




Fundamentals of Quantum Mechanics

The book discusses fundamental concepts of quantum mechanics, including the state of a

quantum mechanical system, operators, superposition principle and measurement

postulate. The notion of an operator and the algebra of operators is introduced with the

help of elementary concepts of mathematical analysis. The mathematical tools developed

here will help resolve the difficulties encountered in classical physics while trying to

explain the experimental results involving atomic spectra and other phenomena. The

differential equations that arise while solving eigenvalue problems are solved rigorously,

to make the text self-sufficient. The solutions are then physically interpreted and

explained.

The book covers modern algebraic language of quantum mechanics, wherein the

fundamental concepts and methods of solutions are translated into the algebraic

formalism and compared with the earlier simpler approach. The text offers solved

examples and homework problems to help students in solving practical problems of

physics requiring quantum mechanical treatment.

Ajit Kumar is a Professor at the Department of Physics, Indian Institute of Technology,

New Delhi. He is a Fellow of the Alexander von Humboldt Foundation, Bonn, Germany

since 1987. A recipient of the Teaching Excellence Award from I. I. T. Delhi, he has been

teaching the core subjects of theoretical physics including quantum field theory, group

theory and its applications, and general theory of relativity for the past 34 years. His current

research is related to the problems of nonlinear optics, solution of nonlinear Schrödinger

equation in nonlinear optical media, fiber-optic solitons and their switching dynamics and

electromagnetic wave propagation in metamaterials.





Fundamentals of Quantum Mechanics

Ajit Kumar



University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314 to 321, 3rd Floor, Plot No.3, Splendor Forum, Jasola District Centre, New Delhi 110025, India

79 Anson Road, #06–04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University’s mission by disseminating knowledge in the pursuit of

education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107185586

c© Ajit Kumar 2018

This publication is in copyright. Subject to statutory exception

and to the provisions of relevant collective licensing agreements,

no reproduction of any part may take place without the written

permission of Cambridge University Press.

First published 2018

Printed in India

A catalogue record for this publication is available from the British Library

ISBN 978-1-107-18558-6 Hardback

ISBN 978-1-108-46593-9 Paperback

Additional resources for this publication at www.cambridge.org/9781107185586

Cambridge University Press has no responsibility for the persistence or accuracy

of URLs for external or third-party internet websites referred to in this publication,

and does not guarantee that any content on such websites is, or will remain,

accurate or appropriate.



Dedicated to my parents





Contents

Figures xi
Tables xiii
Preface xv

Chapter 1: Introduction 1

1.1 The Blackbody Radiation 2

1.2 The Photoelectric Effect 5

1.3 The Bohr Model of an Atom 7

1.4 The Compton Effect 8

Homework Problems 12

Chapter 2: The Postulates of Quantum Mechanics 13

2.1 Specification of State. Statistical Interpretation 14

2.2 Observables and Operators 18

2.3 Hermitian Operators 19

2.4 Algebra of Operators 27

2.5 The Schrödinger Equation 32

2.6 Time-independent Potentials and the Stationary States 34

2.7 Measurement and Compatible Operators 36

Homework Problems 51

Chapter 3: One-dimensional Problems 56

3.1 Bound and Scattering States 57

3.2 The Free Particle Solution 58

3.3 Particle in an Infinite Potential Well 61

3.4 Discontinuous Potentials and the Differentiability of the Wave Function 67

3.5 Conservation of Probability and the Continuity Equation 72

vii



viii Contents

3.6 Symmetric Potential and Even and Odd Parity Solutions 78

3.7 Particle in a Finite Square Well Potential 81

3.8 Potential Barrier and Tunneling 88

3.9 One-dimensional Harmonic Oscillator 94

3.10 Heisenberg’s Uncertainty Relation 101

3.11 Quantum–Classical Correspondence and Ehrenfest’s Theorem 109

3.12 Periodic Potentials, Bloch’s Theorem and Energy Bands 113

Homework Problems 119

Chapter 4: Algebraic Formulation of Quantum Mechanics 124

4.1 Linear Vector Spaces 124

4.2 Dirac Notation 128

4.3 Hilbert Space 136

4.4 Observables and Operators 138

4.5 Matrix Representation of Operators 141

4.6 Hermitian and Unitary Operators 146

4.7 Change of Basis and Unitary Transformations 155

4.8 The Projection Operator 158

4.9 Coordinate and Momentum Representations of the State Vector and the

Schrödinger Equation 161

4.10 Basic Postulates of Quantum Mechanics 168

4.11 Generalized Heisenberg Uncertainty Relation 171

4.12 Time-evolution Operator and Pictures of Quantum Mechanics 175

4.13 Algebraic Treatment of One-dimensional Harmonic Oscillator 179

Homework Problems 185

Chapter 5: Quantum Mechanics in Three Spatial Dimensions 187

5.1 Three-dimensional Schrödinger Equation in Cartesian Coordinates 187

5.2 The Free Particle Solution in Cartesian Coordinates 189

5.3 The Infinite Rectangular Well Potential 191

5.4 Schrödinger Equation in Spherical Coordinates 192

5.5 Spherically Symmetric Potentials and Separation of Variables 194

5.6 Solution of the Angular Part of the Schrödinger Equation in Spherical

Coordinates 195

5.7 Solution of the Radial Part of the Schrödinger Equation in Spherical

Coordinates 197

5.8 The Free Particle Solution in Spherical Coordinates 199

5.9 The Infinite Spherical Well Potential 201



Contents ix

5.10 The Finite Spherical Well Potential 203

5.11 The Hydrogen Atom 206

5.12 The Isotropic Harmonic Oscillator in Spherical Coordinates 230

Homework Problems 235

Chapter 6: Quantum Mechanical Theory of Orbital Angular Momentum 239
6.1 The Angular Momentum Operators in Cartesian Coordinates 239

6.2 Commutation Relations, Measurement and Uncertainty 240

6.3 The Eigenvalues of L̂2 and L̂z 243

6.4 The Angular Momentum Operators in Spherical Coordinates 246

6.5 The Eigenfunctions of L̂2 and L̂z 248

6.6 Space Quantization 255

6.7 Matrix Representation of Angular Momentum Operators 258

Homework Problems 263

Chapter 7: Simple Magnetic Field Effects 266
7.1 The Schrödinger Equation for a Spinless Charged Particle in an

Electromagnetic Field 266

7.2 The Case of a Constant Magnetic Field 268

7.3 The Normal Zeeman Effect 269

7.4 Transformation of the Wave Function under Gauge Transformation 272

7.5 The Aharonov–Bohm Effect 273

7.6 Free Electrons in a Magnetic Field: Landau Levels 277

Homework Problems 279

Chapter 8: Quantum Mechanical Theory of the Spin Angular Momentum 281
8.1 Spin 281

8.2 Spin Operators and their Commutation Relations 282

8.3 Spin and Pauli Matrices 283

8.4 Spin Precession in a Uniform External Magnetic Field 294

Homework Problems 297

Chapter 9: Addition of Angular Momenta 298
9.1 General Theory and the Clebsch–Gordan Coefficients 298

9.2 Calculation of Clebsch–Gordan Coefficients 304

9.3 Algebraic Addition of the Orbital and the Spin Angular Momenta 310

9.4 Vectorial Addition of the Orbital and the Spin Angular Momenta for an

Electron 315

Homework Problems 317



x Contents

Chapter 10: Quantum Mechanics of Many-Particle Systems 319
10.1 General Theory 319

10.2 System of Independent and Distinguishable Particles 321

10.3 System of Identical Particles 325

10.4 Exchange Degeneracy 326

10.5 Symmetric and Anti-symmetric Wave Functions and the Pauli Exclusion

Principle 327

Homework Problems 345

Chapter 11: Symmetry and Conservation Laws 347
11.1 Transformation of the Wave Function under Coordinate Transformations 348

11.2 Group of Symmetry of the Schrödinger Equation and the Conservation Laws 351

11.3 Homogeneity of Time and Space: Conservation of Energy and Momentum 355

11.4 Isotropy of Space: Conservation of Angular Momentum 356

11.5 Symmetry of the Hamiltonian and Degeneracy 358

11.6 Space Inversion Symmetry 360

11.7 Time Reversal Symmetry and Time Reversal Operator 364

11.8 Kramers’ Degeneracy and Kramers’ Theorem 370

Homework Problems 371

Chapter 12: Relativistic Generalization 372
12.1 Lorentz Transformations 372

12.2 Klein–Gordon Equation 381

12.3 Properties and Physical Interpretation 384

12.4 Electrically Charged Spin Zero Particle and Interaction with the

Electromagnetic Field 385

12.5 The Dirac Equation 386

12.6 Relativistically Covariant Form of Dirac Equation 391

12.7 Properties of γ Matrices 392

12.8 Form Invariance of Dirac Equation under Lorentz Transformations 398

12.9 Free-Particle Solution of Dirac Equation 402

12.10 Spin. Interpretation of the Negative Energy Solutions 406

Homework Problems 409

Appendix A: Fundamental Constants 413

Appendix B: Useful Integrals 414

Appendix C: Dirac Delta Function 416

Appendix D: Important Formulae and Equations 419

References 423

Index 425



Figures

1.1 The energy density of a blackbody radiator as a function of frequency ν for

three different temperatures T = 1000K, 1500K and 2000K. 3

1.2 The energy density of a blackbody radiator as a function of frequency ν .

The solid line represents the experimental curve, while the dashed lines

correspond to the Rayleigh–Jeans and Wien’s formulae, respectively. 4

3.1 Various possibilities for the bound and scattering states of a particle, with

total energy E, moving in an arbitrary one-dimensional potential V (x). 56

3.2 The snapshot of a localized wave packet. 61

3.3 The representative shape of an infinite potential well V (x) of width a. E is

the total energy of the particle trapped in the potential. 62

3.4 Spatial parts of the wave functions for the first three stationary states of a

particle in the infinite square well potential with a = 1. 63

3.5 (a) Infinitesimal volume, (b) Cylinder of unit crosssection and length ν . 74

3.6 The representative shape of a finite potential well V (x) of depth V0. 81

3.7 The graphical solutions for the finite square well potential: They are given

by the points of intersection of the curves
√

R2−α2
n with αn tan (αn) (solid

lines) and −αn cot (αn) (dotted lines). 84

3.8 One-dimensional potential barrier of width a and height V0. 89

3.9 A general one-dimensional potential barrier V = V (x). 93

3.10 This is the sketch of a representative periodic potential with a separation of

a between the peaks of width b. 114

3.11 A schematic representation of the allowed and forbidden energy bands. 118

5.1 Spherical system of coordinates (r,θ ,ϕ). r̂, θ̂ , and ϕ̂ are the unit vectors

along the r, θ and ϕ axes, respectively. 193

5.2 Energy levels and transitions between them for the hydrogen atom. 224

xi



xii Figures

6.1 Graphical representation of the quantization of the direction of�L for � = 1,

where the radius of the sphere is equal to L =
√

2h̄. 256

7.1 Zeeman effect in an external magnetic field. 271

7.2 Closed path traversed by the particle in the field-free region. 275

7.3 The electron interference experiment in which the electron cannot penetrate

into the region of the magnetic field. 276

8.1 Schematic representation of the Stern–Gerlach experiment. 284

9.1 Semi-classical model for the vectorial addition of orbital and spin angular

momenta. 316

10.1 One of the four possible configurations of the system with two of the

fermions in the single-particle ground state with n = 1 and the third fermion

in the single-particle first excited state with n = 2. 342

10.2 One of the four possible configurations of the system with two of the

fermions in the single-particle first excited state with n = 2 and opposite

spins and the third fermion in the single-particle ground state with n = 1

and spin up. 343

10.3 Distribution of particles among the energy states for the system of two spin-

1/2 fermions in a common one-dimensional harmonic oscillator potential:

(a) in the ground state and (b) in the first excited state. 344

11.1 Invariance of a square under discrete rotations and that of a sphere under

continuous rotations, about the respective axes of symmetry. 347

11.2 The schematic illustration of double degeneracy of energy states: The two-

fold degeneracy of the states I and II is essential, while the double degeneracy

of energy states at the point P is accidental. 360

12.1 The standard configuration of two inertial frames with K′ in rectilinear

motion with respect to the frame K along the positive x direction at a

constant speed V . 373

12.2 Schematic plot of the energy levels for free particles described by the Dirac

equation. 409



Tables

5.1 The first few radial wave functions of hydrogen. 222

5.2 The first few Laguerre polynomials, Lq(x). 223

5.3 The first few associated Laguerre polynomials, Lp
q−p(x). 224

6.1 The first few associated Legendre functions. 252

6.2 The first few spherical harmonics. 252

xiii





Preface

The given book presents an introduction to the basic concepts and mathematical tools of

quantum mechanics. It is based on the material that I have been using in teaching the first

course on quantum mechanics to the undergraduate and M.Sc. students at I. I. T. Delhi.

The last chapter on relativistic generalization of quantum mechanics does not constitute a

part of the usual course and has been added for those who wish to have some basic ideas

of relativistic quantum mechanics.

In presenting the material, I have taken into account the feedback of the students about

the conceptual as well as the mathematical difficulties faced by them during the course. As

a result, I have tried to be as simple as possible. Therefore, I might appear to be too simple

and repetitive at times and I hope the knowledgeable reader will pardon me for that.

The book starts with the basics of quantum mechanics in the traditional way by using

the fundamental tools of mathematical analysis with an emphasis on the physical

explanation for the mathematical treatment of the topics. This part includes the

introduction to the concept of the state of a quantum mechanical system, operators and

their algebra, the basic postulates of quantum mechanics and the solution of the

Schrödinger equation for important one-dimensional systems. The algebraic formalism in

the traditional language of Dirac is then introduced and the entire earlier material is

reformulated in this language so as to make the reader comfortable with the modern

language of quantum mechanics. In the later chapters of the book, I deal with the

three-dimensional problems, hydrogen atom, quantum mechanical theory of orbital as

well as spin angular momentum, and many particle systems. Simple effects related to the

quantum mechanical treatment of the motion of a charged particle in the presence of a

magnetic field are also presented. The basic concepts related to the symmetries of a

system and the corresponding laws of conservation are then introduced and developed. In

particular, the relationship between the fundamental quantum mechanical operators and

the generators of the continuous groups of symmetries of spacetime are established and

discussed. The book ends with an introduction to relativistic quantum mechanics.

xv
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Chapter 1

Introduction

Before the advent of quantum mechanics, classical physics studied the universe as a

system consisting of matter and radiation. Matter was supposed to be made up of tiny

building blocks called particles whose motion in space and time was assumed to be

governed solely by the laws of mechanics formulated by Newton. The state of a classical

system at a given instant of time, t0, was completely defined by prescribing its position

vector,�r0, and momentum, �p0. For any t > t0, this state was uniquely determined by�r(t)
and �p(t), the solutions of Newton’s equations of motion with the initial conditions

�r(t0) =�r0 and �p(t0) = �p0.

Radiation, on the other hand, was assumed to be governed by the laws of

electromagnetism formulated in a unified manner by James Clark Maxwell. The

dynamical variables of the radiation field were the components of the electric field, �E, and

the magnetic field, �B, at every point in space. The spatio-temporal evolution of these fields

was governed by Maxwell’s equations. Unlike matter, the radiation field consisted of

waves, with their characteristic properties exhibited in the phenomena of interference and

diffraction.

Until the end of the nineteenth century, both these theories were on firm footings. The

results of the kinetic theory of gases and statistical thermodynamics made it possible to

verify qualitatively and also quantitatively the basic predictions of this corpuscular theory

of matter. Besides that, all the contradictions that arose between the corpuscular theory

and the wave theory of radiation were overcome by Huygens and Fresnel whose wave

theory of light enabled one to explain all the phenomena involving light, including

geometrical optics. At this stage, it was firmly believed that all phenomena in physics

could be satisfactorily explained in the general framework of matter–radiation theory. If,

in some cases, the explanation was not possible, the blame was put on the mathematical

difficulties involved in the solution of the problems.

However, towards the end of the nineteenth century and the beginning of the twentieth

century, a number of experiments, which were aimed at probing the atomic and

sub-atomic structures of matter, were carried out. The results of these experiments

strongly suggested a non-classical behaviour of matter at the microscopic level. Precisely

1



2 Fundamentals of Quantum Mechanics

speaking, two major groups of phenomena emerged that could not be comprehended by

classical physics. The first was related to the existence of discrete energy levels for atoms

(discrete physical characteristic up against a continuous one in classical physics) and the

second was related to the so-called wave–particle dualism which appeared both in the

behaviour of light as well as in the behaviour of the then-known elementary particles of

matter. The physical phenomena underlying these experimental observations could not be

explained on the basis of the classical framework of matter–radiation theory. As a result, it

was felt that a new physical insight, radically different from the traditional one, was needed

to explain the physical phenomena behind those, seemingly unusual, experimental results.

As we know now, the result was a new physical theory called quantum mechanics.

In the rest of this Chapter, we shall dwell upon some of the key phenomena that gave a

decisive jolt to the foundations of classical physics and played the most crucial role in the

development of quantum mechanics.

1.1 The Blackbody Radiation

The radiation emitted by a body due to its temperature is called thermal radiation. In

general, the spectral distribution in the thermal radiation emitted by a hot body depends

on its composition. However, experiments show that there is a class of hot bodies whose

spectra of thermal radiation have a universal character. Such hot bodies are known as

blackbodies. Blackbodies are bodies with surfaces that absorb all of thermal radiation

incident on them.

An important example of a blackbody is a cavity with a small hole on the surface.

Any radiation incident upon the hole enters the cavity and undergoes a very large number

of reflections off the walls of the cavity. In this process, it gets trapped and eventually

absorbed by the walls before it can escape through the hole. Thus, the hole is equivalent to

a surface that is a perfect absorber of radiation, like the surface of a blackbody.

Let us now assume that the walls of a cavity with a small hole is heated uniformly to

a temperature T . Clearly, the interior of the cavity will be filled by the thermal radiation

from the walls of the cavity. A small amount of radiation from the interior will fall on the

hole and escape outside. The hole now acts as an emitter of thermal radiation. As discussed

earlier, the hole has all the properties of the surface of a blackbody and hence the radiation

from the hole of the cavity is called blackbody radiation.

The experimental data about blackbody radiation for various objects show that, at

equilibrium, the radiation emitted has a well defined, continuous energy distribution and

for each frequency, it is characterized by a quantity u(ν ,T ), which is called the energy

density. It is defined as the energy content per unit volume per unit frequency interval of a

cavity at temperature T . u(ν ,T ) does not depend on the chemical composition of the

object nor does it depend on its shape. It depends only on the temperature of the walls of

the cavity. Apart from that, the energy density shows a pronounced maximum at a given

frequency, which increases with temperature. The experimentally observed dependence of

u(ν ,T ) on frequency, ν , is shown in Figure 1.1 for three different temperatures.
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In 1879, J. Stefan, on the basis of his experimental data, established the following

empirical expression for the total power per unit area emitted by a hot body at

temperature T :

P = σT 4, (1.1.1)

u ( ) (× 10      joule/m – Hz)n
3–17

T

3

2

1

1 2 3

2000° K

1500° K

1000° K

n (× 10    Hz)14

Figure 1.1 The energy density of a blackbody radiator as a function of frequency ν for
three different temperatures T = 1000K,1500K and 2000K.

where σ = π2k4
B/(15h̄3c3) = 5.67×10−8 W m−2K−4 is the Stefan–Boltzmann constant.

The theoretical derivation of Stefan’s law, given by (1.1.1), was provided by Boltzmann

in 1884 by combining the thermodynamical calculations with the principles of Maxwell’s

electrodynamics.

There were various attempts to explain the continuous nature of the blackbody

radiation. In 1894, Wien, using the Stefan–Boltzmann law (1.1.1), obtained the following

formula for the energy density distribution u(ν ,T )

u(ν ,T ) = α ν3 e−βν/T , (1.1.2)

where α and β are constants that can be adjusted to fit the experimental data. Wien’s

formula explains the experimental data pretty well at high frequencies but fails miserably

at low frequencies.
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Later, Rayleigh and Jean attempted the theoretical modelling of the blackbody radiation

on the basis of the classical radiation theory and the principle of equipartition of energy

among the degrees of freedom. The resultant formula

u(ν ,T )dν =
8π kBT

c3
ν2, (1.1.3)

for the energy density of radiation, where kB is the Boltzmann constant and c is the speed

of light in free space, is known as the Rayleigh–Jeans formula. It is clear that the formula

fails to explain the experimental data at high frequencies.

In Figure 1.2, we have depicted, with dashed lines, the energy density as a function of

the frequency of radiation given by the Rayleigh–Jeans formula and also by Wien’s

formula. The solid curve in Figure 1.2 shows the experimentally obtained result for uT (ν)
at T = 1500K. The discrepancy between the experimental result and the theoretical

prediction is quite clear from the figure.

2

1

1 2 3

n (× 10    Hz)14

u ( ) (× 10      joule/m – Hz)n
3–16

T

Rayleigh-jeans Wien’s law

1500° K

Figure 1.2 The energy density of a blackbody radiator as a function of frequency ν .
The solid line represents the experimental curve, while the dashed lines
correspond to the Rayleigh–Jeans and Wien’s formulae, respectively.

All attempts, based on statistical thermodynamics and electromagnetic theory, to

explain the continuous nature of the spectral distribution of thermal radiation over the

entire range of frequencies resulted into utter failure until 1901 when Max Planck

formulated his celebrated theory of blackbody radiation. He showed that the experimental

curve could be explained only if one postulated that the energy of the radiation, emitted

by the walls of the cavity, was quantized, that is, it was emitted only in multiples of the
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quantity hν , where h = 1.63× 10−34 J s. is a universal constant. On the basis of his

hypothesis of quantized radiation, Planck derived the spectral distribution function

u(ν ,T ) =
8πν2

c3

hν
ehν/kBT−1

, (1.1.4)

valid for the entire range of frequency. In terms of the angular frequency, ω = 2π ν ,

Planck’s formula can be written as

u(ω ,T ) =
ω2

π2c3

h̄ω
eh̄ω/kBT−1

. (1.1.5)

At a given temperature T , the quantity u(ω ,T )dω is the energy density in the frequency

interval [ω ,ω + dω ].
In the low frequency limit, when hν � kBT , we have eh̄ω/kBT ≈ 1+ h̄ω/kBT and we

get

u(ω ,T ) =
ω2

π2c3
, kBT or u(ν ,T )dν =

8π ν2

c3
kBT , (1.1.6)

which is nothing but the Rayleigh–Jeans formula (1.1.3). On the other hand, in the high

frequency limit, when hν � kBT , Planck’s formula reduces to Wien’s formula:

u(ω ,T ) =
h̄ω3

π2c3
e−h̄ω/kBT . (1.1.7)

Moreover, if we integrate equation (1.1.3) over all frequencies, then using the well known

result

∫ ∞

0

x3

ex−1
dx =

π5

15
, (1.1.8)

we recover Stefan’s formula.

Thus, Planck’s hypothesis of quantized radiation was a complete departure from the

notions of classical physics and marked the beginning of a new era in physics, the era of

quantum physics.

1.2 The Photoelectric Effect

It was experimentally established that irradiation of metallic surfaces with light led to the

ejection of electrons. This phenomenon of ejection of electrons from a metallic surface
under the action of light is known as photoelectric effect. The phenomenon had some

peculiar properties: (a) when the frequency of the irradiating light was less than the

so-called threshold frequency (ν0), irrespective of the intensity of the irradiating light, no

electrons could be ejected, (b) irrespective of the intensity of radiation (high or low),
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electrons were ejected instantaneously provided the frequency of radiation was greater

than the threshold frequency and (c) the kinetic energy of the ejected electrons depended

on the frequency but not on the intensity of the irradiating light.

Note that the threshold frequency is a characteristic of a given metal and is defined as

ν0 = Φ/h, where Φ is the work function of the metal and h Planck’s constant. The work

function is the minimum energy required for an electron to overcome the attractive forces

that bind it to the metal surface.

The dependence of the photoelectric effect on the frequency of the falling radiation,

which must be greater than the threshold frequency, could not be explained in the

framework of classical physics. According to classical wave theory of light, the intensity

of light is proportional to the square of the amplitude of the oscillating electric field.

Hence, light of any frequency with sufficient intensity should be able to supply the

required amount of energy for the electrons to overcome the potential barrier (work

function) and become free. However, this was not the case in reality.

The second important point was the instantaneous ejection of electrons from the

surface. According to classical physics, even if the falling radiation is weak, the electron

would continuously absorb energy from it and in the process would be able to accumulate

enough energy to leave the surface of the metal. Hence, according to classical physics, if

the radiation is weak, the photoelectric effect should take some time before it shows up.

However, no detectable time lag has ever been measured.

In 1905, Einstein used Planck’s concept of quantized radiation and formulated the

theory of photoelectric effect. He assumed light to be consisting of discrete quanta

(photons), each of energy hν , ν being the frequency of light. When a metal is irradiated

by light, an electron absorbs a photon (a quantum of energy) and gains an amount of

energy equal to hν irrespective of the intensity of the falling light. If this amount of

energy is greater than the work function of the metal, the electron will be ejected. If the

amount of energy is not greater than the work function of the metal, the electron will not

be able to overcome the potential barrier. Therefore, the photoelectric effect can take

place only if hν ≥Φ. As a result, Einstein’s fundamental equation for photoelectric effect

reads:

hν = Φ+K, (1.2.1)

where K is the kinetic energy of the ejected electron. Einstein’s theory of photoelectric

effect explained the experimental data completely, including the linear increase in the

kinetic energy of the electrons with the increase in the frequency of the irradiating light.

The latter is evident from the following equation

K = h(ν−ν0), (1.2.2)

representing the dependence of the kinetic energy K on frequency ν . It is clear from (1.2.2)

that K = 0 for ν = ν0. This shows that a photon of frequency ν0 has just enough energy to

make an electron free, that is, to make the electron overcome the work function barrier. For
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an electron to leave the metallic surface with some non-zero kinetic energy, the frequency ν
of the irradiating light must be greater than ν0. This explains why the frequency of the light

falling on a metal surface should be greater than the threshold frequency for photoelectric

effect to take place. It also explains the dependence of the kinetic energy of the ejected

electrons on the frequency of light rather than on its intensity. So far as the discrepancy

regarding the time lag is concerned, this is explained by the fact that the energy is provided

in discrete quanta rather than continuously. Therefore, if the quantum of energy hν is

greater than the work function, it will be absorbed by an electron and the electron will be

ejected immediately; no time lag should be observed.

In summary, Einstein’s theory of photoelectric effect and its subsequent experimental

verification gave strong evidence in favour of Planck’s hypothesis of quantized radiation

and showed that light, in general, consists of discrete particles called photons (corpuscles)

of finite energy. This was contrary to the classical description, according to which light of

a given frequency was nothing but a continuous electromagnetic wave. A very important

point to be noted here is that, besides explaining the peculiar properties of photoelectric

effect, Einstein’s theory clearly demonstrated the characteristic wave–particle duality of

the micro-world.

1.3 The Bohr Model of an Atom

Rutherford’s nuclear model of an atom consisting of a positively charged nucleus with

electrons spread around it underwent rigorous experimental verification and left little doubt

about its validity except that it did not guarantee the stability of the atom. For instance, if

the electrons are supposed to be in a stationary arrangement, there is no stable configuration

that would prevent the electrons from being pulled into the nucleus by the Coulomb force

of attraction. On the other hand, if we assume the electrons to be orbiting the nucleus, in

a similar way as the planets revolve around the sun in our solar system, they would be in

an accelerated motion and being charged particles, they would emit energy in the form of

electromagnetic radiation. As a result, the electrons would spiral into the nucleus.

To overcome these difficulties associated with the stability of atoms in the Rutherford

model, Niels Bohr developed his model of an atom on the basis of a set of postulates. He

assumed the electrons to be moving in circular orbits around the positively charged

nucleus under the attractive Coulomb force. He, contrary to the principles of classical

mechanics that allowed an electron to have a infinite set of circular orbits, postulated that

electrons could move only in a selected discrete set of orbits for which its angular

momentum was quantized. He assumed the angular momentum, L of an electron in such

orbits to be an integral multiple of Planck’s constant h, that is, L = nh̄, where h̄ = h/2π
and n is a positive integer. Bohr also postulated that an electron in any of these allowed

discrete orbits does not radiate and hence, its total energy E is conserved. These Bohr

orbits are called stationary orbits.

Finally, in an attempt to explain the peculiarities involved in the discrete emission and

absorption of radiation by atoms, Bohr postulated that if an electron made a discontinuous

transition from one stationary orbit with energy Ei to another stationary orbit with energy
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E f such that Ei > E f , it must emit energy in the form of electromagnetic radiation (photon)

whose frequency, ν , is given by

ν =
Ei−E f

h
. (1.3.1)

Using these postulates, Bohr derived his celebrated formula for the total energy of an

electron of mass me and charge −e in an atom with a positively charged nucleus of charge

+Ze and mass M. It is given by

En = − meZ2e4

32π2ε2
0 h̄2

1

n2
, (1.3.2)

where ε0 is the permittivity of free space. We thus see that, according to Bohr, the energy

of an electron in an atom is quantized and its various stationary states are characterized by

the integer n, which is there in the condition for quantized angular momentum. The integer

n, as we shall see later, is called the principal quantum number.

As we know today, Bohr theory of atom was not a consistent quantum theory in the

sense that it imposed an ad hoc quantization condition on otherwise continuous classical

variables. However, it did establish the discrete nature of physical characteristics of

microscopic entities and strengthened the belief that the new microscopic theory of matter

must inevitably incorporate this discreteness in its formalism.

1.4 The Compton Effect

The increase in the wavelength of X-rays after scattering off a free electron is known as

Compton effect. The experiment was first conducted by Compton in 1923, who found that

the wavelength of the scattered radiation was larger than the wavelength of the incident

radiation. This was contrary to the classical theory of radiation according to which the

incident and the scattered radiations should have the same wavelength. In order to explain

the experimental results, Compton assumed that the X-ray beam was not a wave of

frequency ν but a bunch of photons, each with energy E = hν . He treated the

phenomenon as an elastic scattering of photons off a free electron. Qualitatively,

according to Compton, the recoil photons emerging from the target constituted the

scattered radiation and, since a photon transfers some of its initial energy, Ei, to the

electron it bounces off, the scattered photon must have a lower final energy E f . This

means that it must have a lower final frequency ν f and consequently a larger final

wavelength λ f . Compton applied energy and momentum conservation to obtain the

required theoretical expression for the shift in the wavelength of the scattered photons.

Consider a photon of energy Eγ = hν and momentum pγ = Eγ /c = hν/c, where c is

the speed of light in vacuum, undergoing an elastic collision with an electron which is

initially at rest. Let the momentum of the photon, after scattering at an angle θ , be �p ′γ .
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If the recoil momentum of the electron after scattering is �pe, the conservation of momentum

yields:

�p γ = �p ′γ +�pe. (1.4.1)

On the other hand, if E ′γ = hν ′ is the energy of the scattered photon and me the rest mass

of the electron, then energy conservation leads to

hν +Ee0 = E ′γ +Ee, (1.4.2)

where Ee0 = mec2 and Ee =
√

p2
ec2 +m2

ec4 are the energy of the electron before and after

the collision, respectively. After a bit of algebra, involving equations (1.4.1) and (1.4.2),

we arrive at

hν +mec2 = hν ′+ h

√
ν2 +ν ′2−2νν ′ cosθ +

m2
ec4

h2
. (1.4.3)

Dividing (1.4.3) throughout by h, we obtain

ν−ν ′+
mec2

h
=

√
ν2 +ν ′2−2νν ′ cosθ +

m2
ec4

h2
(1.4.4)

Squaring both sides of (1.4.4) and simplifying, we end up with

1

ν ′
− 1

ν
=

1

mec2
(1− cosθ ) =

2h
mec2

sin

(
θ 2

2

)
. (1.4.5)

Finally, converting to wavelength, we have

Δλ = λ ′ −λ = 4πλc sin

(
θ 2

2

)
, (1.4.6)

where λc = h/2πmec = 3.86×10−13 m is the Compton wavelength of the electron. This

formula, which explains the experimental results, shows that the change in wavelength

depends only on the angle of scattering θ and not on the wavelength of the incident

radiation. The Compton effect confirmed the corpuscular behaviour of light that had

surfaced as a surprise after Einstein formulated his theory of photoelectric effect.

The final and decisive impetus was provided by Louis in 1924, who put forward a

courageous hypothesis that every material particle, besides its usual corpuscular properties

described by Newton’s equations of motion, also possesses properties that we assign to a

wave. According to him, a free particle with momentum �p can be represented by a plane

wave

ψ(�r, t) = A ei(�k·�r−ωt), (1.4.7)
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where A is a constant. The wave vector�k and the angular frequency ω of the wave are

related to the momentum �p and the energy E of the particle by the following expressions

�k =
�p
h̄

, ω =
E
h̄

, (1.4.8)

where h̄ is equal to Planck’s constant divided by 2π . de Broglie’s hypothesis was

experimentally confirmed by Davisson–Germer in 1927.

All these peculiar and scientifically new developments at the end of the nineteenth and

the beginning of the twentieth centuries inspired the discovery of a new physical theory

capable of describing the phenomena occurring at the microscopic scales. It was

formulated in two different forms: Matrix mechanics (Heisenberg 1925) and wave
mechanics (Schrödinger 1926). Later, they were shown to be equivalent. This new theory

was universally called quantum mechanics.

Example 1.4.1: A light source of wavelength λ1 illuminates a metal and ejects

photoelectrons with a maximum kinetic energy of 2 eV. If the same metal is irradiated

with another source that emits light at a wavelength half that of the first source, what will

be the maximum kinetic energy of the ejected electrons? The work function of the metal

is 1 eV.

Solution: According to Einstein’s equation of photoelectric effect

Kmax =
hc
λ
−Φ, (1.4.9)

where K stands for the kinetic energy of the ejected electrons, h ≈ 6.62× 10−34 J s is

Planck’s constant, c is the speed of light in free space, λ is the wavelength of the light

incident on the metal and Φ is the work function of the metal. In the given case, we have

K1max =
hc
λ1
−Φ, (1.4.10)

K2max =
hc
λ2
−Φ =

2hc
λ1
−Φ. (1.4.11)

From (1.4.10), we have hc/λ1 = K1max +Φ, and hence

K2max = 2K1max +Φ. (1.4.12)

Thus, K2max = 4+ 1 = 5 eV.

Example 1.4.2: A 500 MeV photon undergoes a head-on collision with a proton (Mc2 =

936 MeV) at rest. Find the maximum loss of energy in the process.
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Solution: Let the initial and the final momenta of the photon be +p and p′ respectively.

Since the proton is initially at rest, momentum conservation requires its final momentum

to be (p− p′). The relativistic formula for energy conservation gives

pc+Mc2 = |p′|c+
√
(Mc2)2 +(p− p′)2c2, (1.4.13)

where we have taken into account that the final momentum p′ may be positive as well as

negative. If p′ > 0, then we get

(pc− p′c+Mc2)2 = (Mc2)2 +(p− p′)2c2, ⇒ 2M(p− p′)c3 = 0. (1.4.14)

This means that p = p′ and the proton remains at rest. Therefore, there is no energy loss.

However, if p′ < 0, then the final proton momentum is (p+ |p′|) and we have

(pc−|p′|c+Mc2)2 = (Mc2)2+(p+ p′)2c2, ⇒ 2Mc(p−|p′|) = 4p|p′|. (1.4.15)

This gives the magnitude of the final momentum of the photon to be

|p′|= Mcp
Mc+ 2p

=
p

1+ 2p/Mc
. (1.4.16)

As a consequence, the energy loss is given by

ΔE = c(p−|p′|) = 2(cp)2

Mc2
· 1

1+
2cp
Mc2

. (1.4.17)

Putting the values cp = 500 MeV and Mc2 = 936 MeV, we obtain ΔE ∼= 258 MeV.

Example 1.4.3: Muonic hydrogen consists of a muon (a particle just like an electron but with

a mass mμ = 105.7 MeV/c2) bound to a proton. Use the Bohr model to find the energy and

radius of the lowest orbit, and the wavelength of the n = 2→ n = 1 transition.

Solution: For the energy of the lowest orbit, we use the Bohr formula

E = −
(

e2

4πε0

)2 m
h̄2

= −
(

1

4πε0

e2

h̄c

)2

mc2. (1.4.18)

Taking into account that, in general, the nucleus is also moving, we use the reduced mass

for the muon-proton atom

μ =
mμmp

mμ +mp
=

105.7×638.28

105.7+ 638.28
MeV/c2 = 94.998 MeV/c2. (1.4.19)
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Hence, the energy is given by

E = −1

2

(
1

137

)2

94.998 MeV/c2 = −2531 eV. (1.4.20)

The radius of the orbit is

r =
(

4πε0

e2

)2 h̄2c2

μc2
=

(
1

1.44 eV nm

[1240 eV nm/2π ]2

94.998 MeV

)
= 2.85 nm. (1.4.21)

For n = 2→ n = 1 transition, the energy of the photon is given by

Eγ = E2−E1 = −
(

1

4
−1

)
E1 = −3

4
E1 =

3

4
2531 eV = 1898 eV. (1.4.22)

The wavelength is therefore

λ =
h̄c
E

=
1240 eV nm

1898 eV
= 0.653 nm. (1.4.23)

Homework Problems

1. The work function for photo-effect in potassium is 2.25 eV. When a light of

wavelength 3.6× 10−7 m falls on the potassium atom, calculate: (a) the stopping

potential Vmax of the photoelectrons and (b) the kinetic energy and the velocity of the

fastest of the ejected electrons.

2. A photon with 104 eV energy collides with a free electron at rest and is scattered

through an angle of 60◦. Calculate (a) the change in energy, frequency and wavelength

of the photon, and (b) the kinetic energy, momentum and direction of the electron after

the collision.

3. Calculate the de Broglie wavelength for an electron with a kinetic energy of 20 eV and

200 keV.

4. Consider an atom with a nucleus consisting of 2 protons, and instead of an electron, a

muon (207 times as heavy as an electron, or mμ = 207×me). Calculate the energy of

the ground state and the first excited state, and the wavelength of light associated with

the transition.

5. A 100 keV photon undergoes Compton scattering at an angle of 40◦. Find the energy

of the scattered photon, and the energy and angle of the recoil electron.



Chapter 2

The Postulates of Quantum Mechanics

The basic questions that quantum mechanics ventures to answer are the following:

I. How can one define the state of a quantum mechanical system at a given time t?

II. How can one represent or describe a measurable physical quantity (position,

momentum, energy, angular momentum etc) in quantum mechanics?

III. How can one calculate the values of various measurable physical quantities in a given

quantum state?

IV. Do all possible measurements of an observable in a given state lead to the same

numerical value? If not, how do we define the value of an observable in a given

state?

V. How, knowing the state of the system at any given instant of time t0, can one

determine the state at any later instant t > t0?

In what follows, we shall discuss these questions and the possible answers to them. This

will eventually lead us to the basic theory of quantum mechanics. Let us start with the

definition of a state of a microscopic system.

As in classical mechanics, we have to first decide how we are going to define the state

of a quantum mechanical system (particle) at a given instant of time and then determine

the equation that governs the time-evolution of the state. In classical mechanics, the state

of a particle at a given instant of time is completely defined by specifying its position and

momentum at that instant. In quantum mechanics, however, due to some specific

properties (which will be discussed later), it is impossible to determine both the position

and momentum of a particle simultaneously and accurately at a given instant of time.

Therefore, for a quantum system we need a new, completely different from the classical

point of view, definition of state. It is done, as we shall see, by introducing a mathematical

object called the wave function.

Note that in this entire book, we shall use the word particle to denote not only a particle,

but also a given quantum mechanical system. That is, the word ’particle’ is synonymous to

system and vice versa.

13
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2.1 Specification of State. Statistical Interpretation

Postulate 1: The state of a quantum system at a given instant of time, t, is completely

defined by a function, ψ(�r, t), of position�r = {x,y,z} and time, t.
It is called the wave function of the particle. The wave function is a complex-valued

function and contains information about the position of the particle at time t.

Statistical Interpretation: The wave function ψ(�r, t) does not have any physical meaning

of its own. However, it has been accepted to consider it as the probability amplitude in the

sense that, if a measurement of the position of the particle is carried out, the probability that

at a given instant of time, t, the particle will be found in an infinitesimal volume element,

ΔV = dx dy dz, is given by |ψ(�r, t)|2 dV . This is the so-called statistical interpretation of

the wave function proposed by Max Born. It is then obvious that the quantity |ψ(�r)|2 plays

the role of the probability density for locating the particle in space at a given instant of

time.

There are two important points to be noted here. Firstly, if we multiply ψ by a complex

number eiα , where α is a real constant, its physical meaning does not change because |ψ|2
remains unchanged. Consequently, the probability, P, of locating the particle in a given

volume V ,

P =
∫

V
|ψ(�r, t)|2 dV , (2.1.1)

also remains unchanged.

Now, since the probability of finding the particle at some point in space at a given

instant of time is definitely equal to 1, if the volume of integration, V , in the above formula

is replaced by all space (i.e., the entire universe), we arrive at:

∫
all space

|ψ(�r, t)|2 dV =
∫ +∞

−∞
dx
∫ +∞

−∞
dy
∫ +∞

−∞
dz |ψ(�r, t)|2 = 1. (2.1.2)

Equation (2.1.2) is known as the normalization of the wave function. This condition of

normalizability requires the wave function to be square-integrable. As a particular case,

the square–integrability requires the wave function to vanish at spatial infinity:

lim
(x,y,z)→±∞

ψ(x,y,z, t) = 0. (2.1.3)

In general, an acceptable wave function must satisfy the following conditions:

(a) The wave function must be single-valued.

(b) It must be continuous in the entire region of its arguments (that is, of the independent

variables).

(c) It must be finite everywhere.

(d) The wave function must also be square-integrable.
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We shall call these as standard conditions. If a function does not satisfy even one of these

conditions, it cannot be an acceptable quantum mechanical wave function.

Before we proceed further, let us note that the set of all possible complex wave

functions, ψ(�r, t),φ (�r, t), χ(�r, t), . . ., of a quantum mechanical system forms a linear

vector space which is equipped with a scalar product. This scalar product between any

pair of functions, ψ and φ , is defined as

∫ +∞

−∞
ψ∗φ d3x≡ (ψ ,φ ), (2.1.4)

where d3x = dx dy dz. According to the standard conditions, mentioned earlier, this scalar

product has to exist, that is, (ψ ,φ ) < ∞.

Example 2.1.1: Which of the wave functions ψ(x, t) = Axe−iωt and φ (x, t) = Axe−βx2
e−iωt ,

where A, ω and β are arbitrary constants, can be an acceptable quantum mechanical wave

function?

Solution: Both the functions are single-valued and continuous. However, ψ(x, t) is not finite

everywhere and is not square-integrable:

∫ +∞

−∞
|ψ1(x, t)|2 dx = |A|2

∫ +∞

−∞
x2 dx → ∞. (2.1.5)

Hence, it cannot be an acceptable wave function. On the other hand, φ (x, t) is finite

everywhere and is also square-integrable as shown below:

∫ +∞

−∞
|ψ2(x, t)|2 dx = |A|2

∫ +∞

−∞
x2 e−2βx2

dx. (2.1.6)

The integral can be evaluated with the help of the Gaussian integral

I(α) =
∫ +∞

−∞
e−αx2

dx =
√

π
α

. (2.1.7)

If we differentiate I(α) with respect to α , we get

∫ +∞

−∞
x2 e−αx2

dx =
√

π
4α3

. (2.1.8)

In our case, α = 2β . Therefore,

∫ +∞

−∞
|ψ2(x, t)|2 dx =

√
π

32β 3
. (2.1.9)
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We see that φ (x, t) satisfies the standard conditions and, hence, is an acceptable quantum

mechanical wave function.

Example 2.1.2: Does the function,

φ (x) =
{

sin
(πx

3

)
, 0 < x < 3

0, Otherwise

represent an acceptable wave function?

Solution: The first three standard conditions are clearly satisfied by the given function. Let

us check the last condition of square-integrability. We have

I =
∫ +∞

−∞
|ψ(x, t)|2 dx =

∫ 3

0
sin2
(πx

3

)
dx. (2.1.10)

Using the trigonometrical formula cos(2x) = 1−2sin2 x, we get

I =
1

2

∫ 3

0
dx− 1

2

∫ 3

0
cos

(
2πx

3

)
dx =

3

2
− 3

4
sin

(
2πx

3

)∣∣∣∣3
0

=
3

2
< ∞. (2.1.11)

Hence, the given function satisfies all the standard conditions and is an acceptable quantum

mechanical wave function.

Example 2.1.3: The wave function of a particle is

ψ(x, t) = A e−α(x−β )2
e−iωt ,

where A is an arbitrary constant. Here, α , β and ω are known real constants. (a) Find A.

(b) Where is the particle most likely to be found?

Solution: The normalization condition for the wave function reads∫ +∞

−∞
|ψ(x, t)|2 dx = |A|2

∫ +∞

−∞
e−α(x−β )2

e−iωte−α(x−β )2
e+iωt dx

= |A|2
∫ +∞

−∞
e−2α(x−β )2

dx = 1. (2.1.12)

Changing the variable x−β to ξ , we get

|A|2
∫ +∞

−∞
e−2αξ 2

dξ = 1. (2.1.13)
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Taking the integral, we obtain√
π

2α
|A|2 = 1. ⇒ A =

(2α)1/4

π1/4
. (2.1.14)

For the extremum of the probability density, ρ = |ψ|2, we must have

dρ
dx

=
(2α)1/2

π1/2

d
dx

(
e−2α(x−β )2

)
= −(2α)1/2

π1/2
4α(x−β )e−2α(x−β )2

= 0. (2.1.15)

Equation (2.1.15) shows that x = β is the point of extremum for ρ . Since

d2ρ
dx2

∣∣∣∣
x=β

=
(2α)1/2

π1/2

[(−4α + 16α2(x−β )2
)

e−2α(x−β )2
]

x=β

= −4
(2α)1/2

π1/2
α < 0, (2.1.16)

the probability density reaches its maximal value at x = β . Therefore, the particle is most

likely to be found at x = β .

Example 2.1.4: A particle of mass m is confined to move in the region 0 < x < L. It is in a

state described by the wave function

ψ(x,0) = A
[

sin
(πx

L

)
+ sin

(
2πx

L

)]
,

where A and L are arbitrary real constants. (a) Find A. (b) Find the probability of locating

the particle in the interval L/4≤ x≤ 3L/4.

Solution: The normalization condition leads to

I = |A|2
∫ L

0

(
sin2
[πx

L

]
+ sin2

[
2πx

L

]
+ 2 sin

[
2πx

L

]
sin
[πx

L

])
dx = 1. (2.1.17)

Using the formulae cos(2x) = 1− 2sin2 x and cos (α−β ) − cos (α +β ) = 2sin(α)
sin(β ), we get

I =
|A|2

2

∫ L

0

(
2− cos

[
2πx

L

]
− cos

[
4πx

L

])
dx

+
∫ L

0
|A|2
(

cos
[πx

L

]
− cos

[
3πx

L

])
dx. (2.1.18)
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Integrating and using the identity sin
(nπx

L

)∣∣a
0
= 0, we get

A2 L = 1. ⇒ A =
1√
L

. (2.1.19)

The probability of finding the particle in the interval L/4≤ x≤ 3L/4 is given by

P =
1

2L

∫ 3L/4

L/4

(
2− cos

[
2πx

L

]
− cos

[
4πx

L

])
dx

+
1

L

∫ 3L/4

L/4

(
cos
[πx

L

]
− cos

[
3πx

L

])
dx. (2.1.20)

Taking the integrals, we finally obtain

P =
1

2L

(
− L

2π
(−1−1)− L

4π
(0−0)

)

+
1

L

(
L
π

[
1√
2
− 1√

2

]
+

L
3π

[
1√
2
− 1√

2

])
=

1

2π
. (2.1.21)

2.2 Observables and Operators

An observable, A, is a dynamical variable of a particle that can be measured. Position,

momentum, angular momentum and energy are examples of observables that we encounter

in classical mechanics. Naturally, the question arises about how to represent these in the

framework of quantum mechanics. Here, and in the following couple of subsections, we

shall discuss this problem.

Postulate 2: An observable, A, is represented by a linear and hermitian operator that is

written as Â.

An operator, Â, is a mathematical instruction, which when applied to a mathematical

object, say ψ , gives another mathematical object φ of the same nature. It is symbolically

written as Âψ = φ .

Let ψ be a usual function of one or several variables xi, i = 1,2,3, . . .: ψ(x1,x2,x3, . . .).
Then, in the given context, defining an operator means defining the mathematical

instruction(s) that must be applied to the function ψ(x1,x2,x3, . . .) to obtain a new

function φ (x1,x2,x3, . . .) of the same number of independent variables.

A simple operator, for instance, may contain the instruction for just taking the derivative

of a function. Suppose we call this operator D̂. Then, for a given function ψ(x):

D̂ψ(x) =
dψ
dx

= φ (x). (2.2.1)
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Or, in shorthand notation, we just write D̂ψ(x) = φ (x). The function φ belongs to the same

functional space to which ψ belongs. Another operator could be the instruction to obtain

a new function φ (x) by multiplying a given function ψ(x) by its independent variable x,

that is, φ (x) = xψ(x). In other words, the independent variable x can also be looked upon

as an operator. It is usually denoted by x̂. Thus, φ (x) = x̂ψ(x) = xψ(x).

Linear operators: If, for the given scalars α and β and functions ψ(x) and φ (x), the

operator Â satisfies the relation

Â (αψ(x)+βφ (x)) = α Âψ(x)+β Âφ (x), (2.2.2)

it is said to be a linear operator. If the action of an operator Â on a function φ (x) is to

multiply that function by some constant a:

Âφ (x) = a φ (x), (2.2.3)

we say that the constant a is an eigenvalue of the operator Â, and we call φ (x) an

eigenfunction of Â. An operator can have more than one eigenvalues. The set of all

possible eigenvalues of an operator constitutes the so-called eigenvalue spectrum (or,
simply spectrum) of the operator. If for every eigenvalue, there is a single eigenfunction,

the spectrum of the operator is called non-degenerate. If for a given eigenvalue, a, there

are more than one eigenfunctions, the eigenvalue a is said to be degenerate. If, for

instance, for a given eigenvalue, ak, there exist m linearly independent eigenfunctions,

then the eigenvalue ak is said to be m-fold degenerate.

Operators in quantum mechanics are, in general, complex and act in the space of

complex functions. Consequently, their eigenvalues are also, in general, complex.

2.3 Hermitian Operators

Given an operator Â, let us define an operator Â† by

∫ +∞

−∞
φ ∗(�r)

(
Âψ(�r)

)
d3x =

∫ +∞

−∞

(
Â†φ (�r)

)∗ψ(�r)d3x. (2.3.1)

The operator Â† is called the operator hermitian conjugate (adjoint) to the operator Â.

If an operator Â is equal to its hermitian conjugate operator, that is, Â† = Â, it is called

a hermitian operator. On the other hand, if Â† = −Â, then the operator Â is called anti-
hermitian.

If an operator, Â, is represented by a matrix A of appropriate dimensions, then the

hermitian conjugate operator is given by the matrix, denoted as A†, which is hermitian

conjugate to the matrix A. A† is obtained by first transposing the matrix A and then

performing the complex conjugation, that is,

A† =
[
(A)T

]∗
, (2.3.2)
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where ∗ stands for complex conjugation.

We may ask why do we use hermitian operators to represent dynamical variables in

quantum mechanics. As we shall see later, in quantum mechanics, it is postulated that if

we measure a dynamical variable A of a system in a given quantum state ψ , the result will

be one of the eigenvalues of the operator Â that represents the dynamical variable A. Since

the results of measurement are real numbers (in appropriate units), the eigenvalues of Â
must be real. That is why we have to represent a physical characteristic of a system by a

hermitian operator.

Theorem 2.3.1: The eigenvalues of a hermitian operator are real.

Proof: Consider a hermitian operator Â and its eigenvalue equation

Âψn(�r) = λnψn(�r), �r = (x,y,z). (2.3.3)

As stated earlier, λn are in general complex. Now, since Â is hermitian, we have

∫ +∞

−∞
ψ∗n (Âψn)d3x =

∫ +∞

−∞
(Âψn)

∗ψn d3x. (2.3.4)

Using the eigenvalue equation for Â, we have

(λn−λ ∗n )
∫ +∞

−∞
ψ∗n ψn d3x = 0. (2.3.5)

For the non-trivial solutions to the eigenvalue equation,
∫ +∞
−∞ ψ∗n ψn d3x �= 0 and we get:

λn = λ ∗n . Hence, λn are real.

Theorem 2.3.2: The eigenfunctions of a hermitian operator, corresponding to distinct

eigenvalues, are orthogonal.

Proof: Let us assume that the eigenvalues are non-degenerate. Consider the eigenvalue

equations for the operator Â:

Âψm = λmψm, (2.3.6)

Â|ψn〉= λnψn, (2.3.7)

where λm �= λn. Using the hermiticity of Â, we have

∫ +∞

−∞
ψ∗n (Âψm)d3x =

∫ +∞

−∞
(Âψn)

∗ψm d3x. (2.3.8)
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If we now use the eigenvalue equation for Â and the fact that the eigenvalues are real, we

have

(λm−λn)
∫ +∞

−∞
ψ∗n ψmd3x = 0. (2.3.9)

Since λm �= λn,

∫ +∞

−∞
ψ∗n ψmd3x = 0. (2.3.10)

The last equation shows that the eigenfunctions ψm and ψn are orthogonal. We can

normalize these eigenfunctions and write the content of Theorem 2.3.2 symbolically as

∫ +∞

−∞
φ ∗n φmd3x = δmn (2.3.11)

where δmn is the Kronecker delta symbol and

φi =
ψi√∫ +∞

−∞ |ψi|2 d3x
. (2.3.12)

Let us now see whether Theorem 2.3.2 holds or not for the case when an eigenvalue of Â
is degenerate. For simplicity, consider the case of two-fold degeneracy, that is, assume

that a given eigenvalue λ is two-fold degenerate. Let ψ1 and ψ2 be the two distinct

eigenfunctions corresponding to λ . Clearly, two (or more) eigenfunctions corresponding

to the same eigenvalue will be distinct, if they are linearly independent. If they are not

linearly independent, one of them will be proportional to the other and the constant of

proportionality can be absorbed in the normalization of the wave function. As a result, we

will be left with only one eigenfunction. Therefore, we shall assume ψ1 and ψ2 to be

linearly independent. Since, they are linearly independent, the linear combination

ψ = c1ψ1 + c2ψ2 (2.3.13)

where c1 and c2 are arbitrary non-zero constants, must be nonzero. We can use this fact

and the eigenfunctions ψ1 and ψ2 to construct two new mutually orthogonal eigenfunctions

corresponding to λ . Firstly, we normalize ψ1 and take it as the first eigenfunction of Â with

eigenvalue λ :

φ1 =
ψ1√∫ +∞

−∞ψ∗1 ψ1d3x
. (2.3.14)
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Consider now the linear combination

u = c21φ1 +ψ2, (2.3.15)

where c21 is an arbitrary constant, and let it be orthogonal to φ1. This allows us to determine

c21:

c21 = −
∫ +∞

−∞
φ ∗1 ψ2d3x. (2.3.16)

Thus, the function u, with c21 given by (2.3.16), is orthogonal to φ1. Finally, we normalize

u and take it as the second eigenfunction with the same eigenvalue λ :

φ2 =
u√∫ +∞

−∞u∗ud3x
. (2.3.17)

Thus, from the linearly independent eigenfunctions ψ1 and ψ2 of the two-fold degenerate

eigenvalue λ of Â, we were able to construct two new orthonormal eigenfunctions φ1 and

φ2 of Â with the same eigenvalue λ . Clearly, this procedure can easily be generalized to

the case of m-fold degeneracy (m > 2).

In view of the two theorems proved here, we shall always assume that the

eigenfunctions of a hermitian operator satisfy the orthonormality condition

(Equation (2.3.11)).

So, we have a very important and general result: The eigenfunctions of a hermitian

operator form a complete set of mutually orthonormal functions and, hence, can be taken

to be a basis. This set is unique if the operator has no degenerate eigenvalues; it is not

unique if there is even one degenerate eigenvalue.

In particular, the normalized eigenfunctions, {φn},n = 1,2,3, ... of the Hamiltonian of

a particle (system) constitute an orthonormal basis. Therefore, an arbitrary function ψ ,

representing an arbitrary energy state of a particle, can be expanded into a series with

respect to {φn}:

ψ = ∑
n

cnφn, (2.3.18)

where the expansion coefficients cn are determined as

cn =
∫ +∞

−∞
φ ∗n ψd3x. (2.3.19)

This kind of expansion is frequently used to solve various problems in quantum mechanics.

In fact, this is another reason why representing a dynamical variable with a hermitian
operator is advantageous.
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Before we conclude, let us have the list of fundamental operators that are used in

quantum mechanics:

Dynamical variables Corresponding operators
in classical mechanics in quantum mechanics

Coordinates:

{
�r
x, y, z

{
�̂r
x, y, z

Momentum:

{
�p
px, py, pz

{
−ih̄�∇
−ih̄ ∂

∂x , −ih̄ ∂
∂y , −ih̄ ∂

∂ z

Angular momentum:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�L
Lx = ypz− zpy

Ly = zpx− xpz

Lz = xpy− ypx

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

�̂r× �̂p

−ih̄
(

y ∂
∂ z − z ∂

∂y

)
−ih̄
(

z ∂
∂x − x ∂

∂ z

)
−ih̄
(

x ∂
∂y − y ∂

∂x

)

Energy: H = �p2

2m +V (�r) − h̄2

2m
�∇2 + V̂ (�r)

It is not difficult to check that all the listed operators are hermitian.

Example 2.3.1: Check whether an operator F̂ , acting in the space of square-integrable

functions and defined by the relation F̂ψ(x) = −(d2ψ(x)/dx2), is hermitian or not.

Solution: The operator hermitian conjugate to the operator F̂ is defined by following relation

∫ +∞

−∞
φ ∗(x)

(
F̂ψ(x)

)
dx =

∫ +∞

−∞

(
F̂†φ (x)

)∗ ψ(x)dx, (2.3.20)

where φ (x) is an arbitrary square-integrable function. Replacing F̂ψ(x) by

−(d2ψ(x)/dx2) on the left-hand side of (2.3.20) and integrating by parts, we have

∫ +∞

−∞
φ ∗(x)

(
F̂ψ(x)

)
dx = − φ ∗(x)

dψ(x)
dx

∣∣∣∣+∞

−∞
+
∫ +∞

−∞

dφ ∗(x)
dx

dψ(x)
dx

dx. (2.3.21)
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Since the wave functions and their first derivatives must be zero at x = ±∞, the first term

on the right-hand side of (2.3.21) vanishes. Integrating once more by parts and using the

same boundary conditions, we arrive at

∫ +∞

−∞
φ ∗(x)

(
F̂ψ(x)

)
dx = −

∫ +∞

−∞

d2φ ∗(x)
dx2

ψ(x)dx =
∫ +∞

−∞

(
− d2

dx2
φ (x)

)∗
ψ(x)dx.

(2.3.22)
From the equations (2.3.20) and (2.3.22), we obtain

F̂† = − d2

dx2
= F̂ . (2.3.23)

Hence, the operator F̂ = −d2/dx2 is hermitian.

Example 2.3.2: Using the definition of a hermitian conjugate operator (through the integral

expression), find the operator hermitian conjugate to the operator

Â = x
d
dx

+α cos(x),

where α is a real constant.

Solution: From the definition of the hermitian conjugate operator, we have

∫ +∞

−∞
φ ∗(x)

(
Âψ(x)

)
dx =

∫ +∞

−∞

(
Â†φ (x)

)∗ψ(x)dx, (2.3.24)

where φ and ψ are arbitrary square-integrable functions. Let us simplify the right-hand

side (RHS) of (2.3.24),

RHS =
∫ +∞

−∞
φ (x)∗x

dψ
dx

dx+
∫ +∞

−∞
α cos(x)φ ∗(x)ψ(x)dx≡ I1 + I2. (2.3.25)

Integrating the first term by parts and using the fact that the functions φ and ψ tend to zero

at spatial infinities, we obtain

I1 = [xφ ∗ψ ]+∞
−∞−

∫ +∞

−∞

d(xφ ∗)
dx

ψ dx = −
∫ +∞

−∞

d(xφ ∗)
dx

ψ dx

= −
∫ +∞

−∞

(
φ ∗+ x

dφ ∗

dx

)
ψ dx. (2.3.26)

As a consequence, we arrive at

∫ +∞

−∞
φ ∗(x)

(
Âψ(x)

)
dx =

∫ +∞

−∞

[(
−1− x

d
dx

+α cos(x)
)

φ (x)
]∗

ψ(x)dx. (2.3.27)
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Comparing the equations (2.3.24) and (2.3.27), we see that the hermitian conjugate

operator is given by

Â† =

(
−1− d

dx
+α cos(x)

)
. (2.3.28)

Theorem 2.3.3: The eigenvalues of an anti-hermitian operator are either purely imaginary

or equal to zero.

Proof: Consider an anti-hermitian operator Â and its eigenvalue equation

Âψn = λnψn. (2.3.29)

As stated earlier, λn are in general complex. Now, since Â is anti-hermitian, we have

∫ +∞

−∞
ψ∗n (Âψn)d3x =

∫ +∞

−∞
(−Âψn)

∗ψn d3x, (2.3.30)

Using the eigenvalue equation for Â, we have

(λn +λ ∗n )
∫ +∞

−∞
ψ∗n ψn d3x = 0. (2.3.31)

For the non-trivial solutions of the eigenvalue equation,
∫ +∞
−∞ ψ∗n ψn d3x �= 0 and we get:

λn + λ ∗n = 0. This means that Re{λ} = 0. Hence, λn is purely imaginary. Clearly, if

λ = 0, the equation λn +λ ∗n = 0 is automatically satisfied.

Inverse of an operator: The operator Â−1, inverse of an operator Â, is defined by the

relation: ÂÂ−1 = Â−1Â = Î, where Î is the unit operator, i.e., the operator that leaves any

state unchanged: Îψ = ψ .

A matrix operator Â has an inverse only if the matrix A = (ai j), representing the

operator Â, is a square matrix and its determinant (det(A)) is non-zero. A matrix that has

an inverse is called a non-singular matrix, while the one with no inverse is called a

singular matrix. The inverse of an operator Â is given by the matrix A−1, which is the

inverse of the matrix A.

Given a matrix A, we can find A−1 as follows:

A−1 =
1

det(A)
ad j(A), (2.3.32)

where ad j(A) =CT is the matrix adjoint to A and det(A) stands for the determinant of A.

The elements ci j of the matrix C are given by

ci j = (−1)i+ j Mi j, (2.3.33)
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where Mi j is the determinant of the submatrix that remains after the ith row and jth

column are deleted from A. Obviously, if the determinant of the matrix A equals zero, the

corresponding operator Â does not possess an inverse.

The inverse of the product of any two operators Â and B̂ is determined by the formula:

(ÂB̂)−1 = B̂−1Â−1. Similarly, we have

(ÂB̂Ĉ)−1 = Ĉ−1B̂−1Â−1, (ÂB̂ĈD̂)−1 = D̂−1Ĉ−1B̂−1Â−1, (2.3.34)

and so on and so forth.

Quotient of two operators: Dividing an operator Â by another operator B̂ (provided that

the inverse B̂−1 exists) is equivalent to multiplying Â by B̂−1:

Â
B̂
= ÂB̂−1. (2.3.35)

Note that the quotients ÂB̂−1 and B̂−1Â differ, that is, in general ÂB̂−1 �= B̂−1Â.

Unitary operator: A linear operator Û is said to be unitary, if it satisfies

Û†Û = ÛÛ† = Î, (2.3.36)

that is, its inverse operator coincides with its hermitian conjugate.

The product of any two unitary operators is also unitary. Let Û and V̂ be two unitary

operators. Then, we have

(ÛV̂ )†(ÛV̂ ) = V̂ †Û†ÛV̂ = V̂ †ÎV̂ = V̂ †V̂ = Î. (2.3.37)

It means that (ÛV̂ )† = (ÛV̂ )−1 and hence, the product operator is unitary. This result can

be generalized to any number of unitary operators:

(ÂB̂ĈD̂...)†(ÂB̂ĈD̂...) = (ÂB̂ĈD̂...)(ÂB̂ĈD̂...)† = Î. (2.3.38)

Theorem 2.3.4: The eigenvalues of a unitary operator are complex numbers of moduli equal

to one and the eigenfunctions of a unitary operator, that does not have any degenerate

eigenvalue, are mutually orthogonal.

Proof: Let ψm and ψn be the eigenfunctions of a unitary operator Û corresponding to non-

degenerate eigenvalues λm and λn, respectively. Using the unitarity of Û and the eigenvalue

equations, we have

∫ +∞

−∞
ψ∗mψnd3x =

∫ +∞

−∞
(ψ∗mÛ†)(Ûψn) d3x

=
∫ +∞

−∞
(Ûψm)

†(Ûψn) d3x = λ
∗
mλn

∫ +∞

−∞
ψ∗mψn d3x = 0. (2.3.39)



The Postulates of Quantum Mechanics 27

We can rewrite (2.3.38) as

(λ
∗
mλn−1)

∫ +∞

−∞
ψ∗mψn d3x = 0. (2.3.40)

If m = n, we have λ ∗
mλm = |λm|2 = 1. Therefore, |λm| = 1. If n �= m, then the only

possibility for the equation (2.3.39) to be satisfied, is that

∫ +∞

−∞
ψ∗mψn d3x = (ψm,ψn) = 0, (2.3.41)

that is, the eigenfunctions ψm and ψn are orthogonal.

2.4 Algebra of Operators

(a) The sum of two operators Â and B̂, given by Ĉ = Â+ B̂, is defined through the relation

Ĉψ(x) = (Â+ B̂)ψ(x) = Âψ(x)+ B̂ψ(x). (2.4.1)

According to this definition, we act on ψ with Â and B̂ one by one and then add up

the results. The new function, thus obtained, is the function that would result, if we

act on ψ directly with Ĉ.

(b) The product of an operator Â with a complex number c, that is, the operator cÂ is

defined by the relation

(cÂ)ψ = c(Âψ). (2.4.2)

(c) The product of two operators Â and B̂ is an operator Ĉ = ÂB̂, which by acting on the

function ψ transforms it into another function φ . The function φ is obtained by first

applying B̂ on ψ (which yields a function, say, χ) and then acting on the resulting

function by Â:

Ĉψ = (ÂB̂)ψ = Â(B̂ψ) = Âχ = φ . (2.4.3)

For instance, if Â = x and B̂ = d
dx , then(

x
d
dx

)
ψ = x

(
dψ
dx

)
= x

dψ
dx

. (2.4.4)

(d) Successive application of an operator, Â, n times on a function, ψ , is written as the

power of that operator:

ÂÂÂ...Â︸ ︷︷ ︸
n−1

(Âψ) = Ânψ . (2.4.5)
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(e) In general, the product of any two operators, Â and B̂, is not commutative. That is,

ÂB̂ �= B̂Â. (2.4.6)

The difference ÂB̂− B̂Â is an operator Ĉ, which is called the commutator of Â and B̂
and is written as

Ĉ = [Â, B̂]. (2.4.7)

Similarly, ÂB̂+ B̂Â �= 2ÂB̂ and the operator [Â, B̂]+ = ÂB̂+ B̂Â is called the anti-

commutator of the operators Â and B̂. If [Â, B̂] = 0, the operators are said to be

commuting with each other, while, if [Â, B̂]+ = 0, the operators anti-commute.

(f) Rules for hermitian conjugation: Given some algebraic combinations of operators,

we need to consider the rules that allow us to get the corresponding hermitian

conjugate operators. To obtain the hermitian conjugate of any expression, we must

cyclically reverse the order of the factors and make the following replacements:

(i) Replace constants, α ,β ,γ , ..., by their complex conjugates: α → α∗, β → β ∗,
γ → γ∗, . . ..
(ii) Replace operators by their hermitian conjugates: Â→ Â†, B̂→ B̂†, Ĉ→ Ĉ†, etc.

Following these rules, we can write

(i)
(
Â†
)†

= Â, (ii)
(
αÂ
)†

= α∗Â†, (iii)
(
Ân
)†

=
(
Â†
)n

,

(iv)
(
Â+ B̂+ Ĉ+ D̂

)†
= Â† + B̂† + Ĉ† + D̂†, (v)

(
ÂB̂ĈD̂

)†
= D̂†Ĉ†B̂†Â†, etc.

(g) The commutator of two hermitian operators is anti-hermitian.

Proof: Consider two hermitian operators Â = Â† and B̂ = B̂†. Then, using the rules of

hermitian conjugation, we obtain

[Â, B̂]† =
(
ÂB̂− B̂Â

)†
=
(
ÂB̂
)†− (B̂Â

)†
= B̂†Â†− Â†B̂†

= −(ÂB̂− B̂Â
)
= −[Â, B̂]. (2.4.8)

Hence, [Â, B̂] is anti-hermitian.

(h) The anti-commutator of two hermitian operators is hermitian.

Proof: Consider two hermitian operators Â = Â† and B̂ = B̂†. Then, using the rules of

hermitian conjugation, we obtain

[Â, B̂]†+ =
(
ÂB̂+ B̂Â

)†
=
(
ÂB̂
)†
+
(
B̂Â
)†

= B̂†Â† + Â†B̂†

=
(
ÂB̂+ B̂Â

)
= [Â, B̂]+. (2.4.9)

Hence, [Â, B̂]+ is hermitian.
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(i) Some other important properties of the commutators are:

[Â, B̂] = −[B̂, Â], (Anti− symmetry) (2.4.10)

[Â, B̂+ Ĉ] = [Â, B̂]+ [Â,Ĉ], (Linearity) (2.4.11)

[Â, B̂Ĉ] = B̂[Â,Ĉ]+ [Â, B̂]Ĉ, (Distributivity) (2.4.12)

[Â, B̂]† = [B̂†, Â†], (Hermitian conjugation) (2.4.13)

[Â, [B̂,Ĉ]]+ [B̂, [Ĉ, Â]]+ [Ĉ, [Â, B̂]] = 0. (Jacobi Identity) (2.4.14)

In addition, by repeatedly using (2.4.12), we can prove that

[Â, B̂n] =
n−1

∑
k=0

B̂k [Â, B̂] B̂n−k−1, (2.4.15)

[Ân, B̂] =
n−1

∑
k=0

Ân−k−1B̂k [Â, B̂] Âk (2.4.16)

Example 2.4.1: Show that the operators Â = x̂ (defined by Âψ(x) = xψ(x)) and the operator

B̂ = p̂x (defined by B̂ψ(x) = −ih̄(dψ(x)/dx)) satisfy the commutation relation [x̂, p̂x] =
x̂ p̂x− p̂xx̂ = ih̄.

Solution: We have

[x̂, p̂x]ψ(x) = −ih̄
(

x
d
dx
− d

dx
x
)

ψ = (−ih̄)
[

x
dψ
dx
− d

dx
(xψ)

]

= ih̄
[

ψ + x
dψ
dx
− x

dψ
dx

]
= ih̄ψ(x) (2.4.17)

Since ψ(x) is an arbitrary function, we get

[x̂, p̂x] = ih̄ (2.4.18)

In general, the commutation relations between various Cartesian components of the

position operator, �̂r = {x̂, ŷ, ẑ} ≡ {x̂1, x̂2, x̂3}, and the momentum operator,

�̂p = {p̂x, p̂y, p̂z} ≡ {p̂1, p̂2, p̂3}, are

[x̂ j, p̂k] = ih̄δ jk, (2.4.19)

where j,k = 1,2,3 and δ jk is the Kronecker delta. These are the fundamental

commutation relations. Using these, we can calculate any commutation relation between

any two observables in quantum mechanics.
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Function of an operator: A function, f (Â), of an operator, Â, is defined through the

corresponding Taylor expansion of the function f (x). That is, if

f (x) = ∑
n

1

n!
cn xn, cn =

∂ f
∂xn

∣∣∣∣
x=0

, (2.4.20)

exists, then

f (Â) = ∑
n

1

n!
cn Ân, cn =

∂ f
∂ Ân

∣∣∣∣
Â=0

. (2.4.21)

In the above expression, the matrix raised to the power n is defined recursively in terms of

the products Ân = Â
(
Ân−1

)
(see Eq.(2.4.5)).

For instance, consider f (Â) = exp
[
a Â
]
, where a is a constant. Using the above

definition, we obtain

f (Â) = ∑
n

1

n!
(a Â)n = Î + a Â+

1

2!
a2 Â2 +

1

3!
a3 Â3 + . . . . (2.4.22)

Parity operator: Consider the operation of space inversion in which we change the space

variables from�r = {x,y,z} to −�r = {−x,−y,−z}. As a result, a function ψ(�r) goes into

ψ(−�r). If ψ(−�r) =ψ(�r), the function ψ(�r) is said to be symmetric (even) or, equivalently,

a function with even parity. On the other hand, if ψ(−�r) = −ψ(�r), the function ψ(�r) is

said to be anti-symmetric (odd) or, equivalently, a function with odd parity.

The transformation of a function ψ(�r) under space inversion can be written in operator

form as

ψ(−�r) = P̂ψ(�r), (2.4.23)

where P̂ is the parity operator or space inversion operator.

Theorem 2.4.1: The parity operator is hermitian, that is P̂† = P̂ .

Proof:∫ +∞

−∞
φ ∗(�r)

[
P̂ψ(�r)

]
d3x =

∫ +∞

−∞
φ ∗(�r)ψ(−�r)d3x

= −
∫ +∞

∞
φ ∗(−�r)ψ(�r)d3x =

∫ +∞

−∞

[
P̂φ (�r)

]∗ψ(�r)d3x. (2.4.24)

From here we get that P̂† = P̂ . The theorem is proved.
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Note that the parity operator is also a unitary operator. This can be seen as follows. We

have

P̂2ψ(�r) = P̂(P̂ψ(�r)) = P̂ψ(−�r) = ψ(�r). (2.4.25)

It follows from the last equation that P̂2 = Î, which means P̂ = P̂−1. The parity operator

is, therefore, unitary, since its hermitian conjugate is equal to its inverse: P̂† = P̂−1.

Further, since P̂2 = Î, the eigenvalues of the parity operator are ±1. Let the

eigenfunction corresponding to the eigenvalue +1 be ψ+. Then, on one hand we have

P̂ψ+(�r) = ψ+(�r), while on the other P̂ψ+(�r) = ψ+(−�r). Hence, ψ+(�r) = ψ+(−�r).
Therefore, ψ+(�r), is an even function. Similarly, the eigenfunction, ψ−, corresponding to

the eigenvalue −1 is an odd function:: ψ−(�r) = −ψ−(�r). It then follows that the

eigenfunctions of the parity operator have definite parity: they are either even or odd. In

addition, the eigenfunctions ψ+(�r) and ψ−(�r) are orthogonal. In fact, the scalar product

of these eigenfunctions satisfies

(ψ+,ψ−) =
∫ +∞

−∞
ψ∗+(�r)ψ−(�r)d3x =

∫ +∞

−∞
ψ∗+(−�r)ψ−(−�r)d3x =

∫ +∞

−∞
ψ∗+(�r)ψ−(−�r)d3x

= −
∫ +∞

−∞
ψ∗+(�r)ψ−(�r)d3x = −(ψ+,ψ−). (2.4.26)

Hence it vanishes. Therefore, the functions ψ+(�r) and ψ−(�r) are orthogonal. It turns out

that, since any function φ (�r) can be written as φ = ψ+(�r)+ψ−(�r) with

ψ+ =
1

2
[φ (�r)+φ (−�r)] , ψ− =

1

2
[φ (�r)−φ (−�r)] , (2.4.27)

the eigenfunctions of the parity operator form a complete set of functions.

Definition: An operator Â is said to an even operator, if P̂ÂP̂ = Â. On the other hand, if

P̂ÂP̂ = −Â the operator is said to be odd.

It is easy to show that even operators commute with the parity operator P̂ , while odd

operators anticommute with P̂:

[Â,P̂ ] = 0, [B̂,P̂ ]+ = 0, (2.4.28)

where Â is an even operator and B̂ is an odd operator.

Since even operators commute with the parity operator and the eigenfunctions of the

parity operator are either even or odd, the eigenfunctions of even operators must have

definite parity, provided they possess non-degenerate eigenvalues. If an even operator has

a degenerate eigenspectrum, its eigenvectors do not necessarily have a definite parity.
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Example 2.4.2: Find the value of the commutator

Â = [ p̂2
x , (x̂ p̂y− ŷ p̂x)],

where, �̂r = (x̂, ŷ, ẑ) and �̂p = ( p̂x, p̂y, p̂z) are the position and momentum operators of a

particle, respectively.

Solution: Using the properties of the commutator of operators

[Â, B̂+ Ĉ] = [Â, B̂]+ [Â,Ĉ], (2.4.29)

[ÂB̂,Ĉ] = Â[B̂,Ĉ]+ [Â,Ĉ]B̂, (2.4.30)

[Â, B̂Ĉ] = B̂[Â,Ĉ]+ [Â, B̂]Ĉ, (2.4.31)

we get

[ p̂2
x , (x̂ p̂y− ŷ p̂x)] = [ p̂2

x , x̂ p̂y]− [ p̂2
x , ŷ p̂x]

= p̂x[ p̂x, x̂ p̂y]+ [ p̂x, x̂ p̂y] p̂x− p̂x[ p̂x, ŷ p̂x]− [ p̂x, ŷ p̂y] p̂x

= p̂xx̂[ p̂x, p̂y]+ p̂x[ p̂x, x̂] p̂y + x̂[ p̂x, p̂y] p̂x +[ p̂x, x̂] p̂y p̂x

− p̂xŷ[ p̂x, p̂x]− p̂x[ p̂x, ŷ] p̂x− ŷ[ p̂x, p̂y] p̂x− [ p̂x, ŷ] p̂y p̂x

= −ih̄( p̂x p̂y + p̂y p̂x) = −2i p̂x p̂y, (2.4.32)

where we have used the fundamental commutators [x̂ j, p̂k] = ih̄δ jk, j,k = 1,2,3.

2.5 The Schrödinger Equation

Postulate 3: The time evolution of the wave function, ψ(�r, t), representing the state of a

quantum mechanical system is governed by the following partial differential equation:

ih̄
∂ψ(�r, t)

∂ t
= − h̄2

2m
�∇2ψ(�r, t)+V (�r)ψ(�r, t), (2.5.1)

where �∇2 = ∂ 2

∂x2 +
∂ 2

∂y2 +
∂ 2

∂ z2 is the Laplacian or Laplace operator and V is the potential

energy function. This is the well-known time-dependent Schrödinger equation.

In one spatial dimension, equation (2.5.1) reduces to:

ih̄
∂ψ
∂ t

= − h̄2

2m
∂ 2ψ
∂x2

+V (x)ψ , ψ = ψ(x, t). (2.5.2)
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Note that the potential V , in principle, can depend on time. However, we shall not deal

with such problems in this book.

Important properties of the Schrödinger equation:

(a) Consider a collection of a large number, N, of non-interacting particles in an

infinitesimal volume element dτ . Assume also that at some instant t, they are all in

the same given state ψ(�r, t). Since ψ∗ψ dτ is the probability of finding the particle

in an infinitesimal volume element, dτ , centered around a given point�r, the quantity

Nψ∗ψ dτ ≡ 〈N〉 will be the average number of particles in dτ . By calculating 〈N〉
for a large number of points in space, we can construct the probability density

distribution function at a given instant of time t. The significance of the
time-dependent Schrödinger equation lies in the fact that it allows us to determine
the time evolution of the wave function ψ , enabling thereby the prediction of the
time evolution of the density distribution function. This in turn allows us to follow
the changes that take place in the system as it evolves in time.

(b) Linearity and homogeneity: Since the Schrödinger equation contains only the first

power of ψ , it is linear in ψ . The homogeneity is related to the fact that for a given

solution ψ of the Schrödinger equation, the function αψ , where α is a constant, is

also a solution of the Schrödinger equation.

(c) The equation is of first order with respect to time and, therefore, the knowledge of

the wave function at some initial time, t0, allows us to determine the wave function

at any later time, t, uniquely.

An important consequence of the first property is that the superposition principle
holds. This means that if ψ1(�r, t),ψ2(�r, t),ψ3(�r, t), ...,ψn(�r, t) are solutions of the

Schrödinger equation, then the linear combination of these functions:

ψ(�r, t) =
n

∑
j=1

c jψ j(�r, t), (2.5.3)

where c j, j = 1,2,3, ...,n are arbitrary complex constants, is also a solution.

It is important to note here that the quantum mechanical superposition principle is

radically different from its counterpart in classical physics. Firstly, it reflects the

wave-like properties of the micro-particles and hence represents the wave–particle

duality that is a characteristic of the micro-world. Secondly, suppose that a particle

is in a state ψ , which is a superposition of two other possible states ψ1 and ψ2 of the

particle, that is, ψ = ψ1 + ψ2. If we measure a physical characteristic A of the

particle in the state ψ1, we shall get some value A1. Similarly, we shall get a value

A2 for A in the state ψ2. Let us now assume that we measure A in the superposition

state ψ . Classically, the measurement of A in this state will yield a value between A1

and A2. As we shall see later, quantum mechanics says that if you measure A in the

state ψ , you will get either A1 or A2 with certain probabilities but nothing in
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between A1 and A2. In other words, the process of measurement induces a sudden

transition of the particle from the superposition state ψ to one of the states ψ1 and

ψ2. This phenomenon is known as the collapse of the wave function and does not

have a classical analogue. This is one of the conceptual difficulties in quantum

mechanics that is yet to be resolved.

Thus, the quantum mechanical superposition has far-reaching consequences

including the conceptual difficulties that we encounter when we try to draw a naive

parallel between a classical system and a quantum system. However, on the positive

side, the validity of the superposition principle enormously helps in solving various

quantum mechanical problems.

2.6 Time-independent Potentials and the Stationary States

Solutions to the Schrödinger equation with time-independent potentials, V (�r), can be

found by employing the method of separation of variables; well known from the theory of

differential equations. This is done by writing the wave function in the form:

ψ(�r, t) = φ (�r) f (t). (2.6.1)

The Schrödinger equation (2.5.1) then leads to

ih̄
1

f
d f
dt

= − h̄2

2m
1

φ (�r)
�∇2φ (�r)+V (�r). (2.6.2)

The left-hand side of (2.6.2) is a function of time, whereas the right-hand side depends

only on spatial variables, x,y and z. Therefore, for this equality to hold, both the left-hand

side and the right-hand side must be equal to a constant (same for both the sides). Let us

call it E. As a consequence, we get a system of two ordinary differential equations:

ih̄
1

f
d f
dt

= E ⇒ d f
dt

= − i
h̄

E f (t), (2.6.3)

and

− h̄2

2m
1

φ (�r)
�∇2φ (�r)+V (�r) = E ⇒ − h̄2

2m
�∇2φ (�r)+V (�r)φ (�r) = Eφ (�r). (2.6.4)

The first of these equations, (see (2.6.3)), can be readily integrated to yield

f (t) = e−
i
h̄ Et . (2.6.5)

The differential equation (2.6.4), satisfied by φ (�r) is called the time-independent
Schrödinger equation (TISE) and its solution depends on the form of the potential V (�r).
In view of the standard conditions (to be satisfied by the overall wave function ψ(�r, t)), a
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given specific form of V (�r) imposes specific boundary conditions on φ (�r), which we

shall discuss later.

Note that the equation (2.6.4) can be written as

Ĥφ (�r) = Eφ (�r), (2.6.6)

where

Ĥ = − h̄2

2m
�∇2 +V (�r). (2.6.7)

As we shall discuss later, Ĥ is nothing but a differential operator representing the classical

Hamiltonian, H = p2

2m +V (�r), equal to the total energy of the particle. The solutions of this

equation are called the eigenfunctions of the Hamiltonian and the corresponding values

of E (for which the solutions of this differential equation exist), are called the energy
eigenvalues. Therefore, the separation constant E represents the total energy of the particle

in a given state.

It is now clear that, for time-independent potentials, a full solution to the Schrödinger

equation can be written as

ψ(�r, t) = φ (�r) e−
i
h̄ Et . (2.6.8)

If we calculate the probability density |ψ|2 for such states, we obtain

|ψ(x, t)|2 = ψ∗(�r, t)ψ(�r, t) = φ (�r)∗ e
i
h̄ Et φ (�r) e−

i
h̄ Et = |φ (�r)|2. (2.6.9)

That is, for such states, the probability density is independent of time.

Definition: The states of a quantum mechanical system (particle) for which the probability
density does not depend on time (i.e., remains constant at all times) are called stationary
states.

Depending on the potential, there could be more than one solution to the equation

(2.6.4). Let there be m such solutions: φ1(�r),φ2(�r),φ3(�r), . . . ,φm(�r), with energies E1,E2,

E3, . . . ,Em, respectively. In view of the superposition principle, the general stationary state

solution is then given by

ψ(�r, t) =
m

∑
j=1

c jφ j(�r) e−
i
h̄ E jt = c1φ1(�r) e−

i
h̄ E1t + c2φ2(�r) e−

i
h̄ E2t + . . .+ cmφm(�r) e−

i
h̄ Emt ,

(2.6.10)

where c js are arbitrary complex (in general) constants.
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2.7 Measurement and Compatible Operators

Up till now we have discussed three postulates of quantum mechanics regarding the

characterization of state of a quantum system, representation of the observables and the

time-evolution of the state. Let us now discuss how quantum mechanics describes the

process of measurement of an observable and what is its prescription for comparing the

theoretically calculated values of an observable with its experimentally measured ones.

In quantum mechanics, the act of measurement of an observable A, at a given instant
of time in a given state, is theoretically represented as the action of the corresponding
operator, Â, on the wave function, ψ(x, t), representing the state of the particle at that
instant of time: Âψ(x, t). So far as the result of measurement is concerned, quantum

mechanics puts forward the following postulate.

Postulate 4: The only possible result of measurement of an observable A, at a given instant

of time, t, in a given state ψ(�r, t), is one of the eigenvalues of the corresponding operator

Â.

(a) If the operator, Â, has discrete and non-degenerate eigenvalues, {an} : Âφn(�r) =
anφn(�r), the probability that the measurement of A will yield the eigenvalue a j is

given by

P(a j) =

∣∣(φ j,ψ)
∣∣2

(ψ ,ψ)
, (2.7.1)

where φ j(�r) is the eigenfunction of Â with eigenvalue a j and

(φ j,ψ) ≡
∫ +∞

−∞
φ ∗(�r)ψ(�r, t)d3x, (2.7.2)

(ψ ,ψ) ≡
∫ +∞

−∞
|ψ(�r, t)|2 d3x. (2.7.3)

If the wave function ψ(�r, t) is normalized to unity, the above mentioned probability

is simply written as

P(a j) =

∣∣∣∣∫ +∞

−∞
φ ∗(�r)ψ(�r, t)d3x,

∣∣∣∣2 . (2.7.4)

As we see here, the act of measurement changes the state of the system. The state of

the system, immediately after the measurement, changes from ψ(�r, t) to φ j, the jth
eigenstate of Â: ψafter = φ j(�r). However, if the particle is in one of the eigenstates,

say, φk(�r) of the operator Â, then the result of measurement will with certainty give

the value ak and the state of the particle will remain unchanged.
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(b) If the eigenvalue a j is m-fold degenerate (i.e., there are m linearly independent

eigenfunctions φ (m)
j with the same eigenvalue a j), the probability of getting the

value a j is given by

P(a j) =
∑m

k=1

∣∣∣(φ k
j ,ψ)

∣∣∣2
(ψ ,ψ)

=
∑m

k=1

∣∣∣∫ +∞
−∞ φ k ∗

j (�r)ψ(�r, t)d3x
∣∣∣2∫ +∞

−∞ |ψ(�r, t)|2 d3x.
(2.7.5)

(c) If the operator Â possesses a continuous eigenspectrum {a}, the probability that the

result of measurement will yield a value between a and a+ da is given by

dP(a) =
|ψ(a)|2∫ +∞

−∞ |ψ(a′)|2 da′
da. (2.7.6)

For instance, for a free particle, there is no restriction on its position in space.

Hence, the eigenvalues x of the position operator, x̂, can take continuous values.

Therefore, when the position of a particle is measured, the probability of obtaining a

value between x and x+ dx is

dP(x) =
|ψ(x)|2∫ +∞

−∞ |ψ(x′)|2 dx′
dx. (2.7.7)

On the basis of the discussions so far, we conclude that, in its essence, quantum

mechanics is a statistical theory in which the results of measurement of a given physical

quantity cannot be predicted exactly, They can only be predicted with certain

probabilities. Therefore, the question as to which result of quantum mechanical

calculations should be compared with the experimentally measured value of a physical

quantity must be answered. We shall talk about this problem and try to come to a certain

conclusion.

In classical mechanics, every dynamical variable takes on a definite numerical value.

This number is nothing but the value that we obtain when we measure it. The justification

for assigning a definite value to the result of measurement in classical physics is the fact

that all possible measurements of a dynamical variable on the system in a given state, yield

the same numerical value.

The situation is radically different in quantum mechanics. Before we show the

difference, let us recollect that the superposition principle holds for the Schrödinger

equation. That is, if ψ1 and ψ2 are two distinct solutions then an arbitrary linear

combination of these wave functions is also a solution of the Schrödinger equation.

Let a system be prepared in a superposition state φ = a1φ1 +a2φ2, where a1 and a2 are

arbitrary constants and φ1 and φ2 are the eigenstates of a given observable Â corresponding

to the eigenvalues λ1 and λ2, respectively. Clearly, had the system been in the state ψ1,

or in the state ψ2, the measurement of Â would have given a value equal to λ1, or λ2,
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respectively. Let us pose the question: If the the dynamical variable is measured in the

superposition state φ , what values will be obtained and with what probabilities?

Note that, had the system been a classical system, a definite value λ , intermediate

between λ1 and λ2 would have resulted. In quantum mechanics, however, measurements

will not produce a value intermediate between λ1 and λ2 but one of the values λ1 or λ2

(sometimes λ1 and sometimes λ2) and no other value except λ1 or λ2. Besides that, it is

not possible to predict which measurement will yield λ1 and which would give λ2. One or

the other result is obtained with a well-defined probability. The system, which was in the

state ψ , before the measurement, makes an abrupt transition either into the state ψ1 or into

the state ψ2.

This discussion leads to the conclusion that, at a given instant of time, it is not possible

to assign a definite value to an observable in quantum mechanics. It is, however, always

possible to assign a definite probability to the occurrence of one of the possible values.

This implies that the formalism of quantum mechanics allows us to compute only the

probabilities of occurrence of various possible values of an observable. Hence, only the
average value (or, as it is called, the expectation value) of a dynamical variable, computed
in accordance with the theory of probability, should be compared with the experimental
result.

Average value of a dynamical variable: The average value, 〈A〉, of a dynamical variable

A, in a given state ψ of the system, is defined as

〈A〉=
∫ +∞

−∞
ψ∗(�r) [Âψ(�r)]d3x

/ ∫ +∞

−∞
ψ∗(�r)ψ(�r) d3x, (2.7.8)

where the integration is over the entire region of variation of the independent variables,

x,y, and z. The asterisk stands for complex conjugation. If the wave function is normalized

to unity, the required average value is given by

〈A〉=
∫ +∞

−∞
ψ∗(�r)(Âψ(�r)) d3x. (2.7.9)

For instance, the average value of the position operator, x̂, in one spatial dimension in the

normalized state ψ ,

〈x〉=
∫ +∞

−∞
ψ∗(x)(x̂ψ) dx =

∫ +∞

−∞
ψ∗(x)xψ(x) dx. (2.7.10)

Similarly, the expectation value of the x component of momentum, 〈px〉, is given by

〈px〉=
∫ +∞

−∞
ψ∗(x)( p̂xψ(x)) dx = −ih̄

∫ +∞

−∞
ψ∗(x)

dψ(x)
dx

dx. (2.7.11)

Let ψ1(�r), ψ2(�r), ψ3(�r),. . . , be the normalized eigenfunctions of a hermitian operator Â
with discrete eigenvalues λ1, λ2, λ3,. . . , respectively. Let the particle (system), on which
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the measurement of Â is done, be in a state ψ(�r), which is not an eigenstate of Â. Since

the eigenfunctions of a hermitian operator form a complete set, we can expand ψ as

ψ(�r) = ∑
k=1

ckψk(�r), (2.7.12)

where cks are arbitrary complex coefficients. Using the eigenvalue equation, Âψk(�r) =
λkψk(�r) and the orthonormality of the eigenfunctions {ψn(�r)}, the average value Ā can be

written as

〈A〉= ∑
�

∑
k

λkc∗�ck

∫ +∞

−∞
ψ∗� (�r)ψk(�r) d3x = ∑

�
∑
k

λkc∗�ck δ�k = ∑
k

λk |ck|2

= λ1|c1|2 +λ2|c2|2 +λ3|c3|2 + . . . (2.7.13)

In view of the orthonormality of the eigenfunctions of Â, we have

∑
m

∑
n

c∗mcn

∫ +∞

−∞
ψ∗mψn d3x = ∑

m
∑
n

c∗mcn δmn = ∑
n
|cn|2

= |c1|2 + |c2|2 + |c3|2 + ... = 1. (2.7.14)

If we now recall the expression for the average value of a random variable y from the

theory of probability (〈y〉= ∑ j y j w j, where w j is the probability of getting the value y j of

the random variable y and ∑ j wk = 1), then the equation (2.7.13) suggests that the number

|ck|2 represents the probability, Pk, of obtaining a value λk for A in the state ψ . Therefore,

the average value of Â takes the form

〈A〉= λ1 P1 +λ2 P2 +λ3 P3 + . . . , (2.7.15)

where, in view of (2.7.14), the sum total of all the probabilities Pk,k = 1,2,3, ... is equal

to 1:

∑
k

Pk = 1. (2.7.16)

On the basis of our discussions, we can now conclude:

1. If an observable, Â, is measured on a system in a state ψ , then it can have a definite

value if and only if ψ happens to be an eigenstate of the operator Â. In such a case,

the result will yield the corresponding eigenvalue of the operator Â in the state ψ .

2. On the other hand, if ψ is not an eigenfunction of Â, the state ψ has to be expanded

into a series with respect to the complete set of eigenfunctions of Â (see equation

(2.7.12)). The result of a measurement of Â will then be one of the eigenvalues ak of

Â with a probability |ck|2.
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3. The act of measurement, in general, changes the state of the system from a given

initial state to one of the eigenstates of the observable being measured.

4. For the measurement of an observable on a system in a given state, ψ , a large

number of identical copies of the system are to be prepared and the observable has

to be measured on each of them independently. The average of the obtained results,

calculated according to the prescription of quantum mechanics, will be the value of

the observable in the state ψ ..

Example 2.7.1: Consider a system, in one spatial dimension, which is in a state with a wave

function

ψ(x) = A e−α(x−b)2
, (2.7.17)

where α and b are real constants and A, in general, is a complex constant. Calculate the

expectation values of the operators x̂, x̂2 and p̂x.

Solution: Using (2.7.8), we get

〈x̂〉=
∫ +∞

−∞
ψ∗(x) xψ(x)dx/

∫ +∞

−∞
ψ∗(x)ψ(x)dx. (2.7.18)

Let us compute the integrals. We have

∫ +∞

−∞
ψ∗(x)ψ(x)dx = |A|2

∫ +∞

−∞
e−2α(x−b)2

dx = |A|2
√

π
2α

. (2.7.19)

The numerator is∫ +∞

−∞
ψ∗(x) x ψ(x)dx = |A|2

∫ +∞

−∞
xe−2α(x−b)2

ψ(x)dx = 0, (2.7.20)

because the integrand is an odd function of x and it is integrated over the region that is

symmetric with respect to the origin. Therefore, 〈x̂〉= 0.

Since∫ +∞

−∞
ψ∗(x) x2 ψ(x)dx = |A|2

∫ +∞

−∞
x2e−2α(x−b)2

dx

= |A|2
√

π
2
√

8α3
, (2.7.21)

the average value of x̂2 is given by

〈x̂2〉=
(
|A|2

√
π

4α
√

2α

)
/
(
|A|2

√
π√

2α

)
= 1/4α . (2.7.22)
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The momentum operator p̂x = −ih̄(∂ /∂x), and we have

〈p̂x〉=
∫ +∞

−∞
ψ∗(x) ( p̂xψ(x))dx = −ih̄|A|2

∫ +∞

−∞
ψ∗(x)

dψ
dx

dx

= 2iα h̄|A|2
∫ +∞

−∞
(x−b) e−2α(x−b)2

dx = 2iα h̄|A|2
∫ +∞

−∞
y e−2α y2

dy = 0, (2.7.23)

where we have changed the variable of integration from (x−b) to y = x−b and taken into

account the fact that the integrand is an odd function of y and hence, the integral is zero.

As a result, the expectation value of p̂x is equal to zero: 〈p̂x〉= 0.

Further, we calculate

p̂2
xψ(x) = 2α h̄2

(
e−2α(x−b)2−2α e−2α(x−b)2

)
. (2.7.24)

〈p̂2
x〉=

∫ +∞

−∞
ψ∗(x) ( p̂x ψ(x))dx = 2α h̄2|A|2

∫ +∞

−∞

[
e−2α(x−b)2−2α(x−b)2 e−2α(x−b)2

]
dx

= 2|A|2α h̄2

[√
π

2α
− 1

2

√
π

2α

]
=
|A|2√π

√
2α h̄2

2
. (2.7.25)

The expectation value of p̂2
x is then given by

〈p̂2
x〉=

|A|2√π
√

2α h̄2

2
×
√

2α
|A|2√π

= α h̄2. (2.7.26)

Example 2.7.2: Consider a particle of mass m confined to move in one spatial dimension

in the region 0 < x < a. Let the particle be in a state described by the wave function

ψ1(x, t) = sin (πa/x) exp(−iωt), where ω is a constant. Find the average values of the

position and momentum operators in this state.

Solution: First, let us check whether the wave function of the particle is normalized or not.

We have∫ a

0
|ψ1(x, t)|2 dx =

∫ a

0
sin2 (πa/x) dx

=
∫ a

0

((1− cos (2πa/x))
2

dx =
a
2

. (2.7.27)



42 Fundamentals of Quantum Mechanics

Therefore, the normalized wave function is

ψ(x, t) =

√
2

a
sin (πa/x) exp(−iωt). (2.7.28)

The average value of the position operator x̂ will be given by

〈x̂〉=
∫ a

0
x̂ |ψ(x, t)|2 dx =

2

a

∫ a

0
x sin2 (πa/x) dx

=
2

a

∫ a

0

((x− x cos (2πa/x))
2

dx. (2.7.29)

Integrating the second term by parts, we arrive at 〈x̂〉 = a/2. The average value of the

momentum operator p̂x will be

〈p̂x〉=
∫ a

0
ψ∗(x, t)

(
−ih̄

d
dx

)
ψ(x, t)dx = − ih̄

π

∫ a

0
sin (2πa/x) dx. (2.7.30)

Taking the integral, we get

〈p̂x〉= − ih̄
π

∫ a

0
sin (2πa/x) dx = 0. (2.7.31)

Example 2.7.3: Consider a particle of mass m confined to move in a one-dimensional infinite

potential well of width a. Let, at t = 0, the particle be in a state described by the wave

function ψ(x, t) = sin3 (πa/x). If the energy of the particle is measured, what values will

be obtained and with what probabilities? What will be the average value of energy in this

state?

Solution: We shall show in Chapter 3 that the eigenfunctions and the corresponding

eigenvalues of the Hamiltonian, for a particle of mass m moving in a 1D infinite potential

well of width a, are given by

ψn(x) =

√
2

a
sin (nπa/x) , En =

n2π2h̄2

2ma2
, n = 1,2,3, ... (2.7.32)

The wave function of the particle at t = 0 can be written as

ψ(x) =
3

4
sin (πa/x)− 1

4
sin (3πa/x) =

3
√

a
4
√

2
φ1(x)−

√
a

4
√

2
φ3(x), (2.7.33)

where φ1 and φ3 are the ground state and the second excited state wave functions of the

particle in the infinite potential well. Let us check whether the wave function (2.7.33) is

normalized or not. We have
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∫ a

0
|ψ(x)|2 dx =

9a
32

∫ a

0
|φ1(x)|2 dx+

a
32

∫ a

0
|φ3(x)|2 dx

− 6a
32

∫ a

0
φ1(x)φ3(x)dx =

9a
32

+
a
32

=
5a
16

, (2.7.34)

where we have used the fact that the eigenfunctions of the Hamiltonian are orthonormal:

∫ a

0
φ ∗i (x)φ j(x)dx = δi j =

{
1, if i = j
0, if i �= j. (2.7.35)

As a result, the normalized wave function at t = 0 is

φ (x) =
4√
5a

3
√

a
4
√

2
φ1(x)− 4√

5a

√
a

4
√

2
φ3(x) =

3√
10

φ1(x)− 1√
10

φ3(x). (2.7.36)

Therefore, when energy is measured on the system, the values that can result are

E1 =
π2h̄2

2ma2
and E3 =

9π2h̄2

2ma2
. (2.7.37)

Now the probability of getting E1 is

P1 = |〈φ1 | φ〉|2 = 9

10
, (2.7.38)

while the probability of getting E3 is

P3 = |〈φ3 | φ〉|2 = 1

10
. (2.7.39)

The average value of energy in the state ψ(x) is

〈E〉= P1E1 +P3E3 =
9

10
× π2h̄2

2ma2
+

1

10
× 9π2h̄2

2ma2
=

9π2h̄2

10ma2
. (2.7.40)

Compatible operators: In physics, we want to have the maximal information about the

system under study. The same applies to a quantum mechanical system. Obviously, this

is possible only if we are able to determine and measure accurately the maximal number

of relevant physical characteristics of the system. Therefore, it is important to discuss the

possibilities that quantum mechanics offers and the restrictions it puts on achieving this

goal. Keeping this in mind, we are now going to prove some important theorems that will

tell us about the extent to which we can accomplish this task.

Theorem 2.7.1: If two observables A and B are compatible, they possess a common set of

eigenfunctions (this theorem holds for both degenerate and non-degenerate eigenstates).
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Proof: Since the two observables are compatible, the corresponding operators Â and B̂
commute, that is, ÂB̂ = B̂Â. Let φn be the eigenfunction of the operator Â with eigenvalue

an. Then we have

ÂB̂φn = B̂Âφn = an(B̂φn), (2.7.41)

where we made use of the eigenvalue equation for the operator Â: Âφn = anφn. Equation

(2.7.41) says that B̂φn is also an eigenfunction of Â with the same eigenvalue an. Therefore,

B̂φn ∝ φn, that is,

B̂φn = bnφn, (2.7.42)

where bn is the constant of proportionality. Equation (2.7.42) is nothing but the eigenvalue

equation for the operator B̂ with φn as the eigenfunction and bn as the eigenvalue. Thus, φn
is also an eigenfunction of B̂ with eigenvalue bn. The theorem is proved.

Theorem 2.7.1 can be generalized to the case of many mutually compatible observables

A,B,C, . . .. All the corresponding compatible operators, Â, B̂,Ĉ, . . ., will possess a common

set of eigenfunctions.

Theorem 2.7.2: If two observables A and B have a common set of eigenfunctions, they are

compatible, that is, the corresponding operators Â and B̂ commute.

Proof: Let {φn} be the common set of eigenfunctions for the operators Â and B̂. Then we

have Âφn = anφn and B̂φn = bnφn, where an and bn are the eigenvalues of the operators Â
and B̂, respectively. We then have

ÂB̂φn = Â(bnφn) = bn(Âφn) = bnanφn, (2.7.43)

B̂Âφn = B̂(anφn) = an(B̂φn) = anbnφn. (2.7.44)

Subtracting (2.7.44) from (2.7.43), we obtain

(ÂB̂− B̂Â)φn = 0. (2.7.45)

For the equation (2.7.45) to be valid for any φn, we must have

(ÂB̂− B̂Â) = 0. (2.7.46)

Thus, the operators Â and B̂ commute. The theorem is proved.

Definition: The set of hermitian operators Â, B̂, Ĉ,. . . is called a complete set of

commuting operators (CSCO) if the operators mutually commute and the set of their

common eigenfunctions is complete and unique.

A complete set of operators, may sometimes consist of only one operator. For instance,

the position operator x̂ of a spinless particle, moving in one spatial dimension, provides a
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complete set. Its momentum operator p̂ also constitutes a complete set. However, if we

combine them together, x̂ and p̂ do not form a complete set because they do not commute.

We shall now discuss the problem of measuring more than one observable on a system

in a given state. Consider two observables represented by the operators Â and B̂. Suppose

we want to measure these on a system which is in a state ψ . Since, in general, operators

do not commute, the result obtained by measuring A first and then B will differ from the

one obtained by measuring B first and then A. Let us find out the reason behind it.

Suppose Â and B̂ do not commute and ψ is the nth eigenstate of the operator Â with

eigenfunction φn and the corresponding eigenvalue an. If we measure A first, the

measurement will, with certainty, yield the value an and the state of the system will

change from ψ to φn (the nth eigenstate of Â). Since Â and B̂ do not commute, φn is not an

eigenstate of B̂. If we now measure B, the result of measurement cannot be predicted in

advance. Any of the eigenvalues, bm, of B̂ can occur. The probability of obtaining bm will

be given by |cnm|2 where cnm is the coefficient in the expansion of φn into a series with

respect to the complete set of eigenfunctions, {χm}, of B̂

φn = ∑
m

cnmχm. (2.7.47)

Now, we reverse the sequence of measurement and measure B first and then A. In this case,

the measurement of B will yield one of the eigenvalues of B̂, say b j, and the system will

collapse into the eigenstate χ j. Since χ j is not an eigenstate of Â, the measurement of A
can result in any of the eigenvalues of Â. The probability of getting the value am for A will

be given by |c jm|2, where c jm are the coefficients in the expansion of χ j into a series with

respect to the complete set of eigenfunctions, {φm}, of Â

χ j = ∑
n

c jmφm. (2.7.48)

Obviously, the results of the first set of measurements will, in general, be different from

the results of the second set of measurements. Hence, the result of measurement of more

than one observables on a system depends on the order in which they are measured.

Now assume that the operators Â and B̂ commute. Then according to Theorem 2.7.1,

they will have a common set of eigenfunctions, say, {φ j}. Now if ψ is, say, the nth

eigenstate of Â (described by the eigenfunction φn) and we measure A, the result we shall

get will be nothing but the eigenvalue an of Â. Clearly, the state of the system will not be

altered by the measurement, i.e., the state remains to be the the nth eigenstate of Â. Since

φn is also an eigenfunction of B̂ with eigenvalue bn, the measurement of B will now with

certainty yield bn. Conversely, if we measure B first, the result will be bn and again the

state of the system will not be altered. The subsequent measurement of A will with

certainty yield an. In both the sequences of measurements, the result will be the same.

Corollary: Compatible observables can be measured simultaneously with any desired

accuracy, while non-compatible observables cannot be measured simultaneously

accurately.
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Note that if an observable, A, represented by a hermitian operator Â is measured on a

system in a state ψ , the uncertainty, ΔA, in its measurement is defined as

ΔA =
√
〈Â2〉−〈Â〉2. (2.7.49)

We shall prove in Chapter 4 that, if two hermitian operators, Â and B̂, do not commute

the uncertainties in their measurements in a given state satisfy the following generalized

Heisenberg uncertainty relation

ΔA ΔB≥ 1

2
|〈[Â, B̂]〉|. (2.7.50)

Thus, if two observables A and B are compatible, the corresponding operators Â and B̂
will commute and the relation (2.7.50) tells us that both the observables can be measured

simultaneously with high degrees of accuracy.

Example 2.7.4: A system is initially in the state

ψ0 =
1√
3

φ1(x)+
1√
2

φ2(x)+
1√
6

φ3(x), (2.7.51)

where φn are the normalized eigenstates of the system’s Hamiltonian such that Ĥφn =
n2ε0φn. Here, ε0 is a constant with dimensions of energy and n is a positive energy.

(a) If energy is measured, what values will be obtained and with what probabilities?

(b) Consider an observable A, which is represented by operator Â, whose action on φn is

defined by Âφn = (n+ 1)a0φn. If A is measured, what values will be obtained and

with what probabilities?

(c) Suppose that a measurement of the energy yields 4ε0. If we measure A immediately

afterward, what value will be obtained?

Solution:

(a) A measurement of the energy in the state φn yields the expectation value of the

Hamiltonian, given by

En = 〈Ĥ〉=
∫ +∞

−∞
φ ∗n (x)Ĥφn(x)dx = n2ε0, (2.7.52)

where we have taken into account that the wave function ψ0 is normalized to unity.

Thus, the values of energy that can result, when measured in the state ψ0, are, E1 =
ε0,E2 = 4ε0,E3 = 9ε0.
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The probability for obtaining the value En for energy is

P(En) =

∣∣∫ +∞
−∞ φ ∗n (x)ψ0(x)dx

∣∣2∫ +∞
−∞ |ψ0(x)|2 dx

=

∣∣∣∣∫ +∞

−∞
φ ∗n (x)ψ0(x)dx

∣∣∣∣2 . (2.7.53)

Taking into account that

∫ +∞

−∞
φ ∗m(x)φn(x)dx = δmn, (2.7.54)

we obtain

P(E1) =

∣∣∣∣ 1√
3

∫ +∞

−∞
φ ∗1 (x)ψ0(x)dx

∣∣∣∣2 = 1

3
,

P(E2) =

∣∣∣∣ 1√
2

∫ +∞

−∞
φ ∗2 (x)ψ0(x)dx

∣∣∣∣2 = 1

2
,

P(E3) =

∣∣∣∣ 1√
6

∫ +∞

−∞
φ ∗3 (x)ψ0(x)dx

∣∣∣∣2 = 1

6
. (2.7.55)

(b) A measurement of A in the state φn yields the expectation value of Â, given by

an = 〈Â〉=
∫ +∞

−∞
φ ∗n (x)Âφn(x)dx = (n+ 1)a0, (2.7.56)

that is, a1 = 2a0, a2 = 3a0, a3 = 4a0. The probabilities corresponding to these values

of A will be

P(a1) =
1

3
, P(a2) =

1

2
, P(a3) =

1

6
. (2.7.57)

(c) Since the average value of the Hamiltonian in the normalized state φ2 is given by

∫ +∞

−∞
φ ∗2 (x)Ĥφ2(x)dx = 4ε0, (2.7.58)

an energy measurement giving 4ε0 implies that the system, after measurement, is

left in the state φ2(x). Therefore a measurement of the observable A immediately

afterward yields a value equal to

〈Â〉2 =
∫ +∞

−∞
φ ∗2 (x)Âφ2(x)dx = 3a0. (2.7.59)
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Example 2.7.5: Two observables, Â, and B̂ of a system are given by the following matrices,

respectively:

A = ε0

(
3 (

√
2−√5i)

(
√

2+
√

5i) −3

)
, B = h̄

(
1 1

1 1

)
,

where ε0 has the dimensions of energy. (a) If we measure the observable A in some state

ψ of a quantum system, what could be the possible results? (b) Find the eigenvectors of A.

(c) If we measure the observable B in the state ψ , what could be the possible results? (d)

Suppose a measurement of Â in the state ψ yields a value equal to 4ε0. Immediately after

that we measure B̂. What is the probability of getting a value 2h̄?

Solution:

(a) According to the measurement postulate of quantum mechanics, the possible results

of the measurement of Â will be the eigenvalues of the operator Â. Therefore, let

us find these eigenvalues. The characteristic equation for the determination of the

eigenvalues, λ , is given by

|A−λ Î|=
∣∣∣∣∣ (3ε0−λ ) ε0(

√
2−√5i)

ε0(
√

2+
√

5i) −(3ε0 +λ )

∣∣∣∣∣= 0. ⇒ λ 2−16ε2
0 = 0.

(2.7.60)

This leads to λ1 = 4ε0 and λ2 = −4ε0. Hence, the possible results of measurements

are A = 4ε0 and A = −4ε0.

(b) Let us find the eigenvectors of A corresponding to these eigenvalues. For λ = 4ε0,

we have( −ε0 ε0(
√

2−√5i)
ε0(
√

2+
√

5i) −7ε0

) (
α
β

)
= 0. (2.7.61)

⇒ ε0

⎛
⎝ −α +(

√
2−√5i)β )

(
√

2+
√

5i)α−7β

⎞
⎠= 0. (2.7.62)

We get from here that β can be an arbitrary constant. Let β = 1. Then, α = (
√

2−√
5i). Therefore, the normalized eigenvector of A, corresponding to the eigenvalue

λ1 = 4ε0, is

ψ1 =
1

2
√

2

⎛
⎝
√

2−√5i

1

⎞
⎠ . (2.7.63)
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Similarly, we can calculate the normalized eigenvector of A with λ2 = −4ε0 to be

ψ2 =
1

2
√

2

⎛
⎝ −1

(
√

2+
√

5i)

⎞
⎠ . (2.7.64)

It is easy to check that the eigenvectors ψ1 and ψ2 are orthonormal.

(c) The characteristic equation for the operator B̂ reads:

|B−λ Î|=
∣∣∣∣ (h̄−λ ) h̄

h̄ (h̄−λ )

∣∣∣∣= 0. ⇒ (h̄−λ ) = ±h̄. (2.7.65)

This leads to λ1 = 2h̄ and λ2 = 0. Hence, the possible results of measurement of B
are B = 2h̄ and B = 0.

(d) The eigenvectors of B̂ corresponding to the eigenvalues 2h̄ and 0 are

φ1 =
1√
2

(
1

1

)
, φ2 =

1√
2

(
1

−1

)
, (2.7.66)

respectively.

Now, if the measurement of Â gives the value 4ε0, then after the measurement, the

state of the system will be ψ1. Then according to the postulates of quantum

mechanics, the probability of getting the value 2h̄ of B̂ will be

P(2h̄) =
|(φ1,ψ1)|2
(ψ1,ψ1)

=

∣∣∣∣14
[√

2−
√

5i+ 1
]∣∣∣∣2 = 8+ 2

√
2

16
≈ 0.677. (2.7.67)

Similarly, the probability of getting the value 0 for B̂ is

P(0) =
|(φ2,ψ1)|2
(ψ1,ψ1)

=

∣∣∣∣14
[√

2−
√

5i−1
]∣∣∣∣2 = 8−2

√
2

16
≈ 0.32322. (2.7.68)

Example 2.7.6: A particle of mass m is confined in a one-dimensional infinite potential well

of width a (0 ≤ x ≤ a). It is prepared to be in the second excited state (n = 3). Now the

width of the potential well is suddenly changed to 4 times the initial width without affecting

the state of the particle. If a measurement of the energy is carried out on the particle, what

are the probabilities that the particle is found in the first excited state and the ground state

of the new well?
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Solution: Initially, the particle is in the second excited state of the original well. Hence, the

initial wave function of the particle is (see Eq.(2.7.32))

ψ(x) =

√
2

a
sin

(
3π
a

x
)

. (2.7.69)

The bound state wave functions, ψ ′n(x), and the corresponding energy eigenvalues, E ′n, of

the new well are obtained by replacing a with 4a in the formulae (2.7.32):

ψ ′n(x) =
√

2

a
sin
(nπ

4a
x
)

, (2.7.70)

and

E ′n =
n2π2h̄2

32ma2
, n = 1,2,3, ... (2.7.71)

Since the wave functions of the original as well as new wells are normalized to unity, the

probability of finding the particle in the first excited state of the new well is given by

P2 =

∣∣∣∣∫ a

0
ψ ′ ∗2 (x)ψ(x)dx

∣∣∣∣2 =
∣∣∣∣2a
∫ a

0
sin

(
2π
4a

x
)

sin

(
3π
a

x
)

dx
∣∣∣∣2 . (2.7.72)

Using the well-known formula, 2sin(A) sin(B) = cos (A−B)−cos (A+B), the integrand

can be written as

2sin

(
3π
a

x
)

sin
( π

2a
x
)
= cos

(
5π
2a

x
)
− cos

(
7π
2a

x
)

. (2.7.73)

The integrals are then given by

∫ a

0
cos

(
5π
2a

x
)

dx =
2a
5π

sin

(
5π
2a

x
)∣∣∣∣a

0

=
2a
5π

sin

(
5π
2

)
=

2a
5π

, (2.7.74)

∫ a

0
cos

(
7π
2a

x
)

dx =
2a
7π

sin

(
7π
2a

x
)∣∣∣∣a

0

=
2a
7π

sin

(
7π
2

)
= − 2a

7π
. (2.7.75)

Therefore, the probability of finding the particle in the first excited state is

P2 =

∣∣∣∣ 2

5π
+

2

7π

∣∣∣∣2 =
∣∣∣∣ 24

35π

∣∣∣∣2 = 0.04764≈ 4.8 %. (2.7.76)
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The probability of finding the particle in the ground state of the new well is given by

P1 =

∣∣∣∣∫ a

0
ψ ′ ∗1 (x)ψ(x)dx

∣∣∣∣2 =
∣∣∣∣2a
∫ a

0
sin
( π

4a
x
)

sin

(
3π
a

x
)

dx
∣∣∣∣2 . (2.7.77)

The integrand can again be written as

2sin

(
3π
a

x
)

sin
( π

4a
x
)
= cos

(
11π
4a

x
)
− cos

(
13π
4a

x
)

, (2.7.78)

leading to the following values of the integrals

∫ a

0
cos

(
11π
4a

x
)

dx =
4a

11π
sin

(
11π
4a

x
)∣∣∣∣a

0

=
4a

11π
sin

(
11π

4

)
=

2
√

2a
11π

, (2.7.79)

∫ a

0
cos

(
7π
2a

x
)

dx =
4a

13π
sin

(
13π
4a

x
)∣∣∣∣a

0

=
4a

13π
sin

(
13π

4

)
= −2

√
2a

13π
. (2.7.80)

Therefore, the probability of finding the particle in the ground state is

P1 =

∣∣∣∣∣2
√

2

13π
+

2
√

2

11π

∣∣∣∣∣
2

=

∣∣∣∣∣48
√

2

143π

∣∣∣∣∣
2

≈ 0.023. (2.7.81)

Homework Problems

1. Which of the functions

(i) cos(4x), (ii) cosh(4x), (iii) e−4x, (iv) e−4x2

is (are) a genuine quantum mechanical eigenfunction (eigenfunctions) of the operator

Â = −(d2/dx2) and why?

2. Let the wave function of a particle be

ψ(x,0) = A e−|x|/2b,

where A and b are real constants. Normalize the wave function to find A.



52 Fundamentals of Quantum Mechanics

3. A particle is confined to move in the region 0 < x < L, where L is a positive constant.

If the wave function of the particle is

ψ(x,0) = A (x− x3),

where A is a real constant, find A. Calculate the probability of finding the particle in

the region L/3≤ x≤ 2L/3.

4. An electron is described by the wave function

ψ(x) =
{

0 x < 0

C e−x (1− e−x) x > 0

where C is a constant. (a) Find the value of C that normalizes ψ(x). (b) Where is

the electron most likely to be found; that is, for what value of x is the probability of

finding the electron largest?

5. The wave function of a particle

ψ(x,0) =

√ √
α

2
√

π
x e−αx2/2,

satisfies the TISE for E = β h̄ω , where α , β and ω are real constants. Find the

potential V as a function of x.

6. A particle, confined to move in the region 0 < x < L, where L is a positive constant, is

in a state described by the wave function

ψ(x,0) =

√
1

L

[
sin
(πx

L

)
+ sin

(
2πx

L

)]
.

Calculate the probability of finding the particle in the interval from x = 0 to x = L/2.

7. Find the hermitian conjugate of the following operators and discuss their hermiticity:

(a)
d
dx

, (b) i
d
dx

, and (c) x̂
d
dx

+ 5.

8. Â and B̂ are hermitian. Under what conditions is the linear combination αÂ+ β B̂,

where α and β are arbitrary complex numbers, hermitian?

9. Show that the operator Â = i(x̂2 + 1) d
dx + ix̂ is hermitian. Find its eigenfunction

corresponding to the eigenvalue λ = 0. If a particle is in a state described by this

eigenfunction, calculate the probability of finding the particle in the interval

−1≤ x≤+1.



The Postulates of Quantum Mechanics 53

10. Check whether the operator,

Â =

(
7i −1

2 −6i

)
,

is hermitian. Find its eigenvalues.

11. Find the operator hermitian conjugate to the operator

B̂ =

⎛
⎝ 2 0 1

0 3 1

1 0 4

⎞
⎠ .

Find the eigenvalues and the normalized eigenvectors of B̂.

12. Find the eigenvalues and the normalized eigenvectors of the matrix operators

(a) Â =

(
0 1

1 0

)
, (b) B̂ =

(
0 i
−i 0

)
.

13. Consider an operator Â = x̂ d
dx +α , where α is a constant. Calculate

(a)
[
Â, x̂
]

, (b)
[
Â, p̂x

]
, (c)

[
d
dx

,

[
Â,

d
dx

]]
.

14. Using the fundamental commutator, [x̂, p̂x] = ih̄, show that

[x̂n, p̂x] = ih̄nx̂n−1.

15. Show that

[ f (x̂), p̂x] = ih̄
∂ f (x̂)

∂ x̂
,

where f (x̂) is an arbitrary differentiable function of x̂.

16. Find the inverse of the following operators

(a) Â =

(
1 i
−i 2

)
, (b) B̂ =

⎛
⎝ 2 0 0

0 −3 i
0 −i 1

⎞
⎠ .
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17. Show that the operators

Â =

(
cosθ sinθ

−sinθ cosθ

)
, (b) B̂ =

⎛
⎜⎜⎝

1√
2

i√
2

0

− i√
2

i√
2

0

0 0 i

⎞
⎟⎟⎠ .

are unitary. Compute their eigenvalues and the corresponding normalized

eigenvectors.

18. The Hamiltonian for a free particle in one dimension is given by

Ĥ = − h̄2

2m
∂ 2

∂x2
.

Check whether the following functions are eigenstates of the Hamiltonian and if they

are, write down the corresponding energy eigenvalues:

(a) eipx/h̄, (b) sin

(
5πx

L

)
, (c) sin

(
5πx

L

)
+ 2cos

(
5πx

L

)
,

(d) sin

(
5πx

L

)
+ 2cos

(
7πx

L

)
, (e) sin

(
5πx

L

)
cos

(
5πx

L

)
.

Here, L is a real constant and p is a constant with dimensions of momentum.

19. A particle is restricted to move in the region 0 < x < a, where a is a positive constant.

Initially (t = 0), it is in a state with the wave function

ψ(x) =

√
1

a

[
sin
(πx

a

)
+ sin

(
3πx

a

)]
.

Calculate the probability of finding the particle in the interval a
3 < x < 2a

3 .

20. Find the wave function for any t > 0 in Problem 19. Assume that ψ(x, t) and calculate

the probability density ρ(x, t) = ψ∗(x, t)ψ(x, t).

21. The orthonormal states of a system corresponding to the energy eigenvalues, En, n =
1,2,3, ..., are described by the wave functions φn(x), n = 1,2,3, .... When energy

is measured on the system in the state ψ(x,0) at t = 0, the values obtained are E1

with probability 1/6, E2 with probability 1/2, E3 with probability 1/9, and E4 with

probability 2/9. (a) Write down the expression for ψ(x,0) on the basis of the given

information. (b) What will be the expression for ψ at a later time t > 0? (c) Show that

the expectation value of the Hamiltonian does not depend on time.

22. The state of this system is given in terms of three functions φi(x), i = 1,2,3 as

ψ =

√
1

10
φ1 +

√
7

10
φ2 +

√
2

10
φ3,
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where φi constitute a complete set of orthonormal eigenstates of some observable Â.

(a) Verify that ψ is normalized. Then, calculate the probability of finding the system

in any one of the states φ1,φ2, and φ3. Verify that the total probability is equal to one.

(b) Consider an ensemble of 500 identical particles. The measurement is done on all

of them to determine their states. Find the number of particles to be found in each of

the states φ1,φ2 and φ3.

23. An observable Â has two eigenfunctions ψ1 and ψ2 with eigenvalues a1 and a2

respectively. Another observable B̂ has two eigenfunctions φ1 and φ2 with

eigenvalues b1 and b2 respectively. Eigenfunctions of both these observables are

normalized and are related to each other through the following equations:

ψ1 =
3φ1 + 4φ2

5
, ψ2 =

4φ1−3φ2

5
.

(a) The observable Â is measured on a system in the state ψ and the result is a1. What

is the state of the system immediately after the measurement?

The observable B̂ is now measured on the system. What are the possible results and

what are their respective probabilities?

24. The wave function of a particle of mass m moving in a one-dimensional infinite

potential well of width a is

ψ(x,0) = i

√
1

2a
sin
(πx

a

)
+

√
1

a
sin

(
3πx

a

)
−
√

1

2a
sin
(πx

a

)
.

Calculate the average values of the operators x̂, x̂2, p̂x and p̂2
x .

25. Consider the particle and its wave function given in the Problem 24. If we measure

energy, what values would be obtained and with what probabilities? What will be the

average value of the energy of the particle in the given state?



Chapter 3

One-dimensional Problems

In this chapter, we shall first discuss the important properties of stationary state solutions

of the time-independent Schrödinger equation (TISE) in one spatial dimension and then

take up some typical problems.

The TISE in one spatial dimension takes the form:

− h̄2

2m
∂ 2φ (x)

∂x2
+V (x)φ (x) = Eφ (x), (3.0.1)

where x ∈ (−∞,+∞) is the independent variable. The nature and the properties of the

solutions to this equation depend on the interrelationship between the total energy, E, of

the particle and the potential V (x). Let us discuss some of the important concepts related

to it.

Continuum states

V x( )

V E V< <1 2

V2

V1

Bound states

E V V> and1 2

E V V< ,1 2

Vmin

x1 0 x2 x3 x

Figure 3.1 Various possibilities for the bound and scattering states of a particle, with
total energy E , moving in an arbitrary one-dimensional potential V (x).

56
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3.1 Bound and Scattering States

Consider an arbitrary form of the potential V (x), shown in Figure 3.1, which is general

enough to allow for the illustration of all the desired features1. Without any loss of

generality, the potential has been assumed to remain finite at spatial infinities:

limx→−∞V (x) = V1 and limx→+∞V (x) = V2 and it has a minimum Vmin at some point.

The character of the energy states of the particle is completely determined by the energy

E of the particle in comparison with the asymptotic values of the potential.

In general, the stationary state solutions are categorized as bound state solutions and

scattering state solutions.

Bound states: Bound states occur whenever the particle is confined (or bound) at all

energies to move within a finite and limited region of space. In the case of the potential

shown in Figure 3.1, if the total energy E of the particle is greater than Vmin but less than

both the asymptotic values V1 and V2 of the potential, the particle’s motion is restricted

between the two classical turning points x1 and x2. The states corresponding to this energy

range are called bound states.

Scattering states: If the total energy of the particle is either greater than V1 and less than

V2 or greater than both V1 and V2, the particle’s motion is not confined to a finite region

of space and the states of the particle, corresponding to these ranges of the total energy,

are called scattering states. Note that for the bound states to exist, the potential V (x) must

have at least one minimum that is lower than V1.

Important properties of bound state energy levels and the wave functions in one
dimension:
1. The bound state energy levels of a system in one spatial dimension are discrete and
nondegenerate.

Proof: The solutions of the TISE must satisfy the boundary conditions at the classical

turning points x1 and x2. The result is that acceptable solutions exist only for a discrete set

of energy eigenvalues.

The proof of non-degeneracy goes as follows. Suppose there are two solutions φ1(x)
and φ2(x) for the same energy eigenvalue E. They both must satisfy the TISE and we get

φ ′′1 = −2m
h̄2

(E−V (x)) φ1, (3.1.1)

φ ′′2 = −2m
h̄2

(E−V (x)) φ2. (3.1.2)

Equations (3.1.1) and (3.1.2) lead to

φ ′′1
φ1

=
φ ′′2
φ2

, ⇒ d
dx

(φ ′1 φ2−φ ′2 φ1) = 0. (3.1.3)

1Landau L.D. and Lifshitz E.M., Quantum Mechanics, Ch. III, p.61, Pergamon Press, 1977
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Integrating 3.1.3 once over x and taking into account the fact that the wave functions and

their first derivatives must vanish at infinity, we obtain

φ ′1
φ1

=
φ ′2
φ2

. (3.1.4)

Integrating once more over x and taking into account the boundary conditions, we arrive at

φ1 =C φ2, (3.1.5)

where C is the integration constant. Since C can be absorbed in the normalization of the

wave function, we conclude that φ1 ≡ φ2. The theorem is proved.

2. The ground state wave function has no nodes, that is, it does not become zero anywhere

in the entire region −∞ < x < +∞. The next higher energy bound state is called the

first excited state and has one node, that is, it becomes zero only at one point in space.

The second excited state has two nodes and so on. In general, the nth bound state wave
function, φn(x), in one spatial dimension has n nodes (that is, φn(x) vanishes n times), if
n = 0 corresponds to the ground state and (n−1) nodes if n = 1 corresponds to the ground
state.

The aforementioned property is proved by using the so-called variational principle. We

shall not present it here. Instead, we refer the reader to the book, Methods of Mathematical
Physics, Vol. 1 by R. Courant and D. Hilbert.

Before moving on, let us try to solve the one-dimensional TISE and obtain the

stationary state solutions in a couple of simple cases, which will illustrate the

methodology and the peculiarities of quantum mechanics.

3.2 The Free Particle Solution

A free particle represents a typical example of a stationary state that corresponds to an

unbounded motion (scattering state) both along the positive and the negative x directions.

In this case, the external potential is absent, that is, V (x) = 0, and the TISE reads

− h̄2

2m
d2φ (x)

dx2
= Eφ (x) ⇒ d2φ (x)

dx2
+ k2φ (x) = 0, (3.2.1)

where

k2 =
2mE
h̄2

,E > 0. (3.2.2)

Equation (3.2.1) has two linearly independent solutions:

φ(+)(x) = eikx, φ(−)(x) = e−ikx. (3.2.3)
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The general stationary state solution is the linear superposition given by

ψ(x, t) = A(+)e
i(kx−ωt) +A(−)e

−i(kx+ωt), (3.2.4)

where A(+) and A(−) are arbitrary, in general complex, constants and we have used the fact

that ω = E/h̄. If we use the de-Broglie formula

p = h̄ k, (3.2.5)

then the solution (3.2.4) can be written as

ψ(x, t) = A(+) e
i
h̄ (p x−E t) +A(−) e−

i
h̄ (p x+E t). (3.2.6)

The first term in the above equation represents a particle travelling to the right (positive x
direction) and the second term represents a particle travelling to the left with well defined

momenta p± = ± h̄k and energy E± = h̄2k2/2m. The intensities of corresponding waves

are |A+|2 and |A−|2, respectively. Since there are no boundary conditions, there are no

restrictions on the values of k and E; all values of k and E give solutions to the TISE. Thus,
a free particle has a continuous energy spectrum.

There is, however, some problems related to the free particle solution. Firstly, the

probability densities corresponding to either solutions are constant

P± =
∣∣∣A(±)

∣∣∣2 , (3.2.7)

that is, they depend neither on x nor on t. This is due to the fact that, for a state with definite

values of momentum, p± =±h̄k, and energy E± = h̄2k2/2m, there occurs a complete loss

of information about the position of the particle and the instant of time at which it is located

at that position. This is the consequence of Heisenberg’s uncertainty principle, according

to which, since the momentum and energy of a particle are known exactly (Δp = 0, and

ΔE = 0), there must be a total uncertainty about its position and time at which it is located

at that position.
The second difficulty is in an apparent discrepancy between the speed of the wave and

the speed of the particle it is supposed to represent. The speed of the right or the left moving

plane wave is given by

vp =
ω
k
=

E
h̄k

=
h̄k
2m

. (3.2.8)

The velocity of the particle, on the other hand, is given by

v =
p
m

=
h̄k
m

= 2vp. (3.2.9)

This means that the particle travels twice as fast as the wave that represents it.
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The third difficulty is that the free particle wave function cannot be normalized:

∫ +∞

−∞
|ψ(x, t)|2 dx = |A±|2

∫ +∞

−∞
dx → ∞. (3.2.10)

Hence, as we have discussed earlier, these plane wave solutions of the free Schrödinger

equation cannot be taken as quantum mechanical wave functions representing free

particles. The natural question arises: Is there anyway out of this problem?

The answer is yes! What saves us is the fact that the Schrödinger equation is linear

and superposition principle holds. Therefore, we can superpose a large number of plane

wave solutions and the resulting function will be a solution of the Schrödinger equation.

Such a solution turns out to be localized and is called a wave packet. Mathematically it is

written as

ψ(x, t) =
1√
2π

∫ +∞

−∞
ψ̃(k) ei(k(ω)x−ωt) dk, (3.2.11)

where the amplitude of the wave packet ψ̃(k) is given by the Fourier transform of ψ(x,0):

ψ̃(k) =
1√
2π

∫ +∞

−∞
ψ(x,0) e−ik(ω)x dx. (3.2.12)

The wave packet represented by the equation (3.2.11) is localized in space, namely at x = 0

(Figure 3.2). This is because of the fact that ψ(x, t) is a superposition of an infinite number

of plane waves that are, as we know, coherent and will interfere with each other. They add

up constructively at x = 0, while their constructive interference diminishes as we move

away from the point x = 0. The rapid oscillations of the exponential factor eikx ensures

that the waves interfere destructively for x→±∞. Similarly, the function ψ̃(k) represents

a wave packet in k-space (momentum space). It is localized at k = 0 and vanishes at large

values of k.

As a measure of the size of the packet in x-space, it is customary to define a half-width

Δx corresponding to the half-maximum of |ψ(x, t)|2. It is defined such that when x varies

from 0 to ±Δx, the function |ψ(x)|2 drops down to e−1/2 times its initial value:

|ψ(±Δx)|2
|ψ(0,0)|2

=
1

e1/2
. (3.2.13)

Similarly, one defines a half-width Δk corresponding to the half-maximum of |ψ̃(k)|2. In

this case it is defined such that when k varies from k0 to k0±Δk, the function |ψ̃(k)|2 drops

down to e−1/2 times its initial value:

|ψ̃(±Δk)|2
|ψ̃(0)|2

=
1

e1/2
(3.2.14)
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The quantity Δk is the measure of the size of the packet in the momentum space.

The physical interpretation of the wave packet can be given as follows: |ψ(x, t)|2 is

the probability density for finding the particle at position x at a given t and P(x)dx =
|ψ(x, t)|2 dx gives the probability of finding the particle in the interval between x and x+
dx. Similarly, |ψ̃(k)|2 and |ψ̃(k)|2 dk represent the probability density for measuring the

wave vector k (or, equivalently momentum p = k/h̄) of the particle and the probability of

finding the particle’s wave vector in the interval between k and k+ dk. Note that it is not

difficult to see from the equations (3.2.11) and (3.2.12) that if ψ(x) is normalized to unity,

so is ψ̃(k).

Envelope

ng

x

Figure 3.2 The snapshot of a localized wave packet.

The representation of a free particle by a wave packet overcomes the earlier mentioned

difficulties related to the position, the instant of time at which the particle is located at that

position and the normalization of the plane wave solutions. Since the position, and

momentum of a particle, represented by a wave packet, are no longer known exactly (only

probabilistic outcomes are possible), the difficulties related to position and time are

automatically resolved. The difficulty, related to the speed of the particle being twice that

of the speed of the de Broglie wave representing it, is also overcome because, now both

the particle and the wave packet travel with the same speed equal to the group velocity, vg,

of the wave packet. Finally, the wave packet, given by (3.2.11), is normalizable.

3.3 Particle in an Infinite Potential Well

In the last section, we considered the free particle solution as our first example. Here,

we consider a second example in which we make the situation a bit more involved by
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restricting the motion of a free particle to a small region of width a by putting walls of

infinite potential at x = 0 and x = a (see Figure 3.3). This is known as asymmetric infinite

square well potential.

E

V ��� V ���

V = 0

0 a x

Figure 3.3 The representative shape of an infinite potential well V (x) of width a. E is
the total energy of the particle trapped in the potential.

Mathematically this is given by the following expression:

V (x) =

{
0, for 0 < x < a,

∞, for x≤ 0,x≥ a.
(3.3.1)

We want to solve the Schrödinger equation for the stationary states of a particle of mass

m moving inside such a potential well. Clearly, due to the infinite walls, the particle is

trapped and cannot leave the region 0 < x < a. If we look at it from the classical point of

view, the particle moves inside the well with a constant speed, p/m = ±√2mE/m, back

and forth getting reflected from the walls at x = 0 and x = a. Since the motion of the

particle is confined inside the well, quantum mechanically, it corresponds to the case of a

bound state problem. In order to find the bound state energies and wave functions, we must

solve the TISE with appropriate boundary conditions. Since the particle cannot penetrate

the regions x < 0 and x > a, the wave function of the particle must be zero in these regions:

ψ = 0 for x < 0 and x > a.

The TISE

d2φ
dx2

+
2m
h̄2

(E−V )φ = 0 (3.3.2)

for the given case can be written as

φ ′′

φ
= −2m

h̄2
(E−V ) , (3.3.3)
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where the prime stands for ordinary derivative with respect to x. Inside the well, V = 0,

and the solution is given by the linear combination

φ (x) = A sin(kx)+B cos(kx), (3.3.4)

where A and B are arbitrary constants and

k2 =
2mE
h̄2

. (3.3.5)

0

– 2

f
(

)
x

n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

f1

f2

f3

x �

2

Figure 3.4 Spatial parts of the wave functions for the first three stationary states of a
particle in the infinite square well potential with a = 1.

According to the standard conditions, the wave function has to be continuous across the

boundaries and we must have φ ≡ 0 for x = 0 and x = a. The first boundary condition

φ (x = 0) = 0 leads to B = 0. So, we are left with φ (x) = A sin(kx). The second boundary

condition yields

sin(ka) = 0, ⇒ kn =
nπ
a

, n = 1,2,3, ... (3.3.6)

Taking into account (3.3.6), we conclude that the boundary conditions can be satisfied only

for the discrete values of energy
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En =
n2h̄2π2

2ma2
, n = 1,2,3, . . . , (3.3.7)

where we have omitted n = 0 because it leads to an uninteresting result: φ0(x) = 0 and

E0 = 0. Thus, a particle, trapped inside an infinite potential well, can have only discrete

set of energy eigenvalues given by (3.3.7). The corresponding eigenfunctions are

φn(x) = Bn sin
(nπ

a
x
)

. (3.3.8)

The constant Bn is determined by the normalization condition

|Bn|2
∫ +∞

−∞
φ ∗n (x)φn(x)dx = |Bn|2

∫ a

0
sin2
(πx

a
n
)

dx = 1. (3.3.9)

The result is

Bn =

√
2

a
. (3.3.10)

Therefore, the normalized eigenfunctions and the corresponding energies are

ψn(x, t) =

√
2

a
sin
(πx

a
n
)

, En =
n2h̄2π2

2ma2
, n = 1,2,3, ... . (3.3.11)

We thus got an infinite sequence of discrete energy levels corresponding to the positive

integer values of the quantum number n. The ground state corresponds to n= 1 with energy

E1 = h̄2π2/(2ma2). The states with quantum numbers n > 1 are called the excited states.

Their energies are equal to n2 times the ground state energy.

The full stationary state solutions are

ψn(x, t) =

√
2

a
sin
(πx

a
n
)

e−i n2π2h̄
2ma2 t

. (3.3.12)

Note that, in view of the linearity of the Schrödinger equation, the most general stationary

state solution for the given case can be written as

ψ(x, t) =
∞

∑
n=1

cn

√
2

a
sin
(πx

a
n
)

e−i n2π2h̄
2ma2 t

, (3.3.13)

where cn are arbitrary constants. The spatial parts of the wave functions, for the first three

stationary states of a particle in the infinite square well potential with a = 1, are depicted

in Fig.3.4.
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Properties of the eigenfunctions: Let us enumerate the important properties of the

obtained solutions. These properties are quite general and hold good for most of the

potentials encountered in quantum mechanics.

1. The eigenfunction φn(x) has (n−1) nodes (zero-crossing).

2. These functions are alternately symmetric and antisymmetric with respect to the

centre of the well. For instance, as shown in Figure 3.4, the functions φ1 and φ3 are

symmetric whereas the function φ2 is antisymmetric. In general, the eigenfunctions

φn with odd n are symmetric while those with even n are antisymmetric.

3. None of the energy levels is degenerate, that is, each energy level corresponds to a

unique eigenfunction.

4. The eigenfunctions corresponding to different energy eigenvalues are orthogonal:

∫ +∞

−∞
φ ∗m(x)φn(x)dx =

∫ a

0
φ ∗m(x)φn(x)dx = δmn, (3.3.14)

where δmn is the Kronecker delta:

δmn =

{
1 if m = n
0 if m �= n.

(3.3.15)

5. The eigenfunctions {φn(x)},n = 1,2,3, . . . constitute a complete set in the sense that

an arbitrary function f (x) can be expanded as a linear combination of these functions:

f (x) =
∞

∑
n=1

cnφn(x) =

√
2

a

∞

∑
n=1

cn sin
(πx

a
n
)

, (3.3.16)

where the coefficients cn are calculated as

cn =
∫ a

0
φ ∗n (x) f (x)dx. (3.3.17)

Note that, the ground state corresponds to n = 1 instead of n = 0. The reason behind it

lies in Heisenberg’s uncertainty relation between the position and momentum (see

Eq. (3.10.12)) of the particle. If the particle has zero total energy, it will be at rest inside

the well and we can, in principle, precisely determine its position and momentum

simultaneously at a given instant of time. This is not permitted by the uncertainty relation.

Furthermore, since our particle is localized inside the well of width a, according to the

uncertainty relation, the minimum uncertainty in the momentum of the particle is of the

order of h̄/2a, that is, Δp = h̄/2a. This leads to a minimum possible value of the kinetic

energy of the particle equal to h̄2/8ma2, which is of the order of the ground state energy

E1 = π2h̄2/2ma2. This unavoidable minimum energy enforced by the uncertainty

principle is known as the zero-point energy. The zero-point energy therefore reflects the



66 Fundamentals of Quantum Mechanics

necessity of minimum motion of the particle due to localization. It occurs for all bound

state problems. In the case of binding potentials, the lowest energy state has energy higher

than the minimum of the potential energy. This is in contrast to the situation in classical

mechanics where the lowest possible energy is equal to the minimum of the potential

energy with zero kinetic energy. In quantum mechanics, however, the lowest energy state

does minimize the total energy E = T +V but leads to a finite nonzero value of the

kinetic energy.

Example 3.3.1: A particle in an infinite symmetrical potential well of width a (−a
2 ≤ x ≤

+ a
2 ) is initially (t = 0) in a state with the wave function

ψ(x,0) = A
(

1− x2

a2

)
, (3.3.18)

where A is an arbitrary real constant. Find the wave function ψ(x, t) at t > 0.

Solution: First, we normalize the wave function to find A. We have

∫ +a

−a
|ψ(x, t)|2 dx = A2

∫ +a

−a

(
1−2

x2

a2
+

x4

a4

)
dx

= A2

(
2a− 4a

3
+

2a
5

)
= A2 16a

15
= 1. (3.3.19)

This gives the constant A as

A =

√
15

4
√

a
. (3.3.20)

The general solution at t > 0 is given by the linear combination

ψ(x, t) = ∑
n

cnφn(x) e−
i
h̄ Ent , (3.3.21)

where φn(x) are the normalized time independent solutions of the corresponding TISE. The

coefficients, cn, are to be calculated for a given ψ(x,0). Since the potential is symmetric

with respect to the centre of the well (at x = 0), the solutions are

φn(x) =

⎧⎪⎪⎨
⎪⎪⎩
√

2
a cos

(nπx
a

)
, n = 1,3,5, ...

√
2
a sin

(nπx
a

)
, n = 2,4,6, ...

(3.3.22)
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For odd n, the coefficients cn are

c1n = A

√
2

a

∫ + a
2

− a
2

cos
(nπx

a

)
dx− A

a2

√
2

a

∫ + a
2

− a
2

x2 cos
(nπx

a

)
dx≡ I1 + I2. (3.3.23)

Taking the above integrals and using the expression for A, we obtain

I1 =

√
30

2nπ
sin
(nπ

2

)
, (3.3.24)

and

I2 =
√

30

(
1

8nπ
− 1

n3π3

)
sin
(nπ

2

)
. (3.3.25)

For even n, the coefficients cn are

c2n =

[
A

√
2

a

∫ + a
2

− a
2

sin
(nπx

2a

)
dx− A

a2

√
2

a

∫ + a
2

− a
2

x2 sin
(nπx

2a

)
dx

]
. (3.3.26)

In this case, both the integrals are zero because the integrands are odd functions of x.

Therefore, the expansion coefficients are given by

cn =
√

30

(
5

8nπ
− 1

n3π3

)
sin
(nπ

2

)
, n = 1,3,5, . . . (3.3.27)

As a consequence, the wave function at t > 0 is given by the following linear combination

ψ(x, t) = ∑
n

√
30

(
5

8nπ
− 1

n3π3

)
sin
(nπ

2

)
φn(x) e−i(n2π2h̄/8ma2)t , n = 1,3,5, . . .

(3.3.28)

3.4 Discontinuous Potentials and the Differentiability of the Wave
Function

We have seen that any physically acceptable solution of the TISE must satisfy the standard

conditions. Since the TISE involves an external potential, V (x), the form of its solutions

and the fulfillment of the standard conditions depend on the properties of the function V (x).
If V (x) is finite and continuous everywhere, we can expect the solutions of the TISE to be

finite, continuous and differentiable. However, if the potential has points of discontinuity,

then we have to examine whether the wave function will be continuous and differentiable

at these points or not. It is evident from the physical interpretation of the wave function

that it has to be continuous everywhere irrespective of the fact whether or not the potential
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has discontinuity. However, the differentiability of the wave function is not guaranteed

in advance and hence, must be examined. This is also important because of the fact that

the general solution of TISE contains two integration constants to be determined by the

boundary conditions and one of the boundary conditions involves the first-order derivative

of the wave function.

(a) The potential has a finite jump (discontinuity), say, at x = 0:

V (x) =
{

0 for x < 0

V0 > 0 for x≥ 0.
(3.4.1)

The wave function has to be continuous across x = 0. To check the continuity of the

first derivative, we first replace the potential V (x) by a smoothened potential Vε(x)
in the interval x ∈ [−ε ,+ε ] such that

lim
ε→0

Vε(x) = V0. (3.4.2)

Here ε � 1 is an infinitesimal positive parameter. Integrating the time-independent

Schrödinger equation in this interval over x, we obtain(
dφ
dx

)
+ε
−
(

dφ
dx

)
−ε

= −2mE
h̄2

∫ +ε

−ε
φ (x)dx+

2mE
h̄2

∫ +ε

−ε
V (x)φ (x)dx. (3.4.3)

If we take the limit ε → 0 in (3.4.3), we get

Δ
(

dφ
dx

)
= −2mE

h̄2
lim
ε→0

∫ +ε

−ε
φ (x)dx+

2mE
h̄2

lim
ε→0

∫ +ε

−ε
V (x)φ (x)dx. (3.4.4)

The first term on the right-hand side of (3.4.4) is zero because φ (x) is continuous

across x = 0 and hence, the integral goes to zero as ε becomes zero. The second term

is also zero because

lim
ε→0

∫ +ε

−ε
V (x)φ (x)dx. = V0 lim

ε→0

∫ +ε

−ε
φ (x)dx = 0. (3.4.5)

As a result, we arrive at(
dφ
dx

)
+ε

=

(
dφ
dx

)
−ε

. (3.4.6)

Thus, if the potential has a finite jump at a point, the wave function and its first
derivative are continuous at the point of discontinuity. That is, the wave function is

differentiable at the points of finite discontinuity of the potential.
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(b) The potential V (x) is infinite in a region: In this case, the particle cannot penetrate

through the infinite barrier and the probability of finding the particle inside the barrier

is zero. Therefore, the wave function must vanish everywhere in the region of infinite

potential.

(c) The potential becomes infinite at a point ( that is, has a singularity at a point): We

can model this situation by assuming V (x) = −α δ (x− x0), where α is a positive

constant. The wave function will be continuous at x = x0. In order to verify the

continuity of the first derivative, we once again integrate the corresponding TISE in

the vicinity of the point x = x0. We get(
dφ
dx

)
+ε
−
(

dφ
dx

)
−ε

= −2mα
h̄2

∫ +ε

−ε
δ (x− x0)φ (x)dx = −2mα

h̄2
φ (x0). (3.4.7)

Thus, the first derivative of the wave function is not continuous across the point of

singularity. Instead, it has a finite jump of (−2mα/h̄2)φ (x0) at x = x0.

Example 3.4.1: A free particle of mass, m, and total energy, E, is incident from x→−∞ on

a potential step given by

V (x) =
{

0 for x < 0

V0 > 0 for x≥ 0,
(3.4.8)

where V0 > E is a positive constant. Solve the corresponding TISE, apply the appropriate

boundary conditions and determine the wave function.

Solution: The given potential divides the entire region −∞ < x < +∞ into two halves:

x < 0, where the potential is zero and x > 0, where the potential has a constant value

V0. We will call them Region 1 and Region 2, respectively. The corresponding stationary

state wave functions in these regions are denoted as ψ1(x, t) = φ1(x)e−iEt/h̄ and ψ2(x, t) =
φ2(x)e−iEt/h̄, respectively. In Region 1, the TISE

d2φ
dx2

+
2mE
h̄2

φ = 0 (3.4.9)

has the following general solution

φ (x) = Aeik1x +Be−ik1x, (3.4.10)

where k2
1 = 2mE/h̄2 and A and B are arbitrary constants. As a result,

ψ1(x, t) = Aei(kx−i E
h̄ t) +Be−i(kx+i E

h̄ t). (3.4.11)



70 Fundamentals of Quantum Mechanics

The first term of this solution represents the incident particle moving along the positive

x-axis, while the second term represents the particle reflected by the potential barrier and

moving along the negative x-axis.

In Region 2, the TISE reads

d2φ
dx2

− 2m(V0−E)
h̄2

φ = 0. (3.4.12)

Its general solution is

φ (x) =Ce−k2x +Dek2x, (3.4.13)

where k2
2 = 2m(V0−E)/h̄2 and C and D are arbitrary constants. Since the wave function

must tend to zero at spatial infinities (x→±∞), we must put D = 0, otherwise the solution

will diverge. Therefore, the stationary state solution in the second region can be written as

ψ2(x, t) =Ce−k2x−i(E/h̄)t . (3.4.14)

Since the potential has only a finite jump at x = 0, both the wave functions (φ1 and φ2) and

their first-order derivatives must be continuous at x = 0. We thus have

A+B =C, (3.4.15)

ik1(A−B) = −k2C. (3.4.16)

There is a small problem here because we have only two equations but three constants to

be determined. Let us first determine the coefficients B and C in terms of the constant A
and then see what we can do about A. From the equations (3.4.15) and (3.4.16), we have

1+
B
A
=

C
A

, (3.4.17)

1− B
A
=

ik2

k1

C
A

. (3.4.18)

Solving these equations for C/A, we get

C =
2k1

k1 + ik2
A. (3.4.19)

If we subtract (3.4.18) from (3.4.17) and use (3.4.19), we obtain

B =
k1− ik2

k1 + ik2
A. (3.4.20)
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Now, without any loss of generality, we might assume that the incident particle’s wave

function (a wave packet) is normalized in such a way that A = 1. Then the required wave

function is

φ (x) =

⎧⎨
⎩

ei(k1x−iωt) + k1−ik2
k1+ik2

e−i(kx+iωt) x < 0,

2k1
k1+ik2

e−(k2x+iωt) x > 0,
(3.4.21)

where ω = E/h̄.

Example 3.4.2: A particle of mass m and total energy,−E (E > 0), is subject to the potential

given by

V (x) = −αδ (x),

here α is a positive constant and δ (x) is the Dirac delta function. Solve the Schrödinger

equation for the bound states and find the energy levels and the corresponding normalized

wave functions. How many bound states can the particle have in such a potential?

Solution: Let us first solve the time-independent Schrödinger equation

− h̄2

2m
d2φ
dx2

+V (x)φ = Eφ (3.4.22)

for the wave function φ (x). For x < 0 and x > 0, V (x) = 0 and we have

d2φ
dx2

− 2m|E|
h̄2

φ = 0. (3.4.23)

Since the standard conditions require the wave function to vanish for x→±∞, we have

φ (x) =

{
Aekx for x < 0

Be−kx for x > 0,
(3.4.24)

where k =
√

2m|E|/h̄ and A and B are real but arbitrary constants. The continuity of φ (x)
at x = 0 yields

A = B. (3.4.25)

The potential is infinite at x = 0. Therefore, as discussed earlier, the first derivative of the

wave function will be discontinuous and we shall have(
dφ
dx

)
+ε
−
(

dφ
dx

)
−ε

= −2mα
h̄2

∫ +ε

−ε
δ (x)φ (x)dx = −2mα

h̄2
φ (0). (3.4.26)
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If we take the limit ε → 0 and put A = B, we obtain

−2kA = −2mα
h̄2

φ (0) = −2mα
h̄2

A ⇒ k =
mα
h̄2

. (3.4.27)

We thus see that there is only one bound state for the particle in this case whose energy is

E = −mα
2h̄2

. (3.4.28)

The normalization of the wave function reads∫ +∞

−∞
|ψ(x)|2 dx = A2

∫ 0

−∞
e2kx dx+A2

∫ +∞

0
e−2kx dx =

A2

k
= 1. (3.4.29)

Hence, A =
√

k. The normalized wave function is thus given by

φ (x) =

{ √
kekx for x < 0,

√
ke−kx for x > 0.

or, φ (x) =
√

mα
h̄2

e−
mα
h̄2 |x|. (3.4.30)

3.5 Conservation of Probability and the Continuity Equation

Continuity equation in quantum mechanics
In Chapter 2, we talked about the statistical interpretation of the wave function in which

the quantity |ψ(x, t)|2 represents the probability density at a given instant of time. The

argument that at any t, the particle is definitely somewhere in the universe led to the

normalization condition for the wave function. Later, we also postulated the

time-evolution of the wave function to be governed by the time-dependent Schrödinger

equation. Therefore, it is natural to check whether the statistical interpretation of the wave

function is consistent with its time-evolution. In other words, we want to answer the

following question: If the wave function is normalized at t = 0, does it remain normalized

at any t > 0? It turns out that it does. This is what we are going to show.

Consider, for simplicity, one-dimensional Schrödinger equations both for the wave

function, ψ , and its complex conjugate function ψ∗. We have

ih̄
∂ψ
∂ t

= − h̄2

2m
∂ 2ψ
∂x2

+V (x)ψ , (3.5.1)

− ih̄
∂ψ∗

∂ t
= − h̄2

2m
∂ 2ψ∗

∂x2
+V (x)ψ∗. (3.5.2)

If we multiply the equation (3.5.1) by ψ∗, the equation (3.5.2) by ψ and subtract the second

from the first, the result can be written in the form of a continuity equation:
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∂ρ(x, t)
∂ t

+
∂ j(x, t)

∂x
= 0, (3.5.3)

where ρ(x, t) = ψ∗(x, t)ψ(x, t) = |ψ(x, t)|2 is the probability density and �j(x, t) = j(x, t) î
is the probability current density given by the following expression:

�j(x, t) = î
h̄

2im

(
ψ∗(x, t)

∂ψ(x, t)
∂x

− ∂ψ∗(x, t)
∂x

ψ(x)
)

. (3.5.4)

Equation (3.5.3) represents the local conservation of quantum mechanical probability the

same way as the continuity equation in electrodynamics represents the local charge

conservation. If we integrate the continuity equation over x from −∞ to +∞, we get

d
dt

(∫ +∞

−∞
ρ dx

)
= − h̄

2im

∫ +∞

−∞

∂
∂x

(
ψ∗(x, t)

∂ψ(x, t)
∂x

− ∂ψ∗(x, t)
∂x

ψ(x)
)

dx,

= − h̄
2im

[
ψ∗(x, t)

∂ψ(x, t)
∂x

− ∂ψ∗(x, t)
∂x

ψ(x)
]+∞

−∞
. (3.5.5)

Due to the standard conditions, the wave function and its first derivative must vanish at

spatial infinities. Therefore, the right-hand side of (3.5.5) becomes zero, and we get

d
dt

(∫ +∞

−∞
ρ dx

)
= 0 ⇒

∫ +∞

−∞
ψ∗ψ dx =C, (3.5.6)

where C is the integration constant to be determined by the initial condition. If the wave

function is normalized at t = 0, we have C = 1. In other words, the total probability of

finding the particle at some point in space is independent of time and the total probability

is conserved even if the wave function is changing in time according to the time-dependent

Schrödinger equation. In addition, if we have normalized the wave function at t = 0, it

remains normalized for all times to come.

In the three-dimensional case, the probability density, ρ , and the probability current

density, �j, are given by

ρ(�r, t) = ψ∗ψ (3.5.7)

�j(�r, t) =
h̄

2im

[
ψ∗
(
�∇ψ
)
−
(
�∇ψ∗

)
ψ
]

, (3.5.8)

where ψ = ψ(�r, t). Consequently, the continuity equation is written in the form

∂ρ(�r, t)
∂ t

+�∇ ·�j(�r, t) = 0. (3.5.9)
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If we integrate the equation (3.5.9) over all space and use the divergence theorem, we

obtain

d
dt

(∫ +∞

−∞
ψ∗ψ d3r

)
= − h̄

2im

∮
S∞

[
ψ∗(�∇ψ)− (�∇ψ∗)ψ

]
·d�s. (3.5.10)

The surface integral on the right-hand side vanishes because the wave function and its first-

order derivatives must vanish at an infinitely remote surface. The result is once again the

conservation of total probability:

d
dt

(∫ +∞

−∞
ψ∗ψ d3r

)
= 0, (3.5.11)

that is, the total probability of finding a particle somewhere in space is independent of time.

Once again, if we have normalized the wave function at t = 0, it remains normalized for

all times to come.

The physical interpretation of the continuity equation: Note that (3.5.9) can be interpreted

in a more physically meaningful manner if we regard ρ = |ψ|2 as the mean particle

density and �j as the mean particle flux density defined as the average number of particles

per unit time passing through a unit area held perpendicular to the direction of motion of

the particles. Now, if we multiply ρ by the mass m of a particle then ρm = m|ψ|2 will be

the average mass density and correspondingly �j will represent the average current density

of matter. Then the equation (3.5.9) can be thought of as a manifestation of the fact that

the change in time of the average mass density in some infinitesimal volume, dτ (Figure

3.5(a)), is due to the inflow or outflow of this mass through the surface enclosing it.

Equation (3.5.11) then says that the average number of particles inside dτ remains

constant. In other words, the average number of particles per unit time entering the

surface, enclosing dτ , is equal to the average number of particles per unit time leaving

this boundary surface.

dt Nv

vN m( )–3

(a) (b)

Figure 3.5 (a) Infinitesimal volume, (b) Cylinder of unit cross-section and length v.

For instance, suppose we have a stream of particles (all propagating along the x
direction with a velocity�v) with density N. Then the particle current density will be given

by �j = Nv î. Consider now a cylindrical volume of unit cross-sectional area and length v
lying along the direction of motion of the particles (Figure 3.5(b)). Since the length of the

cylinder is v, the average number of particles entering the cylinder per second through the
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rear cross-sectional area will be equal to Nv and this will in turn be equal to the number of

particles leaving the cylinder per second through the front cross-sectional area, so that the

number of particles inside the cylinder at any instant of time is constant. The continuity

equation (3.5.9) or (3.5.3) can thus be looked upon as expressing the local conservation of

the number of particles.

Example 3.5.1: The wave function is given to be

ψ(x, t) = A ei(kx−ωt) +B e−i(kx+ωt),

where A and B are arbitrary complex constants. Calculate the probability density and the

probability current density. Show the validity of the continuity equation. Give the physical

interpretation of the obtained results.

Solution: The probability density ρ(x, t) is given by

ρ(x, t) = |ψ(x, t)|2 =
(

A∗ e−i(kx−ωt) +B∗ ei(kx+ωt)
)(

A ei(kx−ωt) +B e−i(kx+ωt)
)

= |A|2 +A∗B e−2ikx + |B|2 +B∗A e2ikx. (3.5.12)

Also,

ψ∗
∂ψ
∂x

= ik
(

A∗ e−i(kx−ωt) +B∗ ei(kx−ωt)
)(

A ei(kx−ωt)−B e−i(kx−ωt)
)

= ik
(
|A|2−|B|2−A∗B e−2i(kx−ωt) +B∗A e2i(kx−ωt)

)
. (3.5.13)

Taking the complex conjugate of (3.5.13), we obtain

ψ
∂ψ∗

∂x
= −ik

(
A ei(kx−ωt) +B e−i(kx−ωt)

)(
A∗ e−i(kx−ωt)−B∗ ei(kx−ωt)

)
= −ik

(
|A|2−|B|2 +A∗B e−2i(kx−ωt)−B∗A e2i(kx−ωt)

)
. (3.5.14)

From (3.5.13) and (3.5.14), we calculate the current density as

jx =
h̄

2mi

[
ψ∗(x, t)

∂ψ
∂x
− ∂ψ∗

∂x
ψ(x, t)

]
=

h̄k
m

(|A|2−|B|2) . (3.5.15)

We see that the probability density is time independent, while the probability current

density is time as well as space independent. Therefore, the continuity equation is

satisfied identically. Physically, it shows that the number of particles passing through a

unit area per second along the positive x direction is numerically equal to the number of

particles crossing the same unit area per second along the negative x direction.
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Example 3.5.2: At t = 0, a particle of mass m, free to move inside an infinite potential well

with walls at x = 0 and x = a, is in a state that is a linear superposition of the ground state

and the first excited state

ψ(x,0) =
1√
2
[φ1(x)+φ2(x)] =

1√
a

[
sin
(πx

a

)
+ sin

(
2πx

a

)]
,

Find the wave function at any t > 0. Check whether the continuity equation holds good for

this state or not.

Solution: The wave function of the particle at t > 0 will be

ψ(x, t) =
1√
a

[
sin
(πx

a

)
e−i E1

h̄ t + sin

(
2πx

a

)
e−i E2

h̄ t
]

(3.5.16)

The probability density is calculated to be

ρ(x, t) = |ψ(x, t)|2 = 1

a

[
sin2
(πx

a

)
+ sin2

(
2πx

a

)]
.

+
1

a
sin
(πx

a

)
sin

(
2πx

a

){
ei (E1−E2)

h̄ t + e−i (E1−E2)
h̄ t
}

. (3.5.17)

We simplify it further, by dividing the last term by 2 and using the Euler formula, to obtain

ρ(x, t) =
1

a

[
sin2
(πx

a

)
+ sin2

(
2πx

a

)]

+
2

a
sin
(πx

a

)
sin

(
2πx

a

)
cos

[
(E1−E2)

h̄
t
]

. (3.5.18)

Let us now calculate the probability current density. We have

∂ψ
∂x

=
1√
a

[
π
a

cos
(πx

a

)
e−i E1

h̄ t +
2π
a

cos

(
2πx

a

)
e−i E2

h̄ t
]

, (3.5.19)

ψ∗(x, t)
∂ψ
∂x

=
π
a2

sin
(πx

a

)
cos
(πx

a

)
+

2π
a2

sin
(πx

a

)
cos

(
2πx

a

)
ei (E1−E2)

h̄ t

+
π
a2

sin

(
2πx

a

)
cos
(πx

a

)
e−i (E1−E2)

h̄ t +
2π
a2

sin

(
2πx

a

)
cos

(
2πx

a

)
. (3.5.20)
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Taking the complex conjugate of the last equation, we get

∂ψ∗

∂x
ψ(x, t) =

π
a2

sin
(πx

a

)
cos
(πx

a

)
+

2π
a2

sin
(πx

a

)
cos

(
2πx

a

)
e−i (E1−E2)

h̄ t

+
π
a2

sin

(
2πx

a

)
cos
(πx

a

)
ei (E1−E2)

h̄ t +
2π
a2

sin

(
2πx

a

)
cos

(
2πx

a

)
. (3.5.21)

If we subtract (3.5.21) from (3.5.20), we obtain

ψ∗(x, t)
∂ψ
∂x
− ∂ψ∗

∂x
ψ(x, t) =

2π
a2

sin
(πx

a

)
cos

(
2πx

a

)[
ei (E1−E2)

h̄ t − e−i (E1−E2)
h̄ t
]

− π
a2

sin

(
2πx

a

)
cos
(πx

a

)[
ei (E1−E2)

h̄ t − e−i (E1−E2)
h̄ t
]

. (3.5.22)

The probability current density jx is therefore given by

jx =
h̄

2mi

[
ψ∗(x, t)

∂ψ
∂x
− ∂ψ∗

∂x
ψ(x, t)

]

=
2π h̄
ma2

sin
(πx

a

)
cos

(
2πx

a

)
sin

[
(E1−E2)

h̄
t
]

− π h̄
ma2

sin

(
2πx

a

)
cos
(πx

a

)
sin

[
(E1−E2)

h̄
t
]

. (3.5.23)

The time derivative of the probability density is

∂ρ(x, t)
∂ t

= −2

a
(E1−E2)

h̄
sin
(πx

a

)
sin

(
2πx

a

)
sin

[
(E1−E2)

h̄
t
]

. (3.5.24)

Since

(E1−E2)

h̄
=

1

h̄
(π2h̄2−4π2h̄2)

2ma2
= − 3π2h̄

2ma2
, (3.5.25)

we get from (3.5.24)

∂ρ(x, t)
∂ t

=
3π2h̄
ma3

sin
(πx

a

)
sin

(
2πx

a

)
sin

[
(E1−E2)

h̄
t
]

. (3.5.26)
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The x derivative of jx can be calculated to be

∂ jx
∂x

=

[
2π2h̄
ma3

cos
(πx

a

)
cos

(
2πx

a

)
− 4π2h̄

ma3
sin
(πx

a

)
sin

(
2πx

a

)]
sin

[
(E1−E2)

h̄
t
]

−
[

2π2h̄
ma3

cos

(
2πx

a

)
cos
(πx

a

)
− π2h̄

ma3
sin

(
2πx

a

)
sin
(πx

a

)]
sin

[
(E1−E2)

h̄
t
]

,

∂ jx
∂x

= −3π2h̄
ma3

sin
(πx

a

)
sin

(
2πx

a

)
sin

[
(E1−E2)

h̄
t
]

. (3.5.27)

From (3.5.26) and (3.5.27), we conclude that

∂ρ(x, t)
∂ t

+
∂ jx
∂x

= 0. (3.5.28)

Hence, the continuity equation is indeed satisfied.

3.6 Symmetric Potential and Even and Odd Parity Solutions

In Chapter 2, we discussed about the parity operator and proved that it is hermitian as well

as unitary. We also saw that its eigenfunctions had definite parity and they formed a

complete set. In the following we shall study the properties of the solutions of the

Schrödinger equation with symmetric potentials, i.e., with potentials that are invariant

under parity transformation.

Consider the Schrödinger equation with a potential that is symmetric with respect to

space inversion: V (−x) = V (x). Clearly, when V (x) is symmetric, the corresponding

Hamiltonian,

Ĥ = − h̄2

2m
∂ 2ψ
∂x2

+V (x), (3.6.1)

is also symmetric. In other words, Ĥ is an even operator. We have seen in Chapter 2 that

even operators commute with the parity operator P̂ . Therefore, for symmetric potentials

[P̂ , Ĥ] = 0 and the Hamiltonian and the parity operator can have a common set of

eigenfunctions.

Theorem 3.6.1: The bound state wave functions of a particle moving in a one-dimensional
symmetric potential have definite parity, that is, they are either even or odd.

Proof: Although this theorem follows immediately from the fact that the parity operator, P̂ ,

and the Hamiltonian, Ĥ, are compatible and that the eigenfunctions of the parity operator

has a definite parity, it is useful and instructive to prove the theorem in a straightforward
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way on the basis of the TISE and its solutions. It will, hopefully, make the point and the

content of the theorem more lucid.

Consider now the TISE for the symmetric potential:[
− h̄2

2m
d2

dx2
+V (x)

]
φ (x) = Eφ (x). (3.6.2)

Let us now perform the spatial inversion by replacing x with −x. Then, P̂φ (x)→ φ (−x)
and P̂V (x)→ V (−x). Since V (−x) = V (x), the Hamiltonian commutes with the parity

operator and we get[
− h̄2

2m
d2

dx2
+V (x)

]
φ (−x) = Eφ (−x). (3.6.3)

Thus, we see that the stationary Schrödinger equation (3.6.3) for the symmetric potential is

satisfied by φ1(−x) = φ1(x) as well as φ2(−x) =−φ2(x). The former, denoted as φ s(x), is

called the symmetric wave function and has even parity, while the latter, denoted as φ a(x),
is called the anti-symmetric wave function and has odd parity.

Let us now recollect our earlier result that, in one spatial dimension, the bound state

energy spectrum is discrete and non-degenerate. In view of this result, we conclude that

the wave functions of a particle, moving in a one-dimensional symmetric potential, have a

definite parity (either even or odd) . The theorem is proved.

Note that, if the spectrum of the Hamiltonian corresponding to a symmetric potential is

degenerate, the energy eigenstates do not have definite parity.

Example 3.6.1 Solve the TISE for the potential

V (x) =
{

0, for −a < x < a,

∞, for x≤−a,x≥ a.
(3.6.4)

Find the energy eigenfunctions and the corresponding energy eigenvalues.

Solution: The given problem is once again the problem of a particle trapped inside an infinite

square well potential. However, unlike the earlier one, the given well is symmetric with

respect to the center at x = 0: V (−x) = V (x). Therefore, according to Theorem 3.6.1,

the solutions of the corresponding TISE are either symmetric, φ (−x) = φ (x), or anti-

symmetric, φ (−x) = −φ (x). In the former case the solutions are said to have even parity,

while in the latter they are said to have odd parity.

As discussed earlier, the solutions in the regions on both sides of the well, that is, for x<
−a and x > a, must be identically equal to zero. Inside the well, the TISE has two linearly

independent solutions φ s(x) = A cos(kx), which is symmetric, and φ a(x) = B sin(kx),
which is anti-symmetric, where A and B are arbitrary constants and k2 = 2mE/h̄2. In view

of the above mentioned properties of the solutions, we treat the two cases separately.
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Symmetric solutions: φ s(x) = A cos(kx). The continuity condition at the boundaries x =
±a leads to

A cos (ka) = 0, ⇒ cos (ka) = 0, ⇒ kna =
nπ
2

,n = 1,3,5, ... (3.6.5)

The corresponding energies are: Es
n = n2π2h̄2/8ma2. The normalization of the wave

function yields: φ s
n(x) =

√
1/a cos (nπx/2a).

Anti-symmetric solutions: φ a(x) = B sin(kx). The continuity condition at the boundaries

x = ±a leads to

B sin (ka) = 0, ⇒ sin (ka) = 0, ⇒ kna =
nπ
2

,n = 2,4,6, ... (3.6.6)

The corresponding energies are: Es
n = n2π2h̄2/8ma2. The normalization of the wave

function yields: φ a
n (x) =

√
1/a sin (nπx/2a).

The two wave functions can be combined together and we have

φn(x) =

√
1

a
sin
[nπ

2a
(x+ a)

]
=

⎧⎪⎨
⎪⎩

(−1)
n−1

2

√
1
a cos

(nπx
2a

)
n=1,3,5,...

(−1)
n
2

√
1
a sin

(nπx
2a

)
n=2,4,6,...

(3.6.7)

The corresponding energies are

En =
n2π2h̄2

8ma2
,n = 1,2,3, ... (3.6.8)

Note that, since the energy is inversely proportional to the square of the width of the

potential, the bound state energies here differ from the corresponding energies of the

asymmetric well by a factor of (1/4).
If we take the total width of the symmetric potential to be a (−a/2 < x < a/2), we

shall get the corresponding wave functions and the energy levels as

φn(x) =

⎧⎪⎨
⎪⎩
√

2
a cos

(nπx
2a

)
n=1,3,5,...√

2
a sin

(nπx
2a

)
n=2,4,6,...,

(3.6.9)

En =
n2π2h̄2

2ma2
,n = 1,2,3, ..., . (3.6.10)
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3.7 Particle in a Finite Square Well Potential

Consider the motion of a quantum particle in a finite potential well (Figure 3.6):

V (x) =
{

0, if |x| ≤ a
V0, if |x|> a .

(3.7.1)

We are required to solve the TISE with this potential for the bound states, when the total

energy, E, of the particle is less than V0 and determine the eigenfunctions and the

corresponding energy eigenvalues. This type of potential is considered as an approximate

model for the solution of several problems in atomic and nuclear physics.

V x( )

V0 V0

E

–a a0 x

Figure 3.6 The representative shape of a finite potential well V (x) of depth V0.

Solution: The entire range of x from−∞ to +∞ can be divided into three regions: −a≤ x≤
a (Region I), x <−a (Region II) and x > a (Region III). The general TISE reads

− h̄2

2m
d2φ
dx2

+V (x)φ = Eφ . (3.7.2)

The TISE and the corresponding solutions in these regions can be written as:

Region I:

φ ′′1 + k2
1φ1 = 0, k2

1 =
2mE
h̄2

,

φ1 = A1 cos (k1x)+B1 sin (k1x) . (3.7.3)
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Region II:

φ ′′2 − k2
2φ2 = 0, k2

2 =
2m(V0−E)

h̄2
,

φ2 = A2 ek2x +B2 e−k2x. (3.7.4)

Region III:

φ ′′3 − k2
2φ3 = 0,

φ3 = A3 ek2x +B3 e−k2x. (3.7.5)

In the aforementioned equations, the prime stands for the ordinary derivative with respect

to x, and A j and B j ( j = 1,2,3) are arbitrary constants to be determined by the boundary

conditions.

Boundary conditions:

1. The full solution of the TISE must be square-integrable. That means that the solution

must tend to zero at spatial infinities (|x| → ∞). Therefore, the second term in φ2, which

tends to infinity as x→−∞, must be zero. Similarly, the first term in φ3, which tends to

infinity as x→ +∞, must be zero. Hence, B2 = A3 = 0. As a result, the total solution of

the TISE can be written as

φ (x) =

⎧⎪⎨
⎪⎩

φ2 = A2 ek2x, x <−a
φ1 = A1 cos (k1x)+B1 sin (k1x) , −a≤ x≤ a

φ3 = B3 e−k2x. x > a
(3.7.6)

2. Since the TISE is second order in its spatial derivative with respect to x, the solutions

belonging to different regions in x must be continuous and differentiable at the boundaries

x = ±a, that is, φ1(−a) = φ2(−a),φ ′1(−a) = φ ′2(−a),φ1(a) = φ3(a) and φ ′1(a) = φ ′3(a).
These conditions lead to

A2 e−k2a = A1 cos (k1a)−B1 sin (k1a) , (3.7.7)

k2 A2 e−k2a = k1 A1 sin (k1a)+ k1 B1 cos (k1a) , (3.7.8)

B3 e−k2a = A1 cos (k1a)+B1 sin (k1a) , (3.7.9)

− k2 B3 e−k2a = −k1 A1 sin (k1a)+ k1 B1 cos (k1a) . (3.7.10)

If we add (3.7.7) and (3.7.9) and subtract (3.7.10) from (3.7.8), we get

(A2 +B3) e−k2a = 2A1 cos (k1a) , (3.7.11)
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k2 (A2 +B3) e−k2a = 2k1 A1 sin (k1a) . (3.7.12)

Similarly if subtract (3.7.9) from (3.7.7) and add (3.7.8) and (3.7.10), we get

(A2−B3) e−k2a = −2B1 sin (k1a) , (3.7.13)

k2 (A2−B3) e−k2a = 2k1 B1 cos (k1a) . (3.7.14)

If A2 +B3 �= 0 and A1 �= 0, then the equations (3.7.11) and (3.7.12) yield

k2 = k1 tan(k1a). (3.7.15)

Now, from (3.7.13) and (3.7.14), we have

B1 sin (k1a) = −k1

k2
B1 cos (k1a) = −B1

k2
1

k2
2

sin (k1a) , (3.7.16)

where we have made use of (3.7.15). We thus get

B1

(
1+

k2
2

k2
1

)
= 0, ⇒ B1 = 0. (3.7.17)

Equation (3.7.13) or (3.7.14) then yields A2 = B3. Taking all these results into account, we

get that the full solution, corresponding to the case when A2 +B3 �= 0 and A1 �= 0, is

φ (x) =

⎧⎪⎨
⎪⎩

A2 ek2x for x <−a

A1 cos (k1x) for −a≤ x≤ a

A2 e−k2x for x > a,

(3.7.18)

where A1 and A2 are arbitrary constants. It is not difficult to check that the given solution is

a symmetric solution, that is, φ (−x) = φ (x), and hence has positive parity. The boundary

conditions, as shown earlier, lead to a transcendental equation, given by (3.7.15), for the

determination of the energies of the bound states.

Since the potential is symmetric in x: V (−x) = V (x), there is another solution to the

TISE which is anti-symmetric. Let us determine that solution and the corresponding

transcendental equation for the determination of the energy eigenvalues.

For this purpose, we make use of the equations (3.7.13) and (3.7.14). If A2−B3 �= 0

and B1 �= 0, we get

−k1 cot(k1a) = k2. (3.7.19)



84 Fundamentals of Quantum Mechanics

n = 0

n = 0

n = 1

n = 2

n = 3

R – x
2 2

x xtan ( )

–x xcot ( )

0 p

2
p 3p

2

2p 5p

2

3p x

Figure 3.7 The graphical solutions for the finite square well potential: They are given by
the points of intersection of the curves

√
R2−α2

n with αn tan(αn) (solid
lines) and−αn cot(αn) (dotted lines).

From (3.7.11) and (3.7.12), we derive

A1 cos (k1a) =
k1

k2
A1 sin (k1a) = −A1

k2
1

k2
2

cos (k1a) , (3.7.20)

where we have made use of (3.7.19). Equations (3.7.20) leads to

A1

(
1+

k2
2

k2
1

)
= 0, ⇒ A1 = 0. (3.7.21)

Equation (3.7.11) or Equation (3.7.12) then yields A2 = −B3. Taking all these results into

account, we get that the antisymmetric solution, corresponding to the case when A2−B3 �=
0 and B1 �= 0, is given by

φ (x) =

⎧⎨
⎩

A2 ek2x for x <−a
B1 sin (k1x) for −a≤ x≤ a
−A2 e−k2x for x > a,

(3.7.22)

where A2 and B1 are arbitrary constants. It is not difficult to check that the given solution

is an anti-symmetric solution, that is, φ (−x) =−φ (x), and hence has negative parity. The

boundary conditions, as shown earlier, lead to a transcendental equation (3.7.19) for the

determination of the energy eigenvalues for the corresponding bound states.
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Clearly, for the given values of V0 and a, (3.7.15) and (3.7.19), can be satisfied not for

all values of E but for a selected set of values. This means that a particle, confined inside a

potential well with finite height of the walls (which is the same as a potential well of finite

depth), has a discrete energy spectrum.

Equations (3.7.15) and (3.7.19) are transcendental equations and cannot be solved

analytically. However, they can be solved graphically as described here. Let us introduce

new variables

ξ = k1 a =

√
2mE
h̄2

a, η = k2 a =

√
2m(V0−E)

h̄2
a. (3.7.23)

Clearly, the following holds

ξ 2 +η2 = R2, R2 =
2ma2V0

h̄2
. (3.7.24)

If we multiply (3.7.15) and (3.7.19) by a, they take the form

ξ tan(ξ ) = η , (3.7.25)

−ξ cot(ξ ) = η . (3.7.26)

Let ξn be the nth root of the transcendental equations (3.7.15) and (3.7.19). If we introduce

the notation

ξ 2
n = (k1 a)2 =

2ma2En

h̄2
, (3.7.27)

then η =
√

R2−ξ 2
n and the equations (3.7.25) and (3.7.26) take the form

ξn tanξn =
√

R2−ξ 2
n . (For even parity states) (3.7.28)

−ξn cotξn =
√

R2−ξ 2
n . (For odd parity states) (3.7.29)

The left-hand sides of (3.7.28) and (3.7.29) contain trigonometric functions, while the

right-hand sides represent a circle of radius R. The solutions are given by the points where

the circle
√

R2−ξ 2
n intersects the functions ξn tanξn and −ξn cotξn. The solutions form

a discrete set. Figure 3.7 contains the results of the solution of the equations (3.7.15) and

(3.7.19) for two values of the radius, R = 1 and R = 2, which correspond to

V0a2 = h̄2/2m and V0a2 = 2h̄2/m, respectively. As depicted in Figure 3.7, the

intersection of the small circle (R = 1) with the curve ξn tanξn yields only one bound

state, n = 0. The intersection of the larger circle (R = 2) with ξn tanξn yields two bound

states, n = 0,2, and its intersection with −ξn cotξn yields two other bound states, n = 1,3.
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Hence, for R = 2, the system in all will have four bound states. This analysis shows that
the number of solutions depends on the value of R, which in turn depends on the depth of
the well, V0, and the width 2a of the well. Clearly, the deeper and wider the well, the
greater the number of points of intersection of the curves and hence, greater will be the
number of bound states of the particle inside the well. Thus, there is always at least one

bound state ( that is, one intersection) no matter how small V0 is. A closer look at Figure

3.7 shows that when

0 < R <
π
2

, that is, 0 <V0 <
π2h̄2

8ma2
, (3.7.30)

there is only one point of intersection of the circle with the function ξn tanξn and there is

only one bound state that we call n = 0 state. This is the ground state of the particle and

happens to be an even parity state. When

π
2
< R < π , that is,

π2h̄2

8ma2
<V0 <

π2h̄2

2ma2
, (3.7.31)

there are two bound states: an even state (the ground state) corresponding to n = 0 and the

first odd parity state corresponding to n = 1. Now, if

π < R <
3π
2

, that is,
π2h̄2

2ma2
<V0 <

9π2h̄2

8ma2
, (3.7.32)

there exist three bound states: the ground state (even state), n = 0, the first excited state

(odd state), corresponding to n = 1, and the second excited state (even state), which

corresponds to n = 2. Similarly for

3π
2

< R < 2π , that is,
9π2h̄2

8ma2
<V0 <

2π2h̄2

ma2
, (3.7.33)

there will be four bound states (two even and two odd) and so on and so forth. In general,

for a given V0, the width, w0 = 2a, of the well that allows for n bound states is determined

by

R =
nπ
2

, (3.7.34)

and equals

w0 =
π2h̄2

2mV0
n2. (3.7.35)

In the limiting case of ma2V0 → ∞ for a given a, the radius of the circle becomes infinite

and the intersections occur at
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tan (k1a) = ∞ ⇒ k1a =
2n+ 1

2
,n = 0,1,2,3, ... (3.7.36)

− cot (k2a) = ∞ ⇒ k2a = nπ ,n = 1,2,3, ... (3.7.37)

If we combine the two, we obtain

k1a =
nπ
2

⇒ 2mEn

h̄2
=

n2π2

4a2
. (3.7.38)

Finally, we arrive at

En =
n2π2h̄2

8ma2
. (3.7.39)

Thus, we recover the energy spectrum of the infinite potential well.

Before we wind up, let us talk a little about the so-called penetration depth in the

classically forbidden region. When E < V0, the regions x < −a and x > a are classically

forbidden for the particle in the sense that it cannot penetrate into these regions. Consider

x > a. The solution of the TISE in this region is φ (x) ∼ e−k2x. Let us define

φ (x) =
φ (0)

e
= e−k2η , (3.7.40)

where x = η is the point where the wave function falls by a factor of 1/e. Then, we have

η =
1

k2
=

h̄√
2m(V0−E)

. (3.7.41)

η is called the penetration depth, that is, the distance to which the particle can penetrate

into the classically forbidden region. Hence, the probability of finding the particle inside

the forbidden regions on either side of the finite potential well is in principle non-zero.

Example 3.7.2 Find the number of bound states and the corresponding energies for the finite

square well potential when V0a2 = h̄2/2m.

Solution: In the given case R =
(
2ma2V0/h̄2

)1/2
= 1, which means 0 < R < π/2 and there

will be only one bound state corresponding to n = 0. The energy eigenvalue for this bound

state is obtained by using the solution, ξ0, of the equation

ξ0 tan(ξ0) =
√

1−ξ 2
0 , (3.7.42)
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in the expression k2a =
√

1−ξ0. We have

ξ 2
0

(
1+ tan2 ξ0

)
= 1 ⇒ cos2(ξ0) = ξ 2

0 . (3.7.43)

The numerical solution of the equation (3.7.43) yields ξ0 = 0.73909. Therefore,

2mE0a2/h̄2 = (0.73909)2 = 0.54625, and the energy of the bound state n = 0 is given by

E0 ≈ 0.54625

2ma2
h̄2 =

0.273125

ma2
h̄2. (3.7.44)

3.8 Potential Barrier and Tunneling

What we are going to discuss now is a very important phenomenon of barrier penetration
– tunneling. Due to this effect, a micro-particle incident on one side of a potential barrier

of height V0 with a total energy E < V0 can pass through the barrier and appear on the

other side. This phenomenon does not have any classical analogue and represents a purely

quantum mechanical effect and has been confirmed experimentally.

Consider an external potential field given by

V (x) =
{

V0, for 0≤ x≤ a,

0, otherwise.
(3.8.1)

Assume that a particle of mass m, moving freely with a velocity�v = vî, is incident on this

barrier from the left, that is, from x →−∞. We are required to solve the corresponding

time-independent Schrödinger equation and determine the reflection and transmission

coefficients.

In general, both the cases with E > V0 and E < V0 are possible. However, as stated

earlier, the case with the total energy E <V0 corresponds to tunnelling and we take up this

case.

For the solution of the problem, we divide the entire region −∞ < x < +∞ into three

parts: −∞ < x < 0 (Region 1), 0 < x < a (Region 2) and a < x < +∞ (Region 3). The

one-dimensional potential barrier of width a and height V0 is shown in Figure 3.8. The

TISE and the corresponding solutions in these regions can be written as:

Region 1:

φ ′′1 + k2
1φ1 = 0, k2

1 =
2mE
h̄2

,

φ1 = A eik1x +B e−ik1x, (3.8.2)

where A and B are arbitrary complex constants. Here the first term in the solution

corresponds to the incident particle propagating along the positive x direction, while the
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second term describes the particle reflected from the potential and propagating along the

negative x direction.

V x( )

V0

0 a x

E

v vi=
�

Figure 3.8 One-dimensional potential barrier of width a and height V0.

Region 2:

φ ′′2 − k2
2φ2 = 0, k2

2 =
2m(V0−E)

h̄2
,

φ2 =C ek2x +D e−k2x, (3.8.3)

where C and D are arbitrary complex constants.

Region 3:

φ ′′3 + k2
1φ3 = 0,

φ3 = F eik1x. (3.8.4)

The prime in the aforementioned equations stands for the ordinary derivative with respect

to x. Here, F is an arbitrary complex constant and the solution represents the transmitted

particle travelling along the positive x direction. Note that, because of the fact that the

potential vanishes beyond x = a, there cannot be any reflected particle in this region and

hence, we have taken only the forward propagating plane wave as solution.

Boundary conditions: The wave functions φ1(x),φ2(x) and φ3(x) have to be continuous

in the entire region of x, as required by the standard conditions. Since the potential has a

finite jump at x = 0 and x = a, the first derivatives of the wave functions with respect to x
will also be continuous everywhere. These boundary conditions then yield

A+B =C+D, (3.8.5)

(A−B) = − i k2

k1
(C−D), (3.8.6)
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C ek2a +D e−k2a = F eik1a, (3.8.7)

C ek2a−D e−k2a =
i k1

k2
F eik1a. (3.8.8)

If we add up (3.8.7) and (3.8.8), we get

2C ek2a = F eik1a
(

1+
i k1

k2

)
. (3.8.9)

Hence,

C =
F
2

eik1a
(

1+
i k1

k2

)
e−k2a. (3.8.10)

Now subtracting (3.8.8) from (3.8.7), we obtain

2D e−k2a = F eik1a
(

1− i k1

k2

)
, (3.8.11)

and therefore

D =
F
2

eik1a
(

1− i k1

k2

)
ek2a. (3.8.12)

Substitution of C and D into the equation (3.8.5) yields

1+
B
A
=

F
2A

eik1a
[(

1+
i k1

k2

)
e−k2a +

(
1− i k1

k2

)
ek2a
]

=
F
A

eik1a

[
ek2a + e−k2a

2
− i k1

k2

(
ek2a− e−k2a

)
2

]

=
F
A

eik1a
[

cosh(k2a)− i k1

k2
sinh(k2a)

]
. (3.8.13)

Similarly from (3.8.6), we get

1− B
A
=

F
2A

eik1a
[(
− i k2

k1
+ 1

)
e−k2a +

(
i k2

k1
+ 1

)
ek2a
]
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=
F
A

eik1a

[
ek2a + e−k2a

2
+

i k2

k1

(
ek2a− e−k2a

)
2

]

=
F
A

eik1a
[

cosh(k2a)+
i k2

k1
sinh(k2a)

]
. (3.8.14)

Now, adding (3.8.13) and (3.8.14), we obtain

2 =
F
A

eik1a
[

2cosh(k2a)+ i
(

k2

k1
− k1

k2

)
sinh(k2a)

]
. (3.8.15)

Similarly, subtraction of (3.8.14) from (3.8.13) leads to

2
B
A
= −i

F
A

eik1a
(

k2

k1
+

k1

k2

)
sinh(k2a). (3.8.16)

If we find the value of F
A eik1a from (3.8.15) and put it into (3.8.16), we obtain

B
A
= −

i
(

k2
k1
+ k1

k2

)
sinh(k2a)[

2cosh(k2a)+ i
(

k2
k1
− k1

k2

)
sinh(k2a)

] . (3.8.17)

The reflection coefficient is defined as

R =
Reflected particle flux density

Incident particle flux density
=

JR

JI
=

v1|B|2
v1|A|2 =

|B|2
|A|2 . (3.8.18)

It is given by

R =

(
k2

2+k2
1

k2k1

)2

sinh2(k2a)[
4cosh2(k2a)+

(
k2

2−k2
1

k1k2

)2

sinh2(k2a)
] . (3.8.19)

The transmission coefficient, on the other hand, is defined as

T =
Transmitted particle flux density

Incident particle flux density
=

JT

JI
=

v1|B|2
v1|A|2 =

|F |2
|A|2 . (3.8.20)

Using (3.8.15) we arrive at

T =
4[

4cosh2(k2a)+
(

k2
2−k2

1
k1k2

)2

sinh2(k2a)
] . (3.8.21)
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Further, making use of the well-known formula cosh2 x− sinh2 x = 1, we can rewrite the

reflection and the transmission coefficients as

R =
T

4

(
k2

1 + k2
2

k2k1

)2

sinh2(k2a), (3.8.22)

T =
1[

1+ 1
4

(
k2

1+k2
2

k2k1

)2

sinh2(k2a)
] (3.8.23)

Clearly, the transmission probability is finite. Therefore, we conclude that the probability

that a quantum particle could penetrate a classically impenetrable barrier is non-zero.

This is a purely quantum mechanical effect and is due to the wave aspect of microscopic

objects. This barrier penetration effect is usually called the tunneling effect and has

important physical implications. The radioactive decay and charge transport in electronic

devices are typical examples of the quantum mechanical tunneling effect.

Using the expressions for k1 and k2 in terms of the physical parameters, we have

(
k2

1 + k2
2

k2k1

)2

=

(
V0√

E(V0−E)

)2

=
V 2

0

E(V0−E)
. (3.8.24)

Therefore, we can rewrite the expressions for the reflection and transmission coefficients

as

R = T
V 2

0

4E(V0−E)
sinh2

(
a
h̄

√
2m(V0−E)

)
, (3.8.25)

T =
1

1+ 1
4

V 2
0

E(V0−E) sinh2
(

a
h̄

√
2m(V0−E)

) . (3.8.26)

Let us consider the case when the energy of the incident particle is much smaller than the

height of the barrier E �V0. Then, we have

a
h̄

√
2m(V0−E) =

a
√

2mV0

h̄

√
1− E

V0
� 1, (3.8.27)

and we can write

sinh

(
a
h̄

√
2m(V0−E)

)
∼ 1

2
e

a
√

2mV0
h̄

√
1− E

V0 =
1

2
e(a/h̄)

√
2m(V0−E). (3.8.28)
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Therefore, in the low energy limit, the transmission coefficient T is given by

T =
16E
V0

(
1− E

V0

)
e−(2a/h̄)

√
2m(V0−E). (3.8.29)

Also, when E ∼V0, it is not difficult to deduce the following expressions for the reflection

and transmission coefficients:

R =

(
1+

2h̄2

ma2V0

)−1

, (3.8.30)

T =

(
1+

ma2V0

2h̄2

)−1

. (3.8.31)

We, thus, see that even if the energy of the particle is much smaller than the barrier height,

there is a finite probability that the particle can tunnel through the barrier and appear on

the other side of it. Classically, such a phenomenon is not possible. The region 0 <
x < a is forbidden for a particle with energy less than the barrier height V0. Quantum

mechanically, such tunneling effect is permissible and the apparent paradox arising out of

it can be resolved with the help of Heisenberg’s uncertainty principle (see Section 3.10).

V x( )

E

0 x1 x2�x x

Figure 3.9 A general one-dimensional potential barrier V = V (x).

Note that in the given example we considered the constant value for the potential barrier.

In a more general case, the potential barrier is not a constant but can be a function of x: V =
V (x) (Figure 3.9). Unlike the constant potential barrier, in this case, the analytical solution

is not possible for potentials with an arbitrary dependence on x. However, an approximate

formula for the transmission coefficient can be derived by dividing the classically forbidden

region between the turning points x1 and x2 into N (N large enough to approximate the

curve V (x)) small rectangular sequence of barriers, each of width Δx. In each of these
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rectangular barriers, we can assume the potential to be constant. Then for each of them,

the transmission coefficient can be written as:

Ti ∼ exp

[
−2Δxi

h̄

√
2m(V (xi)−E)

]
, (3.8.32)

where Δxi is the width of the ith rectangular barrier with a constant height V (xi).
The transmission coefficient for the entire potential is then given by the following limit:

T ≈ exp

[
−2

h̄
lim

Δxi→0
∑
i=1

f (xi)Δxi

]
, (3.8.33)

where f (xi) =
√

2m(V (xi)−E). As a result, we obtain

T ≈ exp

[
−2

h̄

∫ x2

x1

dx
√

2m(V (x)−E)
]

. (3.8.34)

Note that the aforementioned approximate analysis is valid and gives satisfactory results

only if the potential is a smooth and slowly varying function of x.

3.9 One-dimensional Harmonic Oscillator

Consider the one-dimensional simple harmonic oscillator characterized by the potential

energy

V (x) =
1

2
mω2x2, (3.9.1)

where m is the mass and ω is the angular frequency of the oscillator, which is assumed to

be constant. We want to solve the time-independent Schrödinger equation for this

potential and determine the bound state energies and the corresponding eigenfunctions of

the oscillator. We have

− h̄2

2m
d2φ (x)

dx2
+

1

2
mω2x2φ (x) = Eφ (x), (3.9.2)

which can be rewritten as

φ ′′(x)+
2m
h̄2

[
E− 1

2
mω2x2

]
φ (x) = 0, (3.9.3)

where the prime stands for the ordinary derivative with respect to x. Let us introduce the

following abbreviations
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λ =
2mE
h̄2

, α =
mω
h̄

. (3.9.4)

Then (3.9.1) takes the form

φ ′′+[λ −α2x2]φ = 0. (3.9.5)

This is a second order ordinary differential equation with variable coefficients. Therefore,

in order to have an idea about the behaviour of the solution at large values of x, let αx� 1

so that we can neglect the term λφ in comparison with the term α2x2φ . We then have

φ ′′ −α2x2φ = 0. (3.9.6)

For φ = exp (−γx2), (3.9.6) yields

[−2γ + 4γ2x2−α2x2]exp (−γx2) = 0. (3.9.7)

Note that, for large x, we can neglect 2γ in comparison with the other two terms in (3.9.7).

Consequently, we obtain

γ =
α
2

. (3.9.8)

Therefore, we look for the solution of the equation (3.9.5) in the form

φ (x) = e−αx2/2 f (x), (3.9.9)

where f (x) is an arbitrary function of x to be determined. We have

φ ′ = (−αx f + f ′)e−αx2/2, (3.9.10)

φ ′′ = [(−α f −αx f ′+ f ′′)+α2x2 f −αx f ′]e−αx2/2. (3.9.11)

From (3.9.5) and (3.9.9)-(3.9.11), we arrive at the following differential equation for the

function f (x)

f ′′ −2αx f ′+(λ −α) f = 0. (3.9.12)

Introducing the dimensionless variable

ξ =
√

αx, (3.9.13)

we get

d
dx

=
√

α
d

dξ
,

d2

dx2
= α

d2

dξ 2
. (3.9.14)
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As a result (3.9.12) can be rewritten as

f ′′ −2ξ f ′+
(

λ
α
−1

)
f = 0, (3.9.15)

where prime stands for ordinary derivative with respect to ξ . We look for the series

solution of (3.9.15) in the following form

f (x) =
∞

∑
k=ν

akξ k, (3.9.16)

where the value of ν will be determined later. From (3.9.15) and (3.9.16), we get

∞

∑
k=ν

[
k(k−1)akξ k−2−2kakξ k +

(
λ
α
−1

)
akξ k

]
= 0. (3.9.17)

Writing the series on the left-hand side in the order of increasing powers of ξ , we obtain

ν(ν−1)aνξ ν−2 +ν(ν + 1)aν+1ξ ν−1 +(ν + 1)(ν + 2)aν+2ξ ν

−2νaνξ ν +

(
λ
α
−1

)
aνξ ν + ... = 0. (3.9.18)

For this equation to hold good, the coefficient before each power of ξ must be equal to

zero. We have

ν(ν−1) = 0 ⇒ ν = 0,1, (3.9.19)

ν(ν + 1) = 0 ⇒ ν = 0,−1. (3.9.20)

The value −1 of ν is not acceptable because, in that case, the series (3.9.16) will start with

the term ∼ ξ−1 that blows up at ξ = 0. Hence, ν can take only two values 0 and 1.

Equating the coefficient of ξ ν equal to zero, we arrive at the recursion relation for the

coefficients of the series

aν+2 =
2ν−

(
λ
α −1

)
(ν + 1)(ν + 2)

aν . (3.9.21)

Consequently, we shall have two possible solutions for f (ξ ):

f1(ξ ) ∼ a0 + a2ξ 2 + a4ξ 4 + a6ξ 6 + ..., (3.9.22)

and

f2(ξ ) ∼ a1ξ + a3ξ 3 + a5ξ 5 + ..., (3.9.23)
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Let us take the first of the solutions that starts with ν = 0 and see how it behaves for large

values of ξ . For that, let us determine the behaviour of the ratio aν+2/aν for ν → ∞. We

have

lim
ν→∞

aν+2

aν
= lim

ν→∞

ν
(

2− ( λ
α−1)

ν

)
ν2(1+ 1/ν)(1+ 2/ν)

=
2

ν
. (3.9.24)

For comparison, consider the series

eξ 2
=

∞

∑
σ=0

bσ ξ σ = 1+
ξ 2

1!
+

ξ 4

2!
+

ξ 6

3!
+ ...+

ξ σ

σ
2 !

+
ξ σ+2(σ
2 + 1

)
!
+ ... (3.9.25)

For this exponential series,

lim
σ→∞

bσ+2

bσ
= lim

σ→∞

σ
2 !(σ

2 + 1
)
!
= lim

ξ→∞

σ
2 !(σ

2 + 1
) σ

2 !
≈ 2

σ
. (3.9.26)

Therefore, for large values of ξ , the series (3.9.22) behaves as the exponential series given

by (3.9.25). The same applies to the series (3.9.23). Consequently, for large values of ξ ,

the function f (ξ ) blows up because

f (ξ ) ≈ e−
ξ 2

2 · eξ 2 ∼ e
ξ 2

2 . (3.9.27)

Thus, the infinite series solution (3.9.16), whose coefficients are determined by the

recursion relation (3.9.21), does not satisfy the boundary conditions and hence, cannot be

the acceptable solution. However, the situation can be retrieved if the infinite series can be

converted into a polynomial so that the exponential factor e−
ξ 2

2 , standing before f (ξ ) (see

Eq.(3.9.9)), could force the wave function φ (ξ ) to tend to zero for ξ →±∞. For this to

happen, the series has to be truncated at some term, say nth term. In that case, the

numerator in (3.9.21) would be zero for ν = n. As a consequence, we get

2n− λ
α
−1 = 0, ⇒ λ

α
= 2n+ 1. (3.9.28)

Substituting the values of λ and α , we obtain

2mEn

h̄2
=

mω
h̄

(2n+ 1). (3.9.29)

Equation (3.9.29) leads to the quantization of energy of the harmonic oscillator:

En = h̄ω
(

n+
1

2

)
, n = 0,1,2,3, ... (3.9.30)
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Note that this formula for the quantized energy of the oscillator differs from the one

obtained in the old quantum theory

En = nh̄ω , n = 0,1,2,3, ... (3.9.31)

by the fact that it possesses a non-zero energy in the lowest quantum state with n = 0.

This energy is called the zero-point energy, E0, whose value is given by

E0 =
1

2
h̄ω . (3.9.32)

Let us go back to our problem of finding the solutions to the differential equation (3.9.15).

Evidently, the solutions satisfying the standard conditions can now be written as

φn(ξ ) = Nn e−ξ 2/2 Hn(ξ ), (3.9.33)

where Nn is the normalization constant and Hn(ξ ) is the polynomial of degree n whose

coefficients are given by (3.9.21) under the condition λ /α = 2n+ 1. These polynomials

for different n values are known as Hermite polynomials. The coefficient before the term

in the polynomial containing ξ n is obtained by taking ν = n−2 in (3.9.21). It is given by

an =
2(n−2)+ 1− (2n+ 1)

n(n−1)
an−2 = − 4

n(n−1)
an−2. (3.9.34)

Therefore, we have

an−2 = −n(n−1

4
an ≡−n(n−1)

1×22
an. (3.9.35)

Similarly, we can compute

an−4 = −(n−2)(n−1)

8
an−2 =

n(n−1)(n−2)(n−3)

1×2×22
an, (3.9.36)

and so on and so forth. As a result, the polynomial will be given by

Hn(ξ ) = an

[
ξ n− n(n−1)

1×22
ξ n−2 +

n(n−1)(n−2)(n−3)

1×2×22
ξ n−4− ...

]
. (3.9.37)

If we put an = 2n,n = 0,1,2,3, ..., we obtain the formulae for the polynomials of the

corresponding degree. A few of these are given here for illustration:

H0(ξ ) = 1, H1(ξ ) = 2ξ ,

H2(ξ ) = 4ξ 2−2, H3(ξ ) = 8ξ 3−12ξ ,

H4(ξ ) = 16ξ 4−48ξ 2 + 12, H5(ξ ) = 32ξ 5−160ξ 3 + 120ξ .

(3.9.38)
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Rodriguez’s formula for the Hermite polynomials: The following compact formula for

computing the Hermite polynomials is known as Rodriguez’s formula:

Hn(ξ ) = (−1)n eξ 2
dn
(

e−ξ 2
)

dξ n . (3.9.39)

It allows us to generate the required polynomial of any degree by simply plugging in the

value of n and simplifying the expression. For instance,

n = 1 : H1(ξ ) = −eξ 2
d
(

e−ξ 2
)

dξ
= (2ξ ) eξ 2

.e−ξ 2
= 2ξ , (3.9.40)

n = 2 : H2(ξ ) = (−1)2eξ 2
d2
(

e−ξ 2
)

dξ 2
= −2eξ 2 d

dξ

(
ξ e−ξ 2

)
= 4ξ 2−2. (3.9.41)

Recurrence formula for Hermite polynomials: Let us, for the convenience in calculations,

derive a recurrence formula for the polynomials themselves. Using Rodriguez’s formula,

can write

Hn+1(ξ ) = (−1)(n+1) eξ 2
d(n+1)

(
e−ξ 2

)
dξ (n+1)

. (3.9.42)

Using the following formulae

d(n+1)
(

e−ξ 2
)

dξ (n+1)
= −2

dn

dξ n

(
ξ e−ξ 2

)
, (3.9.43)

dn

dξ n [ f (ξ )g(ξ )] = f
dng
dξ n + n

d f
dξ

dn−1g
dξ n−1

+
n(n−1)

2

d2 f
dξ 2

dn−2g
dξ n−2

+ ..., (3.9.44)

we get

dn

dξ n

(
ξ e−ξ 2

)
= ξ

dn

dξ n

(
e−ξ 2

)
+ n

dn−1
(

e−ξ 2
)

dξ n−1
. (3.9.45)

As a result, we have

Hn+1(ξ ) = (−1)n 2ξ eξ 2 dn

dξ n

(
e−ξ 2

)
+(−1)n 2n eξ 2 dn−1

dξ n−1

(
e−ξ 2

)
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= (−1)n 2ξ eξ 2 dn

dξ n

(
e−ξ 2

)
− (−1)n−1 2n eξ 2 dn−1

dξ n−1

(
e−ξ 2

)
. (3.9.46)

Using the Rodriguez’s formula once again, we arrive at the desired recurrence relation

Hn+1(ξ ) = 2ξ Hn(ξ )−2n Hn−1(ξ ). (3.9.47)

Being the eigenfunctions of a hermitian operator, the eigenfunctions of the harmonic

oscillator corresponding to different eigenvalues are orthogonal. Using this, we can

calculate the normalization constant Nn as

∫ +∞

−∞
|φn(ξ )|2 dξ = (−1)n N2

n√
α

∫ +∞

−∞
e−ξ 2

eξ 2 dne−ξ 2

dξ n Hn(ξ )dξ

= (−1)n N2
n√
α

∫ +∞

−∞

dne−ξ 2

dξ n Hn(ξ )dξ . (3.9.48)

Integrating by parts, we obtain

∫ +∞

−∞
|φn(ξ )|2 dξ = (−1)n N2

n√
α

∫ +∞

−∞

dne−ξ 2

dξ n Hn(ξ )dξ = (−1)n N2
n√
α

dn−1e−ξ 2

dξ n−1
Hn(ξ )

∣∣∣∣∣
+∞

−∞

+ (−1)n−1 N2
n√
α

∫ +∞

−∞

dn−1e−ξ 2

dξ n−1

dHn(ξ )
dξ

dξ . (3.9.49)

Hn(ξ ), according to Rodriguez’s formula, contains e−ξ 2
and its derivatives. Since the

function e−ξ 2
and all its derivatives tend to zero at |ξ | = ±∞, the first term on the right-

hand side in (3.9.49) vanishes. As a result

∫ +∞

−∞
|φn(ξ )|2 dξ = (−1)n−1 N2

n√
α

∫ +∞

−∞

dn−1e−ξ 2

dξ n−1

dHn(ξ )
dξ

dξ . (3.9.50)

Therefore, if we integrate (3.9.50) by parts another (n−1) number of times, we finally get

that ∫ +∞

−∞
|φn(ξ )|2 dξ =

N2
n√
α

∫ +∞

−∞
e−ξ 2 dnHn(ξ )

dξ n dξ . (3.9.51)

Since Hn(ξ ) = 2nξ n + ..... is a polynomial of degree n,

dHn(ξ )
dξ n = 2nn!, (3.9.52)
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and we obtain∫ +∞

−∞
|φn(ξ )|2 dξ = 2nn!

N2
n√
α

∫ +∞

−∞
e−ξ 2

dξ = 2nn!
N2

n√
α
√

π . (3.9.53)

The normalization condition then yields

Nn =

√
α1/2

2nn!π1/2
. (3.9.54)

Hence, the full stationary state solutions to the Schrödinger equation for the harmonic

oscillator potential are

ψ(ξ , t) =

√
α1/2

2nn!π1/2
e−ξ 2/2Hn(ξ ) e−

i
h̄ Ent , (3.9.55)

where

En = h̄ω
(

n+
1

2

)
, n = 0,1,2,3, ... (3.9.56)

are the corresponding stationary state energies.

3.10 Heisenberg’s Uncertainty Relation

We have proved earlier that two operators which have the same set of eigenfunctions

commute. If we combine this with the fact that a dynamical variable can have a definite

value in its eigenstates only, we come to the conclusion that for two or more dynamical
variables to have definite values simultaneously their corresponding operators must
commute. On the other hand, we have seen that many of the operators of interest in

quantum mechanics do not commute. Therefore, it is quite natural to ask the following

question: What if we measure two non-compatible observables A and B, one after the
other in a given state, how will the inaccuracy in their measurements be related? The

answer to this fundamental question is provided by Heisenberg’s uncertainty principle

which we are now going to derive.

In this regard, we must first decide the way we are going to characterize the accuracy

of measurement. Assume that we have conducted a large number of measurements of

some physical quantity a and obtained a series of its numerical values a1,a2,a3, ... whose

average value we denote by 〈a〉. In probability theory, the deviation of a value ak of a

random variable from its average value, 〈a〉, is usually characterized by the root-mean-

square deviation defined as

Δa =
√
〈(ak−〈a〉)2〉=

√
〈a2

k〉−〈a〉2. (3.10.1)
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Although the uncertainty relation can be derived for any pair of non-commuting hermitian

operators Â and B̂ in general, here, for the sake of simplicity, we shall deduce it for x̂ and

p̂x only.

We shall characterize the inaccuracy in the measurements of the x coordinate and the

corresponding x-component of the momentum, px, by their root-mean-square deviations:

Δx =
√
〈x̂2〉−〈x̂〉2, (3.10.2)

Δpx =
√
〈p̂2

x〉−〈 p̂x〉2. (3.10.3)

Let us choose the system of coordinates in which the origin lies at 〈x〉 and the system is

moving with a speed equal to p/m along the x-direction. In such a system 〈x〉= 0, 〈p̂x〉= 0

and we shall have Δx =
√
〈x̂2〉 and Δp =

√
〈p̂2

x〉.
Consider the following inequality

∫ ∣∣∣∣αxψ +β
dψ
dx

∣∣∣∣2 dx≥ 0, (3.10.4)

where α and β are two auxiliary real variables.

The integrand is given by∣∣∣∣αxψ +β
dψ
dx

∣∣∣∣2 = α2x2ψ∗ψ +αβx
(

ψ∗
dψ
dx

+ψ
dψ∗

dx

)
+β 2 dψ∗

dx
dψ
dx

= α2x2ψ∗ψ +αβx
d
dx

(ψ∗ψ)+β 2 dψ∗

dx
dψ
dx

. (3.10.5)

From (3.10.4) and (3.10.5), we arrive at the following inequality

Aα2−Bαβ +Cβ 2 ≥ 0, (3.10.6)

where

A =
∫

x2ψ∗ψdx > 0, B = −
∫

x
d
dx

(ψ∗ψ)dx, C =
∫ dψ∗

dx
dψ
dx

dx. (3.10.7)

For inequality (3.10.6) to hold (which is equivalent to the positivity of the quadratic form

(α −α1)(α −α2), αi, i = 1,2 being the roots of the quadratic equation Aα2−Bαβ +
Cβ 2 = 0), the roots αi, i = 1,2 must be complex. This, in turn, requires that

B2−4AC ≤ 0, or, 4AC ≥ B2. (3.10.8)



One-dimensional Problems 103

Now, since 〈x〉= 0, the expectation value 〈x̂2〉= A. Consider the integral B. If we integrate

by parts and take into account that the wave function tends to zero at x = ±∞, we get

B = −
∫

x
d
dx

(ψ∗ψ)dx =
∫

ψ∗ψdx = 1. (3.10.9)

Similarly, we get for C:

C = −
∫

ψ∗
d2ψ
dx2

dx =
1

h̄2
〈p̂2

x〉. (3.10.10)

Substituting the above values of A,B and C into Eq.(3.10.8), we obtain√
〈x̂2〉

√
〈p̂2

x〉 ≥
h̄
2

. (3.10.11)

Or, using (3.10.2) and (3.10.3), we have the relation

Δx Δpx ≥ h̄
2

. (3.10.12)

The same relations result for the other two coordinates, y and z, and the corresponding

components of the linear momentum, py and pz:

Δy Δpy ≥ h̄
2

, (3.10.13)

Δz Δpz ≥ h̄
2

. (3.10.14)

The inequalities (3.10.12)–(3.10.14) are known as Heisenberg’s uncertainty relations and

represent the constraint on the accuracy in the simultaneous measurement of coordinate

and momentum. They show that the product of uncertainties in the measurement of a

coordinate and the corresponding component of momentum cannot be less than h̄/2.

Consequently, an exact knowledge of the position of a quantum system, at a given instant

of time, makes its momentum indeterminate and vice versa.

Example 3.10.1: Consider a particle of mass m in an infinite potential well of width a whose

wave function is given by

ψ(x) =

{
Ax(a2− x2) for 0 < x < a,

0 elsewhere,
(3.10.15)

where A is a real constant. (a) Find A so that ψ(x) is normalized. (b) Calculate the

position and momentum uncertainties, Δx and Δp, and the product ΔxΔp. (c) Calculate

the probability of finding 5π2h̄2/2ma2 for a measurement of the energy.
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Solution: The normalization of the wave function reads∫ a

0
A2 x2(a2− x2)2 dx = A2

∫ a

0
(a4x2−2a2x4 + x6)dx

A2

[
a4 x3

3

∣∣∣∣a
0

−2a2 x5

5

∣∣∣∣a
0

+
x7

7

∣∣∣∣a
0

]
=

8A2a7

105
= 1. (3.10.16)

Hence, the value of A is

A =

√
105

8a7
. (3.10.17)

The average value of x̂ and x̂2 will be

〈x̂〉= 105

8a7

∫ a

0
(a4x3−2a2x5 + x7)dx

=
105

8a7

[
a4 x4

4

∣∣∣∣a
0

−2a2 x6

6

∣∣∣∣a
0

+
x8

8

∣∣∣∣a
0

]
=

35 a
64

. (3.10.18)

〈x̂2〉= 105

8a7

∫ a

0
(a4x4−2a2x6 + x8)dx

=
105

8a7

[
a4 x5

5

∣∣∣∣a
0

−2a2 x7

7

∣∣∣∣a
0

+
x9

9

∣∣∣∣a
0

]
=

a2

3
. (3.10.19)

The uncertainty in x is given by

Δx =
√
〈x̂2〉−〈x̂〉2 =

√
a2

3
−
(

35a
64

)2

≈ 0.185 a. (3.10.20)

The average value of p̂x and p̂2
x will be

〈p̂x〉= −iA2h̄
∫ a

0
(a4x−4a2x3 + 3x5)dx

= −iA2h̄
[

a4 x2

2

∣∣∣∣a
0

−4a2 x4

4

∣∣∣∣a
0

+ 3
x6

6

∣∣∣∣a
0

]
= 0. (3.10.21)

〈p̂2
x〉= 6 h̄2 A2

∫ a

0
(a2x2− x4)dx

= 6 h̄2 105

8a7

[
a2 x3

3

∣∣∣∣a
0

− x5

5

∣∣∣∣a
0

]
=

21h̄2

2a2
. (3.10.22)
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The uncertainty in px is given by

Δpx =
√
〈p̂2

x〉−〈 p̂x〉2 =
√

21h̄2

2a2
≈ 3.24

h̄
a

. (3.10.23)

The product Δx Δpx ≈ 0.6 h̄ > 0.5h̄.

Example 3.10.2: Consider a system whose Hamiltonian Ĥ and an operator Â, representing

an observable A, are given by the matrices

H = E0

⎛
⎝ 1 −1 0

−1 1 0

0 0 −1

⎞
⎠ , A = α

⎛
⎝ 0 4 0

4 0 1

0 1 0

⎞
⎠ ,

where E0 and α are constants. E0 has the dimensions of energy.

(a) If we measure the energy, what values will obtain? (b) Suppose that when we measure

energy, we obtain a value of −E0. Immediately afterward, we measure A. What values

shall we get for A and what are the probabilities corresponding to each of these values? (c)

Find the uncertainty in the measurement of A.

Solution: According to the postulate of quantum mechanics, the possible results of

measurement of energy will be the eigenvalues of the Hamiltonian. Hence, let us first find

these eigenvalues. The characteristic equation reads

E0

∣∣∣∣∣∣
(1−λ ) –1 0

–1 (1−λ ) 0

0 0 –(1+λ )

∣∣∣∣∣∣ = E0 (1−λ )
∣∣∣∣ 1−λ 0

0 −(1+λ )

∣∣∣∣
+ E0

∣∣∣∣ –1 0

0 –(1+λ )

∣∣∣∣= 0 (3.10.24)

The simplification leads to

−λ 3 +λ 2 + 2λ = 0, ⇒ λ1 = 0, λ2 = −E0, λ3 = 2E0. (3.10.25)

Hence, the values of energy that can result are E1 = 0,E2 = −E0,E3 = 2E0.

Let us now calculate the eigenvectors of the Hamiltonian. Consider first the eigenvalue

λ1 = 0. We have

E0

⎛
⎝ 1 −1 0

−1 1 0

0 0 −1

⎞
⎠
⎛
⎝ a

b
c

⎞
⎠=

⎛
⎝ 0

0

0

⎞
⎠ . (3.10.26)
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⇒
⎧⎨
⎩

a−b = 0,

−a+ b = 0,

−c = 0.
⇒ a = b and c = 0. (3.10.27)

If we take a = b = 1 and normalized the eigenvector, we get

|φ1〉= 1√
2

⎛
⎝ 1

1

0

⎞
⎠ . (3.10.28)

Similarly, the other two eigenvectors of H are

|φ2〉=
⎛
⎝ 0

0

1

⎞
⎠ and |φ3〉= 1√

2

⎛
⎝ −1

1

0

⎞
⎠ . (3.10.29)

It is easy to check that these eigenvectors of H are orthonormal:
〈
φ j|φ j

〉
= δi j.

(b) If a measurement of the energy yields −E0, this means that the system is left in the

state |φ2〉. When we next measure the observable, A, the system is in the state |φ2〉. The

result we obtain for A is given by any of the eigenvalues of Â. A diagonalization of of

the matrix A yields three non-degenerate values: α1 =−
√

17 α ,α2 = 0, and α3 =
√

17 α;

their respective eigenvectors are given by

|α1〉= 1√
34

⎛
⎝ 4

−√17

1

⎞
⎠ , |α2〉= 1√

17

⎛
⎝ 1

0

−4

⎞
⎠ , (3.10.30)

|α3〉= 1√
2

⎛
⎝ 4√

17

1

⎞
⎠ . (3.10.31)

Thus, when measuring A on a system, which is in the state |φ2〉, the probability of finding

−√17a is given by

P(α1) = |〈|α1 |φ2 〉|2 =
∣∣∣∣∣∣ 1√

34
(1 −√17 1)

⎛
⎝ 0

0

1

⎞
⎠
∣∣∣∣∣∣
2

=
1

34
. (3.10.32)

Similarly, the probabilities of measuring 0 and
√

17a are

P(α2) = |〈|α1 |φ2 〉|2 =
∣∣∣∣∣∣ 1√

17
(1 0 −4)

⎛
⎝ 0

0

1

⎞
⎠
∣∣∣∣∣∣
2

=
16

17
, (3.10.33)
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and

P(α3) = |〈|α1 |φ2 〉|2 =
∣∣∣∣∣∣ 1√

34
(4

√
17 1)

⎛
⎝ 0

0

1

⎞
⎠
∣∣∣∣∣∣
2

=
1

34
. (3.10.34)

(c) Since the system, when measuring A is in the state |φ2〉, the uncertainty ΔA is given by

ΔA =
√〈

φ2

∣∣Â2
∣∣φ2

〉− (
〈
φ2

∣∣Â∣∣φ2

〉
)2. (3.10.35)

We have

〈
φ2

∣∣Â∣∣φ2

〉
= α (0 0 1)

⎛
⎝ 0 4 0

4 0 1

0 1 0

⎞
⎠
⎛
⎝ 0

0

1

⎞
⎠= 0, (3.10.36)

〈
φ2

∣∣A2
∣∣φ2

〉
= α2 (0 0 1)

⎛
⎝ 16 0 4

0 17 0

4 0 1

⎞
⎠
⎛
⎝ 0

0

1

⎞
⎠= α2. (3.10.37)

The uncertainty in the measurement of A in the state φ2 is

ΔA =

√
〈φ2 |A2|φ2〉−〈φ2 |A|φ2〉2 = α . (3.10.38)

Example 3.10.3: Consider a particle of mass m that is moving in a one-dimensional infinite

square well potential with walls at x = 0 and x = a. At t = 0, it is in the state characterized

by the wave function

ψ(x,0) =
1√
2
[φ1(x)+φ3(x)] ,

where φ1(x) and φ3(x) are the normalized wave functions for the ground and the second

excited states, respectively. (a) Find the average value of x̂, x̂2, P̂x and p̂2
x in the state

ψ(x,0). (b) Check whether the uncertainties in the position and the momentum of the

particle satisfy the uncertainty relation or not.

Solution: Since φ1(x) and φ3(x) are normalized, the wave function ψ is also normalized:

∫ a

0
|ψ(x,0)|2 dx =

1

2

[∫ a

0
|φ1(x)|2 dx+

∫ a

0
|φ3(x)|2 dx

]
=

(1+ 1)

2
= 1. (3.10.39)
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Therefore, the average values of x̂ is given by

〈x̂〉= 1

a

[∫ a

0
xsin2

(πx
a

)
dx+

∫ a

0
xsin2

(
3πx

a

)]
dx

=
1

2a

∫ a

0

[
2x− xcos

(
2πx

a

)
− xcos

(
6πx

a

)]
dx =

a
2

. (3.10.40)

The average value of x̂2 is

〈x̂2〉= 1

a

[∫ a

0
x2 sin2

(πx
a

)
dx+

∫ a

0
x2 sin2

(
3πx

a

)]
dx

=
1

2a

∫ a

0

[
2x2− x2 cos

(
2πx

a

)
− x2 cos

(
6πx

a

)]
dx

=
1

2a

{
2a3

3
− a

2π

[
x2 sin

(
2πx

a

)]a

0

+
a
π

∫ a

0
xsin

(
2πx

a

)
dx
}

− 1

2a

{
a

6π

[
x2 sin

(
6πx

a

)]a

0

− a
3π

∫ a

0
xsin

(
6πx

a

)
dx
}

=
1

2a

{
2a3

3
+

a
π

∫ a

0
xsin

(
2πx

a

)
dx+

a
3π

∫ a

0
xsin

(
6πx

a

)
dx
}

. (3.10.41)

Taking into account that

∫ a

0
x sin

(
2π
a

x
)

dx = − a2

2π
,

∫ a

0
x sin

(
6π
a

x
)

dx = − a2

6π
, (3.10.42)

we obtain

〈x̂2〉= a2

3
− a2

4π2
− a2

36π2
=

a2

3
− 5a2

18π2
. (3.10.43)

The average value of p̂x is

〈p̂x〉= − ih̄
a

∫ a

0

[
sin
(πx

a

)
+ sin

(
3πx

a

)][
π
a

cos
(πx

a

)
+

3π
a

cos

(
3πx

a

)]
dx

= − iπ h̄
2a2

∫ a

0

[
3sin

(
6πx

a

)
+ 4 sin

(
4πx

a

)
− sin

(
2πx

a

)]
dx = 0. (3.10.44)
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Now we calculate the average value of p̂2
x :

〈p̂2
x〉= −

h̄2

a

∫ a

0

[
sin
(πx

a

)
+ sin

(
3πx

a

)][
−π2

a2
sin
(πx

a

)
− 9π2

a2
sin

(
3πx

a

)]
dx

=
h̄2π2

a3

∫ a

0
sin2
(πx

a

)
dx+

9h̄2π2

a3

∫ a

0
sin
(πx

a

)
sin

(
3πx

a

)
dx

+
∫ a

0

9h̄2π2

a3
sin2

(
3πx

a

)
dx+

h̄2π2

a3

∫ a

0
sin
(πx

a

)
sin

(
3πx

a

)
dx. (3.10.45)

The second and the fourth integral on the right-hand side of (3.10.48) equal zero because

of the orthonormality of the eigenfunctions of the infinite potential well. For the rest of the

integrals, using the trigonometrical formula sin2 x = (1− cos(2x))/2, we obtain

〈p̂2
x〉=

π2h̄2

a3

(
a
2
+

9a
2

)
=

5π2h̄2

a2
. (3.10.46)

The uncertainty in the measurement of the position is

Δx =
√
〈x̂2〉−〈x̂〉2 =

√
a2

3
− 5a2

18π2
− a2

4
=

a
6π

√
3π2−10≈ 0.74

a
π

. (3.10.47)

Similarly, the uncertainty in the measurement of momentum is

Δpx =
√
〈p̂2

x〉−〈 p̂x〉2 =
√

5π2h̄2

a2
=

π h̄
a

√
5. (3.10.48)

As a consequence,

Δx Δpx = 0.74× a
π
× π h̄

a

√
5≈ 1.655 h̄ >

h̄
2

. (3.10.49)

Hence, the product Δx Δpx satisfies the uncertainty relation.

3.11 Quantum–Classical Correspondence and Ehrenfest’s Theorem

In this section, we shall discuss the possibility of establishing a connection between

classical and quantum mechanics. Intuitively, we expect the average value of an

observable to play the key role in this regard. Therefore, we should try to deduce the

time-evolution of the expectation value of an operator from the given formalism of

quantum mechanics and see whether it compares with the time-evolution of the

corresponding classical dynamical variable or not. Since Ehrenfest’s theorem holds good
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in general, while deducing the theorem, we shall not confine ourselves to one spatial

dimension.

Time derivative of an operator: In general, an operator, representing an observable,

depends on time as a parameter. We wish to determine its time derivative. Since an

observable cannot have a definite value at a given instant of time (the measurement can

yield any one of its eigenvalues with some corresponding probability). Therefore, it is not

possible to define the time derivative of an operator in the usual way of mathematical

analysis:

dÂ(t)
dt

= lim
Δt→0

Â(t +Δt)− Â(t)
Δt

. (3.11.1)

However, the expectation (average) value of the observable A, given by 〈Â〉, can have a

definite value at a given instant t. Therefore, for defining the time derivative of an operator,

we must use its expectation value rather than the operator itself. Hence, we adopt the

following proposal:

The time derivative of the expectation value, 〈Â〉, of the observable, is equal to the
expectation value of the time derivative of the operator Â itself. That means:

d〈Â〉
dt

=

〈
dÂ
dt

〉
. (3.11.2)

In the context of quantum mechanics, this proposal should be viewed as the definition of

the dynamical variable dA/dt whose operator in quantum mechanics is given by dÂ/dt.
According to the formalism of quantum mechanics, we have

〈Â〉=
∫ +∞

−∞
ψ∗(�r, t)Âψ(�r, t)dτ , (3.11.3)

where dτ = dxdydz. Therefore,

d〈Â〉
dt

=
∫ +∞

−∞

(
∂ψ∗

∂ t
Âψ +ψ∗

∂ Â
∂ t

ψ +ψ∗Â
∂ψ
∂ t

)
dτ . (3.11.4)

Using the time-dependent Schrödinger equations, we have

∂ψ
∂ t

=
1

ih̄
Ĥψ ,

∂ψ∗

∂ t
= − 1

ih̄
ψ∗Ĥ† = − 1

ih̄
ψ∗Ĥ, (3.11.5)

where Ĥ is the Hamiltonian operator which is hermitian and we have used the general

formula (F̂Ĝ)† = Ĝ†F̂† for any two operators (matrices) F̂ and Ĝ. From (3.11.4) and

(3.11.5), we get
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d〈Â〉
dt

=
∫ +∞

−∞
ψ∗
[

∂ Â
∂ t

+
1

ih̄

(−ĤÂ+ ÂĤ
)]

ψ dτ . (3.11.6)

Recollecting that

∂ 〈Â〉
∂ t

=

〈
∂ Â
∂ t

〉
where

〈
∂ Â
∂ t

〉
=
∫ +∞

−∞
ψ∗(�r, t)

∂ Â
∂ t

ψ(�r, t)dτ , (3.11.7)

we arrive at

d〈Â〉
dt

=
∂ 〈Â〉

∂ t
+

1

ih̄

∫ +∞

−∞
ψ∗(�r, t)

(−ĤÂ+ ÂĤ
)

ψ(�r, t)dτ . (3.11.8)

Equation (3.11.8) can be written as

d〈Â〉
dt

=
∂ 〈A〉

∂ t
+

1

ih̄

〈
[Â, Ĥ]

〉
, (3.11.9)

where [Â, Ĥ] = ÂĤ− ĤÂ is the commutator of the operator Â with the Hamiltonian Ĥ and

〈
[Â, Ĥ]

〉
=
∫ +∞

−∞
ψ∗(�r, t)

(
ÂĤ− ĤÂ

)
ψ(�r, t)dτ , (3.11.10)

the average value of the commutator in the state ψ(�r, t) at a given instant t. In the case

when there is no explicit dependence of the operator Â on time, we have

d〈Â〉
dt

=
1

ih̄

〈
[Â, Ĥ]

〉
. (3.11.11)

A comparison of (3.11.9) and (3.11.11) with the Poisson bracket formulation of classical

mechanics leads to an important conclusion which is known as Ehrenfest’s theorem in

quantum mechanics.

Ehrenfest’s theorem: The average values of observables in quantum mechanics obey
the classical equations of motion.

This theorem, to some extent, establishes a ‘bridge’ between classical mechanics and

quantum mechanics, which is impossible to have otherwise.

Quantum mechanical version of Newton’s equations of motion: It turns out that it is

possible to write the equations of motion for the expectation values of the position

momentum operators in a manner completely analogous to the equations of motion in

classical mechanics.
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Since the position operator, x̂, and the momentum operator, p̂x, do not depend explicitly

on time, it follows from (3.11.11) that

d〈x̂〉
dt

=
1

ih̄
〈[x̂, Ĥ]〉, (3.11.12)

d〈p̂x〉
dt

=
1

ih̄
〈[ p̂x, Ĥ]〉. (3.11.13)

Here,

Ĥ =
p̂2

x

2m
+V (x) (3.11.14)

is the Hamiltonian operator and V̂ (x̂) = V (x) is the potential energy operator for the

particle. Simplifying the commutator on the right hand-side of (3.11.12), we have

[x̂, Ĥ] =

[
x̂,

p̂2
x

2m
+V (x)

]
=

1

2m

[
x̂, p̂2

x
]
+[x̂,V (x)]. (3.11.15)

Using the distributive property [Â, B̂2] = B̂[Â, B̂] + [Â, B̂]B̂ and the fact that [x̂,V (x)] = 0,

we get

[x̂, Ĥ] =
1

2m
p̂x[x̂, p̂x]+ [x̂, p̂x] p̂x =

1

2m
(2ih̄ p̂x) = ih̄

p̂x

m
. (3.11.16)

As a result, the time evolution equation for 〈x̂〉 reads

d〈x̂〉
dt

=
〈p̂x〉

m
. (3.11.17)

We see that the relation between the time derivative of 〈x̂〉 and the expectation value of the

momentum operator in quantum mechanics is exactly the same as that between momentum

px and velocity vx = ẋ in classical mechanics.

Let us now compute the commutator [ p̂x, Ĥ]. Since

[ p̂x, p̂2
x ] = p̂x[ p̂x, p̂x]+ [ p̂x, p̂x] p̂x = 0, (3.11.18)

and

[ p̂x, f (x)] = −ih̄
∂ f (x)

∂x
, (3.11.19)

for any function f (x) of x, we obtain

[ p̂x, Ĥ] = −ih̄
∂V (x)

∂x
. (3.11.20)
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Making use of Ehrenfest’s theorem (3.11.11), we obtain

d〈p̂x〉
dt

= −
〈

∂V (x)
∂x

〉
. (3.11.21)

Differentiating (3.11.17) once with respect to time and making use of (3.11.21), we arrive

at

d2〈x̂〉
dt2

= −
〈

∂V (x)
∂x

〉
. (3.11.22)

Equation (3.11.22), written for the expectation values of the position operator and the force

as the gradient of the potential, is the quantum mechanical version of Newton’s equations

of motion.

3.12 Periodic Potentials, Bloch’s Theorem and Energy Bands

In this sub-section we shall discuss the solutions of the TISE for the case in which the

potential is a periodic function of x. It has some very useful applications in solid state

physics.

A typical periodic potential is shown in Fig.3.10. As shown, the potential is zero over

a distance a, peaks at V (x) = V0 over a distance b and then repeats itself. It is evident that

V (x+ c) = V (x). (3.12.1)

where c = a+ b is the period. Since the potential is a periodic function of x with a period

c, the Schrödinger equation is invariant under space translations

x→ x+ nc, n = 0,±1,±2,±3, ... (3.12.2)

This invariance imposes certain restriction on the form of the allowable solution of the

Schrödinger equation. To determine this restriction, let us introduce an operator D̂, called

the space translation operator, which while acting on a function f (x) shifts it horizontally

along the x direction over a distance c:

D̂ f (x) = f (x+ c). (3.12.3)

For instance, acting on the potential function V (x), it shifts the entire potential over a

distance c: D̂V (x) = V (x+ c). Repeated applications this operator leads to

D̂ f (x) = f (x+c), D̂2 f (x) = f (x+2c), D̂3 f (x) = f (x+3c), . . . , D̂n f (x) = f (x+nc).
(3.12.4)
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V x( )

V = 0 V = 0 V = 0 V = 0

V0

–( + )a b –b a ( + )a b0 x

Figure 3.10 This is the sketch of a representative periodic potential with a separation
of a between the peaks of width b.

Consider now the following

(D̂Ĥ)ψ(x) = D̂(Ĥψ) = D̂
(
− h̄2

2m
∂ 2

∂x2
+V (x)

)
ψ(x)

=

(
− h̄2

2m
∂ 2

∂x2
+V (x+ c)

)
ψ(x+ c)

=

(
− h̄2

2m
∂ 2

∂x2
+V (x)

)
ψ(x+ c)

= Ĥ
(
D̂ψ(x)

)
=
(
ĤD̂
)

ψ(x). (3.12.5)

In obtaining the above result we have used the fact that

∂
∂ (x+ c)

=
∂
∂x

∂x
∂ (x+ c)

=
∂
∂x

. (3.12.6)

Thus, the Hamiltonian and the translation operator commute: [D̂, Ĥ] = 0. It means that, if

ψ(x) is an eigenfunction of the Hamiltonian with energy E (i.e., Ĥψ(x) = Eψ(x)), then

D̂ψ(x) is also an eigenfunction of the Hamiltonian with the same energy E:

Ĥ
(
D̂ψ(x)

)
=
(
ĤD̂
)

ψ(x) =
(
D̂Ĥ
)

ψ(x) = E
(
D̂ψ(x)

)
, (3.12.7)

This, in turn means that, if the energy spectrum is non-degenerate, ψ(x+c) and ψ(x) must

represent the same state of the system. Therefore, ψ(x+ c) can differ from ψ(x) only by

a constant factor:

ψ(x+ c) = α ψ(x), (3.12.8)
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where α is a constant of magnitude unity.

α = exp

(
2πi�

n

)
, �= 0,1,2,3, . . . (3.12.9)

Defining now

κ =
2π�
n c

, (3.12.10)

we arrive at

ψ(x+ nc) = eiκ cψ(x). (3.12.11)

Now, any function ψ(x), satisfying the above condition, can be written as

ψ(x) = eiκ x uκ(x), (3.12.12)

where uκ(x) is a periodic function of x of period c: uκ(x+ c) = uκ(x). To ensure that it is

really so, we write

ψ(x+ c) = eiκ (x+c)uκ(x+ c) = eiκ c eiκ x uκ(x+ c). (3.12.13)

Therefore, if uκ(x+ c) = uκ(x),

ψ(x+ c) = eiκ(x+c)uκ(x+ c) = eiκ c eiκ x uκ(x) = eiκ c ψ(x). (3.12.14)

The above result is a fundamental result for condensed matter physics and it is known as

Bloch’s theorem. It states that any solution to the Schrödinger equation, with a periodic

potential of period c, must have the form given by equation (3.12.14).

Consider now the case of a particle (mass m and total energy E < V0) subject to the

above periodic potential. If we introduce

k2
1 =

2mE
h̄2

, (3.12.15)

k2
2 =

2m(V0−E)
h̄2

, (3.12.16)

the solutions of the time-independent Schrödinger equations in the relevant regions can be

written as

ψ(x) = A cos(k1x)+B sin(k1x), (0 < x < a), (3.12.17)

ψ(x) =C cosh(k2x)+D sinh(k2x), (−b < x < 0), (3.12.18)
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where A, B, C and D are arbitrary constants. They must be chosen such that both ψ(x) and

ψ ′(x) are continuous at the boundaries, where the potential has a finite jump, and abide by

Bloch’s theorem.

At x = 0, we have

A =C, (3.12.19)

k1 B = k2 D. (3.12.20)

Furthermore, using the Bloch theorem (with n = 1), we get

ψ(a) = eiK c ψ(−b), (3.12.21)

ψ ′(a) = eiK c ψ ′(−b), (3.12.22)

where

K =
2π�

(a+ b)
. (3.12.23)

The boundary conditions (3.12.21) and (3.12.22) lead to

A cos(k1a)+B sin(k1a) = eiKc [C cosh(k2b)−D sinh(k2b)] , (3.12.24)

−k1 A sin(k1a)+ k1 B cos(k1a) = eiKc [−k2 C sinh(k2b)+ k2 D cosh(k2b)] . (3.12.25)

The algebraic equations (3.12.19), (3.12.20), (3.12.24), and (3.12.25), can be written as a

matrix equation: M X = 0, where X = (A B C D)T is a column matrix and

M =

⎛
⎜⎜⎜⎜⎝

1 0 −1 0

0 k1 0 −k2

cos(k1a) sin(k1a) −eiKc cosh(k2b) eiKc sinh(k2b)

−k1 sin(k1a) k1 cos(k1a) k2 eiKc sinh(k2b) −k2 eiKc cosh(k2b)

⎞
⎟⎟⎟⎟⎠ .

(3.12.26)

For the non-trivial solutions the determinant of the matrix, |M |, must be zero:

|M |=

∣∣∣∣∣∣∣∣∣∣

1 0 −1 0

0 k1 0 −k2

cos(k1a) sin(k1a) −eiKc cosh(k2b) eiKc sinh(k2b)

−k1 sin(k1a) k1 cos(k1a) k2 eiKc sinh(k2b) −k2 eiKc cosh(k2b)

∣∣∣∣∣∣∣∣∣∣
= 0.

(3.12.27)
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Using the Gaussian decomposition rule for the determinants, we have

|M |=

∣∣∣∣∣∣∣∣
k1 0 −k2

sin(k1a) −eiKc cosh(k2b) eiKc sinh(k2b)

k1 cos(k1a) k2 eiKc sinh(k2b) −k2 eiKc cosh(k2b)

∣∣∣∣∣∣∣∣

−

∣∣∣∣∣∣∣∣
0 k1 −k2

cos(k1a) sin(k1a) eiKc sinh(k2b)

−k1 sin(k1a) k1 cos(k1a) −k2 eiKc cosh(k2b)

∣∣∣∣∣∣∣∣= 0. (3.12.28)

Further simplification of the determinants leads to

k1

[
k2 e2iKc cosh2(k2b)− k2 e2iKc sinh2(k2b)

]− k2

[
k2 eiKc sinh(k2b) sin(k1a)

+k1 eiKc cosh(k2b) cos(k1a)
]
+ k1

[−k2 eiKc cosh(k2b) cos(k1a)

+k1 eiKc sinh(k2b) sin(k1a)
]
+ k2

[
k1 cos2(k1a)+ k1 sin2(k1a)

]
= 0. (3.12.29)

Opening up the brackets, we get

k1 k2 e2iKc− k2
2 eiKc sinh(k2b) sin(k1a)− k1 k2 eiKc cosh(k2b) cos(k1a)

− k1 k2 eiKc cosh(k2b) cos(k1a)+ k2
1 eiKc sinh(k2b) sin(k1a)+ k1 k2 = 0 (3.12.30)

From here, collecting similar terms, we obtain

(k2
1− k2

2) sinh(k2b) sin(k1a)−2k1 k2 cosh(k2b) cos(k1a)+ k1 k2

[
eiKc + e−iKc]= 0.

(3.12.31)

Equation (3.12.31) yields the following transcendental equation for the determination of

the energy eigenvalues

(k2
2− k2

1)

2k1 k2
sinh(k2b) sin(k1a)+ cosh(k2b) cos(k1a) = cos[K(a+ b)]. (3.12.32)

In general, the equation (3.12.32) cannot be solved analytically. For given values of the

model parameters a, b and V0, it can be solved numerically. It is usually done by using one

of the standard root finding algorithms for a given value of K. As a result of the numerical

solution, one gets the values of k1 using which one can calculate the energy eigenvalues as

E =
h̄2k2

1

2m
. (3.12.33)
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Energy Bands: Note that, for practical purposes, the above transcendental equation can be

simplified by imposing some reasonable restrictions on the model parameters.

Assume that the width of the potential tends to zero while the height tends to infinity

such that V0b remains constant. In such a limit

lim
b→0

sinh(k2b) = k2b, lim
b→0

cos(k2b) = 1.

Here, we have gone to the leading order in the Taylor expansions of the hyperbolic

trigonometric functions on the left-hand side, and simply let b = 0 on the right-hand side.

We obtain

(k2
2− k2

1)

2k1
b sin(k1a)+ cos(k1a) = cos[Ka]. (3.12.34)

We then find it convenient to define the dimensionless quantity, P = mV0ba
2 , which

determines the effective strength of the potential. Then we have

F(k1a) = cos[Ka], (3.12.35)

where

F(k1a) = P
sin(k1a)

k1
+ cos(k1a). (3.12.36)

Energy gaps

Energy bands

F k a P k a( ) = + cos( )
sin( )k a1

k1
11

+1

–1

0 k a1

Figure 3.11 A schematic representation of the allowed and forbidden energy bands.
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In this form, for a fixed value of P, it is rather simple to plot the left-hand side as a

function of k1a.When the value of the left hand side of the equation (3.12.35) (that is the

value of F(k1a)) is between−1 and +1 (which is the range of cos(Ka) for real arguments)

there will be a value of K for which a solution exists. When the value of F(k1a) is outside

of this interval, there will be no real K for which (3.12.35) is satisfied. In other words, for

the interval of k1 in which the values of F(k1a) lower than −1 or greater than +1, there

will not be any acceptable energy eigenfunction. The resultant spectrum of solutions will

then have gaps in the admissible energies. It means that, for certain energies, there will

be no proper solutions to the the Schrödinger equation with periodic potential. Thus the

energy spectrum will consist of bands of continuous energies separated by energy gaps.

The situation has been depicted schematically in Fig.3.11.

Homework Problems

1. Show that the group velocity for a non-relativistic free electron is also given by vg =
p/me = v0, where v0 is the electron’s velocity.

2. The dispersion relation for free relativistic electron waves is

ω(k) =
√

k2c2 +(mec2/h̄)2,

Obtain expressions for the phase velocity vp and group velocity vg of these waves

and show that their product is a constant, independent of k. From your result, what

can you conclude about vg if vp > c?

3. If the wave function of the particle at t = 0 is given by

ψ(x,0) =

(
2

πa2

)1/4

e−x2/a2
,

use (3.2.12) to calculate ψ̃(k). Calculate Δx and Δk at t = 0. Now, use ψ̃(k) in

(3.2.11) to compute ψ(x, t) for any t > 0 by expanding the dispersion relation k(ω)
into a Taylor series and taking the required integral. On the basis of the obtained

results, comment on the half-width Δx of the packet for t > 0.

4. If the ground-state energy of an electron in a one-dimensional infinite square well

potential were of the same magnitude as that of hydrogen in the ground state, how

would the width of the box compare to the Bohr radius?

5. Consider a potential well having an infinite wall at x = 0 and a wall of height V0

at x = L. For the case E < V0, obtain solutions to the Schrödinger equation inside

the well (0 ≤ x ≤ L) and in the region beyond (x > L) that satisfy the appropriate

boundary conditions at x = 0 and x = ∞. Enforce the proper matching conditions at

x = L to find an equation for the allowed energies of this system. Are there conditions

for which no solution is possible? Explain.



120 Fundamentals of Quantum Mechanics

6. An electron, trapped at a defect in a crystal, can be modeled as one moving freely in

a one-dimensional infinite potential well of width, say, L = 1 nm with infinite walls

at x = 0 and x = L. (a) Sketch the wavefunctions and probability densities for the

n = 1 and n = 2 states. (b) For the n = 1 and n = 2 states, calculate the probability

of finding the electron between x1 = 0.15 nm and x2 = 0.35 nm. (c) Calculate the

energies in electron volts of the n = 1 and n = 2 states.

7. A laser emits light of wavelength λ = 800 nm. If this light is due to transitions from

the n = 2 state to the n = 1 state of an electron in an infinite potential well, find the

width, L, of the well.

8. Consider an electron trapped in an infinite potential well, with length L = 20 nm (1

nm =10−9 m, the electron mass is me = 9.11×10−31 kg). What is the energy E5 of

the fifth level? And whats the energy of the first (lowest) level? If electron drops

down from the fourth to the first level, the corresponding energy difference has to be

released, for example in the form of a photon. What would be the wavelength of this

photon?

9. A free particle of mass, m, and total energy, E, is incident from x→−∞ on a potential

step given by

V (x) =
{

0 for x < 0

V0 > 0 for x≥ 0.
(3.12.37)

where V0 > 0 is a positive constant with the dimensions of energy. Solve the

corresponding TISE, apply the appropriate boundary conditions and determine the

wave function for the case when E >V0.

10. A particle of mass m and total energy, −E with E > 0, is subject to the potential

given by

V (x) = −αδ (x−a),

where α and a are positive constants. Solve the Schrödinger equation for the bound

states and find the normalized wave functions and the corresponding energies. How

many bound states the particle can have in such a potential?

11. A particle of mass m and total energy E is subject to a potential given by

V (x) =

⎧⎪⎨
⎪⎩

∞ for x < 0

0 for 0 < x < a,

V0 > 0 for x≥ a.

(3.12.38)

where E <V0. Find the energy levels and the corresponding wave functions.
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12. A particle of mass m and total energy, −E (E > 0), is subject to the potential given

by

V (x) = −α [δ (x−a)+ δ (x+ a)]

where α and a are positive constants. Sketch the potential. Determine the number

of bound states supported by this potential. Find the allowed values of energy for

α = h̄2/ma and α = h̄2/4ma.

13. A particle, moving freely in an infinite potential well of width a (0 < x < a), is in a

state described by the wave function

ψ(x, t) =
1√
a

sin

(
3πx

a

)
e−

i
h̄ E3t +

1√
a

sin

(
5πx

a

)
e−

i
h̄ E5t .

Calculate the probability current density.

14. Using the continuity equation find the expression for dPab/dt in terms of the current

density, where Pab is the probability of locating the particle in the interval a≤ x≤ b.

15. A particle is free to move in a confined region of space −a≤ x≤ a. At t = 0 it is in

a state

ψ(x,0) =
1√
5a

cos
(πx

2a

)
+

2√
5a

sin
(πx

a

)
.

(a) Find ψ(x, t) at a later time t. (b) Calculate the probability density ρ(x, t) and the

probability current density jx(x, t). (c) Verify that the probability is conserved:

∂ρ
∂ t

+
∂ jx(x, t)

∂x
= 0.

16. Consider an electron of energy 5.1 eV approaching an energy barrier of height 6.8

eV and thickness L = 750 pm. What is the transmission coefficient T ?

17. A 1500 kg car moving at 20 m/s approaches a hill 24 m high and 30 m long. What is

the probability that the car will tunnel quantum mechanically through the hill?

18. Find the reflection and the transmission coefficients for a particle of mass m incident

from the left, i.e., from x→−∞ on the step-potential

V (x) =
{

0 for x < 0,

V0 for x > 0,

where V0 is a real positive constant. Consider both the cases when (i) the energy

of the incident particle is less than the height of the barrier, i.e., E < V0 and (ii) the

energy of the particle is greater than the height of the barrier, i.e., E >V0.
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19. Find the reflection and the transmission coefficients for a particle of mass m incident

from the left, i.e., from x→−∞ on the attractive delta potential

V (x) = −αδ (x),

where α is a real positive constant. The energy of the incident particle is negative

i.e., E < 0.

20. The wave function of a particle is given by

ψ(x) =

√
30

a5
(ax− x2), (0 < x < a).

Calculate the average values of x̂ and x̂2. Compute the uncertainty in measurement

of the position of the particle in this state.

21. A particle is in the ground state of the harmonic oscillator with the classical frequency

ω , when suddenly the spring constant quadruples without changing the state of the

particle, so that ω ′ = 2ω . If the energy of the particle is now measured, what is the

probability of getting the value h̄ω/2? What is the probability of getting the value

h̄ω?

22. A particle is trapped inside a harmonic oscillator potential. At t = 0, the particle’s

wave function is

ψ(x,0) = A [φ0(x)+φ1(x)],

where φ0 and φ1 are the ground state and the first excited state wave functions of the

particle.

(a) Find ψ(x, t) and the probability density ρ(x, t) = |ψ(x, t)|2.

(b) Calculate the expectation value of x̂ at t > 0. Find the period of its time variation.

(c) Recall Ehrenfest’s theorem and use the result of (b) to obtain the average value of

the momentum in the state ψ(x, t).

23. Consider the one dimensional harmonic oscillator potential, with energy levels: En =(
n+ 1

2

)
,n = 0,1,2,3, ..., which are non-degenerate. How do the energy levels and the

degeneracy change, if the potential is modified as

V (x) =

{
1
2mω2x2, for x < 0,

∞, for x≥ 0?

24. The Hamiltonian of a two dimensional harmonic oscillator is given by

Ĥ =
1

2
( p̂2

x + p̂2
y)+

1

2
mω2(x2 + y2).
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Use the separation of variables to reduce the solution of the corresponding TISE to

the solution of the TISE in one spatial dimension and determine the wave functions

and the corresponding energy levels.

25. Find the average value of x̂, x̂2, p̂x, and p̂2
x in the second excited state of the harmonic

oscillator. Check the validity of the Heisenberg’s uncertainty relation.

26. A particle of mass m is subjected to a symmetric infinite potential well

V (x) =
{

0 −L/2 < x < L/2

∞ x <−L/2, x > L/2,

where L is a real positive constant. Calculate the product Δx Δpx for the lowest even

and the lowest odd states of the particle in this well.

27. Consider a particle in a one-dimensional harmonic oscillator potential. At time t = 0

the particle is in the state

ψ(x,0) =
1√
2
[φ0(x)+φ1(x)] ,

where φ0 and φ1 are the ground state and the first excited state wave functions of a

particle in the harmonic oscillator potential. Evaluate the expectation values 〈x̂〉 and

〈p̂x〉 as functions of time.

28. Electrons move in a series of equidistant δ -barriers, with distance between two

neighboring ones equal to �. Each potential has the form of V (x) = αδ (x), so that

the total potential can be written as

V (x) =
+∞

∑
N=−∞

α δ (x−N�), α > 0,

where N is an integer. (a) Find the energy eigenstates. (b) Derive the quantization

condition for the energy eigenstates. (c) Show graphically that the allowed energy

states form bands.



Chapter 4

Algebraic Formulation of Quantum Mechanics

As we know quantum mechanics was initially developed in two seemingly different but

physically equivalent forms: matrix mechanics (Heisenberg, 1925) and wave mechanics

(Schrödinger, 1926). Later, Dirac invented a more general formalism and showed that both

these formulations of quantum mechanics (i.e., wave mechanics and matrix mechanics)

could be cast into a single algebraic framework with the help of the theory of linear vector

spaces and the operators acting in them. It turned out that Dirac’s formalism was a unified

one in the sense that, if it was constructed using a continuous basis, it led to Schrödinger’s

wave mechanics, while its representation in a discrete basis resulted into Heisenberg’s

matrix mechanics.

The linear vector space that one has to use for such a formulation has to be a complex

one (the elements are complex numbers/functions) because of the complex nature of the

wave function discussed earlier. Apart from that it turned out that the complex linear vector

space in quantum mechanics has to have some specific properties: it has to be an infinite

dimensional vector space equipped with an inner (scalar) product. It is called a Hilbert

space and we shall denote it by H . A rigorous definition of the Hilbert space will be given

later.

4.1 Linear Vector Spaces

Let us start by defining a linear vector space and listing out its properties. In general, a

linear vector space consists of a set of elements ψ ,φ , χ , . . . (called vectors) and a set of

numbers a,b,c, . . . (called scalars), a set of rules each for the addition and multiplication of

vectors. The meaning of a vector is assumed to be independent of the coordinate system

chosen to represent its components.

Definition: A linear vector space V is a set of elements ψ ,φ , χ , . . ., called vectors, for

which the following properties hold:

1. V is closed under addition. This means that if two vectors ψ and φ belong to V then

their sum, written as ψ +φ , also belongs to V .

124
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2. A vector ψ can be multiplied by a scalar a to yield a new, well-defined vector aψ that

belongs to V ,

3. The addition of vectors is commutative, that is, ψ +φ = φ +ψ .

4. The addition of vectors is associative, that is, ψ +(φ + χ) = (ψ +φ )+ χ .

5. There exists a unique element called 0 that satisfies ψ + 0 = ψ for every element

ψ ∈V .

6. There exists an identity element, E, in V such that Eψ = ψ for every element ψ ∈V .

7. The multiplication of a vector by scalars is associative, that is, (ab)ψ = a(bψ).

8. The multiplication of a vector by a scalar is linear, that is, a(ψ + φ ) = aψ + aφ ,

ψ(a+ b) = aψ + bψ .

9. For each ψ in V , there exists a unique additive inverse (−ψ) such that ψ + (−ψ)
= 0.

If the vectors and the scalars associated with a given vector space are real, we say that we

are working with a real vector space. On the other hand, if the vectors and the scalars are

complex, then we say that we are working with a complex vector space. The vector spaces

used in quantum mechanics are complex.

Basis and dimension of a linear vector space: Basis in linear vector space In order to

define what we mean by a basis and the dimensionality of a linear vector space, we must

introduce the concept of linear independence of a set of vectors.

Linear independence of vectors: Consider a set of n vectors, {φ1,φ2,φ1,φ3, ...,φn}, and

their linear combination a1φ1 + a2φ2 + a3φ3 + ...+ anφn, where a j, j = 1,2,3, . . . ,n are all

constants. The vectors of this set are said to be linearly independent if the equation

a1φ1 + a2φ2 + a3φ3 + ...+ anφn = 0 (4.1.1)

hold only if a1 = a2 = ... = an = 0. If this condition is not met, we say that the set is

linearly dependent.

Note that if a set of vectors is linearly dependent, one of the vectors can be expressed

as a linear combination of the others. For instance, assume that

aψ + bφ + . . .+ cχ = 0, (4.1.2)

where not all of the scalars are zero. Then one of the vectors can be expressed in terms of

the other vectors as follows. Let a be non-zero. Then, we have

ψ = p φ + . . .+ q χ , (4.1.3)
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where

p = −b
a

, . . . ,q = − c
a

. (4.1.4)

Definition: A linear vector space, V , is said to have dimension n, if the maximum number

of linearly independent vectors in V equals n.

If this number n is finite, the linear vector space is called finite. On the other hand, if

it is possible to find any number (as large as possible) of linearly independent vectors in it,

then it is called infinite.

Basis: Any set of n linearly independent vectors, {φi}, i = 1,2,3, . . . ,n, belonging to the

n-dimensional linear vector space, V , is called its basis. The elements, φ1,φ2,φ3, . . ., of this

set are called the basis vectors.

Moreover, a basis is said to be complete if it spans the entire space; that is, there is no

need to introduce any additional basis vector. It also means that every vector ψ of a linear

vector space V , with a complete basis, can be written as a unique linear combination of the

basis vectors:

ψ = c1φ1 + c2φ1 + c3φ3 + ...+ cnφn, (4.1.5)

where the expansion coefficients ci, i = 1,2,3, . . . ,n are called the components of the vector

ψ in the basis {φi}.
Note that the basis may be discrete, i.e., consisting of discrete vectors {φi}, or it may

consist of vectors which are functions of one or more continuous parameters. In the latter

case we have an infinite set of continuous basis vectors and, correspondingly, the vector

space is an infinite dimensional one. For instance, the space of all continuous functions

φi(x), where x takes continuous values in a finite or an infinite interval, constitutes an

example of an infinite dimensional space with continuous basis.

Some examples of linear vector spaces

1. The set of vectors, {�a,�b,�c, . . .}, in the familiar three dimensional space. The addition

of vectors and the multiplication of a vector by a real scalar are defined in accordance

with the rules of vector algebra. The additive unit vector is the null vector�0: �a+�0=�a
for any �a ∈ V . For an arbitrary �a ∈ V there is an additive inverse given by −�a:

�a+(−�a) =�0. All other aforementioned requirements are also satisfied.

2. The set of all continuous function defined on the interval a≤ x≤ b, where a and b are

constants. The addition of vectors and the multiplication by a constant are defined

according to the rules of calculus.

3. The set of n complex numbers placed in a well-defined order: ψ = (ψ1,ψ2,

ψ3, . . . ,ψn). The addition of vectors and the multiplication of a vector by a scalar

are given by
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ψ +φ = (ψ1 +φ1,ψ2 +φ2,ψ3 +φ3, . . .ψn +φn), (4.1.6)

and

a ψ = (a ψ1,a ψ2,a ψ3, . . . ,a ψn). (4.1.7)

The unit element is the vector

0 = (0,0,0, . . . ,0), (4.1.8)

while the role of the element inverse to a given element ψ is played by the vector

−ψ = (−ψ1,−ψ2,−ψ3, . . . ,−ψn). (4.1.9)

Example 4.1.1: Show that the vectors

ψ1 =

⎛
⎝ 5

3

4

⎞
⎠ , ψ2 =

⎛
⎝ 1

2

3

⎞
⎠ , ψ3 =

⎛
⎝ 7

7

10

⎞
⎠

are linearly dependent.

Solution: For these vectors to be linearly independent, their linear combination aψ1+bψ2+
cψ3 must be zero only if a = b = c = 0. Let us check whether it is really the case. For this

purpose, we put aψ1+bψ2+cψ3 = 0 and determine the values of a,b and c for which this

equation can be satisfied. Hence, we have

a

⎛
⎝ 5

3

4

⎞
⎠+ b

⎛
⎝ 1

2

3

⎞
⎠+ c

⎛
⎝ 7

7

10

⎞
⎠=

⎛
⎝ 5a+ b+ 7c

3a+ 2b+ 7c
4a+ 3b+ 10c

⎞
⎠=

⎛
⎝ 0

0

0

⎞
⎠ . (4.1.10)

Equation (4.1.10) leads to a system of three algebraic equations for a,b and c. The solution

of these equations yields: a = −c,b = −2c. Clearly, (4.1.10) holds good for a = b =
c = 0. However, (4.1.10) is also satisfied for non-zero values of the constants a,b and c.

For instance, it is satisfied for a = 1,b = 2 and c = −1, which shows that ψ3 is a linear

combination of the other two vectors: ψ3 = ψ1 + 2ψ2. Hence, the given system of vectors

is linearly dependent.

Example 4.1.2: Check whether the system of vectors

ψ1 =

⎛
⎝ 5

0

0

⎞
⎠ , ψ2 =

⎛
⎝ 0

−2

0

⎞
⎠ , ψ3 =

⎛
⎝ 0

0

10

⎞
⎠

is linearly independent or not.
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Solution: Just as in Example 4.1.1, we put aψ1 + bψ2 + cψ3 = 0 and determine the

constants. We get

a

⎛
⎝ 5

0

0

⎞
⎠+ b

⎛
⎝ 0

-2

3

⎞
⎠+ c

⎛
⎝ 0

0

10

⎞
⎠=

⎛
⎝ 5a
−2b
10c

⎞
⎠=

⎛
⎝ 0

0

0

⎞
⎠ . (4.1.11)

The only set of solutions for the constants is a = b = c = 0. Hence, the given set of vectors

is linearly independent.

Note that, so far, the only condition that has been imposed on the basis vectors is their

linear independence. However, it is desirable to have an orthonormal basis consisting of

basis vectors that are not only pairwise orthogonal but also have unit length. In order to

incorporate these two concepts, we shall have to introduce and define a mathematical

operation called inner product (scalar product) of vectors. We shall discuss that in the

next section.

4.2 Dirac Notation

We have already stated that vector spaces in quantum mechanics are complex. Therefore,

we assume the elements of our n-dimensional linear vector space to be complex. We also

assume the vector space to have a fixed basis {φi}, i = 1,2,3, . . . ,n. For example, in this

basis, a vector ψ belonging to our n-dimensional linear vector space is given by its n
components ψi, i = 1,2,3, . . . ,n, which are complex numbers.

Dirac notation: We introduce the notation |ψ〉 for a vector ψ belonging to an

n-dimensional linear vector space V , and we call it a ket vector or simply a ket. As

mentioned above, in a fixed basis {φi}, i = 1,2,3, . . . ,n, a ket will be characterized by its

complex components ψi, i = 1,2,3, . . . ,n. It is convenient to arrange these components in

to a column vector and write a ket as a column vector:

|ψ〉=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ1

ψ2

ψ3

.

.

.

ψn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.2.1)

Dual vector: The familiar notion of a “scalar product” is incorporated by introducing a

dual vector, written as 〈ψ|, for each of the vectors, |ψ〉, of V . In Dirac’s language, it is

called a bra vector. The bra 〈ψ| dual to a ket |ψ〉 is constructed by transposing the ket (that

is, we write it as a row vector) followed by complex conjugation. In other words:
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If |ψ〉=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ1

ψ2

ψ3

.

.

.

ψn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, then 〈ψ|= ( ψ∗1 ψ∗2 ψ∗3 . . . ψ∗n
)

. (4.2.2)

This method of complex conjugation is known as hermitian conjugation or dagger
operation: 〈ψ| = (|ψ〉)†. There is a one-to-one correspondence between bras

(constructed in this manner) and kets, that is, for a given ket |ψ〉, there is a unique bra

〈ψ|. In addition, the following relations hold good:

(a) If |λ 〉= α|μ〉, then 〈λ |= α∗〈μ|.

(b) If |λ 〉= |αμ〉+β |ν〉, then 〈λ |= α∗〈μ|+β ∗〈ν |.

The set of bras, dual to the kets of V , also forms a linear vector space, which is called the
dual (to V ) vector space. It is denoted as V ∗.

The inner (or, scalar) product: The inner product (also called the scalar product) of two

vectors |ψ〉 and |φ〉 (written as 〈φ |ψ〉) is defined by the following expression:

〈φ |ψ〉= ( φ ∗1 φ ∗2 φ ∗3 . . . φ ∗n
)
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ1

ψ2

ψ3

.

.

.

ψn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= (φ ∗1 ψ1 +φ ∗2 ψ2 +φ ∗3 ψ3 + ...+φ ∗n ψn) =
n

∑
i=1

φ ∗i ψi. (4.2.3)

We call 〈φ |ψ〉 a ‘bracket’. Evidently, the procedure is to take the bra, 〈φ | ∈ V ∗,
corresponding to |φ〉 ∈ V and multiply it with the ket |ψ〉 ∈ V according to the rules of

matrix multiplication. Therefore, if |ψ〉 and |φ〉 belong to the same vector space, the

products of the type |ψ〉|φ〉 and 〈ψ|〈φ | are not defined; they are in fact forbidden because

there are no rules in matrix algebra for the multiplication of two column matrices or two

row matrices. However, if |ψ〉 and |φ〉 belong to two different vector spaces, a product of

the type |ψ〉|φ〉 ( 〈ψ|〈φ |) is written as |ψ〉⊗ |φ〉 ( 〈ψ|⊗ 〈φ |) and understood as the tensor

product of two vectors.
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A vector space that also has an inner product is referred to as an inner product space or

Euclidean space.

Properties of the inner product: Let (|ψ〉 , |ψ〉 , |ω〉 , . . . be the vectors belonging to a

complex vector space V and let α and β be complex numbers. Then the inner product

satisfies the following properties:

〈φ |ψ〉= 〈ψ|φ〉∗ . (4.2.4)

If |λ 〉= α|μ〉, then for any ket |ψ〉,

〈λ |ψ〉= 〈ψ|λ 〉∗ = 〈ψ|αμ〉∗ = (α〈ψ|μ〉)∗ = α∗〈ψ|μ〉∗ = α∗〈μ|ψ〉. (4.2.5)

〈ψ| (α |φ〉+β |ω〉) = α 〈ψ |φ〉+β 〈φ |ω〉 , (4.2.6)

(〈αψ|+ 〈βω|) |φ〉= α∗ 〈ψ|φ〉+β ∗ 〈ω|φ〉 , (4.2.7)

〈ψ|ψ〉 ≥ 0. (4.2.8)

In (4.2.8), the equality holds, if and only if |ψ〉 = 0. If the inner product between two
vectors is zero, 〈φ |ψ〉= 0, we say that the vectors are orthogonal.

Norm of a vector: The square root of the inner product of a vector with itself is called the

norm, and is written as:

‖ψ‖=
√
〈ψ|ψ〉. (4.2.9)

A vector |ψ〉 is said to be normalized if its norm is equal to 1:

‖ψ‖=
√
〈ψ|ψ〉= 1. (4.2.10)

Orthonormal and complete basis: An orthonormal basis consists of the basis vectors

{|φi〉}, i = 1,2,3, . . . ,n, which have a unit norm and are pairwise orthogonal:

〈φi|φ j〉= δi j, ‖φi‖=
√
〈φi|φi〉= 1, (4.2.11)

where δi j is the Kronecker delta. The completeness of an orthonormal basis is

mathematically expressed in terms of a closure relation, which is what we are going to

derive.

Let us first assume the basis to be discrete. An arbitrary vector, |ψ〉, belonging to the

linear vector space can be expanded in this basis as

|ψ〉= ∑
i

ci |φi〉, (4.2.12)
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where the expansion coefficients ci = 〈φi|ψ〉 are called the components of the vector ψ in

the basis {|φi〉}. Note that if |ψ〉 is normalized to unity, i.e., 〈ψ|ψ〉= 1 then

〈ψ|ψ〉= ∑
i

∑
j
〈φi|c∗i c j|φ j〉= ∑

i
∑

j
c∗i c j〈φi|φ j〉

= ∑
i

∑
j

c∗i c j δi j = ∑
i
|ci|2 = 1. (4.2.13)

Since 〈φi|ψ〉† = 〈ψ|φi〉, (4.2.13) can be written as

∑
i
|ci|2 = ∑

i
c∗ci = ∑

i
〈ψ|φi〉〈φi|ψ〉= 〈ψ

(
∑

i
|φi〉〈φi|

)
ψ〉= 1. (4.2.14)

Since |ψ〉 is normalized to unity,

∑
i
|φi〉〈φi|= Î. (4.2.15)

The relation (4.2.15) is known as completeness condition or closure relation for the basis

vectors.

In the case of a continuous basis in which the vector functions depend on a continuous

parameter α , the closure relation reads:∫
dα |φ (α)〉〈φ (α)|= Î. (4.2.16)

We shall always assume that we have an orthonormal and complete basis in our linear

vector space unless stated otherwise.

Finally, let us note that in an orthonormal basis {φi}, i = 1,2,3, . . . ,n, an arbitrary ket,

|ψ〉 (belonging to the vector space) is represented by a column matrix whose elements are

the expansion coefficients ci, i = 1,2,3, . . . ,n:

|ψ〉=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈φ1|ψ〉
〈φ2|ψ〉
〈φ3|ψ〉
.

.

.

〈φn|ψ〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1

c2

c3

.

.

.

cn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.2.17)
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Example 4.2.1: Suppose that |φ1〉 , |φ2〉 , |φ3〉 constitute an orthonormal basis, that is,

〈φi|φ j〉= δi j. Consider the following kets given in this basis:

|ψ〉= 3i |φ1〉+ 2 |φ2〉+ i |φ3〉 , (4.2.18)

|φ〉= 2 |φ1〉−3 |φ2〉+ 5 |φ3〉 . (4.2.19)

(a) Find 〈ψ| and 〈φ |.
(b) Compute the inner product 〈φ |ψ〉 and show that 〈φ |ψ〉= 〈ψ|φ〉∗.
(c) Let a = 2+ 3i and compute |aψ〉.
(d) Find |ψ +φ〉 and |ψ−φ〉.

Solution: (a) Using the properties discussed earlier,

〈ψ|= (3i)∗ 〈φ1|+ 2〈φ2|+(i)∗ |φ3〉= −3i〈φ1|+ 2〈φ2|− i〈φ3| (4.2.20)

〈φ |= 2〈φ1|−3〈φ2|+ 4〈φ3| . (4.2.21)

(b) To compute the inner product, we rely on the fact that the basis is orthonormal,〈
φi|φ j

〉
= δi j. (4.2.22)

And so we obtain

〈φ |ψ〉= (2〈φ1|−3〈φ2|+ 4〈φ3|)(3i |φ1〉+ 2 |φ2〉+ i |φ3〉)
= 6i〈φ1|φ1〉+ 4〈φ1|φ2〉+ 2i〈φ1|φ3〉−9i〈φ2|φ1〉−6〈φ2|φ2〉−3i〈φ2|φ3〉
+ 12i〈φ3|φ1〉+ 8〈φ3|φ2〉+ 4i〈φ3|φ3〉

= 6i−6+ 4i = −6+ 10i. (4.2.23)

Now the inner product 〈ψ|φ〉 is

〈ψ|φ〉= (−3i |φ1〉+ 2 |φ2〉− i |φ3〉)(2〈φ1|−3〈φ2|+ 4〈φ3|)
= −6i〈φ1|φ1〉+ 9i〈φ1|φ2〉−12i〈φ1|φ3〉+ 4〈φ2|φ1〉−6〈φ2|φ2〉+ 8〈φ2|φ3〉
−2i〈φ3|φ1〉+ 3i〈φ3|φ2〉−4i〈φ3|φ3〉

= −6i−6−4i = −6−10i = 〈φ |ψ〉∗ . (4.2.24)

(c) To compute |aψ〉, we multiply each coefficient in the expansion by a:

|a ψ〉= (2+ 3i)(3i |φ1〉+ 2 |φ2〉+ i |φ3〉) = 6i |φ1〉+ 4 |φ2〉+ 2i |φ3〉
−9 |φ1〉+ 6i |φ2〉−3 |φ3〉= (−9+ 6i) |φ1〉+(4+ 6i) |φ2〉− (3−2i) |φ3〉 . (4.2.25)
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(d) To compute |ψ±φ〉, we add (subtract) each term of |ψ〉 to (from) the respective term

of |φ〉 to get

|ψ +φ〉= (2+ 3i) |φ1〉− |φ2〉+(5+ i) |φ3〉 , (4.2.26)

|ψ−φ〉= (−2+ 3i) |φ1〉+ 5 |φ2〉+(−5+ i) |φ3〉 . (4.2.27)

Example 4.2.2: Consider the ket vectors and the basis given in Example 4.2.1. Compute the

matrices corresponding to the kets |ψ〉 and |φ〉 in that basis.

Solution: Since the basis is orthonormal, 〈φi|φ j〉= δi j and we have for |ψ〉:

〈φ1|ψ〉= 3i〈φ1|φ1〉+ 2〈φ1|φ2〉+ i〈φ1|φ3〉= 3i, (4.2.28)

〈φ2|ψ〉= 3i〈φ2|φ1〉+ 2〈φ2|φ2〉+ i〈φ2|φ3〉= 2, (4.2.29)

〈φ3|ψ〉= 3i〈φ3|φ1〉+ 2〈φ3|φ2〉+ i〈φ3|φ3〉= i. (4.2.30)

Similarly for |φ〉:

〈φ1|φ〉= 2〈φ1|φ1〉−3〈φ1|φ2〉+ 5〈φ1|φ3〉= 2, (4.2.31)

〈φ2|φ〉= 2〈φ2|φ1〉−3〈φ2|φ2〉+ 5〈φ2|φ3〉= −3, (4.2.32)

〈φ3|φ〉= 2〈φ3|φ1〉−3〈φ3|φ2〉+ 5〈φ3|φ3〉= 5. (4.2.33)

The column matrices representing the kets |ψ〉 and |φ〉 in the given basis are, respectively

|ψ〉=
⎛
⎝ 3i

2

i

⎞
⎠ , |φ〉=

⎛
⎝ 2

−3

5

⎞
⎠ . (4.2.34)

More properties of the inner product of vectors: Let us discuss some more important

properties of the inner product of vectors. They will be very useful later while discussing

some important physical consequences of the fundamental postulates of quantum

mechanics.

Theorem 4.2.1: The scalar product of two vectors |ψ〉 and |φ〉 satisfies

2Re(〈ψ|φ〉) ≤ 〈ψ|ψ〉+ 〈φ |φ〉 . (4.2.35)

Proof: For any ket, |α〉, we have 〈α|α〉 ≥ 0. So if |α〉= |ψ−φ〉, we get

0≤ 〈α|α〉= 〈ψ|ψ〉−〈ψ|φ〉−〈φ |ψ〉∗+ 〈φ |φ〉 . (4.2.36)
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Since 〈ψ|φ〉 is a complex number and 2Re(z) = z+ z∗ for any complex number z, we get

0≤ 〈ψ|ψ〉−2Re(〈ψ|φ〉)+ 〈φ |φ〉 . (4.2.37)

The last equation leads to the desired result:

2Re(〈ψ|φ〉) ≤ 〈ψ|ψ〉+ 〈φ |φ〉 . (4.2.38)

Theorem 4.2.2: The absolute value of the scalar product of two vectors |ψ〉 and |φ〉 is less

than or equal to the product of the norms of the vectors:

|〈ψ|φ〉| ≤
√
〈ψ|ψ〉

√
〈φ |φ〉. (4.2.39)

Proof: Once again we use the fact that for any ket, |α〉, we have 〈α|α〉 ≥ 0. Let

|α〉= |φ〉− 〈ψ|φ〉〈ψ|ψ〉 |ψ〉 . (4.2.40)

We have

〈α|α〉= 〈φ |φ〉− 〈ψ|φ〉〈ψ|ψ〉 〈φ |ψ〉−
〈φ |ψ〉
〈ψ|ψ〉 〈ψ|φ〉+

〈ψ|φ〉〈φ |ψ〉
〈ψ|ψ〉〈ψ|ψ〉 〈ψ|ψ〉 . (4.2.41)

We know from the first property of the scalar product that

〈φ |ψ〉〈ψ|φ〉= |〈φ |ψ〉|2 . (4.2.42)

Therefore, we can rewrite (4.2.41) as

〈α|α〉= 〈φ |φ〉−2
| 〈φ |ψ〉 |2
〈ψ|ψ〉 +

| 〈φ |ψ〉 |2
〈ψ|ψ〉 = 〈φ |φ〉− |〈φ |ψ〉 |

2

〈ψ|ψ〉 ≥ 0. (4.2.43)

From (4.2.43), we arrive at

|〈ψ|φ〉|2 ≤ 〈ψ|ψ〉〈φ |φ〉 . (4.2.44)

Taking the square root in (4.2.44), we obtain the required inequality

|〈ψ|φ〉| ≤
√
〈ψ|ψ〉

√
〈φ |φ〉. (4.2.45)

The inequality (4.2.45) is known as Schwartz inequality.
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Theorem 4.2.3: For any two vectors |ψ〉 and |φ〉 belonging to V , the norm of the sum of the

vectors is less than or equal to the sum of the norms of the individual vectors.√
〈ψ +φ |ψ +φ〉 ≤

√
〈ψ|ψ〉+

√
〈φ |φ〉. (4.2.46)

Proof: Let z be a complex number. Then |Re(z)| ≤ |z|. Since the inner product is a complex

number, we have |Re(〈ψ|φ〉)| ≤ |〈ψ|φ〉 |. To derive the result, we use this fact together

with the Schwartz inequality. First, we expand the inner product 〈ψ +φ |ψ +φ〉:

〈ψ +φ |ψ +φ〉= 〈ψ|ψ〉+ 〈ψ|φ〉+ 〈φ |ψ〉+ 〈φ |φ〉 . (4.2.47)

We note that 〈ψ|φ〉+ 〈φ |ψ〉= 〈ψ|φ〉+ 〈ψ|φ〉∗ = 2Re(〈ψ|φ〉). Therefore, we have

〈ψ +φ |ψ +φ〉= 〈ψ|ψ〉+ 〈φ |φ〉+ 2Re(〈ψ|φ〉). (4.2.48)

Using |Re(z)| ≤ |z| now, we obtain

〈ψ|ψ〉+ 〈φ |φ〉+ 2Re(〈ψ|φ〉) ≤ 〈ψ|ψ〉+ 〈φ |φ〉+ 2| 〈ψ|φ〉 |. (4.2.49)

If we apply the Schwartz inequality for the third term on the right-hand side of (4.2.49),

we have

〈ψ|ψ〉+ 〈φ |φ〉+ 2| 〈ψ|φ〉 | ≤ 〈ψ|ψ〉+ 〈φ |φ〉+ 2
√
〈ψ|ψ〉

√
〈φ |φ〉. (4.2.50)

Thus, we get that

〈ψ +φ |ψ +φ〉 ≤ 〈ψ|ψ〉+ 〈φ |φ〉+ 2
√
〈ψ|ψ〉

√
〈φ |φ〉=

(√
〈ψ|ψ〉+

√
〈φ |φ〉

)2
.

(4.2.51)

From (4.2.51) we have the required result√
〈ψ +φ |ψ +φ〉 ≤

√
〈ψ|ψ〉+

√
〈φ |φ〉. (4.2.52)

The inequality (4.2.52) is known as the triangular inequality.

In quantum mechanics, the linear vector spaces are, as a rule, infinite-dimensional.

The so-called Hilbert space plays an exceptional role among all the infinite-dimensional

linear vector spaces. A Hilbert space is equipped with an inner product that is essentially

positive and allows to introduce metric relationship among various quantities. In this

sense, a Hilbert space is a natural generalization of Euclidean spaces to

infinite-dimensional spaces. In the following, we shall present the mathematical definition

of a Hilbert space.
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4.3 Hilbert Space

A Hilbert space H is a collection of vectors, ψ ,φ , χ , . . . and scalars, a,b,c, . . . that satisfies

the following properties.

1. H is an infinite-dimensional linear vector space, that is, it has infinite dimensions

and possesses all the properties of a linear vector space discussed earlier.

2. There exists in H a real inner product which is finite and satisfies all the

aforementioned properties.

Besides these, a Hilbert space satisfies the following specific properties:

3. H is separable. It means that there exists a Cauchy sequence {ψn} ∈ H , n =
1,2,3, ..., such that for every ψ ∈H and ε > 0, there is at least one ψn of the sequence

for which

‖ψ−ψn‖< ε . (4.3.1)

4. H is complete. It means that every Cauchy sequence of elements {ψn} ∈ H
converges to an element of H . In other words, the relation

lim
n,m→∞

‖ψn−ψm‖= 0, (4.3.2)

implies a unique limit ψ ∈H for every Cauchy sequence {ψn} belonging to H ,

that is,

lim
n→∞

‖ψ−ψn‖= 0. (4.3.3)

Examples of Hilbert space:
(i) A set of complex vectors with infinite components:

|ψ〉=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ1

ψ2

ψ3

.

.

.

ψn

.

.

.

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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satisfying the condition

〈ψ|ψ〉=
∞

∑
j=1

|ψ j|2 < ∞. (4.3.4)

The addition of vectors and the multiplication of a vector by a scalar are defined as

|ψ〉+ |φ〉=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ1

ψ2

ψ3

.

.

.

ψn
.

.

.

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ1

φ2

φ3

.

.

.

φn
.

.

.

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ1 +φ1

ψ2 +φ2

ψ3 +φ3

.

.

.

ψn +φn
.

.

.

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, a |ψ〉=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

aψ1

aψ2

aψ3

.

.

.

aψn
.

.

.

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.3.5)

The scalar product of two vectors |ψ〉 and |φ〉 is defined as

〈φ |ψ〉=
∞

∑
j=1

φ ∗j ψ j. (4.3.6)

(ii) The set of complex functions, {ψ(x),φ (x), . . . , χ(x), . . .}, that are square-integrable on

the entire x-axis:∫ +∞

−∞
|ψ(x)|2 dx < ∞,

∫ +∞

−∞
|φ (x)|2 dx < ∞, . . . (4.3.7)

The addition of functions and the multiplication of a function by a number are determined

according to the general rules of calculus. The inner product is defined as

〈φ (x)|ψ(x)〉=
∫ +∞

−∞
φ ∗(x)ψ(x)dx. (4.3.8)

Example 4.3.1: Show that for a system of orthonormal vectors {|φ1〉, |φ2〉, |φ3〉, . . . , |φm〉, . . .}
to be complete, it is necessary and sufficient that the relation

〈ψ|φ〉=
∞

∑
m=1

〈ψ|φm〉〈φm|φ〉 (4.3.9)

holds good for arbitrary kets |ψ〉 and |φ〉.
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Proof: Let us first show that (4.3.9) is a sufficient condition. For this, we will have to

prove the following. Given that the condition holds, we must show that there does not exist

a non-zero vector χ that is orthogonal to all the vectors of the given system {|φi〉}, i =
1,2,3, . . . ,m, . . . . Let us assume that there exists such a vector; then, we can take |ψ〉 =
|φ〉= |χ〉 and obtain

〈χ|χ〉= ∑
m
〈χ|φm〉〈φm|χ〉= 0, (4.3.10)

whence |χ〉 = 0. This contradicts our assumption. Hence, there does not exist any non-

zero vector χ that is orthogonal to all the orthonormal vectors |φi〉. Therefore, the given

system is complete.

To show that the given relation is a necessary condition, we shall have to use the

completeness of the given system of orthonormal vectors. Since {|φi〉}, i = 1,2,3, . . . ,
m, . . . is complete, we can expand

|ψ〉=
∞

∑
m=1

am|φm〉, am = 〈φm|ψ〉, (4.3.11)

|φ〉=
∞

∑
m=1

bm|φm〉, bm = 〈φm|φ〉. (4.3.12)

Then, we have

〈ψ|φ〉=
∞

∑
m,n=1

〈φm|ψ〉† (|φm〉)†〈φn|φ〉 |φn〉=
∞

∑
m,n=1

〈ψ|φm〉〈φn|φ〉〈φm|φn〉︸ ︷︷ ︸
δmn

=
∞

∑
m,n=1

〈ψ|φm〉〈φn|φ〉δmn =
∞

∑
m=1

〈ψ|φm〉〈φm|φ〉. (4.3.13)

Thus, from the completeness of the system of orthonormal vectors, there follows the

validity of the relation in (4.3.9).

4.4 Observables and Operators

The measurable physical characteristics of a system, such as position, momentum, energy

etc, are called observables and are represented by operators. Mathematically, an operator,

Ô, can be defined as a map Ô : V → V that takes a vector, belonging to a vector space V ,

to another vector also belonging to V , where V is a linear vector space over the complex

field C . In general, an operator is characterized by its action on the basis vectors of V and

hence, in a chosen basis, it is represented by a matrix. The eigenvalues of this matrix give

the possible results of measurements of the observable represented by the operator, while

the eigenvectors of this matrix give us a basis that we can use to represent a general state

of the quantum system.
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An operator, representing an observable A, is usually denote by capital letter A with a

hat over it, i.e., by Â. The action of an arbitrary operator Â on a ket |ψ〉 ∈V is written as:

Â |ψ〉= |φ〉 . (4.4.1)

where |φ〉 also belongs to V .

The product of an operator Â and a number (complex) a is an operator aÂ, which takes

a vector |ψ〉 ∈V into the vector a(Âψ〉) ∈V :

(aÂ)|ψ〉= a(Â|ψ〉. (4.4.2)

The sum, Ĉ, of two operators Â and B̂ is defined as

Ĉ |ψ〉= (Â+ B̂) |ψ〉= Â |ψ〉+ B̂ |ψ〉 . (4.4.3)

It means that we act on |ψ〉 with Â and B̂ one-by-one and then add up the results. The new

vector, thus obtained, is the vector that would result, if we act on |ψ〉 directly with Ĉ.

The operators in quantum mechanics are linear. An operator Â is said to be linear on

V if for given complex scalars α and β in C and vectors |ψ〉 and |φ〉 in V , the following

holds

Â(α |ψ〉+β |φ〉) = αÂ |ψ〉+β Â |φ〉 . (4.4.4)

The product of two linear operators Â and B̂ acts on a vector in the following manner:

(ÂB̂) |ψ〉= Â(B̂ |ψ〉). (4.4.5)

It means that the product operator ÂB̂ acting on the ket |ψ〉 transforms it into another ket

|φ〉, which is obtained by first applying B̂ to |ψ〉 and then acting on the resulting ket by Â.

In other words, if B̂ |ψ〉= |χ〉, we have

(ÂB̂) |ψ〉= Â(B̂ |ψ〉) = Â |χ〉= |φ〉 . (4.4.6)

In general, the product of two operators is not commutative, i.e.,

ÂB̂ �= B̂Â. (4.4.7)

The difference (ÂB̂− B̂Â) is an operator, called the commutator of the operators Â and B̂,

which is written as

[Â, B̂] = ÂB̂− B̂Â. (4.4.8)
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The operator (ÂB̂+ B̂Â) is called the anticommutator of the operators Â and B̂. It is written

as

[Â, B̂]+ = ÂB̂+ B̂Â. (4.4.9)

Up till now we have talked about the operators acting in the linear vector space V of ket
vectors. In an exactly analogous way, one can introduce operators acting in the linear vector

space V ∗ of bra vectors. Consider an operator Â acting in V

|φ〉= Â|ψ〉. (4.4.10)

Let us introduce an operator Â† which acts in dual space V ∗ by taking the bra 〈ψ|,
corresponding to the ket |ψ〉, into the bra 〈φ |, corresponding to |φ〉:

〈φ |= 〈ψ|Â†. (4.4.11)

The operator Â† is called the operator hermitian conjugate (adjoint) to the operator Â. By

definition, a conjugate operator acts on the bra vectors from right. In other words, an

operator Â stands to the left of a ket, while the hermitian conjugate operator Â† stands to

the right of the corresponding bra. Therefore, by definition, Â |ψ〉 and 〈ψ| Â† are valid

expressions, but Â〈ψ| and |ψ〉Â† are not.

Multiplying (4.4.10) from left by 〈χ| and (4.4.11) from right by |χ〉 and comparing the

left hand-sides of the resulting equations, we arrive at an important result:

〈ψ|Â†|χ〉∗ = 〈χ|Â|ψ〉. (4.4.12)

Equation (4.4.11) can be taken to be the defining equation for the operator Â†, conjugate

(adjoint) to the operator Â. Note that (4.4.11) is completely equivalent to the definition of

a hermitian conjugate operator given in Chapter 2 (see (2.3.1)).

The identity operator: The simplest operator of all is the identity operator, Î, which does

nothing to a ket:

Î |ψ〉= |ψ〉 . (4.4.13)

Outer product: The outer product between a ket and a bra is written as:

|ψ〉〈φ | . (4.4.14)

This expression is an operator. If we apply it to a ket |χ〉, it produces a new ket that is

proportional to |ψ〉

(|ψ〉〈φ |) |χ〉= |ψ〉〈φ |χ〉 . (4.4.15)
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The product 〈φ |χ〉 is simply a complex number, say, α and hence,

(|ψ〉〈φ |) |χ〉= α |ψ〉 . (4.4.16)

The closure relation: We have seen that, given an orthonormal basis {|φi〉}, i = 1,2,

3, ...n, we can expand a ket |ψ〉 as

|ψ〉=
n

∑
i=1

ci |φi〉=
n

∑
i=1

〈φi|ψ〉 |φi〉 , (4.4.17)

which can also be written as

|ψ〉=
n

∑
i=1

(|φi〉〈φi|) |ψ〉 . (4.4.18)

Equation (4.4.18) implies that

n

∑
i=1

|φi〉〈φi|= Î. (4.4.19)

This is the required closure relation; the same as obtained earlier.

4.5 Matrix Representation of Operators

In a linear vector space equipped with an orthonormal and complete basis

{|φi〉}, i = 1,2,3, . . ., an operator F̂ is represented by a square matrix F . The matrix

elements Fi j of the matrix F are given by the following inner products:

Fi j = 〈φi| F̂
∣∣φ j
〉

, i, j = 1,2,3, . . . (4.5.1)

The above expression for the matrix elements follows from the fact that, using the

completeness of the basis, we can write

F̂ = ∑
i, j
|φi〉〈φi|F̂ |φ j〉〈φ j|= ∑

i, j
Fi j|φi〉〈φ j|. (4.5.2)

Obviously, the square matrix F has countably infinite numbers of columns and rows and it

is written as

F = (Fi j) =

⎛
⎜⎜⎜⎜⎜⎜⎝

F11 F12 F13 . . .

F21 F22 F23 . . .

. . . . . .

. . . . . .

. . . . . .

Fn1 Fn2 Fn3 . . .

⎞
⎟⎟⎟⎟⎟⎟⎠ . (4.5.3)
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When the vector space, in which the operator F̂ acts, is n dimensional, the components of

the operator can be arranged into an n×n matrix, where Fi j is the element at the intersection

of the ith row and jth column:

F̂ = (Fi j) =

⎛
⎜⎜⎜⎜⎜⎜⎝

F11 F12 F13 . . F1n
F21 F22 F23 . . F2n

. . . . . .

. . . . . .

. . . . . .

Fn1 Fn2 Fn3 . . Fnn

⎞
⎟⎟⎟⎟⎟⎟⎠ . (4.5.4)

Or,

(Fi j) =

⎛
⎜⎜⎜⎜⎜⎜⎝

〈φ1| F̂ |φ1〉 〈φ1| F̂ |φ2〉 . . 〈φ1| F̂ |φn〉
〈φ2| F̂ |φ1〉 〈φ2| F̂ |φ2〉 . . 〈φ2| F̂ |φn〉

. . . . .

. . . . .

. . . . .

〈φn| F̂ |φ1〉 〈φn| F̂ |φ2〉 . . 〈φn| F̂ |φn〉

⎞
⎟⎟⎟⎟⎟⎟⎠ . (4.5.5)

Representation in a continuous basis: Up till now, we have considered the representation

of kets, bras and operators in a discrete basis and saw that they are represented by discrete
matrices. It is not difficult to generalize the formalism to include representations of these

quantities in the continuous basis.

Consider a continuous basis given by the kets {|φk〉}, where the subscript k takes

continuous values. The orthonormality condition for these basis vectors is given by

〈φk|φk′ 〉= δ (k− k′), (4.5.6)

where δ (k− k′) is the Dirac delta function, defined by

δ (x) =
1

2π

∫ +∞

−∞
eikxdk. (4.5.7)

The completeness condition reads

∫ +∞

−∞
|φk〉〈φk|dk = Î, (4.5.8)

where Î is the unit operator. The expansion of a state vector |ψ〉 in terms of the complete

set of basis vectors {|φk〉} can be accomplished as follows

|ψ〉=
(∫ +∞

−∞
dk|φk〉〈φk|

)
|ψ〉=

∫ +∞

−∞
dk〈φk|ψ〉|φk〉 ≡

∫ +∞

−∞
ak|φk〉 dk, (4.5.9)
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where ak = 〈φk|ψ〉 gives the projection of |ψ〉 on |φk〉. Note that the norm of the discrete

basis vectors is finite, however the norm of the kets |φk〉 is infinite:

〈φk|φk′ 〉 ∝
∫ +∞

−∞
dk → ∞. (4.5.10)

This implies that the basis kets |φk〉 do not belong to a Hilbert space because they are not

square-integrable. However, these kets do constitute a legitimate basis because the norm

of any state vector |ψ〉 in this basis is finite. We have

〈ψ|ψ〉=
∫ +∞

−∞
dk′′

∫ +∞

−∞
dk′ a∗k′ ak′′ δ (k− k′)δ (k′ − k′′) = |ak|2 = |〈φk|ψ〉|2 < ∞,

(4.5.11)

in view of the finiteness of the scalar product 〈φk|ψ〉. Thus, in a continuous basis, {|φk〉},
an arbitrary ket, |ψ〉, can be represented by the following column matrix

|ψ〉=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

.

.

.

〈φk|ψ〉
.

.

.

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.5.12)

which has infinite number of continuous (non-countable) components 〈φk|ψ〉. Similarly,

an arbitrary bra 〈ψ| is represented by the following row matrix

〈ψ|= ( · · · 〈φk|ψ〉 · · · ) . (4.5.13)

The operators are represented by square continuous matrices whose rows and columns

have continuous and infinite number of components:

F̂ =

⎛
⎜⎜⎜⎜⎝

. . . . .

. . . . .

. . F(k,k′) . .

. . . . .

. . . . .

⎞
⎟⎟⎟⎟⎠ , (4.5.14)
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The trace of an operator: The trace of an operator F̂ is defined as the sum of the diagonal

elements of its matrix in a given basis. It is denoted by Tr(F):

Tr(F) = F11 +F22 +F33 + ...+Fnn =
n

∑
i=1

Tii

= 〈φ1| F̂ |φ1〉+ 〈φ2| F̂ |φ2〉+ 〈φ3| F̂ |φ3〉+ ...+ 〈φn| F̂ |φn〉 . (4.5.15)

The trace is cyclic, that is,

Tr(FGH) = Tr(GHF) = Tr(HFG). (4.5.16)

Let us prove that Tr(FGH) = Tr(GHF). Using the closure relation of the basis, we have

Tr(FGH) =
n

∑
i=1

〈φi|FGH|φi〉=
n

∑
i=1

〈φi|F (Î) G (Î) H|φi〉

=
n

∑
i=1

〈φi|F
n

∑
j=1

|φ j〉〈φ j|G
n

∑
k=1

|φk〉〈φk|H|φi〉

=
n

∑
i=1

n

∑
j=1

n

∑
k=1

〈φi|F |φ j〉〈φ j|G|φk〉〈φk|H|φi〉

=
n

∑
i=1

n

∑
j=1

n

∑
k=1

〈φ j|G|φk〉〈φk|H|φi〉〈φi|F |φ j〉. (4.5.17)

This can be rewritten as

Tr(FGH) =
n

∑
j=1

〈φ j|G
n

∑
k=1

|φk〉〈φk|H
n

∑
i=1

|φi〉〈φi|F |φ j〉

=
n

∑
j=1

〈φ j|GHF |φ j〉

= Tr(GHF). (4.5.18)

Similarly, one can prove that Tr(GHF) = Tr(HFG).

Example 4.5.1: In a linear vector space equipped with an orthonormal basis, {|φ1〉 ,
|φ2〉 , |φ3〉}, an operator Â acts on the basis vectors and the results are as follows:

Â |φ1〉= 2 |φ1〉 , (4.5.19)
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Â |φ2〉= 3 |φ1〉− i |φ3〉 , (4.5.20)

Â |φ3〉= −|φ2〉 . (4.5.21)

Compute the matrix representation of the operator in the given basis.

Solution: The matrix representation of the operator is given by:

A =

⎛
⎜⎜⎝
〈φ1| F̂ |φ1〉 〈φ1| Â |φ2〉 〈φ1| Â |φ3〉
〈φ2| Â |φ1〉 〈φ2| Â |φ2〉 〈φ2| Â |φ3〉
〈φ3| Â |φ1〉 〈φ3| Â |φ2〉 〈φ3| Â |φ3〉

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

2〈φ1|φ1〉 3〈φ1|φ1〉− i〈φ1|φ3〉 −〈φ1|φ2〉
2〈φ2|φ1〉 3〈φ2|φ1〉− i〈φ2|φ3〉 −〈φ2|φ2〉
2〈φ3|φ1〉 3〈φ3|φ1〉− i〈φ3|φ3〉 −〈φ3|φ2〉

⎞
⎟⎟⎠ . (4.5.22)

Since the basis is orthonormal, we have
〈
φi|φ j

〉
= δi j and so the matrix representation of

the operator Â in this basis is:

A =

⎛
⎜⎝

2 3 0

0 0 −1

0 −i 0

⎞
⎟⎠ . (4.5.23)

Example 4.5.2: The outer product |ψ〉〈φ | is an operator, and therefore can be represented

by a matrix. Show this for:

|ψ〉=
⎛
⎝ 2

3i
4

⎞
⎠ , |φ〉=

⎛
⎝−1

0

i

⎞
⎠ . (4.5.24)

Solution: We have

〈φ |= ( −1 0 −i
)

. (4.5.25)

Therefore, we have

|ψ〉〈φ |=
⎛
⎝ 2

3i
4

⎞
⎠× ( −1 0 −i

)
=

⎛
⎝ −2 0 −2i
−3i 0 3

−4 0 −4i

⎞
⎠ . (4.5.26)
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4.6 Hermitian and Unitary Operators

An operator Â is called hermitian, if it is equal to its hermitian conjugate operator. That is

if

Â† = Â, (4.6.1)

the operator Â is hermitian. Recalling the definition of the hermitian conjugate operator

(4.4.11)), we conclude that for hermitian operator, we must have

〈ψ|Â|φ〉† = 〈φ |Â|ψ〉. (4.6.2)

Let us see how do we get the hermitian conjugate of an operator in practice. Let the

matrix A = (Ai j), where i stands for the number of rows and j for the number of columns,

represent an operator Â in a linear vector space with an orthonormal basis {|φi〉}. The first

step is to find the matrix AT which is transposed of the matrix A. It is obtained by

interchanging the rows and columns of A, i.e.,

AT =

⎛
⎝ A11 A12 A13

A21 A22 A23

A31 A32 A33

⎞
⎠T

=

⎛
⎝ A11 A21 A31

A12 A22 A32

A13 A23 A33

⎞
⎠ . (4.6.3)

The second and the final step is to find the matrix complex conjugate to the matrix AT .

Given a matrix, its complex conjugate is obtained by replacing each of the elements of the

matrix by its complex conjugate. Hence, we have

(
AT )∗ =

⎛
⎜⎝

A11 A12 A13

A21 A22 A23

A31 A32 A33

⎞
⎟⎠
∗

=

⎛
⎜⎝

A∗11 A∗12 A∗13

A∗21 A∗22 A∗23

A∗31 A∗32 A∗33

⎞
⎟⎠ . (4.6.4)

Thus, for any operator F̂ , the corresponding hermitian conjugate operator, F̂†, is given by

the matrix F† which is hermitian conjugate to the matrix F :

F† =

⎛
⎜⎝

F∗11 F∗21 F∗31

F∗12 F∗22 F∗32

F∗13 F∗23 F∗33

⎞
⎟⎠ . (4.6.5)

For a hermitian operator, F̂ , the matrix F is equal to its hermitian conjugate matrix F†.

The hermitian conjugate of a product of operators Â, B̂,Ĉ... is given by reversing their

order, and then forming the hermitian conjugation of each operator:

(Â, B̂,Ĉ...)† = (Ĉ†B̂†Â†...). (4.6.6)
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The following properties hold good for hermitian conjugation:

(Â+ B̂)† = (Â† + B̂†), (4.6.7)

(aÂ)† = a∗Â†, (4.6.8)

(ÂB̂ |ψ〉)† = 〈ψ| B̂†Â†), (4.6.9)

〈aψF̂ |= a∗ 〈ψ| F̂†, (4.6.10)

where we have used that, for any two matrices F and G, (F + G)T = FT + GT , and

(FG)T = GT FT .

It is clear from the last property that, if an operator is inside the bra, it is replaced by

its hermitian conjugate when taken out of it. A scalar, however, is simply replaced by its

complex conjugate when taken out of a bra.

Using the aforementioned properties, we can write the hermitian conjugate of any

combination of operators and scalars by following the rule:

1. Replace any constants by their complex conjugates.
2. Replace kets by their associated bras, and bras by their associated kets.
3. Replace each operator by its hermitian conjugate.
4. Reverse the order of all factors in the expression.

Eigenvalues and eigenvectors
We have discussed earlier that to each physical observable (energy, momentum, angular

momentum etc.), there corresponds an operator, which can be represented by a matrix

and that the eigenvalues of this matrix are the possible results of measurement for that

observable. For example, if the Hamiltonian, H, for a system is given, we can form a matrix

representing the Hamiltonian operator Ĥ. If the measurement of energy of the system is

carried out, the result will be one of the eigenvalues of this matrix. On the other hand, the

eigenvectors (corresponding to these eigenvalues) can be taken to be a basis in the Hilbert

space of the possible quantum states of the system. An arbitrary state of the system can

then be expanded in terms of these basis states. Such a representation of an arbitrary state

in terms of the eigenstates of an observable is frequently used for solving various problems

in quantum mechanics. Therefore, in what follows, we shall briefly review the concepts

and the techniques that are required to determine the eigenvalues and eigenvectors of a

matrix.

Let F̂ be a linear operator on a complex linear vector space V , and let λ be a complex

number. We say that λ is an eigenvalue of F̂ if:

F̂ |u〉= λ |u〉 (4.6.11)

for a vector |u〉 ∈ V . The vector |u〉 is called the eigenvector of F̂ . If for every eigenvalue

there is a single eigenvector, the spectrum of the operator is called non-degenerate. If for a



148 Fundamentals of Quantum Mechanics

given eigenvalue, λ , there are more than one eigenfunctions, the eigenvalue λ is said to be

degenerate. If, for instance, for a given eigenvalue, λk, there exist m linearly independent

eigenfunctions, then the eigenvalue λk is said to be m-fold degenerate.

To find the eigenvalues and eigenvectors of the matrix F , representing the operator F̂
in V , we set up the characteristic equation for the determination of λ by equating the

determinant of the matrix (F−λ I), I being the unit matrix, to zero:

det(F−λ I) = 0. (4.6.12)

Equation (4.6.12) is a polynomial equation of degree n, where n is the rank of the matrix

F . The solution of this equation gives us the eigenvalues λ . The eigenvectors are found

according to the general methods in the theory of matrices. Let us consider some examples.

Example 4.6.1: Find the operator, F̂†, hermitian conjugate to the operator F̂ , which given

by the matrix

F =

⎛
⎝ 5 0 0

0 1 −2i
0 2i −1

⎞
⎠ . (4.6.13)

Using the result, verify whether F̂ is a hermitian operator or not.

Solution: According to our prescription, we have to first find the transposed matrix. It is

given by

FT =

⎛
⎝ 5 0 0

0 1 2i
0 −2i −1

⎞
⎠ . (4.6.14)

The next step is to take the complex conjugate of the matrix FT . We have

F† =

⎛
⎝ 5 0 0

0 1 −2i
0 2i −1

⎞
⎠ , (4.6.15)

The operator F̂† is given by the matrix F†. Since F† = F , the operator, F̂ , is hermitian.

Example 4.6.2: Let the Hamiltonian for a system be given by:

Ĥ =

(
ε1 ε2

ε2 ε1

)
, (4.6.16)

where ε1 and ε2 are constants of the dimensions of energy. Find the eigenvalues and the

corresponding eigenvectors of Ĥ and, thus, set up the basis in the state space of the system.
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Solution: To find the eigenvalues of the Hamiltonian, we set

det(H−λ I) = det

(
ε1−λ ε2

ε2 ε1−λ

)
= 0. (4.6.17)

Simplifying the above equation, we have

λ 2−2ε1λ +
(
ε2

1 − ε2
2

)
= 0. (4.6.18)

The solutions to this equation yield the eigenvalues of H:

λ1 = ε1 + ε2, λ1 = ε1− ε2. (4.6.19)

Let |α1〉=
(

a
b

)
be the eigenvector corresponding to λ1. We have

(
ε1 ε2

ε2 ε1

)(
a
b

)
= (ε1 + ε2)

(
a
b

)
. (4.6.20)

Equation (4.6.20) leads to

ε1a+ ε2b = (ε1 + ε2)a, (4.6.21)

ε2a+ ε1b = (ε1 + ε2)b, (4.6.22)

which in turn yields a = b. As a result,

|α1〉=
(

a
a

)
= a
(

1

1

)
. (4.6.23)

Consequently, the normalized eigenvector corresponding to λ1 is

|α1〉= 1√
2

(
1

1

)
. (4.6.24)

Similarly, the normalized eigenvector corresponding to the eigenvalue λ2 is given by

|α2〉= 1√
2

(
1

−1

)
. (4.6.25)

The orthonormal vectors |α1〉 and |α2〉 constitute the required basis.

Before we proceed further, let us state and prove some important theorems about the

properties of the eigenvalues and the eigenfunctions of a hermitian operator. These are

essentially the same as we discussed earlier; however, here we shall put them into Dirac

notation.
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Theorem 4.6.1: The eigenvalues of a hermitian operator are real.

Proof: Let F̂ be a hermitian operator, and suppose that |ψ〉 is an eigenvector of F̂ with

eigenvalue λ . Then,

〈ψ|F̂ |ψ〉= λ 〈ψ|ψ〉. (4.6.26)

Using the properties of hermitian conjugation, discussed earlier, we get from (4.6.26),

〈ψ|F̂ |ψ〉∗ = 〈ψ|F̂†|ψ〉= λ ∗〈ψ|ψ〉. (4.6.27)

Given that F̂ is hermitian (F̂ = F̂†), we have

λ 〈ψ|ψ〉= λ ∗〈ψ|ψ〉 ⇒ (λ −λ ∗)〈ψ|ψ〉= 0. (4.6.28)

Since 〈ψ|ψ〉 �= 0, the equation (4.6.28) yields: λ = λ ∗. That is, λ is real and the theorem

is proved.

Theorem 4.6.2: The eigenvectors of a hermitian operator, corresponding to distinct
eigenvalues are orthogonal.

Proof: Let F̂ be a hermitian operator and let |ψm〉 and |ψn〉 be two of its eigenvectors,

corresponding to two distinct eigenvalues λm and λn, respectively. That is,

F̂ |ψm〉= λm|ψm〉, F̂ |ψn〉= λn|ψn〉, (λm �= λn). (4.6.29)

Case 1. The eigenvalues of F̂ are non-degenerate.

Using (4.6.29), we obtain

〈ψm|F̂ |ψn〉† = λ ∗n 〈ψm|ψn〉† = λn〈ψn|ψm〉, (4.6.30)

〈ψn|F̂ |ψm〉= λm〈ψn|ψm〉, (4.6.31)

where we have used the fact that the eigenvalues of a hermitian operator are real. Since F̂
is hermitian

〈ψm|F̂ |ψn〉† = 〈ψn|F̂ |ψm〉. (4.6.32)

Therefore, from (4.3.30) and (4.3.31) it follows that

(λm−λn)〈ψn|ψm〉= 0. (4.6.33)

Since λm �= λn, we have 〈ψn|ψm〉 = 0. That is, the eigenvectors |ψm〉 and |ψn〉 are

orthogonal.
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Case 2. The eigenvalues of F̂ are degenerate.

It is clear from (4.6.33) that, if λm = λn, the scalar product 〈ψn|ψm〉 can be non-zero.

Hence, the eigenvectors corresponding to the same eigenvalue will not, in general, be

orthogonal. What to do in such a situation? It turns out that it is possible to construct a set

of orthonormal eigenvectors using the linear combinations of the non-orthogonal

eigenvectors. Let us show this in a particular case of two fold degeneracy.

Let |ψ1〉 and |ψ2〉 be two linearly independent eigenvectors of F̂ with the same

eigenvalue λ , that is,

F̂ |ψ1〉= λ |ψ1〉, F̂ |ψ2〉= λ |ψ2〉. (4.6.34)

Consider the linear combination

|ψ〉= c1|ψ1〉+ c2|ψ2〉. (4.6.35)

It is easy to check that ψ is an eigenvector of F̂ with the eigenvalue λ :

F̂ |ψ〉= F̂(c1|ψ1〉+ c2|ψ2〉) = c1F̂ |ψ1〉+ c2F̂ |ψ2〉= λ (c1|ψ1〉+ c2|ψ2〉). (4.6.36)

We now want to construct those linear combinations of |ψ1〉 and |ψ2〉 that will be

orthogonal and normalized. Let us start with the normalization of the first eigenvector ψ1

and introduce a normalized vector |φ1〉 by

|φ1〉= |ψ1〉/
√
〈ψ1|ψ1〉. (4.6.37)

Now, consider the following linear combination

|χ〉= a|φ1〉+ |ψ2〉, (4.6.38)

where a is, in general, a complex coefficient, and demand it to be orthogonal to |φ1〉. This

determines the coefficient a:

a = −〈φ1|ψ2〉. (4.6.39)

Thus, the function given by (4.3.38), with the coefficient a given by (4.3.39), is orthogonal

to |φ1〉. We now normalize |χ〉 to get

|φ2〉= |χ〉/
√
〈χ|χ〉. (4.6.40)

Thus, from the linearly independent eigenfunctions |ψ1〉 and |ψ2〉 of the two-fold

degenerate eigenvalue λ of the operator F̂ , we have been able to construct two

orthonormal eigenfunctions φ1 and φ2 corresponding to the same eigenvalue λ . Clearly,

this procedure can easily be generalized to the case of k-fold degeneracy (k > 2).

In view of the two theorems proved here, we shall always assume that the

eigenfunctions of a hermitian operator satisfy the orthonormality condition.
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Corollary: The eigenfunctions of a hermitian operator define a complete set of mutually
orthonormal functions. This set is unique if the operator has no degenerate eigenvalues
and is not unique if there is even one degenerate eigenvalue.

Theorem 4.6.3: If two hermitian operators F̂ and Ĝ commute (that is, F̂Ĝ = ĜF̂) and if F̂
has no degenerate eigenvalues, then each eigenvector of F̂ is an eigenvector of Ĝ.

Proof: Since F̂ has no degenerate eigenvalues, to each eigenvalue of F̂ there corresponds

only one eigenvector. Consider the equation

F̂ |ψn〉= λn|ψn〉, (4.6.41)

where |ψn〉 is the eigenvector of F̂ with eigenvalue λn. Since F̂ commutes with Ĝ, we have

ĜF̂ |ψn〉= F̂Ĝ|ψn〉, or, F̂
(
Ĝ|ψn〉

)
= λn

(
Ĝ|ψn〉

)
. (4.6.42)

That is, Ĝ|ψn〉 is also an eigenvector of F̂ . Since the operator F̂ has unique eigenvectors,

Ĝ|ψn〉 must be proportional to |ψn〉. Therefore, we must have

Ĝ|ψn〉= κn|ψn〉, (4.6.43)

that is, |ψn〉 is also an eigenvector of Ĝ with eigenvalue κn. The theorem is proved.

Note that if λn happens to be a degenerate eigenvalue, then |ψn〉 is not necessarily

an eigenvector of Ĝ. In this case, the only thing we can be sure of is that Ĝ|ψn〉 is an

eigenvector of F̂ with eigenvalue λn. It does not mean that the operators F̂ and Ĝ do not

have any common set of eigenvectors. In the theory of linear vector spaces, it is proved

that, in such cases, there exist an infinite number of sets of orthonormal eigenvectors that

are common to both these operators.

Skew-hermitian Operator: An operator F̂ is skew-hermitian or anti-hermitian if:

F̂† = −F̂ . (4.6.44)

Theorem 4.6.4: The eigenvalues of a skew-hermitian operator are either zero or purely

imaginary.

Proof: Let F̂ be a skew-hermitian operator, and suppose that |ψ〉 is an eigenvector of F̂
with eigenvalue λ . Then,

〈ψ|F̂ |ψ〉= λ 〈ψ|ψ〉. (4.6.45)

On the other hand,

〈ψ|F̂†|ψ〉= λ ∗〈ψ|ψ〉. (4.6.46)
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Since the operator is skew-hermitian, F̂ = −F̂†, we have

λ 〈ψ|ψ〉= −λ ∗〈ψ|ψ〉 ⇒ (λ +λ ∗)〈ψ|ψ〉= 0. (4.6.47)

The last equation yields: λ = −λ ∗. This equation can be satisfied when either λ is

identically equal to zero, or when it is purely imaginary. That means that the eigenvalues

of a skew-hermitian operator are either zero or purely imaginary.

Unitary Operator: An operator Û is called a unitary operator, if the following holds

Û†Û = ÛÛ† = Î, (4.6.48)

where Î is the unit operator. Clearly, the hermitian conjugate of a unitary operator is equal

to the inverse of the operator: Û† = Û−1. Another important characteristic of unitary

matrices, corresponding to unitary operators, is that the rows or columns of a given matrix

form an orthonormal set.

Theorem 4.6.5: The eigenvalues of a unitary operator are complex numbers with moduli

equal to 1; the eigenvectors of a unitary operator that has no degenerate eigenvalues are

mutually orthogonal.

Proof: Let |φm〉 and |φn〉 be the eigenvectors of a unitary operator corresponding to the

eigenvalues λm and λn, respectively. We then have(〈φm|Û†
)(

Û |φn〉
)
= λ ∗mλn〈φm|φn〉. (4.6.49)

Since Û†Û = Î, this equation can be written as

(λ ∗mλn−1) 〈φm|φn〉= 0. (4.6.50)

If m = n, 〈φm|φn〉> 0, and we have |λm|2 = 1 and hence, |λm|= 1. However, if m �= n, the

only possibility is that 〈φm|φn〉 = 0. That is, the eigenvectors corresponding to different

eigenvalues are orthogonal. The theorem is proved.

In view of the aforementioned proved theorems, it is tempting to expect that the

eigenvectors of a hermitian operator form an orthonormal basis in the Hilbert space in

which the given operator acts. In order to ascertain this, we must check the following:

1. Does the set of eigenvectors satisfy the completeness relation?

2. Are they orthonormal?

Let us demonstrate it by taking an example. Consider an operator represented by the

following hermitian matrix

F =

(
0 1

1 0

)
. (4.6.51)
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The eigenvalues of the matrix are found in the usual way:

det(F−λ I) = det

(
0−λ 1

1 0−λ

)
= λ 2−1 = 0, ⇒ λ1 = +1, λ2 = −1.

(4.6.52)

Let |ψ1〉=
(

a
b

)
be the eigenvector of F corresponding to λ = +1. We then have

F =

(
0 1

1 0

)(
a
b

)
=

(
a
b

)
⇒ a = b ⇒ |ψ1〉= a

(
1

1

)
. (4.6.53)

The normalization condition yields a = 1√
2
. Therefore, the first normalized eigenvector of

F is

|ψ1〉= 1√
2

(
1

1

)
. (4.6.54)

Similarly, the second normalized eigenvector of F , corresponding to λ2 = −1, is given by

|ψ2〉= 1√
2

(
1

−1

)
. (4.6.55)

It is easily determined that the eigenvectors form an orthonormal set:

〈ψ1|ψ1〉= 1√
2

(
1 1

)( 1

−1

)
= 1, (4.6.56)

〈ψ1|ψ2〉= −1

2

(
1 1

)( 1

−1

)
= 0, (4.6.57)

〈ψ2|ψ2〉= 1√
2

(
1 −1

)( 1

−1

)
= 1. (4.6.58)

Now we need to find out if these vectors satisfy the completeness relation:

|ψ1〉〈ψ1|+ |ψ2〉〈ψ2|= I, (4.6.59)

where I is the unit matrix. We have

|ψ1〉〈ψ1|+ |ψ2〉〈ψ2|= 1

2

(
1

1

)(
1 1

)
+

1

2

(
1

−1

)(
1 −1

)

=
1

2

[(
1 1

1 1

)
+

(
1 −1

−1 1

)]
=

1

2

(
2 0

0 2

)
= I. (4.6.60)



Algebraic Formulation of Quantum Mechanics 155

We see that the completeness relation is satisfied, and that these eigenvectors are

orthonormal. Therefore, we conclude that they form a basis. Any 2× 1 vector can be

written as a linear combination of these basis vectors.

4.7 Change of Basis and Unitary Transformations

One can choose one or the other set of basis vectors in the Hilbert space H of states of a

quantum mechanical system to represent the state vectors and the operators belonging to

H . Obviously, when we change from one basis to the other, the components of a state

vector change. Therefore, it is important to ascertain that the change in basis is done in

such a way that the basic physical consequences remain unchanged. Evidently, for this

to be the case, the norm of the state vector in the new basis must not change. The latter

requirement can be fulfilled if the transformation matrix (i.e., the matrix that executes the

change of basis) must be unitary. Let us check whether this holds good or not.

Let {|φn〉} and {|χn〉} be two bases in H . Assume that we change from the so-called

original (old) basis {|φn〉} to the new basis {|χn〉}. The main task is to determine the

components of the state vector |ψm〉 in the new basis, {|χn〉}, if they are known in the old

basis, {|φn〉}.
Using the general procedure, we can expand each ket |ψm〉 (defined in the old basis set

{|φn〉}) in terms of the new basis set {|χn〉} as

|ψm〉=
(

∑
n
|χn〉〈χn|

)
|ψm〉= ∑

n
Unm|χn〉, (4.7.1)

where

Unm = 〈χn|ψm〉. (4.7.2)

The matrix U giving the transformation from the old basis to the new basis is given by

U =

⎛
⎜⎜⎜⎜⎜⎜⎝

〈χ1|ψ1〉 〈χ1|ψ2〉 〈χ1|ψ3〉 . . . 〈χ1|ψn〉
〈χ2|ψ1〉 〈χ2|ψ2〉 〈χ2|ψ3〉 . . . 〈χ2|ψn〉
〈χ3|ψ1〉 〈χ3|ψ2〉 〈χ3|ψ3〉 . . . 〈χ3|ψn〉
. . . . . . .

. . . . . . .

〈χn|ψ1〉 〈χn|ψ2〉 〈χn|ψ3〉 . . . 〈χn|ψn〉

⎞
⎟⎟⎟⎟⎟⎟⎠ . (4.7.3)

Let us prove that the matrix U is indeed a unitary matrix. We have

〈ψi|U†U |ψ j〉= 〈ψi|U†

(
∑
n
|χn〉〈χn|

)
U |ψ j〉= ∑

n
〈ψi|U†|χn〉〈χn|U |ψ j〉

= ∑
n
〈χn|U |ψi〉†〈χn|U |ψ j〉= ∑

n
U†

niUn j. (4.7.4)
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On the other hand, according to (4.7.2),

∑
n

U†
niUn j = ∑

n
〈χn|ψi〉†〈χn|ψ j〉= ∑

n
〈ψi|χn〉〈χn|ψ j〉= 〈ψi|ψ j〉. (4.7.5)

Equations (4.7.4) and (4.7.5) lead to

〈ψi|U†U |ψ j〉= 〈ψi|ψ j〉, (4.7.6)

that is,

U†U = Î. (4.7.7)

Therefore, the transformation matrix U is unitary. Thus, we see that a change in basis can

be done with the help of a unitary transformation.

Transformation properties of vectors and operators under a unitary transformation: The

ket |ψ〉 and the bra 〈ψ| transform as

|ψ ′〉= Û |ψ〉, 〈ψ ′|= 〈ψ|Û†. (4.7.8)

Consider the transformation of the equation

|φ〉= F̂ |ψ〉, (4.7.9)

where F̂ is an operator. We have

|φ ′〉= F̂ ′|ψ ′〉. (4.7.10)

On the other hand, under the unitary transformation, the kets |ψ〉 and |φ〉 themselves go

into

|ψ ′〉= Û |ψ〉, |φ ′〉= Û |φ〉. (4.7.11)

Therefore, we get

Û |φ〉= F̂ ′Û |ψ〉. (4.7.12)

Multiplying both sides of this equation by Û† = Û−1 and taking into account that Û†Û =
ÛÛ† = Î, we arrive at

|φ〉= Û†F̂ ′Û |ψ〉. (4.7.13)
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Subtracting (4.7.13) from (4.7.9) and taking into account that |ψ〉 is an arbitrary vector, we

get

F̂ = Û†F̂ ′Û = Û−1F̂ ′Û , or, F̂ ′ = ÛF̂Û† = ÛF̂Û−1. (4.7.14)

This transformation of an operator under a unitary transformation is called a similarity
transformation. It is frequently used in linear algebra to diagonalize a given matrix.

Properties of unitary transformation

1. If F̂ is a hermitian operator, its transformed operator F̂ ′ is also hermitian:

(
F̂ ′
)†

=
(
ÛF̂Û†

)†
=
(
Û†
)†

F̂†Û† = ÛF̂Û† = F̂ ′. (4.7.15)

2. The eigenvalues of F̂ and that of F̂ ′ are the same: If F̂ |ψ〉= λ |ψ〉, then

F̂ ′|ψ ′〉= ÛF̂Û†Û |ψ〉= ÛF̂ |ψ〉= λÛ |ψ〉= λ |ψ ′〉. (4.7.16)

3. The commutator of two operators F̂ and Ĝ remains unchanged under a unitary

transformation: If [F̂ , Ĝ] = α , where α is a complex number, then

[F̂ ′, Ĝ′] = [ÛF̂Û†,ÛĜÛ†] = ÛF̂Û†ÛĜÛ†−ÛĜÛ†ÛF̂Û†

= Û [F̂ ′, Ĝ′]Û† = ÛαÛ† = α = [F̂ , Ĝ]. (4.7.17)

4. The following relations hold good for any number of operators

F̂ = αĜ+β Ĥ ⇒ F̂ ′ = αĜ′+β Ĥ ′, (4.7.18)

F̂ = αX̂Ŷ Ẑ ⇒ F̂ ′ = αX̂ ′Ŷ ′Ẑ′, (4.7.19)

where the prime over an operator stands for the transform of the operator under the

unitary transformation.

5. Since a scalar remains invariant under a unitary transformation, complex numbers,

such as 〈ψ|F̂ |φ〉, remain unchanged under a unitary transformation:

〈ψ ′|F̂ ′|φ ′〉= (〈ψ|Û†)(ÛF̂Û†)(Û |φ〉) = 〈ψ|(Û†Û)F̂(Û†Û)|φ〉= 〈ψ|F̂ |φ〉.
(4.7.20)

Taking F̂ = Î, we conclude that the inner products of the type 〈ψ|φ〉 remain

invariant. This tells us that the norm of a vector, ‖|ψ〉‖=√〈ψ|ψ〉 remains invariant

under a unitary transformation.
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6. Using these results, it is easy to prove that(
ÛF̂Û†

)n
= ÛF̂nÛ†, (4.7.21)

Û f (F̂ , Ĝ, Ĥ, ...)Û† = f (ÛF̂Û†,ÛĜÛ†,ÛĤÛ†, ...) = f (F̂ ′, Ĝ′, Ĥ ′), (4.7.22)

for any number of operators F̂ , Ĝ, Ĥ and so on.

Therefore, we conclude that a unitary transformation does not change the physics of the

system. It only transforms one description into another physically equivalent description.

4.8 The Projection Operator

An operator P̂ is said to be a projection operator if it is hermitian and equal to its own

square

P̂ = P̂†, P̂2 = P̂. (4.8.1)

Clearly, the unit operator Î satisfies these properties and is an example of a projection

operator.

Consider an operator, Â, equal to the outer product of a ket and its corresponding bra:

Â = |φ〉〈φ |. (4.8.2)

By definition it acts on a ket |ψ〉 through the rule

Â|ψ〉= (|φ〉〈φ |) |ψ〉= |φ〉 〈φ |ψ〉. (4.8.3)

The claim is that if |φ〉 is normalized to unity, the operator Â is a projection operator. Let

us check it. We have

ˆ̂A† = {|φ〉〈φ |}† = |φ〉〈φ |= ˆ̂A, (4.8.4)

and

ˆ̂A2 = {|φ〉〈φ |}{|φ〉〈φ |}= |φ〉{〈φ |φ〉}〈φ |. (4.8.5)

So, if 〈φ |φ〉= 1,

ˆ̂A2 = |φ〉〈φ |= ˆ̂A. (4.8.6)

Since both the required properties are satisfied, Â = |φ〉〈φ | is a projection operator. That

is Â = P̂.
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Let us mention here that using the closure relation and the definition of the projection

operator, we can rewrite the expansion of a general ket in terms of the basis kets. We have

|ψ〉=
(

∑
i
|φi〉〈φi|

)
|ψ〉= ∑

i
|φi〉〈φi|ψ〉= ∑

i
ci |φi〉, (4.8.7)

where ci = 〈φi|ψ〉, as earlier, are the components of the ket in the basis {|φi〉}. As

mentioned in the section 4.2, these components are arranged in to a column and the ket is

written as a column vector. Since a Hilbert space is an infinite dimensional vector space, a

ket will have an infinite number of components which can again be arranged into a

column and the ket can be represented as a column vector with infinite number of rows.

This is what we did in section 4.3 while discussing the concept of a Hilbert space.

Consider the sum of two projection operators P̂1 and P̂2: P̂ = P̂1 + P̂2. Let us check

whether this can be a projection operator or not. Since P̂1 and P̂2 are projection operators,

P̂† = (P̂1 + P̂2)† = P̂†
1 + P̂†

2 = P̂1 + P̂2 = P̂. So, P̂ is hermitian. Let us check the second

property. We have

P̂2 = P̂2
1 + P̂2

2 + P̂1P̂2 + P̂2P̂1. (4.8.8)

We see that only if P̂1P̂2 = P̂2P̂1 = 0, we have P̂2 = P̂. Therefore, we conclude that the sum

of two projection operators P̂1 and P̂2 is a projection operator if and only if their product is

zero.

Two projection operators are said to be orthogonal if their product is zero. Thus, the

sum of two projection operators P̂1 and P̂2 is a projection operator if and only P̂1 and P̂2 are

orthogonal.

It is easy to check that for a sum of projection operators P̂1 + P̂2 + P̂2 + . . . to be a

projection operator, it is necessary and sufficient that these projection operators be mutually

orthogonal.

Consider the product of two projection operators P̂ = P̂1P̂2. We want to find out the

condition under which this product is a projection operator. Since P̂1 and P̂2 are projection

operators, we have

P̂† = (P̂1P̂2)
† = P̂†

2 P̂†
1 = P̂2P̂1, (4.8.9)

P̂2 = (P̂1P̂2)
2 = P̂1P̂2P̂1P̂2 = P̂1(P̂2P̂1)P̂2. (4.8.10)

It is quite clear from the aforementioned equations that P̂ will satisfy the required properties

for being a projection operator only if P̂1 and P̂2 commute. It is also clear that, if P̂1 and

P̂2 commute, P̂ does satisfy the required properties for being a projection operator. Thus,

for the product of two projection operators to be a projection operator, it is necessary and

sufficient that the two projection operators commute.
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Example 4.8.1: Consider the two quantum mechanical states given by the state vectors

|ψ〉 = 5i|φ1〉+ 2|φ2〉 and |χ〉 = − i√
3
|φ1〉+

√
2
3 |φ2〉, where the two vectors |φ1〉 and |φ2〉

form a complete and orthonormal basis. Check whether |ψ〉〈ψ | and |χ〉〈χ| are projection

operators or not.

Solution: We get

|ψ〉〈ψ |= (−5i〈φ1|+ 2〈φ2|)(5i|φ1〉+ 2|φ2〉)

= 25〈φ1|φ1〉−10i〈φ1|φ2〉+ 10i〈φ2|φ1〉+ 4〈φ2|φ2〉, (4.8.11)

|χ〉〈χ|=
(

i√
3
〈φ1|+

√
2

3
〈φ2|
)(

− i√
3
|φ1〉+

√
2

3
|φ2〉
)

=
1

3
〈φ1|φ1〉+

√
2i

3
〈φ1|φ2〉−

√
2i

3
〈φ2|φ1〉+ 2

3
〈φ2|φ2〉. (4.8.12)

Let us check the two required properties for an operator to be a projection operator. We

have

(|ψ〉〈ψ |)† = 25〈φ1|φ1〉−10i〈φ1|φ2〉+ 10i〈φ2|φ1〉+ 4〈φ2|φ2〉= |ψ〉〈ψ |, (4.8.13)

(|χ〉〈χ|)† =
1

3
〈φ1|φ1〉+

√
2i

3
〈φ1|φ2〉−

√
2i

3
〈φ2|φ1〉+ 2

3
〈φ2|φ2〉= |χ〉〈χ|. (4.8.14)

However, since

(|ψ〉〈ψ |)2 = |ψ〉〈ψ |ψ〉〈ψ |= 25 |ψ〉〈ψ |, (4.8.15)

(|χ〉〈χ|)2 = |χ〉〈χ|χ〉〈χ|= |χ〉〈χ|. (4.8.16)

(|ψ〉〈ψ |)2 �= |ψ〉〈ψ |. Hence, only |χ〉〈χ| is the projection operator.

The expectation value of an operator: The expectation value of an operator F̂ , in a state

described by the wave function |ψ〉, is defined as

〈F̂〉= 〈ψ|F̂ |ψ〉
〈ψ|ψ〉 =

∫ +∞
−∞ ψ∗(�r) [Âψ(�r)]d3x∫ +∞
−∞ ψ∗(�r)ψ(�r) d3x

. (4.8.17)

If the wave function is normalized to unity, then

〈F̂〉= 〈ψ|F̂ |ψ〉=
∫ +∞

−∞
ψ∗(�r) [Âψ(�r)]d3x. (4.8.18)
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Example 4.8.2: A particle is in a state |ψ〉= 2i |φ1〉−|φ2〉+4i |φ3〉, where {|φ1〉 , |φ2〉 , |φ3〉}
constitute an orthonormal basis. An operator, F̂ , is given by F̂ = |φ1〉〈φ1|−2i |φ1〉〈φ2|+
|φ3〉〈φ3|. Find 〈F̂〉 in this state.

Solution: We have

〈ψ|= −2i〈φ1|− 〈φ2|−4i〈φ3|. (4.8.19)

F̂ |ψ〉= (|φ1〉〈φ1|−2i |φ1〉〈φ2|+ |φ3〉〈φ3|) (2i |φ1〉− |φ2〉+ 4i |φ2〉)
= 2i |φ1〉〈φ1|φ1〉+ 2i |φ1〉〈φ2|φ2〉+ 4i |φ3〉〈φ3|φ3〉
= 4i |φ1〉+ 4i |φ3〉 , (4.8.20)

where we have used the orthonormality of the given basis. Therefore, we get

〈F̂〉= 〈ψ|F̂ |ψ〉
〈ψ|ψ〉 =

8〈φ1|φ1〉+ 16〈φ3|φ3〉
21

=
24

21
. (4.8.21)

Finally, let us mention here that the bra–ket formalism and the associated linear algebra

developed earlier can be generalized to the case of a continuous basis in the Hilbert space

using the representations of the vectors and the operators in a continuous basis discussed

earlier. Commonly used continuous bases are (i) the complete set of eigenvectors |�r〉 of the

position operator�̂r and (ii) the complete set of eigenvectors |�p〉 of the momentum operator

�̂p. Later, when we derive the Schrödinger equation in the coordinate as well as in the

momentum basis, we shall talk about it in more detail.

4.9 Coordinate and Momentum Representations of the State Vector
and the Schrödinger Equation

In this section we shall derive the coordinate and the momentum representations of the

state vector, |ψ〉, and the Schrödinger equation

ih̄
∂ |ψ〉

∂ t
= Ĥ|ψ〉, (4.9.1)

where |ψ〉 belongs to the Hilbert space of states H of the system and Ĥ is the Hamiltonian

operator. The state vector, |ψ〉, can be represented by its components in a given basis.

The choice of a particular basis determines a particular representation for the state vector

and the operators acting in the Hilbert space including the Hamiltonian operator Ĥ. As a

consequence, we get a particular representation of the Schrödinger equation.

In general, since the eigenvectors of a hermitian operator constitute an orthonormal

and complete set of vectors, the easiest way to construct a particular basis in H is to

choose a suitable observable, solve the eigenvalue problem for it and take the set of its

normalized eigenvectors as a basis. However, as mentioned earlier, we are interested in
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describing the system in such a way that we have the maximum possible information about

the system at any given instant of time. This maximal information depends upon the set

of commuting observables of the system: greater the number of commuting observables

in the set, greater will be the number of dynamical variables of the system that can be

measured simultaneously accurately and hence greater will be the information about the

system. Therefore, we first try to determine the maximal set of commuting observables for

a quantum system.

Let us consider a collection of particles in one spatial dimension. Since, according to

the uncertainty principle, classically conjugate dynamical variables can not be measured

simultaneously accurately, the set of measuring apparatus has to be divided into groups

which can detect particles in terms of a given particular set of mechanical characteristics.

For instance, for our ensemble of particles, we can easily divide the set of measuring

apparatus into at least two groups: One which sorts out particles in terms of their

co-ordinates, i.e., in terms of any function of coordinates, say, the potential energy

V (x,y,z), and the other which sorts them out in terms of their momenta, i.e., kinetic

energy. Clearly, in accordance with the uncertainty relation, the first group of apparatus

excludes the selection in terms of momenta while the second excludes the selection of

particles in terms of their coordinates. This fact, as we shall see below, leads to very

stringent limitation on the choice of the required maximal set of commuting observables.

In what follows, while deriving the coordinate and momentum representations for the

Schödinger equation, we shall use the generalized coordinates q = {qi}, i = 1,2,3, . . . and

the generalized momenta p = {pi}, i = 1,2,3, . . ..
We know that the observables are functions of the fundamental operators: the position

operator q̂ and the momentum operator p̂. They can, in general, be represented by arbitrary

functions of the type F(q̂, p̂). Therefore, the algebra of observables is determined by the

algebra of q̂ and p̂:

[q̂, p̂] = ih̄Î, , (4.9.2)

which must hold in any representation we wish to construct. Using the definition of a

function of operators and the aforementioned commutation relation it is easy to show that

[q̂,F(q̂, p̂)] = ih̄
∂F
∂ p̂

, and [ p̂,F(q̂, p̂)] = −ih̄
∂F
∂ q̂

, (4.9.3)

where F(q̂, p̂) is an arbitrary function of q̂ and p̂. Consequently, q̂ commutes with F(q̂, p̂)
iff F depends on q̂ only and p̂ commutes with F iff F depends on p̂ alone. Thus for a given

system the maximal set of commuting observables consists either of q̂ (and the observables

which are functions of q̂), or of p̂ (and the observables that are functions of p̂). As a result,

we have only two choices for a basis in the Hilbert space: (i) the basis consisting of the

eigenvectors of the position operator q̂ and (ii) the basis consisting of the eigenvectors of

the momentum operator p̂. The corresponding representations are, respectively, called the

co-ordinate representation and the momentum representation.
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The co-ordinate Representation: The eigenfunctions of the operator q̂ satisfy

q̂|q′〉= q′|q′〉, (4.9.4)

where, following Dirac, we have used the same letter to represent the eigenkets and the

eigenvalues of q̂. The eigenvalues (q′,q′′,q′′′, ...) ∈ R1 are continuous. The eigenfunctions,

|q′〉, are normalized as:

〈q′|q′′〉= δ (q′ −q′′), (4.9.5)

where δ (q′ −q′′) is the Dirac delta function. The completeness condition for the eigenkets,

|q′〉, of q̂ reads as∫
|q′〉dq′〈q′|= Î. (4.9.6)

We take this complete set of eigenvectors of the position operator as our basis set in the

Hilbert space. In this basis the state vector is characterized by its component 〈q′|ψ〉 =
ψ(q′, t), defined by the following relation

|ψ(t)〉=
∫

dq′|q′〉〈q′|ψ(t)〉=
∫

dq′ψ(q′, t)|q′〉. (4.9.7)

ψ(q′, t), which is a function of position and time, is called the wave function of the system.

Also, the matrix elements of q̂ in this basis are given by

〈q′′|q̂|q′〉= q′〈q′′|q′〉= q′δ (q′′ −q′). (4.9.8)

The time evolution of the system is governed by the Schrödinger equation (4.9.1), where

the Hamiltonian is given by

Ĥ =
p̂2

2m
+V (q̂) (4.9.9)

The Hamiltonian operator will be defined in this basis only if we determine how q̂ and p̂
act on the state vector in this basis.

The action of q̂ on a state vector is determined by taking the inner product of q̂|ψ〉 with

the basis vectors:

〈q′|q̂|ψ〉=
∫

dq′′δ (q′ −q′′)〈q′′|q̂|ψ〉=
∫

dq′′〈q′|q′′〉q̂〈q′′|ψ〉

=
∫

dq′′〈q′|q′′〉q′〈q′′|ψ〉= q′
∫

dq′′〈q′|q′′〉〈q′′|ψ〉= q′〈q′|ψ〉= q′ψ(q′). (4.9.10)
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Hence, the action of the operator q̂ on the wave function results in the multiplication of the

wave function by the corresponding eigenvalue: q̂|ψ(q′, t) = q′ψ(q′, t).
The next step is to determine the result of action of the momentum operator, p̂, on the

state vector. For this purpose we need the matrix element, 〈q′|p̂|q′′〉, of the momentum

operator in this basis. To have this matrix element we make use of the fundamental algebra

[q̂, p̂] = ih̄Î, (4.9.11)

and calculate its matrix element as shown below:

〈q′|q̂p̂− q̂p̂|q′′〉= 〈q′|ih̄Î|q′′〉= ih̄〈q′|q′′〉= ih̄δ (q′ −q′′). (4.9.12)

The left hand-side of (4.9.12) is given by

〈q′|q̂p̂|q′′〉− 〈q′|p̂q̂|q′′〉= (q′ −q′′)〈q′|p̂|q′′〉 (4.9.13)

Therefore, using the identity xδ ′(x) = −δ (x) and combining (4.9.12) and (4.9.13), we

arrive at

(q′ −q′′)〈q′|p̂|q′′〉= ih̄δ (q′ −q′′) = −ih̄(q′ −q′′)
∂

∂q′
δ (q′ −q′′) (4.9.14)

As a result, we have

〈q′|p̂|q′′〉= −ih̄
∂

∂q′
δ (q′ −q′′). (4.9.15)

As a consequence, the action of p̂ on the state vector is determined as

p̂ψ(q′) = 〈q′|p̂|ψ〉=
∫

dq′′(−ih̄
∂

∂q′
δ (q′ −q′′))〈q′′|ψ〉

=
∫

dq′′(−ih̄
∂

∂q′
δ (q′ −q′′))ψ(q′′) =

(
−ih̄

∂
∂q′

)
ψ(q′). (4.9.16)

Hence, the action of the operator p̂ results into the partial differentiation of the wave

function (standing on the right of it), with respect the co-ordinate multiplied by the factor

−ih̄.

Schrödinger equation in coordinate representation: Having determined the action of

the fundamental operators q̂ and p̂ on the state vector, let us go back to the Schrödinger

equation (4.9.1) and find its projection on the basis vectors. This will give us the required

form of the Schrödinger equation in this basis. We have
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〈q′|Ĥ|ψ〉 =

〈
q′| p̂2

2m
+V (q̂)|ψ

〉
=

1

2m

∫
dq′′〈q′|p̂2|q′′〉〈q′′|ψ〉

+
∫

dq′′〈q′|V (q̂)|q′′〉〈q′′|ψ〉

=
1

2m

∫
dq′′(−ih̄)2 ∂ 2

∂q′2
δ (q′ −q′′)ψ(q′′)+

∫
dq′′〈q′|V (q̂)|q′′〉ψ(q′′)

= − h̄2

2m
∂ 2

∂q′2
ψ(q′)+

∫
dq′′V (q′′)〈q′|q′′〉ψ(q′′)

=

[
− h̄2

2m
∂ 2

∂q′2
+V (q′)

]
ψ(q′) (4.9.17)

The left-hand side of (4.9.1) gives

ih̄
∂ 〈q′|ψ〉

∂ t
= ih̄

∂ψ(q′)
∂ t

. (4.9.18)

Therefore, the Schrödinger equation in the coordinate representation takes the form

ih̄
∂ψ(q)

∂ t
=

[
− h̄2

2m
∂ 2

∂q2
+V (q)

]
ψ(q), (4.9.19)

where we have dropped the prime, since q′ is an arbitrary generalized coordinate. In the

usual case of our three-dimensional space covered with the Cartesian system of

coordinates (x,y,z), the Schrödinger equation will read

ih̄
∂ψ (�r, t)

∂ t
= − h̄2

2m
�∇2ψ (�r, t)+V (�r)ψ (�r, t) , (4.9.20)

where �∇ is the gradient operator:

�∇ = î
∂
∂x

+ ĵ
∂
∂y

+ k̂
∂
∂ z

. (4.9.21)

The form of the Schrödinger equation, given by the equation (4.9.20), leads to the

following expression for the Hamiltonian operator in co-ordinate representation:

Ĥ = − h̄2

2m
�∇2 +V (�r) . (4.9.22)

Thus the Hamiltonian operator is completely defined, if we know the external potential

field in which the particle is moving. Once the Hamiltonian is given, the solution of a

quantum mechanical problem reduces to the solution of the partial differential equation of
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the parabolic type. The complexity arising in the solution of the problem depends entirely

on the form of the potential.

Schrödinger equation in momentum representation: In this case we choose the

complete set of eigenvectors of the momentum operator, p̂, as the basis in H . As in the

previous case, we have

p̂|p′〉= p′|p′〉, (4.9.23)

〈p′|p′′〉= δ (p′ − p′′) (4.9.24)∫
|p′〉d p′〈p′|= Î, (4.9.25)

where (p′, p′′, p′′′, ...∈R1 are the momentum eigenvalues. The expansion of the state vector

|ψ〉 reads

|ψ(t)〉=
∫

d p′|p′〉〈p′|ψ(t)〉=
∫

d p′ψ(p′, t)|p′〉. (4.9.26)

The function ψ(p′, t) is a function of momentum and time and is called the wave function

of the system in momentum representation. Following exactly the same steps as in the

case of coordinate representation, we get that the action of the operator p̂ on the wave

function results in the multiplication of the wave function by the corresponding eigenvalue:

p̂ψ(p′, t) = p′ψ(p′, t) and the action of the operator q̂ results into the partial differentiation

of the wave function (standing on the right of it), with respect the momentum multiplied

by the factor −ih̄. Therefore, projecting the Schrödinger equation for the state vector on

the basis {|p′〉}, we obtain

ih̄
∂ψ(p, t)

∂ t
=

[
p2

2m
+V

(
−ih̄

∂
∂q

)]
ψ(p, t). (4.9.27)

This is the Schrödinger equation in momentum representation. In the usual case of our

three dimensional space covered with the Cartesian system of co-ordinates (x,y,z), the

Schrödinger equation will read

ih̄
∂ψ (�p, t)

∂ t
=

�p2

2m
ψ(�p, t)+V

(
−ih̄�∇p

)
ψ (�p, t) , (4.9.28)

where �∇p is the gradient operator with respect to the momentum variable:

�∇p = î
∂

∂ px
+ ĵ

∂
∂ py

+ k̂
∂

∂ pz
. (4.9.29)
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Connection between the coordinate and momentum representations of the state vector
It turns out, that the coordinate and the momentum representations of the state vector are

related through a unitary transformation and hence are equivalent. For instance, we can

go from the momentum representation (p-representation) to the coordinate representation

(q-representation) by the following transformation

〈q|ψ〉=
∫
〈q|p〉〈p|ψ〉 d p, or, ψ(q) =

∫
〈q|p〉ψ(p) d p, (4.9.30)

where 〈q|p〉 is the transfer function that effects transition from the momentum

representation to the coordinate representation. Similarly, we can write

〈p|ψ〉=
∫
〈p|q〉〈q|ψ〉 dq, or, ψ(p) =

∫
〈p|q〉ψ(q) dq, (4.9.31)

where 〈p|q〉 is the transfer function that realizes the transition from the coordinate

representation to the momentum representation.

We can determine the transfer functions. For instance, from (4.9.23), we have

p′〈q′|p′〉= 〈q′|p̂|p′〉=
∫
〈q′|p̂|q′′〉〈q′′|p′〉 dq′′,

= −ih̄
∫ ∂

∂q′
δ (q′ −q′′)〈q′′|p′〉 dq′′ = −ih̄

∂
∂q′

(〈q′|p′〉) . (4.9.32)

Equation (4.9.32) is a differential equation for 〈q′|p′〉 as a function of the variable q′. Its

general solution can be written as

〈q′|p′〉= A e
i
h̄ q′ p′ , (4.9.33)

where A is an arbitrary constant. In quantum mechanics A is taken to be (2π h̄)−
1
2 . Thus,

〈q|p〉= 1√
2π h̄

e
i
h̄ q p. (4.9.34)

Analogously, we can get the transfer function 〈q′|p′〉 corresponding to the inverse

transformation as

〈p|q〉= 1√
2π h̄

e
−i
h̄ q p. (4.9.35)

Note that

〈q|p〉= 〈p|q〉†. (4.9.36)
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Let us rewrite the transformation equations (4.9.30) and (4.9.31) in the following symbolic

forms

〈q|ψ〉= Ŝ(q, p) 〈p|ψ〉, (4.9.37)

where Ŝ(q, p) is an integral operator whose kernel is given by the transfer function 〈q|p〉.
Then the inverse transformation can be written as

〈p|ψ〉= Ŝ−1(q, p)〈q|ψ〉. (4.9.38)

On the other hand, we have

〈p|ψ〉=
∫

dq〈p|q〉〈q|ψ〉=
∫

dq〈q|p〉†〈q|ψ〉= Ŝ†(q, p)〈q|ψ〉. (4.9.39)

Equations (4.9.38) and (4.9.39) lead to

Ŝ−1(q, p) = Ŝ†(q, p) or, Ŝ†Ŝ = ŜŜ† = Î (4.9.40)

Hence, the integral operator Ŝ is a unitary operator.

Note that such a transformation of the wave function is equivalent to changing the

basis in the Hilbert space by a matrix S = (Si j). Consequently an observable Â changes to

Â′ = ŜÂŜ†. It is worth mentioning here that, under such a unitary transformation, the forms

of the wave function and that of the observables do change, however the physical state of

the system remains unaltered because the operator Ŝ is time-independent.

4.10 Basic Postulates of Quantum Mechanics

We now have the basic mathematical tools to formulate the general framework of quantum

mechanics. The formulation given here is based on the fundamental concepts of quantum

mechanics, discussed in the preceding chapters, and simply reformulates these concepts in

algebraic language.

Postulate 1: The state of a quantum mechanical system, at a given instant of time, is
described by a vector, |ψ(t)〉, in the abstract Hilbert space H of the system.

|ψ(t)〉 is called the state vector and is assumed to contain all the information about the

system, that is, it gives a complete description of the system at a given instant of time. Any

superposition of the state vectors, ∑ j c j|ψ j〉,c j = const, is also a state vector belonging to

H .

As discussed earlier, the state vector is not determined uniquely: it can be multiplied by

an arbitrary complex number without changing the physical state of the system. Because

of that, we would assume that |ψ(t)〉 is normalized to unity.

So far as the solution of a concrete problem is concerned, it is convenient to work

with a set of numbers rather than with the abstract vector |ψ(t)〉. For this, it is sufficient to
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choose a suitable orthonormal basis {|φ j〉},〈φi|φ j〉= δi j in H and, using the completeness

condition for the basis vectors, expand |ψ(t)〉 in terms of this basis:

|ψ(t)〉= ∑
j
(|φ j〉〈φ j|) |ψ〉= ∑

j
ψ j|φ j〉. (4.10.1)

In this case, the state vector will be given by the set of complex numbers {ψ j} = 〈φ j|ψ〉:
the components of |ψ(t)〉 in the chosen basis.

Postulate 2. Observables: A measurable physical quantity, A (called an observable or
dynamical variable), is represented by a linear hermitian operator Â acting in the Hilbert
space of state vectors.

In a given basis, the operator Â is determined by a matrix A whose elements (complex

numbers) are given by

A jk = 〈φ j|Â|φk〉. (4.10.2)

Depending on the chosen basis, the matrix A can have a discrete or a continuous

representation, discussed earlier.

Postulate 3. Measurement of an observable: The measurement of an observable A in
a given state may be represented formally by the action of the operator Â on the state
vector |ψ(t)〉. The only possible outcome of such a measurement is one of the eigenvalues,
{a j}, j = 1,2,3, . . ., of Â.

If the result of the measurement of A is an, the state of the system, immediately after

the measurement is given by

|ψ〉after = 〈φn|ψ〉 |φn〉, (4.10.3)

where |φn〉 is the eigenvector of the operator Â corresponding to the eigenvalue anand

〈ψn|ψ〉 stands for the inner product of |φn〉 and |ψ〉 in the basis consisting of the

eigenvectors of Â.

What is characteristic of quantum mechanics is the fact that we cannot a priori predict

the result of a measurement. We can only talk about the probability of a given result.

Postulate 4. Probabilistic outcome of a measurement: If a measurement of an
observable A is made in a state |ψ(t)〉 of the quantum mechanical system, the probability
of obtaining one of the non-degenerate discrete eigenvalues a j of the corresponding
operator Â is given by

P(a j) =
|〈φ j|ψ〉|2
〈ψ|ψ〉 , (4.10.4)

where |φ j〉 is the eigenfunction of Â with eigenvalue a j. If the state vector is normalized to

unity, P(a j) = |〈φ j|ψ〉|2.
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If the eigenvalue a j is m-fold degenerate, this probability is given by

P(a j) =
∑m

i=1 |〈φ i
j|ψ〉|2

〈ψ|ψ〉 . (4.10.5)

If the operator Â possesses a continuous eigenspectrum {a}, the probability that the result

of measurement will yield a value between a and a+ da is given by

dP(a) =
|〈φ (a)|ψ〉|2
〈ψ|ψ〉 da =

|〈φ (a)|ψ〉|2∫ +∞
−∞ |ψ(a′)|2 da′

da. (4.10.6)

Postulate 5. Time-evolution of the state vector: The time evolution of the state vector is
governed by the time-dependent Schrödinger equation:

ih̄
∂ |ψ〉

∂ t
= Ĥ|ψ〉, (4.10.7)

where Ĥ is the Hamiltonian operator corresponding to the total energy of the system.

The principle of superposition: Since the time-evolution of the system is described by the

Schrödinger equation, which is a linear differential equation in |ψ〉, any linear combination

of the solutions of the Schrödinger equation (4.10.7) also satisfies this equation and can be

used to describe a state of the system.

In other words, if |ψ1〉, |ψ2〉, |ψ3〉, ..., |ψn〉, ... describe various possible states of the

system, then

|ψ〉= ∑
i

ci|ψi〉, (4.10.8)

where ci are complex numbers, also represents a possible physical state of the system. The

probability density for this superposition state is given by

P =

∣∣∣∣∣∑i
ci|ψi〉

∣∣∣∣∣
2

. (4.10.9)

If the states |ψi〉 are mutually orthogonal, then P is equal to the sum of the probability

densities, Pi, for the individual states

P =

∣∣∣∣∣∑i
ci|ψi〉

∣∣∣∣∣
2

= ∑
i
|ci|2 = ∑

i
|Pi|2. (4.10.10)

Measurement and the average value of dynamical variables: As we have discussed

earlier, the measurement of an observable A, in a in a state |ψ〉, is represented by the action
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of the operator Â on the state vector |ψ〉. As a result, we obtain one one of the eigenvalues

Â and the system makes a transition to the corresponding eigenstate of the operator Â.

However, a priori, we cannot say which of the eigenvalues of Â will result. The only thing

which we can say is the probability of obtaining an eigenvalue of Â.

Since, a general state |ψ〉 can be represented by a linear superposition of eigenstates φn
of Â and each measurement can produce a result a j with a probability Pj (see Postulate 4),

a sensible thing will be to make a large number of identical copies of the given system (all

in the same state |ψ〉), perform the measurement on each of them and then take the average

value of the results as the final outcome of the measurement.

Assume that we have a large number of identical copies of a given system, say, of non-

interacting hydrogen atoms. Besides that, assume that all these systems are in the same

quantum state |ψ〉. We measure a dynamical variable A on all these systems separately

(one-by-one). Now, we ask the question: What will be the average value of A in the state

|ψ〉? The answer to this question is given by the following theorem.

The average value of the dynamical variable A in the state |ψ〉 is given by

〈Â〉= 〈ψ|Â|ψ〉
〈ψ|ψ〉 . (4.10.11)

Using the complete set of eigenvectors {|φn〉} of Â we can write 〈Â〉 as

〈Â〉= 1

〈ψ|ψ〉 ∑
n

∑
m
〈ψ|φm〉〈φm|Â|φn〉〈φn|ψ〉= 1

〈ψ|ψ〉∑n
an|〈φn|ψ〉|2 = ∑

n
an P2

n ,

(4.10.12)

where we have used that 〈φm|Â|φn〉= an〈φm|φn〉= anδmn.

In the case of continuous spectrum of Â, the average value is given by

〈Â〉=
∫ +∞
−∞ a|ψ(a)|2da∫ +∞
−∞ |ψ(a′)|2 da′

=
∫ +∞

−∞
ad p(a). (4.10.13)

4.11 Generalized Heisenberg Uncertainty Relation

We have earlier discussed that for two observables Â and B̂ to be measured simultaneously

accurately, it is necessary and sufficient that they commute. If they do not commute, there

is a correlation between the uncertainties in their measurement: if one of them is measured

with a greater degree of accuracy, there is a corresponding larger degree of inaccuracy

in the measurement of the other. In what follows, we shall give a general proof of the

uncertainty relation between the results of measurements of two observables represented

by two non-commuting hermitian operators.

Let Â and B̂ be two hermitian operators representing two observables A and B. Suppose

we measure them on a large number of identical systems; all prepared in the same state
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described by the state vector |ψ〉. As usual, we assume |ψ〉 to be normalized to unity.

Let 〈Â〉 = 〈ψ|Â|ψ〉 and 〈B̂〉 = 〈ψ|B̂|ψ〉 be the average values Â and B̂ with respect to the

state |ψ〉. Then, the uncertainties in their measurements are given by the root mean square

deviations:

ΔA =
√
〈Â2〉−〈Â〉2, (4.11.1)

ΔB =
√
〈B̂2〉−〈B̂〉2. (4.11.2)

Let us introduce two operators

ΔÂ = Â−〈Â〉, ΔB̂ = B̂−〈B̂〉, (4.11.3)

whose action on an arbitrary state vector |ψ〉 is given by

ΔÂ |ψ〉= |φ〉, ΔB̂ |ψ〉= |χ〉. (4.11.4)

Clearly the operators ΔÂ and ΔB̂ are hermitian. Therefore, using the Schwartz inequality

for the state vectors |φ〉 and |χ〉, given by

〈φ |φ〉〈χ|χ〉 ≥ |〈φ |χ〉|2, (4.11.5)

we get

〈(ΔÂ)2〉〈(ΔB̂)2〉 ≥ |〈ΔÂ ΔB̂〉|2, (4.11.6)

where we have used the fact that

〈φ |φ〉= 〈ψ|(ΔÂ)2|ψ〉, 〈χ|χ〉= 〈ψ|(ΔB̂)2|ψ〉, 〈φ |χ〉= 〈ΔÂ ΔB̂〉. (4.11.7)

The product ΔÂΔB̂ can be written as

ΔÂΔB̂ =
1

2
[ΔÂ,ΔB̂]+

1

2
[ΔÂ,ΔB̂]+ =

1

2
[Â, B̂]+

1

2
[ΔÂ,ΔB̂]+. (4.11.8)

Note that the commutator [Â, B̂] is anti-hermitian, whereas the anti-commutator [ΔÂ,ΔB̂]+
is hermitian. Since the expectation value of a hermitian operator is real, while that of an

anti-hermitian operator is imaginary, we have

〈ΔÂΔB̂〉= 1

2
〈[Â, B̂]〉+ 1

2
i|〈[ΔÂ,ΔB̂]+〉|. (4.11.9)
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Therefore, we get

|〈ΔÂ ΔB̂〉|2 = 1

4
|〈[Â, B̂]〉|2 + 1

4
|〈[ΔÂ,ΔB̂]+〉|2. (4.11.10)

|〈ΔÂ ΔB̂〉|2 ≥ 1

4
|〈[Â, B̂]〉|2. (4.11.11)

Taking into account (4.11.11), we get from (4.11.6) that

〈(ΔÂ)2〉〈(ΔB̂)2〉 ≥ 1

4
|〈[Â, B̂]〉|2. (4.11.12)

Now 〈(ΔÂ)2〉= 〈Â2〉+〈Â〉2−2〈Â〉2 = 〈Â2〉−〈Â〉2 = (ΔA)2. Similarly, 〈(ΔB̂)2〉= (ΔB)2.

As a consequence, using (4.11.12), we arrive at the inequality

ΔAΔB≥ 1

2
|〈[Â, B̂]〉|, (4.11.13)

which represents the generalized form of Heisenberg’s uncertainty relation for any two

non-commuting hermitian operators Â and B̂.

Time-Energy uncertainty relation: The generalized uncertainty relation (4.11.13) can be

used to derive the time-energy uncertainty relation. Let the operator B̂ represent the time-

independent Hamiltonian operator, Ĥ, of a quantum system and let Â be another time-

independent observable of the same system. Let |ψ〉 be the state vector of the system at

some given instant of time. If we apply Schwartz inequality to the vectors (Â−〈Â〉)|ψ〉
and (Ĥ −〈Ĥ〉)|ψ〉 and repeat the same steps of calculations which led to (4.11.13), we

shall arrive at the following inequality

ΔA ΔE ≥ 1

2
|〈[Â, Ĥ]〉|, (4.11.14)

where ΔA and ΔE are the uncertainties in the measurements of the observable A and

energy E , respectively.

Let us recollect that the time evolution of 〈Â〉 is governed by Ehrenfest’s equation

d〈Â〉
dt

=
1

ih̄
〈[Â, Ĥ]〉. (4.11.15)

Therefore, the inequality (4.11.14) can now be written as

ΔA ΔE ≥ 1

2

∣∣∣∣ih̄ d〈Â〉
dt

∣∣∣∣ , (4.11.16)
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Or,

ΔA∣∣∣d〈Â〉dt

∣∣∣ ΔE ≥ h̄
2

. (4.11.17)

Let us introduce a time interval Δτ

Δτ =
ΔA∣∣∣d〈Â〉dt

∣∣∣ , (4.11.18)

which represents the characteristic interval of time for any noticeable change in the

statistical distribution of the results of the measurement of the observable A to occur. In

general, Δτ is the characteristic time of evolution of the physical properties of a quantum

system.

Evidently, we can introduce a characteristic time for each of the dynamical variables of

the system. Let Δt be the smallest of all such characteristic time intervals of a quantum

system. Then, if |t − t ′| < Δt, the statistical distribution of the results of any

measurements done on the system at the instant t ′, will practically be indistinguishable

from the statistical distribution of the results of the same measurements carried out at the

instant t. Therefore, Δt is taken to be the characteristic time of evolution of the quantum

system itself1. With this definition of the characteristic time of evolution of the system,

the inequality (4.11.17) takes the form

Δt ΔE ≥ h̄
2

, (4.11.19)

and represents the so-called time-energy uncertainty relation.

Example 4.11.1: Find the uncertainty relations between the components of the position

vector�r and momentum �p of a particle.

Solution: We know that the components of �̂r and �̂p satisfy the following commutation

relations:

[r j, p̂k] = ih̄δ jk, (4.11.20)

where j,k = 1,2,3. Note that, r j = (r1,r2,r3) = (x,y,z), �̂p = ( p̂1, p̂2, p̂3) = ( p̂x, p̂y, p̂z)
and δi j is the Kronecker delta (δi j = 0, if i �= j, δi j = 1, if i = j). Therefore, using the

uncertainty relation (4.11.13), we get

Δr jΔpk ≥ h̄
2

δ jk, (4.11.21)

which is the well known Heisenberg’s uncertainty relation.

1Albert Messiah, Quantum Mechanics, Volume 1, North-Holland Publishing Company, Amsterdam, 1967.
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4.12 Time-evolution Operator and Pictures of Quantum Mechanics

We have seen that we can have various representations of the state vector and the

operators depending on the basis chosen in H . As it turns out, they are all equivalent and

related to one another by a unitary transformation. We also saw that under such a unitary

transformation, the forms of the wave function and that of the observables change, but the

physical state of the system remains unaltered because the unitary operator Ŝ is

time-independent.

We now want to know whether it is possible to do the same for the time-evolution of

the quantum system. In what follows, we shall show that it is possible to describe the time-

evolution of the state vector by a time-dependent unitary operator, Û(t). Û(t) is called the

time-evolution operator or, simply, the evolution operator. It turns out that there are more

than one ways to do it. Each of such descriptions is called a picture of quantum mechanics.

The Schrödinger picture: In this picture, the state vector, |ψ(t)〉, of a quantum system

depends explicitly on time, while the observables (operators of physical characteristics) of

the system are time-independent. The time evolution of the state vector is controlled by

the Schrödinger equation

ih̄
∂ |ψ(t)〉

∂ t
= Ĥ|ψ(t)〉, (4.12.1)

and can be represented in terms of a time evolution operator (propagator), Û(t, t0), as

|ψ(t)〉= Û(t, t0)|ψ(t0)〉. (4.12.2)

The condition of conservation of the norm of the wave function under this representation

reads

〈ψ(t)|ψ(t)〉= 〈Û(t, t0)ψ(t0)|Û(t, t0)ψ(t0)〉
= 〈ψ(t0)|Û†(t, t0)Û(t, t0)|ψ(t0)〉= 〈ψ(t0)|ψ(t0)〉. (4.12.3)

This requires the evolution operator, Û(t, t0), to be unitary:

Û†(t, t0)Û(t, t0) = Û(t, t0)Û†(t, t0) = Î. (4.12.4)

In addition, the evolution operator also satisfies the following properties

Û(t, t) = Î, (4.12.5)

Û†(t, t0) = Û−1(t, t0) = Û(t0, t), (4.12.6)

Û(tk, t j)Û(t j, ti) = Û(tk, ti), tk > t j > ti. (4.12.7)

The last of the above properties is due to the time translation invariance of the Schrödinger

equation.
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The propagator can be determined as follows. Substitution of (4.12.2) in the

Schrödinger equation (4.12.1) yields

ih̄
∂Û(t, t0)

∂ t
= ĤÛ(t, t0). (4.12.8)

If the Hamiltonian, Ĥ, is time independent, the solution of (4.12.8) satisfying the initial

condition, Û(t0, t0) = Î, can be written as

Û(t, t0) = e−
i
h̄ (t−t0)Ĥ . (4.12.9)

Using (4.12.9), equation(4.12.2) can be rewritten as

|ψ(t)〉= e−
i
h̄ (t−t0)Ĥ |ψ(t0)〉. (4.12.10)

The meaning of equation (4.12.10) is the following. We have to expand the wave function

ψ(q,0) into a series with respect to the eigenfunctions, φm(q),m = 1,2,3, . . ., of the

Hamiltonian

ψ(q, t0) = ∑
m

cmφm(q), (4.12.11)

use the definition of the exponential operator in the form of Mclaurent series

e−
i
h̄ Ĥ(t−t0) =

∞

∑
n=0

1

n!

(−i
h̄

Ĥ(t− t0)
)n

(4.12.12)

and act on the wave function. If we do that and take into account that φm are

eigenfunctions of the Hamiltonian (Ĥφm = E0
mφm) and sum up the resulting series, we get

the wave function at time t:

ψ(q, t) =
∞

∑
n=0

1

n!

(−iĤ
h̄

(t− t0)
)n

∑
m

cmφm

= ∑
m

cmφm

∞

∑
n=0

1

n!

(−iE0
m

h̄
(t− t0)

)n

= ∑
m

cmφme−
i
h̄ E0

m(t−t0). (4.12.13)

The Heisenberg picture: In this picture, the state vector, |ψ〉, is time-independent, while

the observables are time-dependent. This is accomplished by defining the Heisenberg state

vector, |ψH〉, as

|ψH〉= Û†(t, t0)|ψ(t)〉, (4.12.14)
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where |ψ(t)〉 is the state vector in the Schrödinger picture. With such a definition |ψH〉
turns out to be time-independent

|ψH〉= Û†(t, t0)|ψ(t)〉. = Û−1(t, t0)|ψ(t)〉= e
i
h̄ (t−t0)Ĥ |ψ(t)〉= |ψ(t0)〉, (4.12.15)

If we compare (4.12.10) and (4.12.14), we conclude that the definition (4.12.14) is

equivalent to going over to a basis (in the Hilbert space) which is translating in time in the

sense opposite to that in the Schrödinger picture. As a consequence, the state vector |ψH〉
gets frozen in time. This leads to

d|ψH〉
dt

= 0. (4.12.16)

Since (4.12.14) represents a unitary transformation of the state vector, physical properties

of a quantum system in both the the Schrödinger and the Heisenberg pictures should be the

same. For instance, consider the average value of time-independent observable, ÂS, in the

Schrödinger picture

〈ÂS〉 =
〈
ψ(t)

∣∣ÂS
∣∣ψ(t)

〉
=
〈
Û(t, t0)ψH

∣∣ÂS
∣∣Û(t, t0)ψH

〉
=
〈
ψH
∣∣(Û†(t, t0)ÂSÛ(t, t0)

)∣∣ψH
〉

(4.12.17)

The requirement of the unchanged average value of Â in both the pictures gives

ÂH(t) = Û†(t, t0)ÂS(t0)Û(t, t0) = e
i
h̄ (t−t0)Ĥ ÂS(t0)e−

i
h̄ (t−t0)Ĥ . (4.12.18)

Or,

ÂS(t0) = ÛÂH(t)Û†(t, t0)(t, t0) = e−
i
h̄ (t−t0)Ĥ ÂH(t)e

i
h̄ (t−t0)Ĥ . (4.12.19)

Equations (4.12.18) and (4.12.19) show that the observables in the Heisenberg and the

Schrödinger pictures are related through a similarity transformation.

The Heisenberg’s equation of motion for an observable is obtained from (4.12.18) by

simply differentiating it with respect to time

dÂH

dt
=

i
h̄

e
i
h̄ (t−t0)Ĥ ĤÂSe−

i
h̄ (t−t0)Ĥ − i

h̄
e

i
h̄ (t−t0)Ĥ ÂSĤe−

i
h̄ (t−t0)Ĥ

=
i
h̄

({
e

i
h̄ (t−t0)Ĥ Ĥe−

i
h̄ (t−t0)Ĥ

}{
e

i
h̄ (t−t0)Ĥ ÂSe−

i
h̄ (t−t0)Ĥ

}
−
{

e
i
h̄ (t−t0)Ĥ ÂSe−

i
h̄ (t−t0)Ĥ

}{
e

i
h̄ (t−t0)Ĥ Ĥe−

i
h̄ (t−t0)Ĥ

})
=

i
h̄

(
ĤHÂH − ÂHĤH

)
. (4.12.20)
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Since the evolution operator, e−
i
h̄ (t−t0)Ĥ , commutes with the Hamiltonian, we have ĤH =

Ĥ. Therefore, the Heisenberg’s equation of motion can be written as

dÂH

dt
=

1

ih̄

[
ÂH , Ĥ

]
. (4.12.21)

If, in addition, ÂH depends explicitly on time, the equations of motion takes the form

dÂH

dt
=

∂ ÂH

∂ t
+

1

ih̄

[
ÂH , Ĥ

]
. (4.12.22)

It remind us of the equations of motion of a dynamical variable, A, in the Poisson bracket

formalism

dA
dt

=
∂A
∂ t

+ {A,H} , (4.12.23)

in which the Poisson bracket, {A,H} has been replaced by the commutator of the

corresponding operators divided by ih̄.

Interaction picture: The interaction picture, the same way as the Heisenberg’s picture,

is useful for the solution of the problems involving time-dependent Hamiltonians. In this

picture, both the state vector, |ψI(t)〉, and the observables depend explicitly on time. In

the cases when the total Hamiltonian, Ĥ, can be separated into a time-independent part,

Ĥ0, and a time-dependent part, Ŵ (t) (interaction Hamiltonian), the state vector, |ψI(t)〉, is

defined through

|ψI〉= Û†
0 (t, t0)|ψ(t)〉= Û−1

0 (t, t0)|ψ(t)〉 ≡ e
i
h̄ (t−t0)Ĥ0 |ψ(t)〉, (4.12.24)

where |ψ(t)〉 is the state vector in the Schrödinger picture. The equation of motion for the

state vector is obtained as follows. Differentiating |ψI〉 with respect to time, we obtain

∂ |ψI〉
∂ t

=
i
h̄

e
i
h̄ (t−t0)Ĥ0Ĥ0|ψ(t)〉+ e

i
h̄ (t−t0)Ĥ0

∂ |ψ(t)〉
∂ t

. (4.12.25)

Using the equation of motion (4.12.1), for |ψ(t)〉 in the Schrödinger’s picture, and a bit of

algebra we obtain

ih̄
∂ |ψI(t)〉

∂ t
= ŴI(t)|ψI(t)〉, (4.12.26)

where ŴI(t) = e
i
h̄ (t−t0)Ĥ0Ŵ (t)e−

i
h̄ (t−t0)Ĥ0 is the time-dependent part of the total

Hamiltonian in the interaction picture.
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Defining an observable, ÂI(t), in the interaction picture by

ÂI(t) = e
i
h̄ (t−t0)Ĥ0Âe−

i
h̄ (t−t0)Ĥ0 , (4.12.27)

where Â is the corresponding observable in the Schrödinger’s picture, and following the

same calculations as in the case of Heisenberg’s picture, we arrive at the following equation

of motion for an observable in the interaction picture

ih̄
dÂI

dt
=
[
ÂI , Ĥ0

]
. (4.12.28)

We see that, in this picture, the time evolution of the state vector is governed by the time-

dependent interaction Hamiltonian ŴI(t) only, while the time variation of an observable is

controlled only by the time-independent part, Ĥ0, of the total Hamiltonian, Ĥ.

We would like to note here that all the three pictures of quantum mechanics, discussed

above, are equivalent because they are related trough unitary transformations. Depending

on the problem at hand, one can choose to work with any one of them for relatively easier

and faster solution of the problem.

4.13 Algebraic Treatment of One-dimensional Harmonic Oscillator

The harmonic oscillator: We are now going to discuss the one-dimensional harmonic

oscillator that serves as one of the most important models (if not the most important model)

in quantum theory and can be solved analytically.

The Hamiltonian for the one-dimensional harmonic oscillator (a particle of mass m
attached to a spring) is given by

Ĥ =
p̂2

2m
+

1

2
mω2x̂2 = − h̄2

2m
d2

dx2
+

1

2
mω2x̂2, (4.13.1)

where x represents the displacement of the oscillator from the point of equilibrium (which

is taken to be at the origin of the coordinate system) and ω is its angular frequency. The

corresponding time-independent Schrödinger equation reads

− h̄2

2m
d2φ (x)

dx2
+

1

2
mω2x̂2φ (x) = Eφ (x). (4.13.2)

Our main aim, in this section, is to use the algebraic method for obtaining the energy

eigenvalues and the corresponding bound state wave functions.

Let us introduce the following operators

â =
1√

2mh̄ω
(ip̂+mω x̂) , (4.13.3)
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â† =
1√

2mh̄ω
(−ip̂+mω x̂) . (4.13.4)

Consider the product

ââ† =
1

2mh̄ω
(ip̂+mω x̂) (−ip̂+mω x̂) =

1

2mh̄ω
(

p̂2 +m2ω2x̂2 + imω [x̂, p̂]
)

,

=
1

2mh̄ω
(

p̂2 +m2ω2 +mh̄ω
)
=

1

h̄ω

(
p̂2

2m
+

1

2
mω2x̂2

)
+

1

2
=

Ĥ
h̄ω

+
1

2
. (4.13.5)

From (4.13.5), we get that

Ĥ = h̄ω
(

ââ†− 1

2

)
. (4.13.6)

Similarly, we have

â†â =
1

2mh̄ω
(−ip̂+mω x̂) (+ip̂+mω x̂) =

1

2mh̄ω
(

p̂2 +m2ω2x̂2− imω [x̂, p̂]
)

,

=
1

2mh̄ω
(

p̂2 +m2ω2−mh̄ω
)
=

1

h̄ω

(
p̂2

2m
− 1

2
mω2x̂2

)
+

1

2
=

Ĥ
h̄ω
− 1

2
(4.13.7)

and

Ĥ = h̄ω
(

â†â+
1

2

)
(4.13.8)

Two important points are to be mentioned here. Firstly, equations (4.13.5) and (4.13.7)

lead to the following commutation relation between â and â†:

[â, â†] = 1. (4.13.9)

Secondly, the Schrödinger equation (4.13.2) is completely equivalent to any of the

following equations

h̄ω
(

â†â+
1

2

)
φ = Eφ , or h̄ω

(
ââ†− 1

2

)
φ = Eφ . (4.13.10)

Theorem 4.13.1: Assume that φn is an eigenfunction of the Hamiltonian Ĥ with energy En.

Then, â†φn is an eigenfunction of the Hamiltonian with energy (En + h̄ω).
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Proof: We have

Ĥâ†φn = h̄ω
(

â†â+
1

2

)
â†φn = h̄ω

(
â†ââ† +

1

2
â†

)
φn

= h̄ω
{

â†
(
1+ â†â

)
+

1

2
â†

}
= â†

[
h̄ω
(

â†â+
1

2

)
φn + h̄ωφn

]

= â†
[
Ĥφn + h̄ωφn

]
= â† [Enφn + h̄ωφn] = (En + h̄ω) â†φn. (4.13.11)

Since Ĥâ†φn = (En + h̄ω) â†φn, the theorem is proved.

Theorem 4.13.2: Assume that φn is an eigenfunction of the Hamiltonian Ĥ with energy En.

Then, âφn is an eigenfunction of the Hamiltonian with energy (En− h̄ω).

Proof: We have

Ĥâφn = h̄ω
(

ââ†− 1

2

)
âφn = h̄ω

(
ââ†â− 1

2
â
)

φn

= h̄ω
{

â
(
ââ†−1

)− 1

2
â
}

φn = â
[

h̄ω
(

ââ†− 1

2

)
φn− h̄ωφn

]

= â
[
Ĥφn− h̄ωφn

]
= â [Enφn− h̄ωφn] = (En− h̄ω) â†φn. (4.13.12)

Since Ĥâ†φn = (En− h̄ω) â†φn, the theorem is proved.

Thus, while acting on the eigenfunction φn of Ĥ with energy En, the operator â lowers

the energy by one unit of h̄ω , the operator â† increases the energy by one unit of h̄ω .

Hence, if we set out with φn(x), describing the nth energy state of the oscillator (with

energy En), we can generate all possible states of the oscillator, with energies higher than

En as well as lower than En, by repeatedly acting on φn(x) with â† and â, respectively. The

operators â† and â are called ladder operators because they permit us to ascend or descend

in energy. The operator â† is also known as creation operator, while the operator â is also

called annihilation operator.

However, a paradoxical situation arises if we continue to act with the annihilation

operator infinitely. If we do so, eventually we shall reach a state with energy less than

zero, which for the harmonic oscillator does not exist. Thus, we have the situation where

âφn is a solution of the Schrödinger equation but the corresponding state does not exist. It

means that the given procedure fails at some point or the other. What is the way out? All

what we said earlier suggests that there must exist the lowest energy state (lowest rung in

the ladder) whose wave function φ0(x) must satisfy the equation

âφ0(x) = 0. (4.13.13)
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We can use this to determine φ0(x). We have

1√
2mh̄ω

(ip̂+mω x̂)φ0(x) = 0. (4.13.14)

Or,

dφ0(x)
dx

= −mω
h̄

xφ0(x). (4.13.15)

Integrating, we get

∫ dφ0(x)
φ0(x)

= −mω
h̄

∫
xdx. ⇒ φ0(x) = A0 e−

mω
2h̄ x2 ≡ A0 e

− x2

2x2
0 , (4.13.16)

where A0 is a constant to be determined and x0 =
√

h̄/mω with the dimensions of length.

To find the energy of this state, let us put this solution into the first of the Schrödinger

equations (4.13.10). We have

h̄ω
(

â†â+
1

2

)
φ0(x) =

h̄ω
2

φ0(x), (4.13.17)

where we have taken into account the fact that âφ0(x) = 0. Hence, the energy of this state,

called the ground state, is h̄ω/2.

Once we have determined the ground state eigenfunction and energy, we can find the

eigenfunction and the corresponding energy of any excited state of the oscillator by

successively applying the creation operator to the ground state wave function. For

instance, the wave function of the first excited state is obtained as

φ1(x) = â†φ0(x) =
1√

2mω h̄

(
−h̄

d
dx

+mωx
)

A0 e
− x2

2x2
0 =

√
2√
πx3

0

x e
− x2

2x2
0 . (4.13.18)

Note that the wave function φ1(x) is normalized to unity

∫ +∞

−∞
φ 2

1 (x)dx =
2√
πx3

0

∫ +∞

−∞
x2 e

− x2

x2
0 dx =

2√
πx3

0

√
πx3

0

2
= 1. (4.13.19)

Since, by acting on an eigenstate of the Hamiltonian, the creation operator increases its

energy by one unit of h̄ω , the energy of the first excited state is h̄ω/2+ h̄ω = 3h̄ω/2.

Similarly, we can apply â† to φ1(x) to get the wave function of the second excited state

φ2(x), and so on and so forth.
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The number operator and the energy eigenfunctions: Let us introduce an operator N̂ =
â†â. It is called the occupation number operator or, simply, the number operator.

First, we notice that the number operator commutes with the Hamiltonian:

[N̂, Ĥ] =

[
N̂, N̂ +

1

2

]
h̄ω = h̄ω [N̂, N̂]+

h̄ω
2
[N̂, Î] = 0. (4.13.20)

Since, N̂ and Ĥ commute, they must have a common set of eigenvectors. Let |n〉 be the nth

joint eigenvector of these operators:

N̂|n〉= n |n〉, (4.13.21)

and

Ĥ|n〉= En |n〉, (4.13.22)

where n is a positive integer and En,n = 1,2,3, . . . are the energy eigenvalues. Using the

definition of N̂, along with equations (4.13.8) and (4.13.21), the energy eigenvalues for the

oscillator are readily obtained to be En = h̄ω
(
n+ 1

2

)
.

Next, we compute the commutator of â and â† with N̂. We have

[N̂â] = [â†â, â] = â†[â, â]+ [â†, â]â = −â. (4.13.23)

Similarly,

[N̂, â†] = â†. (4.13.24)

Therefore, N̂â = â(N̂−1) and N̂â† = â†(N̂ + 1). As a result,

N̂(â|n〉) = â(N̂−1)|n〉= (n−1)â|n〉,

N̂(â†|n〉) = â†(N̂ + 1)|n〉= (n+ 1)â†|n〉. (4.13.25)

These results say that, if |n〉 is an eigenstate of the number operator N̂, then â|n〉 and â†|n〉
are also eigenstates of N̂, but with eigenvalues (n−1) and (n+ 1), respectively. In other

words, by acting on the state |n〉, the operator â decreases the number n by unity and

generates a new eigenstate |n− 1〉, that is, â|n〉 = an|n− 1〉. Similarly, the operator â†,

when acting on |n〉, increases n by unity and generates a new eigenstate, |n+ 1〉 of N̂, that

is, â†|n〉 = bn|n− 1〉. Here, an and bn are constants to be determined from the condition

that the states |n〉 be normalized for all values of n.

Using â|n〉= an|n−1〉, we have(〈nâ†|) · (â|n〉) = 〈n|â†â|n〉= 〈n|N̂|n〉= n〈n|n〉= n. (4.13.26)
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On the other hand(〈nâ†|) · (â|n〉) = |an|2 〈n−1|n−1〉= |an|2. (4.13.27)

Therefore, we must have

|an|2 = n. ⇒ an =
√

n. (4.13.28)

Similarly, we arrive at

|bn|2 = n+ 1. ⇒ bn =
√

n+ 1. (4.13.29)

Equation (4.13.28) shows that n is equal to the norm squared of the vector â|n〉 and, hence,

cannot be negative, that is, n≥ 0. Since, n is a positive integer, the energy spectrum of the

one-dimensional harmonic oscillator is discrete and non-degenerate.

We can now apply the creation operator â† on |0〉 to generate all possible excited state

energy eigenvectors. We have

|1〉= â†|0〉, (4.13.30)

|2〉= 1√
2

â†|1〉= 1√
2!

â†2|0〉, (4.13.31)

|3〉= 1√
3

â†|2〉= 1√
3!

â†3|0〉, (4.13.32)

......................................, (4.13.33)

......................................, (4.13.34)

|n〉= 1√
n

â†|n−1〉= 1√
n!

â†n|0〉. (4.13.35)

Hence, to find any excited state eigenvector |n〉, we need to apply the creation operator n
successive times to the vacuum state |0〉. Furthermore, since the energy spectrum of the

Hamiltonian is non-degenerate, any two of the energy eigenvectors |n′〉 and |n〉
(corresponding to different eigenvalues) are orthogonal, and the sequence of the vectors

{|0〉, |1〉, |2〉 |3〉,. . . ,|n〉} constitutes an orthonormal and complete basis:

〈n′|n〉= δn′n,
∞

∑
n=0

|n〉〈n|= Î. (4.13.36)

Note that the formalism of number operator for the harmonic oscillator is very useful and

is frequently used in quantum optics and quantum field theory in general.
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Homework Problems

1. Check whether the vectors �a = (1,−2,1),�b = (0,3,1) and �c = (0,0,5) in a usual

three-dimensional Euclidean space are linearly independent or not.

2. The following functions are defined on the real x-axis.

(a) f (x) = x,g(x) = (x−1)2,h(x) = (x+ 1)2,

(b) f (x) = sin2(x),g(x) = cos2(x),h(x) = sin(2x),
(c) f (x) = tan2(x),g(x) = 1/2,h(x) = sec2(x),

Which of these sets of functions is linearly dependent and which one is linearly

independent and why?

3. Show that the vectors

ψ1 =

⎛
⎝ 1

1

0

⎞
⎠ , ψ2 =

⎛
⎝ 0

0

2

⎞
⎠ , ψ3 =

⎛
⎝ i

i
i

⎞
⎠

are linearly dependent.

4. In an orthonormal basis, consisting of three vectors {|φi〉}, i = 1,2,3, two ket vectors

|ψ〉 and |φ〉 are given by the following expressions:

|ψ〉= 2i|φ1〉−3i|φ2〉+ |φ3〉, |φ〉= 2|φ1〉+ 2i|φ2〉−3i|φ3〉.

(a) Calculate the norms ‖ψ‖ and ‖φ‖. (b) Calculate the inner products 〈ψ|φ〉,〈φ |ψ〉
and 〈ψ +φ |ψ +φ〉.

5. In an orthonormal basis consisting of the vectors |φ1〉, |φ2〉 and |φ3〉, we have two kets

|ψ〉= a |φ1〉−3i|φ2〉+ i|φ3〉, |φ〉= |φ1〉+ i|φ2〉− i|φ3〉,

where a is a constant. Find the value of a so that these kets are orthogonal.

6. Consider a potential well having an infinite wall at x = 0 and a wall of height V0

at x = L. For the case E < V0, obtain solutions to the Schrödinger equation inside

the well (0 ≤ x ≤ L) and in the region beyond (x > L) that satisfy the appropriate

boundary conditions at x = 0 and x = ∞. Enforce the proper matching conditions at

x = L to find an equation for the allowed energies of this system. Are there conditions

for which no solution is possible? Explain.

7. In an orthonormal basis, consisting of three vectors {|φi〉}, i = 1,2,3, two ket vectors

|ψ〉 and |φ〉 are given by the following expressions:

|ψ〉= 2i|φ1〉−5i|φ2〉+ |φ3〉, |φ〉= 2|φ1〉+ 4i|φ2〉−3i|φ3〉.

Find the matrix representing |ψ〉+ |φ〉.
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8. Let |ψ〉 = i|φ1〉 − 2i|φ2〉+ 2|φ3〉, and |φ〉 = |φ1〉+ i|φ2〉 − i|φ3〉, where {|φi〉}, i =
1,2,3 are three orthonormal vectors. Show that |ψ〉 and |φ〉 satisfy the Schwartz

inequality.

9. Let |ψ〉 = 2i|φ1〉 − i|φ2〉+ |φ3〉, and |φ〉 = |φ1〉+ i|φ2〉 − 3i|φ3〉, where {|φi〉}, i =
1,2,3 are three orthonormal vectors. Show that they satisfy the triangle inequality.

10. You are given a function f (x) = xn. Determine the range of n for which f (x) belongs

to a Hilbert space on the interval x∈ (0,1). Here n is real but not necessarily positive.

11. Consider the kets |ψ〉= 3i|φ1〉−2i|φ2〉+5|φ3〉, and |φ〉= 2|φ1〉+ i|φ2〉− i|φ3〉, where

{|φi〉}, i = 1,2,3 three orthonormal vectors. Calculate |ψ〉〈φ | and |φ〉〈ψ | and check

whether they are equal.

12. Let |ψ〉 = 2i|φ1〉 − i|φ2〉+ |φ3〉, and |φ〉 = |φ1〉+ i|φ2〉 − 3i|φ3〉, where {|φi〉}, i =
1,2,3 are three orthonormal vectors. Calculate Tr(|ψ〉〈φ |) and Tr(|φ〉〈ψ |)

13. In a linear vector space V equipped with an orthonormal basis, {|φ1〉 , |φ2〉 , |φ3〉}, an

operator Â acts on the basis vectors and the results are as follows:

Â |φ1〉= 5 |φ1〉+ 3 |φ2〉 , (4.13.37)

Â |φ2〉= 2 |φ1〉− i |φ3〉 , (4.13.38)

Â |φ3〉= |φ1〉+ 5 |φ2〉 . (4.13.39)

Compute the matrix corresponding to the operator Â in V .

14. Show that the trace of an operator is independent of the basis in which it is expressed.

15. By using the ground state wave function and the machinery of the raising and

lowering operators, compute the normalized fifth excited state wave function for the

harmonic oscillator potential.

16. Using the commutation relation [â, â†] = 1, find the value of the commutators [â, N̂2]
and [â†, N̂2].

17. Using the ladder operator formalism, show that

(a) 〈n′|x̂|n〉=
√

h̄
2mω

(√
n′ δn′−1,n +

√
n δn,n′−1

)
.

(b) 〈n′|p̂x|n〉= i
√

h̄
2mω

(√
n′ δn′−1,n−

√
n δn,n′−1

)
.

18. Using the ladder operator formalism, show that

〈
n′|x̂3|n〉= 3

(
3h̄

2mω

)3/2

.



Chapter 5

Quantum Mechanics in Three Spatial Dimensions

So far we have discussed only one-dimensional problems. They serve as approximate

models in several realistic situations and help us understand the basic features of quantum

mechanics. However, in atomic, molecular and nuclear physics, we have to deal with

problems in three spatial dimensions. Therefore, in what follows, we shall discuss the

three-dimensional Schrödinger equation, its basic properties and the methods of its

solution.

5.1 Three-dimensional Schrödinger Equation in Cartesian
Coordinates

The Schrödinger equation, for a particle of mass m, in three spatial dimensions reads as

ih̄
∂ψ(�r, t)

∂ t
= Ĥψ(�r, t), (5.1.1)

where Ĥ is the Hamiltonian operator, given by

Ĥ =
�̂p2

2m
+V (�r). (5.1.2)

Note that the wave function and the potential energy are now functions of�r = x î+y ĵ+ k̂ z
and t. Here, in (5.1.2), �̂p is the three-dimensional momentum operator:

�̂p = −ih̄�∇, �∇ = î
∂
∂x

+ ĵ
∂
∂y

+ k̂
∂
∂ z

. (5.1.3)

With this �̂p, the Hamiltonian operator takes the form

Ĥ = − h̄2

2m
�∇2 +V (x,y,z), (5.1.4)

187
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where

�∇2 =
∂ 2

∂x2
+

∂ 2

∂y2
+

∂ 2

∂ z2
, (5.1.5)

is the Laplacian (Laplace’s operator) in Cartesian coordinates.

In the same way as in the one-dimensional case, the quantity |ψ(�r, t)|2dV ,

dV = dx dy dz is interpreted as the probability of finding the particle in an infinitesimal

volume element dV = dx dy dz around the point with position vector�r. Hence, as in the

one-dimensional case, the normalization of the wave function reads∫ +∞

−∞
|ψ(�r, t)|2dV = 1. (5.1.6)

Note that sometimes we shall also use the symbols d3r or d3x for the infinitesimal volume

element dV .

If the potential is time independent, the three-dimensional Schrödinger equation can

also be solved by the method of separation of variables. The solution, in complete analogy

with the one-dimensional case, allows us to write the stationary state solutions in the form

ψ(�r, t) = φn(�r)e−
i
h̄ Et , (5.1.7)

where E is the total energy. The function φ (�r, t) satisfies the following time-independent

three-dimensional Schrödinger equation

− h̄2

2m
�∇2φ (�r)+V (�r)φ (�r) = Eφ (�r). (5.1.8)

For the special case of a potential, V (x,y,z), that can be written in the form

V (�r) = V1(x)+V2(y)+V3(z), (5.1.9)

the three-dimensional TISE reduces to a system of one-dimensional TISE. Indeed, if we

write the solution in the form

φ (�r) = X(x)Y (y)Z(z), (5.1.10)

substitute it in (5.1.8) and divide throughout by X(x)Y (y)Z(z), we obtain[
− h̄2

2m
1

X
d2X
dx2

+V1(x)
]
+

[
− h̄2

2m
1

Y
d2Y
dy2

+V2(y)
]

+

[
− h̄2

2m
1

Z
d2Z
dz2

+V3(z)
]
= E, (5.1.11)
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where E plays the role of the separation constant. Each term in the equation (5.1.11)

depends on only one of the variables x,y,z and the sum of the three terms is a constant.

This is possible only if each of these terms is a constant such that their sum is equal to E.

In other words,

− h̄2

2m
1

X
d2X
dx2

+V1(x) = E1, (5.1.12)

− h̄2

2m
1

Y
d2Y
dy2

+V2(y) = E2, (5.1.13)

− h̄2

2m
1

Z
d2Z
dz2

+V3(z) = E3, (5.1.14)

where E1,E2 and E3 are constants such that E1 + E2 + E3 = E. It is obvious that the

solution of the aforementioned differential equations depends on the concrete form of the

potentials. In what follows, we shall take up some important examples.

5.2 The Free Particle Solution in Cartesian Coordinates

Consider a particle of mass m moving freely in space in the absence of any external force

field. In this case, V (�r) = 0 in the Schrödinger equation, and the system of equations

(5.1.12)-(5.1.14) reduces to

− h̄2

2m
d2X
dx2

= E1X , (5.2.1)

− h̄2

2m
d2Y
dy2

= E2Y , (5.2.2)

− h̄2

2m
d2Z
dz2

= E3Z. (5.2.3)

The normalized solutions of these equations are

X(x) =
1√
2π

eikxx, (5.2.4)

Y (y) =
1√
2π

eikyy, (5.2.5)

Z(z) =
1√
2π

eikzz, (5.2.6)
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where k2
j = 2mE j/h̄2, j = 1,2,3 = x,y,z and hence, E j = h̄2k2

j /2m. As a result, the

solution to the free time-independent Schrödinger equation (5.1.8) is given by

ψ(x,y,z) =
1

(2π)3/2
eik1xeik2yeik3z =

1

(2π)3/2
ei�k·�r, (5.2.7)

where�k = îk1 + ĵk2 + k̂k3 = îkx + ĵky + k̂kz is the wave vector. The total energy of the

particle E is given by the sum of the energy eigenvalues E1,E2 and E3:

E = E1 +E2 +E3 =
h̄2

2m
(k2

1 + k2
2 + k2

3) =
h̄2

2m
�k2. (5.2.8)

We note here that the energy, E, depends on the magnitude of the wave vector�k but not on

its direction. Hence, different orientations of�k satisfying the condition

|�k|=
√

k2
1 + k2

2 + k2
3 = const., (5.2.9)

lead to different eigenfunctions without changing the energy. Since there are infinite

number of possible orientations of�k, the energy eigenvalue, E, is infinitely degenerate.

Thus, the solution to the time-dependent Schrödinger equation (5.1.1), for this special

case of zero potential, is given by

ψ�k(�r, t) =
1

(2π)3/2
eik1xeik2yeik3ze−i E

h̄ t =
1

(2π)3/2
ei(�k·�r−ωt), (5.2.10)

where ω = E/h̄. Note that it is nothing but de Broglie’s plane wave solution given by

(1.4.7). The orthonormality condition, for the wave functions (5.2.10), reads

〈ψ�k′(�r, t)|ψ�k(�r, t)〉= 1

(2π)3

∫ +∞

−∞
ei(�k−�k′)·�rd3r = δ (�k−�k′). (5.2.11)

Once again, due to the infinite extension of the plane wave solutions, representation of

free particles by such solutions leads to the same difficulties as mentioned in Chapter 3.

Therefore, a free quantum particle is represented by a spatially localized wave whose

amplitude is large and non-zero in a small region near the particle and tends to zero

outside this region. Such a solution, as we know, is given by a wave packet, which is

nothing but a superposition of an infinite (large) number of plane waves. Hence, a free

particle is represented by the following three-dimensional wave packet:

ψ(�r, t) =
1

(2π)3/2

∫ +∞

−∞
A(�k, t)ψ�k(�r, t)d3k =

1

(2π)3/2

∫ +∞

−∞
A(�k, t)ei(�k·�r−ωt)d3k, (5.2.12)
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where

A(�k, t) =
1

(2π)3/2

∫ +∞

−∞
ψ(�r, t)e−i(�k·�r−ωt)d3r. (5.2.13)

The position of the particle is given by the centre of the wave packet, which moves with

the group velocity vg =
∂ω
∂k (see Fig.4 of Chapter 3).

5.3 The Infinite Rectangular Well Potential

Consider a spinless particle confined to move in an infinite rectangular potential well

(rectangular box) given by

V (x,y,z) =
{

0 for 0 < x < a, 0 < y < b, 0 < z < c
+∞ elsewhere

(5.3.1)

in three spatial dimensions. We want to find the solutions to the TISE for the given

potential. In this case too, the variables separate because the potential can be written as

V (x,y,z) = V1(x) +V2(y) +V3(z). If we write ψ(x,y,z) = X(x)Y (y)Z(z), the original

time-independent Schrödinger equation separates into three independent equations for

X(x), Y (y) and Z(z), each of which coincides with the TISE for the case of 1D

asymmetric square well potential of Chapter 3. Therefore, the normalized solution of the

three-dimensional Schrödinger equation, satisfying the required boundary conditions, can

be written as

ψn1n2n3
(x,y,z) =

√
8

abc
sin
(n1π

a
x
)

sin
(n2π

b
y
)

sin
(n3π

c
z
)

, n1,n2,n3 = 1,2,3, ... (5.3.2)

The corresponding energies are given by

En1n2n3
=

h̄2π2

2m

(
n2

1

a2
+

n2
2

b2
+

n2
3

c2

)
, (5.3.3)

where n1,n2 and n3 can take all integer values starting from 1.

If a = b = c = L, the potential is called the infinite cubic well potential of side L. In

this case, the wave functions are

ψn1n2n3
(x,y,z) =

√
8

L3
sin
(n1π

L
x
)

sin
(n2π

L
y
)

sin
(n3π

L
z
)

, n1,n2,n3 = 1,2,3, . . . (5.3.4)

and the corresponding energy eigenvalues are given by

En1n2n3
=

h̄2π2

2mL2

(
n2

1 + n2
2 + n2

3

)
, n1,n2,n3 = 1,2,3, . . . (5.3.5)
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Note that most of the energy levels in the cubic well potential are degenerate. The ground

state, with n1 = n2 = n3 = 1 and energy

E111 =
3h̄2π2

2mL2
, (5.3.6)

is not degenerate. The first excited state is characterized by three sets of quantum numbers

(n1,n2,n3) = (2,1,1), (n1,n2,n3) = (1,2,1) and (n1,n2,n3) = (1,1,2) and its energy is

given by

E211 = E121 = E112 =
6h̄2π2

2mL2
. (5.3.7)

Since the same value energy corresponds to three distinct sets of quantum numbers n1,n2

and n3, the first excited state is three-fold degenerate. The corresponding wave functions

are as follows:

ψ211(x,y,z) =

√
8

L3
sin

(
2π
L

x
)

sin
(π

L
y
)

sin
(π

L
z
)

, (5.3.8)

ψ121(x,y,z) =

√
8

L3
sin
(π

L
x
)

sin

(
2π
L

y
)

sin
(π

L
z
)

, (5.3.9)

ψ112(x,y,z) =

√
8

L3
sin
(π

L
x
)

sin
(π

L
y
)

sin

(
2π
L

z
)

. (5.3.10)

The second excited state is again characterized by three sets of quantum numbers

(n1,n2,n3) = (2,2,1), (n1,n2,n3) = (2,1,2) and (n1,n2,n3) = (1,2,2), and it is also

threefold degenerate with energy

E221 = E212 = E122 =
9h̄2π2

2mL2
. (5.3.11)

The third excited state is three-fold degenerate too with (n1,n2,n3) = (3,1,1),
(n1,n2,n3) = (1,3,1) and (n1,n2,n3) = (1,1,3) yielding the same value of energy.

Similarly, one can determine the degeneracy of all other excited states.

It is worth mentioning here that degeneracy of energy levels is a consequence of some

underlying symmetry of the potential (discussed in detail in Chapter 11). In the given case

of cubic well potential, the symmetry is related to the equivalence of all the three spatial

directions, which is absent in the case of rectangular well potential.

5.4 Schrödinger Equation in Spherical Coordinates

In most of the problems in atomic and molecular physics, the potential is spherically

symmetric, that is, it depends only on the distance from the origin. In such cases, it is
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convenient to work with spherical polar coordinates (r,θ ,ϕ) (shown in Figure 5.1). The

transformation from the Cartesian system to the spherical system of coordinates is given

by the following set of equations

x = r sinθ cosϕ ,y = r sinθ sinϕ ,z = r cosθ , (5.4.1)

where

r =
√

x2 + y2 + z2, θ = cos−1
( z

r

)
, ϕ = tan−1

(y
x

)
. (5.4.2)

In these expressions, r measures the radial distance from the origin, θ is the polar angle

measured from the z-axis and ϕ is the azimuthal angle measured from the x-axis, as shown

in the figure.

z

y

x

P

q

j

r
�

j

r

q

Figure 5.1 Spherical system of coordinates (r,θ ,ϕ). r̂, θ̂ , and ϕ̂ are the unit vectors
along the r, θ and ϕ axes, respectively.

Using the transformation formulae, we obtain

∂
∂x

= sinθ cosϕ
∂
∂ r

+
cosθ cosϕ

r
∂

∂θ
− sinϕ

r sinθ
∂

∂ϕ
, (5.4.3)

∂
∂y

= sinθ sinϕ
∂
∂ r

+
cosθ sinϕ

r
∂

∂θ
+

cosϕ
r sinθ

∂
∂ϕ

, (5.4.4)

∂
∂ z

= cosθ
∂
∂ r
− sinθ

r
∂

∂θ
. (5.4.5)

The unit vectors of the spherical system of coordinates can also be calculated to be

r̂ =
(
sinθ cosϕ î+ sinθ sinϕ ĵ+ cosθ k̂

)
, (5.4.6)



194 Fundamentals of Quantum Mechanics

θ̂ =
(
cosθ cosϕ î+ cosθ sinϕ ĵ− sinθ k̂

)
, (5.4.7)

ϕ̂ =
(− sinϕ î+ cosϕ ĵ

)
. (5.4.8)

Taking these results into account, the gradient operator, �∇, can be written as

�∇ =
(
sinθ cosϕ î+ sinθ sinϕ ĵ+ cosθ k̂

) ∂
∂ r

+
1

r

(
cosθ cosϕ î+ cosθ sinϕ ĵ− sinθ k̂

) ∂
∂θ

+
1

r sinθ
(− sinϕ î+ cosϕ ĵ

) ∂
∂ϕ

. (5.4.9)

Or, using equations (5.4.6)–(5.4.8), we have

�∇ = r̂
∂
∂ r

+ θ̂
1

r
∂

∂θ
+ ϕ̂

1

r sinθ
∂

∂ϕ
. (5.4.10)

The Laplacian (Laplace operator), �∇2 ≡ Δ, can now be written as

�∇2 =
1

r2

∂
∂ r

(
r2 ∂

∂ r

)
+

1

r2 sinθ
∂

∂θ

(
sinθ

∂
∂θ

)
+

1

r2 sin2 θ
∂ 2

∂ϕ2
. (5.4.11)

As a consequence, in spherical coordinates, the time-independent Schrödinger equation

takes the form

− h̄2

2m

[
1

r2

∂
∂ r

(
r2 ∂φ

∂ r

)
+

1

r2 sinθ
∂

∂θ

(
sinθ

∂φ
∂θ

)
+

1

r2 sin2 θ
∂ 2φ
∂ϕ2

]
+V (r)φ = Eφ . (5.4.12)

In the following sections,we shall discuss the solutions of this equation for some important

cases.

5.5 Spherically Symmetric Potentials and Separation of Variables

If the potential is spherically symmetric, that is it is independent of the angles θ and φ and

depends only on the radial distance r, the radial and angular variables in the Schrödinger

equation can be separated. In such cases, we look for the solution in the form

φ (r,θ ,φ ) = R(r)Y (θ ,ϕ). (5.5.1)

Substitution of (5.5.1) into (5.4.12) with subsequent division throughout by RY gives[
1

R
d
dr

(
r2 dR

dr

)
− 2mr2

h̄2
(V −E)

]
+

1

Y

[
1

sinθ
∂

∂θ

(
sinθ

∂Y
∂θ

)
+

1

sin2 θ
∂ 2Y
∂ϕ2

]
= 0. (5.5.2)
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The first term in (5.5.2) is just a function of r, while the second term is a function of θ
and ϕ only. Since the sum of these terms is zero, each of them must be equal to the same

constant with opposite signs. We take this separation constant to be �(�+ 1). The reason

for this specific choice of the separation constant will be clear later, when we discuss

the quantum mechanical theory of angular momentum. There, � will represent the orbital

quantum number and h̄
√

�(�+ 1), the value of the angular momentum of the particle in a

given state with quantum number �.
Thus, we have the system of differential equations, one each for the radial part R(r)

and the angular part Y (θ ,ϕ) of the wave function:[
1

R
d
dr

(
r2 dR

dr

)
− 2mr2

h̄2
(V (r)−E)

]
= �(�+ 1), (5.5.3)

1

Y

[
1

sinθ
∂

∂θ

(
sinθ

∂Y
∂θ

)
+

1

sin2 θ
∂ 2Y
∂ϕ2

]
= −�(�+ 1). (5.5.4)

We now proceed to discuss the solutions of these equations one-by-one.

5.6 Solution of the Angular Part of the Schrödinger Equation in
Spherical Coordinates

Let us take the angular (Equation (5.5.4)) first. We have

1

sinθ
∂

∂θ

(
sinθ

∂Y
∂θ

)
+

1

sin2 θ
∂ 2Y
∂ϕ2

= −�(�+ 1)Y . (5.6.1)

This can be rewritten in a more familiar form as

sinθ
∂

∂θ

(
sinθ

∂Y
∂θ

)
+ �(�+ 1) sin2 θY +

∂ 2Y
∂ϕ2

= 0. (5.6.2)

Separating the variables

Y (θ ,ϕ) = ϑ (θ )Φ(ϕ), (5.6.3)

substituting for Y (θ ,ϕ) in (5.6.2) and dividing the resulting equation throughout by

ϑ (θ )Φ(ϕ), we obtain

1

ϑ

[
sinθ

∂
∂θ

(
sinθ

dϑ
∂θ

)]
+ �(�+ 1) sin2 θ +

1

Φ
d2Φ
dϕ2

= 0. (5.6.4)

The first term in (5.6.4) is a function of θ alone; whereas, the second term depends only

on ϕ . Since the sum of theses terms is zero, each term must be equal to the same constant

but with opposite signs. Taking this separation constant as m2, we get
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sinθ
∂

∂θ

(
sinθ

dϑ
∂θ

)
+ �(�+ 1) sin2 θ ϑ = m2 (5.6.5)

1

Φ
d2Φ
dϕ2

= −m2 ⇒ d2Φ
dϕ2

+m2Φ = 0. (5.6.6)

Solving the equation (5.6.6) for Φ, we get

Φ(ϕ) = eimϕ , (5.6.7)

where m is a number and we have omitted the constant of integration, which can be

absorbed in ϑ . Since when ϕ advances by 2π , we return to the same point in space, we

have

Φ(ϕ + 2π) = Φ(ϕ) ⇒ eim(ϕ+2π) = eimϕ . (5.6.8)

Or, exp (2iπm) = 1, which gives that m is an integer:

m = 0,±1,±2,±3, .... (5.6.9)

The ϑ equation can be reduced to the standard form of the Legendre equation by the change

of variable x = cosθ . Its solutions are

ϑ (θ ) = APm
� (x), x = cosθ , (5.6.10)

where A is a constant and Pm
� (x) are the associated Legendre polynomials. They are

given by

Pm
� (x) =

(
1− x2

) |m|
2

d|m|

dx|m|
P�(x), (5.6.11)

where P�(x) are the Legendre polynomials defined by

P�(x) =
1

2l l!
d�

dx�
(
x2−1

)�
, (5.6.12)

with � as a non-negative integer. This formula is known as the Rodriguez formula. From

(5.6.11), we get that if |m|> �, then Pm
� (x) = 0. This in turn says that for any given �, there

are (2�+ 1) possible values of m:

�= 0,1,2, ...; m = −�, (−�+ 1), (−�+ 2), (−�+ 3), ...,−1,0,1, ..., (�−1),�. (5.6.13)

So, for a given � there is a (2�+ 1)-fold degeneracy with respect to the quantum number

m. The normalized angular wave functions are given by
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Y m
� (θ ,ϕ) = ε

√
(2�+ 1) (�−|m|)!

4π (�+ |m|)! Pm
� (cosθ )eimϕ , (5.6.14)

where ε = (−1)m for m ≥ 0 and ε = 1 for m < 0. The functions Y m
� (θ ,ϕ) are called

spherical harmonics. The normalization condition for the spherical harmonics reads:

∫ π

0
dθ sinθ

∫ 2π

0
dϕ |Y m

� (θ ,ϕ)|2 = 1, (5.6.15)

Thus, for a given value of �, concrete expressions for Y m
� (θ ,ϕ) can be determined easily

with the help of the equations (5.6.11)–(5.6.14).

5.7 Solution of the Radial Part of the Schrödinger Equation in
Spherical Coordinates

Let us consider now the radial equation (5.5.3) for a given �, i.e., for R�. It can be written

as

d
dr

(
r2 dRn�

dr

)
− 2mr2

h̄2
(V (r)−E)Rn� = l(l + 1)Rn�, (5.7.1)

where we have introduced an additional subscript n for the radial wave function R�. It is

usually done to identify the energy eigenvalues of the Hamiltonian: Ĥφn�m = En φn�m. n is

called the principal quantum number and, as we shall see later, the orbital quantum number

� is related to the principal quantum number n in that, for a given n, � can take values from

0 to (n−1).
Equation (5.7.1) can be simplified further by changing the variables:

un�(r) = rRn�(r). (5.7.2)

We have

dRn�

dr
=

(dun�/dr)
r

− un�

r2
, r2 dRn�

dr
= r

dun�

dr
−un� (5.7.3)

d
dr

(
r2 dRn�

dr

)
= r(d2un�/dr2). (5.7.4)

From (5.7.1) and (5.7.4), we get

d2un�

dr2
+

2m
h̄2

[
E−V (r)− h̄2�(�+ 1)

2mr2

]
un�(r) = 0. (5.7.5)
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Equation (5.7.5) for the radial function un�(r) (and hence for Rn�(r)) can be solved only if

the potential, V (r), is prescribed.

It is customary to introduce an effective potential, Veff(r), by

Veff(r) = V (r)+
h̄2�(�+ 1)

2mr2
, (5.7.6)

and rewrite the radial equation (5.7.5) as

d2un�

dr2
+

2m
h̄2

[E−Ve f f (r)]un�(r) = 0. (5.7.7)

This equation is similar to the one-dimensional Schrödinger equation with the difference

that the effective potential Veff has an extra term h̄2�(�+ 1)/2mr2. This term is called the

repulsive or centrifugal potential that tries to throw the particle away from the centre.

Although the structure of this equation resembles the one-dimensional Schrödinger

equation, it differs from the latter in the fact that the variable, r, cannot be negative:

r ∈ [0,∞]. Therefore, the radial wave function, Rn�(r), must be finite everywhere from

r = 0 to r = ∞. Consequently, the function un�(r) must satisfy

lim
r→0

un�(r) = lim
r→0

rRn�(r) = 0. (5.7.8)

Note that for the bound states to exist, the potential V (r) in (5.7.6), must be attractive

because the part h̄2�(�+ 1)/2mr2 in Veff(r) is repulsive.

Once we solve the radial wave equation for a given V (r), the full wave function will be

given by

φn�m(r,θ ,φ ) = Rn�(r) Y m
� (θ ,ϕ). (5.7.9)

Normalization of the wave function: The volume element dτ in spherical coordinates is

given by dτ = r2 sinθ dr dθ dϕ . Hence, the normalization condition for the total wave

function φn�m(r,θ ,φ ) reads as

∫ ∞

0
dr
∫ π

0
dθ sinθ

∫ 2π

0
dϕ r2 |φn�m(r,θ ,φ )|2 (5.7.10)

=
∫ ∞

0
r2 |Rn�(r)|2 dr

∫ π

0
dθ sinθ

∫ 2π

0
dϕ|Y m

� (θ ,ϕ)|2 = 1. (5.7.11)

Since the spherical harmonics Y m
� (θ ,ϕ) are already normalized, we have

∫ π

0
dθ
∫ 2π

0
dϕ sinθ |Y m

� (θ ,ϕ)|2 = 1. (5.7.12)
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Therefore, to have the full wave function, φn�m(r,θ ,ϕ), normalized to unity, we have to

simply normalize the radial wave function, Rn�(r). As a result, we get∫ ∞

0
r2 |Rn�(r)|2 dr = 1. (5.7.13)

Therefore, the stationary state wave functions of a particle, subject to a spherically

symmetric potential V (r), can be written as

ψn�m(r.θ ,ϕ) = A φn�m(r.θ ,ϕ) e−
i
h̄ En�mt , (5.7.14)

where the constant A is to be determined from the normalization condition, (5.7.13), for

the radial wave function.

Note that the quantity |ψn�m(r.θ ,ϕ)|2 dτ represents the probability of finding the

particle in the volume element dτ , while the probability of finding the particle in a

spherical shell enclosed between r and r+ dr is given by

Pn�(r)dr =
(∫ π

0
sinθdθ

∫ 2π

0
dϕ |ψn�m(r.θ ,ϕ)|2

)
r2 dr

= |Rn�(r)|2 r2 dr
∫ π

0

∫ 2π

0
(Y m

� (θ ,ϕ))∗Y m
� (θ ,ϕ) sinθ dθ dϕ

= |Rn�(r)|2 r2 dr. (5.7.15)

If we integrate Pn�(r) from r = 0 to r = a, where a is a real constant, we get the probability

of finding the particle in a sphere of radius a centered at the origin r = 0.

In what follows, we shall discuss the solutions of the radial Schrödinger equation (5.7.1)

for some important spherically symmetric potentials.

5.8 The Free Particle Solution in Spherical Coordinates

Consider a particle of mass m moving freely in space. In this case, the potential V (r) is

zero and the stationary Schrödinger equation (5.4.12), reduces to

− h̄2

2m

[
1

r2

∂
∂ r

(
r2 ∂φ

∂ r

)
+

1

r2 sinθ
∂

∂θ

(
sinθ

∂φ
∂θ

)
+

1

r2 sin2 θ
∂ 2φ
∂ϕ2

]
= Eφ . (5.8.1)

The variables separate and the solution can be represented as φk�m(r,θ ,φ ) =
Rk�(r)Y m

� (θ ,ϕ). Note that in the given case of a free particle the energy, Ek = h̄2k2/2m,

takes continuous values and hence the radial wave function is characterized by the

continuous index k.

The angular part of the wave function, Y (θ ,ϕ), satisfies (5.6.2) and is given by the

equation (5.6.14). The radial wave function, Rk�(r), satisfies
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d
dr

(
r2 dRk�

dr

)
+ k2r2Rk� = �(�+ 1)Rk�. (5.8.2)

where k2 = 2mEk/h̄2. Introducing ρ = kr, we have

d2Rk�(ρ)
dρ2

+
2

ρ
dRk�(ρ)

dρ
+

(
1− �(�+ 1)

ρ2

)
Rk�(ρ) = 0. (5.8.3)

This is the spherical Bessel equation whose general solution, for any k (that is, Ek), is

given by

Rk�(ρ) = A� j�(ρ)+B�n�(ρ),�= 0,1,2,3, ... (5.8.4)

where j�(ρ) and n�(ρ) are the spherical Bessel functions and the spherical Neumann

functions, respectively. They are given by

j�(ρ) = (−ρ)�
(

1

ρ�

d�

dρ�

)
sinρ

ρ
,n�(ρ) = −(−ρ)�

(
1

ρ�

d�

dρ�

)
cosρ

ρ
. (5.8.5)

The asymptotic forms of these functions for ρ → 0 and ρ → ∞ are, respectively, given by

j�(ρ) =
2��!

(2�+ 1)!
ρ�,n�(ρ) = −(2�−1)!

2��!
1

ρ�+1
(ρ → 0), (5.8.6)

j�(ρ) =
1

ρ
sin

(
ρ− lπ

2

)
,nl(ρ) = − 1

ρ
cos

(
ρ− �π

2

)
(ρ → ∞). (5.8.7)

Note that for ρ → 0, the Neumann function blows up. Since the wave function has to be

finite everywhere in space, the part of the solution containing the Neumann function must

be dropped. As a result, we have

φk�m(ρ ,θ ,ϕ) = A� j�(kr)Y m
� (θ ,ϕ), (5.8.8)

where k =
√

2mEk/h̄2. Since Ek is a continuous function of k, the energy spectrum is

continuous and infinitely degenerate. This degeneracy corresponds to the spherical

symmetry in the momentum space: all directions of�k are equivalent.

Recall that the free particle solution in Cartesian coordinates is proportional to ei�k·�r (see

(5.2.7)), which can be expanded in terms of the spherical Bessel functions as

ei�k·�r =
∞

∑
�=0

�

∑
m=−�

c�m j�(kr)Y m
� (θ ,ϕ), (5.8.9)
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where c�m are arbitrary constants. Thus, the solution for a free particle in spherical

coordinates (in terms of the spherical Bessel functions) is completely equivalent to the

free particle solution in Cartesian coordinates (in terms of the plane waves) with

appropriate expansion coefficients c�m. The problem then reduces to finding the expansion

coefficients c�m. For the particular case of propagation along the z-axis (�k‖ẑ), m = 0 and

we get

ei�k·�r = ekr cosθ =
∞

∑
�=0

i�(2�+ 1) j�(kr)P�(cosθ ), (5.8.10)

where P�(cosθ ) are the Legendre polynomials. For this given particular case, the

coefficients c�m are thus given by c�m = i� (2�+ 1).

Note that although the free particle solutions in the Cartesian and the spherical

coordinates are equivalent, they do differ in physical content. While the plane wave

solution describes a free particle of energy Ek with a well-specified linear momentum but

undefined angular momentum, the solution in terms of the spherical Bessel functions

describes a free particle with a well-defined angular momentum but gives no information

about its linear momentum.

5.9 The Infinite Spherical Well Potential

Consider a particle of mass m moving in the following potential

V (r) =

{
0, for r ≤ a

∞, for r > a,
(5.9.1)

where a is a positive constant with dimensions of length. This potential is called infinite

spherical well potential. Using the radial Schrödinger equation, we want to determine the

bound state energy spectrum and the corresponding normalized wave functions for the case

when the orbital angular momentum of the particle is zero (�= 0). Also, we would like to

compute the probability of finding the particle: (i) in a sphere of radius, say, r = a/2 and

(ii) in the annular region between r = a
4 and r = a

2 .

In the region r < a, the radial wave function u(r) = r R(r) satisfies the following

ordinary differential equation

d2u
dr2

+

[
2m
h̄2

E− l(l + 1)

r2

]
u(r) = 0, (5.9.2)

which, for �= 0, reduces to

d2u
dr2

+ k2u(r) = 0,k2 =
2mE
h̄2

. (5.9.3)
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It has its general solution of the form

u(r) = Acos(kr)+Bsin(kr), (5.9.4)

where A and B are arbitrary constant coefficients. As a result, the function R(r) is given by

R(r) = A
cos(kr)

r
+B

sin(kr)
r

. (5.9.5)

The finiteness of the radial wave function R(r) at r = 0 demands the coefficient A to be

zero.

For r > a, the potential is infinite. Therefore, the wave function must vanish in this

region, that is, u(r) = 0 for r > a. The continuity of the radial wave function, R, at the

boundary r = a requires that R(a) = 0. So, we have

R(a) = B
sin(ka)

a
= 0. (5.9.6)

The solution of (5.9.6) yields: kna = nπ , where n = 1,2,3, .... This relation leads to the

discrete energy spectrum of the particle inside the well

En =
n2π2h̄2

2ma2
, n = 1,2,3, ... (5.9.7)

The normalization of the radial wave function Rn0(r) = B [sin(knr)/r] reads

1 = |B|2
∫ a

0

sin2
(nπ

a r
)

r2
r2dr =

|B|2a
nπ

∫ nπ

0
sin2 ρdρ =

|B|2a
2

. (5.9.8)

Hence, B =
√

2/a and the normalized wave functions are

Rn0(r) =

√
2

a
sin
(nπ

a r
)

r
. (5.9.9)

Using this solution, we can determine the probability of finding the particle inside the

sphere of a given radius. For instance, the probability of finding the particle in a sphere of

radius a/2 is given by

P =
∫ a/2

0
|Rn0|2r2dr =

2

a

∫ a/2

0
sin2
(nπ

a
r
)

dr =
2

nπ

∫ nπ/2

0
sin2 ρdρ . (5.9.10)

Or,

P =
1

nπ

∫ nπ/2

0
[1− cos2ρ ]dρ =

1

nπ

(
nπ
2
− 1

2
[sin2ρ ](nπ/2)

0

)
=

1

2
. (5.9.11)
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Similarly, the probability of finding the particle in the annular region between r = a
4 and

r = a
2 is given by

P =
1

nπ

(
nπ
4

+
1

2nπ
sin
(nπ

2

))
=

⎧⎪⎪⎨
⎪⎪⎩

1
4 for even n,

1
4 +

1
2nπ for n = 1,5,9, . . .,

1
4 − 1

2nπ for n = 3,7,11, . . ..

(5.9.12)

5.10 The Finite Spherical Well Potential

A particle of mass m is moving under the influence of the following potential

V (t) =

{
−V0, for r < a

0, for r ≥ a,
(5.10.1)

where V0 and a are positive constants with dimensions of energy and length respectively.

We wish to find the bound state energy eigenvalues and the corresponding wave functions

for |E|<V0.

In the region r ≤ a, the radial wave function satisfies the equation

d2Rn�

dr2
+

2

r
dRn�

dr
+

2m
h̄2

[V0−|E|]Rn� =
l(l + 1)

r2
Rn�. (5.10.2)

For r > a, the potential V (r) = 0, and we have

d2Rn�

dr2
+

2

r
dRn�

dr
− 2m|E|

h̄2
Rn� =

l(l + 1)

r2
Rn�. (5.10.3)

For bound states, |E|<V0. Therefore, we introduce

k1 =

√
2m
h̄2

(V0−|E|), (5.10.4)

k2 =

√
2m
h̄2
|E|. (5.10.5)

In terms of the function un�(r) = rRn�(r), these equations can then be written as

d2un�

dr2
+

[
k2

1−
l(l + 1)

r2

]
un�(r) = 0, (0 < r < a), (5.10.6)

d2un�

dr2
+

[
(ik2)

2− l(l + 1)

r2

]
un�(r) = 0, (r > a). (5.10.7)
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Equation (5.10.6) coincides with the equation satisfied by the free particle wave function

with wave number k1. Its solution is given by

un�(r) = A� j�(k1r)+B�n�(k1r), (5.10.8)

where A� and B� are arbitrary constant coefficients. Once again due to the requirement of

finiteness of the radial wave function, Rn�(r), at r = 0, we omit the second term in (5.10.8).

Therefore, the solution R(I)
n� (r) for 0 < r < a is given by

R(I)
n� (r) =

u(I)n� (r)
r

= A� j�(k1r). (5.10.9)

For r > a, the radial equation (5.10.7), has the solution

R(II)
n� (r) =

u(II)
n� (r)

r
= D�h�(ik2), (5.10.10)

where h�(ik2) = j�(ik2r)+ in�(ik1r) is the Hankel function that asymptotically behaves as

e−k2r/r as r → +∞. Any other linear combination will diverge for r → +∞. Therefore,

the radial wave function of the particle for the given potential, can be written as

Rn�(r) =

{
A� j�(k1r), r ≤ a

D�h�(ik2r), r > a,
(5.10.11)

where A� and B� are to be determined from the boundary conditions.

The continuity of the wave function and its first derivative at r = a leads to the

transcendental equation

k1
j′�(k1a)
j�(k1a)

= k2
h′�(ik2a)
h�(ik2a)

, (5.10.12)

for the determination of the energy eigenvalues. The solution is usually found numerically.

It turns out that the roots of the equation (5.10.12) yield a discrete set of energy eigenvalues

for the particle. The constants A� and D� are related through

A� j�(k1a) = D�h�(ik2a). (5.10.13)

The full bound state wave functions are given by

Rn�(r) = A�

⎧⎪⎨
⎪⎩

j�(k1r)Y m
� (θ ,ϕ), r ≤ a

j�(k1a)
h�(ik2a)h�(ik2r)Y m

� (θ ,ϕ), r > a,

(5.10.14)
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where the constant A� is determined from the normalization of the radial wave function.

For the case �= 0, the radial wave function, un�, satisfies

d2un�

dr2
+ k2

1un�(r) = 0, (0 < r < a), (5.10.15)

d2un�

dr2
− k2

2un�(r) = 0, (r > a). (5.10.16)

Since j0(k1r) = sin(k1r)/(k1r) and h0(ik2r) = −(e−k2r/(k2r), the solutions to these

equations are given by

R(I)
n� (r) = A

sin(k1r)
r

, (0 < r < a), (5.10.17)

R(II)
n� (r) = B

e−k2r

r
, (r > a), (5.10.18)

where A and B are arbitrary constants. The continuity of the radial wave functions and

their first derivatives at r = a can be simultaneously satisfied by matching the logarithmic

derivatives of the wave functions at r = a:

R(I)′
n� (a)

R(I)
n� (a)

=
R(II)′

n� (a)

R(II)
n� (a)

. (5.10.19)

Calculating the required derivatives, we get

k1 cot(k1a)− 1

a
= −k2− 1

a
. (5.10.20)

From here, we arrive at the transcendental equation, whose roots determine the discrete

values of the energy of the particle:

k2 = −k1 cot(k1a). (5.10.21)

Equation (5.10.21) can be solved graphically as follows. Let us introduce

ξ = k1a,η = k2a. (5.10.22)

Multiplying (5.10.21) by a, we get

ξ cotξ = −η . (5.10.23)

Furthermore, we have

ξ 2 +η2 = a2(k2
1 + k2

2) =
2m
h̄2

a2(V0−|E|)+ 2m
h̄2

a2|E|= 2mV0a2

h̄2
, (5.10.24)
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which is the equation of a circle in the coordinates ξ and η with radius
√

2mV0a2/h̄2. The

discrete energy levels are determined by the points of intersection of this circle with the

curve η = −ξ cotξ .

In the limit E → 0, we have√
2m
h̄2

V0 cot

(√
2m
h̄2

V0

)
= 0, (5.10.25)

which yields√
2m
h̄2

V0 =
(2n+ 1)

2
π ,n = 0,1,2,3, .... (5.10.26)

Therefore, for one, two and three bound states, we have n = 0,1 and n = 2 and the

corresponding values of V0 are

V (1)
0 =

π2h̄2

8ma2
, V (2)

0 =
9π2h̄2

8ma2
and V (3)

0 =
25π2h̄2

8ma2
. (5.10.27)

Therefore, if V0a2 < π2h̄2/8m, no bound state exists.

5.11 The Hydrogen Atom

A hydrogen atom consists of a proton (charge e and mass mp) in the nucleus and an electron

(charge −e and mass me) orbiting around it, which is held in its orbit by the attractive

Coulomb force. For simplicity, we shall ignore the spin degree of freedom in our treatment

of this system.

Let �re = (xe,ye,ze) and �rp = (xp,yp,zp) be the position vectors for the electron and

the proton, respectively. Since the potential, V , depends only on the relative distance, r,

between the electron and the proton, it is convenient to go over to the center of the mass

system. Let �R = (X ,Y ,Z) be the position vector of the centre of mass, defined by

�R =
me�re +mp�rp

me +mp
, (5.11.1)

and let �r = (x,y,z) = �re −�rp represent the relative position vector. The Schrödinger

equation for the system is written as

ih̄
∂ψ(�re,�rp, t)

∂ t
=

[
− h̄2

2me

�∇2
e−

h̄2

2mp

�∇2
p +V (r)

]
ψ(�re,�rp, t). (5.11.2)
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It is easy to check that

1

me

�∇2
e +

1

mp

�∇2
p =

1

M
�∇2

R +
1

μ
�∇2

r , (5.11.3)

M = me +mp, μ =
memp

me +mp
, (5.11.4)

where M and μ are the total and the so-called reduced mass, respectively. The operators
�∇2

R and �∇2
r in (5.11.3) are given by

�∇2
R =

∂ 2

∂X2
+

∂ 2

∂Y 2
+

∂ 2

∂Z2
, (5.11.5)

and

�∇2
r =

∂ 2

∂x2
+

∂ 2

∂y2
+

∂ 2

∂ z2
. (5.11.6)

We look for the stationary state solutions of the Schrödinger equation (5.11.2) in the form

ψ(�re,�rp, t) = ψ(�re,�rp)e−i ET
h̄ t , (5.11.7)

where ET is the total energy of the system. Taking into account that, in the SI units, the

Coulomb potential between the electron and proton is given by

V (r) = − e2

4πε0|�re−�rp| , (5.11.8)

we get from (5.11.2) and (5.11.8) that ψ(�re,�rp) satisfies[
− h̄2

2mp

�∇2
p−

h̄2

2me

�∇2
e−

e2

4πε0|�re−�rp|
]

ψ(�re,�rp) = ET ψ(�re,�rp). (5.11.9)

Equation (5.11.9) can be rewritten in the centre of the mass system as[
− h̄2

2M
�∇2

R−
h̄2

2μ
�∇2

r −
e2

4πε0r

]
ψ(�R,�r) = ET ψ(�R,�r). (5.11.10)

Since the potential depends only on the relative coordinate r, we expect the variables to

separate and look for the solution in the form

ψ(�R,�r) = Φ(�R)φ (�r). (5.11.11)
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Inserting ψ(�R,�r) from (5.11.11) into (5.11.10), we obtain[
− h̄2

2M
1

Φ(�R)
�∇2

RΦ(�R)
]
−
[

h̄2

2μ
1

φ (�r)
�∇2

r φ (�r)+
e2

4πε0r

]
= ET . (5.11.12)

The first term on the left-hand side of (5.11.12) is just a function of �R, whereas the second

term depends only on�r. The sum of these terms equals a constant ET . Since the vectors �R
and�r are independent, for this equation to hold, each term on the left-hand side must be a

constant. This leads to the following pair of equations

− h̄2

2M
�∇2

RΦ(�R) = ERΦ(�R), (5.11.13)

− h̄2

2μ
�∇2

r φ (�r)+
e2

4πε0r
φ (�r) = Erφ (�r), (5.11.14)

where

ET = ER +Er. (5.11.15)

Note that (5.11.13) can be interpreted as the stationary Schrödinger equation of a free

particle of mass M. Thus, we conclude that the centre of mass of the electron–proton pair

in a hydrogen atom moves as a free particle of mass M. Consequently, the normalized

solution of this equation is written as

Φ(�R) =
1

(2π)3/2
e−i�κ·�R, (5.11.16)

where�κ is the wave vector associated with the free motion of the total mass M in the centre

of mass frame and ER = h̄2�κ2/2M the kinetic energy of M.

So far as (5.11.14) is concerned, it is nothing but the time-independent Schrödinger

equation for a fictitious particle of mass μ moving in a central potential

V (r) = − e2

4πε0r
. (5.11.17)

Since the potential is spherically symmetric, it is convenient to solve this equation in

spherical coordinates. Using the expression for �∇2
r in spherical polar coordinates, we can

write (5.11.14) as

− h̄2

2μ

[
1

r2

∂
∂ r

(
r2 ∂φ

∂ r

)
+

1

r2 sinθ
∂

∂θ

(
sinθ

∂φ
∂θ

)
+

1

r2 sin2 θ
∂ 2φ
∂ϕ2

]
+

e2

4πε0r
φ = Eφ ,

(5.11.18)
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where we have set Er ≡ E for convenience. Note that for E > 0, the Coulomb potential

in (5.11.18) admits continuum energy states describing the scattering of electron on the

proton. For E < 0, it admits the discrete set of bound states that represent the bound states

of the hydrogen atom. Here, we shall take up the solution of the bound state problem only.

The ground state of hydrogen: We start with the simplest case of the ground state of the

hydrogen atom with n = 1 and � = 0. This state, called the s state, possesses a complete

spherical symmetry and the wave function corresponding to this state is given by

φn�m(r,θ ,ϕ) = R10(r)Y 0
0 (θ ,ϕ) =

1√
4π

R10(r), (5.11.19)

where the radial wave function, R10(r), satisfies

− h̄2

2μ
1

r2

∂
∂ r

(
r2 ∂R10(r)

∂ r

)
+

e2

4πε0r
R10(r) = ER10(r). (5.11.20)

Note that in (5.11.20), we have dropped the suffix r from Er for convenience. Equation

(5.11.20) can also be written as

1

r2

d
dr

(
r2 dR10(r)

dr

)
+

2μ
h̄2

[
E +

e2

4πε0r

]
R10(r) = 0. (5.11.21)

By introducing

λ =
2μE
h̄2

;α =
μe2

4πε0h̄2
, (5.11.22)

we rewrite (5.11.21) in a more compact form as

d2R10(r)
dr2

+
2

r
dR10(r)

dr
+

(
λ +

2α
r

)
R10(r) = 0. (5.11.23)

Clearly, we need a solution for this equation satisfying the standard conditions, that is,

the solution must be finite everywhere (including r = 0) and must tend to zero at spatial

infinity, that is, for r→ ∞. We look for such a solution in the form

R10(r) = e−β r, (5.11.24)

where β is a constant and we have omitted a constant factor on the right-hand side, which

can be taken care of by normalization. From (5.11.23) and (5.11.24), we get

β 2− 2

r
β +

(
λ +

2α
r

)
= 0⇒ (β 2 +λ )+ (α−β )

2

r
= 0. (5.11.25)
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Since (5.11.25) must be satisfied for any value of r, we have only the following two

possibilities for the value of β

β 2 = −λ and β = α . (5.11.26)

Using the expressions for α and λ from (5.11.22) in (5.11.26), we obtain the following

formula for the ground state energy, Eg, of the hydrogen atom

Eg = − μ2e4

(4πε0)2h̄4
× h̄2

2μ
= − μ

2h̄2

(
e2

4πε0

)2

. (5.11.27)

Inserting the values of the fundamental constants and the mass of the electron for μ , we

get the value of the ground state energy of the hydrogen atom

E = −13.6 eV (5.11.28)

which coincides with the ground state energy, E1, in the Bohr theory of hydrogen atom.

Clearly, the probability of finding the electron in the volume element dτ = r2 sinθ
drdθ dϕ is given by

wdτ = |N|2|R10(r)|2|Y 0
0 (θ ,ϕ)|2r2 sinθdrdθdϕ , (5.11.29)

where N is the normalization constant. Consequently, the probability of finding the electron

at a distance in the interval [r,r+ dr] from the nucleus is obtained by integrating over the

angles. Taking into account the normalization of the spherical harmonics, we get

w(r)dr = |N|2r2e−2β rdr = |N|2r2e−2β rdr. (5.11.30)

Since β has the dimension of length inverse, we introduce a new constant a such that

β = 1/a. Then,

w(r)dr = |N|2r2e−2r/adr. (5.11.31)

The probability density w(r) = |N|2r2e−2r/a0 equals zero at r = 0 and tends to zero for

r → ∞. Therefore, in principle, there is a non-zero probability of finding the electron at

any distance from the nucleus between r ≥ 0 and r = ∞. Let us determine the distance at

which this probability reaches its maximum value. We have

dw
dr

= |N|2
(

2r− 2r2

a0

)
e−2r/a = 0,⇒ r− r2

a
= 0. (5.11.32)

Hence, the probability of finding the electron at a distance from the nucleus reaches it

maximum value at r0 = a. Now taking into account that a = 1/β = 1/α = 4πε0h̄2/μe2,

we get
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a =
4πε0h̄2

μe2
= 0.529×10−10m. (5.11.33)

If we recall the Bohr theory of hydrogen atom, we notice that a is nothing but the radius of

the first Bohr orbit. This is called Bohr radius. In literature, it is usually written as a0.

Let us now find the normalization constant N. The normalization condition reads

1 = |N|2
∫ ∞

0
e−2r/a0r2dr = |N|2

∫ ∞

0
e−2r/a0r2dr

= |N|2 2a3
0

8
= |N|2 a3

0

4
, (5.11.34)

where we have used the standard integral

I =
∫ ∞

0
xpe−bx =

p!
bp+1

=
ap+1

0 p!
2p+1

, (5.11.35)

for p = 2. As a result,

N =
2

(a3
0)

1/2
. (5.11.36)

The normalized ground state wave function of the hydrogen atom is given by

R0(r) =
2

(a3
0)

1/2
e−r/a0

1√
4π

=
1√
πa3

0

e−r/a0 . (5.11.37)

Example 5.11.1: Calculate the average distance of the electron from the nucleus in the

ground state of the hydrogen atom. Also, calculate the average values of the potential and

kinetic energies in the ground state of the hydrogen atom. Using the uncertainty relation,

discuss the stability of the hydrogen and hydrogenic atoms in the s state.

Solution: The average value 〈r〉 of the distance of the electron from the nucleus is given by

〈r〉=
∫

r|φ (�r)|2dτ∫ |φ (�r)|2dτ
=

1

(πa3
0)

∫ ∞

0
re−2r/a0r2dr

∫ 2π

0
dϕ
∫ π

0
dθ sinθ

=
4π

(πa3
0)

∫ ∞

0
e−2r/a0r3dr =

4π
πa3

0

3!a4
0

(2)4
=

3

2
a0. (5.11.38)
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The average value of 1/r is〈
1

r

〉
=
∫

1

r
|φ (�r)|2dτ =

1

(πa3
0)

∫ ∞

0

1

r
e−2r/a0r2dr

∫ 2π

0
dϕ
∫ π

0
sinθdθ

= 4π
1

(πa3
0)

∫ ∞

0
e−2r/a0rdr =

4

a3
0

1

(2/a0)2
=

1

a0
. (5.11.39)

Therefore, the average value of the potential energy of the electron

〈U〉= − e2

4πε0

〈
1

r

〉
= − e2

4πε0a0
= − e2

4πε0

μe2

4πε0h̄2
= 2

[
− μ

2h̄2

(
e2

4πε0

)2
]
. (5.11.40)

Recollecting the expression for the ground state energy E1, we get that 〈U〉 = 2E1. Now,

the total energy E1 is equal to sum of the average value of the kinetic energy 〈T 〉 and the

average value of the potential energy 〈U〉: E1 = 〈T 〉+ 〈U〉. Therefore, we get

〈T 〉= E1−〈U〉= −E1 =
μ

2h̄2

(
e2

4πε0

)2

. (5.11.41)

These results allow us to explain the stability of the hydrogen and hydrogenic atoms in the

s state in the following way.

Let us assume that the electron in a hydrogen or hydrogenic atom remains at a distance

r = a0 on the average. Let the uncertainty in the momentum of the electron be Δpr. Then

in accordance with the aforementioned result, Δp2
r /2μ has to be of the order of 〈T 〉, that is,

(Δpr)2

2μ
= 〈T 〉= μ

2h̄2

(
e2

4πε0

)2

=
h̄2

dμa2
0

. (5.11.42)

The uncertainty principle, on the other hand, says that

ΔrΔpr ≥ h̄
2
⇒ Δr ≥ h̄

2

1

Δpr
=

h̄
2
× a0

h̄
=

a0

2
. (5.11.43)

Taking the equality sign in this expression, we conclude that for hydrogen and hydrogenic

atoms to be stable in the s state (with angular momentum zero), the uncertainty in position,

that is, the radius of the sphere in which the electron is confined, cannot be less than a0/2.

In the opposite case, the law of conservation of energy will be violated.

The general solution for the hydrogen atom: Let us go back to (5.11.18),

− h̄2

2μ

[
1

r2

∂
∂ r

(
r2 ∂φ

∂ r

)
+

1

r2 sinθ
∂

∂θ

(
sinθ

∂φ
∂θ

)
+

1

r2 sin2 θ
∂ 2φ
∂ϕ2

]
− e2

4πε0r
φ = Eφ ,

(5.11.44)
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and try to find its solution in the general case. Since the potential is spherically symmetric,

the general solutions (with an arbitrary value of �) are given by

φ (r,θ ,φ ) = Rn�(r) Y m
� (θ ,ϕ), (5.11.45)

where Y m
� (θ ,ϕ) are the normalized spherical harmonics and the radial wave function

Rn�(r) satisfies

d
dr

(
r2 dRn�(r)

dr

)
+

[
λ +

2α
r

]
r2Rn�(r) = �(�+ 1)Rn�(r), (5.11.46)

where

λ =
2μE
h̄2

;α =
μe2

4πε0h̄2
. (5.11.47)

Or,

d2Rn�

dr2
+

2

r
dRn�(r)

dr
+

(
λ +

2α
r
− �(�+ 1)

r2

)
Rn�(r) = 0. (5.11.48)

As mentioned earlier, we are interested in the bound state solutions for which E < 0 and

hence, λ < 0. Since
√|λ | has dimensions of inverse of length, we introduce r0 = 1/

√−λ .

Then (5.11.48) takes the form:

d2Rn�

dr2
+

2

r
dRn�(r)

dr
+

(
− 1

r2
0

+
2α
r
− �(�+ 1)

r2

)
Rn�(r) = 0. (5.11.49)

Let us introduce the dimensionless independent variable

ρ = 2
r
r0

= 2r
√
−λ . (5.11.50)

Then, we have

d
dr

=
dρ
dr

d
dρ

=
2

r0

d
dρ

, (5.11.51)

d2

dr2
=

dρ
dr

d
dρ

(
2

r0

d
dρ

)
=

4

r2
0

d2

dρ2
. (5.11.52)

Using these results in (5.11.49) and multiplying throughout by r2
0/4, we get

d2Rn�(ρ)
dρ2

+
2

ρ
dRn�(ρ)

dρ
+

(
−1

4
+

α√−λ
1

ρ
− �(�+ 1)

ρ2

)
Rn�(ρ) = 0. (5.11.53)
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For ρ → ∞, (5.11.53) reduces to

d2Rn�(ρ)
dρ2

− 1

4
Rn�(ρ) = 0, (5.11.54)

which has simple solutions Rn�(r) = exp(±ρ/2). Since the solution with positive

exponent tends to ∞ as r→ ∞, it does not satisfy the standard conditions. Hence, it has to

be omitted. Consequently, we look for the solution of (5.11.52) in the following form

Rn�(ρ) = e−ρ/2un�(ρ), (5.11.55)

where the function un�(ρ) must obey the boundary conditions. Differentiating Rn�(ρ) with

respect to ρ , we obtain

dRn�

dρ
=

(
dun�

dρ
− 1

2
un�

)
e−ρ/2, (5.11.56)

d2Rn�

dρ2
=

(
d2un�

dρ2
− dun�

dρ
+

1

4

)
e−ρ/2. (5.11.57)

Equation (5.11.53), along with (5.11.55)–(5.11.57), leads to the following differential

equation for the function un�(ρ)

d2un�

dρ2
+

(
2

ρ
−1

)
dun�

dρ
+

[(
α√−λ

−1

)
1

ρ
− �(�+ 1)

ρ2

]
un� = 0. (5.11.58)

The form of the equation (5.11.58) suggests that we look for the solution in the form

un�(ρ) = ργ
∞

∑
j=0

c j ρ j, (5.11.59)

where γ , c1,c2,c3, ... are constants to be determined. Note that, as in the case of a one-

dimensional harmonic oscillator, in order to guarantee the boundedness of the solution for

ρ → 0, the series solution must start with ργ instead of a constant. The value of γ will be

determined from the requirement that the function un� is finite everywhere. Differentiating

the infinite sum (5.11.58) term by term, we get

dun�

dρ
=

∞

∑
j=0

c j(γ + j)ργ+ j−1, (5.11.60)

where we have simply rewritten the resulting infinite sum by changing the dummy index

of summation from j to j+ 1. Differentiating once again, we obtain
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d2un�

dρ2
=

∞

∑
j=0

c j(γ + j) (γ + j−1)ργ+ j−2 (5.11.61)

From (5.11.58)–(5.11.61), we arrive at

∞

∑
j=0

c j(γ + j) (γ + j−1)ργ+ j−2 +
∞

∑
j=0

2c j (γ + j)ργ+ j−2−
∞

∑
j=0

c j (γ + j)ργ+ j−1

+
∞

∑
j=0

c j

[(
α√−λ

−1

)
1

ρ
− �(�+ 1)

ρ2

]
ργ+ j = 0. (5.11.62)

Or,

∞

∑
j=0

c j [(γ + j) (γ + j+ 1)− �(�+ 1)] ργ+ j−2

=
∞

∑
j=0

c j

[
(γ + j+ 1)− α√−λ

]
ργ+ j−1. (5.11.63)

Equation (5.11.63) must hold identically and, hence, the coefficients before identical

powers of ρ , on both sides of the equation, must be equal. The lowest order term on the

left-hand side contains ργ−2 with the coefficient (γ(γ +1)− �(�+1))c0. The lowest term

on the left-hand side contains ργ−1. Therefore,

(γ(γ + 1)− �(�+ 1))c0 = 0⇒ (γ(γ + 1)− �(�+ 1)) = 0. (5.11.64)

Equation (5.11.64) has two possible solutions

γ = � or γ = −(�+ 1). (5.11.65)

If we take the solution γ =−(�+1), then the series in (5.11.59) would start with the term

c0/ρ�+1 that goes to infinity for ρ → 0. Therefore, we omit it and take γ = �. As a result,

(5.11.63) reads

∞

∑
j=0

c j [(�+ j) (�+ j+ 1)− �(�+ 1)] ρ�+ j−2

=
∞

∑
j=0

c j

[
(�+ j+ 1)− α√−λ

]
ρ�+ j−1. (5.11.66)
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Since the coefficient for j = 0 on the left-hand (LHS) side of (5.11.66) is zero, the series

on the LHS starts with j = 1. If we change the dummy index of summation j to j+ 1, we

have

LHS =
∞

∑
j=0

c j+1 [(�+ j+ 1) (�+ j+ 2)− �(�+ 1)] ρ�+ j−1. (5.11.67)

Consequently Equation (5.11.66) can be written as

∞

∑
j=0

(
c j+1 [(�+ j+ 1) (�+ j+ 2)− �(�+ 1)]− c j

[
(�+ j+ 1)− α√−λ

])
ρ�+ j−1 = 0.

(5.11.68)

From (5.11.68), we get the following recursion relation for the coefficients of the series in

(5.11.59):

c j+1 =

[
(�+ j+ 1)− α√−λ

]
(�+ j+ 1) (�+ j+ 2)− �(�+ 1)

c j. (5.11.69)

The recursion relation allows us to calculate all the coefficients of the series in (5.11.59) in

terms of one coefficient, say c0, with which the series starts. This coefficient is determined

by the normalization condition. Thus, the series solution of (5.11.58) is given by (5.11.59)

with coefficients determined by the recursion relation (5.11.69)) and the normalization of

the radial wave function. The series in (5.11.59) is an infinite series and hence, we must

check whether its behaviour as ρ → ∞ is consistent with the finiteness of u(ρ) or not. For

this, let us look at the ratio c j+1/c j for large values of j (which obviously corresponds to

large values of ρ):

lim
j→∞

c j+1

c j
= lim

j→∞

[
(�+ j+ 1)− (α/

√−λ )
]

(�+ j+ 1) (�+ j+ 2)− �(�+ 1)
=

1

j
. (5.11.70)

On the other hand, the ratio ak+1/ak for the series

eρ =
∞

∑
k=0

ρk

k!
ak (5.11.71)

is

lim
k→∞

ak+1

ak
= lim

k→∞

k!
(k+ 1)!

=
1

k+ 1
∼ 1

k
. (5.11.72)

Hence, for large values of ρ , the series in (5.11.59) is proportional to eρ . That means, for

ρ → ∞,
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u(ρ) ∼ ρ�eρ ⇒ Rn�(ρ) = e−ρ/2 un�(ρ) ∼ ρ�eρ/2, (5.11.73)

and blows up. Therefore, if we want the required solutions for the radial wave function to

satisfy the standard conditions, the series must be converted into a polynomial. That is, it

must truncate at some appropriate term. This is possible only if, for some value j = jmax,

the numerator in (26) becomes zero, that is,

(nr + �+ 1)− α√−λ
= 0, (5.11.74)

where nr = jmax is the maximum value of j for which cnr+1 = 0. The number nr is called

the radial quantum number. Introducing a new quantum number, n, by the relation

n = nr + �+ 1, (5.11.75)

we get that

α√−λ
= n. (5.11.76)

n is called the principal quantum number. It allows us to write the recursion relation for

the coefficients of the polynomial as

c j+1 =
[(�+ j+ 1)−n]

(�+ j+ 1) (�+ j+ 2)− �(�+ 1)
c j. (5.11.77)

Further, we have

√
−λ =

α
n
=

μe2

4πε0 nh̄2
. (5.11.78)

Or,

−2μE
h̄2

=

(
μe2

4πε0nh̄2

)2

. (5.11.79)

Therefore, the possible values of energy are

En = − μ
2h̄2

(
e2

4πε0

)2
1

n2
. (5.11.80)

We see that the energy depends only on the principal quantum number n. Since the

minimum value of � is 0, it follows from (5.11.73) that the maximum value of � is

obtained when nr = 0, i.e., �max = n−1. Therefore, the possible values of �, for a given n,

are: �= 0,1,2,3, ...,n−1.
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We thus see that the energy states of a hydrogen atom can be characterized by three

quantum numbers nr,�, and m. However, since nr is determined by n and �
(nr = n− �−1), the energy states of a hydrogen atom are usually described by the triplet

of quantum numbers n, �, and m, as in other cases considered earlier.

Note that all the energy states of hydrogen, except the ground state with n = 1 and

� = 0, are degenerate. The degree of degeneracy is determined as follows. For a given

value of n, there are n possible values of � (0,1,2,3, ...,n− 1) and for every � there are

2�+ 1 values of m from −� to +�. Therefore, the degeneracy g is given by

g =
n−1

∑
�=0

(2�+ 1) = 1+ 3+ 5+ ...+(2n−1). (5.11.81)

This series is an arithmetic series with n terms and the common difference d = 2. Hence,

the sum is given by

g =
n−1

∑
�=0

(2�+ 1) =
n
2
[2×1+(n−1)×2] = n2. (5.11.82)

In atomic physics, stationary states with different quantum numbers n are denoted by

specific symbols. A symbol has the principal quantum number n as the coefficient before

a letter which corresponds to different values of �. For instance, the state with n = 1 and

� = 0 is written as s state. For n = 2, the states are written as 2s and 2p; for n = 3, they

are written as 3s, 3p and 3d, and so on and so forth.

Let us write down the full form of the stationary state wave functions for the hydrogen

atom. Note that

√
−λ =

√
−2μEn

h̄2
=

(
1

n2

(
μe2

4πε0h̄2

)2
)1/2

=
1

na0
, (5.11.83)

where a0 is the Bohr radius. Hence, ρ = 2r/na0. Consequently, the stationary state

energies and the corresponding wave functions of the hydrogen atom are, respectively,

En = − μ
2h̄2

(
e2

4πε0

)2
1

n2
, (n = 1,2,3, ...), (5.11.84)

ψn�m(r,θ ,ϕ) = φn�m(r,θ ,ϕ)e−
i
h̄ Ent = Rn�(r)Y m

� (θ ,ϕ)e−
i
h̄ Ent , (5.11.85)

Rn�(r) = e−r/na0

(
ρ�

nr

∑
j=0

c jρ j

)
= e−r/na0

(
2r

na0

)� nr

∑
j=0

c j

(
2r

na0

) j

, (5.11.86)
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Y m
� (θ ,ϕ) = (−1)m

√
(2�+ 1)(�−m)!

4π(�+m)!
Pm
� (cosθ )eimϕ , (m≥ 0), (5.11.87)

c j+1 =
[(�+ j+ 1)−n]

(�+ j+ 1) (�+ j+ 2)− �(�+ 1)
c j, (5.11.88)

where the associated Legendre polynomials, Pm
� (x) and the Legendre polynomials, P�(x),

of degree �, are given by

Pm
� (x) = (1− x2)|m|/2 ∂ |m|

∂x|m|
P�(x),x = cosθ , (5.11.89)

P�(x) =
1

2��!
∂ �

∂x�
(x2−1)�. (5.11.90)

The constant c0 is determined in each case from the normalization of the radial wave

function. Note that the resulting wave functions ψn�m(r,θ ,ϕ) are mutually orthogonal∫
ψ∗n�m(r,θ ,ϕ)ψn′�′m′(r,θ ,ϕ)r2 sinθdrdθdϕ = δnn′δll′δmm′ , (5.11.91)

which follows from the orthogonality of the spherical harmonics and from the fact that, for

n �= n′, they are eigenfunctions of the Hamiltonian with distinct eigenvalues.

To illustrate the procedure of calculations, let us now determine the analytical

expressions for the wave functions of the ground state and the first excited state of the

hydrogen atom.

Ground state: For the ground state of hydrogen, n = 1, � = 0 and m = 0. Therefore, the

wave function is given by

φ100(r,θ ,ϕ) = R10(r)Y 0
0 (θ ,ϕ). (5.11.92)

Now, the radial quantum number nr = n− �− 1 = 0 and the recursion relation (5.11.77)

gives c1 = 0. Hence, the radial wave function is given by

R10(r) = c0e−r/a0 . (5.11.93)

Normalizing the radial wave function, we get

1 = c2
0

∫ ∞

0
r2e−2r/a0dr =

c2
0a3

0

4
,⇒ c0 =

2√
a3

0

. (5.11.94)
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Therefore,

R10(r) =
2√
a3

0

e−r/a0 . (5.11.95)

Since Y 0
0 (θ ,ϕ) = 1/

√
4π , the ground state wave function is

φ100(r,θ ,ϕ) =
2√
a3

0

1√
4π

e−r/a0 =
1√
πa3

0

e−r/a0 . (5.11.96)

First excited state: Here, n = 2 and � can take two values: 0 and 1. For � = 0, we have

m = 0. This state is described by the wave function

φ200(r,θ ,ϕ) = R20(r)Y 0
0 (θ ,ϕ), (5.11.97)

and is called the 2s state. For � = 1, m can take three values −1,0 and +1. This state is

called the 2p state and it is 3-fold degenerate. The corresponding wave functions are

φ21−1(r,θ ,ϕ) = R21(r)Y−1
1 (θ ,ϕ), (n = 2,�= 1,m = −1), (5.11.98)

φ210(r,θ ,ϕ) = R21(r)Y 0
1 (θ ,ϕ), (n = 2,�= 1,m = 0), (5.11.99)

φ211(r,θ ,ϕ) = R21(r)Y+1
1 (θ ,ϕ), (n = 2,�= 1,m = +1). (5.11.100)

Consider first the case: n = 2 and �= 0. We have nr = 1. The recursion relation (5.11.77)

now gives c1 = −c0/2 and c2 = 0. Therefore,

R20(r) =
(

c0 + c1
r

a0

)
e−r/2a0 = c0

(
1− r

2a0

)
e−r/2a0 . (5.11.101)

The normalization for R20(r) reads

1 = c2
0

∫ ∞

0

[
1− r

a0
+

r2

4a2
0

]
r2e−r/a0dr = c2

0a3
0

[
2−6+

24

4

]

= 2c2
0a3

0,⇒ c0 =
1√
2a3

0

. (5.11.102)

As a result,

R20(r) =
1√
2a3

0

(
1− r

2a0

)
e−r/2a0 . (5.11.103)
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Once again, Y 0
0 (θ ,ϕ) = 1/

√
4π , and hence, the 2s state wave function is given by

φ200(r,θ ,ϕ) =
1

2
√

a3
0

1√
4π

(
1− r

2a0

)
e−r/2a0

=
1√

8πa3
0

(
1− r

2a0

)
e−r/2a0 . (5.11.104)

For n = 2 and � = 1, we have nr = 0. The recursion relation (5.11.77) now gives c1 = 0.

Hence,

R21(r) = c0
r

a0
e−r/2a0 . (5.11.105)

Normalization gives

c0 =
1√
24a3

0

. (5.11.106)

Hence, we get

R21(r) =
1√
24a3

0

r
a0

e−r/2a0 . (5.11.107)

Calculating the required spherical harmonics from (5.6.11), (5.6.12) and (5.6.14), we have

Y−1
1 (θ ,ϕ) =

√
3

8π
sinθe−iϕ , (5.11.108)

Y 0
1 (θ ,ϕ) =

√
3

4π
cosθ , (5.11.109)

Y 1
1 (θ ,ϕ) = −

√
3

8π
sinθe+iϕ . (5.11.110)

Consequently, the 2p state wave functions are given by

φ21−1(r,θ ,ϕ) =
1

8
√

πa3
0

r
a0

e−r/2a0 sinθe−iϕ , (5.11.111)

φ210(r,θ ,ϕ) =
1

4
√

2πa3
0

r
a0

e−r/2a0 cosθ , (5.11.112)



222 Fundamentals of Quantum Mechanics

φ211(r,θ ,ϕ) = − 1

8
√

πa3
0

r
a0

e−r/2a0 sinθeiϕ . (5.11.113)

For convenience in calculations, the first few radial wave functions, Rn�(r), are presented

in Table 1.

Table 5.1 The first few radial wave functions of hydrogen.

R10(r) = 2√
a3

0

e−r/a0

R20(r) = 1√
2a3

0

(
1− r

2a0

)
e−r/2a0

R21(r) = 1√
24a3

0

r
a0

e−r/2a0

R30(r) = 2√
27a3

0

[
1− 2r

3a0
+ 2

27

(
r

a0

)2
]

e−r/3a0

R31(r) = 8

27
√

6a3
0

r
a0

(
1− r

6a0

)
e−r/3a0

R32(r) = 4

81
√

30a3
0

(
r

a0

)2
e−r/3a0

R40(r) = 1

4
√

a3
0

[
1− 3r

4a0
+ 1

8

(
r

a0

)2− 1
192

(
r

a0

)3
]

e−r/4a0

R41(r) =
√

5

16
√

3a3
0

r
a0

[
1− r

4a0
+ 1

80

(
r

a0

)2
]

e−r/4a0

R42(r) = 1

64
√

5a3
0

(
r

a0

)2 [
1− r

12a0

]
e−r/4a0

R43(r) = 1

768
√

35a3
0

(
r

a0

)3
e−r/4a0

Laguerre polynomials and the radial wave function: The polynomials

nr

∑
j=0

c j ρ j =
nr

∑
j=0

c j

(
2r

na0

) j

, (5.11.114)
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in (5.11.86), whose coefficients are defined by the recursion relation (5.11.88), are known

as associated Laguerre polynomials in mathematical physics. In our case, barring

normalization, we can write

nr

∑
j=0

c j ρ j = L2�+1
n−�−1(ρ), (5.11.115)

where Lp
q−p(x) are expressed in terms of the qth Laguerre polynomials, Lq(x), as

Lp
q−p(x) = (−1)p dp

dρ p Lq(x). (5.11.116)

The qth Laguerre polynomial is given by

Lq(x) = ex dq

dxq (x
qe−x). (5.11.117)

The first few Laguerre polynomials, Lq(x), and the associated Laguerre polynomials,

Lp
q−p(x), are listed in Table 2 and Table 3, respectively.

Table 5.2 The first few Laguerre polynomials, Lq(x).

L0(x) = 1

L1(x) = −x+ 1

L2(x) = x2−4x+ 2

L3(x) = −x3 + 9x2−18x+ 6

L4(x) = x4−16x3 + 72x2−96x+ 24

L5(x) = −x5 + 25x4−200x3 + 600x2−600x+ 120

L6(x) = x6−36x5 + 450x4−2400x3 + 5400x2−4320x+ 720
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Table 5.3 The first few associated Laguerre polynomials, Lp
q−p(x).

L0
0 = 1, L0

1 = −x+ 1, L0
2 = x2−4x+ 2,

L1
0 = 1, L1

1 = −2x+ 4, L1
2 = 3x2−18x+ 18

L2
0 = 2, L2

1 = −6x+ 18, L2
2 = 12x2−96x+ 144

L3
0 = 6, L3

1 = −24x+ 96, L3
2 = 60x2−600x+ 1200,

Figure 5.2 Energy levels and transitions between them for the hydrogen atom.

Using these Laguerre polynomials, the normalized wave function of the hydrogen atom

can be written as:
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ψn�m(r,θ ,ϕ) =

√(
2

na0

)3 (n− �−1)!
2n [(n+ �)!]3

e−r/na0

(
2r

na0

)�

×
[

L2�+1
n−�−1

(
2r

na0

)]
Y m
� (θ ,ϕ). (5.11.118)

The spectrum of hydrogen: In principle, if the hydrogen atom is in one of the stationary

states, it will reside there for ever. However, when perturbed (in fact, perturbations are

always present), it may make a transition to another stationary state either by absorbing

energy from the perturbation or by giving off energy under the action of the applied

perturbation. In the first case, it makes a transition to an energetically higher state by

absorbing electromagnetic radiation (usually), while in the latter case, it slides down to an

energetically lower state by emitting electromagnetic radiation. The energy of the

radiation, Eγ , is equal to the difference in energy of the stationary states involved in the

transition:

Eγ = Ei−E f = E1

(
1

n2
i
− 1

n2
f

)
, (5.11.119)

where E f and Ei are the energy of the final and the initial stationary states, respectively,

and

E1 = − μ
2h̄2

(
e2

4πε0

)2

(5.11.120)

is the energy of the ground state (n = 1). The energy of a photon is proportional to the

frequency, ν , of the emitted or absorbed radiation according to the formula Eγ = hν , where

h is the Planck’s constant. Also, the wavelength, λ , of the emitted or absorbed radiation is

given byλ = c/ν , where c is the speed of light in vacuum. Therefore,

1

λ
=

μ
4π h̄3c

(
e2

4πε0

)2
(

1

n2
f
− 1

n2
i

)
= R

(
1

n2
f
− 1

n2
i

)
, (5.11.121)

where R = 1.097× 107 (1/m) is the Rydberg constant. Equation (5.11.121) represents

the well-known Rydberg formula for the spectrum of hydrogen.

The energy levels and the transitions between them have been depicted in Figure 5.2.

The collection of spectral lines corresponding to the transitions from the higher energy

states to the lower ones are named after the scientists who discovered them

experimentally. The spectral lines corresponding to transitions to the ground state, n f = 1,

fall in the ultraviolet region of the electromagnetic spectrum and constitute the Lyman
series. The spectral lines corresponding to transitions to the first excited state, n f = 2, fall
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in the visible region of the electromagnetic spectrum and constitute the Balmer series,

while the series consisting of spectral lines related to transitions to the 2nd excited state,

with n f = 3, falls in the infrared region and is known as Paschen series; and so on and so

forth.

Example 5.11.2: At t = 0, the wave function of a hydrogen atom is given by

ψ(r,θ ,ϕ) =
1√
2

φ300(r,θ ,ϕ)+
1√
3

φ311(r,θ ,ϕ)+
1√
6

φ322(r,θ ,ϕ).

(a) What is the wave function at any t > 0? (b) If a measurement of energy is carried out

in this state, what values would result and with what probabilities?

Solution: (a) Since Ĥφn�m = Enφn�m,

Ĥψ(r,θ ,ϕ ,0) = E3ψ(r,θ ,ϕ ,0), (5.11.122)

and the wave function at any t > 0 would be

ψ(r,θ ,ϕ , t) =
[

1√
2

φ300(r,θ ,ϕ)+
1√
3

φ311(r,θ ,ϕ)+
1√
6

φ322(r,θ ,ϕ)
]

e−
i
h̄ E3t ,

(5.11.123)

where E3 = E1/9 = −13.6/9 eV.

(b) Since the wave function is normalized: 〈ψ(r,θ ,ϕ ,0) |ψ(r,θ ,ϕ ,0) 〉 = 1, and it is an

eigenfunction of the Hamiltonian, the measurement of energy will give E3 with

probability 1.

Example 5.11.3: Suppose we carry out the following transformation of the independent

variable, r, and the radial wave function Rn�:

r =
λ
2

ρ2, Rn� =
χ(ρ)

ρ
,

in the radial equation for hydrogen, where λ is a constant. (a) Show that χ(ρ) is a

solution of the radial equation of a two-dimensional harmonic oscillator with frequency

ω =
√
−2λ 2E/μ and energy 2e2λ /(4πε0), where E is the energy of the hydrogen atom.

(b) Using the expression for the energy eigenvalues of the two-dimensional harmonic

oscillator and comparing both the radial equations (for the hydrogen atom and for the

two-dimensional oscillator) term by term to extract the correspondence between the

parameters, determine the energy spectrum of the hydrogen atom. (c) Also, explicitly

construct the normalized ground state wave function of the hydrogen atom.



Quantum Mechanics in Three Spatial Dimensions 227

Solution: The differential equation for the radial wave function Rn�(r) of the hydrogen atom

reads

d
dr

(
r2 dRn�(r)

dr

)
+

[
2μE
h̄2

r2 +
2μe2

4πε0h̄2
r
]

Rn�(r) = �(�+ 1)Rn�(r). (5.11.124)

The transformation of the independent variable gives

r =
λρ2

2
⇒ d

dr
=

1

λρ
d

dρ
. (5.11.125)

As a result, (5.11.122) takes the form[
1

4ρ
d

dρ

(
ρ3 d

dρ

)
+

μe2λ
4πε0h̄2

ρ2 +
μEλ 2

2h̄2
ρ4− �(�+ 1)

]
χ(ρ)

ρ
= 0. (5.11.126)

It can be further simplified as

1

4ρ

[
ρ3

(
− χ

ρ2
+

1

ρ
dχ
dρ

)]
+

[
μe2λ

4πε0h̄2
ρ +

μEλ 2

2h̄2
ρ3− �(�+ 1)

ρ

]
χ(ρ)

=
1

4

[
ρ

d2χ
dρ2

+
dχ
dρ
− 1

ρ
χ
]
+

[
μe2λ

4πε0h̄2
ρ +

μEλ 2

2h̄2
ρ3− �(�+ 1)

ρ

]
χ(ρ)

=
d2χ
dρ2

+
1

ρ
dχ
dρ
− 1

ρ2
χ +

[
μe2λ
πε0h̄2

+
2μEλ 2

h̄2
ρ2− 4�(�+ 1)

ρ2

]
χ(ρ)

=
d2χ
dρ2

+
1

ρ
dχ
dρ

+

[
μe2λ
πε0h̄2

+
2μEλ 2

h̄2
ρ2

]
χ−
[

1

ρ2
+

4�(�+ 1)

ρ2

]
χ = 0. (5.11.127)

Finally, we obtain

d2χ
dρ2

+
1

ρ
dχ
dρ
−
[
(2�+ 1)2

ρ2
− μe2λ

πε0h̄2
− 2μEλ 2

h̄2
ρ2

]
χ = 0. (5.11.128)

Let us now compare (5.11.126) with the equation satisfied by the radial wave function

R(ρ) of a two-dimensional harmonic oscillator:

d2R(ρ)
dρ2

+
1

ρ
dR(ρ)

dρ
−
[

m2
�

ρ2
+

m2ω2

h̄2
ρ2− 2μE

h̄2

]
R = 0, (5.11.129)

where m� = 0,±1,±2,±3, . . . is the magnetic quantum number and m is the mass. The

correspondence among the parameters are given by
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m� = (2�+ 1), ω =

√
−2λ 2E

μ
, E ′ =

e2λ
2πε0

, (5.11.130)

where E is the energy of the hydrogen atom and E ′ is the energy of the oscillator. With this

correspondence, χ(ρ) is indeed satisfies the radial equation of a two-dimensional harmonic

oscillator with frequency ω =
√
−2λ 2E/μ and energy 2e2λ /(4πε0), where E is the

energy of the hydrogen atom.

(b) The energy levels of the two-dimensional harmonic oscillator is given by

E ′ = h̄ω(n′+ 1), (5.11.131)

where

n′ = |m�|+ 2nρ = 2(�+ nρ)+ 1 = 2n−1, (5.11.132)

nρ being the radial quantum number for the two-dimensional oscillator and n = (�+ nρ +
1) is the principal quantum number as introduced in the case of the hydrogen atom. Hence,

E ′ = h̄ω [(2n−1)+ 1] = 2h̄ωn. (5.11.133)

As a result, we have

e2λ
2πε0

= 2nh̄

√
−2λ 2En

μ
. (5.11.134)

The last equation gives the energy levels of the hydrogen atom as

En = − μ
2h̄2

(
e2

4πε0

)2
1

n2
, n = 1,2,3, . . . (5.11.135)

Equation (5.11.133) gives the same energy spectrum as obtained earlier(see (5.11.84)).

Degeneracy: Given a fixed value of n≥ 1, the quantum number � will take 0,1,2,3, . . . ,n−
1 values, while the radial quantum number nρ will take values n− 1,n− 2,n− 3, . . . ,0.

Therefore, for a given n≥ 1, the total number of energy states that correspond to the same

energy En is

(n−1)

∑
�=1

(2�+ 1) = n2. (5.11.136)

(c) Note that the ground state energy of the hydrogen atom has n = 1 and � = 0. This

means that it corresponds to the m� = 1 and nρ = 0 state of the 2D harmonic oscillator.
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The corresponding ground state wave function of the 2D oscillator in polar coordinates is

given by

χ(ρ) = N ρ e−
mω
2h̄ ρ2

, (5.11.137)

where N is the normalization constant. As a consequence the ground state radial wave

function of the hydrogen atom will be given by

R10(ρ) =
χ(ρ)

ρ
= N e−

mω
2h̄ ρ2

. (5.11.138)

If we replace m by the reduced mass μ and replace E by the expression for the ground state

energy of the hydrogen atom, we have

ω =

√
2λ 2

μ

(
e2

4πε0

)2 μ
2h̄2

=
e2λ

4πε0h̄
, (5.11.139)

Therefore, we get

μω
2h̄

=
λ μe2

8πε0h̄2
=

λ
2a0

, (5.11.140)

where a0 is the Bohr radius. The ground state radial wave function of the hydrogen atom

can now be written as

R10(r) = N e−
λ

2a0
ρ2

= N e−
r

a0 . (5.11.141)

The normalization condition for this wave function is

1 = N2
∫ ∞

0
r2 e−2 r

a0 dr =
a3

0

4
N2 (5.11.142)

The normalization constant is thus given by

N =
2√
a3

0

. (5.11.143)

The normalized ground state radial wave function of the hydrogen atom is

R10(r) =
2√
a3

0

e−
r

a0 . (5.11.144)
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5.12 The Isotropic Harmonic Oscillator in Spherical Coordinates

Consider a particle of effective mass μ moving in isotropic harmonic oscillator potential

V (r) =
1

2
μ ω2 r2,

where μ is the mass, ω is the angular frequency of the oscillator and r is the radial distance

from the origin. Let us find the energy levels of the particle and determine the full stationary

state wave functions.

We start with the Schrödinger equation in spherical coordinates

− h̄2

2μ

[
1

r2

∂
∂ r

(
r2 ∂φ

∂ r

)
+

1

r2 sinθ
∂

∂θ

(
sinθ

∂φ
∂θ

)
+

1

r2 sin2 θ
∂ 2φ
∂ϕ2

]
+

1

2
μ ω2 r2φ =Eφ .

(5.12.1)

and look for the solution in the form

φ (r,θ ,φ ) = R(r)Y (θ ,ϕ). (5.12.2)

The angular solutions remain unchanged and are still given by the spherical harmonics

Y�,m(θ ,ϕ), where � is the orbital quantum number and m is the corresponding magnetic

quantum number. Hence, we concentrate on solving the radial equation[
1

r2

d
dr

(
r2 d

dr

)
− 2μ

h̄2

(
E− 1

2
μ ω2 r2− h̄2�(�+ 1)

2μr2

)]
R(r) = 0. (5.12.3)

Substituting once again R(r) = u(r)/r, we arrive at

d2u
dr2

+
2μ
h̄2

[
E− 1

2
μ ω2 r2− h̄2�(�+ 1)

2μr2

]
u(r) = 0. (5.12.4)

To determine the form of solution satisfying the standard conditions, we first examine the

form of possible solutions for the limiting cases of r→ 0 and r→ ∞.

For r → 0, neglecting (2μE/h̄2)u(r) in comparison with the last term in (5.12.4), we

get

d2u
dr2

− �(�+ 1)

r2
u(r) = 0. (5.12.5)

Let us look for u(r) in the form rs. We then obtain from (5.12.5)

s(s−1)− �(�+ 1) = 0, (5.12.6)
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which has two solutions s = −� and s = �+ 1. Since u ∼ r−� blows up at r = 0, it is

excluded due to the standard conditions, we conclude that in the vicinity of r = 0, we

should have u∼ r�+1.

For r→ ∞, the radial equation (5.12.4) reduces to

d2u
dr2

+

(
2μE
h̄2

− μ2ω2

h̄2
r2

)
u(r) = 0. (5.12.7)

Recalling our experience with the Coulomb potential problem, we see that the form of this

equation suggests

u(r) ∼ Ae−αr2
v(r), (5.12.8)

where v(r) is some polynomial in r. Let us try the simplest v(r) = 1. Then u(r) = Ae−αr2
.

Then we obtain from (5.12.7)

4α2r2−2α +
2μE
h̄2

− μ2ω2

h̄2
r2 = 0. (5.12.9)

From the above equation we obtain

α =
μω
2h̄

, and E =
h̄ω
2

. (5.12.10)

Next, we put v(r) = r and get that

α =
μω
2h̄

, and E =
3h̄ω

2
. (5.12.11)

Similarly, for v(r) = r2, we obtain α = μω/2h̄ and E = 5h̄ω/2, and so on and so forth.

Taking into account all this, we come to the conclusion that we must look for the solution

to the radial equation (5.12.4) in the form

u(r) = r�+1 e−
μω
2h̄ r2

v(r). (5.12.12)

The above form of the solution tells us that we should change to the new variable

ρ =

√
μω
h̄

r. (5.12.13)

In the new variable ρ , (5.12.4) reduces to

d2u
dr2

+

(
λ −ρ2− �(�+ 1)

ρ2

)
u = 0, (5.12.14)
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where u = u(ρ) and λ = 2E/h̄ω . Consequently, we look for the solution of the equation

(5.12.14) in the form

u(ρ) = ρ�+1 e−ρ2/2 v(ρ). (5.12.15)

Substitution of u from (5.12.15) into (5.12.14) yields the following ordinary second order

differential equation with variable coefficients for the function v(ρ):

d2v
dρ2

+

(
2(�+ 1)

ρ
−2ρ

)
dv
dρ

+(λ −2�−3)v = 0. (5.12.16)

We look for the solution in terms of an infinite series

v(ρ) =
∞

∑
p=0

ap ρ p, (5.12.17)

where ap are constant expansion coefficients. Using it in (5.12.16), we obtain

∞

∑
p=0

ap
[
p(p−1)ρ p−2 +(2�+ 2) p ρ p−2−2 p ρ p +(λ −2�−3) ρ p]= 0. (5.12.18)

Let us replace p by (p+ 2) in the first two terms. We then get

∞

∑
p=−2

ap+2 [(p+ 1)(p+ 2)ρ p +(2�+ 2) (p+ 2)ρ p]

+
∞

∑
k=0

ap (λ −2�−3−2k) ρ p = 0. (5.12.19)

The last equation leads to

∞

∑
p=0

[(p+ 1)(p+ 2)ap+2 +(2�+ 2) (p+ 2)ap+2 +(λ −2�−3−2p)ap] ρ p

+ (2�+ 2)a1
1

ρ
= 0. (5.12.20)

For (5.12.20) to hold both the terms must separately be equal to zero. This leads to a1 = 0

and the recursion relation for the expansion coefficients

ap+2 =
(2�+ 2p+ 3−λ )

(p+ 1)(p+ 2)+ (2�+ 2)(p+ 2)
ap. (5.12.21)
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Since a1 = 0, the recursion relation (5.12.21) tells us that all the coefficients corresponding

to odd values of p in the series (5.12.17) are zero. As a result, we obtain the solution of the

radial equation (5.12.14) as

u(ρ) = ρ�+1 e−ρ2/2 v(ρ), v(ρ) = ∑
p

ap ρ p, p = 0,2,4, . . . . (5.12.22)

For ρ → ∞, the above solution diverges as eρ2
unless the infinite series is terminated at

some term. Hence, for some p = pmax = k, the coefficient ap+2 must vanish. Clearly, this

can be achieved if

2�+ 2k+ 3−λ = 0. ⇒ λ =
2E
h̄ω

= 2�+ 2k+ 3. (5.12.23)

The above condition leads to the energy eigenvalues of the oscillator associated with a

given value of �:

Ek,� = h̄ω
(

k+ �+
3

2

)
, (5.12.24)

where k is any even positive integer or zero. If we introduce the quantum number n = k+�,
the energy levels of the 3D isotropic oscillator can be written as

En = h̄ω
(

n+
3

2

)
, (5.12.25)

where, in view of the fact that � can take any positive integer value (including zero) and

k is an even and positive integer (including zero), n = k+ � = 0,1,2,3, . . .. Therefore, n
can take any positive integer values or zero. In this case, we shall have λ = 2n+3 and the

recursion relation will read as

ap+2 =
2(�+ p−n)

(p+ 1)(p+ 2)+ (2�+ 2)(p+ 2)
ap. (5.12.26)

For a given n = k+ �, there exists (except for normalization) a unique eigenfunction

φn�m(r,θ ,φ ) = Rn,�(r)Y�m(θ ,ϕ). (5.12.27)

with

Rn�(r) = β � r� e−β r2/2 v (β r) , v(β r) = ∑
p

ap (β r)p, p = 0,2,4, . . .k, (5.12.28)

where β =
√

mω/h̄. Taking into account that for even n, � can take (n/2+ 1) values:

0,2,4, . . . ,n, while for odd n, it can take [(n−1)/2+1] values: 1,3,5, . . . ,n, the degeneracy

of the energy levels is calculated to be
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gneven = ∑
�=0,2,4,...,n

(2�+ 1) =
(n+ 1)(n+ 2)

2
, for even n, (5.12.29)

gnodd = ∑
�=1,3,5,...,n

(2�+ 1) =
(n+ 1)(n+ 2)

2
, for odd n. (5.12.30)

For illustration, let us determine the energies and the wave functions of the three lowest

lying states of the oscillator.

Ground state: The ground state corresponds to n = 0 for which � = k = 0. Therefore, the

ground state energy is given by E0 = (3/2)h̄ω .

Since v(β r) = a0, the corresponding wave function is

φ000 = a0e−
μω
2h̄ r2

Y00(θ ,ϕ), (5.12.31)

where a0 is determined from the normalization of the radial part of the wave function.

Finally, the normalized ground state wave function is given by

φ000 =
2

π1/4

(mω
h̄

)3/4

e−
mω
2h̄ r2

Y00(θ ,ϕ). (5.12.32)

First excited state: It corresponds to n = 1. Since k has to be even, we have � = 1 and

k = 0. Thus, the energy of the first excited state is E1 = (5/2)h̄ω .

Once again v(β r) = a0, and the radial wave function is

R11 = a0

(mω
h̄

)1/2

r e−
mω
2h̄ r2

. (5.12.33)

The normalization of R11(r) yields

a0 =

√
8

3
√

π

(mω
h̄

)3/4

. (5.12.34)

Consequently, we have

φ11m =

√
8

3
√

π

(mω
h̄

)5/4

re−
mω
2h̄ r2

Y1m(θ ,ϕ), m = −1,0,1. (5.12.35)

Second excited state: It corresponds to n = 2. Since k has to be even, we have two pairs of

k and �: (2,0) and (0,2). Since n = 2, the energy of the first excited state is E1 = (7/2)h̄ω .
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Case 1: k = 2 and �= 0. In this case

v(β r) = a0 + a2β 2r2, a2 = −2

3
a0. (5.12.36)

The radial wave function is given by

R20 = a0

(
1− 2

3
β r2

)
e−

mω
2h̄ r2

. (5.12.37)

After normalizing R20(r) we obtain

φ200 =

√
6

π
1
4

(mω
h̄

)3/4
(

1− 2mω
3h̄

r2

)
e−

mω
2h̄ r2

Y00(θ ,ϕ). (5.12.38)

Case 2: k = 0 and �= 2. In this case again v(β r) = a0 and the radial wave function is

R22 = a0
mω
h̄

r2 e−
mω
2h̄ r2

. (5.12.39)

After normalizing R20(r) we obtain

φ22m =
4√

15
√

π

(mω
h̄

)7/4

r2 e−
mω
2h̄ r2

Y2m(θ ,ϕ). (5.12.40)

Homework Problems

1. Consider the case of a particle moving in the infinite rectangular well potential

discussed in the chapter. What is the probability of finding the particle in the volume

given by 0 < x < a, 0 < y < b, and 0 < z < c/3?

2. A particle is in the second excited state of an infinite cubic potential well of side a.

Determine the wave functions and the corresponding energy for this state. What is

the degeneracy of this level?

3. An electron moves in an infinite cubic potential well of side a = 0.5 nm. What energy

does the electron have in (a) the ground state and (b) the first excited state?

4. A particle of mass m is confined to move in an infinite two-dimensional potential

well of side L. (a) Solve the corresponding two-dimensional TISE by the method

of separation of variables and determine the wave functions and the corresponding

energy levels. (b) Find the energies of the ground state and the first excited state. Are

these states degenerate?

5. Find the stationary state wave functions and the corresponding energies for a particle

of mass m moving in a three-dimensional isotropic harmonic oscillator potential
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V (x,y,z) =
1

2
mω2(x2 + y2 + z2).

6. Assume that the nucleus of an atom can be regarded as a three-dimensional box of

width 2× 10−14 m. If a proton moves as a particle in this box, find (a) the ground

state energy of the proton in MeV and (b) the energies of the first and second excited

states. (c) What are the degeneracies of these states?

7. Use the Rodriguez formula to construct the first five Legendre polynomials.

8. Use (5.611), (5.6.12) and (5.6.14) to work out the spherical harmonics Y00, Y10, Y1−1

and Y11. Check that they are normalized to unity.

9. Using the Rodriguez formula, derive the orthonormality condition for the Legendre

polynomials

∫ 1

−1
P�(x)P�′(x)dx =

2

2�+ 1
δ��′ ,

where x = cosθ .

10. Find the � = 0 energy and normalized wave function of a particle of mass m that is

subject to the following central potential

V (r) =
{

0, for a < r < b
∞, for r > a,

where a and b are positive constants. Write down the full stationary state solution.

11. Find the energy levels and the corresponding normalized wave functions for a particle

of mass m subject to the following central potential

V (r) = −αδ (r−a), a > 0,

where α is a positive constant. Discuss the existence of bound states in terms of the

size of a.

12. Write down the TISE in plane polar coordinates for a two-dimensional isotropic

harmonic oscillator

V (x,y) =
1

2
mω2(x2 + y2),

where ω is the angular frequency of the oscillator. Solve it and find the energy levels

and the corresponding eigenfunctions. Discuss the degeneracy of the energy states.

13. (a) Calculate the most probable distance of the electron from the nucleus in the

ground state of hydrogen. (b) Find the average distance of the electron from the

nucleus in the ground state of hydrogen and compare it with the result of (a).
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14. Calculate
〈
r2
〉

in the ground state of the hydrogen atom. Using this and the result of

the Problem 13, calculate the uncertainty in the measurement of the distance of the

electron from the nucleus in the ground state of hydrogen.

15. The normalized ground state wave function for the electron in the hydrogen atom is

ψ(r,θ ,φ ) =
1√
πa3

0

e−r/a0 ,

where r is the radial coordinate of the electron and a0 is the Bohr radius. (a) Sketch

the wave function as a function of r. (b) Show that the probability of finding the

electron between r and r+ dr is given by

4

a3
0

r2e−2r/a0dr.

(c) Show that the wave function as given is normalized. (e) Find the probability of

locating the electron between a0/2≤ r ≤ 3a0/2.

16. Calculate 〈x〉 and
〈
x2
〉

in the ground state of the hydrogen atom.

17. The radial part of the wave function for the hydrogen atom in the 2p state is given by

ψ(r,θ ,φ ) = Are−r/2a0 ,

where A is a constant and a0 is the Bohr radius. Using this expression, calculate the

average value of r for an electron in this state.

18. An electron in a hydrogen atom is in the energy eigenstate

ψ2,1,−1(r,θ ,φ ) = Nre−r/2a0Y−1
1 (θ ,φ ).

(a) Find the normalization constant N.

(b) What is the probability per unit volume of finding the electron at r = 2a0,θ =
45◦ and φ = 60◦?

19. An electron in the Coulomb field of a proton is in a state described by the wave

function

ψ =
1

6
[4ψ100 + 3ψ211−ψ210 +

√
10ψ21−1].

What is the expectation value of energy?

20. Calculate 〈r〉, 〈r2〉 and Δr in the state with n = 2,�= 0 and m = 0.

21. Calculate 〈ψn�|r|ψn�〉,〈ψn�|r2|ψn�〉 and 〈ψn�|1/r|ψn�〉 in the nth stationary state, ψn�,

of the hydrogen atom.
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22. Using the recursion relation, derive the radial wave functions R30, R31 and R32.

Normalize them and write down the stationary state wave functions ψ300, ψ320,

ψ32−2, and ψ32−1.

23. A hydrogen-like atom consists of a single electron orbiting the nucleus with Z
protons. (a) Determine the energy spectrum of a hydrogen-like atom, that is,

determine En(Z). (b) Determine the Bohr radius as a function of Z and the modified

expression for the Rydberg constant R.

24. (a) Determine the quantum numbers � and m� for the He+ ion in the state

corresponding to n = 3. (b) What is the energy of this state?

25. (a) Determine the quantum numbers � and m� for the Li2+ ion in the states

corresponding to n = 1 and n = 2. (b) Determine the energies of these states.

26. The wavelength for the n = 3 to n = 2 transition of the hydrogen atom is 656.3 nm.

What is the wavelength of this same transition in singly ionized helium?

27. Calculate the uncertainty product ΔrΔp for the 1s electron of a hydrogen-like atom

with atomic number Z.



Chapter 6

Quantum Mechanical Theory of Orbital Angular
Momentum

6.1 The Angular Momentum Operators in Cartesian Coordinates

In classical mechanics, the angular momentum of a particle is given by�L =�r×�p, where

�r and �p are the position vector and momentum of the particle, respectively. The quantum

mechanical operator for�̂L, is obtained by replacing�r and �p, with their respective operators,

that is,

�̂L =�̂r× �̂p. (6.1.1)

Using the expressions for �̂r and �̂p in the Cartesian system of coordinates, we have �̂L =
îL̂x + ĵL̂y + k̂L̂z, where

L̂x = y p̂z− z p̂y = −ih̄
(

y
∂
∂ z
− z

∂
∂y

)
, (6.1.2)

L̂y = z p̂x− x p̂z = −ih̄
(

z
∂
∂x
− x

∂
∂y

)
, (6.1.3)

L̂z = x p̂y− y p̂x = −ih̄
(

x
∂
∂y
− y

∂
∂x

)
. (6.1.4)

It is easy to check that each of these operators is hermitian (see Example 6.2.1 below). The

operator corresponding to the square of the angular momentum is a scalar operator given

by

L̂2 = �̂L ·�̂L = L̂2
x + L̂2

y + L̂2
z . (6.1.5)

239
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6.2 Commutation Relations, Measurement and Uncertainty

The algebra of the angular momentum operators is given by their commutation relations,

which can be readily calculated with the help of the fundamental commutators [x̂ j, p̂k] =
ih̄ δ jk, [x̂ j, x̂k] = [ p̂ j, p̂k] = 0, j,k = 1,2,3, and the following properties of commutators

[Â± B̂,Ĉ] = [Â,Ĉ]± [B̂,Ĉ], (6.2.1)

[Â, B̂Ĉ] = B̂[Â,Ĉ]+ [Â, B̂]Ĉ, (6.2.2)

where Â, B̂, and Ĉ are arbitrary operators. For instance,

[L̂x, L̂y] = [y p̂z− z p̂y,z p̂x− x p̂z] = [y p̂z,z p̂x]− [z p̂y,z p̂x]− [y p̂z,x p̂z]+ [z p̂y,x p̂z].

(6.2.3)

Simplifying, we get

[y p̂z,z p̂x] = y [ p̂z,z p̂x]+ [y,z p̂x] p̂z = y z [ p̂z, p̂x]+ y [ p̂z,z] p̂x + z [y, p̂x] p̂z

+[y,z] p̂x p̂z = −ih̄ y p̂x, (6.2.4)

[z p̂y,z p̂x] = z [ p̂y,z p̂x]+ [z,z p̂x] p̂y = z2 [ p̂y, p̂x]+ z [ p̂y,z] p̂x + z [z, p̂x] p̂y

+[z,z] p̂x p̂y = 0, (6.2.5)

[y p̂z,x p̂z] = y [ p̂z,x p̂z]+ [y,x p̂z] p̂z = y x [ p̂z, p̂z]+ y [ p̂z,x] p̂z + x [y, p̂z] p̂z

+[y,x] p̂2
x = 0, (6.2.6)

[z p̂y,x p̂z] = z [ p̂y,x p̂z]+ [z,x p̂z] p̂y = z x [ p̂y, p̂z]+ z [ p̂y,x] p̂z + x [z, p̂z] p̂y

+[z,x] p̂z p̂y = ih̄ x p̂y. (6.2.7)

Hence, we get

[L̂x, L̂y] = ih̄ (x p̂y− y p̂x) = ih̄L̂z. (6.2.8)

The other two commutators are calculated in a similar manner. The net result is

[L̂x, L̂y] = ih̄L̂z, [L̂y, L̂z] = ih̄L̂x, [L̂z, L̂x] = ih̄L̂y. (6.2.9)

The commutation relations (6.2.9) can be combined together into a single vector equation

ih̄�̂L = �̂L×�̂L. (6.2.10)
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Equivalently, they can also be written as[
L̂ j, L̂k

]
= ih̄ ε jk� L̂�, (6.2.11)

where summation over the repeated index � from 1 to 3 is understood. Here, in (6.2.11),

the symbol εi jk is called the Levi-Civita tensor density and it is defined as

εi jk =

⎧⎪⎨
⎪⎩

1 if (i jk) is an even permutation of (1 2 3)

−1 if (i jk) is an odd permutation of (1 2 3)

0 otherwise.

(6.2.12)

Measurement and uncertainty relation: We have earlier shown (Chapter 3) that any two

hermitian and non-commuting operators, Â and B̂, satisfy the generalized uncertainty

relation

ΔA ΔB≥ 1

2

√∣∣〈[Â, B̂]〉∣∣2. (6.2.13)

Using this result for the angular momentum operators, L̂x, L̂y and L̂z, we conclude that they

must satisfy the following uncertainty relations

ΔL j ΔLk ≥ 1

2

√∣∣〈[L̂ j, L̂k]〉
∣∣2 = h̄

2
|〈L�〉|, (6.2.14)

where ( jk�) are cyclic permutations of (123). It then follows that no two components

of the angular momentum can be measured simultaneously accurately. At first glance, it

might appear that only one of the three components of�L can be determined or specified to

characterize a given state of a particle. However, a careful analysis shows that, along with

one of the components of�L, the square of the total angular momentum (hence, the absolute

value of the angular momentum) can also be measured accurately in a given state of the

particle. This is because of the fact that L̂2 commutes with each of the components L̂x, L̂y
and L̂z. For instance, we have

[L̂2, L̂x] = [(L̂2
x + L̂2

y + L̂2
z ), L̂x] = [L̂2

y , L̂x]+ [L̂2
z , L̂x]

= L̂y[L̂y, L̂x]+ [L̂y, L̂x]L̂y + L̂z[L̂z, L̂x]+ [L̂z, L̂x]L̂z

= −ih̄L̂yL̂z− ih̄L̂zL̂y + ih̄L̂zL̂y + ih̄L̂yL̂z = 0. (6.2.15)

Similarly, we can prove that L̂y and L̂z also commute with L̂2. As a consequence, we can

write

[L̂2,�̂L] = 0. (6.2.16)



242 Fundamentals of Quantum Mechanics

Hence, in terms of the angular momentum of a particle, its quantum state can be

characterized by the magnitude of the total angular momentum and any one of the

Cartesian components of the angular momentum. Because of the isotropy of space, this

component is always taken to be Lz. Consequently, the wave functions of the particle are

characterized by two quantum numbers, the orbital quantum number, � and the magnetic

quantum number, m� or simply m. The meaning of these quantum numbers and their

relationship with the eigenvalues of the operator L̂2 will follow from our later analysis.

Example 6.2.1: Show that the operator L̂x, is hermitian.

Solution: For the hermiticity of L̂x we must have L̂†
x = L̂x. Recalling that x̂†

k = xk, p̂†
k =

p̂k, k = 1,2,3, we get

L̂†
x = (y p̂z− z p̂y)

† = (y p̂z)
†− (z p̂y)

† = p̂†
z y†− p̂†

y ẑ† = p̂z y− p̂y z. (6.2.17)

Using now that [x̂ j, p̂k] = 0, if j �= k, we arrive at the required result

L̂†
x = (y p̂z− z p̂y)

† = y p̂z− z p̂y = L̂x. (6.2.18)

Example 6.2.2: Find the value of the commutators (a) [x̂, L̂x], (b) [x̂, L̂y], and [ p̂x, L̂y].

Solution:

(a) Using the expression for L̂x in terms of the position and momentum operators, we have

[x̂, L̂x] = [x̂, (ŷ p̂z− ẑ p̂y] = [x̂, ŷ p̂z]− [x̂, ẑ p̂y]

= [x̂, ŷ] p̂z + ŷ [x̂, p̂z]− [x̂, ẑ] p̂y− ẑ [x̂, p̂z]. (6.2.19)

Since [x̂ j, x̂k] = 0, for all values of j and k from 1 to 3 and [x̂ j, p̂k] = 0 for j �= k,

[x̂, L̂x] = 0.

(b) Similarly,

[x̂, L̂y] = [x̂, (ẑ p̂x− x̂ p̂z] = [x̂, ẑ p̂x]− [x̂, x̂ p̂z]

= [x̂, ẑ] p̂x + ẑ [x̂, p̂x]− [x̂, x̂] p̂z− x̂ [x̂, p̂z]. (6.2.20)

Using [x̂ j, x̂k] = 0, and [x̂ j, p̂k] = ih̄ δ jk, we get that [x̂, L̂y] = ih̄ ẑ = ih̄ z.

(c) In this case, we have

[ p̂x, L̂y] = [ p̂x, (ẑ p̂x− x̂ p̂z] = [ p̂x, ẑ p̂x]− [ p̂x, x̂ p̂z]

= [ p̂x, ẑ] p̂x + ẑ [ p̂x, p̂x]− [ p̂x, x̂] p̂z− x̂ [ p̂x, p̂z]. (6.2.21)

Using [ p̂ j, p̂k] = 0, for all values of j and k from 1 to 3 and [x̂ j, p̂k] = ih̄ δ jk, we get that

[ p̂x, L̂y] = ih̄ ẑ = ih̄ p̂z.
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6.3 The Eigenvalues of L̂2 and L̂z

We shall determine the possible eigenvalues of L̂2 and L̂z by algebraic means. In other

words, we shall determine their eigenvalues without solving the differential equations

representing the corresponding eigenvalue problems for these operators. Our discussion

will revolve around the commutation relations (6.2.9) and their consequences in the

framework of linear algebra. In such an approach, the angular momentum is simply an

observable represented by three hermitian operators L̂x, L̂y, L̂z that satisfy the

commutation relations (6.2.9). Since the entire discussion is based only on the

commutation relations (6.2.9) of the angular momentum operators, the consequences hold

good for any set of operators satisfying an identical set of commutation relations.

Since L̂2 and L̂z commute, they have a common set of eigenfunctions. Let ψλ μ(�r)
be a common eigenfunction of L̂2 and L̂z, corresponding to the eigenvalues h̄2λ , and h̄μ ,

respectively. That is,

L̂2ψ(�r) = h̄2λψλ μ(�r), (6.3.1)

L̂zψ(�r) = h̄μψλ μ(�r). (6.3.2)

Note that the dimensions of the angular momentum are those of h̄, owing to which we have

introduced the factors h̄2 and h̄ before λ and μ , respectively, so that they are dimensionless.

Analogous to the case of one-dimensional harmonic oscillator discussed earlier, let us

introduce the operators:

L̂± = L̂x± iL̂y. (6.3.3)

Using the commutation relations (6.2.9), the commutator of L̂z with L̂± can be readily

computed as

[L̂z, L̂+] = [L̂z, L̂x]+ i[L̂z, L̂y] = ih̄L̂y + i (−i) h̄L̂x = h̄(L̂x + iL̂y) = h̄L̂+, (6.3.4)

[L̂z, L̂−] = [L̂z, L̂x]− i[L̂z, L̂y] = ih̄L̂y− h̄L̂x = −h̄(L̂x− iL̂y) = −h̄L̂−. (6.3.5)

Hence, the operators L̂± do not commute with L̂z. However, they do commute with L̂2:

[L̂2, L̂±] = [L̂2
x , L̂±]+ [L̂2

y , L̂±]+ [L̂2
z , L̂±] = [L̂2

x , L̂x± iL̂y]

+ [L̂2
y , L̂x± iL̂y]+ [L̂2

z , L̂x± iL̂y] = ±i[L̂2
x , L̂y]+ [L̂2

y , L̂x]

+ [L̂2
z , L̂x]± i[L̂2

z , L̂y] = ∓h̄
(
L̂xL̂z + L̂zL̂x

)− ih̄
(
L̂yL̂z + L̂zL̂y

)
+ ih̄

(
L̂yL̂z + L̂zL̂y

)± h̄
(
L̂xL̂z + L̂zL̂x

)
= 0. (6.3.6)
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Since L̂± do not commute with L̂z, the eigenfunctions of L̂z are not the eigenfunctions of

L̂±. However, we have the following results

L̂z
(
L̂+ψλ μ

)
= h̄ L̂+ψλ μ + L̂+(L̂zψλ μ) = h̄ (μ + 1)

(
L̂+ψλ μ

)
, (6.3.7)

L̂z
(
L̂−ψλ μ

)
= −h̄ L̂−ψλ μ + L̂−(L̂zψλ μ) = h̄ (μ−1)

(
L̂−ψλ μ

)
, (6.3.8)

which show that if ψλ μ is an eigenfunction of L̂z with eigenvalue h̄μ , then L̂+ψλ μ is also

an eigenfunction of L̂z but with an eigenvalue (h̄μ + h̄). That is, the operator L̂+, by acting

on the eigenfunction of L̂z with a given eigenvalue, converts it into an eigenfunction of L̂z
with an eigenvalue raised by one unit of h̄. Similarly, the operator L̂−, by acting on the

eigenfunction of L̂z with a given eigenvalue, converts it into an eigenfunction of L̂z with

an eigenvalue lowered by one unit of h̄. Therefore, the operators L̂+ and L̂− are called the

raising (creation) and the lowering (annihilation) operators, respectively.

As a result, for a given value of λ (i.e., for a given eigenvalue of the L̂2 operator),

we can construct a ladder of discrete eigenstates of L̂z by repeatedly acting on a given

eigenfunction of L̂z with the raising operator L̂+, in which any two neighbouring states

will differ in eigenvalue by one unit of h̄. Note that if, starting with an eigenstate of L̂z with

a given eigenvalue, this process is continued indefinitely, we shall land up with a state in

which the z component of the angular momentum will exceed the total angular momentum.

Therefore, we conclude that there must exist an eigenstate, ψλ μmax
, of L̂z with the highest

possible eigenvalue, h̄μmax, such that

L̂2ψλ μmax
= h̄2λψλ μmax

, �̂Lzψλ μmax
= h̄μmax ψλ μmax

and L̂+ψλ μmax
= 0. (6.3.9)

The next question is: How to find μmax? To answer this question we notice that

L̂±L̂∓ = (L̂x± iL̂y)(L̂x∓ iL̂y) = L̂2
x + L̂2

y∓ i(L̂xL̂y− L̂yL̂x)

= L̂2− L̂2
z ∓ i(ih̄L̂z) = L̂2− L̂2

z ± h̄L̂z, (6.3.10)

and hence

L̂2 = L̂±L̂∓+ L̂2
z ∓ (h̄L̂z). (6.3.11)

That is, either L̂2 = L̂+L̂−+ L̂2
z − (h̄L̂z), or L̂2 = L̂−L̂++ L̂2

z +(h̄L̂z). Therefore, using the

lower sign in (6.3.11), we obtain

L̂2ψλ μmax
= L̂−L̂+ψλ μmax

+ L̂2
z ψλ μmax

+(h̄L̂z)ψλ μmax

= 0+ h̄2μ2
maxψλ μmax

+ h̄2μmaxψλ μmax
= h̄2μmax(μmax + 1)ψλ μmax

,

(6.3.12)
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and hence

λ = h̄2μmax(μmax + 1). (6.3.13)

This gives us the eigenvalues of the operator L̂2 in terms of the maximal eigenvalue of L̂z.

An argument similar to the one used in the case of L̂+, there must exist an

eigenstate,ψλ μmin
, of L̂z with the lowest possible eigenvalue, μmin, such that

L̂2ψλ μmin
= h̄2λψλ μmin

, L̂zψμmin
= h̄μmin ψλ μmin

and L̂−ψλ μmin
= 0. (6.3.14)

Using the upper sign in (6.3.11), we have

L̂2ψλ μmin
= L̂+L̂−ψλ μmin

+ L̂2
z ψλ μmin

− (h̄L̂z)ψλ μmin

= (0+ h̄2μ2
min− h̄2μmin)ψλ μmin

= h̄2μmin(μmin−1)ψλ μmin
. (6.3.15)

Therefore,

λ = h̄2μmin(μmin−1). (6.3.16)

From (6.3.13) and (6.3.16), we conclude

μmax(μmax + 1) = μmin(μmin−1). (6.3.17)

We get from (6.3.17) that either μmin = μmax + 1 or μmin = −μmax. The first solution is

unacceptable since, if so, the eigenvalue of the lowest eigenstate of L̂z will be greater than

the eigenvalue of the highest eigenstate. Thus, μmax = −μmax.

It is obvious now that if we start with ψλ μmax
and apply L̂− to it N integer number of

times, we arrive at ψλ μmin
. Therefore,

μmax = μmin +N. (6.3.18)

Taking into account that μmin = −μmax in (6.3.18), we arrive at

μmax =
N
2

. (6.3.19)

It is customary to denote μmax by � and μ by m (or, m�). The numbers � and m are called the

orbital quantum number and the magnetic quantum number, respectively. The eigenvalues

of L̂2 and L̂z can now be written as

λ� = h̄2 �(�+ 1), μm = h̄ m, (6.3.20)

where, for a given �, m takes (2�+ 1) values from −� to � and � must be an integer or a

half-integer depending on whether N is even or odd.
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Thus, the joint eigenfunctions of L̂2 and L̂z are characterized by two quantum numbers

� and m, where � can take integer as well as half-integer values and, for a given �, m can

take (2�+ 1) values from −� to �. They are denoted as ψm
� . The eigenvalue equations for

L̂2 and L̂z, respectively, are

L̂2ψm
� = h̄2�(�+ 1)ψm

� , L̂zψm
� = h̄mψm

� , (6.3.21)

where � = 0,1/2,1,3/2, ... and m = −�,−�+ 1,−�+ 2,−�+ 3, . . . ,0,1,2,3, . . . ,�− 1,�.
Since for a given value of �, there are (2�+ 1) different values of m, the eigenvalue λ� =
h̄2�(�+ 1) of L̂2 is said to be (2�+ 1)-fold degenerate.

6.4 The Angular Momentum Operators in Spherical Coordinates

Having determined the possible eigenvalues of L̂2 and L̂z, let us proceed to find the

corresponding eigenfunctions. For the given purpose it is convenient to go over to the

spherical system of coordinates (see Fig. 5.1 ). Using the chain rule for differentiation and

the transformation equations (5.4.1) and (5.4.2), we obtain

∂
∂ϕ

=
∂x
∂ϕ

∂
∂x

+
∂y
∂ϕ

∂
∂y

+
∂ z
∂ϕ

∂
∂ z

= −r sinθ sinϕ
∂
∂x

+ r sinθ cosϕ
∂
∂y

= x
∂
∂y
− y

∂
∂x

, (6.4.1)

and

∂
∂θ

= cotθ
(

x
∂
∂x

+ y
∂
∂y

)
− tanθ z

∂
∂ z

. (6.4.2)

If we now use the equations (5.4.3)-(5.4.5) along with the transformation equations (5.4.1)

and (5.4.2), then the expressions for the x, y and z components of the angular momentum

operator in spherical coordinates can be written as

L̂x = ih̄
(

sinϕ
∂

∂θ
+ cotθ cosϕ

∂
∂ϕ

)
, (6.4.3)

L̂y = −ih̄
(

cosϕ
∂

∂θ
− cotθ sinϕ

∂
∂ϕ

)
(6.4.4)

L̂z = −ih̄
∂

∂ϕ
. (6.4.5)
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The expression for L̂2 is obtained by first writing the operators L̂+ and L̂− in spherical

coordinates and then using any one of the two expressions for L̂2, in terms of L̂+ and L̂−
and L̂z, given in (6.3.11). Hence, we start with the operator L̂+. We have

L̂+ = L̂x + iL̂y = h̄
[

iz
∂
∂y

+ z
∂
∂x
− (x+ iy)

∂
∂ z

]
(6.4.6)

Taking into account that z = r cosθ and

x± iy = r sinθ (cosϕ± i sinϕ) = r e± iϕ sinθ , (6.4.7)

we get

L̂+ = h̄eiϕ
(

i r e−iϕ cosθ
∂
∂y

+ r e−iϕ cosθ
∂
∂x
− r sinθ

∂
∂ z

)

= h̄ eiϕ
[

i (x− iy) cotθ
∂
∂x

+(x− iy) cotθ
∂
∂x
− r sinθ

∂
∂ z

]

= h̄ eiϕ
[

cotθ
(

x
∂
∂x

+ y
∂
∂y

)
− tanθ z

∂
∂ z

+ i cotθ
(

x
∂
∂y
− y

∂
∂x

)]
. (6.4.8)

With the help of (6.4.1) and (6.4.2), we arrive at

L̂+ = h̄eiϕ
(

∂
∂θ

+ icotθ
∂

∂ϕ

)
. (6.4.9)

A similar calculation leads to

L̂− = −h̄e−iϕ
(

∂
∂θ
− icotθ

∂
∂ϕ

)
. (6.4.10)

Using now

L̂+L̂− = −h̄2eiϕ
(

∂
∂θ

+ icotθ
∂

∂ϕ

){
e−iϕ

(
∂

∂θ
− icotθ

∂
∂ϕ

)}

= −h̄2

(
∂ 2

∂θ 2
+ cotθ

∂
∂θ

+ cot2 θ
∂ 2

∂ϕ2
+ i

∂
∂ϕ

)
, (6.4.11)

and

L̂2 = L̂+L̂−+ L̂2
z − h̄L̂z, (6.4.12)
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we finally obtain the formula for L̂2 in spherical coordinates:

L̂2 = −h̄2

(
∂ 2

∂θ 2
+ cotθ

∂
∂θ

+
1

sin2 θ
∂ 2

∂ϕ2

)
. (6.4.13)

6.5 The Eigenfunctions of L̂2 and L̂z

We start with the eigenfunctions of L̂z. To find it, we must solve the following eigenvalue

equation for L̂z:

−ih̄
∂ Φ(ϕ)

∂ϕ
= αΦ(ϕ), (6.5.1)

where Φ(ϕ) is the eigenfunction and α is the corresponding eigenvalue. In addition, we

must require the fulfillment of the standard conditions of continuity, single-valuedness and

boundedness by the resulting solutions. The solution is readily obtained as

Φ(ϕ) = Φ0e
i
h̄ αϕ , (6.5.2)

where Φ0 is a constant to be determined by the normalization condition. Clearly, these

solutions are continuous and bounded in the entire range of variation of ϕ(0 ≤ ϕ ≤ 2π).
To check whether the solutions (6.5.2) are single-valued or not, we notice that the variable

ϕ is cyclic and, hence, the solutions will be single-valued only if

e
i
h̄ αϕ = e

i
h̄ α(ϕ+2π) ⇒ e

i
h̄ 2πα = 1. (6.5.3)

This is possible only if

α = ±m h̄, (6.5.4)

where m is an integer including zero. Thus, αm = mh̄,m = 0,±1,±2,±3, ... are the

eigenvalues of L̂z, which rightly happen to be the same as obtained earlier by algebraic

means. However, there is an important difference: the boundary conditions have
eliminated the half-integer values for m. It means that, if we measure Lz, we must get

only those values which are integral multiples of h̄. Once again, the characteristic number

m is called the orbital magnetic quantum number.

Finally, using the normalization condition

|Φ0|2
∫ 2π

0
dϕei(m−m′)ϕ = 1 (6.5.5)
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we obtain Φ0 = 1/
√

2π . Hence, the normalized eigenfunctions of the operator L̂z are

Φ(ϕ) =
1√
2π

eimϕ , m = 0,±1,±2,±3, ... (6.5.6)

Eigen functions of L̂2

Using (6.4.13), the eigenvalue equation for L̂2 can be written as

−h̄2

{
1

sinθ
∂

∂θ

(
sinθ

∂ψm
� (θ ,ϕ)
∂θ

)
+

1

sin2 θ
∂ 2ψm

� (θ ,ϕ)
∂ϕ2

}
= h̄2�(�+ 1)ψm

� (θ ,ϕ).

(6.5.7)

By multiplying (6.5.7) throughout by sin2 θ , we can rewrite it as

sinθ
∂

∂θ

(
sinθ

∂ψm
� (θ ,ϕ)
∂θ

)
+

∂ 2ψm
� (θ ,ϕ)
∂ϕ2

+�(�+1) sin2 θ ψm
� (θ ,ϕ) = 0. (6.5.8)

Equation (6.5.8) can be solved by the method of separation of variables. So, we look for

the solution in the form

ψm
� (θ ,ϕ) = ϑ m

� (θ )Φ(ϕ). (6.5.9)

Using ψm
� (θ ,ϕ), given by (6.5.9), in (6.5.8) and dividing the resulting equation

throughout by ϑ m
� Φ, we obtain{

1

ϑ m
�

[
sinθ

d
dθ

(
sinθ

∂ϑ m
�

∂θ

)]
+ �(�+ 1) sin2 θ

}
+

1

Φ
∂ 2Φ
∂ϕ2

= 0, (6.5.10)

The first term in (6.5.10) is a function of θ , while the second term is a function of ϕ
alone. Therefore, for this equation to be valid for any values of the independent variables

θ and ϕ , each of the terms must be a constant such that the sum is equal to zero. That is,

1

ϑ m
�

[
sinθ

d
dθ

(
sinθ

dϑ m
�

dθ

)]
+ �(�+ 1) sin2 θ = m2, (6.5.11)

1

Φ
∂ 2Φ
dφ 2

= −m2, ⇒ ∂ 2Φ
dϕ2

= −m2Φ, (6.5.12)

where m2 is the real and positive separation constant.

Equation (6.5.12) coincides with the eigenvalue equation for the L̂z operator considered

earlier. The solutions of this equation, satisfying the standard conditions, are once again

given by

Φ(ϕ) =
1√
2π

ei mϕ , m = 0,±1,±2,±3, ... (6.5.13)
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The differential equation (6.5.11) for ϑ m
� can be written as

1

sinθ
d

dθ

(
sinθ

dϑ m
�

dθ

)
+

[
�(�+ 1)− m2

sin2 θ

]
ϑ m
� = 0. (6.5.14)

With the substitution x = cosθ , it can be reduced to

(1− x2)
d2ϑ m

� (x)
dx2

−2x
dϑ m

� (x)
dx

+

[
�(�+ 1)− m2

(1− x2)

]
ϑ m
� (x) = 0, (6.5.15)

which is known as the associated Legendre differential equation in the theory of special

functions. Its solutions are given in terms of the associated Legendre polynomials

Pm
� (cosθ ):

ϑ m
� (θ ) =C�

m Pm
� (cosθ ), (6.5.16)

where C�
m are constants to be determined by the normalization condition. The associated

Legendre polynomials Pm
� (cosθ ) are defined by

Pm
� (x) = (1− x2)|m|/2 d|m|

dx|m|
P�(x), (6.5.17)

where x = cosθ and P�(x) is the Legendre polynomial of degree �, which is calculated

with the help of the formula

P�(x) =
1

2��!
d�

dx�
(x2−1)�. (6.5.18)

In literature, the formulae (6.5.17) and (6.5.18) are known as Rodriguez formulae. Note

that if we change m to −m in (6.5.17), we get that

P−m
� (x) = Pm

� (x). (6.5.19)

From the normalization condition for ψm
� (θ ,φ ), we get

|Cm
� |2

2π

∫ 2π

0
dϕ
∫ π

0
dθ sinθ

(
Pm′
�′ (cosθ )

)∗
Pm
� (cosθ ) = 1. (6.5.20)

Integrating over ϕ and using the following orthogonality condition

∫ π

0
dθ sinθ

(
Pm′
�′ (cosθ )

)∗
Pm
� (cosθ ) =

2

2�+ 1

(�+m)!
(�−m)!

δ��′ (6.5.21)
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for the associated Legendre polynomials in (6.5.20), we arrive at

Cm
� = (−1)m

√
(2�+ 1)

2

(�−m)!
(�+m)!

(m≥ 0). (6.5.22)

The expression for ϑ m
� now reads

ϑ m
� = (−1)m

√
(2�+ 1)

2

(�−m)!
(�+m)!

Pm
� (cosθ ). (6.5.23)

The full normalized eigenfunctions of L̂2 are now given by

ψm
� (θ ,ϕ) = ε

√
(2�+ 1)(�−m)!

4π(�+m)!
Pm
� (cosθ ) eimϕ , (6.5.24)

where ε = (−1)m for m ≥ 0 and ε = 1 for m < 0. Note that it is straightforward to

check that ψm
� (θ ,ϕ) are also eigenfunctions of L̂z with eigenvalues mh̄, where m = 0,±1,

±2,±3, and so on. If we refer to the theory of spherical functions, we recognize that the

functions given by (6.5.24) are nothing but the normalized spherical harmonics, Y m
� (θ ,ϕ).

Thus, the complete set of spherical harmonics, Y m
� (θ ,ϕ), constitutes the set of common

eigenfunctions of L̂2 and L̂z:

L̂2Y m
� (θ ,ϕ) = �(�+ 1) h̄2 Y m

� (θ ,ϕ), (6.5.25)

L̂z Y m
� (θ ,ϕ) = mh̄Y m

� (θ ,ϕ), (6.5.26)∫ 2π

0
dϕ
∫ π

0
dθ sinθ Y m′

�′ (θ ,ϕ)Y m
� (θ ,ϕ) = δ�′�δm′m, (6.5.27)

where �= 0,1,2,3, ... and m = −�,−�+ 1, . . . ,�−1,�.
For later references it is useful to have analytical expressions for a few of the frequently

used associated Legendre functions and spherical harmonics. We have presented them in

Tables 6.1 and 6.2, respectively.

Comments: 1. Since the magnitude of the angular momentum, for a given �, is given by√
�(�+ 1) h̄, different values of � correspond to the states with correspondingly different

values of the angular momentum. In atomic physics, these states are denoted by the letters

s, p,d, f , ... according to the following scheme:

�= 0 1 2 3 ...

state s p d f ...
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Table 6.1 The first few associated Legendre functions.

P0
0 = 1 P0

2 = 1
2(3cos2 θ −1)

P1
1 = sinθ P3

3 = 15sinθ (1− cos2 θ )

P0
1 = cosθ P2

3 = 15sin2 θ cosθ

P2
2 = 3sin2 θ P1

3 = 3
2 sinθ (5cos2 θ −1)

P1
2 = 3sinθ cosθ P0

3 = 1
2(5cos3 θ −3cosθ )

Table 6.2 The first few spherical harmonics.

Y 0
0 =

(
1

4π
)1/2

Y±2
2 =

(
15

32π
)1/2

sin2 θ e±2iϕ

Y 0
1 =

(
3

4π
)1/2

cosθ Y 0
3 =

(
7

16π
)1/2

(5cos3 θ −3cosθ )

Y±1
1 = ∓ ( 3

8π
)1/2

sinθ e±iϕ Y±1
3 = ∓( 21

64π
)1/2

sinθ (5cos2 θ −1) e±iϕ

Y 0
2 =

(
5

16π
)1/2

(3cos2 θ −1) Y±2
3 =

(
105
32π
)1/2

sin2 θ cosθ e±2iϕ

Y±1
2 = ∓ ( 15

8π
)1/2

sinθ cosθ e±iϕ Y±3
3 = ∓( 35

64π
)1/2

sin3 θ e±3iϕ

2. In the s state, �= 0 and the total angular momentum of the particle is zero. Consequently,

the value of m� is also zero. This state is non-degenerate. In the state p, we have �= 1 and

hence the quantum number m can take three values−1,0,+1. Consequently, the projection

of the angular momentum on the z-axis can have three values −h̄,0,+h̄, respectively. So,

the p-state is three-fold degenerate. Similarly, the d-state is 5-fold degenerate, the f -state

is 7-fold degenerate, and so on.

Example 6.5.1: Determine the wave function that represents a non-trivial state of a system,

such that it is an eigenstate of L̂2 with eigenvalue h̄2�(�+ 1) = 2h̄2 and also an eigenstate

of L̂x with eigenvalue 0.

Solution: It is given that an eigenvalue of L̂2 equals 2h̄2. That is, h̄2�(�+1) = 2h̄2. It implies

that �= 1. Since for �= 1, the magnetic quantum number m, takes three values −1,0 and
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+1, the given state is three-fold degenerate. The required wave function, ψ(θ ,ϕ), will be

a linear combination of the spherical harmonics Y m
1 with m = −1,0,1. Therefore, we can

write

ψ(θ ,ϕ) = AY 0
1 +BY 1

1 +CY−1
1 , (6.5.28)

A,B and C are arbitrary constants. Since this wave function is also an eigenfunction of

L̂x =
L̂++L̂−

2 with eigenvalue 0, we have

L̂++ L̂−
2

(
AY 0

1 +BY 1
1 +CY−1

1

)
= 0. (6.5.29)

With the help of the formulae

L̂±Y m
� = h̄

√
(�∓m)(�±m+ 1)Y m±1

� , (6.5.30)

Equation (6.5.30) yields[
BY 1

1 +(A+C)Y 0
1 +BY−1

1

]
= 0. (6.5.31)

Since the spherical harmonics are linearly independent, each of the coefficients in (6.5.31)

must be zero. We obtain A = −C and B = 0. Hence, the normalized wave function is

ψ(θ ,ϕ) =
1√
2

(
Y 1

1 −Y−1
1

)
. (6.5.32)

Example 6.5.2: A rigid rotator consists of two particles, each of mass m, attached to the

ends of a weightless rigid rod of length a, whose midpoint is fixed in space. The system

can rotate about this midpoint. Let this rigid rotator be free from any external force field.

Find the rotational energy states and the corresponding eigenfunctions of the rotator.

Solution: The energy of the rotator is purely kinetic

E =
1

2
Iω2, I = 2m

(a
2

)2
=

ma2

2
, (6.5.33)

where I is the moment of inertia of the rotator about its midpoint and ω is its angular

velocity. Since L = I ω is the angular momentum about the axis passing through the

midpoint of the rotator, the Hamiltonian is given by

H =
1

2I
(I2ω2) =

L2

2I
. (6.5.34)
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The time-independent Schrödinger equation reads

Ĥφ = Eφ , ⇒ L̂2φ = E ′φ , (6.5.35)

where E ′ = 2IE. Equation (6.5.35) is nothing but the eigenvalue equation for the square

of the angular momentum operator in spherical coordinates

L̂2φ m
� (θ ,ϕ) = E ′φ m

� (θ ,ϕ), (6.5.36)

which we have already solved. According to the earlier solution, the energy levels of the

rotator are

E ′� = h̄
√

�(�+ 1), ⇒ E� =
h̄
√
�(�+ 1)

2I
, �= 0,1,2,3, . . . (6.5.37)

The corresponding normalized eigenfunctions are given by the spherical harmonics

Y m
� (θ ,ϕ):

φ m
� (θ ,ϕ) = Y m

� (θ ,ϕ). (6.5.38)

Note that the energy levels of the rigid rotator are (2�+ 1)-fold degenerate: for a given

value of �, there are (2�+ 1) eigenfunctions: Y �
� ,Y �−1

� ,Y �−2
� , . . . ,Y−�� , all corresponding to

the same energy given by (6.5.38).

Example 1 6.5.3: A particle is in the state with the wave function

|ψ(x,y,z)〉= A

{
1√
8π

x+ iy
r

+
1√
16π

2z2− x2− y2

r2
+

√
3

4π
z
r

}
, (6.5.39)

where A is an arbitrary constant. (a) Find A. (b) What is the average value of the orbital

angular momentum in this state? (c) What is the average value of L̂+ in this state?

Solution: Using the expressions for x, y and z in spherical polar coordinates and the

expressions for the spherical harmonics, we get

|ψ(θ ,ϕ)〉= A

{√
1

3
Y 0

1 (θ ,ϕ)+
√

1

3
Y 1

1 (θ ,ϕ)+
√

1

5
Y 0

2 (θ ,ϕ)

}
. (6.5.40)

(a) The normalization condition for the wave function reads

〈ψ|ψ〉= |A|2
{

1

3

〈
Y 0

1

∣∣Y 0
1

〉
+

1

3

〈
Y 1

1

∣∣Y 1
1

〉
+

1

5

〈
Y 0

2

∣∣Y 0
2

〉}
= 1. (6.5.41)

1adapted from N. Zettili, Quantum Mechanics: Concepts and Applications, John Wiley, 2009.
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Using the orthonormality of the spherical harmonics, we get the normalization constant

A and the normalized wave function as

A =

√
15

13
, ⇒ |ψ(θ ,ϕ)〉=

√
5

13
Y 0

1 (θ ,ϕ)+
√

5

13
Y 1

1 (θ ,ϕ)+
√

3

13
Y 0

2 (θ ,ϕ).

(6.5.42)

(b) The average value of the orbital angular momentum is given by

〈L〉=
√
〈ψ ∣∣L̂2

∣∣ψ〉=√2× 5

13
(2h̄2)+

3

13
(6h̄2) =

√
38

13
h̄. (6.5.43)

(c) The average value of L̂+ is

〈L̂+〉= 〈ψ|L̂+|ψ〉= 5

13

√
2h̄+

3

13

3
√

8

13
h̄ =

11
√

2

13
h̄. (6.5.44)

6.6 Space Quantization

Space quantization is essentially the quantization of the direction of the orbital angular
momentum�L in space with respect to the z-axis.

This can be understood as follows. We have seen that, although we can precisely

determine the magnitudes of the total angular momentum �L and its projection on the

z-axis Lz, we cannot have any information about the other two components (Lx and Ly) of
�L. Since the knowledge of all the three components of a vector is essential for specifying

its direction, it follows that, in quantum mechanics, the direction of the angular

momentum cannot be specified. One can then ask the question: ‘Does this mean that �L
can have an arbitrary direction in space in a given quantum state in which it has precisely

determined magnitude’? The answer is ‘No’. Let us explain. We have established that

both L and Lz are quantized. The discrete set of values that L can have are given by

h̄
√

�(�+ 1), where � is an integer including zero. On the other hand, the discrete values

that Lz can have are given by mh̄, where m = −�,−�+ 1, . . . ,�− 1,� is the orbital

magnetic quantum number. It is because of this intrinsic relation between � and m that�L
cannot be arbitrarily oriented in space. For a given value of the orbital magnetic quantum

number m, it has to be inclined to the z-axis at a precisely defined angle. This angle, say

θ , can take only discrete values given by

θ = cos−1

(
mh̄

h̄
√

�(�+ 1)

)
= cos−1

(
m√

�(�+ 1)

)
. (6.6.1)
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For instance, consider the state with � = 1. The magnitude of�L in this state is
√

2h̄. The

values that m can have in this state are −1,0 and +1. Correspondingly, the angular

momentum vector�L can be inclined to the z-axis only at three discrete angles θ :

θ1 = cos−1

(
1√
2

)
, θ2 = cos−1(0), θ3 = −cos−1

(
1√
2

)
. (6.6.2)

In other words, the direction of �L in space is quantized. This can be graphically

demonstrated as shown in Fig. 6.1.

Lx

Lz

Ly

L
L h=z

L = 0z O

L h= –z

→

Figure 6.1 Graphical representation of the quantization of the direction of�L for �= 1,
where the radius of the sphere is equal to L =

√
2h̄.

Note that in the Bohr theory of hydrogen atom too the angular momentum is quantized.

However, the situation in quantum mechanics is radically different from the quantization

of angular momentum in the Bohr theory. In the Bohr theory, all the three components

of the angular momentum, �L, are strictly determined and hence, we can talk about the

direction of �L in space. In quantum mechanics, however, only one component, Lz, of �L
is determined, and hence, we can talk of the orientation of the angular momentum vector

only with respect to a chosen axis; its overall orientation in space remains undefined.

In order to further clarify the concept of space quantization, consider once again the

state with �= 1, that is, the p state. There are three eigenfunctions

ψ+ = sinθeiφ , ψ0 = cosθ , ψ− = sinθe−iφ (6.6.3)
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of L̂2 with the same eigenvalue 2h̄. Since the state is three-fold degenerate, the wave

function, ψ , of this state is given by the superposition of these three eigenfunctions,that is,

ψ = c1ψ++ c2ψ0 + c3ψ−, (6.6.4)

where c1,c2 and c3 are arbitrary and in general, complex coefficients.

Because of the isotropy of space, all directions in space are equivalent unless we pick

one of them up by imposing some specific physical condition. Therefore, if we want to

know the projection of the angular momentum along a direction, we must somehow isolate

it in space. For instance, this can be done by switching on a magnetic field parallel to this

direction. If we now measure the projection of�L on this direction and find the value +h̄,

then the state after the measurement will be described by the wave function ψ+ and we

shall have |c1|2 = 1, |c2|2 = |c3|2 = 0 and ψ = ψ+, that is, Lz will have a definite value,

while the other two components of�L will be indeterminate. If we now decide to know the

projection of �L on some other axis, then we must switch off the magnetic field that was

along the previous direction and switch it on along the newly chosen direction. As a result,

the state preceding the measurement is destroyed and a new state comes into existence in

which, once again, only one component of�L can be specified.

Example 6.6.1: Find the angles between the angular momentum vector �L and the z-axis,

giving all possible orientations of�L for �= 3.

Solution: In this case, m=−3,−2,−1,0,1,2,3. We know that the angle between the angular

momentum vector�L and the z-axis is given by

θm = cos−1

(
m√

�(�+ 1)

)
. (6.6.5)

Therefore, we get

θ−3 = cos−1

( −3

2
√

3

)
= 150◦, θ−2 = cos−1

( −2

2
√

3

)
= 125.26◦, (6.6.6)

θ−1 = cos−1

( −1

2
√

3

)
= 106.78◦, θ0 = cos−1 (0) = 90◦, (6.6.7)

θ1 = cos1

( −1

2
√

3

)
= 73.23◦, θ2 = cos−1

(
2

2
√

3

)
= 54.73◦, (6.6.8)

θ3 = cos−1

(
3

2
√

3

)
= 30◦. (6.6.9)
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6.7 Matrix Representation of Angular Momentum Operators

We know that L̂2 and L̂z commute. Therefore, it is convenient to take the complete set of

spherical harmonics {Y m
� (θ ,ϕ), which happens to be the common set of eigenfunctions of

L̂2 and L̂z, as the basis set in the Hilbert space.

Obviously, L̂2 and L̂z are diagonal in this basis

∫ 2π

0
dϕ
∫ π

0
dθ sinθ Y m′

�′ L̂2Y m
� = h̄2�(�+ 1)δ�′�δm′m, (6.7.1)

∫ 2π

0
dϕ
∫ π

0
dθ sinθ Y m′

�′ L̂zY m
� = mh̄δ�′�δm′m. (6.7.2)

The diagonal elements of the corresponding matrices L2 and Lz are h̄2�(�+ 1) and mh̄,

respectively. The operators L̂+ and L̂− do not commute with L̂z. Therefore, they are

represented by non-diagonal matrices in this basis. In order to determine these matrices,

we shall have to first find the result of the action of the operators L̂+ and L̂− on the basis

functions {Y m
� (θ ,ϕ)}.

What we know is that the operators L̂+ and L̂−, while acting on the eigenfunction of

L̂z, change the value of m by unity. Therefore, we have

L̂±Y m
� =C±�m Y m±1

� , (6.7.3)

where C±�m are constants. They can be determined by requiring that the functions Y m±1
� be

orthonormal. It is easy to check that L̂+ and L̂− are hermitian conjugates of L̂− and L̂+,

respectively. So, we have

∫ 2π

0
dϕ
∫ π

0
dθ sinθ Y ∗m′

�′ (L̂†
±L̂±)Y m

� =
∫ 2π

0
dϕ
∫ π

0
dθ sinθ Y ∗m′

�′ (L̂∓L̂±)Y m
� . (6.7.4)

Alternatively,

∫ 2π

0
dϕ
∫ π

0
dθ sinθ Y ∗m′

�′ (L̂†
±L̂±)Y m

� = |C±�m|2
∫ 2π

0
dϕ
∫ π

0
dθ sinθ Y ∗ (m

′±1)
�′ Y m±1

� . (6.7.5)

Therefore, on one hand, if the functions Y m±1
� are to be orthonormal, we have

∫ 2π

0
dϕ
∫ π

0
dθ sinθ Y ∗m′

�′ (L̂†
±L̂±)Y m

� = |C±�m|2, (6.7.6)

On the other hand, using the relations

L̂∓L̂± = L̂2− L̂2
z ∓ h̄L̂z, (6.7.7)
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L̂2Y m
� = �(�+ 1) h̄2 Y m

� , (6.7.8)

L̂z Y m
� = mh̄Y m

� , (6.7.9)

we obtain∫ 2π

0
dϕ
∫ π

0
dθ sinθ Y ∗m′

�′ (L̂†
±L̂±)Y m

� =
∫ 2π

0
dϕ
∫ π

0
dθ sinθ Y ∗m′

�′ (L̂2− L̂2
z ∓ h̄L̂z)Y m

�

=
[
h̄2�(�+ 1)− h̄2m2∓ h̄2m

]∫ 2π

0
dϕ
∫ π

0
dθ sinθ Y ∗ (m

′±1)
�′ Y m±1

�

= h̄2 (l∓m)(l±m+ 1), (6.7.10)

where, besides (6.7.1) and (6.7.2), we have used the orthonormality of the spherical

harmonics given by (6.5.27). If we now compare (6.7.6) and (6.7.10) we get

C±�m = h̄
√
(l∓m)(l±m+ 1). (6.7.11)

As a consequence, we have

L̂+Y m
� = h̄

√
(l−m)(l +m+ 1)Y m+1

� , (6.7.12)

L̂−Y m
� = h̄

√
(l +m)(l−m+ 1)Y m−1

� . (6.7.13)

Since L̂x = (L̂++ L̂−)/2 and L̂y = (L̂+− L̂−)/2i, we get

L̂x Y m
� =

1

2
[L̂++ L̂−]Y m

�

=
h̄
2

[√
(l−m)(l +m+ 1) Y m+1

� +
√
(l +m)(l−m+ 1) Y m−1

�

]
(6.7.14)

L̂yY m
� =

1

2i
[L̂++ L̂−]Y m

�

=
h̄
2i

[√
(l−m)(l +m+ 1) Y m+1

� −
√
(l +m)(l−m+ 1) Y m−1

�

]
. (6.7.15)

From (6.7.9), (6.7.12), (6.7.13) and the orthonormality condition for the spherical

harmonics, (6.5.27), we find the matrix elements of L̂+, L̂− and L̂z as
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∫ 2π

0
dϕ
∫ π

0
dθ sinθ Y ∗m′

�′ (L̂+Y m
� ) = h̄

√
(l−m)(l +m+ 1)δ�′�δm′,m+1, (6.7.16)

∫ 2π

0
dϕ
∫ π

0
dθ sinθ Y ∗m′

�′ (L̂−Y m
� ) = h̄

√
(l +m)(l−m+ 1)δ�′�δm′,m−1, (6.7.17)

∫ 2π

0
dϕ
∫ π

0
dθ sinθ Y ∗m′

�′ (L̂zY m
� ) = mh̄ δ�′�δm′m. (6.7.18)

With the help of the aforementioned calculated matrix elements, we can easily compute

the matrices corresponding to the operators L̂2, L̂z, L̂±, L̂x and L̂y in a state with a definite

value of the angular momentum,that is, for a given value of �.

Example 6.7.1: Consider a particle in a superposition state with the wave function

|ψ(θ ,ϕ)〉=
√

1

5
Y−1

1 (θ ,ϕ)+AY 0
1 +

√
1

5
Y 1

1 (θ ,ϕ), (6.7.19)

where A is an arbitrary constant and Y m
� are the spherical harmonics. (a) Find A so that ψ is

normalized. (b) What is the probability that a measurement of Lz will yield a value Lz = 0?

(c) Find the expectation values of L̂2 and L+ in this state.

Solution:

(a) For the normalized wave function, we must have

〈ψ|ψ〉=
∫ 2π

0
dϕ
∫ π

0
dθ ψ∗(θ ,ϕ)ψ(θ ,ϕ) sinθdθ = 1. (6.7.20)

Using the orthonormality condition for the spherical harmonics, we get

〈ψ|ψ〉= 2

5
+A2 = 1,⇒ A =

√
3

5
. (6.7.21)

(b) The normalized wave function is now given by

ψ(θ ,ϕ) =
√

1

5
Y−1

1 (θ ,ϕ)+
√

3

5
Y 0

1 +

√
1

5
Y 1

1 (θ ,ϕ), (6.7.22)

and therefore the probability of finding the value Lz = 0 is

P =

∣∣〈Y 0
1 |ψ
〉∣∣2

〈ψ|ψ〉 =
3

5
. (6.7.23)
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(c) From (6.7.8), we have

L̂2|ψ(θ ,ϕ)〉= L̂2

[√
1

5
Y−1

1 (θ ,ϕ)+
√

3

5
Y 0

1 +

√
1

5
Y 1

1 (θ ,ϕ)

]
= 2h̄2|ψ(θ ,ϕ)〉.

(6.7.24)

The expectation value of L̂2 will be

〈
L̂2
〉
=

〈
ψ|L̂2|ψ〉
〈ψ|ψ〉 = 2h̄2 〈ψ|ψ〉

〈ψ|ψ〉 = 2h̄2. (6.7.25)

Using (6.7.12), we get

L̂+|ψ(θ ,ϕ)〉=
√

6

5
Y 0

1 +

√
6

5
Y 1

1 . (6.7.26)

Therefore, the expectation value of L̂+ is given by

〈
L̂+
〉
=

〈
ψ|L̂+|ψ

〉
〈ψ|ψ〉 =

√
6

5
h̄+

√
6

5
h̄ =

2
√

3

5
h̄. (6.7.27)

Example 6.7.2: Consider the case in which � = 1. Find the matrices representing the

operators L̂2, L̂z, L̂±, L̂x and L̂y. Show that the matrices Lx and Ly do not commute. Find

their commutator.

Solution: For � = 1, we have m = −1,0,1 and the joint eigenfunctions of L̂2 and L̂z are:[
Y 1

1 ,Y 0
1 ,Y−1

1

]
. Therefore, the matrix representing L̂2 is given by

L2 =

⎛
⎜⎜⎜⎝
〈Y 1

1 , L̂2Y 1
1 〉 〈Y 1

1 , L̂2Y 0
1 〉 〈Y 1

1 , L̂2Y−1
1 〉

〈Y 0
1 , L̂2Y 1

1 〉 〈Y 0
1 , L̂2Y 0

1 〉 〈Y 0
1 , L̂2Y−1

1 〉
〈Y−1

1 , L̂2Y 1
1 〉 〈Y−1

1 , L̂2Y 0
1 〉 〈Y−1

1 , L̂2Y−1
1 〉

⎞
⎟⎟⎟⎠= 2h̄2

⎛
⎜⎜⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎟⎠ , (6.7.28)

where we have used (6.5.25) and (6.5.27) to get

〈Y k
l , L̂2Y m

n 〉= h̄2n(n+ 1)
∫ 2π

0
dϕ
∫ π

0
dθ sinθ Y ∗ k

l Y m
n ) = h̄2n(n+ 1)δ�nδkm. (6.7.29)
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Similarly, by making use of (6.5.26) and (6.5.27), we obtain the matrix representing L̂z in

this basis:

Lz =

⎛
⎜⎜⎝
〈Y 1

1 , L̂zY 1
1 〉 〈Y 1

1 , L̂zY 0
1 〉 〈Y 1

1 , L̂zY−1
1 〉

〈Y 0
1 , L̂zY 1

1 〉 〈Y 0
1 , L̂zY 0

1 〉 〈Y 0
1 , L̂zY−1

1 〉
〈Y−1

1 , L̂zY 1
1 〉 〈Y−1

1 , L̂zY 0
1 〉 〈Y−1

1 , L̂zY−1
1 〉

⎞
⎟⎟⎠= h̄

⎛
⎝ 1 0 0

0 0 0

0 0 −1

⎞
⎠ . (6.7.30)

The matrices, corresponding to L̂+ and L̂− in this basis, are calculated to be

L+ =
√

2h̄

⎛
⎝ 0 1 0

0 0 1

0 0 0

⎞
⎠ , L− =

√
2h̄

⎛
⎝ 0 0 0

1 0 0

0 1 0

⎞
⎠ . (6.7.31)

Taking into account that L̂x = (L̂++ L̂−)/2 and L̂y = (L̂+− L̂−)/2i, we get

Lx =
h̄√
2

⎛
⎝ 0 1 0

1 0 1

0 1 0

⎞
⎠ , Ly =

h̄√
2

⎛
⎝ 0 −i 0

i 0 −i
0 i 0

⎞
⎠ . (6.7.32)

Now, we have to check whether Lx and Ly commute or not. We have

LxLy =
h̄2

2

⎛
⎝ 0 1 0

1 0 1

0 1 0

⎞
⎠
⎛
⎝ 0 −i 0

i 0 −i
0 i 0

⎞
⎠=

h̄2

2

⎛
⎝ i 0 −i

0 0 0

i 0 −i

⎞
⎠ . (6.7.33)

On the other hand,

LyLx =
h̄2

2

⎛
⎝ 0 −i 0

i 0 −i
0 i 0

⎞
⎠
⎛
⎝ 0 1 0

1 0 1

0 1 0

⎞
⎠=

h̄2

2

⎛
⎝ −i 0 −i

0 0 0

i 0 i

⎞
⎠ . (6.7.34)

Clearly, LxLy �= LyLx and hence the matrices Lx and Ly do not commute.

Their commutator is given by

LxLy−LyLx =
h̄2

2

⎛
⎝ i 0 −i

0 0 0

i 0 −i

⎞
⎠−

⎛
⎝ −i 0 −i

0 0 0

i 0 i

⎞
⎠

= ih̄2

⎛
⎝ 1 0 0

0 0 0

0 0 −1

⎞
⎠= ih̄L̂z, (6.7.35)

as it should be.
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Homework Problems

1. Calculate the commutators

(a) [x̂, L̂x], [ŷ, L̂y] and [ẑ, L̂z],

(b) [ p̂x, L̂x], [ p̂y, L̂y] and [ p̂z, L̂z].

(c) [x̂, L̂2], and [ p̂x, L̂2].

2. Use the lowering operator, to find the angular dependence (without worrying about

the normalization) of Y m
4 (θ ,φ ) for m = 3,2,1,0. You are given

Y 4
4 (θ ,φ ) = Ae4iφ sin4 θ .

3. Use the expression for the spherical harmonics to construct Y l
l (θ ,φ ) and Y 2

3 (θ ,φ ).
Check that they satisfy the angular equation for appropriate values of l and m.

4. A particle is in the state

|ψ〉= 1√
5

Y 0
2 (θ ,φ )+

2√
5

Y−1
2 (θ ,φ )− 2√

5
Y 1

2 (θ ,φ ),

which is a superposition of the normalized eigenstates, Y m
� (θ ,φ ), of the L̂2 operator.

Calculate the value of the total angular momentum of the particle in this state. Also,

calculate the expectation value of the operator L̂+L̂− in this state.

5. A particle moving in a two dimensional harmonic oscillator potential is in a state

described by the wave function

ψ(ρ ,φ ) =
3√

π a3
ρ2 e−(ρ

2/2a2)

(
1− 4

3
sin2 φ

)
sinφ ,

where ρ and φ are the planar polar coordinates and a is a constant. If the projection

of the angular momentum on the axis perpendicular to the plane of oscillation is

measured, what is (are) the possible value (values) that can be obtained?

6. Calculate numerical values for the total angular momentum |�L|, and Lz, for the 2p
and 4d states of hydrogen.

7. Consider the case when l = 1. Find the matrices representing the operators L̂x in the

basis consisting of the eigenvectors of L̂z and L̂2.

8. Calculate the expectation values (average values) of the operators L̂x, L̂y, L̂2
x , and L̂2

y ,

in the eigenstate Y m
� of L̂2.

9. A particle in a spherically symmetric potential is in a state described by the wave

function

ψ(x,y,z) =C(xy+ yz+ zx) e−αr2
,
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where α is a constant. What is the probability that the measurement of the square of

the angular momentum yields 6h̄2?

10. Consider an electron for which n = 4, � = 3, and m = 3. Calculate the numerical

value of (a) the orbital angular momentum and (b) the z component of the orbital

angular momentum.

11. The Hamiltonian of a rotator is given by

Ĥ =
L̂2

x + L̂2
y

2I1
+

L̂2
z

2I2
,

where I1 and I2 are the moments of inertia about the x-axis and the y-axis,

respectively.

(a) Calculate the energy eigenvalues and the degeneracy of each of the corresponding

energy levels.

(b) What are the energy eigenvalues for the various levels of �= 3?

12. The Hamiltonian of an axially symmetric rotator is given by

Ĥ =
L̂2

x + L̂2
y + L̂2

z

2I
,

where I is the moment inertia of the rotator. Find the energy levels and the

corresponding degeneracies.

13. Calculate the orbital quantum number � and the corresponding energy degeneracy for

a rigid rotator for which the magnitude of the total angular momentum is
√

72 h̄.

14. A system is found in the state

ψ = Y �
m(θ ,ϕ) =

√
15

8π
sinθ cosθ cosϕ .

If the observable L̂z is measured in this state, what are the values of Lz that the

measurement will give and with what probabilities?

15. Determine the expectation value of L̂x in the state of a system that is given in

Problem 4.
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16. Consider a particle of mass μ constrained to move on a circle of radius R. Show that

the Hamiltonian of this system is

Ĥ =
�̂L2

2μR2
.

Find the eigenvalues and the corresponding wave functions of the system. What is

the degeneracy, if at all, of the eigenstates?

17. Consider the following 3×3 representation of the angular momentum operators

L̂x =
1√
2

⎛
⎝ 0 1 0

1 0 1

0 1 1

⎞
⎠, L̂y =

1√
2

⎛
⎝ 0 −i 0

i 0 −i
0 i 1

⎞
⎠, L̂z =

1√
2

⎛
⎝ 1 0 0

i 0 0

0 0 −1

⎞
⎠.

of a system in a given state. (a) If L̂z is measured, what values will obtain? (b) What

are
〈
L̂x
〉

and
〈
L̂2

x
〉

in the state in which Lz = 1? (c) What is the uncertainty ΔLz in

this state with Lz = 1?



Chapter 7

Simple Magnetic Field Effects

In this Chapter, we shall discuss a few important effects that arise when we consider

quantum mechanical description of motion of a charged particle in an external magnetic

field. We shall confine our discussions to the normal Zeeman effect in the presence of a

constant magnetic field, Aharonov-Bohm effect arising from the gauge invariance of the

electromagnetic fields, and the motion of free electrons in a constant magnetic field

leading to what is known as Landau levels which are important for understanding the

quantum Hall effects.

7.1 The Schrödinger Equation for a Spinless Charged Particle in an
Electromagnetic Field

Consider a particle, without spin, of mass m and charge q in an electromagnetic field.

Classically, the electromagnetic field is represented by the vector potential �A(�r, t) and the

scalar potential Φ(�r, t). In SI units, the expressions for the electric field �E and the magnetic

field �B are

�E = −�∇Φ− ∂�A
∂ t

, �B = �∇×�A. (7.1.1)

The Lagrangian of such a particle moving in an electromagnetic field is given by

L =
1

2
m�v2 + q(�v ·�A)−qΦ, (7.1.2)

The generalized momentum �p is given by

�p =
∂L
∂�v

= m�v+ q�A. (7.1.3)

266
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The classical Hamiltonian is therefore given by

H = �p ·�v−L = m�v2 + q�A ·�v− 1

2
m�v2−q(�v ·�A)+ qΦ =

1

2
m�v2 + qΦ. (7.1.4)

Since

�v =
�p−q�A

m
, (7.1.5)

we arrive at

H =
(�p−q�A)2

2m
+ qΦ. (7.1.6)

Expanding the square, we obtain

1

2m

(
�p−q�A

)2
=

1

2m
�p2− q

2m

(
�p ·�A+�A ·�p

)
+

q2

2m
�A2. (7.1.7)

The quantum mechanical Hamiltonian operator is obtained from the correspondence

principle according to which we must replace �p and �A(�r, t) by their corresponding

operators. However, in doing so, we have to be careful about the product �̂p ·�A because �̂p
is a differential operator and �A is a function of coordinates. By taking into account that for

any function f (x,y,z),

�̂p ·(�A f ) =−ih̄�∇ ·(�A f ) =−ih̄ f (�∇ ·�A)− ih̄�A ·(�∇ f ) =−ih̄ f (�∇ ·�A)+(�A ·�p) f , (7.1.8)

we can write the Hamiltonian in the form

Ĥ = − h̄2

2m
�∇2 + ih̄

q
m
(�A ·�∇)+ ih̄

q
2m

(�∇ ·�A)+ q2

2m
�A2 + qΦ. (7.1.9)

As we know, the electromagnetic potentials do not determine the electromagnetic fields

uniquely. If we carry out the transformations

�A′ = �A+�∇λ , Φ′ = Φ− ∂λ
∂ t

(7.1.10)

on the potentials, where λ (�r, t) is an arbitrary differentiable scalar function, the

transformed fields �E ′ and �B′ are identical with the old ones:

�E ′ = −�∇Φ′ − ∂�A′

∂ t
= −�∇Φ+�∇

(
∂λ
∂ t

)
− ∂�A

∂ t
− ∂

∂ t
(�∇λ ) = −�∇Φ− ∂�A

∂ t
= �E, (7.1.11)
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�B′ = �∇×�A′ = �∇×�A+�∇× (�∇λ ) = �∇×�A = �B. (7.1.12)

This property is known as the gauge invariance of electrodynamics and the aforementioned

transformations of the potentials are known as gauge transformations. In order to fix this

arbitrariness in the choice of the potentials, one of the following conditions

�∇ ·�A+
∂ Φ
∂ t

= 0, (7.1.13)

�∇ ·�A = 0, (7.1.14)

is usually imposed on the potentials. When we do that, we say that we have chosen a gauge

to work in. The first of these conditions is known as the Lorentz gauge, while the second

is called the Coulomb gauge.

In what follows, we shall be working in the Coulomb gauge. In this gauge, the

Hamiltonian takes the form

Ĥ = − h̄2

2m
�∇2 + ih̄

q
m
(�A ·�∇)+

q2

2m
�A2 + qΦ. (7.1.15)

The second term in (7.1.15), proportional to (�A ·�∇), is called the paramagnetic term,

while the third term, proportional to �A 2, is known as the diamagnetic term. With the

Hamiltonian given by (7.1.15), the Schrödinger equation for a charged but spinless

particle in an electromagnetic field can be written as

ih̄
∂ψ(�r, t)

∂ t
=

[
− h̄2

2m
�∇2 + ih̄

q
m
(�A(�r, t) ·�∇)+

q2

2m
�A2(�r, t)+ qΦ(�r, t)

]
ψ(�r, t). (7.1.16)

7.2 The Case of a Constant Magnetic Field

Let �B be a spatially uniform and time-independent magnetic field. The vector potential for

such a field is given by

�A = − 1

2
�r×�B. (7.2.1)

One can easily check that �∇×�A does produce the required constant magnetic field �B.

If we use the aforementioned vector potential, we get the following expression for the

paramagnetic term in the Hamiltonian:

ih̄
q
m
(�A ·�∇) =

q
2m

(�r×�p) ·�B =
q

2m
(�B ·�L), (7.2.2)

where�L = (�r×�p) is the angular momentum of the particle.
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Using the well-known identities, �a · (�b×�c) =�b · (�c×�a) = �c · (�a×�b) and �a× (�b×
�c) =�b(�a ·�c)−�c(�a ·�b), from vector algebra, we obtain the following expression for the

diamagnetic term in the Hamiltonian:

q2

2m
�A2 =

q2

2m
([�r2 �B2]− [�r ·�B]2) = q2 B2

8m
(x2 + y2), (7.2.3)

where the direction of the magnetic field has been taken to be along the z-axis: �B = B ẑ.

Let us compare the order of magnitude of the paramagnetic and the diamagnetic terms

for an electron without spin in an atom. With x2 +y2 ≈ a2
0, where a0 is the Bohr radius and

the average value of the z component of the angular momentum is given by 〈Lz〉 ≈ h̄, we

get the ratio

(e2/8me) (x2 + y2)B2

(e2/2me) 〈Lz〉B
=

e
4

a2
0 B
h̄
≈ 10−6 B

1

T
. (7.2.4)

The realistic fields, usually achieved in laboratories, are of the order of 1.0 T . Thus, the

quadratic term in �A is negligible whenever 〈Lz〉 �= 0. Therefore, under laboratory

conditions, diamagnetic effects are smaller than paramagnetic effects for electrons bound

in atoms. However, there do, exist situations in which the diamagnetic and paramagnetic

terms can be of comparable magnitude. For instance, this is the case for free electrons in a

metal. The diamagnetic term is also important under conditions such as those prevailing

on the surfaces of neutron stars: there, fields up to 108 T occur, which leads to a

considerable change in the atomic structure.

Finally, let us compare the paramagnetic term with the Coulomb energy:

(e Bh̄/2me)

me c2 α2/2
=

eh̄
(m2

e c2 α2)
B≈ 4.35×10−6 B

1

T
, (7.2.5)

where

α =
e2

4πε0h̄c
≈ 1

137
, (7.2.6)

is the fine structure constant. This means that under laboratory situations, the paramagnetic

term is again very small compared to the Coulomb energy.

7.3 The Normal Zeeman Effect

If an atom is placed in an external magnetic field, the atomic energy levels are split.

Because of this, when an emitting or absorbing atom is placed in a uniform external

magnetic field, the observed spectrum changes. This was first seen experimentally by the

Dutch physicist Pieter Zeeman and is hence called the Zeeman effect. Depending on the

strength of the external magnetic field, the phenomenon manifests itself differently in
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terms of the number of spectral lines into which the original spectral line splits. For weak

magnetic fields (B ∼ 0.8 T or less), it is divided into two classes: the normal Zeeman
effect and the anomalous Zeeman effect. In the normal Zeeman effect, the splitting of

spectral lines is determined by the orbital angular momentum alone, while in the

anomalous case, it cannot be explained in terms of orbital angular momentum alone; one

has to include the spin angular momentum. In fact, the generic nature of the anomalous

Zeeman effect led to the discovery of spin angular momentum. For strong external fields

(B ≥ 1.5 T), the phenomenon manifests itself through what is called the Paschen–Back
effect. In what follows, we shall deal only with the normal Zeeman effect.

Consider for concreteness, the case of a hydrogen-like atom, with a single electron

placed in a uniform external magnetic field �B. As discussed earlier, keeping in mind the

intensity of the magnetic field that can be achieved under realistic laboratory conditions, the

stationary Schrödinger for a spinless electron, moving in a Coulomb field in the presence

of a constant magnetic field, takes the form

�∇2 ψ(�r)− ieB
h̄

∂ψ(�r)
∂ϕ

+
2me

h̄2
(E−U(�r))ψ(�r) = 0, (7.3.1)

where U = −eΦ(�r) is the potential energy of the electron in the force field of the nuclear

proton.

Since we are dealing with the motion of a particle in the central force field, we look

for the solution in the form ψ = ψ(r,θ ,ϕ) = R(r)Θ(θ )φ (ϕ). Now, let us recollect that

for the central potentials, the function φ (ϕ) = eimϕ , where m is the magnetic quantum

number, and hence, ψ(r,θ ,ϕ) = R(r)Θ(θ )eimϕ . In this case,

− ieB
h̄

∂ψ
∂ϕ

=
eB
h̄

m ψ(r,θ ,ϕ), (7.3.2)

and we obtain

Δr,θ ,ϕψ(r,θ ,ϕ)+
2me

h̄2

(
E +

eBh̄
2me

m−U(�r)
)

ψ(r,θ ,ϕ) = 0. (7.3.3)

Equation (7.3.3) can be rewritten in a more familiar form as

Δr,θ ,ϕψ(r,θ ,ϕ)+
2me

h̄2
(E ′ −U(�r))ψ(r,θ ,ϕ) = 0, (7.3.4)

where

E ′ = E +
eBh̄
2me

m. (7.3.5)

For a hydrogen-like atom, for instance,

U(�r) = − Ze2

4πε0 r
. (7.3.6)
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The resulting equation coincides with the corresponding stationary Schrödinger equation

for the hydrogen-like atom with a modified stationary state energy E ′. The solution of this

equation, as we know, will lead to a series of energy eigenvalues E ′1,E ′2,E ′3, . . . ,E ′k, . . . .

According to (7.3.5),

Ek = E ′k−
eBh̄
2me

m = E ′k− h̄ω� m, (7.3.7)

where

ω� =
eB

2me
, (7.3.8)

is the Larmor frequency.

= 2

eB

m2 e
h
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m2 e
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Figure 7.1 Zeeman effect in an external magnetic field.

Thus, the an energy level Ek in the absence of the magnetic field differs from the

corresponding energy level E ′ by − eBh̄
2me

m. Since m can take all integer values from −� to

+�, each of the energy levels E, which is (2�+ 1)-fold degenerate in the absence of the

magnetic field, splits up into 2�+ 1 discrete energy levels. So far as the wave functions

are concerned, they remain the same as in the absence of the magnetic field. Thus, we can

say that the magnetic field removes degeneracy with respect to the magnetic quantum

number m by displacing the (2�+ 1) coinciding sub-levels with respect to each other in

such a way that the distance between any two discrete sub-levels equals h̄ω�. Evidently,

this distance between the split sub-levels is proportional to the intensity of the magnetic

field and is independent of the quantum numbers n and �.

This equidistant splitting caused by the magnetic field is called the normal Zeeman
effect (see Fig.7.1). Since m takes integer values, each degenerate energy level must split

into an odd number of discrete levels. However, in the hydrogen atom the splitting leads to

an even number of levels, as if the angular momentum were half integrals. This departure

from the general rule (7.3.7) is due to the spin angular momentum of the electron (see

Chapter 8) which takes half-integer values.
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7.4 Transformation of the Wave Function under Gauge
Transformation

We have seen in the previous section that Maxwell’s electrodynamics is invariant under the

local gauge transformation of the potentials given by (7.1.10). In view of this, we want to

find out whether this has anything to do with the wave function of our charged particle and

the differential equation satisfied by the transformed (new) wave function.

Since the electric and magnetic fields do not change under gauge transformation and

they are the measurable physical entities (not the potentials), the wave function of the

particle, interacting with the electromagnetic field, should not undergo any significant

changes that could affect the physical content of the theory. It then follows that, under the

gauge transformation of the electromagnetic potentials, the wave function of the particle

can at most acquire a phase factor. Accordingly, we look for the transformed wave

function ψ ′(�r, t) in the following form:

ψ ′(�r, t) = ψ(�r, t) eiΛ(�r,t), (7.4.1)

where Λ is an arbitrary function to be determined. Our goal is to determine Λ and the

differential equation that is satisfied by ψ ′(�r, t).
Before the gauge transformation of the potentials is carried out, the wave function, in

the Coulomb gauge (�∇ ·�A), satisfies the Schrödinger equation

ih̄
∂ψ(�r, t)

∂ t
=

[
�̂p 2

2m
+

q2

2m
�A2 + ih̄

q
m
(�A ·�∇)+V (�r)+ qΦ

]
ψ(�r, t). (7.4.2)

To determine the equation satisfied by ψ ′(�r, t), we proceed as follows. The time and space

derivatives of ψ ′(�r, t) are

ih̄
∂ψ
∂ t

=

(
ih̄

∂ψ ′

∂ t
+ h̄

∂ Λ
∂ t

ψ ′
)

e−iΛ(�r,t), (7.4.3)

ih̄
q
m
(�A ·�∇)ψ = ih̄

q
m

[
(�A ·�∇)ψ ′ − i(�A ·�∇Λ)ψ ′

]
e−iΛ(�r,t), (7.4.4)

− h̄2

2m
�∇2ψ =

[
− h̄2

2m
�∇2ψ ′+ i

h̄2

m
(�∇Λ ·�∇ψ ′)+ i

h̄2

2m
(�∇2Λ)ψ ′

+
h̄2

2m
(�∇Λ)2 ψ ′

]
e−iΛ(�r,t), (7.4.5)
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Substituting for ψ in (7.4.2) from (7.4.1) and using (7.4.3)–(7.4.5), we obtain

ih̄
∂ψ ′

∂ t
= − h̄2

2m
�∇2ψ ′+

[
q2

2m
�A2 +

h̄2

2m
(�∇Λ)2 +

q
m

h̄(�A ·�∇Λ)

]
ψ ′+ i

h̄2

2m
(�∇2Λ)ψ ′

+ i
h̄2

m
(�∇Λ ·�∇)ψ ′+ ih̄

q
m
(�A ·�∇)ψ ′+V (�r)ψ ′+

(
qΦ− h̄

∂ Λ
∂ t

)
ψ ′. (7.4.6)

Note that if Λ = q
h̄λ (�r, t), then the transformed wave function takes the form

ψ ′(�r, t) = ψ(�r, t) ei q
h̄ λ (�r,t). (7.4.7)

Consequently, in the Coulomb gauge (�∇ ·�A = 0), (7.4.6) can be rewritten as

ih̄
∂ψ ′

∂ t
=

[
�̂p2

2m
+

q2

2m
�A ′

2
+ ih̄

q
m
(�A ′ ·�∇)+V ′(�r)+ qΦ ′

]
ψ ′(�r, t), (7.4.8)

where the primed potentials are the gauge-transformed potentials:

�A′ = �A+�∇λ , Φ′ = Φ− ∂λ
∂ t

. (7.4.9)

and we have taken into account that �∇2Λ = 0 due to the Coulomb gauge condition.

It follows from these discussions that if, along with the gauge transformation of the

electromagnetic potentials, we transform the wave function by multiplying it with a phase

factor ei q
h̄ λ (�r,t) that contains the same function λ (�r, t) which is used for the gauge

transformation, the new wave function satisfies the same Schrödinger equation (7.4.2)

(which is satisfied by the wave function prior to the gauge transformation) but with the

gauge-transformed potentials.

Thus, the gauge transformation induces an additional space-and time-dependent phase

factor into the wave function. However, the change in gauge has no observable physical

consequences, since the probability density, |ψ|2, and the average values of the observables

do not change.

7.5 The Aharonov–Bohm Effect

The form invariance of the Schrödinger equation for a particle under the gauge

transformation of the potentials and the induction of an additional phase into the wave

function of a charged particle in an external electromagnetic field lead to an observable

physical phenomenon which is known as Aharonov-Bohm effect.
Consider a charged particle, of mass m and charge q, travelling along a path L1 from a

point P1 to another point P2 in a region in which the magnetic field is identically equal to

zero: �B = 0. However, the vanishing of the magnetic field does not imply that the vector

potential �A is zero. For instance, in the case of an infinitely long solenoid, the magnetic
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field is confined inside the solenoid and is identically equal to zero outside. However, in

the region outside the solenoid, �A can be expressed as the gradient of a scalar field λ (�r):

�A = �∇λ , (7.5.1)

so that

λ =
∫ P2

P1

�A · �d�. (7.5.2)

Now the wave function in the field-free region can be obtained by solving either (7.4.2)

or from the gauge transformed equation (7.4.8). Note that if we choose −λ (�r, t) as the

function to gauge transform the potentials, the vector potential can be made to vanish in

our field-free region

�A′ = �A−�∇λ = 0. (7.5.3)

Furthermore, since there is no electric field present here, we can set Φ = Φ′ = 0 and the

wave function can be found by solving either (7.4.2) in which the scalar potential is

absent or from the gauge-transformed equation

ih̄
∂ψ ′

∂ t
=

[
�̂p2

2m
+V ′(�r)

]
ψ ′(�r, t), (7.5.4)

in which both the potentials (the vector as well as the scalar potentials) do not occur. The

relationship between these wave functions is obtained by replacing λ in (7.4.7) with −λ :

ψ(�r, t) = ψ ′(�r, t) exp

[
−i

q
h̄

∫
L
�A · �d�

]
, (7.5.5)

where ψ ′(�r, t) is the wave function in the potential V (�r) with magnetic field �B identically

equal to zero in all space.

Let us go back to our charged particle moving along the path L1. In view of the

aforementioned result, in traversing the path from P1 to P2, the wave function of the

particle will acquire a phase

ϕ1 =
q
h̄

∫ P2

P1

�A · �d�. (7.5.6)

If we consider another path L2 with the same end points but traversed in the opposite

direction, the phase accumulated by the wave function will be

ϕ2 = −q
h̄

∫ P1

P2

�A · �d�, (7.5.7)
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P1

P2

L2L1

Figure 7.2 Closed path traversed by the particle in the field-free region.

where the minus sign is due to the reversed direction traversed along L2. Therefore, the

total change in phase of the wave function traversing the closed path, from P1 to P2 and

back to P1 (see Fig.7.2), will be given by

Δϕ = ϕ1 +ϕ2 =
q
h̄

∮
L
�A · �d�= q

h̄

∫
S
(�∇×�A) ·d�a =

q
h̄

∫
S
�B ·d�a, (7.5.8)

where the line integral runs over the loop from P1 to P2 and back to P1 and the surface

integral, according to Stokes’ theorem, is over the surface S enclosed by this loop. Thus,

Δϕ is proportional to the flux of the magnetic field, through the surface S. Hence, in the

absence of the magnetic field the total change in the phase of the wave function is zero.

If, however, the loop encloses a region of non-zero magnetic field, confined within a

small region inside, the flux through the surface enclosed by the loop will be non-zero and,

hence, even if there is no magnetic field along the paths L1 and L2, the net change in the

phase of the wave function will be non-zero.

To show the physical consequence of this magnetic flux dependent phase shift, consider

the double slit electron interference experiment, shown in Fig.7.3, in which the magnetic

field is confined to the interior of the ‘infinitely’ long solenoid1, perpendicular to the plane

of the figure and depicted by a circle.

The electrons emitted by the electron gun are incident on the wall with two slits 1 and 2

as shown in Fig.7.3. A current carrying ‘infinitely’ long solenoid is placed behind the wall

containing the slits and screened by the part of the wall between the slits. Because of this

screening, the electrons are restricted to the region �B = 0. Let ψ1(�r) be the wave function

when only slit 1 is open. Then, according to (7.5.5), we have

ψ1(�r) = ψ (0)
1 (�r, t) exp

[
i
e
h̄

∫ Q

P→1

�A · �d�
]

, (7.5.9)

1F. Munley, Am. J. Phys., v. 53, p. 779, 1985.
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Electron gun P

2

1

Q

Screen

Long solenoid

B

Figure 7.3 The electron interference experiment in which the electron cannot penetrate
into the region of the magnetic field.

where ψ (0)
1 (�r, t) is the solution of the field-free Schrödinger equation and the line integral

runs from P through slit 1 to the point Q on the screen. Similarly, the wave function ψ2(�r),
when only slit 2 is open, is given by

ψ2(�r) = ψ (0)
2 (�r, t) exp

[
i
e
h̄

∫ Q

P→2

�A · �d�
]

, (7.5.10)

where ψ (0)
2 (�r, t) is the solution of the field-free Schrödinger equation and the line integral

runs from P through slit 2 to the point Q on the screen. Now, the wave function ψ12(�r),
when both the slits are open is given by the superposition of the wave functions ψ1(�r) and

ψ2(�r, t):

ψ12(�r) = ψ (0)
1 (�r, t) exp

[
i
e
h̄

∫ Q

P→1

�A · �d�
]
+ψ (0)

2 (�r, t) exp

[
i
e
h̄

∫ Q

P→2

�A · �d�
]

. (7.5.11)

Using (7.5.8), ψ12(�r) can be written as

ψ12(�r) =
(

ψ (0)
1 (�r, t) exp

[
i
e
h̄

φB

]
+ψ (0)

2 (�r, t)
)

exp

[
i
e
h̄

∫ Q

P→2

�A · �d�
]

, (7.5.12)

where φB is the flux of the magnetic field through the surface, S, enclosed by the loop

P→ 1→ Q→ 2→ P:

φB =
∫

S
�B ·d�a. (7.5.13)
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Thus, the relative phase between the wave functions ψ1(�r) and ψ2(�r, t) changes in the

presence of a narrowly confined region of a magnetic field, behind the wall containing the

slits. As a consequence, the position of the resulting interference pattern on the screen

shifts relative to the interference pattern in the absence of the magnetic field, although the

electrons cannot penetrate into the region of the magnetic field of the solenoid. This

phenomenon was predicted by Aharonov and Bohm in 1959 and is known as

Aharonov–Bohm effect. The prediction was experimentally confirmed within a few

months by Robert G. Chambers in 1960.

7.6 Free Electrons in a Magnetic Field: Landau Levels

Let us consider the problem of a free (unbound) electron interacting with a static and

uniform magnetic field. This study leads to the concept of Landau levels, which is crucial

for the understating of phenomena, like Landau diamagnetism, de Haas–von Alphen effect

and the integer quantum Hall effect.

Consider a spinless electron moving freely in the xy-plane and subject to a static

magnetic field, �B = B0 k̂, directed along the z-axis, where B0 is constant. We want to solve

the stationary state Schrödinger equation for the electron and determine energy

eigenvalues and the corresponding wave functions. To accomplish this task, we first need

to specify a gauge potential �A such that �∇×�A = B0 k̂. Clearly, this can be done in several

ways. In the given problem, though, it is convenient to work in the so-called Landau

gauge, in which

�A = B0 x ĵ. (7.6.1)

It is trivial to check that �∇ ·�A = 0 and �∇×�A = B0 k̂. It is also worth mentioning here that

the given magnetic field �B is invariant under translations and rotations in the xy-plane.

However, our choice of �A is not; it breaks the rotational symmetry and the translational

symmetry in the x direction. But, there is nothing to worry about–although the

intermediate calculations will not be manifestly invariant, the physics will be invariant

under all symmetries. This kind of compromise is inevitable while dealing with magnetic

fields.

The Hamiltonian for our electron in the Landau gauge takes the form

Ĥ =
1

2m

(
�̂p+ e�A

)2
=

1

2m

(
p̂2

x + p̂2
y + 2eB0xp̂y + e2B2

0

)
. (7.6.2)

Note that the Hamiltonian commutes with p̂y; they both share a common set of

eigenfunctions. Since the eigenfunctions of p̂y are plane waves propagating along the y
direction, we look for the solution of the stationary Schrödinger equation

1

2m

(
p̂2

x + p̂2
y + 2eB0xp̂y + e2B2

0

)
ψ(x,y) = Eψ(x,y) (7.6.3)
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in the following form

ψ(x,y) = eiky φk(x), (7.6.4)

where ky ≡ k = py/h̄. Since

p̂yψ(x,y) = −ih̄
∂
∂y

(
eikyy φk(x)

)
= (h̄k) eiky φk(x) = h̄k ψ(x,y), (7.6.5)

the Schrödinger equation (7.6.3) takes the form(
− h̄2

2m
∂ 2

∂x2
+

e2B2
0

2m
x2 + 2 eB0h̄k x+

h̄2k2

2m

)
φk(x) = E φk(x), (7.6.6)

which can be re-written as[
− h̄2

2m
∂ 2

∂x2
+

e2B2
0

2m

(
x+

h̄k
eB0

)2
]

φk(x) = E φk(x), (7.6.7)

or, [
− h̄2

2m
∂ 2

∂x2
+

1

2
ω2

c
(
x+ k�2

B
)2
]

φk(x) = E φk(x), (7.6.8)

where

ωc =
eB
m

and �B =

√
h̄

eB
, (7.6.9)

are the electron’s cyclotron frequency and the magnetic length, respectively. Note that

the cyclotron frequency, ωc, is just the classical frequency of the orbital motion of the

electron in a magnetic field and �B is a characteristic length scale that governs any quantum

phenomena in a magnetic field.

Equation (7.6.8) is nothing but the Schrödinger equation of a harmonic oscillator in the

x direction, which is centred at xk =−k�2
B. Using this fact, we can now straightaway write

down the energy eigenvalues

En = h̄ωc

(
n+

1

2

)
, (7.6.10)

where n can take any integer values including 0 and k ∈ R. These energy levels of a free

electron in a constant magnetic field are equally spaced and each of them is proportional

to the magnitude of the magnetic field. They are known as Landau levels.
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The corresponding wave functions can be written as

ψn,k(x,y) =C eiky Hn(x+ xk) e−(x+xk)
2/2�2

B , (7.6.11)

where xk = k�2
B is the classical centre of the electron’s orbit and C is a constant to be

determined by normalization. Here, Hn(x + xk) is the the usual hermite polynomial of

degree n. We notice that the wave functions depend on two quantum numbers n and k
but the energy levels depend only on n. Since we can have many different ky = k all

with same En, each of the Landau levels is highly degenerate. In order to understand

this degeneracy consider a finite region in the xy-plane with extensions Lx and Ly along

the x and y directions. Since there is translational invariance along the y direction, we

assume periodic boundary condition: ψ(x,y+Ly) = ψ(x,y). Then the allowed values of

k− vectors are

k =
2π
Ly

ny, ny = 0,1,2,3, . . .

Hence the allowed values of xk are separated by

Δx = �2
B ·Δk =

2π �2
B

Ly
.

So, the total number of states in the region is

N =
LxLy

2π �2
B
=

eB
2π h̄

A,

where A = LxLy is the area of the region under consideration. It means that each Landau

level has 1/2π�2
B states per unit area.

Finally, note that although we treated x and y asymmetrically for convenience of

calculation, in reality, we cannot distinguish between the two due to the symmetry of the

original problem with magnetic field in the z direction.

Homework Problems

1. Consider a particle of mass m attached to a rigid massless rod of fixed length R whose

other end is fixed at the origin. The rod is free to rotate about the origin. The particle

has no internal spin degree of freedom, but carries an electric charge +e. It is placed

in a uniform magnetic field �B. Using the principle of minimal substitution, write

down the Schrödinger equation for this charged rigid rotator.

2. The Schrödinger equation in the first question can be solved exactly if the magnetic

field is weak. Compute the energy levels of the system , assuming that the magnetic
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field is weak (i.e., assume that the term in the Hamiltonian that is quadratic in �B can

be neglected).

3. For �B = B0 k̂, where B0 is a constant, show that the resulting Schrödinger equation,

in the previous Problem 2, is exactly solvable. Find the solutions.



Chapter 8

Quantum Mechanical Theory of the Spin Angular
Momentum

8.1 Spin

Spin angular momentum or simply spin is a fundamental property of all particles,

irrespective of whether they are elementary or composite. It belongs to an internal degree

of freedom (completely independent of the spatial degrees of freedom) and manifests
itself as some intrinsic angular momentum of the particle. It was introduced in quantum

mechanics as an attempt to explain the experimentally observed fine structures of the

spectral lines in the emission spectra of alkali metals and the peculiarities involved in the

anomalous (complex) Zeeman effect that showed the unusual splitting pattern of atomic

energy levels in the presence of a weak external magnetic field. Note that all efforts, prior

to the conjecture about spin, to explain the aforementioned experimental results on the

basis of the Schrödinger equation without spin had miserably failed.

An atom of any of the alkali metals has an almost inert core, consisting of the nucleus

and (Z− 1) inner electrons, together with a single outer electron. The transitions of the

outer electron between energy levels are responsible for the aforementioned spectral lines.

Therefore, any additional property required to be postulated for the explanation of the fine

structures of the spectral lines or anomalous Zeeman effect, had to be attributed to the

valence electron. It is because of this reason that Uhlenbeck and Goudsmit put forward

their conjecture about electron’s spin. They assumed that, similar to Earth’s spinning

motion about its axis, an electron, in addition to its orbital motion about the nucleus, also

possessed a spinning motion about its axis of symmetry. The angular momentum related

to this spinning motion was given the name ‘spin’. Uhlenbeck and Goudsmit also

assumed that, analogous to the magnetic dipole moment related to the orbital angular

momentum, an electron possessed an intrinsic magnetic dipole moment associated with

the spin angular momentum, whose interaction with the external magnetic field was the

key for resolving the discrepancies. Later theoretical and experimental developments did

confirm the existence of spin.

281
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It is worth mentioning here that, conceptually, the spinning motion of an electron,

proposed by Uhlenbeck and Goudsmit, was highly questionable in view of the fact that an

electron was a point particle and the classical notion of angular momentum of a rigid

body did not apply. However, as we know now, the theory constructed on the basis of such

an ad hoc assumption did succeed in explaining the experimental results to a great degree

of accuracy.

8.2 Spin Operators and their Commutation Relations

Spin is denoted by a vector �S. As required by the rules of quantum mechanics, it is

represented by an operator �̂S with Cartesian components Ŝx, Ŝy and Ŝz. Since it is a kind of

angular momentum, the operators Ŝx, Ŝy and Ŝz must satisfy the same set of commutation

relations that is satisfied by the Cartesian components of the orbital angular momentum.

Consequently, we have

[Ŝx, Ŝy] = ih̄Ŝz, (8.2.1)

[Ŝy, Ŝz] = ih̄Ŝx, (8.2.2)

[Ŝz, Ŝx] = ih̄Ŝy. (8.2.3)

Given the commutation relations (8.2.1)–(8.2.3), it is straightforward to check that Ŝ2

commutes with each of the operators Ŝx, Ŝy and Ŝz, that is,

[Ŝ2, Ŝx] = 0, [Ŝ2, Ŝy] = 0, [Ŝ2, Ŝz] = 0. (8.2.4)

From (8.2.1)–(8.2.4), it follows that only S2, and hence the magnitude of the total spin,

and the projection of spin on a given axis, say Sz, can be specified simultaneously in a

given state of the particle. The other two components Sx and Sy of �S cannot be specified at

all. Thus, the orientation of spin in space, in general, cannot be defined. It can be defined

only with respect to a chosen axis. Also, similar to the case of orbital angular momentum,

the direction of spin in space is quantized and we have the second example of space

quantization.

Further, since [Ŝ2, Ŝz] = 0, the operators Ŝ2 and Ŝz can have a common set of

eigenvectors, |s,ms〉, characterized by two quantum numbers s and ms. The quantum

number s is called the spin quantum number and takes integers as well as half-integer

values. On the other hand, the quantum number ms is called the spin magnetic quantum
number and takes (2s + 1) values from −s to s. Similar to the case of orbital angular

momentum, the eigenvectors |s,ms〉 satisfy

Ŝ2|s,ms〉= h̄2 s(s+ 1)|s,ms〉, (8.2.5)

Ŝz|s,ms〉= h̄ms|s,ms〉, (8.2.6)
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and

Ŝ±|s,ms〉= h̄
√

s(s+ 1)−ms(ms±1)|s,ms〉, (8.2.7)

where Ŝ± = Ŝx± iŜy are the raising and lowering operators for spin. Also, in a given state

with quantum number s, the magnitude of spin is given by S =
√

s(s+ 1)h̄. The z
component of spin is quantized, Sz = msh̄, and takes (2s+ 1) different values.

Now, the magnetic dipole moment associated with spin is given by

�μs = − e
me

�S, (8.2.8)

where e is the magnitude of the electronic charge and me is the mass of the electron. As

a consequence, the Hamiltonian for an electron, with spin, in an external magnetic field �B
along the positive z direction, will have a potential energy term

ΔW = −�μs ·�B =
eB
me

Sz =
eh̄ B
me

ms. (8.2.9)

As a consequence, the original energy levels will be shifted by (eh̄ B/me) ms. Since ms
takes (2s+ 1) values, the original degenerate energy level will split into (2s+ 1) distinct

levels.

Note that unlike the case of orbital angular momentum where the boundary conditions

on the eigenfunctions allowed one to exclude the half-integer values of �, for the spin

angular momentum, there is no such restriction and s can take both the integer and the

half-integer values in the units of h̄. We shall see in the next chapter that nature supports

both kinds of particles: particles with integer spin, called bosons, and particles with half-

integer spin, called fermions. For instance, photons (s = 1), π-mesons (s = 0), gravitons

(s = 2) and so on are bosons, while electrons (s = 1
2 ), protons (s = 1

2 ), neutrons (s = 1
2 ),

delta particles (s = 3
2 ) and so on are fermions.

8.3 Spin and Pauli Matrices

Let us consider the famous Stern–Gerlach experiment (schematically shown in Figure 8.1)

in which a beam of silver atoms in their ground state was made to pass through a region

of inhomogeneous magnetic field in the direction perpendicular to the direction of the

field. At the exit from this region, the beam was collected on a screen. The results of the

experiment showed that the original beam split into two after passing through the region of

the inhomogeneous magnetic field. It was evident from the pair of spots that appeared on

the screen, symmetrically placed on either side of the central spot that would have occurred

in the absence of the magnetic field.
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It was argued that the splitting of the beam could take place only if silver atoms had

some magnetic moment subject to a force from the applied magnetic field whose direction

depended on the relative orientation of the magnetic field and the magnetic moment of the

atom. In this context, it is important to note that a silver atom has 47 electrons out of which

46 constitute the spherically symmetric charge distribution around the nucleus: they fill all

the sub-shells for n = 1,n = 2, and n = 3, and the 4d sub-shell and contribute nothing to

the orbital angular momentum of the atom. The 47th electron is in the 5s state and it cannot

have any orbital angular momentum too. Thus, a silver atom in its ground state does not

have any orbital angular momentum and hence there is no magnetic moment associated

with it, which can lead to the splitting of the atomic beam during passage through an

inhomogeneous magnetic field. Therefore, it was argued that the splitting of the beam into

two could happen only if silver atoms had some kind of an intrinsic angular momentum

(not at all related to orbital motion) and a magnetic moment associated with it. But then,

this intrinsic angular momentum had to be attributed to the valence electron in the 5s sub-

shell because of the reasons stated earlier. We shall keep this fact in mind while discussing

the consequences of the Stern–Gerlach experiment.

Source of silver atoms

z

x

y

Spin-up

Spin-down

Inhomogeneous magnetic field

along the directionz‐

Magnet

Figure 8.1 Schematic representation of the Stern–Gerlach experiment.

Since the beam split into two, it follows from the theory discussed in the previous section

that

2s+ 1 = 1 ⇒ s =
1

2
. (8.3.1)

Therefore, for an electron, the spin quantum number s = 1
2 and the spin magnetic quantum

number ms can take only two values: + 1
2 and −1

2 . It means that the eigenvalue of Ŝ2 is

equal to (3/4) h̄2, and the projection of spin on the z-axis can have two values +h̄/2 and

−h̄/2. Given these facts, we shall now try to construct the quantum mechanical theory of

an electron by taking into account its spin properties.



Quantum Mechanical Theory of the Spin Angular Momentum 285

We know by now that spin is a purely quantum mechanical property of a particle with no

classical analogue at all. Also, the spin degree of freedom is completely independent of the

spatial degrees of freedom. Therefore, new concepts and mathematical tools are required

to incorporate this novel aspect of motion into the formalism of quantum mechanics. Let

us see how it can be accomplished.

Since the state of an electron is characterized by two values, +h̄/2 and −h̄/2, of the

projection of its spin on the z-axis, the wave function of the electron must consist of two

components: ψ+(�r, t), corresponding to Sz = +h̄/2, and ψ−(�r, t)corresponding to Sz =
−h̄/2. It is convenient to write it as a column vector:

ψ(�r, t) =
(

ψ+(�r, t)
ψ−(�r, t)

)
. (8.3.2)

Note that if only ψ+(�r, t) is non-zero, it corresponds to the case when the projection of

electron’s spin is along the positive z-direction, and if only ψ−(�r, t) is non-zero, the

projection of the electron’s spin is along the negative z-direction. A general state, ψ , is a

superposition of these two states.

After defining the state of an electron with spin, we must now determine the operator �̂S
corresponding to the dynamical variable �S. Since, �̂S acts on vectors belonging to a

two-dimensional Euclidean space, it must be represented by a 2×2 matrix. Evidently, its

Cartesian components, Ŝx, Ŝx, and Ŝz will also be a 2×2 matrix.

Following Pauli, let us introduce a new vector matrix �̂σ ≡ σ̂x î + σ̂y ĵ + σ̂z k̂ by the

formula

�S =
h̄
2
�̂σ . (8.3.3)

Replacing the Cartesian components of�S in the commutation relations (8.1.1)–(8.1.3) with

the corresponding Cartesian components of �̂σ , we get the commutation relations satisfied

by the σ matrices:

[σ̂x, σ̂y] = 2iσ̂z, (8.3.4)

[σ̂y, σ̂z] = 2iσ̂x, (8.3.5)

[σ̂z, σ̂x] = 2iσ̂y. (8.3.6)

Let the axis for the projection of spin be the z-axis in an arbitrarily oriented Cartesian

system of coordinates. Then the eigenvalues of Sz will be +h̄/2 and −h̄/2. Therefore, the

eigenvalues of σ̂z will be +1 and −1. It means that the operator σ̂z must be represented by

a diagonal matrix with diagonal elements +1 and −1, that is,

σ̂z =

(
1 0

0 –1

)
(8.3.7)
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and σ̂2
z will be a 2× 2 unit matrix. This is usually called the Sz-representation for the

sigma matrices. It then follows from the isotropy of space (equivalence of all the directions

in space) that the matrices σ̂2
x and σ̂2

y will also be 2× 2 unit matrices with eigenvalues 1,

that is,

σ̂2
x = σ̂2

y = σ̂2
z = I =

(
1 0

0 1

)
. (8.3.8)

Since σ̂2
y commutes with σ̂z, we have

σ̂2
y σ̂z− σ̂zσ̂2

y = σ̂yσ̂yσ̂z− σ̂yσ̂zσ̂y + σ̂yσ̂zσ̂y− σ̂zσ̂yσ̂y

= σ̂y(σ̂yσ̂z− σ̂zσ̂y)+ (σ̂yσ̂z− σ̂zσ̂y)σ̂y = 0. (8.3.9)

Taking into account the commutation relations of σ -matrices, we obtain

2i(σ̂yσ̂x + σ̂xσ̂y) = 0. ⇒ σ̂xσ̂y + σ̂yσ̂x = 0. (8.3.10)

This means that the matrices σ̂x and σ̂y anti-commute. Similarly, one can prove that all

the σ -matrices anti-commute with each other. This property along with the commutation

relations leads to the following useful formulae

σ̂xσ̂y = −σ̂yσ̂x = iσ̂z, (8.3.11)

σ̂yσ̂z = −σ̂zσ̂y = iσ̂x, (8.3.12)

σ̂zσ̂x = −σ̂xσ̂z = iσ̂y. (8.3.13)

If we multiply the first of the aforementioned relations by σ̂z from the right, we arrive at

the identity

σ̂xσ̂yσ̂z = iI (8.3.14)

which will be useful later.

Let us determine the concrete expressions for the sigma matrices. The general form of

σ̂x can be written as

σ̂x =

(
a1 a2

a3 a4

)
, (8.3.15)

where the matrix elements a1,a2,a3 and a4 are, in general, complex and have to be

determined using the basic properties of the sigma matrices.

First of all, σ̂x must be hermitian, that is, σ̂x = σ̂†
x . It gives a∗1 = a1,a∗4 = a4 and a∗2 =

a3,a∗3 = a2. That is, the diagonal elements are real and the off-diagonal elements are
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complex conjugate to each other. Since σ̂x and σ̂z anti-commute, that is, σ̂xσ̂z = −σ̂zσ̂x,

we have(
a1 −a2

a3 −a4

)
=

( −a1 −a2

a3 a4

)
. (8.3.16)

Therefore, a1 = 0 and a4 = 0. Using the property that σ̂2
x = I, we get(

a2a3 0

0 a3a2

)
=

(
1 0

0 1

)
⇒ a2a3 = a3a2 = 1. (8.3.17)

Since a2 = a†
3 and a3 = a†

2, we conclude that |a2|2 = |a3|2 = 1. Therefore, a2 = eiα and

a3 = e−iα , where α is an arbitrary real constant. Since, without any loss of generality, we

can put α equal to zero, we have

σ̂x =

(
0 1

1 0

)
. (8.3.18)

Now using the relation iσ̂x = σ̂zσ̂x, we obtain

σ̂y =

(
0 −i
i 0

)
. (8.3.19)

The matrices

σ̂x =

(
0 1

1 0

)
, σ̂y =

(
0 −i
i 0

)
, σ̂z =

(
1 0

0 –1

)
, (8.3.20)

are called Pauli matrices in the Sz representation and along with the unit matrix

I =
(

1 0

0 1

)
(8.3.21)

form the basis in the space of 2×2 matrices. Any 2×2 matrix can be expanded as a linear

combination of these matrices.

Now consider σ̂z. Its eigenvalues are ±1. In the state corresponding to the eigenvalue

+1, the spin of the electron points along the +z-axis and we call it spin-up state. Similarly,

in the state corresponding to the eigenvalue −1, the spin of the electron points along the

−z direction and it is called the spin-down state. The eigenfunctions of σ̂z with eigenvalues

+1 and −1, respectively, are readily computed as

χ+
z =

(
1

0

)
, χ−z =

(
0

1

)
, (8.3.22)



288 Fundamentals of Quantum Mechanics

Let us check whether these spin functions are eigenfunctions of σ̂x and σ̂y or not. We have

σ̂xχ+
z =

(
0 1

1 0

)(
1

0

)
=

(
0

1

)
= χ−z , (8.3.23)

σ̂xχ−z =

(
0 1

1 0

)(
0

1

)
=

(
1

0

)
= χ+

z , (8.3.24)

σ̂yχ+
z =

(
0 −i
i 0

)(
1

0

)
=

(
0

i

)
= iχ−z , (8.3.25)

σ̂yχ−z =

(
0 −i
i 0

)(
0

1

)
=

(
-i
0

)
= −iχ+

z (8.3.26)

These results tell us that, in the states described by the eigenfunctions χ+
z and χ−z of σ̂z,

only Sz has definite values equal to ±h̄/2. The projections of spin on the x-and y-axes are

completely unknown. This is nothing but the consequence of the fact that the matrices σ̂x,

σ̂y and σ̂z and hence the spin matrices, Sx, Sy and Sz do not commute with each other.

Example 8.3.1: (i) Find the eigenvalues and the eigenvectors (eigenfunctions) of the

matrices σ̂x and σ̂y. (ii) Show that irrespective of the direction of a chosen axis, the

projection of spin on the axis can take only two values equal to ±h̄/2.

Solution:

(i) The characteristic equation for σ̂x reads∣∣∣∣ 0−λ 1

1 0−λ

∣∣∣∣= λ 2−1 = 0. (8.3.27)

Therefore, the eigenvalues of σ̂x are λ = ±1. Let(
a
b

)
(8.3.28)

be the eigenvector of σ̂x. Then for λ1 = ±1, we have(
0 1

1 0

)(
a
b

)
= ±

(
a
b

)
⇒ b = ±a. (8.3.29)

Thus, the eigenvectors of σ̂x corresponding to the eigenvalues λ1 = +1 and λ2 = −1

are

χ+
x =

1√
2

(
1

1

)
, χ−x =

1√
2

(
1

−1

)
, (8.3.30)
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respectively. Similarly, the eigenvalues of σ̂y are λ = ±1 and the corresponding

normalized eigenvectors are given by

χ+
y =

1√
2

(
1

i

)
, χ−y =

1√
2

(
1

−i

)
. (8.3.31)

(ii) Since �̂σ = îσ̂x + ĵσ̂y + k̂σ̂z, the projection of �̂σ on an arbitrarily oriented axis with

directional cosines, �,m and n, is given by the matrix M = �σx +mσy + nσz, or

M =

(
n �− im

�+ im −n

)
. (8.3.32)

The characteristic equation for the eigenvalues λ of M reads∣∣∣∣ n−λ �− im
�+ im −(n+λ )

∣∣∣∣= λ 2− (�2 +m2 + n2) = λ 2−1 = 0, (8.3.33)

where we have used the property of the directional cosines, namely, �2 +m2 + n2 = 1.

From (8.2.33), we get the eigenvalues of M to be ±1. It means that the eigenvalues of

the operator corresponding to the projection of spin �S on this axis will be

S�mn = ±h̄/2. Thus, irrespective of the direction of the chosen axis, the projection of

spin on that axis can take only two values ±h̄/2. Thus, we see that Pauli matrices

(σx,σy,σz) and the related spin matrices (Sx,Sy,Sz) satisfy all the requirements of

quantum mechanics and are consistent with the experimental results.

Example 8.3.2: Find the eigenvalues and eigenstates of the spin operator �̂S of an electron in

the direction of a unit vector n̂ that lies in the xy plane making an angle θ with the x-axis.

Solution: The projection of the spin operator �̂S on n̂ will be Sn =
h̄
2 σ̂n, where

σ̂n =

(
0 cosθ

cosθ 0

)
+

(
0 −isinθ

isinθ 0

)
=

(
0 e−iθ

eiθ 0

)
. (8.3.34)

The requirement of non-trivial solutions to the eigenvalue equation for σ̂n yields∣∣∣∣ −λ e−iθ

eiθ −λ

∣∣∣∣= 0, ⇒ λ = ±1. (8.3.35)

Hence, the eigenvalues of the operator Sn are ± h̄
2 .

For the eigenvectors of Sn, We have

(
0 e−iθ

eiθ 0

)(
a
b

)
=

(
be−iθ

aeiθ

)
= ±

(
a
b

)
⇒ a = e−iθ /2, b = ±eiθ /2,

(8.3.36)
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where the ± signs in b correspond to ±h̄/2, respectively. The normalized eigenvectors of

Sn, corresponding to the eigenvalues ±h̄/2, are

χ+
n =

1√
2

(
e−iθ /2

eiθ /2

)
, χ−n =

1√
2

(
e−iθ /2

−eiθ /2

)
. (8.3.37)

Before proceeding further, let us summarize the basic properties of sigma matrices and

write down some useful formulae that are easily derived from them. We have

I. σ†
k = σ̂k, Tr(σ̂k) = 0, det(σ̂k) = −1 (k = x,y,z), (8.3.38)

II. σ̂2
k = Î, (k = x,y,z), (8.3.39)

III. σ̂ jσ̂k = i ε jk�σ̂� ( j �= k), (8.3.40)

IV . σ̂ jσ̂k + σ̂kσ̂ j = 0 ( j �= k), (8.3.41)

V . [σ̂ j, σ̂k] = 2iε jklσ̂l ( j,k, l = x,y,z), (8.3.42)

where Î the 2×2 unit matrix, ε jkl is the Levi-Civita tensor density and the summation from

1 to 3 over the repeated index, �, is implied. The properties in (8.2.39) and (8.2.41) can be

combined together as

[σ̂ j, σ̂k]+ = 2Îδ jk, (8.3.43)

where [σ̂ j, σ̂k]+ stands for the anti-commutator of σ̂ j and σ̂k and δ jk is the Kronecker delta.

On the other hand, the properties in (8.2.39) and (8.2.40) can be combined together into a

single formula

σ̂ jσ̂k = δ jk + i ε jk�σ̂�. (8.3.44)

where once again summation from 1 to 3 over � is implied.

Because the spin and spatial degrees of freedom are completely independent, the spin

operators Ŝx, Ŝy and Ŝz commute with the position operator �̂r, the momentum operator �̂p

and the angular momentum operator �̂L:

V I. [Ŝ j,�̂rk] = 0, [Ŝ j,�̂pk] = 0, [Ŝ j,�̂Lk] = 0, ( j,k = x,y,z). (8.3.45)

The next question that we may ask is: “How do we write the wave function of an electron
by taking into account its spin properties”? The answer to this question is as follows.

Because of the independence of the spatial and the spin degrees of freedom, the total wave

function of the particle is the product of the spatio-temporal part, ψ(�r, t), and the spin part,

χ(S):

ψ(�r, t;S) = ψ(�r, t)χ(S). (8.3.46)
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Or, taking into account our earlier notation given in (8.2.2), the same can be written as

ψ(�r, t;S) =
(

ψ+

ψ−
)
= ψ(�r, t)

(
χ+

χ−
)

, (8.3.47)

where the spin functions χ+ and χ− correspond to spin-up and spin-down cases,

respectively.

In Dirac notation, it can be written as

|ψ(�r, t;S)〉= |ψ(�r, t)〉⊗ |s,ms〉, (8.3.48)

where s is the total spin and ms is the spin-magnetic quantum number. The spin functions,

|s,ms〉, are given by

χ+ =

∣∣∣∣12,
1

2

〉
, χ− =

∣∣∣∣12,−1

2

〉
. (8.3.49)

Example 8.3.3: An electron is in the spin state

χ = A
(

i
2

)
. (8.3.50)

(a) Find the constant A. (b) If a measurement of Sz is made on the electron, what is the

probability of getting the value Sz = − h̄
2 ? (c) If, instead, a measurement of Sy is carried

out, what is the probability of getting the value Sy =
h̄
2?

Solution:

(a) The normalization of the wave function reads

|A|2 ( −i 2
)( i

2

)
= 1, ⇒ 5|A|2 = 1, ⇒ A =

1√
5

. (8.3.51)

(b) To find the answer, we have to expand χ in terms of the complete set of eigenvectors of

σ̂z, that is, χ = B χ+
z +C χ−z , where B and C are arbitrary complex constants. A little

bit of algebra gives, B = i/
√

5 and C = 2/
√

5. Therefore,

χ =
i√
5

χ+
z +

2√
5

χ−z =
i√
5

(
1

0

)
+

2√
5

(
0

1

)
. (8.3.52)

The probability, Pz(−h̄/2), of obtaining Sz = − h̄
2 is therefore given by

Pz(−h̄/2) = |(χ−z )∗ χ|2 = |C|2 = 4

5
. (8.3.53)
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(c) In this case, we have to express χ in terms of the complete set of eigenvectors of σ̂y,

that is, χ = D χ+
y +E χ−y , where D and E are arbitrary complex constants. We get

χ = − i√
10

{
1√
2

(
1

i

)}
+

3i√
10

{
1√
2

(
1

−i

)}
. (8.3.54)

The probability, Py(h̄/2), of obtaining Sy =
h̄
2 is therefore given by

Py(h̄/2) = |〈χ+
y |χ〉|2 = |D|2 =

1

10
. (8.3.55)

Example 8.3.4: Consider the spin state of an electron in the previous problem. (a) Find the

expectation values of Ŝx, Ŝy and Ŝz. (b) Find the uncertainties in the measurements of the

observables Ŝx, Ŝy and Ŝz.

Solution:

(a) The normalized spin wave function is given by

χ =
1√
5

(
i
2

)
. (8.3.56)

Therefore, the expectation values of Ŝx, Ŝy and Ŝz are given by

〈Ŝx〉= χ†Ŝxχ =
h̄
2
× 1

5

( −i 2
)( 0 1

1 0

)(
i
2

)
= 0, (8.3.57)

〈Ŝy〉= χ†Ŝyχ =
h̄
2
× 1

5

( −i 2
)( 0 −i

i 0

)(
i
2

)
= −2

5
h̄, (8.3.58)

〈Ŝz〉= χ†Ŝyχ =
h̄
2
× 1

5

( −i 2
)( 1 0

0 −1

)(
i
2

)
= − 3

10
h̄. (8.3.59)

(b) The average values of Ŝ2
x Ŝ2

y and Ŝ2
z are given by

〈Ŝ2
x〉= 〈Ŝ2

y〉= 〈Ŝ2
x〉=

h̄2

4
. (8.3.60)

Therefore, the uncertainties in the measurements of Ŝx, Ŝy and Ŝz are given by

ΔSx =
√
〈Ŝ2

x〉−〈Ŝx〉2 =
√

h̄2

4
−0 =

h̄
2

, (8.3.61)
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ΔSy =
√
〈Ŝ2

y〉−〈Ŝy〉2 =
√

h̄2

4
− 4

25
h̄2 =

3

10
h̄, (8.3.62)

ΔSz =
√
〈Ŝ2

z 〉−〈Ŝz〉2 =
√

h̄2

4
− 9

100
h̄2 =

2

5
h̄. (8.3.63)

Example 8.3.5: When Ŝx is measured on a spin 1
2 particle, the result is h̄

2 . Immediately after

that the projection of spin in the direction of a unit vector n̂, which lies in the xy plane

making an angle θ with the x-axis, is measured on the particle. What is the probability of

getting the value h̄
2?

Solution: After the first measurement, the particle must be in the eigenstate of Ŝx
corresponding to the eigenvalue h̄

2 , that is, in the state

χ (+)
x =

1√
2

(
1

1

)
. (8.3.64)

In order to answer the question, we must first expand χ (+)
x into a linear combination of the

eigenvectors of Ŝx cosθ + Ŝy sinθ . So, we write

1√
2

(
1

1

)
= α

1√
2

(
e−iθ /2

eiθ /2

)
+β

1√
2

(
e−iθ /2

−eiθ /2

)
, (8.3.65)

and determine the coefficients α and β . From this matrix equation, we get the following

set of algebraic equations:

α +β = eiθ /2, (8.3.66)

α−β = e−iθ /2. (8.3.67)

From (8.2.65) and (8.2.66), we obtain

α = cos

(
θ
2

)
, β = i sin

(
θ
2

)
. (8.3.68)

Therefore, the probability of getting the value h̄
2 for Sn is

P (+h̄/2) = cos2

(
θ
2

)
. (8.3.69)
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8.4 Spin Precession in a Uniform External Magnetic Field

Let us consider what happens to a spin 1
2 charged particle (charge q and mass m) when it

is placed in an external magnetic field, �B such that it is at rest at a fixed location. We know

from electrodynamics that a spinning charged particle is equivalent to a magnetic dipole

whose magnetic dipole moment, �μ , is proportional to its spin angular momentum, �S:

�μ = γ�S, (8.4.1)

where γ is called the gyromagnetic ration1. We also know that a magnetic dipole

experiences a torque �τ = �μ × �B, in an external magnetic field �B, which tries to align it

along the applied field. The magnetic potential energy of such a dipole in the external

field is given by

Wm = −�μ ·�B = −γ�S ·�B. (8.4.2)

So, the Hamiltonian, ĤS, representing the potential energy of interaction is given by

ĤS = −γ �̂S ·�B. (8.4.3)

Therefore, in general, the time evolution of the wave function of a spin 1
2 particle in the

presence of an electromagnetic field will be governed by the time dependent Schrödinger

equation (see Chapter 7)

ih̄
∂ψ
∂ t

=
1

2m

(
�̂P−q�A

)2
ψ + qΦψ + ĤSψ , (8.4.4)

Equation (8.4.4), which takes into account the contribution from the spin of the particle, is

also known as Pauli equation.

Since the spinning charged particle is at rest at a fixed location in the magnetic field and

its spin is the only degree of freedom, (8.4.4) yields the following equation for the time

evolution of the spin wave function χ(t):

ih̄
∂ χ(t)

∂ t
= ĤSχ(t). (8.4.5)

If the magnetic field is uniform and directed along the z axis , i.e., �B = ẑB0, then Ĥ =
−γ�S ·�B = −γ B0 Ŝz. So, the Hamiltonian commutes with Ŝz and the eigenstates of Ŝz are

also the eigenstates of the Hamiltonian. Hence, we have

Ĥχ+
z = −γ B0 Ŝz χ+

z = −γ B0 h̄
2

χ+
z ≡ E+ χ+

z , (8.4.6)

Ĥχ−z = −γ B0 Ŝz χ−z =
γ B0 h̄

2
χ−z ≡ E− χ−z . (8.4.7)

1See, for instance, D.J. Griffiths, Introduction to Electrodynamics, Prentice Hall, 1999, 3rd ed., page 252.
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where E+ = −(γ B0 h̄)/2 and E− = (γ B0 h̄)/2. Thus, the general spin wave function of

the particle at t = 0 will be given by the linear superposition χ(0) = a0 χ+
z + b0 χ−z ,

where a0 and b0 are arbitrary constants. Normalization requires a0 and b0 to satisfy the

condition a2
0 + b2

0 = 1. Without any loss of generality, this condition can be fulfilled by

choosing a0 = cos(θ /2) and b0 = sin(θ /2), where θ is constant whose physical

meaning will be clarified later.

To study the time-evolution of the spin state of the particle in the external magnetic field,

we use (8.4.5). Using the expressions for χ+
z and χ−z , we get

i h̄

(
ȧ
ḃ

)
= −γ B0 h̄

2

(
1 0

0 −1

)(
a
b

)
=

h̄ωL

2

( −a
b

)
, (8.4.8)

where dot stands for the ordinary time derivative and ωL = γ B0 is the Larmor frequency.

We thus get the following set of equations

ȧ = i (ωL/2)a, ḃ = −i (ωL/2)b. (8.4.9)

The solutions of the above equations consistent with the initial condition lead to the

following time-dependent spin function

χ(t) =

(
cos(θ /2) eiγ B0 t/2

sin(θ /2) e−iγ B0 t/2

)
. (8.4.10)

In order to see the physical meaning of the constant θ , let us calculate the average values

of the spin components Sx,Sy and Sz. We have

〈Sx〉= χ†(t)Ŝxχ(t) =
h̄
2

sinθ cos(γB0 t), (8.4.11)

〈Sy〉= χ†(t)Ŝyχ(t) = − h̄
2

sinθ sin(γB0 t), (8.4.12)

〈Sz〉= χ†(t)Ŝzχ(t) =
h̄
2

cosθ . (8.4.13)

On the basis of (8.4.11)–(8.4.13), we conclude that the spin component along the field

direction is conserved. The average spin 〈�S〉 is tilted at a constant angle θ to the field

direction (that is the z-axis) and precesses about the field direction at the Larmor frequency

ωL.

Example 8.4.1: Consider a spin 1
2 particle at rest in a uniform magnetic field pointing in the

+z direction. It is initially in the spin state χ+
x at time t = 0. (a) What will be the state at
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some later time t? (b) If we measure Sx at time t, what are the probabilities of finding ± h̄
2?

(c) What are the probabilities of finding ± h̄
2 , if we measure Sz at time t?

Solution: At t = 0, we have

χ(0) = χ+
x =

1√
2

(
1

1

)
=

1√
2

(
1

0

)
+

1√
2

(
0

1

)
=

1√
2

χ+
z +

1√
2

χ−z . (8.4.14)

(a) As discussed earlier, the state at any t > 0 will be

χ(t) =
1√
2

ei γ B0 t
2 χ+

z +
1√
2

e−i γ B0 t
2 χ−z . (8.4.15)

(b) Since χ(t) is normalized to unity, according to the measurement postulate of quantum

mechanics, the probability of obtaining h̄
2 for Sx at any t > 0 is given by

P (Sx = h̄/2) =
∣∣〈χ+

x |χ(t)
〉∣∣2 . (8.4.16)

Using (8.4.14) and (8.4.15), we obtain

P (Sx = h̄/2) =

∣∣∣∣12
(

ei γ B0 t
2 〈χ+

z |χ+
z 〉+ e−i γ B0 t

2 〈χ−z |χ−z 〉
)

+
1

2

(
e−i γ B0 t

2 〈χ+
z |χ−z 〉+ e−i γ B0 t

2 〈χ−z |χ+
z 〉
)∣∣∣∣2 . (8.4.17)

Taking into account the orthonormality of the eigenvectors of σ̂z, we get

P (Sx = h̄/2) =

∣∣∣∣12
[
ei γ B0 t

2 〈χ+
z |χ+

z 〉+ e−i γ B0 t
2 〈χ−z |χ−z 〉

]∣∣∣∣2 = cos2

(
γ B0 t

2

)
. (8.4.18)

By taking into account that

χ(0) = χ−x =
1√
2

(
1

−1

)
=

1√
2

(
1

0

)
− 1√

2

(
0

1

)
=

1√
2

χ+
z −

1√
2

χ−z , (8.4.19)

the probability for finding the value Sx =− h̄
2 is computed in an analogous manner. The

result is

P (Sx = −h̄/2) =

∣∣∣∣i 1

2i

[
ei γ B0 t

2 〈χ+
z |χ+

z 〉− e−i γ B0 t
2 〈χ−z |χ−z 〉

]∣∣∣∣2 = sin2

(
γ B0 t

2

)
. (8.4.20)

(c) Similarly, if a measurement of Sz is carried out at t > 0, the probabilities of obtaining

the values Sz = ± h̄
2 are given by
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P (Sz = h̄/2) =
∣∣〈χ+

z |χ(t)〉
∣∣2 = ∣∣∣∣ 1√

2
ei γ B0 t

2 〈χ+
z |χ+

z 〉
∣∣∣∣2 = 1

2
, (8.4.21)

P (Sz = h̄/2) =
∣∣〈χ−z |χ(t)〉∣∣2 =

∣∣∣∣ 1√
2

e−i γ B0 t
2 〈χ−z |χ−z 〉

∣∣∣∣2 = 1

2
. (8.4.22)

Homework Problems

1. Let �a and �b be any two vectors that commute with �̂σ = îσ̂x + ĵσ̂y + k̂σ̂z. Show that

(�̂σ ·�a)(�̂σ ·�b) = (�a ·�b)Î + i�̂σ · (�a×�b).
2. Find the eigenvalues and eigenstates of the spin operator �̂S of an electron in the direction

of a unit vector n̂ = ĵ cosα + k̂ sinα that lies in the yz plane making an angle α with

the y-axis.

3. The Hamiltonian of a system is Ĥ = E (�̂σ · n̂), where E is a constant with the

dimensions of energy. Here, n̂ = î sinθ cosφ + ĵ sinθ sinφ + k̂ cosθ is an arbitrary

unit vector in three dimensions and �̂σ = î σ̂x + ĵ σ̂x + k̂ σ̂z. Find the energy eigenvalues

and normalized eigenvectors of Ĥ.

4. An electron in a hydrogen atom occupies a combined spin and position state, given by

the wave function

ψ(r,θ ,φ ) = R32

(√
1

5
Y 0

2 χ++

√
2

5

(
Y−1

2 −Y 1
2

)
χ−

)
.

(a) If L̂2 and L̂z are measured in this state, what values will result and with what

probabilities? (b) If Ŝ2 and Ŝz are measured in this state, what values will result and

with what probabilities?

5. An electron is in the spin state

χ = A
(

2+ 3i
6

)

(a) Determine the normalization constant A. (b) If Sz is measured, what is the

probability of getting the value h̄/2? (c) Calculate the average values of Ŝx, Ŝy, Ŝz, Ŝ2
x ,

Ŝ2
y and Ŝ2

z . (d) Show that the uncertainties in the measurements of Ŝx and Ŝy satisfy the

Heisenberg uncertainty relation.

6. Consider a spin 1
2 particle at rest in a spatially uniform but time-dependent magnetic

field �B = B0 sin(ωt) ẑ, where B0 and ω are constants. At t = 0, it is in the spin state

χ+
y . (a) What will be the state at some later time t? (b) If Sy is measured at a later time

t, what are the probabilities of finding ± h̄
2?



Chapter 9

Addition of Angular Momenta

9.1 General Theory and the Clebsch–Gordan Coefficients

In many problems of interest it is necessary to add angular momenta. For instance, one is

required to add the orbital angular momentum, �̂L, and the spin angular momentum, �̂S,

while studying spin-orbit coupling in atoms. Then, there are problems related to the

studies of multi-electron atoms where one has to add two or more orbital angular

momenta. Therefore, it is important to discuss the procedure of addition of angular

momenta in quantum mechanics. In view of this, in what follows, we shall discuss the

general algebraic method for the addition of any two angular momenta.

Note that, in this Chapter, we shall write the eigenfunctions of L̂2 in the bra–ket

notation as: |�,m〉. Thus, |�,m〉 is an eigenvector (or eigenket) of L̂2 with two quantum

numbers � and m. If �̂L happens to be orbital angular momentum, then � represents the

orbital quantum number and m stands for the orbital magnetic quantum number. On the

other hand, if �̂L happens to be the spin angular momentum (�̂L = �̂S), then � is spin quantum

number i.e., �= s and m equals the spin magnetic quantum number i.e., m = ms.

Let us, without specifying the nature, consider the addition of two angular momenta �̂L1

and �̂L2: �̂J = �̂L1 +�̂L2. Individually, �̂L1 and �̂L2 satisfy the following quantum mechanical

commutation relations (see Chapter 6):

[L̂1i, L̂1 j] = ih̄ ∑
k

εi jkL̂1k, (9.1.1)

[L̂2i, L̂2 j] = ih̄ ∑
k

εi jkL̂2k, (9.1.2)

where the indices i, j and k take values from 1 to 3. Note that, it is assumed here that �̂L1

and �̂L2 either correspond to different degrees of freedom, or correspond to the same degree

of freedom but belong to different particles.

298
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In view of the preceding assumption, the operators �̂L1 and �̂L2 act in different vector

spaces: �̂L1 acts in the (2�1 + 1) dimensional space spanned by the kets {|�1,m1〉}, while

�̂L2 acts in the (2�2 + 1) dimensional space spanned by the kets {|�2,m2〉}). Hence, they

commute and can have a common set of eigenvectors. Let us write these common

eigenvectors as

|�1,m1;�2,m2〉= |�1,m1〉⊗ |�2,m2〉, (9.1.3)

where �i, i = 1,2 and mi, i = 1,2 are the individual quantum numbers and ⊗ stands for the

direct (tensorial) product. Then according to the earlier discussions

�̂L2
1|�1,m1;�2,m2〉= h̄2�1(�1 + 1)|�1,m1;�2,m2〉, (9.1.4)

L̂1z|�1,m1;�2,m2〉= h̄m1|�1,m1;�2,m2〉 (9.1.5)

�̂L2
2|�1,m1;�2,m2〉= h̄2�2(�2 + 1)|�1,m1;�2,m2〉, (9.1.6)

L̂2z|�1,m1;�2,m2〉= h̄m2|�1,m1;�2,m2〉 (9.1.7)

Let us show that the total angular momentum operators Ĵi = L̂1i + L̂2i, (i = 1,2,3) also

obey the usual angular momentum commutation relations, i.e.,

[Ĵi, Ĵ j] = ih̄ ∑
k

εi jkĴk, (9.1.8)

where, once again, each of the indices i, j and k takes three values 1, 2 and 3. We have

[Ĵi, Ĵ j] = [L̂1i + L̂2i, L̂1 j + L̂2 j] = [L̂1i, L̂1 j]+ [L̂1i, L̂2 j]+ [L̂2i, L̂1 j]+ [L̂2i, L̂2 j]

= ih̄ ∑
k

εi jkL̂1k + ih̄ ∑
r

εi jkL̂2k

= ih̄ ∑
k

εi jk(L̂1k + L̂2k)

= ih̄ ∑
k

εi jkĴk, (9.1.9)

where we have taken into account that [L̂1i, L̂2 j] = 0 and [L̂2i, L̂2 j] = 0.

Our main task is the following. Given the values of the individual angular momenta |�L1|
and |�L2| (i.e., the quantum numbers �1 and �2), find the values that the total angular

momentum |�J| (i.e., the quantum number j corresponding to it) can take and given the

values of the individual magnetic quantum numbers m1 and m2 find the values that the

total magnetic quantum number m j of the combined system can take. To accomplish this

programme, we proceed as follows.
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Since the total angular momentum operators Ĵi, (i = 1,2,3), satisfy the usual angular

momentum commutation relations, using the results of the earlier chapters, we can easily

show that

[Ĵ2, Ĵz] = 0, [Ĵ2, Ĵ±] = 0, , [Ĵ+, Ĵ−] = 2h̄Ĵz, , [Ĵz, Ĵ±] = ±h̄Ĵ±, (9.1.10)

where Ĵ+ = (Ĵx + iĴy)/2 and Ĵ− = (Ĵx− iĴy)/2i are the total angular momentum raising

and lowering operators, respectively. Further,the Hilbert space in which the total angular

momentum operator Ĵ2 acts is the product space H = H1⊗H2, spanned by the kets

|�1,�2,m1,m2〉 = |�1,m1〉⊗ |�2,m2〉. Since the kets {| j1,m1〉} and {| j2,m2〉} individually

form a complete orthonormal basis (being the eigenvectors of hermitian operators), the

kets {|�1,�2,m1,m2〉} also form a complete and orthonormal basis:

〈�1,�2;m1,m2|�′1,�′2,m′1,m′2〉= 〈�1,m1|�′1,m′1〉〈�2,m2|�′2,m′2〉
= δ�1�

′
1

δ�2�
′
2

δm1m′1 δm2m′2 , (9.1.11)

∑
m1m2

|�1,�2;m1,m2〉〈�1,�2;m1,m2|

=

(
�1

∑
m1=−�1

|�1,m1〉〈�1,m1|
)(

�2

∑
m2=−�2

|�2,m2〉〈�2,m2|
)
= Î2 = Î. (9.1.12)

It is straightforward to prove that [Ĵ2, L̂2
1] = 0, [Ĵ2, L̂2

2] = 0, [Ĵz, L̂2
1] = 0, [Ĵz, L̂2

2] = 0, but

[Ĵ2, L̂1z] �= 0,and [Ĵ2, L̂2z] �= 0. Therefore, the maximal set of commuting operators for

the system is given by Ĵ2, Ĵz, L̂2
1 and L̂2

2,. They can be simultaneously diagonalized and

their joint eigenfunctions are characterized by four quantum numbers j (quantum number

representing the total angular momentum), m j (magnetic quantum number characterizing

the projection of the total angular momentum on z-axis), �1 (orbital angular momentum of

particle 1) and �2 (orbital angular momentum of particle 2).

Let |�1,�2, j,m〉 be the simultaneous eigenfunctions of Ĵ2 and Ĵz. Since �1 and �2 are

fixed, we shall write these vectors as | j,m〉. Clearly, for every j, the number m has (2 j+1)
allowed values:m = − j,− j + 1, ..., j− 1, j. The above completeness and orthonormality

conditions can now be re-written as

∑
j

j

∑
m=− j

| j,m〉〈 j,m|= Î, (9.1.13)

〈 j′,m′| j,m〉= δ j j′δmm′ . (9.1.14)

Also, it is not difficult to show that

Ĵ2| j,m〉= j( j+ 1)h̄2| j,m〉, (9.1.15)
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Ĵz| j,m〉= mh̄| j,m〉, (9.1.16)

Ĵ+| j,m〉=
√
( j−m)( j+m+ 1)h̄ | j,m+ 1〉, (9.1.17)

Ĵ−| j,m〉=
√
( j+m)( j−m+ 1)h̄ | j,m−1〉, (9.1.18)

Ĵz| j,m〉= mh̄ | j,m〉, (9.1.19)

Ĵ+| j,m = j〉= 0, Ĵ−| j,m = − j〉= 0. (9.1.20)

Since Ĵ2 and Ĵz are hermitian, the vectors | j,m〉 also constitute an orthonormal and

complete basis in H .

In order to achieve the goal, stated above, we have to find the linear combination of

|�1,�2;m1,m2〉, with fixed �1 and �2, which are eigenfunctions of Ĵz = Ĵ1z + Ĵ2z with

eigenvalues m and also eigenstates of and Ĵ2 = (�̂L1 +�̂L2)2 with eigenvalues j( j + 1). It

then follows from linear algebra that this goal can be achieved, if we succeed in finding a

unitary matrix that relates the bases {|�1,�2;m1,m2〉} and {| j,m〉}. For this purpose let us

expand the besis vector | j,m〉 in terms of the basis {|�1,�2;m1,m2〉} as

| j,m〉=
�1

∑
m1=−�1

�2

∑
m2=−�2

Cm1 m2 m
�1 �2 j |�1,�2;m1,m2〉, (9.1.21)

where the coefficients of expansion

Cm1 m2 m
�1 �2 j = 〈�1,�2;m1,m2| j,m〉 (9.1.22)

are called the Clebsch-Gordan (CG) coefficients. Therefore, the solution of the problem of

addition of two angular momenta reduces to the determination of the Clebsch-Gordan

coefficients which are nothing but the elements of the unitary matrix that effects the

transition from the basis {|�1,�2;m1,m2〉} to the basis {| j,m〉}.
By convention, Clebsch-Gordan coefficients are taken to be real, i.e.,

〈�1,�2;m1,m2| j,m〉= 〈�1,�2;m1,m2| j,m〉† = 〈 j,m|�1,�2;m1,m2〉. (9.1.23)

Also, using (9.1.12), we get

∑
m1m2

〈 j′,m′|�1,�2;m1,m2〉〈�1,�2;m1,m2| j,m〉= δ j′ jδm′m. (9.1.24)

Since the Clebsch-Gordan coefficients are real, we can write this equation as

∑
m1m2

〈�1,�2;m1,m2| j′,m′〉〈�1,�2;m1,m2| j,m〉= δ j′ jδm′m. (9.1.25)
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The last equation leads to

∑
m1m2

〈�1,�2;m1,m2| j,m〉2 = 1. (9.1.26)

Similarly, we can derive the following relation

∑
j

j

∑
m=− j

〈�1,�2,m′1,m′2| j,m〉〈�1,�2;m1,m2| j,m〉= δm′1m1
δm′2m2

, (9.1.27)

which yields

∑
j

j

∑
m=− j

〈 j1, j2,m1,m2| j,m〉2 = 1. (9.1.28)

Our next step is to find the eigenvalues of the operator �̂J2 in terms of the eigenvalues of

the operators L̂2
1 and L̂2

2 and the eigenvalues of the operator Ĵz in terms of the eigenvalues

of the operators L̂1z and L̂2z so that we could express j in terms of �1 and �2 and m in

terms of m1 and m2.

Constraints on the indices of CG coefficients: (A) Since Ĵz = L̂1z + L̂2z, we have

〈�1,�2;m1,m2|Ĵz− L̂1z− L̂2z| j,m〉= 0. (9.1.29)

Using the following relations

Ĵz| j,m〉= mh̄ | j,m〉, (9.1.30)

〈�1,�2;m1,m2|L̂1z = m1h̄〈�1,�2;m1,m2|, (9.1.31)

〈�1,�2;m1,m2|L̂2z = m2h̄〈�1,�2;m1,m2|, (9.1.32)

we obtain

(m−m1−m2)〈�1,�2;m1,m2| j,m〉= 0. (9.1.33)

Therefore, for 〈�1,�2;m1,m2| j,m〉 to be nonzero, we must have m = m1 +m2. This is the
first constraint for the Clebsch-Gordan coefficients.

(B) Further, the maximum values of m1 and m2 are �1 and �2, respectively, and hence the

maximum value of m is mmax = �1 + �2. However, |m| ≤ j, and therefore, jmax = �1 + �2.

We have to now find jmin, i.e., the minimum possible value of j. Since the dimension of

the product space is N = (2�1 +1)× (2�2 +1), there are (2�1 +1)× (2�2 +1) number of

basis vectors | j,m〉 in this space. On the other hand, for each value of j there are (2 j+ 1)
basis vectors | j,m〉, and hence
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jmax

∑
j= jmin

(2 j+ 1) = (2�1 + 1)(2�2 + 1). (9.1.34)

Since jmax = �1 + �2, the left hand-side of (9.1.34) has jmax− jmin +1 = �1 + �2 +1− jmin

terms. Therefore, we have

S≡
jmax

∑
jmin

(2 j+ 1) = (2 jmin + 1)+ (2 jmin + 3)+ (2 jmin + 5)+ ...+(2(�1 + �2)+ 1).

(9.1.35)

We can write the above series in two equivalent ways

S = (2 jmin + 1)+ 2( jmin + 3)+ (2 jmin + 5)+ ...+(2(�1 + �2)+ 1),

S = (2(�1 + �2)+ 1)+ (2(�1 + �2)−1)+ (2(�1 + �2)−3)+ ...+(2 jmin + 1).
(9.1.36)

Adding up the aforementioned two equations term by term, we obtain

S = ([(�1 + �2 + 1)+ jmin]+ [(�1 + �2 + 1)+ jmin]+ [(�1 + �2 + 1)+ jmin]

+ ... +[(�1 + �2 + 1)+ jmin]) . (9.1.37)

Since S in (9.1.37) contains ( jmax− jmin +1) = (�1 + �2 +1− jmin) terms, using (9.1.34),

we arrive at

(�1 + �2 + 1− jmin)[(�1 + �2 + 1)+ jmin] = (2�1 + 1)(2�2 + 1). (9.1.38)

Or,

j2
min = (�1− �2)

2. (9.1.39)

Hence jmin = |�1− �2| and we have the following range of variation of j:

|�1− �2| ≤ j ≤ (�1 + �2). (9.1.40)

So, j changes from |�1− �2| to (�1 + �2) in integer steps:

j = |�1− �2|, |�1− �2|+ 1, |�1− �2|+ 2, ..., (�1 + �2). (9.1.41)

Thus the second constraints for the Clebsch-Gordan coefficients is that, simultaneously
with m = m1 +m2, we must also have | j1− j2| ≤ j ≤ ( j1 + j2). Note that m takes values

from − j to + j.
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9.2 Calculation of Clebsch–Gordan Coefficients

The computation of Clebsch-Gordan coefficients from first principles is somewhat

cumbersome. For practical use, however, they have been tabulated in the literature and

can be readily obtained. In some simple cases, these coefficients can be determined in a

straightforward manner. For instance, it can be shown that the CG coefficients

corresponding to two limiting cases {m1 = �1,m2 = �2, j = �1 + �2,m = (�1 + �2)} and

{m1 = −�1,m2 = −�2, j = �1 + �2,m = −(�1 + �2)} are equal to 1. That is

〈�1,�2,�1,�2|(�1 + �2), (�1 + �2)〉= 1, (9.2.1)

〈�1,�2,−�1,−�2|(�1 + �2),−(�1 + �2)〉= 1. (9.2.2)

In general, to calculate CG coefficients, other than the aforementioned simple cases, one

uses either the recursion relations between the CG coefficients or the ladder operator
method. Below, we shall demonstrate these methods of calculation by taking up a

concrete problem.

Recursion relations between CG Coefficients: To determine the recursion relations it is

required to evaluate the matrix elements,

〈�1,�2;m1,m2|Ĵ±| j,m〉,

in two different ways and equate the results. Let us do it. Firstly, using (9.1.17) and (9.1.18),

we have

〈�1,�2;m1,m2|Ĵ±| j,m〉= h̄
√
( j∓m)( j±m+ 1) 〈�1,�2;m1,m2| j,m±1〉. (9.2.3)

Secondly, replacing Ĵ± by Ĵ1±+ Ĵ2±, where

Ĵk± =
1

2
(L̂kx± iL̂ky), k = 1,2, (9.2.4)

and acting on the bra 〈�1,�2;m1,m2|, we obtain

〈�1,�2;m1,m2|Ĵ±| j,m〉 = h̄
√
(�1±m1)(�1∓m1 + 1) 〈�1,�2;m1∓1,m2| j,m〉

+ h̄
√
(�2±m2)(�2∓m2 + 1) 〈�1,�2;m1,m2∓1| j,m〉. (9.2.5)

From (9.2.3) and (9.2.5), we arrive at the first recursion relation between CG coefficients√
( j∓m)( j±m+ 1) 〈�1,�2;m1,m2| j,m±1〉
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=
√
(�1±m1)(�1∓m1 + 1) 〈�1,�2;m1∓1,m2| j,m〉

+
√
(�2±m2)(�2∓m2 + 1) 〈�1,�2;m1,m2∓1| j,m〉. (9.2.6)

Now, considering the matrix elements

〈�1,�2;m1,m2|Ĵ±| j,m∓1〉,

and repeating the same steps that led to (9.2.6), we obtain the second recursion relation√
( j±m)( j∓m+ 1) 〈�1,�2;m1,m2| j,m〉

=
√
(�1±m1)(�1∓m1 + 1) 〈�1,�2;m1∓1,m2| j,m∓1〉

+
√
(�2±m2)(�2∓m2 + 1) 〈�1,�2;m1,m2∓1| j,m∓1〉. (9.2.7)

The recursion relations (9.2.6) and (9.2.7) along with the orthonormality conditions

(9.1.25) and (9.1.27) enable one to calculate all the CG coefficients, except for the sign,

for given values of �1, �2 and j.
The sign is determined by the so-called phase convention (Wigner’s convention),

according to which the coefficient

〈�1,�2,�1, ( j− �1)| j, j〉, (9.2.8)

is considered to be real and positive. Since all the CG coefficients are obtained from

this single coefficient by repeated applications of the recursion relations, and since this

coefficient is taken to be real, all other CG coefficients must be real.

Example 9.2.1: Find the ClebschGordan coefficients associated with the coupling of the

spins of two spin 1/2 particles with zero orbital angular momentum.

Solution: We wish to solve this problem by both the methods mentioned above.

I. The recursion relation method1: Since �1 = s1 =
1
2 , �2 = s2 =

1
2 , and j = s= 1,0. When

s = 0, we have m = ms = 0 and there is a spin singlet state |0,0〉. When s = 1, m = ms can

take three values −1, 0, and 1. Correspondingly, there is a triplet of spin states: |1,−1〉,
|1,0〉 and |1,1〉.

Let us expand these states in terms of the states |s1,s2;m1,m2〉, where m1 = ms1
and

m2 = ms2
, such that m = m1 +m2:

1N. Zettili, Quantum Mechanics: Concepts and Applications, John Wiley, 2009.
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|0,0〉=
〈

1

2
,
1

2
;
1

2
,−1

2
|0,0

〉 ∣∣∣∣12,
1

2
;
1

2
,−1

2

〉
+

〈
1

2
,
1

2
;−1

2
,
1

2
|0,0

〉 ∣∣∣∣12,
1

2
;−1

2
,
1

2

〉
, (9.2.9)

|1,1〉=
〈

1

2
,
1

2
;
1

2
,
1

2
|1,1

〉 ∣∣∣∣12,
1

2
;
1

2
,
1

2

〉
, (9.2.10)

|1,0〉=
〈

1

2
,
1

2
;
1

2
,−1

2
|1,0

〉 ∣∣∣∣12,
1

2
;
1

2
,−1

2

〉
+

〈
1

2
,
1

2
;−1

2
,
1

2
|1,0

〉 ∣∣∣∣12,
1

2
;−1

2
,
1

2

〉
,(9.2.11)

|1,−1〉=
〈

1

2
,
1

2
;−1

2
,−1

2
|1,−1

〉 ∣∣∣∣12,
1

2
;−1

2
,−1

2

〉
. (9.2.12)

Calculation of the coefficients
〈

1
2 , 1

2 ;±1
2 ,∓1

2 |0,0
〉

In order to calculate these coefficients, let us go to the recursion relation (9.2.6) with upper

signs and put j = s = 0,m = 0 and m1 = m2 =
1
2 to obtain〈

1

2
,
1

2
;−1

2
,
1

2
|0,0

〉
= −

〈
1

2
,
1

2
;
1

2
,−1

2
|0,0

〉
. (9.2.13)

Also, if we now put j = s = 0 and m = 0 in (9.1.26) and take into account the constraint

that m = m1 +m2, we are led to〈
1

2
,
1

2
;−1

2
,
1

2
|0,0

〉2

+

〈
1

2
,
1

2
;
1

2
,−1

2
|0,0

〉2

= 1. (9.2.14)

From (9.2.13) and (9.2.14), we obtain〈
1

2
,
1

2
;
1

2
,−1

2
|0,0

〉
= ± 1√

2
. (9.2.15)

Note that, according to the phase convention, the sign of 〈1
2 , 1

2 ; 1
2 ,−1

2 |0,0〉 has to be

positive. Thus, we have〈
1

2
,
1

2
;
1

2
,−1

2
|0,0

〉
=

1√
2

. (9.2.16)

Then, in accordance with (9.2.13), we get that〈
1

2
,
1

2
;−1

2
,
1

2
|0,0

〉
= − 1√

2
. (9.2.17)
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Calculation of the coefficients 〈1
2 , 1

2 ; 1
2 , 1

2 |1,1〉 and 〈1
2 , 1

2 ;− 1
2 ,− 1

2 |1,−1〉
For ( j = s = 1,m = 1) and ( j = s = 1,m = −1), we, after taking into account that m =
m1 +m2, get from (9.1.26) that〈

1

2
,
1

2
;
1

2
,
1

2
|1,1

〉2

= 1, (9.2.18)

〈
1

2
,
1

2
;−1

2
,−1

2
|1,−1

〉2

= 1. (9.2.19)

Since, according to the phase convention, both 〈1
2 , 1

2 ; 1
2 , 1

2 |1,1〉 and 〈1
2 , 1

2 ;−1
2 ,−1

2 |1,−1〉 are

real and positive, we obtain〈
1

2
,
1

2
;
1

2
,
1

2
|1,1

〉
= 1, (9.2.20)

〈
1

2
,
1

2
;−1

2
,−1

2
|1,−1

〉
= 1. (9.2.21)

Calculation of the coefficients 〈1
2 , 1

2 ; 1
2 ,−1

2 |1,0〉 and 〈1
2 , 1

2 ;− 1
2 , 1

2 |1,0〉
These coefficients are obtained by putting j = s = 1,m = 0,m1 =

1
2 ,m2 =−1

2 and j = s =
1,m = 0,m1 =−1

2 ,m2 =
1
2 into the recursion relation (9.2.7) with lower sign, respectively.

Using (9.2.21), we arrive at〈
1

2
,
1

2
;
1

2
,−1

2
|1,0

〉
=

1√
2

〈
1

2
,
1

2
;
1

2
,
1

2
|1,1

〉
=

1√
2

, (9.2.22)

〈
1

2
,
1

2
;−1

2
,
1

2
|1,0

〉
=

1√
2

〈
1

2
,
1

2
;
1

2
,
1

2
|1,1

〉
=

1√
2

. (9.2.23)

II. Ladder Operator Method2: The calculations are done in the following steps:

Step 1. We start with the state with the maximal total spin. It corresponds to the case when

both the particles have spins parallel and ”up”. The normalized spin wave function of the

system is given by

χms=1
s=1 = χ

(
s1 =

1

2
,ms1

=
1

2

)
⊗χ
(

s2 =
1

2
,ms2

=
1

2

)
≡ χ (1)

+ χ (2)
+ , (9.2.24)

2David J. Griffiths, Introduction to Quantum Mechanics, Pearson Prentice Hall (2005).
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where the superscript stands for the particle number. The subscript + denotes spin ”up”.

This is also written as

|1,1〉=
∣∣∣∣12,

1

2
;
1

2
,
1

2

〉
. (9.2.25)

Step 2. We now subject the maximal spin state to the lowering operator, Ŝ−,

corresponding to the total spin: Ŝ− = Ŝ(1)− + Ŝ(2)− , where Ŝ(1)− and Ŝ(2)− are the lowering

operators corresponding to the first and the second particles, respectively.

On one hand, making use of the equation (8.1.7) with lower sign, we obtain

Ŝ− |1,1〉=
√

2 h̄ |1,0〉. (9.2.26)

On the other hand,

Ŝ− |1,1〉= (Ŝ(1)− + Ŝ(2)− )

∣∣∣∣12,
1

2
;
1

2
,
1

2

〉
= h̄

(∣∣∣∣12,
1

2
;−1

2
,
1

2

〉
+

∣∣∣∣12,
1

2
;
1

2
,−1

2

〉)
. (9.2.27)

From (9.2.26) and (9.2.27), we obtain

|1,0〉= 1√
2

(∣∣∣∣12,
1

2
;−1

2
,
1

2

〉
+

∣∣∣∣12,
1

2
;
1

2
,−1

2

〉)
. (9.2.28)

Step 3. Further, we act on |1,0〉 with Ŝ− = Ŝ(1)− + Ŝ(2)− .

On one hand, we have

Ŝ− |1,0〉=
√

2 h̄ |1,−1〉. (9.2.29)

On the other hand,

Ŝ− |1,0〉 = 1√
2

Ŝ−
(∣∣∣∣12,

1

2
;
1

2
,−1

2

〉
+

∣∣∣∣12,
1

2
;−1

2
,
1

2

〉)

=
1√
2

Ŝ(1)−

(∣∣∣∣12,
1

2
;
1

2
,−1

2

〉
+

∣∣∣∣12,
1

2
;−1

2
,
1

2

〉)
+

+
1√
2

Ŝ(2)−

(∣∣∣∣12,
1

2
;
1

2
,−1

2

〉
+

∣∣∣∣12,
1

2
;−1

2
,
1

2

〉)

=
1√
2

[
h̄
∣∣∣∣12,

1

2
;−1

2
,−1

2

〉
+ 0+ 0+ h̄

∣∣∣∣12,
1

2
;−1

2
,−1

2

〉]

=
√

2 h̄
∣∣∣∣12,

1

2
;−1

2
,−1

2

〉
. (9.2.30)
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From (9.2.29) and (9.2.30), we obtain

|1,−1〉=
∣∣∣∣12,

1

2
;−1

2
,−1

2

〉
. (9.2.31)

This completes the construction of the manifold of spin s = 1 states-the spin triplet states:

s = 1 : triplet→

⎧⎪⎪⎨
⎪⎪⎩
|1 1〉 = | ↑1〉| ↑2〉
|1 0〉 = 1√

2
(| ↓1〉| ↑2〉+ | ↑1〉| ↓2〉)

|1 −1〉 = | ↓1〉| ↓2〉
(9.2.32)

Step 4. The state |s = smax− 1,m = smax− 1〉 = |0,0〉 must be orthogonal to the state

|s = smax,m = smax−1〉. Hence, we first write the state |0,0〉 as the linear combination

|0,0〉= a
∣∣∣∣12,

1

2
;−1

2
,
1

2

〉
+ b
∣∣∣∣12,

1

2
;
1

2
,−1

2

〉
. (9.2.33)

The orthonormality with |1,0〉, given by (9.2.28), leads to

〈1,0|0,0〉= a+ b√
2

= 0. (9.2.34)

On the other hand, the normalization of |0,0〉 gives

〈0,0|0,0〉= a2 + b2 = 1. (9.2.35)

From the above two equations we obtain

b = ± 1√
2

a. (9.2.36)

In accordance with the phase convention (in the given context) the coefficient 〈s1,s2,

s1, (s− s1)|s,s〉= 〈s1,s2,s1, (s− s1)|0,0〉 must be positive. Therefore b = 〈1/2,1/2,1/2,

−1/2|0,0〉= 1/
√

2. Then a = −1/
√

2. Thus, the final result is

|0,0〉= 1√
2

∣∣∣∣12,
1

2
;
1

2
,−1

2

〉
− 1√

2

∣∣∣∣12,
1

2
;−1

2
,
1

2

〉
. (9.2.37)

If we apply the lowering operator (Ŝ− = Ŝ(1)− + Ŝ(2)− ) or the raising operator

(Ŝ+ = Ŝ(1)+ + Ŝ(2)+ ) to |0,0〉, we obtain zero. This means that the state |0,0〉 is a singlet

state.
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If we now compare (9.3.25), (9.2.28), (9.2.31), and (9.2.37) with the respective

expressions in the system (9.2.9)-(9.2.12), we obtain the following results for the CG

coefficients〈
1

2
,
1

2
;
1

2
,−1

2
|0,0

〉
=

1√
2

, (9.2.38)

〈
1

2
,
1

2
;−1

2
,
1

2
|0,0

〉
= − 1√

2
, (9.2.39)

〈
1

2
,
1

2
;
1

2
,−1

2
|1,0

〉
=

〈
1

2
,
1

2
;−1

2
,
1

2
|1,0

〉
=

1√
2

, (9.2.40)

〈
1

2
,
1

2
;
1

2
,
1

2
|1,1

〉
=

〈
1

2
,
1

2
;−1

2
,−1

2
|1,−1

〉
= 1. (9.2.41)

We see that the same values for the CG coefficients are the same as obtained earlier by

recursion relation method. Thus, both the methods yield identical results as it should be.

Thus we conclude that addition of the spins of two spin half particles, leads to two
possible spin states of the composite system: (i) |1,1〉triplet = {|1,1〉, |1,0〉, |1,−1〉, which is
symmetric with respect to the interchange of the spin ”up” state with the spin ”down” state
and vice versa, and (ii) |0,0〉singlet, which is anti-symmetric with respect to the interchange
of the spin ”up” state with the spin ”down” state and vice versa.

9.3 Algebraic Addition of the Orbital and the Spin Angular
Momenta

Let us consider the addition of the orbital angular momentum and the spin angular

momentum, i.e., �̂J = �̂L+ �̂S, of a spin half particle (say, of an electron). In the given case

�1 = � (an integer) m1 = m� (takes values from −� to �), �2 = s = 1
2 , and m2 = ms = ±1

2 .

The value of j in this case is restricted in the interval∣∣∣∣�− 1

2

∣∣∣∣≤ j ≤
∣∣∣∣�+ 1

2

∣∣∣∣ . (9.3.1)

Clearly, j can have two limiting values jmax = �+ 1
2 and jmin = −�+ 1

2 .

The maximal set of commuting observables in this case is given by: {Ĵ2, L̂2, Ŝ2, Ĵz}. The

joint eigenvectors of these operators are:|�,s,m�,ms〉. The eigenvectors of Ĵ2 are: | j,m〉 ≡
|�,s; j,m〉; � and s being fixed. Obviously, the following hold:

Ĵ2 | j,m〉= h̄2 j( j+ 1) | j,m〉 , (9.3.2)

L̂2 | j,m〉= h̄2 �(�+ 1) | j,m〉 , (9.3.3)
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Ŝ2 | j,m〉= h̄2 s(s+ 1) | j,m〉= 3

4
h̄2 | j,m〉 , (9.3.4)

Ĵz | j,m〉= h̄ m | j,m〉 . (9.3.5)

The state with maximal total angular momentum j = �+ 1
2 and mmax = m1max +msmax =

= (m�)max +(ms)max = �+ 1
2 is

| jmax,mmax〉=
∣∣∣∣�+ 1

2
,�+

1

2

〉
= |�,�〉⊗

∣∣∣∣12,
1

2

〉
. (9.3.6)

The corresponding CG coefficient〈
�,

1

2
;�,

1

2

∣∣∣∣�+ 1

2
,�+

1

2

〉
= 1, (9.3.7)

in accordance with our earlier discussions.

Let us act on the state | jmax,mmax〉 with the lowering operator Ĵ− = L̂−+ Ŝ− to generate

states with m = mmax−1,m = mmax−2 and so on till we reach mmax = − j. On one hand

we have

Ĵ−
∣∣∣∣�+ 1

2
,�+

1

2

〉
= h̄

√[(
�+

1

2

)
+

(
�+

1

2

)](
�+

1

2
− �− 1

2
+ 1

)∣∣∣∣�+ 1

2
,�− 1

2

〉

= h̄
√

2�+ 1

∣∣∣∣�+ 1

2
,�− 1

2

〉
, (9.3.8)

while on the other

(L̂−+ Ŝ−)
∣∣∣∣�+ 1

2
,�+

1

2

〉
= L̂− |�,�〉⊗

∣∣∣∣12,
1

2

〉
+ |�,�〉⊗ Ŝ−

∣∣∣∣12,
1

2

〉

= h̄
√

2� |�,�−1〉⊗
∣∣∣∣12,

1

2

〉
+ h̄ |�,�〉⊗

∣∣∣∣12,−1

2

〉
.(9.3.9)

From (9.3.8) and (9.3.9) we get that∣∣∣∣�+ 1

2
,�− 1

2

〉
=

1√
2�+ 1

[√
2� |�,�−1〉⊗

∣∣∣∣12,
1

2

〉
+ |�,�〉⊗

∣∣∣∣12,−1

2

〉]
. (9.3.10)

We now act on
∣∣�+ 1

2 ,�− 1
2

〉
with Ĵ− to find

∣∣�+ 1
2 ,�− 1

2

〉
. We have

Ĵ−
∣∣∣∣�+ 1

2
,�− 1

2

〉
= h̄

√
2�×2

∣∣∣∣�+ 1

2
,�− 3

2

〉
. (9.3.11)
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on the other hand

(L̂−+ Ŝ−)
∣∣∣∣�+ 1

2
,�− 1

2

〉
=

√
2�

2�+ 1
L̂− |�,�−1〉⊗

∣∣∣∣12,
1

2

〉

+

√
2�

2�+ 1
|�,�−1〉⊗ Ŝ−

∣∣∣∣12,
1

2

〉
+

1√
2�+ 1

L̂− |�,�〉⊗
∣∣∣∣12,−1

2

〉

+
1√

2�+ 1
|�,�〉⊗ Ŝ−

∣∣∣∣12,−1

2

〉
. (9.3.12)

Since Ŝ−
∣∣1

2 ,−1
2

〉
= 0, we obtain

(L̂−+ Ŝ−)
∣∣∣∣�+ 1

2
,�− 1

2

〉
= h̄

√
4�(2�−1)

2�+ 1
|�,�−2〉⊗

∣∣∣∣12,
1

2

〉

+ h̄

√
2�

2�+ 1
|�,�−1〉⊗

∣∣∣∣12,−1

2

〉
+ h̄

√
2�

2�+ 1
|�,�−1〉⊗

∣∣∣∣12,−1

2

〉
(9.3.13)

From (9.3.11) and (9.3.13), we obtain∣∣∣∣�+ 1

2
,�− 3

2

〉
=

√
2�−1

2�+ 1
|�,�−2〉⊗

∣∣∣∣12,
1

2

〉
+

√
2

2�+ 1
|�,�−1〉⊗

∣∣∣∣12,−1

2

〉
. (9.3.14)

The other
∣∣�+ 1

2 ,m
〉

states are given by

∣∣∣∣�+ 1

2
,m
〉

=

√
�+m+ 1

2

2�+ 1

∣∣∣∣�,m− 1

2

〉
⊗
∣∣∣∣12,

1

2

〉

+

√
�−m+ 1

2

2�+ 1

∣∣∣∣�,m+
1

2

〉
⊗
∣∣∣∣12,−1

2

〉
, (9.3.15)

where

m = �+
1

2
,�− 1

2
,�− 3

2
, . . .− �+

1

2
,−
(
�+

1

2

)
. (9.3.16)

All these states are with j = �+ 1
2 . The states with j = �− 1

2 are found in an identical

manner starting with the state
∣∣�− 1

2 ,�− 1
2

〉
which must be orthogonal to the state∣∣∣∣�+ 1

2
,�− 1

2

〉
=

1√
2�+ 1

[√
2� |�,�−1〉⊗

∣∣∣∣12,
1

2

〉
+ |�,�〉⊗

∣∣∣∣12,−1

2

〉]
. (9.3.17)
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If we do the calculations the same way as earlier and take into account the phase

convention, we obtain∣∣∣∣�− 1

2
,�− 1

2

〉
=

1√
2�+ 1

[√
2� |�,�〉⊗

∣∣∣∣12,−1

2

〉
−|�,�−1〉⊗

∣∣∣∣12,
1

2

〉]
. (9.3.18)

Calculations similar to those leading to (9.3.14) yield

∣∣∣∣�− 1

2
,�− 3

2

〉
=

√
2�−1

2�+ 1
|�,�−1〉⊗

∣∣∣∣12,−1

2

〉
−
√

2

2�+ 1
|�,�−2〉⊗

∣∣∣∣12,
1

2

〉
.

(9.3.19)

The other
∣∣�− 1

2 ,m
〉

states are given by

∣∣∣∣�− 1

2
,m
〉

=

√
�+m+ 1

2

2�+ 1

∣∣∣∣�,m+
1

2

〉
⊗
∣∣∣∣12,−1

2

〉

−
√

�−m+ 1
2

2�+ 1

∣∣∣∣�,m− 1

2

〉
⊗
∣∣∣∣12,

1

2

〉
, (9.3.20)

where

m = �− 1

2
,�− 3

2
, . . . ,−�+ 3

2
,−
(
�− 1

2

)
. (9.3.21)

The required CG coefficients are readily read off from (9.3.14), (9.3.15) and (9.3.17)-

(9.3.20).

Example 9.3.1: Consider the case of � = 1 and s = 1
2 . Find all the states and the

corresponding CG coefficients.

Solution: In this case, for the states
∣∣�+ 1

2 ,m
〉
, the equation (9.3.16) shows that m can take

four values 1
2 , 3

2 , −1
2 , and −3

2 . Therefore, from (9.3.15) we get

∣∣∣∣32,
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√
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2+ 1

∣∣∣∣1,
3

2
− 1

2

〉
⊗
∣∣∣∣12,
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1

2
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≡
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1
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1

2

〉
, (9.3.22)
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=

√
2

3
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√
1
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≡
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Similarly, for the states
∣∣�− 1

2 ,m
〉

the equation (9.3.21) shows that m can take two values
1
2 and −1

2 . Therefore, from (9.3.15) we get
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By taking the appropriate scalar products in (9.3.22)-(9.3.27), we obtain the required CG

coefficients.

Example 9.3.2: In an atom there are two valence electron; each in the state 3p. (a) What

are the possible values for the total spin quantum number, s, where �S = �S1 +�S2? (b) What

are the possible values for the total angular momentum quantum number, �, where
�L =�L1 +�L2? (c) Given that under the exchange symmetry the parity of the spatial part of

the wave function of the two-electron system is decided by the parity of the total orbital

quantum number �, determine which combinations of s and � are allowed states for the

two-electron system. (d) For each allowed combination, what are the possible values of

the quantum number j, where �J =�L+�S?

Solution:

(a) As discussed s will take values from smax to smin in integer steps. Since smax =
s1 + s2 = 1 and smin = s1− s2 = 0, s can take only two values: s = 0,1.

(b) Both the electrons are in the 3p state and, therefore, �1 = �2 = 1. Hence �max =
�1 + �2 = 2 and �min = �1− �2 = 0. As a consequence �= 0,1,2.

(c) The total wave function of the system must be antisymmetric (see Chapter 10). Now,

for s = 0 the spin part of the wave function of the system will be antisymmetric

and hence only those values of � can be paired with s = 0 which make the total

wave function antisymmetric. We know that the parity of the spatial part of the two-

electron system is decided by whether (−1)� is +1 or −1: when (−1)� = +1 it is

symmetric, whereas when (−1)� =−1 it is antisymmetric. Therefore, �= 0 and �=
2 will correspond to the symmetric spatial part, while � = 1 will give antisymmetric

spatial part of the wave function. Hence, the possible pairs in this case are: (�,s) =
(0,0), (0,2).

On the other hand, since the spin part of the wave function is symmetric under the

exchange symmetry for s= 1 (see Chapter 10), the only allowed pair is (s,�) = (1,1).

(d) Since j varies from |�−s| to �+s in integer steps, for (�,s) = (0,0), the only possible

value of j is j = 0. For both the other two combinations (�,s) = (1,1) and (�,s) =
(0,2), three values of j are possible: j = 0,1,2.

9.4 Vectorial Addition of the Orbital and the Spin Angular Momenta
for an Electron

Consider an electron on its orbit in an atom with orbital angular momentum �L and spin

angular momentum �S. Since the components of the angular momentum operator,

L̂k,k = 1,2,3, do not commute, no two components of�L can be measured simultaneously

accurately. Therefore, it is impossible to assign a vector (in the usual sense) to the orbital

angular momentum in quantum mechanics. It is simply not defined. The same applies to

the spin angular momentum vector �S. In spite of this difficulty, it turns out that one can
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use the so-called semi-classical model for adding two or more angular momenta

vectorially. For instance, it can be used to add orbital and spin angular momenta. How it

is done is explained in what follows.

J
�

L
�

S
�

Figure 9.1 Semi-classical model for the vectorial addition of orbital and spin angular
momenta.

According to this model, we can treat �L and �S as usual three-dimensional vectors

keeping in mind their quantized nature. The resultant angular momentum vector, usually

written as �J, is obtained by the familiar rule of parallelogram for the addition of vectors in

vector algebra:

�J =�L+�S. (9.4.1)

We know that �L and �S have their corresponding magnetic moments �μ� and �μs,

respectively, through which they can interact. Classically, due to this interaction, both �L
and �S precess around the direction of the total angular momentum �J (see Fig. 9.1). This

classical treatment, however, is supplemented by quantum conditions. In particular, �L,

which is numerically equal to h̄
√

�(�+ 1), where � is the orbital quantum number, cannot

be arbitrarily oriented in space. According to the phenomenon of space quantization, �L
has to have only those orientations in space for which its projection on the vertical

direction (z-axis), Lz = m�h̄, where m� is the magnetic quantum number. Similarly, �S,

which is numerically equal to h̄
√

s(s+ 1), where s is the spin quantum number, cannot

be arbitrarily oriented in space. It also has to have such orientations that its projection on

the vertical direction (z-axis) Sz = msh̄, where ms is the spin magnetic quantum number.
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Due to this reason, the angle between�L and �S cannot be arbitrary. It is bound to take

only discrete set of values. Consequently, the magnitude of the total angular momentum �J
takes discrete set of numerical values given by

|�J|= h̄
√

j( j+ 1), (9.4.2)

where

j = �+ s = �± 1

2
. (9.4.3)

The projection of �J on the z-axis takes values according to

Jz = m jh̄, (9.4.4)

where m j, the magnetic quantum number corresponding to the total angular momentum,

can take (2 j+ 1) values from − j to + j.
This vector model can also be generalized to the case of atoms with more than one

electrons. It allows one not only to explain the fine structure of atomic spectra but also

the details of anomalous Zeeman splitting of spectral lines in the presence of a magnetic

field. This vector model can also be generalized to the case of atoms with more than one

electron.

Homework Problems

1. A particle is in the j = 1 state. The measurement of Ĵz in this state yields the value

h̄. If Ĵx is now measured, what values would result and with what probabilities?

2. Add angular momenta �1 = 1 and �2 = 1. Using the ladder operator method with the

steps given in the chapter, express all the eigenvectors | j,m〉 in terms of the

eigenvectors |�1,�2,m1,m2〉.
3. Let �S1 and �S2 denote the spins of a spin 1 and a spin 2 particles, respectively and let �S

be the total spin of the combined system. (a) If �S2 is measured, what are the possible

results? (b) If the system is in a spin state with �S2 = 2h̄2 and the z component of spin

of the spin 1 particle is measured, what is the probability of getting the result h̄?

4. Consider the system of particles mentioned in Problem 3. The measurement of Sz
yields a value h̄ when the system is in a state with�S2 = 2h̄2. If immediately afterward
�S2 is measured again, what is the probability of obtaining a value 12h̄2?

5. Let �J =�L+�S. Using the method described in this chapter, identify and calculate all

non-zero Clebsch–Gordan coefficients for the case when �= 2 and s = 1
2 .

6. A particle of spin 1
2 is in a state of orbital angular momentum � = 2. What are its

possible states of total angular momentum?
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7. Consider a system of three non-identical particles, each with angular momentum 1
2 .

Find the possible values of the total spin S of this system and specify the number of

angular momentum eigenstates corresponding to each value of S.

8. Consider a system of three non-identical particles, each with angular momentum 3
2 .

Find the possible values of the total spin S of this system and specify the number of

angular momentum eigenstates corresponding to each value of S.



Chapter 10

Quantum Mechanics of Many-Particle Systems

10.1 General Theory

Consider a system consisting of N particles with masses m1,m2,m3, ...,mN . Let �r j, j =
1,2,3, ...,N, be the position vector of the jth particle. The wave function of such a system

will depend on the position vectors of all the particles and time:

ψ = ψ(�r1,�r2,�r3, ...,�rN , t). (10.1.1)

The quantum mechanical formalism for a many-particle system is developed by

generalizing the single-particle machinery to the N-particle system. The Schrödinger

equation for this N-particle system is written as

ih̄
∂ψ
∂ t

= Ĥψ(�r1,�r2,�r3, ...,�rN , t), (10.1.2)

where the Hamiltonian Ĥ is given by

Ĥ = −
N

∑
j=1

h̄2

2m j

�∇2
j +V (�r1,�r2,�r3, ...,�rN). (10.1.3)

Here, V (�r1,�r2,�r3, ...,�rN) is the potential energy of the system, and �∇2
j is the Laplace

operator with respect to the coordinates of the jth particle, that is,

�∇2
j =

∂ 2

∂x2
j
+

∂ 2

∂y2
j
+

∂ 2

∂ z2
j
. (10.1.4)

In analogy with the single-particle case, the quantity

|ψ(�r1,�r2,�r3, ...,�rN , t)|2 dτ1dτ2dτ3...dτN , (10.1.5)

319
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is interpreted as the probability, at a given instant t, of finding the particle 1 in the

infinitesimal volume element dτ1 around�r1, particle 2 in the infinitesimal volume element

dτ2 around �r2, particle 3 in the infinitesimal volume element dτ3 around �r3, and so on,

particle N in dτN around�rN . Therefore, as earlier, the normalization for the wave function

is written as∫ +∞

−∞
dτ1

∫ +∞

−∞
dτ2

∫ +∞

−∞
dτ3...

∫ +∞

−∞
dτN |ψ(�r1,�r2,�r3, ...,�rN , t)|2 = 1. (10.1.6)

If the potential, V , is time independent, the stationary states of an N-particle system are

characterized by the wave functions of the form

ψ(�r1,�r2,�r3, ...,�rN , t) = φ (�r1,�r2,�r3, ...,�rN)e−
i
h̄ Et , (10.1.7)

where E is the total energy of the system and the function φ (�r1,�r2,�r3, ...,�rN) satisfies the

following time independent Schrödinger equation

−
N

∑
j=1

h̄2

2m j

�∇2
jφ (�r1, ...,�rN)+V (�r1, ...,�rN)φ (�r1, ...,�rN) = Eφ (�r1, ...,�rN). (10.1.8)

As in the case of a single-particle system, the probability density, ρ ,

ρ = |ψ|2 = φ ∗(�r1, ...,�rN)e
i
h̄ Etφ (�r1, ...,�rN)e−

i
h̄ Et = |φ (�r1, ...,�rN)|2, (10.1.9)

and the probability current density, �j,

�J =
h̄
2i

N

∑
k=1

1

mk

[(
�∇kφ ∗(�r1, ...,�rN)

)
φ (�r1, ...,�rN)−φ ∗(�r1, ...,�rN)

(
�∇kφ (�r1, ...,�rN)

)]
,

(10.1.10)

do not depend on time in a stationary state. Also, the expectation value,

〈ψ|Â|ψ〉=
∫ +∞

−∞
φ ∗(�r1, ...,�rN) Â φ (�r1, ...,�rN) dτ1dτ2dτ3...dτN , (10.1.11)

of a time-independent observable Â does not depend on time in a stationary state.

Consequently, it is conserved. For instance, energy of a many-particle system in a

stationary state is conserved.

So far as the commutation relations for the operators are concerned, the operators

representing observables related to different (distinct) particles commute, while those

related to a given (specific) particle satisfy the commutation relations valid for a
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single-particle system. For instance, the position and momentum operators satisfy the

following commutation relations

[(r̂α)k, ( p̂β )�] = ih̄δk�δαβ , (10.1.12)

where the Roman indices, k,�, . . ., stand for the particle’s number (1,2,3, ...,N) in the

system, while the Greek indices α ,β , . . ., represent the Cartesian components of the

position vector,�r, and momentum, �p. Note that if k = �, we are talking about the one and

the same particle. For instance, if k = �= 1, we have the following commutation relations

among the position and momentum operators of the first particle:

[(r̂α)1, ( p̂β )1] = ih̄δ11δαβ = ih̄δαβ . (10.1.13)

If α = β = 1 in (10.1.13), we get that [(x̂1)1, ( p̂1)1] = ih̄δ11 or [x̂1, p̂x1] = ih̄. On the other

hand, if α = 1 and β = 2, we have [x̂1, p̂x2] = ih̄δ12 = 0. Similarly, we can calculate the

aforementioned commutators for other values of α and β .

In summary, the coordinate and momentum operators of different particles commute,
while the coordinate and momentum operators of the same particle satisfy the usual single-
particle commutation relations.

It is quite clear now that in order to study the physical characteristics of a many-particle

system in a stationary state, we have to solve the equation (10.1.8) for a given potential

energy operator V . In the general case of arbitrary V , it is very difficult (almost impossible)

to solve the equation (10.1.8). Our earlier experience tells us that it would be possible to

find the solutions if (10.1.8) could somehow be split into a system of N single-particle time

independent Schrödinger equations. It turns out that this can be achieved in a special case

of systems consisting of the so-called, independent particles. We shall discuss these in the

following subsections.

10.2 System of Independent and Distinguishable Particles

When the particles belonging to a quantum mechanical system do not interact among

themselves and are subject solely to an externally applied potential, they are called

independent. This is because of the fact that each of them experiences its own potential,

independent of all other particles of the system. For such a system, the potential in

(10.1.8) can be written as

V (�r1,�r2,�r3, ...,�rN) =
N

∑
j=1

Vj(�r j), (10.2.1)

where Vj(�r j) is the potential experienced by the jth particle. If, in addition, the particles

can be distinguished from each other in terms of one or several individual properties, they

are called distinguishable. The system of particles is then said to be consisting of

distinguishable independent particles. Let us assume that the particles of our system are
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distinguishable by their masses, that is, each of the particles has its own mass

m j, j = 1,2,3, . . . ,N, different from the masses of all other particles of the system. Under

these conditions, the time-independent Schrödinger equation (10.1.8) permits separation

of variables leading to N independent single-particle Schrödinger equations

− h̄2

2m j

�∇2
jφ (�r j)+V (�r j)φ j(�r j) = E jφ j(�r j), j = 1,2,3, ...,N. (10.2.2)

The solution of each of these equations yields a single-particle wave function φn j

corresponding to the energy eigenvalue En j , j = 1,2,3, ...,N, where n j stands for the entire

set of quantum numbers of the jth particle. The stationary state wave function of the

system is then given by the product of the single-particle wave functions

ψ(�r1, ...,�rN , t) = φ1(�r1)φ2(�r2)φ3(�r3)...φN(�rN) e−
i
h̄ (E1+E2+E3+...+EN )t

=

(
N

∏
j=1

φ j(�r j)

)
e−

i
h̄ Et , (10.2.3)

with energy

E = E1 +E2 +E3 + ...+EN =
N

∑
j=1

E j. (10.2.4)

Example 10.2.1: Three spinless non-interacting particles, with respective masses m1,m2,

and m3 in the ratio m1 : m2 : m3 = 1 : 2 : 3, are subject to a common infinite square well

potential of width L in one spatial dimension. Determine the energies and the

corresponding wave functions in the three lowest lying states of the system.

Solution: In the given case, the stationary Schrödinger equation (10.1.8)) splits up into three

independent single-particle equations (one each for the individual particles):

− h̄2

2m j

d2φ (x j)

dx2
j

+V (x j)φ j(x j) = E jφ j(x j), j = 1,2,3. (10.2.5)

The corresponding single-particle wave functions and energies are:

φn j(x j) =

√
2

L
sin
(n jπ

L
x j

)
, j = 1,2,3, (10.2.6)

E j =
n2

jπ2h̄2

2m jL2
, j = 1,2,3. (10.2.7)
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Ground state: For the ground state, we have n1 = n2 = n3 = 1, and the energy of the

system will be

E111 =
π2h̄2

2L2

(
1

m1
+

1

m2
+

1

m3

)
=

11π2h̄2

12m1L2
. (10.2.8)

The corresponding ground state wave function is given by

ψ111(x1,x2,x3) =

√
8

L3
sin
(π

L
x1

)
sin
(π

L
x2

)
sin
(π

L
x3

)
. (10.2.9)

First excited state: Since m3 > m2 > m1, the first excited state will correspond to n1 =
n2 = 1 and n3 = 2. This is because of the fact that this combination of the quantum numbers

yields the minimum value of energy that must be given to the system to go from the ground

state to the first excited state. Consequently, the energy of the first excited state, E112,

will be

E112 =
π2h̄2

2L2

(
1

m1
+

1

m2
+

4

m3

)
=

17π2h̄2

12m1L2
. (10.2.10)

The wave function of the first excited state reads

ψ112(x1,x2,x3) =

√
8

L3
sin
(π

L
x1

)
sin
(π

L
x2

)
sin

(
2π
L

x3

)
. (10.2.11)

Second excited state: The second excited state corresponds to the case when n1 = 1 and

n2 = n3 = 2. Hence, its energy, E122, equals:

E122 =
π2h̄2

2L2

(
1

m1
+

4

m2
+

4

m3

)
=

13π2h̄2

6m1L2
. (10.2.12)

The corresponding wave function is given by

ψ122(x1,x2,x3) =

√
8

L3
sin
(π

L
x1

)
sin

(
2π
L

x2

)
sin

(
2π
L

x3

)
. (10.2.13)

Similarly, one can determine the energies and the corresponding wave functions of all other

excited states of this three-particle system.

Example 10.2.2: Consider two distinguishable non-interacting particles 1 and 2 with

masses m1 and m2, respectively. If m1 > m2 and they are subject to a common

three-dimensional potential

V (x,y,z) =
{

0, for 0 < x < a,0 < y < b,0 < z < c,

∞ for x≥ a,y≥ b,z≥ c,
(10.2.14)
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where a < b < c are positive constants, determine the energies and the wave functions

of the ground and the first excited states of the system. What is the energy that will be

required to excite the system from the ground state to the first excited state?

Solution: In this case, the single-particle wave functions and energies are:

φnx1
ny1

nz1
(x1,y1,z1) =

√
8

abc
sin
(nx1

π
a

x1

)
, sin

(ny1
π

b
y1

)
sin
(nz1

π
c

z1

)
, (10.2.15)

φnx2
ny2

nz2
(x2,y2,z2) =

√
8

abc
sin
(nx2

π
a

x2

)
, sin

(ny2
π

b
y2

)
sin
(nz2

π
c

z2

)
, (10.2.16)

Enx j ny j nz j
=

π2h̄2

2m j

(
n2

x j

a2
+

n2
y j

b2
+

n2
z j

c2

)
, j = 1,2. (10.2.17)

Ground state: For the ground state of the system, both the particles will occupy the single-

particle ground state with nx j = ny j = nz j = 1, j = 1,2. The energy of the system in the

ground state will be

E(0) =
(m1 +m2)π2h̄2

2m1m2

(
1

a2
+

1

b2
+

1

c2

)
. (10.2.18)

The ground state wave function of the system is simply the product of the single-particle

wave functions, that is,

ψ (0)(x1,y1,z1;x2,y2,z2) = φ111(x1,y1,z1)φ111(x2,y2,z2)

=
8

abc
sin
(π

a
x1

)
sin
(π

a
x2

)
sin
(π

b
y1

)
sin
(π

b
y2

)
sin
(π

c
z1

)
sin
(π

c
z1

)
. (10.2.19)

The first excited state: One of the particles is in the single-particle ground state, while the

other is in the single-particle first excited state. Since z = c is the largest side of the box, the

particle in the first excited state will have nx = ny = 1 and nz = 2. But m1 > m2, therefore

the first particle with mass m1 will be in the first excited state. Hence, the first excited state

will have energy

E(1) = π2h̄2

{(
(m1 +m2)

2m1m2

[
1

a2
+

1

b2

])
+

(m1 + 4m2)

2m1m2c2

}
. (10.2.20)

The wave function of the first excited state of the system will be

ψ (1)(x1,y1,z1;x2,y2,z2) = φ112(x1,y1,z1)φ111(x2,y2,z2)
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=
8

abc
sin
(π

a
x1

)
sin
(π

a
x2

)
sin
(π

b
y1

)
sin
(π

b
y2

)
sin

(
2π
c

z1

)
sin
(π

c
z1

)
. (10.2.21)

The energy required to excite the system will be

E(1)−E(0) =
3π2h̄2

2m1c2
. (10.2.22)

10.3 System of Identical Particles

Let all the particles constituting the system be identical, that is, they all have the same

physical characteristics. In classical mechanics, these particles, despite being identical,

may be distinguished from each other. For instance, we can colour them differently at t = 0

and then keep track of their individual trajectories separately in time. This will enable us

to distinguish them at any instant of time t. We thus conclude that in classical mechanics,

identical particles are always distinguishable.

Let us see whether identical and classically distinguishable particles remain

distinguishable in quantum mechanics or not. In quantum mechanics, colouring the

particles means putting separate tags on them which we cannot do. This is because putting

a tag on them means specifying some distinct physical characteristic for each of the

particles of the system and this cannot be achieved in view of the fact that all of them have

the same maximal set of commuting observables. Secondly, due to the uncertainty

principle, even if the position of a particle is known at a given instant of time, its

momentum is completely indeterminate. Therefore, the very concept of trajectory of a

quantum particle loses its meaning and we cannot follow trajectories of the individual

particles, the way we proposed to do in classical mechanics. Therefore, there is no way to

distinguish between identical particles in quantum mechanics. Clearly, identical particles
are inevitably indistinguishable in quantum mechanics. This indistinguishability of

identical quantum particles has some interesting consequences, which we are going to

discuss here.

It turns out that, due to indistinguishability, it is possible to deduce some important

properties of the wave functions of a system of N identical particles without solving

(10.1.8). For this purpose, let us define the so-called permutation operator P̂jk, which

interchanges the particles that are at the positions �r j and �rk. Its action on the wave

function of the system will then read

P̂jkφ (�r1,�r2, ...,�r j, ...,�rk︸ ︷︷ ︸, ...,�rN) = φ (�r1,�r2, ...,�rk, ...,�r j︸ ︷︷ ︸, ...,�rN). (10.3.1)

Since the particles are indistinguishable, no experiment can determine which of the

particles of the system is at�r j and which one is at�rk. The probability density, therefore,

should remain unchanged, that is,
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|φ (�r1,�r2, ...,�r j, ...,�rk, ...,�rN)|2 = |φ (�r1,�r2, ...,�rk, ...,�r j, ...,�rN)|2. (10.3.2)

This, in turn, gives

φ (�r1,�r2, ...,�r j, ...,�rk, ...,�rN) = ±φ (�r1,�r2, ...,�rk, ...,�r j, ...,�rN). (10.3.3)

As a consequence, the wave function of a system of N identical particles can either be

symmetric or anti-symmetric with respect to the interchange of any pair of particles of the

system. In nature, as confirmed by experiments, particles with integer spin

(s = 0,1h̄,2h̄,3h̄, ...) have symmetric wave functions, while the particles with half-odd

integer spin (h̄/2,3h̄/2,5h̄/2, ...) are characterized by the anti-symmetric wave functions.

The former satisfy Bose–Einstein statistics and are called bosons, whereas the latter

satisfy Fermi–Dirac statistics and are called fermions. Note that the relation between spin

and statistics can be derived only in relativistic quantum mechanics. In our non-relativistic

quantum mechanics, it is taken to be as an axiom.

Composite particles: The natural question arises: What are the symmetry properties of the

wave functions of composite particles under the interchange transformation?

Particles that are not elementary but consist of several identical elementary particles
(electrons, positrons, muons, etc) are called composite particles. They can also be

classified as fermions and bosons. The thing is that the spin of a composite particle can be

obtained by adding up the spins of its constituents. If the spins of the constituent particles

add up to a half-odd integer (in the units of h̄), the composite particle has a half-odd

integer spin and it behaves like a fermion. Consequently, it obeys Fermi–Dirac statistics.

If, on the other hand, the resultant spin has an integer value, the composite particle

behaves like a boson and obeys Bose–Einstein statistics. For instance, nucleons are

fermions because they consist of three quarks with half-odd integer spins, while mesons

are bosons because they consist of two quarks only. Atoms can also be classified likewise.

For instance, a hydrogen atom consisting of two fermions (an electron and a proton) is a

boson, while the isotope 3He of the helium atom is a fermion since it consists of three

fermions: one neutron and two protons. The wave functions of all such composite
particles also abide by the symmetry properties discussed earlier.

10.4 Exchange Degeneracy

The Hamiltonian of a system of N identical particles is a sum of the kinetic energy

operators and the potential energy operators of all the particles

Ĥ(�r1,�r2, ...,�r j, ...,�rk, ...,�rN) =
N

∑
j=1

�̂p2
j

2m
+ V̂ (�r1,�r2, ...,�r j, ...,�rk, ...,�rN) (10.4.1)

If we exchange any pair of particles, say the jth and the kth, the potential energy must

remain unchanged, that is,



Quantum Mechanics of Many-Particle Systems 327

V̂ (�r1, ...,�r j, ...,�rk, ...,�rN) → V̂ (�r1, ...,�rk, ...,�r j, ...,�rN) = V̂ (�r1, ...,�r j, ...,�rk, ...,�rN). (10.4.2)

If it is not so, the particles will be distinguishable and that will contradict the quantum

mechanical assertion that identical particles are indistinguishable. Since the kinetic energy

part of Ĥ remains unchanged, if any two particles are interchanged, the total Hamiltonian

of the system will be invariant under the exchange of any pair of particles of the system.

In other words, Ĥ is completely symmetric with respect to the coordinates of the particles.

This fact leads to a novel phenomenon called the exchange degeneracy.

Consider the eigenvalue problem

Ĥ(�r1, ...,�r j, ...,�rk, ...,�rN)φ (�r1, ...,�r j, ...,�rk, ...,�rN) = Eφ (�r1, ...,�r j, ...,�rk, ...,�rN). (10.4.3)

In view of the invariance of the Hamiltonian under the exchange of any pair of particles,

the wave functions corresponding to all possible permutations of particles of the system

will have one and the same energy E. That is, the eigenstates of the Hamiltonian are
degenerate. This is called the exchange degeneracy.

Furthermore, we have

ĤP̂jkφ (�r1, ...,�r j, ...,�rk, ...,�rN) = Ĥφ (�r1, ...,�rk, ...,�r j, ...,�rN)

= Eφ (�r1, ...,�rk, ...,�r j, ...,�rN) = EP̂jkφ (�r1, ...,�r j, ...,�rk, ...,�rN)

= P̂jkEφ (�r1, ...,�r j, ...,�rk, ...,�rN) = P̂jkĤφ (�r1, ...,�r j, ...,�rk, ...,�rN). (10.4.4)

In other words,

(ĤP̂jk− P̂jkĤ)φ (�r1, ...,�r j, ...,�rk, ...,�rN) = 0. (10.4.5)

The last equation shows that the operator P̂jk commutes with the Hamiltonian

(ĤP̂jk− P̂jkĤ) ≡ [Ĥ, P̂jk] = 0. (10.4.6)

It means that the symmetry property of the wave function of a system of N identical

particles is conserved in time, that is, if at t = t0 the system starts out with a symmetric

(anti-symmetric) wave function, the wave function remains symmetric (anti-symmetric) at

any instant t > t0. In addition, since P̂jk and Ĥ are hermitian and commute, they possess a

complete set of common eigenfunctions (see Chapter 3).

10.5 Symmetric and Anti-symmetric Wave Functions and the Pauli
Exclusion Principle

Let us construct the wave functions for a system of identical particles. Let us for the sake of

convenience, combine the spatial and the spin variables together and write them as ξ , that

is, ξ ≡ (�r,S). By doing so, we put a label on the particles using their position vector�r and
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spin S. For instance, if we write ψn(ξk), then what we mean is that this is the wave function

of the nth energy state of the particle with spin variable Sk and the position�rk. Sometimes,

it is also written as ψn(k), meaning thereby the wave function of the kth particle or of a

particle with a label k. Note that the latter method of labelling identical particles is not

quite acceptable because the particles are indistinguishable and we cannot identify which

one is the ith and which one is the jth or which one is the kth etc.

Proceeding further, let φn1
(ξ1), φn2

(ξ2), φn3
(ξ3),..., φnN (ξN) be the normalized single-

particle wave functions, where each of the indices n1, n2, n3,...,nN stands for the total set

of quantum numbers relevant to the problem at hand. We shall assume, for now, that n1,

n2, n3,...,nN are all different.

The first guess could be to write the wave function of the system as a product

φn1n2...nN (ξ1,ξ2,ξ3, . . . ,ξN) = φn1
(ξ1)φn2

(ξ2)φn3
(ξ3) . . .φnN (ξN). (10.5.1)

However, this is incorrect because writing the wave function this way means that we can

distinguish between the particles and that contradicts our earlier assertion about the

indistinguishability of identical particles in quantum mechanics. Secondly, such a product

function is neither symmetric nor anti-symmetric, whereas our wave function has to be

either symmetric or anti-symmetric in view of the indistinguishability of the particles.

The problem is overcome by taking the linear combination of the products of the

single-particle wave functions corresponding to all possible permutations of the particles.

Thus, the symmetric and the anti-symmetric wave functions, φs(ξ1,ξ2,ξ3, ...,ξN) and

φa(ξ1,ξ2,ξ3, ...,ξN) respectively, of the system of N identical and indistinguishable

particles are written as

φs(ξ1,ξ2,ξ3, ...,ξN) =
1√
N! ∑P

P
{

φn1
(ξ1)φn2

(ξ2)φn3
(ξ3)...φN(ξN)

}
, (10.5.2)

φa(ξ1,ξ2,ξ3, ...,ξN) =
1√
N! ∑P

(−1)P P
{

φn1
(ξ1)φn2

(ξ2)φn3
(ξ3)...φN(ξN)

}
(10.5.3)

where the sum stands for the summation over all possible permutations (N! in all) of the

particles. It is worth noting that in the case of the anti-symmetric wave function,

(−1)P = +1, if (ξ1,ξ2, ...,ξ j, ...,ξi, ...,ξN) (resulting from the interchange of the ith and

the jth particles) is an even permutation of (ξ1,ξ2, ...,ξi, ...,ξ j, ...,ξN), while (−1)P = −1,

if (ξ1,ξ2, ...,ξ j, ...,ξi, ...,ξN) is an odd permutation of (ξ1,ξ2, ...,ξi, ...,ξ j, ...,ξN). Note that

the factor 1/
√

N! comes from the normalization and, as stated earlier, all

n j, j = 1,2,3, ...,N have been taken to be different.

According to this prescription, the symmetric wave function for a system of two

indistinguishable particles assumes the form

φs(ξ1,ξ2) =
1√
2
[φn1

(ξ1)φn2
(ξ2)+φn1

(ξ2)φn2
(ξ1)] , (10.5.4)
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while the anti-symmetric wave function for the same system can be written as

φa(ξ1,ξ2) =
1√
2
[φn1

(ξ1)φn2
(ξ2)−φn1

(ξ2)φn2
(ξ1)] . (10.5.5)

The factor of 1/
√

2, in these formulae, comes from normalization of the two-particle wave

function. It is easy to check that if we interchange the particles, φs(ξ2,ξ1) = φs(ξ1,ξ2) but

φa(ξ2,ξ1) = −φa(ξ1,ξ2), as it should be.

Similarly, for a three-particle system, the symmetric wave function has the form

φs(ξ1,ξ2,ξ3) =
1√
3!

[φn1
(ξ1)φn2

(ξ2)φn3
(ξ3)+φn1

(ξ2)φn2
(ξ3)φn3

(ξ1)

+ φn1
(ξ3)φn2

(ξ1)φn3
(ξ2)+φn1

(ξ1)φn2
(ξ3)φn3

(ξ2)

+ φn1
(ξ3)φn2

(ξ2)φn3
(ξ1)+φn1

(ξ2)φn2
(ξ1)φn3

(ξ3)] , (10.5.6)

while the anti-symmetric wave function for the three-particle system can be written as

φa(ξ1,ξ2,ξ3) =
1√
3!

[φn1
(ξ1)φn2

(ξ2)φn3
(ξ3)+φn1

(ξ2)φn2
(ξ3)φn3

(ξ1)

+ φn1
(ξ3)φn2

(ξ1)φn3
(ξ2)−φn1

(ξ1)φn2
(ξ3)φn3

(ξ2)

− φn1
(ξ3)φn2

(ξ2)φn3
(ξ1)−φn1

(ξ2)φn2
(ξ1)φn3

(ξ3)] . (10.5.7)

As in the previous case, the factor 1/
√

3! comes from normalization. Clearly, using the

general formulae, we can write down the wave functions for a system of any given number

of identical particles.

Slater determinant
The anti-symmetric wave functions (10.5.5) and (10.5.7) can also be written as

determinants:

φa(ξ1,ξ2) =
1√
2

∣∣∣∣∣ φn1
(ξ1) φn1

(ξ2)

φn2
(ξ1) φn2

(ξ2)

∣∣∣∣∣ , (10.5.8)

φa(ξ1,ξ2,ξ3) =
1√
3!

∣∣∣∣∣∣∣
φn1

(ξ1) φn1
(ξ2) φn1

(ξ3)

φn2
(ξ1) φn2

(ξ2) φn2
(ξ3)

φn3
(ξ1) φn3

(ξ2) φn3
(ξ3)

∣∣∣∣∣∣∣ . (10.5.9)
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In general, the N-particle anti-symmetric wave function can be written as

φa(ξ1,ξ2,ξ3, ...,ξN) =
1√
N!

∣∣∣∣∣∣∣∣∣∣∣

φn1
(ξ1) φn1

(ξ2) . . . φn1
(ξN)

φn2
(ξ1) φn2

(ξ2) . . . φn2
(ξN)

. . . . . . . . . . . .

. . . . . . . . . . . .

φnN (ξ1) φnN (ξ2) . . . φnN (ξN)

∣∣∣∣∣∣∣∣∣∣∣
. (10.5.10)

This is known as the Slater determinant. The product of the diagonal elements of the

determinant gives the original unsymmetrized product of the single-particle wave

functions, and the rest of the terms correspond to all permutations of the particles with

proper signs. Note that interchanging any two identical particles is equivalent to

interchanging the corresponding columns of the Slater determinant. In other words,

exchanging two columns exchanges the labels on two particles. From the properties of the

determinants, we know that interchanging two columns of a determinant results in the

multiplication of the determinant by (−1), that is, the sign of the determinant changes.

Thus, writing down the wave function of a system, consisting of fermions, as a Slater

determinant is consistent with the anti-symmetry of the wave function under the exchange

of any pair of fermions.

Let us now ask the question: What will be the expressions for the functions φs and φa
when some (or may be all) of n j, j = 1,2,3, ...,N coincide?

1. Symmetric wave function

(a) In this case, if all n j, j = 1,2,3, ...,N coincide (n1 = n2 = n3 = ... = nN ≡ n), the

symmetric wave function is given by

φs(ξ1, ...,ξN) = φn(ξ1)φn(ξ2)φn(ξ3)...φn(ξN). (10.5.11)

(b) If some of these n j coincide, then we have to avoid double counting. For instance,

if n1 occurs m1 times, n2 occurs m2 times, . . ., nN occurs mN times, then the total

number of distinct permutation of N indices will be

P =
N!

m1!m2!m3!...mN !
, (10.5.12)

and hence, the symmetric wave function of the system will be

φs(ξ1, ...,ξN) =

√
m1!m2!m3!...mN !

N! ∑
P

P̂{φn1
(ξ1)φn2

(ξ2)...φnN (ξN)} . (10.5.13)

For instance, consider a system of four independent identical bosons with n1 =
n2 = n3 = n, and n4 �= n. Since m1 = 3, we get
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φs =

√
3!
4! ∑

P
P̂
{

φn1
(ξ1)φn2

(ξ2)φn3
(ξ3)φn4

(ξ4)
}

=
1√
4
[φn(ξ1)φn(ξ2)φn(ξ3)φn4

(ξ4)+φn(ξ1)φn(ξ2)φn4
(ξ3)φn(ξ4)

+ φn(ξ1)φn4
(ξ2)φn(ξ3)φn(ξ4)+φn4

(ξ1)φn(ξ2)φn(ξ3)φn(ξ4)] . (10.5.14)

2. Anti-symmetric wave function.
In this case, all n j have to be different, otherwise the wave function will vanish. For

instance, if the particles at positions x j and xk are in the same spatial and spin states,

that is, n j = nk, then the jth and the kth rows of the Slater determinant will coincide

and the determinant will vanish. Consequently, the wave function of the system will be

identically equal to zero: φa(ξ1,ξ2,ξ3, ...,ξN) ≡ 0.

Conclusion: In a system of N identical fermions, no two fermions can occupy the same
single-particle state at a time; every single-particle state can be occupied by (at most)
one fermion only. This is known as the Pauli exclusion principle.

Note that the Pauli exclusion principle does not apply to a system of identical bosons.

There is no restriction on the number of bosons that can occupy a single-particle state.

On the contrary, it so happens that, under suitable conditions, bosons tend to occupy

the same quantum state, the ground state. This phenomenon has been experimentally

observed and is known as the Bose–Einstein condensation.

Note that ξ includes spatial as well as spin variables. Since spin represents an internal

degree of freedom (independent of the spatial degrees of freedom), the wave function

of a particle is written as a product of the spatial and the spin parts (see Chapter 5), that

is, φ (ξ ) = φ (�r,�S) = φ (�r)χ(�S). Generalizing it to the system of N identical particles,

we have

φ (�r1, ...,�rN ,�S1, ...,�SN) = φ (�r1, ...,�rN) χ(�S1, ...,�SN). (10.5.15)

Since this wave function, as discussed earlier, has to be either symmetric or

anti-symmetric, the parities of the spatial part and that of the spin part of the wave

function cannot be arbitrary. They must be such that their product gives, depending on

the nature of the particles, the required parity of the total wave function. In the case of

identical bosons, when the wave function must be symmetric, the spatial and the spin

parts must have the same parity, that is, they are both either symmetric or

anti-symmetric. Thus,

φs(�r1, ...,�rN ,�S1, ...,�S1) =

{
φs(�r1, ...,�rN) χs(�S1, ...,�SN)

φa(�r1, ...,�rN) χa(�S1, ...,�SN),
(10.5.16)
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where the suffixes s and a stand for the symmetric and the anti-symmetric wave

functions, respectively.

For a system of N identical fermions, the wave function must be overall anti-symmetric

and, therefore, the spatial and the spin parts of the wave function must have opposite

parities, that is, if one of them is symmetric, the other has to be anti-symmetric, and

vice versa. Thus,

φa(�r1, ...,�rN ,�S1, ...,�S1) =

{
φs(�r1, ...,�rN) χa(�S1, ...,�SN)
φa(�r1, ...,�rN) χs(�S1, ...,�SN).

(10.5.17)

Example 10.5.1: Two identical non-interacting particles are in an isotropic harmonic

oscillator potential. Find the degeneracy of the ground state and the first excited state of

the system (a) if the particles are spin-1/2 fermions and (b) when they are spin-1 bosons.

As shown in Chapter 4, the nth stationary state of a single-particle in an isotropic

harmonic oscillator potential can be characterized by a triplet of non-negative integers

nx,ny and nz. It has energy Enxnynz =
(
nx + ny + nz +

3
2

)
h̄ω . The ground state corresponds

to nx = ny = nz = 0, while the first excited state corresponds to nx = 1,ny = nz = 0 or

nx = 0,ny = 1,nz = 0 or nx = 0,ny = 0,nz = 1.

(a) In the ground state of the system, both the particles are in the single-particle ground

states (nx j = ny j = nz j = 0, j = 1,2) with opposite spins. Since the quantum numbers

coincide, the anti-symmetric spatial part of the wave function,

φa(�r1,�r2) =
1√
2

[
φnx1

ny1
nz1

(x1,y1,z1)φnx2
ny2

nz2
(x2,y2,z2)

− φnx1
ny1

nz1
(x2,y2,z2)φnx2

ny2
nz2

(x1,y1,z1)
]

. (10.5.18)

vanishes. It means that the spatial part of the total wave function of the system will

be symmetric:

φs(�r1,�r2) =
1√
2

[
φnx1

ny1
nz1

(x1,y1,z1)φnx2
ny2

nz2
(x2,y2,z2)

+ φnx1
ny1

nz1
(x2,y2,z2)φnx2

ny2
nz2

(x1,y1,z1)
]

, (10.5.19)

Therefore, in view of the fact that, for spin 1
2 particles, the overall wave function must

be anti-symmetric, the spin part of the wave function must be the anti-symmetric

singlet spin function. Hence, the ground-state energy is non-degenerate, that is, its

degeneracy equals 1.

The first excited state corresponds to one particle in the single-particle ground state,

nx = ny = nz = 0 and the other in the first excited state with nx = 1,ny = nz = 0
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or nx = 0,ny = 1,nz = 0 or nx = 0,ny = 0,nz = 1. Since the spatial parts of the

single-particle wave function of the particles are different, both the symmetric and

the anti-symmetric spatial parts of the total wave function will be non-zero. The

former will have to be combined with the anti-symmetric singlet spin state, while the

latter has to be combined with the symmetric triplet spin state. Hence, there are in

all four spin configurations. In addition, as mentioned earlier, the first excited state

of one of the particles can be realized in three different ways. Therefore, the total

degeneracy of the first excited state of the system is 3×4 = 12.

(b) In the case of two spin-1 bosons, the overall wave function must be symmetric. The

system’s spin function is obtained by combining the spins of the two particles. As

we know, there are six symmetric and three anti-symmetric spin functions for this

system. For the ground state of the system, when both the bosons are in the

single-particle ground state with nx j = ny j = nz j = 0, j = 1,2, there is a single

symmetric spatial part of the wave function, which must be combined with one of

the six symmetric spin functions to give an overall symmetric wave function.

Hence, the degeneracy of the ground state in this case is six.

The first excited state, analogous to the case of fermions, will have a symmetric or an

anti-symmetric spatial part of the wave function. Once again the symmetric spatial

part is combined with the three anti-symmetric spin parts and the anti-symmetric

spatial part is combined with six symmetric spin parts of the wave function. In this

case too, the first excited state of one of the particles can be realized in three different

ways. So, in this case of bosonic system, the total degeneracy of the first excited state

will be 9×3 = 27.

Example 10.5.2: Two non-interacting particles, each of mass m, are confined to move in a

one-dimensional potential well: V (x) = 0, for 0 < x < 2a and V (x) = ∞ elsewhere, where

a is a positive constant. What are the energies and the corresponding degeneracies of the

three lowest lying states of the system, if the particles are (i) indistinguishable spin-1/2

fermions?, and (ii) distinguishable spin-1/2 fermions?.

Solution: The single-particle spatial part of the stationary state wave functions, satisfying

the standard boundary conditions at x = 0 and x = 2a, are

ψn(ξ , t) = φn(x) e−
i
h̄ Ent , (10.5.20)

where n is a positive integer,

φn(x) =

√
1

a
sin
(nπ

2a
x
)

(10.5.21)
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and En, given by

En =
n2 π2 h̄2

8ma2
(10.5.22)

is the single-particle energy in the nth state.

It is obvious that the nth energy state of the system will be characterized by two sets

of quantum numbers n1 and n2. The corresponding stationary state wave function of the

system will be

ψn1n2
(ξ1,ξ2, t) = φn1n2

(x1,x2) χ(S1,S2) e−
i
h̄ En1n2

t , (10.5.23)

where

En1n2
= En1

+En2
=
(
n2

1 + n2
2

) π2 h̄2

8ma2
(10.5.24)

gives the total energy of the system.

(i) Since the particles are indistinguishable fermions, the ground state of the system will

have both the fermions in the single-particle states with n1 = n2 = 1 under the condition

that they will have opposite spins. Hence, the ground state will have energy E11 =
E1 +E1 = π2h̄2/4ma2.

We have n1 = n2 = 1, which means that the anti-symmetric spatial part of the wave

function will be zero. Since for a fermionic system the overall wave function must be

anti-symmetric, the ground state wave function will be given by

ψ11(ξ1,ξ2) =
1

a
sin
(n1π

2a
x1

)
sin
(n2π

2a
x2

)
χsinglet(s1,s2), (10.5.25)

where χsinglet(s1,s2) given by

χsinglet(s1,s2) =
1√
2

[
χ (+)

1 χ (−)
2 −χ (−)

1 χ (+)
2

]
, (10.5.26)

is anti-symmetric with respect to the interchange of particles. The superscripts ‘(+)’
and ‘(−)’ stand for spin up and spin down, respectively. Evidently, the ground state

will be non-degenerate (degeneracy equal to one).

The first excited state of the system will correspond to n1 = 2,n2 = 1 or n1 = 1,n2 = 2.

This state will have energy

E12 = E21 =
5π2h̄2

8ma2
. (10.5.27)
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The wave function of the system will be given by

ψa(ξ1,ξ2) =

{
φs(x1,x2) χsinglet(s1,s2)

φa(x1,x2) χtriplet(s1,s2).
(10.5.28)

where χsinglet(s1,s2) is given by (10.5.26), while χtriplet(s1,s2) stands for three possible

symmetric spin functions given by

χtriplet(s1,s2) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

χ (+)
1 χ (+)

2 ,

1√
2

[
χ (+)

1 χ (−)
2 + χ (−)

1 χ (+)
2

]
χ (+)

1 χ (+)
2 .

(10.5.29)

The spatial parts of the wave function are

φs(x1,x2) =
1√
2a

[
sin
(π x1

2a

)
sin
(π x2

a

)
+ sin

(π x1

a

)
sin
(π x2

2a

)]
, (10.5.30)

φa(x1,x2) =
1√
2a

[
sin
(π x1

2a

)
sin
(π x2

a

)
− sin

(π x1

a

)
sin
(π x2

2a

)]
. (10.5.31)

Since there are four possible spin configurations, the first excited state of the system is

4-fold degenerate.

The second excited state of the system corresponds to n1 = n2 = 2 and the energy of

the system in this state will be

E(2) = E22 =
π2h̄2

ma2
. (10.5.32)

Once again, since the overall wave function of the system must be anti-symmetric and

n1 = n2 = 2, the anti-symmetric spatial part of the wave function will be zero. Hence,

the total wave function of the second excited state will be

ψ22(ξ1,ξ2) =
1

a
sin
(π x1

a

)
sin
(π x2

a

)
χsinglet(s1,s2). (10.5.33)

Just like the ground state, the second excited state of the system will also be non-

degenerate.

(ii) Since the particles are distinguishable fermions, there is no restriction on the symmetry

of the wave functions: neither on the spatial part nor on the spin part.
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The ground state of the system will correspond to n1 = n2 = 1 and its energy will be

the same as in the previous part. The spatial part of the ground-state wave function is

given by

φ11(x1,x2) =
1

a
sin
(π x1

2a

)
sin
(π x2

2a

)
. (10.5.34)

This can be combined with four possible spin functions

χ (+)
1 χ (+)

2 , χ (−)
1 χ (+)

2 , χ (+)
1 χ (−)

2 , χ (−)
1 χ (−)

2 ,

where ‘+’ and ‘−’ stand for spin up and spin down, respectively. Therefore, the ground

state in this case is 4-fold degenerate.

The first excited state: It will have n1 = 1,n2 = 2 or n1 = 2,n2 = 1 and its energy will

be given by

E(1) =
5π2h̄2

8ma2
. (10.5.35)

So far as the spatial part of the wave function is concerned, there are two possibilities

φ12(x1,x2) =
1

a
sin
(π x1

2a

)
sin
(π x2

a

)
(10.5.36)

or

φ21(x1,x2) =
1

a
sin
(π x1

a

)
sin
(π x2

2a

)
. (10.5.37)

Each one of these can be combined with the previously written four possible spin

functions. Hence, the first excited state of the system will have 8-fold degeneracy.

The second excited state of the system will correspond to n1 = n2 = 2 with energy

E(2) = E22 =
π2h̄2

ma2
. (10.5.38)

The spatial part of the second excited state wave function is given by

φ22(x1,x2) =
1

a
sin
(π x1

2a

)
sin
(π x2

2a

)
. (10.5.39)

This can again be combined with four possible spin functions

χ (+)
1 χ (+)

2 , χ (−)
1 χ (+)

2 , χ (+)
1 χ (−)

2 , χ (−)
1 χ (−)

2 .

Therefore, the second excited state is also 4-fold degenerate.
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Example 10.5.3: Two identical and non-interacting spin-1 particles are moving in a common

infinite square well potential of width a. Determine the energy and the wave functions of

this two-particle system in the ground state and the first excited state.

Solution: The single-particle energy levels and the corresponding spatial parts of the wave

functions are

En1
=

n2
1π2h̄2

2ma2
, En2

=
n2

2π2h̄2

2ma2
, (10.5.40)

φn1
(x1) =

√
2

a
sin
(n1π

a
x1

)
, (10.5.41)

φn2
(x2) =

√
2

a
sin
(n2π

a
x2

)
, (10.5.42)

where the quantum numbers n1 and n2 take positive integer values.

The stationary state wave function of the system has to be symmetric. Therefore, it is

given by the linear combination of the two symmetric wave functions that can be

constructed with the help of the full (spatial plus the spin part) single-particle wave

functions:

ψn1n2
(ξ1,ξ2, t) =

1√
2
[φs(x1,x2) χs(s1,s2)+φa(x1,x2) χa(s1,s2)] e−

i
h̄ En1n2

t . (10.5.43)

Here, En1n2
= En1

+En2
and, as earlier, the subscripts s and a stand for the symmetric and

the anti-symmetric wave functions, respectively. The symmetric and the anti-symmetric

spatial parts of the wave function are given by

φs(x1,x2) =
1√
2
[φn1

(x1)φn2
(x2)+φn1

(x2)φn2
(x1)] , (10.5.44)

φa(x1,x2) =
1√
2
[φn1

(x1)φn2
(x2)−φn1

(x2)φn2
(x1)] . (10.5.45)

The spin part of the wave function of the system, χ(s1,s2), is obtained by combining the

spins of the two particles. We know that for a system of two spin-1 particles, there are in

total, six states that are symmetric: five |2,ms〉 states, with ms = 0,±1,±2 corresponding to
the total spin of 2 and a singlet state corresponding to s = 0. In addition, we have a triplet

of states, |1,ms〉with ms = 0,±1, which correspond to s = 1 and are anti-symmetric. Given

these inputs, let us find the required energy states and the wave functions of the system.
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Ground state: In this case, both the particles will be in the single-particle ground state with

n1 = 1 and n2 = 1. The energy of the system will be given by

E(0) = E11 = E1 +E2 =
π2h̄2

ma2
. (10.5.46)

Since n1 = n2 = 1, the anti-symmetric spatial part φa(x1,x2) will vanish and the wave

function of the system will be

ψ (0)(x1,s1,x2,s2) = φ1(x1)φ1(x2) χs(s1,s2) =
2

a
sin
(π

a
x1

)
sin
(π

a
x2

)
χs(s1,s2),

(10.5.47)

where χs(s1,s2) can be any one of the six symmetric states. Clearly, the ground state of

the system is 6-fold degenerate.

First excited state: One of the particles will be in the single-particle ground state, while

the other will be in the first excited state, that is, either n1 = 1,n2 = 2 or n1 = 2,n2 = 1.

The energy of the system in this state will be

E(1) = E12 = E21 =
5π2h̄2

2ma2
. (10.5.48)

The state will have either symmetric or anti-symmetric spatial part of the wave function.

The former must be coupled with the six symmetric spin functions χs(s1,s2), while the

latter should be coupled with the three anti-symmetric spin functions χa(s1,s2).
Consequently, the wave function of the system will be given by

ψ (1)(ξ1,ξ2) =

{
φs(x1,x2) χs(s1,s2),

φa(x1,x2) χa(s1,s2).

=

⎧⎨
⎩

√
2

a

[
sin
(π

a x1

)
sin
(

2π
a x2

)
+ sin

(
2π
a x1

)
sin
(π

a x2

)]
χs(s1,s2),

√
2

a

[
sin
(π

a x1

)
sin
(

2π
a x2

)
+ sin

(
2π
a x1

)
sin
(π

a x2

)]
χa(s1,s2).

(10.5.49)

The first excited state will be 9-fold degenerate.

Second excited state: In the second excited state of the system, both the particles will be

in the single-particle first excited state with n1 = n2 = 2. The energy of the system equals

E(2) = E22 = E2 +E2 =
4π2h̄2

ma2
. (10.5.50)
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Since n1 = n2 = 2, φa(x1,x2) vanishes and the wave function of the system will be

ψ (2)(x1,s1,x2,s2) = φ2(x1)φ2(x2)χs(s1,s2) =
2

a
sin

(
2π
a

x1

)
sin

(
2π
a

x2

)
χs(s1,s2).

(10.5.51)

The second excited state of the system is 6-fold degenerate.

Example 10.5.4: Consider three identical and non-interacting particles moving, in one

spatial dimension, in a common infinite square well potential of width a: V (x) = 0 for

0 < x < a and ∞ otherwise. Determine the eigenfunctions and the corresponding energies

of the system for the ground state, the first excited state and the second excited state, in

the following cases: (i) the particles are spinless bosons and (ii) spin-1/2 fermions.

Solution: As discussed earlier, the total wave function is a product of the spatial part

φn1n2n3
(x1,x2,x3) and the spin part χ(S1,S2,S3), which are to be constructed from the

single-particle wave functions. The spatial parts of the single-particle wave functions

vanish for x < 0 and x > a. In the region 0 < x < a, they satisfy their individual

time-independent Schrödinger equation:

∂ 2φ j(x j)

∂x2
j

+ k2
j φ j(x j) = 0, j = 1,2,3, (10.5.52)

where k2
j = 2mE j/h̄2. The energy eigenvalues, En j and the corresponding wave functions,

φn j(x j) (satisfying the required boundary conditions: φn j(x j) = 0 at x j = 0 and x j = a),

are given by

φn1
(x1) =

√
2

a
sin
(nπx1

a

)
, En1

=
n2

1π2h̄2

2ma2
, n1 = 1,2,3, ... (10.5.53)

φn2
(x2) =

√
2

a
sin
(n2πx2

a

)
, En2

=
n2

2π2h̄2

2ma2
, n2 = 1,2,3, ... (10.5.54)

φn3
(x3) =

√
2

a
sin
(n3πx3

a

)
, En3

=
n2

3π2h̄2

2ma2
, n3 = 1,2,3, ... . (10.5.55)

(i) In this case, the particles are spinless bosons and, therefore, the ground state corresponds

to n1 = n2 = n3 = 1. The ground state energy is given by

E(0) = E111 =
π2h̄2

2ma2
(1+ 1+ 1) =

3π2h̄2

2ma2
. (10.5.56)
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Since there is no spin part of the wave function to be taken into account, and

n1 = n2 = n3 = 1, the ground-state wave function, φ (0)(x1,x2,x3), is given by the simple

product of the single-particle wave functions

ψ (0)(x1,x2,x3) = φ1(x1)φ1(x2)φ1(x3) =

√
8

a3
sin
(πx1

a

)
sin
(πx2

a

)
sin
(πx3

a

)
. (10.5.57)

The first excited state corresponds to the case when two of the bosons are in the ground

state while one boson is in the first excited state. There are three possible particle

configurations with n1 = 2,n2 = n3 = 1, n2 = 2,n1 = n3 = 1 and n3 = 2,n1 = n2 = 1

with the same total energy which is equal to

E(1) = E211 = E121 = E112 =
π2h̄2

2ma2
(1+ 1+ 4) =

3π2h̄2

ma2
. (10.5.58)

Clearly, the state is 3-fold degenerate. The second excited state corresponds to the case

when one of the bosons is in the ground state (n j = 1), while the other two are in the first

excited state (n j = 2). The corresponding energy level is again 3-fold degenerate and the

energy of the system in this state is

E(2) = E221 = E122 = E212 =
π2h̄2

2ma2
(1+ 4+ 4) =

9π2h̄2

2ma2
. (10.5.59)

To find the wave function of the first excited state, we notice that, since the particles are

indistinguishable, we cannot say which particle is in the ground state (with n = 1) and

which in the first excited state (with n = 2); all that we can say is that two of the particles

are in the ground state and one is in the first excited state. In other words, two of the indices

n1,n2 and n3 coincide. The total number of distinct permutations is, therefore, equal to

3!/2!. Consequently, the wave function for the first excited state of the system will be

ψ (1)(x1,x2,x3) = φ111(x1,x2,x3) =

√
2!
3!
[φ1(x1)φ1(x2)φ2(x3)+φ1(x2)φ1(x3)φ2(x1)

+ φ1(x3)φ1(x1)φ2(x2)]

=

√
2!
3!

[
sin
(πx1

a

)
sin
(πx2

a

)
sin

(
2πx3

a

)

+ sin
(πx2

a

)
sin
(πx3

a

)
sin

(
2πx1

a

)

+ sin
(πx3

a

)
sin
(πx1

a

)
sin

(
2πx2

a

)]
..

(10.5.60)
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The wave function corresponding to the second excited state of the system will be

ψ (2)(x1,x2,x3) =

√
2!
3!
[φ1(x1)φ2(x2)φ2(x3)+φ2(x1)φ1(x2)φ2(x3)

+ φ2(x1)φ2(x2)φ1(x3)]

=

√
2!
3!

[
sin
(πx1

a

)
sin

(
2πx2

a

)
sin

(
2πx3

a

)

+ sin

(
2πx1

a

)
sin
(πx2

a

)
sin

(
2πx3

a

)

+ sin

(
2πx1

a

)
sin

(
2πx2

a

)
sin
(πx3

a

)]
. (10.5.61)

(ii) Now the particles are spin-1/2 fermions. Therefore, we have to take the Pauli principle

into account. Consequently, the ground state of the system is the one in which two of the

particles are in the single-particle ground state, n j = 1, with opposite spins and the third

particle is in the first excited state, n j = 2, with either positive (up) or negative (down) spin.

The ground state energy is given by

E(0) = E211 = E112 = E121 =
π2h̄2

2ma2
(1+ 1+ 4) =

3π2h̄2

ma2
. (10.5.62)

In this case, the ground state wave function is given by the corresponding Slater

determinant:

ψ (0)
a (x1,x2,x3,s1,s2,s3) =

∣∣∣∣∣∣∣
φ1(x1) χ(s1) φ1(x1) χ(s2) φ2(x1) χ(s3)

φ1(x2) χ(s1) φ1(x2) χ(s2) φ2(x2) χ(s3)

φ1(x3) χ(s1) φ1(x3) χ(s2) φ2(x3) χ(s3)

∣∣∣∣∣∣∣ . (10.5.63)

Note that since there are four ways in which we can configure the spins of three fermions,

the ground state is 4-fold degenerate.

Let us write down the wave function of the ground state for one of the four

configurations shown in Figure 10.1. The wave function corresponding to this

configuration will be

ψ (0)
a =

∣∣∣∣∣∣∣∣
φ1(x1) χ (+)(s1) φ1(x1) χ (−)(s2) φ2(x1) χ (+)(s3)

φ1(x2) χ (+)(s1) φ1(x2) χ (−)(s2) φ2(x2) χ (+)(s3)

φ1(x3) χ (+)(s1) φ1(x3) χ (−)(s2) φ2(x3) χ (+)(s3)

∣∣∣∣∣∣∣∣ , (10.5.64)
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n = 3

n = 2

n = 1

Up

Figure 10.1 One of the four possible configurations of the system with two of the
fermions in the single-particle ground state with n= 1 and the third fermion
in the single-particle first excited state with n = 2.

where

χ (+) =

∣∣∣∣12,
1

2

〉
, χ (−) =

∣∣∣∣12,−1

2

〉
, χ (±) =

∣∣∣∣12,±1

2

〉
. (10.5.65)

Simplifying we arrive at

φ (0)
a =

1√
3
[φ1(x1)φ1(x2)φ2(x3)−φ1(x1)φ2(x2)φ1(x3)−φ1(x1)φ1(x2)φ2(x1)]

× 1√
2

[
χ (+)(s1)χ (−)(s2)−χ (−)(s1)χ (+)(s2)

]
χ (+)(s3). (10.5.66)

The first excited state of the system will be the one in which two of the fermions, with

opposite spins, will be in the first excited state, n j = 2, while the third will be in the ground

state, n j = 1, with either up or down spin. Therefore, the first excited state energy of the

system will be given by

E(1) = E221 = E122 = E212 =
π2h̄2

2ma2
(1+ 4+ 4) =

9π2h̄2

ma2
. (10.5.67)

The corresponding first excited state wave function will be

ψ (1)(x1,x2,x,s1,s2,s3) =

∣∣∣∣∣∣∣
φ1(x1) χ(s1) φ2(x1) χ(s2) φ2(x1) χ(s3)

φ1(x2) χ(s1) φ2(x2) χ(s2) φ2(x2) χ(s3)

φ1(x3) χ(s1) φ2(x3) χ(s2) φ2(x3) χ(s3)

∣∣∣∣∣∣∣ . (10.5.68)

Once again, there are four ways in which we can configure the spins of three fermions.

Consequently, there are four states corresponding to the same energy E(1). Hence, the first

excited state is 4-fold degenerate. The situation is depicted in Figure 10.2.
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Spin up or down

n = 3

n = 2

n = 1

Figure 10.2 One of the four possible configurations of the system with two of the
fermions in the single-particle first excited state with n = 2 and opposite
spins and the third fermion in the single-particle ground state with n = 1

and spin up.

In the second excited state, two of the fermions will be in the single-particle ground

state with n j = 1 while the third will be in the single-particle second excited state with

n j = 3. Hence, the second excited state of the system will have energy

E(2) = E131 = E113 = E131 =
π2h̄2

2ma2
(1+ 1+ 9) =

11π2h̄2

ma2
. (10.5.69)

The corresponding second excited state wave function of the system will be

ψ (2)(x1,x2,x,s1,s2,s3) =

∣∣∣∣∣∣∣
φ1(x1) χ(s1) φ1(x1) χ(s2) φ3(x1) χ(s3)

φ1(x2) χ(s1) φ1(x2) χ(s2) φ3(x2) χ(s3)

φ1(x3) χ(s1) φ1(x3) χ(s2) φ3(x3) χ(s3)

∣∣∣∣∣∣∣ . (10.5.70)

This state too is 4-fold degenerate.

Example 10.5.5: A system of two independent identical spin-1/2 particles are subject to a

common one-dimensional harmonic oscillator potential of frequency ω . Both the particles

are in the spin-down state characterized by the spin function
∣∣s = 1

2 ,ms = −1
2

〉≡ ∣∣12 ,−1
2

〉
.

Find the energies and the wave functions of the ground and the second excited states.

Solution: We know from Chapter 3 that, for the one-dimensional harmonic oscillator

potential, the single-particle energies, En, and the spatial part of the corresponding wave

functions, φn(x), are

En =

(
n+

1

2

)
h̄ω ,n = 0,1,2,3, . . . (10.5.71)

φn(x) =
1√√

π2nn!x0

e−(x
2/2x2

0) Hn(x/x0), (10.5.72)
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where x0 =
√

h̄/mω and Hn(x/x0) is the Hermite polynomial of degree n.

The ground state: Since both the fermions are in the same spin state, according to the Pauli

principle, they cannot occupy the same energy state. Therefore, the ground state will have

one fermion each in the n = 0 and n = 1 states. The energy of the system will be

E(0) =

(
1

2
+

3

2

)
h̄ω = 2 h̄ω . (10.5.73)

Now, the wave function of our system of spin-1/2 particles must be anti-symmetric.

Therefore, because both particles are in the same spin state, the spatial part of the wave

function has to be anti-symmetric. The ground state wave function is therefore given by

ψ (0) =
1√
2
(φ0(x1)φ1(x2)−φ0(x2)φ1(x1))

∣∣∣∣12,−1

2

〉
. (10.5.74)

The first excited state: It will correspond to one particle in the n = 0 energy state and the

other in the n = 2 energy state. The state with n = 1 will be empty. As a result, the second

excited state will have energy

E(2) =

(
1

2
+

5

2

)
h̄ω = 3 h̄ω , (10.5.75)

and its wave function will be

ψ (2) =
1√
2
(φ0(x1)φ2(x2)−φ0(x2)φ2(x1))

∣∣∣∣12,−1

2

〉
. (10.5.76)

The particle distribution among the energy states for both the cases are depicted in

Figure 10.3.

n = 1

n = 0

n = 2

n = 1

n = 0

Empty

(a) (b)

Figure 10.3 Distribution of particles among the energy states for the system of two spin-
1/2 fermions in a common one-dimensional harmonic oscillator potential:
(a) in the ground state and (b) in the first excited state.
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Homework Problems

1. Consider a system of four non-interacting distinguishable bosons that are confined

to move in a one-dimensional infinite potential well of length a with walls at x = 0

and x = a. Determine the energies and wave functions of the ground state, the first

excited state and the second excited state, if their respective masses satisfy the relation:

m1 = 2m2 = 4m3 = 8m4.

2. Three non-interacting distinguishable particles move in a common external

one-dimensional harmonic oscillator potential. Find the energies and the wave

functions of the ground state, the first excited state, and the second excited state of the

system, if their respective masses satisfy the relation: m1 = 4m2 = 8m3.

3. Prove that the exchange operator P̂i j that interchanges the particles at �ri and �r j is

hermitian.

4. Prove that two interchangeable operators P̂i j and P̂k� commute if the sets of indices

(i, j) and (k,�) refer to different pairs of particles.

5. Check whether the following functions are symmetric or anti-symmetric under the

exchange of particles:

(a) φ (x1,x2) =
(x1− x2)2

5x1x2
+

3x1 + x2

x2
1 + x2

2

,

(b) φ (x1,x2) =
2

a

[
sin

(
2πx1

a

)
sin

(
5πx2

a

)
− sin

(
5πx1

a

)
sin

(
2πx2

a

)]
.

(c) φ (x1,x2) =
e−(x2

1+x2
2)

x5
1 + 10

6. Symmetrize the following wave function and normalize it to find the constant A:

φ (x1,x2) = A sin

(
5πx1

a

)
sin

(
10πx2

a

)
.

7. Anti-symmetrize the wave function:

φ (x1,x2) = A sin

(
2πx1

a

)
sin

(
5πx2

a

)
.

and normalize it to find the constant A.

8. Three non-interacting identical bosons (each of mass m) are subject to a common

external one-dimensional harmonic oscillator potential. Find the energy levels and

wave functions of the ground state, the first excited state and the second excited state

of the system.
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9. Consider a system of four non-interacting identical spin-1/2 particles (each of mass m)

that are confined to move in a one-dimensional infinite potential well of length a with

walls at x = 0 and x = a. Determine the energies and wave functions of the ground

state and the first three excited states. Draw a figure showing how the particles are

distributed among the levels.

10. Two identical particles of spin-1/2 are enclosed in a one-dimensional infinite square

well potential of length a with rigid walls at x = 0 and x = a. Assuming that the two-

particle system is in a singlet spin state, find the energy levels, the wave functions and

the degeneracies corresponding to the three lowest states.

11. Two identical spin-1/2 particles are moving under the influence of a one-dimensional

harmonic oscillator potential. Assuming that the two-particle system is in a triplet spin

state, find the energy levels, the wave functions and the degeneracies corresponding to

the three lowest states.

12. A system of three independent identical spin-1/2 particles are subject to a common

one-dimensional harmonic oscillator potential of frequency ω . Both the particles are

in the spin-up state characterized by the spin function
∣∣s = 1

2 ,ms =
1
2

〉 ≡ ∣∣12 , 1
2

〉
. Find

the energies and the wave functions of the first three lowest-lying states.



Chapter 11

Symmetry and Conservation Laws

According to Herman Weyl, by symmetry of an object (or a physical system) we mean

the property of the object to appear unchanged after some operation has been done on

it. We then say that the object is symmetrical under the given operation. For instance,

consider a square. It is indistinguishable after rotations by 1
2π , π and 3

2π about the axis

passing through its geometrical center and perpendicular to its plane (Shown by the dot

in the figure). This axis is said to be the axis of symmetry of the square. Note that the

angle of rotation, for which the square possesses symmetry, takes on only discrete values.

Consequently, it has, as we say, a discrete symmetry. On the other hand, a sphere looks

unchanged after all rotations (infinitesimal or finite) about its axis of symmetry. Since the

angle of rotation can take continuous values, the rotational symmetry of the sphere is a

continuous symmetry.

Square Sphere

Figure 11.1 Invariance of a square under discrete rotations and that of a sphere under
continuous rotations, about the respective axes of symmetry.

It turns out that, for each continuous symmetry of a physical system, there exists a

conserved quantity, i.e., a physical characteristic that remains constant as the system

evolves in time according to a given dynamical equation. This result is known as the

celebrated Nöther theorem. For example, if we place a system of particles in empty space,

347
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far from anything that might affect it, it does not make a difference where exactly we

put it. There are no preferred locations in empty space; all locations are equivalent. As

a consequence, there is a symmetry for a system of particles with respect to translations

in empty space. This translational symmetry leads to the law of conservation of the total

linear momentum of the system. Similarly, there exists a symmetry for a system of particles

in empty space with respect to rotations of the system as a whole because there are no

preferred directions in empty space. This rotational symmetry leads to conservation of the

total angular momentum of the system. Another important symmetry is the symmetry with

respect to shift in time. It turns out that it does not matter when we perform an experiment

on an isolated system. The results will be the same. This symmetry with respect to shift in

the origin of time gives rise to the law of conservation of energy.

The aforementioned conservation laws hold good in classical as well as in quantum

mechanics. However, in quantum mechanics, there appear some new laws of conservation

related to the invariance of the system with respect to a change in its quantum mechanical

characteristics. For instance, the invariance of the probability density ψ∗ψ under a change

of the phase of the wave function by a constant quantity leads to the conservation of charge.

Another example is the exchange symmetry (discussed in Chapter 10), related to a strictly

quantum mechanical phenomenon of indistinguishability of identical particles, which leads

to novel physical consequences that do not have any classical analogue.

The relationship between the symmetries and the conservation laws is important. This

is because, besides allowing us to formulate the known conservation laws, it also enables

us to discover new laws of conservation that play crucial roles in physics at large. Apart

from that, there is another important aspect that requires a serious study of the invariance

properties of a quantum mechanical system. It is related to the fact that the Schrödinger

equation can be solved exactly only for a handful of simple cases; in all other cases, one

has to adhere to approximate methods of solution. It turns out that a detailed study of the

symmetry properties of a given quantum system allows us to deduce a number of important

physical properties of the system without solving the corresponding Schrödinger equation

explicitly.

In view of the importance of symmetry principles in quantum mechanics, we shall

discuss the invariance properties of a quantum system in more detail and derive some

important results. In doing so, we shall use the language of group theory, which is the

appropriate mathematical language for dealing with such properties.

11.1 Transformation of the Wave Function under Coordinate
Transformations

In general a coordinate transformation may be either active or passive. By active

transformation we mean the one in which the position vector of the point is changed while

the coordinate system remains unchanged. For instance, the position vector�r of the point

P can be rotated. On the other hand, in a passive transformation the position vector of the

point remains unchanged, while the basis vectors, that define the coordinate axes of the

coordinate system, undergo a change. In our case, we consider the wave function, ψ(�r),
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of a particle at the point P with the position vector �r and aim is to deduce its

transformation property, when we go over from one system of coordinates to another.

Let ĝ stand for the operation with the help of which we move over to a new coordinate

system in which the point P is represented by the position vector�r ′. That is,

�r ′ = ĝ�r. (11.1.1)

The inverse transformation is given by

�r = ĝ−1�r ′. (11.1.2)

Since the value of the wave function at P has not changed as result of the coordinate

transformation, we must find the same value of ψ for�r ′ which was there for�r. Hence, we

obtain

ψ ′(�r ′) = ψ(�r). (11.1.3)

Taking into account (11.1.2), we land up with

ψ ′(�r ′) = ψ(ĝ−1�r ′). (11.1.4)

Note, however, that the functional form of the wave function might change due to the

coordinate transformation. This fact is indicated by putting prime on the wave function for

�r ′. For instance, consider the case of one spatial dimension and let ψ = A0 exp(−ax) and

x ′ = exp(bx), where A0, a and b are constants, then

ψ ′(x ′) = ψ(x) = ψ
(
S−1(x ′)

)
= A0 exp

(
−a

b
ln(x ′)

)
=

A0

[x ′](a/b)
. (11.1.5)

We now argue that the wave function ψ ′(�r ′) can be obtained from ψ(�r ′) by acting on

ψ(�r ′) with a suitable operator R̂g, where the subscript g shows that this operation is

induced by the coordinate transformation (11.1.1). Thus, we can write

ψ ′(�r ′) = R̂gψ(�r ′). (11.1.6)

Comparing (11.1.4) and (11.1.6) we get the rule according to which R̂g acts on ψ(�r ′):

R̂gψ(�r ′) = ψ(ĝ−1�r ′). (11.1.7)

Removing the prime without affecting the generality we obtain

R̂gψ(�r) = ψ(ĝ−1�r), (11.1.8)

which determines the rule according to which the wave function should transform under

the coordinate transformation (11.1.1).
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Since the physical properties of a system should not depend on the coordinate system

chosen to describe the system, the normalization of the wave function must be preserved.

Hence,

〈
ψ ′(�r ′) | ψ ′(�r ′)

〉
=
〈

ψ(�r ′)
∣∣R̂†

gR̂g
∣∣ψ(�r ′)

〉
= 〈ψ(�r) | ψ(�r)〉= 1. (11.1.9)

It follows from (11.1.9) that the operator R̂g must be a unitary operator:

R̂†
gR̂g = R̂gR̂†

g = Î, (11.1.10)

where Î is the unit operator.

Consider now the effect of two successive transformations of the coordinates: first by

applying the operator ĝ1 and then by applying the operator ĝ2:

�r→�r ′ = ĝ1�r, �r ′ →�r ′′ = ĝ2�r ′. (11.1.11)

Let R̂g1
and R̂g2

be the operators, corresponding to ĝ1 and ĝ2, respectively, which act on

the wave function ψ(�r). Then, on one hand

ψ ′′(�r ′′) = R̂g2
ψ ′(�r ′′) = R̂g2

R̂g1
ψ(�r ′′). (11.1.12)

On the other hand, since the value of the wave function should not change as a result of the

coordinate transformations, we must have

ψ ′′(�r ′′) = ψ(�r) = ψ(ĝ−1
1 ĝ−1

2 �r ′′). (11.1.13)

It follows from (11.1.12) and (11.1.13) that, after the aforementioned two successive

coordinate transformations, we shall have

R̂g2
R̂g1

ψ(�r) = ψ(ĝ−1
1 ĝ−1

2 �r). (11.1.14)

Equation (11.1.14) gives the transformation of the wave function under two successive

coordinate transformations. The point to be noted here is that the order of the g-inverse

operators acting on the argument of the wave function is reversed in comparison with the

order in which the operators R̂g1
and R̂g2

act on the wave function.

It is obvious now that, if the set of coordinate transformations, represented by the

operators {ĝ}, form a group, say g, then the group G(R̂), formed by the operators {R̂g}, is

said to be the representation of g in the linear vector space whose elements are nothing

but the set of all possible wave functions of the system.
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11.2 Group of Symmetry of the Schrödinger Equation and the
Conservation Laws

Consider the Schrödinger equation for a system of n particles

ih̄
∂ψ
∂ t

= Ĥψ , (11.2.1)

where ψ = ψ(�r1,�r2, . . . ,�rn, t) and Ĥ(�r1,�r2, . . . ,�rn) are the wave function and the

Hamiltonian operator of the system, respectively. Mathematically, the values of the wave

function can either be numbers or elements of a multi-dimensional linear vector space. If

the wave function belongs to a m-dimensional linear vector space, then we choose an

appropriate orthonormal basis, {∣∣ f j(�r) 〉}, j = 1,2,3, . . . ,m

〈
f j | fk

〉
= δ jk =

{
0, if j �= k,

1, if j = k.
(11.2.2)

in this space and characterize the vector wave function, |ψ(�r1,�r2, . . . ,�rn, t)〉, by its set of

components

ψ j(�r1,�r2, . . . ,�rn, t) =
〈

f j | ψ
〉

, j = 1,2,3, . . . ,n. (11.2.3)

In this case, the Schrödinger equation (11.2.1) is rewritten as

ih̄
∂ψ j

∂ t
=

m

∑
k=1

Hjkψk, (11.2.4)

where Hjk =
〈

f j
∣∣Ĥ∣∣ fk

〉
are the matrix elements of the Hamiltonian operator, Ĥ, in this

basis.

By definition, the Schrödinger equation (11.2.1) is said to be invariant with respect to

a certain operation, represented by an operator R̂, if every solution ψ of this equation is

transformed by R̂ into a new wave function, ψ ′ = R̂ψ , which also satisfies the Schrödinger

equation (11.2.1) and all the required boundary conditions. That is

ih̄
∂ψ ′

∂ t
= Ĥψ ′, =⇒ ih̄

∂ (R̂ψ)

∂ t
= ĤR̂ψ (11.2.5)

If the set of all such operators {R̂} forms a group, say G(R̂), then G or any of its subgroups

is called the group of symmetry of the Schrödinger equation (11.2.1).

It is usually assumed that the operators {R̂}, besides being linear, commute with the

operation of differentiation with respect to time, that is,

∂
∂ t

(R̂ψ) = R̂
∂ψ
∂ t

. (11.2.6)
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Multiplying (12.2.1) by R̂ from left and using (12.2.6), we get that

ih̄
∂ (R̂ψ)

∂ t
= R̂ (Ĥ ψ). (11.2.7)

From (12.1.5) and (12.1.7) we arrive at

(ĤR̂− R̂ Ĥ)ψ = 0. (11.2.8)

Since ψ is an arbitrary solution of the Schrödinger equation, it follows from (11.2.8) that

R̂ Ĥ− ĤR̂ = [R̂, Ĥ] = 0. (11.2.9)

Hence, the elements of the group of the Schrödinger equation commute with the

Hamiltonian. Clearly, the operator, R̂†, hermitian conjugate to R̂, also commute with Ĥ:

[R̂†, Ĥ] = 0. (11.2.10)

As a consequence, the hermitian operators

F̂1 =
1

2
(R̂+ R̂†), and F̂2 =

1

2i
(R̂− R̂†), (11.2.11)

also commute with the Hamiltonian.

The commutativity of the operators F̂1 and F̂2 leads to the following important

consequences. In particular, it turns out that F̂1 and F̂2 are conserved in time. In order to

establish that, let us prove the following simple theorems.

Theorem 11.2.1: If at a given instant t0 the wave function ψ(�r1,�r2, . . . ,�rn, t) is an

eigenfunction of the operators F̂1 and F̂2,

F̂j ψ(�r1,�r2, . . . ,�rn, t0) = λ j ψ(�r1,�r2, . . . ,�rn, t0), j = 1,2, (11.2.12)

then at any other instant, t, it is again the eigenfunction of these operators with the same

eigenvalues, λ j.

Proof: Consider the function

φ j(�r1,�r2, . . . ,�rn, t) = F̂j ψ(�r1,�r2, . . . ,�rn, t)−λ j ψ(�r1,�r2, . . . ,�rn, t), j = 1,2. (11.2.13)

The operators F̂1 and F̂2, being the symmetry operators, commute both with ∂ /∂ t and the

Hamiltonian. Hence F̂j ψ(�r1,�r2, . . . ,�rn, t) satisfies the Schrödinger equation. It means that

both the terms on the right hand-side of (11.2.13) satisfy the Schrödinger equation.
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Therefore, the function φ (�r1,�r2, . . . ,�rn, t) also satisfies the the Schrödinger equation.

Since the Hamiltonian does not depend on time explicitly, the solution to the Schrödinger

equation at any t > t0 is uniquely given by

φ j(�r1,�r2, . . . ,�rn, t) = e−
i
h̄ (t−t0) Ĥφ j(�r1,�r2, . . . ,�rn, t0) j = 1,2. (11.2.14)

Because of the fact that at t = t0 we have φ j(�r1,�r2, . . . ,�rn, t0)≡ 0, the equation (11.2.4) tells

us that φ j(�r1,�r2, . . . ,�rn, t) = 0 at any t > t0. Hence,

F̂j ψ(�r1,�r2, . . . ,�rn, t) = λ j ψ(�r1,�r2, . . . ,�rn, t), j = 1,2 ∀ t > t0. (11.2.15)

Therefore, ψ j(�r1,�r2, . . . ,�rn, t) are eigenfunctions of F̂j, j = 1,2 at any t > t0 corresponding

to the same eigenvalues λ j.

Theorem 11.2.2: The average values of the operators F̂1 and F̂2, in a given state of a quantum

system with a time-independent Hamiltonian, are conserved.

Proof: The time evolution of the average values (in a given state ψ(t)) of these operators is

governed by the following Ehrenfest’s equations:

ih̄
d〈F1〉

dt
= 〈[F̂1, Ĥ]〉, (11.2.16)

ih̄
d〈F2〉

dt
= 〈[F̂2, Ĥ]〉, (11.2.17)

where

〈Fj〉=
∫

ψ∗(F̂jψ)d3x∫
ψ∗ψd3x

, j = 1,2, (11.2.18)

〈[F̂j, Ĥ]〉=
∫

ψ∗([F̂j, Ĥ]ψ)d3x∫
ψ∗ψd3x

, j = 1,2. (11.2.19)

Since F̂1 and F̂2 commute with the Hamiltonian, we conclude that the average values of the

operators F̂1 and F̂2 are conserved in time.

Theorem 11.2.1 and Theorem 11.2.2 show that the hermitian operators F̂1 and F̂2

represent conserved physical quantities. This, in turn means that to every element of the

group of symmetry of the Schrödinger equation, there corresponds a law of conservation.

However, all these conservation laws are not independent. Therefore, the question arises:

How can we, out of the totality of conservation laws provided by a group of symmetry of

the Schrödinger equation, find the smallest number of independent conservation laws

from which all other conservation laws can be derived? Note that this is very important in

the context of continuous groups of symmetry which lead to a continuum of conservation

laws.
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The following theorem, which is proved using the theory of Lie groups1, provides the

answer to this question.

Theorem 11.2.3: Let the symmetry group, G(R̂), of the Schrödinger equation be an m
dimensional Lie group with m parameters α1,α2,α3, . . . ,αm and the corresponding

generators I1, I2, I3, . . . , Im. Then the following hold good: (a) every generator

I j, j = 1,2,3, . . . ,m corresponds to a conserved physical quantity, and (b) all conservation

laws related to the elements of the group G follow from the m conservation laws

corresponding to the generators.

Proof: Consider a group element R̂(α),α = {α1, . . . ,αm}. From the theory of Lie groups

we know that R̂ can be represented as

R̂(α1, . . . ,αm) = exp

(
m

∑
j=1

iα j Î j

)
, (11.2.20)

where the generator Î j, corresponding to the parameter α j is calculated as

Î j = −i
∂ R̂(0,0, . . . ,α j, . . . ,0,0}

∂α j

∣∣∣∣
α j=0

. (11.2.21)

Since R̂ is an element of the symmetry group of the Schrödinger equation, it commutes

with the Hamiltonian. Hence,

[R̂, Ĥ] =

[
∞

∑
n=0

1

n!

(
m

∑
j=1

iα j Î j

)n

, Ĥ

]
=

[(
1+ i

m

∑
j=1

α j Î j +
1

2!
i2

m

∑
j,k=1

α jαk Î j Îk

+
1

3!
i3

m

∑
j,k,�=1

α jαkα�Î j ÎkÎ�+ . . .

)
, Ĥ

]
= 0. (11.2.22)

For the above relation to hold good, each of the m generators, Î j, j = 1,2,3, . . . ,m, must

individually commute with the Hamiltonian. That is, we must have

[Î j, Ĥ] = 0 j = 1,2,3, . . . ,m. (11.2.23)

Equation (11.2.23) shows that each generator of the group of symmetry of the

Schrödinger equation, G, leads to a conservation law. Evidently, in view of (11.2.20), all

conservation laws related to the elements of the group G follow from the m conservation

laws corresponding to the generators.

1M. Tinkham, Group Theory and Quantum Mechanics, New York: McGraw-Hill Book, 1964.
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11.3 Homogeneity of Time and Space: Conservation of Energy and
Momentum

(a) Homogeneity of time: Consider a quantum mechanical system with constant external

conditions. For such a system, all the instants of time are equivalent. This is known as

homogeneity of time. It means that if ψ(�r, t) is a solution of the Schrödinger equation at

a given instant t, and the system is displaced in time by an infinitesimal amount τ , that

is, t goes to t ′ = ĝτ t = t + τ , where we have −∞ < τ <+∞, then the wave functions

ψ ′(�r, t ′) = R̂g ψ(�r, t) = ψ(�r, ĝ−1
τ t) = ψ(�r, t− τ) (11.3.1)

will also be the solutions of the Schrödinger equation. In this case, the group of

symmetry of the Schrödinger equation is a one-parameter Lie group,

G = {R̂(α = τ)}, of time translations whose generator is calculated as

Î(t)ψ(�r, t) = −i
∂

∂τ
(
R̂(τ)ψ(�r, t)

)
τ=0

= −i
(

∂ψ(�r, t− τ)
∂τ

)
τ=0

= i
∂
∂ t

ψ(�r, t).

(11.3.2)

Hence,

Î(t) = i
∂
∂ t

. (11.3.3)

Since G = {R̂(τ)} is the group of symmetry, the generator Î = i(∂ /∂ t) must commute

with the Hamiltonian and hence, it is conserved.

Let us recollect that in quantum mechanics, the operator for the total energy of a system

under constant external conditions is given by Ê = ih̄ (∂ /∂ t). If we now look at Î, we

come to two important conclusions: (i) The quantum mechanical operator for energy

is proportional to the generator of the group of time translations and the constant of

proportionality is given by h̄; and (ii) the physical quantity that is conserved due to

the invariance of the Schrödinger equation with respect to translations in time of the

system, as a whole, is the total energy of the system.

(b) Homogeneity of space: Consider now a quantum mechanical system (for simplicity

consider a single-particle system with position vector�r ) which is subject to spatially

homogeneous external conditions. This means that all the points in space are

indistinguishable for the system. As a consequence, the potential energy does not

change if the system as a whole is translated in space by a constant vector �a, say from

�r to �r +�a. Then, the set of operators {R̂(�a)}, whose action on the wave function is

defined through

R̂(�a)ψ(�r, t) = ψ(ĝ−1
�a �r, t) = ψ(�r−�a, t), (11.3.4)
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forms the symmetry group, G, for the Schrödinger equation. It is a three-parameter

Lie group of spatial translations whose parameters are taken to be the Cartesian

components (a1 = ax,a2 = ay, and a3 = az) of the vector �a. Correspondingly, there

are three generators Î j, j = 1,2,3, that are computed as

Î j(a j)ψ(�r, t) = −i
∂

∂a j

(
R̂(�a)ψ(�r, t)

)∣∣
a j=0

= −i
∂

∂a j
(ψ(�r−�a, t))|a j=0

= −i
∂

∂a j

(
exp
(
−�a ·�∇ψ(�r, t)

))∣∣∣
a j=0

= i
∂

∂x j
ψ(�r, t). (11.3.5)

Hence,

Î j(a j) = i
∂

∂x j
, j = 1,2,3. (11.3.6)

Since the group, G, of space translations is the symmetry group for the Schrödinger

equation, these generators must commute with the Hamiltonian and be conserved.

As we know, in quantum mechanics, p̂ j = −ih̄ Î j, j = 1,2,3 is the operator for the jth
component of the linear momentum. Taking this into account, we come to the conclusions:

(i) The quantum mechanical operator for linear momentum is proportional to the generator

of the group of space translations and the constant of proportionality is given by −h̄; and

(ii) the physical quantity, which is conserved due to the invariance of the Schrödinger

equation with respect to spatial translations of the system as a whole in a given direction,

is the linear momentum of the system along that direction.

11.4 Isotropy of Space: Conservation of Angular Momentum

Isotropy of space means that there is no preferred direction in space: all directions are

equivalent. Consider a one-particle system on which no external force is acting. Because

of the isotropy of space, the properties of this system will remain unchanged under arbitrary

rotations of the system as a whole. Let us see what are the consequences, if the system is

subject to an infinitesimal rotation about a given direction in space.

Consider an infinitesimal rotation by an angle δφ , about an axis passing through a point

in 3-dimensional space. Such a rotation is characterized by a vector �δφ , whose magnitude

coincides with the angle of rotation and whose direction is along the direction of the axis

of rotation. If we perform such a rotation, the change in the position vector,�r, of a particle

(system) is given by δ�r = [ �δφ ×�r]. In other words,

�r→�r+[ �δφ ×�r]. (11.4.1)

In this case, the set of operators, R̂( �δφ ), defined by

R̂( �δφ )ψ(�r, t) = ψ(�r− [ �δφ ×�r], t), (11.4.2)
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forms the symmetry group, G( �δφ ), of the Schrödinger equation. It is a 3-parameter Lie

group of rotations whose parameters are taken to be the Cartesian components (δφ1 =

δφx,δφ2 = δφy, and δφ3 = δφz) of the vector �δφ .

Since

−( �δφ ×�r) ·�∇ = −
3

∑
j,k,�=1

ε� jk δφ j xk
∂

∂x�
, (11.4.3)

where ε� jk are the components of the Levi-Civita tensor density:

ε� jk =

⎧⎨
⎩

+1, if (� jk) are even permutations of (123),

−1, if (� jk) are odd permutations of (123),

0, otherwise,

(11.4.4)

the three generators, Îm(δφ ) (m = 1,2,3), of this group are given by

Îm(δφ )ψ(�r, t) =− i
∂

∂ (δφm)

(
R̂( �δφ )ψ(�r, t)

)∣∣∣
δφm=0

=− i
∂

∂ (δφm)

(
e−( �δφ×�r)·�∇ψ(�r, t)

)∣∣∣
δφm=0

= i
3

∑
k,�=1

ε�mk xk
∂

∂x�
ψ(�r, t) = i

3

∑
k,�=1

εmk� xk
∂

∂x�
ψ(�r, t). (11.4.5)

Hence,

Îm(δφm) = i
3

∑
k,�=1

εmk� xk
∂

∂x�
, m = 1,2,3. (11.4.6)

Recollecting that the quantum mechanical operator for the angular momentum, �̂L, is

given by

�̂L =�̂r× �̂p. (11.4.7)

Or,

L̂m =
3

∑
k,�=1

εmk� xk p̂�, (11.4.8)

we conclude that: (i) the components of the angular momentum operator are also

proportional to the corresponding generators of the group of rotations in three

dimensional space, and the constant of proportionality is given by −h̄, that is,

L̂m = −h̄ Îm, m = 1,2,3, and (ii) the physical quantity, which is conserved due to the

invariance of the Schrödinger equation with respect to the rotation of the system as a
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whole about a given direction in space, is the component of the angular momentum along

that direction.

Comment: Note that Quantum Mechanics does not give a general prescription for
constructing operators corresponding to an arbitrary function of classical variables. In
this context, the above analysis shows that the relevant operators in quantum mechanics
have their origin in the invariance of the classical analogue of the quantum mechanical
system, under the continuous groups of time translations, space translations and rotations
which, in turn represent homogeneity of time, homogeneity of space and the isotropy of
space, respectively. The individual operators are proportional to the corresponding
generators with position operator being proportional to the generator of the group of
translations in the momentum space.

11.5 Symmetry of the Hamiltonian and Degeneracy

We have seen that in many of the problems in two or three spatial dimensions the energy

eigenvalues are degenerate. For instance, all the stationary states of the hydrogen atom,

barring the ground state with n = 1, are degenerate. While talking about degeneracy we

did mention that it was the result of some underlying symmetry of the Hamiltonian. Our

main aim in this section will be to understand the cause of degeneracy of energy states of

quantum systems.

Consider the time-independent Schrödinger equation

Ĥ|φn〉= En|φn〉 (11.5.1)

where Ĥ is the Hamiltonian operator. Let G(R̂g) be the m-dimensional representation of

some symmetry group of the Hamiltonian, where R̂g corresponds to the element g of the

symmetry group. Then, starting with a given eigenfunction |φn〉 of Ĥ with the eigenvalue

En, we can generate m more linearly independent eigenfunctions {|φ 1
n 〉, |φ 2

n 〉, |φ 3
n 〉,

. . . , |φ m
n 〉} of the Hamiltonian by acting on |φn〉 with all the elements of the group G. All

these m + 1 eigenfunctions will correspond to the same energy eigenvalue En. It is

therefore clear that if Ĥ has a group of symmetry of order m, each of the energy states of

the system has the potential to be (m+ 1)-fold degenerate. Thus degeneracy has its origin

in the symmetry properties of the Hamiltonian.

The wave functions corresponding to a degenerate energy state can be used to form an

irreducible representation of the symmetry group G in which they serve as basis functions.

In general, basis functions belonging to different irreducible representations of G must

correspond to different energy eigenvalues. Thus, for each energy eigenvalue En, there is

a corresponding irreducible representation of the symmetry group G with dimension equal

to the degree of degeneracy of En. Evidently, an energy level cannot be degenerate unless

the symmetry group has an irreducible representation of dimension two or more.



Symmetry and Conservation Laws 359

In many cases, it turns out that, for certain values of physical parameters, two or more

eigenfunctions, belonging to different irreducible representations, have the same energy

eigenvalue. This type of degeneracy, which is not a consequence of any symmetry of the

system, is called accidental degeneracy. The degeneracy related to the symmetry properties

of the system is usually called the essential degeneracy.

To clarify the difference between these two types of degeneracy, let us take up an

example2. Consider a two level (states I and II) finite potential well with electrons, in the

absence of any magnetic field. It is obvious that each of these levels is two-fold

degenerate in the sense that each of them can accommodate two electrons, one with spin

’up’ and the other with spin ’down’. This degeneracy of the energy states is an essential
one because the electronic states with spin up and spin down are indistinguishable in the

absence of any external perturbation. If we now switch on an external perturbation in the

form of a magnetic field, B, the degeneracy is removed and each of the energy states I and

II split up into two. The separation between the sub-levels (I1, I2) and (II1, II2) is

proportional to the strength of the magnetic field B. As a consequence, for a particular

value of the magnetic field B, the energies of the sub-levels I2 and II1 will coincide (point

P in the Fig. 11.2). The two-fold degeneracy at the point P is an accidental one because it

does not have its origin in any symmetry property of the original Hamiltonian.

In order to throw some more light on accidental degeneracy, let us take up another

example3. Consider an infinite rectangular well potential with sides a,b, and c (also

referred to as rectangular box). We know that the stationary state wave functions and the

energies are given by

φnxnynz(x,y,z) =

√
1

8abc
sin
(nxπx

a

)
sin
(nyπy

b

)
sin
(nzπz

c

)
, (11.5.2)

Enxnynz =
π2h̄2

2m

(
n2

x

a2
+

n2
y

b2
+

n2
z

c2

)
, (11.5.3)

where nx, ny and nz are nonzero integers.

Unless at least two of the sides a,b, and c have integer values, there is no degeneracy. In

the opposite case, however, there is degeneracy. For example, if a = p and b = q, where p
and q are integers, then

E(5p)(5q)nz = E(7p)qnz (11.5.4)

Obviously, this type of parameter-dependent degeneracy is accidental and not essential.

So far we have talked about continuous symmetries of the Hamiltonian and the

degeneracy related to them. In such symmetries finite transformations can be realized by

2A.W. Joshi, Elements of Group Theory for Physicists, John Wiley and Sons Ltd., p. 177, 1988.
3C. A. Hollingsworth, Accidental Degeneracies of the Particle in a Box, J. Chem. Edu., 67, No. 12, p. 999, 1990.
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successive infinitesimal transformations. There are, however, symmetry operations that

cannot be obtained in this way, for instance, space inversion, lattice translation and time

reversal. They fall into the category of the so-called discrete transformations. In what

follows, we shall discuss the degeneracies related to such discrete symmetries of the

Hamiltonian, if it does exist.

Energy (A.U.)

Magnetic field strength (A.U.)B

I

II

I1

I2

I1

I2

P

II1

II2

II1

II2

Figure 11.2 The schematic illustration of double degeneracy of energy states: The
two-fold degeneracy of the states I and II is essential, while the double
degeneracy of energy states at the point P is accidental.

11.6 Space Inversion Symmetry

We have seen in Chapter 2 that the space inversion transformation consists of reflecting the

coordinate system with respect to the origin

x→−x, y→−y, z→−z. (11.6.1)

This is a discrete operation, i.e. the operation which cannot be composed of infinitesimal

operations. As a consequence, it does not possess any generators. It is accomplished by the

so-called parity operator P̂ which is hermitian as well as unitary and it can have only two



Symmetry and Conservation Laws 361

eigenvalues λ = ±1. There we also discussed about the properties of the eigenfunctions

of the parity operator. Let us, following Sakurai, reformulate the the entire thing in terms

of the eigenkets of the position and momentum operators.

Let us keep the coordinate system fixed and assume the parity operator to act on the

elements of the Hilbert space of states of a quantum system. In other words, given a state

|ψ〉, we introduce a space-inverted state obtained by acting on |ψ〉 with the parity

operator P̂:

|ψ〉 → P̂|ψ〉. (11.6.2)

We require P̂ to be norm preserving. So, it is unitary: P̂† = P̂−1. We also require the

average value of the position operator �̂r to satisfy〈
ψ
∣∣P̂†�̂r P̂

∣∣ψ〉= −〈ψ|�̂r|ψ〉 ∀|ψ〉. (11.6.3)

It then follows from (11.6.3) that

P̂†�̂r P̂ = −�̂r. (11.6.4)

Taking into account that the parity operator is unitary, we conclude that the position

operator anticommutes with the parity operator:

[P̂ ,�̂r]+ = 0. (11.6.5)

We now wish to find the result of action of the parity operator on the eigenvectors of the

position operator. Let |�r ′〉 be the position eigenket:

�̂r|�r ′〉= r ′|�r ′〉. (11.6.6)

Then, we have

�̂r P̂ |�r ′〉= −P̂�̂r |�r ′〉= −r ′ P̂ |�r ′〉. (11.6.7)

It follows from (11.6.7) that P̂ |�r ′〉 is an eigenket of the position operator with eigenvalue

−r ′. Hence, P̂ |�r ′〉 must be proportional to |−�r ′〉:

P̂ |�r ′〉= eiα |�r ′〉, (11.6.8)

where eiα is the phase factor and α a real constant. The phase factor is usually taken to

be unity. We thus have the rule according to which the parity operator acts on the position

eigenket:

P̂ |�r ′〉= |−�r ′〉. (11.6.9)
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Applying the parity operator once more on the position eigenket, we regain the initial state

P̂2 |�r ′〉= P̂ |−�r ′〉= |�r ′〉. (11.6.10)

As a consequence, we have

P̂2 = Î. (11.6.11)

Thus, the parity operator is not only unitary, it is also hermitian

P̂† = P̂−1 = P̂ . (11.6.12)

Since P̂2 = Î, the parity operator can have only two eigenvalues λ = ±1.

Let us now deduce the result of the action of the parity operator on the momentum

eigenkets. For that we require the operation of infinitesimal space translation followed by

space inversion to be equivalent to the operation of space inversion followed by

infinitesimal space translation in the opposite direction. So, if D̂(�dr) stands for the

generator of infinitesimal translation, then our requirement boils down to the following

equality

P̂D̂(�dr) = D̂(−�dr)P̂ . (11.6.13)

We know that the momentum operator in quantum mechanics is proportional to the

generator of spatial translation. Therefore, using the substitution

D̂(�dr) = 1− i
h̄
�̂p, (11.6.14)

in the aforementioned equation, we obtain

P̂

(
1− i

h̄
�̂p
)
=

(
1+

i
h̄
�̂p
)

P̂ . (11.6.15)

It follows from (11.6.15) that the momentum operator anticommutes with the parity

operator

[P̂ ,�̂p]+ = 0. (11.6.16)

Also,

P̂†�̂pP̂ = − �̂p. (11.6.17)

So far as the operator of orbital angular momentum, �̂L = �̂r× �̂p is concerned it should

commute with the parity operator because both, the position and the momentum operators

are odd with respect to inversion. Thus, we have
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[P̂ ,�̂L] = 0, or P̂†�̂LP̂ = �̂L. (11.6.18)

The spin operator, �̂S also transforms as �̂L:

[P̂ ,�̂S] = 0, or P̂†�̂SP̂ = �̂S. (11.6.19)

Wave functions under space inversion: Now we wish to look at the parity property of wave

functions. Consider a spinless particle in the state |ψ〉. Let ψ(�r ′) be the wave function of

particle in the state |ψ〉. We know from Chapter 4 that

ψ(�r ′) = 〈�r ′|ψ〉, (11.6.20)

where we have chosen the basis in the Hilbert space consisting of the eigenkets, {|�r ′〉}, of

the position operator. The wave function of the space-inverted state, represented by the ket

P̂|ψ〉 will be

〈�r ′|P̂|ψ〉= 〈−�r ′|ψ〉= ψ(−�r ′), (11.6.21)

where we have taken into account (11.6.9) and the fact that P̂ is hermitian. Equivalently,

we have

P̂ψ(�r ′) = ψ(−�r ′). (11.6.22)

Suppose that |ψ〉 is a parity eigenstate, i.e.,

P̂|ψ〉= ±|ψ〉. (11.6.23)

Then the space-inverted wave function satisfies

ψ(−�r ′) = 〈�r ′|P̂|ψ〉= ±〈�r ′|ψ〉= ±ψ(�r ′). (11.6.24)

If ψ(−�r ′) = ψ(�r ′), the wave function is said to have even parity, while, if ψ(−�r ′) =
−ψ(�r ′), it is said to have odd parity. Thus the eigenfunctions of the parity operator have

definite parity: they are either symmetric or antisymmetric functions of coordinates.

It is worth mentioning here that not all wave functions have parity properties in the

aforementioned sense, i.e., not all wave functions are eigenfunctions of the parity operator.

For instance, the eigenfunctions of the momentum operator, given by exp [i(�p ·�r)/h̄], is

neither symmetric nor antisymmetric under space inversion.

So far as the wave functions of the angular momentum operator �̂L (given by the

spherical harmonics Y m
� (θ ,ϕ)) are concerned, under space inversion transformation
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r→ r,

θ → (π−θ ), (11.6.25)

ϕ → (ϕ +π),

they transform as

P̂Y m
� (θ ,ϕ) = (−1)�Y m

� (θ ,ϕ). (11.6.26)

Let us now have a look at the parity properties of energy eigenfunctions. Consider the case

when the potential energy operator is invariant under inversion. Then, although �p changes

its sign, the Hamiltonian operator, being quadratic in momentum operator, will be invariant

under inversion. It then follows that the parity operator, being a symmetry operator for the

Hamiltonian, must commute with it

[P̂ , Ĥ] = 0. (11.6.27)

This means that, if ψ(�r) is an eigenfunction of the Hamiltonian with a nondegenerate

eigenvalue E, P̂ψ is also an eigenfunction of the Hamiltonian with the same energy E.

Note that the theorem fails when the non-degeneracy condition for E is not met. For

instance, although the Hamiltonian for a free particle is invariant under space inversion

and commutes with the parity operator, the eigenfunctions of �̂p (which are also the

eigenfunctions of the Hamiltonian) are not the eigenfunctions of the parity operator.

However, since these energy wave functions are two-fold degenerate (with exp [i(�p ·�r)/h̄]
and exp [−i(�p ·�r)/h̄] corresponding to the same energy eigenvalue), it is possible to form

two linear combinations resulting into sin(�p ·�r/h̄) and cos(�p ·�r/h̄), which are

eigenfunctions of the parity operator with eigenvalues −1 and +1, respectively.

In general, if the Hamiltonian is invariant under parity transformation and the solution,

ψ , of the eigenvalue equation for the Hamiltonian is neither symmetric nor anti-symmetric

function of coordinates, one construct the linear combinations

ψs(�r) =
1

2

(
ψ(�r)+ P̂ψ(�r)

)
(11.6.28)

ψa(�r) =
1

2

(
ψ(�r)−P̂ψ(�r)

)
, (11.6.29)

which will be eigenfunctions of the parity operator as well as the eigenfunctions of the

Hamiltonian with the same energy as that of the state ψ .

11.7 Time Reversal Symmetry and Time Reversal Operator

Many physical systems contain an invariance under the reversal of the direction of flow of

time. This is true of classical systems as well as quantum mechanical systems. If for a
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motion picture of a mechanical system it is not possible to decide whether it is shown in

the forward or reverse direction, the system is said to have time-reversal symmetry.

In order to clarify the meaning, for concreteness consider a classical particle in three

spatial dimensions described by a Hamiltonian H(�r,�p), where �r and �p are the position

vector and momentum, respectively. The equations of motion are given by Hamilton’s

equations

d�r
dt

=
∂H
∂�p

,
d�p
dt

= −∂H
∂�r

. (11.7.1)

The classical notion of time-reversal symmetry, as stated above, is directly related to a

symmetry property of the Hamiltonian. Namely, if the Hamiltonian is invariant under the

�p→−�p,then the equations of motion (11.7.1) are invariant under the transformation

(�r,�p, t)→ (�r,−�p,−t). (11.7.2)

What this actually means is that, if the pair (�q(t),�p(t)) describes the trajectory of a

possible motion of the particle in the phase space with the initial conditions (�q0,�p0), then

the pair (�q(−t),−�p(−t)) also does the same but with the initial conditions (�q0,−�p0). For

the configuration space, it will mean that if �q(t) is a solution of the equations of motion,

then�q(−t) is also a solution of the same equations of motion.

To check whether quantum dynamics is invariant under time reversal or not, consider

the time-dependent Schrödinger equation

ih̄
∂ψ(�r, t)

∂ t
= − h̄2

2m
�∇2ψ(�r, t)+V (�r)ψ(�r, t). (11.7.3)

If we replace t by −t, the Schrödinger equation goes into

−ih̄
∂ψ(�r,−t)

∂ t
= − h̄2

2m
�∇2ψ(�r,−t)+V (�r)ψ(�r,−t), (11.7.4)

which does not coincide with the previous equation. That means that Schrödinger equation

is not invariant under time reversal. If, however, we perform complex conjugate on both

sides of (11.7.4), we get

ih̄
∂ψ∗(�r,−t)

∂ t
= − h̄2

2m
�∇2ψ∗(�r,−t)+V (�r)ψ∗(�r,−t). (11.7.5)

Equation (11.7.5) for ψ∗(�r,−t) coincides with the Schrödinger equation (11.7.3) for

ψ(�r, t). Thus, the quantum dynamics is invariant under time reversal transformation

followed by complex conjugation: Θ : (t →−t)×Complex con jugation. This fact tells

us that even if |ψ(�r,−t)〉 is not a solution it is possible to find an anti-linear operator that
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transforms |ψ(�r,−t)〉 into the time-reversed solution |ψR(�r, t)〉 = |ψ∗(�r,−t)〉 of the

Schrödinger equation.

Furthermore, we want that if the system is in a time-reversed state |ψR(�r, t)〉, the probability

of finding it in a state |φR(�r, t)〉 is equal to the probability of finding it, at the time −t, in

the state |φ (�r, t)〉 when the system is known to be the original state |ψ(�r, t)〉. In fact, since

〈φR(�r, t)|ψR(�r, t)〉= 〈φ (�r,−t)|ψ(�r,−t)〉∗,

|〈φR(�r, t)|ψR(�r, t)〉|2 = |〈φ (�r,−t)|ψ(�r,−t)〉|2. (11.7.6)

Keeping all this in mind, let us define the time reversal operator Θ̂ by

|ψR(�r, t)〉= Û |ψ(�r,−t)〉∗ = ÛK̂|ψ(�r,−t)〉= Θ̂|ψ(�r,−t)〉, (11.7.7)

where Û†Û = ÛÛ† = Î and K̂ is the complex conjugation operator. The operator Θ̂ = ÛK̂
is antiunitary, i.e., it is anti-linear and preserves the norm:(〈ψΘ̂†

)(
Θ̂ψ〉)= 〈ψ|ψ〉. (11.7.8)

Note that the effect of the operator K̂ depends on the representation used.This is because,

in a chosen basis for a particular representation, the state vector is represented by its

coefficients. Then, by definition |ψ〉∗ is the vector obtained by taking, in the same basis,

the complex conjugate of these coefficients. Thus, if

|ψ〉= ∑
i
|φi〉〈φi|ψ〉, (11.7.9)

in an orthonormal basis {|φi〉}, then

|ψ〉∗ = ∑
i
|φi〉〈φi|ψ〉∗. (11.7.10)

Also, The operator, Ô∗ complex conjugate to the operator Ô is defined in this basis as

Ô∗ = ∑
i, j
|φi〉〈φi|K̂|φ j〉∗〈φ j|. (11.7.11)

Further, since the operation of complex conjugation carried out twice is equivalent to the

identity operation, K̂2 = Î, and therefore K̂−1 = K̂. As a consequence, we have

Θ̂−1 = K̂Û†. Note that the unitary operator Û depends on the nature of the Hamiltonian

and like K̂ depends on the representation used for the wave function.

Recollecting the effect of time reversal in classical mechanics, we require the

transformation properties of the operators �̂r and �̂p, under time reversal, to be such that
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〈ψ(�r,−t)|�̂r|ψ(�r,−t)〉= 〈ψR(�r, t)|�̂r|ψR(�r, t)〉, (11.7.12)

〈ψ(�r,−t)|�̂p|ψ(�r,−t)〉= −〈ψR(�r, t)|�̂p|ψR(�r, t)〉. (11.7.13)

These in turn require that

Θ̂�̂r Θ̂−1 =�̂r, Θ̂ �̂p Θ̂−1 = −�̂p. (11.7.14)

Let us show that the relations given by (11.7.14) do preserve (11.7.12) and (11.7.13). We

have

〈ψ(�r,−t)|�̂r|ψ(�r,−t)〉= (〈ψ(�r,−t)|Θ̂−1) �̂r (Θ̂|ψ(�r,−t)〉) = 〈ψR(�r, t)|�̂r|ψR(�r, t)〉,
(11.7.15)

〈ψ(�r,−t)|�̂p|ψ(�r,−t)〉= −(〈ψ(�r,−t)|Θ̂−1) �̂p (Θ̂|ψ(�r,−t)〉) = −〈ψR(�p, t)|�̂p|ψR(�r, t)〉.
(11.7.16)

It is easy to check that the fundamental commutation relation [x̂i, p̂ j] = ih̄ δi j remains

invariant under the transformation (11.7.14).

So far as the operator for the orbital angular momentum is concerned, it transforms as

Θ̂�̂L Θ̂−1 = −�̂L, (11.7.17)

and anticommutes with the time reversal operator: [Θ̂,�̂L]+ = 0. Also, this transformation

law preserves the commutation relation for the components of the angular momentum

operator [L̂i, L̂ j] = ih̄ εi jkL̂k.

The spin operator, �̂S, being intrinsic angular momentum, transforms the same way as �̂L
transforms

Θ̂�̂S Θ̂−1 = −�̂S, (11.7.18)

and anticommutes with the time reversal operator: [Θ̂,�̂S]+ = 0. The commutation relation

between the components of the spin operator is also preserved: [Ŝi, Ŝ j] = ih̄ εi jkŜk.

Time-reversal operator for spinless particles: Consider a particle moving in a

time-independent potential V (�r). In the coordinate representation, in view of the fact that

�̂r is real, we have

Θ̂�̂rψ = Û(K̂�̂rK̂−1)K̂ ψ = Û�̂rψ∗. (11.7.19)

Since Θ̂�̂rψ =�̂rΘ̂ψ =�̂rΘ̂ψ∗, we conclude that Û commutes with �̂r.



368 Fundamentals of Quantum Mechanics

Furthermore, in the coordinate representation �̂p = −ih̄�∇ and we have

Θ̂(−ih̄�∇)ψ = ih̄Û�∇ ψ∗ = ih̄ (Û �∇Û−1)Û ψ∗ = ih̄�∇Ûψ∗. (11.7.20)

It then follows that Û commutes with �̂r and �∇ and so it can neither be a function of the

coordinates nor a differential operator of the coordinates. Hence, in the coordinate

representation, Û has to be a multiplicative constant of modulus unity. Since the phase

factor can always be consumed in the wave function, we assume Û to be unity. We thus

see that, in the coordinate representation, the time-reversal operator for spinless particles,

Θ̂, coincides with the complex conjugation operator, K̂, except for a phase factor which

can always be taken to be unity. Thus, in coordinate representation we have

Θ̂ = K̂. (11.7.21)

and

ψR(�r, t) = ψ∗(�r,−t). (11.7.22)

The invariance of the Hamiltonian under time reversal, i.e., under �p→−�p is equivalent to

saying that Ĥ commutes with Θ̂, i.e.,

[Θ̂, Ĥ] = 0. (11.7.23)

Remembering that �̂p = −ih̄�∇, we see that (11.7.23) will hold if Ĥ does not contain any

odd powers of �̂p, i.e., if Ĥ is real.

Time-reversal operator for particles with spin: In order to determine the time-reversal

operator for particles with spin, we start with the transformation properties of angular

momentum operator under time-reversal. Since �̂L and �S both anticommute with the time

reversal operator, the total angular momentum �J will also anti-commute with Θ̂. So, we

have

Θ̂ �̂J Θ̂−1 = −�̂J. (11.7.24)

We have seen that in the standard representation (Sz-representation in which the z-axis

is taken to be the axis of projection), the matrices corresponding to Ŝz and Ŝx are real,

while the matrix corresponding to Ŝy is purely imaginary. Under the action of the complex

conjugation operator, we therefore have

K̂ Ŝx K̂† = Ŝx, K̂ Ŝz K̂† = Ŝz, K̂ Ŝy K̂† = −Ŝy. (11.7.25)
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Now, Θ̂ = ÛK̂ and K̂−1 = K̂ and therefore we can write Û as Û = Θ̂K̂. Using this and the

equations (17.7.14), (11.7.18) and (11.7.21), we arrive at

Û�rÛ† = Θ̂(K̂�r K̂†)Θ̂−1 = Θ̂�r Θ̂−1 =�r, (11.7.26)

Û �pÛ† = Θ̂(K̂�p K̂†)Θ̂−1 = −Θ̂�p Θ̂−1 = �p, (11.7.27)

Û Ŝx Û† = Θ̂(K̂ Ŝx K̂†)Θ̂−1 = Θ̂ Ŝx Θ̂−1 = −Ŝx, (11.7.28)

Û Ŝy Û† = Θ̂(K̂ Ŝy K̂†)Θ̂−1 = −Θ̂ Ŝy Θ̂−1 = Ŝy, (11.7.29)

Û Ŝz Û† = Θ̂(K̂ Ŝz K̂†)Θ̂−1 = Θ̂ Ŝz Θ̂−1 = −Ŝz. (11.7.30)

Since Û commutes with both �̂r and �̂p, Û has an effect only on the spin variables of the

particle. The equations (11.7.28)-(11.7.30) in fact show that Û corresponds to a rotation

through π about the Sy axis in the spin space of the particle. As a consequence, we obtain

Û = exp

(
− i

h̄
π Ŝy

)
, (11.7.31)

which leads to

Θ̂ = exp

(
− i

h̄
π Ŝy

)
K̂. (11.7.32)

For a spin-half particle, Ŝy =
1
2 h̄ σ̂y and we get that Û = −i σ̂y. Therefore, for a spin-half

particle

Θ̂ = −i σ̂y K̂. (11.7.33)

The above result is easily generalized to a system of n particles

Θ̂ = exp

(
− i

h̄
π Ŝ1y

)
exp

(
− i

h̄
π Ŝ2y

)
exp

(
− i

h̄
π Ŝ3y

)
. . .exp

(
− i

h̄
π Ŝny

)
K̂,

(11.7.34)

where �̂Si is the spin operator of the i− th particle and Ŝiy is the y-th component of the spin

operator of the i− th particle. Since Ŝiy acts on the spin variable of the i− th particle alone,

all these operators commute with each other and the order of the factors in (11.7.37) is thus

immaterial.
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11.8 Kramers’ Degeneracy and Kramers’ Theorem

According to Kramers, in the absence of any magnetic field, the energy states of a system

with odd number of electrons is at least doubly degenerate even in the presence of an

external electric field. Since it is a quite general statement of degeneracy, one suspects

that this may be related to some symmetry of the Hamiltonian of the quantum system.

Wigner showed that this underlying symmetry is time-reversal invariance.

In fact, from (11.7.37), we get

Θ̂2 = exp

(
−2

i
h̄

π Ŝ1y

)
exp

(
−2

i
h̄

π Ŝ2y

)
exp

(
−2

i
h̄

π Ŝ3y

)
. . .exp

(
−2

i
h̄

π Ŝny

)
,

(11.8.1)

where we have taken into account that K̂2 = Î. Each factor on the right-hand side of

(11.8.1) denotes a rotation through 2π about the Sy-axis in the spin space. The ith factor

will be equal to +1 or −1 depending on whether the spin of the ith particle is an integral

multiple or a half-odd-integral multiple of h̄. It then follows that Θ̂2 = ±1, where +1

corresponds to the case when the number of particles with half-odd-integral spin is even

and −1 corresponds to the case when it is odd.

Now, if ψ is is an eigenfunction of the system, whose Hamiltonian is invariant under

time-reversal operation,, then Θ̂ψ is also an eigenfunction of the system. If ψ is a non-

degenerate eigenfunction, Θ̂ψ must be proportional to ψ . Let Θ̂ψ = α ψ , where α is a

complex constant. Operating once again by Θ̂, we have

Θ̂2ψ = Θ̂(α ψ) = α∗ Θ̂ ψ = α∗α ψ = |α|2 ψ . (11.8.2)

Thus, if Θ̂2 = +1, then |α|2 = 1 and α is just a phase factor. But if Θ̂2 = −1, there is no

number α for which |α|2 = −1, so that the eigenfunction Θ̂ψ and ψ must be linearly

independent. Since both ψ and Θ̂ψ correspond to the same energy eigenvalue, the energy

states of the system is at least two-fold degenerate. This is known as Kramers’
degeneracy. Further, since Θ̂2 ψ = −ψ is a multiple of the original wave function ψ , the

degeneracy must be even-fold. We thus arrive at the following theorem4:

Kramers’ Theorem: Every energy level of a system with an odd number of electrons in
the presence of any electric field but no magnetic field is even-fold degenerate.

There is another theorem closely related to Kramer’s theorem which states that the
expectation value of the magnetic moment is zero in any non-degenerate state. It has

important consequences in the theory of paramagnetic susceptibilities5. Before we end

this section, let us note that Kramers’ degeneracy is removed by applying an external

4H.A. Kramers, Proc. Amsterdam Acad., v 33, p. 959, 1930.
5Martin J. Klein, Am. J. Phys., vol. 20, p. 65, 1952.
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magnetic field because the latter introduces additional terms in the Hamiltonian which are

not invariant under time-reversal.

Homework Problems

1. Which components or combinations of components of the linear momentum �p and the

angular momentum�L are conserved when a particle is moving in the external potential

field of a homogeneous cone?

2. Which components or combinations of components of the linear momentum �p and the

angular momentum�L are conserved when a particle is moving in the external potential

field of an infinite homogeneous helix?

3. Show that the Runge–Lenz vector

�M =
1

2μ

(
�p×�L−�L×�p

)
− Ze2

4πε0

�r
r

, (11.8.3)

is conserved for a charged particle moving in a Coulombic potential

4. Which components or combinations of components of the linear momentum �p and the

angular momentum�L are conserved when a particle is moving in the external potential

field of an infinite homogeneous prism?

5. Derive the quantum mechanical operator that generates translational symmetry for a

charged particle moving in external homogeneous electric and magnetic fields.



Chapter 12

Relativistic Generalization

According to Einstein’s special principle of relativity, the laws of physics must be

formulated in a form which is Lorentz invariant, that is, the description should not allow

one to differentiate between frames of reference that are moving relative to each other

with a constant velocity �V . Therefore, the equations governing the physical laws of the

micro-world must also be formulated in the so-called Lorentz invariant/covariant form. In

view of this requirement, we shall discuss the relativistic generalization of quantum

mechanics. We shall, however, confine ourselves to the discussions of the Klein–Gordon

and Dirac equations, which happen to be the starting point of quantum field theory or any

other related advanced physical theories. We start with the revision of the basic principles

and consequences of the special theory of relativity. We then proceed to derive the

aforementioned relativistic equations, find their plane wave solutions and discuss the

properties of the latter.

12.1 Lorentz Transformations

Einstein’s special theory of relativity (STR) is the generalization of Galilean invariance of

Newtonian mechanics to include electromagnetism in its framework. It was based on the

basic properties of space and time, namely, homogeneity of space and time, the isotropy of

space and the constancy of the speed of light, c, in vacuum in all inertial frames. The result

yielded the so-called Lorentz transformations that relate the space and time coordinates,

(x,y,z, t) of a point in an inertial frame K with the coordinates, (x′,y′,z′, t ′), of the same

point in the frame K′, which is in rectilinear motion with respect to the frame K along the

x direction at a constant speed V . It is assumed, for convenience that the origins O and O′
of the two systems coincide at t = t ′ = 0 and that the respective coordinate axes of the two

inertial frames are parallel. Such an arrangement of the two inertial frames of interest is

known as the standard configuration, which is shown in Figure 12.1.

372
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y
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y ′
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o ′

K ′

x ′

V

Figure 12.1 The standard configuration of two inertial frames with K′ in rectilinear
motion with respect to the frame K along the positive x direction at a
constant speed V .

The resulting Lorentz transformations are

x′ =
x−Vt√
1− V 2

c2

, (12.1.1)

y′ = y, (12.1.2)

z′ = z, (12.1.3)

t ′ =
t− (V /c2)x√

1− V 2

c2

. (12.1.4)

It is worth mentioning here that, while using the aforementioned Lorentz transformations,

one should make sure that the layout of the inertial frames is consistent with the standard

configuration. The factor

γ =
1√

1− V 2

c2

≡ 1√
1−β 2

, (12.1.5)

with β = V /c, known as the Lorentz factor (or, relativistic factor), is a measure of the

importance of the relativistic effect: larger the value of γ , greater is the necessity for
taking into account the relativistic effect.

We know from the mathematical theory of special relativity that the Lorentz covariant

form of the equations of physics can be obtained if we could write them in tensorial form.
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This follows from the fact that under any coordinate transformation, tensors transform in

a manner that is linear and homogeneous; hence, they guarantee the form invariance of

the equations of physics. Owing to this, in what follows, we shall give a geometrical

structure to the 4-dimensional Minkowski spacetime of special relativity that will help us

in generalizing the Schrödinger equation to the realm of relativity.

Geometry of spacetime in special relativity

We write the components of the contravariant spacetime 4-vector, x, as

x = (xμ) = (x0,x1,x2,x3), where

x0 = ct, x1 = x, x2 = y, x3 = z. (12.1.6)

Note that using x0 = ct instead of x0 = t means measuring time in the units of length. For

instance, x0 = 1 m means the time taken by light in traversing a distance of 1 m in vacuum.

The Lorentz transformations can now be written as

x ′0 = γ(x0−βx1), (12.1.7)

x ′1 = γ(x1−βx0), (12.1.8)

x ′2 = x2, (12.1.9)

x ′3 = x3, (12.1.10)

Since tensors are usually represented in the matrix form, let us rewrite the aforementioned

set of equations in the matrix form as

x ′ = Λ x, (12.1.11)

where

x =

⎛
⎜⎜⎜⎝

x0

x1

x2

x3

⎞
⎟⎟⎟⎠ , x′ =

⎛
⎜⎜⎜⎝

x ′0

x ′1

x ′2

x ′3

⎞
⎟⎟⎟⎠ , (12.1.12)

are the column matrices representing the spacetime 4-vectors in the unprimed and the

primed systems of coordinates, respectively, and the Lorentz matrix Λ is given by

Λ =

⎛
⎜⎜⎜⎝

γ −βγ 0 0

−βγ γ 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎠ . (12.1.13)
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In the component form, the transformation equations are written as

x ′μ =
3

∑
ν=0

Λμ
νxν . (12.1.14)

Note that in the matrix element Λμ
ν , μ enumerates the rows, while ν represents the number

of columns.

Four vectors: An arbitrary four vector aμ is defined as a set of four components

(a0,a1,a2,a3), which, under Lorentz transformation, transforms in the same way as the

spacetime 4-vector x:

a ′0 = γ(a0−βa1), (12.1.15)

a ′1 = γ(a1−βa0), (12.1.16)

a ′2 = a2, (12.1.17)

a ′3 = a3. (12.1.18)

Scalar product of 4-vectors: Clearly, the scalar product of any two 4-vectors, say,

a = (a0,a1,a2,a3) and b = (b0,b1,b2,b3), has to be defined in such a manner that it

remains invariant under Lorentz transformations. Accordingly, it is defined as

a ·b = a0b0−a1b1−a2b2−a3b3. (12.1.19)

It is easy to check that it is indeed invariant under Lorentz transformations:

a ′0 ·b ′0 = γ2(a0−βa1)(b0−βb1)− γ2(a1−βa0)(b1−βb0)−a2b2−a3b3

= γ2[(1−β 2)a0b0 +(1−β 2)a1b1]−a2b2−a3b3

= a0b0−a1b1−a2b2−a3b3 = a ·b. (12.1.20)

In order to keep track of the minus sign in the scalar product, we introduce another type of

4-vector with lower indices:

aμ = (a0,a1,a2,a3) = (a0,−a1,−a2,−a3). (12.1.21)

The 4-vector with upper indices is called a contravariant vector, whereas the one with the

lower indices is called a covariant vector. The scalar product can now be written as

a ·b =
3

∑
μ=0

aμbμ =
3

∑
μ=0

aμbμ . (12.1.22)
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In literature, it has been agreed that the scalar product in (12.1.22) is to be written as

a ·b = aμbμ = aμbμ , (12.1.23)

in which one adheres to Einstein’s summation convention. According to this convention,

if an index is repeated, once as a covariant index and once as a contravariant index, it is

summed over from 0 to 3.

As evident, raising and lowering of the indices costs a minus sign for the spatial parts,

while it costs nothing for the temporal part. It is usually done by introducing the so-called

metric tensor gμν or gμν ,

gμν = gμν =

⎛
⎜⎜⎜⎝

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

⎞
⎟⎟⎟⎠ , (12.1.24)

which is a tensor of rank 2.

It is easy to check that

aμ =
3

∑
ν=0

gμνaν and aμ =
3

∑
ν=0

gμνaν . (12.1.25)

Note that, using the metric tensor, the scalar product in (12.1.19) can be re-written as

a ·b = gμνaμbν = gμνaμbν . (12.1.26)

Interval: The most important contribution of Einstein’s special theory of relativity to

physics is the unification of space and time into one entity called the spacetime. Because

of this, the concept of distance between physical events taking place at two spatially

separated points in usual Newtonian physics had to be changed accordingly. In special

relativity, distance is replaced by the concept called interval. It is constructed as follows.

Suppose two events, 1 and 2, take place at spacetime points xμ
1 and xμ

2 = xμ
1 + dxμ ,

respectively. Then dx with components dxμ , μ = 0,1,2,3, is the displacement 4-vector

between these two points, where dxμ = xμ
2 − xμ

1 . The scalar product of this displacement

vector with itself is given by

dx ·dx = gμν dxμ dxν = (dx0)2− (dx1)2− (dx2)2− (dx3)2. (12.1.27)

Or, in terms of the time difference dt between the events and the spatial separation |d�r|,

dx ·dx = c2dt2−dx2−dy2−dz2 = c2dt2− (d�r)2. (12.1.28)
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The interval between the given two events is defined as

ds =
√

dxμdxμ = c dt

√
1−�u2

c2
, (12.1.29)

where �u = d�r/dt is the usual three-dimensional velocity of the particle. Note that in spite

of the fact that time as well as spatial coordinates change when we go over from one inertial

frame to the other, the interval between two events does not change, that is, ds is invariant

under Lorentz transformations.

Proper and improper Lorentz transformations: Invariance of the interval under Lorentz

transformations yields

Λμ
α gμν Λν

β = gαβ . (12.1.30)

Further, we can write (12.1.30) in matrix form as

ΛT g Λ = g. (12.1.31)

Taking the determinant on both sides of (12.1.31), we get

(detΛ) (detΛT ) = (detΛ)2 = 1, (12.1.32)

from where it follows that

detΛ = ±1. (12.1.33)

Transformations for which detΛ = +1 are called proper Lorentz transformations. They

include boost with a constant velocity along a given direction, three-dimensional rotations

and three-dimensional translations. They are continuous transformations in the sense that

the parameters of transformations take on continuous values. As a consequence, any finite

proper Lorentz transformation can be obtained from the identity transformation by

successively applying infinitesimal transformations.

Transformations for which det(Λ) = −1 are called improper Lorentz transformations.

They are discrete transformations and contain spatial and temporal reflections. Since the

parameters of improper Lorentz transformations take discrete values, no improper Lorentz

transformation can be obtained from the identity transformation by successive infinitesimal

transformations.

Elements of relativistic mechanics: We now want to present the basic concepts and

important formulae of relativistic mechanics of particles, which will be very useful for

making the transition to relativistic quantum mechanics.

Proper time: For the generalization of Newtonian mechanics to the realm of relativity, it

is advantageous to introduce a time interval that will be invariant under Lorentz
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transformation. Since the interval ds and the speed of light c are invariant quantities, we

define the proper time interval, dτ , as

dτ =
ds
c
= dt

√(
1− d�r

c2dt

)
= dt

√(
1−�u2

c2

)
. (12.1.34)

τ is called the proper time. It is the time measured by the clocks moving with the particle,

that is, by the clock that is at rest with respect to the particle. Using this proper time

interval, one defines a velocity 4-vector U μ

U μ =
dxμ

dτ
(12.1.35)

with components

U0 =
dx0

dτ
=

c√(
1−�u2

c2

) , U1 =
dx1

dτ
=

ux√(
1−�u2

c2

) ,

U2 =
dx2

dτ
=

uy√(
1−�u2

c2

) , U3 =
dx3

dτ
=

uz√(
1−�u2

c2

) . (12.1.36)

Note that

UμU μ =U0U0 + �U2 =
c2(

1−�u2

c2

) − �u2(
1−�u2

c2

) = c2. (12.1.37)

The spatial part, �U , of U μ is called the proper velocity. Since the U μ transforms like a

4-vector under Lorentz transformations, it is advantageous to work with U μ while dealing

with mechanical problems.

Now we are in a position to define the momentum of a particle in relativistic mechanics.

The 4-vector of momentum of a particle is defined as

pμ = m0 U μ =

(
m0c√

(1−�u2/c2)
,

m0�u√
(1−�u2/c2)

)
, (12.1.38)

where m0 is a numerical quantity, which characterizes the inertial properties of the particle

and is called the rest mass. Later, we shall see why it is called the rest mass.
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Having defined the 4-vector of velocity, we now define the 4-vector of acceleration as

aμ =
dU μ

dτ
=

d2xμ

dτ2
. (12.1.39)

Newton’s equations of motion can now be written as

m0
dU μ

dτ
= m0

d2xμ

dτ
= Fμ , (12.1.40)

where Fμ is the 4-dimensional generalization of force whose spatial components are the

components of the three-dimensional force �F , which appears in Newton’s equations of

motion. This form of Newton’s equation is relativistically covariant in the sense that both

sides of the equation transform, under Lorentz transformations, as 4-vectors. What is left

now is to determine the physical meaning of various components of this equation and relate

them to their non-relativistic counterparts.

Since UμU μ = c2, differentiating this expression with respect to τ , we obtain

d(UμU μ)

dτ
=Uμ

dU μ

dτ
= 0. (12.1.41)

Multiplying Newton’s equations of motion, (12.1.40), with Uμ and summing over μ , we

arrive at

UμFμ =U0F0−�U ·�F = 0. (12.1.42)

Or,

F0 =
�U ·�F
U0

(12.1.43)

If we now go back to (12.1.40) and consider its zeroth component, we get

m0
dU0

dτ
= F0 =

�U ·�F
U0

(12.1.44)

Using (12.1.35) and the expression for U0, we arrive at

d
(

m0c2/
√
(1−�u2/c2)

)
dt

=�u ·�F
√
(1−�u2/c2). (12.1.45)

In order to see whether we can assign any physical meaning to this equation, let us

introduce

�f =
√
(1−�u2/c2)�F , (12.1.46)
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m =
m0√

(1−�u2/c2)
, (12.1.47)

where �f is the relativistic generalization of the three-dimensional force and the velocity

dependent quantity, m, is called relativistic mass. It is easy to check that in the

non-relativistic limit u� c (u ≈ 0), m goes into m0 and that is why m0 is called the rest

mass.

We now see that the right hand-side of (12.1.45) represents the rate of work done on

the particle by the force acting on it. Therefore, invoking the work–energy theorem of

classical mechanics, we conclude that the quantity E = mc2 under the differential sign in

the numerator on the left hand-side of (12.1.45), must be the total energy of the particle.

The fact that this is actually so is confirmed by the non-relativistic limit, u � c, of the

quantities mc2:

mc2 = m0c2

(
1+

�u2

2c2
+ ...

)
≈ m0c2 +

1

2
m0�u2 (12.1.48)

Since the second term on the right-hand side in (12.1.48) is the non-relativistic expression

for the kinetic energy of the particle and the first term, m0c2, has dimensions of energy;

m0c2is called the rest energy of the particle. Thus, the total energy of the particle is equal

to the sum of its rest energy and the kinetic energy.

The spatial part of (12.1.40) reads:

d
(

m0�u/
√
(1−�u2/c2)

)
dt

= �F
√
(1−�u2/c2). (12.1.49)

Since

�F

√
1−�u2

c2
= �f , (12.1.50)

we arrive at the following relativistic form of Newton’s second law

d(m�u)
dt

= �f , (12.1.51)

which goes into d(m0�u)/dt = �F in the non-relativistic limit.

Thus we see that the zeroth component of (12.1.40) represents the work–energy

theorem in relativistic form and establishes the equivalence of energy and mass through

the famous Einstein’s formula E = mc2, where m is the relativistic mass. On the other

hand, the spatial part of (12.1.40) gives the relativistic generalization of Newton’s

equations of motion.
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Relativistic relation between energy and momentum: We have

pμ pμ = (p0)2− (�p)2 =
m2

0c2

(1−�u2/c2)
− m2

0�u
2

(1−�u2/c2)
=

c2−�u2

c2−�u2
m2

0c2 = m2
0c2. (12.1.52)

On the other hand,

pμ pμ =
E2

c2
− (�p)2. (12.1.53)

E2− p2c2 = m2
0c4. (12.1.54)

This formula allows one to calculate E when �p is known and vice versa, without ever

having to determine the velocity.

12.2 Klein–Gordon Equation

The Klein–Gordon equation was the first relativistic (Lorentz covariant) quantum

mechanical model. It serves as an excellent pedagogical tool for the introduction of basic

concepts related to relativistic generalization of quantum mechanics. As we shall see later

in this Chapter, the analysis of this equation in the general framework of quantum

mechanics led to the contradiction with the probabilistic interpretation of the wave

function. This fact forced researchers to look for other possible relativistic generalizations

of the Schrödinger equation and ultimately led to the discovery of the Dirac equation.

The Hamiltonian of a free particle in nonrelativistic mechanics is given by

H =
�p2

2m0
, (12.2.1)

where m0 is the nonrelativistic mass (rest mass) of the particle and �p is the 3-momentum

of the particle. The usual Schrödinger equation for a single-particle, with no force acting

on it, is obtained from the correspondence principle by replacing the energy of the particle,

E, and its momentum, �p, by their respective operators in the equation

E = H =
�p2

2m0
. (12.2.2)

Recollecting that

E → ih̄
∂
∂ t

, �p → −ih̄�∇, (12.2.3)
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where �∇ is the gradient operator, we obtain the required Schrödinger equation for the free

particle as

ih̄
∂ψ
∂ t

= − h̄2

2m0

�∇2ψ , (12.2.4)

where ψ(�r, t) is its wave function. One can argue in the same heuristic way for a particle

of mass m0 moving in an external field described by the potential V (�r). In this case the

Hamiltonian equals the total energy of the particle

E = H =
�p2

2m0
+V (�r), (12.2.5)

and the resulting Schrödinger equation is

ih̄
∂ψ
∂ t

=

(
− h̄2

2m0

�∇2 +V (�r)
)

ψ . (12.2.6)

We have used the correspondence �̂r =�r and the fact that V̂ (�̂r) = V (�r).
If we use the relativistic relation between energy and momentum of a particle of rest

mass m0, given by (12.1.54), we obtain the following second order partial differential

equation for the wave function ψ(�r, t):

1

c2

∂ 2ψ
∂ t2

−�∇2ψ +
m2

0c2

h̄2
ψ = 0. (12.2.7)

It was derived by Schrödinger in 1926. It was also independently proposed by Gordon in

1926 and Klein in 1927. However, in literature, it is known as the Klein–Gordon (KG)

equation.

The standard probabilistic interpretation of the wave function is also assumed to be

valid for the Klein–Gordon equation. Keeping this in mind, let us derive the continuity

equation for the probability density, ρ , and the probability current density, �j, analogous to

the case of the non-relativistic Schrödinger equation.

The KG equation for the complex conjugate wave function ψ∗(�r, t) will read:

1

c2

∂ 2ψ∗

∂ t2
−�∇2ψ∗+

m2
0c2

h̄2
ψ∗ = 0. (12.2.8)

If we multiply (12.2.7) by ψ∗ from the left, we get

1

c2
ψ∗

∂ 2ψ
∂ t2

−ψ∗�∇2ψ +
m2

0c2

h̄2
ψ∗ψ = 0. (12.2.9)
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Similarly, by multiplying (12.2.8) by ψ from the right, we obtain

1

c2

∂ 2ψ∗

∂ t2
ψ−�∇2ψ∗ψ +

m2
0c2

h̄2
ψ ψ∗ = 0. (12.2.10)

Subtracting (12.2.9) from (12.2.10), we get:

− 1

c2

∂
∂ t

(
ψ∗

∂ψ
∂ t
−ψ

∂ψ∗

∂ t

)
+ �∇ ·

(
ψ∗�∇ψ−�∇ψ∗ψ

)
= 0. (12.2.11)

Note that, if we decide to have the expression for the current density, �j, the same as in the

case of the nonrelativistic Schrödinger equation, then we shall have to multiply (12.2.11)

throughout by h̄
2m0i so that we obtain

∂ρ
∂ t

+�∇ ·�j = 0, (12.2.12)

with

ρ(�r, t) =
ih̄

2m0c2

(
ψ∗

∂ψ
∂ t
− ∂ψ∗

∂ t
ψ
)
=

ih̄
2m0c

(
ψ∗

∂ψ
∂x0

− ∂ψ∗

∂x0
ψ
)

(12.2.13)

and

�j(�r, t) =
h̄

2 m0 i

(
ψ∗�∇ ψ−�∇ψ∗ψ

)
. (12.2.14)

Note that in the non-relativistic limit, when we put ih̄∂tψ = Eψ (E being the total energy of

the particle) and take into account that E ≈mc2, ρ reduces to its non-relativistic expression:

ρ = |ψ|2.

Since the wave function in the Klein–Gordon equation has only one component, it

transforms like a scalar under Lorentz transformations:

ψ(x) = ψ(x ′), (12.2.15)

where x = (x0,�r) and x ′ =
(
x ′0,�r ′

)
represent the spacetime coordinates of a point in the

inertial frames K and K′, respectively. Therefore, the particles described by ψ(x) cannot

have any other degrees of freedom except translations in spacetime. Also, since ψ
transforms like a scalar under Lorentz transformation, it follows from the group theoretic

analysis1 that it must describe a particle with zero spin.

The Klein–Gordon equation can be written in the relativistically covariant form as(
�+

m2
0c2

h̄2

)
ψ(x) = 0, (12.2.16)

1M. Tinkham, Group Theory and Quantum Mechanics, New York: McGraw-Hill Book, 1964.
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where,

�= ∂μ∂ μ =
1

c2

∂ 2

∂ t2
−�∇2, (12.2.17)

is the D’Alembertian operator and the summation from 0 to 3 over the repeated index is

implied. Note that, in (12.2.17), we have ∂μ = ∂ /∂xμ ,∂ μ = gμν∂ν .

If we introduce current density 4-vector jμ = (cρ ,�j), where c is the speed of light in

vacuum, the continuity equation takes the following Lorentz invariant form

∂μ jμ = 0. (12.2.18)

12.3 Properties and Physical Interpretation

I. We have seen above that, similar to the one for the nonrelativistic Schrödinger

equation, it is possible to derive the continuity equation for the Klein–Gordon

equation. However, there is a problem here with ρ . Since, Klein–Gordon equation is

second-order in time derivative, irrespective of the choice of the probability current

density, ρ has to contain the first-order time derivative of the wave function. On the

other hand, the solution of KG equation requires ψ and ∂tψ to be prescribed at some

initial moment t = t0. These initial conditions, however, can be prescribed arbitrarily

and depend on space coordinates�r. Hence, as ψ evolves in time according to the KG

equation, ρ can assume positive as well as negative values. Therefore, due to the fact

that the probability density must always be positive definite, ρ for the KG equation,

cannot be interpreted as probability density. Because of this difficulty related to the

probabilistic interpretation, Klein–Gordon equation was abandoned for many years

before Pauli and Weisskopf2 interpreted KG equation as a classical field equation and

formulated its quantized theory. In this formulation, ρ and �j are interpreted as charge

and current densities, respectively, of the particles of the field.

II. Plane wave solutions of the Klein–Gordon equation: It can be directly verified by

substitution that the Klein–Gordon equation admits plane wave solutions of the form

ψ(�r, t) = A0 e−
i
h̄ pμ xμ

= A0 e−
i
h̄ (p0x0−�p·�r), (12.3.1)

provided

p0 =
E
c
= ±

√
�p 2 +m2

0 c2. (12.3.2)

Here, in these equations, A0 is an arbitrary constant and pμ =
(E

c ,�p
)

is the 4-momentum

of the particle. Note that either sign on the right-hand side of (12.3.2) gives a solution. It

2W. Pauli and V. Weisskopf, Helv. Phys. Acta, Vol. 7, p. 709, 1934.
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means that Klein–Gordon equation allows for solutions with both positive and negative

energies. This is a characteristic property of relativistic quantum mechanics.

The occurrence of negative energy solutions should not present any problem for free

particles. If initially the particle is in a positive energy state with energy,

E = c
√
�p 2 +m2

0 c2, then it will always remain in that state due to the absence of any

interaction. In such a state, the probability density is given by

ρ =
E

mc2
|ψ|2, (12.3.3)

and is clearly positive definite, ρ ≥ 0, and remains so for all times by virtue of the

equations of motion.

In the presence of interaction with external fields, a particle, initially in the positive

energy state may make transitions to the negative energy states with

E =−c
√
�p 2 +m2

0 c2. According to the quantized theory of Pauli and Weisskopf, such

states should be interpreted as particles of negative charge (if positive E corresponds

to positive charge) but of positive energy. Transition from a state of positive to one of

negative E is interpreted as the production (or annihilation) of a pair of particles of

opposite charge.

12.4 Electrically Charged Spin Zero Particle and Interaction with the
Electromagnetic Field

The basic description of a charged spin zero particle is carried out in exactly the same

manner except that the Hamiltonian is modified by the so-called minimal coupling

formalism with the following gauge invariant replacements for the momentum �p and the

total energy E of the particle in SI units (see Chapter 7):

�p→ �p− e�A, (12.4.1)

E → E− eΦ, (12.4.2)

where Φ(�r, t) and �A(�r, t) are the scalar and the vector potentials of the electromagnetic

field, respectively. The particle has been assumed to be negatively charged with charge e.

The Klein–Gordon equation is now modified to(
ih̄

∂
∂ t
− e Φ

)2

ψ = c2
(
−ih̄�∇− e�A

)2
ψ +m2

0 c4ψ (12.4.3)

Using (12.4.3) and the same procedure as before, it can be shown that the continuity

equation still holds in the presence of the electromagnetic field with

ρ(�r, t) =
ih̄

2mc2

(
ψ∗

∂ψ
∂ t
− ∂ψ∗

∂ t
ψ
)
− eΦ

mc2
ψ∗ψ , (12.4.4)
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and

�j(�r, t) =
h̄

2 i m

(
ψ∗�∇ ψ−�∇ψ∗ψ

)
− e

i m
�A(ψ∗ψ). (12.4.5)

The interpretation of the solutions of the Klein–Gordon equation in the presence of an

external electromagnetic field is no longer simple. For instance, consider the scattering of

a spin zero particle by an external potential that is non-zero for a small time interval ΔT .

Clearly, since we are dealing with a real incident particle, the wave function of the

incident particle is a superposition of the positive energy solutions of the Klein–Gordon

equation. Now, after time ΔT has elapsed, it is possible for the wave function of the

scattered particle to have negative energy components due to interaction with the external

potential. This means that after scattering, the probability of finding the particle in the

negative energy state becomes non-zero to which, a priori, it is not possible to give any

physical explanation3.

It is natural to ask: What will happen, if the external potential is time independent? In

this case, the variables will separate to allow for the stationary state solutions of the form

ψ(t,�r) = φ (�r) e−
i
h̄ E t , (12.4.6)

to exist. For such solutions, the probability density takes the form

ρ =
E− eΦ

mc2
|φ |2. (12.4.7)

For instance, as we know, in the case of Coulomb potential when

eΦ(�r) = − Ze2

4πε0 r
, (12.4.8)

the Klein–Gordon equation allows for positive as well as negative energy solutions to

exist4. Although, in the given case, a particle initially in the positive energy case will

remain in that for all times to come, the difficulty arises because of the fact that the

probability density (12.4.7) becomes negative for sufficiently small r for which the motion

is essentially relativistic and the one-particle interpretation breaks down. In spite of the

fact that it is not possible to give an acceptable physical interpretation of the solutions of

the Klein–Gordon equation in the presence of an external field, its solutions are physically

relevant in the field theoretic interpretation as shown by Pauli and Weisskopf.

12.5 The Dirac Equation

Dirac started with an aim to derive a relativistically covariant equation free from the

problem of negative probability encountered by the Klein–Gordon equation. The reason

3Silvan S. Schweber, An Introduction to Relativistic Quantum Field Theory, Row, Peterson and Company, New York, 1961.
4L.I. Schiff, Quantum Mechanics, McGraw-Hill, 1949.
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behind this negative probability density was the appearance of the first order time

derivative in the expression for ρ . This was, in turn, related to the fact that the

Klein–Gordon equation contained second order time derivatives. Therefore, Dirac’s main

idea was to avoid the second order time derivative in the differential equation describing a

relativistic particle. But then, since in the theory of relativity x, y, z and ct are treated

symmetrically, the wave function ψ in the required equation must satisfy a first order

differential equation in all four coordinates. Furthermore, the equation must be linear so

that the superposition principle of quantum mechanics holds. Apart from that, the

correspondence principle also requires that the Klein–Gordon equation be satisfied so that

in the limit of large quantum numbers, classical relativity holds and we have the correct

relativistic relation between energy and momentum: E2 = c2�p2 +m2
0c4.

In general, the first order differential equation (with appropriate dimensional factors)

for an N-component wave function

ψ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ1

ψ2

ψ3

.

.

.

ψN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (12.5.1)

of a free particle, where N is yet unspecified, can be written as5

1

c
∂ψ
∂ t

+
3

∑
j=1

α j ∂ψ
∂x j +

i m c
h̄

β ψ = 0, (12.5.2)

where αi, i = 1,2,3 and β are dimensionless square matrices of order N. Note that

homogeneity of spacetime for a free particle requires αi, i = 1,2,3 and β to be

independent of the spacetime coordinates x0,x1,x2,x3. For convenience, introducing the

vector matrix

�α = α1 î+α2 ĵ+α3 k̂, (12.5.3)

where î, ĵ and k̂ are the unit vectors along the coordinate axes, x, y and z, respectively, we

rewrite (12.5.2) as

1

c
∂ψ
∂ t

+�α · (�∇ ψ)+
i m c

h̄
β ψ = 0. (12.5.4)

5For convenience in writing the equations, we have dropped the subscript 0 from the symbol m0 for the rest mass of the

particle.
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As in the case of the Klein–Gordon equation, we wish to find an expression for the

probability density ρ and the probability current density �j that satisfy the continuity

equation (12.2.12). We, therefore define, analogous to the Klein–Gordon equation,

ρ = cψ†ψ , (12.5.5)

where ψ† is the matrix hermitian conjugate to ψ . Thus, ψ† is a row matrix, with one row

and N columns, whose elements are complex conjugate of the corresponding components

of ψ:

ψ† =
(

ψ∗1 ψ∗2 ψ∗3 . . . ψ∗N
)

, (12.5.6)

where asterisk stands for complex conjugation. Taking the hermitian conjugate of (12.5.4),

we get the equation satisfied by ψ†:

1

c
∂ψ†

∂ t
+(�∇ ψ†) ·�α†− i m c

h̄
ψ† β † = 0, (12.5.7)

where we have used the well-known formula (AB)† = B†A† for any two matrices A and B.

Multiplying (12.5.4) on the left by ψ†, (12.5.7) on the right by ψ and adding, we obtain

1

c

(
ψ† ∂ψ

∂ t
+

∂ψ†

∂ t
ψ
)
+ψ†�α · (�∇ψ)+ (�∇ψ†) ·�α†ψ +

imc
h̄

ψ†(β −β †)ψ = 0,

(12.5.8)

If

�α = �α†, β = β †, (12.5.9)

then (12.5.8) takes the form of the continuity equation with the probability density, ρ ,

defined by (12.5.5) and the probability current, �j, given by

�j = c ψ†�α ψ . (12.5.10)

Note that the matrices αk, k = 1,2,3 and β must be hermitian; this follows from the fact

that the (12.5.4) can be written as

ih̄
∂ψ
∂ t

= ĤD ψ , (12.5.11)

where the Dirac Hamiltonian ĤD is given by

ĤD =
(
−ih̄ c�α ·�∇+m c2 β

)
=
(

c�α · (�̂p)+m c2 β
)

. (12.5.12)
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Thus, for the Hamiltonian to be hermitian, the matrices �α = {αk},k = 1,2,3 and β have

to be hermitian.

It is quite obvious that we need to know more properties of the �α and β matrices. They

follow by imposing the condition that ψ must also satisfy the Klein–Gordon equation.

Let us act on the equation (12.5.2) with the operator

1

c
∂
∂ t
−

3

∑
k=1

αk ∂
∂xk −

i m c
h̄

β . (12.5.13)

It is easy to check that the result is

1

c2

∂ 2ψ
∂ t2

=
1

2

3

∑
j=1

3

∑
k=1

(
α jαk +αkα j

) ∂ 2ψ
∂x j∂xk −

m2c2

h̄2
β 2 ψ

+
imc
h̄

3

∑
k=1

(
αk β +β αk

)
ψ = 0. (12.5.14)

In deriving this result, we have used the fact that ∂ /∂x j and ∂ /∂xk commute and hence,

we can symmetrize the product (α j ∂ /∂x j) (αk ∂ /∂xk). Now, for (12.5.14) to coincide

with the Klein–Gordon equation,

1

c2

∂ 2ψ
∂ t2

−�∇2 ψ +
m2c2

h̄2
ψ = 0, (12.5.15)

the following relations must hold good:

α jαk +αkα j = 2δ jk = 2

{
0 if, j �= k
1 if, j = k , (12.5.16)

αk β +β αk = 0 (12.5.17)

β 2 = I, (12.5.18)

where I is the unit matrix. It follows from (12.5.16) that

(α j)2 = I, j = 1,2,3. (12.5.19)

Theorem 12.5.1: The order (dimension) of Dirac matrices α i, i = 1,2,3 and β must be even.

Proof: From (12.5.9) and the equations (12.5.16)–(12.5.18), it follows that all the 4-Dirac

matrices are hermitian, anti-commute with each other and their squares equal the unit

matrix. Now, from hermiticity, it follows that the eigenvalues of all the Dirac matrices are

real. Since (α j)2 = I, j = 1,2,3, and β 2 = I, the eigenvalues of these matrices can be

either +1 or −1.
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Furthermore, since αk and β anti-commute, we have

αk β = (−I)β αk. (12.5.20)

Taking determinants on both sides of (12.5.20), we obtain

det(αk)det(β ) = det(−I)det(β )det(αk) = (−1)N det(β )det(αk). (12.5.21)

Since none of the matrices is singular and all of them can have inverses, none of the

determinants in (12.6.2) vanishes. This leads to

(−1)N = 1. (12.5.22)

The last equation shows that the order (dimension) of the Dirac matrices, α j, j = 1,2,3,

and β , must be even. Q.E.D.

Theorem 12.5.2: Dirac matrices, α j, j = 1,2,3, and β , are traceless.

Proof: Once more we have from (12.5.17),

−β = (αk)−1 β αk. (12.5.23)

Taking the trace of both sides of (12.5.23) we obtain

−tr(β ) = tr((αk)−1 β αk) = tr(αk (αk)−1 β ) = tr(β ), (12.5.24)

where we have used the property of the trace of the product of matrices, according to which

tr(ABC) = tr(BAC) = tr(CAB) for any three matrices A, B and C. Therefore,

tr(β ) = 0. (12.5.25)

Similarly, we can show that

tr(αk) = 0, k = 1,2,3. (12.5.26)

Thus, all Dirac matrices are traceless. Q.E.D.

A possible representation of Dirac matrices: We have shown that the dimension of Dirac

matrices must be even. The lowest even dimension is 2. Since we have four distinct

Dirac matrices, αk,k = 1,2,3, and β , while for N = 2, we have only three 2× 2 linearly

independent and anti-commuting matrices in the form of Pauli matrices σ̂ k,k = 1,2,3,

N = 2 cannot be acceptable. Thus, we conclude that the minimum value of N for which

the Dirac matrices will satisfy the requirements given by the equations (12.5.16)–(12.5.18)

must be 4.
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Assuming N = 4, we can now construct one of the possible representations of Dirac

matrices. Thus, Dirac matrices must have at least four rows and four columns; we shall

restrict ourselves to 4× 4 matrices. We have seen that the trace of αk and β must be

zero. In addition, since β is hermitian and can always be diagonalized, it is convenient

to represent β by a diagonal matrix. This, together with trβ = 0 and β 2 = I, leads to the

choice

β =

(
I 0

0 −I

)
, (12.5.27)

where I is the 2×2 identity matrix.

The rest of the three matrices αk,k = 1,2,3, must anti-commute with β and also be

hermitian. These requirements can be fulfilled if we make use of the three Pauli matrices,

σ̂ j, j = 1,2,3 (which anti-commute among themselves) and put

αk =

(
0 σ̂ k

σ̂ k 0

)
. (12.5.28)

12.6 Relativistically Covariant Form of Dirac Equation

In order to have a more symmetrical and covariant look of the Dirac equation, let us go

back to (12.5.2) and multiply it throughout by the matrix β from the left to obtain

iβ
∂ψ
∂x0

+ i
3

∑
j=1

β α j ∂ψ
∂x j −

m c
h̄

ψ = 0, (12.6.1)

where we have used β 2 = I. Let us now introduce new matrices by

γ0 = β =

(
I 0

0 −I

)
, (12.6.2)

γ j = β α j =

(
0 σ̂ j

−σ j 0

)
, ( j = 1,2,3). (12.6.3)

In the aforementioned formulae, I is a 2×2 unit matrix and 0 stands for a 2×2 null matrix.

Thus, the explicit forms of 4×4 Dirac matrices are

γ0 =

⎛
⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

⎞
⎟⎟⎠ , γ1 =

⎛
⎜⎜⎝

0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0

⎞
⎟⎟⎠ , (12.6.4)
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γ2 =

⎛
⎜⎜⎝

0 0 0 −i
0 0 i 0

0 i 0 0

−i 0 0 0

⎞
⎟⎟⎠ , γ3 =

⎛
⎜⎜⎝

0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0

⎞
⎟⎟⎠ , (12.6.5)

Usually these matrices are grouped together and written as

γμ = {γ0,γ j} ≡ {γ0,�γ}. (12.6.6)

The indices on the γs are raised and lowered with the help of the metric tensor (gμν and

gμν ):

γμ = gμνγμ , γμ = gμνγμ , (12.6.7)

even though they are not components of a 4-vector. With the help of these γ matrices, we

can rewrite the Dirac equation (12.5.4) in the following covariant form(
i γμ ∂μ − mc

h̄

)
ψ = 0, (12.6.8)

where summation from 0 to 3 over the repeated index μ is understood. This is the

relativistically covariant form of the Dirac equation.

Using (12.6.6), we can also write the continuity equation in the following invariant

form

∂μ jμ = 0, (12.6.9)

where the current density 4-vector jμ is given by

jμ = cψ̄γμψ . (12.6.10)

Here, in the expression for jμ , ψ̄ is the so-called Dirac conjugate wave function, which is

defined through

ψ̄ = ψ†(γ0)† = ψ†γ0, (12.6.11)

where ψ† is the hermitian conjugate of ψ .

12.7 Properties of γ Matrices

1. Since β is hermitian, γ0 is hermitian. But, γ j is anti-hermitian:

(
γ j)†

=
(
β α j)†

=
(
α j)† β † = α j β = −β α j = −γ j, (12.7.1)
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where we have made use of (12.5.17). These hermiticity relations can be summarized

compactly by

(γμ)† = γ0 γμ γ0. (12.7.2)

2. Using the commutation relations for the α and β matrices along with the equations

(12.5.18) and (12.5.19), it is easy to show that the γ matrices satisfy the following

commutation relation

γμγν + γνγμ = 2I gμν , (12.7.3)

where I is the unit matrix and gμν is the Minkowski metric tensor given by (12.1.24).

We may form new matrices from the four γμ matrices by multiplying two or more

of them together. Since the square of each of the γμ matrices equals ±1, we need

to consider only products whose factors are different. The order of the factors in the

product is irrelevant since different γ matrices either commute or anti-commute. Since

the number of ways in which one can make distinct combinations out of n objects is

(2n− 1), we shall have altogether 24− 1 = 15 different products of γ matrices. If we

also include the unit matrix I, we can enumerate 16 different matrices, which have been

tabulated as follows:

I, γ0, iγ1, iγ2 iγ3,

γ0γ1, γ0γ2, γ0γ3, iγ2γ3, iγ3γ1, iγ1γ2, (12.7.4)

iγ0γ2γ3, iγ0γ3γ1, iγ0γ1γ2, γ1γ2γ3,

iγ0γ1γ2γ3 ≡ iγ5, (12.7.5)

where the factor i has been inserted so that the square of each element is +I.

Let us denote the elements in the aforementioned array by Γm,m = 1,2,3, . . . ,16. The

following properties can be verified (no summation over repeated Latin indices

implied):

ΓmΓn = amnΓ�, where amn = ±1 or± i, (12.7.6)

ΓmΓn = I, iff m = n, (12.7.7)

where Γ� in (12.7.6) is one of the elements of the array, other than Γm and Γn. It can

also be checked that γ5 anti-commutes with all γμ and that (γ5)
2 = −I. Furthermore,

we have the following important theorems.
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Theorem 12.7.1: For each Γi, except for Γ1 = I, we can always find a Γ j such that

Γ jΓiΓ j = −Γi. (12.7.8)

The proof consists in showing that there does exit a Γ j for each Γi as required by (12.7.8).

For instance, it is easy to check that for i = 2,3, . . . ,5, that is, for the last four elements in

the first line of (12.7.4), Γ j = iγ0γ1γ2γ3, for the elements of the second line of (12.7.4),

Γ j equals one of the last four elements of the first line, for the elements of the third line of

(12.7.4), Γ j = iγ0γ1γ2γ3 and for the last element Γ j = γ0.

Theorem 12.7.2: For i �= 1, trΓi = 0.

Proof: Consider any Γi. Then, using the property (12.7.8), we have Γ jΓiΓ j = −Γi. Using

now the property of the trace of the products of matrices, we obtain

tr(Γ jΓiΓ j) = tr(Γ jΓ jΓi) = tr(Γ2
j Γi) = tr(Γi) = −tr(Γi). (12.7.9)

It thus follows that tr(Γi) = 0.

Theorem 12.7.3: The matrices Γ j, j = 1,2,3, . . . ,16 are linearly independent, that is, the

equality ∑16
j=1 c jΓ j = 0 holds only if the constants c j = 0, j = 1,2,3, . . . ,16.

Proof: Multiplying ∑16
j=1 c jΓ j = 0 by Γk, with k �= j, and using the properties (12.7.6) and

(12.7.7), we obtain

16

∑
j=1

c jΓkΓ j = c jI + ∑
k �= j

c ja jkΓ� = 0. (12.7.10)

Taking the trace of (12.7.10), we get c j = 0, j = 1,2,3, . . . ,16 because tr(Γ�) = 0, whereas

tr(I) �= 0. Q.E.D.

Corollary: It follows from Theorem 12.7.3 that any 4×4 matrix M can be written uniquely

as a linear combination of the Γ js:

M =
16

∑
k=1

ck Γk. (12.7.11)

Multiplying (12.7.11) by Γ� and taking the trace, we obtain

tr(Γ�M) =
16

∑
k=1

ck tr(Γ�Γk) = c� tr(Γ�Γ�)+
16

∑
k �=�

ck tr(Γ�Γk) = c�tr(I) = 4 c�. (12.7.12)
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It thus follows that c� = 1
4 tr(Γ�M) and hence

M =
16

∑
k=1

1

4
tr(ΓkM)Γk. (12.7.13)

Theorem 12.7.4: Any matrix M that commutes with γμ , μ = 0,1,2,3, is a multiple of the

identity matrix I.

Proof: Assume M is not a multiple of the identity. If M commutes with all the γμ , it

commutes with all the Γ js and, therefore, we have M = Γ jMΓ j. From (12.7.10), we can

write

M = c jΓ j + ∑
k �= j

ck Γk. (12.7.14)

Since, by assumption, M commutes with all the γμ , it commutes with all Γ j. Hence, we

have M = Γ�MΓ�. Therefore, if Γ� is the element for which Γ�Γ jΓ� =−Γ j, by multiplying

(12.7.16) by Γ� from left and from the right, we obtain

M = Γ� M Γ� = c jΓ� Γ j Γ�+ ∑
k �= j

ck Γ� Γk Γ� = −c jΓ j + ∑
k �= j

ck (±Γk), (12.7.15)

where we have used the fact that Γk and Γ� either commute or anti-commute and hence,

Γ� Γk Γ� = ±Γ2
� Γk = ±Γk.

Multiplying (12.7.14) and (12.7.15) by Γ j and taking the trace we get that c j = −c j
and, therefore, c j = 0. Since ΓJ is arbitrary except that it is not equal to I, it follows that

all c j in the expansion (12.7.11) are zero except c1. That is,

M = c1 Γ1 = c1 I. (12.7.16)

This means that M is a multiple of the unit matrix I. Q.E.D.

Theorem 12.7.5: Consider two sets of 4 × 4 matrices γμ and γ ′μ , which satisfy the

commutation relations

γμγν + γνγμ = 2I gμν , (12.7.17)

γ ′μγ ′ν + γ ′νγ ′μ = 2I gμν , (12.7.18)

respectively. If Γ j and Γ′j are sets of sixteen products matrices formed in exactly the same

manner from γμs and γ ′μs, respectively, then there exists a non-singular matrix S such that

γ ′ μ = Sγ μS−1. (12.7.19)
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Proof: The proof lies in showing that we can indeed construct the required matrix S and

that this matrix is nonsingular6. If Γ j and Γ′j are sets of sixteen products matrices formed

in exactly the same manner from γμs and γ ′μs, respectively, then we set

S =
16

∑
j=1

Γ′j F Γ j, (12.7.20)

where F is an arbitrary 4× 4 matrix, and show that it can be chosen such that S is non-

singular.

We have from (12.7.6)

Γi Γ j Γi Γ j = a2
i jΓ

2
k = a2

i j. (12.7.21)

Multiplying (12.7.21) by Γi from the left and by Γ j from the right we obtain

Γ j Γi = a2
i j Γi Γ j = a3

i j Γk. (12.7.22)

Since, in the primed system, the γ ′μ ’s are constructed in the same manner as in the

unprimed system, we also have

Γ′i Γ′j = ai jΓ′k. (12.7.23)

Then, for any i,

Γ′i S Γi =
16

∑
j=1

Γ′iΓ
′
j F Γ j Γi =

16

∑
j=1

a4
i j Γ′k F Γk. (12.7.24)

Since a4
i j = 1, if we take into account that for fixed i the matrix ΓiΓ j runs over all the

sixteen elements of the algebra, the summation over j can be replaced by a sum over k.

Then it follows from (12.7.24) that

Γ′i S Γi =
16

∑
k=1

Γ′k F Γk = S. (12.7.25)

By multiplying (12.7.25) by Γi from right and taking into account that Γ2
i = I, we get

Γ′i S = S Γi. (12.7.26)

From (12.7.26) we get

Γ′i = S Γi S−1. (12.7.27)

6H. Bethe and R. Jackiw, Intermediate Quantum Mechanics, Westview Press, 1997
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Now two things must be noted. Firstly, the matrix F can be chosen so that S is not zero. In

the opposite case, by assuming S to be zero for all F , one can prove that all the matrices

Γ j, j = 1,2,3, . . . ,16 are linearly dependent which is a contradiction. Secondly, the matrix

F can be chosen so that S is nonsingular. To prove this statement let us introduce a matrix

S′ defined by

S′ =
16

∑
j=1

Γ′j G Γ j. (12.7.28)

where G is a 4× 4 matrix to be chosen. For the moment, the matrix F in the definition

of S,

S =
16

∑
j=1

Γ′j F Γ j, (12.7.29)

is also assumed to be arbitrary. By symmetry, with the primed and unprimed matrices

interchanged, we can write

Γ j S′ = S′ Γ′j, (12.7.30)

for any j. From (12.7.27) and (12.7.30), we obtain

Γ j S′S = Γ j S′ Γ′j S = Γ j S′ Γ′j (Γ
′
j S Γ j) = Γ j S′ S Γ j = S′ S Γ j. (12.7.31)

Then according to Theorem 12.7.4,

S′S = a I, (12.7.32)

that is, S′S is a multiple of the unit matrix. Since F and G occurring (12.7.20) and

(12.7.28)are arbitrary, they can be chosen so that a is not zero. Hence, S is nonsingular.

Therefore, from (12.7.27), it follows that

γ ′μ = S γμ S−1. (12.7.33)

The above assertion is due to the fact that (12.7.27) holds for all Γ j, j = 1,2,3, . . . ,16,

including Γ1 = γ0,Γ2 = iγ1,Γ3 = iγ2,Γ4 = iγ3. Q.E.D.

Note that S is unique up to a constant, for suppose γ ′μ = S1 γμ S−1
1 = γ ′μ = S2 γμ S−1

2 .

Then S−1
2 S1 γμ = γμ S−1

2 S1. Since S−1
2 S1 commutes with all γμ , it follows from Theorem

12.7.4 that S−1
2 S1 = aI. whence S1 = cS2, where c is a constant. Further, suppose that we

are given four γ ′μ that satisfy (12.7.17). If we now define γ ′μ = S γμ S−1, it is clear that

the γ ′μ will also satisfy (12.7.17).
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12.8 Form Invariance of Dirac Equation under Lorentz
Transformations

Before we discuss the physical consequences of Dirac theory, we must be convinced that

the Dirac equation (12.6.8) is consistent with STR in the sense that it is indeed covariant

under Lorentz transformations. That is, it is form invariant under Lorentz transformations.

Consider the standard configuration of two inertial frames K and K′ of section 12.1. In

that context, the covariance of the Dirac equation requires two things:

(i) There must exist concrete rules to enable the observer in K′ to construct his wave

function ψ ′(x ′0,�x′) on the basis of the information about the wave function ψ(x0,�x),
provided to him by the observer in K, so that both the Dirac wave functions, (ψ(x0,�x)∈
K and ψ ′(x ′0,�x′) ∈ K′), describe the same quantum state of a given system.

(ii) To be consistent with the principle of special relativity, the wave function ψ ′(x ′0,�x′)
must also satisfy the Dirac equation(

ih̄ γ ′ν
∂

∂x′ν
−mc

)
ψ ′ = 0, (12.8.1)

written in the reference frame K′.

The transformation of the Dirac wave function under transition from K to K′, via Lorentz

transformations, must be linear because of the simple fact that both the Dirac equation and

the Lorentz transformations are linear:

ψ ′(x ′) = ψ ′(Λx) = S(Λ)ψ(x) = S(Λ)ψ(Λ−1x′), (12.8.2)

where Λ is the Lorentz matrix and S(Λ) is a 4×4 matrix that depends on the parameters

of Lorentz transformations and acts on the original Dirac wave function ψ to yield the

transformed Dirac wave function ψ ′. Note that through Λ, S depends on the relative

velocity and the orientation of the two observers in K and K′.
According to the principle of relativity, the inverse transformation, represented by the

matrix S−1(Λ) must exist so that the observer in K could also construct his wave function

ψ(x) on the basis of the knowledge of ψ ′(x′). Now, this can be accomplished in two ways:

(a) By acting on ψ ′(x′) with the inverse of the matrix S(Λ)

ψ(x) = S−1(Λ)ψ ′(x′) = S−1(Λ)ψ ′(Λx), (12.8.3)

and (b) By acting on ψ ′(x′) with the matrix S(Λ−1)

ψ(x) = S(Λ−1)ψ ′(x′) = S(Λ−1)ψ ′(Λx). (12.8.4)

The last two equations yield

S(Λ−1) = S−1(Λ). (12.8.5)
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Thus, if we construct S(Λ), we are through. Let us proceed to achieve that.

For the observer in K, the Dirac equation reads

(i h̄ γμ ∂μ −mc) ψ = 0. (12.8.6)

Inserting here ψ(x) = S(Λ−1)ψ ′(x′), we get(
i h̄ γμ ∂

∂xμ
S(Λ−1)−mc S(Λ−1)

)
ψ ′(x′) = 0. (12.8.7)

Let us multiply (12.8.6) by S(Λ) from the left, take into account (12.8.5) and the fact that

S S−1 = I. Then we obtain(
ih̄
[
S(Λ)Λν

μγμS−1(Λ)
] ∂

∂x′ν
−mc

)
ψ ′(x′) = 0. (12.8.8)

Note that in the above equation (12.8.8), we have taken into account that

∂
∂xμ =

∂x′ν

∂xμ
∂

∂x′ν
= Λν

μ
∂

∂x′ν
. (12.8.9)

Let us define Λν
μγμ = γ ′ν . Using the relation (12.1.31), it is easy to check that γ ′ν satisfy

the commutation relation (12.7.18). Then, according Theorem 12.7.5, Which is also known

as Pauli’s fundamental theorem, there exists a (unique up to multiplicative constant) matrix

S such that

Λν
μγμ = S−1γνS. (12.8.10)

In the given case, it is S(Λ) which must satisfy the constraint (12.8.10). If we use the

above relation (12.8.10) in (12.8.9), we obtain(
i h̄ γ ν ∂

∂x′ν
−mc

)
ψ ′(x′) = 0. (12.8.11)

The equation (12.8.11) shows that the Dirac equation will be form invariant under Lorentz

transformations, if we succeed in constructing the required matrix S(Λ).

It is clear from this analysis that constructing S(Λ) is equivalent to solving (12.8.10),

which holds good for both the proper and improper Lorentz transformations. In what

follows, we shall discuss covariance of the Dirac equation only under proper Lorentz

transformations. Also, time reversal will not be discussed here, nor will the related

transformation of charge conjugation, which interchanges particles with anti-particles.

While both of these operations are symmetries of the Dirac theory, they are discussed

most easily in the field theoretical context, which, unfortunately, we do not have here. So

far as parity transformation is concerned, the correct choice for S is γ0.
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Let us start with the proper Lorentz transformations, which are continuous, that is, they

are parametrized by a continuously varying parameter. For instance, the relative velocity

between two inertial frames is one of such parameters. It turns out that proper Lorentz

transformations corresponding to a parameter form a Lie group. Therefore, any finite

Lorentz transformation can be achieved from the identity transformation by repeatedly

applying the corresponding infinitesimal transformation. As a consequence, it is sufficient

to deal only with infinitesimal transformations.

Consider an infinitesimal proper Lorentz transformation by representing the Lorentz

parameter Λμ
ν as

Λμ
ν = δ μ

ν +Δωμ
ν , (12.8.12)

where |Δω| � 1. From (12.1.31), we get

gαβ = Λμ
αgμν Λν

β = (δ μ
α +Δωμ

α )gμν(δ ν
β +Δων

β ) = gαβ +(Δωαβ +Δωβα)+O(Δω)2.

(12.8.13)

As a consequence, we get

Δωαβ +Δωβα = 0. ⇒ Δωαβ = −Δωβα . (12.8.14)

Consequently, there are six non-vanishing parameters each of which generates an

infinitesimal Lorentz transformation. Let now consider S(Λ) = S(I +Δωμν) and expand

it in Taylor series around the identity transformation I:

S(Λ) = S(I +Δωμν) = S(I)+
([

∂S
∂ Λ

]
Λ=I

)
μν

Δωμν +O(Δω)2 ≈ I− i
4

σμν Δωμν ,

(12.8.15)

where we have taken into account that S(I) = I and introduced the notation([
∂S
∂ Λ

]
Λ=I

)
μν

= − i
4

σμν . (12.8.16)

Here, σμν is a 4× 4 matrix and the factor −(i/4) has been introduced for convenience.

Using SS−1 = I, it is easy to prove that σμν is anti-symmetric

σμν = −σνμ . (12.8.17)

Let us now go back to (12.8.10). Up to the first order in Δω , we get

(gν
μ +Δων

μ )γ
μ =

(
I− i

4
σαβ Δωαβ

)
γν
(

I +
i
4

σαβ Δωαβ
)

. (12.8.18)
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Or,

γν +Δων
μ γμ = γν − i

4
γν σαβ Δωαβ +

i
4

Δωαβ σαβ γν . (12.8.19)

Cancelling γν , we obtain

Δων
μ γμ =

i
4
(σαβ γν − γν σαβ )Δωαβ (12.8.20)

Changing the dummy index μ to β , the left hand-side of (12.8.20) can be written as

Δων
β γβ = gν

α γβ Δωα
β = gν

α gσβ γβ Δωασ = gν
α Δωασ γσ = gν

α Δωαβ γβ . (12.8.21)

Using now the anti-symmetry of Δωαβ , we get

Δων
β γβ =

1

2

(
gν

α Δωαβ γβ + gν
β Δωβα γα

)
=

1

2

(
gν

α γβ −gν
β γα

)
Δωαβ . (12.8.22)

From (12.8.20)–(12.8.22), we get

i
4
(σαβ γν − γν σαβ )Δωαβ =

1

2

(
gν

α γβ −gν
β γα

)
Δωαβ . (12.8.23)

Or,

2i
(

gν
β γα −gν

α γβ

)
= [σαβ ,γν ]. (12.8.24)

Thus, the problem of finding S(Λ) has now reduced to finding the solution of the above

equation (12.8.24) for σαβ . The required σαβ is given by

σαβ =
i
2
[γα ,γβ ]. (12.8.25)

Let us check whether it satisfies the aforementioned equation or not. We have

[σαβ ,γν ] =
i
2
[[γα ,γβ ],γν ] =

i
2

{
[γαγβ − γβ γα ,γν ]

}
=

i
2

{
[2γαγβ ,γν ]−2[gαβ ,γν ]

}
= i [γαγβ ,γν ] = i

(
γαγβ γν − γνγαγβ

)
= 2i

(
gν

β γα −gν
αγβ

)
, (12.8.26)

where we have used the anti-commutation relation for the γ matrices. Hence, the ansatz

(12.8.25) does fulfill the condition (12.8.24). As a result, we finally have

S(Λ) = I− i
4

σμν Δωμν = I +
1

8
[γμ ,γν ]Δωμν . (12.8.27)
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Thus, we have shown that if γμ , μ = 0,1,2,3 do not change during Lorentz transformations

and the Dirac wave function ψ(x) transforms with S(Λ), given by (12.8.27), the Dirac

equation is covariant (that is, form invariant) under Lorentz transformations.

12.9 Free-Particle Solutions of Dirac Equation

The Dirac equation for a free particle is given by

ih̄
∂ψ
∂ t

=
(

c�α · �̂p+m c2 β
)

ψ . (12.9.1)

We look for the solution in the form

ψ(�r, t) = ψ(�r) e−
i
h̄ E t , (12.9.2)

which, when substituted into the Dirac equation (12.9.1) yields the eigenvalue equation for

the Dirac Hamiltonian ĤD:(
c�α · �̂p+m c2 β

)
ψ(�r) = E ψ(�r), (12.9.3)

where E is the energy eigenvalue. Since the operator on the left-hand side is a 4×4 matrix,

the wave function ψ(�r, t) must have four components that are usually written as a four-

component column vector and it is called a Dirac bi-spinor. Note that, since ĤD is only a

function of �̂p, then [�̂p, ĤD] = 0, so that the eigenvalues of �̂p can be used to characterize the

states. In particular, we look for free-particle (plane-wave) solutions of the form

ψ(�r) = u(p) e
i
h̄ (�p·�r), (12.9.4)

where

u(p) =

⎛
⎜⎜⎝

u1(p)
u2(p)
u3(p)
u4(p)

⎞
⎟⎟⎠ , (12.9.5)

is a Dirac bi-spinor that satisfies, according to (12.9.3),(
c�α · �̂p+m c2 β

)
u(p) = E u(p). (12.9.6)

For convenience, we rewrite the Dirac bi-spinor in the following form

u(p) =
(

φ (p)
χ(p)

)
, (12.9.7)
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so that (12.9.6) can be rewritten as(
mc2 c�̂σ · �̂p

c�̂σ · �̂p −mc2

)(
φ (p)
χ(p)

)
=

(
E 0

0 E

)(
φ (p)
χ(p)

)
. (12.9.8)

This matrix equation gives a system of two algebraic equations

(E−mc2)φp− (c �̂σ · �̂p)χp = 0, (12.9.9)

− (c �̂σ · �̂p)φp +(E +mc2)χp = 0. (12.9.10)

Taking into account that

p̂ j

(
φ (p)
χ(p)

)
= p j

(
φ (p)
χ(p)

)
, j = 1,2,3, (12.9.11)

we get from these equations

φp =
(c �̂σ ·�p)
(E−mc2)

χp, (12.9.12)

χp =
(c �̂σ ·�p)
(E +mc2)

φp. (12.9.13)

From the aforementioned two equations, we obtain a single equation for φp:[
(E−mc2)(E +mc2)− c2(�̂σ ·�p)2

]
φp = 0 (12.9.14)

Using the formula,

(�̂σ ·�a)(�̂σ ·�b) = (�a ·�b)I + i σ · (�a×�b)I, (12.9.15)

we obtain

(E2− c2�p2−m2c4)φp = 0. (12.9.16)

Note that the same result is obtained by equating the determinant of the aforementioned

homogeneous system of algebraic equations to zero. It is worth noting here that (12.9.16)

represents the relativistic relation between energy and momentum of a free particle, which

must be satisfied in any relativistic generalization of quantum mechanics. The Dirac

equation, as we see, does preserve it.
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For non-trivial solutions, we must have

(E2− c2�p2−m2c4) = 0. (12.9.17)

For a given value of the momentum, there are two solutions for the equation (12.9.17):

E+ = +
√

c2�p2 +m2c4, (12.9.18)

and

E− = −
√

c2�p2 +m2c4, (12.9.19)

which are nothing but the energy eigenvalues of the Hamiltonian. Thus, we see that, just

like the Klein–Gordon equation, the Dirac equation too have solutions with positive as well

as negative total energy.

For the positive energy eigenvalue, E+, an appropriate solution is to take

φp =

(
1

0

)
or

(
0

1

)
. (12.9.20)

Then,

χp =
(c �̂σ ·�p)
(E +mc2)

(
1

0

)
or

(c �̂σ ·�p)
(E +mc2)

(
0

1

)
. (12.9.21)

But,

�̂σ ·�p =

(
pz px− ipy

px + ipy −pz

)
, (12.9.22)

and, therefore, we have

χp =

⎛
⎜⎜⎝

cpz

E++mc2

c(px + ipy)

E++mc2

⎞
⎟⎟⎠ or

⎛
⎜⎜⎝

c(px− ipy)

E++mc2

−cpz

E++mc2

⎞
⎟⎟⎠ . (12.9.23)

So, the full positive energy solutions are

ψ+(�r, t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1

0
cpz

E++mc2

c(px + ipy)

E++mc2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

e−i mc2

h̄ t+ i
h̄ (�p·�r) or

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

1

c(px− ipy)

E++mc2

−cpz

E++mc2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

e−i mc2

h̄ t+ i
h̄ (�p·�r),

(12.9.24)
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both of which represent forward propagating solutions. These correspond to particles

propagating forward in time with an energy E = E+.

For the negative energy eigenvalue, E−, an appropriate solution is to take

χp =

(
1

0

)
or

(
0

1

)
. (12.9.25)

so that the full negative energy solutions are given by

ψ−(�r, t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−cpz

|E−|+mc2

−c(px + ipy)

|E−|+mc2

1

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ei mc2

h̄ t+ i
h̄ (�p·�r) or

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−c(px− ipy)

|E−|+mc2

cpz

|E−|+mc2

0

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ei mc2

h̄ t+ i
h̄ (�p·�r).

(12.9.26)

These correspond to particles propagating backwards in time with an energy E = |E−|.
Note that to have the normalized solution satisfying

(φp)
∗φp +(χp)

∗χp = 1, (12.9.27)

we must multiply each of the components, φp and χp, by

N =

√
E++mc2

2E+
. (12.9.28)

If we consider the non-relativistic limit in which E = mc2, we notice that each of the

aforementioned solutions have one of the two spinor components, φp and χp, of the order

of (v/c)� 1. These components are called small components, while the other two are

called large components. For instance, for the positive energy solutions, we have

E ≈ mc2 +
�p2

2m
, (12.9.29)

so that

χp =
c (�̂σ ·�p)

2mc2 + �p2

2m

φp. (12.9.30)
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Since mc2 � (�p)2

2m
, we conclude that χp � φp. Hence, for the positive energy solutions,

φp is the large component, while χp is the small component. In the non-relativistic limit,

we expect the large components to correspond to solutions of the Schrödinger equation for

a free-particle.

12.10 Spin. Interpretation of the Negative Energy Solutions

It turns out that the Dirac equation describes a particle with spin equal to h̄/2. This was one

of the important features of Dirac’s theory. To show this, let us consider the orbital angular

momentum operator,�̂L, and check whether it commutes with the Dirac’s Hamiltonian given

by (12.5.12). We have

[L̂x, ĤD] = [yp̂z− zp̂y,
(
�α · (�̂p )+m c2 β

)
]. (12.10.1)

Using the distributive property and the fundamental commutation relations (2.4.20), we get

[L̂x, ĤD] = ih̄ c (αy p̂z−αz p̂y) . (12.10.2)

Similarly, we obtain

[L̂y, ĤD] = ih̄ c (αz p̂x−αx p̂z) , (12.10.3)

[L̂z, ĤD] = ih̄ c (αx p̂y−αy p̂x) . (12.10.4)

Combining the aforementioned three equations together, we arrive at

[�̂L, ĤD] = ih̄ c
(
�α× �̂p

)
. (12.10.5)

Hence, the orbital angular momentum operator does not commute with the Hamiltonian,

and therefore, it is no longer a constant of motion. On the other hand, the existence of two

linearly independent solutions corresponding to a given value of the energy indicates that

there is some inherent symmetry in the Dirac Hamiltonian because of which this

degeneracy occurs. This in turn means that there must exist an operator that commutes

with the Hamiltonian.

If we go back to Section 8.2, we recognize that in the 4× 4 representation, the spin

operator takes the form

�̂S =
h̄
2
�̂σ =

h̄
2

(
�̂σ 0

0 �̂σ

)
. (12.10.6)
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Now, we consider the operator of total angular momentum

�̂J = �̂L+ �̂S (12.10.7)

and calculate its commutator with the Dirac Hamiltonian.

Using the commutation relations for the Pauli matrices, we obtain

[Ŝx, ĤD] = −ih̄ c (αy p̂z−αz p̂y) . (12.10.8)

[Ŝy, ĤD] = −ih̄ c (αz p̂x−αx p̂z) , (12.10.9)

[Ŝz, ĤD] = −ih̄ c (αx p̂y−αy p̂x) . (12.10.10)

Therefore,

[Ĵx, ĤD] = [L̂x, ĤD]+ [Ŝx, ĤD] = 0, (12.10.11)

[Ĵy, ĤD] = [L̂y, ĤD]+ [Ŝy, ĤD] = 0, (12.10.12)

[Ĵz, ĤD] = [L̂z, ĤD]+ [Ŝz, ĤD] = 0. (12.10.13)

Or,

[�̂J, ĤD] = 0. (12.10.14)

On the basis of these results, we conclude that it is the the total angular momentum, �J,

which is the integral of motion for the Dirac Hamiltonian and not the orbital angular

momentum�L or the spin angular momentum �S individually.

Furthermore, for the positive energy Dirac particle at rest (that is, when �p = 0 and

E0 = mc2), the small component, χp, vanishes and the full time-dependent wave function

becomes

ψ+ =

⎛
⎜⎜⎝

1

0

0

0

⎞
⎟⎟⎠ e−i mc2

h̄ t , (12.10.15)

or,

ψ+ =

⎛
⎜⎜⎝

0

1

0

0

⎞
⎟⎟⎠ e−i mc2

h̄ t . (12.10.16)
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For the negative energy Dirac particle at rest (that is, when �p = 0 and E0 = mc2), the small

component, φp, vanishes and the full time-dependent wave function becomes

ψ− =

⎛
⎜⎜⎝

0

0

1

0

⎞
⎟⎟⎠ ei mc2

h̄ t (12.10.17)

or,

ψ− =

⎛
⎜⎜⎝

0

0

0

1

⎞
⎟⎟⎠ ei mc2

h̄ t . (12.10.18)

It is easy to check that the positive energy solution (12.9.15) and the negative energy

solution (12.9.17) are eigenfunctions of the operator Ŝz with eigenvalue h̄
2 , while the

positive energy solution (12.9.16) and the negative energy solution (12.9.18) are the

eigenfunctions of Ŝz with eigenvalue − h̄
2 . Thus, the particles that obey Dirac equation

have half-integer spin in the units of h̄.

Interpretation of the negative energy solution: We have seen that the Dirac equation has

free-particle solutions for positive as well as negative energies. A plot of the energy levels

is shown in Figure 12.1. As depicted, there is a continuum of energy levels for both E > 0

and E < 0. The gap between the edges of these regions is ΔE = 2mc2.

The existence of negative energy continuum of states for the Dirac electron, raises

doubts about the stability of matter in Dirac’s theory. Since particles can jump to lower

energy states by emitting photons, an electron in the lowest positive energy state could emit

a photon with energy equal to 2mc2 and jump to the highest negative energy state! Since it

has lost energy, it would speed up, lose more energy by emitting photons and continue to

fall deeper and deeper into the negative energy continuum states. Thus, the entire matter

will be annihilated within a fraction of a second. As we know, it does not happen in reality.

So, how do we understand the existence of these negative energy continuum states for the

electron?

Note that in classical theory also negative energy solutions do exist. They are, however,

excluded by imposing the initial condition that, in the beginning, all particles had positive

energy. This initial condition is based on the requirement that a classical particle cannot

make a transition from a positive energy state to the negative energy state without going

through the intermediate energy levels7

A completely free, single quantum mechanical particle will not make transitions to

negative energy states by itself. However, no particle is completely free and transitions

can always be induced by external perturbations, for example, by radiation, if not by any

7H. Bethe and R. Jackiw, Intermediate Quantum Mechanics, Westview Press, 1997.
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E > 0

E < 0

E mc= 2

E mc= – 2

ΔE mc= 2 2

Figure 12.2 Schematic plot of the energy levels for free particles described by the Dirac equation.

other means. Therefore, to get rid of the instability of matter predicted by his theory, Dirac

proposed the existence of the so-called ‘Dirac sea’ by assuming that all negative energy

states are already filled with negative energy electrons. Since the negative energy electrons

uniformly fill the Dirac sea, they cannot be directly observed. Each of these negative energy

electrons have the following properties: negative mass, negative energy, negative charge.

Because electrons are fermions and obey the Pauli exclusion principle, the transition of

positive energy electrons to any of the negative energy state in the Dirac sea is not possible

because that state is already occupied by an electron.

It is, however, possible that a negative energy electron, in one of the negative energy

states in the Dirac sea, is excited to one of the positive energy states by an extremely high

energy photon (such as gamma rays) with energy greater than or equal to 2mc2. That

electron would now exist as a normal, positive energy electron. There will now be a hole

(created by the absence of the negative energy electron) in the Dirac sea. This hole would

behave as a particle as well. Since the hole is the absence of negative energy electron, it

would have exactly the opposite properties of a negative energy electron. It would have

positive mass, positive energy and positive charge. These particles would be anti-electrons

(or positrons). Furthermore, if a normal electron ever encountered a positron (which was

actually a hole in the Dirac sea), the electron would emit 2mc2 energy, and fall into the

place of the positron in the Dirac sea.

Using the concept of the ‘Dirac sea’ of negative energy electrons, one can calculate the

probability of pair production in the electric field of a nucleus by considering the

probability of raising an electron from a negative to a positive state. Concluding this

section, let us mention that similar techniques cannot be applied to the Klein–Gordon

equation, because particles with integer spin do not obey any exclusion principle.

Homework Problems

1. Determine the infinitesimal Lorentz transformation when Δω10 = −Δω01 = Δβ and

all other Δωμν = 0. Here β = V /c and Δβ = ΔV /c.

2. Determine the infinitesimal Lorentz transformation when Δω12 = −Δω21 = Δθ =
constant and all other Δωμν = 0.
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3. Show that the charge density ρ and the current density �j for the charged Klein–Gordon

particle are given by (12.4.4) and (12.4.5), respectively.

4. Derive the expression for the 4-current density given by (12.6.10) for the Dirac

equation.

5. Show that the γμ matrices satisfy the commutation relation (12.7.3).

6. Show that the gauge transformations on the electromagnetic potentials, occurring in

the Klein–Gordon equation in the presence of external fields, induce a phase

transformation of the Klein–Gordon wave function ψ .

7. Find the solutions of the Klein–Gordon for the case when the external field is a static

Coulomb field for which

eΦ = − Ze2

4πε0

1

r
, �A(�r) = 0.

8. Consider the Dirac equation in 1 + 1 dimensions (that is, one space and one time

dimension):(
γ0 ∂

∂x0
+ γ1 ∂

∂x1
− mc

h̄

)
ψ(x0,x1) = 0.

(a) Find a 2× 2 matrix representation of γ0 and γ1 that satisfies {γμ ,γν} = 2gμν and

has correct hermiticity. What is the physical reason that ψ can have only two

components in 1+ 1 dimensions?

(b) Find the representation of γ5 = γ0γ1, γ5γμ and σ μν = i
2 [γ

μ ,γν ]. Are they

independent? Define a minimal set of matrices that form a complete basis.

9. Consider the following matrices in the so-called Weyl representation

�α =

( −�σ 0

0 �σ

)
, β =

(
0 I
I 0

)
.

They are called Weyl matrices. Show that the Weyl matrices satisfy all the properties

of the Dirac matrices α1,α2,α3 and β . Show that the Dirac matrices in the Weyl

representation are

�γ =

(
0 �σ
−�σ 0

)
, β =

(
0 I
I 0

)
.

10. Solve the Dirac equation for an electron in a constant external magnetic field directed

along the positive z-axis.
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11. Derive the relativistic relation between the total energy, E, and momentum, �p, of a

Dirac particle of mass m by computing the necessary and sufficient condition for the

non-trivial solutions of the coupled system of algebraic equations (12.9.9) and

(12.9.10).

12. Derive the normalization coefficient N given by (12.9.28).





Appendix A: Fundamental Constants

Quantity Symbol/Equation Value

Planck’s constant h̄ 1.05457×10−34 J s
Speed of light c 2.9979×108 m s−1

Charge of proton e 1.602×10−19 C
Charge of electron −e −1.602×10−19 C
Mass of electron me 9.109×10−31 kg
Mass of proton mp 1.673×10−27 kg
Permittivity of free space ε0 8.854×10−12 F m−1

Permeability of free space μ0 4π×10−7 N A−2

Bohr radius a = 4πε0h̄2/mec2 0.529×10−10 m
Boltzmann constant k 1.381×10−23 J K−1

Fine structure constant e2/h̄c 1/137.036

Electron Compton wavelength λ = 2π h̄/mec 2.426×10−12 m
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Appendix B: Useful Integrals

• The integral

In =
∫ ∞

0
xn e−αx dx

is computed by differentiating the integral

In =
∫ ∞

0
e−ax dx =

1

α

with respect to α . Straightforward calculations yield

In =
1 ·2 ·3 · · ·n

αn+1
=

n!
αn+1

.

• Consider the integral

I(1)2n =
∫ ∞

0
x2n e−αx2

dx.

The value of such an integral is calculated by differentiating the integral

I0 =
∫ ∞

0
e−αx2

dx =
1

2

√
π
α

with respect to the parameter α . The result is

I(1)2n =
1×3×5× . . .× (2n−1)

2n+1

√
π

α2n+1
.
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• Similarly,

I(2)2n =
∫ ∞

0
x2n e−x2/x2

0 dx =
√

π
(2n)!

n!

(x0

2

)2n+1
.

I(2)2n+1 =
∫ ∞

0
x2n+1 e−x2/x2

0 dx =
n!
2
(x0)

2n+2

• The Gaussian integral:

∫ ∞

−∞
e−αx2−2βx dx =

√
π
α

eβ 2/α .

• For a �= b,

∫
cos(ax) sin(bx)dx =

cos [(a−b)x]
2(a−b)

− cos [(a+ b)x]
2(a+ b)

.

• Using integration by parts for the functions U(x) and V (x)∫
UdV =UV −

∫
V dU ,

one computes the following integrals:

∫
x sin(ax)dx =

1

a2
sin(ax)− x

a
cos(ax),

∫
x cos(ax)dx =

1

a2
cos(ax)+

x
a

cos(ax).

∫
x sin2(ax)dx =

x2

4
− x sin(2ax)

4a
− cos(2ax)

8a2
.

∫
x2 sin2(ax)dx =

x3

6
−
(

x2

4a
− 1

8a3

)
sin(2ax)− x cos(2ax)

4a2
.



Appendix C: Dirac Delta Function

If f (x) is defined at the point x = x0, then

∫ +∞

−∞
f (x)δ (x− x0)dx = f (x0).

Thus, Dirac delta function can formally be defined as

δ (x− x0) =

{
0 if x �= 0,

+∞ if x = x0,

and ∫ +∞

−∞
δ (x− x0)dx = 1.

Note that the delta function can also be defined as the limiting form of a function, F(x),
which is non-zero only in an infinitesimal interval in the vicinity of the point x0 where it

abruptly attains its positive maximal value such that

∫ +∞

−∞
F(x)dx = 1.

For instance,

δ (x− x0) =
1

π
lim
a→∞

sin[a(x− x0)]

(x− x0)
=

1

π
lim

κ→∞

1− cos[κ(x− x0)]

(x− x0)2
.
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Or,

δ (x− x0) =
1

π
lim
ε→0

ε
(x− x0)2 + ε2

= lim
κ→0

Θ(x− x0 +κ)−Θ(x− x0)

κ
,

where Θ(x) is the Heaviside function

Θ(x) =
{

1 if x > 0,

0 if x < 0,
.

Properties of delta function

• δ (x) = δ (−x).

• δ (ax) = 1
|a|δ (−x), a �= 0.

• δ [(x−a)(x−b)] = 1
|a−b| [δ (x−a)+ δ (x−b)], a �= b.

• δ (x2−a2) = 1
2|a| [δ (x+ a)+ δ (x−a)], a �= 0.

• x δ (x) = 0.

• f (x)δ (x−a) = f (a)δ (x−a).

• ∫ +∞
−∞ δ (x− y)δ (y−a)dy = δ (x−a).

• δ ′(x) = −δ ′(x).

• ∫ +∞
−∞

dδ (x)
dx f (x)dx = −d f

dx (0) ≡− f ′(0).

• Repeated integrations by parts lead to the following general relation:

• ∫ +∞
−∞

dnδ (x)
dxn f (x)dx = (−1)n dn f

dxn (0) ≡ (−1)n − f n(0).

• xδ ′(x) = −δ (x).

• x2δ ′(x) = 0.

• δ (g(x)) = ∑n
δ (x−xn)
|g′(xn)| , where g(xn) = 0 and g′(xn) �= 0.

• The Fourier transform of δ (x) is

δ (x) =
1

2π

∫ +∞

−∞
eikx dk.

• For the derivative of δ (x), we have

δ ′(x) =
i

2π

∫ +∞

−∞
k eikx dk.
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• The three-dimensional form of the delta function is given in Cartesian coordinates by

δ (�x−�x ′) = δ (x− x′)δ (y− y′)δ (z− z′).

• The Fourier transform of the three-dimensional delta function is

δ (�x−�x ′) = 1

(2π)3

∫ +∞

−∞
ei�k·(�x−�x ′) d3k.



Appendix D: Important Formulae and Equations

The wave function: ψ(�r, t).

The position operator: �̂r = {x̂, ŷ, ẑ}= {x,y,z}.

The momentum operator: �̂p = −ih̄�∇.

Time-dependent Schrödinger Equation:

ih̄
∂ψ(�r, t)

∂ t
= Ĥ ψ(�r, t), Ĥ =

�̂p2

2m
+V (�r).

Stationary state wave function: ψ(�r, t) = φ (�r) e−
i
h̄ Et .

Time-independent Schrödinger Equation:

Ĥφ (�r) = E φ (�r). Or, − h̄2

2m
�∇2φ (�r)+V (�r)φ (�r) = E φ (�r).

Canonical commutator: [x̂i, p̂ j] = ih̄ δi j, where i, j = 1,2,3.

Generalized uncertainty relation for two Hermitian but non-commuting operators Â and B̂:

ΔA ΔB≥ 1
2 |〈[Â, B̂]〉|, where ΔA =

√
〈Â2〉−〈Â〉2.

Heisenberg uncertainty relations: Δx Δp≥ h̄
2 , ΔE Δt ≥ h̄

2 .
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Measurement of an observable, Â, in a state |ψ〉 and probability:

Â|φn〉= an |φn〉, P(an) =
|〈φn|ψ〉|2
〈ψ|ψ〉 .

The expectation value of an operator, Â, in a given state |ψ〉:

〈Â〉= 〈ψ|Â|ψ〉
〈ψ|ψ〉 . Or, 〈Â〉=

∫ +∞

−∞
ψ∗(�r) [Âψ(�r)]d3x /

∫ +∞

−∞
ψ∗(�r)ψ(�r) d3x.

Time evolution of expectation values (Ehrenfest’s theorem):

d〈Â〉
dt

=
∂ 〈A〉

∂ t
+

1

ih̄

〈[
Â, Ĥ

]〉
.

Probability density: ρ(�r, t) = ψ∗(�r, t)ψ(�r, t).

Probability current density:

�j(�r, t) =
h̄

2im

(
ψ∗(�r, t)�∇ψ(�r, t)−�∇ψ∗(�r, t)ψ(�r, t)

)
.

Local conservation of probability (continuity equation):

∂ρ
∂ t

+�∇ ·�j = 0.

Angular momentum operators in Cartesian coordinates:

L̂x == −ih̄
(

y
∂
∂ z
− z

∂
∂y

)
, L̂y = −ih̄

(
z

∂
∂x
− x

∂
∂y

)
, L̂z = −ih̄

(
x

∂
∂y
− y

∂
∂x

)
.

[L̂x, L̂y] = ih̄L̂z, [L̂y, L̂z] = ih̄L̂x, [L̂z, L̂x] = ih̄L̂y.

L̂2|�,m〉= h̄2�(�+ 1)|�,m〉, L̂z|�,m〉= h̄m|�,m〉.

Spin angular momentum:

[Ŝx, Ŝy] = ih̄Ŝz, [Ŝy, Ŝz] = ih̄Ŝx, [Ŝz, Ŝx] = ih̄Ŝy.

Ŝ2|s,ms〉= h̄2 s(s+ 1)|s,ms〉, Ŝz|s,ms〉= h̄ms|s,ms〉.
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Pauli Matrices:

σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0

0 -1

)
.

Relativistic relation between energy and momentum:

E2− p2c2 = m2
0c4. ⇒ E = ±

√
c2 p2 +m2

0c4.

The Klein-Gordon equation:(
�+

m2c2

h̄2

)
ψ(x) = 0, �= ∂μ∂ μ =

1

c2

∂ 2

∂ t2
−�∇2.

Dirac Equation:

ih̄
∂ψ
∂ t

= ĤD ψ , ĤD =
(

c�α · (�̂p)+m c2 β
)

.

β =

(
I 0

0 −I

)
, αk =

(
0 σ k

σ k 0

)
.

Relativistically invariant form of Dirac equation:(
i γμ ∂μ − mc

h̄

)
ψ = 0,

where m≡ m0 is the rest mass of the particle.

Gamma Matrices: γ0 = β ,γ j = βα j.

γμγν + γνγμ = 2I gμν .

γ0 =

⎛
⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

⎞
⎟⎟⎠ , γ1 =

⎛
⎜⎜⎝

0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0

⎞
⎟⎟⎠ ,

γ2 =

⎛
⎜⎜⎝

0 0 0 −i
0 0 i 0

0 i 0 0

−i 0 0 0

⎞
⎟⎟⎠ , γ3 =

⎛
⎜⎜⎝

0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0

⎞
⎟⎟⎠ .
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Centrifugal potential 198
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equation 148

length scale 278
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