder, 565
relation to free current, 560, 561

H2O molecule, dipole moment of, 483
hadron, 6

Hall, E. H., 317
Hall effect, 314–317
hard disk, 571
harmonic functions, 87, 152
harmonic oscillator, 389
HCl (hydrogen chloride) molecule, dipole

moment of, 482, 483
Heald, M. A., 298
helical coil, magnetic field of, 302
helicopters, static charge on, 102
helium atom, neutrality of, 241
helix, handedness of, 279
Henry, Joseph, 361
henry (SI unit of inductance), 361
Hertz, Heinrich, 236, 281, 314, 394
hertz (unit of frequency), 394
Hill, H. A., 11
hole, 201
Hughes, V. W., 5
hybrid car, 371
hydrogen atom

charge distribution in, 479
polarizability of, 481

hydrogen chloride molecule, dipole moment of,
482, 483

hydrogen ions, 189
hydrogen molecule, 5, 242
hydrogen negative ion, 328
hyperbolic functions, 830
hysteresis, magnetic, 569

ice, dielectric constant of, 505
ignition system coil, 372
image charge, 136–140

for a spherical shell, 159
impedance, 408–414
index of refraction, 509
inductance

mutual, 359–364
reciprocity theorem for, 362–364

self-, 364–366
circuit containing, 366–367

induction
electromagnetic, 343–357
Faraday’s law of, 356–357

inductive reactance, 396
insulators, electrical, 125–126
integral table, 826
internal resistance of electrolytic cell, 210
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interstellar magnetic field, 286, 386
invariance of charge, 241–243

distinguished from charge conservation, 242
evidence for, 241

ionic crystal, energy of, 14–16
ions, 189–198

in air, 190
in gases, 190
in water, 189–190

iron, B-H curve for, 569

Jackson, J. D., 189, 452
Jefimenko, O., 188
junction, silicon diode, 229
junkyard magnet, 321

Karlsruhe, University of, 394
King, J. G., 5
Kirchhoff’s loop rule, 207, 359
Kirchhoff’s rules, 206, 212

Laplace’s equation, 86–88, 132–134
Laplacian operator, 85–86, 799–801
lead

superconductivity of, 197
resistivity of, 197

lead–sulfuric acid cell, 209–212
Leighton, R. B., 37, 539
Lenz’s law, 351
Leyden jar, 516
Li, Y., 640
Liénard–Wiechert potential, 707
light, velocity of, definition of, 789
light-emitting diode, 220
lightning, 37
lightning rod, 153
line charge density, 28
line integral

of electric field, 59–61
of magnetic field, 287–291

linear dielectric, 490
linear physical system, 148
liquid oxygen, paramagnetism of, 525, 526, 548
lodestone (magnetite), 236, 526, 527, 565, 570
long straight wire, magnetic field of, 280
loop of a network, 207
Lorentz, H. A., 2, 236

Lorentz contraction, 261, 807
Lorentz force, 278
Lorentz invariants, 465, 811
Lorentz transformation

applications of, 247–248, 255–257
of electric and magnetic field components, 310
of force components, 810–811
of momentum and energy, 810
of space-time coordinates, 806

LR circuits, 366–367
time constant of, 367

μ0, permeability of free space, 281
M, magnetization, 550

and B, and H inside magnetized cylinder, 565
macroscopic description of matter, 470
macroscopic electric field in matter, 488–489
maglev train, 321
magnetic bottle, 318
magnetic charge, absence of, 529
magnetic dipole

field of, 534–535
compared with electric dipole field, 535

force on, 535–539
torque on, 547
vector potential of, 531–534

magnetic dipole moment
of current loop, 534
of electron orbit, 540–541
associated with electron spin, 547

magnetic domains, 567
magnetic field, 238, 278, see also earth’s

magnetic field
of current loop, 531–535
of current ring, 299
of current sheet, 303–304
of Earth, 373
energy stored in, 368–369
of helical coil, 302
interstellar, 386
line integral of, 287–291
of long straight wire, 280
of solenoid (coil), 300–303, 338
transformation of, 310

magnetic field B, see B, magnetic field
magnetic field H, see H, magnetic field
magnetic flux, 348–350

magnetic forces, 237–239
magnetic monopole, 529
magnetic permeability μ, 563
magnetic polarizability of electron orbit, 544
magnetic pressure, 306
magnetic susceptibility χm, 550, 563
magnetite (lodestone), 236, 526, 527, 565, 570
magnetization M, see M, magnetization
magnetogyric ratio, 541
magnetohydrodynamics, 306
magnetomechanical ratio, orbital, 541
magnetron, 419
Mania, A. J., 263
Marcus, A., 188
mass spectrometer, 317
Maxwell, James Clerk, 2, 11, 141, 236, 436
Maxwell’s equations, 436–438
Mermin, N. D., 237
metal detector, 370
methane, structure and polarizability of, 481
methanol molecule, dipole moment of, 483
method of images, see image charge
microphone

condenser, 154
dynamic, 371

microscopic description of matter, 470
microscopic electric field in matter, 488
microwave background radiation, 454
microwave oven, 419, 510
mine-shaft problem, 601
moments of charge distribution, 74, 471–474
momentum, see angular momentum
motor, electric, 319
moving charge

force on, 255–267, 278
interaction with other moving charges,

259–267
measurement of, 239–240

multipole expansion, 74, 472
muon, trajectory in magnetized iron, 582
mutual inductance, 359–364

reciprocity theorem for, 362–364

Nan-Xian, C., 643
network

alternating current, 405–414
bridge, 208, 233
direct-current, 205–207
ladder, 231
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neurons, 102
neutron, 3, 6
Newton, Isaac, 27
NH3 (ammonia) molecule, dipole moment of,

483
nickel, Curie point of, 566
nickel sulfate, paramagnetism of, 526
Nieto, M. M., 11
niobium, 819
nitric oxide, paramagnetism of, 548
node of a network, 207
north pole, definition of, 280, 529
n-type semiconductor, 203–204
nuclear magnetic resonance (NMR), 823
nucleon, 39
nucleus, atomic, 3

octupole moment, 74, 473
O’Dell, S. L., 546
Oersted, Hans Christian, 236–237, 259, 331
oersted (unit of field H), 775
ohm (SI unit of resistance), 186
ohmmeter, 232
Ohm’s law, 181–183, 193

breakdown of, 198
deviations from, in metals, 200

Onnes, H. K., 817
orbital magnetic moment, 540–541
oscillator, harmonic, 389
oxygen, negative molecular ion, 190

Page, L., 237
paint sprayer, electrostatic, 37
pair creation, 4
parallel currents, force between, 283
Parallel-plate capacitor, 144

filled with dielectric, 467, 489–492
parallel RLC circuit, 410
paramagnetic substances, 526
paramagnetism, 527, 540, 548
partial derivative, definition of, 64
permanent magnet, field of, 557–559
permeability, magnetic, μ, 563
permittivity, ε, 497
pH value of hydrogen ion concentration, 189
phase angle in alternating-current circuit, 402,

404, 409

phosphorous, doping of silicon with, 203
photocopiers, 37
photon, 4, 460
photovoltaic effect, 220
picofarad (unit of capacitance), 142
piezoelectric effect, 511
pion, 34
Planck, Max, 2
Planck’s constant h, 546
p–n junction, 219
point charge, 21

accelerated, radiation by, 812–815
moving with constant velocity, 247–251
near conducting disk, 139
starting or stopping, 251–255

Poisson’s equation, 86, 89
polar molecules, dipole moments of, 483
polarizability

magnetic, of electron orbit, 544
of various atoms, 481–482

polarization, frequency dependence of, 504
polarization density P, 484, 498, 501, 503
polarized matter, 483–489
polarized sphere, electric field of, 492–495
pollination, by bees, 509
positron, 3
potential

coefficients of, 148
electric, φ, 61–73, 86–89

of charged disk, 69
of charged wire, 67
derivation of field from, 65
of electric dipole, 73–74, 475
of two point charges, 66

vector, 293–296
of current loop, 531–534

potential energy, electrical, 13–16
of a system of charges, 33, 63

power
in alternating-current circuit, 415–418
dissipated in resistor, 208
radiated by accelerated charge, 814

power adapter, 420
power-factor correction, 420
Poynting vector, 448–452
precession of magnetic top, 821, 822

Press, F., 380
Priestly, Joseph, 10
proton, 3

decay of, 6
and electron charge equality, 5
magnetic moment of, 822

p-type semiconductor, 203–204

Q, of resonant circuit, 392, 402
quadrupole

moment, 74, 473
tensor, 514

quantization of charge, 5–7, 242
quantum electrodynamics, 2
quark, 6, 35
quartz clock, 511

radiation by accelerated charge, 812–815
radio frequency identification (RFID) tags, 454
railgun, 319
random fluctuations of current, 195
range of electromagnetic force, 11
rare-earth magnets, 573
rationalized units, 767
RC circuit, 215–216

time constant of, 216
reactance, inductive, 396
reciprocity theorem for mutual inductance,

362–364
recombination of ions, 190
refractive index, 509
regenerative braking, 371
relaxation method, 153, 174
relaxation of field in conductor, 217
relaxation time, 217
relay, electric, 320
remanence, magnetic, 569
resistance, electrical, 183–187
resistances in parallel and in series, 206
resistivity, 186

of various materials, 188, 196
resistor, 205, 207
resonance, 418
resonant circuit, 388–394

damping of, 391–394
critical, 394

energy transfer in, 392
resonant frequency, 400
retarded potential, 329
Roberts, D., 211
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Rodrigues, W. A. Jr., 263
Romer, R. H., 359
Rowland, Henry, 259, 314, 315, 317
Rowland’s experiment, 315
RLC circuit

parallel, 410
series, 389, 398

Sands, M., 37, 539
saturation magnetization, 565
scalar product of two vectors, 12
Scott, G. K., 305
seawater, resistivity of, 188, 190, 196
second (as Gaussian unit of resistivity), 187
self-energy of elementary particles, 35
self-inductance, 364–366

circuit containing, 366–367
semiconductors, 126, 195, 200–204

n-type, 203–204
p-type, 203, 204

Semon, M. D., 296
series RLC circuit, 389, 398
shake flashlight, 370
sheets of charge, moving, electric field of,

243–245
shielding, electrical, 135
SI units, 762–768

derived, 769
Siever, R., 380
silicon, 195, 200–204

band gap in, 201
crystal structure of, 200

slope detection, 455
smoke detector, 219
Smyth, C. P., 505
sodium and chlorine ions in water, 190
sodium chloride crystal

diamagnetism of, 526
electrical potential energy of, 14–16
free and bound charge in, 507

sodium metal, conductivity of, 198–199
solar cells, 220
solenoid (coil), magnetic field of, 300–303, 338
speakers, 321
spherical coordinates, 792
spin of electron, 546–549

sprites, 219
St. Elmo’s fire, 37
standing wave, electromagnetic, 442–446
Starfish Prime, 318
statvolt (Gaussian unit of electric potential), 61
Stokes’ theorem, 92–93, 100
storage battery, lead-sulfuric acid, 209–212
supercapacitor, 154
superconductivity, 197, 817–820
superposition, principle of, 10

applications of, 25, 147, 207, 245, 301, 442,
490, 492

surface charge
on current-carrying wire, 188–189, 263,

452
density, 129
distribution, 29

surface current density, 303
surface integral, definition of, 23
surfaces, equipotential, see equipotential

surfaces
surfactant, 510
susceptibility

electric χe, 490, 501, 503
magnetic χm, 550, 563

symmetry argument, 21
synchrotron radiation, 815

Taylor, J. R., 296
Taylor series, 827–828
television set, 318
temperature, effect of

on alignment of electron spins, 548–549
on alignment of polar molecules, 503
on conductivity, 195–197

Tesla, Nikola, 286, 419
tesla (SI unit of magnetic field strength), 280
Thévenin’s theorem, 213–215, 225
three-phase power, 419
torque

on current loop, 332, 547
on electric dipole, 477, 478
transatlantic telegraph, 227

transatlantic telegraph cable, 217
transformation, see Lorentz transformation
transformer, 372

transistor, 220

triboelectric effect, 36

trigonometric identities, 829

uniqueness theorem, 132–133

units, SI and Gaussian, 762–768

conversions, 774–777, 789–790

formulas, 778–788

vacuum capacitor, 467

valence band, 201–204

valence electrons, 200

Van Allen belts, 318

Van de Graaff generator, 182, 209, 211

van der Waals force, 510

Varney, R. N., 348

vector identities, 827

vector potential, 293–296

of current loop, 531–534

vector product (cross product) of two vectors,
238

volt (SI unit of electric potential), 61

Volta, Alessandro, 209, 236

Voltaic cell, 209

equivalent circuit for, 211

voltmeter, 224

Waage, H. M., 530

Walker, J., 35

War of Currents, 419

water

dielectric constant of, 505

ions in, 189–190

pure, resistivity of, 188, 196

water molecule, dipole moment of, 483

watt (SI unit of power), 208

wave, electromagnetic, see electromagnetic wave

weber (SI unit of magnetic flux), 357

Whittaker, E., 500

Williams, E. R., 11

wire

charged, potential of, 67

magnetic field of, 280

work, by magnetic force, 572

Zia, R. K. P., 546





Derived units

newton (N) = kg m
s2

joule (J) = newton-meter = kg m2

s2

ampere (A) = coulomb
second

= C
s

volt (V) = joule
coulomb

= kg m2

C s2

farad (F) = coulomb
volt

= C2 s2

kg m2

ohm (�) = volt
ampere

= kg m2

C2 s

watt (W) = joule
second

= kg m2

s3

tesla (T) = newton
coulomb · meter/second

= kg
C s

henry (H) = volt
ampere/second

= kg m2

C2

Maxwell’s equations

curl E = −∂B
∂t

curl B = μ0ε0
∂E
∂t

+ μ0J

div E = ρ

ε0

div B = 0

Fundamental constants
speed of light c 2.998 · 108 m/s

elementary charge e 1.602 · 10−19 C

4.803 · 10−10 esu

electron mass me 9.109 · 10−31 kg

proton mass mp 1.673 · 10−27 kg

Avogadro’s number NA 6.022 · 10−23 mole−1

Boltzmann constant k 1.381 · 10−23 J/K

Planck constant h 6.626 · 10−34 J s

gravitational constant G 6.674 · 10−11 m3/(kg s2)

electron magnetic moment μe 9.285 · 10−24 J/T

proton magnetic moment μp 1.411 · 10−26 J/T

permittivity of free space ε0 8.854 · 10−12 C2 s2/(kg m3)

permeability of free space μ0 1.257 · 10−6 kg m/C2

Divergence theorem∫
surface

F · da =
∫

volume

div F dv

Stokes’ theorem∫
curve

A · ds =
∫

surface

curl A · da

Gradient theorem

φ2 − φ1 =
∫

curve

grad φ · ds
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Vector operators
Cartesian coordinates

ds = dx x̂ + dy ŷ + dz ẑ

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

∇f = ∂f
∂x

x̂ + ∂f
∂y

ŷ + ∂f
∂z

ẑ

∇ · A = ∂Ax
∂x

+ ∂Ay

∂y
+ ∂Az

∂z

∇ × A =
(

∂Az
∂y

− ∂Ay

∂z

)
x̂ +

(
∂Ax
∂z

− ∂Az
∂x

)
ŷ +

(
∂Ay

∂x
− ∂Ax

∂y

)
ẑ

∇2f = ∂2f
∂x2 + ∂2f

∂y2 + ∂2f
∂z2

Cylindrical coordinates

ds = dr r̂ + r dθ θ̂ + dz ẑ

∇ = r̂
∂

∂r
+ θ̂

1
r

∂

∂θ
+ ẑ

∂

∂z

∇f = ∂f
∂r

r̂ + 1
r

∂f
∂θ

θ̂ + ∂f
∂z

ẑ

∇ · A = 1
r

∂(rAr)

∂r
+ 1

r
∂Aθ

∂θ
+ ∂Az

∂z

∇ × A =
(

1
r

∂Az
∂θ

− ∂Aθ

∂z

)
r̂ +

(
∂Ar
∂z

− ∂Az
∂r

)
θ̂ + 1

r

(
∂(rAθ )

∂r
− ∂Ar

∂θ

)
ẑ

∇2f = 1
r

∂

∂r

(
r
∂f
∂r

)
+ 1

r2
∂2f
∂θ2 + ∂2f

∂z2

Spherical coordinates

ds = dr r̂ + r dθ θ̂ + r sin θ dφ φ̂

∇ = r̂
∂

∂r
+ θ̂

1
r

∂

∂θ
+ φ̂

1
r sin θ

∂

∂φ

∇f = ∂f
∂r

r̂ + 1
r

∂f
∂θ

θ̂ + 1
r sin θ

∂f
∂φ

φ̂

∇ · A = 1
r2

∂(r2Ar)

∂r
+ 1

r sin θ

∂(Aθ sin θ)

∂θ
+ 1

r sin θ

∂Aφ

∂φ

∇ × A = 1
r sin θ

(
∂(Aφ sin θ)

∂θ
− ∂Aθ

∂φ

)
r̂ + 1

r

(
1

sin θ

∂Ar
∂φ

− ∂(rAφ)

∂r

)
θ̂ + 1

r

(
∂(rAθ )

∂r
− ∂Ar

∂θ

)
φ̂

∇2f = 1
r2

∂

∂r

(
r2 ∂f

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂f
∂θ

)
+ 1

r2 sin2 θ

∂2f
∂φ2
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